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Doctor of Philosophy

OIL-WHIRL INSTABILITY IN AN AUTOMOTIVE TURBOCHARGER

by Punithavathy Kamesh

This thesis is concerned with a theoretical investigation into the nonlinear
dynamic behaviour of a turbocharger. Specifically the instabilities due to oil-whirl are
examined. These are self-excited vibrations existing in the form of an in-phase whirl
mode and a conical whirl mode. Waterfall plots were provided by Cummins Turbo-
Technologies Ltd., Huddersfield, UK, based on test data using two different unbalance
levels on a turbocharger. The test with the high unbalance indicated that there was shift
in the sub-synchronous frequency to synchronous frequency between about 80,000 rpm
to 130,000 rpm. The literature suggests that this self-excited vibration can be suppressed
using forced excitation. Moreover, it is well known that the existence of limit cycles
enables successful operation of a turbocharger. This limit cycle is a periodic motion
attributed to the nonlinearity of the oil-film, other than the stable and the unstable
equilibrium states predicted by the linear analysis. Hence, a nonlinear analysis is
required to analyse the limit cycle and to determine the effect of synchronous excitation
on it. In the literature a variety of parameters has been shown to influence the dynamic
behaviour of a rotor-bearing system. To avoid over-complicated mathematical
modeling, the influence of two such parameters: gyroscopic moment and shaft
flexibility are first investigated in this thesis using linear stability theory to determine
their significance. Effects of gyroscopic action are investigated using symmetric and
asymmetric rigid rotors supported on short journal bearings with full-film using rigid
and damped supports. In this thesis, the damper supported journal bearing is used to
simulate the floating ring bearings that are commonly used in automotive turbochargers.
The outer film of the floating ring bearing is treated as an external damper, since the

ring is assumed not to rotate but only wobble giving the damping effect from the



squeezing action. A gyroscopic coefficient, which is defined as the ratio of the polar to
the transverse moment of inertia of the rotor, is introduced. The threshold value of this

coefficient is determined to be 1/2 for the suppression of the conical whirl instability.

The stability of the in-phase whirl mode is unaffected by this parameter. A flexible rotor
mounted in floating ring bearings with full-film, is analysed to confirm that it behaves
as a rigid body up to a speed of 100,000 rpm. Prior to the unbalance response study, a
perfectly balanced rigid rotor supported by rigidly supported bearings is first analysed to
determine the nonlinear behaviour of the in-phase whirl. To include the stiffness-like
radial restoring force, an oscillating 7 -film cavitation model for the hydrodynamic
bearings is used. The effect of a static load on the rotor is analysed to determine the
nonlinear behaviour for a wide range of steady-state eccentricity ratios. A parameter
plane separating the region of instability from that of stability is presented using linear
analysis to determine the stability threshold at which the oil-whirl is initiated. The onset
of oil-whirl phenomenon is shown to be the Hopf bifurcation. Particular emphasis is
placed on examining the limit cycles (periodic oscillations) around the stability
threshold. Reducing the nonlinear equation of motion to Poincaré normal form, the first
Lyapunov coefficients are evaluated to show the change in the type of bifurcation from
sub-critical bifurcation (disappearance of an unstable limit cycle) to super-critical
bifurcation (appearance of a stable limit cycle) around the stability threshold. Such
bifurcations are demonstrated through plots of orbits using numerical integration by the
Runge-Kutta method. With some unbalance added to the rotor-system, waterfall plots
are generated to simulate the response characteristics observed in the test data, by
running-up the speed. After the Centre Manifold reduction, the equations of motions are
averaged for analysis. Using a numerical and an analytical procedure, it is shown that
the unbalance is more effective in the transient motion than in the steady-state
condition. Unbalance introduces a reduction in the growth rate of whirl amplitude upto a
certain optimum unbalance value, above which the effect is reversed. The mechanism
behind this behaviour is shown to be the shift in phase caused by the unbalance at the
start of whirling, when the dynamic forces are comparable with the unbalance force.

This is due to the coupling effect of amplitude and phase in an unbalanced rotor system.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Turbochargers are a special class of turbo-machinery used to improve engine
efficiency by utilising the energy in the exhaust gases. These units are typically found
on diesel engines. Figure 1.1(a) shows a turbocharger with the compressor and the
turbine wheels along with two floating ring bearings. The turbine wheel is made of steel
and is integral with the shaft. The aluminium compressor wheel is machined for line to
line contact and bolted onto the shaft [2]. This makes the turbine wheel heavier than the
compressor wheel and the rotor centre of gravity is generally close to the turbine end.
Figure 1.1(b) shows a typical floating ring bearing with oil holes. Figure 1.1(c)
demonstrates the working principle of a turbocharger. The exhaust gas energy from the
engine is used to drive a turbine. The turbine wheel drives a compressor which is
mounted at the opposite end on a common rotor, all enclosed in cast housings. This
allows the supply of pre-compressed combustion air into the engine. The engine
aspirates the same volume of air, but due to the higher pressure, a greater air mass is
supplied into the combustion chamber. Consequently, more fuel can be burnt, so that the
engine's power output increases relative to the same speed and swept volume.
Automotive turbochargers can operate at very high speeds, in excess of 180,000 rpm
[3]. This thesis is concerned with the automotive turbochargers that are characterised by
light-weight and high speed. Although various types of oil-film bearings are used, most
commercial automotive turbochargers have floating ring bearings due to their low cost

[4]. The simplest type is a plain journal bearing, with a film between the rotor and the
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bearing inner surface. With all types of oil-film bearings, waterfall plots demonstrate the
existence of sub-synchronous vibrations along with the unbalance vibrations common in
any rotating machinery [3]; waterfall plots are three dimensional plots of response
magnitude against its frequency, varying with the rotor speed along the z axis. They are
self-excited by the motion of the rotor in the bearing and are caused by a phenomenon
called oil-whirl instability [5]. The term sub-synchronous implies that these vibrations
are characterised by frequencies that are below the synchronous ones; their frequencies
are usually found to be a little less than 50% of the rotor speed. This type of instability
can occur whenever oil is trapped in a gap between two concentric cylinders, and one is
rotating relative to the other. The oil-whirling within the clearance causes cross-
coupling dynamic interaction leading to instability [6]. Oil-film bearings are prone to
show one or two sub-synchronous instabilities over extended speed ranges of operation
[7]. In a turbocharger, the whirl instability manifests itself in two different forms [2]: in-

phase whirl where the two ends of the rotor are in phase and a conical whirl where they

are 180" out of phase [8]. Figure 1.2 shows a typical waterfall plot of a turbocharger
with the two sub-synchronous whirl modes. Figure 1.3(a) shows the schematic
representation of the conical whirl and Figure 1.3(b) shows the in-phase whirl mode of a
rigid rotor. Figure 1.3(c) shows the in-phase whirl with bending in the case of a flexible

rotor.

The self-excited vibration causing the oil-whirl can produce large-amplitude alternating
stresses in the rotor, creating fatigue that can result in a shaft crack [9]. They also cause
a low frequency rumble and can be of large amplitude at high speeds leading to rotor-
stator rub. Oil-whirl instability is a potentially damaging operating condition that must
be avoided. Although squeeze-film bearings offer a solution by eliminating the oil
rotation at the expense of more complicated designs involving roller bearings, they have
no load carrying capacity [6]. This demands external mechanical arrangements [6].
Extensive research activity has been directed to improve the stability of oil-film
bearings such as varying the oil supply pressure [10, 11] and supply angle [12],
optimising bearing parameters [13], roughening bearing surfaces [14], introducing
hybrid features [15], and many others. Nevertheless, a great challenge for turbocharger
manufacturers is to suppress these instabilities without great cost, as the market is cost

sensitive. One of the main problems in this endeavour is the lack of accurate analytical
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tools predicting nonlinear rotor dynamic performance of rotors supported in floating

ring bearings. This leads to repetitive testing which is costly.

Figure 1.4 shows the test data in the form of waterfall plots obtained from Cummins
Turbo-Technologies Ltd., which show the amplitude of vibration varying with
frequency and speed. These were produced under two different unbalance levels from
the same hardware and conditions. The unbalance levels influence the system behaviour
significantly in terms of the response characteristics. These will be referred as the test
waterfall plots in this thesis. One of the response frequencies from self-excited vibration
does not respond over a specific speed range, where the system responds at a frequency
synchronous with the rotor speed. This leaves the speculation that the presence of
unbalance in the rotor, could possibly suppress the self-excited vibration, which is an
unstable sub-synchronous response. This phenomenon is known as ‘quenching’ in the
literature, for example [16]; it is the process of increasing the amplitude of the periodic
excitation until the free unstable oscillation decays. Although turbochargers exhibit
instabilities, sustained operation has been reported to be possible because the vibration
is limited by nonlinear effects. Moreover, the literature for example, Gunter [2] suggests
that this behaviour, attributed to the nonlinearity of the oil-film in the floating ring
bearing, leads to a limit cycle, i.e., periodic oscillation with finite amplitude. Hence, this
thesis first aims at investigating the nonlinear behaviour of a turbocharger with a
perfectly balanced rotor. And then the effect of unbalance (periodic load excitation) on

these sub-synchronous self-excited vibrations is examined.

Prior to investigating the nonlinear dynamic behaviour of a turbocharger, it is necessary
to determine the influence of certain parameters on the dynamic stability. There are a
number of factors mentioned in the literature that could influence the nonlinear
behaviour of turbochargers, such as the shape of the bearing, cavitation, oil grooves,
supply pressure, unbalance etc. This will help in deciding if these parameters need to be
incorporated into a nonlinear model of a turbocharger to avoid over-complicated
mathematical model. Two of these parameters: gyroscopic effects and rotor flexibility

effects are investigated using a linear analysis.
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1.2 BACKGROUND

A bearing is a machine component that supports or bears a load on a moving
interface. Any rotating shaft (rotor) needs to be supported as well as being allowed to
rotate, which requires such an interfacing component. In turbochargers, the type of oil-
film bearings used is known as hydrodynamic bearings. This name is based on the type
of lubrication between the rotor and the bearing. Hydrodynamic bearings get load
support by hydrodynamic lift. Figure 1.5 shows the schematic of a journal bearing
demonstrating the convergent oil-film between the journal and the bearing. The part of
the rotor that is housed inside the bearing is called the journal. The journal rides on a
fluid-film; the film is created by the motion of the journal. The pressure exerted by the
journal on this film increases and supports the journal. It should be noted that, under
static conditions, that is, when the journal is not rotating, the journal rests on the bearing

having metal-to-metal contact.

Two types of sub-synchronous instabilities are commonly reported in these
hydrodynamic bearings: oil-whirl and oil-whip [3, 8, 17]. Oil-whirl is a phenomenon
determined by the properties of the bearing film. It is typically a small amplitude motion
with a frequency close to almost half the rotor speed. Oil-whip is a large amplitude
motion occurring with a frequency close to that of the first critical speed which is a rotor
bending mode. It is commonly encountered when the rotor speed exceeds twice this

critical speed. Flexible rotors are analysed for such a phenomenon.

Figure 1.6 shows a waterfall plot of a turbocharger showing the rotor vibration response
corresponding to whirl and whip characteristics. The rotor whirls at a frequency about
half the rotational speed. After a certain frequency, the rotor vibration shows slightly
higher amplitude but the response frequency remains constant with increasing speed,
which is due to oil-whip. It is evident that the speed is more than twice the whip
frequency. Since a rigid rotor model is used in this thesis for all the analyses except for

the study of a flexible rotor, oil-whirl is of primary interest here.
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1.2.1 SUB-SYNCHRONOUS OIL-WHIRL AND THE BEARING
FORCES

Oil-whirl is self-excited by the motion of the rotor in the journal bearing. With the rotor
operating eccentrically relative to the bearing centre, it draws the oil into a wedge to
produce a pressurized load-carrying oil-film. As this film is squeezed by a momentary
displacement of the journal, the film exerts pressure on the journal. Figure 1.7 shows the
pressure profile based on the short-bearing approximation [18, 19]. A short-bearing
approximation of the bearing forces, allows lubricant flow along the length of the rotor
and around the circumference of the bearing. The derivation of the film force using this
approximation is given in Appendix A. The resultant force due to the film pressure is
not completely balanced by the rotor weight, specifically in the case of lightly loaded
rotors. Figure 1.7 shows that this oil force can be resolved into two components. The

radial force component F. acts along the line of centres, i.e. the line of the bearing

centre C; and the journal centre C,; the tangential force F, acts perpendicular to the

line of centres. The tangential component tends to accelerate the rotating journal, so that
it performs a secondary orbit in the clearance about the housing centre in the direction

of rotation, while F, tends to restore the journal to its equilibrium state.

1.2.2 OIL-WHIP

As the rotor exhibits oil-whirl, after a certain speed, when the bearings get stiffer related
to the shaft, the journal centre describes a closed orbit in the direction of rotation but the
path may be of a complex nature [5]. This usually occurs at speeds above the first
critical speed of the rotor and with a nearly constant frequency of rotation equal to the
first critical speed. In this case, the rotor flexibility is the controlling factor. This
phenomenon is called oil-whip. With increasing speed oil-whip approaches

asymptotically the natural frequency of the system [3] as shown in Figure 1.6.
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1.2.3 SOME TYPES OF OIL-FILM BEARINGS

There are different types of oil-film bearings available for various applications. This
thesis discusses three types of bearings such as a plain journal bearing, a floating ring
bearing and a press-fit bearing. In a plain journal bearing as shown in Figure 1.5, the
journal rotates in a housing of circular cross-section, where the clearance is filled with a
bearing fluid. Figure 1.8 shows a floating ring journal bearing which has a thin ring
rotating freely between the journal and the housing, forming two hydrodynamic oil-
films, the journal-to-ring film and the ring-to-bearing film. In some configurations, the
ring is fixed with a pin to the housing [3], where the ring wobbles providing a squeezing
action on the film. Figure 1.9 (a) shows a typical floating ring bearing provided with six
oil-supply holes, which supply oil from the outer film to the inner film. Press-fit
bearings have a fixed bush with tight fit into its housing. Figure 1.9 (b) shows a press-fit

bearing with an external groove and six oil holes to pass lubricant to the inner oil-film.

1.2.4 CAVITATION

For small static loads which generate pressures that are small compared to the
atmospheric pressure, the clearance may be filled completely with oil. This situation has
been shown to be inherently unstable [20, 21], for all the eccentricities and speeds. The
rotor does not assume an equilibrium state, but orbits outwards towards the housing.
Since a turbocharger is lightly loaded, a full-film bearing model is used in this thesis for
the linear analyses investigating the gyroscopic moments and the rotor flexibility.
However, for higher loads with super-ambient pressures generated well in excess of
atmospheric pressure, the oil-film ruptures close to the position of minimum film

thickness /. shown in Figure 1.7 creating a cavity, or series of cavities, in the

divergent section. Work by several authors, for example, [22] has confirmed that the
presence of an air cavity stabilises the journal bearing, thus permitting the centre of the
rotor to take up an equilibrium position, under certain conditions. The nonlinear
investigations in this thesis, concerned with the effect of static and unbalance forces use

a cavitated bearing. Figure 1.10 shows an oscillating 7z -film model, in which the fluid-

6
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film remains fixed with respect to the rotor [8, 23]. As the journal rotates in the bearing,
the oil-film rotates along with the journal retaining the film extent between 8 =0 (film
start) and € = 7 (film rupture), where 6 is the angular coordinate with reference to the
line of centres of the journal and the housing. The dotted line shows position I of the

journal giving angular positions corresponding to the film start and rupture at time ¢, .
The continuous line shows position II of the journal at time #,+¢. As the journal

rotates from position I to position II, the film extent remains the same as =0 to .

The journal centre makes an angle of w¢ with respect to position 1.

1.3 LITERATURE REVIEW

The principle of hydrodynamic lubrication was first established by Beauchamp
Tower [24] which motivated Reynolds’ [25] to provide the mathematical formulation
for the pressure distribution of thin films between two bearing surfaces. This is known

today as Reynolds’ equation.

Since it is not possible to solve Reynolds’ equation directly, Sommerfeld [26]
introduced an approximation ignoring the flow in the axial direction known as the
“long-bearing approximation,” to obtain the film forces. This is more applicable for
applications in which the bearing length is large compared with the bearing diameter.
Ocvirk [18], along with Dubois [27], introduced another approximation for bearings in
which the bearing length is small compared with the bearing diameter, by neglecting the
term which has the least effect in narrow bearings. This method was originally proposed
by Michell [28] and Cardullo [29]. The resulting solution, which can be applied to
bearings having a length-diameter ratio up to about 1, is called the "short-bearing
approximation." The pressure-distribution function has been extended to determine
expressions giving applied load, attitude angle, location and magnitude of peak film
pressure, friction, and required oil flow rate as functions of the eccentricity ratio,
including oil flow. However, this short-bearing approximation, assumes that the
lubricant is Newtonian, and so any variation in the lubricant viscosity with the shear rate

is neglected. To overcome this, Taylor [30] performed an isothermal analysis by
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including the lubricant shear thinning effect into the short-bearing approximation.
Taylor [31] also derived simple expressions for the bearing parameters such as
minimum film thickness, maximum pressure and the friction power loss for a highly
loaded journal bearing. This effort helped in gaining a clear insight into those
parameters in terms of bearing geometrical factors such as radius, length, clearance, and

operational factors such as speed and lubricant viscosity.

Newkirk and Taylor [32] first identified the self-induced vibration due to an oil-film.
The problem associated with the stability of a high speed rotor-bearing system was not
well understood or predictable until the late nineteen sixties and early nineteen
seventies. Research has been extended since then to improve stability both
experimentally and analytically using various types of fluid-film bearings. Newkirk [32]
concluded from experimental observation that short-bearings, large clearances and
moderate unit bearing loads increased the range of stable operation. Tondl [33]
compared experimentally the stability characteristics of various kinds of journal
bearings and reported that the limit of self-excitation was shifted towards much higher
speeds when floating bush bearings were used. Floating bush bearings are also known
as floating ring bearings as referred in this thesis. A number of other researchers found
better stability using floating bush bearings, for example, Dworski [34] and Tanaka
et.al. [35]. Various methods have been tried to improve the stability of rotor-bearing
systems with plain journal bearings. To cite a few of them, Capone et al. [10]
investigated circumferentially fed journal bearings under low load conditions for the
influence of supply pressure on the bearing characteristics and the stability threshold.
Guo and Kirk [11] showed that the externally pressurised hydrostatic-operating bearing
has a good dynamic characteristic because of its linear stiffness and damping
coefficients and almost zero cross-coupling terms. These cross-coupling terms are the
forces or moments that couple the motions along perpendicular directions. They
suggested that if the hydrostatic effect is dominant over the hydrodynamic effect, then
the hybrid-operating bearings that include both the effects could play a positive role in a
small eccentricity range. San Andres and Childs [12] showed that angled orifice
injection had demonstrated improved rotor dynamic performance with virtual
elimination of the cross-coupled stiffness coefficients. Their analysis revealed that the

fluid momentum exchange at the orifice discharge produces a pressure rise in the
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hydrostatic recess which retards the shear flow induced by the journal rotation, and thus,

reduces the cross-coupling forces.

Another major factor influencing the stability is cavitation. Robertson [36] showed that
a full-film short-bearing was completely unstable. He stated that the whirl orbit would
grow until it equalled the bearing clearance. Holmes [20] analytically demonstrated
whirl orbits in a full-film bearing similar to that shown by Robertson [36]. Poritsky [22]
demonstrated that a hydrodynamic bearing can have a threshold stability only if it

develops a radial restoring force. Barrett et al. [37] used a 7z -film model where the film

extends from 0 to 180° of the clearance while the other half of the clearance is an air
cavity. The authors elaborated the effect of unbalance on the stability of a rotor in
journal bearings; the effect of radial stiffness-like restoring force in a cavitated model
against the damping-like restoring force in the full-film model was discussed. Myers
[21] studied a wide-range of cavitation models using linear analyses. He determined that
a rotor-bearing system with a static film was much more stable than that with an
oscillating film. In a static film, the film extent remained fixed with respect to the
housing. This modified the start of the film extent as a function of the journal attitude
angle. The oscillating film extent is fixed with respect to the rotor as shown in Figure
1.10. Holmes [38] demonstrated a better correlation of the experimental journal orbits of
a rotor system to that predicted by the oscillating 7 -film cavitation model using the

short-bearing approximation.

Rotors with high inertia, particularly in high speed applications experience the
gyroscopic effect due to the angular momentum. In general, the gyroscopic effect has
not been widely investigated from the point of view of stability in rotor-journal bearing
systems. For the angular motion of a simple rigid rotor-bearing system, Tondl [39]
analysed the effect of gyroscopic action on the amplitude of the response as the function
of speed. He showed that it is considerable in both the narrowing of the speed interval
of occurrence of self-excited vibration and the reduction of the resulting amplitudes.
Moreover, Tondl showed that, a fairly large coefficient of the gyroscopic moment may
even suppress self-excited vibration. Li and Shin [40] reported the splitting of the first
resonant frequency into an increasing and another decreasing frequency with rotational
speed due to the gyroscopic effect. Angantyr [41] showed that the gyroscopic effect in a
gas turbine had a stiffening effect and lead to an increase in the forward whirl
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frequencies with speed. Gunter and Chen [2] examined the experimental data and three
dimensional finite element compressor wheel analysis, with centrifugal forces. They
suggested a 20% reduction in the polar moment of inertia of the compressor wheel to
produce accurate moment calculations. This was due to the flexibility of the compressor
wheel and the lack of a solid connection between the aluminium wheel and the steel

turbocharger rotor at high speeds.

Rotor flexibility has also drawn the attention of researchers. Hagg and Warner [42]
determined that the rotor flexibility decreased the region of stable operation. Myers [21]
and Gardner [8] studied the destabilising effect of the rotor flexibility. They concluded
that, its effect on oil-whirl was relatively small, except in the case of very flexible
rotors, where it was likely to be swamped by oil-whip. Gunter and Chen [2]
demonstrated in the case of a turbocharger, that, when bearings became relatively rigid

at high speeds, the rotor flexibility influenced the system behaviour.

Apart from numerical analysis, which is a common technique in modern day research,
various nonlinear analytical techniques have been used to study a limit cycle. The limit
cycle is a periodic motion exhibited by the journal with finite amplitude. Demonstrating
the effect of a static load to improve the stability, Myers [43] introduced the Hopf
bifurcation theory to show the existence of a small amplitude limit cycle for a
symmetric perfectly balanced rigid rotor with a static load supported in cavitated long
journal bearings. Linear stability analysis showed the existence of a neutral curve
splitting the stability regions of the parameter space defined by the steady-state
eccentricity ratio (ratio of the journal eccentricity to the bearing clearance) of the
journal and the speed. Gardner [23] applied the method of multiple scales to analyse a
similar rotor system with the short-bearing approximation for the bearing forces. Boyaci
et al. [44] studied the effects of the nonlinear bearing forces in a symmetric and
perfectly balanced rigid rotor supported by two identical floating ring bearings. The
nonlinear bearing forces for both the fluid-films were obtained by applying the 7 -film
short-bearing approximation. Applying the Hopf bifurcation theory, they studied the
bifurcation behaviour (change in the stability of the steady-state) of the system,
focussing on the influences of the bearing design parameters on the stability and on the

limit cycle.
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Since unbalance is an inherent characteristic of any rotor, its effect on the rotor system
stability is an area of investigation. Tondl [39] stated that the effect of unbalance
substantially depends on all the nonlinear factors influencing the amplitude of a
perfectly balanced rotor. He analysed the unbalance effect on the speed of the onset of
self-excited vibration and its amplitude. He concluded that if the amplitude of the
steady-state vibration increased with speed, then unbalance could lower such amplitude.
However, if the steady-state amplitude corresponds to an unstable equilibrium, then
there is a theoretical lowering of the amplitude of forced self-excited vibration; the

onset of self-excited vibration occurs at an earlier speed in that case.

Kirk and Gunter [45] numerically analysed both horizontal and vertical rotor bearing
systems with unbalance. With a full-film of oil in the bearings, they concluded that the
addition of unbalance can greatly reduce the magnitude of the limit cycles encountered
with vertical balanced rotors and also keep the forces transmitted to a lower value than
that of a perfectly balanced shaft. Unbalance in a horizontal journal is highly
undesirable and should always be reduced to the lowest possible value. The vertical
journal, however, requires the proper unbalance level to allow the system to operate at a
low amplitude limit cycle. Barrett et.al [37] used a rotor-bearing model with 7z -film
cavitation and found it possible to optimize the unbalance to minimize the amplitude of
the limit cycle and the force transmitted for the limit cycle operation above the stability
threshold speed. Gambaudo [46] carried out a general study of the problem of the
perturbation of an autonomous differential system, by a time-periodic forcing close to a
Hopf bifurcation point. A description of the system dynamics in a three parameter space
of the bifurcation parameter, the perturbation amplitude, the excitation frequency was
presented. This approach presented the advantage of transforming the global problem of
the perturbation of a limit cycle into a local one, which allowed them to use perturbation
methods. Following Gambaudo’s method, Shaw and Shaw [47] analysed a rotor system
similar to that of Myers [43] with the long-bearing approximation, but with unbalance;
they showed an extremely complicated dependence on the system parameters and the
rotor speed due to the unbalance effect using a periodically perturbed Hopf bifurcation.
Brown et al. [48] showed that the conditions for chaos in a dynamic system are satisfied
by a rigid journal supported on a hydrodynamic bearing film operating at a high
eccentricity. Brown also showed that when the rotating unbalance force exceeds the

static load, the bearing is intermittently unloaded and chaos can result. Namachivaya
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and Ariaratnam [49] studied in detail the influence of small periodic perturbations on
systems exhibiting the Hopf bifurcation. They obtained explicit results related to the
bifurcation, along with the stability of the solution, incorporating the method of
averaging. Following the work reported in [49], Chen and Ding [50], Ding et.al [51]
investigated the periodically perturbed Hopf bifurcation for an imbalanced rotor/seal
system, for the sub-harmonic resonance condition, where the vibration frequency was
half the excitation frequency. The authors showed that the non-synchronised whirl of
the imbalanced rotor can be one of the following two types of behaviour: It could be a
quasi-periodic motion which is a form of motion that is regular but never exactly
repeating, resulting from a Hopf bifurcation; or it could be a half-frequency whirl from
the period-doubling bifurcation, where the system switches to a new behaviour with
twice the period of the original system; the type of behaviour is determined by the
structural parameters and the operating conditions. Li et al. [52] presented the dynamic
analysis of a rotor/seal system. They demonstrated that the rotor imbalance can lead to a
stable rotor dynamic performance above a certain speed in an otherwise unstable
system. They showed that under the periodic excitation of rotor unbalance, the whirling
vibration of rotor was synchronous, if the rotation speed was below the stability
threshold; the vibration became severe and asynchronous which was defined as

unstable, if the rotation speed exceeded the threshold.

Although unbalance was shown to be advantageous by several authors under various
conditions, Calvo et al. [53] found out that when a turbocharger was used in passenger
cars, the whistling noise due to unbalanced forces could be perceived by the driver,
which caused discomfort. This was usually in the frequency range between 800 Hz to
3000 Hz of synchronous order. They suggested a procedure to control the turbocharger
whistling noise against unbalanced forces variation, in order to maintain the acoustic
comfort of the vehicle. Since achieving perfect balance was very expensive, they arrived
at a maximum unbalance level specification limit, in order to manufacture acceptable

turbochargers from a whistling noise point of view, at the lowest cost possible.

Research on oil-whirl specific to the turbocharger is quite limited. Holmes [3] correlated
the results of the linear analysis of a turbocharger with floating ring and press-fit
bearings to the related experimental results using a symmetric rigid rotor. Further to

that, Holmes et al. [54] demonstrated the behaviour of two sub-synchronous frequencies
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and their dominance in the operating range using the linear analysis. Alsaeed [55]
performed both linear and nonlinear analysis using the finite element analysis code-
DyRoBeS [56]. He investigated several hydrodynamic journal bearings demonstrating
the benefit of a linear analysis for the design evaluation and maintenance purposes. His
analysis showed that the turbocharger with floating ring bearings has the least unstable
whirling operation, wherein the external damping offered by the outer film re-stabilised
the whirling modes. San Andres and Kerth [7] performed a thermal analysis coupled
with a nonlinear rotor dynamic analysis of an automotive turbocharger supported in
floating ring journal bearings. They predicted that the floating ring-to-journal speed
ratio decreased as the rotor speed increased, mainly owing to the thermal effects on the
film viscosities. Gunter and Chen [2] demonstrated the existence of limit cycles at
speeds of 100,000 rpm and higher due to the nonlinear action of the fluid-film floating
bush bearings using a nonlinear finite element analysis. Guangchi et al. [57]
investigated the effect of foundation excitation on the dynamical behaviour of a
turbocharger. With the foundation excitation, the authors showed a more complicated
behaviour, and development of a chaotic state at a very low rotational speed. Kirk et al.
[58] conducted an experimental test on a turbocharger to demonstrate the two unstable
whirling modes typically seen in a turbocharger. The experimental results showed that
the onset of both the modes occurring in each of the engine testing conditions: unloaded
and fully loaded. They suggested that future testing of different bearing designs could
be conducted without the use of the engine dynamometer to load the engine, but the full
load condition may be necessary for complete verification of stability. Sterling [59]
focussed on the relationship between synchronous and sub-synchronous amplitude
levels. Applying a series of unbalance masses to the turbine and compressor wheels, he
showed that the addition of unbalance can suppress the appearance of sub-synchronous

vibration.

Schweizer [60] examined a medium-sized turbocharger supported on full-floating ring
bearings. He discussed about further bifurcations (change in dynamic stability) at higher
speeds leading to the existence of a stable limit cycle and the possible collapse of such
limit cycles leading to mere forced oscillations. In that process, depending on the
system parameters such as rotor mass/inertia, shaft stiffness, bearing parameters, the
author suggested further kind of bifurcation that lead the rotor became totally unstable;

1.e. dangerous high bearing eccentricities and rotor amplitudes, which in practice often
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lead to the destruction of the rotor. Referring to this as ‘Total Instability’, he showed
that, such phenomenon could physically be explained as synchronization of two limit
cycles, namely as synchronization of the inner and outer oil-whirl/whip of the floating
ring bearings. Gjika et al. [61] showed the progress on the nonlinear dynamic behaviour
modelling of the rotor-bearing system (RBS) incorporating two oil-films in series: a
hydrodynamic one with a squeeze-film damper commonly used in turbochargers. Their
prediction and measured synchronous response and total motion (synchronous and sub-
synchronous) were in good agreement. Both demonstrated the nonlinear character of the
RBS behaviour, including several sub-synchronous frequency components over the

operating speed range.

This thesis investigates the nonlinear dynamic behaviour of a turbocharger under the
action of static and periodic loads (unbalance force) on the rotor. The oscillating 7z -film
cavitated bearings are used in these analyses. The effect of the gyroscopic moment and
the rotor flexibility are also investigated using linear analysis of the rotor-bearing
system with a full-film bearing model. The following section lists the objectives in

detail.

1.4 THESIS OBJECTIVES

The objectives of this thesis are to:

e investigate the effect of the gyroscopic moment on sub-synchronous whirl

instabilities of a turbocharger with full-film bearings using linear analysis;

e cxamine the limit of rotor speed for the turbocharger of interest up to which a

rigid-rotor assumption with full-film bearings is reasonable;
e determine the linear stability threshold indicating the onset of oil-whirl, under

the influence of a static load, for a general rotor system with a perfectly balanced

rotor in cavitated short-bearings with an oscillating 7 -film;
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1.5

determine the change in the nonlinear dynamic behaviour of the general rotor
system, as the state (position) of the journal centre across the bearing clearance

changes, under the effect of the static load;

simulate the effect of unbalance in a turbocharger with cavitated bearings, both
in the transient and in the steady-state motion, to analyse the behaviour in the

test waterfall plots provided by Cummins Turbo-Technologies Ltd,

determine the nonlinear mechanism that controls the whirl amplitude and the

phase of an unbalanced rotor in the turbocharger with cavitated bearings.

NOVEL CONTRIBUTIONS OF THE THESIS

A gyroscopic coefficient has been introduced to study the effect of gyroscopic
moments in a turbocharger with symmetric rotor using a simplified, linearised
equation of motion following Holmes [3, 54]; this coefficient is the ratio of the
polar moment of inertia to the transverse moment of inertia of the rotor. Its value

beyond a threshold of 1/2, has been shown to completely suppress the conical

whirl instability in a turbocharger. This value was shown to be unaffected by the

addition of an external damper support and the asymmetry of the rotor.

A speed limit has been determined for the validity of the assumption of a rigid
rotor by analysing a flexible rotor modelled by superimposing the rigid dynamic

motion and the flexible static deflections for a specific turbocharger.

Further to the work of Myers and Gardner [23, 43], in charting the stability
threshold between the stable and unstable equilibrium states from the linear
equations of motion, the interplay of the oil-film forces with the static load

towards the system stability has been determined.
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e The nonlinear effect of the oil-film forces based on the short-bearing
approximation, leading to periodic vibration of the rotor has been demonstrated;
this occurs around the speed at which the equilibrium state of the rotor becomes
unstable. When the journal centre crosses about 32% of the bearing clearance
with respect to the bearing centre, the nonlinear dynamic behaviour of the rotor-
bearing system with an oscillating 7 -film cavitation, has been shown to change

significantly.

e Unbalance has been shown to reduce the growth of the whirl amplitude in the
transient motion. The advantageous effect of unbalance has been shown to
prevail only up to a certain level (optimum value). The nonlinear mechanism
behind the sub-synchronous response characteristics due to synchronous

excitation has been determined.

1.6 THESIS OUTLINE

This thesis consists of 7 Chapters. A brief outline of the contents of these

Chapters is presented here.

Chapter 1 gives the introduction to the oil-whirl in a turbocharger. The test waterfall
plots provided by Cummins Turbo-Technologies Ltd. based on the data collected from
the unbalance tests on a turbocharger are introduced; they are utilised in setting the
thesis objectives. A brief literature survey is provided. The novel contributions of this

thesis are articulated.

Prior to investigating the nonlinear behaviour of the turbocharger, in Chapter 2 the
effect of gyroscopic moment is analysed using the linearised equation of motion. The
first part of Chapter 2 reviews the linear analysis of a turbocharger using a symmetric
rotor with three different types of support conditions of the bearing. A simplified
approach is presented to study the stability behaviour of the turbocharger with full-film
bearings. Later, the effect of the gyroscopic moments due to the inertia of the rotor is

investigated on the conical whirl instability of the turbocharger. Both the rigidly
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supported and the externally damped bearing conditions are investigated to represent the
plain journal bearings and the floating film journal bearings respectively. Finally, the
effects are verified with a more realistic asymmetric rotor model considering both the

in-phase and the conical whirl instabilities.

Similar to Chapter 2, the rotor flexibility effect is analysed in Chapter 3; a flexible
rotor is investigated for its effect on the stability of the turbocharger. The flexible static
deflections of the rotor in terms of its influence coefficients are superimposed onto the
rigid dynamic motion of the rotor in full-film bearings discussed in Chapter 2. Using a
simple finite element model of two-dimensional beams, the influence coefficients of the
rotor are determined. This Chapter is mainly aimed at verifying the validity of the
assumption of a rigid rotor made in all the other Chapters. A speed limit is predicted for

the turbocharger under investigation for the rigid behaviour of the rotor.

Since turbochargers are lightly loaded, the effect of static load has been ignored in the
previous Chapters. Chapter 4 gives the linear analysis of a general rotor-bearing system
under the effect of the static load. In order to effectively capture the physical behaviour,
a cavitated bearing model is used in this Chapter to allow for the stiffness-like radial
restoring force in the bearings. Note that a full-film bearing is used in Chapters 2 and 3.
The bearings are assumed to have an oscillating 7 -film cavitation. From the Jacobian
determinant of the linearised equations of motion, the stability threshold that separates
the stable and the unstable equilibrium states of the journal is determined; this is
represented in a parameter plane of the rotor speed and the steady-state eccentricity
ratio. The analysis also presents the inter-play of the bearing forces and the static load in
the system, rendering a physical insight into the stabilising characteristic of the static

load.

Chapter 5 discusses the nonlinear analysis of the general rotor system given in Chapter
4. This Chapter aims at investigating the periodic vibration (limit cycle) of the journal
motion in the neighbourhood of the stability threshold attributed to the nonlinearity of
the oil-film. Using analytical techniques, such as the Hopf bifurcation theory and the
normal form theory [62, 63], the rotor-bearing system is analysed for the disappearance
of an unstable limit cycle (sub-critical bifurcation) and the appearance of a stable limit

cycle (super-critical bifurcation) close to the stability threshold. The Chapter advances
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the discussion on the Central Manifold reduction and the first Lyapunov coefficients
[63] calculation to determine the type of bifurcation. These observations are also
compared with the numerical analysis using the orbit plots. With the help of the
operating curve corresponding to a turbocharger, its nonlinear behaviour based on the

type of bifurcation is analysed.

In Chapter 6, based on the operating curve chosen to represent a turbocharger, the test
waterfall plots are simulated numerically by adding unbalance to the rotor system used
in Chapter 4. The change in the whirl amplitude and its phase angle in the transient
motion and in the steady-state, with increase in the unbalance, is investigated. A
detailed analysis of the rate of change of amplitude and phase is presented aiming at the
determination of the mechanism behind the unbalance effect. Particular emphasis is
placed on analysing the behaviour at the start of whirling, when the unbalance force is
comparable with that of the hydrodynamic forces in the bearings. Using the method of
averaging, the equations of motion are simplified to show the coupled nature of the
response amplitude and the phase due to the unbalance in the system, which is observed

in the numerical analysis.

Chapter 7 gives the major conclusions of the thesis on the investigation into the
nonlinear behaviour of an automotive turbocharger; these are related to the effect of the
gyroscopic moments, the rotor flexibility, a static load and the unbalance force on the
instability of the turbocharger. A brief overview of the thesis is presented. Some

recommendations for future work are given.
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FIGURES
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Figure 1.1 (a) A typical turbocharger (from Cummins Turbo-Technologies Ltd.) which is
the assembly of compressor wheel, turbine wheel and two identical floating ring bearings (b) A
typical floating ring bearing (c) Schematic representation of the working principle of a
turbocharger driven by the exhaust gases of a 4 cylinder engine (adapted from the website:
http://www.turbocompressori.net/new_turbochargers.htm)
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Figure 1.2 A typical waterfall plot of a turbocharger showing the two sub-synchronous
whirl modes. Adapted from the waterfall plot provided by Cummins Turbo-Technologies Ltd.
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Figure 1.3 Schematic representation of the whirl modes in a turbocharger; (a) conical whirl
(b) in-phase whirl in a rigid rotor (c) in-phase whirl showing bending in a flexible rotor [8, 9].
The turbine wheel and the compressor wheel are not shown here.
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Figure 1.4 Adapted from the comparative test waterfall plots provided by Cummins Turbo-
Technologies Ltd. based on the data was collected from the same hardware/conditions but with
different unbalance levels: (a) shaft motion with low unbalance (b) acceleration with low
unbalance (c) shaft motion with high unbalance (d) acceleration with high unbalance.
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Figure 1.5 Schematic of a journal bearing demonstrating the hydrodynamic lift produced
by the squeezing action of the oil-film creating a converging wedge [64].

whip
10¢ \&
= Lﬂ-:-_:ﬂ\

m .I ﬁh\“. — ]
R'ItF m 5 hirl
== ==

L — 1)( :_n-_

i =

1 _—

[:I :'-T_-'_ n i 1 T
1 2 3 4 §]

frequency x 10%cycles per second

Figure 1.6 Waterfall plot of a turbocharger showing whirl and whip vibration
characteristics. Adapted from Holmes [3].
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Figure 1.7 Schematic of a journal in a bearing with oil-film in the clearance; F. is the
radial force acting along the line of centres and F, is the tangential oil-film force tending to
cause the whirling of a lightly loaded journal, spinning at speed @, in a journal bearing [5]; C,
is the bearing centre, C, is the journal centre, e is the eccentricity of the journal centre, P is

max

the maximum pressure, F' is the static load, /_ is the minimum film thickness.
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Figure 1.8 Schematic diagram of a floating ring bearing [65]; C, is the dynamic journal

centre and O is the centre of the stationary housing, L, is the bearing length; @ is the journal

speed; the floating ring is assumed to wobble and not to rotate in this thesis. The squeezing
action of the outer film is treated as an external damper.

oil supply groove

oil holes

Figure 1.9 Typical turbocharger bearings (a) floating ring bearing provided with six oil-
supply holes, which supply oil from the outer film to the inner film. (b) press-fit bearing with a
tight fit into its housing and provided with an external groove and six oil-supply holes to pass
lubricant to the inner oil-film; from Holmes [54].
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Figure 1.10 Schematic diagram of a journal in a plain bearing with an oscillating 7 -film
cavitation which rotates along with the rotor. The film boundaries (0, 7 ) remain the same as the

journal centre C, corresponding to position I shown in dashed lines, changes to CJ'

corresponding to position II shown in continuous lines due to the journal rotation at a speed @ ;
reproduced from Gardner [8].
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CHAPTER 2

THE EFFECT OF GYROSCOPIC MOMENTS ON
THE STABILITY OF ATURBOCHARGER

2.1 INTRODUCTION

The gyroscopic effect caused by rotation and the polar moment of inertia of the
rotating body can be an important dynamic effect in a rotor system. Since turbochargers
are high speed applications exhibiting oil-whirl instability, it is important to investigate
their behaviour including the gyroscopic moments. Holmes [3] studied the effect of
various bearing types like floating ring, press-fit bearings. He showed a good qualitative
correlation of waterfall plots to the results of a linear analysis for transverse motion.
Holmes et al. [54] demonstrated the manifestation of two oil-whirl frequencies in
turbochargers. The work reported by Gunter and Chen in [2] suggests that the two
frequencies correspond to an in-phase whirl from the transverse motion and a conical
whirl from the tilt motion. The details of these modes have been discussed in Chapter 1.
This Chapter aims to investigate the tilt motion of a similar symmetric rigid rotor to
determine the effect of gyroscopic moments on the conical whirl. A brief review of the
transverse motion of the turbocharger with various types of support such as rigid,
flexible and damper is presented first. A plain journal bearing which is rigidly
supported, and the bearing clearance is fully filled with oil without rupture of the film
(no cavitation), is first considered for the analysis based on the fluid-film forces derived
by Holmes [20]. Then the effect of gyroscopic moments in the presence of an outer
film, which is treated as an external damper, is investigated in order to simulate a

floating ring bearing described in Chapter 1. The ring is assumed not to rotate but only
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wobble. Since the turbine is much heavier than the compressor in a turbocharger, the
effect of rotor asymmetry on the influence of gyroscopic moments is also investigated
using an asymmetric rotor with floating ring bearings for both transverse and tilt
motion. Since turbochargers are lightly loaded, static eccentricity due to the gravity load

of the rotor is neglected in this Chapter.

2.2 SYMMETRIC ROTOR - TRANSVERSE MOTION: A BRIEF
REVIEW OF PREVIOUS WORK

2.2.1 INTRODUCTION

This Section reviews the dynamic analysis of a turbocharger presented by
Holmes [3]. The equations of motion are derived for a rigid rotor mounted in three types
of bearings detailed in Chapter 1: plain, press-fit and floating ring bearings for the
transverse motion of the rotor. The effects of various support characteristics of these

bearings are investigated to determine their role in the stability of the in-phase whirl.

2.2.2 RIGID SUPPORT (PLAIN JOURNAL BEARINGS)

This Sub-Section presents the analysis of the turbocharger with rigidly support bearings.
Figure 2.1(a) shows a schematic diagram of a turbocharger rotor with plain journal

bearings, where C; is the bearing centre, C, is the static journal centre, C, is the

dynamic journal centre and O is the centre of the stationary casing. Plain journal
bearings are journal bearings with their outer ring (race) fixed, which offers a rigid
support to the bearing. Figure 2.1(b) shows the schematic of a symmetric rotor of mass
2m mounted in rigidly supported bearings. Assuming a full oil-film [20] (no
cavitation), the oil-film forces acting on each journal of the turbocharger with rigid

supports are given by [3]:
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E = brrl;i +arssl H (21)

F; = bss‘él - asr’/i H (22)

where 7 and s, are the co-ordinates of the journal dynamic centre C,;; 7 is along the

line of centres of the journal and the housing, s, is perpendicular to the line of centres in

the direction of rotation; b

rr

b, are the linearised direct damping coefficients of the

oil-film; a,, a, are the linearised cross-coupled stiffness coefficients. It can be seen

from the Eqgs. (2.1) and (2.2), that the coefficients a, , a, cross couple the two forces.
This means that a displacement s, produces a force along 7 due to the coefficient a

and likewise 7 produces a force along s, due to the coefficient a,,. These coefficients

are obtained by linearising the film forces derived from the Reynolds’ equation for thin
films applying full-film boundary condition [20]. Some details of the derivation are
given in Appendix A. Since the gravity load is negligible compared to the dynamic
loads from the bearing in a turbocharger, the steady-state eccentricity of the journal is

assumed to be negligible leading to equal coefficients along 7 and s, directions giving

[31,

a.=a,=a,=Ao, (2.3)

b, =b,=b,=24, (2.4)

where (-), denotes direct and (-), denotes cross-coupled; Z=7mBLB3RB / (2C%) in
which 77, 1s the viscosity of the bearing oil, L, is the bearing length, R, is the radius

of the bearing, C is the clearance between the journal and the fixed housing. Egs. (2.1)

and (2.2) can be now be simplified as:

f=bi +alr, (2.5)
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0 1
where r, =[r,s,] . f=[F,F.]; T :{ ) 0} is a cross coupling factor that couples the

two equations in Eq. (2.5), giving I'r, =[s,,—%]" which will be applied for cross

coupling hereafter. Using Newton’s second law of motion, the equations of motion of
the turbocharger with a symmetric rigid rotor of mass 2m mounted in two identical

plain journal bearings as shown in Figure 2.1(b) is given by:

mit, +£=0. (2.6)

Assuming solutions, 7, = Rle’u and s, = Sle}“t to Eq. (2.6) and using the non-dimensional

groups @, = 24/m and § = A, , Eq. (2.6) becomes

A2 A A R
s j)/zA '+=0, 2.7)
-d/2 §7+5|(S

where @ = w/w, in which @, is a characteristic frequency of the turbocharger with rigid

support, at which the inertial force is approximately equal to the damping force. Using

the complex form of the co-ordinates 7 + js,, Eq. (2.7) gives the characteristic equation,
§2+§—j(a3/2):0, (2.8)

which is a quadratic Eq. with three forces: §°- inertial force, § - damping force and

—J (a)/ 2) - cross-coupled stiffness force. The two roots of Eq. (2.8) are,

1+ 15 26
§ = NITILO (2.9)

S =
1,2
2

The root with a positive real part is unstable, signifying the growth of the whirl
amplitude while that with a negative real part is stable indicating the decay of the whirl
amplitude. The imaginary part of the roots gives the corresponding whirl frequencies.

Figure 2.2 shows the real parts plotted against the rotational speed (@) of the
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turbocharger, where $, is a stable root and s, is an unstable root. For low speeds, when

w<<lie w<<wm,
§ ~—1-(jo/2), (2.10)
§,~ jd)2, 2.11)

where s, is a stable root with negative real part and s, is purely imaginary (on the verge

of instability). For high speeds, when & >>1 ie. @ >> @,
§ z(—l—\/g—j\/g)/L (2.12)

§, xJo+ j\No/)2. (2.13)

Equation (2.11) suggests that the whirl frequency is @/2 or of order 0.5 at low speeds,

and at high speeds, the whirl frequency is given by Eq. (2.13), i.e., \/5/ 2, which is less
than 0.5. Figure 2.3 shows the plot of the whirl frequency of the unstable root. Figure
2.4 shows a waterfall plot from a commercial turbocharger with press-fit bearings,
exhibiting a sub-synchronous vibration of order 0.5 for a much greater speed range. The
response departs relatively slowly from 0.5 as speed increases. This behaviour also
occurs in a press-fit bearing with relatively high housing stiffness, since they would
behave like plain journal bearings until the oil-film forces become sufficiently high for
the housing stiffness to affect the dynamic behaviour. These are discussed in the

following Sub-Section.

2.2.3 FLEXIBLE SUPPORT (PRESS-FIT BEARINGS)

This Sub-Section presents the analysis of the turbocharger with its rotor mounted in

bearings with flexible supports. Figure 2.5 shows a schematic diagram of a
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turbocharger, assuming the support flexibility due to the interference of the bearing and
the housing acts as a spring in series with the oil-film. The stiffness of the flexible
support is denoted by k. Figure 2.6 shows the co-ordinate system with film forces -

F ,F, and the constraint forces at the interference - R, R . The fluid-film forces in each

bearing are given by [3]:

f=b,(—F)+aT(r-r), (2.14)

where r=[r,s]"; r,s are the co-ordinates of the bearing centre with reference to the
housing centre O. Coefficients, a,,b, are given by Eqs. (2.3) and (2.4). The oil-film

forces are transmitted to the housing through the interference fit, that is the spring that
connects the bearing and the housing. Hence the constraint forces (reactions) at the

interface are given by [3]:
f=r=kr, (2.15)

where #=[R,R ], k=w m, w, being the frequency of mass m vibrating on the

spring (interference fit) of stiffness k. The resulting equation is,

mi, + o mr=0. (2.16)

Assuming solutions of the form, » = Re’! for all the responses r,s,1,s, and combining

Eq. (2.16) with Eq. (2.6), the equation of transverse motion of a rigid rotor in press-fit

bearings is given by

-5 —@/2 §+5 @2 |[R

o2 -5 -2 $+5||S o @.17)
K 0 §? 0 ||R ’ '
0 K’ 0 LS,
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where & =, /w, . Co-ordinates r,sand 7,s, can be related respectively from the 3"

and 4™ rows in Eq. (2.17) condensing it into a 2x 2 matrix,

=0, (2.18)

(/67 )+57+3 @/2[1+§2/K21 {Rl}

—of2[1+8 /] (8/x)+5 +5 |15

which, by using the complex form of the co-ordinates 7 + js,, gives the characteristic

equation,
(1/K2)§3+[1—j(a3/21c2)]§2+§—j(a3/2):0. (2.19)

The cubic Eq. (2.19) has a third root when compared to that of the turbocharger with a
rigid support due to the support stiffness k. There are two stable roots and, one unstable
root. Figure 2.7 shows the plot of the imaginary part of the unstable root for ¥ =0.5, 1.
At low speeds, the slope of the curve is of the order 0.5 indicating oil-whirl of frequency
equivalent to half-rotational speed. As speed increases, the curve asymptotes to a

frequency ratio of x(=,/w, ), indicating the effectiveness of constant support

stiffness. For very high «, i.e. k¥ >>1, the curve behaves like that of a rigid support as
shown in Figure 2.3, since the condition suggests a very high support stiffness. Figure
2.8 gives an interesting overall picture of all the roots of the equations of motion in the
complex plane for the turbocharger with press-fit bearings. The unstable root starts from
zero speed. After a certain speed, the real part reduces while the imaginary part remains

constant. The physical reasoning for this behaviour could be the following:

At low speeds, since the oil-film stiffness is relatively low, most of the vibration is that
of the rotor in its bearings. As the oil-film forces are functions of speed, the whirl
frequency keeps increasing. But, for higher speeds, as the bearing becomes relatively
rigid, the support stiffness influences the natural frequency. Hence, it remains constant
for very low «x, for example, 0.1. Interestingly, the stable roots start from the natural
frequency of the rotor mass interacting with the support flexibility, as the cross-coupled
stiffness is zero at zero speed. Figure 2.9 shows the plot of the real and the imaginary

parts of the three roots showing the growth/decay rate of the sub-synchronous whirl
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amplitude and the whirl frequency respectively, when x=1. As in the case of the
bearing with rigid support, the stable root (A) moves towards the negative real axis
indicating an increase in damping and by the effect of support stiffness, asymptotes to a
constant frequency at higher speeds. The second stable root (B), which is mostly from
the support stiffness, has a constant imaginary part (frequency), that increases for higher

K, 1.e. @ =, as shown in Figure 2.9. The real part approaches zero with increasing

speed implying negligible damping.

Although press-fit bearings are one of the types of fluid-film bearings in use, most
commercial automotive turbochargers use floating ring bearings, which is investigated

in the following Sub-Section.

2.2.4 DAMPER SUPPORT (FLOATING RING BEARINGS)

This Sub-Section presents the analysis of the turbocharger with externally damped
bearings. Figure 2.10 shows a schematic diagram of a turbocharger with floating ring
bearings. The floating ring bearing configuration differs from the press-fit bearing in the
way in which the bearing is constrained. The former is backed by an external damper of
damping coefficient y which represents the outer film while the latter has a flexible
support representing the interference fit between the ring and the housing. Considering
only the squeezing action of the outer film, assuming that the ring that separates the
inner film and the outer film is fixed, the floating ring bearing is represented as an
external damper in series with the inner film which is a journal bearing. This suggests
that the equations of motion will only differ in terms of the constraint forces which are

given by [3, 54]:

£ =7 (2.20)

A similar treatment given in the case of the press-fit bearings discussed in Section 2.2.3,

gives the matrix equation of the turbocharger with a damper support as:
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Az[ 2] A A(l §J
S 1+—A +5 w E+—A
-
7/ }/ {]}:0,
g S
—0’\)(14-%] §{1+%j+§ 1
2y /4

where y = 7// A . Using the complex form of the co-ordinate r+js,, Eq. (2.21) gives

2.21)

the characteristic equation:

(1+%j§2+(1—]?j§—ﬂ=0, (2.22)

which has roots,

5, =H1j{)]i\/l6:022+2jc?{1+{ﬂ/{2(1+ 2}} (2.23)
/4 / 7 7

Choosing a value of 7= }// A =10 based on [3], Figure 2.11 shows the imaginary part

of the unstable root plotted against the non-dimensional speed. Its order of 0.5 at low
speeds indicates oil-whirl of frequency equivalent to half-rotational speed. At higher
speeds, the order asymptotically approaches a value of about 0.08. From a physical
viewpoint, the order of 0.5 would be expected at low speeds, where the oil-film forces
are low in relation to the external damping force, and most of the vibration takes place
between the rotor and the floating ring. For higher speeds, the oil-film forces become
higher and the relatively lower external damping helps to influence the vibration

frequency.

For low speeds, when @& <<1 i.e. w<<aw,, §, ~ j&/2 is on the verge of instability.
§,~—1 as@—>0 is a stable root. For sufficiently high speeds, when @>>1 i..
w>>wo,, §~jd/(2+7), where §, is on the verge of instability with a frequency of
sub-harmonic order of 1/(2+;7) and s, z—1/2(1+2/7?) is a stable root. Thus, for

y=10, it is 0.083. A typical waterfall plot from a turbocharger with floating ring
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bearings is shown in Figure 2.12, where 1/(2+}?) ~0.1, andsoy=y/4 :}//(b/2) =8.
This gives y/b=4 i.e. the external damping is about four times the inner oil-film

damping. As most of the relative vibration would take place between the ring and the
housing at higher speeds, proportionately higher damping will be induced in the outer

film. Hence a factor of four is not unreasonable.

However, the effect of an external damper on the sub-synchronous vibration of the
turbocharger in floating ring bearings is unlikely to be significant. Figure 2.13 shows
the real part of the roots plotted against their corresponding imaginary part. A
corresponding plot for the rigid support is shown for comparison. The behaviour of the
roots is very similar to that in the case of a rigid support. However, the stable root
shows a considerable reduction in frequencies. When compared with that of the rigid
support which is shown in dotted line, the plots show some difference at higher speeds,
while they behave very much alike at lower speeds when the vibration is between the
rotor and the ring. This suggests that the added damping in the outer film is unlikely to

eliminate such sub-harmonic vibration.

2.2.5 CONCLUSIONS

A simple linear model was used to analyse the turbocharger with symmetric rotor-
bearing system with full-film short-bearings. The system was analysed for three

different bearing supports, such as rigid, flexible and damped supports.

The simple model gives results qualitatively consistent with observations of commercial
turbocharger sub-synchronous unstable vibration. Added damping in the outer film is
unlikely to be productive in controlling self-excited sub-synchronous vibration.
However, altering the stiffness of the support as in the case of a press-fit bearing may be

worthy of investigation.
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2.3 EFFECT OF GYROSCOPIC ACTION

2.3.1 INTRODUCTION

This Section investigates the behaviour of a turbocharger considering the
gyroscopic effect. Since the gyroscopic action introduces moments in the system, tilt
motion is analysed similar to the transverse motion in the previous Section (2.2), for its
effect on the stability of the conical whirl. Equation of tilt motion is derived for the
turbocharger with rigid support. The effect of gyroscopic moments is investigated by

comparing the results with a model of a turbocharger without such moments.

2.3.2 EQUATION OF TILT MOTION

2.3.2.1 WITHOUT THE GYROSCOPIC MOMENTS

The equation of tilt motion of the turbocharger with rigid support is derived in this Sub-
Section without considering the gyroscopic moments. Figure 2.14 shows a schematic
diagram of a turbocharger with symmetric rotor supported on two identical plain journal

bearings for tilt motion; 6, ¢ are the angular co-ordinates about s and r axes

respectively and / is the distance between the bearings. For a rigid symmetric rotor with
transverse moment of inertia / about its centre of gravity supported on rigidly housed

uncavitated bearings, the equation of motion ignoring gyroscopic moments is given by:

0+y =0, (2.24)

where 0=[6, ¢1]T, v=[M, Mr]T, M, =-Fland M =-FIl are the moments

about r and s axes respectively due to the oil-film forces F,, F,. For small
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displacements, the angular co-ordinates 6,, ¢ can be written in terms of the linear co-

ordinates r,s as:
18/2=[-r, -s,] . (2.25)

Substituting for F,  from Egs. (2.1) and (2.2) in terms of r and s co-ordinates, and

using the transformation in Egs. (2.25) and their corresponding derivatives, Eqs. (2.24)

becomes:

12
1§+A126+Alw

re=0. (2.26)

Assuming solutions, 6, = @e’u, @ = D™ to Eq. (2.26) gives the equation of motion

in matrix form as:

sz; o 2_}{91}0, (2.27)
—wf2 $+5 |4

where §=1/o,; @=w/w, is the non-dimensional speed, @, =AI’/I is a
characteristic frequency of the turbocharger, when the inertial moment is almost equal
to the damping moment. Note that this non-dimensional speed is different from @

defined in the previous Section, since this one depends on @, which is a function of the

moment of inertia and the distance between the bearing centres. Since the aim is to
investigate the gyroscopic effect, the gyroscopic moments are included in the equation

of motion in the following Sub-Section.

2.3.2.2 WITH THE GYROSCOPIC MOMENTS

When the spinning rotor tilts about one of the transverse axes, the rotor experiences a

moment, which results in a gyroscopic moment about the other transverse axis. The
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effect of these moments about the two transverse axes shown in Figure 2.14 is included

in the equation of tilt motion in this Sub-Section. Considering the gyroscopic moments,
J a)gzﬁl ,J a)él [66] where Jw is the angular moment of the rotor, J is the polar moment

of inertia of the rotor as shown in Figure 2.14, the equation of tilt motion of the

turbocharger with rigid support is given by:
B+y+JoT0=0, (2.28)

where the gyroscopic moment is present along with the other moments given in Eq.
(2.24). A similar treatment described as in the case without the gyroscopic moments

gives Eq. (2.28) in the form:

S o(1/2+ ) {491} o (2.29)
~o(1/2+ B5) 545 & ’ '

where S =J/I. f is the ratio of the polar to the transverse moment of inertia, which is
referred as the gyroscopic coefficient hereafter. Applying Routh’s stability criterion
(A4,>(AA,]A4)+(4,4,/4))) [20] to the characteristic equation,

~2

§4+2§3+(1+@2ﬂ2)§2+@2ﬂ§+%:0, (2.30)

where A4 is the coefficient of the term 5", gives the condition, that the gyroscopic
coefficient 3 must be greater than 1/2 for a stable conical whirl. This implies that the

threshold value of S for the stability of the conical whirl is 1/2. It is evident from Eq.

(2.29) and the coefficients in Egs. (2.3) and (2.4) that this ratio relates to the ratio of the
cross-coupled stiffness coefficient to the damping coefficient of the bearing. This
implies that the threshold value of the coefficient plays a significant role in the effect of
the gyroscopic moments on the stability of the conical whirl mode of the rotor, which

will be discussed in detail in Section 2.3.4.
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2.3.3 ANALYSIS: TILT MOTION WITHOUT THE GYROSCOPIC
EFFECT

This Sub-Section presents the analysis of the dynamic behaviour of the turbocharger
rotor system with rigid support ignoring the gyroscopic effect, using the equation of

motion derived in Section 2.3.2.1. Using the complex form &, + jg of the angular co-

ordinates, Eq. (2.27) becomes:
57+5-j(@/2)=0, (2.31)

which is a quadratic equation with three moments, 5°- inertial moment, 5 - damping

moment and —j (c?)/ 2) - cross-coupled stiffness moment. The roots of the characteristic

equation are given by:
5 :(—1i1/1+j2a3)/2. (2.32)

For low speeds, when o <<1,
5, 2-1-(jo/2), (2.33)
5, R jo)2, (2.34)

where s, is a stable root with a negative real part and s, being purely imaginary is on

the verge of instability. For high speeds, when @ >>1,

5 z(—l—\@—j\/é)/z, (2.35)

3, z(\/5+j\/5)/2, (2.36)
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where s, is a stable root with negative real part and s, is an unstable root with a
positive real part. Substituting the unstable root s, ~ j@/2 into Eq. (2.31) for low

speeds gives:

~2

2 Eid ) (2.37)
4 2 2
—_— —— —_—

inertial moment damping moment cross-coupled
stiffness moment

The term —c?)z/ 4 is negligible, since @ <<1. Hence, in this speed range, the system is

whirling at a frequency, where the damping moment and the cross-coupled stiffness

moments balance each other. Similarly for the high speed range, substituting the

v+ jNo .
unstable root s, ~ @ gives:

jo N No(l1+j) _Jo
2 2 2
. . —_ — —_—
inertia moment damping moment cross-coupled

stiffness moment

=0. (2.38)

The damping moment \/5(1 +7) / 2 is small compared to the terms containing @, since

@ >>1. Hence, in this speed range, the system is whirling at a frequency, where the
inertia moment and the cross-coupled stiffness moments balance each other. Having
examined the asymptotes, to help understand the overall behaviour of the moments over
the speed range, the unstable root from Eq. (2.32) is substituted into Eq. (2.31) and the
moments are plotted in the argand plane, in Figure 2.15. This shows that the damping
moment has a positive real part, while the inertial moment has a negative real part.
Similarly, moments related to the stable root, give damping with a negative real part and
an inertial moment with a positive real part as shown in Figure 2.16. The cross-coupled
stiffness moment is purely imaginary (negative) acting like a reference axis. This
implies that the damping moment with a negative real part relates to the negative real

part of the root of the equation indicating stable whirl.
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2.3.4 ANALYSIS: TILT MOTION WITH THE GYROSCOPIC EFFECT

This Sub-Section presents the analysis of the equation of tilt motion derived in Section
2.3.2.2, considering the gyroscopic effect on the dynamic behaviour of the turbocharger
with rigid support. From Eq. (2.29), the characteristic equation of tilt motion including

gyroscopic moments is given by:

§2+§—jﬂ£)§—j§:0, (2.39)

which has —jfas -gyroscopic moment in addition to the three moments in Eq. (2.31).

The solution to the quadratic Eq. (2.39) is

_ —1+ jBa+\1- Fa’ +2ja(1- B)
. .

(2.40)

Si2

For low speeds, when @ <<1, & = —1+jﬂa3—% is a stable root and s, z% is on
the verge of instability (purely imaginary).
-1

For high speeds, when w>>1, 75 z; is a purely real root and

_ ~1+ jBo++-pa’

2" 2

~ jPw is on the verge of instability. Substituting the root

<9

s, & Y into Eq. (2.39) for low speeds gives:

~2 .~ ~2 .~
@ [ (4] @
Lo o pot _Jjo
4 2 2 2
. ‘W.—J \—,_.J — . D —
inertial damping gyroscopic cross-coupled
moment moment moment  stiffness moment

=0. (2.41)

Equation (2.41) shows that the damping moment and the cross-coupled moment balance

each other, while the gyroscopic moment is trying to balance the inertial moment. For
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S =1/2, they are perfectly balanced. Now, substituting the root s, ~ j8 @ into Eq.

(2.39) for high speeds gives,

-Bo’ + jPpo + o’ - =0, (2.42)
inertial damping  gyroscopic ——

moment moment moment CF_OSS'COUPICd
stiffness moment

where the inertial moment balances the cross-coupled stiffness moment, while the
damping moment is counteracting the cross-coupled stiffness moment. Similar to the
low speed range, here the damping moment perfectly balances the cross-coupled

stiffness moment for £ =1/2. Now considering 5, from Eq. (2.40), it is clear that for

S =1/2, the roots factorise easily into:

~1+ jpao+ (1+jﬂ03)2
2

s =

, (2.43)

giving 5, =-1, 5, = j@/2 which are purely real and purely imaginary solutions. Thus
S =1/2 is the threshold value of the gyroscopic coefficient where the unstable root with
positive real part becomes purely imaginary. Physically this means that the turbocharger
is whirling in its perturbed position without any further growth of amplitude.

As in the case of tilt motion without the gyroscopic effect given in Section 2.3.3,
plotting each of the moments in Eq. (2.39) for the unstable root in Eq. (2.40), Figure
2.17 shows that the damping moment has positive real part for f=0.1. As [ is
increased to 0.25, Figure 2.18 shows that except for the cross-coupled stiffness moment,
all the other moments are affected by the change, where the real part of the damping
moment is reduced and its imaginary part increases. Added to that, the gyroscopic and

inertial moments tend to become more real and less imaginary.

Figure 2.19 is the plot of the real and the imaginary parts of the moments from the
unstable root of the equation of tilt motion, when 8 =1/2. It shows an interesting

balance between the moments where, the damping moment is purely imaginary like the

cross-coupled moment and counteracts it. Likewise the gyroscopic moment is purely

43



CHAPTER 2 THE EFFECT OF GYROSCOPIC MOMENTS ON THE STABILITY OF A
TURBOCHARGER

real counteracting the purely real inertial moment. From Eq. (2.42), it is evident that the
gyroscopic term influences all the moments except the cross-coupled stiffness moment.
This observation signifies the effect of gyroscopic moment in changing the direction of

these moments with an increase in £, and thereby making the system damping effective

to counteract the de-stabilising effect of cross-coupled stiffness. Figure 2.20 shows the
plot of the real and imaginary parts of the moments from the unstable root of the
equation of tilt motion of the turbocharger with rigid support with the gyroscopic effect,

when £ =0.75. It can be seen in Figure 2.20 that the further increase in £ to 0.75,

makes the real part of the damping moment negative and stabilises the conical whirl.
This finding agrees with that of Tondl [39], which states that the gyroscopic action
reduces the amplitude of self-excited vibration and for a fairy large coefficient of the
gyroscopic term, it may even suppress it completely. Other than the effect on the
amplitude, gyroscopic moments have been shown in the literature to influence the

direction of whirl which is discussed in the following Sub-Section.

2.3.5 GYROSCOPIC EFFECT ON WHIRL FREQUENCIES

Angantyr [41] and Li [40] reported in their studies that gyroscopic effect splits the
natural frequencies into a forward and a backward whirl. A forward whirl occurs when
the rotor whirls in the direction of spin and a backward whirl occurs if the whirl is
opposite to the direction of spin. The gyroscopic moments increase the effective
stiffness of the system for a forward whirl and hence increase the frequency. However,
the effective stiffness of the system reduces for a backward whirl and hence the
frequency reduces with speed [66, 67]. This Sub-Section presents the discussion of the
gyroscopic effect on the variation of the stable and unstable sub-synchronous

frequencies with increasing speed in the turbocharger under investigation.

Figure 2.21 shows the plot of the sub-synchronous conical whirl frequencies varying
with the rotational speed of the turbocharger with rigid support, for various values of

1/2< p <1. The stabilised frequency keeps increasing with speed implying a forward

whirl. But, the stable frequency increases upto certain speed and then starts decreasing
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with increasing speed implying a backward whirl. This behaviour can be verified from

Eq. (2.40) by looking at the asymptotes of the stable root for low and high speeds which
are 5, ~—1+ j(fd—®/2) and 5,,; ~—1/2+ jO respectively. This shows that the stable
frequency increases with the speed at low speeds while it becomes zero at high speeds.
This implies that the stable whirl changes direction at a certain speed depending on /.

The split nature of the frequencies due to the gyroscopic moments is clearly observed

when S =1, where, both the unstable and the stable frequencies are equal (both
forward), till they split into a forward and a backward whirl at a certain speed.
Substituting =1 in Eq. (2.40) and considering the asymptotes, gives the frequency
@/2 for low speeds for both the modes. For high speeds, the stabilised frequency is @

and the stable frequency is 0 signifying forward and backward whirl modes
respectively. Figure 2.22 shows a similar plot of the conical whirl frequencies for

various values of £ >1. The two frequencies exhibit similar behaviour of a forward and

a backward whirl for all the cases.

2.3.6 CONCLUSIONS

A simple linear model of a turbocharger with a rigid rotor mounted in rigidly supported
short-bearings with full-film was analysed for the stability of the tilt motion of the rotor.
The effect of the gyroscopic moment on the stability of the conical whirl was

investigated.

The stability of the conical mode of a turbocharger with rigid support is controlled by

the gyroscopic coefficient [, which is the ratio of the polar to the transverse moment of
inertia of the rotor. The threshold value of the gyroscopic coefficient is =1/2 for the
conical whirl stability, when the turbocharger is on the verge of instability. The conical
whirl instability seems to be completely suppressed for #>1/2. This threshold ratio
relates to the ratio of cross-coupled stiffness to the damping coefficient of an
uncavitated bearing. The gyroscopic moment increases the imaginary part of the

damping moment and helps in balancing the cross-coupled stiffness moment. With an
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increase in f, the gyroscopic effect changes the relative direction of the inertial and
damping moments, which helps in stabilising the conical whirl. The gyroscopic effect
seems to change the direction of whirl corresponding to the conical whirl frequencies;
the unstable frequency increases with the speed exhibiting a forward whirl albeit

becoming stable for #>1/2 and the stable frequency decreases with the increasing

speed exhibiting a backward whirl.

The threshold value of the gyroscopic coefficient has been evaluated considering a rigid
support. In order to evaluate this value for the system with floating ring bearings,
external dampers have to be included similar to Section 2.2.4. This is presented in the

following Section.

24 INFLUENCE OF EXTERNAL DAMPING ON THE
STABILISING GYROSCOPIC MOMENT

24.1 INTRODUCTION

It has been shown in Section 2.3 that the gyroscopic moment controls the
stability of the conical whirl for the turbocharger with rigid support. From the ratio of
the polar and the transverse moment of inertia of the rotor, the gyroscopic coefficient [
has been determined as the controlling parameter whose threshold value is found to be
1/2. Since floating ring bearings are mostly used in turbochargers due to their low cost
as discussed in Chapter 1, this Section analyses the influence of the outer film on the
way in which the gyroscopic coefficient controls the stability. The outer film of the
floating ring is treated as an external damper in series with the inner film which is the

bearing, similar to Section 2.2.4.
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2.4.2 EQUATIONS OF TILT MOTION WITH GYROSCOPIC MOMENT

Similar to the equations derived in Section 2.2.4, considering the fluid-film forces for
the floating ring bearing from Egs. (2.14), and including the gyroscopic moments
similar to Section 2.3, applying a linear transformation as in Eqgs. (2.25), the equations
of tilt motion of the turbocharger with damper support, considering gyroscopic effect is
given by:

|2Tr+ 2A(F, — 1)l + Al (r, —r)I+Ja)F2Tr:O, (2.44)

{ er Ja)rzl—} yi=0. (2.45)

Applying a similar treatment to Egs. (2.44) and (2.45) as described in the Section 2.3,
the characteristic equation of the system is given by

—~ ~2 —
[1+§J§2 . {1- jgk _po —m@(uij@ j2 -0, (246)
y L 7 Y 4 .2
[ —

inertial moment  damping moment gyroscoplc (r:rﬁgsns]e%c%upled
moment

Setting S =0, gives the characteristic equation without the gyroscopic moment as

(1+£j§2 + (1— ng§ -2 =o, (2.47)
e . cross-coupled
inertial moment  damping moment momenr%

~ ~2
with two roots S, {—(1— jcf}r\/l—cfz+2jcf{l+];ﬂ/2(l+%) where S, is an
v 4 4 4

unstable root and S, is a stable root. Figure 2.23 shows the plot of the real part of these
roots against the rotor speed, for y =10. Figure 2.24 shows the plot of the moments in

Eq. (2.47) related to the unstable root, for y =10. Plots of the moments corresponding
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to the rigid support discussed in Section 2.2.4, are given for comparison. The real part
of the damping moment increases due to the external damping, which reduces its effect
in balancing the destabilising cross-coupled stiffness moment relative to the rigid

support.

Now, considering the gyroscopic effect, Eq. of tilt motion (2.46) has an unstable root

S, and a stable root S, which are:

I ) | e e o G2

Sip =
2[1+%
YV

(2.48)

Unlike the case of the rigid support, where the gyroscopic moment is damping-like,

with damper support, the gyroscopic moment of the rotor also has a stiffness-like term,
ﬂa?z/;?. Figure 2.25 shows the plot of the real and the imaginary parts of the moments
for f=0.25. The stiffness-like term in combination with the damping moment seem to
offer a restoring moment in the system, whose physical significance needs further
investigation. Increasing £ to 0.5 shows a perfect balance in the moments similar to
turbocharger with the rigid support as shown in Figure 2.26, when the cross-coupled
stiffness moment is balanced by the restoring moment, i.e. the damping moment + the
stiffness-like gyroscopic moment. The inertial moment is balanced by the damping-like
gyroscopic moment. In this case, the restoring moment is purely real. Further increase
of £ continues to change the relative direction of the moments as shown in Figure 2.27,
keeping the real part of the restoring moment negative, giving a stable whirl. The real
parts of the unstable root for three different values of g as a function of speed are
shown in Figure 2.28, which verifies the threshold value of the gyroscopic coefficient,
S =1/2, for the stability of the conical whirl. The threshold value remains unaltered by

the presence of an external damper.
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Figure 2.29 and Figure 2.30 show the plots of the conical whirl frequencies varying with

the speed for <1 and f>1 respectively. For the low speed range, the unstable and

the stable conical whirl frequencies exhibit very similar behaviour of the split into
forward and backward whirl motions as with the rigid support shown in Figure 2.21 and
Figure 2.22, However for high speeds, the stable conical whirl becomes forward again
by increasing with speed due to the presence of the external damper. This could be due
to the relatively higher damping of the external damper suppressing the gyroscopic
effect, since most of the motion is between the ring and the damper as discussed in

Section 2.2.4.

2.4.3 CONCLUSIONS

A turbocharger with a symmetric rigid rotor mounted in full-film bearings with
externally damped support was analysed for the stability of the conical whirl i.e. the tilt
motion of the rotor. The external dampers were used to simulate the outer-film of the

floating ring bearings.

The external dampers are unlikely to improve the stability of the turbocharger. The
threshold value of the gyroscopic coefficient f =1/2, for a stable conical whirl, remains
unaltered by the addition of an external damper to each of the journal bearings. The
gyroscopic moment means a stiffness-like moment is added to the damping-like
gyroscopic moment seen with the rigid support. The gyroscopic moment along with the
damping moment counteracts the de-stabilising cross-coupled stiffness moment,
effectively stabilising the conical whirl for #>1/2. However, the physical significance
of this combination needs further investigation. The gyroscopic moments produces
similar behaviour of a forward and a backward whirl corresponding to the two
frequencies as observed in the turbocharger with rigid support. But for high speeds, the
addition of an external damper seems to change the backward whirl corresponding to

the stable frequency a forward whirl again.
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So far, the turbocharger rotor has been assumed to have a symmetric rotor. However, as
discussed in Chapter 1, the turbine wheel is heavier than the compressor wheel. Hence,
the rotor is asymmetric with respect to the centre of gravity. This is considered in the

following Section.

2.5 ASYMMETRIC MODEL - TRANSVERSE AND TILT
MOTION WITH THE GYROSCOPIC EFFECT

2.5.1 INTRODUCTION

In the previous Sections, a turbocharger with a symmetric rotor was analysed,
considering the transverse and the tilt motion separately. However in practice, the
turbine is much heavier than the compressor of a turbocharger. So the centre of gravity
of the turbocharger is nearer to the turbine bearing centre. Hence, this Section
investigates a turbocharger with an asymmetric rotor mounted in floating ring bearings
under the influence of the gyroscopic moments. Both the transverse and the tilt motion
are considered in this Section to analyse the conical and the in-phase whirl modes under

the influence of the gyroscopic effect.

2.5.2 EQUATION OF MOTION

Figure 2.31 shows a schematic diagram of an asymmetric rotor of a turbocharger with
floating ring bearings and the forces acting on the rotor due to both the transverse and
the tilt motion discussed in previous Sections; / ,/, are the distances of the centre of
gravity of the rotor from the turbine and the compressor bearing centres respectively.
Assuming a rigid rotor of mass m_mounted in two identical bearings with full-film, the

equations of transverse motion of the turbocharger in the inner film of the bearing is

given as [54]:
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(2.49)

_ T
where r,, =[7,,5,.] , 7,

le?

s, are the co-ordinates of the centre of gravity of the rotor.

f,=[F

ra®

Fsa]T are the film forces on the rotor in the turbine end bearing and

f,=[F,.F b]T are the film forces in the compressor end bearing. Using the film forces

for the bearings with the damper support given in Eq. (2.14), the forces in the bearings

are given by:
f, =2A(f, -T,)+ Aol (r,, -1,), (2.50)
f, =2A(f, -1,)+ Aol(r,, -1,), (2.51)

where r, =[r; , sj]T, Jj=a, b, la, 1b; r, , are the co-ordinates of the ring centre C,

in the turbine and compressor end bearings; r, are the corresponding co-ordinates

a,1b
of the journal dynamic centre C,. The equations of tilt motion with the gyroscopic

effect as seen in Figure 2.31 are given by:

f'L, —f'L, +Jol0=-10, (2.52)

where L, = [8 ; }, [ and [, are the distances of the rotor centre of gravity from the

turbine bearing centre and compressor bearing centre respectively as shown in Figure

2.31; 6, ¢, are the angular displacements of the rotor about s,., 7, respectively. From

c

the slope of the rotor, the linear co-ordinate transformation can be done through:

rlc

1), (2.53)

la

=, +%(r
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0 =(r‘"l—rl) (2.54)

where the derivatives of 0 are given by the corresponding derivatives of the right hand
side of Eq. (2.54). Substituting for the forces from Eqgs. (2.50) and (2.51), and using the

transformation in Egs. (2.53) and (2.54), the equations of motion are given by :

m, {ﬁb (1 —17’?} +i,, lﬂ +2A(F, -1,)+ Aol (x,, -1,) 2.55)
+2A(k,, -1, )+ Aol '(r,, -1,) = 0
i:lb _i:la Al : A
I(f)+lb[2/1(r1b -1,)+ Aol'(r,, -1,)]
(2.56)

~1[24(F, -F,)+ Aol (r,, -ra)]+‘]7“’r(rlb —,)=0

Applying Eq. (2.15), at the interface between the ring and the external damper (outer
film) and substituting for the forces from Egs. (2.50), (2.51), the equations of motion in

the outer film are given by
yl.'a _22(1.'121-fa)_za)r(rla-ra)zo7 (257)
i, —2A(F,, -1, ) — Aol (r,, -1,) =0. (2.58)

Combining Egs. of motion (2.55) through (2.58) and assuming solutions of the form

r= Re’u, gives the matrix form in terms of non-dimensional groups as:
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gm o 0 0 5 w 0 o
b §s+s 0 0 & 5 0 0 R,
P ; .|
0 0 5s+s @ 0 0 =S — R,
0 0 -» Zs+5 0 0 & -3 % =0,
2 R,
5 0 S5 -0 7L o §5HF(1-L)/2) @ S,
o S e 5 b PP & SHF(1-1,)2) ||
S
AF 20, 2AF 20l AP (2w, -B)  AFE (@B |
2dl, 25 20, 2LF (20L,+B) 2AF-6 (2a,-B)  (25+)
(2.59)

where, L, =1, /I, &= /o, , §=24/o, B=[B20a5 . Note that m,_=2m , where m

is the half-symmetrical rotor mass used for the symmetrical rotor in the preceding

Sections.

The characteristic equation of motion (2.59) is an eighth order polynomial having 4
pairs of conjugate roots. Figure 2.32 shows the plot of the roots of the equation of
motion given in Eq. (2.59), indicating the growth/decay of the whirl amplitude, as a
function of the rotational speed. There are two unstable roots with positive real parts
and two stable roots with negative real parts for #=0.25and & =2 (for a typical
turbocharger). Figure 2.33 shows their corresponding imaginary parts, i.e. the
frequencies of the sub-synchronous whirl modes along side the synchronous line in

comparison with that of the case without the gyroscopic effect (f=0).

When g =0, i.e. without considering the gyroscopic effect, Figure 2.34 shows the plot

of the real parts of the unstable root. The real parts cross each other at a certain speed,
indicating a switch in the dominant root [54]. Figure 2.35 shows the plots of their
corresponding frequencies. This behaviour agrees with a typical waterfall diagram from
a turbocharger shown in Figure 2.36, where the mode switches after a certain speed.
The modeshape of mode-1 is shown in Figure 2.37. This is the low frequency conical

whirl that is dominant in the low speeds. Figure 2.38 shows the modeshape of mode-2
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which is the relatively high frequency in-phase whirl is dominant in the high speed

range.

Figure 2.39 shows the plots of the real parts of the roots varying with the speed,
considering the gyroscopic moment, when f = 0.25. Adding gyroscopic moment to the
system, which increases £ to 0.25, shows a reduction in the speed at which the modes
switch as seen in Figure 2.39. This could be due to the reduction in the conical whirl
frequencies due to the gyroscopic effect as given in Figure 2.33. Figure 2.40 shows the
plot of the imaginary part of the roots varying with speed. The plot shows a purely
imaginary root for the conical mode when S =1/2 as observed with the turbocharger

with a symmetric rotor. For £ > 0.5, the system has a stable conical whirl.

2.5.3 CONCLUSIONS

A turbocharger with an asymmetric rotor model with full-film floating ring bearings
was analysed for stability using linear analysis. The outer-film of the bearing was
modelled as an external damper. Both the translation and the tilt motion of the rotor

were considered to analysed the in-phase and the conical whirl respectively.

The turbocharger exhibits two unstable modes: a conical mode and an in-phase whirl
mode. The conical mode is dominant in the low speed range, while the in-phase whirl
mode is dominant in the high speed range. The gyroscopic moment reduces the speed at
which the switch in mode occurs. Similar to the symmetric rotor, the conical whirl of
the asymmetric rotor stabilises for #>1/2. This suggests that the threshold value of the

gyroscopic coefficient f3=1/2 for a stable conical whirl, remains unaffected by the

asymmetry of the rotor.
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2.6 SUMMARY AND CONCLUSIONS

A simple linear model of a turbocharger with a symmetric rigid rotor and two
identical full-film journal bearings was analysed. The transverse motion of the rotor was
reviewed, under the effect of various support conditions. The effect of gyroscopic
moment was investigated for the tilt motion of the turbocharger, with rigid and damped
support. An asymmetric model of the turbocharger was also analysed for the effect of

gyroscopic moment for both the type of motions.

The conical whirl instability which is self-excited by a tilt motion of the turbocharger

with rigid support is controlled by the gyroscopic coefficient f. This coefficient is

given by the ratio of the polar to the transverse moment of inertia of the rotor. With an

increase in £, the gyroscopic moment changes the relative direction of the inertial and
damping moments, which helps in stabilising the conical whirl. The threshold value of
S for a stable conical whirl is found to be 1/2, when the turbocharger is on the verge of
instability. The instability is completely suppressed for 8 >1/2. The threshold ratio does
not seem to be affected by adding an external damper to the bearing and the asymmetry
of the rotor. A turbocharger exhibits the whirl instability in the form of a conical whirl
and an in-phase whirl. The conical whirl is dominant in the low speed range, while the
in-phase whirl is dominant in the high speed range. The gyroscopic moment seems to
reduce the speed at which the switch in the dominant mode occurs. The gyroscopic
effect changes the directions of the conical whirl, wherein, the rotor experiences a
forward whirl with an unstable frequency, and a backward whirl with a stable
frequency. This effect is unaffected by the change in the stability of the unstable conical

whirl for B>1/2. However, the presence of the external damper seems to change the

backward whirl into a forward whirl at high speeds.

The gyroscopic effect being controlled by the tilt motion affects only the conical whirl.
Hence it may be ignored for the nonlinear analysis of the in-phase whirl. However, the
rigid assumption of the rotor needs an investigation before proceeding to the nonlinear

analysis. Hence a flexible shaft is investigated in the following Chapter.
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FIGURES

rigid rotor of mass 2m

two identical bearings

with rigid support
(Ring fixed in
(a) all directions) (b)
Figure 2.1 (a) Schematic diagram of a turbocharger with plain uncavitated journal bearings

(equivalent to a system with floating ring bearing with the ring fixed in all directions) Cj is the
bearing centre, C, is the static journal centre, C,, is the dynamic journal centre and O is the

centre of the stationary casing; 7;,s, are the co-ordinates of the journal centre (b) Schematic
diagram of a symmetric rotor supported on two identical bearings with rigid support [54].
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14+ §1

stable

12

Figure 2.2 Plot of the real parts of the roots § showing the growth/decay rate of the sub-

synchronous whirl amplitude against the rotational speed @, for the transverse motion of the
turbocharger with rigid support.
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Figure 2.3 Plot of the sub-synchronous whirl frequency varying with the rotating speed of
the turbocharger with rigid support, for the transverse motion. Synchronous frequency is shown
for comparison as a function of speed.
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Figure 2.4 Waterfall diagram for a commercial turbocharger fitted with press-fit bearings;

adapted from Holmes [3].
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oil holes rigid rotor of mass 2m

bearing ring

B N

two identical bearings

1011

with flexible support

housing stiftness backing housing

Figure 2.5 Schematic diagram of a turbocharger with press-fit bearings (flexible support).
The interference fit between the ring and the housing of the bearings is treated as a spring giving

flexible support to the bearing. C, is the bearing centre, C is the static journal centre, C,; is

the dynamic journal centre, k is the stiffness of the flexible support [54].

F Cip(7155))

p
(C.Cys)
r,s
O
Figure 2.6 Co-ordinate system and dynamic forces in a symmetric rotor — uncavitated

floating ring bearing system, C, is the bearing centre, Cq is the static journal centre, C, is

the dynamic journal centre and O is the centre of the stationary casing.
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Figure 2.7 Plot of the sub-synchronous whirl frequency varying with the rotating speed of
the turbocharger with flexible support; synchronous frequency is shown for comparison as a
function of speed; x is the non-dimensional stiffness coefficient of the support.
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Figure 2.8 Plot of the real and the imaginary parts of the roots showing the growth/decay

rate of the sub-synchronous whirl amplitude and the whirl frequency respectively, for the
transverse motion of the turbocharger with flexible support, when x =0.1.
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Figure 2.9 Plot of the real and the imaginary parts of the roots showing the growth/decay

rate of the sub-synchronous whirl amplitude and the whirl frequency respectively, for the
transverse motion of the turbocharger with flexible support, when x =1.

mass 2m

7

two identical bearings

4ol [

with damper support

Housing Housing

Figure 2.10 Schematic of a turbocharger with uncavitated floating ring bearings with the
outer film treated as an external damper; C, is the bearing centre, C,  is the static journal

centre, C,, is the dynamic journal centre. y is the damping coefficient of the external damper.

Oil holes in the ring allow the flow of oil from the outer clearance between the housing and the
ring to the inner clearance between the ring and the journal [54].
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Figure 2.11 Plot of the sub-synchronous whirl frequency varying with the rotating speed of
the turbocharger with damper support; synchronous frequency is shown for comparison as a
function of speed.
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Figure 2.12 Water fall diagram from a commercial turbocharger with floating ring bearings;
adapted from Holmes [3].
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Figure 2.13 Plot of the real and the imaginary parts of the roots comparing the growth/decay
rate of the sub-synchronous whirl amplitude and the whirl frequency for the transverse motion
of the turbocharger with damper support with that of the rigid support. The curves
corresponding to the rigid support are shown in dotted lines.
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Figure 2.14 Co-ordinate system of the symmetric rotor model of the turbocharger with two
identical plain journal bearings for tilt motion with gyroscopic moments; O is the centre of the

stationary housing, C, is the static journal centre, C, is the dynamic journal centre; €, and
¢, are the tilt co-ordinates about s and r axes respectively; J@ is the angular momentum of

the rotor about its spin axis Z ; [ is the distance between the bearings; 7, s, are the co-ordinates

of the journal centre. Compressor and turbine wheels are not shown here.
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Figure 2.15 Plot of the real and imaginary parts of the moments from the unstable root of
the equation of tilt motion of the turbocharger with rigid support without the gyroscopic effect.
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Figure 2.16 Plot of the real and imaginary parts of the moments from the stable root of the
equation of tilt motion of the turbocharger with rigid support without the gyroscopic effect.
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Figure 2.17 Plot of the real and imaginary parts of the moments from the unstable root of
Eq. (2.39) of the turbocharger with rigid support with the gyroscopic effect when £ =0.1
(unstable)
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Figure 2.18 Plot of the real and imaginary parts of the moments from the unstable root of
Eq. (2.39) of the turbocharger with rigid support with the gyroscopic effect when S =0.25
(unstable).
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Figure 2.19 Plot of the real and imaginary parts of the moments from the unstable root of
Eq. (2.39) of the turbocharger with rigid support with the gyroscopic effect when B =1/2
(threshold).
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Figure 2.20 Plot of the real and imaginary parts of the moments from the unstable root of
Eq. (2.39) of the turbocharger with rigid support with the gyroscopic effect when £ =0.75

(stable).
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Plot of the sub-synchronous conical whirl frequencies varying with the
rotational speed of the turbocharger with rigid support, for various values of 1/2< 8 <1. The

stable frequencies show a change in the whirl direction after a certain speed by decreasing with
speed.
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Plot of the sub-synchronous conical whirl frequencies varying with the
rotational speed of the turbocharger with rigid support, for various values of 1< <2. The

stable frequencies show a change in the whirl direction after a certain speed by decreasing with
speed.
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Figure 2.23 Plot of the real part of the roots of the equation of tilt motion of the turbocharger
with damper support against the rotor speed without the gyroscopic effect, when y =10.
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Figure 2.24 Plot of the real and the imaginary parts of the moments from the unstable root
of Eq. (2.46) of the turbocharger with damper support without the gyroscopic effect

when 7 =10. The corresponding plots from the rigidly supported turbocharger are shown in

grey lines for comparison. The cross-coupled stiffness moment is purely imaginary for both
rigid and damper supported turbochargers.
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Figure 2.25 Plot of the real and the imaginary parts of the moments from the unstable root
of Eq. (2.46) of the turbocharger with damper support with the gyroscopic -effect,

wheny =10and 5 =0.25.
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Figure 2.26 Plot of the real and the imaginary parts of the moments from the unstable root
of Eq. (2.46) of the turbocharger with damper support with the gyroscopic effect, when

7=10,8=1/2.
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Figure 2.27 Plot of the real and the imaginary parts of the moments from the unstable root
of Eq. (2.46) of the turbocharger with damper support with the gyroscopic effect, when

7=10,8=0.75.
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Figure 2.28 Plot showing the change of stability of the conical whirl of the turbocharger
with damper support, due to change in the ratio £ from the gyroscopic effect.
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Figure 2.29 Plot of the sub-synchronous conical whirl frequencies varying with the
rotational speed of the turbocharger with damper support, for various values of f <1. The
stable frequencies changes from backward to forward whirl again at high speeds.
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Figure 2.30 Plot of the sub-synchronous conical whirl frequencies varying with the
rotational speed of the turbocharger with damper support, for various values of f >1. The

stable frequencies changes from backward to forward whirl again at high speeds.
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Figure 2.31 Co-ordinate system and forces acting on the rigid rotor model of a turbocharger
with floating ring bearings - linear and tilt motion including gyroscopic moments; /, and /, are
the distances between the bearing centres and the rotor centre of gravity; J@ is the angular
moment of the rotor about the spin axis Z, where @ is the spin speed and J is the polar
moment of inertia of the rotor; m_ is the full rotor mass. The external damping forces are

shown in dashed lines.
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Figure 2.32 Plot of the growth/decay rates of sub-synchronous whirl amplitude varying with
the rotational speed of the turbocharger with an asymmetric rotor in floating ring bearings, when

$=10,L1,=03,L,=0.7, a=2,5=0.25.
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Figure 2.33 Plot of the sub-synchronous whirl frequencies (imaginary part of the roots) and
the rotor speed of the turbocharger with asymmetric rotor in floating ring bearings
(y=10,L,=0.3,L, =0.7, =2, =0.25). Corresponding whirl frequencies for S =0 are
shown in grey lines for comparison. Synchronous vibration is shown for comparison as a
function of speed
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Figure 2.34 Plot of the real part of the unstable roots of Eq. (2.59) of the turbocharger with
asymmetric rotor in floating ring bearings and the rotor speed when

7=10,L,=03,L,=0.7, a=2, f=0.
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Figure 2.35 Plot of the imaginary part of the roots of Eq. (2.46) showing the sub-

synchronous whirl frequencies varying with the rotational speed of the turbocharger with
floating ring bearings when 7 =10, L, =03, L, =0.7, ¢ =2, f=0. The synchronous

frequency is shown for comparison as a function of the speed.
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Figure 2.36

Waterfall diagram for a turbocharger with floating ring bearings (speed axis is
engine speed = 1/12 x turbocharger speed [54].
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Figure 2.37 Mode shape of the rotor corresponding to mode-1 (conical mode), which is
dominant in the lower speed range as shown in Figure 2.34 and Figure 2.35.
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Figure 2.38 Mode shape of the rotor corresponding to mode-2 (in-phase whirl mode), which
is dominant in the higher speed range as shown in Figure 2.34 and Figure 2.35.
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Figure 2.39 Plot showing the effect of gyroscopic moment on the speed at which the
dominant mode shifts from the conical to the in-phase whirl,

wheny =10, L, =0.3, L, =0.7, a =2. The corresponding plot without the gyroscopic effect
is shown in grey lines for comparison.
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Figure 2.40 Plot of the real part of the roots of the turbocharger with floating ring bearings,
when plotted against the rotational speed. Change in the stability of the conical whirl
mode with change in the gyroscopic coefficient S is shown, when

7=10,L,=03,L,=0.7, a=2.
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CHAPTER 3

INFLUENCE OF ROTOR FLEXIBILITY ON THE
DYNAMIC BEHAVIOUR OF ATURBOCHARGER

3.1 INTRODUCTION

In the previous chapter, using a rigid rotor, the gyroscopic effect was analysed
for its significance in the oil-whirl instability. Gunter and Chen [2] predicted that the in-
phase whirl mode is a bending mode for a typical turbocharger. It was seen in Chapter 2
that in the case of a rigid rotor, the natural oil-whirl frequency changes with speed. In
the case of flexible rotor, the rotor flexibility is in series with the bearing stiffness. Since
the rotor flexibility does not change, the rotor whirls at a constant frequency, when the
rotor bending frequency occurs at the rotor speed. This phenomenon is defined as oil
whip [68]. Since the turbocharger rotor is a relatively rigid structure supported by
flexible bearings, it is convenient to assume the rotor to be rigid. However, most
automotive turbochargers operate at very high speeds in excess of 180,000 rpm, and the
bearings become relatively stiff compared to the rotor at these speeds. This means that
rotor flexibility can be important with respect to oil-whirl as shown by Gunter and Chen
[2]. Hence it is important to determine whether the rotor flexibility significantly affects
the dynamic behaviour at high speeds for a turbocharger. The aim of this chapter,
therefore, is to analyse the stability of a turbocharger with a flexible rotor supported by
two identical floating ring bearings. The outer film of the bearing is treated as an
external damper in series to the inner film as discussed in Chapter 2 and the ring is
assumed not to rotate but only wobble. The effect of flexibility is investigated by

superimposing the rigid motion of the rotor and the static deflection of the rotor.
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3.2 EQUATIONS OF MOTION

3.2.1 INTRODUCTION

The aim of this section is to derive the equations of motion of a turbocharger
with a flexible rotor supported by floating ring bearings similar to that with the rigid
rotor in Section 2.5. The outer ring is modelled as an external damper as discussed in
Chapter 2. The bearings have a full oil-film without cavitation [20]. The method
involves the technique of superimposing the rigid motion of the rotor and its static
deflection to capture the flexible rotor dynamics. The treatment does not allow for the
transverse moment of inertia of the turbine and the compressor discs. The equation of
rigid motion and flexible deflection are derived first and then the system of equations
for the journal motion in the inner and the outer film of the floating ring bearings are

combined into a single matrix equation.

3.2.2 EQUATION OF RIGID MOTION

In this Sub-Section, the rigid motion of the turbocharger rotor supported in externally
damped bearings is considered to derive the equation of rigid motion alone. Figure 3.1
shows a typical turbocharger with dimensions used for the investigation in this chapter.
Figure 3.2 shows the co-ordinate system of a turbocharger with flexible rotor supported

in two identical floating ring bearings. The turbine and compressor masses are

m, and m, respectively; C}, C% are the bearing centres of the turbine end bearing and
the compressor end bearing; Cj, Cfs are the corresponding journal static centres which

are the same as the ring centres Cj, Cg , since the static load is ignored due to the light

weight of the turbocharger. The distance between the two bearing centres is /, the
distance between the compressor bearing centre and the compressor centre of gravity is

[, and the distance between the turbine bearing centre and the turbine centre of gravity

is /,. Note that the ring is treated as fixed and the outer film between the ring and the
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housing is treated as a damped support, which is discussed in detail in Chapter 1. The

co-ordinates of the turbine and the compressor mass centres of masses m, and m, are

r .8 and r

ma® “ma mb?>

s, respectively; n_,s, and r,,s, are the co-ordinates of the

a

corresponding journal centres, r,, and s, , are the co-ordinates of the corresponding

ring centres. The whirl orbit was assumed to be circular about the bearing centre, since
the static load is negligible and the static centre is same as the bearing centre. Assuming

a full oil-film [20], the oil-film forces between the rotor and the ring f,, f, are given in

Egs. (2.50) and (2.51) in Chapter 2. It has been shown in Chapter 2 that a turbocharger
has self-excited sub-harmonic vibration in the form of an in-phase whirl mode and a
conical whirl mode. Hence the equations of motion in terms of both the forces and the
corresponding moments need to be considered as given in section 2.5 of Chapter 2. The
equations of translation motion describing the in-phase whirl of the turbocharger rotor

of masses m, and m, in the damper supported bearings are given by:

_fa _fb = ma'r’ma + mbi;mb H (3 1)

where r, =[r,,s,], i =ma, mb and the oil-film forces f,, f, are given by Eqs. (2.50) and

(2.51) in Chapter 2. Now, for the conical whirl, the equations of tilt motion described by
the moments about the two bearing centres have to be defined separately. In the case of
the symmetric rigid rotor in Chapter 2, the moment of inertia of the rotor is used for the
acceleration term of the equations of tilt motion. But in this chapter, the present
treatment does not allow for the consideration of the inertia directly, since rotor bending
is allowed and the masses are away from the bearing centres unlike the asymmetric

rotor in section 2.5. Hence, the moment equation is derived using the inertia forces due

to the acceleration of the masses C%, C2, which in the 7Z and sZ planes shown in

Figure 3.2 are given by:
f()-my  (I)+mfi (. +1)=0, (3.2)

£ ()-m i

arma

(L +0)+mi. (1)=0. (3.3)
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Figure 3.3 shows the net deflection of the turbine mass considering the rigid motion and
the flexible deflection at the turbine end, which is the similar to that of the compressor
mass. Note that the rigid motion is defined by the dynamics of the rotor, while the
flexible deflection is evaluated under static conditions. From the rigid motion of the
rotor, the co-ordinates of the masses can be determined from the co-ordinates of the

journal in the bearings as shown in Figure 3.2 such as:
Fma :rla _((rlb -rla)lt/l) 4 (34)
[ +((r1b 'rla)(lc"'l)/l), (3.5)

where (rlb -1, ) / [ gives the slope of the rotor along r and s directions. As mentioned

in the introduction of this Chapter, in order to analyse the flexible rotor, the treatment
requires both the rigid dynamic motion and the flexible deflection of the rotor. Hence

the flexible deflection under the static load is determined in the following Sub-Section.

3.2.3 FLEXIBLE DEFLECTION OF THE ROTOR

Under the action of the turbine and compressor weight, the rotor undergoes bending. In
this Sub-Section, this bending effect is included into the equations of motion in the form
of certain coefficients known as the influence coefficients. The influence coefficient is
defined as the deflection of the rotor under the action of a unit force. The influence

coefficients ¢, define the bending strength of the rotor in terms of the dimensions of

the rotor and its material properties such as density and Young’s modulus. The flexible

deflection is superimposed onto the rigid motion by considering the net deflection of the

masses as shown in Figure 3.3. The flexible deflection T, of the turbine mass m, due

to the inertial forces of the masses m, and m, is given by:

-, . =, (mi ) —a,(mi,,), (3.6)

m
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_rmb = _a21 (mai:ma) - a22 (mbi:mb) ’ (3 7)

where T = [f,i], i=ma, mb, a; is the influence coefficient of the rotor given by the
deflection of masses m,, m, due to the force F, acting on one of the masses; F, and F,

are the respective forces acting on m, and m, respectively. Figure 3.4 shows the

schematic of the deflections and the forces to calculate the influence coefficients. Figure
3.1 shows a typical turbocharger with the dimensions. Since the rotor is a stepped type,
a simple finite element model [69] is used to determine the influence coefficients. Some
details of the finite element model used for this evaluation is provided in Appendix B.
Assuming the rotor to be pin-pinned, i.e., the translation is fixed at the bearing centre
but rotation allowed, the coefficients are obtained by applying a force at the turbine
mass centre and the compressor mass centre separately. Figure 3.4 shows the

application of the force for determining the deflection o, under the action of a force F/,.
The influence coefficients «; =, / F,, vV i,j=12, are determined from the

deflections of m, and m,. For a typical turbocharger shown in Figure 3.1 these

) a, a, . | 7.199 1312
coefficients are calculated to be =10"°x
a 1.312 4.392

} . The net

21 a22

deflections along » and s directions as shown in Figure 3.3 are given by:

(3.8)
Yy =T - (3.9)

where T, T, and T, I, are given by Egs. (3.4) and (3.6). These coordinates of the

masses are used in determining the moments in Eqgs. (3.2) and (3.3).

As discussed in Chapter 2, treating the outer film of the floating ring bearing as an
external damper, at the interface between the ring and the stationary housing as shown

in Figure 3.2 , the forces are given by [54]:

f =i, (3.10)
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f, = ., (3.11)

where f,, f, are given by Egs. (2.50) and (2.51) in Chapter 2; y is the damping
coefficient of the outer film (external damper). Now, the equation of translation motion
given in Eq. (3.1), the equations of tilt motion given in Egs. (3.2) and (3.3), the
equations of translation in the outer film given in Egs. (3.10) and (3.11) together
describe the equations of motion of the turbocharger with flexible rotor in the floating
ring bearings. Substituting for the forces from Egs. (2.50) and (2.51) into Egs. (3.1) and

assuming a solution of the form [r,s] = [R, S]eM gives:

by (AR, ~R,)~2,(4S,, ~S,) by (AR, ~R,) -8, (4S,, ~S,) ~m,A°R, ~m "R, =0,
(3.12)

by (28,, —S,) + & (AR, —R,) by (48, = S;) + & (AR, —R,) —m,2°S, -m, 2°S, = 0.
(3.13)

Likewise, substituting into Egs. of tilt motion (3.2) , (3.3), and the Egs. of translation in
the outer film (3.10), (3.11) results in a set of twelve equations. These twelve equations
are related to the twelve degrees of freedom of the system. Four of them are related to
the ring co-ordinates, while the rest eight of them are related to the journal coordinates
in the two bearings. These can be written in the matrix form, which after non-
dimensionalising gives the equations of motion of a turbocharger with a flexible rotor in
the floating ring bearings as:
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0 0 -§ -2 0 o § 2 -m, 0 M, O
2 2
—-§ -3 0 0 s 3 0 0 M, 0 -M 0
@ - &, - Sa
3 -$ 0 o -2 0 0 M, 0 M,
0 0 0 0 1+ 0 -, 0 K, 0 K, 0 [[S
0 0 0 0 -I 1+, 0 K, 0 K, 0 R
0 0 0 0 0 1+, 0 -L 0 K, 0 K, fela =0,
0 0 0 0 L, 4L 0 K, 0 K|
~ A ~ 1
il @ -5 -2 R
(2+1]s 5 0 0 §$ -9 0 0 0 0 0 0 4
1
“O [Zyls o o 2 5 o 0o o o o o]|%
2 (2 2 s,
7 @ 5 -0
0 0 [2+1Js 3 0 0 $ -5 0 0 0 0
_o (7 [
0 0 5 [2+1]s o 0 3 § 0 0 0 0
(3.14)

where  2m=m, +m,; M,=M,L§, M, =M,(1+L)s, M,=M,(1+L)s*,

A

o A2 _ A A2 ) _ A A2 > A A2
M,=M,Ls", K, =-o,M,;s -1, K, =—-a, M s, K,=-a,M,s",

A

Kzz :_6%22]‘/1/;*ez -1, d{ij :aijma)lzﬂ Ma,b =ma,b/m ’ Lt :(lt/l)’ Lc :(lc/l) are the non-

Z — ﬂﬂBLBSR

dimensional groups. 7=y/4, §=1/w, o, =24/m, &=/, , o B are the

same as defined in Chapter 2. This equation is solved and the stability of the roots are

analysed in the following Section.

3.3 ANALYSIS: ROTOR BENDING AND SUB-SYNCHRONOUS
WHIRL

In this Section, the stability of the roots of the characteristic equation and the related
modeshapes of the turbocharger with flexible rotor and floating ring bearings are

analysed. The characteristic equation of the determinant given in Eq. (3.14) is solved for
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the turbocharger shown in Figure 3.1 using the values «,,=7.199%-8 secz/kg,
a,,= 1.312e-8 sec’/kg , a,,=1.312e-8 sec’/kg, a,,= 4.392e-8 sec’/kg. m, = 0.2513
kg, m,=0.0676 kg, I.=33.13 mm, 1=38.7 mm, 1,.=35.02 mm, A=1297, 7 =10. Note

that the calculation of the influence coefficients is described in section 3.2.3. The
solution gives 6 pairs of complex conjugate roots, of which two pairs are unstable roots
with positive real parts similar to Chapter 2. The real parts of the roots are plotted in
Figure 3.5 and Figure 3.6. The real parts of the roots give the damping in the system
while the imaginary parts give the whirl frequency. The positive real parts imply that
the whirl amplitude grows with time, where the journal centre keeps whirling outward.
The negative real parts imply that the whirl amplitude reduces with time regaining the
journal centre’s original position. Figure 3.7 shows the imaginary parts of the roots,
which are the whirl frequencies of the turbocharger rotor in the floating ring bearings as
a function of non-dimensional speed. It was seen in Chapter 2 that the whirling
frequencies are functions of the rotor speed. However, Figure 3.7 shows that the two
frequencies corresponding to modes 4 and 6, have a natural frequency at zero speed.
Since the stiffness of the bearings is speed dependent, the stiffness is negligible at zero
speed. The flexible model has rotor stiffness in series with the bearing stiffness and
damping. Hence, these two modes must be due to the vibration of the compressor and
the turbine masses on the rotor spring under free-free condition. Moreover, Mode 4
remains almost at a constant frequency for all the speeds, which indicates that this
frequency is mainly determined by the rotor stiffness. Mode 6 increases with increasing
speed, which indicates that this frequency is determined by the effective stiffness of the

rotor and the bearings.

Similar to the rigid rotor behaviour discussed [54], Figure 3.6 shows the real parts of the
two unstable modes 2 and 4 crossing at a certain speed. This behaviour indicates a shift
of the dominant mode, with mode 2 dominant in the low speed range and mode 3
dominant in the high speed range. Compared to the models used in Chapter 2 where the
displacements of the journals in the two bearings were considered alone, the present
treatment allows the relative displacements of the masses and the journals in the
bearings to be observed. The modeshapes are effectively governed by the in-phase and
out-of-phase movements of these 4 locations on the rotor. Figure 3.8 shows the

modeshape of mode 1 which is a stable conical mode. Figure 3.9 shows the modeshape
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of mode 4 which is the next stable mode. This mode is a result of journal displacements
in the bearings being out of phase with each other appearing like a second bending
mode of the rotor. This mode has little or no displacement of the masses but has high
amplitudes at the bearing centres. Figure 3.10 and Figure 3.11 are the mode-shapes of
mode 5 and 6 respectively. They are more like bending modes driven mostly by the

Compressor mass.

The unstable mode 2 that is dominant in the low speed range is the conical mode which
is shown in Figure 3.12(a), (b) at low speeds and Figure 3.12(c), (d) at high speeds
respectively. This mode is essentially a rigid body mode and is little affected by the
rotor flexibility. Figure 3.13(a) and (b) show the modeshapes of mode 3 that is
dominant in the high speed range which is an in-phase whirl mode. At low speed of
about 7771 rpm, the mode shows almost no bending in the rotor as shown in Figure
3.13(a), (b). But at high speeds, above about 101,030 rpm, i.e. around a whirl frequency
of 22,581 rpm, the rotor starts to show a little bending as shown in Figure 3.13(c), (d).
Figure 3.14 shows a comparison of this mode for various speeds, where the rotor shows
bending and a very little change in the modeshape after about 100,000 rpm.

Figure 3.7 shows that the whirl frequency of the rotor is about 50% of the rotor speed at
low speeds. However the ratio of the frequency to the speed reduces with increasing
speed. This implies that the rotor’s whirling frequency is about the first bending
frequency only at a very high speed for the turbocharger under investigation. A simple
eigenvalue analysis is done using the finite element model created for the influence
coefficients determination in section 3.2.3, with added mass matrix. The beam model is
pinned at the two bearing locations. It showed that the first bending frequency under
pin-pin condition is about 100,000 rpm. This implies that the rotor must be whirling at
this frequency only at a speed above 200,000 rpm considering a 0.5 frequency ratio. The

details of the mass matrix and the eigenvalue calculation are given in Appendix B.
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3.4 CONCLUSIONS

A turbocharger linear model with a flexible rotor was developed by super-
imposing the rigid motion and the flexible deflection. The flexibility of the rotor was
incorporated into the model in the form of influence coefficients. The rotor-bearing
system had full-film floating ring bearings, with the outer-film modelled as an external

damper. The system was analysed for the stability of the whirling motion.

Similar to the rigid rotor model in Chapter 2, the flexible rotor model exhibits the
conical and the in-phase unstable whirl modes. For the turbocharger investigated, the
conical mode is almost a rigid body mode at high speeds while the in-phase whirl mode
stays fairly rigid up to a speed of about 100,000 rpm and then starts showing little
bending. Based on the analysis, it seems that assuming the rotor to be rigid is reasonable

upto a speed of 100,000 rpm.

Although turbochargers have unstable modes, literature suggests their successful
operation due to the nonlinearity of the oil-film. Hence a nonlinear analysis is essential
to investigate the instabilities in greater detail. This is performed in the next chapter

considering the effect of a static load which has been ignored in Chapter 2 and 3.
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Figure 3.1 A typical automotive turbocharger used in the investigation of the effect of the

rotor flexibility in the stability of the turbocharger. The finite element beam model used to
calculate the influence coefficients of the rotor detailed in section 3.2.3 is also shown. All
dimensions are in mm. (Adapted from the drawing given by Cummins Turbo-Technologies Ltd)
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Figure 3.2 Co-ordinate system of a turbocharger with a flexible rotor and two identical

floating ring bearings. Both the flexible deflection of the rotor and the rigid motion are

superimposed; (-), represents the turbine end and (), represents the compressor end; m,, m,

@
are the turbine and the compressor masses respectively; Cg, Cg are the ring centres and
and Cjg, C?S are the corresponding journal static centres; / is the distance between the
bearings; /, is the distance between the compressor bearing centre and the compressor centre of
gravity, and / is the distance between the turbine bearing centre and turbine centre of gravity;
y is the damping coefficient of the outer film; » is the axis along the line of centres of the

journal and the bearing; s is the axis perpendicular to the line of centres in the plane of the
bearing; Z is the axis along the length of the bearing; 7, ,, s, , are the co-ordinates of the ring

s and r

a® “ma mb?>

centre; 7, ,,, Sy, are the co-ordinates of the journal dynamic centre; 7, s, are

the co-ordinates of the turbine and the compressor mass centres respectively.
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Figure 3.3 Net deflection of the turbine mass from both the rigid motion and the flexible
deflection; », ,s  are the co-ordinates of the turbine mass with respect to the origin which is

ma?* ma

the centre of the stationary housing O ; 7, .S, are the co-ordinates of the mass from the rigid

a’ ™ ma

s along r, s

ma?®*~ ma

motion alone. —r, ,—s,  are the flexible deflections from position

directions; r,,,s,, are determined likewise at the compressor end, where all the corresponding

subscripts are replaced by mb .

: K

Figure 3.4 a) Rotor deflections at the turbine and the compressor mass centres under a
static force F, applied at m_; J,,, 0,, are the corresponding displacements of m, and m, . b)

Rotor deflections at the turbine and compressor mass centres under a static force /), applied at

m,; 0, , 0,, are the corresponding displacements of m, and m,. The bearing centres are

pinned allowing only rotation about the » axis; all other relative motions are constrained.
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Figure 3.5 Plot of the real parts of the roots of the determinant of the matrix given in Eq.
(3.14) giving the growth rate of the whirl amplitude of the turbocharger rotor shown in Figure

3.1 in floating ring bearings, when A=1297, y =10.
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Figure 3.6 Plot of the real parts of the roots of the determinant of the matrix given in Eq.

(3.14) giving the growth rate of the whirl amplitude of the turbocharger rotor shown in Figure
3.1 in floating ring bearings, when 4 =1297, 7 =10. Mode 4 is not shown here for clarity.
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Figure 3.7 Plot of the imaginary parts of the roots of the determinant of the matrix given in

Eq. (3.14) giving the whirl frequency of the turbocharger rotor shown in Figure 3.1 in floating

ring bearings, when 4 =1297, 7 =10. Mode 2 and mode 3 are the two unstable frequencies.
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speed ~ 7771 rpm speed ~ 101030 rpm

frequency ~ 3286 rpm frequency ~ 17952 rpm

(b)

Figure 3.8 Mode shape of mode 1 which is a stable mode. (a) At a low speed @ =0.1 (b)
At a high speed @ =1.3

speed = 7771 rpm speed ~ 101030 rpm
frequency = 3566 rpm frequency =~ 45947 rpm

Figure 3.9 Mode shape of mode 4 which is a stable mode. (a) At a low speed @ =0.1 (b)
At ahigh speed @ =1.3
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speed = 7771 rpm speed ~ 101030 rpm
frequency ~ 106574 rpm frequency ~ 107483 rpm

m,

Figure 3.10 Mode shape of mode 5 which is a stable mode. (a) At a low speed @ =0.1 (b)
At a high speed @ =1.3

m, speed ~7771 rpm m speed ~ 101030 rpm
frequency ~ 106573 rpm frequency ~ 112195 rpm

Figure 3.11 Mode shape of mode 6 which is a stable mode. (a) At a low speed @ =0.1 (b)
At a high speed @ =1.3
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Figure 3.12 (a) 3 dimensional view of the mode shape of the conical whirl mode (b) Front
view of the mode shape at a low speed of about 7771 rpm, at a whirl frequency of about 3647

rpm, when @ =0.1, 3 {§} =0.051. (c) 3 dimensional view of the mode shape (d) Front view

of the mode shape at a high speed of about 101,030 rpm, at a whirl frequency of about 22,581
rpm, when @=0.1, S{§} =0.051. The path of the compressor and the turbine centre of

gravities and the journal motion in the bearings are shown in dotted lines.
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Figure 3.13 (a) 3 dimensional view of the mode shape of the in-phase whirl mode (b) Front
view of the mode shape at a low speed of about 7771 rpm, at a whirl frequency of about 3922

rpm, when @ =0.1, S{§} =0.051. The modeshape shows a rigid motion of the rotor. (c) 3

dimensional view of the mode shape (d) Front view of the mode shape at a high speed of about
101,030 rpm, at a whirl frequency of about 45,820 rpm, when @ =0.1, 3{5} =0.051. The

modeshape shows bending of the rotor. The path of the compressor and the turbine centre of
gravities and the journal motion in the bearings are shown in dotted lines.
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Figure 3.14 Mode shape of the in-phase whirl mode showing bending as the rotor speed is
increased. Bending effect is relatively significant for speeds greater than about 69,910 rpm.
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CHAPTER 4

THE EFFECT OF STATIC LOAD ON OIL-WHIRL IN
A PERFECTLY BALANCED ROTOR-BEARING
SYSTEM: LINEAR ANALYSIS

4.1 INTRODUCTION

In the previous Chapter, since the weight of the turbocharger rotor is negligible
compared to the dynamic loads acting on the rotor, the static eccentricity ratio due to the
gravity load has been neglected. Myers [43] has demonstrated the effect of a static load
on the dynamics of a rotor-bearing system with rigid supports using the long-bearing
approximation of the bearing forces. He used an oscillating 7 -film cavitation model
which is detailed in Chapter 1. Myers presented a linear analysis to determine the
stability threshold. His work includes a nonlinear analysis using the Hopf bifurcation
method [70] applying Poore’s bifurcation formula [71] to analyse the stability of the
limit cycles. The long-bearing approximation gives the whirl frequency to speed ratio
around unity; however, the oil-whirl occurs at a frequency ratio of 0.5 as shown in
Chapter 2. To overcome this, Gardner [23] used the short-bearing approximation of the
bearing forces and performed a similar exercise to analyse the linear and nonlinear
influences of the static load on a similar rotor-bearing system using the static 7 -film
cavitation model [8]. Nevertheless, Holmes [38] demonstrated a better correlation of the
experimental journal orbits of a rotor system to that predicted by the oscillating 7 -film
cavitation model using the short-bearing approximation [18]. This Chapter aims at

analysing the influence of a static load using the short-bearing approximation [18] of the

97



CHAPTER 4 THE EFFECT OF STATIC LOAD ON OIL-WHIRL IN A PERFECTLY BALANCED
ROTOR-BEARING SYSTEM: LINEAR ANALYSIS

hydrodynamic bearings with an oscillating 7 -film cavitation model, to combine the
benefits of the two in simulating oil-whirl. Although the difference between the static
and the oscillating 7 -film models does not affect the linear steady-state analysis [8, 21],

this model is used for its nonlinear effect which is presented in the next Chapter.

Myers and Gardner [23, 43] detailed a linear analysis to determine the threshold speed
in the parameter plane of steady-state eccentricity ratio and the speed of the rotor.
Further to that, with the help of the asymptotic analysis, this Chapter presents the case
when the steady-state eccentricity ratio tends to zero. The significance of the radial
restoring force in terms of various system parameters is discussed. The onset of oil-
whirl at the stability threshold is reviewed to be a Hopf bifurcation [70] by analysing the
eigenvalues of the Jacobian determinant of the linearised system, about the steady-state

solution.

The gyroscopic effect is not considered in this Chapter, since the interest is in the in-
phase whirl which is not affected by the gyroscopic moments as discussed in Chapter 2.
The rotor is assumed to be rigid based on the work in Chapter 3, which showed that the

flexibility of a typical turbocharger rotor could be insignificant up to about 100,000
rpm.

4.2 STABILITY THRESHOLD

4.2.1 INTRODUCTION

The aim of this Section is to determine the stability threshold of the bearing
equilibrium state and to define the corresponding stable and unstable regions in terms of
the steady-state eccentricity ratio and the rotational speed of the rotor. This is achieved
by analysing the linearized equations of motion of a perfectly balanced rigid rotor
mounted in journal bearings with a rigid support. An oscillating 7z -film cavitation
model which is detailed in Chapter 1 is used as boundary conditions for the short-

bearing approximation [18] of the Reynolds’ equation in deriving the oil-film forces.
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The details of boundary conditions in the derivation of the oil-film forces are discussed
in Appendix A. The influence of the static load on the radial restoring force of the oil-

film is studied. The case when the eccentricity ratio tends to zero is also considered.

4.2.2 EQUATIONS OF MOTION

4.2.2.1 CARTESIAN COORDINATES

The rotor-bearing system considered in this Chapter consists of a symmetric rigid rotor
of mass 2m supported in two identical rigidly supported journal bearings similar to the
configuration given in Chapter 1, Section 2.2.2. Figure 4.1 shows a schematic diagram
of the rotor in the bearing, where e is the eccentricity of the journal centre with respect
to the housing centre O in the clearance C; ¢ is the attitude angle of the line of journal

centre C, and the bearing centre C, with the vertical direction. Note that, from this
Chapter onwards, the journal centre is not distinguished as the static and dynamic
centres (C,g,C,,) separately as done in the previous Chapters. This is because, the
treatment is focussed on the static load effect in terms of its steady-state position
defined by n_, ¢ ; the suffix s denotes the steady-state; X,Y are the coordinates of the
journal centre along the vertical and the horizontal axes respectively; F' is the static

load along X ; @ is the rotational speed of the rotor; F”,F! are the radial and the
tangential forces along r,s respectively, acting on the rotor, due to the pressure in the
oil-film caused by the rotation of the rotor; (-)” denotes the presence of an oscillating

7 -film cavitation in the bearings. For an oscillating 7 -film, the extent of fluid-film is
from 6 =0 to ~ radians, while the air cavity extends from & = to 2z radians of the
clearance as discussed in Chapter 1. The other commonly used 7 film cavitation model
is the static z-filmmodel [8]. The static film model has the film extent fixed with
respect to the housing where the boundary conditions are functions of the derivatives of
the eccentricity ratio and the attitude angle. In the case considered in this chapter, the

film extent is governed by the dynamics of the rotor. Holmes [38] demonstrated a better
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correlation of the experimental journal centre orbits of a rotor system with that predicted

by the oscillating 7 -film cavity model compared to the static 7 -film cavitation model.

The radial force F?”, and the tangential force F are non-dimensionalised as
F =F’/S F, F.=F’/S F; S, is the modified Sommerfeld number for short-
bearings and is given by [23]:

_ LRy

which is a  non-dimensional group defined by the bearing
radius R and length L, the clearance C, the viscosity of oil-film g, , the speed @ and
the static load F'. It can be seen from Eq. (4.6) in comparison with Eq. (4.4), that the
non-dimensional load capacity (static load) F is given by the inverse of the
Sommerfeld number 1/S, .F. and F, are obtained by integrating the short-bearing

approximation of the Reynolds’ equation for thin films and applying the boundary

condition of an oscillating 7 -film. The film forces are given by [19, 23] :

7o n2(1_2¢§)+7m(1+2n2)
C =) 2(1-m?)"

(4.2)

zn(1-24) L 2w

4(1—n2)§ (1-n)

F = : (4.3)

where n is the eccentricity ratio given by the ratio of the eccentricity e to the clearance

C. The derivation of these hydrodynamic forces is given in Appendix A. The radial

restoring force F, helps the stability of the rotor, while the tangential force F. causes

the rotor to whirl as seen in Chapter 1. From Eq. (4.2), it can be seen that E is

stiffness-like in nature due to the presence of the spring force term

[n2(1—2¢3)/ (l—nz)z] The radial force in a full-film [20] is entirely damping-like in
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. . = . 2 2 5/2 .
nature and is given by F. =|:7zn(1+2n )/Z(I—n ) } Under the action of the film

forces given by Egs. (4.2) and (4.3) in each bearing, the equations of motion of the
symmetric rotor supported in two such identical journal bearings with rigid support,

along X and Y are given by:

d*X » b
m i =F+F'cos¢g—F'sing =F,, 4.4)
ay ., . ,
m o =F’sing+Flcos¢g =F,. 4.5)

From Figure 4.1, it is seen that the static load is given by F = (Ff7 )2 +(FS” )2 . The

non-dimensional form of Egs. (4.4) and (4.5) are given as:

&@X 1 - -
=—+F cosg—F sing, 4.6
s st ¢—F sing (4.0)
&Y - . -
S =F sing+F, cos¢, 4.7)

m

1

where: X =X/C, Y=Y/C, o=(mC/F):®, r=0t, o is the rotor speed; the over-

dots denote the derivative with respect to 7 ; Note that @ is non-dimensionalised using
the static load, since the influence of the static load is the subject of interest in this
Chapter. Hence it is different to the non-dimensional speed @ used in the previous
Chapters. Equations (4.6) and (4.7) can be represented as the functions of co-ordinates

in the form:

X:%FX(X,Y,)?,?,S ), (4.8)
(0]
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(X,7,X,Y,S ). (4.9)

4.2.2.2 POLAR CO-ORDINATES

The Cartesian system is mostly used in this thesis which is convenient for analytical
purposes. Some of the advantages of this form are listed by Barrett [37]. However, it is
found to be convenient to use the polar form in MATLAB programming as well as for

the asymptotic analysis in Section 4.3.1.

Using the equations X =ncos¢ and Y =nsing, the equations of motion in n,¢

coordinates are given by:

d’n  (dg\
mC{W—n(Ej ]:FCOS¢+F;P, (4.10)
2
mC nd—?+2@% =F"—-Fsing. (4.11)
dt dt dt

The non-dimensional form of Egs. (4.10) and (4.11) are given by:

—2

. i 1 —

—((li—ng”)=—-cosp+F, 4.12
Sm( 9°) 5. P+ F, (4.12)
@ o o= 1

S—(n¢+2n¢)=FS—S—sm¢, (413)

where F, and F, are given by Egs. (4.2) and (4.3).
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4.2.2.3 STEADY-STATE CONDITION

In this Chapter, the main interest is to analyse the steady-state of the system using the
linear analysis. In this Sub-Section, certain useful relations in terms of the system
parameters and the steady-state variables are derived. When the journal motion reaches
the steady-state, the dynamic behaviour does not change with time. Hence, in the
steady-state, the solution to Eqs. (4.8) and (4.9) gives the equilibrium state X, Y,

where, X =n_cos(@,), Y, =n_sin(g,); n, is the steady-state eccentricity ratio and ¢, is

the steady-state attitude angle, which are the solutions to Egs. (4.6) and (4.7) obtained
by setting the time derivatives to zero. Under the steady-state condition, from Figure

4.1, the component of the resulting force along Y is given by:
(F,) sing, +(F,) cosg =0, (4.14)

which gives,

tang, = —(

e Tl

J , (4.15)

where the subscript s denotes the steady-state condition. Substituting for F,, F, from

Egs. (4.2) and (4.3) gives,

7[(1—1’13);

tang@ =
/. 4n,

(4.16)

Now, the inverse of the non-dimensional load capacity is given by the Sommerfeld

number as:

S (n)= = . (4.17)
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A change in the speed affects the Sommerfeld number as seen in Eq. (4.1) which in turn
affects the steady-state equilibrium state. Lund [72] introduced a system parameter o,

which is independent of the rotor speed. It is constant for any rotor system subject to a

constant load, using a lubricant of constant viscosity and is defined by:

3
o, = o| Lo Rilly | 4.18)
)

1
(mCFY: C?

Note that the speed is non-dimensional. Figure 4.2 shows the locus of the equilibrium
states defined by the parameters n_, ¢ and is plotted using Eq. (4.16). Under the action
of the static load, the journal centre assumes the steady-state which is defined by the

locus shown in Figure 4.2. When the radial force is negligible (E)Y — 0, Eq. (4.15)

shows that ¢ —90°, i.e., the journal centre moves horizontally due to the tangential
force which acts like a damping force as in the case of the full-film bearings [20]. When

the tangential force is negligible, (F,) =0, ¢ —0", the journal centre moves

N

vertically down towards the housing like a mass on a spring. As these forces vary, the

journal centre traces the path shown in Figure 4.2. It can be seen from Egs. (4.2) and

(4.3) that the ratio (F; / F r) is independent of the speed. The relationship between these

forces with the static load is discussed in the following Section.

4.3 ANALYSIS OF THE LINEARIZED EQUATIONS OF
MOTION

In this section, the equations of motion are linearised and analysed to determine
the stability threshold between the stable and the unstable equilibrium states of the
journal centre. The equilibrium states are defined in a parameter plane of the steady-
state eccentricity ratio of the journal centre and the rotor speed. The whirl frequency of

the rotor system is verified at this stability threshold. The equations of motion given in
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Egs. (4.8) and (4.9) are defined in the form of a first order system in terms of the state

variables, x, =X - X, x, =X, x,=Y-Y, x, =Y as:

X =X,

X, :E)—”;FX(xl,xz,x3,x4,Sm),
. (4.19)

X3 =Xy

y — m I
X, = = Fo(x,x,,%5,x,,S,).

The Jacobian determinant D f(x) of the system (4.19), which is of the form x =1(x), is

given by:
0 1 0 0
_ _bxx _ki _b_xy
PG Y (4.20
o(X,X,Y,Y) 0 0 0 1
K b K by
—2 e e —2
where:
k‘(x = _Sm (887_)(} > kvy = _Sm Laa_i(j 5bxx = _Sm (ai—XJ Jbvv = _Sm Laij b
oX oY
’ ’ ’ _ 4.21)
k,=-S, aF_‘Y ko ==S GF;Y b, =-S, oF, b ==S OF,
g ox ), " or ) ox ), " oY ),
To compute the eigenvalues s of A, the characteristic equation is given by:
|A-51|=0, (4.22)

where I is a 4x4 identity matrix. The determinant in Eq. (4.22) expands into,
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a_)4s4+(bxx+byy)0_)2§3+((kxx+kW)a_)2+b”b bxyb ) (4.23)
bk, +bk, bk, bk, )5 +(k.k, —k k,)=0

XX Cyy yyooxx Xy Tyx yx' oxy Xy Uyx

In the stable region, the eigenvalues of the characteristic equation given in Eq. (4.23)
are two complex conjugate pairs with negative real parts implying the existence of
decaying amplitude. One of them crosses the imaginary axis at the threshold speed. At
this speed, one of the pairs of eigenvalues is purely imaginary and this pair becomes
unstable with a positive real part, which corresponds to growing amplitude, above the

threshold speed. Using Routh’s stability criterion, 4, >(A44,/4,)+(4,4,/4),
where 4,, p=0,1,2,3,4 are the coefficients of terms s”; p denotes the order of the

term, a threshold speed @, that divides the stable and the unstable equilibrium states is

determined, which is given by [23]:

_, B.B -B. B,

W =

’ (B, +B,)(K.K,-KK,) (B”KXX+B K, +B K, +BWKW)
(B.K, +B,K,-BK, Bny_W) (Bxx+ BW)

(4.24)

Figure 4.3 1s a plot of @, from Eq. (4.24) as a function of n_, which separates the stable

and the unstable equilibrium states defined in terms of the steady-state eccentricity ratio
and the rotational speed. If the speed is less than the threshold speed, the journal centre,
when perturbed, spirals inwards to a stable equilibrium state. On the other hand, if the
speed is greater than the threshold speed (@ > ®,), the journal centre reaches an
unstable equilibrium state. Any small displacement from this state, takes the journal
centre on to an orbit which leads it to spiral out towards the housing away from the
equilibrium state. The threshold curve asymptotes vertically for an eccentricity ratio of

n, ~0.76 . This implies that all the equilibrium states corresponding to the steady-state
eccentricity ratios above about 0.76 are stable. When n_ — 0, the threshold speed is
@, =2.76 . Two operating curves that represent two types of rotor systems are shown
for o, =0.1 and 10. For a certain combination of the system parameters defined in Eq.
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(4.18) i.e. for a specific rotor system, these curves show at what eccentricity ratio and

speed their equilibrium state changes stability. When o, >>1, the system becomes
unstable at a low eccentricity ratio (n, = 0.05) as the speed is increased. When o, <<1,

the system becomes unstable at a much higher eccentricity ratio (n, = 0.7).

Figure 4.4(a) shows the real parts of the unstable eigenvalues crossing the imaginary
axis and Figure 4.4(b) shows the imaginary parts crossing 0.5 which indicates oil-whirl
at a frequency of the order of the half-rotational speed. The frequency lines
corresponding to each eccentricity ratio crosses 0.5 at different speeds, which relates to
the variation in the threshold speed with the eccentricity ratio. The whirling frequency
reduces from a higher value which is fairly synchronous with the speed to about 0.5 at

the threshold speed indicating the onset of oil-whirl. Above a@,, it reduces further with

the increasing speed. From Eq. (4.23), the whirl frequency at the threshold speed is
given by [23]:

N |-

(B,K,, +B,K, -B K, -B,K,)

xy ' hyx T Pyx NNy

1
(BXX+Byy) 50.

Q, = (4.25)

Figure 4.5 shows the plot of Eq. (4.25) where the whirl frequency at the threshold speed
is 0.5. This is referred as the half-frequency whirl in the literature. However, the whirl
frequency reduces as the steady-state eccentricity ratio increases. It reaches zero, when
n, = 0.76, where the threshold speed asymptotes vertically indicating the disappearance
of oil-whirl. In order to get a physical insight into the behaviour of the static load with
increase in the steady-state eccentricity ratio, the following section analyses the role of

the bearing forces.

43.1 THE EFFECT OF STATIC LOAD IN THE BEARINGS WITH 7 -
FILM CAVITATION
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Figure 4.3 shows that the threshold speed asymptotes to infinity at an eccentricity ratio
about 0.76, implying the existence of stable equilibrium states for all speeds when
n,>0.76. It can be seen in Figure 4.2 that, increasing the static load increases the
eccentricity of the rotor in the bearing clearance by virtue of the film stiffness and
damping characteristics. This seems to increase the film forces which balance the static
load in order to achieve an equilibrium state. To this end, it is necessary to understand
the role of the film forces in achieving a stable operation. This is done in this section by
starting with the analysis of the horizontal asymptote of the threshold curve when

n,—>0.

As it has already been mentioned, Figure 4.3 shows a threshold value of @, =2.76
when 1, ~0. In order to evaluate this value analytically, let n’ <<1 then 1+n’~1,

and Eqgs. (4.16) and (4.17) can be simplified to:

¢,(n,) ~ tan” [EJ (4.26)

= . (4.27)

Equation (4.26) and (4.27) define the oil-film forces and the static load as functions of

the steady-state eccentricity ratio. The occurrence of a factor 7/4 can be seen in
Equations (4.26) and (4.27). Hence, considering the case when n* << 7’ / 16, Eq. (4.27)

gives the approximation of Sommerfeld number as:

S, =—. (4.28)

Since the coefficients are directly defined in terms of the steady-state eccentricity ratio,

for this asymptote analysis, the polar form of the equations of motion given in Egs.
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(4.12) and (4.13) are considered in this Section. For n_* << 7r2/ 16, using Eq. (4.28), the

linear coefficients of the characteristic equation given in Eq. (4.23) can be simplified as:

2n n 1 n
K =~ SL,K ~| 2|, K ~r— K =~—=, 4.29
nn ( P ] ng (4] on 4ns ] T ( )

1 2n’ 2 1
B’mz(gj, sz—( . j, sz—(;), BW%(EJ. (4.30)

Similar to Eq. (4.24), using the polar coefficients given in Egs. (4.29) and (4.30), the

threshold speed can be written in the form,

A (4.31)

where:
A=(B,B,-B,B,)S,,

(B,m + B¢¢)(KMK¢¢ —K,4K,, )

(B»mK¢¢ +B,,K,, —B,,K,, —B, K, ) ’

B=

(B,K,,+ByK,+B,4K, +B,K,) |
(B,,+B,)

C

These are the functions of the coefficients in the polar co-ordinates equivalent to that of

Eq. (4.21). Using the Sommerfeld number in Eq. (4.28), the threshold speed is

approximately determined from Eq. (4.31) using ,

2
A= 162 7[__”3 , B~ i ,C= o, ; (4.32)
nr \ 16 24n, 2r

Thus,
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Pk s (4.33)

@, = ,/ﬁ ~2.764, (4.34)
VA

which can be seen in Figure 4.3 for n ~0. From Eq. (4.31), it can be seen that, when

1.€.

A4<0, @, becomes negative as B>C (@, 1s imaginary). From Eq. (4.32), it is seen
that this occurs when n’ > 7%/16. For n’ < 7°/16, @," is positive. This suggests that
@, changes its sign when n =+7/4~+0.79. This is a reasonably good
approximation of the vertical asymptote at n_ ~0.76, although it stems from the
assumption n, <<1. This suggests that there is physical significance of the eccentricity
ratio, n, =+ /4. Using Eq. (4.26), considering n_= z/4, the approximate tangent of

the steady-state attitude angle is given by:

tan¢sz—(:sj %41}:1, (4.35)
r s nS

which makes ¢ =45 and,

__F. (4.36)

“
~

Substituting for 7 from Eq. (4.36) into Eq. (4.14) gives,
_ 1 -
F ) sing — cosgp =—=F, 4.37
( r)s ¢S ( V)S ¢S S ( )

1e.,
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1 = F)_1_
L P (7)o (71_ =0707. (4.38)

m

As discussed in Section 4.2.2.3, the eccentricity increases as the static load increases.
Figure 4.6 shows a reduction in the attitude angle with the increase in the static load.
Figure 4.7(a) shows the plot showing the behaviour of the film forces and the tangent of
the attitude angle in the parameter plane shown in Figure 4.3. Figure 4.7(b) shows the

plot of the modified Sommerfeld number in the parameter plane. It can be seen in

Figure 4.7(a), that the stability threshold increases rapidly when ¢ reaches 45°,

n, ~0.62 . The following characteristics can be observed from Figure 4.7(a) and (b):

e when O<n <0.62, 90" <¢ < 45°, the tangential force that causes the whirling is

greater than the radial restoring force;

e when n, ~0.5,4 ~55°, the eccentricity of the journal is about midway of the total

clearance. The static load (1/S,, ) is equal to the ratio of the radial force to the tangential

force which is about 1/ V2 as shown in Figure 4.7(b);

S =tan(¢) ~~/2 or F= (4.39)

S|

5 -

e when n =0.62, ¢ = 45°, from Eqgs. (4.36) and (4.38), it is evident that the radial

and tangential forces are equal and the radial restoring force balances about 70% of the
static load. Figure 4.8 shows the stiffness coefficients in polar coordinates plotted under

the steady-state conditions, where the negative destabilising cross-coupled stiffness K,

[73] changes its sign at this eccentricity ratio;

e when n >0.62, ¢ >45", the radial force is dominant and the tangential force

reduces. Hence the system stability improves rapidly for 0.62<n <0.76 while the

111



CHAPTER 4 THE EFFECT OF STATIC LOAD ON OIL-WHIRL IN A PERFECTLY BALANCED
ROTOR-BEARING SYSTEM: LINEAR ANALYSIS

threshold speed asymptotes to infinity. K, is positive but of a relatively low value for

0.62<n <0.76;

r

e asn —1, ¢ —0, cos(g,)—>1, Eq. (4.37) gives (}7 )v =_F, i.., the radial force
balances the static load. Hence, for n >0.76, the system is stable. K, is positive

yielding a stable system. Figure 4.5 shows the absence of oil-whirl frequency for

n,>0.76.
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4.4 CONCLUSIONS

The linear analysis of the rotor system with a rigid rotor supported in short
journal bearings with oscillating 7z -film cavitation has been presented. From the
characteristic equation of the Jacobian determinant of the system, the stability threshold
that separates the stable and the unstable equilibrium states was determined; this was
plotted in a parameter plane of the steady-state eccentricity ratio and the rotor speed. A
steady-state analysis considering the case that eccentricity ratio approaches zero was

presented to analyse the interplay of the film forces in the presence of a static load.

The threshold speed indicates the onset of oil-whirl in the rotor bearing system with 7 -
film cavity at a frequency of the order 0.5 which is equivalent to half-rotational speed.
When the steady-state eccentricity ratio is about 0.62 and the attitude angle of the
journal centre is about 45°, the radial force equals the tangential force, where the
stability threshold starts increasing rapidly. The presence of the static load provides a
higher eccentricity to the journal which helps in completely suppressing oil-whirl for

n, >0.76 . This is achieved by an increase in the radial restoring force, and reduction in

the tangential force. The radial force almost balances the static load bringing the journal

centre to a stable equilibrium state, which is otherwise unstable.

Since turbochargers are lightly loaded, the non-dimensional stability threshold speed is
around 2.76, above which the rotor whirls outwards to the housing. However,
experiments and the literature suggest the existence of a limit cycle leading to their
successful operation. The occurrence of a limit cycle is related to a nonlinear system,
and, thus, the nonlinearity should be taken into consideration. This is discussed in the

next Chapter.
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FIGURES
air cavity s
O=rtolr
0 = 0 radign
Y
_ line of centres
oilfilm =N =N | | A/ T
6=0tor reo
7~ 0 = r radians
rigidly 7 Y
| |
supported F,
Figure 4.1 Co-ordinate system of a rotor-bearing system with a rigid rotor in rigidly

supported bearing with oscillating 7 -film cavitation; e is the eccentricity of the journal centre
from the bearing centre C,. The bearing is rigidly supported to the housing making C,
coincide with the housing centre O; n = e/ C is the eccentricity ratio where C is the clearance;
¢ is the attitude angle of the line of centres of the journal C, and the bearing centre Cj ; with
respect to the vertical axis; » is the along the line of centres and s is the axis perpendicular to
the line of centres respectively; F”, F.” are the radial and tangential forces acting along 7 and
s respectively; F' is the static load; @ is the spin speed; X,Y are the co-ordinates of the

journal centre along the axes X,Y whose origin is at the housing centre.
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Figure 4.2
(4.16).
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Figure 4.3

Locus of the equilibrium states (7 ,¢, ) of the rotor system plotted using Eq.
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Parametric plane with the threshold speed @),, separating the stable and the

unstable equilibrium states under the influence of the static load on the rotor system. Two
operating curves illustrating two different rotor systems for o, =0.1,0, =10 are also plotted

alongside.
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Figure 4.4 (a) Plot of the real part showing the change in stability (bifurcation) in the
dynamic behaviour of the rotor system of the equilibrium state (b) the imaginary part of the
unstable eigenvalues of the rotor-bearing system under the effect of a static load. It can be seen
that the frequency ratio (imaginary part), of the unstable eigenvalue is 0.5, at the threshold speed
indicating the half speed oil-whirl.
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Figure 4.5 Plot showing the reduction of oil-whirl frequency ratio €2, corresponding to the

threshold speed given by Eq. (4.25) from 0.5 to 0 with increase in the steady-state eccentricity
ration_, as the threshold speed @), approaches infinity.
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Figure 4.6 Plot illustrating the decreasing steady-state attitude angle ¢,

N

with the increasing

non-dimensional static load 1/ S, against the steady-state eccentricity ratio 7 (assuming fixed
speed and bearing geometry).
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Figure 4.7(a) Plot illustrating the variation of the linearised non-dimensional radial and the
tangential film forces F _, in the bearing, alongside the stability threshold @), tangent of the

steady-state attitude angle tan ¢ with the increase in the steady-state eccentricity ratio. (b) Plot
of the modified Sommerfeld number S, varying with the steady-state eccentricity ratio along

with the tangent of the steady-state attitude angle tan ¢, .
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Figure 4.8 Plots showing the variation of linearised stiffness coefficients with steady-state
eccentricity ratio in polar coordinates. The negative cross-coupled stiffness term K 4 becomes

positive at n, =0.62 when @ =45" and remains relatively low as the threshold speed
asymptotes to infinity which is shown in Figure 4.7.
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CHAPTER 5

THE EFFECT OF STATIC LOAD ON OIL-WHIRL IN
A PERFECTLY BALANCED ROTOR-BEARING
SYSTEM: NONLINEAR ANALYSIS

5.1 INTRODUCTION

In the previous Chapter, the linearised equations of motion of a general rotor-
bearing system with perfectly balanced rotor in short journal bearings with the
oscillating 7 -film cavitation model were investigated. However, in order to analyse the
nonlinear behaviour such as the limit cycle of the journal motion, it is necessary to
perform a nonlinear analysis. This Chapter presents a nonlinear analysis of the general
rotor-bearing system used in Chapter 4, to determine the conditions yielding the
occurrence of a limit cycle and to examine its characteristics. As mentioned in the
previous Chapter, combining the benefit of the oscillating 7 -film cavitation model used
by Myers [43] and the short-bearing approximation applied by Gardner [8], the rotor-
bearing system under investigation has short-bearings with oscillating 7 -film
cavitation. It has already been shown in the literature that the onset of oil-whirl is the
Hopf bifurcation [21, 23]. Applying the Hopf bifurcation theory, Gardner [8] and
Myers [21, 43] determined the nature of the bifurcation using Poore’s bifurcation
algebra [43, 71] to analyse the nonlinear characteristics of rotor systems. In this
Chapter, the nature of the bifurcation for the rotor system under investigation is
determined by evaluating the first Lyapunov coefficients [62, 63] of the equations of

motion in the normal form, using the Centre Manifold Theorem [63]. They are also
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verified with Poore’s bifurcation algebra following Myers and Gardner [8, 21]. The
occurrence of sub-critical (disappearance of an unstable limit cycle) and super-critical
(appearance of a stable limit cycle) bifurcations [70] is shown numerically by using the
Runge-Kutta integration method, with the help of orbit plots. Based on the analytical
and the numerical methods, the nonlinear behaviour of the in-phase whirl motion of the
general rotor-system with a perfectly balanced rigid rotor mounted in rigidly-supported
bearings is analysed first, and then the applicability of the analysis to a turbocharger is

discussed.

5.2 HOPF BIFURCATION

In the previous Chapter, it was shown that the stable and the unstable
equilibrium states of the journal are separated by the stability threshold which is a
function of the steady-state eccentricity ratio, which in turn is a function of the static
load of the rotor. It has been shown analytically, numerically, and experimentally in the
literature that, the equilibrium state can bifurcate into a periodic orbit with a non-trivial
amplitude [74], which is known as the limit cycle. In order to analyse the stability of the
limit cycle in the neighbourhood of the threshold curve, several authors such as Myers
[43], Gardner [23], Ding [51], Wang [70] have applied the Hopf bifurcation theorem. In
order to apply the theorem, it is necessary to first verify the occurrence of the Hopf
bifurcation at the stability threshold, which physically signifies the onset of oil-whirl
instability in the rotor system. This is presented in this Section following an

introduction to the Hopf bifurcation theorem.

Consider a dynamic system whose behaviour is described by the first order ordinary

differential equation:

dx
x=—=1(x,v), 5.1
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where: xeR", X=[x,X,,%..X,]' is a real n dimensional vector. As the system

parameter v changes, the Hopf bifurcation occurs when a single complex conjugate
pair of eigenvalues of the linearized system of equations become purely imaginary in
the process of crossing the imaginary axis to the right hand side. The value of the

bifurcation parameter at which this occurs is the critical (bifurcation) value v_,. More

precisely, the Hopf bifurcation occurs when the following four conditions are satisfied
[63]:

1) Equation x =f(x,Vv) has an equilibrium state x =X.(v);

2) The Jacobian matrix A =f(x,,v),_, has exactly a pair of complex conjugate
eigenvalues S =a(v)+ jQ(v), such that when v=v,, then a(v,)=0 and

Q(v,) =0, and no other eigenvalues exist with zero real part;

3) f(x,v) is continuously differentiable k times (C*) in the neighbourhood of

(x,v)=(x,,Vv.), k=3 (second and third order derivatives should exist);

4) (dz(‘/)} #0, where «a(v) is the real part of the eigenvalue which is
Vo v

continuous at v, .

Conditions 2) and 4) indicate that the linear stability of the equilibrium state is lost as
the system parameter v crosses the critical value v,. Under these conditions, the
equilibrium state bifurcates leading to the birth of the periodic solution which is known
as a limit cycle. The limit cycle, by definition, is a unique isolated closed trajectory
(orbit). It has the property that, at least one other neighbouring trajectory spirals either
towards or away from the limit cycle. In the neighbourhood of which, there is no other

isolated closed trajectory for such a continuous dynamic system [63].

In general, excluding the special case where bifurcation occurs for v =v_,
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o the existence of a periodic solution in the case of v >v, is called a super-critical

bifurcation;

o the existence of a periodic solution in the case of v <v, is called a sub-critical

bifurcation.

In sub-critical bifurcation, an unstable limit cycle exists below the critical bifurcation
value along with the stable equilibrium. The neighbouring trajectories are repelled from
the unstable limit cycle. Any perturbation to a position within the limit cycle moves the
system to a stable equilibrium state as shown in Figure 5.1(a). If perturbed to a position
outside of the limit cycle, the system moves to a completely unstable behavior where
the system moves far away from the stable equilibrium [8]. In super-critical bifurcation,
there exists a stable limit cycle above the critical bifurcation value along with the
unstable equilibrium. The stable limit cycle attracts all the neighbouring trajectories as
shown in Figure 5.1(b). Any small perturbation from the closed trajectory causes to
return to the limit cycle, making the system stick to the limit cycle. A system with a
stable limit cycle can exhibit self-sustained oscillations. The occurrence of the Hopf
bifurcation is shown in the following Sub-Section in the rotor system under

investigation.

5.21 OIL-WHIRL: HOPF BIFURCATION

The aim of this Sub-Section is to show the occurrence of the Hopf bifurcation in
the rotor system under investigation. Considering the rotor system defined by the
equations of motion given in Eqg. (4.19), it was shown in Chapter 4 that the equilibrium
states are the functions of the speed and the qualitative behaviour of the rotor dynamic
system changes as the speed is varied at the stability threshold. The threshold curve
splits the equilibrium states of the system into stable and unstable equilibrium states as

illustrated in Figure 4.3. Choosing the bifurcation parameter to be:

V= 00—, (5.2)
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allows the critical value v, =0 at the stability threshold. Condition 2) is verified from

the eigenvalues of the Jacobian determinant discussed in Chapter 4. The characteristic
equation of the Jacobian matrix A given in Eq. (4.19) gives a pair of the complex
conjugates of purely imaginary eigenvalues and another pair of conjugates of
eigenvalues with negative real parts at the threshold speed as shown in Figure 5.2. The
function f(x,v) given in Eq. (5.1), is basically a function of the forces as seen in Eq.
(4.19). These forces are related to the film forces given in Egs. 4.2 and 4.3, which have

non-zero second and third order derivatives and thus condition 3) is satisfied.

The last condition for a Hopf bifurcation is the continuity of the real part of the
conjugate pair of the eigenvalues that cross the imaginary axis as the function of the
bifurcation parameter v . This condition is verified as follows using the characteristic

equation given in Eq. (4.23) [8], which can be re-written in the form:

=~ ’ 1 = 1 ’ 1 I | & 1 I~ l !
S4+A_—283+—(B +_—2st2+_—4DS+T4E =0. (5.3)

) @* ) ) )

First consider a small increment in the speed dw with respect to the threshold speed as:
D=y +60, (5.4)

and a corresponding increment in the eigenvalues of the Jacobian matrix A as:
S=S5,+0S, (5.5)

where S, = jQ, is purely imaginary at @, . In order to verify the continuity of the real

part of the eigenvalue, the variation of the eigenvalues s =a+ jQ, as the speed

changes from @, to dw can be written as:

ﬁ_(d_aj
ow \do

Using Egs. (5.4) and (5.5), the characteristic equation in Eq. (5.3) is expanded in S

7]
(5.6)

()

+| ——
— \do
[0)

0 0

about S, using Taylor’s series upto the first order, which after re-arranging gives,
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(1 )(dB 2B

- T =2 — |7 =3
11 (aay a2],, | \& \do) & )
—J| =5 o) a0 Iy —| C I,
) @ @, [ 1 ](dC'}_4C'}

— 4 — —5
o, \do ) o,

F = = (57)
0 ' 2 2 C’ D'
—jal’ ) - 3(1,) )+ jl, —5| B'+ +
{( J 0) Oz( (0)) 105)02[ a—)oz} 504}

Thus, the derivative &' is obtained by separating the real part of Eq. (5.7) as:

da _ (ac-bd
a’ == = —_— s 5-8

do ( ¢ +d’ j (>8)

where:

a:{ 1 dE_4E}{dB_2B L] dC_4C}Q02’5:{D —3,4'902}

—2 7~ =3 R — R —
o, do o, do o, o, do o,

b=, 2 A0 | 24 \Get d-0,028'+ 2 —a0,5)
0, do o, do o, @,

as,, . The derivatives of the coefficients 4',B',C',D', E’

1
do dn do ° dn. o, dn

N

dO)_d()dn,  di _

N

are evaluated at w=a@, to calculate (a')v. Figure 5.3 shows that o'>0 and

c

continuous at v, =0. Table 5.1 lists the values of the derivative o’ for a given set of
eccentricities in the range 0 <n,  <0.75. Thus, all the four conditions are satisfied by the

rotor system under investigation at the stability boundary, which shows that the onset of
the oil-whirl is a Hopf bifurcation. Since the aim is to investigate the nonlinear
behaviour of the system leading to the evolution of the limit cycle, the type of
bifurcation is analysed in the following Sub-Section to determine the stability of the

limit cycle.
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5.3 STABILITY OF THE LIMIT CYCLE

According to the Hopf bifurcation theorem, the occurrence of a Hopf bifurcation
leads to a significant change in the stability of a dynamic system and implies the birth of
the limit cycle. In order to understand the behaviour of the limit cycle, the type of
bifurcation (also referred as the direction of bifurcation) needs to be determined, i.e.,
whether it is a sub-critical or a super-critical bifurcation as discussed in Section 5.2.
Since the bifurcation parameter is the speed, which is a function of the steady-state
eccentricity ratio, the bifurcation direction ought to change with the steady-state
eccentricity ratio. The aim of this Section is to determine the steady-state eccentricity
ratio at which the bifurcation direction changes from sub-critical to super-critical. This
is done by first reducing the 4-dimensional system given in Eq. (4.19) to a 2-
dimensional system, essentially in a single equation in complex co-ordinates using
Centre Manifold Reduction theorem [63]. Following that, the equation is reduced to the
normal form in order to evaluate the first Lyapunov coefficients [62, 63]. The reduction
and the associated derivations, closely follow the procedure given in the text book by
Kuznetsov [63]. The Centre Manifold reduction is discussed in detail in order to extend
the theory in the next Chapter, when the effect of unbalance is added as a periodic

excitation.

5.3.1 CENTRE MANIFOLD REDUCTION

In this Sub-Section, the Centre Manifold theorem is applied to the 4-dimensional
equation of motion of the rotor-bearing system under investigation, to reduce it to a 2-
dimensional system. This simplification helps in focussing on the local behaviour of the

system considering only the critical eigenvalues at v_. Let x-X, be denoted as X(v), so

that the equations of motion given in Eq. (4.19) can be expressed in the form of Eq.
(5.1), i.e.
X =AX+F(x,v), (5.9

where: xeR*; x=[x,X,,%,X,]"is a 4-dimensional real vector; F(x,v)denotes the

function of higher order terms with Taylor expansions in x, A is the Jacobian f/0,0),
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x is the time derivative with respect to 7; Note that the Jacobian determinant is
evaluated at the threshold speed, i.e. when v =0 for the equilibrium position x=0; it is
because of the assumption x=x-x . This implies that the equilibrium state x_ is
shifted to the origin x =0 by the Implicit Function Theorem [63] for sufficiently small

|v|. The eigenvalues of A are s, i=1,2..4; s, are a pair of complex conjugate
eigenvalues s(v)=a(v)+x jQ(v), such that when v=0, then a(0)=¢,=0 and
Q(0)=Q, >0 and the other 2 eigenvalues s,, =—¢, £ jQ, have purely negative real

parts. Since the aim of this section is to reduce the 4-dimensional system given in Eq.
(5.9) to a 2-dimensional system, it is essential to split the system into two equations of

2-dimensions. This is done using the eigenvalue (modal) decomposition of the matrix

A in such a way that J=TAT" where [T], , is the eigenbasis (eigenvector basis)

4x4
which is an invertible matrix, consisting of the 4 eigenvectors corresponding to the 4
eigenvalues of A . J is the resulting diagonal matrix whose diagonal elements are the
corresponding eigenvalues. Introducing a linear invertible change of variables (co-

ordinate transformation), such as [51, 63]:
x=Tx, (5.10)

where i:{ul,uz,vl,vz} are the transformed co-ordinates. Now, system (5.9) in its

eigenbasis [63] that is in the new co-ordinates is defined as:
. T )
u=Au+G(u,v), u=[u1,u2] eR-, (5.11)
v=Cv+H(u,v), v=[v,v,]eR’, (5.12)

. . T .
where R’ denotes a real 2-dimensional vector, u=[u,,u,| is a real vector on the

critical real eigenspace T¢ with the eigenvectors corresponding to only the purely

imaginary eigenvalues s,, (critical eigenvalues). Since any multiple of an eigenvector

is also an eigenvector corresponding to an eigenvalue, all such vectors form the

corresponding eigenspace. Vv is on the real eigenspace T® which is spanned with the
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eigenvectors corresponding to s, , (all but the critical eigenvalues). A, is a 2x2 real
matrix corresponding to the critical eigenvalues at v =0 i.e. S, =%jQ,; the complex

eigenvalues are in the Jordan canonical form where the complex conjugates of

i wia | e alg, T

eigenvalues § andS are written as

e
likewise cz[“l :

}; G,H are the higher order functions. It is convenient to
1 O

rewrite this system in the complex form by introducing a complex variable z=u, + ju,

and its conjugate Z , which gives,
1=512+G(z,Z,v), (5.13)
v=Cv+H(z,Z,v). (5.14)

Equation corresponding to 7 is ignored because it is just the conjugate of Eqg. (5.13).
Note that the focus is on v =0, which is the reason for not including v as a variable in

the functions G, H. In order to simplify the Centre Manifold computation by avoiding

the coordinate transformation and the associated calculations, there is a useful method

known as the projection method; this uses only the eigenvectors corresponding to the

critical eigenvalues of the Jacobian matrix A and its transpose A'. To apply this

method, let q =[q,,q,,0s,4, ]T be the 4-dimensional complex eigenvector corresponding

to the eigenvalue §(0)=jQ,, and pz[pl,pz,p3,p4]T be the ad-joint complex

eigenvector. Then:
Ag = onq; Aq:_onq’ (5-15)

ATp=—jQp; AP = jQ.p, (5.16)
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where the over-bar denotes the complex conjugate; pand q are normal with their
standard scalar product represented as <p,q>=2f)iqi =1. In order to use a 4-
i=1

dimensional real vector y instead of the 2-dimensional real vector v, condition

<p,y>:0 must be satisfied. Since p is complex and y is real, this sets two real

constraints on y where the real and the imaginary parts of <p,y> must vanish, in effect

giving only 2-dimensions. The application of this method needs the definition of the

vector x from Eq. (5.9) in terms of the complex variable z and the vector y, which is
given by [63]:

X=zq+zq+Yy. (5.17)

Performing a scalar multiplication of p on both the sides of Eq. (5.17) results in,
z=(p,x), (5.18)

using the conditions <p,y> =0, <p,q> =1 and <p,ﬁ> =0. Details of the proof for the
condition <p,ﬁ>:0 is given in Kuznetsov [63]. Substituting Eq. (5.18) for z in Eq.

(5.17) gives the expression of y as:
y =x-(p.x)q-(p.x)q. (5.19)

where y satisfies <p,y> =0, since <p,ﬁ> =0. Substituting Eq. (5.17) into Eq. (5.9), the

system is written as:
z’q+z'_q+y:A(zq+ﬁ+y)+F((zq+ﬁ+y),v). (5.20)

From Eq. (5.20), the Z and y terms can be separated directly except for the higher
order function F. Hence, it is necessary to split the higher order function F(x,v) into

F(z,v), F(y,v) respectively using Egs. (5.18) and (5.19). Using the scalar product of p
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on both the sides of Eq. (5.20) and separating the terms related to co-ordinate z, the

equation of motion in the complex co-ordinate z is given by:
2:§1z+<p,F(zq+Tq+y,v)>. (5.21)

Note that A(zq)=jQ,zq from Eq. (5.15). Similarly, separating the terms

corresponding to y from Eq. (5.20) and using Eq. (5.19), the equation of motion in y is
given by:

Ay +F(zqg+zq+y,v)
y = —(p,F(zq+Zq+y,v))q |. (5.22)
_<ﬁ’ F(Zq +m+ Y, V)>Q|

Now, the system given in Egs. (5.13) and (5.14) can be equivalently expressed using
Egs. (5.21) and (5.22) as:

2=52+6(2,7,y), (5.23)
y=Ay+H(z,2)y), (5.24)

where the functions G and H, using Taylor’s expansion, are written as [63]:

_ 1 1 _, 1
G(z,Z,y) :Egzoz2 +0,,2Z "'Egozz2 +893023

1,1 ., 1 _ B
+Eg21zzz+Eg12222+€go323+<gm,y>z+<gm,y>z+...
_ 1, 1,
H(z,z,y):Ehzoz +h,,77 +§h022 +.;

U200 021 Ua00 U215 U100 g @r€ COMplex numbers; g,4,9,,,h;; are 2-dimensional complex
vectors. The calculation of these coefficients is discussed in detail in Section 5.3.2. It
can be seen that Egs. (5.23) and (5.24) are coupled in y and z. In order to uncouple
them, the Center Manifold Theorem is applied. Details of the theorem can be found in
the text books on bifurcation theory, for example [63]. According to this theorem, there
exists a local smooth 2-dimensional invariant manifold (function) W° tangent to T¢ at
the equilibrium state z =0 of the form:
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y=V(z,z)= %wzoz2 +W,,zz + %WOZEZ , (5.25)

where <p,wij> =0; w; is a 4-dimensional complex vector. Since V must be real [63],

w,, 1s real and w,, =w,,. The Centre Manifold must be at least quadratic due to the
tangent property. It can be seen that y is defined as a function of z and Zz variables.
Substituting for y in Eq. (5.23) decouples it from Eq. (5.24). To this end, w; needs to

be determined. This is done by differentiating Eq. (5.25) with respect to 7, and equating
the right hand side to that of Eq. (5.24) using,

y= 8V(Z,E)Z,+ aV(z,E)Z;

, 5.26
0z oz ( )

gives,

W,0ZZ + W, (zz + zz) +W,2zZ

1 , 1 _2 1 , S (5.27)
=A szoz +W, zz +Ewozz +§hzoz +h,,zz +5h022

Substituting for z and Z from Eq. (5.23), and equating the coefficients of the like-

terms in z,z in Eq. (5.27) upto quadratic level gives:

2 (ZIQ0 —A)w20 =h,,,
zz:  (2IQ,-A)w,, =h,,, (5.28)
20 (-2IQ,-A)w,, =h,,.

Note that Eq. (5.27) does not have any linear term. Using Eq. (5.28), w; can be
determined in terms of h; . Now, substituting for y in Eq. (5.23) from Eq. (5.25) allows

the restriction of Eqgs. (5.23) and (5.24) to the Centre Manifold according to the
reduction principle [63] of the Centre Manifold Theorem as given by:
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L 1 1 ., 1 -1
z :S12+5g2022 + 8,2z +5g0222 +g(g30 +6<g10,(2QOI—A) hzo>)z3
1

+E(g21 - 2<g10, A_lhll > + <g015 (2QOI - A)_l hzo>) 2’2+

(5.29)

The dynamics of the unstable system defined by Eq. (5.23) and (5.24) is essentially
determined by the expression of z given in Eq. (5.29). This is in agreement with
Shoshitaishvili’s theorem [75], which states that all the essential events near the
bifurcation parameter value occur on the invariant manifold; they are captured by the

n,-dimensional system, where 7, is the dimension of the Centre Manifold. Simplifying

the coefficients of the cubic terms in Eq. (5.29) gives,

IR U B . 1, .
Z= S12+5g2022 +8,,2zZ +Egozz2 +gg3oz3 +§g21222 +.0 (5.30)

A _ -1
where g, =g, _2<g10'A ]h11>+<g01.(2QOI—A) hzo>;
<o :(g30+6<g10,(2QOI—A)_1 h20>) and so on, while for the quadratic terms i.e.,

i+j=2, g, =g, It can be seen that the first order system given in Eq. (5.9) is now

reduced to a single equation in complex co-ordinates z,z , which can be transformed to

the normal form which is presented in the following Sub-Section.

5.3.2 NORMAL FORM - FIRST LYAPUNOV COEFFICIENT

This Sub-Section aims to calculate the first Lyapunov coefficient in order to
determine the nature (type) of bifurcation in the rotor system under investigation. To
this end, Eq. (5.30) needs to be transformed to its normal form. A normal form is a
simplified form of a mathematical system obtained by applying a transformation (often
a change of co-ordinates) that is considered to preserve the essential features of the
original system [76]. The purpose is to obtain an approximation to the (unknown)

solution of the original system that is valid over an extended range in time.
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The Centre Manifold restriction given in Eq. (5.30) has a linear term and higher order

terms upto cubic level. This equation which is of the form:

i=sz+ ), Lgydz"zf, (5.31)

2<k+I<3 k 'l'

where 2 <k+/<3 denotes the quadratic and the cubic terms; k+/=2 such as 20, 02

and 11 denote the quadratic terms z>,Z°,zz and k+/=3 such as 30, 03, 21, 12 denote
the cubic terms z°,z°,z°Z,zz°; s=s5(V)=a()+jQV), a(0)=0, Q0)=Q, >0,
and g, =g,(v) can be transformed using an inverse parameter-dependent change of

complex coordinate [63], smoothly depending on the parameter, such as:
z=z+h(z,2)z"Z, (5.32)

where h(z,7)= ). Lh,dzk? for all sufficiently small |v

2<kmr<s k1!

, Into an equation with

only the resonant cubic term:

z=5(V)z+c,(V)zZ’zZ, (5.33)

which is the Poincaré normal form for the Hopf bifurcation. Note that Egs. (5.31) and
(5.33) are in their general forms consisting of functions of v and not specific to v=0.
According to the theorem, if the 2-dimensional system has 2 pure imaginary

eigenvalues, s,, =% jQ, then the first equation of the normalised system has only the

term (monomial) z*Z' satisfying,

ks, +15, -5, =0, (5.34)

which gives k—(l+l)=0. Thus Eq. (5.34) suggests that k=/+1; for a cubic term

k+1=3, hence the irremovable term is z’z . This irremovable nonlinear term in the

134



CHAPTERS5  THE EFFECT OF STATIC LOAD ON OIL-WHIRL IN A PERFECTLY BALANCED
ROTOR-BEARING SYSTEM: NONLINEAR ANALYSIS

normal form is referred as the resonant term [62, 77]. The proof for the above Lemma
can be found in [63]. The normal form reduction procedure using Eq. (5.32), gives

¢, (v) interms of the g,, coefficients which is given by [63]:

N

)= §20§11(2%+§2)+|§i1|2 + |‘é:°2|zﬂ 4+ 82 (5.35)
2|§1| 5,  2(2s,-s) 2

a(v

When v =0, 5, = jQ,, 5, =—jQ,, the coefficient ¢, is given as:

~

~ n 1.
(gzogll + 2|g11|2 +§|g02|2j +%- (5.36)

¢(0)= 2512

0

A limit cycle is a nonlinear phenomenon and ¢, is the coefficient of the higher order

term defining the nonlinearity of the system in Eq. (5.33). Hence, the determination of

¢, 1s the only requirement to investigate the nonlinear behaviour of the system based on

the Poincaré normal form. This is done by using the higher order function of the

original system in Eq. (5.9), since ¢, depends on the coefficients g,. When v =0,

using Taylor’s expansion, the function F(x,0) in Eq. (5.9) can be written in terms of

second and third order terms as:
1 1 1 1 2
F(x,0) = EB(X, X )+EC(X, X, X%), (5.37)

where B and C represent the second and the third derivative terms of the expansion
respectively. The vector variables x',x* indicate that B and C are multilinear
functions. Note that these are 4-dimensional vector functions since x =[x, x,,x;,x,] .
They are defined as [63]:
4 2
B,(x,x") =] Mx X i=1,2,3,4, (5.38)

JUk
Jik=1 8xj8xk
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0°F (x,0)

xxx ;1=12,3,4. (5.39)
!, Ox ,0x,0x,

4
C.(x, X', x?*) = z
ki,

Js
Note that F(x) is the function on the right hand side of Eq. (4.19) corresponding to
each x,; i=12,34. Using Eq. (5.17), substituting for x gives B(X,X) as

B(zq+zq+Y,zgq+zqg+Y). However, after the Centre Manifold reduction, the equation

of motion given by Eq. (5.30) and its Poincaré normal form given in Eq. (5.33) are just

functions of z and z . Hence the vector function B(x,X) is given by [63]:

B(zq+2q,zq+2q) = z> B(q,q) + 222 B(q, ) + z° B(G, 1), (5.40)
where
OF (X
B(q q)_zgéq qkl :11273!4- (5.41)
J.k 1

Likewise, the third derivative term related to g,, in Eq. (5.30) can be expressed as:

X
C,(9,0,9) = Z 4q 9,0, i=12,3,4. (5.42)
;574 0x, 0, 0,

The third vector in Eq. (5.42) is G because g,, is part of the coefficient of z°z term as

shown in Eq. (5.30). Now using Eq. (5.21), it is seen that the higher order terms of the

equation of motion in z co-ordinate can be expressed as <p.F(zq +m)>. Thus each g

coefficient of quadratic terms (k+/=2) in Eq. (5.30) can be written in this form, such

as:

% ={(P.B@.a)); &, =(p.B(@.T)); &,=(p,B(q.T)). (5.43)

Similarly, the standard scalar product of the linear vector coefficients <gm.y> and

(4o, ) can be expressed as:
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(20¥)=(p.B(a0.¥)); (g,,¥)=(p.B(q.Y)). (5.44)

From the expression of y given in Eq. (5.24), it is known that h,,, h,, are the

coefficients of the quadratic terms related to the higher order function H ; based on Eq.

(5.22), they are expressed as [63]:

h,, =B(q,9)—(p,B(4,9))q—(p,B(q,9))q; (5.45)
h,, = B(q,@) - (p,B(¢,@))a - (P, B(q,9))q.
Substituting Eq. (5.43) into Eq. (5.45) gives:
{hzo = B(qsq)_gzoq_gozq; (5.46)
h, =B(q,9)-g,9-¢,q.

With the expressions given in Egs. (5.43) through (5.46), now the coefficient g, can be
defined. However, the expression for &,, given in Eq. (5.30) has terms such as A™'h,,
and (21 —A)f1 h,, in the place of y in Eq. (5.44). To further simplify this in order to

make the computation easy, from Eq. (5.15), a few identities such as:

1 |
Alq=——q A'q=——-q;
]Qo ]QO (5.47)
; 1 q_ 1 _ ‘
2/01-A)'q=—q: (2/QI-A)' q= ,
(2/Q, )quO‘l(Jo )qj3QOq

can be derived [63]. Using Egs. (5.43), (5.44) along with (5.46), (5.47), the coefficient

g,, given in Eq. (5.30) can be written as:

({p.C(a,9,9)—2(p.B(q, W,)) +(p.B(@,W,)))
&= 1 2 2 1 . 2 , (5.48)

+_ 5 5 PR -~ [
Q. 820811 i 8 30, 8w
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where: W, = {A*1 B(q,ﬁ)} , W, = {(ZjQOI-A)f1 B(q,q)}. Equation (5.48) is a function
consisting of only the eigenvectors and the second and third derivatives given in Egs.
(5.41), (5.42). Calculation of the eigenvector q and the ad-joint eigenvector p are

given in Appendix C. Note that, the last two terms of Eq. (5.48) are purely imaginary.
Thus using the coefficients determined from Eqs. (5.43) and (5.48) in Eq. (5.36), ¢, can

be calculated.

The Poincarée normal form given in Eq. (5.33) can be transformed further by dividing

by Q which gives:

7|, (5.49)

where Q7 is the modified time and ,u(v) = a(v) / Q(v) is the new parameter because,

£#(0)=0;4'(0)>0 similar to v. However, (%ﬂ)j which is the coefficient of

z|z|2 (nonlinear term) is complex. The aim is to get the first Lyapunov coefficient, which

is a purely real coefficient of z|z|2 . In order to make this real, the imaginary part of this

term is added to the modified time Q7 such that the new time is given by [63]:
Ja) _ o~ c] (ﬂ) 2
r(r, ,u)—Qr+J N |Z| . (5.50)

This allows the modified time Q7 to be re-parameterised along the orbits [63], as 7 is

now a function of . Expressing Eq. (5.49) in the new time gives,

dz
dr

2

=(uxj)z+1(p)zlz], (5.51)

where [, (u)=R{c,(1)/Q} - 1S{c,(1)/Q2} is real and is called the first Lyapunov

coefficient [63]. From Eq. (5.36), /, when x =0 is given by:
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R{qO) 1
Q, 20

5(0)= SR{(jgzogu +€8,, )} . (5.52)

Substituting for g,,, g,,, &,, using Eqs. (5.43) and (5.48), the first Lyapunov coefficient

is given by:

KO =5 {(p.Cla,ad)-2(p.Bla W) +(p.B@ W) (559

0

Equation (5.51) becomes the normal form of the equation of motion if / can be

replaced by its sign, i.e. its signum function. This can be done by multiplying Eq. (5.51)
1 1
by (|l] (,u)|)5 ; introducing a new complex variable u= z(|l1 (,u)|)5 and supposing

a'(0)#0, R{c,(0)} #0; [,() #0, the normal form is given by:

~|2
ul .

i=(u+j)i+oi (5.54)
The over-dot denotes the derivative with respect to the new time 7;
0'=sgn( £,(0) )=sgn (iR{cl(O)})=il. It is just the sign of the first Lyapunov
coefficient at the bifurcation point g =0, ie. v=0 that decides the direction of
bifurcation. In order to find the amplitude of the resulting periodic journal motion, it is
helpful to introduce the polar form of the co-ordinate # . Letting @ = rpej O , and writing
it in the polar form, Eq. (5.54) becomes:

ﬁ:fpejg” +jrp6’pej9” = e’ (,u+j+0r2). (5.55)

The subscript p indicates the perfectly balanced rotor. By equating the real and the
imaginary parts of Eq. (5.55),

i :rp(,u+0'rpz), (5.56)

p
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0 =1. (5.57)

Since limit cycle is a steady-state solution, by setting =0, Eqg. (5.56) gives the radius

of the limit cycle as:

r, =\-u/o =\-a(v)/oQ) , (5.58)

while Eq. (5.57) indicates a constant angular speed. From the radius Eq. (5.56), two
types of behaviour can be studied based on the sign of the r® term, o. Figure 5.4
shows the possible steady-state dynamic behaviour of the system depending on the

values of o and v.

)] When o =+1, Figure 5.4(a) shows an asymptotically stable equilibrium (SE)
state for v <0; Figure 5.4(b) shows an unstable equilibrium state (UE) at the critical
parameter value, v =0. Figure 5.4(c) shows an UE state for v > 0. There is an unstable
limit cycle (ULC) shown in dashed lines, also known as a repelling cycle for v <0,
which disappears when v crosses zero from its negative to positive values as shown in
Figure 5.4(a). This is sub-critical Hopf bifurcation [63].

i) When o =-1, Figure 5.4(d) shows a SE state for v <0 ; Figure 5.4(e) shows the

system remaining in the neighbourhood of the equilibrium (NE). For v >0, a stable
limit cycle (SLC) for of radius\/; exists as shown in Figure 5.4(f). All the orbits

starting outside or inside the cycle except at the origin v=0 tend to the cycle as
time — co. This is super-critical Hopf bifurcation. It should be noted that the Hopf

bifurcation is local bifurcation and is in the neighbourhood of the equilibrium.

In both the cases there is a loss of stability of the equilibrium at v =0 under increase of

the bifurcation parameter (the speed). In the sub-critical case (o =+1), the region of

attraction of the equilibrium point is bounded by the unstable cycle, which shrinks as

the parameter approaches its critical value and disappears. Thus, the system is “pushed

out” from a neighbourhood of the equilibrium, giving a sharp or catastrophic stability
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loss [63]. In super-critical bifurcation, the stable equilibrium is replaced by a stable
limit cycle with finite amplitude. Therefore, the system remains in the neighbourhood of
the equilibrium and we have a soft or non-catastrophic stability loss [63]. If the
bifurcation parameter v is made negative again, the system returns to the stable
equilibrium in the case of a soft stability loss. On the contrary, if the system loses its
stability sharply, resetting to a negative value of the parameter may not return the
system back to the stable equilibrium since it may have left its region of attraction. It
can be seen that the type of Hopf bifurcation is determined by the stability of the
equilibrium state at the critical parameter value. The type of bifurcation in the rotor

system under investigation will be discussed in detail in Section 5.5.

It is now evident that to determine the regions of sub-critical and super-critical
bifurcation for the rotor-bearing system under investigation, it is necessary to compute
the first Lyapunov coefficients corresponding to each steady-state eccentricity ratio.
Table 5.1 lists the sign of the first Lyapunov coefficient and the real and imaginary parts

of the coefficient ¢ corresponding to the steady-state eccentricity ratios
0.01<n <0.75 calculated in MATLAB. The signs of these coefficients are also

verified by using a similar algebraic formula discussed in the following Section.

5.3.3 POORE’S BIFURCATION FORMULA

This Sub-Section is aimed at verifying the sign change discussed above using
the first Lyapunov coefficient by an equivalent method known as the Poore’s bifurcation
formula. The way in which this formula is related to that of the first Lyapunov
coefficient given in Eq. (5.53) is also presented.

A.B. Poore [71] derived an algebraic formula to determine the existence and the

stability of the bifurcated periodic orbits in a sufficiently small neighbourhood of

(x,v)=(0,0). The formula is given by:
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a'(0)5'(0) + j(€(0)5'(0)+Q1'(0))

-p _9h 9,99, +2p TR q,(A™) LS 4,4,
=k’ "oxoxox, T " oxox,ox, “oxox, M|, (5.59)
‘ O°F, _ . O°F _
+ (A—(2iQ,)1 :
b 8xjaxk qj( ( o) ) praxq q,4,

where the right-hand side is similar to that of the first Lyapunov coefficient given in
Eq.(5.53); p=[p,.p,. s>, and q=[¢,,¢,.¢;,q,] are the eigenvector and the ad-
joint eigenvector used in the previous section; it is referred as the left and the right
eigenvectors respectively in this formula, corresponding to the eigenvalue +iQ; of the
Jacobian A, at v=0; The over bar denotes the conjugates; vectors p and q are

normalised by the requirement p.q =1, which is the dot product of the vectors similar
to that of the standard scalar product; k, is an arbitrary constant, and (A™) . denotes

the k" row r” column of the inverse of the Jacobian A . Repeated indices within each
term imply a sum from 1 to » where #n is the number of degrees of freedom. Although

the right-hand side of Eq. (5.59) can only be evaluated with an arbitrary positive
constant k-, this is sufficient to indicate whether the period of these orbits are

increasing or decreasing [8]. The left-hand side of the formula is a complex number. It
is the sign of the real part which decides the type of the bifurcation [71]. However,
a'(0) has already been verified to be positive as the fourth condition of the Hopf

bifurcation in Section 5.2.1. Hence, the sign of 6'(0) indicates whether the bifurcation
is super-critical (6'(0)>0) or sub-critical (6'(0)<0), under the condition that the

bifurcation can only occur for different signs of the bifurcation parameter, i.e. v >0 or

v<0.

The sign of #'(0) informs about the time period of the limit cycle. A positive sign

implies an increase in the time period, while a negative sign implies a decrease in the
time period [71]. This is further discussed in detail in the following section. The left-

hand side is equivalent to the coefficient of the resonant cubic term ¢,(0) given in Eq.
(5.33)[51]. The relation between ¢, and Poore’s formula is discussed in the following

Sub-Section.
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5.4 AMPLITUDE OF THE LIMIT CYCLE

This Sub-Section describes the calculation of the amplitude of the stable and the
unstable limit cycles which are shown to exist in the system around the threshold speed,
in the previous Section. The amplitudes depend on the system parameters which can be
calculated from Eq. (5.33). It should be noted that the limit cycle of the journal centre
corresponding to higher eccentricity ratios becomes elliptical in shape compared to the
ones at low eccentricity ratios. This is attributed to the increase in the asymmetry of the
bearing properties with an increase in the steady-state eccentricity ratio. Hence, the
equation for the approximate limit cycle whose shape is determined by the eigenvector

is also presented.

It is convenient to write the Poincare normal form given in Eq. (5.33) in the polar form

as:

L ~ 3
r, =a(0)r, +ar,, (5.60)

0, = Q(0)+br?, (5.61)

where: s=a+jQ and ¢, =a(v)+ jI;(v) , which are the functions of the bifurcation

parameter v. Since the interest here is in the dynamics near the critical value v =0,

expanding the coefficients about v =0 gives:
i, =a'(O)vr, + &(O)rj + 5'(0)1/1’; , (5.62)
o ' 2 1 2
0, =Q0)+Q'(0) +br, +b'(0)vr,, (5.63)

where ' represents the differentiation with respect to v; «(0)=0 and Q(0)>0. For
sufficiently small v, by setting 7, =0, the steady-state periodic solution to Egs. (5.62)

and (5.63) are given by [62]:
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/ —(&- 5 (5.64)
sr{ {,(0) '

and
= [Q(O)J{Q’(O)—a'(O)@JV}H@O , (5.65)
a(0)

where 6, is the initial phase. Note that the last terms in Egs. (5.62) and (5.63) are

ignored, since vr*,vr’ are relatively too small for sufficiently small v, since r<1.

Allowing for a slow increment of the bifurcation parameter in g, let
v=v(u)=pd(u). Using Taylor’s expansion of this expression about v=0 i.e.

v=6'(0)u*, when 6(0)=0, Egs. (5.62) , (5.63) become:
i, = a'(0)5' (0) ’r, +a(0)r, (5.66)
6, = 0(0)+Q(0)5' (0) 2* + (0. (5.67)

When the amplitude is very small, let r, =z be the non-trivial solution of Eq. (5.66)

[51]. Substituting for r, into Eq. (5.66) gives,
a= —a’(0)5’(0). (5.68)

Introducing a time period change of the form T(1+7n(v)u) [63, 71], where T is the

time period corresponding to the frequency €(0) at the threshold speed, i.e.,
Q0)=27/T, (5.69)

n(v)u is the change in the time period. It can be seen that the time period increases or

decreases depending on the sign of #7(v). Using Taylor’s expansion about v =0,
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n(V)u~n'(0)u*, which gives the time period change as T(1+7'(0)x*). Thus, the

change in whirl frequency corresponding to the time period change is given by:
0, =27/[T(1+7'(0))]. (5.70)

Using the binomial expansion of Eq. (5.70) and ignoring O(x’) terms, for very small

1, Eq. (5.67) can be written as:

27”(1 —7'(0) ) = Q(0) + [Q’(O)a'(o) +15(0)] 0, (5.71)
which by using Eq. (5.69), results in,
b=-[Q(0)5"(0)+Q(0)'(0)]. (5.72)
From Egs. (5.68) and (5.72), the coefficient ¢, (0) in Eq. (5.33) is given as:
¢, (0)=a+ jb=—[a'(0)5'(0)+ j(€(0)5'(0)+Qy7'(0)) |. (5.73)

Equation (5.73) relates ¢ (0) to the left-hand side of the Poore’s bifurcation formula

given in Eq. (5.59). Increase in the static load increases the static eccentricity which
changes the shape of the limit cycle to an ellipse from a circle. Hence, using Eq. (5.68)
in Eq. (5.64) and adding the steady-state solution, the limit cycle is better approximated
in shape by the form [78, 79]:

X, =x + ( ©_o jz R {e(zﬁjr/qui} , (5.74)

where i=1,3, since x, =X -X_, x,=Y-Y, as given in Eq. (4.19) in Chapter 4. Based
on the sign of the first Lyapunov coefficients, the dynamic behaviour of the rotor system

under investigation is discussed along with the findings from the numerical analysis in
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the following Section. The limit cycle using Eq. (5.74) is compared with that from the

numerical analysis.

5.5 DISCUSSION OF THE ANALYTICAL AND THE
NUMERICAL RESULTS

In this Section, the nonlinear behaviour of the perfectly balanced rotor system
with short-bearing approximation and oscillating 7z -film under investigation is
discussed based on the analytical and the numerical findings discussed in the previous
Sub-Sections. Table 5.1 shows two regions from the effect of the static load, based on
the steady-state eccentricity ratios of the journal in short journal bearings with
oscillating 7 -film cavitation. The journal dynamics exhibit sub-critical bifurcation for

n,<0.32, and super-critical bifurcation for 0.33<n_<0.75, which are defined in

Section 5.2.

The two regions for the rotor system under investigation corresponding to sub-critical
bifurcation and super-critical bifurcation respectively are shown in the parameter plane
in Figure 5.5(a). It is determined from the linear analysis in Chapter 4 that the journal
centre spirals into a stable equilibrium (SE) state below the threshold speed and spirals
out to an unstable equilibrium (UE) state above the threshold speed. In addition, the
nonlinear analysis of the rotor system reveals the existence of a limit cycle other than
the equilibrium state, either above or below the threshold speed, according to the Hopf

bifurcation theorem discussed in Section 5.2.

The dynamic behaviour of the journal in the two regions is discussed below in detail:
Region I - sub-critical bifurcation (11(0) >0,0'< O) :

In this region, below the stability threshold line, along with the SE state, there exists an

unstable limit cycle (ULC) of radius \/; . Figure 5.5(b) shows the sub-critical
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bifurcation diagram appertaining Region I. The amplitude of the ULC reduces as the
speed approaches the threshold value. At @, ULC disappears. Above @,, the journal
centre spirals out towards an UE state. Dashed lines represent the unstable solution.
Figure 5.6(a) shows the plot of the amplitude of the limit cycles in X direction, in the
two regions. Figure 5.6(b) shows the plot of the approximate limit cycles calculated
using Eq. (5.74) for the rotor system under investigation for increasing steady-state
eccentricity ratio. It can be seen that the amplitude of the ULC increases with the
increase in the steady-state eccentricity ratio, which attains its maximum at the

boundary n, =0.32 between the regions shown in Figure 5.5. It should be noted that the

size of the ULC is very small for n_ ~ 0, which is the case for negligible static load.

The bifurcation in the dynamic behaviour of the rotor system under investigation is also
predicted from the numerical analysis by using the Runge-Kutta method. Figure 5.7
marks the corresponding locations on the parametric plane for which the dynamic
behaviour of the journal centre are plotted from the numerical solution. Figure 5.8(a)
shows the plot of the journal centre orbit corresponding to the steady-state eccentricity
ratio n, =0.1 from Region I, for a speed below the threshold speed @ =@, —0.1. The

ULC given by r, = \/; = 0.21 is shown to demarcate the two initial eccentricity ratios

presented in Figure 5.8. The journal centre spirals inwards when the initial eccentricity

ratio n,, which is the amplitude of the whirl motion, is less than the ULC radius
(n,=0.16). Conversely, the journal centre spirals outwards away from the SE state,
when n, is greater than r, (n,=0.26). Figure 5.8(b) shows the corresponding time

series plot of the journal centre showing the variation in the eccentricity ratio n of the
journal centre. The figure shows the amplitude of the whirl motion as time increases,

when the rotor is spinning at a constant speed which is below the threshold speed.

For the same initial eccentricity ratios (7,) shown in Figure 5.8(a) and (b), for a speed
above the threshold speed @ =@, +0.1, Figure 5.9(a) shows the journal spiralling out

towards an UE state. Figure 5.9(b) shows the corresponding time series.

Region II - super-critical bifurcation (l1 (0)<0,0"> 0) :
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In this region, the journal centre spirals into a stable equilibrium state (SE) below the
threshold speed. But when the rotor spins at a speed above the threshold speed, the Hopf
bifurcation leads to the birth of a stable limit cycle (SLC) other than the existence of an
UE. Figure 5.5(c) shows the super-critical bifurcation diagram for Region II. As the
speed increases, the journal centre reaches a SE below @,. The SLC appears above o,

and starts increasing in size with increasing speed. During the SLC, the journal centre
keeps whirling at finite amplitude. Any neighbouring state of the journal centre, inside
or outside of the SLC, attracts the journal centre to the SLC as shown in Figure 5.1(b).
The amplitude of the SLC reduces with the increasing eccentricity ratio after the

boundary for s, >0.32 as shown in Figure 5.6. From the numerical analysis, for
n,=0.5, Figure 5.10(a) shows the orbits approaching a SLC of radius r, =0.6 for both
the given initial eccentricity ratios that are inside (n, =0.59) and outside the SLC
(n, =0.61) for a speed above the threshold speed @ =@, +0.1. Figure 5.10(b) shows
the corresponding time series plot. But, for the same initial eccentricity ratios, Figure
5.11(a) and (b) show the orbit and the time series plots for @ =@, —0.1. The journal

centre spirals inwards to a SE state for a speed below the threshold speed.

Figure 5.12 shows the plot of the dynamic behaviour of the rotor-system under
investigation across the bearing clearance. This gives a summary of the behaviour
discussed above. If the steady-state eccentricity of the journal centre is within about
32% of the clearance (Region I) with respect to the bearing centre, then the journal
centre exhibits sub-critical bifurcation; if the eccentricity of the journal centre is
between about 33% and 76% of the clearance (Region II), then the journal centre

exhibits super-critical bifurcation. Above about 76%, the rotor has a stable equilibrium.

On the basis of the fact that ' >0, it is evident that the time period of the limit cycle
increases in both the regions as the eccentricity ratio is increased [71]. This suggests
that the whirling frequency of the journal centre exhibiting a limit cycle reduces, as the
static load is increased. The procedure for determining the boundary from the first

Lyapunov coefficients was verified by determining the same using the long bearing
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approximation for the fluid-film forces. This was found to be in agreement with the two
boundaries given by Myers and Gardner [23, 43] for a similar system.

The above discussion suggests that a rotor system operating in Region I is undesirable,
since the journal centre mostly grows in amplitude towards the housing, unless limited
by other nonlinearity in the system. Operating in Region II is desirable as the journal
centre whirls at finite amplitude above the threshold speed. This requires choosing a

very low o, as shown in Figure 4.3 in Chapter 4, for example, o, =0.1; this means

that the design parameters and the static load combine in such a way that the operating
curve lies mostly in Region II. For a given set of bearing parameters such as the bearing
dimensions and the lubricant viscosity, Eq. (4.18) suggests that the external static load
can aid in achieving this. However, the analysis signifies that for the case of a

turbocharger, o, is very high due to the negligible static load. Figure 5.13 depicts the
operating curves corresponding to very high o, =100, 500 in comparison with that of
relatively low values, such as, o, =1.2, 10 in Region I. It is evident that the operating
curves represented by o, =100 and 500 reach a very low eccentricity ratio close to
n, ~0.001, at a very low speed and asymptote vertically. It is shown that in Region I,

the journal centre reaches SE or ULC below the threshold speed and UE above the
threshold speed. It can be seen in Figure 5.6(a) that the ULC is too small for very small
eccentricity ratios. This suggests that for most of the speed range, the journal centre of a

turbocharger rotor spirals outwards.

5.6 CONCLUSIONS

In a dynamic system of a perfectly balanced rotor in short-bearings with
oscillating 7z -film cavitation, the onset of oil-whirl was reviewed and related to the
Hopf bifurcation. The 4-dimensional system was reduced to a 2-dimensional one by
applying the Centre Manifold Theorem. Then the system was transformed to a normal
form, wherein the nonlinear hydrodynamic oil-film forces were considered upto the
third order; the Hopf bifurcation was examined. The nature (type) of bifurcation in the

parameter plane was determined by calculating the first Lyapunov coefficients of the
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normal form. A boundary was determined between the two identified bifurcation
regions for the rotor system, in terms of the steady-state eccentricity ratio. This was
verified using the Poore’s bifurcation algebra. The dynamic behaviour of the rotor
system in these regions was presented in the form of orbit plots produced from the

numerical analysis.

The dynamic behaviour of the journal bifurcates by experiencing a change in the
stability at the threshold speed that separates the stable and the unstable equilibrium
states of the journal centre and is characterized also by the disappearance or appearance
of a limit cycle. The rotor system exhibits sub-critical bifurcation (disappearance of an
unstable limit cycle) if the steady-state eccentricity ratio of the journal under the static
load is less than 0.32 and super-critical bifurcation (appearance of a stable limit cycle) if
the eccentricity ratio is between 0.33 and 0.76. Operating the rotor system in the super-
critical bifurcation region allows the journal centre to assume a stable limit cycle above
the threshold speed. The presence of a static load increases the steady-state eccentricity

ratio of the rotor, which helps in achieving this.

Since an automotive turbocharger is generally lightly loaded, the journal has a very low
steady-state eccentricity ratio in the bearings. Hence, the turbocharger must be operating
in the sub-critical bifurcation region. This is undesirable since the journal effectively
spiralled outward close to the housing, for most of the speeds. Hence, the presence of a
static load seemed to be an option to keep the turbocharger operating in the higher

eccentricity range, thereby allowing the existence of a stable limit cycle.

The understanding of the dynamic behaviour of a turbocharger with a perfectly balanced

rotor pertaining to very high o, (non-dimensional group of bearing parameters), helps

in analysing the waterfall plots shown in Chapter 1 to determine the effect of unbalance.

This is presented in the next Chapter.
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n e, Q, [@(0) [50) |70) [4(0) |R{c(0)}3{c,(0))
Sm/a)o

0.01 #46.07 [2.76 0.5 0.01 <0 >0 >0 0.02 -0.001

0.05 p.18 2.76 |0.50 10.03 <O >0 >0 0.08 -0.018

0.10 4.54 [2.74 10.50 [0.06 |<O >0 >0 0.13 -0.07

02 216 (268 [(0.51 10.09 <O >0 >0 0.12 -0.16

0.3 1.31 [2.61 (0.52 10.09 <O >0 >0 0.02 -0.17

0.32 |1.19 [2.59 ]0.52 |0.08 |<O >0 >0 0.004 -0.17

sub-critical bifurcation

0.33 |1.15 [2.58 [0.52 |0.08 [0 >0 <0 -0.006 |-0.16

04 0.84 (254 (0.52 1(0.08 PO >0 <0 -0.07 -0.12

0.5 0.52 254 (0.51 1[0.06 PO >0 <0 -0.17 -0.01

0.6 0.29 270 (047 10.04 >0 >0 <0 -0.39 0.19

0.7 .11 3.63 (034 1(0.01 PO >0 <0 -1.49 0.42

0.75 (0.03 [9.87 (0.13 10.00 >0 >0 <0 -10.6 -5.1

super-critical bifurcation

Table 5.1 Table of the parameters &',0',n" , the sign of the first Lyapunov coefficient I,
and the non linear coefficient of the cubic term in the normal form ¢, evaluated at the threshold
speed v =0 for a set of steady-state eccentricity ratios. The corresponding threshold speed @,

and the whirl frequency €2, are also shown.
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Figure 5.1 Schematic of (a) the unstable and (b) the stable limit cycles showing the

repelling and attracting nature respectively towards the neighbouring trajectories. EQ is the

equilibrium state of the dynamic system. The dashed line shows the ULC and the grey
continuous line shows the SLLC . Based on [23]
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Figure 5.2 Plot of the real part of the eigenvalues (5 ) at the threshold speed, varying with
the steady-state eccentricity ratio showing a conjugate pair of purely imaginary eigenvalues and
a conjugate pair of stable eigenvalues, which satisfies one of the conditions for the occurrence
of the Hopf bifurcation.
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Figure 5.3 Plot of the derivative of the real part of the eigenvalue s which is purely
imaginary at the threshold speed, with respect to the rotational speed. The derivative is
evaluated at the threshold speed to show its continuity at the threshold speed.
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ULC

sharp stability loss

Figure 5.4 Phase portraits (orbits) related to the sub-critical and super-critical bifurcations,
which are possible solutions to Eq. (5.54) where # =1, + jil,; (a) orbit below the threshold
speed (b) at the threshold speed (c) above the threshold speed related to the sub-critical
bifurcation (d) orbit below the threshold speed (e) at the threshold speed (f) above the threshold
speed related to the super-critical bifurcation. SE — stable equilibrium, UE - unstable
equilibrium, SLC — stable limit cycle, ULC — unstable limit cycle, NE — neighbourhood of
equilibrium, v = ® — @, —bifurcation paramater . Reproduced based on the diagram given in

[63].
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UE super-critical bifurcation UE
SLC - =
SE @, w
SE - stable equlibrium SLC - stable limit cycle (c)
UE - unstable equlibrium  ULC - unstable limit cycle
Figure 5.5 (a) Plot showing the regions of sub-critical and super-critical bifurcations in the

dynamics of the journal in a short-bearing with an oscillating 7 -film cavitation under the effect
of a static load. o is the sign of the first Lyapunov coefficient [(0) and p=a/€Q (b)

Schematic illustration of the sub-critical bifurcation with reduction in the ULC amplitude
below the threshold speed (c) Schematic illustration of the super-critical bifurcation with

increase in the SLC amplitude above the threshold speed; @, is the threshold speed and @ is
the rotor speed.
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(a) Plot showing the limit cycle amplitude along X direction in Region I and

IT (b) Plot showing the ULC and SLC amplitudes varying with n_; [, is the first Lyapunov

coefficient.
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Figure 5.7 Plot showing the regions on the parametric plane with markers signifying the

parameters - steady-state eccentricity ratio and the rotational speed, corresponding to the
numerical plots presented in the following figures.
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Figure 5.8 (a) Plot of the orbits corresponding to n_=0.1(Region I) related to sub-

critical bifurcation, along with the ULC, when the rotor spins below the threshold speed
@ =wm,—0.1. The journal centre orbits into a SE state from an initial eccentricity ratio

n, =0.16 (< ULC ) and orbits outwards for the initial eccentricity ratio n,=0.26
(> ULC ) , when 0, =4.38, r, = 0.21; the black rectangle indicates the location in Figure 5.7

in the parameter plane. (b) Time series corresponding to the orbits given in (a) showing the
variation of the journal centre eccentricity ratio with the non-dimensional time.
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Figure 5.9 (a) Plot of the orbits corresponding to n_=0.1(Region I) related to sub-
critical bifurcation, when the rotor spins above the threshold speed @ =@, +0.1; the journal

centre spirals outwards to an UE state, for the same initial eccentricity ratios (7,) given in

Figure 5.8, while all the other parameters are maintained the same; the red rectangle indicates
the location in Figure 5.7 in the parameter plane. (b) Time series corresponding to the orbits
shown in (a), showing the variation of the journal centre eccentricity ratio with the non-
dimensional time.
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Figure 5.10  (a) Plot of the orbits corresponding to n, =0.5 (Region II') showing a stable
limit cycle (SLC) of radius 7, = \/; for a speed above the threshold speed @ = @, +0.1. The
journal centre reaches a SLC for both the initial eccentricity ratios 7, =0.59 (< SLC) and

n, =0.61 (> SLC), when o, =0.55, r, = 0.60; the red triangle indicates the location in

Figure 5.7 in the parameter plane. (b) Time series corresponding to the orbits given in (a),
showing a stable periodic whirl motion as time increases.
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Figure 5.11 (a) Plot of the orbits corresponding to n = 0.5 (RegionII) showing the

journal centre spiralling into a SE state from the same initial eccentricity ratios given in Figure
5.10 for a speed below the threshold speed @ = @ —0.1, when o, =0.55, r, =0.60; the black

triangle indicates the location in Figure 5.7 in the parameter plane. (b) Time series
corresponding to the orbits shown in (a).
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Figure 5.12 Plot showing the dynamic behaviour of the rotor-bearing system under
investigation, across the clearance of the bearing depending on the journal eccentricity ratio; the
system has a rigid rotor supported in short journal bearings having an oscillating 7-film

cavitation. The clearance is exaggerated for clarification; C, is the bearing centre; C, is the
journal centre. Note that n_=1 is an impractical case, where there is metal-to-metal contact,

which is the reason for marking as n_ =1 in the figure.
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Figure 5.13 Parameter plane showing the regions and the operating curves for very high o,

values indicating the operating region of a turbocharger due to its light weight; the steady-state
eccentricity ratios corresponding to o, =100 and o, =500 remain constant for most of the

speed range. o, = 1.2 is about the minimum value in RegionI .
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CHAPTER 6

THE EFFECT OF UNBALANCE ON OIL-WHIRL
INSTABILITY IN A TURBOCHARGER

6.1 INTRODUCTION

In Chapter 4, the effect of a static load was shown to be advantageous in
achieving high eccentricity operation in a rotor-bearing system. Added to that, it was
concluded in Chapter 5 that a turbocharger due to its light-weight, operates in Region I
of the parameter plane of the steady-state eccentricity ratio and the speed as shown in
Figure 5.5, where there is a sub-critical bifurcation. As discussed in Chapter 1, the
unbalance test data of a turbocharger was obtained from Cummins Turbo-Technologies
Ltd., Huddersfield, UK, in the form of waterfall plots. These plots illustrate a shift in the
system response frequency, from the second whirl frequency to the synchronous
frequency for a certain speed range. It was shown in Chapter 2 that the second whirl
frequency in a turbocharger corresponds to the in-phase whirl mode. Previous work, for
example [39, 80, 81] suggests the suppression of self-excited vibration by means of an
excitation. Castro et al.. [82] analysed the effect of unbalance on the rotor dynamic
behaviour of a vertical rotor system. They showed that increasing the unbalance
increased the stability threshold, thereby increasing the stable region of operation
characterised by synchronous vibration. Nayfeh [81] defines the process of increasing
the amplitude of the excitation to cause the free-oscillation term to decay as
‘quenching’. In the case of an automotive turbocharger where the speed range of
operation is quite high, the test waterfall plot from Cummins for the high imbalance case

shows a frequency shift in the speed range of 80,000 rpm to 130,000 rpm from sub-
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synchronous to synchronous order. Hence, this Chapter aims at investigating the effect
of rotor unbalance on the in-phase whirl frequency of a turbocharger, in both the
transient and the steady-state conditions. Particular emphasis is placed on the speed
range of interest based on the test data. The rotor-bearing system with a rigid rotor in
rigidly supported journal bearings analysed with a static load in Chapter 4 and 5, is
investigated in this Chapter with an added unbalance; this is a periodic load varying
with speed. The bearing forces are derived by using the short-bearing approximation
and an oscillating x-film cavitation as in Chapter 4 and 5. By numerical analysis,
waterfall plots are produced simulating the behaviour presented from the tests. The
equations of motion are reduced from a 4-dimensional system to a 2-dimensional
system using the Centre Manifold Reduction theorem [63] discussed in Chapter 5. The
equations are then simplified into an equivalent system by applying the method of

averaging [83] for analysis and comparison with the numerical results.

6.2 EQUATIONS OF MOTION WITH HARMONIC
EXCITATION DUE TO UNBALANCE

This Section details the derivation of the equations of motion for the unbalanced
rotor system. Similar to the procedure used in Chapter 5, the first order form of the
equations of motion which are 4-dimensional are reduced to 2-dimensions by applying
the Centre Manifold Reduction theory [63]. Using the method of averaging, the
equations are averaged to a mathematically equivalent system that simplifies the

analysis.

Figure 6.2 shows the co-ordinate system of the rotor-bearing system with unbalance in

the rotor. Compared to the system shown in Figure 4.1 in Chapter 4, this system has the

centrifugal force F,(=m,u®’) due to the unbalance acting at the mass centre C,, which
is eccentric by u from the geometric centre C,, of the journal. This force rotates at the
rotor speed @. The system consists of a symmetric rigid rotor of mass 2m, supported
in two identical rigidly housed journal bearings where m, is the rotor mass inclusive of
the unbalance mass; n is the eccentricity ratio of the journal centre with respect to the

166



CHAPTER 6 THE EFFECT OF UNBALANCE ON OIL-WHIRL INSTABILITY IN A
TURBOCHARGER

housing centre O; ¢ is the attitude angle; E,F} are the radial and tangential forces; F
is the static load; @ is the spin speed; C, is the journal centre and C; is the bearing

centre. The equations of motion of the journal centre along X and Y are given by:

2
X .
mdd2 =F+F’cos¢g—F"sing +F cosat=F,, (6.1)
t
ay ., . , :
m % =F’sing+F”cosg+Fsinot =F,. (6.2)

Similar to Chapter 4, dividing by S, F, Egs. (4.4) and (4.5) can be written in the non-

dimensional form as:

)?=§—”;(1+Frcos¢—ﬁssin¢)+p2cosr, (6.3)
@
= S = . = ).
Y=—2= (E sing+F, cos¢)+p sinz, (6.4)
@

where p’ :E is the unbalance eccentricity ratio which is the mass eccentricity with

respect to the geometric centre. Following Shaw and Shaw [47] and Ding [51], the
unbalance magnitude is represented as p° rather than just p to emphasise that the ratio

is relatively small compared to the dynamic eccentricity ratio governed by the film

forces. The equations of motion can be written in simple form as:

S _
X”=6—’;FX(X,Y,X’,Y',S,") + p’cost, (6.5)
v Sm - ' ' 2 .

Y =EFY(X,Y,X,Y,S,”) + p’sint. (6.6)

The equations of motion (6.5) and (6.6) are defined in the form of a first order system

in terms of the state variables, x, = X - X _,x,=X',x, =Y -Y ,x, =Y as:
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X, = X,,
. S, = 2
X, :EFX(xl,xz,x3,x4,Sm)+p COS7,
: (6.7)
X, =X,
X, = a_)"Z’ F,(x,,%,,%,,x,,S, )+ p’sinz.

In the state variables, (-); denotes the steady-state. This equation (6.7) is similar to the

system defined in Chapter 4 with a periodic harmonic excitation at frequency equal to

the rotor speed (7 = wt). Setting p° as zero in Eq. (6.7), gives the equations of motion

for the balanced rotor given in Eq. 4.19. The Cartesian form of the equation of motion is

useful for further reduction using the Centre Manifold theorem similar to the procedure

given in Chapter 5. However, the polar form which is given in the following Sub-

Section is quite convenient for the numerical integration using Runge-Kutta method

[84] in MATLAB.

6.2.1 POLAR FORM

The equations of motion for the rotor system shown in Figure 6.2 in the polar

form are given by:

mc[
|

d*n

dt

n
dt?

2
., dn db

n[d—¢j J=Fl +F, cos(wt — @)+ Fcosg,

dt

=F +F sin(wt —¢)—Fsing,
dzdzJ , +F, sin(otf — @) ¢

which have the non-dimensional form given by:
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ﬁ=n¢2+§—g(M+EJ+p2cos(r—¢), (6.10)
o S,
.7 . 2 . .
¢:_2”¢+ sz(ﬁ_smqﬁ}rp sin(z ¢). 6.11)
n  no S, n

These equations show that the amount of unbalance p° that participates in the

dynamics is controlled by the harmonic term whose argument depends on the phase

difference between the excitation z and the response ¢. To make the analysis easier,

the Cartesian system is used for reducing the system to 2-dimensions, which is given in

the following Section.

6.3 CENTRE MANIFOLD REDUCTION AND THE METHOD OF
AVERAGING:

This Section gives the Centre Manifold reduction of the equation of motion
given in Eq. (6.7) similar to the procedure applied in Chapter 5. The reduced equations
are represented as a standard perturbation problem [83] for the application of the
method of averaging. The unbalanced rotor system given by Eq. (6.7) can be written as

[46]:

X = A(W)x+F(x,v)+ p’A(t), (6.12)
where, A(t)=[0,cos7,0,sinz]"; 7 is 27 peridic, since the period of excitation is one
rotation of the rotor. Following the procedure outlined in Chapter 5 - Section 5.3.1,

similar to Eq. (5.20), Eq. (6.12) can be written as:

q+zq+y =A(zq+2q+y)+F(zq+Zq+y),v) + p*A(2). (6.13)
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From Eq. (5.20), the z and y terms can be separated directly except for the higher
order function F. Similar to Chapter 5, using the scalar product of p on both the sides

and separating the Z terms gives:
z=5z+(p.Fzq+zq+y,v))+ p’ (p,A(1)). (6.14)

From Eq. (5.20), using Eq. (5.19), y is expressed as:

F(zq+Zzq+y,v) P A1)
y=Ay+ ~(p.Fq+za+yv)a  |+| —(p.A°AD) |, (6.15)
—(p.F(zq+zq+y.))q ~(p.P*A())q

which after substituting for A(¢), p,q, p.q, Eq. (5.22) can be written similar to Eq.
(6.14) as:

F(zq+Zq+y,v)
y=Ay+ —(p,F(zq+zq+y,v))q |+ p’(h cos(z)+h,sin(r)), (6.16)
—(p.F(zq+2q+y.v))q

—2%{p.4, —2R{p,q,}

where h_ = (1_2%{1726]2}) : —2R{pyq, |
C| 2®{pa} | ~2R{p,q;
(1—29%{p2q4}) —2R{p,q.}

Now, Egs. (6.14) and (6.16) can be written in a simplified form as:

2=§12+G(Z,E,y,v)+p2(pzcosr+p4sinr), (6.17)

y=Ay+H(z,z,y,v)+ p° (hc cos(z)+h, sin(r)) , (6.18)

170



CHAPTER 6 THE EFFECT OF UNBALANCE ON OIL-WHIRL INSTABILITY IN A
TURBOCHARGER

where the expansion of G and H are the same as given in Eq. (5.23) and (5.24) in
Chapter 5. According to the Centre Manifold Theorem discussed in Chapter 5, let the
Centre Manifold to which the equation of motion given in Egs. (6.17) and (6.18) are

restricted be of the form:
_ 1 2 — 1 =2 2 :
y=V(z,2)+V(r) = S WaZ TWZE o WgZ Ep (Wgp SIn(7) + W c08(7)) ,(6.19)

where the last term is a function of 7, which is added due to the presence of the
excitation term in Eqgs. (6.17) and (6.18); V is real as discussed in Chapter 5. In order to
express y in terms of z,Zz , it is necessary to calculate w coefficients in Eq. (6.19). To
this end, the derivative of the right hand side of Eq. (6.19) has to be equated to that of
Eq. (6.18). Similar to the expression given in Chapter 5 in Eq. (5.26), in order to find
the time derivative of Eq. (6.19), y is defined as:

§= aV(z,z)Z,+ aV(Z,Z)Z;+ oV(r) .
0z 0z or

(6.20)

Using Eq. (6.20), equating the derivative of the right hand side of Eq. (6.19) to the right
hand side of Eq. (6.18) and substituting for y from Eq. (6.19), gives:

WooZ2 + W, (22 +22) + Wi ZZ + p° (Wep OS(T) — W g sin(7))

= A(%wzoz2 + w”zE+%w0232 +p7 (Wep SIN(T) + W cos(z'))j . (6.21)

+%hmz2 + han+%h0222 + p* (h, cos(7) +h, sin())

Comparing the coefficients of like-terms in z, z on either side of Eq. (6.21) upto

quadratic level gives:
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z: (2IQ0 —A)w20 =h,;
zz: (21Q,-A)w, =h;
z: (21 —A)w,, =h,,; (6.22)

sin(r):  —Wy =Awg, +h;

cos(r):  wg, =h +Aw.

Using Eq. (5.28), w;; can be calculated for the Centre Manifold, which are the same as
in Chapter 5. However, due to the excitation terms in the original equation of motion
given in Eq. (6.7), Eq. (5.28) has two more vector coefficients w, and w_ . As
discussed in Chapter 5, the function G(z,z,y,v) in Eq. (6.17) consists of y which can
now be substituted with z,z terms using Eq. (6.19), resulting in the reduced equation

given by:

z=4§z +lgzoz2 + glle+lg0222 +8,2°Z+p* (Gg. W cosT+W,, sinT)z
2 2 . (6.23)

+p°(Gy. W cosT+w,, sint)Z + p* (p,cost+ p,sinr)

where w = —[I +A’ T ((Ah)+h,); wg, =h +Aw; while the other terms are the

same as given in Chapter 5. Letting p° =0, gives the reduced equation of motion of the

balanced system given in Eq. (5.30).

Since the interest is to understand the amplitude and the phase change of the response, it
is necessary to convert Eq. (6.23) to the polar form. Letting =z :ruem” in Eq. (6.23)

gives,

. i0, 1 2 i26, 2 1 2 —2i6, 1 3 i6, |
(a'HQ)”ue ! +Eg20’/;4 e +gyr, +Eg02’/;4 e +Eg21”ue “

. . 2 . i0,
o0 (,; Lird ): Yo, <G10.(Wcs COST+W,, smz')>rue u
u u-u

2 : —i6),
+p <G01.(wcs COST+W,, s1nz')>rue u

| +p”(p,cost+p,sint)

(6.24)
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where the subscript # denotes an unbalanced rotor. Cancelling "% on both the sides of

Eq.

(6.24) and using the expressions w,=Gw.,, W,=Gw,, W, =G,W,,

w,, = G, w,, for simplification, results in:

2 10,

o | o\
(cr+1Q)7, + (o, + i )€™ + (211, + iy ) e

1 . _3ig, 1
+5(g02r +lg02i)rze 3 +5(g21r +g21i)r3
(7, +ir,6,)=| +p <(w1r +iw,, ) cos 7 +(w,, +iw,, )sin r>ru ,
+p° <(wm +w,, )cos7+(w,, +w,,)sin r> re 21

+p° (p,cosT+ p, sin r)e_’g”

(6.25)

where the subscripts », i denote the real and the imaginary parts of the coefficients

respectively. Separating the real and the imaginary parts gives:

(aW)r, +%(g20r cos 8, — g, sinf, )1’ +(g,, cosb, +g, sinb,)r’

3

+%(g02r COs 39u +g02i Sin 39u )ru2 +%(g2lr)r;t

=|+p° <(w1r)cosr+(w2r)sinr>ru

+p’ <(wm c0s26, +w,, sin26, ) cos T +(w,,, cos26, +w,, sin26, )sin r> r,

+0° (( Py, €086, + py;sin 6, )cos 7 +( p,, cos b, + p,,sind, )sinz)

(Q(V))ru +%(g20i Co8 0, + g5, sin 914)’;42 +(g11i cos6, — g, sin 9:1)7;42
+%(g02i c0s36, — g, sin 39;;)’?;2 +%(g21i)ru3

)=|+0*((w,)cosz+(w, )sinz)r,

+p° ((pZi 0826, — p,, sin 26, )cos 7 +( p,, cos 26, — p,, sin 26, )sin r)
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It was shown in Chapter 4 that the non-dimensional bifurcation frequency €, at the

threshold speed is about 0.5. Given the fact that the excitation frequency is the rotor
speed, the interest is to study the effect on in-phase whirl instability during sub-
harmonic resonance, i.e., when the rotor whirling frequency is about half the excitation

frequency. Hence, it is helpful to introduce a detuning parameter o, [51]. This is a

small deviation of the whirl frequency from the sub-harmonic bifurcation frequency

Q, due to the excitation frequency @, such that:

Q,=—+0,. (6.28)

In order to study the nonlinear time variant system defined by Eqgs. (6.26) and (6.27), it
is easier to study the averaged form of it. To this end, it is necessary to get the system to
the standard form for averaging [83]. The standard form of a perturbation problem for

the application of averaging is given by [83]:

i=ef(x,te), xeR", (6.29)

where, x is the variable, ¢ is the time and ¢ is a small parameter. Some details of the
method of averaging used to obtain the information regarding the approach to the limit
cycle is given in Appendix D. Now, to convert the rotor system given in Egs. (6.26) and
(6.27) into the standard form in Eq.(6.29), it is necessary to introduce the small
parameter £ to order the terms of the equation. Since the amplitude of the limit cycles
born at the Hopf bifurcation curve i.e., the stability threshold discussed in Chapter 4

increases with the square root of the bifurcation parameter v, an appropriate scaling of

1
r, = &1, is chosen following the work of Namachivaya and Ariaratnam [49] and Ding

[51]. This leads to,

p =¢p’, v=ev,, o,=¢o,. (6.30)

Using Eq. (6.30), the coefficients of the linear terms in Eqs. (6.26) and (6.27) take the

form,
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a(v)=a'(0)y =ea'(0),, (6.31)
Q(v)=0)+Q'(0)v =%+6(01 +Q'(0),). (6.32)

Substituting Eq. (6.30) through Eq. (6.32), Egs. (6.26) and (6.27) can be represented in

the standard form for the application of averaging as:

. l r r ' 1 r
=62 (0 (6,7 +p G (D)+ s(a O+ (8, )7+ (Gu,r)), (6.33)

=1ve (Qf’(@)n +”—12G9(r>}+e((al HQOW)+0!(8)7 + A7 1'(0,,0)),

h

(6.34)

where, O/ (6,) and Qle (8,) are the quadratic terms of harmonic functions, Qf (49“) isa

cubic term of harmonic function, h"(€,,7) and h‘g(&u,r) are functions of both the

excitation phase 7 and the response phase 6,, G"(r) and GY(r) are purely harmonic
functions in 7 . It should be noted that, the standard form given in Egs. (6.33) and (6.34)
have a harmonic excitation term, that is combined with a linear term in 7 and another
purely harmonic excitation term, both ordered differently. Thus, the way of ordering
used in Eq. (6.30) allows the 7’ term and the excitation terms with function h",h?, to
be of the same order in ¢. It can be seen that Eqgs. (6.33) and (6.34) consist of the
functions of 6, and 7, which are the response and the excitation phase angles

respectively. To allow integration with respect to 7 while averaging, these can be

related using 6, :§+¢)u, which implies that 629” =0, :%+¢u. To incorporate the
T

influence of the quadratic terms that disappear in the first order averaging, the equations

are averaged upto the second order and the resulting equations are given by:
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7= g[(a'v)?y +ar, + p’r, (U, sin(2@,) +V, cos(2(/_)u))] , (6.35)

70, = e[ (Q,+Qv)7, + b7 + p°7, (U, c0s(25,) -V, 5in(23,)) | (6.36)

where: 6 denotes the averaged variables.

| ~
a IE%{gzl}_J{gzogn} ’

1 1
b= m{gzog11}_§|goz|2 _2|g11|2 +53{g21}’

“

Note that the expressions related to @ and b give ¢, =a+ jb as given in Eq. (5.36) in

Chapter 5. Using linear transformation [49], the equations of motion further simplifies
to:

r,=e(ar +ar) + p'rUsin2(, +¢)), (6.37)

b, =2(Q, +b1, + pU cos2(p, +£)), (6.38)

¢u'

where U =\JU’ +V;>, tan2¢ =U, [V, a, =a'(0)v,, Q, =(o, +Q'(0),) 0 =—+
It should be noted that Egs. (6.37) and (6.38) are the same as the normal form given in

Egs. (5.62) and (5.63) in Chapter 5, if the unbalance magnitude p,” is set to zero. Note
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that a', b’ terms are ignored in Egs. (5.62) and (5.63) subsequently. The harmonic
excitation term has the phase as twice as the phase of the response ¢,. This term is a

linear function of the response amplitude 7,, which keeps increasing as the amplitude

increases for a given unbalance value p . From the averaged equations, the steady-state

amplitude of the journal motion can be determined by setting the time dependent terms
to zero. This is done in the following Section and the modified stability threshold is

determined.

6.4 MODIFIED STABILITY THRESHOLD

The amplitude equation for a two-dimensional perturbation problem was derived
by Namachivaya and Ariaratnam [49] after averaging them. Based on a stability
analysis, they arrived at the critical bifurcation parameter, which gives the stability
threshold for the excited system. The aim of this Section is to apply the same procedure
for the rotor system under investigation to determine the modified stability threshold.
However, the stability analysis is presented using the Jacobian determinant following
Gross [85]. Under the steady-state conditions, that is, 7 =0, (Zu =0, Egs. (6.37) and

u

(6.38) become:
p2Usin2(p, + ) =—a, —ar?, (6.39)
p2Ucos2(p, +¢)=-Q, —br?. (6.40)

It must be noted that @, gives the shift in the phase rate from 1/2. This stems from the

relation 6_’u :%+$u introduced before averaging. Squaring and adding Egs. (6.39) and

(6.40) gives
(p20) =12 = (2 +5°)(r2) +2(e,a+ Q)7 +(a2 +02).  (64D)
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Re-arranging Eq. (6.41) gives the quadratic equation in 7. as:

(@ +5°)(72) +2(e,a+Q,0)72 + (a2 +02) (02U =0, (6.42)

u

whose roots give the amplitude of the limit cycle, under the effect of unbalance as:

(6.43)

Y|
Il

Equation (6.43) gives a meaningful solution only if the root is real and positive. A
quadratic equation ax’+bx+c=0 has one positive real root if 4ac<0 and two
positive real roots if <0, 4ac >0 and the discriminant b*> —4ac>0. Eq. (6.43) has

one positive real root provided,

2

o +Qf < (ple) : (6.44)
and two positive real roots if,

(&Qu —ba, )2

auz+QiZ(p12U)2,(aud+Qub~)<0 and (,012(7)22 (~2 52)
a +

(6.45)

However, the possibility of two real roots suggests two possible whirling amplitudes. In
order to ascertain the significance of this case, the stability of the solutions needs to be

analysed [49]. This can be determined using the determinant of the Jacobian [85, 86] as:

or, o,
s | T | a3 e g Usin2@, 4 0) 2o Ueos2@ 0]
Tlog, o, 2, 2p0sin2@,+¢)|
o o4,
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which after substituting Eqgs. (6.39) and (6.40) for the harmonic terms gives:

2ar” 21, (-Q, -br;
: (6.47)

267, 2a,+2ar}

which is of the standard form s> —Ts, + D =0, where T is the trace of the matrix in Eq.

(6.47), and D is the determinant of the matrix. The eigenvalue of the Jacobian

determinant is given by:

§, =@, +2a7 ol + Q2 — (257 +Q,)’ . (6.48)
This gives two conditions for stable eigenvalues such as:

1) sum of the diagonal elements, T< 0,1e., 2a, + 44717142 <0,

ar” <——a,; (6.49)

(6.50)

Condition given in Eq. (6.50) also stems from the derivative of the function given in
Eq.(6.41), which is f(7?)= 2(512 +52)7u2 +2(%5+Qub~)- As discussed in [49], Eq.

(6.50) implies that only the one with positive sign of Eq. (6.43) gives a stable

eigenvalue, i.e.,
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L (war )@ +8)(00) - (@a-05)

= . (6.51)

)

Equation (6.49) is the stability condition along with the conditions given in Egs. (6.44)
and (6.45), for one and two positive real roots respectively. The condition given in Eq.

(6.49) signifies the loss of stability giving the stability threshold as [49]:

2~—2
v, =T (6.52)

(24

Recalling that v = w— @, for the balanced rotor, v, signifies the shift in the stability

threshold. The modified stability threshold is given by:

@y, = @y — 1. (6.53)

It was shown in Chapter 5, for the system under investigation ' > 0. This signifies that
the threshold speed reduces when a is positive, i.e., in Region I, when r, is real as
shown in Figure 5.5. It is also evident that the threshold speed increases in Region II,

where @ <0. Figure 6.3 shows the plot of the modified stability threshold, @,, for
p>=0.01 and 0.03 with @,, <@, in Region I and @,, > ®, in Region II. This effect

further increases with increasing unbalance. As n, — 0, 7. is relatively very small i.e.,

the ULC radius is very small as shown in Figure 5.6 in Chapter 5; «' is negligible as

~—
u

(24

shown in Figure 5.3. This suggests that the term is too small when compared to

w, such that @, = @, .

It was shown in Chapter 5 that the operating curve of a turbocharger determined by the

modified Sommerfeld number o, must lie in Region I. Based on the dynamic

behaviour of the system in Region I, a detailed analysis of the steady-state and transient

motion is presented in the following Section based on the numerical analysis. The
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Section focuses on the speed range of interest given in the test waterfall plots shown in

Chapter 1. A related analysis of the averaged equations is also presented.

6.5 DISCUSSION OF THE NUMERICAL AND THE
ANALYTICAL RESULTS

The waterfall plots obtained from Cummins Turbo-Technologies Ltd. were
discussed in Chapter 1. They showed the effect of unbalance over a certain speed range.
Figure 1.4 shows the comparative waterfall plots produced from the data collected from
the same hardware and conditions for two different imbalance levels. These plots show
the response frequency shifting from the in-phase whirl frequency (IP) to the
synchronous frequency (1x) for a range of speed. This effect seems to be quite
simultaneous in the high unbalance case at about 80,000 rpm, than the low unbalance
case, where the synchronous response is seen only at about 120,000 rpm. This Section
aims at investigating similar waterfall plots obtained from the numerical analysis of a
turbocharger. Further to that, to determine the effect of unbalance in the transient
motion, the growth rate of whirl orbit is analysed. This study is also analytically verified

using the averaged model.

In Chapter 5, the steady-state dynamic behaviour of a general rotor system in terms of
equilibrium states and limit cycles was investigated. Various rotor systems were
represented on the parameter plane of steady-state eccentricity ratio and the speed in

terms of operating curves determined by the non-dimensional group o, . It was also
shown that very high o, represents the rotor system corresponding to a turbocharger
due to the negligible static load. As shown in Figure 5.13 in Chapter 5, o, =500

represents a rotor system where the operating curve asymptotes at a very low

eccentricity ratio n, ~0.001. For any value o, > 500, it may not make any significant
difference. Hence, it seems reasonable to represent the turbocharger by o, =500, to

demonstrate the effect of unbalance on the in-phase whirl instability. Here onwards, the

turbocharger model is represented by the operating curve o, =500.

181



CHAPTER 6 THE EFFECT OF UNBALANCE ON OIL-WHIRL INSTABILITY IN A
TURBOCHARGER

Since the operating curve o, =500 lies in Region I of the parameter plane as shown in

Figure 5.13, the journal centre theoretically reaches an unstable limit cycle (ULC)
below the threshold speed. It is also shown in Figure 5.6(a), that this ULC is too small
for very low eccentricities. Moreover, Figure 6.3 shows the plot of the modified stability
threshold under the influence of unbalance excitation, which shows a further reduction
in the threshold speed in Region I, depending on the unbalance magnitude. Due to very
small ULC, the journal orbit keeps growing for any perturbation to a position above the
ULC. This could probably be the reason for the existence of the sub-synchronous
whirling frequency right from the starting speed, as seen in Chapter 2. Moreover, the

growth rate of the whirl orbit reduces with increasing o, . For instance, Figure 6.4
shows the time history of the journal motion for o, =5,50and 500 to show the

difference in the growth rate of a balanced rotor. Figure 6.5 shows the plot of the

amplitude increasing with time for o, =500. This implies that a turbocharger takes

relatively more time to reach the steady-state than a rotor system with a heavier rotor, at

any given speed.

6.5.1 TRANSIENT MOTION

In order to produce the waterfall plots similar to that shown in Figure 1.4,
simulations are conducted by the numerical integration of the equations of motion given
in Egs. (6.10) and (6.11) using Runge-Kutta method. The speed is increased slowly in
steps of 0.2 from @ = 0.5 to 20, where the orbit is allowed to grow at each speed for a
non-dimensional time of 7 =2000 (= 318 revolutions ). Then, at each speed, for a time
interval of about 1500, close to the end time, the time series is transformed to the
frequency domain using the Fast Fourier Transformation (FFT). These are plotted in
waterfall form which shows the information of frequency vs. magnitude varying with
speed along the z-axis. It should be noted that this study focuses on the effect of
unbalance on the transient behaviour and not the steady-state. However, at high speed

such as @ > 18, the amplitude is quite high approaching the steady-state.
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Figure 6.6 shows the envelope of the time series corresponding to the waterfall plots for
p° =0 and p’> =0.003. It can be seen that the amplitude reduces for the system with
unbalance, in the speed range of @ =8 to 16, corresponding to a particular speed range.
This effect can be seen more clearly in the numerical waterfall plots. Figure 6.7 shows
the waterfall plot for the turbocharger without any unbalance p> =0. It shows the

response of the in-phase whirl frequency, which is the sub-synchronous half-frequency

whirl. Based on Figure 1.4, the speed range of interest is 50,000 rpm to 130, 000 rpm .

1 1
From the non-dimensional form discussed in Chapter 4, @ = (mC I F )5 W= (C / g)5 @,

where g is the acceleration due to gravity. For a clearance of 0.02x10”m, @ is
~6691w. Hence a non-dimensional speed range of 10<®>20 is the main focus.
Figure 6.8 shows the waterfall plot, when there is an unbalance of p° =0.002 in the
rotor. It can be clearly seen that there is a reduction in the magnitude of the sub-
synchronous response corresponding to the in-phase whirl for @ >15. Figure 6.9 shows
a similar waterfall plot with further increase in the unbalance to p* = 0.003 where there
is a reduction in the response for @ >12. It is also seen in Figure 6.8 and Figure 6.9 that
the synchronous response increases when the sub-synchronous in-phase whirl response
reduces. However, Figure 6.10 shows the response for p* =0.005, in which, there is an
increase in the response amplitude for @ >15, although the response reduces for the

speed range about 10< w >15.

Figure 6.11 shows the plot tracing the maximum amplitude n_,

. varying with speed for
various unbalance values. The figure shows that there is a reduction in the amplitude
with increase in the unbalance for only a specific speed range. This range is wider for
low unbalances than the higher ones. Beyond a certain value, unbalance has a negative
effect by increasing the amplitude. However, this value depends on the range of speed

as seen in Figure 6.11. For example, for @=12, p’>=0.003 gives the minimum

amplitude, whereas, for @ =15, p’>=0.002 is the optimum unbalance. This implies

that, as the speed is changed continuously, depending on the rate at which the rotor
speed is changed, the response characteristics may differ. That is, the speed range in
which the sub-synchronous response is suppressed may vary with the rate of change of

speed and the amount of unbalance in the rotor.
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These curves show a dip in the amplitude at a certain speed, when the rotor is not
balanced. Figure 6.12 shows the corresponding phase plot, i.e., the plot of the attitude

angle corresponding to n,_, . The phase angle becomes constant after the speed about
which n_,  of the unbalanced rotor crosses that of the balanced rotor as marked in

Figure 6.11 by circles. This plot also shows an interesting drop in the phase at speeds
corresponding to the dips in Figure 6.11. This suggests that the phase angle (attitude
angle) controls the unbalance response. It should be noted that the unbalance term in
Egs. (6.10) and (6.11), has the harmonic terms with the argument which is the phase
difference between the excitation phase and the response phase in the harmonic
functions. Figure 6.13 and Figure 6.14 demonstrate the way in which the amplitude
varies with unbalance when time 7 =2000, at a speed of @ =10 (66900 rpm) and
o =15 (=100365 rpm) respectively. It is evident that the unbalance has a positive
effect till it reaches an optimum value beyond which the whirl amplitude increases.
Figure 6.15 shows the plot of the magnitude of only the sub-synchronous component of
the whirl motion. This demonstrates a similar behaviour as seen in the time history in

Figure 6.11.

6.5.2 STEADY-STATE

As mentioned earlier, the positive effect of unbalance is seen in the transient
motion of the rotor. However, at the steady-state, unbalance does not seem to influence
the system significantly. For example, Figure 6.16 presents the amplitude of the whirl
motion in the transient and the steady-state, for different unbalance values when the
rotor spins at about 66900 rpm. Above the stability threshold, the journal orbits
outwards as there is an unstable equilibrium (UE) in Region I as detailed in Chapter 5.
For all the unbalance levels, Figure 6.16 shows the plot of the eccentricity ratio, where

the whirl motion approaches the same level.

It is known that the present rotor system has the fluid-film forces, static load and the
unbalance force in action, at any point of time. To understand the interplay of these

forces, Figure 6.17 is a plot of the terms of Eq. (4.7) showing the forces varying with

184



CHAPTER 6 THE EFFECT OF UNBALANCE ON OIL-WHIRL INSTABILITY IN A
TURBOCHARGER

time along the Y direction. This direction is chosen to avoid the static load effect. It is
seen that the unbalance force remains constant, while the fluid-film forces increase with
time, forcing the whirl orbit to grow in size until the rotor motion reaches the steady-
state. It is evident that as the rotor motion reaches the steady-state, the unbalance force
becomes relatively insignificant compared with the dynamic fluid forces acting on the
rotor and does not influence the dynamic behaviour. Nevertheless, as seen in Figure
6.16, the whirl motion for an unbalanced rotor increases at a slower rate compared to
that of a balanced rotor in the transient state, even though they approach the same
steady-state. Hence, it may be useful to investigate the unbalance effect on the growth

rate of the orbit size.

6.5.3 UNBALANCE EFFECT ON THE GROWTH RATE OF THE
WHIRL AMPLITUDE

Now, to investigate the effect of unbalance in the transient motion, where,

beyond an optimum value, unbalance shows a negative effect by increasing the
amplitude, three cases are analysed for p° =0, 0.005, and 0.05. At the same speed
@ =10 (= 66,900 rpm) considered for the steady-state analysis, Figure 6.18 shows the

plot of the whirl amplitude for the three cases. These unbalance values are chosen to
illustrate the effect on the whirl amplitude. Note that all the analyses have been run upto

time 7=3500 (~518 revolutions). Figure 6.19 shows the corresponding orbit plots
with a reduced size (radius) of 0.62 for p* =0.005, compared to the balanced rotor with

an orbit size of 0.8. On the other hand, the orbit increases in size to 0.85 for p*> =0.05.

Figure 6.20 shows the corresponding phase angle ¢ variation with the non-dimensional
time 7 . Interestingly, the ratio 4 reduces for p* =0.005 due to a phase lag at the start
T

of whirling with respect to the balanced rotor case. But, the ratio increases for

p° =0.05 when the phase angle experiences a lead at the start. This suggests that the

value of ¢, at the start, may play a significant role in the growth rate of the whirl

amplitude. Similar behaviour is also seen in the frequency domain. For example, at a

given speed @ =10, Figure 6.21 shows the frequency response plot for various
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unbalance values; the time history in the range 750 <7 <1000 (139 to 159 revolutions)
is transformed into the frequency domain to examine its frequency contents. As
unbalance is increased to 0.005 and 0.007, the sub-synchronous response reduces, while
there is an increase in the synchronous component. For a further increase in the
unbalance to 0.15, the sub-synchronous component increases again, with a drop in the
synchronous component. Figure 6.22 shows a similar plot for a lower speed @ =35,
which is the frequency transformation of the time history in the range 825 <7 <1000
(139 to 159 revolutions). This shows a consistent behaviour but the unbalance values
are on the higher side. Since the unbalance force is centrifugal and speed dependent, a
higher unbalance is required at a lower speed for similar effect. Here an increase to 0.01
and 0.05 has a positive effect. But, further increase of unbalance to 0.09 has a negative

effect.

The above discussion clearly suggests that the unbalance effect in the transient motion
must be controlled by the initial phase angle and its rate of change. In order to verify

this, a simple exercise is performed for o, =50 at a speed @ =3 (=20,093 rpm). The

system is analysed for four unbalance cases, p° =0, 0.05,0.1,0.15 for =100 to
investigate the mechanism, at the start of whirling. A relatively low o, is chosen for
this study to have the benefit of faster orbit growth. Figure 6.23 shows the orbit plots for
these four cases. The orbits of the unbalanced rotor, show an internal loop. Gunter and
Barrett [37, 87] have shown that, when the rotor motion is started from the bearing
centre at zero initial velocity, the shaft spirals outward with a combination of the
synchronous and half-frequency whirl. The two vectors in combination produce the
characteristic internal loop associated with oil-whirl in an unbalanced journal. These

internal loops increase in size with increase in the unbalance magnitude. When
p’ =0.1, the internal loop is close to that of the external loop, making the rotor motion
almost whirl at the synchronous frequency. When p” > 0.1, the overall orbit size starts

growing relatively larger, where the synchronous component reduces over time. This is
better seen in Figure 6.24, which shows the corresponding time history with difference

in the amplitudes and the internal loop size. Figure 6.25 shows the growth of amplitude

in time 7 =500, where the growth rate reduces for p° =0.05and 0.1 compared to a

balanced rotor, and increases for p”> =0.15. As mentioned earlier, to understand the

186



CHAPTER 6 THE EFFECT OF UNBALANCE ON OIL-WHIRL INSTABILITY IN A
TURBOCHARGER

change in the phase angle due to the presence of the unbalance, Figure 6.26 (a) and (b)
are plotted showing the phase change with time for the case under investigation. Figure

6.26 (b) shows a closer view of (a) emphasising the change in the first two cycles. For

p°=0,0.05and 0.1, ¢<7 when 7 =27 and for p> =0.15, ¢> . After the second

cycle, at the sub-synchronous frequency, p> =0.1 seem to have an added phase delay,
by shifting back to zero. This phase delay during the first and the second cycles causes
the rotor response to slow down in the case of the unbalance p° =0.1. Note that, the

number of cycles in which phase reversals occur depends on the unbalance magnitude

and the speed. This may depend on the significance of the unbalance force compared to
the fluid-film forces in those cycles. However, for p° =0.15, the response leads that of

the balanced rotor, bringing a negative effect. This behaviour can be verified using the

argument of the harmonic term in Eq. (6.10), such as,

if ¢ <7z, when 7 =27 implies that (z —¢) > %

and, if ¢ > 7 at 7 =27 implies that (7 —¢) < %
To determine the rate of change of phase, differentiating (7 —¢) with respect to 7 gives

—?:1—¢3>0.5 = $<0.5,if g<x and ¢>0.5 for ¢> . Figure 6.27 shows the
T

rate of change of the phase angle which gives the non-dimensional frequency of the

rotor motion, corresponding to the phase angle shown in Figure 6.26. Figure 6.27 shows

that at the start of whirling, ¢<0.5 for p®=0,0.05and 0.1. But, for p>= 0.15,

$>0.5. This suggests that for any given amplitude of unbalance, if the whirl frequency

is less than 0.5, the unbalance force vector reduces the effect of film forces in the
transient motion. Figure 6.28 shows the plot of the radial and the tangential force terms

in Eq. (4.7) under the effect of the unbalance. Both the forces increase at a slower rate

relative to the balanced case, for p> =0,0.05 and 0.1. However, the forces increase in

the case of p° = 0.15. This coupled nature of amplitude and phase is clearly seen in the
averaged Egs. (6.37) and (6.38). Unlike the equations of motion for the balanced rotor
given in Egs. (5.62) and (5.63) in Chapter 5, these equations have the harmonic terms
that couple them through the phase angle. This suggests that depending on the phase

angle and its rate of change, the response amplitude rate changes. Figure 6.29 shows the
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plot of T, varying with increasing unbalance. @, is incremented by 0.03 and 0.04 to

show the difference in 7. Egs. (6.37) and (6.38) reveal that the addition of a harmonic

u

term to the linear and cubic functions of T,, forces T, to vary harmonically for any

given rate of change of phase. To enunciate this behaviour, Figure 6.30 is plotted with

all the three terms of Eq. (6.37) separately, against T,. Depending on the phase angle

@, » the unbalance term can either increase or decrease T,. This is in agreement with the

numerical results, where the unbalance force basically reduces the growth rate of the

whirl amplitude, by affecting the phase at which the response occurs.

6.6 CONCLUSIONS

The turbocharger with a rigid rotor supported on two identical rigidly supported
bearings with 7 -film cavitation was analysed to study the effect of unbalance.
Numerical simulations were done aiming to produce waterfall plots similar to the
experimental waterfall plot provided by Cummins Turbo-Technologies Ltd. The
experimental waterfall plot showed a shift in the response frequency of the rotor-system
from the in-phase whirl frequency to the synchronous frequency over a certain speed
range. Both the numerical and the analytical methods were used to investigate this
behaviour of the turbocharger to determine the influence of unbalance in terms of the

whirl amplitude, phase angle and their rate of change.

Turbochargers due to their light weight, operate in Region | of the parameter plane of

speed and eccentricity ratio with high o, . Hence the turbocharger rotor, most of the

time has its journal centre tracing an orbit that keeps growing in size. Unbalance seems
to slow down the growth of the whirl amplitude in the transient motion, by introducing
a phase lag in the unbalance response compared to that of the self-excited response of
the balanced rotor. However, above a certain optimum value, unbalance has a negative
effect by increasing the growth rate of the amplitude. This happens due to the coupled

effect of the phase and the amplitude introduced by the unbalance in the rotor.
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Depending on the speed range of interest, the optimum unbalance varies. When the in-

phase whirl frequency component reduces, the synchronous component increases.

This suggests that the effect of unbalance could be beneficial during the transient
motion, for instance, during the acceleration and the deceleration of the engine.
Depending on the time allowed at each speed, the effect of unbalance could be different.
For practical reasons, it is almost impossible to have a perfectly balanced rotor. Hence,
allowing some unbalance within the optimum level, for controlling the sub-synchronous
vibrations seem to be a cost-effective solution worth considering into the rotor dynamic

design of an automotive turbocharger.
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Figure 6.1 Adapted from the comparative waterfall plots provided by Cummins Turbo

Technologies Ltd. based on the data was collected from the same hardware/conditions but with
different unbalance levels: (a) shaft motion with low unbalance b) acceleration with low
unbalance (c) shaft motion with high unbalance (d) acceleration with high unbalance. The speed
at which the response frequency shifts from sub-synchronous to synchronous frequency is
marked by a circle in (¢).
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Figure 6.2 Co-ordinate system of a rotor-bearing system with a rigid rotor in rigidly

supported bearing with oscillating 7 -film cavitation; & is the eccentricity of the journal centre
from the bearing centre C,. The bearing is rigidly supported to the housing making C,

coincide with the housing centre O; n = e/ C is the eccentricity ratio where C is the clearance;
¢ is the attitude angle of the line of centres of the journal C, and the bearing centre Cj ; with
respect to the vertical axis; F”,F.” are the radial and tangential forces acting along rand s
respectively; F, = muua)2 is the centrifugal force due to the rotor unbalance, whose eccentricity
from the geometric centre of the journal C, is u; m, is the rotor mass with unbalance; C,, is

the centre of the mass centre; F is the static load; @ is the spin speed; X,Y are the co-

ordinates of the journal centre along the axes X,Y whose origin is at the housing centre.
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Figure 6.3 Plot of the modified stability threshold from Eq. (6.53) due to the influence of
the unbalance, when the tuning parameter o, ~ 0;v =—0.1 for o> =0.01and 0.03.
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time 7 for various values of o
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Figure 6.5 Plot of the whirl amplitude 7 (eccentricity ratio) growing with time 7 for
o,, =500, which represents a turbocharger rotor system with perfectly balanced rotor for given

bearing dimensions and oil viscosity; ,02 =0.
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Figure 6.6 Envelope of the time history showing the variation of amplitude as speed is
increased slowly from @ = 0.5 to 20 for the turbocharger without unbalance p° =0, and with

unbalance p* =0.003. n_  is the maximum amplitude reached at each speed. Since the orbit

max
mostly grows outwards in the case of a turbocharger, the envelope gives the maximum
amplitude, at each speed.
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Figure 6.7 Waterfall plot showing the in-phase whirl frequency (IP) of the rotor-system
with balanced rotor, when &, =500 and p° =0.
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Figure 6.8 Waterfall plot showing reduction in the amplitude at in-phase whirl frequency
(IP) for speeds above @ = 15. The amplitude of synchronous frequency increases around that

speed for the rotor-system with unbalance, when &, =500 and p” =0.002.
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Figure 6.9 Waterfall plot showing reduction in the amplitude at in-phase whirl frequency
(IP) for speeds above @ = 12. The amplitude of synchronous frequency increases around that

speed for the rotor-system with unbalance, when o, =500 and p° = 0.003.
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Figure 6.10 Waterfall plot showing increase in the amplitude at the in-phase whirl frequency
(IP) for speeds above @ =15 and reduction in the amplitude for speeds between 10 < @ <15

for the rotor-system with unbalance, when o, =500 and p* =0.005 .
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Figure 6.11 Plot of the maximum amplitude (eccentricity ratio) n,,,, against the rotor speed

for various values of unbalance for the rotor system corresponding to o,, =500 in the time

domain. The plot shows a reduction in the amplitude with increase in unbalance for a certain
speed range. This range reduces with increase in unbalance.
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Figure 6.12 Plot of the attitude angle ¢ against the speed corresponding to the amplitudes
shown in Figure 6.11. The plot shows a phase drop in the speed range of interest in the case of
unbalanced rotor ( p° > 0). This corresponds to the dip in the amplitude shown in Figure 6.11.
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Figure 6.13 Plot of the maximum amplitude 7, against unbalance at a speed of

@ =10 (= 66900 rpm) run for a time of 7 =2000 ( =318 revolutions) for o, =500.
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Figure 6.14 Plot of the maximum amplitude 7, against unbalance at a speed of
@ =15 (=100365 rpm) run for a time of 7 = 2000 ( ~318 revolutions) for o, =500.

197



THE EFFECT OF UNBALANCE ON OIL-WHIRL INSTABILITY IN A

CHAPTER 6
TURBOCHARGER
3 T T T T T T T T T '
o I 1
R 0 N I
|
25k =ereseer 0.001 -
- ==~ 0002 !
- = 0.003
21 0.005 h
magnitude| The response amplitude reduces over a different
15 speed range for each unbalance value; higher the .
unbalance shorter the speed range. 0.005
10.002 §
1+ .: _
0.5} ~ i
l 20.001
0 =
0 2 18 20
Figure 6.15 Plot of the response magnitude at the sub-synchronous frequency from the
frequency domain against unbalance for o, =500. This plot corresponds to the waterfall plots

where the amplitude limit (y-axis) is based on the time series windowed for Fourier

transformation.
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Figure 6.16 Plot of the amplitude 7 (eccentricity ratio) against non-dimensional time 7 , for
various unbalance values at a constant speed of @ =10 (66,900 rpm) showing negligible

effect in the steady-state. Each unbalance case is solved for a non-dimensional time of 5500

~ 875 revolutions for o, =500.

198



CHAPTER 6 THE EFFECT OF UNBALANCE ON OIL-WHIRL INSTABILITY IN A

TURBOCHARGER
1 x10° l
_ — p’=0 — p*=0.008
—F cos¢
22 ! 0 ""-"vhvnvnvﬂvnu
_1 1 1 1 1 1 1
0 100 200 300 400 500 600 700
x 10 4 (a)

0 100 200 300 400 500 600 700
(b)
0.01 T T T T T T
ol |
pPsint Of |
-0.01 ! ! I I l |
0 100 200 300 400 500 600 700
T
(c)

Figure 6.17 Plot of the (a) radial, (b) tangential and (c) unbalance forces acting along
Y direction given in Eq. (4.7) varying with time when the rotor spins at a constant speed of

@=10and p° =0 and 0.008. Plot shows the increase in the fluid forces with time, which
leads to their high values in the steady-state compared to the unbalance force.
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Figure 6.18 Plot of the eccentricity ratio n (amplitude), for various unbalance values,
showing variation in the size of the orbits in transient motion at a constant speed of
@ =10 (66,900 rpm); each unbalance case is solved for a non-dimensional time of 3500

~ 518 revolutions for the rotor system &,, =500
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Figure 6.19 Orbit plot corresponding to the x amplitudes in Figure 6.18 showing decrease in
the orbit size for p° =0.005 and increase in the orbit size for p> =0.05. Value of 0.05 is

chosen purposely to bring it larger than the size corresponding to the balanced rotor at this
speed.
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Figure 6.20 Plot of the attitude angle (phase) against time, i.e., response phase against
excitation phase corresponding to the amplitudes shown in Figure 6.16. Reduction in phase ratio

implies positive effect of unbalance. For ¢ =430, (r —¢) =7(1-¢/7) = 0.577.
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Figure 6.21  Frequency response plot at a speed of @ =10 (66,900 rpm) for various
unbalance values showing increase in the synchronous response; o, =500; time history for

7 =750 101000 ( ~119 to 159 revolutions) is transformed to the frequency domain; The
high amplitude at very low frequency is an artifact of the zero frequency component.
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Figure 6.22 Frequency response plot at a speed of @ =5 (33,455 rpm) for various
unbalance values showing increase in the synchronous response; o, =500; time history for

7 =875 t0 1000 ( ~139 to 159 revolutions) is transformed to the frequency domain; Note
that unbalance values are higher than that shown in Figure 6.21 since the speed is less.
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Figure 6.23 Orbit plots showing the journal motion under the influence of the unbalance at
the start, for a speed of @ =3 (20,093 rpm), when o, =50; (a) for a balanced rotor (b) for

p°=0.05 (c) for p>=0.1 (d) for p>=0.15. o, =50 is chosen for convenience in the

demonstration of the change in the inner loop size as well as to show the growth of amplitude in
the following figure, in a short time duration.
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Figure 6.24 Time history corresponding to the orbit plots given in Figure 6.23 showing the
journal motion under the influence of the unbalance at the start at a speed of @ =3 (=20,093

rpm) for o, =50.
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Figure 6.25 Time history corresponding to the orbit plots given in Figure 6.23 showing the
growth of the whirl amplitude with time at a speed of @ =3 (=20,093 rpm) for o, =50. The

rate of growth is reduces upto ,02 =0.1, beyond which the growth rate increases.
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Figure 6.26 (a) Plot of the attitude angle (phase) against time, i.e., the response phase against
the excitation phase corresponding to the orbits shown in Figure 6.23. The phase angle shifts at
the start and continues at that rate. (b) Closer view of (a) showing the change in the phase, at

the start of the rotor motion in the bearing. Phase angle is greater than 7 for p2 =0.15and less
than 7 for p> =0, 0.05, 0.1 after one cycle. The phase angle further goes down to zero for
p° =0.1, after two cycles. (@ =3 (20,093 rpm); o, =50)
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Figure 6.27 Plot of the rate of change of phase corresponding to the phase angle shown in
Figure 6.26 where ¢ < 0.5 for p° <0,0.05 and 0.1 and ¢ > 0.5 for p° >0.15.
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Figure 6.28 (a) Plot of the radial force term in Eq.(4.7) along Y direction, perpendicular to the
direction of the static load. (b) Plot of the tangential force term. Both the film forces reduce in

amplitude relative to the forces in the bearing with a balanced journal for p> =0.05, 0.1. The

film forces increase for p° =0.15.
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CHAPTER 7

CONCLUSIONS

7.1 INTRODUCTION

At the end of each Chapter, conclusions are presented related to the objective of
the respective Chapters. This Chapter summarises the major conclusions drawn in this
thesis. A summary of the research carried out in the thesis is also given and some

recommendations are made for the future work.

7.2 BRIEF OVERVIEW OF THE THESIS

This thesis investigated the nonlinear dynamic behaviour of a turbocharger. The
research work included classical analytical techniques and numerical simulations. Two
unbalance test waterfall plots obtained from Cummins Turbo-Technologies were utilised
to stimulate the investigation. These were produced under two different unbalance
levels from the same hardware and conditions. A brief overview of the thesis is given

below.

Turbochargers operate at very high speeds and use oil-film bearings due to their cheap
cost. These units exhibit instability due to oil-whirl in the form of a conical mode and an
in-phase whirl mode. Oil-whirl instabilities occur at sub-synchronous frequencies,

which are usually a little less than 50% of the rotor speeds. These instabilities are
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sensitive to various factors such as the support conditions, bearing cavitation, film
pressure, bearing geometry and so on. Oil-whirl instability is a potentially damaging
operating condition that must be avoided. Despite such instabilities, turbochargers
operate successfully. It has been reported in the literature that the turbocharger rotor
exhibits limit cycle behaviour due to the nonlinearity of the oil-film. The test waterfall
plots introduced in Chapter 1, revealed a shift in the response frequency from the sub-
synchronous in-phase whirl frequency to the synchronous frequency, over a certain
speed range, particularly for the high unbalance case. To investigate this specific
behaviour of the turbocharger under the influence of some unbalance in the rotor, firstly
a clear understanding of the nonlinear dynamic behaviour of the system with a perfectly
balanced rotor is inevitable. Hence this thesis investigated the nonlinear behaviour that
results in the limit cycle. To avoid over-complicated mathematical modelling, certain
assumptions were essential in the investigation. To validate two such assumptions: the
effect of gyroscopic moments and the rotor flexibility were investigated using a linear

analysis in Chapter 2 and Chapter 3 respectively.

A review of previous work by Holmes [3] was done to evaluate the dynamic
performance of three types of bearing supports in a turbocharger. A rigid support, an
external damper support and a flexible support were analysed to investigate the
influence of plain journal bearing, floating ring journal bearing and a press-fit bearing
respectively. A simple method was implemented to analyse the effect of gyroscopic
moments on the conical whirl instability of a turbocharger with symmetric rotor and
rigidly supported bearings. Bearings with 360" oil-film (a full oil-film) were used. A
gyroscopic coefficient was introduced as the ratio of the polar moment of inertia to the
transverse moment of inertia of the rotor. A threshold value for the gyroscopic

coefficient of 1/2 was calculated for the stability of the conical whirl. It was found that,
any rotor with a gyroscopic coefficient above 1/2, the conical whirl instability was

suppressed for any speed. This value was also verified for floating ring bearings by
using an external damper to support the bearings. Since the turbocharger has a heavier
turbine wheel compared to the compressor wheel, an asymmetric rotor was analysed
with floating ring bearings. It was shown that the threshold value of the gyroscopic
coefficient remained unaffected by the external damper and the asymmetry of the rotor,

As the gyroscopic effect is governed by the tilt motion it affects only the conical whirl.
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Hence it was neglected for the nonlinear analysis of the in-phase whirl. However, the
assumption of a rigid rotor used in Chapter 2, needed investigating before proceeding to
the nonlinear analysis. Hence, the rotor flexibility effect was analysed in Chapter 3. The
flexible deflection of the rotor determined under static conditions was superimposed
onto the rigid dynamic equations of motion of the rotor. This was done by calculating
the influence coefficients of the rotor using a simple finite element model of one-
dimensional beams. It was shown that the rotor started bending after a speed of about

100,000 rpm. Hence, the assumption of a rigid rotor seemed to be reasonable

Hitherto, due to the light-weight of the turbocharger rotor, the static displacement
compared to the dynamic displacement neglected. However, to help understand the
nonlinear behaviour of the turbocharger with a perfectly balanced rotor, it was
necessary to investigate a more general rotor-bearing system. Hence, in Chapter 4, the
effect of static load was considered to determine the dynamic characteristics of the
rotor-bearing system in the parameter plane of steady-state eccentricity ratio and rotor
speed. The linearised system of equations was analysed to determine the stability
threshold separating the stable and the unstable equilibrium states of the journal centre,
in the parameter plane. An analysis of the case when the eccentricity ratio tends to zero
was presented to investigate the role of the fluid-film forces in relation to the static load.
The static load was found to counteract the radial restoring force, in the higher
eccentricity region, leading to a stable system above an eccentricity ratio of 0.76. In
Chapter 5, the onset of oil-whirl at the stability threshold, where the rotor behaviour
destabilises, was found to be the Hopf bifurcation. In order to perform the nonlinear
analysis, the system was analytically reduced to a simple system of equations by
applying the Centre Manifold reduction and normal form theory. From the normal form,
first Lyapunov coefficients were calculated to determine the appearance and the
disappearance of the limit cycle close to the stability threshold. The appearance of a
stable limit cycle (SLC) was super-critical bifurcation and the disappearance of an
unstable limit cycle (ULC) was sub-critical bifurcation. The same was verified using
Poore’s bifurcation algebra. Apart from the equilibrium states (steady-states) obtained
from the linear analysis, the rotor system was found to have these limit cycles as a
nonlinear characteristic of the system, attributed to the oil-film in the bearings. The
parameter plane was shown to have two regions: Region | with sub-critical bifurcation

and Region Il with super-critical bifurcation as shown in Figure 5.5. For the rotor-
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bearing system with a rigid symmetric perfectly balanced rotor mounted in two identical
journal bearings with oscillating 7 -film cavitation, the boundary between Region I and
Region II in terms of the steady-state eccentricity ratio was determined to be 0.32. It
was shown that in Region I, there existed an unstable limit cycle along with the stable
equilibrium (SE) state below the stability threshold, and the unstable equilibrium (UE)
state above the stability threshold. In Region II there existed a SLC along with the UE
state above the stability threshold and the SE state below the stability threshold. These
steady-states were demonstrated using the numerical analysis, where, in Region I below
the threshold speed, the journal centre spirals inwards to the SE state, for any initial
perturbation within the ULC and spirals outwards for any perturbation to a state outside
of the ULC as shown in Figure 5.8. Above the threshold speed, the journal centre
always spiralled outwards to reach UE, which was close to the housing as shown in
Figure 5.9. In Region II the journal reached a SLC above the threshold speed,
irrespective of the initial perturbation as shown in Figure 5.10. However, below the
threshold speed, the journal always spiralled into the SE state as shown in Figure 5.11.
Approximate sizes of the limit cycles corresponding to the eccentricity ratios were

calculated. Based on the operating curve determined by the non-dimensional group o, ,

which depended on the bearing parameters such as geometry, oil viscosity and the
clearance, the turbocharger was shown to operate in Region I for most of the speed and

with very small ULC.

Having characterised the nonlinear steady-state behaviour of the general rotor-bearing
system, the focus was back on the turbocharger in Chapter 6 to investigate the

unbalance test data shown in Chapter 1. Choosing an operating curve of o, =500 for

the turbocharger, the waterfall plots similar to the test plots from Cummins Turbo-
Technologies, were simulated using numerical integration of the equations of motion by
the Runge-Kutta method. These plots showed a reduction in the sub-synchronous whirl
amplitude in the transient state, where the unbalance had a positive effect as shown in
Figures 6.7 to 6.10. Beyond a certain optimum value, unbalance had a negative effect by
increasing the amplitude. A plot of the maximum amplitude as a function of speed,
demonstrated a dip at some speed for each unbalance value, corresponding to a dip in
the respective phase plot as shown in Figure 6.11 and Figure 6.12. This suggested the

dependence of the amplitude on the phase of the response. The equations of motion
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were averaged to simplifying the analysis. The averaged equations clearly showed the
coupling of the amplitude and the phase equations through the relationship between the
excitation and the response phase angles. As a result, the numerical analysis showed the
reduction in the growth rate of the response in the transient motion, while the steady-
state response did not have any significant change due to the unbalance. However, the
threshold speed reduced due to the effect of unbalance in the turbocharger as shown in
Figure 6.3. Since a constant unbalance force was found to be insignificant in the steady-
state compared to the higher hydrodynamic bearing forces that increase with time, the
effect of the unbalance seemed to be significant at the start of whirling. A simple
numerical analysis was performed to analyse the behaviour of the journal motion during
the first few cycles of motion, in terms of the response characteristics. This was carried

out at a constant speed and o, was chosen to be 50, to allow the orbit to grow, quickly

facilitating a lower run time and consequent length of data. The synchronous and the
sub-synchronous response vectors together formed an internal loop in the orbit. The size
of this internal loop grew in size with the increase in the unbalance level. As the inner
loop size approached that of the outer loop, the unbalance started showing a negative
effect. The response of the unbalanced rotor suffered a phase lag behind that of the
balanced rotor, when the unbalance level was below the optimum value. Beyond that,
the response phase was ahead of the balanced rotor. This characteristic behaviour aided
in slowing the growth rate of the whirl amplitude. The amount of unbalance that
introduced a phase difference between the excitation phase (7 ) and the response phase

(@) greater than 7/2, i.e. 7—¢>17/2, was found to reduce the response in the transient

motion. The corresponding rate of change of the phase angle was less than 0.5 rad/sec.
Thus, the effect of unbalance up to a certain level was found to be advantageous in the
transient journal motion. The major conclusions from the thesis are listed in the next

section.
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7.3 MAJOR CONCLUSIONS FROM THE THESIS

This section lists the major conclusions drawn from the research work carried

out in this thesis:

e The conical whirl instability of the turbocharger with a symmetric rotor in rigidly
supported full-film bearings is controlled by the gyroscopic coefficient [ ; This

coefficient is given by the ratio of the polar to the transverse moment of inertia of

the rotor.

e The threshold value of S for a stable conical whirl is found to be 1/2. The
conical whirl instability is completely suppressed for 8 >1/2. The threshold ratio

does not seem to be affected by adding an external damper to the bearing and by

the asymmetry of the rotor.

e The conical mode is dominant in the low speed range, while the in-phase whirl
mode is dominant in the high speed range. The gyroscopic moment seems to

reduce the rotor speed at which the switch in the dominant mode occurs.

e The analysis of rotor flexibility effect suggests that, the assumption of a rigid
rotor is reasonable up to a speed of 100,000 rpm, for the turbocharger under

investigation.

e In the system of a perfectly balanced rotor mounted in short-bearings with
oscillating = -film cavitation, the onset of oil-whirl is related to the Hopf

bifurcation.

e The dynamic behaviour of the journal bifurcates by experiencing a change in the
stability at the threshold speed that separates the stable and the unstable
equilibrium states of the journal centre and is characterized also by the

disappearance or appearance of a limit cycle.
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e The rotor system under investigation exhibits sub-critical bifurcation
(disappearance of an unstable limit cycle) if the journal centre eccentricity is
within about 32% of the bearing clearance from the bearing centre, under the
effect of the static load as shown in Figure 5.12; the system exhibits super-critical
bifurcation (appearance of a stable limit cycle) if the journal centre eccentricity is
between about 33% and 76% of the clearance.

e If the journal centre eccentricity is above about 76% of the clearance, the system
under investigation is completely stable since oil-whirl is completely suppressed.
This behaviour seems to be governed by the balancing of the static load by the

increased radial restoring force attributed to the air cavity in the bearing.

e The amplitude of the limit cycle can be calculated from the bifurcation parameter

v, the rate of change of the real part of the eigenvalue with speed «', and the

real part of c,; the critical eigenvector gives the approximate shape of the limit

cycle as shown in Figure 5.6.

e Automotive turbochargers, due to their light weight, operate in Region | of the

parameter plane of rotor speed and eccentricity ratio with high o, . Hence for the

turbocharger rotor, its journal centre traces an orbit that keeps growing in size
unless limited by other nonlinearity in the system.

e Due to the very small size of the ULC, even below the threshold speed, the
journal effectively spirals outward far away from the SE state. Above the
threshold speed the journal spirals outwards close to the bearing, unless restricted
by some other nonlinearity.

e The presence of a static load seems to be an option to keep the turbocharger
operating in the higher eccentricity range, thereby allowing the existence of a
SL.C, above the threshold speed.
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e Unbalance seems to slow down the growth of the whirl amplitude in the transient
motion, by introducing a phase lag in the unbalance response relative to that of

the self-excited response of the balanced rotor.

e The advantageous effect of unbalance prevails only up to a certain level
(optimum value). Above that value, rotor unbalance seems to have a negative

effect by increasing the growth rate of the amplitude.

e This behaviour is likely to be governed by the coupled nature of the amplitude
and the phase of the journal response in a turbocharger with an unbalanced rotor.

Depending on the speed range of interest, the optimum level of unbalance varies.

e The effect of unbalance appears to be beneficial during the transient motion, for
instance, during the acceleration and the deceleration of the engine. Depending
on the time allowed at each speed, the effect of unbalance could be different.

e For practical reasons, it is almost impossible to have a perfectly balanced rotor.
Hence, allowing some unbalance within the optimum level, for controlling the
sub-synchronous vibrations seem to be a cost-effective solution worth

considering into the rotor dynamic design of a turbocharger.

1.4 SUGGESTIONS FOR FUTURE WORK

The effect of unbalance in the transient journal motion of the automotive
turbocharger leaves the following question:
When the speed rate is varied for the same unbalance, will the shift in the response
characteristics from the in-phase whirl frequency to the synchronous frequency occur

over a different speed range, when all the other run conditions are maintained?

To answer this question, it is recommended that experimental verification is conducted

of the variation in the speed range in which the unbalance is effective. The rate at which
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the speed is changed needs to be varied significantly and the resulting waterfall plots

may be compared to determine the sensitivity of unbalance to the speed change.

The investigation with unbalance may be extended with damped supports with an
external damper in series to the bearing to simulate the floating ring bearings and with a

flexible support for the press-fit bearings.
In terms of the bearing support, based on the observations made in Chapter 2, a

nonlinear investigation of the flexible support with variable stiffness and unbalanced

rotor could be interesting in a turbocharger.
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APPENDIX A OIL-FILM FORCES

A.1 SHORT-BEARING APPROXIMATION

In this Appendix, the derivation of the oil-film forces from the Reynolds
equation [25] using the short-bearing approximation is presented. In this thesis, a full-
film bearing model is used in Chapters 2 and 3 and an oscillating 7 -film cavitation
model is used in Chapters 4, 5 and 6. Hence, in this Appendix, the forces are derived for
two types of film extents: full-film and oscillating 7 -film. Since oil-whirl is a vibration
problem characterised by frequency and amplitude, the stiffness and damping
coefficients are derived from the Reynolds equation that governs the pressure
distribution in a thin film, for constant viscosity [20]. The Reynolds equation for a
dynamically loaded journal for a constant viscosity oil-film in polar co-ordinates is of

the following form:

1 0(h 0P 0 oP . ( Oh dn
——| ==+ == = 6n,(w-24) — | + 127,C=—cos@ |,
R OO\ R 060 00 oz 00 dt
D —— e — — —_—
Pressure term Wedge term Squeeze term
(I;gflslgﬁ }flr?ﬁe (gradient in (results from the (results from the
circumferential the axial direction Z ) relative tangential velocity) relative radial velocity)

direction 8)

(A.1)

where 6 is the circumferential (angular) position on the bearing; R, is the radius of the
journal bearing; Z is the axial coordinate along the length of the bearing; P is the

pressure in the lubricant at the point (49 , Z); n, is the lubricant viscosity; @ is the

journal angular velocity (speed); C is the clearance; n is the eccentricity ratio and ¢ is

the attitude angle. Since Reynolds equation is insoluble in the closed form and is two

dimensional, it is often reduced to a one dimensional problem by using the short-bearing
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approximation [18] or the long bearing assumption [26]. Then they are applied for a
very short-bearing and very long bearing respectively based on their length to diameter

ratio /,/D. As the floating ring bearings in turbochargers have a very low /, /D ratio,

the short-bearing approximation should be applicable. According to the short-bearing
approximation [18], for very short journal bearings, pressure gradients in the
circumferential direction are much smaller than those in the axial direction, so that the
first term on the left-hand side of Eq. (A.1) is negligible and the Reynolds equation
simplifies into [18]:

a( oP
00

. ( oh dn
= |=6n.(w-24)| — |+1217.C—cos 6. A2
8Zj 75( ¢)(8¢9j 7P " (A.2)

The solution which follows will therefore include that part of the circumferential flow
proportional to the journal surface velocity and varying film thickness but will neglect
the effect of the circumferential pressure gradient on this flow. Any change in the
circumferential flow will directly influence the axial flow and the axial pressure
gradient. In addition, the relationship between the oil-film thickness /# and the angular

position @ is given by:
h=C(l+ncosf), (A.3)

where, C is the radial clearance of the bearing and n is the eccentricity ratio (n/C -
ratio of eccentricity to clearance). In the standard short-bearing approximation [18], it is
assumed that the lubricant is Newtonian, so that the viscosity is constant. Integrating Eq.
(A.2) twice with respect to Z and applying the boundary conditions, pressure P =0 at

Z =0 and at Z =L, is given by:

1217,Crcos @ —6n,(w— 24)Cnsin 0

P=Z(Z-1
( ) 2C*(1+ncos @)’

(A.4)

Figure Al shows the co-ordinate system of a journal bearing with the oil-film forces.

Resolving in directions 1, 2, the oil-film forces F; and F, become:
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L, 6,
F =R, [ [ Pcos6dodz, (A.5)

06

Ly 0,
F,=R,[ [ Psin0dodz, (A.6)
0

where, 6, and 6, mark the boundaries of the oil-film and are usually determined by the

external supply pressure and are important in the determination of the oil-whirl onset

characteristics. If the film is full without any cavitation due to rupture, then 6, =0 and
0, =27. Holmes [20] derived the forces using this boundary condition. This

assumption is used in Chapter 2 and Chapter 3 in this thesis for the linear analysis.
When the oil pressure drops below the atmospheric pressure, the film ruptures leading

to cavitation in the bearing. If 6, =0 and 6, =, it is an oscillating 7 -film model. This

is based on the assumption of half-film (180° extent) that rotates with the rotor [23].
This model is used in Chapters 4 and 5 for the nonlinear analysis. The following Sub-
Sections of this Appendix present the derivation of film forces for the full-film and the

oscillating 7 -film bearing models.

A.1.1 OIL-FILM FORCES IN FULL-FILM BEARINGS

This Sub-Section presents the derivation of the oil-film forces in bearings with full oil-
film. As the oil-film rotates after the whirl initiation, the operating parameters at the
incipient whirl frequencies will be different from that of the fully developed whirl

frequencies. However, if there is 360° film, 6, and @, are 0 and 27 i.e. no cavitation,

then the operating parameters remain valid for all the whirl frequencies and the whirl
frequencies are modified by the system nonlinearities only [20]. This condition is
achieved by adequate supply pressure. In a turbocharger, due to its light weight, the
dynamic load is much greater than the gravity load on the bearings. So, it can be
assumed that the oil-film remains unruptured and is of full 360° extent. Integrating Eqgs.

(A.5) and (A.6), forces F; and F, become:
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3 2

P __RBLB o z(l1+2n )’ (A7)
1 C3 B 5
(1-n)
; o

F = R, Lyn,nCn(w—2¢) . (A.8)

3
2C°(1-1*)?

Under the steady-state condition, the journal centre moves to C,; i.e., when n=n,,

p=¢,, n=0, ¢ =0, the fluid forces become:
F =0, (A.9)

R,Ln,7Cn,o
FZZL%_ (A.10)

2C°(1-n,)?

From (A.10), it is clear that under the static loading, F, =F and ¢, :%. Thus, the

fluid-film forces F, and F,, in terms of the static eccentricity ratio n, and the static

load F' become,

3
_ 2F(1-n,)*(1+2n)n
= - i
wn,(1- 112)2

F (A.11)

_ F(a)—2¢5)(1—n02)%n
on,(1-n’ )2

£y

(A.12)
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Considering a small oscillation of the journal with its centre to beC,,, and C,4 being

the corresponding steady-state under the action of the static load F' as shown in Figure

A2, the components of F, and F, along r and s axes are given by:

F =Fcosa,—-F,sinqa,, (A.13)
F. =F sina,+F,cosq,, (A.14)
Cny+r

where sing, =— and cosq, = . Using the trigonometric identities, the rate

Cn

of change of the attitude angle is given by:

- S(Cno—i-r)—l?s

Ten:

(A.15)

Thus F. and F, are nonlinear functions of » and s. For very small oscillations, when

a,~0; cosa, =1, Eqs.(A.13) and (A.14) can be written as:

F,=F-F—, (A.16)
Cn

F =F—+F,. (A.17)

‘ Cn

After linearising [20], the radial and the tangential forces on the journal are defined as:

E‘ = _brr’; - arss ’ (A 1 8)

3
R
F =a,r-b $+—a)7m07731 5

N sr Ss

-, (A.19)
2(1-n,")2C?
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where the stiffness coefficients a,, and a,, are given by:

nyLyR,m0  F

a, = e (A.20)
2C°(1-n): 0
3 2 2
. RBLBf]Bﬁa)(l+25n0 ) _ g‘(l—|l-2n02) ’ (A21)
2C°(1-n,2)? m(1=m,7)
and the damping coefficients, b,, and b are given by :
2 2
b.,=—a,, b,=—a,_. (A.22)
1) 1)

Since in the steady-state, /. =0, F, = F'. There are only 4 coefficients, direct damping

coefficients, b_,b_ and cross-coupled stiffness coefficients, a

rr? s,

a,, for a full-film whilst

for a 7 -film, they would raise to 8 including the direct stiffness and cross-coupled

damping terms [88]. The following Section shows the derivation of forces for a 7 -film.

A.1.2 OIL-FILM FORCES IN BEARINGS WITH OSCILLATING T -
FILM CAVITATION

This Sub-Section presents the derivation of the oil-film forces in bearings with an
oscillating 7 -film. By integrating Eqs. (A.5) and (A.6) for the boundary conditions

6, =0, 6, =, the film forces in the bearing with an oscillating 7 -film are given by

[23]:

F.=-8, {—%n(l—z@ll + ﬁ]z}, (A.23)
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F =5, {%n(l —24)I, 1, } , (A.24)
where:
LY . IR
S = (R—B] S = %“2’”3 (A.25)
B

where S is the modified Sommerfeld number for the short-bearing approximation. and

S is the Sommerfeld number for the long bearing approximation.

T T+6, )
]1:_[ cos’ @ 0. J~ cos@sm@ 0, I - _[ sin” @ : are the
0(1+ncos¢9) (1+ncos¢9) 3 (14+ncos®)
integrals. Using Sommerfield substitution [88], let
2
l+ncosf=—1"" (A.26)
l-ncosy
_ 1-n*)siny _ 2
0059=M; sin6’=L; d0=idt//, (A.27)
(I-ncosy) (I-ncosy) (I-ncosy)
1 1 )
]1 =W 5(72')4'7’1 7|, (A28)
(1-n")
JA— _, (A.29)
(1-)
L=—" . (A.30)
2(1-n)?

Using Eqgs. (A.28),(A.29) and, (A.30), the non-dimensional force components in Egs.
(A.23) and (A.24) are given by:
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n2(1_2¢j)+m'z(1+2n2)

=-S5, : (A31)
(1-n)  2(1-m*)"
F =5 7z'n(1—2¢3) N 2mz L (A32)
4(1-n*) (1-n7)
LY. LRwo 4(1-n?)
S, =| 2| §="2"0s _ : - (A33)
R, FC !

n, {7[2 (l—nsz)+16nsz}2

where n, is the steady-state eccentricity ratio.
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FIGURES
static load
: F
line of centres .
bearing
s
|
Y
\L. CJD
‘N .
Journ,
"« 5
1
X I r
I
Figure Al Co-ordinate system of a journal bearing; Cj, is the bearing centre; C,q is the

static journal centre due to a static load; C,, is the dynamic journal centre; @ is the spin speed;

@ is the attitude angle of the journal centre with respect to X axis. @ is the angular co-ordinate
in the bearing with reference to the line of centres. [20]

F
) X
CB
Figure A2 Oil-film forces shown in Figure A2 with reference to the bearing centre C;, ina

journal bearing; C, is the static journal centre; C,, is the dynamic journal centre; C is the

radial clearance in the bearing; 7 is the eccentricity ratio. n,, ¢, are the eccentricity ratio and
attitude angle (phase) corresponding to the static journal centre.
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APPENDIX B FINITE ELEMENT MODEL

B.1 ONE-DIMENSIONAL BEAM MODEL

In Chapter 3, the flexibility of the rotor is included in the mathematical model in
terms of the influence coefficients. These coefficients are determined by using a simple
finite element beam model. This Appendix details the modelling of a one-dimensional
beam model with two degrees of freedom at each node and its assemblage for a multi-

degree of freedom system.

Figure B1 shows a one-dimensional beam with one translation and one rotation at each
node according to Euler-Bernoulli theory [69, 89]. This is a simplification of the linear
theory of elasticity which provides a means of calculating the load-carrying and
deflection characteristics of beams. It covers the case for small deflections of a beam
which is subjected to lateral loads only. Using cubic displacement function for the
element [69], the stiffness matrix of a beam is given by [69]:

12 6L -12 6L

_EI| 6L 4L 6L 21 (B.1)
% -12 -6L 12 6L/ '

6L 21> -6L 4L°

where K is the stiffness matrix of the element, E is the Young’s modulus of the
material, | is the transverse moment of inertia of the beam and L is the length of the
beam. Under static conditions, the lateral and angular deflections are given by:
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(B.2)

where F and M are the force and the moment, d and (/3 are the lateral and angular

displacements respectively. Substituting for K from Egs. (A.1) and (B.2) becomes:

>

1 12 oL
M,| EI|l6L 4L
3 | -12 -6L
~ 2
M, 6L 2L

-12 6L
-6L 217
12 6L
—-6L 417

>

o, 8 ¢

>

N

(B.3)

where (.),, denote the node numbers. Since the rotor is represented by an assembly of

beams connected at the nodes, the stiffness matrices of the beams are assembled to get

the global stiffness matrix. Figure B2 shows a simple assemblage of two beams. The

corresponding two stiffness matrices are assembled as follows [69]:

>

1 12 6L -12

M, 6L 412 6L

= | EBI|-12 -6L 12+12
M,[ LC|6L 22 —6L+6L
3 0 0 -12

M, 0 0 6L

6L
21°
—6L +6L
41% +41°

217

0 T1%
0 ¢1
6L ||d
212 . (B.4)
é,
6L ||2
ar |2
A4

Figure B3(a) shows the schematic of the finite element model of a turbocharger. The

rotor is pinned at the bearings locations by arresting the lateral displacements of nodes 2

and 3, allowing only rotation at these nodes. It is shown in Chapter 2, how the influence

coefficients are determined from the finite element model. The natural bending

frequency of the rotor can be determined by adding a mass matrix, which is given in the

following Section.
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B.2 NATURAL FREQUENCY

Figure B3(b) shows the finite element model of the turbocharger with lumped
masses at the nodes 1 and 6. The equation of motion of a finite element beam under no

external forces according to Newton’s second law of motion is given by:
Mx+Kx =0, (B.5)

where M is the mass matrix and x is the displacement vector. The mass matrix of the

beam element with a translation and a rotation shown in Figure B1 is given by [69]:

156 22L 54 -13L

Mo PAL| 22L 4 13L 30
420 54 13L 156 -22L
—-13L -3 -22L 4

; (B.6)

where L is the beam length. Similar to the method in Eq. (B.4), mass matrices are also

assembled as:

(156 22L 54 —13L 0 0
221 47  13L —31? 0 0
pAL| 54 13L  156+156 —22L+22L 54 ~13L
Ml +M2 = 2 2 2 s | (B.7)
420 | —13L 31> -22L+22L 4I*+4L 13L 3L
0 0 54 13L 156  -22L
0 0 —13L —3I* —22L 4L

where M, M, are the mass matrices of the elements e, e, respectively. The

compressor and the turbine masses are lumped at node 1 and node 6 by adding them to
the corresponding diagonal element. Inertia effect associated with the rotational degrees
of freedom is assumed to be zero. Now assuming time-harmonic motion, and assuming

J Ot

a solution of the form x = Xe’/™" to Eq. (B.5) and re-arranging gives:

[K-o,M|x=0, (B.8)
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where @, is the natural frequency of the system and X is the amplitude. The
eigenvalues of the determinant [K - a)nzMJ and the corresponding eigenvectors for the

pin-pin condition are calculated in MATLAB using steel properties i.e., £ =2ell N/m’
and p=7850 Kg/m’. The pin-pin constraints are applied by arresting the translation

for nodes 3 and 4, while the rotations are allowed. These degrees of freedom are
removed by deleting the corresponding rows and columns from the stiffness and mass

matrices.
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FIGURES
y
M, b M,
Ly™ -
= -
-4/ Z ~ -’
node 1 S - node 2
. ] |,
Fl’dl ledz
Figure B1 One-dimensional uniform beam element of length L with one translation &i

and one rotation ¢3, at each node i; IfI and I\7Ii are the forces and moments at these nodes
where i =1,2 are the node numbers. The cubic displacement function [69] is shown in dotted

line.
el eZ
(@ e ——— ) S ——— ]
1 L 2 L 3
Figure B2 Two beam elements of equal length L, connected at node 2. e, €, are the

element numbers.
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mb U0

>
>0 2
O w

&
Il
o

1 c; s

mb OO OO m,

d,=0 d, =0
(b)
y
Z

m, turbine mass centre === beams

m, compressor mass centre O nodes

Cq turbine bearing centre

b . @® lumped mass

Cg compressor journal centre

Figure B3 (a) Schematic of the finite element model with flexible mass-less beams

representing the turbocharger rotor to determine the influence coefficients. Nodes 3 and 4 are

fixed along y; d,=0 , where i is the node number and allowed to rotate. (b) Schematic of the

finite element model for calculating the eigenvalues; the compressor and turbine masses are

lumped at node 1 and 6 respectively.
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APPENDIX C EIGENVECTOR AND AD-JOINT
EIGENVECTOR

In Chapter 4, the determination of the first Lyapunov coefficients and the
application of Poore’s bifurcation algebra required the calculation of the eigenvectors
of the Jacobian determinant A . In this Appendix, details are given about the calculation

of the eigenvectors, following the procedure given by Myers [21]. The eigenvector q of
Jacobian A corresponding to the eigenvalue § =i€), is given by:

A-iQI|q=0, (C.1)

where q = {ql,qz,q3,q4 }T matrix and I is eigenvector. Eq. (C.1) gives three equations as

below, while the fourth one is redundant:

—5¢,+4, =0, €2)
k by, . ky by
(_%j%+(_Tx;_sj92+[_jjq3+[_—_)qu4 =0, (C.3)
w w w w
_§CI3 +q,=0. €4

Assuming ¢, =g, +ig,,, for the eigenvalue §=iQ, the elements of eigenvector are

given as follows:

q, =i, , (C.5)
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|7°Q) -iQb, ~k, |

= = T 5 C.6
q; = 4, I:kxy_'_iQobxy:I a1 (C.6)

|@°Q) —iQb,, —k, |

=iQ.qg, =|iQ
q, 043 od [kxy +iQobe:|

=iQq,T,. (C.7)
Similarly, the ad-joint vector p from the transpose of the Jacobian matrix is given by:
A7 +iQ,]|p=0, (C.8)

where p={p,,p,,p;, p4}T . Determinant in Eq. (C.8) is given by:

k k
Q, = 0 =
0 52 52
b, P
I —=+iQ, 0 -
o Phl_g (C.9)
kw k p3
0 - —)2 iQ, %
0] 0 Dy
b
0 - a_;‘; 1 —=Z+iQ,

which results in the following equations:

; kxx kyx
i€, py TPk =0, (C.10)
bxx . byx
pt _a—)z'HQO P=— P, =0, (C.11)
k, ' k
—a_)—ﬁpz +iQ, ps —§p4 =0. (C.12)
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Letting p, =1, eliminating p, from the Egs. (C.10) and (C.11) results in :

B iQb, —k, )
& [k —b,iQ, -0 | '
b, (b, .
D = a_;”'z +(a—)§—l§20jp2, (C.14)
1
ey (k,, +k,p,), (C.15)

4
where ¢, is determined from the normalisation requirement < p,q> = Zﬁ :q; =1 which
J=l

gives:

1
Ptpyi + piTy + iQOTl} .

4= (C.16)
{
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APPENDIX D THE METHOD OF AVERAGING

In Chapter 6, the method of averaging is applied to the equations of motion of
the rotor-system with unbalance, for simplifying the analysis. In this Appendix, the
theory behind the method of averaging is given in brief, based on the procedure given in

[83] and [90].

The standard form of a perturbation problem for the application of averaging is given by

[83]:

x=ef(x,t;€), xeR", (D.1)

where, x is an n-dimensional real variable, ¢ is the time and & is a small parameter.

Expanding Eq. (D.1) as a power series in & gives,

i=e(f, (00 +ef,(n,0)+..). (D.2)

Using a near identity transformation up to the quadratic term [90],

x=&+eW(E,0+eW,(E,0), (D.3)

where, W,, are called generating functions to be chosen so that, the transformed

equations on & is as simple as possible. Substituting Eq. (D.3) into Eq. (D.2) gives,

i=ef(E+eW, +eW,,t)+& £,(E+eW, +&W,,t)+.... (D.4)

Equation. (D.4) expands as [91]:
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x=¢| (& t)+gafl W +e 2 Of, —Lw, |+¢& fz(é,t)+g%W1 +<92%W2 +.., (D.5)
0¢ o5 05 o5
which up to second order term in & is given by:
. .| Of;
E=e (0 +e | SL LD | (D.6)
The first derivative of Eq. (D.3) is given by:
- 2 D.7
x=o [ag 8t} {ag(’g Ot} ®-7)
Equation. (D.7) re-arranges into [83]
.. ow, .| OW,
=x— D.8
ose| e | T T e

Substituting Eq. (D.6) into Eq. (D.8) and considering up to second order in ¢ gives,

f
< ’{ (0= f o é

1 _ Y af1 2 _ 2
¢ 8t} [ W +6,(5,0-—2¢ } (D.9)

Let the averaged form of Eq. (D.2) be:
E=ef(O)+e (8. (D.10)

Equating Egs. (D.9) and (D.10) leads to,
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) of, . W, o .. oW,
}rg {fz(é,t)Jrng o¢ f(e)-—

o,
t

ef(O)+e (&)= 8{1](5,0— 5

](D.ll)

Now, equating the first order terms in Eq. (D.11) gives:

Order ¢:

£(&)=1£(&0-

apfl , (D.12)

)

where, W, is chosen in such a way that all the O(g) terms on the right hand side

disappear except their average value [90]. This result in,
_ 1t
6§ =& nar, (D.13)
0

where, T is the period of excitation in the case of non-autonomous systems with

periodic forcing, Egs. (D.12),(D.13) imply that:

o,
Ot

— &0 - [R(Enur. (D.14)

Like-wise, equating the second order terms in Eq. (D.11) gives:
Order &°:

f oy Wi ey,
L&) =6E0+ W - @O

(D.15)

Here again W, is chosen in such a way that only the average value of O(¢”) exists. This

result in,
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E(§)=%I(fz(§,t)+g—2m—‘Z—V?E(g)jdt. (D.16)

Thus, the second order averaged form given in Eq. (D.10) is evaluated from Eqgs. (D.13)
and (D.16) such as:

1t 1t of, 1
={¥£fl(§,t)dt}g [ﬂ(f(ﬁz) W— f(f)}d} (D.17)

t T T
where W, =j[f,(§,z)dt]—% | j:f,(g,t)dtds and E(g):% [£.(&0)de. f,, are the first
0 0 0

and second order coefficients respectively, of the original function given in Eq. (D.2)

that is averaged. If the first order term degenerates to zero, then Eq. (D.17) simplifies to

[85],
e

In Chapter 6, the functions f,f, in Egs. (6.33) and (6.34) are functions of two variables

© ey

(f @&n+2h 5 jdt]. (D.18)

r., ¢, . Hence, the standard form for averaging in Egs. (6.33) and (6.34) are of the form:
Fo=e(f, (r.4,.t)+€5,, (r,.4,.1)). (D.19)

b, =e(f,(r,.0,.1)+ 5y, (r,.8,.1)), (D.20)

where:

foL ef(poe — — N B
W, =[G p.0d] - [([6,7.5.0 dt ) dss 5,90 =[5, 7,50 dr
0 0 0

T

fre — _ V(s e — — R O U
Vquﬁ :.[I:fl¢(r9¢7t)dt _$J-(J.O fl¢(ra¢9t) dt) dS, f1¢(r’¢):¥jfl¢(r7¢at) dt.
0 0 0
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Applying the averaged form in Eq. (D.17) to both the Egs. (D.19) and (D.20) gives [92]:

7

{j (Fl,gﬁl,t)dt}rgz ¥£ (aW

or

lT T
. _ghjfw(?l,(zl,t)dz}rg j
0 0

or

I _ (e,
lT f2r(r17§07t)+[ 87

1r

L (7, 0) +

f,,

0
2¢( 0,1+ P

w,

ow,

1r

op

W

of,

1r + ag Wvl(pj

£, (7, @]

of,

19
1r + aa VV]¢]

oW, =
—( 1¢f(r,(p)+—_“”f]¢(r,¢)]
op

t

, (D21)

, (D.22)

where 7,¢ are the averaged variables. Note that if a function f is not periodic in T,

then the averaging is done over infinitely long time as in hm jf dt[93].
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