The University of Southampton
University of Southampton Institutional Repository

Developing the technique of severe deformation processing through high-pressure torsion

Developing the technique of severe deformation processing through high-pressure torsion
Developing the technique of severe deformation processing through high-pressure torsion
The processing of metals through the application of severe plastic deformation provides the potential for achieving exceptional grain refinement in bulk solids. Several SPD methods are now available but processing by high-pressure torsion (HPT) has attracted much attention over the last five years. Numerous reports are now available describing the application of HPT to a range of pure metals and simple alloys and excellent grain refinement were achieved using this process with the average grain size often reduced to the nanoscale range. However, in order to make this technique more practical, the nature of the sample characteristics immediately after conventional HPT must be considered in order to understand the fundamental principles of HPT processing. This report examines the procedure with special emphasis on the evolution in hardness homogeneity in both high-purity aluminum and a Zn-22% Al eutectoid alloy processed by HPT.
1662-9752
397-402
Kawasaki, M.
d0ce18b9-8403-4db2-9cb2-3a6165f288a6
Langdon, T.G.
86e69b4f-e16d-4830-bf8a-5a9c11f0de86
Kawasaki, M.
d0ce18b9-8403-4db2-9cb2-3a6165f288a6
Langdon, T.G.
86e69b4f-e16d-4830-bf8a-5a9c11f0de86

Kawasaki, M. and Langdon, T.G. (2011) Developing the technique of severe deformation processing through high-pressure torsion. Materials Science Forum, 667-669, 397-402. (doi:10.4028/www.scientific.net/MSF.667-669.397).

Record type: Article

Abstract

The processing of metals through the application of severe plastic deformation provides the potential for achieving exceptional grain refinement in bulk solids. Several SPD methods are now available but processing by high-pressure torsion (HPT) has attracted much attention over the last five years. Numerous reports are now available describing the application of HPT to a range of pure metals and simple alloys and excellent grain refinement were achieved using this process with the average grain size often reduced to the nanoscale range. However, in order to make this technique more practical, the nature of the sample characteristics immediately after conventional HPT must be considered in order to understand the fundamental principles of HPT processing. This report examines the procedure with special emphasis on the evolution in hardness homogeneity in both high-purity aluminum and a Zn-22% Al eutectoid alloy processed by HPT.

This record has no associated files available for download.

More information

Published date: 2011
Organisations: Engineering Mats & Surface Engineerg Gp

Identifiers

Local EPrints ID: 187545
URI: http://eprints.soton.ac.uk/id/eprint/187545
ISSN: 1662-9752
PURE UUID: faafcc74-c191-4f40-b377-d25c51568134
ORCID for T.G. Langdon: ORCID iD orcid.org/0000-0003-3541-9250

Catalogue record

Date deposited: 17 May 2011 13:34
Last modified: 15 Mar 2024 03:13

Export record

Altmetrics

Contributors

Author: M. Kawasaki
Author: T.G. Langdon ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×