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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF SCIENCE, SCHOOL OF OCEAN AND EARTH SCIENCE 

Doctor of Philosophy 

 
ON STEADY AND VARIABLE BUOYANCY FORCING IN THE 

ATLANTIC, AN IDEALISED MODELLING STUDY 

By Marc A. Lucas 

 
This study examines the response of the thermohaline circulation in the north 
Atlantic to steady and variable buoyancy forcing. The model used is a version of 
the MOMA model (Webb, 1996), updated to include a free surface and Gent & 
McWilliams mixing. The model’s resolution is coarse, 4 x4 degrees with 15 
levels in the vertical. In a first instance, the model’s response to 14 different 
fixed thermal profiles is investigated, by systematically keeping the equator 
temperature fixed and then the northernmost temperature fixed. The results show 
that the models response differs for these two sets of experiments as one setup 
favours stratification while the other favours convection. In a second instance, 
the restoring field is made to oscillate over 17 different periods, ranging from 6 
months to 32,000 years.  The model's meridional overturning circulation (MOC) 
exhibits a very strong response on all timescales greater than 15 years, up to and 
including the longest forcing timescales examined.  The peak-to-peak values of 
the MOC oscillations reach up to 125% of the steady-state maximum MOC and 
exhibit resonance-like behaviour, with a maximum at centennial to millennial 
forcing periods (depending on the vertical diffusivity). This resonance-like 
behaviour stems from the existence of two adjustment time scales, one of which 
is set by the vertical diffusion and another, which is set by the basin width.  
Finally, the study is extended to a double hemisphere basin. Again, the model's 
MOC exhibits a very strong response on all timescales in both hemispheres, up 
to and including the longest forcing timescales examined for either set of 
experiments with the amplitude of the oscillations reaching up to 140% of the 
steady-state maximum MOC and exhibiting resonance-like behaviour, with a 
maximum at centennial to millennial forcing periods. This resonance like 
behaviour is identical to what has been observed in a single hemisphere and 
occurs for the same reasons. What is novel is that when the forcing in the 
southern subordinate hemisphere lags that of the northern by half a period, the 
amplitude of the response is substantially greater for large forcing periods 
(millennial and above), particularly in the subordinate (southern) hemisphere. 
This happens because the basin has in effect two sources of deep water. This 
leads to colder bottom waters and thus greater stratification, which in turn 
stabilises the water column and thus reduces the value of the minimum 
overturning. The considerable deviation from the quasi-equilibrium response at 
all timescales above 15 years for both the single hemisphere and the double 
hemisphere experiments  is surprising and suggests a potentially important role 
of the ocean circulation for climate even at Milankovich timescales. 
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Chapter 1: Introduction 

 

Summary: 

In this chapter, the motivation behind this thesis is addressed. This is followed by 

a brief review of relevant topics namely, the North Atlantic and the 

Thermohaline circulation, the variability in data, the variability in models and 

fundamental modelling issues. Finally, a brief outline of the thesis is given. 

 

1.1) Motivation: 

The advent of numerical modelling has allowed the physical oceanographic 

community to take great steps in understanding problems that mathematical 

analysis cannot solve. Enormous progress in modelling has been made but some 

of the fundamental processes are still far from understood. 

Simple theoretical models have been around since the 1950’s. The box model of 

Henry Stommel (1961) was particularly notable in that it clearly demonstrated 

the strength of using equations to solve a physically relevant oceanographic 

problem. The next crucial step was the comparatively simple code of Bryan 

(1969).  With the work of Cox (1984) the code was improved and has evolved 

into today’s high resolution complex ocean models. Although the complexity of 

these models has dramatically increased, it is fair to say that the greater amount 

of progress has been due to the improvement of computing power rather than 

from a revolutionary approach. This might be changing with the development of 
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finite element adaptive grids models such as the one being developed at Imperial 

College, London (ICOM, 2004). However, these models are still in their infancy 

and most of today’s state-of-the-art ocean models are still based on the Bryan 

code written some 35 years ago. 

This is not to say that there have not been significant improvements to the code. 

Particularly notable are the works of Redi (1982) of Gent and McWilliam (1990) 

in the domain of diffusion and eddy parameterisation.  There has also been the 

development of isopycnal coordinates models such as MICOM (Miami 

Isopycnal Ocean Model), sigma coordinates models (Princeton Ocean Model) 

and Hybrid coordinates models such as Hybrid Coordinate Ocean Model (Bleck, 

2002). 

However, the lion’s share of improvements is the results of an increase in the 

resolution from coarse, 4ox4o non-eddy-permitting grids at the beginning of the 

last decade to the 1/12 o eddy-resolving grid of OCCAM (Ocean Circulation and 

Climate Advanced Modelling)(Webb, 1995). The increase in resolution is a 

direct result of the increase in processor speed and this increase was such that 

very quickly, physical oceanographers went from very basic ocean only process 

modelling with no or very simple topography to fully coupled ocean atmosphere 

scenarios with realistic topography. This was in part due to the growing 

awareness by the funding authorities of the uncertainties regarding a possible 

global warming and the need to have an idea of the possible scenarios (IPCC, 

2001). 

The result is that although the scientific community now possesses a catalogue of 

scenarios for the earth’s climate in the coming century, some of the basic 

processes that take place in the ocean are still not properly understood. The effect 

of buoyancy forcing is a prime example. A scaling law linking the equator to 

pole thermal gradient to the meridional overturning circulation, derived from the 

basic equation does not seem to hold (Marotzke 1997, Scott 2000). And to date, 

the response of the ocean to an oscillatory pure buoyancy forcing has not been 
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investigated. The aim of the present study is to address this particular gap in the 

modelling community’s understanding of the ocean circulation’s behaviour.  

1.2) The North Atlantic and the THC: 

The North Atlantic is the only region in the world where pure deep-water 

formation takes place. This is not a continuous process and occurs intermittently, 

during the coldest months of the year through deep convective events (Dickson 

& Brown, 1994). This does not mean that no deep water is formed anywhere 

else: there is deep-water formation in the Mediterranean for instance and of 

course in the Weddell Sea, where the world densest waters are formed. However,  

both the Mediterranean deep water and as the Weddell Sea Water are profoundly 

modified by cabelling and lose their distinct T-S signature very rapidly as they 

are carried away from the site of formation. By contrast the North Atlantic Deep 

Water (NADW) retains its T-S signature fairly well. 

This deep water formation, which results from a combination of sinking and then 

cooling of the sinking waters is made possible by the high salinity of the Atlantic 

surface waters, which hovers around the 36 PSU mark, up to 3 PSU higher than 

North Pacific waters at similar latitudes (Pickard & Emery, 1990). 

One of the reasons for this higher salinity is the moisture transport over the 

Isthmus of Panama. Crudely put, water evaporates in the Atlantic and is carried 

into the Pacific, where it precipitates, making the Pacific fresher and the Atlantic 

saltier. Another contributing factor to the high salinity levels in the Atlantic is 

the input of highly saline Mediterranean water as well as the contribution from 

the warm and saline Indian ocean through the shedding of Agulhas rings 

(Pickard & Emery, 1990). 

As to why higher evaporation occurs in the Atlantic, this could be due to the net 

northward transport of heat throughout the ocean basin which incorporates a 

uniquely northward transport of heat across the equator (Rahmstorf, 1995). 
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Recent studies have shown that it is impossible to study the North Atlantic in 

term of freshwater budgets without considering the South Atlantic basin. 

Rahmstorf (1996) conducted a series of experiments which showed that the net 

evaporation in the subtropical South Atlantic and the southward fresh water 

transport by the conveyor belt are both compensated by a wind driven northward 

freshwater transport. This is in keeping with the conclusion of Schiller (1995). 

This means that freshwater budget north of 30oS is crucial to what happens in the 

north, i.e. how salty the North Atlantic will be. However, the freshwater water 

budget south of 30oS is function of the surface flow into the South Atlantic, via 

the Drake Passage and the Agulhas input through the shedding of the mesoscale 

rings. 

Another factor affecting the salinity of the North Atlantic is the input of a fresh-

water source through the Bering Strait. Its precise importance is not yet 

understood and there are diverging opinions regarding it. While Wijffells et al 

(1992) consider it highly important others like Reason & Power (1994) do not 

think it has any significant impact at all. 

The issue of freshwater forcing is important, as studies have shown that the 

circulation in the North Atlantic is very sensitive to perturbations in the 

freshwater budget (Ramhstorf, 1996). For instance, although the melting of 

glaciers at the end of the last ice age might not have affected the NADW 

formation as it was far too slow (Rahmstorf, 1995), a sudden release of melt 

water due to the bursting of an ice dam could have briefly shut down NADW 

formation (Broecker, 1998).  Furthermore, there are indications that the release 

of fresh water due to intense ice rafting during the younger Dryas some 12,000 

years ago caused the shutdown of NADW formation. (McManus et al, 2004). In 

any case, it seems that the global freshwater flux governs where most of the deep 

water will be formed, i.e. in the Northern or in the Southern Hemisphere (Wang 

et al, 1999).  
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Figure1-1: Schematic of the oceanic circulation, panel a) shallow, panel b) 
intermediate and deep (Talley, 2003). 

This deep-water formation is a critical element of what is called the 

Thermohaline Circulation (THC). This term refers to the density driven 

circulation of water masses throughout the world ocean. Coupled to the wind 

driven circulation, the THC is responsible for the transport of heat and salt 

through dynamic features such as the western boundary currents.  It is impossible 

in observations to fully decouple the effect of the THC and those due to the wind 

driven part of the circulation.  However, as density in the ocean is a function of 

temperature and salinity (and also pressure) (Pickard &Emery, 1990), changes in 

the surface forcing of the two tracers will directly impact on the THC, thus 

determining the properties of the deep waters and where they are formed. These 

deep waters then progressively upwell through the effect of mixing and Ekman 
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pumping and return to the regions of deep-water formation as surface waters, 

thus closing the circulation (figure 1.1).  

 

Figure1-2: Poleward heat transport in the ocean basins (Trenberth and Caron, 
2001). 

In terms of the global climate, the THC is thought to be responsible for a 

significant amount of heat transport between the low latitudes and high polar 

latitudes (1.1 PW at 25oN in the Atlantic, Trenberth and Caron, 2001, see 

figure1-2). Hence any changes in the THC would have a significant climatic 

impact. This is in part why there is so much concern about global warming inthe 

scientific community. An increase in global temperatures could severely alter the 

global distribution of freshwater and consequently the behaviour of the THC. 

This could have an unforeseen climatic impact (IPCC, 2001). 
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It is widely reported is that the THC has several stable equilibria as has been 

shown in relatively simple ocean only model studies (Stommel, 1961, Rooth, 

1982, Birchfield, 1989, Bryan, 1986, Kallen & Huang, 1987 Marotzke et al, 

1988, Rahmstorf, 1995) and that a different THC configuration has existed in the 

past (Broecker, 1998).  More complex coupled models have also exhibited these 

multiple equilibria (Manabe & Stouffer, 1988). 

Today’s circulation is characterised by sinking in the high latitudes and is 

classified as thermally driven. This means that the flow is driven primarily by 

temperature differences. Theoretically, the sinking of water at low latitudes, 

driven by increasing salinity due to high evaporation is a perfectly sustainable 

alternative circulation set-up. Such a circulation is classified as haline driven but 

is thought to be highly unlikely (NRC 2002).  It seems that the initial conditions 

determine which equilibrium will be achieved (Bryan, 1986). Moreover, some 

suggest that the present THC is very close to a bifurcation point. Increasing the 

freshwater input could well lead to a shutdown or a switch to an oscillatory 

regime (Rahmstorf, 1995). 

The North Atlantic is thus a critical region in terms of the THC as it is one of the 

principal regions of deep-water formation. Any change to the properties of its 

surface waters will have a profound impact on the THC and hence on the global 

climate. 

 

1.3) Variability in data: 

1.3.1 )From decadal to Milankovitch climatic signals: 

There has been great awareness in recent years of the existence of interannual 

and decadal oscillations in the climate system. The most famous example is The 

El Nino Southern Oscillation (ENSO), which is routinely blamed for almost all 
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“abnormal” weather behaviour throughout the world even though oscillations, 

especially in temperature are common throughout the globe (Moron et al, 1998). 

 Another well studied interannual variability is the North Atlantic Oscillation, 

also called the northern hemisphere annular mode, which has been responsible 

for the succession of warm winters that Europe has experienced in the last 10 

years. During its positive phase, the strength of mid-latitude zonal winds 

increase, trapping the cold Artic air in the northern Latitudes. As a result, winters 

in Europe are mild and wet (Thompson & Wallace, 2001). The NAO’s most 

common feature is a variation in sea level pressure around the Azores and 

Iceland but it can also be picked up in by variations in surface temperatures 

(Curry and McCartney, 2001). A detailed study of the interdecadal variations and 

the Atmospheric conditions that accompany them was conducted by Kushnir 

(1994). He found that there was not a lot of coherence between the SST 

anomalies behaviour and sea level pressure anomalies and associated wind 

anomalies. This hinted in his opinion to the fact that the interdecadal variabilities 

were controlled by a basin wide dynamical interaction between oceanic 

circulation and atmospheric processes. 

Numerical AGCM studies suggest that the NAO is a predominantly atmospheric 

phenomenon that arises from internal non-linear dynamics (Hurrell et al, 2003, 

Seager et al, 2000). The ocean acts as a low pass active filter, responding to the 

atmospheric fluctuations in a persistent almost oscillatory way. Some suggest 

that this is a result of the effect of the low variability of the oceanic heat capacity 

(Manabe & Stouffer, 1996) while others advocate that the mean oceanic 

advection acts to redden the variability (Saravanan & McWiliams, 1998).  The 

ocean impact on the NAO can also be remote. For instance, it is thought that the 

location and strength of rainfall over the tropical Atlantic impact on the mid-

latitude circulation and thus on the NAO (Sutton et al, 2001). Some even propose 

that the tropical Indian Ocean forces the NAO on long time scales (Sutton & 

Hodson, 2002). More contentious is the effect of ENSO on the NAO.  A direct 

effect has not been detected in statistical analyses (Hurrell et al, 2003) but an 
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indirect effect through the ENSO impact on tropical North Atlantic SST has been 

presented in some studies (Chiang et al, 2000, 2002) 

Hydrographic studies over the last 30 years, particularly analysis of repeat 

sections of the ocean have also suggested a certain amount of fluctuation in the 

properties of the deep ocean, in the Atlantic (Lavin et al, 2003) and in the Indian 

Ocean (Bryden et al, 2003). Such studies have underlined variations in 

temperature, salinity and meridional transport (Lavin et al, 1998).  However, the 

precise nature of these fluctuations, i.e. whether they are oscillations, red noise or 

trends is still uncertain. 

All the variations discussed so far are of relatively high frequency. There are 

other oscillations of longer periods, which have been exposed by the study of 

Palaeodata, such as the Dansgaard/Oeschger and Heinrich Events, which 

oscillate on a millennial time scale. These events are known to influence the 

behaviour of the THC in the North Atlantic by varying the penetration of the 

sinking of surface waters and, as a result, the nature of the deep water (Alley et 

al, 1998). Succinctly, a Heinrich event corresponds to a period of massive ice 

rafting leading to a freshening of the surface waters. This means that the waters 

do not sink as deep. There is therefore an influx at depth of deep water from the 

Southern Hemisphere (Vidal et al, 1997). Dansgaard/Oeschger cycles refer to 

millennium scale climatic oscillations detected in ices cores from Greenland 

(Dansgaard et al, 1993). This translates to rapid warming or cooling of up to 

16oC in the air temperature. Overlying these cycles is the longer period Bond 

Cycle, which has a period of roughly 6000 years (Alley, 1998) and corresponds 

to a warming/cooling of air temperature. The important point is that these events 

are thought to be independent of the glacial interglacial climate state, and are as 

such “pervasive millennial scale events” (Bond, 1997).  

Beyond the millennial time scale are the time scales of the various components 

of orbital forcing, namely precession, obliquity and eccentricity. These cycles are 

also called Milankovitch cycles and are known to affect climate insofar as they 

appear to regulate ice ages (Broecker, 1966, Rial, 1999).  
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Precession refers to the angle of the earth’s axis to the stars; it has a period of 

19,000 to 23,000 years depending on the eccentricity. The obliquity is the angle 

between the plane of the equator and the earth’s orbiting plane. Its period is 

roughly 41,000 years. Finally, the eccentricity refers to the elliptical shape of the 

earth orbits and its fluctuation between an almost perfect circle and a stretched 

out ellipse.  The periods of the eccentricity are 54, 106 and 410 Ka (House, 

1994). 

There is evidence that these cycles affect climate in more ways than just by 

regulating the size of the ice sheets.  Accurately forecasting their effect on the 

earth system is not an easy task and requires advanced climate models. A simple 

energy balance feedback model will not take into account all the various 

feedbacks, which influence the SST (North et al, 1981).  

In a more recent attempt to fully model the orbital variations effect on the Sea 

Surface Temperature (SST), a numerical experiment by Sloan and Huber (2001) 

involving an Atmosphere coupled to a single layer shallow ocean showed that 

SST varied by as much as 6oC for two extreme points of the obliquity orbital 

cycle. They concluded that most of this variation was due to the presence of sea 

ice. Added to these SST variations was also a strong fluctuation in the wind 

fields at the surface of the sea.  

However, analysis of deep sediments cores from the North Atlantic by Raymo et 

al (1989) has led them to conclude that the deep-sea circulation in the North 

Atlantic is also controlled by climatic variations unrelated to ice sheets. This 

does not mean that ice sheets do not exert any control. On the contrary, in the 

period studied, 2.8 to 1.6 MA ago, they found that the dominant component 

seemed to be obliquity. However, the analysis of the δ13C isotope signal within 

the three cores studied led them to conclude that, further to this ice sheet control, 

there are some variations in the deep circulation which are wholly independent of 

ice sheet behaviour. 
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1.3.2) Amplitude of the SST variabilities: 

By analysing the δ18O isotope records from various sites in the North Atlantic for 

the last 1.1 MA, Ruddiman et al (1986) concluded that maximum SST variations 

at about 60o north were in excess of 10oC for summer and winter temperatures. 

This is also the estimate obtained by the Climex project in their world maps of 

the last two climatic extremes, namely 18,000years ago, the last glacial 

maximum and 8,000 years ago, the Holocene optimum (CGCM, 1999). 

The same order of magnitude for variations can be found for temperatures over 

Antarctica in the last 400,000 years. Although these are land temperatures, they 

vary by up to 16oC (IPCC, 2002). This indicates that SST variations of about 6oC 

at 60o of latitude are plausible. Such an indicator is useful because of recent 

developments in palaeostudies, which imply that many previous findings might 

have been flawed (Pearson et al, 2001). 

1.3.3) Palaeoceanography Methods: 

There have been several approaches in Paleoceanography to determine SSTs in 

the past. In the late seventies, the chosen method was identification of 

foramanifera, a calcite shelled zooplankton found in a sediment core and 

comparing it with present day species. Working on the assumption that similar 

species live in similar habitats, i.e. similar temperature and depth, researchers 

were able to determine the SST bracket in which the forams found in the core 

lived. Thus, after dating the core, either through carbon dating or deposition 

rates, they could work out past SSTs.  It was through this method that most of 

the Climap data was obtained. For 60o North, Climap gives a range of SST 

temperatures of about 8oC (IRI, 2002) between the two climatic maxima. 

However, this micropalaeontology transfer function method was highly 

inaccurate and was soon replaced by the oxygen isotope method pioneered by 

Emiliani (1955). There are two stable naturally occurring isotopes of oxygen: 

oxygen 16 (16O) and oxygen 18 (18O). The vastly predominant isotope is the 16O 

with a natural abundance of 99.757 %. Because of the weight difference between 
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the two isotopes, the lighter isotope escapes more easily during evaporation, 

while the heavier isotope precipitates more easily. At low latitudes, net 

evaporation produces vapour which is depleted in 18O. As atmospheric 

circulation transports this vapour poleward, the on going precipitation en route 

causes the remaining water vapour to become progressively depleted in 18O. This 

process is also called Rayleigh Distillation (Libes,1992) The Rayleigh 

Distillation of water vapour also causes polar ice to be depleted in 18O relative to 

seawater. Thus, during an ice age, an increase in ice volume causes the ocean to 

be enriched in 18O. In addition to recording the oxygen isotope signature of ice 

volume, biogenic carbonates also reflect the water temperatures under which the 

foram shells were deposited. 

 The oxygen fractionation in a foram shell varies from specie to specie but can 

also be affected by the presence of  symbionts, light levels and other factors 

(Bemis et al, 1998). But the comparison of data from various sites as well as 

laboratory experiments on modern species has enabled scientists to dissociate the 

various effects and work out reasonably accurate empirical equation giving the 

temperature of the waters in which the forams lived. Providing that the species 

examined are surface water dwelling and that their ages are known, past SST 

temperatures can be inferred (Savin et al, 1985). 

The method however is not without its problems, as can be demonstrated by the 

cool tropics paradox (D’Hondt and Arthur, 1996). Succinctly, paleostudies had 

led to estimates of SST in the late creatceous as low as 16oC in the tropics from 

the oxygen isotope record. This seriously clashed with climate modelling studies, 

which had never produced such low estimates. Pearson et al (2001) claimed to 

have solved this paradox through the analysis of a core from a lake in Tanzania. 

The critical aspect of this core is that it lies beneath anoxic mud. As a result the 

forams are exceptionally well preserved and thus have not undergone any 

diagenesis. Estimate for temperatures at the surface of the lake during the late 

cretaceous are far higher than previously found, i.e. between 28oC and 32oC. The 

authors therefor suggest that previous estimates were distorted due to the fact 

that the forams had suffered from post depositional chemical alteration. 
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The bottom line seems to be that care must be taken when looking at SST as 

derived from Oxygen isotope analysis. Furthermore, it is important to remember 

that the data obtained in cores is very localised and that care must be taken when 

extrapolating the results obtained for a few sites to a whole sea or portion of an 

ocean.  

Finally, extra care must be taken when looking at very long SST records such as 

those available for Antarctica. It is possible to get SST estimates for the past 60 

Ma. However, during this period, the world experienced significant tectonic 

alteration such as the closure of the Tethyan gateway and the opening of the 

Drake Passage. These changes were probably responsible for a drop of up to 

18oC in SST, swamping any orbital and smaller period fluctuations (Open 

University, 1997). Furthermore, the oceanic circulation, prior to those changes 

was significantly different to today and therefore not really comparable. Indeed, 

some studies suggest that in the presence of a closed or shallow Drake Passage, 

there would be no production of NADW (Sijp and England, 2004) and as a 

result, the northern hemispheres temperatures would be colder. 

A very useful parameter for determining past oceanic circulation is the deep-sea 

temperatures. Many oxygen based studies suggest that in the past, the deep 

waters were warmer than at present, by as much as 12oC 70 million years ago. 

(Zachos et al, 2001). The use of other proxies such as the Magnesium calcium 

ratio confirms this idea (Lear et al, 2000) and allows the dating of the major 

icing events in Antarctica. 

Warmer deep waters temperatures imply a different oceanic circulation set-up 

than today’s (Kennett, 1977, Haupt & Seidov, 2001). The nature of that set-up is 

heavily influence by the temperature of the high latitude surface waters. Some 

consider that these were relatively warm (Bice & Marotzke, 2001) while others 

believe that the high latitudes surface temperatures remained relatively cool. 

However, for that latter scenario, finding a mechanism that allows the formation 

of warm deep water is problematic. Nevertheless, Haupt & Seidov (2001) 

conducted a series of numerical experiments confirming that such as set-up was 
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feasible. It is even possible for the ocean to switch from one circulation pattern 

to another (Stocker, 1998). Such an event could have brought about the release 

an enormous amount of gas hydrates and thus caused the relatively sudden 

PETM (Palaeocene Eocene Thermal Maximum) warming 55 million years ago 

(Bice & Marotzke, 2002). 

Recent methods now allow scientist to have a better handle on the past behaviour 

of the THC in the North Atlantic. McManus et al, (2004) suggest that the 

strength of the THC in the North Atlantic is highly correlated with temperature. 

Hence a cooling event is associated with a decrease in the overturning and 

conversely, a warming with a speeding up of the circulation. 

It is clear that observational analysis, either by direct measurements or by the use 

of proxies reveals many variabilities in oceanic quantities such as temperature, 

salinity and forcing fields. The question is how well models can reproduce these 

and if they can provide a reasonable explanation for them. 

  

1.4) Variabilities in Models 

The study of variabilities in the ocean has largely involved numerical simulation, 

mostly because of a “lack of understanding of the physics of this type of 

variability” (te Raa & Dijkstra, 2002). Of all the variable time scales mentioned 

earlier, the most studied appears to be the decadal to interdecadal scale. This is 

because to study longer time scales requires longer integration time not really 

feasible in the past.  

Early on in the modern history of numerical modelling, Marotzke (1990) 

reported the presence of interdecadal variabilities in General Circulation Models 

under temporally constant mixed boundary conditions. These oscillations arose 

spontaneously and were not the result of any variable forcing. Weaver and 
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Sarachik (1991) went on to show the advective origin of the oscillations but were 

unable to pinpoint the precise mechanism. Weaver et al (1993) showed that these 

oscillations were still present under varying evaporation-precipitation fluxes. 

The three dimensional aspect of the oscillations was established by Winton 

(1996) as he found that they did not appear in 2D models. This is in 

disagreement with the results of Aeberhardt et al. (2000), who found oscillations 

in a zonally average  ocean atmosphere coupled model. Winton (1996) also 

found that weak stratification at high latitudes, common in earlier models, 

impeded wave propagation and could thus lead to the decadal variabilities.  

It was later suggested by Greatbatch and Peterson (1996) that the oscillations in 

the THC were generated by the propagation of a boundary trapped Kelvin wave 

and that therefore the western boundary was crucial to the existence of the 

oscillations.  

The importance of the western boundary current seems to have been disproved 

by Huck et al (1999) who found that none of the boundaries was fundamental to 

the oscillatory behaviour. They also found that the wider the ocean basin, the 

greater the amplitudes and the periods of the oscillations. Their conclusion was 

that the dynamical link between the north-south pressure gradient and the 

overturning induced a time lag, which was fundamental to the oscillatory 

behaviour. Furthermore, in agreement with Winton (1997) and Weaver et al 

(1996) they found that realistic bottom topography damped out these 

oscillations: it is therefore unlikely that they would be found in the real ocean. 

Huck et al (1999) also found that the oscillations were damped out by horizontal 

diffusion. All this leads to the question of whether the oscillations observed in 

the models actually represent some real variability or are just an artefact of the 

modelling technique used. This does not mean that there are no decadal and 

interdecadal oscillations in the real world. The question is whether the 
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oscillations present in models are generated by the models themselves or by the 

phenomena modelled.  

However, there are cases of studies where the oscillations found in the models 

roughly match those observed. For instance, Delworth and Mann, (2000), found 

in their runs oscillations of a seventy year period similar to those observed by 

Kushnir(1994). They noted however that the SST anomaly pattern was far closer 

to observations than the SLP (Sea Level Pressure) anomaly pattern, which 

exhibited a definite time lag compared to the patterns observed. Delworth and 

Mann (2000) concluded that these variabilities resulted from low frequency 

atmospheric noise interacting with feedbacks from the THC. 

In the particular case of the North Atlantic, until recently there has been 

generally less awareness and interest of naturally occurring interdecadal 

variabilities among both the scientific and lay communities. This is mainly 

because the phase and amplitude of the oscillations observed were thought to be 

totally unpredictable (Hurrell et al, 2001). 

This does not mean that no research was conducted. In the early 90’s, Delworth 

et al (1993) noted that a coupled GCM model of the North Atlantic exhibited 

interdecadal oscillation, albeit highly irregular, in the atmospheric signals similar 

to those observed in the real ocean. They concluded that these oscillations were 

driven by density anomalies in the vicinity of the sinking region.  

Another NAO based study was conducted by Visbeck et al (1998). They 

examined the response of a GCM to NAO like wind forcing and found that the 

greatest response occurred for forcing periods in the decadal band. Visbeck and 

Krahmann (2000) went to study the phenomenon further, still using NAO-like 

wind forcing.  Their results suggested that for an interannual forcing period, the 

response in the SST field was dipole like whereas for longer forcing time scales, 

the response was monopole like. In other words, for interannual time scales, 

there was an increase in high latitudes SST whereas the low latitudes SST 
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decreased and for an interdecadal forcing period, there was either a basin wide 

increase or decrease. The authors also showed that under persistent forcing, the 

ocean could switch from a dipole to monopole SST pattern.  

More recently, Delworth and Greatbatch (2000) revisited the NAO issue by 

using ocean only and coupled model runs. They concluded that a strong ocean-

air interaction was not necessary to the generation of multidecadal variabilities. 

However, this does not mean that this is not the case in the real world. 

The NAO does not only have an effect on SST and winds. It has also a distinct 

variability in the pressure distribution. Curry and McCartney (2001) looked at 

the effect of the varying pressure field and found that these considerably 

influence the gyre circulation in the North Atlantic. 

Other studies have looked at the interdecadal oscillation problem from a 

numerical point of view. One such study was conducted by te Raa and Dijkstra 

(2002). They used a spherical coordinate implicit model to try to determine the 

physics behind the interdecadal oscillations. They pointed out that it was first 

necessary to distinguish between the growth of perturbations under unstable 

conditions from the physical mechanism that causes oscillatory behaviour, i.e. 

isolate what is specific to interdecadal oscillations. 

They then found that the oscillations resulted from the westward propagation of 

temperatures anomalies. This led to a phase difference between the temperature 

anomalies and the velocity anomalies. This in turn created a phase difference 

between the two components of the variation in basin wide potential energy, the 

variation in potential energy due to the propagation of temperature anomalies 

and that due to the effect of flow on the background stratification. This phase 

difference drove the oscillatory behaviour of the ocean integrated buoyancy work 

and hence the oscillations in the 3D flow.  The period of the oscillations was 

determined by the phase speed of the temperature anomaly as it crosses the 

ocean basin. Their conclusions are fairly close to that of Colin de Verdiere and 
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Huck, (1999), if not a bit more elaborate. The latter pair concluded that the 

driving mechanism behind the oscillations were baroclinic instabilities, the term 

they give to the instability in the buoyancy work term. 

There have also been efforts to study the oceanic response to Milankovitch 

orbital forcing. Brickman et al (1999) conducted a study using a 2.5D 

atmosphere ocean model run for 3.2 Ma. They found that the strongest response 

was in the obliquity band while the response in the eccentricity band was 

suppressed. Their explanation for this was that the main effect of obliquity was 

to control the seasonal contrast, and as deep water formation happens in winter, 

the harsher the winter, the greater amount of deep water formed and the stronger 

the overturning. Their results also showed that in the obliquity band, the global 

ocean average temperatures were negatively correlated with the atmospheric 

ones, due to a rectifying effect by the ocean. Their main conclusion was to 

highlight the complexity of the ocean system response and that, hence, care 

should be taken when interpreting deep-sea sediment cores. 

1.5) Modelling Issues: 

1.5.1) Mixing: 

Mixing is believed to be one of the fundamental processes taking place in the 

ocean. It is the process by which heat is transferred down to the deep waters, 

changing their properties and allowing them to slowly upwell. The canonical 

value used is of 10-4m2/s as determined by Munk (1966) through calculations 

based on the depth of the thermocline in the Pacific. This estimate is a global 

average and says nothing about the distribution of mixing. Indeed, measurements 

in the open ocean suggest that the mixing there is of about of 10-5m2/s, roughly 

an order of magnitude below what is needed to close the meridional circulation 

(Ledwell et al, 1998). Recent work suggest that the shortfall might be made up in 

part by the activities of internal tides particularly when these encounter rough 

deep topography which causes them to dissipate (Munk and Wunsch, 1998). This 

idea is supported by the work of Polzin et al. (1997) who found increase mixing 
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in the vicinity of rough topography in the Brazil basin. It is still unclear however, 

as to whether or not tidal energy and its dissipation is sufficient enough to close 

the MOC. Some studies suggest that the tilting of isopycnal in the southern 

ocean due to intense Ekman pumping may also play an important role in closing 

the MOC (Webb & Suginohara, 1997). 

Within the numerical community, simultaneously to trying to understand various 

processes through the use of models, a lot of effort has been put into developing 

and improving numerical models. Most model used nowadays are derived from 

the original code written by Bryan (1969) and then further improved by Semtner 

and Cox (Kantha & Clayson, 2000). 

In the last two decades, one of the most significant developments has been the 

improvement of the mixing scheme. The first step was to parameterise the fact 

that, in the ocean, a large part of tracer mixing consists of down gradient 

diffusion along isopycnals (Redi, 1982), which are not necessarily horizontal, 

especially at high latitudes (Danabasoglu and Mc William, 1995). In the original 

code, the mixing was handled by horizontal and vertical diffusion coefficients. 

As a result, the diapycnal mixing tended to be overestimated. Cox (1987) 

produced an isopycnal mixing parameterisation but the scheme contained a 

numerical instability, which meant that it could not be run without a non-

negligible amount of background diffusion. As a result, the models tended to 

over diffuse and tracer properties were not well preserved over great distances, in 

contrast to observations (Griffies et al, 1998) 

Another improvement to the mixing scheme stemmed from the observation that 

most of the mixing in the ocean can be attributed to mesoscale eddies (Gent & 

McWilliam, 1990). Resolving these instead of parameterising them would have 

required very high horizontal and vertical resolution, unattainable even on 

modern computers (Danabasoglu and McWilliam, 1995). The Gent-McWilliam 

mixing scheme basically parameterised the effect of eddies by the introduction of 

an eddy advection flux (Gent & McWilliam, 1990). 
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Griffies (1998) later found that GM mixing could also be handled through eddy 

skew diffusive fluxes. The advantage of this approach lies in the fact that it can 

be relatively easily combined with Redi (1982) diffusion and thus not only 

improve ocean modelling but also reduce the computational cost of the Redi 

(1982) diffusion scheme alone by a factor of 2. 

The results are cooler deep waters, a shallower and sharper thermocline and a 

slight reduction in the overturning. Generally, model runs with isopycnal mixing 

yield results closer to observations than horizontal mixing runs. (Danabasoglu 

and McWilliam, 1995, Kamenkovich et al, 2000). These findings are very 

similar to those of Park and Bryan (2001) who compared three types of models: 

z layered with horizontal mixing, z layered with GM mixing and an isopycnal 

layered model. They looked at velocitiy fields, temperature profiles and the flow 

at the boundaries. They concluded that, although the three models had almost 

identical zonally averaged properties, the isopycnal model yielded the results, 

which were the closest to observations.  

Danabasoglu and Mc William (1995) also found an increase in heat transport, in 

contrast to Kamenkovich et al (2000) who reported that the heat transport varies 

only very slightly, even though the overturning does decrease. Their explanation 

is that the decrease in overturning is compensated by the greater surface to 

bottom temperature gradient. They also suggest that the strength of the 

overturning results from the interaction of two competing effects. On one hand, 

reduced mixing in the high latitudes leads to a decrease in the mass overturning 

at low latitudes and hence a reduction in the overturning.  On the other hand, 

reduced diapycnal mixing allows a greater amount of NADW to reach the low 

latitudes. They concluded that details in the model configuration such as 

topography, determine which of the two effects dominate, and whether the 

overturning will increase or decrease by comparison with a horizontal mixing 

setting. 

The issue of mixing in numerical models is far from resolved, even with 

advances such as Gent-McWilliam mixing. One of the major problems resides in 
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the fact that, in the ocean, mixing is not uniform, far from it. It has been known 

for some time that a lot of the mixing takes place in shallow shelf seas, at the 

edges of ocean basins, driven by tidal and wind forces. As mentioned earlier, 

recent work suggests that a considerable amount of mixing also takes place in the 

deep ocean, as tidal and internal waves break on steep topography (Egbert & 

Ray, 2000). This suggest that some of today’s models basic parameterisations are 

fundamentally wrong and that the main control on the strength of the THC 

within an ocean basin is not the pole to pole surface density difference, a 

common concept amongst physical oceanographers (Rahmstorf, 1996) but rather 

the tidal and wind distributions (Wunsch, 2000).  

This contrasts slightly with the findings of Marotzke and Scott (1999), who 

undertook the study of the convective mixing term. Using a 3D model, they 

investigated the oceanic circulation with 3 values of the convective mixing term: 

0.1, 1 and 10 cm2/s. They found that the maximum overturning varied by only 

1.5% for changes in the mixing term of 2 orders of magnitude. This led them to 

conclude that the strength of the overturning is primarily controlled by the 

strength of the diapycnal mixing but also by the surface density difference. They 

also found that increasing the convective mixing leads to a decrease in the 

overturning. In effect, mixing is important at low latitudes as it allows the deep 

waters to upwell but the rate of convective mixing, which occurs at high latitude 

has little impact on the strength of the overturning (NRC, 2002). 

There have been some efforts in the numerical community to implement a more 

realistic mixing parameterisation scheme, such as the work by Simmons et al, 

(2004) where they use a global tidal model to compute the turbulent energy 

levels in the ocean and incorporate their parameterisation in a coarse resolution 

ocean model. The results are promising but such work is still in its infancy. 

1.5.2) Sinking: 

Another important development in the field of numerical studies of oceanic 

circulation has been the analysis of the sinking and cooling of waters at high 
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latitudes. For many years, the general assumption was that water was cooled by 

the atmosphere, its density increased, and as a result it sank (Gordon, 1986).  

Winton (1996) used a 2D model to study the processes that led to very narrow 

sinking regions. He showed that a narrow sinking / broad upwelling system had 

two interesting energetic properties: upwelling occurred over a wide area to 

allow for the maximum penetration of heat through diffusion, thus the greatest 

overturning for a given forcing and a system with a narrow sinking region had 

the lowest potential energy possible because the deep is filled with the coldest 

possible waters, formed where the surface temperature is the coldest.  As 

highlighted by Marotzke and Scott (1999), his approach is slightly flawed in that 

he used a 2D model, which is unable to resolve the 3D behaviour of the 

processes involved. 

Clearly, in a 2D model, sinking and cooling are co-located. In a 3D environment, 

this has been shown not to be the case. Sinking and cooling are not necessarily 

co-located (Marotzke, 2000). 

This issue was first highlighted by Marotzke and Scott (1999), who were looking 

at varying values of convective mixing. They point out that in the open ocean, 

cooling creates a depression and that, because of geostrophy, the waters go round 

this depression rather than down. This question of where sinking occurs was 

further investigated by Spall and Pickart (2001) who looked at the velocities 

fields in an idealised ocean basin.  They underlined the fact that deep sinking is a 

net vertical mass flux whereas deep cooling was a net vertical heat flux. This is 

in keeping with the work of Marshall and Schott (1999) who state that during 

deep cooling events in the open ocean, the deep waters are cooled through the 

activity of narrow convection plumes. The downward mass flux is compensated 

locally by an upward mass flux so in effect, there is no net no mass flux 

transport. Spall and Pickart (2001) also found that sinking in the North Atlantic 

took place in two locations: north of 55o N near the western boundary and south 

of 45oN, where the deep flowing western boundary current subducts under the 

gulf stream. They also point out, as did Marotzke and Scott (1999) that sinking 
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and convective mixing, can be co-located in regions of steep topography, i.e. in 

the Labrador sea.  

1.6) Thesis layout: 

As discussed above, the North Atlantic has some unique characteristics, which 

set it aside from the rest of the world’s oceans. Furthermore, the climate system 

has many variabilities ranging from the seasonal to the decadal to millennial 

timescales. This thesis examines the effect that simple buoyancy forcing has on 

the THC in the Atlantic, whether the forcing is steady or oscillatory. Specifically, 

the objectives of this study are: 

•  To examine the response of an idealized ocean basin to steady buoyancy 

forcing and provide an explanation for the observed breakdown of the scaling 

law. 

• To examine and analyse the behaviour of the MOC in a single 

hemisphere basin submitted to oscillatory buoyancy forcing. 

• To examine and analyse the response of the MOC to oscillatory 

buoyancy forcing in a double hemisphere basin. 

 

In chapter 2, the models used are presented. The fundamental properties of the 

principal model, MOMA (Webb, 1996) are described in detail. A brief 

discussion of the effect of resolution is also given. Finally, the issue of 

visualisation is succinctly addressed in term of two fundamental quantities, the 

meridional overturning stream function and the heat transport. 

In chapter 3, the response of a single hemisphere ocean basin to constant 

buoyancy forcing is addressed. The scaling law relating the north-south 
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temperature gradient to meridional overturning stream function is revisited and 

investigated in term of the distribution of convection. The experiments are 

carried out with two models, MOMA and the MIT model (Marshall et al, 1997)  

in order to determine whether or not the observed behaviour is model dependent. 

In chapter 4, the response of the circulation to variable buoyancy forcing in a 

single hemisphere is investigated. Different diffusion and basin configurations 

are applied.  In total 17 forcing period ranging from 6 month to 32,000 years are 

studied. The sensitivity of the response to basin width and diffusion is 

highlighted. 

In chapter 5, the basin is increased to a double hemisphere. The response of the 

circulation to an oscillatory buoyancy forcing is investigated under two restoring 

scenarios: one where the forcing is synchronous in both hemispheres, the other 

with a lag of half a period. For each scenario, a range of north-south temperature 

gradient is examined.  

Finally, in chapter 6, a summary of the main findings is given. Implication and 

future work are also considered. 
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Chapter 2: Model descriptions and visualisation 

 

 

 

Summary: 

This chapter presents a detailed overview of the MOMA model used in this 

study. A description of the initial fields is provided as well as an analysis of the 

important features of the model such as the equation of state. The method of 

visualising the model outputs is also examined, as is the effect of resolution. 

Finally, a brief description of the MIT model used in chapter 3 is given. 

 

2.1) The MOMA model: 

 

2.1.1) Introduction: 

The model used is a parallelised version of the GFDL MOM model which can 

distribute the various processes on an array of processors (Webb 1996). The free 

surface numerics have been updated by including the free surface numerical code 

of OCCAM (Webb 1995). The model also includes the eddy parameterisation 

scheme of Gent and McWilliams (1990).  This is implemented using the Griffies 

(1998) approach (see appendix  for the model  code tree).  Again, most of the 

code comes from OCCAM. The dynamics of the ocean are represented through 

the evolution of the salinity, potential temperature and horizontal velocities. The 

model uses a 3-D advection diffusion equation for momentum, temperature and 

salinity.  
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The equations used, often called the primitive equations, are as described by 

Bryan (1969). As in most ocean models, in order to reduce the computational 

workload, three major approximations are used: 

• In the continuity equation, the ocean is assumed incompressible.  

• In the vertical momentum equation, the vertical acceleration is assumed 

negligible (hydrostatic approximation). 

• The density is replaced by a constant value except in the terms involving the 

gravitational constant (Boussinesq approximation). 

 

2.1.2) Ocean Grid: 

The ocean is subdivided into small 3D boxes: in the Horizontal, the model uses a 

Arakawa B grid, where the horizontal velocities are defined at identical points 

offset from the tracers (see figure 2.1). This grid is well adapted to coarse 

resolution models although it does not represent well poorly resolved inertial 

gravity waves. It also offers a good representation of geostrophy as the velocity 

points are co-located (Griffies et al, 2000). One of its draw-back is that it slows 

down very fast waves such as Kelvin waves. It does however handle Rossby 

waves very satisfactorily (Wajsowicz, 1986, Dukowicz, 1995, Webb, 1996). 

B GRID C GRID

 

Figure2-1: schematic of the horizontal discretisation of two types of grids. 

 

v

+ 
T,S 

+ T,S u

u,v 

 -26- 



Chapter 2   Model descriptions and visualisation 
   

The lateral boundary conditions in all the runs are no slip, non porous, which are 

naturally implemented in an Arakawa B grid. In the vertical, the ocean is divided 

into 15 levels. In order to have greater resolution near the surface, the level 

thickness increases with depth, varying from about 30 metres at the surface to 

more than 800 metres at the bottom (table 2-1). Topography is modelled by 

designating each box either as an ocean box or a Land box.  

Level 1 30.0 metres 

Level 2 46.15 metres 

Level 3 68.93 metres 

Level 4 99.93 metres 

Level 5 140.63 metres 

Level 6 192.11 metres 

Level 7 254.76 metres 

Level 8 327.95 metres 

Level 9 409.81 metres 

Level 10 497.11 metres 

Level 11 585.36 metres 

Level 12 669.09 metres 

Level 13 742.41 metres 

Level 14 799.65 metres 

Level 15 836.1 metres 

Table 2- 1: thickness of grid cells at each level 
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2.1.3) Free surface: 

MOMA uses a free surface code, which allows for the propagation of barotropic 

gravity waves as well as the direct introduction of freshwater to the model. It 

also avoids all the issues relating to the rigid lid approximation such as solving 

elliptic problems with realistic surface forcings and topography (Griffies et al, 

2000). 

2.1.4) Initial salinity and temperature fields: 

In the original MOMA code, the salinity is initially set at 34.9 throughout the 

ocean. The temperature field is slightly more complex in the original program 

code. At all grid points below 2000 metres of depth, the temperature is set at 2o 

centigrade. In the upper 2000 metres, an estimation is produced for each tracer 

grid point from a 7th order polynomial. The polynomial is the best-fit curve 

obtained from the Levitus surface temperature. At three reference latitudes, a 

depth profile is given. These are used to anchor the polynomial at every depth.  

2.1.5) Surface boundary conditions: 

MOMA allows the user to choose between restoring boundary conditions for 

both tracers and mixed boundary conditions. In all the experiments in this study, 

mixed boundary conditions are used. This means that the salinity is forced 

through fluxes while the temperature is restored through a Newtonian dampening 

scheme. In all the experiments in this study, the restoring time scale used in is 40 

days and the salinity fluxes set to zero.  In the original model code, the restoring 

surface temperature field is interpolated in the same way as the salinity from the 

Levitus database. However, in all the experiments in this study, an oscillating 

restoring field is used. The details can be found in chapters 4 and 5. 

A surface restoring salinity field is then prescribed, using the surface salinity 

values as in Levitus (1982), although this was switched off in all the experiments 

in this study. The wind forcing is set up by generating for each surface grid 

points an east-west and a south-north wind stress value. In most of the 

experiments in this study, the wind forcing is switched off by setting the wind 
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stress to zero. In chapter 4, a zonal wind stress is used in one of the experiments. 

It is identical to that of Weaver & Sarachik (1990). 

2.1.6) Time-step: 

The model is integrated forward in time by leapfrogging (Webb, 1996). 

However, this leads to instabilities for the diffusive terms so an Euler forward 

time step scheme is used for those. Furthermore, to avoid the splitting of the 

solutions, every 20 time step, an Euler backward time step is used. The main 

advantage of an Euler backward method is that it prevents the model from 

becoming unstable due to the diffusive terms in the equations (Griffies et al, 

2000).  

Parameter Value 

Basin Width, length 60o, 60o

Basin depth 5000 m 

Number of vertical levels 15 

Longitude, latitude grid spacing 4o, 4o

Vertical, horizontal diffusion 

coefficient 
1.10-4m2s-1, 0 m2s-1

Isopycnal thickness diffusivity 2.103m2s-1

Lateral eddy diffusivity, viscosity 2.103m2s-1, 1.105 m2s-1

Temperature restoring time scale 40 days 

Baroclinic Time step 14400 s 

Barotropic Time step 600 s 

Tracer time step 150000 s 

Table 2- 2: Summary of numerical parameters and diffusivities in MOMA. 
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To make the best possible use of the computational resources available, the time 

step should be as large as possible. The limiting condition placed upon the time 

step is that any disturbance must be contained within a cell during a time step. 

Consequently, the greater the resolution, the smaller the cell dimensions and the 

smaller the time step will have to be. In MOMA, the tracers and the barotropic 

and baroclinic velocities have independent time steps. This allows the model to 

be far more efficient as the tracer can handle much greater time steps without 

becoming unstable. This greatly reduces the amount of computations needed, 

since it integrates forward in time with the tracer time step, and then determines 

the variation of the horizontal velocities by using a single velocity time step. In 

such a configuration however, the model is only suited for the study of steady 

equilibrium solutions and not of transient behaviour (Griffies et al, 2000). 

2.1.7) Equation of state: 

 

 

Figure2-2: Density against temperature at level 5, S=35 
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Figure2-3: Density against temperature at level 10, S=35 

The model uses an approximation of the UNESCO equation of state by fitting a 

cubic polynomial at each of the discrete levels of the model. The advantage of 

using an approximation rather than the full UNESCO equation is that is saves on 

average up to 20% of the total computational load (Griffies et al, 2000). Figures 

2-1 and 2-2 show plots of the density against temperature as calculated from the 

UNESCO equation of state and from the cubic polynomial in our model for a 

salinity of 35 PSU and at depth level 5 for figure 2-1 and depth level 14 for 

figure 2-2. The fit is almost perfect for the surface layers. It becomes less 

accurate at deeper levels. The density obtained from the polynomial is slightly 

smaller than the one given by the UNESCO equation. This means that the model 

might underestimate the surface to bottom density difference and be slightly 

more prone to convection than with the exact equation of state 
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2.1.8) Gent-Mc William Mixing 

All the runs in this study include Gent McWilliams mixing (Gent & 

McWilliams, 1990) implemented through the Griffies (1998) parameterisation. 

The aim of GM mixing is to parameterise the mixing effect of highly energetic 

eddies in the ocean. This is combined with the work of Redi (1982) which 

implemented the observation that most of the mixing occurs along density 

surface and not through them. The scheme involves introducing isopycnal tracer 

diffusivity (2.103m2s-1) and correcting the vertical and horizontal effect of 

diffusion accordingly. There is also a cut off angle for the slope of the isopycnal 

above which the GM scheme is not applied. This is to avoid spurious vertical 

mixing when the isopycnals are very steep such as in the high latitudes. Using 

GM mixing usually results in cooler bottom temperature as less heat from the 

surface diffuses down and a sharper thermocline as a consequence of the reduced 

diapycnal mixing (Kamenkovich et al, 2000).  Furthermore, a slightly weaker 

overturning is found as a result of the weaker east-west density gradients due to 

the relative increase in the horizontal fraction of the mixing (Griffies et al, 2000). 

2.1.9) Convection scheme 

The MOMA model uses convective adjustment to deal with unstable 

stratification. After each times steps, the model checks from the top down the 

stratification stability at each level. When an unstable stratification is found, it 

mixes the two cells thus reducing the potential density difference.  The number 

of time this procedure occurs is set by the user.  However, the greater the number 

of passes, the heavier the computational load. Hence, in all the runs in this study, 

the number of passes was set to one. As a result instabilities can persist, with a 

cell with a cooler potential temperature overlying a cell with  a warmer potential 

temperature. 
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2.2)Visualisation: 

 2.2.1) Meridional overturning: 

There are many ways of visualising the circulation in the ocean. However, in the 

case of a THC circulation, visualising the sinking and upwelling regions is of 

particular interest.  

In order to so while simultaneously looking at the meridional behaviour of the 

circulation, one option is to calculate a proxy, called the meridional overturning. 

This scalar is defined from a triple integration of the continuity equation: 
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 where u, v, w are the zonal, meridional and vertical velocities respectively. The 

first integration is along the x-axis, i.e. from east to west of the u and v terms. 
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where Φ,  the term on the left is known as the meridional overturning. 
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By definition, the meridional overturning is equal to zero at the bottom. In the 

case a free surface model, i.e where the surface is allowed to move up and down, 

it is easier to integrate the meridional overturning from the bottom upwards, 

especially when the bottom of the ocean is featureless, without any topography. 

Furthermore, in the case where there is no net mean transport, the meridional 

overturning is also equal to zero at the other vertical boundary. 

2.2.2) Heat Transport: 

Another important quantity to visualise is heat transport, particularly in the case 

of a double hemisphere basin as trans-equatorial heat transport in the ocean has a 

substantial impact on the global climate and deep-water formation. Bryan (1962) 

defines the total energy transport (Fq) in the ocean as follows:  

∫ ∫
−

=
L

H
pq dzdxvcF

0

0

θρ  

where ρ is the density, cp the heat capacity at constant pressure, θ the potential 

temperature, H  and L the depth  and width of the section respectively. In 

models, this can be approximated by the following expression used for example 

by Stammer et al (2003): 
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H
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0
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Calculating the heat transport in a model with a rectangular section without 

topography is fairly straightforward. 
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Figure2-4: Meridional velocity contours at the equator on 3 grids. Colour 

contours are in cm/s.  

There is however an issue with the model grid. The MOMA model uses an 

Arakawa B grid and as a result the meridional velocity and the potential 

temperature are not co- located. For the calculation to be as exact as possible, 

both quantities should be on the same grid. There are then three options:  

recalculate the value of v, the meridional velocity onto the potential temperature 

(θ) grid, recalculate the values of θ on the v grid or to recalculate both quantities 

onto an intermediate grid. Although this might appear trivial at first glance, in a 

model with coarse resolution, the differences can be quite substantial. 

This is clearly demonstrated by figure2-4, which shows the v velocity at the 

equator, plotted on three grids. Obviously, the equator is a region where the 

velocity changes significantly; it is positive to the north and negative to the 

south. Hence the averaging used will have a significant impact on the heat 

transport calculation. The choice of gridding will not have such an impact at 
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higher latitudes but this example underlines the care needed when computing 

quantities such as heat transport. 

As the potential temperature field varies very little about the equator, the choice 

was made to recalculate PT and V on an intermediate grid, the x axis of which is 

that of PT and the y axis of which is that of V and then compute the heat 

transport. This strategy was deemed to yield the most sensible answer. 

 

2.3) Comparison between 2o and 4olateral resolution: 

Lateral resolution can have a profound affect on the behaviour of an ocean 

model. In this study, a resolution of 4ox 4o is chosen mainly because of the 

integration time required to run the experiments. Indeed, halving the resolution 

not only reduces by a factor of four the number of cells, it also allows the 

timestep to be double. As a result, the total time gain obtained by halving the 

resolution is of a factor of 8. 

Two identical runs but with two different resolutions are conducted to ascertain 

how substantial the difference are between a resolution of 4ox 4o and a resolution 

of 2ox 2o. Run Res1 has a resolution of 4ox 4o and run Res2 has a resolution of 

2ox 2o. Both runs have a fixed restoring temperature profile which decreases 

sinusoidally with latitude from 28 degrees at the equator to 2 degrees at 60 

degrees north. The vertical mixing is of 10 m-4/s in both cases and both runs have 

the free surface enabled as well as the Gent-McWilliams mixing. 

Figure 2-5 shows the evolution of the maximum overturning during a spin up of 

10,000 years for the two resolutions. The two curves show the same qualitative 

behaviour throughout the 10,000 years and quantitatively, the values for the 

maximum overturning have a constant difference of 0.2 Sverdrups (1 

Sv=106m3/s). The end value is of 11.84 Sv for the resolution of 2 degrees and   
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Figure2-5:  Maximum overturning during Spin-up for Res1 and Res2 

 

Figure2-6: Meridional overturning stream function (sv) for 2x2 resolution (res2) 
case and difference with 4x4 resolution (res1) 
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12.04 Sv for the resolution of 4 degrees. This amount to a difference of 1.6 %, 

which is very small. 

Figure 2-6 and figure 2-7 show respectively the structure of the meridional 

overturning and the structure of the potential temperature in the upper 700 

metres at the end of the two runs. It is clears that there are some differences 

between the two runs. Figure 2.6 shows that the major differences in the 

overturning happen at low latitudes. This occurs because the overturning core 

extends further south for the resolution of 4ox4o resolution than for the 2ox2o 

resolution (not shown). The actual shape and maximum intensity of the 

overturning cell are almost identical in both runs. Furthermore, in both cases, the 

maximum overturning is located at 45oN and 1000 metres depth. Figure 2-7 

shows that the isotherms behave similarly in both runs. As for the overturning, 

the greater differences occur at low latitudes, hence the  difference in the amount 

of deep water formed at high latitude is  very small (less than 1.5%). 

 

Figure2-7: Zonally averaged temperature field (oC) in the upper 700 metres for 
2x2 and difference with 4x4 resolution 
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Figure2-8: Surface currents for the two resolutions. The units are cm/s. 

In figure 2-8, the surface currents are displayed. The western boundary current 

transport has approximately the same maximum value for both resolution, 

although it slightly greater for the 2x2 resolution. This occurs because in the 4x4 

resolution, the WBC is only 1 cell wide whereas in the 2x2 resolution, it is 2 

cells wide. This allows for a narrower WBC and thus, in order to get a similar 

mass transport, a greater velocity (in Res2, vmax= 16.44 cm/s, in Res4, 

vmax=13.10cm/s). It is interesting to note that the greater velocity occurs for the 

run with the smaller overturning. Outside the western boundary, the currents are 

almost identical for both resolutions. 

 
2.4) The MIT model: 

In chapter 3 of this study, experiments are conducted with the MIT model 

(Marshall et al, 1997). As is made clear in that chapter, this is in order to 

examine whether some aspects of the MOMA model response is model 

dependent. 
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The MIT model is used in an identical setting as the MOMA model, with the 

same resolution, same forcing configuration (no wind, no salt fluxes, free surface 

and GM mixing implemented). It is however a far more modern model and many 

of its numerics are different from that of the older model. At a more fundamental 

level, it differs through the use of a horizontal C grid instead of a B grid for 

MOMA (figure 2-1). It also uses a third order Adams-Bashforth scheme instead 

of leapfrogging and synchronous time step for the velocity and tracers. These 

differences have repercussions in the representation of wave processes.  

 

Parameter Value 

Basin Width, length 60o, 60o

Basin depth 5000 m 

Number of vertical levels 15 

Longitude, latitude grid spacing 4o, 4o

Vertical, horizontal diffusion 

coefficient 
1.10-4m2s-1, 0 m2s-1

Horizontal, vertical eddy viscosity 1.105 m2s-1, 2.10-3m2s-1

Temperature restoring time scale 30 days 

Momentum equation time step 3600 s 

Tracer time step 86400 s 

Table 2-3: Summary of numerical parameters and diffusivities in the MIT model. 

In terms of convection, the MIT model uses an implicit diffusion scheme to deal 

with unstable stratification. This involves ramping up the diffusion coefficient to 

102m/s to simulate the intensive mixing that would occur in such situation. This 
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is different from the MOMA approach which uses convective adjustment to deal 

with unstable stratification.  

For a detailed description of the MIT model it is recommended to consult 

Marshall et al. (1997). The main parameters used in all experiments are listed in 

table 2.3. 
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Chapter 3: On the scaling law in OGCMs 

 

 

 

 

Summary:  

This study presents results that stem from the observation that increasing the 

north-south temperature gradient does not necessarily lead to an increase in the 

strength of the meridional overturning stream function. Four sets of results are 

presented, sets 1 and 1M, where the north to south temperature gradient is 

decreased by increasing the northern most temperature and keeping the equator 

temperature fixed and sets 2 and 2 M where the north to south temperature 

gradient is decreased by decreasing the northern most temperature and keeping 

the northern most temperature fixed. Sets 1 and 2 are experiments conducted 

with the MOMA model while set 1M and set 2M are conducted with the MIT 

model. Sets 1 and 2 are analysed in detail and show that the strength and 

behaviour of convection vary substantially between the two sets and that they 

control the intensity of the stratification. As a result, the strength of the 

overturning in set 1 increase before it decreases as the temperature gradient 

decrease while for set 2, the strength of the overturning decease almost linearly 

with a decrease in the temperature gradient. These experiment show that the 

scaling law derived by Bryan & Cox (1967) and the object of many a study does 

not hold in these experiments, particularly when the temperature of the coldest 

water is varied. Furthermore, the spatial distribution of the convection is more 

important in setting the strength of the overturning than its actual intensity. 
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3.1) Introduction: 

The complexity of the primitive equations that govern the oceanic thermohaline 

circulation has driven efforts to find a simple relationship that allows some form 

of prediction of the strength of the overturning given some simple climate 

parameters such as the equator to pole temperature difference. Very early on, 

Bryan and Cox (1967) suggested that the vertical “advection-diffusion” balance 

(3.1) and the thermal wind balance (3.3) could be combined with the continuity 

equation (3.2) to produce a scaling relationship giving the dependence of V, the 

horizontal velocity to ∆T, the equator to pole temperature difference and κ, the 

vertical diffusivity:   
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where W is the vertical velocity, L is the horizontal length scale, D is the vertical 

length scale, g is the gravitational acceleration and  f is the Coriolis parameter. 
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Assuming that the meridional velocity is proportional to the zonal velocity and 

as Ψ~VDL, it follows that Ψ~∆T1/3κ2/3. 

The dependence of Ψ to κ2/3 has been verified in a few numerical studies, 

including that of Zhang et al (1999) and Park and Bryan (2000). However, the 

robustness of this scaling law had already been questioned in numerical studies 

such as the one of Bryan (1987), where he found that Ψ scaled to κ1/3 and not to 

κ2/3,although as pointed out by Huang (1999), the integration time might not 

have been sufficient for the model to reach equilibrium. Scott (2000), in his 

detailed study concludes that the success of the scaling law, which he also 

observes, is rather “fortuitous”. Furthermore, it is not clear in a more realistic 

setting how well this formula works or, indeed simply how to apply this scaling 

in a situation where the ocean domain has more than one basin.  

The dependence of Ψ to ∆T 1/3 has always been far more problematic. As 

discussed in detail by Scott (2000),  deriving a scaling relationship for a 

meridional overturning stream function implicitly involves assuming that the 

east-west temperature gradient is proportional to the north-south temperature 

gradient. Marotzke (1997) showed analytically that this was indeed the case, a 

result that was confirmed by Park & Bryan (2000) in a series of numerical 

experiments. The other issue discussed by Scott (2000), which also applies to the 

scaling of the meridional overturning to the vertical diffusivity is that of D, 

which in expression (1) refers to the advective-diffusive height scale but in (3) 

refers to the level of no motion. It is not at all clear that these two depths are 

proportional to each at other. Furthermore, depending on the numerical study, 

the authors use different approaches to estimate a scaled height: Park and Bryan 

(2000) used a temperature weighted average height while Bryan (1987) used the 

e-folding height of the top to bottom density difference and neither of these 

“directly measures the advecticve-diffusive height or the zero crossing depth” 

(Scott 2000). 

Finally, as pointed out by Park and Bryan (2000), using a scaling law assumes 

self similarity in the system, in other words that the major features of the 

circulation stay qualitatively the same from one experiment to the next.  
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These issues go some way towards explaining why Scott’s (2000) results did not 

show the expected dependency of Ψ to ∆T 1/3. In fact, with a similar set-up but 

with a fixed mixing energy input, Huang (1999) observed a decrease in the 

overturning for an increasing temperature gradient. Scott (2000) suggested that 

this behaviour results from a weakening of the effective κ in the upper waters, 

which lead to a weakening of the MOC.  

These studies clearly show that the issue of the scaling argument is far from 

resolved. It is nonetheless important to know the response of the MOC to smaller 

temperature gradients as most future climate studies predict a warming of high 

latitudes SSTs. 

3.2) Method: 

3.2.1) Models description: 

A detailed description of the models can be found in chapter 2. 

3.2.2) Experimental strategy. 

Four sets of experiments are carried out, two with each of the models. The 

surface temperature is restored to a zonally averaged field, which decreases 

sinusoidally with latitude. In set 1, the surface restoring temperature at the 

equator is fixed to 28oC while the northern most restoring temperature is varied 

from 0oC to 22oC. The latitudinal distribution varies according to the following 

algorithm: 
(3.9) 

28)1)3(cos(),( +−×Φ×=Φ AtT  

where T is the restoring temperature, Φ is latitude and A is half the amplitude, 

varying from 14 to 3. 

In set 2, the restoring temperature at the northern most latitude is set to 0 oC 

while the equator restoring temperature varies from 28oC to 6oC degrees. The 

latitudinal distribution varies according to the following algorithm: 

(3.10) BBtT +−×Φ×=Φ )1)3(cos(2/),(  
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where T is the restoring temperature, Φ is latitude, t is time and B is the northern 

most value of the restoring temperature, varying from 28oC to 6oC. 

 

Figure3-1: Example of the restoring temperature profile (oC)  for 3 temperature 
gradients, 28 in blue, 26 in red and 18 in green for set 1 and 1M(left panel) and 
set 2 and 2M (right panel). 

The set-up of set 1M and set 2M are identical to that of set 1 and set 2 

respectively but are run using the MIT model. Figure 3-1 shows 3 forcing 

profiles for each set. 

For each experiments, the temperature field is initialised at the surface to Levitus 

(1982)) values. The temperature then progressively decreases with depth until 

2000 metres whereupon, the temperature is set everywhere to 2oC.  Equilibrium 

is often reached after 10,000 years but the model is integrated for 20,000 years. 

In the following sections, the results from set 1 and 2 are analysed in detail. The 

results from set 1M and set 2M are succinctly presented as an example of the 

behaviour of another model. A convection index is defined as the number of 

times a cell undergoes convective adjustment between two sampling events. For 

the experiments, the sampling interval is 1000 years. 
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3.3) Results:  

Figure 3-2 shows the strength of the maximum overturning stream function for 

all 4 sets of experiments. The two sets do not have the same values or the same 

behaviour, a result that is independent of the model used. Set 1 has a maximum 

overturning for a temperature gradient of 22oC with a decrease in the strength of 

the overturning for larger or smaller temperature gradients. Set 2 has a maximum 

overturning for a temperature gradient of 28 oC and shows an almost linear 

decrease in the strength of the maximum overturning for a decrease in the north-

south temperature gradient.  

Set 1M and set 2M show that the qualitative behaviour observed is not model 

dependent although the actual values are. Indeed, the MIT model shows a similar 

increase and decrease in the value of the overturning as the restoring temperature 

gradient decreases for set 1M. For set 2M, the values decrease with decrease in 

the amplitude of the restoring temperature gradient. 

  

Figure3-2: Maximum overturning stream function against restoring temperature 
gradient for the 4 sets. 
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Figure3-3: SST gradient  (y-axis) against restoring temperature gradient (x-axis) 
for the 4 sets. 

Figure 3-3 shows the actual surface temperature gradient in the model versus the 

restoring temperature gradient. Set 2 and 2M experiments always display a 

greater north-south SST gradient than set 1 and 1M respectively even though in 

most cases the overturning in set 1 and 1M is greater than the overturning in set 

2 and 2M. The difference though is quite small, in the order of 0.1-0.2 degrees 

Celsius. 

3.4) Discussion 

3.4.1) Behaviour of set 1: 

The important feature of set 1 is the presence of the maximum overturning for a 

restoring temperature profile of 28oC at the equator to 6oC at 60oN. To 

understand why this occurs, four experiments of set 1 are analysed in detail, 

respectively with a temperature gradient of 26oC, 24oC, 22oC and 20oC. 
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Figure3-4: Zonally average temperature field in oC (colour shading) and 
meridional overturning stream function in Sv (black contours) for 4 experiments 
of set 1. 

 Equator Values 60o N Values Gradient 

Restoring SST  ρ SST  ρ SST ρ 

28-2 26.8 1022.9 3.634 1027.9 23.116 5 

28-4 26.89 1022.8 5.484 1027.7 21.406 4.9 

28-6 26.99 1022.8 7.357 1027.5 19.633 4.7 

28-8 27.09 1022.8 9.327 1027.2 17.763 4.5 

Table 3- 1: SST and density at the equator and northernmost latitude for 4 
experiments in set 1. The temperatures are in oC and the densities in kg/m3. 

As shown in figure 3-2 and table3-4, in set 1, the maximum overturning occurs 

for the temperature gradient of 22oC. In the light of previous studies  (Park & 

Bryan, 2000) suggesting a 2/3 power scaling between ∆T and Ψ, this is 

unexpected, the more so as most fields display the expected structure, with a 

weakening of the north-south SST gradient as the northern most restoring 

temperature increases. There are no substantial differences in the structure of the 
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meridional overturning stream function for the three different forcing profiles as 

clearly shown in figure 3-4. In all four cases, the maximum is at 44oN and at 

about 1500 metres depth. All four cases also have a small counter-rotating cell at 

depth near the equator. As illustrated by figure3-3, the surface temperature trend 

is still in keeping with the expected behaviour although the surface eastward 

flowing surface current (not shown) is clearly stronger in the for the 28-6 profile. 

Figure 3-5 shows the depth-integrated distribution of the convection index 

between two sampling events. Generally, as the temperature gradient decreases, 

the convection shifts eastward. The 28-8 case has no convection west of 27o east. 

The other three cases exhibits convection right across the basin although for the 

28-6 case, the far western side of the basin is convection free. 

 

Figure3-5: Depth integrated distribution of the convection index in the high 
latitudes (45o-60oN)  
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Figure3-6: meridional distribution of the zonally integrated convection index in 
the high latitudes (45o-60oN) from the surface to 1000 metres. 

 
The meridional distribution of the zonally integrated convection index between 

45oN and 60oN (figure3-6) also shows substantial differences between the 28-8 

and the other three cases. Clearly, the 28-8 case has a very weak and shallow 

convection relative to the other three. It does not go much deeper than 150 

metres and extends all the way south to 40oN. In the other three cases, the 

convection is much stronger, deeper and concentrated in the high northern 

latitudes.  

In fact, as the temperature is increased, there is a definite evolution of the 

distribution of the convection, which shallows and shifts eastward. Furthermore, 

for a forcing profile of 28-10, there is no convection in the model, an extreme 

case of the swallowing of the convection (not shown). This occurs because the 

diffusion is efficient enough to handle all the adjustments necessary in response 

to the thermal forcing.  

As is shown in figure 3-5, the maximum overturning occurs for the forcing 

profile that displays the most uniform distribution of convection at very high 
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latitudes. The exact mechanisms involved are difficult to pinpoint but some 

elements of explanation are provided in section 3.4.4.  

It is the structure and strength of the convection that varies most between the 

four experiments. For the 28-0, 28–2 and 28-4 experiments, the convection is 

stronger than for the 28-6 experiment. It is also predominantly on the western 

side of the basin. As the northernmost temperature is increased, the relative 

convection strength increases in the west side of the basin. As explained in 

section 3.4.4, this favours an increase in the overturning, which is what is 

observed. Experiment 28-6 displays a distribution of convection that is localised 

in the high latitudes but also fairly, uniform zonally. For experiment 28-8, the 

convection is shifted to the east and is very shallow and much weaker than for 

experiment 28-6. Because it is so shallow, it does not have a substantial impact 

on the eastern temperatures. For north-south temperature gradients less than 

20oC in set 1, there is no convection to strengthen (or weaken) the east-west 

temperature gradient. 

3.4.2) Behaviour of set 2: 
 
In this section, the experiments with a temperature gradient of 24, 20 and 14oC 

are used to illustrate the generic behaviour of set 2. Here, the expected behaviour 

is observed, i.e. a decrease in the strength of the overturning as the temperature 

gradient is reduced. The convection field for the three experiments shows that 

the greater the temperature gradient, the more asymmetric the zonal distribution 

of the convection index becomes (figure3-7), with more and particularly deeper 

convection on the eastern side of the basin than on the west thus leading to a 

weaker overturning (see section 3.4.4). Furthermore, the position of the 

maximum convection migrates southward as the restoring temperature gradient 

decreases (figure3-8). This means that more and more of the basin undergoes 

convection. As the convection is now evenly distributed across the longitudes, 

the east-west pressure gradient is weakened. This leads to a weaker meridional 

overturning. 

 

 -52- 



Chapter 3  On the scaling law in OGCMs 
   

 

 

Figure3- 7: zonal distribution of the meridionally integrated convection index in 
the high latitudes (45o-60oN) from the surface to 700 metres for set 2 
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Figure3- 8: meridional distribution of the zonally integrated convection index in 
the high latitudes (45o-60oN) from the surface to 700 metres. 

3.4.3) Difference in Behaviour between Set 1 and Set2: 

One of the significant differences between the two sets of run is that for an equal 

north-south temperature gradient, set 1 exhibits a stronger overturning than set 2 

(figure 3-2). This could be explained through the non- linearity of the equation of 

state used in the model. Simply put, a temperature difference of 24 degrees leads 

to a greater density difference if the maximum temperature is 28oC instead of 

24oC as is illustrated in table 3-3. It is important to note that although the actual 

SST gradient is greater for 24-0 than for 28-4, the density difference behave in 

the opposite way. 

 -54- 



Chapter 3  On the scaling law in OGCMs 
   

 Equator Values 60o N Values Gradient 

Restoring SST ρ SST ρ SST ρ 

28-4 26.89 1022.8 5.484 1027.7 21.406 4.9 

24-0 22.97 1024 1.469 1028.1 21.501 4.1 

Table 3- 2: SST and density at the equator and northernmost latitude for a 
temperature gradient of 24 oC. 

 

Figure3-9: Overturning against density gradient for the 4 sets. 

However, it is not the density difference observed that explains the difference in 

the strength of the overturning.  As is evident from the results of set 1 and 1M, a 

smaller density difference does not always lead to a smaller overturning.  As  

shown in Figure3-9,  a plot of the overturning against the density gradient for set 

1, 1M, 2 and 2M. The non-linearity of the equation of state does not explain the 

behaviour observed in set 1 and 1M as the same behaviour is observed when 

plotting the overturning against the density gradient. It also does not account for 

the fact that, for the same density difference, set 1 and 1M have a greater 

overturning than set 2 and 2M respectively. The way in which the  ocean adjusts 

to the two forcing must be examined closely. 
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Figure3- 10:  Meridional SST gradient in oC between 45oand 60oN for 28-4 
(black) and 24-0 (red). 

The circulation features of the two experiments are therefore analysed in greater 

detail to try and understand how the overturning and its strength are set-up. By 

looking closer at the 24 gradient case, in figure3-10, it is clear that the 

temperature gradient between 45oN and 60oN on the western side of the basin is 

smaller for the 24-0 case than for the 28-4 case. Figure3-11 suggests that this 

weaker temperature gradient is due to the fact that in the 24-0 case, there is more 

convection in the Northwest (greater index) than for 28-4. As a result, the surface 

temperatures will be slightly warmer. The weaker temperature gradient means 

that the eastward flowing high latitude current, the WBC once it has separated, is 

weaker in the 24-0 than in the 28-4 case. This is illustrated by figure3-12, a plot 

of the surface currents for both experiments and the difference between the two. 

The end result is that in the 24-0 case, less warm waters are being brought to the 

NE corner of the basin and so less water sinks because of convergence.  
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Figure3-11: Depth integrated distribution of the convection index in the high 
latitudes (45o-60oN) from the surface to 700 metres for 24-0 (top panel)  and 28-
4 (bottom panel). 

Another way of looking at the problem is simply to observe that the convection 

distribution at high latitudes shows a greater western bias in the 28-4 case than in 

the 24-0 case. As is explained in section 3.4.4, such a distribution leads to a 

greater east-west density gradient and thus a stronger overturning for 28-4. In 

effect, the biggest difference between the two experiments is how the convection 

is distributed in the high latitudes and how that distribution affects the east-west 

density gradient. However, for temperature gradients smaller than 20, there is a 

significant difference in that the set 1 experiments no longer have any convection 

while in set 2, the amount of convection is increasing as the temperature gradient 

decreases.The distribution of convection argument described previously no 

longer holds. The difference between the two sets in the value of the north-south 

density gradient for a given temperature gradient is now more significant. This is 

clearly illustrated in table 3-4, where, for a temperature gradient of 14, the actual 

density gradient for set 1 is twice the density gradient for set 2.  For the latter set, 
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the zonal distribution of convection becomes more uniform as the location of 

maximum convection moves southward as the density gradient decreases. This 

weakens the overturning by decreasing the east-west density gradient (discussed 

in section 3.4.4). 

 

 

Figure3-12: Vector plot of the surface current in cm/s for a temperature gradient 
of 28-4 (panel A) , 24-0 (panel B) and the difference between the two (panel C). 

 Equator Values 60o N Values Gradient 

Restoring SST ρ SST ρ SST ρ 

28-14 27.40 1022.7 14.91 1026.1 12.49 3.4 

14-0 13.56 1026.4 0.8305 1028.1 12.72 1.7 

Table 3- 3: SST and density at the equator and northernmost latitude for a 
temperature gradient of 24 degrees Celsius. 
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Figure3-13: Bottom to surface average density difference at 60oN against 
restoring temperature gradient for the 4 sets of experiments. 

It is not clear why the two sets of experiments have such a different convective 

behaviour (in set1, as the temperature gradient increases, convection disappears 

while in set 2, as the temperature gradient decreases, convection intensifies).As 

is shown in figure 3-13, although locally, convection mixes the water column, 

the basin wide effect of the convection is to increase the amount of stratification 

(since it creates cold deep waters) and this in both models. In set 2 and 2M, as 

the temperature gradient decreases, convection increases and the bottom to 

surface density difference increase, indicating higher stratification in the northern 

latitudes. The experiment with the smallest density difference, 6-0, has the most 

convection, the highest high latitude stratification and the weakest overturning. 

To a certain extent, these results agree with the conclusion of Marotzke & Scott 

(1999), who found that increasing the convective mixing lead to a decrease in the 

overturning and that the overturning circulation could be strong, even in the 

absence of convective mixing. 

In set 1 and 1M, the opposite situation occurs. As the temperature gradient 

decreases, the convection decreases and the high latitude stratification decreases. 
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In these set of experiments, the experiment with the smallest density difference, 

28-2, has the weakest convection, the weakest stratification and the weakest 

overturning.  

It was not possible to conduct experiments in set 1 and 2 with smaller gradients 

due to instabilities appearing in the MOMA model, the MIT model proved far 

more robust even for very small gradients (0.1oC). As shown in figure3-14, when 

the gradient tends towards zero, the overturning also tends towards zero. This is 

the expected behaviour in an ocean with uniform temperatures.  

 

Figure3-14: overturning against temperature gradient for set 1M and 2M. 

These experiments show that the ocean basin can follow two routes as the 

temperature gradient decreases: one that favours diffusion, in the case of a fixed 

northernmost temperature, one that favours convection, in the case of a fixed 

southernmost temperature. Both end up in an identical state when the 

temperature gradient is zero. 

3.4.4) The effect of convection on the isopycnal in the high latitudes: 

The analysis of the results has demonstrated the high variability of convection at 

high latitudes in these experiments. This variability of the convection has a 
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substantial impact on the overturning circulation, but the precise mechanisms 

involved are not clear. Consequently, it is necessary to look more closely at the 

effect of convection in the model. 

The thermal wind equation gives a relation between the vertical shear in  

meridional velocity  and the zonal density gradient: 
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 (3.11) 

The velocity gradient is therefore inversely proportional to the longitudinal 

density gradient. 

Figure 3-15 shows a schematic of a mid-depth isopycnal (black curve) in the 

high latitudes for all the runs using the MOMA model. 

The effect of convection is to cool the water column. Hence if the convection 

occurs on the eastern side of the basin (region A), the zonal temperature gradient 

will decrease (red curve) and as a result the vertical shear in the meridional 

velocity will decrease. All other things being equal, this will lead to a weakening 

of the overturning. If the convection occurs on the western side of the basin 

(region B), the zonal temperature gradient will increase (blue curve) and as a 

result the vertical shear in the meridional velocity will increase. This is clearly 

shown in figure 3.11 and 3.16. In 3.11, one can see that the mid-depth 

convection is relatively greater on the eastern side of the basin for experiment 

24-0 from set 2 whereas experiment 28-4 from set 1 has more convection at high 

latitudes on the western side of the basin. As a result, the temperature anomaly is 

cooler on the western side and warmer on the eastern side for 28-4 than for 24-0 

as is shown in figure 3.16. This leads to a stronger overturning for 28-4 than for 

24-0. 

When convection is distributed right across the basin, the temperature gradient is 

submitted to two competing effect, a weakening due to convection occurring on 

the eastern side and a strengthening due to convection occurring on the western 

side. The details of the circulation structure will determine which of these two 

effects dominates. 
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Figure3-15: a) Schematic of the effect of shallow depth convection on the 
isopycnals at high latitude. The black curve is the initial shape of the isopycnal, 
the red curve is the modified portion of the isopycnal after convection has 
occurred in zone A, and the blue curve is the modified portion of the isopycnal 
after convection has occurred in zone B. b) zonal mean meridional velocity, 
black initially, red after convection in zone A, blue after convection in zone B. 

  

Figure3-16: Temperature anomaly in oC relative to the zonal mean at 800 metres 
for experiment 24-0 and 28-4 in the high latitudes.  

It is worth noting that the further south the convection maximum is situated, the 

more zonally uniform its distribution becomes. This is because the SST 

distribution is more zonal towards the low latitudes (figure3-17). 
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Figure3-17: Zonal  SST difference distribution (Te-Tw). 

The upshot of this is that when the convection maximum is in the high northern 

latitudes, its distribution will be skewed towards the western side of the basin as 

the SSTs there are warmer and the restoring temperature gradient is zonally 

uniform. 

This analysis shows that the spatial distribution of the shallow to mid-depth 

convection is more important than its strength in controlling the strength of the 

meridional overturning stream function. 

3.5) Conclusion: 

These two sets of experiments clearly underline the fact that the behaviour of the 

system is too complex to be adequately represented by a simple scaling law. 

Indeed, self-similarity, which is necessary for the scaling law to be applicable 

(Park &Bryan 2000) does not hold for the first set of experiments. Indeed in set 

1, as the temperature gradient decreases, the ocean basin evolves from one, 

which adjusts to the restoring through diffusion and intense convection in the 

high latitudes to one, which adjusts through diffusion alone. As a result, the 
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strength of the overturning increases with decreasing temperature gradient until a 

north south temperature gradient of 20 degrees followed by a decrease in the 

overturning for smaller gradients.  

In set 2, as the temperature gradient decreases the distribution of the convection 

changes, shifting westward and southward. To a certain extent, self-similarity 

holds but the theoretical scaling law does not apply, as the decrease is linear. In 

effect it follows ∆Ψ ~ ∆T 1.   

The results for the MIT model confirm that this behaviour is not specific to the 

MOMA model and might be generic to OGCMs. 

In any case, this study has highlighted the complex behaviour of numerical 

models and demonstrated the hazards of applying a simple scaling law to the 

system in order to predict its behaviour. It has also shown that the spatial 

distribution of the convection is more important than its strength in controlling 

the strength of the overturning. 

Implications 

It has been shown here that the convection distribution varies and plays an 

important role in determining the strength of the overturning. This means that 2D 

models fail to capture an important aspect of the oceanic circulation, one that 

plays an important role in determining the strength of the meridional 

overturning. 

Furthermore, the way convection is distributed means that the whole system 

resists change in the meridional overturning circulation in response to variation 

in the northernmost buoyancy value. Hence in set 1 (and 1M), it is very hard to 

produce a significant decrease in the overturning. A drop in the restoring 

temperature of at least 16 oC is necessary to observe some form of measurable 

reduction in the strength of the overturning. At 0oC, this represents a freshening 

of 3 PSU to obtain the same density decrease. It is not clear whether this 

accurately represent the sensitivity of the real ocean circulation to sea surface 

buoyancy variations. In any case, this weak sensitivity could well be a feature of 

most OGCMs. 
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Summary: 

 

The response of an idealised ocean basin to variable buoyancy forcing is 

examined.  A general circulation model that employs a Gent-McWilliams mixing 

parameterisation is forced by a zonally constant restoring surface temperature 

profile, which varies with latitude and time over a period P.  In each experiment, 

17 different values of P are studied, ranging from 6 months to 32,000 years.  The 

model's meridional overturning circulation (MOC) exhibits a very strong 

response on all timescales greater than 15 years, up to and including the longest 

forcing timescales examined.  The peak-to-peak values of the MOC oscillations 

reach up to 125% of the steady-state maximum MOC and exhibit resonance-like 

behaviour, with a maximum at centennial to millennial forcing periods 

(depending on the vertical diffusivity). This resonance-like behaviour stems from 

the existence of two adjustment time scales, one of which is set by the vertical 

diffusion and another, which is set by the basin width.  Furthermore, the linearity 

of the response as well as its lag with the forcing varies with the forcing period.  

The considerable deviation from the quasi-equilibrium response at all timescales 

above 15 years is surprising and suggests a potentially important role of the 

ocean circulation for climate even at Milankovich timescales. 
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4.1) Introduction 
 

The response of the meridional overturning circulation (MOC) to pure buoyancy 

forcing has been the subject of relatively few studies. Those that exist have 

concentrated on the scaling behaviour between the equator-to-pole temperature 

gradient (∆T) and the strength of the maximum overturning (Zhang et al. 1998;  

Huang 1999), based on the work of Bryan and Cox (1967), whose principal aim 

however had been to develop a scaling relationship between horizontal currents 

and the vertical diffusivity. Deriving the scaling law that links the MOC to the 

north-south surface temperature gradient implies that the meridional temperature 

gradient is proportional to the zonal temperature gradient. Marotzke (1997) 

presented theoretical arguments that this proportionality did indeed exist, and his 

conclusions were supported by the numerical results of Park and Bryan (2000). 

However, Scott (2000) cast doubt upon the robustness of the scaling law: his 

results suggest that the scaling law varies with latitudes and that it fails to 

capture the geographical displacement of the overturning cell as ∆T varies.  He 

did not, however, study in detail the structure of the circulation or how it is 

affected by changes in ∆T. Park and Bryan (2001) also looked at the effect of 

different vertical coordinate systems on a purely buoyancy-forced ocean basin.  

In contrast to these relatively few studies, there have been many model studies 

investigating MOC variability on the interdecadal time scale, both in pure ocean 

models with constant forcing (e.g., Marotzke,1990; Weaver and Sarachik, 1991; 

Weaver et al. 1993;  Winton 1996; Greatbatch and Peterson 1996; te Raa and 

Dijkstra, 2002), in coupled ocean-atmosphere models (e.g., Delworth et al., 

1993; Delworth and Greatbatch, 2000; Delworth and Mann, 2000) and in 

response to North Atlantic Oscillation (NAO)-style forcing (Visbeck et al., 1998; 

Hurrell et al., 2001). Theoretical arguments for the emergence of MOC 

variability have been put forward by Colin de Verdiere and Huck (1999), te Raa 

and Dijkstra (2002) as well as Eden and Greatbatch (2003). 

There have also been efforts to study the oceanic response to Milankovitch 

orbital forcing. Brickman et al. (1999) conducted a study using a 2.5-D 

atmosphere ocean model run for 3.2 Ma. They found that the strongest response 

was in the obliquity band while the response in the eccentricity band was 
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suppressed. Their explanation for this was that the main effect of obliquity was 

to control the seasonal contrast, and as deep water formation happens in winter, 

the harsher the winter, the greater amount of deep water formed and the stronger 

the overturning. Their results also showed that in the obliquity band, the global 

ocean average temperatures were negatively correlated with the atmospheric 

ones, due to a rectifying effect by the ocean. 

The present paper addresses a gap in all previous works, in that it investigates the 

effect of pure variable buoyancy forcing on the MOC under three-dimensional 

dynamics. We use very idealised forcing, which varies sinusoidally in time, and 

tune through a wide range of periods, following the strategy sketched in Visbeck 

et al. (1998).  

In Section 4.2, we describe the model and the experimental set-up. Section 4.3 

gives a descriptive account of the main results. An in-depth analysis and 

discussion are successively provided in Section 4.4 and Section 4.5, dealing with 

the effects of diffusion and the influence of the basin width, respectively. Section 

6 compares boundary current velocities and the meridional overturning, and 

Section 7 briefly presents conclusions. 

 

 

4.2) Model description and experimental set-up 
 

4.2.1) Model description 

 

The model used is a parallelised version of the GFDL MOM model which can 

distribute the various processes on an array of processors (Webb, 1996). The free 

surface numerics have been updated by including the free surface numerical code 

of OCCAM (Webb, 1995). The model also includes the eddy parameterisation 

scheme of  Gent and McWilliams (1990) as implemented by Griffies (1998).   

The domain is a 60o wide basin with solid boundaries and 15 levels in the 

vertical, extending from the equator to 60oN of latitude. The horizontal 

resolution is 4ox4o. Table 4-1 lists the default parameters. 

In the initial conditions, the salinity is set to 35 psu throughout the model and the 

salinity fluxes are set to zero. The wind effect is removed by setting all the 
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surface wind stresses to zero. The temperature fields are initialised by setting the 

surface temperature to 20ºC at all latitudes and longitudes and decreasing it by 

one degree at each level. Thus, the coldest temperature is at the bottom and is 

5ºC. 

 

Parameter Value 

Basin Width, length 60o, 60o

Basin depth 5000 m 

Number of vertical levels 15 

Longitude, latitude grid spacing 4o, 4o

Vertical, horizontal diffusion coefficient 1·10-4m2s-1, 0 m2s-1

Isopycnal thickness diffusivity 2·103m2s-1

Lateral eddy diffusivity, viscosity 1·105m2s-1, 2·103s-1

Isopycnal tracer diffusivity 2·107cm2s-1

Temperature restoring time scale 40 days 

Momentum time step 14400 s 

Tracer time step 150000 s 

Table 4-1: Summary of numerical parameters 

 

 

The temperature is forced using a Newtonian relaxation scheme, where the 

restoring period is set to 40 days. In the initial spin up, the sea surface 

temperature is restored using a zonally uniform cosine function with a peak-to-

peak amplitude of 26oC and a value at the equator of 28oC . The spin up lasts 

8000 model years, until the value of the maximum MOC becomes virtually 

constant. 
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4.2.2) Experimental strategy 

 

In the time-varying experiments, a sinusoidal restoring temperature profile is 

used. It varies with latitude and time according to: 

28)1)3(cos())2cos(13(),( +−×Φ××+=Φ π
P
ttT  

where T is the restoring temperature, Φ is latitude, t is time, and P the forcing 

period (figure 4-1). As a result, the north-south temperature gradient is modified 

by varying the northernmost temperature, not the equatorial temperature, as done 

previously (Scott 2000). In our experiments, we vary the SST at 60oN by 4oC, 

giving us a 4oC variation in the meridional temperature contrast. As is shown in 

figure 2, taken from the NCEP re-analysis (Kalnay et al, 1996), such a variation 

is smaller than today’s seasonal range. However, as we propose to examine the 

effect of very long-period oscillations, we need to have an idea of the past 

amplitudes in SST. 

 

 

Figure 4- 1: Summary of variable forcing set-up. The left hand panel shows the 
evolution of the restoring temperature in oC at 3 latitudes for a forcing period of 
50 days. The right hand panel shows the maximum (solid line) and the minimum 
(dashed line) forcing profile in oC as well as the forcing profile used to spin up 
the model (dotted line). 
 

By analysing the δ18O isotope records from various sites in the North Atlantic for 

the last 1.1 MA, Ruddiman et al. (1986) concluded that maximum SST variations 

at about 60oN was in excess of 10oC for summer and winter temperatures. This is 
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also the estimate obtained by the Climex project in their world maps of the last 

two climatic extremes, namely 18,000 years ago, the last glacial maximum, and 

8,000 years ago, the Holocene optimum (CGM, 1999). These studies show that 

the 4oC range we use is modest compared to the range of naturally occurring 

values. 

Six different experiments are carried out, with different values for the vertical 

diffusion coefficient, varying topography and basin width as well as one run 

which includes winds. Furthermore, a run with fixed fluxes is also carried out. 

Table 4-2 provides a brief description of each of the experiments carried out. 

 

 

 

Figure 4-2: Monthly temperature gradient between the equator and 60oN in the 
Atlantic, obtained from NCEP data for the last 50 years. 
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Experiment Vertical 

Diffusion 

Basin width Note 

R1 1 cm2/s 60o  

R2 2 cm2/s 60o  

R5 5 cm2/s 60o  

T1 1 cm2/s 60o Mid-ocean topography 

D1 1 cm2/s 60o Winds included 

W1 1 cm2/s 120o Wide basin 

F1 1 cm2/s 60o Constant fluxes. 

Table 4-2: Summary of Experiments. 

 

 

0.5 1 2 4 8 15 

4,000 4,000 4,000 4,000 4,000 4,000 

30 60 120 250 500 1000 

4,000 4,000 4,000 4,000 6,000 10,000 

2000 4000 8000 16,000 32,000  

12,000 20,000 48,000 80,000 96,000  

Table 4-3: List of forcing periods (bold) and integration time (italic) in years 
used in the experiments. 
 

During the runs of the restoring experiments, R1, R2, R5, T1, D1 and W1, the 

forcing period P is gradually increased from 6 month to 32,000 years. For each 

value of P, the model is run until a cyclo-stationary state has been reached. Table 

4-3 lists the actual periods used. 

 

4.2.3) Asymptotic forcing 

 

The constant restoring profiles of 28ºC to 0ºC and 28ºC to 4ºC can be seen to 

correspond to a time varying profile of infinite period as they represent a 
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infinitely slow change in the forcing. They can therefore be deemed to represent 

the asymptotic behaviour of the system.  

Both experiments are started from the end of the spin up and run for 4000 years. 

Once equilibrium is reached, the maximum overturning takes the value of 12.16 

Sv and 11.76 Sv respectively. This increase in the strength of the overturning 

when the meridional density contrast decreases is surprising. An in depth 

analysis of this behaviour is beyond the scope of this paper. However, it can be 

said that it occurs for a different reason from the one in Nilsson & Walin (2001) 

and Nilsson et al (2003) since here vertical diffusivity is prescribed (see chapter 

3).  

The asymptotic forcing experiments show that the 4ºC change in temperature 

between the two asymptotic experiments only leads to a 0.4 Sv change in the 

value of the maximum overturning. Therefore, any change in the overturning 

observed during the variable forcing beyond 0.4 Sv must be attributed to the 

oscillatory nature of the forcing. 

 

4.3) Variable Forcing: 
 

4.3.1) Overturning 

 

Figure 4-3A shows the behaviour of the maximum overturning for R1. The 

system is profoundly affected by the oscillations in the forcing even for a forcing 

period of 32,000 years, which is within the Milankovitch cycle time band. The 

average maximum overturning value for each of the forcing periods is greater 

than the value of the maximum overturning during the spin up, which 

corresponds to the average forcing. The location of the maximum overturning is 

also very regular for each forcing period. For the maximum values, it is situated 

at about 53oN and at about 2000 metres depth. As it decreases, it shallows and 

shifts southwards, to about 40oN.  
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Figure 4-3:  Panel A: Maximum overturning against time for experiment R1. 
Vertical diffusivity is 1 cm2/s. The model is run for 17 forcing periods and for 
each until a cyclo-stationary state has been achieved. Panel B: Maximum 
overturning against time in experiment R1 for 4 successive forcing periods: 4, 8, 
15, and 30 years. This figure highlights the jump in amplitude in the overturning 
as the period increases from 8 years to 15 years. 
 

The maximum overturning curves also display a maximum range, which occurs 

for a period of 2000 years. At a forcing period of 30 years, the overturning 

reaches its absolute minimum value. From then on, the minimum value of the 

maximum overturning will continuously increase, even as the maximum 

eventually starts to decrease. The other notable feature is the presence of a 

significant increase in the amplitude when the forcing switches from a period of 

8 to 15 years. This is clearly visible in figure 4-3B, a zoom of figure 4-3A on the 

transition between a forcing period of 8 years and a forcing period of 15 years.  
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Figure 4- 4: Panel A: Maximum overturning against time for experiment R2. The 
diffusion is of 2 cm2/s. The model is run for 17 forcing periods and for each until 
a cyclo-stationary state has been achieved.  
Panel B: Maximum overturning against time for experiment R5. The diffusion is 
of 5 cm2/s. The model is run for 17 forcing periods and for each until cyclo- 
stationary state has been achieved. 
 

The following experiments are used to test the sensitivity of the system to 

vertical diffusivity and topography. Experiments R2 and R5 are identical to R1 

except that the vertical diffusivity is set to 2 cm2/s and 5 cm2/s respectively. The 

results for the overturning are shown in figure 4-4. Generally, the values for the 

overturning are higher than for R1 and higher for R5 than for R2. This is 

consistent with experiments of constant forcing (e.g. Bryan, 1987; Colin de 

Verdiere, 1988; Park and Bryan, 2000). In both cases, the maximum amplitude 

in the overturning occurs for a period smaller than in R1. For R2, the maximum 

amplitude occurs for a forcing period of 60 years and for R5, it occurs for a 

forcing period of 30 years. As in R1, there is also a significant jump from a 

forcing period of 8 years to a forcing period of 15 years. Increasing the 
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diffusivity shifts the maximum amplitude in the overturning towards the smaller 

periods. It does not, however, affect the 8 years forcing period to 15 years 

forcing period jump in the amplitude of the maximum overturning. 

 

 
Figure 4-5: Maximum overturning against time for experiment T1. The diffusion 
is of 1 cm2/s. The basin topography includes a north-south ridge 2500m high. 
The model is run for 17 forcing periods and for each until cyclo- stationary state 
has been achieved. 
 

Experiment T1 is identical to R1 except for the introduction of an idealised 

north-south mid-basin ridge 2500 metres high and 4 cells wide. The result for the 

overturning is shown in Figure 4-5. Generally, the overturning is slightly weaker 

than in experiment R1. Furthermore, the maximum amplitude in the overturning 

occurs for a forcing period of 120 years. The jump between the forcing period of 

8 years and the forcing period of 15 years observed in all the other experiments 

is still present. However, the absolute minimum is no longer so close to the jump 

in amplitude as it occurs for a period of 120 years. 

Finally, Figure 4-6B shows the results for the overturning stream function in D1, 

which has an identical set-up to R1 except that a idealised wind forcing is 

applied. The actual wind stress values used are those of Weaver & Sarachik 

(1990) and are shown in figure 4-6A. Generally, the wind decreases the strength 

of the overturning. Most of this decrease is accounted for in a reduction of the 

strength of the western boundary current (not shown). Furthermore, the reduction 

in the strength of the western boundary current means that less warm water will 

be advected northward. As a result, at all times during a forcing cycle, the deep 

water formed is slightly colder than for a run without winds (not shown). This in 
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turn increases the stratification slightly and decreases the strength of the 

convection. The consequence of this is that the overturning is generally weaker 

throughout a forcing cycle for D1 relative to R1. 

 

 

 
Figure 4-6: Panel A: wind stress distribution for experiment D1 after Weaver & 
Sarachik (1990). 
  Panel B: Maximum overturning against time for experiment D1. 
The diffusion is of 1 cm2/s. 
 
The maximum amplitude is now of 10.6sv and occurs for a forcing period of 

2000 years. Once again, the jump occurs between the forcing periods of 8 years 

and 15 years. As for R1, the absolute minimum is reached for a forcing period of 

30 years. 
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Two robust and distinct features occur in all the experiments: a maximum 

amplitude in the overturning and a significant jump in the amplitude between the 

forcing period of 8 years and that of 15 years. To understand what brings about 

these features, we will thereafter focus on experiment R1. 

 

4.3.2) Bottom temperature  

 

Figure 4-7 is a plot of the forcing temperature at 60oN, i.e. the temperature to 

which the latitude of 60o is restored, and the minimum bottom temperature in R1. 

The bottom temperature displays some regular oscillations for all forcing periods 

although these have a very small amplitude for the forcing periods of 8 and 250 

years, clearly showing that very little of the oscillatory behaviour of the forcing 

reaches the deep ocean. Changing the forcing period does have an effect as the 

mean value of the temperature in the deep ocean is lowered as the period is 

increased. This is partly because, the greater the forcing period, the colder the 

minimum temperature found in the surface ocean during a cycle as the vertical 

diffusivity becomes increasingly efficient in capturing the forcing signal the 

longer the forcing period becomes.  It is this coldest water, which then fills the 

deep ocean. Furthermore, the longer the forcing period, the more time those cold 

waters have to fill the deep ocean before being removed by diffusive warming 

(see section 4). 

As the period is increased, the amplitude of the oscillations increases slowly 

until, for the 32,000 years forcing, it reaches an amplitude of 2.5oC. The bottom 

temperature now closely follows the behaviour of the forcing temperature 

although it still has only half its amplitude. Clearly, the forcing signal now 

reaches all the way down to the bottom of the basin.  
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Figure 4-7: Evolution of the minimum bottom temperature (solid) and the 
forcing temperature (dashed) during experiment R1 over 6 different periods: 8 
years, 250 years, 500 years, 1000 years, 2000 years and 32,000 years. The 
forcing temperature has been scaled down to the bottom temperature range. 
Consequently, no absolute values for the forcing temperature can be inferred 
from those plots. The forcing temperature is the restoring temperature of the 
northern most (60o) latitude. Thus, when the forcing temperature is at a 
maximum, the north south temperature gradient is at a minimum. The x axis is 
time in years and the y axis temperature in oC. 
 

We also observe that the bottom temperature signal displays two dominant 

components.  One component, the narrow trough dominates the periods above 8 

years and below 1000 years (figure 4-8). By this, we mean that the amplitude of 

the narrow trough accounts for most of the amplitude of the oscillations. The 

other component, the peak is clearly dominant for periods of 2000 years and 

above. The two components suggest that the response of the system is the result 

of its adjustments to the forcing through two processes, each requiring a certain 

time scale to become efficient. One of these processes has an adjustment time of 

decades while the other has an adjustment time in the millennial time band. The 

response of the system to a specific forcing period is a combination of the 
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adjustment of the basin to the forcing through those two mechanisms at that 

specific forcing period (see section 4 and 5). 

 

 

Figure 4-8: Evolution of the minimum bottom temperature (solid line) and the 
forcing temperature (dashed line) during experiment R1 over the 1000 years 
forcing. This figure shows the two components of the bottom temperature signal.  
 

4.3.3) Phase lag  

 

In figure 4-9, we can see the evolution of the phase lag between the forcing 

temperature at 60oN (the temperature to which the sea surface temperature is 

being restored), and the response of the meridional overturning. For the very 

long forcing periods, the two signals are slightly out of phase. As the forcing 

period decreases, the lag between the forcing temperature and the response 

increases: for a forcing period of 4 years, the lag is of one full period (a lag of 0). 

This means that in our model, the minimum temperature gradient, thus the 

maximum forcing temperature, leads to the maximum overturning and vice versa 

which is consistent with the results from the asymptotic runs. This figure also 

clearly demonstrates that the system is far more complex than a forced oscillator 

as, for the resonance like period, 2000 years, the lag is clearly not of π/2, as it 

would be in a forced oscillator but of π (see also section 6 on the velocities). 
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Figure 4-9: Forcing temperature (dashed line) and overturning response (solid) in 
R1 for 9 forcing periods. The forcing temperature has been scaled up to the 
overturning and as a result, no absolute value can be inferred. The forcing 
temperature is the restoring temperature of the northern most (60o) latitude. 
Thus, when the forcing temperature is at a maximum, the north south 
temperature gradient is at a minimum. The x axis is time in years and the y axis 
temperature in oC. 
 

We also observe that the non-linearity of the response varies with the forcing. 

For small periods, the response is quasi-sinusoidal whereas for a forcing period 

of 2000 years, the response is highly non-linear, with a very sharp peak and a 

longer trough. As the forcing period continues to increase, the peak becomes less 

pronounced and the response more linear again. 

To understand how the phase lag is set up, it is necessary to look at other 

quantities. In figure 4-9, we see the evolution of the convection index, the 

overturning, and the surface-to-bottom temperature difference. The convection 

index is an average over the sampling period of the number of cells in the model 

which undergo convective mixing. The surface to bottom temperature difference 

is obtained by subtracting the minimum surface temperature to the minimum 

bottom temperature. 

 -80- 

 



Chapter 4              The response of  an idealised  ocean basin to variable buoyancy 

   forcing 

 We have two different types of behaviour in the system, one for periods greater 

and another for periods smaller than 8 years. For the forcing periods greater than 

8 years, the response of the overturning is almost perfectly in phase with the 

convection in the high latitudes. An increase in the strength of the convection 

index is followed by an increase in the strength of the overturning. As the period 

increases, the convection index plateaus for a longer time and the decrease in the 

strength of the overturning goes from lagging slightly the convection decrease to 

preceding it. For forcing periods below 8 years, the convection index and the 

overturning are out of phase.  

The convection is well known for its abrupt changes once threshold values are 

reached (i.e. large convective areas are either switched "on" or "off", Lenderink, 

1994). This explains why the convection index does not just follow the forcing 

and exhibits step like increases and plateaus. The latter occur when all the cells 

which in an area that can undergo convection are already convecting. For 

additional deeper cells to convect (i.e. for the convection index to increase), a 

substantial amount of water must become unstable. Similarly, if a deep cell is 

convecting, it must under go a substantial cooling to become stable. Once it 

reaches that threshold value, it will stop convecting.  

Figure 4-10 shows that it is the difference between the surface and the bottom 

temperatures that determines the amount of convection that takes place. The 

maximum convection occurs when the minimum surface temperature is smaller 

than the minimum bottom temperature. It is therefore the surface temperature 

signal and how it penetrates in the deeper ocean, which determines the phase 

behaviour between the forcing and the response. The surface temperature signal 

is itself the result of the effect of the forcing and the various processes that occur 

in the ocean, such as convection, diffusion and advection (see section 4). 

The response, that is, the strength of the overturning, clearly has a negative 

feedback on the surface ocean temperature as the stronger the overturning, the 

stronger the western boundary current and the more warm water is carried 

northward to the convection areas. Furthermore, the stronger the convection, the 

smaller is the surface to depth temperature gradient.  As for diffusion, what 

matters is not only how deep the forcing signal penetrates but also with what 

amplitude. All this suggests that diffusion has a particular role to play in the 
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response mechanism of the ocean basin and needs be studied further. Its 

behaviour will be examined in detail in section 4. 

 

 
Figure 4-10:  Evolution over one period of the total basin convection (dotted 
line), the Maximum overturning (dashed line) and the surface to bottom 
maximum temperature difference (solid line) for six forcing periods. All 
quantities have been normalised. The convection index is obtained by averaging 
over a sampling period the number of cells, which undergo convection. The x 
axis is time in fractions of a forcing period. 
 

 

4.4) Diffusion 
 

To obtain a deeper understanding of what happens as the period is increased, the 

behaviour of the system for four forcing periods in R1 is analysed: one small 

period, 8 years, one very long period, 32,000 years, and two periods in between, 

250 and 2000 years. The 2000-year period is also important as it corresponds to 
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the maximum range in the overturning. Figure 4-11 shows the evolution of 

temperature and the meridional overturning at 52oN on the western side of the 

basin over one period of the forcing. For all the periods examined, the surface 

temperature displays a warm bias when compared to the forcing profile, resulting 

from the advection of warm water northwards by the boundary currents and the 

effect of convection.  

For the very short periods the forcing signal does not penetrate below 1000 

metres in the temperature field. As the forcing period increases, the forcing 

signal penetrates deeper and deeper, although the ocean remains fairly stratified. 

The amount of stratification is, however, clearly reduced in the 32,000 years 

forcing case. The surface temperature variation increases in amplitude as the 

forcing period increases, indicating that a greater amplitude of the forcing signal 

is captured by the surface ocean as the rate of change in the forcing decreases. 

For periods of 250 and 2000 years, the warming at depth is slow and occurs 

while the overturning and the convective mixing are at their minimum. The 

cooling of the waters on the other hand, occurs at the same time as the maximum 

overturning and is particularly fast, relative to the warming, for the 2000-year 

period. For the 32,000-year period, the cooling and the warming have almost the 

same rate. This contrast between the rates of warming and cooling has already 

been discussed by Stouffer (2003), although the experiments presented here 

suggest that the strength of this contrast depends greatly on the forcing period. 

Finally, whereas for the short period (i.e. 250 years), the minimum temperature 

at depth occurs at almost the same time as the maximum surface temperature is 

reached, with increased forcing period this anti-phase behaviour is diminished 

and for 32000 years, the minimum deep temperature occurs at the same time as 

the minimum surface temperature. 

The overturning stream function contour lines shows that it first strengthens and 

deepens from a forcing period of 8 years to 2000 years before shoaling and 

weakening for a forcing period of 32,000 years. 
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Figure 4-11: Evolution of the temperature (colour shading) and ψ (contours) over 
the four forcing periods: 8 (panel A), 250 (panel B), 2000 (panel C) and 32,000 
years (panel D). The sampling period is set at 1/125 of the forcing period. The x-
axis shows the normalised period and the y axis depth in metres. 
 

Diffusion affects the system in two significant ways, firstly by controlling how 

much of the forcing signal the surface ocean will capture and secondly by 

determining how deep this captured signal will reach. The importance of the 

surface ocean in its ability to capture the forcing signal has already been 

suggested by Hasumi and Suginohara (1998).  For small periods (below 250 

years or so), the diffusion cannot keep pace with the changes in the forcing and 

thus only a small portion of the signal is captured by the surface ocean. Because 

the oscillation in the SST is so fast, the diffusion cannot transmit the forcing 

signal to the deep ocean and as a result, the amplitude of the deep ocean 

temperature oscillations is very small. As the period increases, more and more of 

the forcing signal is captured and transmitted to the deep ocean. Hence, for the 

forcing of 32,000 years, the warming and cooling are almost synchronous 

throughout the depth of the ocean. The depth to which the forcing signal 
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penetrates, even for the small forcing periods provides an explanation as to why 

the inclusion of wind in experiments D1 does not qualitatively alter the 

behaviour of the system. Indeed, we see in panel 4-11A that the forcing signal 

has a distinct signature up to a depth of 500 metres, which is deeper than the 

average wind mixed layer. 

The maximum overturning occurs when enough of the forcing signal is captured 

to create buoyancy instabilities, which the diffusion is not efficient enough to 

remove. This creates convective mixing, which leads to an increase in the 

overturning. This allows for the fast removal of the instabilities and a rapid 

cooling of the ocean as is clearly shown in figure 4-11C where the warming of 

the deep ocean is slow and the cooling fast whereas the surface ocean cooling 

and warming have the same rate. Following the cooling, the warming of the 

surface ocean leads to the creation of a highly stratified ocean, which is very 

stable. This explains why the trough in the overturning increases relatively to the 

peak as the forcing period increases (figures 4-9 and 4-10). This fast cooling and 

slow warming also explains why the average bottom temperature increases for 

forcing periods of 1,000 years upwards. As the forcing period increases beyond 

the maximum overturning, the cooling, due to a combination of diffusion and 

convection has reached a maximum efficiency. However, the warming of the 

deep ocean becomes increasingly more efficient as diffusion has more time to 

have an effect (figure 4-7). Thus, the absolute minimum bottom temperature 

remains constant for periods greater than 1000 years but the absolute maximum 

increases leading to an increase of the average bottom temperature.  

If we increase the value of the vertical diffusivity, we affect the systems capacity 

to capture the forcing signal and its response to it. This explains why the 

“resonance” shifts to the smaller periods when we increase the value of the 

vertical diffusivity: more of the signal is captured for the smaller forcing periods 

and the ocean is more capable of responding to it through diffusion alone. It must 

be noted that what we see in the response of the overturning is a combination of 

the adjustments to the forcing through the two processes. The observed 

resonance-like signal (i.e., when the greatest amplitude occurs) results from the 

interaction to those two responses. This is why increasing the diffusion shifts the 

main resonance signal so much towards the smaller periods. 
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Increasing the vertical diffusivity also alters the tail end of the curves displaying 

maximum overturning versus time (figure 4-3, 4-4 & 4-5). As the diffusion 

increases, for the long periods, the response of the system becomes more and 

more linear. This is also evident for a fixed diffusion and variable forcing 

periods (figure 4-8): as the forcing period increases past the maximum response 

in the overturning (2000 years for R1), the non-linearity in the response becomes 

less pronounced. This is because as diffusion becomes the dominant mechanism 

(either because it is increased or because it has more time to have an effect), the 

ocean basin has to rely less and less on the other mechanisms (convection, 

advection) to adjust to the forcing. Furthermore, the ocean becomes less and less 

stratified, thus less stable (figure 4-11D). As a result, the trough in the maximum 

overturning curve becomes less pronounced since the stratification is easier to 

break down and so the response becomes more linear. The linearity of the 

response of the ocean basin is therefore dependent on the forcing period and the 

value of the vertical diffusion. 

To summarise, the ocean basin adjust to the effect of diffusion in two ways: 

firstly in the way the forcing signal is captured in the surface ocean and secondly 

in the way which this captured signal is transmitted to the deep ocean. 

 

 

4.5) Basin width: 
 

We still have to find an explanation for the sudden increase in response 

amplitude as the forcing period increases from 8 to 15 years. A plausible 

hypothesis suggests that the cross-basin travel time of baroclinic Rossby waves 

plays a role. To test this, we set up Experiment W1 identical to R1 in all but the 

basin width, which is twice that of R1, in other words 120o of longitude. Once 

again, the system is spun up for 8000 years and then submitted to the same 

thermal forcing as R1.   
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Figure 4-12: Maximum meridional overturning stream function for W1. The 
vertical diffusion is of 1 cm2/s and the basin is 120o wide. The model is run for 
17 forcing periods and for each until cyclo-stationary state has been achieved. 
 

Figure 4-12 shows the resulting behaviour of the maximum overturning. The 

average overturning is stronger but this is easily accounted for by the increase in 

basin width, implying stronger zonally integrated vertical diffusive fluxes and 

resulting in stronger vertical advection (Marotzke and Klinger, 2000). Broadly 

however, the behaviour is similar to that of the maximum overturning for R1. 

There is one important difference, however. The position of the jump in 

amplitude now occurs between a forcing period of 15 years and a forcing period 

of 30 years. Furthermore, in a fashion similar to R1, the absolute minimum in the 

overturning is found just after the jump, for the forcing period of 30 years. This 

is consistent with an important role of Rossby waves. 

If we now examine the temperature anomaly in R1 on either side of the jump, for 

the forcing periods of 8 years and 60 years, at mid latitudes (30oN) and just 

below the thermocline (800 metres depth), a westward propagating signal is 

visible (Figure 4-13). For 8 years, we see that there is some propagation of a 

signal from east to west but that it does not cross the whole basin. Furthermore, 

the temperature trend is not uniform zonally. We have instances of warming in 

the east while the west is cooling and vice versa. For 60 years, the picture is 

quite different. The warming and cooling trends are uniform across the whole 

basin, i.e. when the east is warming the west is warming too. Furthermore, the 

amplitude of the warming is almost an order of magnitude greater than for the 

forcing period of 8 years.  
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Figure 4-13: Hovmoeller plots of the temperature anomaly at 800 metres depth at 
30oN ,the normalised average surface temperature (red line) and the normalised 
restoring temperature (black line) for forcings periods of 8 years (panel A) and 
60 years (panel B). The colour contours are in degrees Celsius and the Y-axis 
shows 2 normalised periods. 
 

The slope of the isotherms for the period of 60 years indicates that the anomaly 

crosses the whole basin in about 5 years. The shorter period of the jump in 

response amplitude in R1, as compared to W1, is therefore set by the basin 

width. Doubling the basin width doubles the period at which the maximum 

increase in the amplitude occurs. The analysis of figure 4-13 suggests that the 

westward propagation of the temperature anomaly results from the activity of a 

Rossby wave. Indeed, for the 8-year forcing period, the anomaly takes roughly 

3.9 years to cross the basin from east to west while for the 60 years forcing 

period, it crosses the basin in roughly 4.2 years. 

A very simple two layer model of the ocean basin with a thermocline at 800 

metres and an average temperature of 14oC above the thermocline and of 4oC 

below the thermocline yields a gravity wave speed of 3.4 m/s, implying a mid-

latitude (30oN) wave speed of long Rossby waves of 0.043m/s. Such a wave 
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takes 4.2 years to cross a 60o wide basin. This means that for an anomaly to cross 

the basin in an uninterrupted fashion, the warming or cooling period must be 

greater than 4.2 years. This corresponds to a forcing period of 8.4 years.   

The velocities have been calculated here for Rossby waves at 30o North. As 

discussed by Cessi and Louazel (2001), it is the slowest Rossby waves that 

determine the basin adjustment time. We can therefore theorise that the 

northernmost Rossby waves are those that determine the adjustment time. 

However, in the high northern latitude, the signal generated by those waves is 

hard to pick out as it is the location of other processes such as convection.  

 For, the 8 years forcing period, the cooling and warming of the anomaly (Figure 

4-13A) are exactly in phase with the behaviour of the surface temperature. In 

other words, we have an anomaly travelling across the basin and it is warmed 

and cooled by the forcing. The amplitude of the anomaly is very weak, about a 

50th of what it is for the 60 years period (an amplitude 0.03oC of versus an 

amplitude of 0.9oC). For forcing periods above 15 years, the rossby wave signal 

swamps the direct effect of the surface forcing and therefore we do not see any 

evidence of the direct effect of the surface cooling and warming (figure13B). So 

in effect, we have an anomaly, which is built up by the activity of Rossby waves. 

If the forcing is fast, the anomaly has a very weak amplitude and is still sensitive 

to what happens at the surface. If the forcing is slow, the anomaly's amplitude is 

much greater and the surface forcing has no direct visible effect on it. 

Furthermore as the overturning is that much more stronger, the surface 

temperature does not follow so closely the forcing as we have stronger advective 

processes taking place. 

The mechanism generating those Rossby waves is similar to that described by 

Cessi and Louazel (2001) and Johnson and Marshall (2002) in that we observe 

the propagation of  boundary trapped waves along the western boundary which, 

when they reach the southern most boundary, travel eastward along it and then 

north along the eastern boundary. The northward propagation along the eastern 

boundary of these waves, created by the arrival of the equatorial boundary 

trapped waves as well as the oscillations in the surface forcing, generate the long 

Rossby waves, which propagate westward.  
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The boundary trapped waves propagating along the western boundary are readily 

visible in our model. They take roughly 3 years to travel from 60oN to the 

equator (not shown). This is about ten times slower than the expected 

propagation time of Kelvin wave in a model with a 4o resolution (Hsieh et al, 

1983). Similar slow propagating waves were also reported by Marotzke & 

Klinger (2000). These have all the features of Kelvin waves but propagate much 

slower. 

These Kelvin-like waves can also be followed along the equator for the short 

period forcing. Their crossing time is of the order of a year and the eastward 

propagation is clearly visible. For the longer periods (i.e., 60 years), their 

signature is swamped by that of the long Rossby waves and as a result, only a 

westward propagating signal is visible. Because they are closer to the equator, 

these Rossby waves should travel faster than those further north.  Indeed, when 

we compare their speed with that of the waves in figure4-12B, the former cross 

the basin in about 3.4 years while the latter take roughly 3.9 years to cross it. 

This analysis suggests that the basin possesses a characteristic time scale, which 

is determined by the speed of the slowest Rossby wave.  If the period of the 

forcing is greater than twice that time scale, the Rossby waves build up a 

temperature anomaly, which crosses the basin. This anomaly increase the 

amplitude of the east-west pressure gradient, which in turn leads to an increase in 

the amplitude of the overturning. The greater the forcing period, the more 

efficient this adjustment becomes. As a result, the amplitude of the anomaly 

increases as the rossby waves have more time to build up the positive and 

negative anomalies. This process is one of the ways through which the basin 

adjusts to the changes in the forcing. In our experiments however, as the forcing 

period exceeds 1000 years, the adjustment to the forcing through the effects of 

diffusion swamps the effect of the adjustment to the forcing through the effect of 

rossby waves (figure 4-7). 

 

If the period of the forcing is less than twice the characteristic time scale, the 

east-west pressure gradient is unaffected, as the wave signal is severely damped 

by the effect of the changing surface forcing.  In this instance, as the anomaly 

does not reach the western side of the basin, or rather reaches it but in an 
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extremely damped form, there is no increase in the amplitude of the overturning. 

Furthermore, because this anomaly travels slower than the change in the surface 

forcing, if it is created during the warming phase, it will reach the western side of 

the basin during the cooling phase and will thus interact destructively with the 

cooling that is now taking place. For long enough forcing periods, the Rossby 

wave signal interferes constructively with the signal migrating southward along 

the western boundary, and much larger amplitudes are reached.  All this suggests 

that baroclinic wave propagation plays an important role in the adjustment of the 

ocean basin to external oscillations, in contrast to the conclusion of Eden and 

Greatbatch (2003). 

 

It must be noted that our model has a very coarse resolution and uses an 

Arakawa B grid. Furthermore, the time stepping is asynchronous. As a result, the 

wave processes, although present, are not well resolved. As suggested by 

Döscher et al. (1994), this means that the model might be overestimating the 

response time of the ocean to changes in the surface forcing.  The implications 

for our study are that the jump (e.g. the sudden increase in the amplitude of the 

overturning oscillations) might be occurring for a greater forcing period than in a 

fine resolution model and that, due to the absence of very fast waves, the 

amplitude of the oscillations of the overturning for very small forcing periods 

(0.5, 1 & 2 years) might be underestimated. 

 

 There is the possibility that the internal variability of the model could affect the 

response to periodic forcing, particularly as it is usually of the same order as the 

timescale set by the basin width (Colin de Verdiere and Huck, 1999). Indeed, the 

internal variability, visible during run F1 with constant fluxes, has a period of 

22.7 years (not shown). Although this is higher than the period for which the 

jump is observed, it is sufficiently close to the timescale set by the adjustment of 

the basin to the activity of Rossby waves to possibly contaminate the signal. 

However, the response in the amplitude of the maximum overturning shows no 

particular sensitivity to the internal oscillation time scale, even when a forcing 

period of exactly 22.7 years is used. This is probably because the restoring is 

sufficiently strong to damp out completely the internal oscillations. 
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4.6) Boundary current velocities: 

 
 

 

 

 

 

 

 

A A

BB C 

YYears YearsYears 

figure 4-14 :Panel A:  maximum V velocity against time for Experiment R1: The  
vertical diffusion is of 10-4 m2/s. The model is run for 17 forcing periods and for 
each until cyclo- equilibrium has been achieved.  
   Panel B: Normalised amplitude of the maximum overturning (solid line) and 
maximum V velocity (dashed line) in Experiment R1 against the forcing period.  
  Panel C: Phase shift in fraction of a period between the forcing and the 
maximum overturning (solid line) and maximum V velocity (dashed line) in 
Experiment R1 against the forcing period. 
 

Figure 4-14A shows the evolution of the maximum meridional velocity, V, 

against time during Experiment R1. As for the overturning, V exhibits a 

resonance- like structure as well as the jump in amplitude. The curves, however, 
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clearly show that the response of V is far more non-linear than that of the 

overturning. This is particularly clear for the long periods, 4000 years and above. 

As illustrated in Figure 14B, the maximum amplitude occurs for a period smaller 

than for the maximum overturning, i.e., 30 years against 2000 years for the 

maximum overturning. This is surprising and suggests that the maximum 

overturning behaves differently to the western boundary current where the 

maximum value for V is found. 

 

Furthermore, as is indicated in Figure 4-14C, the phase shift between the 

maximum overturning and the maximum V varies with the forcing period. In 

other words, within an oscillation, both quantities reach a maximum at a 

different time in the forcing cycle. This means that in an oscillatory system, care 

is needed when one wants to infer the strength of the MOC and the northward 

heat transport from velocity measurements in the WBC, as has been done in 

some palaeo studies (Lynch-Stieglitz et al., 1999) .  

 

Figures 4-14B and 4-14C clearly illustrate the complexity of the system which 

cannot really be compared to a forced oscillator. Indeed, neither the velocity nor 

the overturning reaches a maximum amplitude when their respective phase shift 

with the forcing is of ¼ of a period (π/2). 

 

 

4.7) Conclusions: 
 

Even a very simple model ocean basin forced with highly idealised variable 

buoyancy forcing responds in a very complex way. It exhibits a very strong 

response in the meridional overturning stream function with large oscillations 

even for forcing periods of the order of Milankovitch cycles.  

The amplitude of the oscillations presents a resonance-like behaviour, which 

stems from the existence of two adjustment time scales, one in the decadal band, 

and the other in the millennial band. The former is unaffected by changes in the 

vertical diffusivity or the introduction of simple topography or idealised wind 
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forcing and is set by the propagation speed of Rossby waves across the basin.  

Consequently, it depends on the basin width. The latter is controlled by the 

vertical temperature diffusion: the greater the diffusion, the smaller the period of 

the resonance. The basin adjusts to changes in the forcing through those two 

processes.  

The relationship between western boundary meridional velocities and the 

meridional overturning is complex. This suggests that there is no simple 

inference of overturning and heat transport from local inferred palaeo-velocities. 
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Chapter 6: Conclusions 

 

 

6.1) Summary: 

The aim of this study was to investigate the response of the oceanic circulation to 

simple buoyancy forcing. In the first part of the study, a set of experiments with 

a steady restoring field was examined. In the second part, an oscillating restoring 

field with a range of periods was used and the response in a single then a double 

hemisphere examined as well as its sensitivity to diffusion, topography, wind and 

basin width.  

 In the first part, 4 sets of experiments were conducted with steady restoring 

forcing. 14 temperature gradients were investigated, with either a fixed equator 

temperature or a fixed northern most temperature with two models, the MOMA 

model (Webb, 1996) and the MIT model (Marshall et al, 1997). In effect, this 

study re-examined the scaling law between the North-South temperature gradient 

and the meridional overturning stream function. The results show that both 

models behave in a similar fashion. If the northernmost temperature is fixed, as 

the temperature gradient decreases, the overturning weakens. If the equator 

temperature is fixed, reducing the temperature gradient leads to a small increase 

in the overturning then to a decrease. The analysis shows that although the 

equator to pole density gradient is important, the spatial distribution of the 

convection rather than its actual intensity is crucial in determining the strength of 

the overturning cell. 

In the second part, the restoring field is made to oscillate sinusoidally on a range 

of time scales from the sub-annual to the orbital, in all 17 different forcing 

period. The response of the overturning shows substantial oscillations and a very 

complex behaviour with, among other things, a maximum amplitude in the 

overturning for a specific forcing period and a sudden increase in amplitude 
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between forcing periods of 8 and 15 years. Examination of the bottom 

temperature signal underlines the complexity of the system. The analysis of the 

results shows that the resonance like period is principally determined by the 

choice of vertical diffusion and that the jump in amplitude is caused by the 

cumulative constructive interference of a temperature anomaly carried by Rossby 

waves and the surface forcing. Several interesting features were found such as 

the phase lag relation between the forcing and the response and the varying 

phase shift between the overturning and the maximum meridional velocity. 

Although the coarse resolution and the asynchronous time stepping used in the 

model are thought to have an influence on the wave related phenomena, the 

diffusion related results are considered fairly robust and suggest a previously 

unsuspected impact of relatively low amplitude oscillations on the oceanic 

circulation. They also show that millennial to orbital time scales cannot be 

ignored even when looking at the short time behaviour of the circulation. 

The next part of the study involves switching to a double hemisphere basin. Two 

types of forcing are investigated, one where the forcings in both hemispheres are 

in phase and one where they are out of phase by half a period. Various 

oscillating temperature gradients are examined but in all cases, the densest 

waters are always produced in the northern hemisphere. The response of the 

oceanic circulation shows a similar resonance-like behaviour to that of the single 

hemisphere situation, with the same features and sensitivity to the diffusion. For 

the 0 lag forcing, the expected dominance of the northern hemisphere 

overturning cell is present; its strength and behaviour was similar to that of the 

single hemisphere circulation. However, major differences arose for long periods 

in the experiments with a lag of half a period in the forcing between the two 

hemispheres. The existence of two sources of deep water leads to a substantial 

increase in the amount of maximum stratification during a forcing cycle and as a 

result to a weaker minimum overturning. As a result, the amplitude of the 

oscillations in the maximum overturning stream function is much greater in both 

hemispheres at longer periods, in agreement with the behaviour suggested by the 

asymptotic runs. Although the experimental set-up is highly idealised, these 

results have some palaeo implications as they offer a explanation for the half 

precesionnal  oscillations observed in the temperature proxy records as the 
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experiments with the pi lag forcing show a similar behaviour in the deep 

temperatures in both hemisphere for forcing periods above the millennial mark.  

6.2) Analysis 

6.2.1) Non linear response and convection: 

Taken as a whole, this study underlines the complexity of the ocean system. A 

simple sinusoidal buoyancy forcing leads to very complex behaviour. The 

analysis of the bottom temperature signal in the variable forcing set-up 

emphasises this and underlines the non-linearity of the ocean system. What is 

more this non-linearity is itself a function of the period of forcing, suggesting 

that various processes have different characteristic time scales and thus the 

circulation as a whole respond differently depending on which of these processes 

dominate. In chapter 4, we identified two of the dominant processes, diffusion 

and the Rossby wave propagation.  In all likelihood there are many other minor 

ones which all leave a characteristic signature on the deep ocean temperatures, 

the region of the ocean which is the most isolated from the direct effect of the 

forcing. 

The issue of the phase lag between the forcing and the response is another 

element of interest. As we have seen in chapter 4, even the surface waters 

temperature signal substantially lags that of the forcing and that lag changes with 

the forcing period. Obviously, for very long forcing periods (8000 years and 

above), the lag is almost zero but for short forcing periods (125 years and below) 

the behaviour is far from straight forward as the surface waters are affected by 

other processes than the atmospheric forcing. These include advection as well as 

Rossby and Kelvin waves’ activity. 

Chapter 3 underlines the complexity of the convection process, particularly in 

terms of its location. The major upshot of this complexity is that the oceanic 

circulation does not appear to follow the theoretical scaling law, in other words 

Ψ~∆T1/3κ2/3 does not hold even in an OGCM with such a simplified set-up, with 

no topography, no winds and a purely thermal buoyancy forcing. To a certain 
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extent, this is not surprising in view of how intricate the system is and the 

number of processes affecting the circulation.  

6.2.2) Diffusion: 

The model’s representation of the diffusive processes is very coarse. This could 

be a major limitation since most of the resonance behaviour stems from the 

existence of a delay in transmitting the thermal signal captured by the surface 

ocean to the deep ocean.  

However, it is unlikely that a better representation of the diffusive processes 

would dramatically change the behaviour. Certainly, the exact period for which 

the resonance occurs would change but the processes highlighted in chapter 4 

would still hold. If anything, the mid-depth diffusion values (10-4 m2/s) used in 

this study are too high. Observations suggest that 10-5 m2/s is closer to the actual 

value in the ocean. Using such a value would make it even more difficult for the 

ocean to transmit the surface thermal signal to great depth and thus exacerbate 

the surface to bottom temperature difference. This would lead to greater 

amplitudes in the oscillations and increase the impact of a minor temperature 

oscillation on the meridional overturning circulation. If anything, it would 

strengthen the importance of those results. 

The issue of the diffusion value in the surface ocean is another matter. It is 

particularly important as it determines how much of the forcing signal is 

captured. As is clear from these results, although the restoring time scale is 40 

days, it is the diffusion which really controls how much of the forcing signal will 

be captured by the surface waters. Although 10-4 m2/s is higher than what is 

measured in the ocean, the models does not represent in any fashion the effect of 

capillary and gravity waves nor the effect of tides in shallow seas, all of which 

contribute to increasing the surface waters ability to capture and atmospheric 

thermal signal It is thought by some (Large et al, 1994) that the canonical value 

used in the surface ocean, 10-5 m2/s is far too small as it does not take into 

account the existence of coherent structures  such as Langmuir cell which might  

increase the surface ocean ability to capture a thermal oscillation. Furthermore, 

the temperature variation of 4oC at 60oN is quite small compared to either the 

 -134- 



Chapter 6   Conclusions 
   

seasonal cycle or palaeo oscillations over the last 1 Ma (Ruddiman et al, 1986). 

Hence it could be argued that 10-4 m2/s allows for an acceptable proportion of the 

atmospheric signal to be captured by the surface ocean in view of other 

parameters choices. 

Lastly, it is known that the rough topography at depth enhances mixing through 

the breaking of internal waves. It is likely that 10-4 m2/s is too small to 

adequately parameterise these processes. However, these processes occurs 

principally at great depth and the determining factor in creating a resonance like 

behaviour is how the temperature signal is transmitted from the surface ocean to 

the deep ocean, and not how the signal is diffused once it has reached depth of 

3000 meters and below.  

6.2.3) Resolution: 

All of this study was conducted in models with a very coarse horizontal 

resolution. This was necessary due to the times scales that were being examined 

in chapter 4 and 5. As we have seen, most of the resonance behaviour found in 

those two chapters is due to processes that occur in the vertical, namely the 

decoupling of the surface and the deep ocean. In that aspect, the resolution can 

be deemed satisfactory. 

However, the results from chapter 3 show that the horizontal distribution of the 

convective processes is crucial to explaining the unexpected behaviour of the 

models, where an increase in the equator to pole density difference leads to a 

decrease in the strength of the overturning. Would such behaviour still be present 

at higher resolution? Is there a resolution threshold beyond which this behaviour 

is no longer present? These questions would certainly benefit from further 

studies and would allow a greater understanding of some of the fundamental 

processes of ocean models. 

6.2.4) Antarctic Circumpolar Current: 

Chapter 5 has shown that having a secondary source of deep water in the 

subordinate hemisphere can profoundly alter the behaviour of the circulation 

during a forcing cycle. An unanswered question from this study is what impact 
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an ACC would have on this behaviour? The ACC would modify the water 

properties in the high southern latitude and would impede Rossby and Kelvin 

wave propagation; it is not clear what impact this would have on the secondary 

deep water production. The principal southern hemisphere overturning cell might 

as a result be weakened and with less deep water being produced, the 

temperature of the deep ocean would not be as low thereby weakening the 

maximum stratification that occurs during a forcing cycle. This could well mean 

that the amplitude of the oscillations would decrease. Conversely, the appearance 

of a narrow but dynamic secondary overturning cell in the high southern latitude 

might lead to the production of colder deep waters and thus the maximum 

stratification during a forcing cycle would increase. However, in view of the 

complexity of the system, it is difficult to predict the precise impact of the 

addition of an ACC. This suggests a need to conduct further numerical 

experiments with an ACC included. 

6.3) Concluding remarks: 

By its very nature, this process study is very idealised. Such idealisation allows 

the isolation and understanding of some of the fundamental mechanism of the 

oceanic circulation.  To a certain extent, this is bucking the trend. Nowadays, the 

inclination is towards the use of ever more complex coupled ocean atmosphere 

models, with the ultimate aim of creating earth system models which will 

incorporate all the known elements of the climate system. The increase in 

computer power and the development of alternative computer processing 

methods makes this a realistic ambition. However, if the basic mechanisms that 

govern each element of these climatic models are not known or understood, then 

it will become ever more difficult to critically appraise the outputs of those 

models, thereby severely restricting their usefulness to the scientific community 

and society as a whole. 
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Chapter 5: Response to variable buoyancy forcing in a double 

hemisphere basin 

 

 

Summary: 

Many studies have underlined the importance of the various parts of World 

Ocean such as the Indian Ocean or the South Atlantic, in the production of deep 

water in the North Atlantic.  In this chapter, the basin domain is extended from 

that in Chapter 4 to a highly idealized South Atlantic. The forcing is similar but 

has the added complexity of either being in phase in both hemispheres (set A) or 

out of phase (set B). The set-up is such that the northern hemisphere always 

produces the densest waters. In each experiment, 17 different values of the 

forcing period are studied, ranging from 6 months to 32,000 years.  The model's 

meridional overturning circulation (MOC) exhibits a very strong response on all 

timescales in both hemispheres, up to and including the longest forcing 

timescales examined for either set of experiments with the amplitude of the 

oscillations reaching up to 140% of the steady-state maximum MOC and 

exhibiting resonance-like behaviour, with a maximum at centennial to millennial 

forcing periods. This resonance like behaviour is identical to what has been 

observed in a single hemisphere and occurs for the same reasons. What is novel 

is that for set B, the amplitude of the response is substantially greater for large 

forcing periods (millennial and above), particularly in the subordinate (southern) 

hemisphere. This happens because for set B, the basin has in effect two sources 

of deep water. This leads to colder bottom waters and thus greater stratification, 

which in turn stabilises the water column and thus reduces the value of the 

minimum overturning.  These results have some interesting palaeo implications 

and suggest an explanation for the half precessional time scale observed in the 

deep ocean temperature record. 
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5.1) Introduction: 

 

 One of the outstanding issues in physical oceanography today is how steady or 

not, the deep oceanic circulation is and how sensitive to known atmospheric and 

surface ocean variabilities it is.  In today’s ocean, most the deep water 

production occurs in the North Atlantic, which is therefore the more obvious 

location to investigate the impact of surface variabilities on the deep circulation.  

In chapter 4, we conducted a systematic numerical study of the response of the 

oceanic circulation in a single hemisphere to variable surface forcing which 

showed that the response of the deep circulation to surface oscillations can be in 

some cases significant and is dependant on the period of the oscillations. 

However, when studying the North Atlantic, it is also important to include the 

South Atlantic as many studies have underlined the importance of the southern 

hemisphere in terms of the stability of the THC and in the production of NADW.  

For instance, Rahmstorf (1996) showed that freshwater budget north of 30oS is 

crucial to what happens in the northern hemisphere, i.e. how salty the North 

Atlantic will be. Furthermore, in terms of modelling, some argue that actually, 

the oceanic circulation in a  closed single hemisphere basin is representative of 

the globally integrated THC (NRC, 2002). Hence to get a proper hold on the 

circulation in a single hemisphere basin (i.e. the North Atlantic), the other 

hemisphere is essential. Finally, in terms of deep water production, a double 

hemisphere study has the important added complexity of  theoretically allowing 

the existence of two high latitude deep water production sites,  a situation much 

closer to what is observed in today’s ocean with deep water production in the 

North Atlantic and to a lesser extent in the Weddell Sea (Pickard and Emery, 

1990).  

This study proposes of to replicate the approach of chapter 4 but in a double 

hemisphere basin. The lay out of this chapter is as follows. In section 5.2, the 

model set-up and the experiments conducted are described. In section 5.3, the 

results for the asymptotic forcing are presented. Section 5.4 deals with the results 
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of the experiments with an oscillatory forcing and in section 5.5, some of the 

fundamental aspect of these results are discussed. Finally, in section 5.6, the 

implications of this study are discussed. 

 

5.2) Set-up: 

5.2.1) Model configuration 

The experimental set-up in this study is identical to that of chapter 4 except that 

the ocean basin is now interhemispheric 

The model used is a parallelised version of the GFDL MOM model which can 

distribute the various processes on an array of processors (Webb, 1996). The free 

surface numerics have been updated by including the free surface numerical code 

of OCCAM (Webb, 1995). The model also includes the eddy parameterisation 

scheme of  Gent and McWilliams (1990) as implemented by Griffies (1998).   

The domain is a 60o wide basin with solid boundaries and 15 levels in the 

vertical, extending from 60oS to 60oN of latitude. It has no circumpolar current. 

The horizontal resolution is 4ox4o. The ocean depth is everywhere 5300 metres 

depth and the thickness of the depth levels varies from 30 metres at the surface to 

836 metres at level 15. 

In the initial conditions, the salinity is set to 35 psu throughout the model and the 

salinity fluxes are set to zero. The wind effect is removed by setting all the 

surface wind stresses to zero. The temperature fields are initialised by setting the 

surface temperature to 20ºC at all latitudes and longitudes and decreasing it by 

one degree at each level. Thus, the coldest temperature is at the bottom and is 

5ºC. 

The temperature is forced using a Newtonian relaxation scheme, where the 

restoring period is set to 40 days. 
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5.2.2) Experimental strategy 

In the time-varying experiments, a sinusoidal restoring temperature profile is 

used. It varies with latitude and time according to: 

28)1)3(cos())2cos((),( +−×Φ×+×+=Φ S
P
tFtT H π   (5.1) 

where T is the restoring temperature, Φ is latitude, t is time, P the forcing period 

and FH a parameter specific to each hemisphere and which varies from 

experiment to experiment. S is a parameter which allows a shift in the forcing of 

the two hemispheres of either 0, if S equals 0 or half a period if S= Л. 

By varying FH and S, a suite of experiments is created, with the northernmost 

temperature oscillating between values of 0 and 4 degrees Celsius and the 

southernmost temperature oscillating between 0 and 4, 1 and 5, 3 and 7, and 1 

and 3. 

The northern hemisphere is therefore the dominant one in all our experiments, 

and the southern hemisphere is the subordinate one. Table 5-1 gives the list of all 

the experiments. The experiment nomenclature is as follows: the first number 

refers to the maximum temperature in the northern hemisphere, the second 

number to the maximum temperature in the southern hemisphere and an A is 

added if the forcing has a phase lag of π between the two hemispheres. 

Name of 
experiment 

FN Northernmost 
temperature range in 

oC 

FS Southernmost 
temperature range in 

oC 

Lag in the forcing 
between the two 

hemispheres (radians) 

4-4 13 0-4 13 0-4 0 

4-5 13 0-4 12.5 1-5 0 

4-4A 13 0-4 13 0-4 π 

4-5A 13 0-4 12.5 1-5 π  

4-7A 13 0-4 11.5 3-7 π  

4-3A 13 0-4 12.5 1-3 π  

Table 5- 1: Summary of experiments 
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Figure 5-1 shows the forcing extremes for experiments 4-4, 4-5, 4-4A and 4-5A. 

Over one forcing period, the restoring temperature oscillates between these 

extreme profiles. Table5-2 lists the forcing periods used and the integration time 

for each of them. 

In the following sections, the results relating to experiment 4-5 and 4-5A will be 

presented and analysed in detail. The results from the other experiments will be 

briefly discussed in section 5.5 by analogy. 

0.5 1 2 4 8 15 

4,000 4,000 4,000 4,000 4,000 4,000 

30 60 120 250 500 1000 

4,000 4,000 4,000 4,000 6,000 10,000 

2000 4000 8000 16,000 32,000  

12,000 20,000 48,000 80,000 96,000  

Table 5- 2: Forcing periods (bold) in years and integration time for each (italic) 
in years. 

 

 

Figure5-1: Zonal extreme restoring temperature field in oC for experiments 4-4, 
4-4A, (in red and green) 4-5, 4-5A (in blue and black). During a forcing period, 
the restoring temperature field oscillates between the curves. 
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5.3) Asymptotic forcing: 

As in the single hemisphere case, experiments with a constant forcing field can 

be seen to correspond to an oscillatory forcing with an infinite period. In the 

double hemisphere case, the lag in the forcing between the two hemispheres 

must be taken into account when determining what the extreme forcing profiles 

are. 

 

 

Figure5-2:  Evolution of the maximum overturning stream function during the 
spin up of the asymptotic runs for a double hemisphere basin. 

Figure 5-2  shows the maximum meridional overturning stream function during 

spin up  for different forcing profiles. The positive curves show the behaviour of 

the northern hemisphere cell while the negative curves show the results for the 

southern hemisphere cells. 
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0 lag: 

When there is no lag between the two hemispheres, the extreme forcing profiles 

are as follows for the 4-4 experiment: a temperature of 0 degrees at 60N and 0 at 

60S, a temperature of 4 degrees at 60N and 4 degrees at 60S. The resulting 

overturning stream functions for those two profiles (run 0-0 and run 4-4) are 

almost equal in both hemispheres with a value of roughly 12 Sverdrups. As in 

the single hemisphere case, the weaker Equator to 60oN temperature gradient 

leads to the slightly higher value for the meridional overturning stream function. 

For the 4-5 experiments, the two extreme profiles are of 0 degrees at 60oN and 1 

degree at 60oS (run 0-1) and 4 degrees at 60oN and 5 at 60oS (run 4-5). In the 

southern hemisphere, the overturning has the same value for the two profiles 

while in the northern hemisphere, the overturning is slightly stronger (about 0.7 

Sv) for the latter profile. 

These results suggest that for a very long period, in a zero lag forcing scenario, 

the amplitude of the oscillations in the overturning will be very small. 

It is also interesting to note that, in slight contrast to what was found by Klinger 

and Marotzke (1999), the strength of the cell in the dominant hemisphere is set in 

part by the dominant hemisphere’s surface forcing but also by the subordinate 

hemisphere surface forcing. Hence the value of the maximum overturning in the 

northern hemisphere is almost identical for experiments 0-4 and 0-5 (~20 Sv) but 

is distinctively greater than for experiment 0-1 (~15 Sv).  In fact, the value of the 

maximum overturning for experiment 0-1 is very close to that of 4-5 which 

would suggest that the North-South surface density difference is in fact what 

controls the strength of the overturning cells in both hemispheres, dominant and 

subordinate. This idea is supported by the fact that the overturning cells in both 

hemisphere have the same strength (~12 Sv) when the forcing is symmetric 

about the equator, and this regardless of the lowest surface restoring temperature 

(exp 4-4 and 0-0). 
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Л lag: 

In the case where there is a lag of half a period between the two hemispheres, the 

forcing now oscillates between the following extremes for the 4-4A experiments: 

a profile with a temperature of 0 degrees at 60oN and 4 degree at 60oS (run 0-4) 

and a profile of 4 degrees at 60oN and 0 degree at 60oS (not shown). In this case, 

there is a significant difference of 12 Sverdrups in the overturning in either 

hemisphere between the two forcing profiles.   

For the 4-5A experiments, the forcing now oscillates between the following 

extremes: a profile with a temperature of 0 degrees at 60oN and 5 degree at 60oS 

(run 0-5) and a profile of 4 degrees at 60oN and 1 degree at 60oS (run 4-1). The 

difference in the overturning is 13 Sverdrups for the northern hemisphere and 12 

Sverdrups in the southern hemisphere. These results suggest that for an 

experiment with a lag of half a period in the forcing between the two 

hemispheres at very long periods, there will be significant amplitudes in the 

oscillations.  

 

5.4) Oscillatory runs: 

 
5.4.1) Generic behaviour of the double hemisphere basin 

Figure 5-3 shows the forcing for experiment 4-5 and 4-5A. The fundamental 

difference  between the two runs is obviously in the southern hemisphere which 

is in phase with the northern hemisphere for experiment 4-5 but out of phase for 

experiment 4-5A.  

For the same lag in the forcing, the main components of the circulation 

(overturning cells) in the double hemisphere basin respond qualitatively in a 

similar fashion for all forcing period. The differences in behaviour between the 

forcing periods are predominantly quantitative. Consequently, any forcing period 

will give a good indication of the generic behaviour of the basin during a forcing 

cycle. In this section, the evolution of response of the circulation over one 
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forcing period is examined. The forcing period is 2000 years (greatest amplitude 

in the response) and the figures show the state of the ocean every 8th of a period, 

hence year 0, year 250, year 500, year 750, year 1000, year 1250, year 1500 and 

year 1750. 

 

 

Figure5-3:  Example of the restoring temperature in oC behaviour in the 
oscillatory runs for a forcing period of 50 years. Panel A shows the behaviour in 
the northern hemisphere, Panel B in the southern. The blue curves are the 
restoring temperature at 60o of latitude, the green at 30o and the red at the 
equator. The solid lines are for experiment 4-5 and the dashed for experiment 4-
5A. Note that for that latter experiment, the dashed and solid lines are overlaid in 
the Northern hemisphere. 

 

Figure 5-4 shows the evolution of the temperature and the meridional 

overturning stream function for a forcing period of 2000 years with no lag 

between the two hemisphere. The overturning stream function displays two cells 

in either hemisphere, which deepen between year 0 and 1000 of the forcing 

cycle. Furthermore, the northern cell also invades the southern hemisphere at 

 -103- 



Chapter 5   Response to variable buoyancy forcing in a double hemisphere 
   basin 

depth. Between the years 1000 and 1750, the cells shallow back to their original 

state. 

 

0 Lag 

 

Figure5-4: Evolution of the PT in oC and the overturning stream function (Sv) 
through a cycle for experiment 4-5. The contour intervals are of 2 Sverdrups. 
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Л lag 

 

Figure5-5: Evolution of PT in oC and overturning stream function during a cycle 
in experiment 4-5A. The contour intervals are of 2 Sverdrups. 

The zonally averaged temperature field shows the expected warming and cooling 

as the restoring temperature oscillates. It also shows that the only source of deep 

water is the northern hemisphere and that deep-water formation occurs between 

year 1000 and 1250. This deep water then remains almost throughout the cycle, 

gradually warming as the effect of the surface warming is transmitted to the deep 

ocean. 
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Figure5-5 shows the evolution of the temperature and the meridional overturning 

stream function for a forcing period of 2000 years with Л lag (half a period) 

between the two hemispheres. Again the cells in both hemispheres fluctuate in 

but this time, when the northern one is weak, the southern one is strong and vice 

versa.  The slight dominance of the forcing in the northern hemisphere is 

reproduced in the maxima values of the two cells are as the northern cell at its 

maximum (year 1000) is far stronger than the southern cell when it reaches its 

maximum (year 0). Unlike the zero lag case, the southern cell never reaches the 

bottom. Below the depth to which the weaker cell penetrates, the basin behaves 

almost like a single hemisphere ocean with single source of deep cold water as 

only waters formed in the northern hemisphere fill the deep ocean. 

The potential temperature shows similar fluctuations to that of the 0 lag case 

although the deep temperature is on average colder throughout the forcing cycle 

(2.4oC for the Л lag case against 2.8oC for a the 0 lag case). Furthermore, the 

deep water formed in the southern hemisphere penetrates to 3500 metres, much 

deeper than that produced in the southern hemisphere in the 0 lag case (2000 

metres). 

 

Trans-equatorial transport: 

Of particular interest in these experiments is the cross equatorial transports as the 

Atlantic Ocean is unique in that, in its present state, there is a northward cross 

equatorial transport of heat by the MOC. As is clearly illustrated by figure 5-6, 

experiment 4-5 and 4-5A have a very different behaviour. In experiment 4-5, the 

transport is always northward and reaches a maximum at about 4000 metres 

depth. The transport near the surface is quite weak, reaching a maximum of 

about 5sv or so. Furthermore, there are substantial oscillations in the temperature 

field above 1500 metres. 

For experiment 4-5A, the picture is quite different. The direction of the transport 

changes and the centres of the cores are shallower. In fact the southward core is 

substantially shallower than the northward one although it never is as strong. The 
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near surface temperature field shows less variability than in the 4-5 case but is on 

average cooler. 

 

 

Figure5-6: Overturning in sv (colour shading) and  zonally average Temperature 
in oC (black contour) at the equator over two periods, for experiment 4-5 and 4-
5A for a forcing period of 2000 years. The y axis is depth in metres and the x-
axis is time in fractions of a period. 

 
Figure5-7: Equatorial heat transport for 4-5A(red) and 4-5 (black) for a forcing 
period of 2000 years, over two periods. The y axis is in watts and the x-axis is 
time in fraction of a period. 
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The result is that the heat transport for 4-5A shows much greater variability than 

the heat transport for 4-5. This is clearly illustrated in figure 5-7. It is interesting 

to note that the heat transport at the equator is always northward for experiment 

4-5 whereas for experiment 4-5A, it changes direction when the southern cell 

dominates 

 

5.4.2) Results for all forcing periods: 

 

Figure 5-8 is a plot of the maximum overturning against time for experiment 4-5. 

The time series of maximum overturning in both hemispheres show a behaviour 

similar to that of the single hemisphere experiment, with a jump in amplitude 

between the forcing period of 8 years and that of 15 years. Both hemispheres 

have a period for which the amplitude of the oscillations is at a maximum. 

The main difference between the two hemispheres lies in the strength and 

amplitude of the overturning. The northern hemisphere is far stronger than the 

southern hemisphere with a maximum amplitude 17 Sverdrups while the 

southern hemisphere maximum amplitude is of 7 Sverdrups. The consequence is 

that the southern hemisphere seems almost to have reached its asymptotic 

behaviour for a forcing period of 32,000 years as the amplitude of the 

oscillations is less than a Sverdrups. 

Figure 5-9 is a plot of the maximum overturning against time for experiment 4-

5A. Again, both hemisphere seem to follow the generic behaviour of a single 

hemisphere basin in that the jump between forcing periods of 8 years and 15 

years is present and that there is a period for which the overturning has a 

maximum amplitude.  
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Figure5-8: maximum overturning stream function (Sv) for experiment 4-5, in the 
northern hemisphere (panel A) and the southern hemisphere (panel B).  

There are however some striking differences. In the northern hemisphere, the 

amplitude is generally larger than for the 4-5 experiment and the system reaches 

a absolute minimum in the overturning which is constant for all periods above 

250 years. In the southern hemisphere, the amplitude is far larger than in the 4-5 

experiment (14 Sverdrups against a maximum of 7 Sverdrups) and again, the 

absolute minimum is constant for periods above 60 years. The amplitude is also 

fairly constant, suggesting that the system is near equilibrium for the southern 

hemisphere. Table 5-3 summarises the main features for all the runs conducted in 

this chapter 
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Figure5-9: maximum overturning stream function (Sv) for experiment 4-5A, in 
the northern hemisphere (panel A) and the southern hemisphere (panel B). 

0 and Л lag forcing: 

 

The results show that the greater the maximum temperature in the subordinate 

hemisphere, the greater the absolute maximum value of the overturning is in the 

dominant hemisphere. Furthermore, the smaller the minimum temperature in the 

subordinate hemisphere, the weaker the minimum overturning is in the dominant 

hemisphere 

 

0 lag forcing: 

In all the experiments conducted here (exp 4-4 and 4-5), it is evident that the 

amplitude of the response of the overturning in both hemisphere increases then 

decreases as the experiment progresses through the various forcing periods. 

 -110- 



Chapter 5   Response to variable buoyancy forcing in a double hemisphere 
   basin 

Towards the very long forcing period, as expected from the asymptotic 

behaviour described earlier, the amplitude in the overturning decreases. 

 

Northern Hemisphere Southern Hemisphere 

Ex
pe

rim
en

t 

re
st

or
in

g Фmin 

(Sv)

Фmax 

(Sv)

Amax 

(Sv)

PAmax 

(years) re
st

or
in

g Фmin 

(Sv)

Фmax 

(Sv)

Ama 

(Sv)

P Amax 

(years)

0 lag (S=0) 

4-4 0-4 6 22 13 2000 0-4 -6 -22 13 2000 

4-5 0-4 7.5 27 17 125 1-5 -7 -14 7 125 

Л lag (S= Л) 

4-4A 0-4 4.8 22.5 17.3 250 0-4 -4.8 -22.5 17.3 250 

4-5A 0-4 6 27 20 125 1-5 -4.8 -18.5 14 16000 

4-7A 0-4 8 31.7 23.2 60 3-7 -3.6 -15.5 11.9 32000 

4-3A 0-4 6 25.8 19 125 1-3 -7.5 -16 8.5 32000 

Table 5-3: Summary of the main features for each of the oscillating experiments. 
Фmin is the absolute minimum value that the overturning reaches, Фmax  is the 
absolute maximum value that the overturning reaches, Amax  is the maximum 
amplitude that the overturning reaches and P Amax is the period at which the 
maximum amplitude in the overturning occurs. 

 

Л lag forcing: 

In these experiment, generally, the dominant hemisphere overturning amplitude 

increases then decreases towards an amplitude equal to that suggested by the 

asymptotic values (exp 4-4A, 4-5A, 4-7A, 4-3A). The behaviour of the 

amplitude in the subordinate hemisphere is clearly dependent on its degree of 

subordination: the greater that is, the less likely it is to have reached a resonance 

like behaviour for the forcing periods examined. Indeed, in the last 2 

experiments of the table (4-7A and 4-3A), it is unclear whether or not the 

 -111- 



Chapter 5   Response to variable buoyancy forcing in a double hemisphere 
   basin 

overturning has reached a resonance as its amplitude is still increasing towards 

that suggested by the asymptotic runs. 

 

 

Figure5-10: Hovmoeller plots for the northern hemisphere in experiment 4-5 for 
4 forcing periods. The y axis is depth and the x-axis is time in fractions of a 
period. The contour spacing is of 5 Sverdrups. 
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Figure5-11: Hovmoeller plots for the southern hemisphere in experiment 4-5 for 
4 forcing periods. The y axis is depth and the x-axis is time in fractions of a 
period. The contour spacing is of 5 Sverdrups. 

 

For the Л lag forcing, if the mean of the southern most value is increased but the 

range of the variability kept the same (exp 4-4A, exp 4-5A and exp 4-7A), the 

maximum amplitude in the dominant hemisphere increases and the resonance 

like period decreases from 250 to 60 years while in the subordinate hemisphere, 

the amplitude of the overturning decreases but the resonance like period 

increases, going from 250 years to above 32,000 years.. 

Decreasing the range (exp 4-3A) has the expected effect of decreasing the range 

in both hemisphere and increasing the period for which the resonance occurs in 

the subordinate hemisphere and the dominant hemisphere. 

Figures 5-10 and 5-11 shows the evolution of the potential temperature and the 

overturning stream function at high latitudes in the northern and southern 

hemispheres for experiment 4-5. Both hemispheres behave in a similar fashion. 

As the forcing period increases, the forcing signal penetrates deeper and deeper. 
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It also grows in amplitude as more of it is captured by the surface ocean and 

transmitted to the deep ocean. The bottom temperature mean decreases with 

increasing forcing period and the amplitude increases. This behaviour is almost 

identical to that of a single hemisphere basin. The asymmetry between the basins 

is apparent in the top half of the water column with warmer temperatures in the 

southern hemisphere and increases with the forcing period.  For the very long 

forcing period, 32,000 years, the deep water formed in the northern hemisphere, 

the temperature of which is below  0.8oC (i.e. below 1oC), is present in the 

southern hemisphere as is clearly visible in figure 5-11 D (light purple contour). 

 

 

Figure5-12: Hovmoeller plots for the northern hemisphere in experiment 4-5A 
for 4 forcing periods. The y axis is depth and the x-axis is time in fractions of a 
period .The contour spacing is of 5 Sverdrups. 
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Figure5-13: Hovmoeller plots for the southern hemisphere in experiment 4-5A 
for 4 forcing periods. The y axis is depth and the x-axis is time in fractions of a 
period. The contour spacing is of 5 Sverdrups. 

 

Figures 5-12 and 5-13 are the same graphs as 5-10 and 5-11 for experiment 4-

5A. In the dominant hemisphere, there are no substantial differences between 4-5 

and 4-5A for the forcing periods of 8 and 250 years. For 2,000 and 32,000 years, 

substantial differences with the 0 lag experiment (4-5) appear in the behaviour. 

The mean temperature of the bottom waters is much lower and the amplitude is 

smaller. There is also a clear decoupling between the surface and the deep 

waters. For instance, for the 32,000 years forcing the maximum temperature in 

the surface waters does not occur at the same time as the maximum in the deep 

waters. 

The situation is very similar in the subordinate basin, with a similar decoupling 

between the surface and the deep waters. As in the 4-5 case, the surface waters in 

the southern ocean have a warmer temperature maximum than the 

northern.These results show that one of the biggest differences between 4-5 and 

4-5A is how the deep ocean in each hemisphere is coupled to the surface waters.  
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In the 4-5A case, it is heavily influenced by what happens in the opposite 

hemisphere. The end result is that for some forcing periods, i.e. 2000 years, the 

deep ocean is always relatively cold. 

Finally, figure5-14 underlines the main differences between the 4-5 and the 4-5A 

experiments in the potential temperature field’s behaviour during a forcing 

period. For the very small period (8 years), there are little differences between 

the two. However the northern high latitudes  bottom temperatures are slightly 

warmer for the 4-5A case than for the 4-5 case, while in the southern 

hemisphere, it is the opposite with the 4-5 being warmer than the 4-5A case. 

 

 

Figure5-14: average potential  temperature  at 2000 metres for both hemisphere 
in experiments 4-5, and 4-5A. The y axis is temperature in degrees Celsius and 
the x-axis is time in fractions of a period. 

For the longer period, the differences between 4-5 and 4-5A are more acute. In 

particular, the 4-5A temperatures, in both hemispheres, show oscillations of half 

the period of the forcing. Furthermore, the mean temperature throughout a cycle 

is colder for the 4-5A case than for the 4-5 experiment and the amplitude 
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smaller. For all forcing periods, the 4-5 absolute minimum temperature in the 

northern hemisphere is slightly colder than the 4-5A absolute minimum 

temperature. In the southern hemisphere, the opposite happens. 

 

5.5) Discussion: 

Most of the resonance-like behaviour can be explained from the work done with 

the single hemisphere basin (chapter 4). There are however some aspects of the 

behaviour of a double hemisphere basin which need to be addressed. 

5.5.1) Why is the southern cell so much weaker than the northern cell? 

4-5 experiment: 

 

Figure5-15: Temperature difference between level 1 and 15 (black curve, level 1 
and 8 (red curve) and level 1 and 5 (green curve) in the northern hemisphere. The 
y axis is temperature in degrees Celsius and the x-axis is time in fractions of a 
period. The negative values results from the model’s convection scheme. 
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Figure5-16: Temperature difference between level 1 and 15 (black curve, level 1 
and 8 (red curve) and level 1 and 5 (green curve) in the southern hemisphere. 
The y axis is temperature in degrees Celsius and the x-axis is time in fractions of 
a period. The negative values results from the model’s convection scheme. 

 

The southern hemisphere cell is much weaker than the northern hemisphere one 

principally because the southern hemisphere is far more stratified than the 

northern, due to the fact that the bottom water is produced in the NH. Figure 5-

15 and 5-16 clearly illustrates this point. For all the periods, the maximum 

surface to bottom temperature difference is greater in the southern hemisphere 

than in the northern hemisphere. This means that during a cycle, the stratification 

in the southern hemisphere is greater than in the northern hemisphere. The 

consequence is that the southern hemisphere ocean is more stably stratified and 

the overturning weaker. Similarly, the minimum surface to bottom temperature 

difference is greater in the southern hemisphere than in the northern hemisphere. 

In fact, for the long periods, there is a small temperature inversion between the 

surface and the bottom in the northern hemisphere, which is absent from the 

southern hemisphere. This means that the water column becomes far more 
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unstable in the Northern hemisphere than in the southern hemisphere. Such a 

situation leads to high convection at high latitudes and thus strong overturning.  

As demonstrated by figure5-15 and 5-16, this situation occurs throughout the 

water column as can be seen from the behaviour of the red and green curves. 

Interestingly, the northern hemisphere maximum amplitude of the meridional 

overturning stream function is greater than that for a single hemisphere 

experiment. In fact, the overturning is always slightly greater, for all periods, 

suggesting that the effect of the southern hemisphere is to reduce the amount of 

stratification in the water column. This is confirmed by looking at the surface to 

bottom temperature difference (not shown), which is greater in the single 

hemisphere case than in the double hemisphere case even though the temperature 

of the deep ocean is cooler for the 4-5 experiment than for the single hemisphere 

experiment. 

It is  also interesting to note that the double hemisphere configuration leads to a 

colder minimum bottom temperature even if the forcing in the southern 

hemisphere has a minimum temperature of 1oC and this regardless of whether or 

not there is a phase lag between the two hemispheres. 

 

4-5A experiment: 

 

For the pi lag forcing, the most obvious is difference in the results with respect to 

the 0 lag forcing experiment is that the amplitude of the overturning in the 

southern hemisphere is very close to that of the northern hemisphere. Figure 5-17 

and 5-18 clearly show that both hemispheres behave in a similar fashion, albeit 

with the prescribed phase shift although the behaviour of the northern 

hemisphere is more non-linear. The southern hemisphere however still shows a 

greater maximum stratification as indicated by the black curve which for a 

forcing period of 16000 years reaches a maximum of 40 C while in the northern 

hemisphere, it reaches a maximum of 2.4oC.   
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The northern hemisphere still has a stronger maximum overturning because for 

all forcing periods, the convection is stronger as it reaches deeper. This is evident 

when one examines the black and red curves in figure 5-17 and 5-18 which in the 

northern hemisphere become more strongly negative than in the southern 

hemisphere. 

However, comparing the southern hemisphere with 0 lag forcing to the southern 

hemisphere with π lag forcing, shows that the amplitude of the surface to bottom 

temperature gradient is much greater in the π  lag case than the 0 lag case. This 

suggests that the amount of stratification varies more in π  lag the case than in 

the 0  lag case thus leading to greater oscillation in the overturning. 

 

Figure5-17: Temperature difference between level 1 and 15 (black curve, level 1 
and 8 (red curve) and level 1 and 5 (green curve) in the Northern hemisphere. 
The y axis is temperature in degrees Celsius and the x-axis is time in fractions of 
a period. The negative values results from the model’s convection scheme. 

In fact, the comparison of the 0 lag case with the π  lag case demonstrates that 

the red curve shows far more variability in the pi lag case than in the 0 lag case, 
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indicating greater amplitude in the top to mid ocean convection. This means that 

in the π  lag situation, the ocean becomes far more stratified than in the 0 lag 

case. This is why, particularly at long periods, the minimum in the maximum 

overturning stream function is smaller for the π  lag case than for the 0 lag case. 

The amount of stratification reaches a maximum for the 4-5A experiment for a 

forcing period of 250 years. For larger periods, more of the forcing signal is 

captured but the diffusion is now efficient enough to transmit that signal to the 

deep ocean. Hence the surface to bottom temperature difference maximum 

remains fairly constant from a forcing period 250 years upwards.  

 

Figure5-18: Temperature difference between level 1 and 15 (black curve, level 1 
and 8 (red curve) and level 1 and 5 (green curve) in the Southern hemisphere. 
The y axis is temperature in degrees Celsius and the x-axis is time in fractions of 
a period. The negative values results from the model’s convection scheme. 
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 5.5.2) Deep water production: 

For the small periods, there are very little differences between 4-5 and 4-5A. 

Clearly, not enough of the forcing signal is captured to necessitate a substantial 

response from the ocean circulation. At longer periods, multi-decadal and above, 

differences between the two set-ups become more pronounced. To a certain 

extent, this has a lot to do with deep-water production. 

In the pi lag forcing, there are two sources of deep water so to speak which result 

in near continuous production of deep water. This means that the deep never 

becomes warm (relative to the 0 lag experiment), even for the long periods 

(figure 5-10). As result, during a forcing cycle, there can be intense stratification 

in either hemispheres, as seen in figure 5-12 B, C, D, where the maximum 

warming of the surface waters coincides with deep cold temperatures. This 

intense stratification leads to very weak overturning; this explains the main 

difference between the 0 lag and π  lag experiments. Indeed, figures 5-8 and 5-9 

show that the maximum overturning has roughly the same value for experiments 

4-5 and 4-5A. What gives the overturning in 4-5A a greater amplitude is the fact 

that the minimum overturning is so much weaker. 

As the period becomes longer, the effect of the forcing becomes greater and the 

decoupling of the surface and bottom ocean more intense. In other words, the 

surface temperature in each hemisphere is controlled by the forcing in that 

hemisphere whereas the bottom temperature is controlled by the forcing in both 

hemispheres. This leads to a situation where the surface reaches a maximum 

when the bottom reaches a minimum. Hence for instance, the maximum surface 

to bottom temperature difference in the northern hemisphere is 1.42 degrees 

Celsius in the 4-5 experiment against 2.42oC (figures 5-15 and 5-17, black 

curve). 

The mid depth ocean (~1000 metres) responds in a similar fashion but the 

divergence in behaviour between 4-5 and 4-5A occurs for a smaller period 

(figure 5-15, 5-16,5-17,5-18, red curve). Indeed, by 250 years, the difference in 

temperature between the surface and 1000 metres (level 8) has a smaller 

maximum for 4-5 than 4-5A. At longer periods, the divergence in behaviour is 
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even more acute, with the surface to 1000 metres temperature difference being 

negative with a very small amplitude for 4-5 while its is mostly positive with a 

large amplitude for 4-5A. This leads to a greater variability in the overturning 

over a forcing period for experiment 4-5A than for experiment 4-5.  

5.5.3) 4-4 run. 

This experiment is very similar to experiment 4-5 but the forcing is absolutely 

symmetric on either side of the equator. As a result, there is no dominant 

hemisphere and the oceanic circulation is identical in both hemispheres. It 

behaves almost identically to the single hemisphere circulation, as it made clear 

by table 5-3: the maximum overturning amplitude and the period for which it 

occurs as well as its minimum and maximum values are those of the single 

hemisphere basin analysed in chapter 4. 

5.5.4) 4-4A run. 

The main difference between 4-5A and 4-4A is the temperature of the deep water 

formed in the southern hemisphere. It has the same value as the one produced in 

the northern hemisphere and as a result, the bottom temperature is on average 

colder. In the northern hemisphere, this leads to more stratification throughout 

the forcing cycle and as a result, the absolute maximum overturning will be 

weaker as will be the absolute minimum overturning. However in the southern 

hemisphere, because the model uses a non-linear equation of state, the lowering 

of the maximum temperature by 1 degrees Celsius will lead to a greater change 

in density than lowering the minimum temperature. The consequence is that the 

minimum overturning is almost unchanged whereas the maximum overturning 

increases significantly as the minimum amount of stratification during a cycle is 

reduced. Succinctly, reducing the average temperature in the subordinate 

hemisphere for a pi lag experiment has more impact on the surface waters in that 

hemisphere than the bottom waters, which are predominantly controlled by the 

dominant hemisphere. 
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5.5.5) 4-7A run. 

In this run, the main difference with the 4-5A run is that the bottom water 

formed in the southern hemisphere is relatively warmer. This has implications 

for the dominant hemisphere as, when it cools, the underlying water will not be 

as cold as in the 4-5A case. As a result, convection will be stronger and the 

overturning will follow. Similarly, when the northern hemisphere is warming, it 

will never stratify as much as in the 4-5A case. The overturning will thus be 

stronger. 

In the subordinate hemisphere, the stratification will be greater when the surface 

waters have reached their maximum, as the bottom of the ocean will be filled 

with cold water produced in the north. Similarly, when the surface waters are 

cooled, the surface to bottom temperature difference will be greater than in the 4-

5A case. The consequence is that the water column will be more stratified and 

thus prone to less convection thus a weaker overturning. 

5.5.6) 4-3A run 

 

In this run, the southern hemisphere amplitude is only 2oC. The deep water never 

gets as warm as in the 4-5A case. The result is that the convection is not as 

intense in the dominant hemisphere as the water column is slightly more 

stratified when the surface waters in the northern hemisphere reached their 

coldest temperature. The maximum stratification is of the same order as in the 4-

5A experiment as the minimum surface restoring temperature in the southern 

hemisphere is the same, namely 1oC, so there is little difference in the level of 

maximum stratification present in the model when the surface waters in the NH 

are at their warmest. 

In the subordinate hemisphere, when the surface waters are at their warmest, the 

stratification is lower than in the 4-5A case since the surface forcing is not as 

strong. This leads to stronger overturning. When the surface waters are at their 

coldest, the surface to bottom temperature difference is slightly greater than in 
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the 4-5A case as the deep water never gets as warm as in the 4-5A case. This 

leads to a slightly weaker overturning. 

5.5.6) Resonance behaviour 

The presence of two sources of deep water also has significant impact on the 

resonance like behaviour of the system.  As is shown in table 5-3, as the average 

temperature increases, the period for which the maximum amplitude occurs 

becomes smaller.  

This is similar to what happens in a single hemisphere configuration when the 

vertical diffusion is increased. In that set-up, the resonance occurs when a 

substantial part of the forcing signal is captured by the surface ocean but the 

diffusion cannot keep up with the changes in the surface and as a result, the 

water column is either weakly stratified or strongly stratified (see chapter 4). 

 

Figure5-19: Surface to bottom temperature difference for 4-4A(black), 4-5A 
(red) and 4-7A(green). The y axis is temperature in degrees Celsius and the x-
axis is time in fractions of a period. 

 -125- 



Chapter 5   Response to variable buoyancy forcing in a double hemisphere 
   basin 

In the double hemisphere experiment, the mechanism is slightly different. 

Having a second source of deep-water means that in the dominant hemisphere, 

the minimum stratification is weaker than in the single hemisphere case, as the 

minimum bottom temperature when the surface forcing is at a minimum is 

warmer than in the single hemisphere case.  Similarly, when in the dominant 

hemisphere, the surface waters are at their warmest, the deep temperature is 

colder than in the single hemisphere case and a result, the overturning will be 

weaker. The combination of those two situations will lead to a greater amplitude 

in the overturning. Succinctly, the presence of a second deep water source makes 

it easier for the system to reach extrema surface to bottom temperature 

differences. 

As shown in table 5-3, the period for which the maximum amplitude occurs 

varies predominantly because of the changes in the maximum overturning value.  

The resonance shifts towards the smaller period mainly because the absolute 

maximum shifts towards them.  This is because the minimum overturning during 

a forcing cycle very quickly reaches a value close to the absolute minimum 

overturning for the experiment. Furthermore, once it has reached it, the value of 

minimum overturning during a forcing cycle remains constant for subsequent 

forcing periods. The maximum overturning during a cycle show much more 

variability. Hence the behaviour of the resonance is principally controlled by the 

minimum stratification that occurs during a forcing cycle. This occurs when a 

substantial part of the forcing signal is captured but is not transmitted fast 

enough by diffusion to the deep ocean. The higher the average forcing 

temperature, the warmer the bottom temperature becomes (figure 5-19). As a 

result, the water column is less stratified. This means that a smaller forcing 

period is needed to create the minimum stratification since less of the forcing 

signal will need to be captured. The absolute overturning maximum occurs when 

the surface to bottom temperature difference reaches an absolute minimum. As is 

shown in figure 5-17, for 4-4A, the minimum temperature difference is still 

decreasing as the period increases from 8 years to 250 years. For 4-5A and 4-7A, 

the minimum decreases from 8 years to 60 years but increases from 60 years to 

250 years, indicating that the absolute minimum occurs for a period between 60 

years and 120 years. Furthermore, the range in the bottom to surface temperature 
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difference for these two experiments has also reached a maximum for a period 

between 60years and 250 years indicating that the resonance period is 

somewhere in between, as is shown in table 5-3 

Changing the range in the southern hemisphere reduces the amplitude of the 

maximum overturning but not the period for which the resonance occurs. 

Although the strength of the stratification changes, the period for which the 

absolute minimum in stratification occurs does not. 

 

5.6) Summary and Implications: 

These runs have demonstrated the complexity of the response of a double 

hemisphere ocean basin to a very simple oscillatory buoyancy forcing. One of 

the most striking results is that when the forcings in both hemispheres have no 

lag, an asymmetry of 1oC in the amplitude of the forcing profiles  with stronger 

forcing in the northern hemisphere, leads to substantial differences in the 

response of the overturning with a clear dominance of the northern overturning 

cell for all forcing periods. Furthermore, when the forcing in the subordinate 

hemisphere lags the forcing in the dominant one by half a period, the system 

exhibits substantial oscillations, even at very long periods. In fact, the asymptotic 

behaviour (figure 5-2) suggests that these oscillations would persist for an 

infinite forcing period.  

The strength of the amplitude of those oscillations stems from the presence of 

two sources of deep water which lead the water column to become either very 

stratified leading to a weak overturning or weakly stratified, which leads to a 

strong overturning. This result is to some extent in agreement with the 

conclusions of Marotzke & Klinger (2000) who stated that the export rate of 

NADW is controlled by the mixing and upwelling in the rest of the world ocean. 

Indeed, the present study has clearly shown that what happens in the southern 

hemisphere has a profound impact on the Northern Hemisphere deep water 

production, even when the Northern Hemisphere forcing is substantially 

dominant (experiment 4-3A & 4-7A).  
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These results have some important implications when one considers the 

precessional orbital forcing of climate variations.  This is a 22,000 year forcing 

cycle which actually results from the combination of two forcing cycles, one of 

19,000 years and the other of 23,000 years. It is an oscillation of the earth’s 

rotational axis point and its effect is to strengthen or weaken the seasonal 

difference by determining how close to the perihelion or aphelion of the earth 

orbit the solstices occur. At one of its extremes, the winters in one hemisphere 

are very cold and the summers very hot (strong seasonal difference) while at the 

other, the winters and summers in one hemisphere are mild (weak seasonal 

difference).  Crucially, when the one of the hemisphere has a strong seasonal 

contrast, the other has a weak one. Hence when we have a warm winter in the 

northern hemisphere, we will have a very cold winter in the southern hemisphere 

and vice versa. If we consider that the forcing we apply is equivalent to a winter 

forcing, when deep water production occurs, then our result suggest that the 

precession forcing can strongly influence the THC, even though it has a period 

of about 22,000 years. 

In this study, the experiments with a Л lag forcing between the northern and 

southern hemispheres (4-4A, 4-5A) provide the best insight into how the ocean 

could respond to precesionnal forcing. The results clearly show that a forcing 

period of 22,000 years (in between 16,000 and 32,000 years), the response of the 

ocean would still be significant, with an amplitude of  at least 10 Sverdrups  in 

the subordinate hemisphere (and greater in the dominant)if the amplitude of the 

forcing was 4 degrees. 

The single hemisphere experiments have demonstrated that the mixing of the 

upper waters by the wind driven circulation has little impact on the behaviour of 

the meridional overturning circulation when the ocean basin is submitted to 

variable buoyancy forcing (see chapter 4). They also suggest that the presence of 

simple topography in the form of a mid-ocean ridge has only a very minor 

impact. However, these experiments are highly idealised and the grid resolution 

is coarse. It is not clear whether or not the results from these experiments can be 

extrapolated to the real world. Nevertheless, they suggest an explanation for the 

recent palaeo results that have described a 10,000 years cycle, very close to  the 
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half a precession time scale, in the palaeo proxy record (Turney et al, 2004). 

Indeed, we have also observed a signal of half the forcing cycles in the deep 

temperature for a forcing period of over 2000 years, as illustrated in figure 5-12. 

 

 

 

Figure5-20: Schematic of the effect of precession. 

(http://earth.usc.edu/geol150/variability/images/orbit/precession.gif). 

 

This study has shown that adding a subordinate southern hemisphere basin to the 

set-up of chapter 4 can profoundly alter the behaviour of the circulation in the 

northern hemisphere, particularly when the forcing in the southern hemisphere 

lags that of the northern by half a period.. In particular, it creates a secondary 

source of deep water which cools the deep ocean and increases the maximum 
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stratification that occurs during a forcing cycle.. This in turns leads to a much 

greater amplitude in the oscillatory response of the meridional overturning 

circulation, particularly for long forcing periods (2000 years and above). The 

impact of having a phase lag in the forcing on the southern hemisphere is even 

more pronounced; it leads to a dramatic increase in the amplitude of the 

oscillations of the meridional overturning stream function, with a range that is of 

the same order as that of the meridional overturning stream function in the 

dominant hemisphere. 

 -130- 



Appendix  Running the model 
   

 

Appendix: running the model 

 

 

 

A-1)Inputs of the  model: 

 
The fundamental parameters of the models are all set in the data file ocean.in  

(see figureA-1) and can be changed without having to re-compile the model. 

These parameters include the integration time, the times step, the vertical 

diffusion as well as the output frequencies of snapshots and archive files. 

Modifying the topography of the model requires creating a new ocean.kmt file 

(figureA-1) and adjusting within the model the latitude and longitude. This 

necessitates a re-compilation of the model code. 

In this study, the surface boundary conditions are modified both in term of the 

temperature forcing and the wind forcing. In both cases, this involves modifying 

the model code in the setvbc.F file (figureA-1). Again, the model has to be 

recompiled. The model can then be run and will stop at once the end time set in 

ocean.in is reached or if the model becomes numerically unstable. 

 
A-2) File format 

The model output is of two kinds: ascii format and netcdf format. Two ascii file 

are generated during a run. They both store data received from a Fortran routine 

which calculates some of the models fundamental quantities such as the total 

heat, the maximum meridional overturning stream function and other extrema 

quantities such as the minimum and maximum temperature or the minimum and 

maximum velocities in both directions. 

The netcdf files are of two types and archive the various fields within the model. 

(see tableA-1 ), an archive file, and a snapshot file. 
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The archive file allows the user to restart a run from a specific date. It usually 

has two successive time slices in order to restart the leapfrog scheme. The 

frequency of output of these files can be specified by the user. These files are 

usually 473718 bytes in size for the 60x60x15 basin. The fields written to the file 

are listed in tableA-1. 

 

 

figure A-1: Code map of Moma. 
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Field Abbreviation 

Potential temperature PT 

Salinity SAL 

u-velocity (meridional) U 

v-velocity (zonal) V 

Barotropic u-velocity BU 

Barotropic v-velocity BV 

Free surface height FSH 

Elapsed model time SECONDS 

Elapsed model time YEARS 

Table A-1: output fields of netcdf files 

 

The snapshot file is a succession of time slices of the model fields. Again, the 

frequency of writing to the file can be specified. This file contains all the field d 

the archive file as well as an additional variable CONV, which is a measure of 

the convection. This field is particular in that it averages the number of time  a 

cell in the model undergoes convective adjustment between two sampling events. 

The model also allows the user to output the vertical velocity field to the netcdf 

files. 
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