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 This thesis is concerned with a theoretical investigation into the nonlinear 

dynamic behaviour of a turbocharger. Specifically the instabilities due to oil-whirl are 

examined. These are self-excited vibrations existing in the form of an in-phase whirl 

mode and a conical whirl mode. Waterfall plots were provided by Cummins Turbo-

Technologies Ltd., Huddersfield, UK, based on test data using two different unbalance 

levels on a turbocharger. The test with the high unbalance indicated that there was shift 

in the sub-synchronous frequency to synchronous frequency between about 80,000 rpm 

to 130,000 rpm. The literature suggests that this self-excited vibration can be suppressed 

using forced excitation. Moreover, it is well known that the existence of limit cycles 

enables successful operation of a turbocharger. This limit cycle is a periodic motion 

attributed to the nonlinearity of the oil-film, other than the stable and the unstable 

equilibrium states predicted by the linear analysis. Hence, a nonlinear analysis is 

required to analyse the limit cycle and to determine the effect of synchronous excitation 

on it. In the literature a variety of parameters has been shown to influence the dynamic 

behaviour of a rotor-bearing system. To avoid over-complicated mathematical 

modeling, the influence of two such parameters: gyroscopic moment and shaft 

flexibility are first investigated in this thesis using linear stability theory to determine 

their significance. Effects of gyroscopic action are investigated using symmetric and 

asymmetric rigid rotors supported on short journal bearings with full-film using rigid 

and damped supports. In this thesis, the damper supported journal bearing is used to 

simulate the floating ring bearings that are commonly used in automotive turbochargers. 

The outer film of the floating ring bearing is treated as an external damper, since the 

ring is assumed not to rotate but only wobble giving the damping effect from the 
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squeezing action. A gyroscopic coefficient, which is defined as the ratio of the polar to 

the transverse moment of inertia of the rotor, is introduced. The threshold value of this 

coefficient is determined to be 1  for the suppression of the conical whirl instability. 

The stability of the in-phase whirl mode is unaffected by this parameter. A flexible rotor 

mounted in floating ring bearings with full-film, is analysed to confirm that it behaves 

as a rigid body up to a speed of 100,000 rpm. Prior to the unbalance response study, a 

perfectly balanced rigid rotor supported by rigidly supported bearings is first analysed to 

determine the nonlinear behaviour of the in-phase whirl. To include the stiffness-like 

radial restoring force, an oscillating 
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π -film cavitation model for the hydrodynamic 

bearings is used. The effect of a static load on the rotor is analysed to determine the 

nonlinear behaviour for a wide range of steady-state eccentricity ratios. A parameter 

plane separating the region of instability from that of stability is presented using linear 

analysis to determine the stability threshold at which the oil-whirl is initiated. The onset 

of oil-whirl phenomenon is shown to be the Hopf bifurcation. Particular emphasis is 

placed on examining the limit cycles (periodic oscillations) around the stability 

threshold. Reducing the nonlinear equation of motion to Poincare normal form, the first 

Lyapunov coefficients are evaluated to show the change in the type of bifurcation from 

sub-critical bifurcation (disappearance of an unstable limit cycle) to super-critical 

bifurcation (appearance of a stable limit cycle) around the stability threshold. Such 

bifurcations are demonstrated through plots of orbits using numerical integration by the 

Runge-Kutta method. With some unbalance added to the rotor-system, waterfall plots 

are generated to simulate the response characteristics observed in the test data, by 

running-up the speed. After the Centre Manifold reduction, the equations of motions are 

averaged for analysis. Using a numerical and an analytical procedure, it is shown that 

the unbalance is more effective in the transient motion than in the steady-state 

condition. Unbalance introduces a reduction in the growth rate of whirl amplitude upto a 

certain optimum unbalance value, above which the effect is reversed. The mechanism 

behind this behaviour is shown to be the shift in phase caused by the unbalance at the 

start of whirling, when the dynamic forces are comparable with the unbalance force. 

This is due to the coupling effect of amplitude and phase in an unbalanced rotor system. 
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DEFINITIONS AND ABBREVIATIONS 
 

ca  linearised cross-coupled coefficient of the full-film bearings ( )rs sra a= =  

rsa , sra  linearised cross-coupled coefficients 

a%  real part of 1( )c ν  

db  damping coefficient of the full-film bearings ( )rr ssb b= =  

rrb , ssb  linearised direct damping coefficients  

,  xx yyb b  linearised direct damping coefficients of the cavitated bearing 

,xy yyb b  linearised cross-coupled coefficients of the cavitated bearing 

,nnb bφφ  linearised direct damping coefficients of the cavitated bearing in the polar 

 co-ordinates 

,n nb bφ φ  linearised cross-coupled damping coefficients of the cavitated bearing in the 

 polar co-ordinates 

b%  imaginary part of 1( )c ν  

1c  coefficient of the cubic term in the Poincare normal form 

d̂  lateral displacement of the nodes of the beam element 

e  eccentricity of the journal centre with respect to the housing centre O  

1 2,  e e  element numbers of elements 1 and 2 respectively 

f  higher order function of and νx  

f  [ , ]T
r sF F=  

af  [ ], T
ra saF F=  

bf  [ ] , T
rb sbF F=  

klg  coefficients of Taylor’s expansion of the higher order function G  where 

 2 3k l≤ + ≤  corresponding to the terms k lz z  

ˆklg  = klg  for the quadratic terms 

21ĝ  coefficient related to the resonant cubic term  

,01 10g g  vector coefficient that couple the terms of the critical eigenspace and the 

 real eigenspace 
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h  film thickness 

,rh hθ  functions relating the response phase and the excitation phase 
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BC  bearing /floating ring centre 



   

xxx 
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H  higher order function related to the real eigenspace 
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Y  co-ordinate of the vertical axis perpendicular the direction of the static load 



   

xxxiii 

Y  non-dimensional Y  co-ordinate ( )Y C  

sY  non-dimensional Y  co-ordinate ( )Y C  at the steady-state 

Z  axis along the length of the rotor 

α  growth/decay rate of the whirl amplitude { }( )s= ℜ )  
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1 INTRODUCTION  

 

 

1.1 INTRODUCTION 

 

 Turbochargers are a special class of turbo-machinery used to improve engine 

efficiency by utilising the energy in the exhaust gases. These units are typically found 

on diesel engines. Figure 1.1(a) shows a turbocharger with the compressor and the 

turbine wheels along with two floating ring bearings. The turbine wheel is made of steel 

and is integral with the shaft. The aluminium compressor wheel is machined for line to 

line contact and bolted onto the shaft [2]. This makes the turbine wheel heavier than the 

compressor wheel and the rotor centre of gravity is generally close to the turbine end. 

Figure 1.1(b) shows a typical floating ring bearing with oil holes. Figure 1.1(c) 

demonstrates the working principle of a turbocharger. The exhaust gas energy from the 

engine is used to drive a turbine. The turbine wheel drives a compressor which is 

mounted at the opposite end on a common rotor, all enclosed in cast housings. This 

allows the supply of pre-compressed combustion air into the engine. The engine 

aspirates the same volume of air, but due to the higher pressure, a greater air mass is 

supplied into the combustion chamber. Consequently, more fuel can be burnt, so that the 

engine's power output increases relative to the same speed and swept volume. 

Automotive turbochargers can operate at very high speeds, in excess of 180,000 rpm 

[3]. This thesis is concerned with the automotive turbochargers that are characterised by 

light-weight and high speed. Although various types of oil-film bearings are used, most 

commercial automotive turbochargers have floating ring bearings due to their low cost 

[4]. The simplest type is a plain journal bearing, with a film between the rotor and the 
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bearing inner surface. With all types of oil-film bearings, waterfall plots demonstrate the 

existence of sub-synchronous vibrations along with the unbalance vibrations common in 

any rotating machinery [3]; waterfall plots are three dimensional plots of response 

magnitude against its frequency, varying with the rotor speed along the z axis. They are 

self-excited by the motion of the rotor in the bearing and are caused by a phenomenon 

called oil-whirl instability [5]. The term sub-synchronous implies that these vibrations 

are characterised by frequencies that are below the synchronous ones; their frequencies 

are usually found to be a little less than 50% of the rotor speed. This type of instability 

can occur whenever oil is trapped in a gap between two concentric cylinders, and one is 

rotating relative to the other. The oil-whirling within the clearance causes cross-

coupling dynamic interaction leading to instability [6]. Oil-film bearings are prone to 

show one or two sub-synchronous instabilities over extended speed ranges of operation 

[7]. In a turbocharger, the whirl instability manifests itself in two different forms [2]: in-

phase whirl where the two ends of the rotor are in phase and a conical whirl where they 

are 0180 out of phase [8]. Figure 1.2 shows a typical waterfall plot of a turbocharger 

with the two sub-synchronous whirl modes. Figure 1.3(a) shows the schematic 

representation of the conical whirl and Figure 1.3(b) shows the in-phase whirl mode of a 

rigid rotor. Figure 1.3(c) shows the in-phase whirl with bending in the case of a flexible 

rotor.  

 

The self-excited vibration causing the oil-whirl can produce large-amplitude alternating 

stresses in the rotor, creating fatigue that can result in a shaft crack [9]. They also cause 

a low frequency rumble and can be of large amplitude at high speeds leading to rotor-

stator rub. Oil-whirl instability is a potentially damaging operating condition that must 

be avoided. Although squeeze-film bearings offer a solution by eliminating the oil 

rotation at the expense of more complicated designs involving roller bearings, they have 

no load carrying capacity [6]. This demands external mechanical arrangements [6]. 

Extensive research activity has been directed to improve the stability of oil-film 

bearings such as varying the oil supply pressure [10, 11] and supply angle [12], 

optimising bearing parameters [13], roughening bearing surfaces [14], introducing 

hybrid features [15], and many others. Nevertheless, a great challenge for turbocharger 

manufacturers is to suppress these instabilities without great cost, as the market is cost 

sensitive. One of the main problems in this endeavour is the lack of accurate analytical 



CHAPTER 1       INTRODUCTION 

3 

tools predicting nonlinear rotor dynamic performance of rotors supported in floating 

ring bearings. This leads to repetitive testing which is costly. 

 

Figure 1.4 shows the test data in the form of waterfall plots obtained from Cummins 

Turbo-Technologies Ltd., which show the amplitude of vibration varying with 

frequency and speed. These were produced under two different unbalance levels from 

the same hardware and conditions. The unbalance levels influence the system behaviour 

significantly in terms of the response characteristics. These will be referred as the test 

waterfall plots in this thesis. One of the response frequencies from self-excited vibration 

does not respond over a specific speed range, where the system responds at a frequency 

synchronous with the rotor speed. This leaves the speculation that the presence of 

unbalance in the rotor, could possibly suppress the self-excited vibration, which is an 

unstable sub-synchronous response. This phenomenon is known as ‘quenching’ in the 

literature, for example [16]; it is the process of increasing the amplitude of the periodic 

excitation until the free unstable oscillation decays. Although turbochargers exhibit 

instabilities, sustained operation has been reported to be possible because the vibration 

is limited by nonlinear effects. Moreover, the literature for example, Gunter [2] suggests 

that this behaviour, attributed to the nonlinearity of the oil-film in the floating ring 

bearing, leads to a limit cycle, i.e., periodic oscillation with finite amplitude. Hence, this 

thesis first aims at investigating the nonlinear behaviour of a turbocharger with a 

perfectly balanced rotor. And then the effect of unbalance (periodic load excitation) on 

these sub-synchronous self-excited vibrations is examined.  

 

Prior to investigating the nonlinear dynamic behaviour of a turbocharger, it is necessary 

to determine the influence of certain parameters on the dynamic stability. There are a 

number of factors mentioned in the literature that could influence the nonlinear 

behaviour of turbochargers, such as the shape of the bearing, cavitation, oil grooves, 

supply pressure, unbalance etc. This will help in deciding if these parameters need to be 

incorporated into a nonlinear model of a turbocharger to avoid over-complicated 

mathematical model. Two of these parameters: gyroscopic effects and rotor flexibility 

effects are investigated using a linear analysis.  
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1.2 BACKGROUND 

  

 A bearing is a machine component that supports or bears a load on a moving 

interface. Any rotating shaft (rotor) needs to be supported as well as being allowed to 

rotate, which requires such an interfacing component. In turbochargers, the type of oil-

film bearings used is known as hydrodynamic bearings. This name is based on the type 

of lubrication between the rotor and the bearing. Hydrodynamic bearings get load 

support by hydrodynamic lift. Figure 1.5 shows the schematic of a journal bearing 

demonstrating the convergent oil-film between the journal and the bearing. The part of 

the rotor that is housed inside the bearing is called the journal. The journal rides on a 

fluid-film; the film is created by the motion of the journal. The pressure exerted by the 

journal on this film increases and supports the journal. It should be noted that, under 

static conditions, that is, when the journal is not rotating, the journal rests on the bearing 

having metal-to-metal contact. 

 

Two types of sub-synchronous instabilities are commonly reported in these 

hydrodynamic bearings:  oil-whirl and oil-whip [3, 8, 17]. Oil-whirl is a phenomenon 

determined by the properties of the bearing film. It is typically a small amplitude motion 

with a frequency close to almost half the rotor speed. Oil-whip is a large amplitude 

motion occurring with a frequency close to that of the first critical speed which is a rotor 

bending mode. It is commonly encountered when the rotor speed exceeds twice this 

critical speed. Flexible rotors are analysed for such a phenomenon. 

 

Figure 1.6 shows a waterfall plot of a turbocharger showing the rotor vibration response 

corresponding to whirl and whip characteristics. The rotor whirls at a frequency about 

half the rotational speed. After a certain frequency, the rotor vibration shows slightly 

higher amplitude but the response frequency remains constant with increasing speed, 

which is due to oil-whip. It is evident that the speed is more than twice the whip 

frequency. Since a rigid rotor model is used in this thesis for all the analyses except for 

the study of a flexible rotor, oil-whirl is of primary interest here. 
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1.2.1 SUB-SYNCHRONOUS OIL-WHIRL AND THE BEARING 

FORCES 

 

Oil-whirl is self-excited by the motion of the rotor in the journal bearing. With the rotor 

operating eccentrically relative to the bearing centre, it draws the oil into a wedge to 

produce a pressurized load-carrying oil-film. As this film is squeezed by a momentary 

displacement of the journal, the film exerts pressure on the journal. Figure 1.7 shows the 

pressure profile based on the short-bearing approximation [18, 19]. A short-bearing 

approximation of the bearing forces, allows lubricant flow along the length of the rotor 

and around the circumference of the bearing. The derivation of the film force using this 

approximation is given in Appendix A. The resultant force due to the film pressure is 

not completely balanced by the rotor weight, specifically in the case of lightly loaded 

rotors. Figure 1.7 shows that this oil force can be resolved into two components. The 

radial force component rF  acts along the line of centres, i.e. the line of the bearing 

centre BC  and the journal centre JC ; the tangential force tF  acts perpendicular to the 

line of centres. The tangential component tends to accelerate the rotating journal, so that 

it performs a secondary orbit in the clearance about the housing centre in the direction 

of rotation, while rF  tends to restore the journal to its equilibrium state.  

 

 

1.2.2 OIL-WHIP 

 

As the rotor exhibits oil-whirl, after a certain speed, when the bearings get stiffer related 

to the shaft, the journal centre describes a closed orbit in the direction of rotation but the 

path may be of a complex nature [5]. This usually occurs at speeds above the first 

critical speed of the rotor and with a nearly constant frequency of rotation equal to the 

first critical speed. In this case, the rotor flexibility is the controlling factor. This 

phenomenon is called oil-whip. With increasing speed oil-whip approaches 

asymptotically the natural frequency of the system [3] as shown in Figure 1.6. 
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1.2.3 SOME TYPES OF OIL-FILM BEARINGS 

 

There are different types of oil-film bearings available for various applications. This 

thesis discusses three types of bearings such as a plain journal bearing, a floating ring 

bearing and a press-fit bearing. In a plain journal bearing as shown in Figure 1.5, the 

journal rotates in a housing of circular cross-section, where the clearance is filled with a 

bearing fluid. Figure 1.8 shows a floating ring journal bearing which has a thin ring 

rotating freely between the journal and the housing, forming two hydrodynamic oil-

films, the journal-to-ring film and the ring-to-bearing film. In some configurations, the 

ring is fixed with a pin to the housing [3], where the ring wobbles providing a squeezing 

action on the film. Figure 1.9 (a) shows a typical floating ring bearing provided with six 

oil-supply holes, which supply oil from the outer film to the inner film. Press-fit 

bearings have a fixed bush with tight fit into its housing. Figure 1.9 (b) shows a press-fit 

bearing with an external groove and six oil holes to pass lubricant to the inner oil-film. 

 

 

1.2.4 CAVITATION 

 

For small static loads which generate pressures that are small compared to the 

atmospheric pressure, the clearance may be filled completely with oil. This situation has 

been shown to be inherently unstable [20, 21], for all the eccentricities and speeds. The 

rotor does not assume an equilibrium state, but orbits outwards towards the housing. 

Since a turbocharger is lightly loaded, a full-film bearing model is used in this thesis for 

the linear analyses investigating the gyroscopic moments and the rotor flexibility. 

However, for higher loads with super-ambient pressures generated well in excess of 

atmospheric pressure, the oil-film ruptures close to the position of minimum film 

thickness minh  shown in Figure 1.7 creating a cavity, or series of cavities, in the 

divergent section. Work by several authors, for example, [22]  has confirmed that the 

presence of an air cavity stabilises the journal bearing, thus permitting the centre of the 

rotor to take up an equilibrium position, under certain conditions.  The nonlinear 

investigations in this thesis, concerned with the effect of static and unbalance forces use 

a cavitated bearing. Figure 1.10 shows an oscillating π -film model, in which the fluid-
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film remains fixed with respect to the rotor [8, 23].  As the journal rotates in the bearing, 

the oil-film rotates along with the journal retaining the film extent between 0θ =  (film 

start) and θ π=  (film rupture), where θ  is the angular coordinate with reference to the 

line of centres of the journal and the housing. The dotted line shows position I  of the 

journal giving angular positions corresponding to the film start and rupture at time 0t . 

The continuous line shows position II  of the journal at time 0t t+ . As the journal 

rotates from position I to position II, the film extent remains the same as 0 to θ π= . 

The journal centre makes an angle of tω  with respect to position I.  

 

 

1.3 LITERATURE REVIEW 

 

 The principle of hydrodynamic lubrication was first established by Beauchamp 

Tower [24] which motivated Reynolds’ [25] to provide the mathematical formulation 

for the pressure distribution of thin films between two bearing surfaces. This is known 

today as Reynolds’ equation. 

 

Since it is not possible to solve Reynolds’ equation directly, Sommerfeld [26] 

introduced an approximation ignoring the flow in the axial direction known as the 

“long-bearing approximation,” to obtain the film forces. This is more applicable for 

applications in which the bearing length is large compared with the bearing diameter. 

Ocvirk [18], along with Dubois [27], introduced another approximation for bearings in 

which the bearing length is small compared with the bearing diameter, by neglecting the 

term which has the least effect in narrow bearings. This method was originally proposed 

by Michell [28] and Cardullo [29]. The resulting solution, which can be applied to 

bearings having a length-diameter ratio up to about 1, is called the "short-bearing 

approximation." The pressure-distribution function has been extended to determine 

expressions giving applied load, attitude angle, location and magnitude of peak film 

pressure, friction, and required oil flow rate as functions of the eccentricity ratio, 

including oil flow. However, this short-bearing approximation, assumes that the 

lubricant is Newtonian, and so any variation in the lubricant viscosity with the shear rate 

is neglected. To overcome this, Taylor [30] performed an isothermal analysis by 
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including the lubricant shear thinning effect into the short-bearing approximation. 

Taylor [31] also derived simple expressions for the bearing parameters such as 

minimum film thickness, maximum pressure and the friction power loss for a highly 

loaded journal bearing. This effort helped in gaining a clear insight into those 

parameters in terms of bearing geometrical factors such as radius, length, clearance, and 

operational factors such as speed and lubricant viscosity. 

 

Newkirk and Taylor [32] first identified the self-induced vibration due to an oil-film. 

The problem associated with the stability of a high speed rotor-bearing system was not 

well understood or predictable until the late nineteen sixties and early nineteen 

seventies. Research has been extended since then to improve stability both 

experimentally and analytically using various types of fluid-film bearings. Newkirk [32]  

concluded from experimental observation that short-bearings, large clearances and 

moderate unit bearing loads increased the range of stable operation. Tondl [33] 

compared experimentally the stability characteristics of various kinds of journal 

bearings  and reported that the limit of self-excitation was shifted towards much higher 

speeds when floating bush bearings were used. Floating bush bearings are also known 

as floating ring bearings as referred in this thesis. A number of other researchers found 

better stability using floating bush bearings, for example, Dworski [34] and Tanaka 

et.al. [35]. Various methods have been tried to improve the stability of rotor-bearing 

systems with plain journal bearings. To cite a few of them, Capone et al. [10] 

investigated circumferentially fed journal bearings under low load conditions for the 

influence of supply pressure on the bearing characteristics and the stability threshold. 

Guo and Kirk [11] showed that the externally pressurised hydrostatic-operating bearing 

has a good dynamic characteristic because of its linear stiffness and damping 

coefficients and almost zero cross-coupling terms. These cross-coupling terms are the 

forces or moments that couple the motions along perpendicular directions. They 

suggested that if the hydrostatic effect is dominant over the hydrodynamic effect, then 

the hybrid-operating bearings that include both the effects could play a positive role in a 

small eccentricity range. San Andres and Childs [12] showed that angled orifice 

injection had demonstrated improved rotor dynamic performance with virtual 

elimination of the cross-coupled stiffness coefficients. Their analysis revealed that the 

fluid momentum exchange at the orifice discharge produces a pressure rise in the 
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hydrostatic recess which retards the shear flow induced by the journal rotation, and thus, 

reduces the cross-coupling forces.  

 

Another major factor influencing the stability is cavitation. Robertson [36] showed that 

a full-film short-bearing was completely unstable. He stated that the whirl orbit would 

grow until it equalled the bearing clearance. Holmes [20] analytically demonstrated 

whirl orbits in a full-film bearing similar to that shown by Robertson [36]. Poritsky [22] 

demonstrated that a hydrodynamic bearing can have a threshold stability only if it 

develops a radial restoring force. Barrett et al. [37] used a π -film model where the film 

extends from 00 to 180  of the clearance while the other half of the clearance is an air 

cavity. The authors elaborated the effect of unbalance on the stability of a rotor in 

journal bearings; the effect of radial stiffness-like restoring force in a cavitated model 

against the damping-like restoring force in the full-film model was discussed. Myers 

[21] studied a wide-range of cavitation models using linear analyses. He determined that 

a rotor-bearing system with a static film was much more stable than that with an 

oscillating film. In a static film, the film extent remained fixed with respect to the 

housing. This modified the start of the film extent as a function of the journal attitude 

angle. The oscillating film extent is fixed with respect to the rotor as shown in Figure 

1.10. Holmes [38] demonstrated a better correlation of the experimental journal orbits of 

a rotor system to that predicted by the oscillating π -film cavitation model using the 

short-bearing approximation.  

 

Rotors with high inertia, particularly in high speed applications experience the 

gyroscopic effect due to the angular momentum. In general, the gyroscopic effect has 

not been widely investigated from the point of view of stability in rotor-journal bearing 

systems. For the angular motion of a simple rigid rotor-bearing system, Tondl [39] 

analysed the effect of gyroscopic action on the amplitude of the response as the function 

of speed. He showed that it is considerable in both the narrowing of the speed interval 

of occurrence of self-excited vibration and the reduction of the resulting amplitudes. 

Moreover, Tondl showed that, a fairly large coefficient of the gyroscopic moment may 

even suppress self-excited vibration. Li and Shin [40] reported the splitting of the first 

resonant frequency into an increasing and another decreasing frequency with rotational 

speed due to the gyroscopic effect. Angantyr [41] showed that the gyroscopic effect in a 

gas turbine had a stiffening effect and lead to an increase in the forward whirl 
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frequencies with speed. Gunter and Chen [2] examined the experimental data and three 

dimensional finite element compressor wheel analysis, with centrifugal forces. They 

suggested a 20% reduction in the polar moment of inertia of the compressor wheel to 

produce accurate moment calculations. This was due to the flexibility of the compressor 

wheel and the lack of a solid connection between the aluminium wheel and the steel 

turbocharger rotor at high speeds. 

 

Rotor flexibility has also drawn the attention of researchers. Hagg and Warner [42] 

determined that the rotor flexibility decreased the region of stable operation. Myers [21] 

and Gardner [8] studied the destabilising effect of the rotor flexibility. They concluded 

that, its effect on oil-whirl was relatively small, except in the case of very flexible 

rotors, where it was likely to be swamped by oil-whip. Gunter and Chen [2] 

demonstrated in the case of a turbocharger, that, when bearings became relatively rigid 

at high speeds, the rotor flexibility influenced the system behaviour. 

 

Apart from numerical analysis, which is a common technique in modern day research, 

various nonlinear analytical techniques have been used to study a limit cycle. The limit 

cycle is a periodic motion exhibited by the journal with finite amplitude. Demonstrating 

the effect of a static load to improve the stability, Myers [43] introduced the Hopf 

bifurcation theory to show the existence of a small amplitude limit cycle for a 

symmetric perfectly balanced rigid rotor with a static load supported in cavitated long 

journal bearings. Linear stability analysis showed the existence of a neutral curve 

splitting the stability regions of the parameter space defined by the steady-state 

eccentricity ratio (ratio of the journal eccentricity to the bearing clearance) of the 

journal and the speed. Gardner [23] applied the method of multiple scales to analyse a 

similar rotor system with the short-bearing approximation for the bearing forces. Boyaci 

et al. [44] studied the effects of the nonlinear bearing forces in a symmetric and 

perfectly balanced rigid rotor supported by two identical floating ring bearings. The 

nonlinear bearing forces for both the fluid-films were obtained by applying the π -film 

short-bearing approximation. Applying the Hopf bifurcation theory, they studied the 

bifurcation behaviour (change in the stability of the steady-state) of the system, 

focussing on the influences of the bearing design parameters on the stability and on the 

limit cycle. 
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Since unbalance is an inherent characteristic of any rotor, its effect on the rotor system 

stability is an area of investigation. Tondl [39] stated that the effect of unbalance 

substantially depends on all the nonlinear factors influencing the amplitude of a 

perfectly balanced rotor. He analysed the unbalance effect on the speed of the onset of 

self-excited vibration and its amplitude. He concluded that if the amplitude of the 

steady-state vibration increased with speed, then unbalance could lower such amplitude.  

However, if the steady-state amplitude corresponds to an unstable equilibrium, then 

there is a theoretical lowering of the amplitude of forced self-excited vibration; the 

onset of self-excited vibration occurs at an earlier speed in that case.  

 

Kirk and Gunter [45] numerically analysed both horizontal and vertical rotor bearing 

systems with unbalance. With a full-film of oil in the bearings, they concluded that the 

addition of unbalance can greatly reduce the magnitude of the limit cycles encountered 

with vertical balanced rotors and also keep the forces transmitted to a lower value than 

that of a perfectly balanced shaft. Unbalance in a horizontal journal is highly 

undesirable and should always be reduced to the lowest possible value. The vertical 

journal, however, requires the proper unbalance level to allow the system to operate at a 

low amplitude limit cycle. Barrett et.al [37] used a rotor-bearing model with π -film 

cavitation and found it possible to optimize the unbalance to minimize the amplitude of 

the limit cycle and the force transmitted for the limit cycle operation above the stability 

threshold speed. Gambaudo [46] carried out a general study of the problem of the 

perturbation of an autonomous differential system, by a time-periodic forcing close to a 

Hopf bifurcation point. A description of the system dynamics in a three parameter space 

of the bifurcation parameter, the perturbation amplitude, the excitation frequency was 

presented. This approach presented the advantage of transforming the global problem of 

the perturbation of a limit cycle into a local one, which allowed them to use perturbation 

methods. Following Gambaudo’s method, Shaw and Shaw [47] analysed a rotor system 

similar to that of Myers [43] with the long-bearing approximation, but with unbalance; 

they showed an extremely complicated dependence on the system parameters and the 

rotor speed due to the unbalance effect using a periodically perturbed Hopf bifurcation. 

Brown et al. [48] showed that the conditions for chaos in a dynamic system are satisfied 

by a rigid journal supported on a hydrodynamic bearing film operating at a high 

eccentricity. Brown also showed that when the rotating unbalance force exceeds the 

static load, the bearing is intermittently unloaded and chaos can result. Namachivaya 
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and Ariaratnam [49] studied in detail the influence of small periodic perturbations on 

systems exhibiting the Hopf bifurcation. They obtained explicit results related to the 

bifurcation, along with the stability of the solution, incorporating the method of 

averaging. Following the work reported in [49], Chen and Ding [50], Ding et.al [51] 

investigated the periodically perturbed Hopf bifurcation for an imbalanced rotor/seal 

system, for the sub-harmonic resonance condition, where the vibration frequency was 

half the excitation frequency. The authors showed that the non-synchronised whirl of 

the imbalanced rotor can be one of the following two types of behaviour: It could be a 

quasi-periodic motion which is a form of motion that is regular but never exactly 

repeating, resulting from a Hopf bifurcation; or it could be a half-frequency whirl from 

the period-doubling bifurcation, where the system switches to a new behaviour with 

twice the period of the original system; the type of behaviour is determined by the 

structural parameters and the operating conditions. Li et al. [52] presented the dynamic 

analysis of a rotor/seal system. They demonstrated that the rotor imbalance can lead to a 

stable rotor dynamic performance above a certain speed in an otherwise unstable 

system. They showed that under the periodic excitation of rotor unbalance, the whirling 

vibration of rotor was synchronous, if the rotation speed was below the stability 

threshold; the vibration became severe and asynchronous which was defined as 

unstable, if the rotation speed exceeded the threshold.  

 

Although unbalance was shown to be advantageous by several authors under various 

conditions, Calvo et al. [53] found out that when a turbocharger was used in passenger 

cars, the whistling noise due to unbalanced forces could be perceived by the driver, 

which caused discomfort. This was usually in the frequency range between 800 Hz to 

3000 Hz of synchronous order. They suggested a procedure to control the turbocharger 

whistling noise against unbalanced forces variation, in order to maintain the acoustic 

comfort of the vehicle. Since achieving perfect balance was very expensive, they arrived 

at a maximum unbalance level specification limit, in order to manufacture acceptable 

turbochargers from a whistling noise point of view, at the lowest cost possible. 

 

Research on oil-whirl specific to the turbocharger is quite limited. Holmes [3] correlated 

the results of the linear analysis of a turbocharger with floating ring and press-fit 

bearings to the related experimental results using a symmetric rigid rotor. Further to 

that, Holmes et al. [54] demonstrated the behaviour of two sub-synchronous frequencies 
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and their dominance in the operating range using the linear analysis. Alsaeed [55] 

performed both linear and nonlinear analysis using the finite element analysis code-

DyRoBeS [56]. He investigated several hydrodynamic journal bearings demonstrating 

the benefit of a linear analysis for the design evaluation and maintenance purposes. His 

analysis showed that the turbocharger with floating ring bearings has the least unstable 

whirling operation, wherein the external damping offered by the outer film re-stabilised 

the whirling modes. San Andres and Kerth [7] performed a thermal analysis coupled 

with a nonlinear rotor dynamic analysis of an automotive turbocharger supported in 

floating ring journal bearings. They predicted that the floating ring-to-journal speed 

ratio decreased as the rotor speed increased, mainly owing to the thermal effects on the 

film viscosities. Gunter and Chen [2] demonstrated the existence of limit cycles at 

speeds of 100,000 rpm and higher due to the nonlinear action of the fluid-film floating 

bush bearings using a nonlinear finite element analysis. Guangchi et al. [57] 

investigated the effect of foundation excitation on the dynamical behaviour of a 

turbocharger. With the foundation excitation, the authors showed a more complicated 

behaviour, and development of a chaotic state at a very low rotational speed. Kirk et al. 

[58] conducted an experimental test on a turbocharger to demonstrate the two unstable 

whirling modes typically seen in a turbocharger. The experimental results showed that 

the onset of both the modes occurring in each of the engine testing conditions: unloaded 

and fully loaded. They suggested that future testing of different bearing designs could 

be conducted without the use of the engine dynamometer to load the engine, but the full 

load condition may be necessary for complete verification of stability. Sterling [59] 

focussed on the relationship between synchronous and sub-synchronous amplitude 

levels. Applying a series of unbalance masses to the turbine and compressor wheels, he 

showed that the addition of unbalance can suppress the appearance of sub-synchronous 

vibration.  

 

Schweizer [60] examined a medium-sized turbocharger supported on full-floating ring 

bearings. He discussed about further bifurcations (change in dynamic stability) at higher 

speeds leading to the existence of a stable limit cycle and the possible collapse of such 

limit cycles leading to mere forced oscillations. In that process, depending on the 

system parameters such as rotor mass/inertia, shaft stiffness, bearing parameters, the 

author suggested further kind of bifurcation that lead the rotor became totally unstable; 

i.e. dangerous high bearing eccentricities and rotor amplitudes, which in practice often 
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lead to the destruction of the rotor. Referring to this as ‘Total Instability’, he showed 

that, such phenomenon could physically be explained as synchronization of two limit 

cycles, namely as synchronization of the inner and outer oil-whirl/whip of the floating 

ring bearings. Gjika et al. [61] showed the progress on the nonlinear dynamic behaviour 

modelling of the rotor-bearing system (RBS) incorporating two oil-films in series: a 

hydrodynamic one with a squeeze-film damper commonly used in turbochargers. Their 

prediction and measured synchronous response and total motion (synchronous and sub-

synchronous) were in good agreement. Both demonstrated the nonlinear character of the 

RBS behaviour, including several sub-synchronous frequency components over the 

operating speed range.  

 

This thesis investigates the nonlinear dynamic behaviour of a turbocharger under the 

action of static and periodic loads (unbalance force) on the rotor. The oscillating π -film 

cavitated bearings are used in these analyses. The effect of the gyroscopic moment and 

the rotor flexibility are also investigated using linear analysis of the rotor-bearing 

system with a full-film bearing model. The following section lists the objectives in 

detail. 

 

 

1.4 THESIS OBJECTIVES 

 

 The objectives of this thesis are to: 

 

• investigate the effect of the gyroscopic moment on sub-synchronous whirl 

instabilities of a turbocharger with full-film bearings using linear analysis; 

 

• examine the limit of rotor speed for the turbocharger of interest up to which a 

rigid-rotor assumption with full-film bearings is reasonable; 

 

• determine the linear stability threshold indicating the onset of oil-whirl, under 

the influence of a static load, for a general rotor system with a perfectly balanced 

rotor in cavitated short-bearings with an oscillating π -film; 
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• determine the change in the nonlinear dynamic behaviour of the general rotor 

system, as the state (position) of the journal centre across the bearing clearance 

changes, under the effect of the static load; 

 

• simulate the effect of unbalance in a turbocharger with cavitated bearings, both 

in the transient and in the steady-state motion, to analyse the behaviour in the 

test waterfall plots provided by Cummins Turbo-Technologies Ltd; 

 

• determine the nonlinear mechanism that controls the whirl amplitude and the 

phase of an unbalanced rotor in the turbocharger with cavitated bearings. 

 

 

1.5 NOVEL CONTRIBUTIONS OF THE THESIS 

 

• A gyroscopic coefficient has been introduced to study the effect of gyroscopic 

moments in a turbocharger with symmetric rotor using a simplified, linearised 

equation of motion following Holmes [3, 54]; this coefficient is the ratio of the 

polar moment of inertia to the transverse moment of inertia of the rotor. Its value 

beyond a threshold of 1 2 , has been shown to completely suppress the conical 

whirl instability in a turbocharger. This value was shown to be unaffected by the 

addition of an external damper support and the asymmetry of the rotor. 

 

• A speed limit has been determined for the validity of the assumption of a rigid 

rotor by analysing a flexible rotor modelled by superimposing the rigid dynamic 

motion and the flexible static deflections for a specific turbocharger. 

 

• Further to the work of Myers and Gardner [23, 43], in charting the stability 

threshold between the stable and unstable equilibrium states from the linear 

equations of motion, the interplay of the oil-film forces with the static load 

towards the system stability has been determined. 
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• The nonlinear effect of the oil-film forces based on the short-bearing 

approximation, leading to periodic vibration of the rotor has been demonstrated; 

this occurs around the speed at which the equilibrium state of the rotor becomes 

unstable. When the journal centre crosses about 32% of the bearing clearance 

with respect to the bearing centre, the nonlinear dynamic behaviour of the rotor-

bearing system with an oscillating π -film cavitation, has been shown to change 

significantly. 

 

• Unbalance has been shown to reduce the growth of the whirl amplitude in the 

transient motion. The advantageous effect of unbalance has been shown to 

prevail only up to a certain level (optimum value). The nonlinear mechanism 

behind the sub-synchronous response characteristics due to synchronous 

excitation has been determined. 

 

 

1.6 THESIS OUTLINE 

 

 This thesis consists of 7 Chapters. A brief outline of the contents of these 

Chapters is presented here. 

 

Chapter 1 gives the introduction to the oil-whirl in a turbocharger. The test waterfall 

plots provided by Cummins Turbo-Technologies Ltd. based on the data collected from 

the unbalance tests on a turbocharger are introduced; they are utilised in setting the 

thesis objectives. A brief literature survey is provided. The novel contributions of this 

thesis are articulated. 

 

Prior to investigating the nonlinear behaviour of the turbocharger, in Chapter 2 the 

effect of gyroscopic moment is analysed using the linearised equation of motion. The 

first part of Chapter 2 reviews the linear analysis of a turbocharger using a symmetric 

rotor with three different types of support conditions of the bearing. A simplified 

approach is presented to study the stability behaviour of the turbocharger with full-film 

bearings. Later, the effect of the gyroscopic moments due to the inertia of the rotor is 

investigated on the conical whirl instability of the turbocharger. Both the rigidly 
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supported and the externally damped bearing conditions are investigated to represent the 

plain journal bearings and the floating film journal bearings respectively. Finally, the 

effects are verified with a more realistic asymmetric rotor model considering both the 

in-phase and the conical whirl instabilities. 

 

Similar to Chapter 2, the rotor flexibility effect is analysed in Chapter 3; a flexible 

rotor is investigated for its effect on the stability of the turbocharger. The flexible static 

deflections of the rotor in terms of its influence coefficients are superimposed onto the 

rigid dynamic motion of the rotor in full-film bearings discussed in Chapter 2. Using a 

simple finite element model of two-dimensional beams, the influence coefficients of the 

rotor are determined. This Chapter is mainly aimed at verifying the validity of the 

assumption of a rigid rotor made in all the other Chapters. A speed limit is predicted for 

the turbocharger under investigation for the rigid behaviour of the rotor. 

 

Since turbochargers are lightly loaded, the effect of static load has been ignored in the 

previous Chapters. Chapter 4 gives the linear analysis of a general rotor-bearing system 

under the effect of the static load. In order to effectively capture the physical behaviour, 

a cavitated bearing model is used in this Chapter to allow for the stiffness-like radial 

restoring force in the bearings. Note that a full-film bearing is used in Chapters 2 and 3. 

The bearings are assumed to have an oscillating π -film cavitation. From the Jacobian 

determinant of the linearised equations of motion, the stability threshold that separates 

the stable and the unstable equilibrium states of the journal is determined; this is 

represented in a parameter plane of the rotor speed and the steady-state eccentricity 

ratio. The analysis also presents the inter-play of the bearing forces and the static load in 

the system, rendering a physical insight into the stabilising characteristic of the static 

load.  

 

Chapter 5 discusses the nonlinear analysis of the general rotor system given in Chapter 

4. This Chapter aims at investigating the periodic vibration (limit cycle) of the journal 

motion in the neighbourhood of the stability threshold attributed to the nonlinearity of 

the oil-film. Using analytical techniques, such as the Hopf bifurcation theory and the 

normal form theory [62, 63], the rotor-bearing system is analysed for the disappearance 

of an unstable limit cycle (sub-critical bifurcation) and the appearance of a stable limit 

cycle (super-critical bifurcation) close to the stability threshold. The Chapter advances 
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the discussion on the Central Manifold reduction and the first Lyapunov coefficients 

[63] calculation to determine the type of bifurcation. These observations are also 

compared with the numerical analysis using the orbit plots. With the help of the 

operating curve corresponding to a turbocharger, its nonlinear behaviour based on the 

type of bifurcation is analysed.  

 

In Chapter 6, based on the operating curve chosen to represent a turbocharger, the test 

waterfall plots are simulated numerically by adding unbalance to the rotor system used 

in Chapter 4. The change in the whirl amplitude and its phase angle in the transient 

motion and in the steady-state, with increase in the unbalance, is investigated. A 

detailed analysis of the rate of change of amplitude and phase is presented aiming at the 

determination of the mechanism behind the unbalance effect. Particular emphasis is 

placed on analysing the behaviour at the start of whirling, when the unbalance force is 

comparable with that of the hydrodynamic forces in the bearings. Using the method of 

averaging, the equations of motion are simplified to show the coupled nature of the 

response amplitude and the phase due to the unbalance in the system, which is observed 

in the numerical analysis.   

 

Chapter 7 gives the major conclusions of the thesis on the investigation into the 

nonlinear behaviour of an automotive turbocharger; these are related to the effect of the 

gyroscopic moments, the rotor flexibility, a static load and the unbalance force on the 

instability of the turbocharger. A brief overview of the thesis is presented. Some 

recommendations for future work are given. 
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FIGURES 

 

 
 

 
 

Figure 1.1 (a) A typical turbocharger (from Cummins Turbo-Technologies Ltd.) which is 
the assembly of compressor wheel, turbine wheel and two identical floating ring bearings (b) A 
typical floating ring bearing (c) Schematic representation of the working principle of a 
turbocharger driven by the exhaust gases of a 4 cylinder engine (adapted from the website: 
http://www.turbocompressori.net/new_turbochargers.htm) 
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Figure 1.2 A typical waterfall plot of a turbocharger showing the two sub-synchronous 
whirl modes. Adapted from the waterfall plot provided by Cummins Turbo-Technologies Ltd. 
 

 

 
 
 

Figure 1.3 Schematic representation of the whirl modes in a turbocharger; (a) conical whirl 
(b) in-phase whirl in a rigid rotor (c) in-phase whirl showing bending in a flexible rotor  [8, 9]. 
The turbine wheel and the compressor wheel are not shown here. 
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Figure 1.4 Adapted from the comparative test waterfall plots provided by Cummins Turbo-
Technologies Ltd. based on the data was collected from the same hardware/conditions but with 
different unbalance levels: (a) shaft motion with low unbalance (b) acceleration with low 
unbalance (c) shaft motion with high unbalance (d) acceleration with high unbalance. 
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Figure 1.5 Schematic of a journal bearing demonstrating the hydrodynamic lift produced 
by the squeezing action of the oil-film creating a converging wedge [64]. 

 
 

 
 

 

Figure 1.6 Waterfall plot of a turbocharger showing whirl and whip vibration 
characteristics. Adapted from Holmes [3]. 
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Figure 1.7 Schematic of a journal in a bearing with oil-film in the clearance; rF  is the 
radial force acting along the line of centres and tF  is the tangential oil-film force tending to 
cause the whirling of a lightly loaded journal, spinning at speed ω , in a journal bearing [5]; BC  
is the bearing centre, JC is the journal centre, e  is the eccentricity of the journal centre, maxP  is 
the maximum pressure, F  is the static load, minh  is the minimum film thickness. 
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Figure 1.8 Schematic diagram of a floating ring bearing [65];  JC  is the dynamic journal 
centre and O  is the centre of the stationary housing, BL  is the bearing length; ω  is the journal 
speed; the floating ring is assumed to wobble and not to rotate in this thesis. The squeezing 
action of the outer film is treated as an external damper. 
 

 
 

Figure 1.9 Typical turbocharger bearings (a) floating ring bearing provided with six oil-
supply holes, which supply oil from the outer film to the inner film. (b) press-fit bearing with a 
tight fit into its housing and provided with an external groove and six oil-supply holes to pass 
lubricant to the inner oil-film; from Holmes [54]. 
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Figure 1.10 Schematic diagram of a journal in a plain bearing with an oscillating π -film 
cavitation which rotates along with the rotor. The film boundaries (0,π ) remain the same as the 

journal centre JC  corresponding to position I shown in dashed lines, changes to JC ′  
corresponding to position II shown in continuous lines due to the journal rotation at a speed ω ; 
reproduced from Gardner [8]. 
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CHAPTER 2 
 

2 0BTHE EFFECT OF GYROSCOPIC MOMENTS ON 

THE STABILITY OF A TURBOCHARGER 

 

 

2.1 1BINTRODUCTION 

 

 The gyroscopic effect caused by rotation and the polar moment of inertia of the 

rotating body can be an important dynamic effect in a rotor system. Since turbochargers 

are high speed applications exhibiting oil-whirl instability, it is important to investigate 

their behaviour including the gyroscopic moments. Holmes [3] studied the effect of 

various bearing types like floating ring, press-fit bearings. He showed a good qualitative 

correlation of waterfall plots to the results of a linear analysis for transverse motion. 

Holmes et al. [54] demonstrated the manifestation of two oil-whirl frequencies in 

turbochargers. The work reported by Gunter and Chen in [2] suggests that the two 

frequencies correspond to an in-phase whirl from the transverse motion and a conical 

whirl from the tilt motion. The details of these modes have been discussed in Chapter 1. 

This Chapter aims to investigate the tilt motion of a similar symmetric rigid rotor to 

determine the effect of gyroscopic moments on the conical whirl. A brief review of the 

transverse motion of the turbocharger with various types of support such as rigid, 

flexible and damper is presented first. A plain journal bearing which is rigidly 

supported, and the bearing clearance is fully filled with oil without rupture of the film 

(no cavitation), is first considered for the analysis based on the fluid-film forces derived 

by Holmes [20]. Then the effect of gyroscopic moments in the presence of an outer 

film, which is treated as an external damper, is investigated in order to simulate a 

floating ring bearing described in Chapter 1. The ring is assumed not to rotate but only 
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wobble. Since the turbine is much heavier than the compressor in a turbocharger, the 

effect of rotor asymmetry on the influence of gyroscopic moments is also investigated 

using an asymmetric rotor with floating ring bearings for both transverse and tilt 

motion. Since turbochargers are lightly loaded, static eccentricity due to the gravity load 

of the rotor is neglected in this Chapter. 

 

 

2.2 2BSYMMETRIC ROTOR - TRANSVERSE MOTION: A BRIEF 

REVIEW OF PREVIOUS WORK 

 

2.2.1 7BINTRODUCTION 
  

 This Section reviews the dynamic analysis of a turbocharger presented by 

Holmes [3]. The equations of motion are derived for a rigid rotor mounted in three types 

of bearings detailed in Chapter 1: plain, press-fit and floating ring bearings for the 

transverse motion of the rotor. The effects of various support characteristics of these 

bearings are investigated to determine their role in the stability of the in-phase whirl.  

 

 

2.2.2 8B RIGID SUPPORT (PLAIN JOURNAL BEARINGS) 
 

This Sub-Section presents the analysis of the turbocharger with rigidly support bearings. 

XFigure 2.1 X(a) shows a schematic diagram of a turbocharger rotor with plain journal 

bearings, where BC  is the bearing centre, JSC  is the static journal centre, JDC  is the 

dynamic journal centre and O  is the centre of the stationary casing. Plain journal 

bearings are journal bearings with their outer ring (race) fixed, which offers a rigid 

support to the bearing. XFigure 2.1 X(b) shows the schematic of a symmetric rotor of mass 

2m  mounted in rigidly supported bearings. Assuming a full oil-film [20] (no 

cavitation), the oil-film forces acting on each journal of the turbocharger with rigid 

supports are given by [3]: 
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 1 1r rr rsF b r a s= +& , (2.1) 

 

    1 1s ss srF b s a r= −& , (2.2) 

 

where 1r  and 1s  are the co-ordinates of the journal dynamic centre JDC ; 1r  is along the 

line of centres of the journal and the housing, 1s  is perpendicular to the line of centres in 

the direction of rotation; rrb , ssb  are the linearised direct damping coefficients of the 

oil-film; rsa , sra  are the linearised cross-coupled stiffness coefficients. It can be seen 

from the Eqs. (2.1) and (2.2), that the coefficients rsa , sra  cross couple the two forces. 

This means that a displacement 1s  produces a force along 1r  due to the coefficient rsa  

and likewise 1r  produces a force along 1s  due to the coefficient sra .  These coefficients 

are obtained by linearising the film forces derived from the Reynolds’ equation for thin 

films applying full-film boundary condition [20]. Some details of the derivation are 

given in Appendix A. Since the gravity load is negligible compared to the dynamic 

loads from the bearing in a turbocharger, the steady-state eccentricity of the journal is 

assumed to be negligible leading to equal coefficients along 1r and 1s  directions giving 

[3], 

 

   rs sr ca a a Aω= = = , (2.3) 

 

   2rr ss db b b A= = = , (2.4) 

 

where ( )d⋅  denotes direct and ( )c⋅  denotes cross-coupled; 3 3(2 )B B BA L R Cπη=  in 

which Bη  is the viscosity of the bearing oil, BL  is the bearing length, BR   is the radius 

of the bearing, C  is the clearance between the journal and the fixed housing.  Eqs. (2.1) 

and (2.2) can be now be simplified as: 

 

 d cb a= +1 1f r Γr& , (2.5) 
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where 1 1[ , ] , [ , ]T T
r sr s F F= =1r  f ; 

0 1
1 0

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

Γ  is a cross coupling factor that couples the 

two equations in Eq. (2.5), giving 1 1[ , ]Ts r= −1Γr  which will be applied for cross 

coupling hereafter. Using Newton’s second law of motion, the equations of motion of 

the turbocharger with a symmetric rigid rotor of mass 2m  mounted in two identical 

plain journal bearings as shown in Figure 2.1(b) is given by:  

 

 0m + =1r f&& . (2.6) 

 

Assuming solutions, 1 1
tr R eλ=  and 1 1

ts S eλ= to Eq. (2.6) and using the non-dimensional 

groups 1 2 /A mω =  and 1ŝ λ ω= , Eq. (2.6)  becomes 

 

 
2

1
2

1

ˆˆ ˆ 2
0

ˆ ˆ ˆ2
Rs s
Ss s

ω
ω

⎡ ⎤ ⎧ ⎫+
=⎨ ⎬⎢ ⎥− + ⎩ ⎭⎣ ⎦

, (2.7) 

 

where 1ω̂ ω ω=  in which 1ω  is a characteristic frequency of the turbocharger with rigid 

support, at which the inertial force is approximately equal to the damping force. Using 

the complex form of the co-ordinates 1 1r js+ , Eq. (2.7) gives the characteristic equation, 

 

 ( )2 ˆˆ ˆ 2 0s s j ω+ − = , (2.8) 

 

which is a quadratic Eq. with three forces: 2ŝ - inertial force, ŝ  - damping force and 

( )ˆ 2j ω−  - cross-coupled stiffness force. The two roots of Eq. (2.8) are, 

 

 1,2

ˆ1 1 2ˆ
2

j
s

ω− ± +
= . (2.9) 

 

The root with a positive real part is unstable, signifying the growth of the whirl 

amplitude while that with a negative real part is stable indicating the decay of the whirl 

amplitude. The imaginary part of the roots gives the corresponding whirl frequencies. 

Figure 2.2 shows the real parts plotted against the rotational speed (ω̂ ) of the 
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turbocharger, where 1̂s  is a stable root and 2ŝ  is an unstable root. For low speeds, when 

ˆ 1ω <<  i.e. 1ω ω<< ,  

 

 ( )1 ˆˆ 1 2s jω≈ − − ,  (2.10) 

 

 2 ˆˆ 2s jω≈ , (2.11) 

 

where 1̂s  is a stable root with negative real part and 2ŝ  is purely imaginary (on the verge 

of instability).  For high speeds, when ˆ 1ω >>  i.e. 1ω ω>> , 

 

 ( )1 ˆ ˆˆ 1 2s jω ω≈ − − − ,  (2.12) 

 

 2 ˆ ˆˆ 2s jω ω≈ + . (2.13) 

 

Equation (2.11) suggests that the whirl frequency is ˆ 2ω  or of order 0.5 at low speeds, 

and at high speeds, the whirl frequency is given by Eq. (2.13), i.e., ˆ 2ω , which is less 

than 0.5. Figure 2.3 shows the plot of the whirl frequency of the unstable root. Figure 

2.4 shows a waterfall plot from a commercial turbocharger with press-fit bearings, 

exhibiting a sub-synchronous vibration of order 0.5 for a much greater speed range. The 

response departs relatively slowly from 0.5 as speed increases. This behaviour also 

occurs in a press-fit bearing with relatively high housing stiffness, since they would 

behave like plain journal bearings until the oil-film forces become sufficiently high for 

the housing stiffness to affect the dynamic behaviour. These are discussed in the 

following Sub-Section. 

 

 

2.2.3 FLEXIBLE SUPPORT (PRESS-FIT BEARINGS) 

 

This Sub-Section presents the analysis of the turbocharger with its rotor mounted in 

bearings with flexible supports. Figure 2.5 shows a schematic diagram of a 
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turbocharger, assuming the support flexibility due to the interference of the bearing and 

the housing acts as a spring in series with the oil-film. The stiffness of the flexible 

support is denoted by k . Figure 2.6 shows the co-ordinate system with film forces -

,r sF F  and the constraint forces at the interference - , r sR R . The fluid-film forces in each 

bearing are given by [3]: 

 

 ( ) ( )cdb a= − +1 1f r r Γ r - r& & , (2.14) 

   

where [ , ]Tr s=r ; ,r s  are the co-ordinates of the bearing centre with reference to the 

housing centre O . Coefficients, ,c da b  are given by Eqs. (2.3) and (2.4). The oil-film 

forces are transmitted to the housing through the interference fit, that is the spring that 

connects the bearing and the housing. Hence the constraint forces (reactions) at the 

interface are given by [3]: 

 

  ˆ k= =f r r , (2.15) 

 

where [ ]ˆ , T
r sR R=r , 2

rk mω= , rω  being the frequency of mass m  vibrating on the 

spring (interference fit) of stiffness k . The resulting equation is, 

 

 2 0rm mω+ =1r r&& . (2.16) 

 

Assuming solutions of the form, ŝtr Re=  for all the responses 1 1, , ,r s r s  and combining 

Eq. (2.16)  with Eq. (2.6), the equation of transverse motion of a rigid rotor in press-fit 

bearings is given by 

 

 

2

2

2 2
1

2 2
1

ˆ ˆˆ ˆ ˆ  2 2
ˆ ˆˆ ˆ ˆ2    2

0
ˆ0 0

ˆ0 0

Rs s s
Ss s s
Rs
Ss

ω ω
ω ω
κ

κ

⎡ ⎤ ⎧ ⎫− − +
⎢ ⎥ ⎪ ⎪− − + ⎪ ⎪⎢ ⎥ =⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎩ ⎭⎣ ⎦

, (2.17) 
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where 1rκ ω ω= . Co-ordinates ,r s and 1 1,r s  can be related respectively from the 3rd 

and 4th rows in Eq. (2.17) condensing it into a 2 x 2  matrix,   

 

 
( )

( )

3 2 2 2 2
1

2 2 3 2 2
1

ˆˆ ˆ ˆ ˆ2 1
0

ˆ ˆ ˆ ˆ ˆ2 1

s s s s R
Ss s s s

κ ω κ

ω κ κ

⎡ ⎤⎡ ⎤+ + + ⎧ ⎫⎣ ⎦⎢ ⎥ =⎨ ⎬
⎢ ⎥⎡ ⎤− + + + ⎩ ⎭⎣ ⎦⎣ ⎦

, (2.18) 

 

which, by using the complex form of the co-ordinates 1 1r js+ , gives the characteristic 

equation, 

 

  ( ) ( )2 3 2 2ˆ ˆˆ ˆ ˆ1 1 2 ( 2) 0s j s s jκ ω κ ω⎡ ⎤+ − + − =⎣ ⎦ . (2.19) 

 

The cubic Eq. (2.19) has a third root when compared to that of the turbocharger with a 

rigid support due to the support stiffness k . There are two stable roots and, one unstable 

root. Figure 2.7 shows the plot of the imaginary part of the unstable root for 0.5κ = , 1. 

At low speeds, the slope of the curve is of the order 0.5 indicating oil-whirl of frequency 

equivalent to half-rotational speed. As speed increases, the curve asymptotes to a 

frequency ratio of κ ( 1rω ω= ), indicating the effectiveness of constant support 

stiffness. For very high κ , i.e. 1κ >> , the curve behaves like that of a rigid support as 

shown in Figure 2.3, since the condition suggests a very high support stiffness.  Figure 

2.8 gives an interesting overall picture of all the roots of the equations of motion in the 

complex plane for the turbocharger with press-fit bearings. The unstable root starts from 

zero speed. After a certain speed, the real part reduces while the imaginary part remains 

constant. The physical reasoning for this behaviour could be the following:  

 

At low speeds, since the oil-film stiffness is relatively low, most of the vibration is that 

of the rotor in its bearings. As the oil-film forces are functions of speed, the whirl 

frequency keeps increasing. But, for higher speeds, as the bearing becomes relatively 

rigid, the support stiffness influences the natural frequency. Hence, it remains constant 

for very low κ , for example, 0.1. Interestingly, the stable roots start from the natural 

frequency of the rotor mass interacting with the support flexibility, as the cross-coupled 

stiffness is zero at zero speed. Figure 2.9 shows the plot of the real and the imaginary 

parts of the three roots showing the growth/decay rate of the sub-synchronous whirl 
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amplitude and the whirl frequency respectively, when 1κ = . As in the case of the 

bearing with rigid support, the stable root (A) moves towards the negative real axis 

indicating an increase in damping and by the effect of support stiffness, asymptotes to a 

constant frequency at higher speeds. The second stable root (B), which is mostly from 

the support stiffness, has a constant imaginary part (frequency), that increases for higher 

κ , i.e. 1rω ω≥  as shown in Figure 2.9. The real part approaches zero with increasing 

speed implying negligible damping.  

 

Although press-fit bearings are one of the types of fluid-film bearings in use, most 

commercial automotive turbochargers use floating ring bearings, which is investigated 

in the following Sub-Section.  

 

 

2.2.4 DAMPER SUPPORT (FLOATING RING BEARINGS) 

 

This Sub-Section presents the analysis of the turbocharger with externally damped 

bearings. Figure 2.10 shows a schematic diagram of a turbocharger with floating ring 

bearings. The floating ring bearing configuration differs from the press-fit bearing in the 

way in which the bearing is constrained. The former is backed by an external damper of 

damping coefficient γ  which represents the outer film while the latter has a flexible 

support representing the interference fit between the ring and the housing. Considering 

only the squeezing action of the outer film, assuming that the ring that separates the 

inner film and the outer film is fixed, the floating ring bearing is represented as an 

external damper in series with the inner film which is a journal bearing. This suggests 

that the equations of motion will only differ in terms of the constraint forces which are 

given by [3, 54]: 

 

     ˆ γ=r r& . (2.20) 

 

A similar treatment given in the case of the press-fit bearings discussed in Section 2.2.3, 

gives the matrix equation of the turbocharger with a damper support as: 
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2

1

12

ˆ2 1ˆˆ ˆ1
ˆ ˆ2

0
ˆ1 2ˆ ˆ ˆ1
ˆ ˆ2

ss s
r
ss s s

ω
γ γ

ω
γ γ

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎧ ⎫⎝ ⎠ ⎝ ⎠⎢ ⎥ =⎨ ⎬⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎩ ⎭⎢ ⎥− + + +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

, (2.21) 

 

where ˆ Aγ γ= . Using the complex form of the co-ordinate 1 1r js+ , Eq. (2.21)  gives 

the characteristic equation: 

 

   2 ˆ ˆ2 ˆ ˆ1 1 0
ˆ ˆ 2

j js sω ω
γ γ

⎛ ⎞ ⎛ ⎞
+ + − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (2.22) 

 

which has roots, 

 

 
2

1,2 2

ˆ ˆ 1 2ˆˆ 1 1 2 1 2 1
ˆ ˆ ˆ ˆ

s j jω ω ω
γ γ γ γ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎛ ⎞
= − − ± − + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥

⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦
. (2.23) 

 

Choosing a value of ˆ 10Aγ γ= =  based on [3], Figure 2.11 shows the imaginary part 

of the unstable root plotted against the non-dimensional speed. Its order of 0.5 at low 

speeds indicates oil-whirl of frequency equivalent to half-rotational speed. At higher 

speeds, the order asymptotically approaches a value of about 0.08. From a physical 

viewpoint, the order of 0.5 would be expected at low speeds, where the oil-film forces 

are low in relation to the external damping force, and most of the vibration takes place 

between the rotor and the floating ring. For higher speeds, the oil-film forces become 

higher and the relatively lower external damping helps to influence the vibration 

frequency.  

 

For low speeds, when ˆ 1ω <<  i.e. 1ω ω<< , 1 ˆˆ 2s jω≈  is on the verge of instability. 

2ˆ 1 s ≈ − ˆas 0ω →  is a stable root. For sufficiently high speeds, when ˆ 1ω >>  i.e. 

nω ω>> ,  1 ˆ ˆˆ (2 )s jω γ≈ + , where 1̂s  is on the verge of instability with a frequency of 

sub-harmonic order of ( )ˆ1 2 γ+ and ( )2 ˆˆ 1 2 1 2s γ≈ − +  is a stable root. Thus, for 

ˆ 10γ = , it is 0.083. A typical waterfall plot from a turbocharger with floating ring 
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bearings is shown in Figure 2.12, where ( )ˆ1 2 0.1γ+ ≈ ,  and so ( )ˆ / 2 8A bγ γ γ= = = . 

This gives 4bγ =  i.e. the external damping is about four times the inner oil-film 

damping. As most of the relative vibration would take place between the ring and the 

housing at higher speeds, proportionately higher damping will be induced in the outer 

film. Hence a factor of four is not unreasonable.  

 

However, the effect of an external damper on the sub-synchronous vibration of the 

turbocharger in floating ring bearings is unlikely to be significant. Figure 2.13 shows 

the real part of the roots plotted against their corresponding imaginary part. A 

corresponding plot for the rigid support is shown for comparison. The behaviour of the 

roots is very similar to that in the case of a rigid support. However, the stable root 

shows a considerable reduction in frequencies. When compared with that of the rigid 

support which is shown in dotted line, the plots show some difference at higher speeds, 

while they behave very much alike at lower speeds when the vibration is between the 

rotor and the ring. This suggests that the added damping in the outer film is unlikely to 

eliminate such sub-harmonic vibration. 

 

 

2.2.5 CONCLUSIONS 

 

A simple linear model was used to analyse the turbocharger with symmetric rotor-

bearing system with full-film short-bearings. The system was analysed for three 

different bearing supports, such as rigid, flexible and damped supports.  

 

The simple model gives results qualitatively consistent with observations of commercial 

turbocharger sub-synchronous unstable vibration. Added damping in the outer film is 

unlikely to be productive in controlling self-excited sub-synchronous vibration. 

However, altering the stiffness of the support as in the case of a press-fit bearing may be 

worthy of investigation. 
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2.3 EFFECT OF GYROSCOPIC ACTION  

 

2.3.1 INTRODUCTION 

 

 This Section investigates the behaviour of a turbocharger considering the 

gyroscopic effect. Since the gyroscopic action introduces moments in the system, tilt 

motion is analysed similar to the transverse motion in the previous Section (2.2), for its 

effect on the stability of the conical whirl. Equation of tilt motion is derived for the 

turbocharger with rigid support. The effect of gyroscopic moments is investigated by 

comparing the results with a model of a turbocharger without such moments.  

 

 

2.3.2 EQUATION OF TILT MOTION 

 

2.3.2.1 WITHOUT THE GYROSCOPIC MOMENTS 

 

The equation of tilt motion of the turbocharger with rigid support is derived in this Sub-

Section without considering the gyroscopic moments. Figure 2.14 shows a schematic 

diagram of a turbocharger with symmetric rotor supported on two identical plain journal 

bearings for tilt motion; 1θ , 1φ  are the angular co-ordinates about s  and r  axes 

respectively and l  is the distance between the bearings. For a rigid symmetric rotor with 

transverse moment of inertia I   about its centre of gravity supported on rigidly housed 

uncavitated bearings, the equation of motion ignoring gyroscopic moments is given by: 

 

 0I + =θ ψ&& , (2.24) 

 

where [ ]1 1
Tθ φ=θ , [ ]Ts rM M=ψ , r sM F l= − and s rM F l= −  are the moments 

about r  and s  axes respectively due to the oil-film forces rF , sF . For small 
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displacements, the angular co-ordinates 1θ , 1φ  can be written in terms of the linear co-

ordinates ,r s  as: 

 

 [ ]1 12 Tl r s= − −θ . (2.25) 

 

Substituting for ,r sF  from Eqs. (2.1) and (2.2) in terms of and r s  co-ordinates, and 

using the transformation in Eqs. (2.25) and their corresponding derivatives, Eqs. (2.24)  

becomes: 

 

 
2

2 0
2

AlI Al ω
+ + =θ θ Γθ&& & . (2.26) 

 

Assuming solutions, 1
teλθ = Θ , 1

teλφ = Φ  to  Eq. (2.26)  gives the equation of motion 

in matrix form as: 

 

 
2

1
2

1

2
0

2
s s

s s
θω
φω

⎡ ⎤ ⎧ ⎫+
=⎨ ⎬⎢ ⎥− + ⎩ ⎭⎣ ⎦

)

) , (2.27) 

 

where ks λ ω= ; kω ω ω=)  is the non-dimensional speed, 2
k Al Iω =  is a 

characteristic frequency of the turbocharger, when the inertial moment is almost equal 

to the damping moment. Note that this non-dimensional speed is different from ω̂  

defined in the previous Section, since this one depends on kω  which is a function of the 

moment of inertia and the distance between the bearing centres. Since the aim is to 

investigate the gyroscopic effect, the gyroscopic moments are included in the equation 

of motion in the following Sub-Section. 

 

 

2.3.2.2 WITH THE GYROSCOPIC MOMENTS 

 

When the spinning rotor tilts about one of the transverse axes, the rotor experiences a 

moment, which results in a gyroscopic moment about the other transverse axis. The 
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effect of these moments about the two transverse axes shown in Figure 2.14 is included 

in the equation of tilt motion in this Sub-Section. Considering the gyroscopic moments, 

1Jωφ& , 1Jωθ&  [66] where Jω  is the angular moment of the rotor, J  is the polar moment 

of inertia of the rotor as shown in Figure 2.14,  the equation of tilt motion of the 

turbocharger with rigid support is given by: 

 

 0I Jω+ + =θ ψ Γθ&& & , (2.28) 

 

where the gyroscopic moment is present along with the other moments given in Eq. 

(2.24). A similar treatment described as in the case without the gyroscopic moments 

gives Eq. (2.28) in the form: 

 

 
2

1
2

1

(1 2 )
0

(1 2 )
s s s

s s s
θω β
φω β

⎡ ⎤ ⎧ ⎫+ +
=⎨ ⎬⎢ ⎥− + + ⎩ ⎭⎣ ⎦

)

) , (2.29) 

 

where  J Iβ = . β  is the ratio of the polar to the transverse moment of inertia, which is 

referred as the gyroscopic coefficient hereafter. Applying Routh’s stability criterion 

( ( ) ( )2 1 4 3 3 0 1A A A A A A A> + ) [20] to the characteristic equation,  

 

 
2

4 3 2 2 2 22 (1 ) 0
4

s s s s ωω β ω β+ + + + + =
)

) ) , (2.30) 

 

where iA  is the coefficient of the term is , gives the condition, that the gyroscopic 

coefficient β  must be greater than 1 2  for a stable conical whirl. This implies that the 

threshold value of β  for the stability of the conical whirl is 1 2 . It is evident from Eq. 

(2.29) and the coefficients in Eqs. (2.3) and (2.4) that this ratio relates to the ratio of the 

cross-coupled stiffness coefficient to the damping coefficient of the bearing. This 

implies that the threshold value of the coefficient plays a significant role in the effect of 

the gyroscopic moments on the stability of the conical whirl mode of the rotor, which 

will be discussed in detail in Section 2.3.4. 
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2.3.3 ANALYSIS: TILT MOTION WITHOUT THE GYROSCOPIC 

EFFECT 

 

This Sub-Section presents the analysis of the dynamic behaviour of the turbocharger 

rotor system with rigid support ignoring the gyroscopic effect, using the equation of 

motion derived in Section 2.3.2.1. Using the complex form 1 1jθ φ+  of the angular co-

ordinates, Eq. (2.27) becomes: 

 

 ( )2 2 0s s j ω+ − =) , (2.31) 

 

which is a quadratic equation with three moments, 2s - inertial moment, s - damping 

moment  and  ( )2j ω− ) - cross-coupled stiffness moment. The roots of the characteristic 

equation are given by: 

 

 ( )1,2 1 1 2 2s j ω= − ± + ) . (2.32) 

 

For low speeds, when 1ω <<) ,  

 

                                   1 1 ( 2)s jω≈ − − ) , (2.33) 

  

                                       2 2s jω≈ ) , (2.34) 

 

where 1s  is a stable root with a negative real part and 2s  being purely imaginary is on 

the verge of instability. For high speeds, when 1ω >>) ,  

 

 ( )1 1 2s jω ω≈ − − −) ) , (2.35) 

 

 ( )2 2s jω ω≈ +) ) , (2.36) 
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where 1s  is a stable root with negative real part and 2s  is an unstable root with a 

positive real part. Substituting the unstable root 2 2s jω≈ )  into Eq. (2.31) for low 

speeds gives: 

 

 
{ { {

2

  cross-coupled 
  stiffness moment

inertial moment damping moment

0
4 2 2

j jω ω ω
− + − =
) ) )

. (2.37) 

 

The term 2 4ω− )  is negligible, since 1ω <<) . Hence, in this speed range, the system is 

whirling at a frequency, where the damping moment and the cross-coupled stiffness 

moments balance each other. Similarly for the high speed range, substituting the 

unstable root 2 2
js ω ω+

≈
) )

 gives: 

 

 
{ {

  inertia moment cross-coupled damping moment
 stiffness moment

(1 ) 0
2 2 2
j j jω ω ω+

+ − =
) ) )

14243
. (2.38) 

 

The damping moment (1 ) 2jω +)  is small compared to the terms containing ω) , since 

1ω >>) . Hence, in this speed range, the system is whirling at a frequency, where the 

inertia moment and the cross-coupled stiffness moments balance each other. Having 

examined the asymptotes, to help understand the overall behaviour of the moments over 

the speed range, the unstable root from Eq. (2.32) is substituted into Eq. (2.31) and the 

moments are plotted in the argand plane, in Figure 2.15. This shows that the damping 

moment has a positive real part, while the inertial moment has a negative real part. 

Similarly, moments related to the stable root, give damping with a negative real part and 

an inertial moment with a positive real part as shown in Figure 2.16. The cross-coupled 

stiffness moment is purely imaginary (negative) acting like a reference axis. This 

implies that the damping moment with a negative real part relates to the negative real 

part of the root of the equation indicating stable whirl. 

 



CHAPTER 2 THE EFFECT OF GYROSCOPIC MOMENTS ON THE STABILITY OF A 
TURBOCHARGER 

 

 42

2.3.4 ANALYSIS: TILT MOTION WITH THE GYROSCOPIC EFFECT 

 

This Sub-Section presents the analysis of the equation of tilt motion derived in Section 

2.3.2.2, considering the gyroscopic effect on the dynamic behaviour of the turbocharger 

with rigid support. From Eq. (2.29), the characteristic equation of tilt motion including 

gyroscopic moments is given by:  

 

 2 0
2

s s j s jωβω+ − − =
)

) , (2.39) 

 

which has j sβω− ) -gyroscopic moment in addition to the three moments in Eq. (2.31). 

The solution to the quadratic Eq. (2.39) is 

 

 
2 2

1,2
1 1 2 (1 )

2
j j

s
βω β ω ω β− + ± − + −

=
) ) )

. (2.40) 

 

For low speeds, when 1ω <<) ,  1 1
2
js j ωβω≈ − + −
)

)  is a stable root and 2 2
js ω

≈
)

 is on 

the verge of instability (purely imaginary). 

For high speeds, when 1ω >>) , 1
1

2
s −
≈  is a purely real root and 

2 2

2
1

2
j

s j
βω β ω

βω
− + + −

≈ ≈
) )

)  is on the verge of instability. Substituting the root 

2 2
js ω

≈
)

 into Eq. (2.39) for low speeds gives: 

 

 
{ { { {

2 2

inertial damping gyroscopic cross-coupled 
moment moment moment stiffness moment

0
4 2 2 2

j jω ω βω ω
− + + − =
) ) ) )

. (2.41) 

 

Equation (2.41) shows that the damping moment and the cross-coupled moment balance 

each other, while the gyroscopic moment is trying to balance the inertial moment. For 
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1 2β = , they are perfectly balanced. Now, substituting the root 2  s jβ ω≈ )  into Eq. 

(2.39) for high speeds gives,  

 

 { {
{

2 2 2 2

gyroscopic damping inertial cross-coupled momentmomentmoment
stiffness moment

0
2
jj ωβ ω βω β ω− + + − =
)

) ) )
123 , (2.42) 

 

where the inertial moment balances the cross-coupled stiffness moment, while the 

damping moment is counteracting  the cross-coupled stiffness moment. Similar to the 

low speed range, here the damping moment perfectly balances the cross-coupled 

stiffness moment for 1 2β = . Now considering 1,2s  from Eq. (2.40), it is clear that for 

1 2β = , the roots factorise easily into:  

  

 
( )21 1

2
j j

s
βω βω− + ± +

=
) )

, (2.43) 

 

giving 1 1s = − , 2 2s jω= )  which are purely real and purely imaginary solutions. Thus 

1 2β =  is the threshold value of the gyroscopic coefficient where the unstable root with 

positive real part becomes purely imaginary. Physically this means that the turbocharger 

is whirling in its perturbed position without any further growth of amplitude. 

 As in the case of tilt motion without the gyroscopic effect given in Section 2.3.3, 

plotting each of the moments in Eq. (2.39) for the unstable root in Eq. (2.40), Figure 

2.17 shows that the damping moment has positive real part for 0.1β = . As β  is 

increased to 0.25, Figure 2.18 shows that except for the cross-coupled stiffness moment, 

all the other moments are affected by the change, where the real part of the damping 

moment is reduced and its imaginary part increases. Added to that, the gyroscopic and 

inertial moments tend to become more real and less imaginary.  

 

Figure 2.19 is the plot of the real and the imaginary parts of the moments from the 

unstable root of the equation of tilt motion, when 1 2β = . It shows an interesting 

balance between the moments where, the damping moment is purely imaginary like the 

cross-coupled moment and counteracts it. Likewise the gyroscopic moment is purely 
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real counteracting the purely real inertial moment. From Eq. (2.42), it is evident that the 

gyroscopic term influences all the moments except the cross-coupled stiffness moment. 

This observation signifies the effect of gyroscopic moment in changing the direction of 

these moments with an increase inβ , and thereby making the system damping effective 

to counteract the de-stabilising effect of cross-coupled stiffness. Figure 2.20 shows the 

plot of the real and imaginary parts of the moments from the unstable root of the 

equation of tilt motion of the turbocharger with rigid support with the gyroscopic effect, 

when 0.75β = . It can be seen in Figure 2.20 that the further increase in β  to 0.75, 

makes the real part of the damping moment negative and stabilises the conical whirl. 

This finding agrees with that of Tondl [39], which states that the gyroscopic action 

reduces the amplitude of self-excited vibration and for a fairy large coefficient of the 

gyroscopic term, it may even suppress it completely. Other than the effect on the 

amplitude, gyroscopic moments have been shown in the literature to influence the 

direction of whirl which is discussed in the following Sub-Section. 

 

 

2.3.5 GYROSCOPIC EFFECT ON WHIRL FREQUENCIES 

 

Angantyr [41] and Li [40] reported in their studies that gyroscopic effect splits the 

natural frequencies into a forward and a backward whirl. A forward whirl occurs when 

the rotor whirls in the direction of spin and a backward whirl occurs if the whirl is 

opposite to the direction of spin. The gyroscopic moments increase the effective 

stiffness of the system for a forward whirl and hence increase the frequency. However, 

the effective stiffness of the system reduces for a backward whirl and hence the 

frequency reduces with speed [66, 67].  This Sub-Section presents the discussion of the 

gyroscopic effect on the variation of the stable and unstable sub-synchronous 

frequencies with increasing speed in the turbocharger under investigation.  

 

Figure 2.21 shows the plot of the sub-synchronous conical whirl frequencies varying 

with the rotational speed of the turbocharger with rigid support, for various values of 

1/ 2 1β≤ < . The stabilised frequency keeps increasing with speed implying a forward 

whirl. But, the stable frequency increases upto certain speed and then starts decreasing 
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with increasing speed implying a backward whirl. This behaviour can be verified from 

Eq. (2.40) by looking at the asymptotes of the stable root for low and high speeds which 

are ( )1 1 2Ls j βω ω≈ − + −) )  and 1 1 2 0Hs j≈ − +  respectively. This shows that the stable 

frequency increases with the speed at low speeds while it becomes zero at high speeds. 

This implies that the stable whirl changes direction at a certain speed depending on β . 

The split nature of the frequencies due to the gyroscopic moments is clearly observed 

when β  =1, where, both the unstable and the stable frequencies are equal (both 

forward), till they split into a forward and a backward whirl at a certain speed. 

Substituting 1β =  in Eq. (2.40)  and considering the asymptotes, gives the frequency 

2ω)  for low speeds for both the modes. For high speeds, the stabilised frequency is ω)  

and the stable frequency is 0  signifying forward and backward whirl modes 

respectively. Figure 2.22 shows a similar plot of the conical whirl frequencies for 

various values of 1β ≥ . The two frequencies exhibit similar behaviour of a forward and 

a backward whirl for all the cases. 

 

 

2.3.6 CONCLUSIONS 

  

A simple linear model of a turbocharger with a rigid rotor mounted in rigidly supported 

short-bearings with full-film was analysed for the stability of the tilt motion of the rotor. 

The effect of the gyroscopic moment on the stability of the conical whirl was 

investigated. 

 

The stability of the conical mode of a turbocharger with rigid support is controlled by 

the gyroscopic coefficient β , which is the ratio of the polar to the transverse moment of 

inertia of the rotor. The threshold value of the gyroscopic coefficient  is 1 2β =  for the 

conical whirl stability, when the turbocharger is on the verge of instability. The conical 

whirl instability seems to be completely suppressed for 1 2β > . This threshold ratio 

relates to the ratio of cross-coupled stiffness to the damping coefficient of an 

uncavitated bearing. The gyroscopic moment increases the imaginary part of the 

damping moment and helps in balancing the cross-coupled stiffness moment. With an 
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increase in β , the gyroscopic effect changes the relative direction of the inertial and 

damping moments, which helps in stabilising the conical whirl. The gyroscopic effect 

seems to change the direction of whirl corresponding to the conical whirl frequencies; 

the unstable frequency increases with the speed exhibiting a forward whirl albeit 

becoming stable for 1 2β >  and the stable frequency decreases with the increasing 

speed exhibiting a backward whirl.  

 

The threshold value of the gyroscopic coefficient has been evaluated considering a rigid 

support. In order to evaluate this value for the system with floating ring bearings, 

external dampers have to be included similar to Section 2.2.4. This is presented in the 

following Section. 

 

  

2.4 INFLUENCE OF EXTERNAL DAMPING ON THE 

STABILISING GYROSCOPIC MOMENT 

 

2.4.1 INTRODUCTION 

 

 It has been shown in Section 2.3 that the gyroscopic moment controls the 

stability of the conical whirl for the turbocharger with rigid support. From the ratio of 

the polar and the transverse moment of inertia of the rotor, the gyroscopic coefficient β  

has been determined as the controlling parameter whose threshold value is found to be 

1 2 . Since floating ring bearings are mostly used in turbochargers due to their low cost 

as discussed in Chapter 1, this Section analyses the influence of the outer film on the 

way in which the gyroscopic coefficient controls the stability. The outer film of the 

floating ring is treated as an external damper in series with the inner film which is the 

bearing, similar to Section 2.2.4. 
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2.4.2 19BEQUATIONS OF TILT MOTION WITH GYROSCOPIC MOMENT 
 

Similar to the equations derived in Section X2.2.4X, considering the fluid-film forces for 

the floating ring bearing from Eqs. X(2.14)X, and including the gyroscopic moments 

similar to Section X2.3X, applying a linear transformation as in Eqs. X(2.25)X, the equations 

of tilt motion of the turbocharger with damper support, considering gyroscopic effect is 

given by:  

 

 2 22 ( ) ( ) 0I A l A l J
l l

ω ω+ − + − + =1 1
1 1

r rr r Γ r r Γ
&& &

& & , (2.44) 

 

 2 2

2 2 0I J
l l

ω γ⎡ ⎤+ + =⎢ ⎥⎣ ⎦
1 1r rΓ r
&& &

& . (2.45) 

 

Applying a similar treatment to Eqs. X(2.44)X and X(2.45)X as described in the Section X2.3X, 

the characteristic equation of the system is given by    

 

 
{

2
2

cross-coupledinertial moment damping moment gyroscopic momentmoment

2 21 1 1 0
ˆ ˆ ˆ ˆ 2

s j s j s jω βω ωβω
γ γ γ γ

⎛ ⎞ ⎡ ⎤ ⎛ ⎞
+ + − − − + − =⎜ ⎟ ⎜ ⎟⎢ ⎥

⎝ ⎠ ⎣ ⎦ ⎝ ⎠

) ) )
)

14243 14243 14444244443

.  (2.46) 

 

Setting 0β = , gives the characteristic equation without the gyroscopic moment as 

 

 
{

2

inertial moment damping moment cross-coupled
    moment

21 1 0
ˆ ˆ 2

s j s jω ω
γ γ

⎛ ⎞ ⎛ ⎞
+ + − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

) )

14243 14243

, (2.47) 

 

with two roots 
2

1,2 2
1 21 1 2 1 2 1

ˆ ˆ ˆ ˆ
s j jω ω ω

γ γ γ γ

⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎛ ⎞
= − − ± − + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥

⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦

) )
) , where 1s  is an 

unstable root and 2s  is a stable root. XFigure 2.23X shows the plot of the real part of these 

roots against the rotor speed, for ˆ 10γ = . XFigure 2.24X shows the plot of the moments in 

Eq. X(2.47)X related to the unstable root, for ˆ 10γ = . Plots of the moments corresponding 
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to the rigid support discussed in Section X2.2.4X, are given for comparison. The real part 

of the damping moment increases due to the external damping, which reduces its effect 

in balancing the destabilising cross-coupled stiffness moment relative to the rigid 

support.  

 

Now, considering the gyroscopic effect, Eq. of tilt motion  X(2.46)X has an unstable root 

1s  and a stable root 2s  which are: 

 

2

1,2

2 2 21 1  1 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆ

22 1
ˆ

j j j

s

ω ω βωβω βω ω
γ γ γ γ γ γ

γ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
− − + + ± − + + + + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦=

⎛ ⎞
+⎜ ⎟

⎝ ⎠

) ) )
) ) )

 

  (2.48) 

 

Unlike the case of the rigid support, where the gyroscopic moment is damping-like, 

with damper support, the gyroscopic moment of the rotor also has a stiffness-like term, 
2 ˆβω γ) . XFigure 2.25X shows the plot of the real and the imaginary parts of the moments 

for 0.25β = . The stiffness-like term in combination with the damping moment seem to 

offer a restoring moment in the system, whose physical significance needs further 

investigation. Increasing β  to 0.5 shows a perfect balance in the moments similar to 

turbocharger with the rigid support as shown in XFigure 2.26 X, when the cross-coupled 

stiffness moment is balanced by the restoring moment, i.e. the damping moment + the 

stiffness-like gyroscopic moment. The inertial moment is balanced by the damping-like 

gyroscopic moment. In this case, the restoring moment is purely real.  Further increase 

of β  continues to change the relative direction of the moments as shown in XFigure 2.27X, 

keeping the real part of the restoring moment negative, giving a stable whirl. The real 

parts of the unstable root for three different values of β  as a function of speed are 

shown in XFigure 2.28X, which verifies the threshold value of the gyroscopic coefficient, 

1 2β = , for the stability of the conical whirl. The threshold value remains unaltered by 

the presence of an external damper. 
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Figure 2.29 and Figure 2.30 show the plots of the conical whirl frequencies varying with 

the speed for 1β <  and 1β >  respectively. For the low speed range, the unstable and 

the stable conical whirl frequencies exhibit very similar behaviour of the split into 

forward and backward whirl motions as with the rigid support shown in Figure 2.21 and 

Figure 2.22, However for high speeds, the stable conical whirl becomes forward again 

by increasing with speed due to the presence of the external damper. This could be due 

to the relatively higher damping of the external damper suppressing the gyroscopic 

effect, since most of the motion is between the ring and the damper as discussed in 

Section 2.2.4. 

  

 

2.4.3 CONCLUSIONS 

 

A turbocharger with a symmetric rigid rotor mounted in full-film bearings with 

externally damped support was analysed for the stability of the conical whirl i.e. the tilt 

motion of the rotor. The external dampers were used to simulate the outer-film of the 

floating ring bearings. 

 

The external dampers are unlikely to improve the stability of the turbocharger. The 

threshold value of the gyroscopic coefficient 1 2β = , for a stable conical whirl, remains 

unaltered by the addition of an external damper to each of the journal bearings. The 

gyroscopic moment means a stiffness-like moment is added to the damping-like 

gyroscopic moment seen with the rigid support. The gyroscopic moment along with the 

damping moment counteracts the de-stabilising cross-coupled stiffness moment, 

effectively stabilising the conical whirl for 1 2β > . However, the physical significance 

of this combination needs further investigation. The gyroscopic moments produces 

similar behaviour of a forward and a backward whirl corresponding to the two 

frequencies as observed in the turbocharger with rigid support. But for high speeds, the 

addition of an external damper seems to change the backward whirl corresponding to 

the stable frequency a forward whirl again.  
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So far, the turbocharger rotor has been assumed to have a symmetric rotor. However, as 

discussed in Chapter 1, the turbine wheel is heavier than the compressor wheel. Hence, 

the rotor is asymmetric with respect to the centre of gravity. This is considered in the 

following Section. 

 

 

2.5 ASYMMETRIC MODEL – TRANSVERSE AND TILT 

MOTION WITH THE GYROSCOPIC EFFECT 

 

2.5.1 INTRODUCTION 

 

 In the previous Sections, a turbocharger with a symmetric rotor was analysed, 

considering the transverse and the tilt motion separately. However in practice, the 

turbine is much heavier than the compressor of a turbocharger. So the centre of gravity 

of the turbocharger is nearer to the turbine bearing centre. Hence, this Section 

investigates a turbocharger with an asymmetric rotor mounted in floating ring bearings 

under the influence of the gyroscopic moments. Both the transverse and the tilt motion 

are considered in this Section to analyse the conical and the in-phase whirl modes under 

the influence of the gyroscopic effect. 

 

 

2.5.2 EQUATION OF MOTION  

 

Figure 2.31 shows a schematic diagram of an asymmetric rotor of a turbocharger with 

floating ring bearings and the forces acting on the rotor due to both the transverse and 

the tilt motion discussed in previous Sections; ,a bl l  are the distances of the centre of 

gravity of the rotor from the turbine and the compressor bearing centres respectively. 

Assuming a rigid rotor of mass rm  mounted in two identical bearings with full-film, the 

equations of transverse motion of the turbocharger in the inner film of the bearing is 

given as [54]: 
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 rm+ = −a b 1cf f r&& ,  (2.49) 

 

where 1 1[ , ]T
c cr s=1cr , 1 1,c cr s  are the co-ordinates of the centre of gravity of the rotor. 

[ ], T
ra saF F=af  are the film forces on the rotor in the turbine end bearing and 

[ ] , T
rb sbF F=bf  are the film forces in the compressor end bearing. Using the film forces 

for the bearings with the damper support given in Eq. (2.14), the forces in the bearings 

are given by:  

                  

 2 ( ) ( )A Aω= +a 1a a 1a af r - r Γ r - r& & , (2.50) 

 

 2 ( ) ( )A Aω= +b 1b b 1b bf r - r Γ r - r& & , (2.51) 

 

where [  ,  ]T
j j jr s=r , ,  ,  1 ,  1j a b a b= ;   a , br  are the co-ordinates of the ring centre BC  

in the turbine and compressor end bearings;    1 a , 1 br  are the corresponding co-ordinates 

of the journal dynamic centre DC . The equations of tilt motion with the gyroscopic 

effect as seen in Figure 2.31 are given by: 

 

 T T J Iω− + = −b ab a abf L f L Γθ θ& && ,   (2.52) 

 

where 
0

0
b

a

l
l

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

abL , al and bl  are the distances of the rotor centre of gravity from the 

turbine bearing centre and compressor bearing centre respectively as shown in Figure 

2.31; 1 1,  φθ  are the angular displacements of the rotor about 1 1,  c cs r  respectively. From 

the slope of the rotor, the linear co-ordinate transformation can be done through: 

 

 ( )
l

+ −ab
1c 1b 1a 1b

Lr = r r r , (2.53) 
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 ( )
l

= 1b 1ar - r
θ ,  (2.54) 

 

where the derivatives of θ  are given by the corresponding derivatives of the right hand 

side of Eq. (2.54). Substituting for the forces from Eqs. (2.50) and (2.51), and using the 

transformation in Eqs. (2.53) and (2.54), the equations of motion are given by : 

 

 
1 2 ( ) ( )

                                         2 ( ) ( ) 0

b b
r

l lm A A
l l

A A

ω

ω

⎡ ⎤⎛ ⎞− + + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
+ + =

1b 1a 1a a 1a a

1b b 1b b

r r r - r Γ r - r

r - r Γ r - r

&& && & &

& &

, (2.55) 

 

 
( )

[2 ( ) ( )]

                   [2 ( ) ( )] 0

b

a

I l A A
l

Jl A A
l

ω

ωω

−⎛ ⎞ + +⎜ ⎟
⎝ ⎠

− + + − =

1b 1a
1b b 1b b

1a a 1a a 1b 1a

r r r - r Γ r - r

r - r Γ r - r Γ r r

&& &&
& &

& & & &

. (2.56) 

 

Applying Eq. (2.15), at the interface between the ring and the external damper (outer 

film) and substituting for the forces from Eqs. (2.50), (2.51), the equations of motion in 

the outer film are given by 

 

   2 ( ) ( ) 0A Aγ ω− − =a 1a a 1a ar r - r Γ r - r& & & , (2.57) 

 

   2 ( ) ( ) 0A Aγ ω− − =b 1b b 1b br r - r Γ r - r& & & . (2.58) 

 

Combining Eqs. of motion (2.55) through (2.58)  and assuming solutions of the form 
tr Reλ= , gives the matrix form in terms of non-dimensional groups as: 
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  (2.59) 

 

where, , ,a b a bL l l= , 1ˆ kα ω ω= , 12s λ ω=% , ˆ ˆ ˆ2B sβ ωα= % . Note that 2rm m= , where m  

is the half-symmetrical rotor mass used for the symmetrical rotor in the preceding 

Sections. 

 

The characteristic equation of motion (2.59) is an eighth order polynomial having 4 

pairs of conjugate roots. Figure 2.32 shows the plot of the roots of the equation of 

motion given in Eq. (2.59), indicating the growth/decay of the whirl amplitude, as a 

function of the rotational speed. There are two unstable roots with positive real parts 

and two stable roots with negative real parts for 0.25β = and ˆ 2α =  (for a typical 

turbocharger). Figure 2.33 shows their corresponding imaginary parts, i.e. the 

frequencies of the sub-synchronous whirl modes along side the synchronous line in 

comparison with that of the case without the gyroscopic effect ( 0)β = . 

 

When 0β = , i.e. without considering the gyroscopic effect, Figure 2.34 shows the plot 

of the real parts of the unstable root. The real parts cross each other at a certain speed, 

indicating a switch in the dominant root [54]. Figure 2.35 shows the plots of their 

corresponding frequencies. This behaviour agrees with a typical waterfall diagram from 

a turbocharger shown in Figure 2.36, where the mode switches after a certain speed. 

The modeshape of mode-1 is shown in Figure 2.37. This is the low frequency conical 

whirl that is dominant in the low speeds. Figure 2.38 shows the modeshape of mode-2 



CHAPTER 2 THE EFFECT OF GYROSCOPIC MOMENTS ON THE STABILITY OF A 
TURBOCHARGER 

 

 54

which is the relatively high frequency in-phase whirl is dominant in the high speed 

range.  

 

Figure 2.39 shows the plots of the real parts of the roots varying with the speed, 

considering the gyroscopic moment, when 0.25.β =  Adding gyroscopic moment to the 

system, which increases β   to 0.25, shows a reduction in the speed at which the modes 

switch as seen in Figure 2.39. This could be due to the reduction in the conical whirl 

frequencies due to the gyroscopic effect as given in Figure 2.33. Figure 2.40 shows the 

plot of the imaginary part of the roots varying with speed. The plot shows a purely 

imaginary root for the conical mode when 1 2β =  as observed with the turbocharger 

with a symmetric rotor. For 0.5β > , the system has a stable conical whirl. 

 

 

2.5.3 CONCLUSIONS 

 

A turbocharger with an asymmetric rotor model with full-film floating ring bearings 

was analysed for stability using linear analysis. The outer-film of the bearing was 

modelled as an external damper. Both the translation and the tilt motion of the rotor 

were considered to analysed the in-phase and the conical whirl respectively. 

 

The turbocharger exhibits two unstable modes: a conical mode and an in-phase whirl 

mode. The conical mode is dominant in the low speed range, while the in-phase whirl 

mode is dominant in the high speed range. The gyroscopic moment reduces the speed at 

which the switch in mode occurs. Similar to the symmetric rotor, the conical whirl of 

the asymmetric rotor stabilises for 1 2β ≥ . This suggests that the threshold value of the 

gyroscopic coefficient 1 2β =  for a stable conical whirl, remains unaffected by the 

asymmetry of the rotor.  
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2.6 SUMMARY AND CONCLUSIONS 

 

 A simple linear model of a turbocharger with a symmetric rigid rotor and two 

identical full-film journal bearings was analysed. The transverse motion of the rotor was 

reviewed, under the effect of various support conditions. The effect of gyroscopic 

moment was investigated for the tilt motion of the turbocharger, with rigid and damped 

support. An asymmetric model of the turbocharger was also analysed for the effect of 

gyroscopic moment for both the type of motions. 

 

The conical whirl instability which is self-excited by a tilt motion of the turbocharger 

with rigid support is controlled by the gyroscopic coefficient β . This coefficient is 

given by the ratio of the polar to the transverse moment of inertia of the rotor. With an 

increase in β , the gyroscopic moment changes the relative direction of the inertial and 

damping moments, which helps in stabilising the conical whirl. The threshold value of 

β  for a stable conical whirl is found to be 1 2 , when the turbocharger is on the verge of 

instability. The instability is completely suppressed for 1 2β > . The threshold ratio does 

not seem to be affected by adding an external damper to the bearing and the asymmetry 

of the rotor. A turbocharger exhibits the whirl instability in the form of a conical whirl 

and an in-phase whirl. The conical whirl is dominant in the low speed range, while the 

in-phase whirl is dominant in the high speed range. The gyroscopic moment seems to 

reduce the speed at which the switch in the dominant mode occurs. The gyroscopic 

effect changes the directions of the conical whirl, wherein, the rotor experiences a 

forward whirl with an unstable frequency, and a backward whirl with a stable 

frequency. This effect is unaffected by the change in the stability of the unstable conical 

whirl for 1 2β > . However, the presence of the external damper seems to change the 

backward whirl into a forward whirl at high speeds.  

 

The gyroscopic effect being controlled by the tilt motion affects only the conical whirl. 

Hence it may be ignored for the nonlinear analysis of the in-phase whirl. However, the 

rigid assumption of the rotor needs an investigation before proceeding to the nonlinear 

analysis. Hence a flexible shaft is investigated in the following Chapter.   
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FIGURES 

 

 

Figure 2.1 (a) Schematic diagram of a turbocharger with plain uncavitated journal bearings 
(equivalent to a system with floating ring bearing with the ring fixed in all directions) BC  is the 
bearing centre, JSC  is the static journal centre, JDC  is the dynamic journal centre and O  is the 
centre of the stationary casing; 1 1,r s  are the co-ordinates of the journal centre (b) Schematic 
diagram of a symmetric rotor supported on two identical bearings with rigid support [54]. 
 

 

Figure 2.2 Plot of the real parts of the roots ŝ  showing the growth/decay rate of the sub-
synchronous whirl amplitude against the rotational speed ω̂ , for the transverse motion of the 
turbocharger with rigid support. 
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Figure 2.3 Plot of the sub-synchronous whirl frequency varying with the rotating speed of 
the turbocharger with rigid support, for the transverse motion. Synchronous frequency is shown 
for comparison as a function of speed.  

 

 
 

Figure 2.4 Waterfall diagram for a commercial turbocharger fitted with press-fit bearings; 
adapted from Holmes [3]. 
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Figure 2.5 Schematic diagram of a turbocharger with press-fit bearings (flexible support). 
The interference fit between the ring and the housing of the bearings is treated as a spring giving 
flexible support to the bearing. BC  is the bearing centre, JSC  is the static journal centre, JDC  is 
the dynamic journal centre,  k  is the stiffness of the flexible support [54]. 
 

 

 

 

 

Figure 2.6 Co-ordinate system and dynamic forces in a symmetric rotor – uncavitated 
floating ring bearing system, BC is the bearing centre, JSC  is the static journal centre, JDC  is 
the dynamic journal centre and O  is the centre of the stationary casing.   
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Figure 2.7 Plot of the sub-synchronous whirl frequency varying with the rotating speed of 
the turbocharger with flexible support; synchronous frequency is shown for comparison as a 
function of speed; κ  is the non-dimensional stiffness coefficient of the support. 

 

Figure 2.8 Plot of the real and the imaginary parts of the roots showing the growth/decay 
rate of the sub-synchronous whirl amplitude and the whirl frequency respectively, for the 
transverse motion of the turbocharger with flexible support, when 0.1κ = .  
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Figure 2.9 Plot of the real and the imaginary parts of the roots showing the growth/decay 
rate of the sub-synchronous whirl amplitude and the whirl frequency respectively, for the 
transverse motion of the turbocharger with flexible support, when 1κ = . 
 

 
 
 

Figure 2.10 Schematic of a turbocharger with uncavitated floating ring bearings with the 
outer film treated as an external damper; BC  is the bearing centre, JSC  is the static journal 
centre, JDC  is the dynamic journal centre. γ  is the damping coefficient of the external damper. 
Oil holes in the ring allow the flow of oil from the outer clearance between the housing and the 
ring to the inner clearance between the ring and the journal [54]. 
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Figure 2.11 Plot of the sub-synchronous whirl frequency varying with the rotating speed of 
the turbocharger with damper support; synchronous frequency is shown for comparison as a 
function of speed. 
 

 

     

 

Figure 2.12 Water fall diagram from a commercial turbocharger with floating ring bearings; 
adapted from Holmes [3]. 
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Figure 2.13 Plot of the real and the imaginary parts of the roots comparing the growth/decay 
rate of the sub-synchronous whirl amplitude and the whirl frequency for the transverse motion 
of the turbocharger with damper support with that of the rigid support. The curves 
corresponding to the rigid support are shown in dotted lines. 
 

 

Figure 2.14 Co-ordinate system of the symmetric rotor model of the turbocharger with two 
identical plain journal bearings for tilt motion with gyroscopic moments; O is the centre of the 
stationary housing, JSC  is the static journal centre, JDC  is the dynamic journal centre; 1θ  and 

1φ  are the tilt co-ordinates about s  and r  axes respectively; Jω  is the angular momentum of 
the rotor about its spin axis Z ; l  is the distance between the bearings; 1 1,r s  are the co-ordinates 
of the journal centre. Compressor and turbine wheels are not shown here. 
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Figure 2.15 Plot of the real and imaginary parts of the moments from the unstable root of 
the equation of tilt motion of the turbocharger with rigid support without the gyroscopic effect.  

 

Figure 2.16 Plot of the real and imaginary parts of the moments from the stable root of the 
equation of tilt motion of the turbocharger with rigid support without the gyroscopic effect.  
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Figure 2.17 Plot of the real and imaginary parts of the moments from the unstable root of 
Eq. (2.39) of the turbocharger with rigid support with the gyroscopic effect when 0.1β =  
(unstable) 

  

Figure 2.18 Plot of the real and imaginary parts of the moments from the unstable root of 
Eq. (2.39) of the turbocharger with rigid support with the gyroscopic effect when 0.25β =  
(unstable). 
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Figure 2.19 Plot of the real and imaginary parts of the moments from the unstable root of 
Eq. (2.39) of the turbocharger with rigid support with the gyroscopic effect when 1 2β =  
(threshold). 

 

Figure 2.20 Plot of the real and imaginary parts of the moments from the unstable root of 
Eq. (2.39) of the turbocharger with rigid support with the gyroscopic effect when 0.75β =  
(stable). 
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Figure 2.21 Plot of the sub-synchronous conical whirl frequencies varying with the 
rotational speed of the turbocharger with rigid support, for various values of 1/ 2  1β≤ < . The 
stable frequencies show a change in the whirl direction after a certain speed by decreasing with 
speed. 

 

Figure 2.22 Plot of the sub-synchronous conical whirl frequencies varying with the 
rotational speed of the turbocharger with rigid support, for various values of 1  2β≤ < . The 
stable frequencies show a change in the whirl direction after a certain speed by decreasing with 
speed. 
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Figure 2.23 Plot of the real part of the roots of the equation of tilt motion of the turbocharger 
with damper support against the rotor speed without the gyroscopic effect, when 10γ = . 

 

Figure 2.24 Plot of the real and the imaginary parts of the moments from the unstable root 
of Eq. (2.46) of the turbocharger with damper support without the gyroscopic effect 
when ˆ 10γ = . The corresponding plots from the rigidly supported turbocharger are shown in 
grey lines for comparison. The cross-coupled stiffness moment is purely imaginary for both 
rigid and damper supported turbochargers. 
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Figure 2.25 Plot of the real and the imaginary parts of the moments from the unstable root 
of Eq. (2.46) of the turbocharger with damper support with the gyroscopic effect, 
when ˆ 10γ = and 0.25β = . 
 

 

Figure 2.26 Plot of the real and the imaginary parts of the moments from the unstable root 
of Eq. (2.46) of the turbocharger with damper support with the gyroscopic effect, when 
ˆ 10, 1 2γ β= = . 
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Figure 2.27 Plot of the real and the imaginary parts of the moments from the unstable root 
of Eq. (2.46) of the turbocharger with damper support with the gyroscopic effect, when 
ˆ 10, 0.75γ β= = . 

 

 

Figure 2.28 Plot showing the change of stability of the conical whirl of the turbocharger 
with damper support, due to change in the ratio β  from the gyroscopic effect. 
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Figure 2.29 Plot of the sub-synchronous conical whirl frequencies varying with the 
rotational speed of the turbocharger with damper support, for various values of  1β < . The 
stable frequencies changes from backward to forward whirl again at high speeds. 
 

 

Figure 2.30 Plot of the sub-synchronous conical whirl frequencies varying with the 
rotational speed of the turbocharger with damper support, for various values of  1β > . The 
stable frequencies changes from backward to forward whirl again at high speeds. 
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Figure 2.31 Co-ordinate system and forces acting on the rigid rotor model of a turbocharger 
with floating ring bearings - linear and tilt motion including gyroscopic moments;  and a bl l  are 
the distances between the bearing centres and the rotor centre of gravity; Jω  is the angular 
moment of the rotor about the spin axis Z , where ω  is the spin speed and J is the polar 
moment of inertia of the rotor; rm  is the full rotor mass. The external damping forces are 
shown in dashed lines. 

 

Figure 2.32 Plot of the growth/decay rates of sub-synchronous whirl amplitude varying with 
the rotational speed of the turbocharger with an asymmetric rotor in floating ring bearings, when 
ˆ 10,  0.3,  0.7,  2a bL Lγ α= = = = , 0.25β = . 
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Figure 2.33 Plot of the sub-synchronous whirl frequencies (imaginary part of the roots) and 
the rotor speed of the turbocharger with asymmetric rotor in floating ring bearings 
( ˆ 10, 0.3, 0.7, 2a bL Lγ α= = = = , 0.25β = ). Corresponding whirl frequencies for 0β =  are 
shown in grey lines for comparison. Synchronous vibration is shown for comparison as a 
function of speed 
 

 

Figure 2.34 Plot of the real part of the unstable roots of Eq. (2.59) of the turbocharger with 
asymmetric rotor in floating ring bearings and the rotor speed when 
ˆ 10,  0.3,  0.7,  2,  0a bL Lγ α β= = = = = .  
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Figure 2.35 Plot of the imaginary part of the roots of Eq. (2.46) showing the sub-
synchronous whirl frequencies varying with the rotational speed of the turbocharger with 
floating ring bearings when ˆ 10,  0.3,  0.7,  2,  0a bL Lγ α β= = = = = . The synchronous 
frequency is shown for comparison as a function of the speed.  

 

 

Figure 2.36 Waterfall diagram for a turbocharger with floating ring bearings (speed axis is 
engine speed 1 12 x turbocharger speed≅  [54]. 
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Figure 2.37 Mode shape of the rotor corresponding to mode-1 (conical mode), which is 
dominant in the lower speed range as shown in Figure 2.34 and Figure 2.35.  
 

 

 

 
 

Figure 2.38 Mode shape of the rotor corresponding to mode-2 (in-phase whirl mode), which 
is dominant in the higher speed range as shown in Figure 2.34 and Figure 2.35. 
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Figure 2.39 Plot showing the effect of gyroscopic moment on the speed at which the 
dominant mode shifts from the conical to the in-phase whirl, 
when ˆ 10,  0.3,  0.7,  2a bL Lγ α= = = = . The corresponding plot without the gyroscopic effect 
is shown in grey lines for comparison. 

 

Figure 2.40 Plot of the real part of the roots of the turbocharger with floating ring bearings, 
when plotted against the rotational speed. Change in the stability of the conical whirl 
mode with change in the gyroscopic coefficient β  is shown, when 
ˆ 10,  0.3,  0.7,  2a bL Lγ α= = = = . 
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CHAPTER 3 
 

3 INFLUENCE OF ROTOR FLEXIBILITY ON THE 

DYNAMIC BEHAVIOUR OF A TURBOCHARGER 

 

 

3.1 INTRODUCTION 

 

 In the previous chapter, using a rigid rotor, the gyroscopic effect was analysed 

for its significance in the oil-whirl instability. Gunter and Chen [2] predicted that the in-

phase whirl mode is a bending mode for a typical turbocharger. It was seen in Chapter 2 

that in the case of a rigid rotor, the natural oil-whirl frequency changes with speed. In 

the case of flexible rotor, the rotor flexibility is in series with the bearing stiffness. Since 

the rotor flexibility does not change, the rotor whirls at a constant frequency, when the 

rotor bending frequency occurs at the rotor speed. This phenomenon is defined as oil 

whip [68]. Since the turbocharger rotor is a relatively rigid structure supported by 

flexible bearings, it is convenient to assume the rotor to be rigid. However, most 

automotive turbochargers operate at very high speeds in excess of 180,000 rpm, and the 

bearings become relatively stiff compared to the rotor at these speeds. This means that 

rotor flexibility can be important with respect to oil-whirl as shown by Gunter and Chen 

[2]. Hence it is important to determine whether the rotor flexibility significantly affects 

the dynamic behaviour at high speeds for a turbocharger. The aim of this chapter, 

therefore, is to analyse the stability of a turbocharger with a flexible rotor supported by 

two identical floating ring bearings. The outer film of the bearing is treated as an 

external damper in series to the inner film as discussed in Chapter 2 and the ring is 

assumed not to rotate but only wobble. The effect of flexibility is investigated by 

superimposing the rigid motion of the rotor and the static deflection of the rotor.  
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3.2 EQUATIONS OF MOTION  

 

3.2.1 INTRODUCTION 

 

 The aim of this section is to derive the equations of motion of a turbocharger 

with a flexible rotor supported by floating ring bearings similar to that with the rigid 

rotor in Section 2.5. The outer ring is modelled as an external damper as discussed in 

Chapter 2. The bearings have a full oil-film without cavitation [20]. The method 

involves the technique of superimposing the rigid motion of the rotor and its static 

deflection to capture the flexible rotor dynamics. The treatment does not allow for the 

transverse moment of inertia of the turbine and the compressor discs. The equation of 

rigid motion and flexible deflection are derived first and then the system of equations 

for the journal motion in the inner and the outer film of the floating ring bearings are 

combined into a single matrix equation. 

 

 

3.2.2 EQUATION OF RIGID MOTION 

 

In this Sub-Section, the rigid motion of the turbocharger rotor supported in externally 

damped bearings is considered to derive the equation of rigid motion alone. Figure 3.1 

shows a typical turbocharger with dimensions used for the investigation in this chapter. 

Figure 3.2 shows the co-ordinate system of a turbocharger with flexible rotor supported 

in two identical floating ring bearings. The turbine and compressor masses are 

 and  a bm m  respectively; JD JDC , Ca b  are the bearing centres of the turbine end bearing and 

the compressor end bearing; JS JSC , Ca b  are the corresponding journal static centres which 

are the same as the ring centres B BC , Ca b , since the static load is ignored due to the light 

weight of the turbocharger. The distance between the two bearing centres is l , the 

distance between the compressor bearing centre and the compressor centre of gravity is 

cl , and the distance between the turbine bearing centre and the turbine centre of gravity 

is tl . Note that the ring is treated as fixed and the outer film between the ring and the 
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housing is treated as a damped support, which is discussed in detail in Chapter 1.  The 

co-ordinates of the turbine and the compressor mass centres of masses am  and bm  are 

,  ma mar s  and ,  mb mbr s  respectively; 1 1,  a ar s  and 1 1,  b br s  are the co-ordinates of the 

corresponding journal centres, ,a br  and ,a bs  are the co-ordinates of the corresponding 

ring centres. The whirl orbit was assumed to be circular about the bearing centre, since 

the static load is negligible and the static centre is same as the bearing centre. Assuming 

a full oil-film [20], the oil-film forces between the rotor and the ring ,  a bf f  are given in 

Eqs. (2.50) and (2.51) in Chapter 2. It has been shown in Chapter 2 that a turbocharger 

has self-excited sub-harmonic vibration in the form of an in-phase whirl mode and a 

conical whirl mode. Hence the equations of motion in terms of both the forces and the 

corresponding moments need to be considered as given in section 2.5 of Chapter 2. The 

equations of translation motion describing the in-phase whirl of the turbocharger rotor 

of masses am  and bm  in the damper supported bearings are given by: 

 

 a bm m− − = +a b ma mbf f r r&& && , (3.1) 

 

where [ ], ,  ,  i ir s i ma mb= =ir  and the oil-film forces a bf , f  are given by Eqs. (2.50) and 

(2.51) in Chapter 2. Now, for the conical whirl, the equations of tilt motion described by 

the moments about the two bearing centres have to be defined separately. In the case of 

the symmetric rigid rotor in Chapter 2, the moment of inertia of the rotor is used for the 

acceleration term of the equations of tilt motion. But in this chapter, the present 

treatment does not allow for the consideration of the inertia directly, since rotor bending 

is allowed and the masses are away from the bearing centres unlike the asymmetric 

rotor in section 2.5. Hence, the moment equation is derived using the inertia forces due 

to the acceleration of the masses B BC ,  Ca b , which in the and  rZ sZ  planes shown in 

Figure 3.2 are given by: 

 

 ( ) ( ) ( ) 0a t b cl m l m l l− + + =b ma mbf r r&& && , (3.2) 

 

         ( ) ( ) ( ) 0a t b cl m l l m l− − + + =a ma mbf r r&& && . (3.3) 
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Figure 3.3 shows the net deflection of the turbine mass considering the rigid motion and 

the flexible deflection at the turbine end, which is the similar to that of the compressor 

mass. Note that the rigid motion is defined by the dynamics of the rotor, while the 

flexible deflection is evaluated under static conditions. From the rigid motion of the 

rotor, the co-ordinates of the masses can be determined from the co-ordinates of the 

journal in the bearings as shown in Figure 3.2 such as: 

 

 ( )( )tl l= −ma 1a 1b 1ar r r - r , (3.4) 

 

        ( )( )( )cl l l= + +mb 1a 1b 1ar r r - r , (3.5) 

 

where ( ) l1b 1ar - r  gives the slope of the rotor along and  r s  directions. As mentioned 

in the introduction of this Chapter, in order to analyse the flexible rotor, the treatment 

requires both the rigid dynamic motion and the flexible deflection of the rotor. Hence 

the flexible deflection under the static load is determined in the following Sub-Section. 

 

 

3.2.3 FLEXIBLE DEFLECTION OF THE ROTOR 

 

Under the action of the turbine and compressor weight, the rotor undergoes bending. In 

this Sub-Section, this bending effect is included into the equations of motion in the form 

of certain coefficients known as the influence coefficients. The influence coefficient is 

defined as the deflection of the rotor under the action of a unit force. The influence 

coefficients ijα  define the bending strength of the rotor in terms of the dimensions of 

the rotor and its material properties such as density and Young’s modulus. The flexible 

deflection is superimposed onto the rigid motion by considering the net deflection of the 

masses as shown in Figure 3.3. The flexible deflection mar  of the turbine mass am  due 

to the inertial forces of the masses  and  a bm m  is given by: 

  

  11 12( ) ( )a bm mα α− = − −ma ma mbr r r&& && , (3.6) 
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 21 22( ) ( )a bm mα α− = − −mb ma mbr r r&& && , (3.7) 

 

where , ,  ,  i i ir s i ma mb= =⎡ ⎤⎣ ⎦r , ijα  is the influence coefficient of the rotor given by the 

deflection of masses ,  a bm m  due to the force iF  acting on one of the masses; 1 2and  F F  

are the respective forces acting on and  a bm m  respectively. Figure 3.4 shows the 

schematic of the deflections and the forces to calculate the influence coefficients. Figure 

3.1 shows a typical turbocharger with the dimensions. Since the rotor is a stepped type, 

a simple finite element model [69] is used to determine the influence coefficients. Some 

details of the finite element model used for this evaluation is provided in Appendix B. 

Assuming the rotor to be pin-pinned, i.e., the translation is fixed at the bearing centre 

but rotation allowed, the coefficients are obtained by applying a force at the turbine 

mass centre and the compressor mass centre separately.  Figure 3.4 shows the 

application of the force for determining the deflection iδ  under the action of a force jF . 

The influence coefficients ij i jFα δ= , ∀  , 1, 2i j = , are determined from the 

deflections of  and  a bm m . For a typical turbocharger shown in Figure 3.1 these 

coefficients are calculated to be 11 12 8

21 22

7.199 1.312
10

1.312 4.392
α α
α α

−⎡ ⎤ ⎡ ⎤
= ×⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
. The net 

deflections along  and  r s  directions as shown in Figure 3.3 are given by: 

 

           ma ma mar = r - r , (3.8) 

 

           mb mb mbr = r - r , (3.9) 

 

where  ma mar , r  and  mb mbr , r  are given by Eqs. (3.4) and (3.6). These coordinates of the 

masses are used in determining the moments in Eqs. (3.2) and (3.3).  

 

As discussed in Chapter 2, treating the outer film of the floating ring bearing as an 

external damper, at the interface between the ring and the stationary housing as shown 

in Figure 3.2 , the forces are given by [54]:  

 

        γ=a af r& , (3.10) 
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    = γb bf r&

a bf , f

, (3.11) 

 

where   are given by Eqs. (2.50) and (2.51) in Chapter 2; γ  is the damping 

coefficient of the outer film (external damper). Now, the equation of translation motion 

given in Eq. (3.1), the equations of tilt motion  given in Eqs. (3.2) and (3.3), the 

equations of translation in the outer film given in Eqs. (3.10) and (3.11) together 

describe the equations of motion of the turbocharger with flexible rotor in the floating 

ring bearings. Substituting for the forces from Eqs. (2.50) and (2.51) into Eqs. (3.1) and 

assuming a solution of the form [ ][ , ] , tr s R S eλ=

2 2
1 1 1 1 1 2( ) ( ) ( ) ( ) 0a a a a b b b b a bc cd db R R a S S b R R a S S m R m Rλ λ λ λ λ λ− − − − − − − − − − =

2 2
1 1 1 1 1 2( ) ( ) ( ) ( ) 0a a a a b b b b a bc cd db S S a R R b S S a R R m S m Sλ λ λ λ λ λ− − + − − − + − − − =

 gives: 

 

 , 

  (3.12) 

 

 .  

  (3.13) 

 

Likewise, substituting into Eqs. of tilt motion (3.2) , (3.3), and the Eqs. of translation in 

the outer film  (3.10), (3.11) results in a set of twelve equations. These twelve equations 

are related to the twelve degrees of freedom of the system. Four of them are related to 

the ring co-ordinates, while the rest eight of them are related to the journal coordinates 

in the two bearings. These can be written in the matrix form, which after non-

dimensionalising gives the equations of motion of a turbocharger with a flexible rotor in 

the floating ring bearings as: 
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  (3.14) 

 

where  2 a bm m m= + ; 2ˆ ˆa a tM M L s= , ( ) 2
1

ˆ ˆ1a a tM M L s= + ,  ( ) 2
1

ˆ ˆ1b b cM M L s= + , 

2ˆ ˆb b cM M L s= , 2
11 11

ˆ ˆ ˆ 1aK M sα= − − , 2
21 21

ˆ ˆ ˆaK M sα= − , 2
12 12

ˆ ˆ ˆbK M sα= − , 

2
22 22

ˆ ˆ ˆ 1bK M sα= − − , 2
1ˆij ijmα α ω= , , ,a b a bM m m= , ( )t tL l l= , ( )c cL l l=  are the non-

dimensional groups. ˆ Aγ γ= , 1 1ˆ / ,  2s A mλ ω ω= = , 1ω̂ ω ω= , 
3

3
B B BL RA
C

πμ
= are the 

same as defined in Chapter 2. This equation is solved and the stability of the roots are 

analysed in the following Section. 

 

 

3.3 ANALYSIS: ROTOR BENDING AND SUB-SYNCHRONOUS 

WHIRL 

 

In this Section, the stability of the roots of the characteristic equation and the related 

modeshapes of the turbocharger with flexible rotor and floating ring bearings are 

analysed. The characteristic equation of the determinant given in Eq. (3.14) is solved for 
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the turbocharger shown in Figure 3.1 using the values 2

11= 7.199e-8 sec kgα , 

2
12 = 1.312e-8 sec kgα , 2

21= 1.312e-8 sec kgα , 2
22 = 4.392e-8 sec kgα =  0.2513am

= 0.0676bm =33.13cl =38.7l =35.02tl

.   

kg,  kg,  mm,  mm,  mm, 1297A = ˆ = 10, γ . Note 

that the calculation of the influence coefficients is described in section 3.2.3. The 

solution gives 6 pairs of complex conjugate roots, of which two pairs are unstable roots 

with positive real parts similar to Chapter 2. The real parts of the roots are plotted in 

Figure 3.5 and Figure 3.6. The real parts of the roots give the damping in the system 

while the imaginary parts give the whirl frequency. The positive real parts imply that 

the whirl amplitude grows with time, where the journal centre keeps whirling outward. 

The negative real parts imply that the whirl amplitude reduces with time regaining the 

journal centre’s original position. Figure 3.7 shows the imaginary parts of the roots, 

which are the whirl frequencies of the turbocharger rotor in the floating ring bearings as 

a function of non-dimensional speed. It was seen in Chapter 2 that the whirling 

frequencies are functions of the rotor speed. However, Figure 3.7 shows that the two 

frequencies corresponding to modes 4 and 6, have a natural frequency at zero speed. 

Since the stiffness of the bearings is speed dependent, the stiffness is negligible at zero 

speed. The flexible model has rotor stiffness in series with the bearing stiffness and 

damping. Hence, these two modes must be due to the vibration of the compressor and 

the turbine masses on the rotor spring under free-free condition. Moreover, Mode 4 

remains almost at a constant frequency for all the speeds, which indicates that this 

frequency is mainly determined by the rotor stiffness.  Mode 6 increases with increasing 

speed, which indicates that this frequency is determined by the effective stiffness of the 

rotor and the bearings.  

 

Similar to the rigid rotor behaviour discussed [54], Figure 3.6 shows the real parts of the 

two unstable modes 2 and 4 crossing at a certain speed. This behaviour indicates a shift 

of the dominant mode, with mode 2 dominant in the low speed range and mode 3 

dominant in the high speed range. Compared to the models used in Chapter 2 where the 

displacements of the journals in the two bearings were considered alone, the present 

treatment allows the relative displacements of the masses and the journals in the 

bearings to be observed. The modeshapes are effectively governed by the in-phase and 

out-of-phase movements of these 4 locations on the rotor. Figure 3.8 shows the 

modeshape of mode 1 which is a stable conical mode. Figure 3.9 shows the modeshape 

 84



CHAPTER 3 INFLUENCE OF ROTOR FLEXIBILITY ON THE DYNAMIC BEHAVIOUR OF A 
TURBOCHARGER  

 
of mode 4 which is the next stable mode. This mode is a result of journal displacements 

in the bearings being out of phase with each other appearing like a second bending 

mode of the rotor. This mode has little or no displacement of the masses but has high 

amplitudes at the bearing centres. Figure 3.10 and Figure 3.11 are the mode-shapes of 

mode 5 and 6 respectively. They are more like bending modes driven mostly by the 

compressor mass.  

 

The unstable mode 2 that is dominant in the low speed range is the conical mode which 

is shown in Figure 3.12(a), (b) at low speeds and Figure 3.12(c), (d) at high speeds 

respectively. This mode is essentially a rigid body mode and is little affected by the 

rotor flexibility. Figure 3.13(a) and (b) show the modeshapes of mode 3 that is 

dominant in the high speed range which is an in-phase whirl mode. At low speed of 

about 7771 rpm, the mode shows almost no bending in the rotor as shown in Figure 

3.13(a), (b). But at high speeds, above about 101,030 rpm, i.e. around a whirl frequency 

of 22,581 rpm, the rotor starts to show a little bending as shown in Figure 3.13(c), (d).  

Figure 3.14 shows a comparison of this mode for various speeds, where the rotor shows 

bending and a very little change in the modeshape after about 100,000 rpm.  

 

Figure 3.7 shows that the whirl frequency of the rotor is about 50% of the rotor speed at 

low speeds. However the ratio of the frequency to the speed reduces with increasing 

speed. This implies that the rotor’s whirling frequency is about the first bending 

frequency only at a very high speed for the turbocharger under investigation. A simple 

eigenvalue analysis is done using the finite element model created for the influence 

coefficients determination in section 3.2.3, with added mass matrix. The beam model is 

pinned at the two bearing locations. It showed that the first bending frequency under 

pin-pin condition is about 100,000 rpm. This implies that the rotor must be whirling at 

this frequency only at a speed above 200,000 rpm considering a 0.5 frequency ratio. The 

details of the mass matrix and the eigenvalue calculation are given in Appendix B. 
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3.4 CONCLUSIONS 

 

 A turbocharger linear model with a flexible rotor was developed by super-

imposing the rigid motion and the flexible deflection. The flexibility of the rotor was 

incorporated into the model in the form of influence coefficients. The rotor-bearing 

system had full-film floating ring bearings, with the outer-film modelled as an external 

damper. The system was analysed for the stability of the whirling motion. 

 

Similar to the rigid rotor model in Chapter 2, the flexible rotor model exhibits the 

conical and the in-phase unstable whirl modes. For the turbocharger investigated, the 

conical mode is almost a rigid body mode at high speeds while the in-phase whirl mode 

stays fairly rigid up to a speed of about 100,000 rpm and then starts showing little 

bending. Based on the analysis, it seems that assuming the rotor to be rigid is reasonable 

upto a speed of 100,000 rpm.  

 

Although turbochargers have unstable modes, literature suggests their successful 

operation due to the nonlinearity of the oil-film. Hence a nonlinear analysis is essential 

to investigate the instabilities in greater detail. This is performed in the next chapter 

considering the effect of a static load which has been ignored in Chapter 2 and 3.  
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FIGURES 
 

 

 

 

 

Figure 3.1 A typical automotive turbocharger used in the investigation of the effect of the 
rotor flexibility in the stability of the turbocharger. The finite element beam model used to 
calculate the influence coefficients of the rotor detailed in section 3.2.3 is also shown. All 
dimensions are in mm. (Adapted from the drawing given by Cummins Turbo-Technologies Ltd) 
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Figure 3.2 Co-ordinate system of a turbocharger with a flexible rotor and two identical 
floating ring bearings. Both the flexible deflection of the rotor and the rigid motion are 
superimposed; ( )a⋅  represents the turbine end and ( )b⋅  represents the compressor end; ,  a bm m  

are the turbine and the compressor masses respectively; B BC , C  a b  are the ring centres and 

JS JSand C ,  Ca b  are the corresponding journal static centres; l  is the distance between the 
bearings; cl  is the distance between the compressor bearing centre and the compressor centre of 
gravity, and tl  is the distance between the turbine bearing centre and turbine centre of gravity; 
γ  is the damping coefficient of the outer film; r  is the axis along the line of centres of the 
journal and the bearing; s  is the axis perpendicular to the line of centres in the plane of the 
bearing; Z  is the axis along the length of the bearing; , ,,  a b a br s  are the co-ordinates of the ring 

centre; 1 ,1 1 ,1,  a b a br s  are the co-ordinates of the journal dynamic centre; ,  ma mar s  and ,  mb mbr s  are 
the co-ordinates of the turbine and the compressor mass centres respectively.  
 

 

 

a mam s&&

 a mam r&&

b mbm r&&
b mbm s&&

1 1,b br s
1 1,a ar s

arγ &

asγ &

brγ &

bsγ &

,ma mar s

s

l
tl

cl
Ob

raF
saF

saF
sbFrbF

rbFsbF

compressor endb −  turbine enda −

raF

JDCb

r
s

centre line 
of the 
stationary 
housing

Oa

,b br s

,mb mbr s

rigid 
motion

B JSC ,Cb b

,a ar s

flexible
deflection

B JS

ring centre 
C ,Ca a

JDjournal centre Ca

r
Z

Z

turbine end
bearing

compressor
end bearing



CHAPTER 3 INFLUENCE OF ROTOR FLEXIBILITY ON THE DYNAMIC BEHAVIOUR OF A 
TURBOCHARGER  

 

 89

 
 

Figure 3.3 Net deflection of the turbine mass from both the rigid motion and the flexible 
deflection; ,ma mar s  are the co-ordinates of the turbine mass with respect to the origin which is 
the centre of the stationary housing Oa ; ,ma mar s  are the co-ordinates of the mass from the rigid 
motion alone. ,ma mar s− −  are the flexible deflections from  position ,ma mar s  along ,  r s  
directions; ,mb mbr s  are determined likewise at the compressor end, where all the corresponding 
subscripts are replaced by mb .  
 

 

 

Figure 3.4 a) Rotor deflections at the turbine and the compressor mass centres under a 
static force 1F  applied at am ; 11δ , 21δ  are the corresponding displacements of  and  a bm m . b) 
Rotor deflections at the turbine and compressor mass centres under a static force 2F  applied at 

bm ; 22δ , 12δ  are the corresponding displacements of and  b am m . The bearing centres are 
pinned allowing only rotation about the r  axis; all other relative motions are constrained.  
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Figure 3.5 Plot of the real parts of the roots of the determinant of the matrix given in Eq. 
(3.14) giving the growth rate of the whirl amplitude of the turbocharger rotor shown in Figure 
3.1 in floating ring bearings, when 1297A = , 10γ = . 

 

Figure 3.6 Plot of the real parts of the roots of the determinant of the matrix given in Eq. 
(3.14) giving the growth rate of the whirl amplitude of the turbocharger rotor shown in Figure 
3.1 in floating ring bearings, when 1297A = , ˆ 10γ = . Mode 4 is not shown here for clarity. 
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Figure 3.7 Plot of the imaginary parts of the roots of the determinant of the matrix given in 
Eq. (3.14) giving the whirl frequency of the turbocharger rotor shown in Figure 3.1 in floating 
ring bearings, when 1297A = , ˆ 10γ = . Mode 2 and mode 3 are the two unstable frequencies. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

mode 4

mode 2

mode 3

mode 5
mode 6

{ }ŝℑ
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Figure 3.8 Mode shape of mode 1 which is a stable mode. (a) At a low speed ˆ 0.1ω =  (b) 
At a high speed ˆ 1.3ω =  
 

 

 
 

Figure 3.9 Mode shape of mode 4 which is a stable mode. (a) At a low speed ˆ 0.1ω =  (b) 
At  a high speed ˆ 1.3ω =  
 

 

 
 

 speed  7771 rpm
 frequency  3286 rpm

≈
≈

speed  101030 rpm
frequency  17952 rpm

≈
≈

(a) (b)

JCa

JCb

am

bm

JCa

JCb

am

bm

speed  7771 rpm
frequency  3566 rpm

≈
≈

speed  101030  rpm
frequency 45947  rpm

≈
≈

JCaJCb

bm am
JCa

JCbbm
am

(a) (b)



CHAPTER 3 INFLUENCE OF ROTOR FLEXIBILITY ON THE DYNAMIC BEHAVIOUR OF A 
TURBOCHARGER  

 

 93

 
 
 

 
 

Figure 3.10 Mode shape of mode 5 which is a stable mode. (a) At a low speed ˆ 0.1ω =  (b) 
At a high speed ˆ 1.3ω =  
 

 

 
 
 

Figure 3.11 Mode shape of mode 6 which is a stable mode. (a) At a low speed ˆ 0.1ω =  (b) 
At a high speed ˆ 1.3ω =  
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Figure 3.12 (a) 3 dimensional view of the mode shape of the conical whirl mode (b) Front 
view of the mode shape at a low speed of about 7771 rpm, at a whirl frequency of about 3647 
rpm, when ˆ 0.1ω = , { }ˆ 0.051sℑ = . (c) 3 dimensional view of the mode shape  (d) Front view 
of the mode shape at a high speed of about 101,030 rpm, at a whirl frequency of about 22,581 
rpm, when ˆ 0.1ω = , { }ˆ 0.051sℑ = . The path of the compressor and the turbine centre of 
gravities and the journal motion in the bearings are shown in dotted lines. 
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Figure 3.13 (a) 3 dimensional view of the mode shape of the in-phase whirl mode (b) Front 
view of the mode shape at a low speed of about 7771 rpm, at a whirl frequency of about 3922 
rpm, when ˆ 0.1ω = , { }ˆ 0.051sℑ = . The modeshape shows a rigid motion of the rotor. (c) 3 
dimensional view of the mode shape (d) Front view of the mode shape at a high speed of about 
101,030 rpm, at a whirl frequency of about 45,820 rpm, when ˆ 0.1ω = , { }ˆ 0.051sℑ = . The 
modeshape shows bending of the rotor. The path of the compressor and the turbine centre of 
gravities and the journal motion in the bearings are shown in dotted lines. 
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Figure 3.14 Mode shape of the in-phase whirl mode showing bending as the rotor speed is 
increased. Bending effect is relatively significant for speeds greater than about 69,910 rpm. 
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CHAPTER 4 
 

4 THE EFFECT OF STATIC LOAD ON OIL-WHIRL IN 

A PERFECTLY BALANCED ROTOR-BEARING 

SYSTEM: LINEAR ANALYSIS 

 
 

4.1 INTRODUCTION 

 

 In the previous Chapter, since the weight of the turbocharger rotor is negligible 

compared to the dynamic loads acting on the rotor, the static eccentricity ratio due to the 

gravity load has been neglected. Myers [43] has demonstrated the effect of a static load 

on the dynamics of a rotor-bearing system with rigid supports using the long-bearing 

approximation of the bearing forces. He used an oscillating π -film cavitation model 

which is detailed in Chapter 1. Myers presented a linear analysis to determine the 

stability threshold. His work includes a nonlinear analysis using the Hopf bifurcation 

method [70] applying Poore’s bifurcation formula [71] to analyse the stability of the 

limit cycles. The long-bearing approximation gives the whirl frequency to speed ratio 

around unity; however, the oil-whirl occurs at a frequency ratio of 0.5 as shown in 

Chapter 2. To overcome this, Gardner [23] used the short-bearing approximation of the 

bearing forces and performed a similar exercise to analyse the linear and nonlinear 

influences of the static load on a similar rotor-bearing system using the static π -film 

cavitation model [8]. Nevertheless, Holmes [38] demonstrated a better correlation of the 

experimental journal orbits of a rotor system to that predicted by the oscillating π -film 

cavitation model using the short-bearing approximation [18]. This Chapter aims at 

analysing the influence of a static load using the short-bearing approximation [18] of the 
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hydrodynamic bearings with an oscillating π -film cavitation model, to combine the 

benefits of the two in simulating oil-whirl. Although the difference between the static 

and the oscillating π -film models does not affect the linear steady-state analysis [8, 21], 

this model is used for its nonlinear effect which is presented in the next Chapter.  

 

Myers and Gardner [23, 43] detailed a linear analysis to determine the threshold speed 

in the parameter plane of steady-state eccentricity ratio and the speed of the rotor. 

Further to that, with the help of the asymptotic analysis, this Chapter presents the case 

when the steady-state eccentricity ratio tends to zero. The significance of the radial 

restoring force in terms of various system parameters is discussed. The onset of oil-

whirl at the stability threshold is reviewed to be a Hopf bifurcation [70] by analysing the 

eigenvalues of the Jacobian determinant of the linearised system, about the steady-state 

solution.  

 

The gyroscopic effect is not considered in this Chapter, since the interest is in the in-

phase whirl which is not affected by the gyroscopic moments as discussed in Chapter 2. 

The rotor is assumed to be rigid based on the work in Chapter 3, which showed that the 

flexibility of a typical turbocharger rotor could be insignificant up to about 100,000 

rpm. 

 

 

4.2 STABILITY THRESHOLD  

 

4.2.1 INTRODUCTION 

 

 The aim of this Section is to determine the stability threshold of the bearing 

equilibrium state and to define the corresponding stable and unstable regions in terms of 

the steady-state eccentricity ratio and the rotational speed of the rotor. This is achieved 

by analysing the linearized equations of motion of a perfectly balanced rigid rotor 

mounted in journal bearings with a rigid support. An oscillating π -film cavitation 

model which is detailed in Chapter 1 is used as boundary conditions for the short-

bearing approximation [18] of the Reynolds’ equation in deriving the oil-film forces. 
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The details of boundary conditions in the derivation of the oil-film forces are discussed 

in Appendix A. The influence of the static load on the radial restoring force of the oil-

film is studied. The case when the eccentricity ratio tends to zero is also considered. 

 

 

4.2.2 EQUATIONS OF MOTION 

 

4.2.2.1 CARTESIAN COORDINATES 

 

The rotor-bearing system considered in this Chapter consists of a symmetric rigid rotor 

of mass 2m  supported in two identical rigidly supported journal bearings similar to the 

configuration given in Chapter 1, Section 2.2.2. Figure 4.1 shows a schematic diagram 

of the rotor in the bearing, where e  is the eccentricity of the journal centre with respect 

to the housing centre O  in the clearance C ; φ  is the attitude angle of the line of journal 

centre JC  and the bearing centre BC  with the vertical direction. Note that, from this 

Chapter onwards, the journal centre is not distinguished as the static and dynamic 

centres ( JS JDC ,C ) separately as done in the previous Chapters. This is because, the 

treatment is focussed on the static load effect in terms of its steady-state position 

defined by s,  sn φ ; the suffix s  denotes the steady-state; ,X Y  are the coordinates of the 

journal centre along the vertical and the horizontal axes respectively; F  is the static 

load along X ; ω  is the rotational speed of the rotor;   ,p p
r rF F  are the radial and the 

tangential forces along ,r s  respectively, acting on the rotor, due to the pressure in the 

oil-film caused by the rotation of the rotor; ( ) p⋅  denotes the presence of an oscillating 

π -film cavitation in the bearings. For an oscillating π -film, the extent of fluid-film is 

from 0 to θ π=  radians, while the air cavity extends from  to 2θ π π=  radians of the 

clearance as discussed in Chapter 1. The other commonly used π  film cavitation model 

is the static -filmπ model [8]. The static film model has the film extent fixed with 

respect to the housing where the boundary conditions are functions of the derivatives of 

the eccentricity ratio and the attitude angle. In the case considered in this chapter, the 

film extent is governed by the dynamics of the rotor. Holmes [38] demonstrated a better 
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correlation of the experimental journal centre orbits of a rotor system with that predicted 

by the oscillating π -film cavity model compared to the static π -film cavitation model.  

The radial force  ,p
rF  and the tangential force p

sF  are non-dimensionalised as 

  ,  p p
r r m s r mF F S F F F S F= = ; mS  is the modified Sommerfeld number for short-

bearings and is given by [23]: 

 

 
3

2
B B B

m
L RS

C F
η ω

= , (4.1) 

 

which is a non-dimensional group defined by the bearing 

radius  and length  ,  the clearance R L C , the viscosity of oil-film cμ  , the speed ω  and 

the static load F . It can be seen from Eq. (4.6) in comparison with Eq. (4.4), that the 

non-dimensional load capacity (static load) F  is given by the inverse of the 

Sommerfeld number 1 mS . rF  and sF  are obtained by integrating the short-bearing 

approximation of the Reynolds’ equation for thin films and applying the boundary 

condition of an oscillating π -film. The film forces are given by [19, 23] :  
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where n  is the eccentricity ratio given by the ratio of the eccentricity e  to the clearance 

C . The derivation of these hydrodynamic forces is given in Appendix A. The radial 

restoring force rF  helps the stability of the rotor, while the tangential force sF  causes 

the rotor to whirl as seen in Chapter 1. From Eq. (4.2), it can be seen that rF  is 

stiffness-like in nature due to the presence of the spring force term 

( )22 2(1 2 ) 1n nφ⎡ ⎤− −⎢ ⎥⎣ ⎦
& . The radial force in a full-film [20] is entirely damping-like in 
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nature and is given by ( ) ( )5 22 21 2 2 1rF n n nπ⎡ ⎤= + −⎢ ⎥⎣ ⎦
& . Under the action of the film 

forces given by Eqs. (4.2) and (4.3) in each bearing, the equations of motion of the 

symmetric rotor supported in two such identical journal bearings with rigid support, 

along X  and Y are given by: 

 

 
2

  2 cos sin   p p
r s X

d Xm F F F F
dt

φ φ= + − = , (4.4) 

 

        
2

  2 sin cos    p p
r s Y

d Ym F F F
dt

φ φ= + = . (4.5) 

 

From Figure 4.1, it is seen that the static load is given by ( ) ( )2 2

  
p p
r sF F F= + . The 

non-dimensional form of Eqs. (4.4) and (4.5) are given as: 

 

 
2 1 cos sinr s
m m

X F F
S S
ω φ φ= + −

&&
, (4.6) 

 

      
2

sin cosr s
m

Y F F
S
ω φ φ= +

&&
, (4.7) 

 

where: X X C= , Y Y C= , ( )
1
2/mC Fω ω= , tτ ω= , ω  is the rotor speed; the over-

dots denote the derivative with respect to τ ;  Note that ω  is non-dimensionalised using 

the static load, since the influence of the static load is the subject of interest in this 

Chapter. Hence it is different to the non-dimensional speed ω̂  used in the previous 

Chapters. Equations (4.6) and (4.7) can be represented as the functions of co-ordinates 

in the form: 

 

 2 ( , , , , )m
X m

SX F X Y X Y S
ω

= & &&& , (4.8) 
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 2 ( , , , , )m
Y m

SY F X Y X Y S
ω

= & &&& . (4.9) 

 

 

4.2.2.2 POLAR CO-ORDINATES 

 

The Cartesian system is mostly used in this thesis which is convenient for analytical 

purposes. Some of the advantages of this form are listed by Barrett [37]. However, it is 

found to be convenient to use the polar form in MATLAB programming as well as for 

the asymptotic analysis in Section 4.3.1.  

 

Using the equations cosX n φ=  and sinY n φ= , the equations of motion in ,n φ  

coordinates are given by: 

 

 
22

2 cos p
r

d n dmC n F F
dt dt

φ φ
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, (4.10) 

 

 
2

2 2 sinp
s

d dn dmC n F F
dt dt dt
φ φ φ

⎡ ⎤
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⎣ ⎦
. (4.11) 

 

The non-dimensional form of Eqs. (4.10) and (4.11) are given by: 

 

 
2

2 1( ) cos r
m m

n n F
S S
ω φ φ− = +&&& , (4.12) 

 

 
2 1( 2 ) sins

m m

n n F
S S
ω φ φ φ+ = −&& && , (4.13) 

 

where rF  and sF  are given by Eqs. (4.2) and (4.3).  
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4.2.2.3 STEADY-STATE CONDITION 

 

In this Chapter, the main interest is to analyse the steady-state of the system using the 

linear analysis. In this Sub-Section, certain useful relations in terms of the system 

parameters and the steady-state variables are derived. When the journal motion reaches 

the steady-state, the dynamic behaviour does not change with time. Hence, in the 

steady-state, the solution to Eqs. (4.8) and (4.9) gives the equilibrium state ,  s sX Y , 

where, cos( )s s sX n φ= , sin( )s s sY n φ= ; sn  is the steady-state eccentricity ratio and sφ  is 

the steady-state attitude angle, which are the solutions to Eqs. (4.6) and (4.7) obtained 

by setting the time derivatives to zero. Under the steady-state condition, from Figure 

4.1, the component of the resulting force along Y is given by:  

  

 ( ) ( )sin cos 0r s s ss s
F Fφ φ+ = , (4.14) 

 

which gives, 

 

 tan s
s

r s

F
F

φ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

, (4.15) 

 

where the subscript s  denotes the steady-state condition. Substituting for ,  r sF F  from 

Eqs. (4.2) and (4.3) gives, 
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Now, the inverse of the non-dimensional load capacity is given by the Sommerfeld 

number as: 
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A change in the speed affects the Sommerfeld number as seen in Eq. (4.1) which in turn 

affects the steady-state equilibrium state. Lund [72] introduced a system parameter mσ  

which is independent of the rotor speed. It is constant for any rotor system subject to a 

constant load, using a lubricant of constant viscosity and is defined by: 

 

 
( )

3

1
22

m B B B
m

S L R

mCF C

ησ
ω

⎛ ⎞
⎜ ⎟= = ⎜ ⎟⎜ ⎟
⎝ ⎠

. (4.18) 

 

Note that the speed is non-dimensional. Figure 4.2 shows the locus of the equilibrium 

states defined by the parameters ,  s sn φ  and is plotted using Eq. (4.16). Under the action 

of the static load, the journal centre assumes the steady-state which is defined by the 

locus shown in Figure 4.2. When the radial force is negligible ( ) 0r s
F → , Eq. (4.15) 

shows that 090sφ → , i.e., the journal centre moves horizontally due to the tangential 

force which acts like a damping force as in the case of the full-film bearings [20]. When 

the tangential force is negligible, ( ) 0s s
F → , 00sφ → , the journal centre moves 

vertically down towards the housing like a mass on a spring. As these forces vary, the 

journal centre traces the path shown in Figure 4.2. It can be seen from Eqs. (4.2) and 

(4.3) that the ratio ( )t r s
F F  is independent of the speed. The relationship between these 

forces with the static load is discussed in the following Section. 

 

 

4.3 ANALYSIS OF THE LINEARIZED EQUATIONS OF 

MOTION 

    

 In this section, the equations of motion are linearised and analysed to determine 

the stability threshold between the stable and the unstable equilibrium states of the 

journal centre. The equilibrium states are defined in a parameter plane of the steady-

state eccentricity ratio of the journal centre and the rotor speed. The whirl frequency of 

the rotor system is verified at this stability threshold. The equations of motion given in 
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Eqs. (4.8) and (4.9)  are defined in the form of a first order system in terms of the state 

variables, 1 2 3 4,  ,  ,  s sx X X x X x Y Y x Y= − = = − =& &  as: 
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 (4.19) 

 

The Jacobian determinant f( )D x of the system (4.19), which is of the form f( )x x=& ,  is 

given by: 
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where: 
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 (4.21) 

 

To compute the eigenvalues s)  of A , the characteristic equation is given by:  

 

 0s− =A I) , (4.22) 

 

where I  is a 4 4×  identity matrix. The determinant in Eq. (4.22) expands into, 
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s b b s k k b b b b s

b k b k b k b k s k k k k

ω ω ω+ + + + + −

+ + − − + − =

) ) )

) . (4.23) 

 

In the stable region, the eigenvalues of the characteristic equation given in Eq. (4.23) 

are two complex conjugate pairs with negative real parts implying the existence of 

decaying amplitude. One of them crosses the imaginary axis at the threshold speed. At 

this speed, one of the pairs of eigenvalues is purely imaginary and this pair becomes 

unstable with a positive real part, which corresponds to growing amplitude, above the 

threshold speed. Using Routh’s stability criterion, 2 1 4 3 3 0 1( ) ( )A A A A A A A> + , 

where pA , 0,1,2,3,4p =  are the coefficients of terms ps) ; p  denotes the order of the 

term,  a threshold speed 0ω  that divides the stable and the unstable equilibrium states is 

determined,  which is given by [23]:  
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ω
−

=
⎛ ⎞+ − + + +
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⎜ ⎟+ − − +⎝ ⎠

. 

  (4.24) 

 

Figure 4.3 is a plot of 0ω  from Eq. (4.24) as a function of sn , which separates the stable 

and the unstable equilibrium states defined in terms of the steady-state eccentricity ratio 

and the rotational speed. If the speed is less than the threshold speed, the journal centre, 

when perturbed, spirals inwards to a stable equilibrium state. On the other hand, if the 

speed is greater than the threshold speed ( 0ω ω> ), the journal centre reaches an 

unstable equilibrium state. Any small displacement from this state, takes the journal 

centre on to an orbit which leads it to spiral out towards the housing away from the 

equilibrium state. The threshold curve asymptotes vertically for an eccentricity ratio of 

0.76sn ≈ . This implies that all the equilibrium states corresponding to the steady-state 

eccentricity ratios above about 0.76 are stable. When 0sn → , the threshold speed is 

0 2.76ω = . Two operating curves that represent two types of rotor systems are shown 

for 0.1mσ =  and 10. For a certain combination of the system parameters defined in Eq. 
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(4.18) i.e. for a specific rotor system, these curves show at what eccentricity ratio and 

speed their equilibrium state changes stability. When 1mσ >>

0.05s

, the system becomes 

unstable at a low eccentricity ratio ( n ≈ ) as the speed is increased. When 1mσ <<

0.7sn ≈

, 

the system becomes unstable at a much higher eccentricity ratio ( ). 

 

Figure 4.4(a) shows the real parts of the unstable eigenvalues crossing the imaginary 

axis and Figure 4.4(b) shows the imaginary parts crossing 0.5 which indicates oil-whirl 

at a frequency of the order of the half-rotational speed. The frequency lines 

corresponding to each eccentricity ratio crosses 0.5 at different speeds, which relates to 

the variation in the threshold speed with the eccentricity ratio. The whirling frequency 

reduces from a higher value which is fairly synchronous with the speed to about 0.5 at 

the threshold speed indicating the onset of oil-whirl. Above 0ω , it reduces further with 

the increasing speed. From Eq. (4.23), the whirl frequency at the threshold speed is 

given by [23]: 

 

( )
( )

1
2

0
0

1xx yy yy xx xy yx yx xy

xx yy

B K B K B K B K

B B
 

ω

⎛ ⎞+ − −
⎜ ⎟Ω =
⎜ ⎟+⎝ ⎠

0.76sn ≈

. (4.25) 

 

Figure 4.5 shows the plot of Eq. (4.25) where the whirl frequency at the threshold speed 

is 0.5. This is referred as the half-frequency whirl in the literature. However, the whirl 

frequency reduces as the steady-state eccentricity ratio increases. It reaches zero, when 

, where the threshold speed asymptotes vertically indicating the disappearance 

of oil-whirl. In order to get a physical insight into the behaviour of the static load with 

increase in the steady-state eccentricity ratio, the following section analyses the role of 

the bearing forces. 

 

 

4.3.1 THE EFFECT OF STATIC LOAD IN THE BEARINGS WITH π -

FILM CAVITATION 
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Figure 4.3 shows that the threshold speed asymptotes to infinity at an eccentricity ratio 

about 0.76, implying the existence of stable equilibrium states for all speeds when 

0.76sn > . It can be seen in Figure 4.2 that, increasing the static load increases the 

eccentricity of the rotor in the bearing clearance by virtue of the film stiffness and 

damping characteristics. This seems to increase the film forces which balance the static 

load in order to achieve an equilibrium state. To this end, it is necessary to understand 

the role of the film forces in achieving a stable operation. This is done in this section by 

starting with the analysis of the horizontal asymptote of the threshold curve when 

0sn → .  

 

As it has already been mentioned, Figure 4.3 shows a threshold value of 0 2.76ω =  

when 0sn ≈ . In order to evaluate this value analytically, let 2 1sn <<  then 21 1sn± ≈ , 

and Eqs. (4.16) and (4.17) can be simplified to: 

 

 1( ) tan
4s s

s

n
n
πφ − ⎛ ⎞

≈ ⎜ ⎟
⎝ ⎠

, (4.26) 

 

                  1
2 2

2

1 1( )

4

m s

s s

S n
F

n nπ
= =

⎡ ⎤⎛ ⎞ +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

.  (4.27) 

 

Equation (4.26) and (4.27) define the oil-film forces and the static load as functions of 

the steady-state eccentricity ratio. The occurrence of a factor 4π  can be seen in 

Equations (4.26) and (4.27). Hence, considering the case when 2 2 16sn π<< , Eq. (4.27) 

gives the approximation of Sommerfeld number as: 

 

 4
m

s

S
n π

= . (4.28) 

 

Since the coefficients are directly defined in terms of the steady-state eccentricity ratio, 

for this asymptote analysis, the polar form of the equations of motion given in Eqs. 
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(4.12) and (4.13) are considered in this Section. For 2 2 16sn π<< , using Eq. (4.28), the 

linear coefficients of the characteristic equation given in Eq. (4.23) can be simplified as:  

 

 2 1,  ,  ,  ,
4 4

s s s
nn n n

s

n n nK K K K
nφ φ φφπ π

⎛ ⎞ ⎛ ⎞≈ ≈ ≈ − ≈⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4.29) 

 

 
221 2 1,  ,  ,  .

2 2
s

nn n n
nB B B Bφ φ φφπ π

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞≈ ≈ − ≈ − ≈⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (4.30) 

 

Similar to Eq. (4.24), using the polar coefficients given in Eqs. (4.29) and (4.30), the 

threshold speed can be written in the form, 

  

 0
A

B C
ω =

−

)

)) , (4.31) 

 

where: 

 ( )nn n n mA B B B B Sφφ φ φ π= −
)

,     

( )( )
( )

nn nn n n

nn nn n n n n

B B K K K K
B

B K B K B K B K
φφ φφ φ φ

φφ φφ φ φ φ φ

+ −
=

+ − −

)
,   

( )
( )

nn nn n n n n

nn

B K B K B K B K
C

B B
φφ φφ φ φ φ φ

φφ

+ + +
=

+

)
.   

  

These are the functions of the coefficients in the polar co-ordinates equivalent to that of 

Eq. (4.21). Using the Sommerfeld number in Eq. (4.28), the threshold speed is 

approximately determined from Eq. (4.31) using , 

 

 

 
2

2
2
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16 24 2

s
s

s s

nA n B C
n n

π π
π π
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 (4.32) 

 

Thus, 
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 ( )
2
0 2 2

24 24
36 sn
πω

ππ
≈ =

−
, (4.33) 

i.e. 

 0
24 2.764ω
π

≈ ≈ ,  (4.34) 

 

which can be seen in Figure 4.3  for 0sn ≈ . From Eq. (4.31), it can be seen that, when 

0A < , 2
0ω  becomes negative as CB

))
>  ( 0ω  is imaginary). From Eq. (4.32), it is seen 

that this occurs when 2 2 16sn π> . For 2 2 16sn π< , 2
0ω  is positive. This suggests that 

2
0ω  changes its sign when 4 0.79sn π= + ≈ + . This is a reasonably good 

approximation of the vertical asymptote at 0.76sn ≈ , although it stems from the 

assumption 2 1sn << . This suggests that there is physical significance of the eccentricity 

ratio, 4sn π= + . Using Eq. (4.26), considering 4sn π= , the approximate tangent of 

the steady-state attitude angle is given by: 

 

 tan 1
4

s
s

r ss

F
F n

πφ
⎛ ⎞⎛ ⎞

= − ≈ =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (4.35) 

 

which makes 45sφ = o  and,   

 

 s rF F= − . (4.36) 

 

Substituting for sF  from Eq. (4.36) into Eq. (4.14) gives, 

 

 ( ) ( ) 1sin cosr s r ss s
m

F F F
S

φ φ− = = , (4.37) 

 

i.e., 
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 ( )1 2 r s
m

F F
S

= =  or  1 0.707
2

r

s

F
F

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
. (4.38) 

 

As discussed in Section 4.2.2.3, the eccentricity increases as the static load increases. 

Figure 4.6 shows a reduction in the attitude angle with the increase in the static load. 

Figure 4.7(a) shows the plot showing the behaviour of the film forces and the tangent of 

the attitude angle in the parameter plane shown in Figure 4.3. Figure 4.7(b) shows the 

plot of the modified Sommerfeld number in the parameter plane. It can be seen in 

Figure 4.7(a), that the stability threshold increases rapidly when sφ  reaches 45o , 

0.62sn ≈ . The following characteristics can be observed from Figure 4.7(a) and (b): 

 

• when 0 0.62 ,  90  45s sn φ< < < <o o , the tangential force that causes the whirling is 

greater than the radial restoring force; 

 

• when 0.5sn ≈ , 055sφ ≈ , the eccentricity of the journal is about midway of the total 

clearance. The static load (1 mS ) is equal to the ratio of the radial force to the tangential 

force which is about 1 2  as shown in Figure 4.7(b); 

 

 1tan( ) 2  or  
2

r
m s

s

FS F
F

φ= ≈ = = ; (4.39) 

      

• when 0.62sn = ,  45sφ = o ,  from Eqs. (4.36) and (4.38), it is evident that the radial 

and tangential forces are equal and the radial restoring force balances about 70% of the 

static load. Figure 4.8 shows the stiffness coefficients in polar coordinates plotted under 

the steady-state conditions, where the negative destabilising cross-coupled stiffness nKφ  

[73] changes its sign at this eccentricity ratio; 

 

• when 0.62sn > , 45sφ > o , the radial force is dominant and the tangential force 

reduces. Hence the system stability improves rapidly for 0.62 0.76sn< <  while the 
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threshold speed asymptotes to infinity. nKφ  is positive but of a relatively low value for 

0.62 0.76sn≤ ≤ ; 

 

• as 1,  0,  cos( ) 1s s sn φ φ→ → → , Eq. (4.37) gives ( )r s
F F= − , i.e., the radial force 

balances the static load. Hence, for 0.76sn > , the system is stable. nKφ  is positive 

yielding a stable system. Figure 4.5 shows the absence of oil-whirl frequency for 

0.76sn > . 
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4.4 CONCLUSIONS 

 

 The linear analysis of the rotor system with a rigid rotor supported in short 

journal bearings with oscillating π -film cavitation has been presented. From the 

characteristic equation of the Jacobian determinant of the system, the stability threshold 

that separates the stable and the unstable equilibrium states was determined; this was 

plotted in a parameter plane of the steady-state eccentricity ratio and the rotor speed. A 

steady-state analysis considering the case that eccentricity ratio approaches zero was 

presented to analyse the interplay of the film forces in the presence of a static load. 

 

The threshold speed indicates the onset of oil-whirl in the rotor bearing system with π - 

film cavity at a frequency of the order 0.5 which is equivalent to half-rotational speed. 

When the steady-state eccentricity ratio is about 0.62 and the attitude angle of the 

journal centre is about 45o , the radial force equals the tangential force, where the 

stability threshold starts increasing rapidly. The presence of the static load provides a 

higher eccentricity to the journal which helps in completely suppressing oil-whirl for 

0.76sn > . This is achieved by an increase in the radial restoring force, and reduction in 

the tangential force. The radial force almost balances the static load bringing the journal 

centre to a stable equilibrium state, which is otherwise unstable. 

 

Since turbochargers are lightly loaded, the non-dimensional stability threshold speed is 

around 2.76, above which the rotor whirls outwards to the housing. However, 

experiments and the literature suggest the existence of a limit cycle leading to their 

successful operation. The occurrence of a limit cycle is related to a nonlinear system, 

and, thus, the nonlinearity should be taken into consideration. This is discussed in the 

next Chapter. 
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FIGURES 
 

 

 

 
 

Figure 4.1 Co-ordinate system of a rotor-bearing system with a rigid rotor in rigidly 
supported bearing with oscillating π -film cavitation; e  is the eccentricity  of the journal centre 
from the bearing centre BC . The bearing is rigidly supported to the housing making BC  
coincide with the housing centre O ; n e C=  is the eccentricity ratio where C  is the clearance; 
φ  is the attitude angle of the line of centres of the journal JC  and the bearing centre BC ; with 
respect to the vertical axis; r  is the along the line of centres and s  is the axis perpendicular to 
the line of centres respectively; ,p p

r sF F  are the radial and tangential forces acting along r and 
s  respectively; F  is the static load; ω  is the spin speed; ,X Y  are the co-ordinates of the 
journal centre along the axes ,X Y  whose origin is at the housing centre.  
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Figure 4.2 Locus of the equilibrium states ( ,s sn φ ) of the rotor system plotted using Eq. 
(4.16). 
 

 

Figure 4.3 Parametric plane with the threshold speed 0ω , separating the stable and the 
unstable equilibrium states under the influence of the static load on the rotor system. Two 
operating curves illustrating two different rotor systems for 0.1mσ = , 10mσ =  are also plotted 
alongside. 
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Figure 4.4 (a) Plot of the real part showing the change in stability (bifurcation) in the 
dynamic behaviour of the rotor system of the equilibrium state (b) the imaginary part of the 
unstable eigenvalues of the rotor-bearing system under the effect of a static load. It can be seen 
that the frequency ratio (imaginary part), of the unstable eigenvalue is 0.5, at the threshold speed 
indicating the half speed oil-whirl.  
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Figure 4.5 Plot showing the reduction of oil-whirl frequency ratio 0Ω corresponding to the 
threshold speed given by Eq. (4.25) from 0.5 to 0 with increase in the steady-state eccentricity 
ratio sn , as the threshold speed 0ω  approaches infinity.  

 

 

Figure 4.6 Plot illustrating the decreasing steady-state attitude angle sφ  with the increasing 
non-dimensional static load 1 mS  against the steady-state eccentricity ratio sn  (assuming fixed 
speed and bearing geometry). 
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Figure 4.7(a) Plot illustrating the variation of the linearised non-dimensional radial and the 
tangential film forces , r sF  in the bearing, alongside the stability threshold 0ω ,  tangent of the 

steady-state attitude angle tan sφ  with the increase in the steady-state eccentricity ratio. (b) Plot 
of the modified Sommerfeld number mS  varying with the steady-state eccentricity ratio along 
with the tangent of the steady-state attitude angle tan sφ . 
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Figure 4.8 Plots showing the variation of linearised stiffness coefficients with steady-state 
eccentricity ratio in polar coordinates. The negative cross-coupled stiffness term nKφ  becomes 

positive at 0.62sn =  when 45sφ = o  and remains relatively low as the threshold speed 
asymptotes to infinity which is shown in Figure 4.7.  

1 

K

0.70 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 -30 

-20 

-10

0 

10 

20 

30 

0.62

becomes positivenKφ

Kφφ

nnK

nK φ

nKφ

045sφ =

0.756

 (steady-state eccentricity ratio) sn



CHAPTER 4 THE EFFECT OF STATIC LOAD ON OIL-WHIRL IN A PERFECTLY BALANCED 
ROTOR-BEARING SYSTEM: LINEAR ANALYSIS 

 

 120



CHAPTER 5 THE EFFECT OF STATIC LOAD ON OIL-WHIRL IN A PERFECTLY BALANCED 
ROTOR-BEARING SYSTEM: NONLINEAR ANALYSIS 

 

 121

 

 

 

 

CHAPTER 5 
 

5 THE EFFECT OF STATIC LOAD ON OIL-WHIRL IN 

A PERFECTLY BALANCED ROTOR-BEARING 

SYSTEM: NONLINEAR ANALYSIS 

 

 

5.1 INTRODUCTION 

 

 In the previous Chapter, the linearised equations of motion of a general rotor-

bearing system with perfectly balanced rotor in short journal bearings with the 

oscillating π -film cavitation model were investigated. However, in order to analyse the 

nonlinear behaviour such as the limit cycle of the journal motion, it is necessary to 

perform a nonlinear analysis. This Chapter presents a nonlinear analysis of the general 

rotor-bearing system used in Chapter 4, to determine the conditions yielding the 

occurrence of a limit cycle and to examine its characteristics. As mentioned in the 

previous Chapter, combining the benefit of the oscillating π -film cavitation model used 

by Myers [43] and the short-bearing approximation applied by Gardner [8], the rotor-

bearing system under investigation has short-bearings with oscillating π -film 

cavitation. It has already been shown in the literature that the onset of oil-whirl is the 

Hopf bifurcation [21, 23].  Applying the Hopf bifurcation theory, Gardner [8] and 

Myers [21, 43] determined the nature of the bifurcation using Poore’s bifurcation 

algebra [43, 71] to analyse the nonlinear characteristics of rotor systems. In this 

Chapter, the nature of the bifurcation for the rotor system under investigation is 

determined by evaluating the first Lyapunov coefficients  [62, 63] of the equations of 

motion in the normal form, using the Centre Manifold Theorem [63]. They are also 
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verified with Poore’s bifurcation algebra following Myers and Gardner [8, 21]. The 

occurrence of  sub-critical (disappearance of an unstable limit cycle) and super-critical 

(appearance of a stable limit cycle) bifurcations [70] is shown numerically by using the 

Runge-Kutta integration method, with the help of orbit plots. Based on the analytical 

and the numerical methods, the nonlinear behaviour of the in-phase whirl motion of the 

general rotor-system with a perfectly balanced rigid rotor mounted in rigidly-supported 

bearings is analysed first, and then the applicability of the analysis to a turbocharger is 

discussed. 

 

  

5.2 HOPF BIFURCATION  

 

 In the previous Chapter, it was shown that the stable and the unstable 

equilibrium states of the journal are separated by the stability threshold which is a 

function of the steady-state eccentricity ratio, which in turn is a function of the static 

load of the rotor. It has been shown analytically, numerically, and experimentally in the 

literature that, the equilibrium state can bifurcate into a periodic orbit with a non-trivial 

amplitude [74], which is known as the limit cycle. In order to analyse the stability of the 

limit cycle in the neighbourhood of the threshold curve, several authors such as Myers 

[43], Gardner [23] , Ding [51], Wang [70] have applied the Hopf bifurcation theorem. In 

order to apply the theorem, it is necessary to first verify the occurrence of the Hopf 

bifurcation at the stability threshold, which physically signifies the onset of oil-whirl 

instability in the rotor system. This is presented in this Section following an 

introduction to the Hopf bifurcation theorem. 

 

Consider a dynamic system whose behaviour is described by the first order ordinary 

differential equation: 

 

 f( , )d v
dt

= =
xx x& , (5.1) 
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where: n∈ℜx , 1 2 3[ , , .. ]T
nx x x x=x  is a real n  dimensional vector. As the system 

parameter ν  changes, the Hopf bifurcation occurs when a single complex conjugate 

pair of eigenvalues of the linearized system of equations become purely imaginary in 

the process of crossing the imaginary axis to the right hand side. The value of the 

bifurcation parameter at which this occurs is the critical (bifurcation) value cν . More 

precisely, the Hopf bifurcation occurs when the following four conditions are satisfied 

[63]: 

 

1) Equation f( , )v=x x&  has an equilibrium state ( )ν= sx x ; 

 

2) The Jacobian matrix f ( , ) cvv ν =′= sA x  has exactly a pair of complex conjugate 

eigenvalues ( ) ( )s jα ν ν= ± Ω) , such that when cν ν= , then ( ) 0cα ν =  and 

( ) 0cνΩ ≠ , and no other eigenvalues exist with zero real part;   

 

3) f( , )x v  is continuously differentiable k  times ( kC ) in the neighbourhood of 

( , )x v = ( , )s cx v , 3k ≥  (second and third order derivatives should exist); 

 

4) ( ) 0
c

d
d ν

α ν
ν

⎛ ⎞ ≠⎜ ⎟
⎝ ⎠

, where ( )α ν  is the real part of the eigenvalue which is 

continuous at cν . 

 

Conditions 2) and 4) indicate that the linear stability of the equilibrium state is lost as 

the system parameter ν  crosses the critical value cν . Under these conditions, the 

equilibrium state bifurcates leading to the birth of the periodic solution which is known 

as a limit cycle. The limit cycle, by definition, is a unique isolated closed trajectory 

(orbit). It has the property that, at least one other neighbouring trajectory spirals either 

towards or away from the limit cycle. In the neighbourhood of which, there is no other 

isolated closed trajectory for such a continuous dynamic system [63]. 

  

In general, excluding the special case where bifurcation occurs for cν ν= ,  
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• the existence of a periodic solution in the case of cν ν>  is called a super-critical 

bifurcation;  

• the existence of a periodic solution in the case of cν ν<  is called a sub-critical 

bifurcation. 

 
In sub-critical bifurcation, an unstable limit cycle exists below the critical bifurcation 

value along with the stable equilibrium. The neighbouring trajectories are repelled from 

the unstable limit cycle. Any perturbation to a position within the limit cycle moves the 

system to a stable equilibrium state as shown in Figure 5.1(a). If perturbed to a position 

outside of the limit cycle, the system moves to a completely unstable behavior where 

the system moves far away from the stable equilibrium [8]. In super-critical bifurcation, 

there exists a stable limit cycle above the critical bifurcation value along with the 

unstable equilibrium. The stable limit cycle attracts all the neighbouring trajectories as 

shown in 1HFigure 5.1(b). Any small perturbation from the closed trajectory causes to 

return to the limit cycle, making the system stick to the limit cycle. A system with a 

stable limit cycle can exhibit self-sustained oscillations. The occurrence of the Hopf 

bifurcation is shown in the following Sub-Section in the rotor system under 

investigation. 

 

 

5.2.1 7BOIL-WHIRL: HOPF BIFURCATION 

 

   The aim of this Sub-Section is to show the occurrence of the Hopf bifurcation in 

the rotor system under investigation. Considering the rotor system defined by the 

equations of motion given in Eq. (4.19), it was shown in Chapter 4 that the equilibrium 

states are the functions of the speed and the qualitative behaviour of the rotor dynamic 

system changes as the speed is varied at the stability threshold. The threshold curve 

splits the equilibrium states of the system into stable and unstable equilibrium states as 

illustrated in Figure 4.3. Choosing the bifurcation parameter to be: 

  

 0  ν ω ω= − , (5.2) 
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allows the critical value 0cν =  at the stability threshold. Condition 2) is verified from 

the eigenvalues of the Jacobian determinant discussed in Chapter 4. The characteristic 

equation of the Jacobian matrix A  given in Eq. (4.19) gives a pair of the complex 

conjugates of purely imaginary eigenvalues and another pair of conjugates of 

eigenvalues with negative real parts at the threshold speed as shown in Figure 5.2. The 

function f( , )vx  given in Eq. (5.1), is basically a function of the forces as seen in Eq. 

(4.19). These forces are related to the film forces given in Eqs. 4.2 and 4.3, which have 

non-zero second and third order derivatives and thus condition 3)  is satisfied. 

  

The last condition for a Hopf bifurcation is the continuity of the real part of the 

conjugate pair of the eigenvalues that cross the imaginary axis as the function of the 

bifurcation parameter ν . This condition is verified as follows using the characteristic 

equation given in Eq. (4.23) [8], which can be re-written in the form:  

 

 4 3 2
2 2 2 4 4

1 1 1 1 1 0s A s B C s D s E
ω ω ω ω ω

⎛ ⎞′ ′ ′ ′ ′+ + + + + =⎜ ⎟
⎝ ⎠

) ) ) ) . (5.3) 

 
First consider a small increment in the speed δω  with respect to the threshold speed as: 

 
 0ω ω δω= + , (5.4) 

 
and a corresponding increment in the eigenvalues of the Jacobian  matrix A  as: 

 

 0s s sδ= +) ) ) , (5.5) 

 
where 0 0s j= Ω)  is purely imaginary at 0ω . In order to verify the continuity of the real 

part of the eigenvalue, the variation of the eigenvalues s) jα= + Ω , as the speed 

changes from 0  to ω δω  can be written as: 

 

 
0 0

s d d
d d

δωδω

ω ω

δ α
δω ω ω

Ω⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

)
. (5.6) 

 
Using Eqs. (5.4) and  5H(5.5), the characteristic equation in Eq. 6H(5.3) is expanded in ŝ  

about 0s)  using Taylor’s series upto the first order, which after re-arranging gives,  
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2 3
0 03 2

0 02 3
0 0

4 5
0 0

04 5 4
0 0 0

1 2

1 2

1 4

1 4 1 4

dB B
ddA Aj I I

d dC C
d

dD D dEj I
d ds

ω ω ω

ω ω ω

ω ω ω

ω ω ω ω ωδ
δω

⎛ ⎞⎡ ⎤⎛ ⎞ ′ ′⎛ ⎞+ −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎡ ⎤ ⎜ ⎟′ ′ ⎝ ⎠⎣ ⎦⎛ ⎞− − −⎜ ⎟⎢ ⎥ ⎜ ⎟⎝ ⎠ ⎡ ⎤⎛ ⎞ ′ ′⎣ ⎦ ⎛ ⎞⎜ ⎟+ −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦⎝ ⎠

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′ ′⎛ ⎞ ⎛ ⎞+ − + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦= −
)

( ) ( )( )

5
0

23
0 0 02 2 2 4

0 0 0 0

24 3

E

A C Dj I I jI B

ω

ω ω ω ω

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎡ ⎤⎛ ⎞′⎪ ⎪

⎢ ⎥⎜ ⎟⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤′ ′ ′⎪ ⎪′− − + + +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

. (5.7) 

 

Thus, the derivative α′  is obtained by separating the real part of Eq. (5.7) as: 

 

  2 2

d ac bd
d c d
αα
ω

⎛ ⎞−′ = = −⎜ ⎟
+⎝ ⎠

) )))
)) , (5.8) 

 

where: 

 

 2
02 3 2 3

0 0 0 0 0

1 4 2 1 4dE E dB B dC Ca
d d dω ω ω ω ω ω ω ω

⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′ ′
= − − − + − Ω⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

) , 2
02

0

3Dc A
ω
⎧ ⎫′

′= − Ω⎨ ⎬
⎩ ⎭

)  

 

2
0 02 3

0 0 0

1 4 2dD D dA Ab
d dω ω ω ω ω

⎧ ⎫⎡ ⎤ ⎡ ⎤′ ′ ′ ′⎪ ⎪= Ω − − − Ω⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

)
, 2 2

0 0 02
0

22 4Cd B ω
ω

⎧ ⎫′
′= Ω + − Ω⎨ ⎬

⎩ ⎭

)
; 

 ( ) ( ) s

s

dnd d
d dn dω ω
⋅ ⋅
=   ;  1 m

s m s

dSd
dn dn
ω

σ
= . The derivatives of the coefficients , , , ,A B C D E′ ′ ′ ′ ′  

are evaluated at 0ω ω=  to calculate ( )
cν

α′ . Figure 5.3 shows that 0α′ >  and 

continuous at 0cν = . Table 5.1 lists the values of the derivative α′  for a given set of 

eccentricities in the range 0 0.75sn< ≤ . Thus, all the four conditions are satisfied by the 

rotor system under investigation at the stability boundary, which shows that the onset of 

the oil-whirl is a Hopf bifurcation. Since the aim is to investigate the nonlinear 

behaviour of the system leading to the evolution of the limit cycle, the type of 

bifurcation is analysed in the following Sub-Section to determine the stability of the 

limit cycle.  
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5.3 STABILITY OF THE LIMIT CYCLE 

 

 According to the Hopf bifurcation theorem, the occurrence of a Hopf bifurcation 

leads to a significant change in the stability of a dynamic system and implies the birth of 

the limit cycle. In order to understand the behaviour of the limit cycle, the type of 

bifurcation (also referred as the direction of bifurcation) needs to be determined, i.e., 

whether it is a sub-critical or a super-critical bifurcation as discussed in Section 5.2. 

Since the bifurcation parameter is the speed, which is a function of the steady-state 

eccentricity ratio, the bifurcation direction ought to change with the steady-state 

eccentricity ratio. The aim of this Section is to determine the steady-state eccentricity 

ratio at which the bifurcation direction changes from sub-critical to super-critical. This 

is done by first reducing the 4-dimensional system given in Eq. (4.19) to a 2- 

dimensional system, essentially in a single equation in complex co-ordinates using 

Centre Manifold Reduction theorem [63]. Following that, the equation is reduced to the 

normal form in order to evaluate the first Lyapunov coefficients [62, 63]. The reduction 

and the associated derivations, closely follow the procedure given in the text book by 

Kuznetsov [63]. The Centre Manifold reduction is discussed in detail in order to extend 

the theory in the next Chapter, when the effect of unbalance is added as a periodic 

excitation.  

 

5.3.1 8BCENTRE MANIFOLD REDUCTION 

 

 In this Sub-Section, the Centre Manifold theorem is applied to the 4-dimensional 

equation of motion of the rotor-bearing system under investigation, to reduce it to a 2-

dimensional system. This simplification helps in focussing on the local behaviour of the 

system considering only the critical eigenvalues at cν . Let sx - x  be denoted as ( )νx , so 

that the equations of motion given in Eq. (4.19) can be expressed in the form of Eq. 

11H(5.1), i.e.: 

 F( , )v= +x Ax x& , (5.9) 

 

where: 4∈ℜx ; 1 2 3 4[ , , , ]Tx x x x=x is a 4-dimensional real vector; F( , )vx denotes the 

function of higher order terms with Taylor expansions in x , A  is the Jacobian f (0,0)′ , 
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x&  is the time derivative with respect to τ ; Note that the Jacobian determinant is 

evaluated at the threshold speed, i.e. when 0ν =  for the equilibrium position 0=x ; it is 

because of the assumption = sx x - x . This implies that the equilibrium state sx  is 

shifted to the origin 0=x  by the Implicit Function Theorem [63] for sufficiently small 

ν . The eigenvalues of A  are ,  1, 2...4is i =) ; 1,2s)  are a pair of complex conjugate 

eigenvalues ( ) ( ) ( )s jν α ν ν= ± Ω) , such that when 0ν = , then 0(0) 0α α= =  and 

0(0) 0Ω = Ω >  and the other 2 eigenvalues 3,4 1 1s jα= − ± Ω)  have purely negative real 

parts. Since the aim of this section is to reduce the 4-dimensional system given in Eq. 

(5.9) to a 2-dimensional system, it is essential to split the system into two equations of 

2-dimensions. This is done using the eigenvalue (modal) decomposition of the matrix 

A  in such a way that 1−=J TAT  where [ ]4 4×
T  is the eigenbasis (eigenvector basis) 

which is an invertible matrix, consisting of the 4 eigenvectors corresponding to the 4 

eigenvalues of A . J  is the resulting diagonal matrix whose diagonal elements are the 

corresponding eigenvalues. Introducing a linear invertible change of variables (co-

ordinate transformation), such as [51, 63]: 

 

 =x Tx , (5.10) 

 

where { }1 2 1 2, , ,u u v v=x  are the transformed co-ordinates. Now, system (5.9) in its 

eigenbasis [63] that is in the new co-ordinates is defined as: 

 

 [ ] 2
1 2G( ),       = , ,Tu u= + ∈ℜ0u A u u, v u&  (5.11) 

 

 2
1 2, ] ,H( ),        [ vv+ = ∈ℜv u, v= Cv v&  (5.12) 

 

where 2ℜ  denotes a real 2-dimensional vector, [ ]1 2= , Tu uu  is a real vector on the 

critical real eigenspace CT  with the eigenvectors corresponding to only the purely 

imaginary eigenvalues 1,2s)  (critical eigenvalues). Since any multiple of an eigenvector 

is also an eigenvector corresponding to an eigenvalue, all such vectors form the 

corresponding eigenspace. v  is on the real eigenspace RT  which is spanned with the 
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eigenvectors corresponding to 3,4s)  (all but the critical eigenvalues). 0A  is a 2 2×  real 

matrix corresponding to the critical eigenvalues at 0ν =  i.e. 1,2 0s j= ± Ω) ; the complex 

eigenvalues are in the Jordan canonical form where the complex conjugates of 

eigenvalues  and s s) )  are written as 
{ } { }
{ } { }
s s
s s

⎡ ⎤ℜ −ℑ
⎢ ⎥ℑ ℜ⎣ ⎦

) )

) ) . Thus, 0

0

0
0

−Ω⎡ ⎤
= ⎢ ⎥Ω⎣ ⎦

0A  and 

likewise 1 1

1 1

α
α
−Ω⎡ ⎤

⎢ ⎥Ω⎣ ⎦
=C ; G , H  are the higher order functions. It is convenient to 

rewrite this system in the complex form by introducing a complex variable 1 2z u ju= +  

and its conjugate z , which gives, 

 

 1 G( , , )z s z z z= + v)
& , (5.13) 

 

 ( , , )H z z= +v Cv v& .   (5.14) 

 

Equation corresponding to z&  is ignored because it is just the conjugate of Eq. (5.13). 

Note that the focus is on 0ν = , which is the reason for not including ν  as a variable in 

the functions G, H . In order to simplify the Centre Manifold computation by avoiding 

the coordinate transformation and the associated calculations, there is a useful method 

known as the projection method; this uses only the eigenvectors corresponding to the 

critical eigenvalues of the Jacobian matrix A  and its transpose TA . To apply this 

method, let [ ]1 2 3 4, , , Tq q q q=q  be the 4-dimensional complex eigenvector corresponding 

to the eigenvalue 1 0(0)s j= Ω) ,  and [ ]1 2 3 4, , , Tp p p p=p  be the ad-joint complex 

eigenvector. Then: 

 

 0j= ΩAq q ; 0j= − ΩAq q ,  (5.15) 

 

 0j= − ΩTA p p ; 0j= ΩTA p p , (5.16) 
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where the over-bar denotes the complex conjugate; and p q  are normal with their 

standard scalar product represented as 
1

1
n

i=
= =∑ i ip,q p q . In order to use a 4- 

dimensional real vector y  instead of the 2-dimensional real vector v , condition 

0=p,y  must be satisfied. Since p  is complex and y  is real, this sets two real 

constraints on y  where the real and the imaginary parts of ,p y  must vanish, in effect 

giving only 2-dimensions. The application of this method needs the definition of the 

vector x  from Eq. (5.9) in terms of the complex variable z  and the vector y , which is 

given by [63]: 

 

 z z= + +x q q y . (5.17) 

 

Performing a scalar multiplication of p  on both the sides of Eq. (5.17) results in,  

 

 , ,z = p x  (5.18) 

 

using the conditions , 0=p y , , 1=p q  and , 0=p q . Details of the proof for the 

condition , 0=p q  is given in Kuznetsov [63]. Substituting Eq. (5.18) for z  in Eq. 

(5.17) gives the expression of y  as: 

 

  , ,y = x - p x q - p x q , (5.19) 

 

where y  satisfies , 0=p y , since , 0=p q . Substituting Eq. (5.17) into Eq. (5.9), the 

system is written as: 

 

 ( ) ( )( )F ,z z z z z z v+ + = + + + + +q q y A q q y q q y& && . (5.20) 

 

From Eq. (5.20), the z&  and y&  terms can be separated directly except for the higher 

order function F .  Hence, it is necessary to split the higher order function F( , )vx into 

F( , ),  F( , )z v vy  respectively using Eqs. (5.18) and (5.19). Using the scalar product of p  
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on both the sides of Eq. (5.20) and separating the terms related to co-ordinate z , the 

equation of motion in the complex co-ordinate z  is given by: 

 
 ( )1 ,F ,z s z z z ν= + + +p q q y)

& . (5.21) 

 
Note that ( ) 0z j z= ΩA q q  from Eq. (5.15). Similarly, separating the terms 

corresponding to y  from Eq. (5.20) and using Eq. (5.19), the equation of motion in y  is 

given by: 

 

 
( , )

            , ( , )

, ( , )

F
F

          F , 

z z
z z

z z

ν
ν

ν

⎫+ +
⎪

− + + ⎬
⎪+ + ⎭

+
=

−

q q y
p q q y q

p q q y q

Ay
y& .   (5.22) 

 
Now, the system given in Eqs. (5.13) and (5.14) can be equivalently expressed using 

Eqs. (5.21) and (5.22) as: 

 
 1 G( , , )z s z z z= + y)

& ,  (5.23) 

 

 ( , , )H z z= +y Ay y& ,  (5.24) 

 

where the functions G  and H , using Taylor’s expansion, are written as [63]: 

2 2 3
20 11 02 30

2 2 3
21 12 03

1 1 1G( , , )
2 2 6

1 1 1                           ...
2 2 6

z z g z g zz g z g z

g z z g zz g z z z

= + + +

+ + + + + +10 01g , y g ,y

y
; 

2 21 1( , , ) ...
2 2

H z z z zz z= + + +20 11 02h h hy ; 

20 02 30 21 12 03, , , , ,g g g g g g  are complex numbers ; 10 01 ijg ,g ,h  are 2-dimensional complex 

vectors. The calculation of these coefficients is discussed in detail in Section 5.3.2. It 

can be seen that Eqs. (5.23) and (5.24) are coupled in y  and z . In order to uncouple 

them, the Center Manifold Theorem is applied. Details of the theorem can be found in 

the text books on bifurcation theory, for example [63]. According to this theorem, there 

exists a local smooth 2-dimensional invariant manifold (function) WC  tangent to CT  at 

the equilibrium state 0z =  of the form: 
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 2 21 1V( , )
2 2

z z z zz z= = + +20 11 02y w w w , (5.25) 

 

where , 0;  =ij ijp w w  is a 4-dimensional complex vector. Since V  must be real [63], 

11w  is real and =20 02w w . The Centre Manifold must be at least quadratic due to the 

tangent property. It can be seen that y  is defined as a function of z  and  z  variables. 

Substituting for y  in Eq. (5.23) decouples it from Eq. (5.24). To this end, ijw  needs to 

be determined. This is done by differentiating Eq. (5.25) with respect to τ , and equating 

the right hand side to that of Eq. (5.24) using, 

 

 V( , ) V( , )z z z zz z
z z

∂ ∂
= +

∂ ∂
y &&& , (5.26) 

 

gives, 

 

 
( )20 11 02

2 2 2 2
20 11 02

1 1 1 1
2 2 2 2

zz zz zz zz

z zz z z zz z

+ + +

⎛ ⎞= + + + + +⎜ ⎟
⎝ ⎠

20 11 02

w w w

A w w w h h h

& && &

. (5.27) 

 

Substituting for z&  and z&  from Eq. (5.23), and equating the coefficients of the like-

terms in ,z z  in Eq. (5.27) upto quadratic level  gives: 

 

 
( )
( )
( )

2
0

0

2
0

:        2 ,

:        2 ,

:        2 . 

z

zz

z

⎧ Ω − =
⎪⎪ Ω − =⎨
⎪ − Ω − =⎪⎩

20 20

11 11

02 02

I A w h

I A w h

I A w h

 (5.28) 

 

Note that Eq. (5.27) does not have any linear term. Using Eq. (5.28), ijw  can be 

determined in terms of ijh . Now, substituting for y  in Eq. (5.23) from Eq. (5.25) allows 

the restriction of Eqs. (5.23) and (5.24) to the Centre Manifold according to the 

reduction principle [63] of the Centre Manifold Theorem as given by: 
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( )( )

( )( )

12 2 3
1 20 11 02 30 0

11 2
21 0

1 1 1 6 2
2 2 6

1 2 , , 2 ...
2

z s z g z g zz g z g z

g z z

−

−−

= + + + + + Ω −

+ − + Ω − +

10 20

10 11 01 20

g , I A h

g A h g I A h

)
&

. (5.29) 

 

The dynamics of the unstable system defined by Eq. (5.23) and (5.24) is essentially 

determined by the expression of z&  given in Eq. (5.29). This is in agreement with 

Shoshitaishvili’s theorem [75], which states that all the essential events near the 

bifurcation parameter value occur on the invariant manifold; they are captured by the 

0n -dimensional system, where 0n  is the dimension of the Centre Manifold. Simplifying 

the coefficients of the cubic terms in Eq. (5.29) gives, 

 

 2 2 3 2
1 20 11 02 30 21

1 1 1 1ˆ ˆ ˆ ˆ ˆ ...
2 2 6 2

z s z g z g zz g z g z g z z= + + + + + +)
& , (5.30) 

 

where ( ) 11
21 21 0ˆ 2 . . 2g g −−= − + Ω −10 11 01 20g A h g I A h ; 

( )( )1
30 30 0ˆ 6 2g g −
= + Ω −10 20g , I A h  and so on, while for the quadratic terms i.e., 

2i j+ = , ˆ ij ijg g= . It can be seen that the first order system given in Eq. (5.9) is now 

reduced to a single equation in complex co-ordinates ,z z , which can be transformed to 

the normal form which is presented in the following Sub-Section. 

 

 

5.3.2 NORMAL FORM – FIRST LYAPUNOV COEFFICIENT 

 

 This Sub-Section aims to calculate the first Lyapunov coefficient in order to 

determine the nature (type) of bifurcation in the rotor system under investigation. To 

this end, Eq. (5.30) needs to be transformed to its normal form. A normal form is a 

simplified form of a mathematical system obtained by applying a transformation (often 

a change of co-ordinates) that is considered to preserve the essential features of the 

original system [76]. The purpose is to obtain an approximation to the (unknown) 

solution of the original system that is valid over an extended range in time. 
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The Centre Manifold restriction given in Eq. (5.30) has a linear term and higher order 

terms upto cubic level. This equation which is of the form:  

 

 
2 3

1 ˆ ,
! !

k l
kl

k l
z sz g z z

k l≤ + ≤

= + ∑)
&  (5.31) 

 

where 2 3k l≤ + ≤  denotes the quadratic and the cubic terms; 2k l+ =  such as 20, 02 

and 11 denote the quadratic terms 2 2, ,z z zz  and  3k l+ =  such as 30, 03, 21, 12 denote 

the cubic terms 3 3 2 2, , ,z z z z zz ; ( ) ( ) ( )s s jν α ν ν= = + Ω) ) , (0) 0,α =  0(0) 0,Ω = Ω >  

ˆ ˆand  ( )ij ijg g ν=  can be transformed using an inverse parameter-dependent change of 

complex  coordinate [63], smoothly depending on the parameter, such as:  

 

 ( , ) ,k lz z h z z z z= +  (5.32) 

 

where 
2 3

1( , )
! !

k l
kl

k l
h z z h z z

k l≤ + ≤

= ∑  for all sufficiently small ν , into an equation with 

only the resonant cubic term: 

 

 2
1( ) ( )z s z c z zν ν= +)

& , (5.33) 

 

which is the Poincare normal form for the Hopf bifurcation. Note that Eqs. (5.31) and 

(5.33) are in their general forms consisting of functions of ν  and not specific to 0ν = . 

According to the theorem, if the 2-dimensional system has 2 pure imaginary 

eigenvalues, 1,2 0s j= ± Ω) , then the first equation of the normalised system has only the 

term (monomial) k lz z  satisfying,  

 

 1 2 1 0ks ls s+ − =) ) ) , (5.34) 

 

which gives ( )1 0k l− + = . Thus Eq. (5.34) suggests that 1k l= + ; for a cubic term 

3k l+ = , hence the irremovable term is 2z z . This irremovable nonlinear term in the 
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normal form is referred as the resonant term [62, 77]. The proof for the above Lemma 

can be found in [63]. The normal form reduction procedure using Eq. (5.32), gives 

1( )c ν  in terms of the ˆklg  coefficients which is given by [63]:  

 

   
( )

2 2
11 0220 11 1 2 21

1 2
1 2 11

ˆ ˆˆ ˆ ˆ(2 )( )
2 2 22

g gg g s s gc
s s ss

ν +
= + + +

−

) )

) ) )) . (5.35) 

 

When 1 0 2 00,  ,  ,s j s jν = = Ω = − Ω) )  the coefficient 1c  is given as: 

  

 2 2 21
1 20 11 11 02

0

ˆ1ˆ ˆ ˆ ˆ(0) 2
2 3 2

gjc g g g g⎛ ⎞= + + +⎜ ⎟Ω ⎝ ⎠
. (5.36) 

 

A limit cycle is a nonlinear phenomenon and 1c  is the coefficient of the higher order 

term defining the nonlinearity of the system in Eq. (5.33). Hence, the determination of 

1c  is the only requirement to investigate the nonlinear behaviour of the system based on 

the Poincare  normal form. This is done by using the higher order function of the 

original system in Eq. 58H(5.9), since 1c  depends on the coefficients ijg . When 0ν = , 

using Taylor’s expansion, the function F( ,0)x  in Eq. 59H(5.9) can be written in terms of 

second and third order terms as:  

 

 1 1 21 1F( ,0) B( , ) C( , , )
2 6

= +x x x x x x , (5.37) 

 

where B  and C  represent the second and the third derivative terms of the expansion 

respectively. The vector variables 1 2,x x  indicate that B  and C  are multilinear 

functions. Note that these are 4-dimensional vector functions since 1 2 3 4[ , , , ]Tx x x x=x . 

They are defined as [63]: 

  

 
24

1 1

, 1

( ,0)B ( , ) ;  1, 2,3,4i
i j k

j k j k

F i
x x=

∂
= =

∂ ∂∑ xx x x x , (5.38) 
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34

1 2 1 2

, , 1

( ,0)C ( , , ) ;  1, 2,3,4i
i j k l

j k l j k l

F i
x x x=

∂
= =

∂ ∂ ∂∑ xx x x x x x . (5.39) 

 

Note that ( )iF x  is the function on the right hand side of Eq. (4.19) corresponding to 

each ix ; 1, 2,3, 4i = . Using Eq. (5.17), substituting for x  gives B( , )x x  as 

B( , )z z z z+ + + +q q y q q y . However, after the Centre Manifold reduction, the equation 

of motion given by Eq. (5.30) and its Poincare normal form given in Eq. (5.33) are just 

functions of  and  z z . Hence the vector function B( , )x x  is given by [63]: 

 

 2 2B( , ) B( , ) 2 B( , ) B( , )z z z z z zz z+ + = + +q q q q q q q q q q , (5.40) 

 

where 

 

  
4

, 1

( )B ( ) i
i j k

j k j k

F
x x=

∂
=

∂ ∂∑ xq,q q q ;  1, 2,3, 4i = . (5.41) 

 

Likewise, the third derivative term related to 21g  in Eq. (5.30) can be expressed as: 

 

 
34

, , 1

( )C ( ) ;  1, 2,3,4i
i j k l

j k l j k l

F i
x x x=

∂
= =

∂ ∂ ∂∑ xq,q,q q q q . (5.42) 

 

The third vector in Eq. (5.42) is q  because 21g  is part of the coefficient of 2z z  term as 

shown in Eq. (5.30). Now using Eq. (5.21), it is seen that the higher order terms of the 

equation of motion in z  co-ordinate can be expressed as .F( )z z+p q q . Thus each ĝ  

coefficient of quadratic terms ( 2k l+ = ) in Eq. (5.30) can be written in this form, such 

as: 

 

 20 02 11ˆ ˆ ˆ, B( ) ;  , B( ) ;   , B( )g g g= = =p q,q p q,q p q,q .         (5.43) 

 

Similarly, the standard scalar product of the linear vector coefficients .10g y  and 

.01g y can be expressed as:     
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 ( ) ( )01. ,B , ;  . ,B ,= =10g y p q y g y p q y . (5.44) 

 

From the expression of y&  given in Eq. (5.24), it is known that ,  20 11h h  are the 

coefficients of the quadratic terms related to the higher order function H ; based on Eq. 

(5.22), they are expressed as [63]: 

 

 
B( ) ,B( ) ,B( ) ;

B( ) ,B( ) ,B( ) .

⎧ = − −⎪
⎨

= − −⎪⎩

20

11

h q,q p q,q q p q,q q

h q,q p q,q q p q,q q
 (5.45) 

 

Substituting Eq. (5.43) into Eq. (5.45) gives: 

 

 20 02

11 11

ˆB( ) ;

ˆ ˆB( ) .

g g

g g

⎧ = − −⎪
⎨

= − −⎪⎩

20

11

h q,q q q

h q,q q q
 (5.46) 

 

With the expressions given in Eqs. (5.43) through (5.46), now the coefficient 21ĝ  can be 

defined. However, the expression for 21ĝ  given in Eq. (5.30) has terms such as 1−
11A h  

and ( ) 1
02 −

Ω − 20I A h  in the place of y  in Eq. (5.44). To further simplify this in order to 

make the computation easy, from Eq. (5.15), a few identities such as: 

 

 
( ) ( )

-1 -1

0 0

-1 -1
0 0

0 0

1 1;      ;

1 12 ;  2 ,
3

j j

j j
j j

⎧ = = −⎪ Ω Ω⎪
⎨
⎪ Ω − = Ω − =
⎪ Ω Ω⎩

A q q A q q

I A q q I A q q
 (5.47) 

 

can be derived [63].  Using Eqs. (5.43), (5.44) along with (5.46), (5.47),  the coefficient 

21ĝ  given in Eq. (5.30) can be written as: 

 

 
( )1

2 221
20 11 11 02

0 0 0

,C( 2 ,B( ) ,B( )
ˆ 1 2 1ˆ ˆ ˆ ˆ

3
g

g g g g
j j j

⎧ ⎫− +
⎪ ⎪= ⎨ ⎬
+ − −⎪ ⎪Ω Ω Ω⎩ ⎭

2p q,q,q p q, W p q, W
, (5.48) 
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where: { }1
1 B( )−=W A q,q , ( ){ }1

02 B( )j −= Ω2W I - A q,q .  Equation (5.48) is a function 

consisting of only the eigenvectors and the second and third derivatives given in Eqs. 

(5.41), (5.42). Calculation of the eigenvector q  and the ad-joint eigenvector p  are 

given in Appendix C. Note that, the last two terms of Eq. (5.48) are purely imaginary. 

Thus using the coefficients determined from Eqs. (5.43) and (5.48) in Eq. (5.36), 1c  can 

be calculated.  

 

The Poincare  normal form given in Eq. (5.33) can be transformed further by dividing 

by Ω  which gives:  

 

 
( ) ( ) 21( )cdz j z z z

d
μμ

τ
⎛ ⎞= + + ⎜ ⎟Ω Ω⎝ ⎠

, (5.49) 

 

where τΩ  is the modified time and ( ) ( ) ( )μ ν α ν ν= Ω  is the new parameter because, 

(0) 0; (0) 0μ μ′= >  similar to ν . However, 1( )c μ⎛ ⎞
⎜ ⎟Ω⎝ ⎠

 which is the coefficient of 

2z z (nonlinear term) is complex. The aim is to get the first Lyapunov coefficient, which 

is a purely real coefficient of 2z z . In order to make this real, the imaginary part of this 

term is added to the modified time τΩ  such that the new time is given by [63]: 

 

 ( ) 21( )ˆ ,  c zμτ τ μ τ ⎧ ⎫= Ω +ℑ⎨ ⎬Ω⎩ ⎭
. (5.50) 

 

This allows the modified time τΩ  to be re-parameterised along the orbits [63], as τ̂  is 

now a function of μ . Expressing Eq. (5.49) in the new time gives, 

 

  ( ) 2
1( )

ˆ
dz j z l z z
d

μ μ
τ
= ± + , (5.51) 

 

where { } { }1 1 1( ) ( ) ( )l c cμ μ μ μ=ℜ Ω − ℑ Ω  is real and is called the first Lyapunov 

coefficient [63]. From Eq. (5.36), 1l  when 0μ =  is given by: 
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     { } ( ){ }1
1 20 11 0 212

0 0

(0) 1 ˆ ˆ ˆ(0)
2

c
l jg g g

ℜ
= = ℜ +Ω

Ω Ω
. (5.52) 

 

Substituting for 20 11 21ˆ ˆ ˆ,  ,  g g g  using Eqs. (5.43) and (5.48), the first Lyapunov coefficient 

is given by: 

 

 { }1 1
0

1(0) ,C( 2 ,B( ) ,B( )
2

l = ℜ − +
Ω 2p q,q,q p q, W p q, W . (5.53) 

 

Equation (5.51) becomes the normal form of the equation of motion if 1l  can be 

replaced by its sign, i.e. its signum function. This can be done by multiplying Eq. (5.51) 

by ( )
1
2

1( )l μ ; introducing a new complex variable ( )
1
2

1ˆ ( )u z l μ=  and supposing 

(0) 0α′ ≠ , { }1(0) 0cℜ ≠ ; 1( ) 0l μ ≠ , the normal form is given by:  

 

  ( ) 2ˆ ˆ ˆ ˆ u j u u uμ σ= + +& . (5.54) 

 

The over-dot denotes the derivative with respect to the new time τ̂ ; 

( ) { }( )1 1 (0) =  (0) 1sgn l sgn cσ = ℜ = ± . It is just the sign of the first Lyapunov 

coefficient at the bifurcation point 0μ = , . . 0i e ν =  that decides the direction of 

bifurcation. In order to find the amplitude of the resulting periodic journal motion, it is 

helpful to introduce the polar form of the co-ordinate û . Letting ˆ p
pju r e θ= , and writing 

it in the polar form, Eq. (5.54) becomes: 

 

 ( )2ˆ p p p
p p pjj ju r e jr e re j rθθ θθ μ σ= + = + +& && . (5.55) 

 

The subscript p  indicates the perfectly balanced rotor. By equating the real and the 

imaginary parts of Eq. (5.55), 

 

                                                    ( )2
p p pr r rμ σ= +& , (5.56) 
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1pθ =& . (5.57) 

 

Since limit cycle is a steady-state solution, by setting 0pr =& , Eq. (5.56)  gives the radius 

of the limit cycle as: 

 

 ( ) ( )pr μ σ α ν σ ν= − = − Ω , (5.58) 

 

while Eq. 99H(5.57) indicates a constant angular speed. From the radius Eq. 100H(5.56), two 

types of behaviour can be studied based on the sign of the 3r  term, σ .  101HFigure 5.4 

shows the possible steady-state dynamic behaviour of the system depending on the 

values of σ  and ν .  

 

i)  When 1σ = + , 102HFigure 5.4(a) shows an asymptotically stable equilibrium (SE) 

state for 0ν < ; 103HFigure 5.4(b) shows an unstable equilibrium state (UE) at the critical 

parameter value, 0ν = . 104HFigure 5.4(c) shows an UE state for 0ν > . There is an unstable 

limit cycle (ULC) shown in dashed lines, also known as a repelling cycle for 0ν < , 

which disappears when ν  crosses zero from its negative to positive values as shown in 

105HFigure 5.4(a). This is sub-critical Hopf bifurcation  [63].  

 

ii)   When 1σ = − , 106HFigure 5.4(d) shows a SE state for 0ν < ; 107HFigure 5.4(e) shows the 

system remaining in the neighbourhood of the equilibrium (NE). For 0ν > , a stable 

limit cycle (SLC) for of radius μ  exists as shown in 108HFigure 5.4(f). All the orbits 

starting outside or inside the cycle except at the origin 0ν =  tend to the cycle as 

time →∞ . This is super-critical Hopf bifurcation. It should be noted that the Hopf 

bifurcation is local bifurcation and is in the neighbourhood of the equilibrium.  

 

In both the cases there is a loss of stability of the equilibrium at 0ν =  under increase of 

the bifurcation parameter (the speed). In the sub-critical case ( 1σ = + ), the region of 

attraction of the equilibrium point is bounded by the unstable cycle, which shrinks as 

the parameter approaches its critical value and disappears. Thus, the system is “pushed 

out” from a neighbourhood of the equilibrium, giving a sharp or catastrophic stability 
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loss  [63]. In super-critical bifurcation, the stable equilibrium is replaced by a stable 

limit cycle with finite amplitude. Therefore, the system remains in the neighbourhood of 

the equilibrium and we have a soft or non-catastrophic stability loss [63]. If the 

bifurcation parameter ν  is made negative again, the system returns to the stable 

equilibrium in the case of a soft stability loss. On the contrary, if the system loses its 

stability sharply, resetting to a negative value of the parameter may not return the 

system back to the stable equilibrium since it may have left its region of attraction. It 

can be seen that the type of Hopf bifurcation is determined by the stability of the 

equilibrium state at the critical parameter value. The type of bifurcation in the rotor 

system under investigation will be discussed in detail in Section 5.5. 

 

It is now evident that to determine the regions of sub-critical and super-critical 

bifurcation for the rotor-bearing system under investigation, it is necessary to compute 

the first Lyapunov coefficients corresponding to each steady-state eccentricity ratio. 

Table 5.1 lists the sign of the first Lyapunov coefficient and the real and imaginary parts 

of the coefficient 1c  corresponding to the steady-state eccentricity ratios 

0.01 0.75sn≤ ≤  calculated in MATLAB. The signs of these coefficients are also 

verified by using a similar algebraic formula discussed in the following Section. 

 

 

5.3.3 POORE’S BIFURCATION FORMULA  

 

 This Sub-Section is aimed at verifying the sign change discussed above using 

the first Lyapunov coefficient by an equivalent method known as the Poore’s bifurcation 

formula. The way in which this formula is related to that of the first Lyapunov 

coefficient given in Eq. (5.53) is also presented.  

 

A.B. Poore [71] derived an algebraic formula to determine the existence and the 

stability of the bifurcated periodic orbits in a sufficiently small neighbourhood of 

( ) ( ), 0,0ν =x . The formula is given by: 
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( )

( )

0

3 2 2

2
2 2

1
0

(0) (0)     (0) (0) (0)

2 ( )

( 2 )

l l r
l j k p l j kr p q

j k p j k p p q
a

l r
l j kr p q

j k p q

j

F F Fp q q q p q q q
x x x x x x x x

k
F Fp q i q q

x x x x

α δ δ η

−

′ ′ ′ ′ ′+ Ω +Ω

⎧ ⎫∂ ∂ ∂
− +⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪= ⎨ ⎬

∂ ∂⎪ ⎪+ − Ω⎪ ⎪∂ ∂ ∂ ∂⎩ ⎭

-1Α

A I

, (5.59) 

 

where the right-hand side is similar to that of the  first Lyapunov coefficient given in 

Eq.(5.53); 1 2 3 4 1 2 3 4[ , , , ]  and  [ , , , ]T Tp p p p q q q q= =p q  are the eigenvector and the ad-

joint eigenvector used in the previous section; it is referred as the left and the right 

eigenvectors respectively in this formula, corresponding to the eigenvalue 0i+ Ω  of  the 

Jacobian A , at 0ν = ; The over bar denotes the conjugates; vectors  and p q  are 

normalised by the requirement   1=p . q , which is the dot product of the vectors similar 

to that of the standard scalar product; ak  is an arbitrary constant, and -1( )krA  denotes 

the  thk row thr  column of the inverse of the Jacobian A . Repeated indices within each 

term imply a sum from 1 to n   where n  is the number of degrees of freedom. Although 

the right-hand side of Eq. (5.59) can only be evaluated with an arbitrary positive 

constant 2
ak , this is sufficient to indicate whether the period of these orbits are 

increasing or decreasing [8]. The left-hand side of the formula is a complex number. It 

is the sign of the real part which decides the type of the bifurcation  [71]. However, 

(0)α′  has already been verified to be positive as the fourth condition of the Hopf 

bifurcation in Section 5.2.1. Hence, the sign of (0)δ ′  indicates whether the bifurcation 

is super-critical ( (0) 0δ ′ > ) or sub-critical ( (0) 0δ ′ < ), under the condition that the 

bifurcation can only occur for different signs of the bifurcation parameter, i.e. 0ν >  or 

0ν < .  

 

The sign of (0)η′  informs about the time period of the limit cycle. A positive sign 

implies an increase in the time period, while a negative sign implies a decrease in the 

time period [71]. This is further discussed in detail in the following section. The left-

hand side is equivalent to the coefficient of the resonant cubic term 1(0)c  given in Eq. 

(5.33)[51]. The relation between 1c  and Poore’s formula is discussed in the following 

Sub-Section. 
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5.4 AMPLITUDE OF THE LIMIT CYCLE 

 

   This Sub-Section describes the calculation of the amplitude of the stable and the 

unstable limit cycles which are shown to exist in the system around the threshold speed, 

in the previous Section. The amplitudes depend on the system parameters which can be 

calculated from Eq. (5.33). It should be noted that the limit cycle of the journal centre 

corresponding to higher eccentricity ratios becomes elliptical in shape compared to the 

ones at low eccentricity ratios. This is attributed to the increase in the asymmetry of the 

bearing properties with an increase in the steady-state eccentricity ratio. Hence, the 

equation for the approximate limit cycle whose shape is determined by the eigenvector 

is also presented. 

 

It is convenient to write the Poincare  normal form given in Eq. (5.33) in the polar form 

as: 

 

 3(0)p p pr r arα= +& % , (5.60) 

 

 2(0)p pbrθ = Ω + %& , (5.61) 

 

where: ŝ jα= + Ω  and 1 ( ) ( )c a jbν ν= + %% , which are the functions of the bifurcation 

parameter ν . Since the interest here is in the dynamics near the critical value 0ν = , 

expanding the coefficients about 0ν =  gives: 

 

 3 3(0) (0) (0)p p p pr r a r a rα ν ν′ ′= + +& % % , (5.62) 

 

 2 2(0) (0) (0)p p pbr b rθ ν ν′ ′= Ω +Ω + +% %& , (5.63) 

 

where α′  represents the differentiation with respect to ν ; (0) 0 and (0) 0α = Ω > . For 

sufficiently small ν , by setting 0pr =& , the  steady-state periodic solution to Eqs. (5.62) 

and (5.63) are given by [62]: 
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( )
{ }

0

1(0)pr
a c

ω ω ανα ′− −′−
= =

ℜ%
, (5.64) 

and 

 

 0
(0)(0) (0) (0)
(0)p

b t
a

θ α ν θ
⎡ ⎤⎛ ⎞

′ ′= Ω + Ω − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

%

%
, (5.65) 

 

where 0θ  is the initial phase. Note that the last terms in Eqs. (5.62) and (5.63) are 

ignored, since 2 3,r rν ν  are relatively too small for sufficiently small ν , since 1r < . 

Allowing for a slow increment of the bifurcation parameter in μ , let 

( ) ( )ν ν μ μδ μ= = . Using Taylor’s expansion of this expression about 0ν =  i.e. 

( ) 20ν δ μ′≈ , when (0) 0δ = , Eqs. (5.62) , (5.63)  become: 

 

 ( ) 2 3(0) 0 (0)p p pr r a rα δ μ′ ′= +& % , (5.66) 

 

 ( ) 2 2(0) (0) 0 (0)p pb rθ δ μ′ ′= Ω +Ω + %& . (5.67) 

 

When the amplitude is very small, let pr μ=  be the non-trivial solution of Eq. (5.66) 

[51]. Substituting for pr  into Eq. (5.66) gives, 

 

 ( )(0) 0a α δ′ ′= −% . (5.68) 

 

Introducing a time period change of the form (1 ( ) )T η ν μ+  [63, 71], where T  is the 

time period corresponding to the frequency (0)Ω  at the threshold speed, i.e.,  

   

 (0) 2 TπΩ = ; (5.69) 

 

( )η ν μ  is the change in the time period. It can be seen that the time period increases or 

decreases depending on the sign of ( )η ν . Using Taylor’s expansion about 0ν = , 
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2( ) (0)η ν μ η μ′≈ , which gives the time period change as 2(1 (0) )T η μ′+ . Thus, the 

change in whirl frequency corresponding to the time period change is given by: 

  

 2(1 (0) )p Tθ π η μ′⎡ ⎤= 2 +⎣ ⎦
& . (5.70) 

 

Using the binomial expansion of Eq. (5.70) and ignoring 3( )O μ terms, for very small 

μ ,  Eq. (5.67) can be written as: 

 

 ( )2 22 (1 (0) ) (0) (0) 0 (0)b
T
π η μ δ μ⎡ ⎤′ ′ ′− = Ω + Ω +⎣ ⎦

% , (5.71) 

 

which by using Eq. (5.69), results in,  

 

 ( )(0) 0 (0) (0)b δ η′ ′ ′⎡ ⎤= − Ω +Ω⎣ ⎦
% . (5.72) 

 

From Eqs. (5.68) and (5.72), the coefficient 1(0)c in Eq. (5.33) is given as:    

 

 ( ) ( )1 0(0) (0) 0 (0) (0) (0)c a jb jα δ δ η′ ′ ′ ′ ′⎡ ⎤= + = − + Ω +Ω⎣ ⎦
%% . (5.73) 

 

Equation (5.73) relates 1(0)c  to the left-hand side of the Poore’s bifurcation formula 

given in Eq. (5.59). Increase in the static load increases the static eccentricity which 

changes the shape of the limit cycle to an ellipse from a circle. Hence, using Eq. (5.68) 

in Eq. (5.64) and adding the steady-state solution, the limit cycle is better approximated 

in shape by the form [78, 79]: 

 

 
1
2

0
2 ˆ

i s i

j T
x x e q

π τω ω
δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧ ⎫− ⎪ ⎪⎛ ⎞= + ℜ⎨ ⎬⎜ ⎟′⎝ ⎠ ⎪ ⎪⎩ ⎭
,  (5.74) 

 

where 1,3i = , since 1 3,   s sx X X x Y Y= − = −  as given in Eq. (4.19) in Chapter 4. Based 

on the sign of the first Lyapunov coefficients, the dynamic behaviour of the rotor system 

under investigation is discussed along with the findings from the numerical analysis in 
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the following Section. The limit cycle using Eq. (5.74) is compared with that from the 

numerical analysis.  

  

 

5.5 DISCUSSION OF THE ANALYTICAL AND THE 

NUMERICAL RESULTS 

 

   In this Section, the nonlinear behaviour of the perfectly balanced rotor system 

with short-bearing approximation and oscillating π -film under investigation is 

discussed based on the analytical and the numerical findings discussed in the previous 

Sub-Sections. Table 5.1 shows two regions from the effect of the static load, based on 

the steady-state eccentricity ratios of the journal in short journal bearings with 

oscillating π -film cavitation. The journal dynamics exhibit sub-critical bifurcation for 

0.32sn ≤ , and super-critical bifurcation for 0.33 0.75sn≤ ≤ , which are defined in 

Section 5.2.  

 

The two regions for the rotor system under investigation corresponding to sub-critical 

bifurcation and super-critical bifurcation respectively are shown in the parameter plane 

in Figure 5.5(a). It is determined from the linear analysis in Chapter 4 that the journal 

centre spirals into a stable equilibrium (SE) state below the threshold speed and spirals 

out to an unstable equilibrium (UE) state above the threshold speed. In addition, the 

nonlinear analysis of the rotor system reveals the existence of a limit cycle other than 

the equilibrium state, either above or below the threshold speed, according to the Hopf 

bifurcation theorem discussed in Section 5.2.  

 

The dynamic behaviour of the journal in the two regions is discussed below in detail: 

 

Region I - sub-critical bifurcation ( )1(0) 0, 0l δ ′> < :  

 

In this region, below the stability threshold line, along with the SE state, there exists an 

unstable limit cycle (ULC) of radius μ . Figure 5.5(b) shows the sub-critical 
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bifurcation diagram appertaining Region I. The amplitude of the ULC reduces as the 

speed approaches the threshold value. At 0ω  ULC  disappears. Above 0ω , the journal 

centre spirals out towards an UE state. Dashed lines represent the unstable solution. 

Figure 5.6(a) shows the plot of the amplitude of the limit cycles in X  direction, in the 

two regions. Figure 5.6(b) shows the plot of the approximate limit cycles calculated 

using Eq. (5.74) for the rotor system under investigation for increasing steady-state 

eccentricity ratio. It can be seen that the amplitude of the ULC increases with the 

increase in the steady-state eccentricity ratio, which attains its maximum at the 

boundary 0.32sn =  between the regions shown in Figure 5.5. It should be noted that the 

size of the ULC is very small for 0sn ≈ , which is the case for negligible static load.  

 

The bifurcation in the dynamic behaviour of the rotor system under investigation is also 

predicted from the numerical analysis by using the Runge-Kutta method. Figure 5.7 

marks the corresponding locations on the parametric plane for which the dynamic 

behaviour of the journal centre are plotted from the numerical solution. Figure 5.8(a) 

shows the plot of the journal centre orbit corresponding to the steady-state eccentricity 

ratio 0.1sn =  from Region I, for a speed below the threshold speed 0 0.1ω ω= − . The 

ULC given by pr μ= = 0.21 is shown to demarcate the two initial eccentricity ratios 

presented in Figure 5.8. The journal centre spirals inwards when the initial eccentricity 

ratio 0n , which is the amplitude of the whirl motion, is less than the ULC radius 

( 0 0.16n = ). Conversely, the journal centre spirals outwards away from the SE state, 

when 0n  is greater than pr  ( 0 0.26n = ). Figure 5.8(b) shows the corresponding time 

series plot of the journal centre showing the variation in the eccentricity ratio n  of the 

journal centre. The figure shows the amplitude of the whirl motion as time increases, 

when the rotor is spinning at a constant speed which is below the threshold speed.  

 

For the same initial eccentricity ratios ( 0n ) shown in Figure 5.8(a) and (b), for a speed 

above the threshold speed 0 0.1ω ω= + , Figure 5.9(a) shows the journal spiralling out 

towards an UE state. Figure 5.9(b) shows the corresponding time series.  

 

Region II - super-critical bifurcation ( )1(0) 0, 0l δ ′< > : 
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In this region, the journal centre spirals into a stable equilibrium state (SE) below the 

threshold speed. But when the rotor spins at a speed above the threshold speed, the Hopf 

bifurcation leads to the birth of a stable limit cycle (SLC) other than the existence of an 

UE. Figure 5.5(c) shows the super-critical bifurcation diagram for Region II. As the 

speed increases, the journal centre reaches a SE below 0ω . The SLC appears above 0ω  

and starts increasing in size with increasing speed. During the SLC, the journal centre 

keeps whirling at finite amplitude. Any neighbouring state of the journal centre, inside 

or outside of the SLC, attracts the journal centre to the SLC as shown in Figure 5.1(b). 

The amplitude of the SLC reduces with the increasing eccentricity ratio after the 

boundary for 0.32sn >  as shown in Figure 5.6. From the numerical analysis, for 

0.5sn = , Figure 5.10(a) shows the orbits approaching a SLC of radius 0.6pr =  for both 

the given initial eccentricity ratios that are inside ( 0 0.59n = ) and outside the SLC 

( 0 0.61n = ) for a speed above the threshold speed 0 0.1ω ω= + . Figure 5.10(b) shows 

the corresponding time series plot. But, for the same initial eccentricity ratios, Figure 

5.11(a) and (b) show the orbit and the time series plots for 0 0.1ω ω= − . The journal 

centre spirals inwards to a SE state for a speed below the threshold speed. 

 

Figure 5.12 shows the plot of the dynamic behaviour of the rotor-system under 

investigation across the bearing clearance. This gives a summary of the behaviour 

discussed above. If the steady-state eccentricity of the journal centre is within about 

32% of the clearance (Region I) with respect to the bearing centre, then the journal 

centre exhibits sub-critical bifurcation; if the eccentricity of the journal centre is 

between about 33% and 76% of the clearance (Region II), then the journal centre 

exhibits super-critical bifurcation. Above about 76%, the rotor has a stable equilibrium.  

 

On the basis of the fact that 0η′ > , it is evident that the time period of the limit cycle 

increases in both the regions as the eccentricity ratio is increased [71]. This suggests 

that the whirling frequency of the journal centre exhibiting a limit cycle reduces, as the 

static load is increased. The procedure for determining the boundary from the first 

Lyapunov coefficients was verified by determining the same using the long bearing 
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approximation for the fluid-film forces. This was found to be in agreement with the two 

boundaries given by Myers and Gardner [23, 43] for a similar system. 

The above discussion suggests that a rotor system operating in Region I is undesirable, 

since the journal centre mostly grows in amplitude towards the housing, unless limited 

by other nonlinearity in the system. Operating in Region II is desirable as the journal 

centre whirls at finite amplitude above the threshold speed. This requires choosing a 

very low mσ  as shown in Figure 4.3 in Chapter 4, for example, 0.1mσ = ; this means 

that the design parameters and the static load combine in such a way that the operating 

curve lies mostly in Region II. For a given set of bearing parameters such as the bearing 

dimensions and the lubricant viscosity, Eq. (4.18) suggests that the external static load 

can aid in achieving this. However, the analysis signifies that for the case of a 

turbocharger, mσ  is very high due to the negligible static load. Figure 5.13 depicts the 

operating curves corresponding to very high 100,  500mσ =  in comparison with that of 

relatively low values, such as, 1.2,  10mσ =  in Region I. It is evident that the operating 

curves represented by 100 and 500mσ =  reach a very low eccentricity ratio close to 

0.001sn ≈ , at a very low speed and asymptote vertically. It is shown that in Region I, 

the journal centre reaches SE or ULC below the threshold speed and UE above the 

threshold speed. It can be seen in Figure 5.6(a) that the ULC is too small for very small 

eccentricity ratios. This suggests that for most of the speed range, the journal centre of a 

turbocharger rotor spirals outwards.  

 

 

5.6 CONCLUSIONS 

 

  In a dynamic system of a perfectly balanced rotor in short-bearings with 

oscillating π -film cavitation, the onset of oil-whirl was reviewed and related to the 

Hopf bifurcation. The 4-dimensional system was reduced to a 2-dimensional one by 

applying the Centre Manifold Theorem. Then the system was transformed to a normal 

form, wherein the nonlinear hydrodynamic oil-film forces were considered upto the 

third order; the Hopf bifurcation was examined. The nature (type) of bifurcation in the 

parameter plane was determined by calculating the first Lyapunov coefficients of the 
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normal form. A boundary was determined between the two identified bifurcation 

regions for the rotor system, in terms of the steady-state eccentricity ratio. This was 

verified using the Poore’s bifurcation algebra. The dynamic behaviour of the rotor 

system in these regions was presented in the form of orbit plots produced from the 

numerical analysis.  

 

The dynamic behaviour of the journal bifurcates by experiencing a change in the 

stability at the threshold speed that separates the stable and the unstable equilibrium 

states of the journal centre and is characterized also by the disappearance or appearance 

of a limit cycle. The rotor system exhibits sub-critical bifurcation (disappearance of an 

unstable limit cycle) if the steady-state eccentricity ratio of the journal under the static 

load is less than 0.32 and super-critical bifurcation (appearance of a stable limit cycle) if 

the eccentricity ratio is between 0.33 and 0.76. Operating the rotor system in the super-

critical bifurcation region allows the journal centre to assume a stable limit cycle above 

the threshold speed. The presence of a static load increases the steady-state eccentricity 

ratio of the rotor, which helps in achieving this.  

 

Since an automotive turbocharger is generally lightly loaded, the journal has a very low 

steady-state eccentricity ratio in the bearings. Hence, the turbocharger must be operating 

in the sub-critical bifurcation region. This is undesirable since the journal effectively 

spiralled outward close to the housing, for most of the speeds. Hence, the presence of a 

static load seemed to be an option to keep the turbocharger operating in the higher 

eccentricity range, thereby allowing the existence of a stable limit cycle. 

 

The understanding of the dynamic behaviour of a turbocharger with a perfectly balanced 

rotor pertaining to very high mσ  (non-dimensional group of bearing parameters), helps 

in analysing the waterfall plots shown in Chapter 1 to determine the effect of unbalance.  

This is presented in the next Chapter. 

 

  

  

 



CHAPTER 5 THE EFFECT OF STATIC LOAD ON OIL-WHIRL IN A PERFECTLY BALANCED 
ROTOR-BEARING SYSTEM: NONLINEAR ANALYSIS 

 

 151

 

sn  
mσ =  

0mS ω  
0ω  0Ω  (0)α′  (0)δ ′  (0)η′  1(0)l  { }1(0)cℜ  { }1(0)cℑ

0.01 46.07 2.76 0.5 0.01 <0 >0 >0 0.02  -0.001 

0.05 9.18 2.76 0.50 0.03 <0 >0 >0 0.08  -0.018 

0.10 4.54 2.74 0.50 0.06 <0 >0 >0 0.13 -0.07 

0.2 2.16 2.68 0.51 0.09 <0 >0 >0 0.12 -0.16 

0.3 1.31 2.61 0.52 0.09 <0 >0 >0 0.02 -0.17 

0.32 1.19 2.59 0.52 0.08 <0 >0 >0 0.004 -0.17 

su
b-

cr
iti

ca
l b

ifu
rc

at
io

n 

0.33 1.15 2.58 0.52 0.08 >0 >0 <0 -0.006 -0.16 

0.4 0.84 2.54 0.52 0.08 >0 >0 <0 -0.07 -0.12 

0.5 0.52 2.54 0.51 0.06 >0 >0 <0 -0.17 -0.01 

0.6 0.29 2.70 0.47 0.04 >0 >0 <0 -0.39 0.19 

0.7 0.11 3.63 0.34 0.01 >0 >0 <0 -1.49 0.42 

0.75 0.03 9.87 0.13 0.00 >0 >0 <0 -10.6 -5.1 

su
pe

r-
cr

iti
ca

l b
ifu

rc
at

io
n 

 

Table 5.1 Table of the parameters , ,α δ η′ ′ ′  , the sign of the first Lyapunov coefficient 1l  
and the non linear coefficient of the cubic term in the  normal form 1c  evaluated at the threshold 
speed 0ν =  for a set of steady-state eccentricity ratios. The corresponding threshold speed 0ω  
and the whirl frequency 0Ω  are also shown. 
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FIGURES 
 

 

 

Figure 5.1 Schematic of  (a) the unstable and (b) the stable limit cycles showing the 
repelling and attracting nature respectively towards the neighbouring trajectories. EQ  is the 
equilibrium state of the dynamic system. The dashed line shows the ULC  and the grey 
continuous line shows the SLC . Based on [23] 
 

 

Figure 5.2 Plot of the real part of the eigenvalues ( s) ) at the threshold speed, varying with 
the steady-state eccentricity ratio showing a conjugate pair of purely imaginary eigenvalues and 
a conjugate pair of stable eigenvalues, which satisfies one of the conditions for the occurrence 
of the Hopf bifurcation. 
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Figure 5.3 Plot of the derivative of the real part of the eigenvalue s)  which is purely 
imaginary at the threshold speed, with respect to the rotational speed. The derivative is 
evaluated at the threshold speed to show its continuity at the threshold speed. 
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Figure 5.4 Phase portraits (orbits) related to the sub-critical and super-critical bifurcations, 
which are possible solutions to Eq. (5.54) where 1 2ˆ ˆ ˆu u ju= + ; (a) orbit below the threshold 
speed (b) at the threshold speed (c) above the threshold speed related to the sub-critical 
bifurcation (d) orbit below the threshold speed (e) at the threshold speed (f) above the threshold 
speed related to the super-critical bifurcation. SE – stable equilibrium, UE – unstable 
equilibrium, SLC – stable limit cycle, ULC – unstable limit cycle, NE – neighbourhood of 
equilibrium, 0 bifurcation paramaterν ω ω= − − . Reproduced based on the diagram given in 
[63]. 

 

0ν < 0ν = 0ν >

0ν < 0ν = 0ν >

(a) 

SLC

ULC

SE

UE

1̂u

2û
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Figure 5.5 (a) Plot showing the regions of sub-critical and super-critical bifurcations in the 
dynamics of the journal in a short-bearing with an oscillating π -film cavitation under the effect 
of a static load. σ  is the sign of the first Lyapunov coefficient 1(0)l  and /μ α= Ω  (b) 
Schematic illustration of the sub-critical bifurcation with reduction in the ULC amplitude 
below the threshold speed (c) Schematic illustration of the super-critical bifurcation with 
increase in the SLC amplitude above the threshold speed; 0ω  is the threshold speed and ω  is 
the rotor speed. 
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Figure 5.6 (a) Plot showing the limit cycle amplitude along X  direction in Region I  and 
II  (b) Plot showing the ULC  and SLC  amplitudes varying with sn ; 1l  is the first Lyapunov 
coefficient.  
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Figure 5.7 Plot showing the regions on the parametric plane with markers signifying the 
parameters - steady-state eccentricity ratio and the rotational speed, corresponding to the 
numerical plots presented in the following figures. 
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Figure 5.8 (a) Plot of the orbits corresponding to 0.1sn = (Region I) related to sub-
critical bifurcation, along with the ULC, when the rotor spins below the threshold speed 

0 0.1ω ω= − . The journal centre orbits into a SE state from an initial eccentricity ratio 

0 0.16n =  ( )< ULC  and orbits outwards for the initial eccentricity ratio 0 0.26n =  

( )> ULC , when 4.38,  0.21m prσ = = ; the black rectangle indicates the location in Figure 5.7 
in the parameter plane. (b) Time series corresponding to the orbits given in (a) showing the 
variation of the journal centre eccentricity ratio with the non-dimensional time. 
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Figure 5.9 (a) Plot of the orbits corresponding to 0.1sn = (Region I) related to sub-
critical bifurcation, when the rotor spins above the threshold speed 0 0.1ω ω= + ; the journal 
centre spirals outwards to an UE state, for the same initial eccentricity ratios ( 0n ) given in 
Figure 5.8, while all the other parameters are maintained the same; the red rectangle indicates 
the location in Figure 5.7 in the parameter plane. (b) Time series corresponding to the orbits 
shown in (a), showing the variation of the journal centre eccentricity ratio with the non-
dimensional time. 
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Figure 5.10 (a) Plot of the orbits corresponding to 0.5sn =  ( Region II ) showing a stable 

limit cycle (SLC) of radius pr μ=  for a speed above the threshold speed 0 0.1ω ω= + . The 

journal centre reaches a SLC for both the initial eccentricity ratios 0 0.59n =  ( )< SLC  and 

0 0.61n =  ( )> SLC , when 0.55mσ = , 0.60pr = ; the red triangle indicates the location in 
Figure 5.7 in the parameter plane. (b) Time series corresponding to the orbits given in (a), 
showing a stable periodic whirl motion as time increases. 
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Figure 5.11 (a) Plot of the orbits corresponding to 0.5sn = ( Region II ) showing the 
journal centre spiralling into a SE state from the same initial eccentricity ratios given in Figure 
5.10 for a speed below the threshold speed 0.1ω ω= − , when 0.55,  0.60m prσ = = ; the black 
triangle indicates the location in Figure 5.7 in the parameter plane. (b) Time series 
corresponding to the orbits shown in (a). 
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Figure 5.12 Plot showing the dynamic behaviour of the rotor-bearing system under 
investigation, across the clearance of the bearing depending on the journal eccentricity ratio; the 
system has a rigid rotor supported in short journal bearings having an oscillating -filmπ  
cavitation. The clearance is exaggerated for clarification; BC  is the bearing centre;  JC  is the 
journal centre. Note that 1sn =  is an impractical case, where there is metal-to-metal contact, 
which is the reason for marking as 1sn ≈  in the figure. 
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Figure 5.13 Parameter plane showing the regions and the operating curves for very high mσ  
values indicating the operating region of a turbocharger due to its light weight; the steady-state 
eccentricity ratios corresponding to 100 and 500m mσ σ= =  remain constant for most of the 
speed range. 1.2mσ ≈  is about the minimum value in Region I . 
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CHAPTER 6 
 

6 THE EFFECT OF UNBALANCE ON OIL-WHIRL 

INSTABILITY IN A TURBOCHARGER 

 

 

6.1 INTRODUCTION 

  

 In Chapter 4, the effect of a static load was shown to be advantageous in 

achieving high eccentricity operation in a rotor-bearing system. Added to that, it was 

concluded in Chapter 5 that a turbocharger due to its light-weight, operates in Region I 

of the parameter plane of the steady-state eccentricity ratio and the speed as shown in 

Figure 5.5, where there is a sub-critical bifurcation. As discussed in Chapter 1, the 

unbalance test data of a turbocharger was obtained from Cummins Turbo-Technologies 

Ltd., Huddersfield, UK, in the form of waterfall plots. These plots illustrate a shift in the 

system response frequency, from the second whirl frequency to the synchronous 

frequency for a certain speed range. It was shown in Chapter 2 that the second whirl 

frequency in a turbocharger corresponds to the in-phase whirl mode. Previous work, for 

example [39, 80, 81] suggests the suppression of self-excited vibration by means of an 

excitation. Castro et al.. [82] analysed the effect of unbalance on the rotor dynamic 

behaviour of a vertical rotor system. They showed that increasing the unbalance 

increased the stability threshold, thereby increasing the stable region of operation 

characterised by synchronous vibration. Nayfeh [81] defines the process of increasing 

the amplitude of the excitation to cause the free-oscillation term to decay as 

‘quenching’. In the case of an automotive turbocharger where the speed range of 

operation is quite high, the test waterfall plot from Cummins for the high imbalance case 

shows a frequency shift in the speed range of 80,000 rpm to 130,000 rpm from sub-
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synchronous to synchronous order. Hence, this Chapter aims at investigating the effect 

of rotor unbalance on the in-phase whirl frequency of a turbocharger, in both the 

transient and the steady-state conditions. Particular emphasis is placed on the speed 

range of interest based on the test data. The rotor-bearing system with a rigid rotor in 

rigidly supported journal bearings analysed with a static load in Chapter 4 and 5, is 

investigated in this Chapter with an added unbalance; this is a periodic load varying 

with speed. The bearing forces are derived by using the short-bearing approximation 

and an oscillating π -film cavitation as in Chapter 4 and 5. By numerical analysis, 

waterfall plots are produced simulating the behaviour presented from the tests. The 

equations of motion are reduced from a 4-dimensional system to a 2-dimensional 

system using the Centre Manifold Reduction theorem [63] discussed in Chapter 5. The 

equations are then simplified into an equivalent system by applying the method of 

averaging [83] for analysis and comparison with the numerical results.     

 

 

6.2 EQUATIONS OF MOTION WITH HARMONIC 

EXCITATION DUE TO UNBALANCE 

 

         This Section details the derivation of the equations of motion for the unbalanced 

rotor system. Similar to the procedure used in Chapter 5, the first order form of the 

equations of motion which are 4-dimensional are reduced to 2-dimensions by applying 

the Centre Manifold Reduction theory [63]. Using the method of averaging, the 

equations are averaged to a mathematically equivalent system that simplifies the 

analysis. 

 

Figure 6.2 shows the co-ordinate system of the rotor-bearing system with unbalance in 

the rotor. Compared to the system shown in Figure 4.1 in Chapter 4, this system has the 

centrifugal force 2( )u uF m uω=  due to the unbalance acting at the mass centre MC  which 

is eccentric by u  from the geometric centre JC , of the journal. This force rotates at the 

rotor speed ω . The system consists of a symmetric rigid rotor of mass 2 um  supported 

in two identical rigidly housed journal bearings where um  is the rotor mass inclusive of 

the unbalance mass; n  is the eccentricity ratio of the journal centre with respect to the 
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housing centre O ; φ  is the attitude angle; ,r tF F  are the radial and tangential forces; F  

is the static load; ω  is the spin speed; JC  is the journal centre and BC  is the bearing 

centre. The equations of motion of the journal centre along X  and Y are given by: 

 

 
2

2 cos sin  + cosp p
r s u X

d Xm F F F F t F
dt

φ φ ω= + − = , (6.1) 

 

 
2

2 sin cos sin   p p
r s u Y

d Ym F F F t F
dt

φ φ ω= + + = . (6.2) 

 

Similar to Chapter 4, dividing by mS F , Eqs. (4.4) and (4.5) can be written in the non-

dimensional form as: 

 

 ( ) 2
2 1 cos sin cosm

r s
SX F Fφ φ ρ τ
ω

= + − +&& , (6.3) 

 

   ( ) 2
2 sin cos sinm

r s
SY F Fφ φ ρ τ
ω

= + +&& , (6.4) 

 

where 2 u
C

ρ =  is the unbalance eccentricity ratio which is the mass eccentricity with 

respect to the geometric centre. Following Shaw and Shaw [47] and Ding [51], the 

unbalance magnitude is represented as 2ρ  rather than just ρ  to emphasise that the ratio 

is relatively small compared to the dynamic eccentricity ratio governed by the film 

forces. The equations of motion can be written in simple form as: 

         

 2
2 ( , , , , )  cosm

X m
SX F X Y X Y S ρ τ
ω

′′ ′ ′= + , (6.5) 

      

 2
2 ( , , , , )  sinm

Y m
SY F X Y X Y S ρ τ
ω

′′ ′ ′= + . (6.6) 

     

The equations of motion (6.5) and (6.6)  are defined in the form of a first order system 

in terms of the state variables, 1 2 3 4, , ,s sx X X x X x Y Y x Y′ ′= − = = − =  as: 
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1 2

2
2 1 2 3 42

3 4

2
4 1 2 3 42

,

( , , , , ) cos ,

,

( , , , , ) sin .

m
X m

m
Y m

x x
Sx F x x x x S

x x
Sx F x x x x S

ρ τ
ω

ρ τ
ω

=⎧
⎪
⎪ = +
⎪
⎨ =⎪
⎪

= +⎪
⎩

&

&

&

&

 (6.7) 

 

In the state variables, ( )s⋅  denotes the steady-state. This equation (6.7) is similar to the 

system defined in Chapter 4 with a periodic harmonic excitation at frequency equal to 

the rotor speed ( tτ ω= ). Setting 2ρ  as zero in Eq. (6.7), gives the equations of motion 

for the balanced rotor given in Eq. 4.19. The Cartesian form of the equation of motion is 

useful for further reduction using the Centre Manifold theorem similar to the procedure 

given in Chapter 5. However, the polar form which is given in the following Sub-

Section is quite convenient for the numerical integration using Runge-Kutta method 

[84] in MATLAB.  

 

 

6.2.1 POLAR FORM 

 

 The equations of motion for the rotor system shown in Figure 6.2 in the polar 

form are given by: 

 

 
22

2 cos( ) cosr u
d n dmC n F F t F
dt dt

φ ω φ φ
⎛ ⎞⎛ ⎞− = + − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, (6.8) 

 

 
2

2 2 sin( ) sins u
d dn dmC n F F t F
dt dt dt
φ φ ω φ φ

⎛ ⎞
+ = + − −⎜ ⎟

⎝ ⎠
, (6.9) 

 

which have the non-dimensional form given by: 
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 2 2
2

cos cos( )m
r

m

Sn n F
S
φφ ρ τ φ

ω
⎛ ⎞

= + + + −⎜ ⎟
⎝ ⎠

, (6.10) 

 

 
2

2

2 sin sin( )m
t

m

Sn F
n n S n
φ φ ρ τ φφ

ω
⎛ ⎞ −

= − + − +⎜ ⎟
⎝ ⎠

. (6.11) 

 

These equations show that the amount of unbalance 2ρ  that participates in the 

dynamics is controlled by the harmonic term whose argument depends on the phase 

difference between the excitation τ  and the response φ . To make the analysis easier, 

the Cartesian system is used for reducing the system to 2-dimensions, which is given in 

the following Section. 

 

 

6.3 CENTRE MANIFOLD REDUCTION AND THE METHOD OF 

AVERAGING: 

 

 This Section gives the Centre Manifold reduction of the equation of motion 

given in Eq. (6.7) similar to the procedure applied in Chapter 5. The reduced equations 

are represented as a standard perturbation problem [83] for the application of the 

method of averaging.  The unbalanced rotor system given by Eq. (6.7) can be written as 

[46]: 

 

     2( ) F( , ) ( )tν ν ρ= + +x A x x Λ& , (6.12) 

 

where, ( ) [0,cos ,0,sin ]Tt τ τ=Λ ; is 2  peridicτ π , since the period of excitation is one 

rotation of the rotor. Following the procedure outlined in Chapter 5 - Section 5.3.1, 

similar to Eq. (5.20), Eq. (6.12) can be written as: 

 

 ( ) ( ) 2F( , ) ( )z z z z z z v tρ+ + = + + + + + +q q y A q q y q q y Λ& && . (6.13) 
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From Eq. (5.20), the z&  and y&  terms can be separated directly except for the higher 

order function F .  Similar to Chapter 5, using the scalar product of p  on both the sides 

and separating the z&  terms gives: 

 

 2
1 , F( , ) , ( )z s z z z tν ρ= + + + +p q q y p Λ)

& . (6.14) 

 

From Eq. (5.20), using Eq. (5.19),  y&  is expressed as: 

 

 

2

2

2

( )( , )
         , ( , )     , ( )

, ( , )         , ( )

F
F

           F  

tz z
z z t

z z t

ρν
ν ρ

ν ρ

⎛ ⎞⎛ ⎞ Λ+ + ⎜ ⎟⎜ ⎟ ⎜ ⎟− + + + − Λ⎜ ⎟ ⎜ ⎟⎜ ⎟+ + ⎜ ⎟− Λ⎝ ⎠ ⎝ ⎠

= +

−

q q y
p q q y q p q

p q q y q p q

y Ay& ,   (6.15) 

 

which after substituting for ( )tΛ , p ,q , p , q , Eq. (5.22) can be written similar to Eq. 

(6.14) as: 

 

 ( )2

( , )
         , ( , ) cos( ) sin( )

, ( , )

F
F

           F  

z z
z z

z z

ν
ν ρ τ τ

ν

⎛ ⎞+ +
⎜ ⎟

− + + + +⎜ ⎟
⎜ ⎟+ +⎝ ⎠

= +

−
c s

q q y
p q q y q h h

p q q y q

y Ay& ,   (6.16) 

 

where 

{ }
{ }( )
{ }
{ }( )

2 1

2 2

2 3

2 4

2
1 2

2
1 2

p q
p q

p q
p q

⎧ ⎫− ℜ
⎪ ⎪− ℜ⎪ ⎪= ⎨ ⎬

− ℜ⎪ ⎪
⎪ ⎪− ℜ⎩ ⎭

ch ; 

{ }
{ }
{ }
{ }

4 1

4 2

4 3

4 4

2
2
2
2

p q
p q
p q
p q

⎧ ⎫− ℜ
⎪ ⎪− ℜ⎪ ⎪= ⎨ ⎬− ℜ⎪ ⎪
⎪ ⎪− ℜ⎩ ⎭

sh .   

 

Now, Eqs. (6.14) and (6.16) can be written in a simplified form as: 

 

 ( )2
1 2 4ˆ G( , , , ) cos sinz s z z z p pν ρ τ τ= + + +y& , (6.17) 

 

 ( )2H( , , , ) cos( ) sin( )z z ν ρ τ τ= + + +c sy Ay y h h& , (6.18) 
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where the expansion of G  and H are the same as given in Eq. (5.23) and (5.24) in 

Chapter 5.  According to the Centre Manifold Theorem discussed in Chapter 5, let the 

Centre Manifold to which the equation of motion given in Eqs. (6.17) and (6.18) are 

restricted be of the form: 

  

  ( )2 2 2
20 11 02

1 1V( , ) V( ) sin( ) cos( )
2 2

z z z zz zτ ρ τ τ= + = + + + +sn csy w w w w w , (6.19) 

 

where the last term is a function of τ , which is added due to the presence of the 

excitation term in Eqs. (6.17) and (6.18); V  is real as discussed in Chapter 5. In order to 

express y  in terms of ,z z , it is necessary to calculate w  coefficients in Eq. (6.19). To 

this end, the derivative of the right hand side of Eq. (6.19) has to be equated to that of 

Eq. (6.18). Similar to the expression given in Chapter 5 in Eq. (5.26), in order to find 

the time derivative of Eq. (6.19), y&  is defined as: 

 

 V( , ) V( , ) V( )z z z zz z
z z

τ
τ

∂ ∂ ∂
= + +

∂ ∂ ∂
y &&& . (6.20) 

 

Using Eq. (6.20),  equating the derivative of the right hand side of Eq. (6.19) to the right 

hand side of Eq. (6.18) and substituting for y  from Eq. (6.19), gives: 

 

 

( ) ( )

( )

( )

2
20 11 02

2 2 2
20 11 02

2 2 2

cos( ) sin( )

1 1 sin( ) cos( )
2 2

1 1 cos( ) sin( )
2 2

zz zz zz zz

z zz z

z zz z

ρ τ τ

ρ τ τ

ρ τ τ

+ + + + −

⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

+ + + + +20 11 02 c s

sn cs

sn cs

w w w w w

A w w w w w

h h h h h

& && &

. (6.21) 

 

Comparing the coefficients of like-terms in ,  z z  on either side of Eq. (6.21) upto 

quadratic level gives: 
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( )
( )
( )

2
0 20 20

0 11 11

2
0 02 02

:        2 ;

:     2 ;

:        2 ;
sin( ) :    ;
cos( ) :      . 

z

zz

z
τ
τ

⎧ Ω − =
⎪

Ω − =⎪
⎪

− Ω − =⎨
⎪ − = +⎪
⎪ = +
⎩

s

c

cs sn

sn cs

I A w h

I A w h

I A w h
w Aw h

w h Aw

 (6.22) 

 

Using Eq. (5.28), ijw  can be calculated for the Centre Manifold, which are the same as 

in Chapter 5. However, due to the excitation terms in the original equation of motion 

given in Eq. (6.7), Eq. (5.28) has two more vector coefficients csw  and snw . As 

discussed in Chapter 5, the function G( , , , )z z νy  in Eq. (6.17) consists of y  which can 

now be substituted with ,z z  terms using Eq. (6.19), resulting in the reduced equation 

given by: 

 

 
( )

2 2 2 2
20 11 02 21 10

2 2
01 2 4

1 1ˆ . cos sin
2 2

                   . cos sin cos sin

z sz g z g zz g z g z z G z

G z p p

ρ τ τ

ρ τ τ ρ τ τ

= + + + + + +

+ + + +

cs sn

cs sn

w w

w w

&
, (6.23) 

 

where ( )12 ( )
−

⎡ ⎤= − + +⎣ ⎦ c scsw I A Ah h ;  = +csn csw h Aw ; while the other terms are the 

same as given in Chapter 5. Letting 2 0ρ = , gives the reduced equation of motion of the 

balanced system given in Eq. (5.30). 

 

Since the interest is to understand the amplitude and the phase change of the response, it 

is necessary to convert Eq. (6.23) to the polar form. Letting  u
uiz r e θ=  in Eq. (6.23) 

gives, 

      

( )

( )

( )
( )

( )

2 2 2 3
20 11 02 21

2
10

2
01

2
2 4

2 21 1 1
2 2 2

. cos sin

. cos sin

cos sin

u u u u u

u
u u u

u

u u u u

u
u

u

i i i

ii

i

ii r e g r e g r g r e g r e

G r ee r ir
G r e

p p

θ θ θ

θθ

θ

θα

ρ τ τθ
ρ τ τ

ρ τ τ

−

−

⎡ ⎤+ Ω + + + +⎢ ⎥
⎢ ⎥

+⎢ ⎥+ = ⎢ ⎥
+ +⎢ ⎥
⎢ ⎥
+ +⎢ ⎥⎣ ⎦

cs sn

cs sn

w w

w w

&& ,  

  (6.24) 
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where the subscript u  denotes an unbalanced rotor. Cancelling uie θ  on both the sides of 

Eq. (6.24) and using the expressions 1 10w G= csw , 2 10w G= snw , 1 01cw G= csw , 

2 01cw G= snw  for simplification, results in: 

 

 ( )

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )
( )

2 2
20 20 11 11

2 3
02 02 21 21

2
1 1 2 2

2
1 1 2 2

2
2 4

3

2

1
2

1 1
2 2

cos sin

cos sin

cos sin

u r i u r i u

r i r i

u u u r i r i u

cr ci cr ci

u u

u

u

u

i i

i

i

i

i r g ig r e g ig r e

g ig r e g g r

r ir w iw w iw r

w w w w re

p p e

θ θ

θ

θ

θ

θ

α

ρ τ τ

ρ τ τ

ρ τ τ

−

−

−

−

⎡ ⎤+ Ω + + + +⎢ ⎥
⎢ ⎥
⎢ ⎥+ + + +⎢ ⎥
⎢ ⎥

+ = + + + +⎢ ⎥
⎢
+ + + +⎢
⎢
+ +⎢
⎢
⎣ ⎦

&&

⎥
⎥
⎥
⎥
⎥

, (6.25) 

 

where the subscripts ,  r i  denote the real and the imaginary parts of the coefficients 

respectively. Separating the real and the imaginary parts gives: 

 

( )

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )
( )

2 2
20 20 11 11

2 3
02 02 21

2
1 2

2
1 1 2 2

2
2 2 4

1( ) cos sin cos sin
2

1 1cos3 sin 3
2 2

cos sin

cos 2 sin 2 cos cos 2 sin 2 sin

cos sin cos c

u r u i u u r u i u u

r u i u u r u

u r r u

cr u ci u cr u ci u u

r u i u r

r g g r g g r

g g r g r

r w w r

w w w w r

p p p

α ν θ θ θ θ

θ θ

ρ τ τ

ρ θ θ τ θ θ τ

ρ θ θ τ

+ − + +

+ + +

= + +

+ + + +

+ + +

&

( )( )4os sin sinu i upθ θ τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎣ ⎦

,   

  (6.26) 

( )

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )
( )

2 2
20 20 11 11

2 3
02 02 21

2
1 2

2
1 1 2 2

2
2 2

1( ) cos sin cos sin
2

1 1cos3 sin 3
2 2

cos sin

cos 2 sin 2 cos cos 2 sin 2 sin

cos 2 sin 2 cos

u i u r u u i u r u u

i u r u u i u

u u i i u

ci u cr u ci u cr u u

i u r u

r g g r g g r

g g r g r

r w w r

w w w w r

p p

ν θ θ θ θ

θ θ

θ ρ τ τ

ρ θ θ τ θ θ τ

ρ θ θ τ

Ω + + + −

+ − +

= + +

+ − + −

+ − +

&

( )( )4 4cos 2 sin 2 sini u r up pθ θ τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎣ ⎦

.          

  (6.27) 
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It was shown in Chapter 4 that the non-dimensional bifurcation frequency 0Ω  at the 

threshold speed is about 0.5. Given the fact that the excitation frequency is the rotor 

speed, the interest is to study the effect on in-phase whirl instability during sub-

harmonic resonance, i.e., when the rotor whirling frequency is about half the excitation 

frequency. Hence, it is helpful to introduce a detuning parameter uσ  [51]. This is a 

small deviation of the whirl frequency from the sub-harmonic bifurcation frequency 

0Ω due to the excitation frequency ω , such that: 

 

 0
1
2 uσΩ = + . (6.28) 

 

In order to study the nonlinear time variant system defined by Eqs. (6.26) and (6.27), it 

is easier to study the averaged form of it. To this end, it is necessary to get the system to 

the standard form for averaging [83]. The standard form of a perturbation problem for 

the application of averaging is given by [83]: 

 

 f( , ; ),   nx x t xε ε= ∈ℜ& , (6.29) 

 

where, x  is the variable, t  is the time and ε  is a small parameter. Some details of the 

method of averaging used to obtain the information regarding the approach to the limit 

cycle is given in Appendix D. Now, to convert the rotor system given in Eqs. (6.26) and 

(6.27) into the standard form in Eq.(6.29), it is necessary to introduce the small 

parameter ε  to order the terms of the equation. Since the amplitude of the limit cycles 

born at the Hopf bifurcation curve i.e., the stability threshold discussed in Chapter 4 

increases with the square root of the bifurcation parameter ν , an appropriate scaling of 
1
2

1ur rε=  is chosen following the work of Namachivaya and Ariaratnam [49] and Ding 

[51]. This leads to, 

 

 2 2
1 1 1  ,    = ,    =uρ ερ ν εν σ εσ= . (6.30) 

 

Using Eq. (6.30), the coefficients of the linear terms in Eqs. (6.26) and (6.27) take the 

form,  
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 ( ) 1(0) (0)α ν α ν εα ν′ ′= = , (6.31) 

 

 ( ) ( )1 1
1(0) (0) (0)
2

ν ν ε σ ν′ ′Ω = Ω +Ω = + +Ω . (6.32) 

 

Substituting Eq. (6.30) through Eq. (6.32), Eqs. (6.26) and (6.27) can be represented in 

the standard form for the application of averaging as: 

    

 ( )( ) ( )
1

2 2 3 22
1 1 1 1 1 1 21 1 1 1

1G ( ) (0) h ( , )
2

r r r
u r ur Q r r g r rε θ ρ τ ε α ν ρ θ τ⎛ ⎞′= + + + +⎜ ⎟

⎝ ⎠
& , (6.33) 

 

 ( ) ( ) ( )( )
1 2

2 212
1 1 1 1 2 1 1

1

1 G ( ) (0) h ( , ) ,
2u u u uQ r Q r

r
θ θ θ θρθ ε θ τ ε σ ν θ ρ θ τ

⎛ ⎞
′= + + + +Ω + +⎜ ⎟

⎝ ⎠
&  

  (6.34) 

 

where, 1 ( )u
rQ θ  and 1 ( )uQθ θ  are the quadratic terms of harmonic functions, ( )2 uQθ θ  is a 

cubic term of harmonic function, h ( , )u
r θ τ  and h ( , )u

θ θ τ  are functions of  both the 

excitation phase τ  and the response phase uθ , G ( )r τ  and G ( )θ τ  are purely harmonic 

functions in τ . It should be noted that, the standard form given in Eqs. (6.33) and (6.34) 

have a harmonic excitation term, that is combined with a linear term in 1r  and another 

purely harmonic excitation term, both ordered differently. Thus, the way of ordering 

used in Eq. (6.30) allows the 3
1r  term and the excitation terms with function h ,hr θ , to 

be of the same order in ε . It can be seen that Eqs. (6.33) and (6.34) consist of the 

functions of uθ  and τ , which are the response and the excitation phase angles 

respectively. To allow integration with respect to τ  while averaging, these can be 

related using 
2u u
τθ ϕ= + , which implies that 1

2
u

u u
d
d
θ θ ϕ
τ

= = +& & . To incorporate the 

influence of the quadratic terms that disappear in the first order averaging, the equations 

are averaged upto the second order and the resulting equations are given by: 
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 ( ) ( )3 2
1 1sin(2 ) cos(2 )u u u u u ur r ar r U Vε α ν ρ ϕ ϕ′⎡ ⎤= + + +⎣ ⎦

& % , (6.35) 

 

       ( ) ( )3 2
0 1 1cos(2 ) sin(2 )u u u u u u ur r br r U Vθ ε ν ρ ϕ ϕ⎡ ⎤′= Ω +Ω + + −⎣ ⎦

& % , (6.36) 

 

where: (.)  denotes the averaged variables. 

{ } { }21 20 11
1
2

a g g g= ℜ −ℑ% , 

{ } { }2 2
20 11 02 11 21

1 12
3 2

b g g g g g=ℜ − − + ℑ% , 

{ } { } { } { } { }( ) { }
{ } { }( ) { } { } { }( ) { }

{ } { }( )
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2 1
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2 c c
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w w

⎛ ⎞
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⎜ ⎟
= − + ℑ +ℜ ℑ + ℜ −ℑ ℜ⎜ ⎟

⎜ ⎟
⎜ ⎟+ ℜ ℑ⎜ ⎟
⎝ ⎠

, 

{ } { }( ) { } { } { }( ) { }
{ } { }( ) { } { } { }( ) { }

{ } { }( )

4 2 11 4 2 11

1 2 4 02 2 4 02

2 1

3 3 3 3
1
3

3
2 c c

p p g p p g

V p p g p p g

w w

⎛ ⎞
− ℑ − ℜ ℑ + ℜ − ℑ ℜ⎜ ⎟

⎜ ⎟
= − + −ℜ +ℑ ℑ + ℑ +ℜ ℜ⎜ ⎟

⎜ ⎟
⎜ ⎟− ℑ +ℜ⎜ ⎟
⎝ ⎠

. 

 

Note that the expressions related to a%  and b%  give 1c a jb= + %%  as given in Eq. (5.36) in 

Chapter 5. Using linear transformation [49], the equations of motion further simplifies 

to: 

 

 ( )3 2
1

ˆ sin 2( )u u u u u ur r ar r Uε α ρ ϕ ζ= + + +& % , (6.37) 

 

 ( )2 2
1

ˆ cos 2( )u u u ubr Uϕ ε ρ ϕ ζ= Ω + + +%& , (6.38) 

 

where 2 2
1 1Û U V= + , 1 1tan 2 U Vζ = , 1(0)uα α ν′= , ( )1 1(0)u σ ν′Ω = +Ω , 1

2u uθ ϕ= +& & . 

It should be noted that Eqs. (6.37) and (6.38) are the same as the normal form given in 

Eqs. (5.62) and (5.63) in Chapter 5, if the unbalance magnitude 2
1ρ  is set to zero. Note 
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that ,  a b′ ′%%  terms are ignored in Eqs. (5.62) and (5.63) subsequently. The harmonic 

excitation term has the phase as twice as the phase of the response uϕ .  This term is a 

linear function of the response amplitude ur , which keeps increasing as the amplitude 

increases for a given unbalance value 2
1ρ . From the averaged equations, the steady-state 

amplitude of the journal motion can be determined by setting the time dependent terms 

to zero. This is done in the following Section and the modified stability threshold is 

determined. 

 

 

6.4 MODIFIED STABILITY THRESHOLD 

 

 The amplitude equation for a two-dimensional perturbation problem was derived 

by Namachivaya and Ariaratnam [49] after averaging them. Based on a stability 

analysis, they arrived at the critical bifurcation parameter, which gives the stability 

threshold for the excited system. The aim of this Section is to apply the same procedure 

for the rotor system under investigation to determine the modified stability threshold. 

However, the stability analysis is presented using the Jacobian determinant following 

Gross [85]. Under the steady-state conditions, that is, 0ur =& , 0uϕ =& , Eqs. (6.37) and 

(6.38) become: 

 

      2 2
1  

ˆ sin 2( )u u uU arρ ϕ ζ α+ = − − % , (6.39) 

  

     2 2
1  

ˆ cos 2( )u u uU brρ ϕ ζ+ = −Ω − % . (6.40) 

 

It must be noted that uϕ&  gives the shift in the phase rate from 1 2 . This stems from the 

relation 1
2u uθ ϕ= +& &  introduced before averaging. Squaring and adding Eqs. (6.39) and 

(6.40) gives 

 

 ( ) ( )( ) ( ) ( )2 22 2 2 2 2 2 2 2
1    

ˆ f( ) 2u u u u u u uU r a b r a b rρ α α= = + + +Ω + +Ω% %% % .  (6.41) 
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Re-arranging Eq. (6.41) gives the quadratic equation in 2
ur as: 

 

 ( )( ) ( ) ( ) ( )222 2 2 2 2 2 2
  1

ˆ2 0u u u u u ua b r a b r Uα α ρ+ + +Ω + +Ω − =% %% % , (6.42) 

 

whose roots give the amplitude of the limit cycle, under the effect of unbalance as: 

 

 
( ) ( )( ) ( )

( )

1/ 2
2 22 2 2

1

2 2

ˆ
u u u u

u

a b a b U a b
r

a b

α ρ α⎛ ⎞
− +Ω ± + − Ω −⎜ ⎟

= ⎜ ⎟
+⎜ ⎟

⎝ ⎠

% % %% % %

%%
. (6.43) 

 

Equation (6.43) gives a meaningful solution only if the root is real and positive. A 

quadratic equation 2 0ax bx c+ + =  has one positive real root if 4 0ac <  and two 

positive real roots if 0,  4 0b ac< >  and the discriminant  2 4 0b ac− ≥ . Eq. (6.43) has 

one positive real root provided, 

 

 ( )22 2 2
1

ˆ
u u Uα ρ+Ω < , (6.44) 

 

and two positive real roots if, 

 

 ( )22 2 2
1

ˆ
u u Uα ρ+Ω ≥ , ( ) 0u ua bα +Ω <%%  and ( ) ( )

( )

2
22

1 2 2
ˆ u ua b

U
a b

α
ρ

Ω −
≥

+

%%

%%
. (6.45) 

 

However, the possibility of two real roots suggests two possible whirling amplitudes. In 

order to ascertain the significance of this case, the stability of the solutions needs to be 

analysed [49]. This can be determined using the determinant of the Jacobian [85, 86] as: 

 

 
2 2 2

1 1

2
1

ˆ ˆ3 sin 2( ) 2 cos 2( )
ˆ2 2 sin 2( )

u u

u u u u u u u

u u u u

u u

r r
r ar U r U

br U
r

φ α ρ ϕ ζ ρ ϕ ζ

φ φ ρ ϕ ζ
φ

∂ ∂
∂ ∂ + + + +

= =
∂ ∂ − +
∂ ∂

tJ

& &

%
& & %

&

, (6.46) 
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which after substituting Eqs. (6.39) and (6.40) for the harmonic terms gives: 

 

 
2 2

2

2 2 ( )

2 2 2
u u u u

u u u

ar r br

br arα

⎡ ⎤−Ω −
⎢ ⎥

+⎢ ⎥⎣ ⎦

%%

% %
, (6.47) 

 

which is of the standard form 2 ˆ ˆ 0u us Ts D− + = , where T̂  is the trace of the matrix in Eq. 

(6.47), and D̂  is the determinant of the matrix. The eigenvalue of the Jacobian 

determinant is given by: 

 

 2 2 2 2 2ˆ 2 (2 )u u u u u u us ar brα α= + ± +Ω − +Ω%% . (6.48) 

 

This gives two conditions for stable eigenvalues such as: 

 

i) sum of the diagonal elements, ˆ 0T < , i.e., 22 4 0u uarα + <% , 

 

         2 1
2u uar α< −% ; (6.49) 

 

ii) determinant of the matrix, ˆ 0D > , i.e., 2 24 4 4 4 0u u u ua bα α+ Ω + + Ω >%% , 

  

     
( )2

2 2

u u
u

a b
r

a b

α +Ω
> −

+

%%

%%
. (6.50) 

 

Condition given in Eq. (6.50) also stems from the derivative of the function given in 

Eq.(6.41), which is ( ) ( )2 2 2 2f ( ) 2 2u u u ur a b r a bα′ = + + +Ω% %% % .  As discussed in [49], Eq. 

(6.50) implies that only the one with positive sign of Eq. (6.43) gives a stable 

eigenvalue, i.e., 
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( ) ( )( ) ( )

( )

2 22 2 2

2
2 2

ˆ
u u u u

u

a b a b U a b
r

a b

α ρ α− +Ω + + − −Ω
=

+

% % %% % %

%%
. (6.51) 

 

Equation (6.49) is the stability condition along with the conditions given in Eqs. (6.44) 

and (6.45), for one and two positive real roots respectively. The condition given in Eq. 

(6.49) signifies the loss of stability giving the stability threshold as [49]: 

 

         
22 u

c
arν
α

= −
′
%

. (6.52) 

 

Recalling that 0ν ω ω= −  for the balanced rotor, cν  signifies the shift in the stability 

threshold. The modified stability threshold is given by:  

 

        
2

0 0
2 u

u
arω ω
α

= −
′
%

. (6.53) 

 

It was shown in Chapter 5, for the system under investigation 0α′ > . This signifies that 

the threshold speed reduces when a%  is positive, i.e., in Region I, when ur  is real as 

shown in Figure 5.5. It is also evident that the threshold speed increases in Region II, 

where 0a <% . Figure 6.3 shows the plot of the modified stability threshold, 0uω  for 

2 0.01ρ =  and 0.03 with 0 0uω ω<  in Region I and 0 0uω ω>  in Region II. This effect 

further increases with increasing unbalance. As 0sn → , 2
ur  is relatively very small i.e., 

the ULC radius is very small as shown in Figure 5.6 in Chapter 5; α′  is negligible as 

shown in Figure 5.3. This suggests that the term 
22 uar

α′
%

 is too small when compared to 

0ω  such that 0 0uω ω≈ . 

 

It was shown in Chapter 5 that the operating curve of a turbocharger determined by the 

modified Sommerfeld number mσ  must lie in Region I. Based on the dynamic 

behaviour of the system in Region I, a detailed analysis of the steady-state and transient 

motion is presented in the following Section based on the numerical analysis. The 
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Section focuses on the speed range of interest given in the test waterfall plots shown in 

Chapter 1. A related analysis of the averaged equations is also presented. 

 

 

6.5 DISCUSSION OF THE NUMERICAL AND THE 

ANALYTICAL RESULTS  

 

 The waterfall plots obtained from Cummins Turbo-Technologies Ltd. were 

discussed in Chapter 1. They showed the effect of unbalance over a certain speed range.  

Figure 1.4 shows the comparative waterfall plots produced from the data collected from 

the same hardware and conditions for two different imbalance levels. These plots show 

the response frequency shifting from the in-phase whirl frequency (IP) to the 

synchronous frequency (1× ) for a range of speed. This effect seems to be quite 

simultaneous in the high unbalance case at about 80,000 rpm, than the low unbalance 

case, where the synchronous response is seen only at about 120,000 rpm. This Section 

aims at investigating similar waterfall plots obtained from the numerical analysis of a 

turbocharger. Further to that, to determine the effect of unbalance in the transient 

motion, the growth rate of whirl orbit is analysed. This study is also analytically verified 

using the averaged model. 

 

In Chapter 5, the steady-state dynamic behaviour of a general rotor system in terms of 

equilibrium states and limit cycles was investigated. Various rotor systems were 

represented on the parameter plane of steady-state eccentricity ratio and the speed in 

terms of operating curves determined by the non-dimensional group mσ . It was also 

shown that very high mσ  represents the rotor system corresponding to a turbocharger 

due to the negligible static load. As shown in Figure 5.13 in Chapter 5, 500mσ =  

represents a rotor system where the operating curve asymptotes at a very low 

eccentricity ratio 0.001sn ≈ . For any value 500mσ > , it may not make any significant 

difference. Hence, it seems reasonable to represent the turbocharger by 500mσ = , to 

demonstrate the effect of unbalance on the in-phase whirl instability. Here onwards, the 

turbocharger model is represented by the operating curve 500mσ = .  
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Since the operating curve 500mσ =  lies in Region I of the parameter plane as shown in 

Figure 5.13, the journal centre theoretically reaches an unstable limit cycle (ULC) 

below the threshold speed. It is also shown in Figure 5.6(a), that this ULC is too small 

for very low eccentricities. Moreover, Figure 6.3 shows the plot of the modified stability 

threshold under the influence of unbalance excitation, which shows a further reduction 

in the threshold speed in Region I, depending on the unbalance magnitude. Due to very 

small ULC, the journal orbit keeps growing for any perturbation to a position above the 

ULC. This could probably be the reason for the existence of the sub-synchronous 

whirling frequency right from the starting speed, as seen in Chapter 2. Moreover, the 

growth rate of the whirl orbit reduces with increasing mσ . For instance, Figure 6.4 

shows the time history of the journal motion for 5 , 50 and 500mσ =  to show the 

difference in the growth rate of a balanced rotor. Figure 6.5 shows the plot of the 

amplitude increasing with time for 500mσ = . This implies that a turbocharger takes 

relatively more time to reach the steady-state than a rotor system with a heavier rotor, at 

any given speed. 

 

 

6.5.1 TRANSIENT MOTION 

 

 In order to produce the waterfall plots similar to that shown in Figure 1.4, 

simulations are conducted by the numerical integration of the equations of motion given 

in Eqs. (6.10) and (6.11) using Runge-Kutta method. The speed is increased slowly in 

steps of 0.2 from 0.5 to 20ω = , where the orbit is allowed to grow at each speed for a 

non-dimensional time of 2000τ = ( 318 revolutions≈ ). Then, at each speed, for a time 

interval of about 1500, close to the end time, the time series is transformed to the 

frequency domain using the Fast Fourier Transformation (FFT). These are plotted in 

waterfall form which shows the information of frequency vs. magnitude varying with 

speed along the z-axis. It should be noted that this study focuses on the effect of 

unbalance on the transient behaviour and not the steady-state. However, at high speed 

such as 18ω > , the amplitude is quite high approaching the steady-state.  
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Figure 6.6 shows the envelope of the time series corresponding to the waterfall plots for 
2 0ρ =  and 2 0.003ρ = . It can be seen that the amplitude reduces for the system with 

unbalance, in the speed range of 8 to 16ω = , corresponding to a particular speed range. 

This effect can be seen more clearly in the numerical waterfall plots. Figure 6.7 shows 

the waterfall plot for the turbocharger without any unbalance 2 0ρ = . It shows the 

response of the in-phase whirl frequency, which is the sub-synchronous half-frequency 

whirl. Based on Figure 1.4, the speed range of interest is 50,000 rpm to 130, 000 rpm . 

From the non-dimensional form discussed in Chapter 4, ( ) ( )
1 1
2 2/ /mC F C gω ω ω= = , 

where g  is the acceleration due to gravity. For a clearance of 30.02 10−× m, ω  is 

6691ω≈ . Hence a non-dimensional speed range of 10 20ω≤ ≥  is the main focus. 

Figure 6.8 shows the waterfall plot, when there is an unbalance of 2 0.002ρ =  in the 

rotor. It can be clearly seen that there is a reduction in the magnitude of the sub-

synchronous response corresponding to the in-phase whirl for 15ω > . Figure 6.9 shows 

a similar waterfall plot with further increase in the unbalance to 2 0.003ρ =  where there 

is a reduction in the response for 12ω > . It is also seen in Figure 6.8 and Figure 6.9 that 

the synchronous response increases when the sub-synchronous in-phase whirl response 

reduces. However, Figure 6.10 shows the response for 2 0.005ρ = , in which, there is an 

increase in the response amplitude for 15ω > , although the response reduces for the 

speed range about 10 15ω≤ ≥ .  

 

Figure 6.11 shows the plot tracing the maximum amplitude maxn  varying with speed for 

various unbalance values. The figure shows that there is a reduction in the amplitude 

with increase in the unbalance for only a specific speed range. This range is wider for 

low unbalances than the higher ones. Beyond a certain value, unbalance has a negative 

effect by increasing the amplitude. However, this value depends on the range of speed 

as seen in Figure 6.11. For example, for 12ω = , 2 0.003ρ =  gives the minimum 

amplitude, whereas, for 15ω = , 2 0.002ρ =  is the optimum unbalance. This implies 

that, as the speed is changed continuously, depending on the rate at which the rotor 

speed is changed, the response characteristics may differ. That is, the speed range in 

which the sub-synchronous response is suppressed may vary with the rate of change of 

speed and the amount of unbalance in the rotor. 
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These curves show a dip in the amplitude at a certain speed, when the rotor is not 

balanced. Figure 6.12 shows the corresponding phase plot, i.e., the plot of the attitude 

angle corresponding to maxn . The phase angle becomes constant after the speed about 

which maxn  of the unbalanced rotor crosses that of the balanced rotor as marked in 

Figure 6.11 by circles. This plot also shows an interesting drop in the phase at speeds 

corresponding to the dips in Figure 6.11. This suggests that the phase angle (attitude 

angle) controls the unbalance response. It should be noted that the unbalance term in 

Eqs. (6.10) and (6.11), has the harmonic terms with the argument which is the phase 

difference between the excitation phase and the response phase in the harmonic 

functions. Figure 6.13 and Figure 6.14 demonstrate the way in which the amplitude 

varies with unbalance when time 2000τ = , at a speed of 10ω =  (≈66900 rpm) and 

15ω =  (≈100365 rpm) respectively. It is evident that the unbalance has a positive 

effect till it reaches an optimum value beyond which the whirl amplitude increases.  

Figure 6.15 shows the plot of the magnitude of only the sub-synchronous component of 

the whirl motion. This demonstrates a similar behaviour as seen in the time history in 

Figure 6.11.  

 

 

6.5.2 STEADY-STATE 

 

 As mentioned earlier, the positive effect of unbalance is seen in the transient 

motion of the rotor. However, at the steady-state, unbalance does not seem to influence 

the system significantly. For example, Figure 6.16 presents the amplitude of the whirl 

motion in the transient and the steady-state, for different unbalance values when the 

rotor spins at about 66900 rpm. Above the stability threshold, the journal orbits 

outwards as there is an unstable equilibrium (UE) in Region I as detailed in Chapter 5. 

For all the unbalance levels, Figure 6.16 shows the plot of the eccentricity ratio, where 

the whirl motion approaches the same level.  

 

It is known that the present rotor system has the fluid-film forces, static load and the 

unbalance force in action, at any point of time. To understand the interplay of these 

forces, Figure 6.17 is a plot of the terms of Eq. (4.7) showing the forces varying with 
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time along the Y  direction. This direction is chosen to avoid the static load effect. It is 

seen that the unbalance force remains constant, while the fluid-film forces increase with 

time, forcing the whirl orbit to grow in size until the rotor motion reaches the steady-

state. It is evident that as the rotor motion reaches the steady-state, the unbalance force 

becomes relatively insignificant compared with the dynamic fluid forces acting on the 

rotor and does not influence the dynamic behaviour. Nevertheless, as seen in Figure 

6.16, the whirl motion for an unbalanced rotor increases at a slower rate compared to 

that of a balanced rotor in the transient state, even though they approach the same 

steady-state. Hence, it may be useful to investigate the unbalance effect on the growth 

rate of the orbit size. 

  

 

6.5.3 UNBALANCE EFFECT ON THE GROWTH RATE OF THE 

WHIRL AMPLITUDE 

 

 Now, to investigate the effect of unbalance in the transient motion, where, 

beyond an optimum value, unbalance shows a negative effect by increasing the 

amplitude, three cases are analysed for 2 0,  0.005,  and 0.05ρ = . At the same speed 

10ω = ( 66,900 rpm)≈  considered for the steady-state analysis, Figure 6.18 shows the 

plot of the whirl amplitude for the three cases. These unbalance values are chosen to 

illustrate the effect on the whirl amplitude. Note that all the analyses have been run upto 

time 3500 ( 518 revolutions)τ = ≈ . Figure 6.19 shows the corresponding orbit plots 

with a reduced size (radius) of 0.62 for 2 0.005ρ = , compared to the balanced rotor with 

an orbit size of  0.8. On the other hand, the orbit increases in size to 0.85 for 2 0.05ρ = . 

Figure 6.20 shows the corresponding phase angle φ  variation with the non-dimensional 

time τ . Interestingly, the ratio φ
τ

 reduces for 2 0.005ρ =  due to a phase lag at the start 

of whirling with respect to the balanced rotor case. But, the ratio increases for 
2 0.05ρ =  when the phase angle experiences a lead at the start. This suggests that the 

value of φ& , at the start, may play a significant role in the growth rate of the whirl 

amplitude. Similar behaviour is also seen in the frequency domain. For example, at a 

given speed 10ω = , Figure 6.21 shows the frequency response plot for various 
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unbalance values; the time history in the range 750 1000τ≤ ≤  (139 to 159 revolutions) 

is transformed into the frequency domain to examine its frequency contents. As 

unbalance is increased to 0.005 and 0.007, the sub-synchronous response reduces, while 

there is an increase in the synchronous component. For a further increase in the 

unbalance to 0.15, the sub-synchronous component increases again, with a drop in the 

synchronous component. Figure 6.22 shows a similar plot for a lower speed 5ω = , 

which is the frequency transformation of the time history in the range 825 1000τ≤ ≤  

(139 to 159 revolutions). This shows a consistent behaviour but the unbalance values 

are on the higher side. Since the unbalance force is centrifugal and speed dependent, a 

higher unbalance is required at a lower speed for similar effect. Here an increase to 0.01 

and 0.05 has a positive effect. But, further increase of unbalance to 0.09 has a negative 

effect.  

 

The above discussion clearly suggests that the unbalance effect in the transient motion 

must be controlled by the initial phase angle and its rate of change. In order to verify 

this, a simple exercise is performed for 50mσ =  at a speed 3ω =  (≈20,093 rpm). The 

system is analysed for four unbalance cases, 2 0,  0.05, 0.1, 0.15ρ =  for 100τ =  to 

investigate the mechanism, at the start of whirling.  A relatively low mσ  is chosen for 

this study to have the benefit of faster orbit growth. Figure 6.23 shows the orbit plots for 

these four cases. The orbits of the unbalanced rotor, show an internal loop. Gunter and 

Barrett [37, 87] have shown that, when the rotor motion is started from the bearing 

centre at zero initial velocity, the shaft spirals outward with a combination of the 

synchronous and half-frequency whirl. The two vectors in combination produce the 

characteristic internal loop associated with oil-whirl in an unbalanced journal. These 

internal loops increase in size with increase in the unbalance magnitude. When 
2 0.1ρ = , the internal loop is close to that of the external loop, making the rotor motion 

almost whirl at the synchronous frequency. When 2 0.1ρ > , the overall orbit size starts 

growing relatively larger, where the synchronous component reduces over time. This is 

better seen in Figure 6.24, which shows the corresponding time history with difference 

in the amplitudes and the internal loop size. Figure 6.25 shows the growth of amplitude 

in time 500τ = , where the growth rate reduces for 2 0.05 and 0.1ρ =  compared to a 

balanced rotor, and increases for 2 0.15ρ = . As mentioned earlier, to understand the 
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change in the phase angle due to the presence of the unbalance, Figure 6.26 (a) and (b) 

are plotted showing the phase change with time for the case under investigation. Figure 

6.26 (b) shows a closer view of (a) emphasising the change in the first two cycles. For 
2 0,  0.05 and 0.1ρ = , φ π<  when 2τ π=  and for 2 0.15ρ = , φ π> .  After the second 

cycle, at the sub-synchronous frequency, 2 0.1ρ =  seem to have an added phase delay, 

by shifting back to zero. This phase delay during the first and the second cycles causes 

the rotor response to slow down in the case of the unbalance 2 0.1ρ = . Note that, the 

number of cycles in which phase reversals occur depends on the unbalance magnitude 

and the speed. This may depend on the significance of the unbalance force compared to 

the fluid-film forces in those cycles. However, for 2 0.15ρ = , the response leads that of 

the balanced rotor, bringing a negative effect.  This behaviour can be verified using the 

argument of the harmonic term in  Eq. (6.10), such as, 

 if φ π< , when 2τ π=  implies that ( )
2
ττ φ− > ,  

 and, if φ π>  at 2τ π=  implies that ( )
2
ττ φ− < . 

To determine the rate of change of phase, differentiating ( )τ φ−  with respect to τ  gives 

1 1 0.5  0.5d
d
φ φ φ
τ

− = − > ⇒ <& & , if φ π<  and 0.5φ >&  for φ π> . Figure 6.27 shows the 

rate of change of the phase angle which gives the non-dimensional frequency of the 

rotor motion, corresponding to the phase angle shown in Figure 6.26. Figure 6.27 shows 

that at the start of whirling, 0.5φ <&  for 2 0,0.05 and 0.1ρ = . But, for 2 0.15ρ = , 

0.5φ >& . This suggests that for any given amplitude of unbalance, if the whirl frequency 

is less than 0.5, the unbalance force vector reduces the effect of film forces in the 

transient motion. Figure 6.28 shows the plot of the radial and the tangential force terms 

in Eq. (4.7) under the effect of the unbalance. Both the forces increase at a slower rate 

relative to the balanced case, for 2 0,0.05 and 0.1ρ = . However, the forces increase in 

the case of 2  0.15ρ = . This coupled nature of amplitude and phase is clearly seen in the 

averaged Eqs. (6.37) and (6.38). Unlike the equations of motion for the balanced rotor 

given in Eqs. (5.62) and (5.63) in Chapter 5, these equations have the harmonic terms 

that couple them through the phase angle. This suggests that depending on the phase 

angle and its rate of change, the response amplitude rate changes. Figure 6.29 shows the 
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plot of ur&  varying with increasing unbalance. uϕ  is incremented by 0.03 and 0.04 to 

show the difference in ur& .  Eqs. (6.37) and  (6.38) reveal that the addition of a harmonic 

term to the linear and cubic functions of ur , forces ur&  to vary harmonically for any 

given rate of change of phase. To enunciate this behaviour, Figure 6.30 is plotted with 

all the three terms of Eq. (6.37) separately, against ur . Depending on the phase angle 

uϕ , the unbalance term can either increase or decrease ur& .  This is in agreement with the 

numerical results, where the unbalance force basically reduces the growth rate of the 

whirl amplitude, by affecting the phase at which the response occurs.  

 

 

6.6 CONCLUSIONS 

 

 The turbocharger with a rigid rotor supported on two identical rigidly supported 

bearings with π -film cavitation was analysed to study the effect of unbalance. 

Numerical simulations were done aiming to produce waterfall plots similar to the 

experimental waterfall plot provided by Cummins Turbo-Technologies Ltd. The 

experimental waterfall plot showed a shift in the response frequency of the rotor-system 

from the in-phase whirl frequency to the synchronous frequency over a certain speed 

range. Both the numerical and the analytical methods were used to investigate this 

behaviour of the turbocharger to determine the influence of unbalance in terms of the 

whirl amplitude, phase angle and their rate of change. 

 

Turbochargers due to their light weight, operate in Region I of the parameter plane of 

speed and eccentricity ratio with high mσ . Hence the turbocharger rotor, most of the 

time has its journal centre tracing an orbit that keeps growing in size. Unbalance seems 

to slow down the growth of the whirl amplitude in the transient motion, by introducing 

a phase lag in the unbalance response compared to that of the self-excited response of 

the balanced rotor. However, above a certain optimum value, unbalance has a negative 

effect by increasing the growth rate of the amplitude. This happens due to the coupled 

effect of the phase and the amplitude introduced by the unbalance in the rotor. 

 188
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Depending on the speed range of interest, the optimum unbalance varies. When the in-

phase whirl frequency component reduces, the synchronous component increases.  

 

This suggests that the effect of unbalance could be beneficial during the transient 

motion, for instance, during the acceleration and the deceleration of the engine. 

Depending on the time allowed at each speed, the effect of unbalance could be different. 

For practical reasons, it is almost impossible to have a perfectly balanced rotor. Hence, 

allowing some unbalance within the optimum level, for controlling the sub-synchronous 

vibrations seem to be a cost-effective solution worth considering into the rotor dynamic 

design of an automotive turbocharger. 
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FIGURES 
 

 
 

Figure 6.1 Adapted from the comparative waterfall plots provided by Cummins Turbo 
Technologies Ltd. based on the data was collected from the same hardware/conditions but with 
different unbalance levels: (a) shaft motion with low unbalance b) acceleration with low 
unbalance (c) shaft motion with high unbalance (d) acceleration with high unbalance. The speed 
at which the response frequency shifts from sub-synchronous to synchronous frequency is 
marked by a circle in (c). 
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Figure 6.2 Co-ordinate system of a rotor-bearing system with a rigid rotor in rigidly 
supported bearing with oscillating π -film cavitation; ε  is the eccentricity of the journal centre 
from the bearing centre BC . The bearing is rigidly supported to the housing making BC  
coincide with the housing centre O ; n e C=  is the eccentricity ratio where C  is the clearance; 
φ  is the attitude angle of the line of centres of the journal JC  and the bearing centre BC ; with 

respect to the vertical axis; ,p p
r sF F  are the radial and tangential forces acting along r and s  

respectively; 2
u uF m uω=  is the centrifugal force due to the rotor unbalance, whose eccentricity 

from the geometric centre of the journal JC  is u ; um  is the rotor mass with unbalance; MC  is 
the centre of the mass centre; F  is the static load; ω  is the spin speed; ,X Y  are the co-
ordinates of the journal centre along the axes ,X Y  whose origin is at the housing centre.  
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2  

Figure 6.3 Plot of the modified stability threshold from Eq. (6.53) due to the influence of 
the unbalance, when the tuning parameter 1 0σ ≈ ; 0.1ν = −  for  2 0.01 and 0.03ρ = . 
 

 

Figure 6.4 Plot of the whirl amplitude n (eccentricity ratio) growing with non-dimensional 
time τ  for various values of mσ , which means different rotor systems with balanced rotor 

( )2 0ρ = . As mσ increases the growth rate reduces. 
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Figure 6.5 Plot of the whirl amplitude n (eccentricity ratio) growing with time τ  for 
500mσ = , which represents a turbocharger rotor system with perfectly balanced rotor for given 

bearing dimensions and oil viscosity; 2 0.ρ =  

 

Figure 6.6 Envelope of the time history showing the variation of amplitude as speed is 
increased slowly from 0.5 to 20ω =  for the turbocharger without unbalance 2 0ρ = , and with 
unbalance 2 0.003ρ = . maxn  is the maximum amplitude reached at each speed. Since the orbit 
mostly grows outwards in the case of a turbocharger, the envelope gives the maximum 
amplitude, at each speed. 
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Figure 6.7 Waterfall plot showing the in-phase whirl frequency ( IP ) of the rotor-system 
with balanced rotor, when 500mσ =  and 2 0ρ = .  
 

 

Figure 6.8 Waterfall plot showing reduction in the amplitude at in-phase whirl frequency 
( IP ) for speeds above ω ≈ 15. The amplitude of synchronous frequency increases around that 
speed for the rotor-system with unbalance, when 500mσ =  and 2 0.002ρ = .  
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Figure 6.9 Waterfall plot showing reduction in the amplitude at in-phase whirl frequency 
( IP ) for speeds above ω ≈ 12. The amplitude of synchronous frequency increases around that 
speed for the rotor-system with unbalance, when 500mσ =  and 2 0.003ρ = .  

 

Figure 6.10 Waterfall plot showing increase in the amplitude at the in-phase whirl frequency 
( IP ) for speeds above 15ω ≈  and reduction in the amplitude for speeds between 10 15ω≤ ≤  
for the rotor-system with unbalance, when 500mσ =  and 2 0.005ρ = .  

2 4 6 8 10 12 14 16 18 

0 

1 

2 

3 

0 

5 

10 

15 

20 

ω

Ω

magnitude

66,900 rpm≈

133800 rpm≈

1×

2×

IP

2 4 6 8 10 12 14 16 18 

0 
1 
2 
3 

0 

5 

10 

15 

20 

ω

Ω

1×

2×

IP

66,900 rpm≈

133800 rpm≈

magnitude



CHAPTER 6 THE EFFECT OF UNBALANCE ON OIL-WHIRL INSTABILITY IN A 
TURBOCHARGER  

 

Figure 6.11 Plot of the maximum amplitude (eccentricity ratio) against the rotor speed 
for various values of unbalance for the rotor system corresponding to 

maxn
500mσ =  in the time 

domain. The plot shows a reduction in the amplitude with increase in unbalance for a certain 
speed range. This range reduces with increase in unbalance. 

 

Figure 6.12 Plot of the attitude angle φ  against the speed corresponding to the amplitudes 
shown in Figure 6.11. The plot shows a phase drop in the speed range of interest in the case of 
unbalanced rotor ( ). This corresponds to the dip in the amplitude shown in 2 0ρ >

phase remains almost constant as the amplitude
increases roughly above that of the balanced rotor 
marked in circles above

Figure 6.11. 
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Figure 6.13 Plot of the maximum amplitude maxn against unbalance at a speed of 
10ω = (≈66900 rpm) run for a time of 2000τ = ( ≈318 revolutions) for 500mσ = .  

 

 

Figure 6.14 Plot of the maximum amplitude maxn  against unbalance at a speed of 
15ω = (≈100365 rpm) run for a time of 2000τ = ( ≈318 revolutions) for 500mσ = .  
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Figure 6.15 Plot of the response magnitude at the sub-synchronous frequency from the 
frequency domain against unbalance for 500mσ = . This plot corresponds to the waterfall plots 
where the amplitude limit (y-axis) is based on the time series windowed for Fourier 
transformation.  

 

Figure 6.16 Plot of the amplitude n  (eccentricity ratio) against non-dimensional time τ , for 
various unbalance values at a constant speed of 10 (66,900 rpm)ω =  showing negligible 
effect in the steady-state. Each unbalance case is solved for a non-dimensional time of 5500 

 875 revolutions≈  for 500mσ = . 
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Figure 6.17 Plot of the (a) radial, (b) tangential and (c) unbalance forces acting along 
Y direction given in Eq. (4.7) varying with time when the rotor spins at a constant speed of 

10ω = and 2 0 and 0.008ρ = . Plot shows the increase in the fluid forces with time, which 
leads to their high values in the steady-state compared to the unbalance force. 
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Figure 6.18 Plot of the eccentricity ratio n  (amplitude), for various unbalance values, 
showing variation in the size of the orbits in transient motion at a constant speed of 

10 (66,900 rpm)ω = ; each unbalance case is solved for a non-dimensional time of 3500 
 518 revolutions≈  for the rotor system 500mσ =  

 

Figure 6.19 Orbit plot corresponding to the x amplitudes in Figure 6.18 showing decrease in 
the orbit size for 2 0.005ρ = and increase in the orbit size for 2 0.05ρ = . Value of 0.05  is 
chosen purposely to bring it larger than the size corresponding to the balanced rotor at this 
speed. 
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Figure 6.20 Plot of the attitude angle (phase) against time, i.e., response phase against 
excitation phase corresponding to the amplitudes shown in Figure 6.16. Reduction in phase ratio 
implies positive effect of unbalance. For 430φ = , ( ) (1 ) 0.57τ φ τ φ τ τ− −= ≈ . 

 

 

Figure 6.21 Frequency response plot at a speed of  10 (66,900 rpm)ω =  for various 
unbalance values showing increase in the synchronous response; 500mσ =

750 to 1000 ( 119 to 159 revolutions)
; time history for 

τ = ≈  is transformed to the frequency domain; The 
high amplitude at very low frequency is an artifact of the zero frequency component. 
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Figure 6.22 Frequency response plot at a speed of  5 (33,455 rpm)ω =  for various 
unbalance values showing increase in the synchronous response; 500mσ = ; time history for 

875 to 1000 ( 139 to 159 revolutions)τ = ≈  is transformed to the frequency domain; Note 
that unbalance values are higher than that shown in Figure 6.21 since the speed is less. 
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Figure 6.23 Orbit plots showing the journal motion under the influence of the unbalance at 
the start, for a speed of 3ω =  (≈20,093 rpm), when 50mσ = ; (a) for a balanced rotor (b) for 

2 0.05ρ =  (c) for 2 0.1ρ =  (d) for 2 0.15ρ = . 50mσ =  is chosen for convenience in the 
demonstration of the change in the inner loop size as well as to show the growth of amplitude in 
the following figure, in a short time duration. 
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Figure 6.24 Time history corresponding to the orbit plots given in  Figure 6.23 showing the 
journal motion under the influence of the unbalance at the start at a speed of 3ω =  (≈20,093 
rpm) for 50mσ = . 
 

 

Figure 6.25 Time history corresponding to the orbit plots given in  Figure 6.23 showing the 
growth of the whirl amplitude with time at a speed of 3ω =  (≈20,093 rpm) for 50mσ = . The 

rate of growth is reduces upto 2 0.1ρ = , beyond which the growth rate increases. 
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Figure 6.26 (a)  Plot of the attitude angle (phase) against time, i.e., the response phase against 
the excitation phase corresponding to the orbits shown in Figure 6.23. The phase angle shifts at 
the start and continues at that rate. (b) Closer view of  (a) showing the change in the phase, at 
the start of the rotor motion in the bearing. Phase angle is greater than π  for 2 0.15ρ = and less 
than π  for 2 0,  0.05, 0.1ρ =  after one cycle. The phase angle further goes down to zero for 

2 0.1ρ = ,  after two cycles. ( 3ω =  (≈ 20,093 rpm); 50mσ = ) 
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Figure 6.27 Plot of the rate of change of phase corresponding to the phase angle shown in 
Figure 6.26 where 0.5φ <&  for 2 0,0.05 and 0.1ρ <  and 0.5φ >&  for 2 0.15ρ > . 
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Figure 6.28 (a)  Plot of the radial force term in Eq.(4.7) along Y direction, perpendicular to the 
direction of the static load. (b) Plot of the tangential force term. Both the film forces reduce in 
amplitude relative to the forces in the bearing with a balanced journal for 2 0.05,  0.1ρ = . The 
film forces increase for 2 0.15ρ = . 
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Figure 6.29 Plot of ur&  from the averaged equation of motion given in Eq. (6.37) varying 

with 2
1ρ , and uϕ  for a given value of 0.1ur = , when 10.01,  0.01,  0snν σ= = ≈ . 

 

 

Figure 6.30 Plot of the terms in Eq. (6.37) varying with ur  for various values of uϕ  when 

10.01,  0.01,  0snν σ= = ≈ .
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7 CONCLUSIONS 

 

 

7.1 INTRODUCTION 

 

 At the end of each Chapter, conclusions are presented related to the objective of 

the respective Chapters. This Chapter summarises the major conclusions drawn in this 

thesis. A summary of the research carried out in the thesis is also given and some 

recommendations are made for the future work. 

 

 

7.2 BRIEF OVERVIEW OF THE THESIS 

 

 This thesis investigated the nonlinear dynamic behaviour of a turbocharger. The 

research work included classical analytical techniques and numerical simulations. Two 

unbalance test waterfall plots obtained from Cummins Turbo-Technologies were utilised 

to stimulate the investigation. These were produced under two different unbalance 

levels from the same hardware and conditions. A brief overview of the thesis is given 

below. 

 

Turbochargers operate at very high speeds and use oil-film bearings due to their cheap 

cost. These units exhibit instability due to oil-whirl in the form of a conical mode and an 

in-phase whirl mode. Oil-whirl instabilities occur at sub-synchronous frequencies, 

which are usually a little less than 50% of the rotor speeds. These instabilities are 
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sensitive to various factors such as the support conditions, bearing cavitation, film 

pressure, bearing geometry and so on. Oil-whirl instability is a potentially damaging 

operating condition that must be avoided. Despite such instabilities, turbochargers 

operate successfully. It has been reported in the literature that the turbocharger rotor 

exhibits limit cycle behaviour due to the nonlinearity of the oil-film. The test waterfall 

plots introduced in Chapter 1, revealed a shift in the response frequency from the sub-

synchronous in-phase whirl frequency to the synchronous frequency, over a certain 

speed range, particularly for the high unbalance case. To investigate this specific 

behaviour of the turbocharger under the influence of some unbalance in the rotor, firstly 

a clear understanding of the nonlinear dynamic behaviour of the system with a perfectly 

balanced rotor is inevitable. Hence this thesis investigated the nonlinear behaviour that 

results in the limit cycle. To avoid over-complicated mathematical modelling, certain 

assumptions were essential in the investigation. To validate two such assumptions: the 

effect of gyroscopic moments and the rotor flexibility were investigated using a linear 

analysis in Chapter 2 and Chapter 3 respectively.  

 

A review of previous work by Holmes [3] was done to evaluate the dynamic 

performance of three types of bearing supports in a turbocharger. A rigid support, an 

external damper support and a flexible support were analysed to investigate the 

influence of plain journal bearing, floating ring journal bearing and a press-fit bearing 

respectively. A simple method was implemented to analyse the effect of gyroscopic 

moments on the conical whirl instability of a turbocharger with symmetric rotor and 

rigidly supported bearings. Bearings with 0360  oil-film (a full oil-film) were used. A 

gyroscopic coefficient was introduced as the ratio of the polar moment of inertia to the 

transverse moment of inertia of the rotor. A threshold value for the gyroscopic 

coefficient of 1 2  was calculated for the stability of the conical whirl. It was found that, 

any rotor with a gyroscopic coefficient above 1 2 , the conical whirl instability was 

suppressed for any speed. This value was also verified for floating ring bearings by 

using an external damper to support the bearings. Since the turbocharger has a heavier 

turbine wheel compared to the compressor wheel, an asymmetric rotor was analysed 

with floating ring bearings. It was shown that the threshold value of the gyroscopic 

coefficient remained unaffected by the external damper and the asymmetry of the rotor, 

As the gyroscopic effect is governed by the tilt motion it affects only the conical whirl. 
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Hence it was neglected for the nonlinear analysis of the in-phase whirl. However, the 

assumption of a rigid rotor used in Chapter 2, needed investigating before proceeding to 

the nonlinear analysis. Hence, the rotor flexibility effect was analysed in Chapter 3. The 

flexible deflection of the rotor determined under static conditions was superimposed 

onto the rigid dynamic equations of motion of the rotor. This was done by calculating 

the influence coefficients of the rotor using a simple finite element model of one-

dimensional beams. It was shown that the rotor started bending after a speed of about 

100,000 rpm. Hence, the assumption of a rigid rotor seemed to be reasonable  

 

Hitherto, due to the light-weight of the turbocharger rotor, the static displacement 

compared to the dynamic displacement neglected. However, to help understand the 

nonlinear behaviour of the turbocharger with a perfectly balanced rotor, it was 

necessary to investigate a more general rotor-bearing system. Hence, in Chapter 4, the 

effect of static load was considered to determine the dynamic characteristics of the 

rotor-bearing system in the parameter plane of steady-state eccentricity ratio and rotor 

speed. The linearised system of equations was analysed to determine the stability 

threshold separating the stable and the unstable equilibrium states of the journal centre, 

in the parameter plane. An analysis of the case when the eccentricity ratio tends to zero 

was presented to investigate the role of the fluid-film forces in relation to the static load. 

The static load was found to counteract the radial restoring force, in the higher 

eccentricity region, leading to a stable system above an eccentricity ratio of 0.76. In 

Chapter 5, the onset of oil-whirl at the stability threshold, where the rotor behaviour 

destabilises, was found to be the Hopf bifurcation. In order to perform the nonlinear 

analysis, the system was analytically reduced to a simple system of equations by 

applying the Centre Manifold reduction and normal form theory. From the normal form, 

first Lyapunov coefficients were calculated to determine the appearance and the 

disappearance of the limit cycle close to the stability threshold. The appearance of a 

stable limit cycle (SLC) was super-critical bifurcation and the disappearance of an 

unstable limit cycle (ULC) was sub-critical bifurcation. The same was verified using 

Poore’s bifurcation algebra. Apart from the equilibrium states (steady-states) obtained 

from the linear analysis, the rotor system was found to have these limit cycles as a 

nonlinear characteristic of the system, attributed to the oil-film in the bearings. The 

parameter plane was shown to have two regions: Region I with sub-critical bifurcation 

and Region II with super-critical bifurcation as shown in Figure 5.5. For the rotor-

 211
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bearing system with a rigid symmetric perfectly balanced rotor mounted in two identical 

journal bearings with oscillating π -film cavitation, the boundary between Region I and 

Region II in terms of the steady-state eccentricity ratio was determined to be 0.32. It 

was shown that in Region I, there existed an unstable limit cycle along with the stable 

equilibrium (SE) state below the stability threshold, and the unstable equilibrium (UE) 

state above the stability threshold. In Region II there existed a SLC along with the UE 

state above the stability threshold and the SE state below the stability threshold. These 

steady-states were demonstrated using the numerical analysis, where, in Region I below 

the threshold speed, the journal centre spirals inwards to the SE state, for any initial 

perturbation within the ULC and spirals outwards for any perturbation to a state outside 

of the ULC as shown in Figure 5.8. Above the threshold speed, the journal centre 

always spiralled outwards to reach UE, which was close to the housing as shown in 

Figure 5.9. In Region II the journal reached a SLC above the threshold speed, 

irrespective of the initial perturbation as shown in Figure 5.10. However, below the 

threshold speed, the journal always spiralled into the SE state as shown in Figure 5.11. 

Approximate sizes of the limit cycles corresponding to the eccentricity ratios were 

calculated. Based on the operating curve determined by the non-dimensional group mσ , 

which depended on the bearing parameters such as geometry, oil viscosity and the 

clearance, the turbocharger was shown to operate in Region I for most of the speed and 

with very small ULC.  

 

Having characterised the nonlinear steady-state behaviour of the general rotor-bearing 

system, the focus was back on the turbocharger in Chapter 6 to investigate the 

unbalance test data shown in Chapter 1. Choosing an operating curve of 500mσ =  for 

the turbocharger, the waterfall plots similar to the test plots from Cummins Turbo-

Technologies, were simulated using numerical integration of the equations of motion by 

the Runge-Kutta method. These plots showed a reduction in the sub-synchronous whirl 

amplitude in the transient state, where the unbalance had a positive effect as shown in 

Figures 6.7 to 6.10. Beyond a certain optimum value, unbalance had a negative effect by 

increasing the amplitude. A plot of the maximum amplitude as a function of speed, 

demonstrated a dip at some speed for each unbalance value, corresponding to a dip in 

the respective phase plot as shown in Figure 6.11 and Figure 6.12. This suggested the 

dependence of the amplitude on the phase of the response. The equations of motion 
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were averaged to simplifying the analysis. The averaged equations clearly showed the 

coupling of the amplitude and the phase equations through the relationship between the 

excitation and the response phase angles. As a result, the numerical analysis showed the 

reduction in the growth rate of the response in the transient motion, while the steady-

state response did not have any significant change due to the unbalance. However, the 

threshold speed reduced due to the effect of unbalance in the turbocharger as shown in 

Figure 6.3. Since a constant unbalance force was found to be insignificant in the steady-

state compared to the higher hydrodynamic bearing forces that increase with time, the 

effect of the unbalance seemed to be significant at the start of whirling. A simple 

numerical analysis was performed to analyse the behaviour of the journal motion during 

the first few cycles of motion, in terms of the response characteristics. This was carried 

out at a constant speed and mσ  was chosen to be 50, to allow the orbit to grow, quickly 

facilitating a lower run time and consequent length of data. The synchronous and the 

sub-synchronous response vectors together formed an internal loop in the orbit. The size 

of this internal loop grew in size with the increase in the unbalance level. As the inner 

loop size approached that of the outer loop, the unbalance started showing a negative 

effect. The response of the unbalanced rotor suffered a phase lag behind that of the 

balanced rotor, when the unbalance level was below the optimum value. Beyond that, 

the response phase was ahead of the balanced rotor. This characteristic behaviour aided 

in slowing the growth rate of the whirl amplitude. The amount of unbalance that 

introduced a phase difference between the excitation phase (τ ) and the response phase 

(φ ) greater than 2τ , i.e. 2τ φ τ− > , was found to reduce the response in the transient 

motion. The corresponding rate of change of the phase angle was less than 0.5 rad/sec. 

Thus, the effect of unbalance up to a certain level was found to be advantageous in the 

transient journal motion. The major conclusions from the thesis are listed in the next 

section. 
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7.3 MAJOR CONCLUSIONS FROM THE THESIS 

 

 This section lists the major conclusions drawn from the research work carried 

 out in this thesis:  

 

• The conical whirl instability of the turbocharger with a symmetric rotor in rigidly 

supported full-film bearings is controlled by the gyroscopic coefficient β ; This 

coefficient is given by the ratio of the polar to the transverse moment of inertia of 

the rotor.  

 

• The threshold value of β  for a stable conical whirl is found to be 1 2 . The 

conical whirl instability is completely suppressed for 1 2β > . The threshold ratio 

does not seem to be affected by adding an external damper to the bearing and by 

the asymmetry of the rotor.  

 

• The conical mode is dominant in the low speed range, while the in-phase whirl 

mode is dominant in the high speed range. The gyroscopic moment seems to 

reduce the rotor speed at which the switch in the dominant mode occurs.  

 

 

• The analysis of rotor flexibility effect suggests that, the assumption of a rigid 

rotor is reasonable up to a speed of 100,000 rpm, for the turbocharger under 

investigation. 

 

• In the system of a perfectly balanced rotor mounted in short-bearings with 

oscillating π -film cavitation, the onset of oil-whirl is related to the Hopf 

bifurcation. 

 

• The dynamic behaviour of the journal bifurcates by experiencing a change in the 

stability at the threshold speed that separates the stable and the unstable 

equilibrium states of the journal centre and is characterized also by the 

disappearance or appearance of a limit cycle.  
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• The rotor system under investigation exhibits sub-critical bifurcation 

(disappearance of an unstable limit cycle) if the journal centre eccentricity is 

within about 32% of the bearing clearance from the bearing centre, under the 

effect of the static load as shown in Figure 5.12; the system exhibits super-critical 

bifurcation (appearance of a stable limit cycle) if the journal centre eccentricity is 

between about 33% and 76% of the clearance.  

 

• If the journal centre eccentricity is above about 76% of the clearance, the system 

under investigation is completely stable since oil-whirl is completely suppressed. 

This behaviour seems to be governed by the balancing of the static load by the 

increased radial restoring force attributed to the air cavity in the bearing.  

 

• The amplitude of the limit cycle can be calculated from the bifurcation parameter 

ν , the rate of change of the real part of the eigenvalue with speed α′ , and the 

real part of 1c ; the critical eigenvector gives the approximate shape of the limit 

cycle as shown in Figure 5.6. 

 

• Automotive turbochargers, due to their light weight, operate in Region I of the 

parameter plane of rotor speed and eccentricity ratio with high mσ . Hence for the 

turbocharger rotor, its journal centre traces an orbit that keeps growing in size 

unless limited by other nonlinearity in the system.  

 

• Due to the very small size of the ULC, even below the threshold speed, the 

journal effectively spirals outward far away from the SE state. Above the 

threshold speed the journal spirals outwards close to the bearing, unless restricted 

by some other nonlinearity.  

 

• The presence of a static load seems to be an option to keep the turbocharger 

operating in the higher eccentricity range, thereby allowing the existence of a 

SLC, above the threshold speed.  

 

 215
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• Unbalance seems to slow down the growth of the whirl amplitude in the transient 

motion, by introducing a phase lag in the unbalance response relative to that of 

the self-excited response of the balanced rotor. 

 

• The advantageous effect of unbalance prevails only up to a certain level 

(optimum value). Above that value, rotor unbalance seems to have a negative 

effect by increasing the growth rate of the amplitude.  

 

• This behaviour is likely to be governed by the coupled nature of the amplitude 

and the phase of the journal response in a turbocharger with an unbalanced rotor. 

Depending on the speed range of interest, the optimum level of unbalance varies.  

 

• The effect of unbalance appears to be beneficial during the transient motion, for 

instance, during the acceleration and the deceleration of the engine. Depending 

on the time allowed at each speed, the effect of unbalance could be different.  

 

• For practical reasons, it is almost impossible to have a perfectly balanced rotor. 

Hence, allowing some unbalance within the optimum level, for controlling the 

sub-synchronous vibrations seem to be a cost-effective solution worth 

considering into the rotor dynamic design of a turbocharger. 

 

 

1.4 SUGGESTIONS FOR FUTURE WORK 

 

 The effect of unbalance in the transient journal motion of the automotive 

turbocharger leaves the following question: 

When the speed rate is varied for the same unbalance, will the shift in the response 

characteristics from the in-phase whirl frequency to the synchronous frequency occur 

over a different speed range, when all the other run conditions are maintained? 

 

To answer this question, it is recommended that experimental verification is conducted 

of the variation in the speed range in which the unbalance is effective. The rate at which 
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the speed is changed needs to be varied significantly and the resulting waterfall plots 

may be compared to determine the sensitivity of unbalance to the speed change.  

 

The investigation with unbalance may be extended with damped supports with an 

external damper in series to the bearing to simulate the floating ring bearings and with a 

flexible support for the press-fit bearings.  

 

In terms of the bearing support, based on the observations made in Chapter 2, a 

nonlinear investigation of the flexible support with variable stiffness and unbalanced 

rotor could be interesting in a turbocharger. 

 

 217



CHAPTER 7       CONCLUSIONS 
 

 218



APPENDIX A OIL-FILM FORCES     

219 

 

 

 

 

 

APPENDIX A OIL-FILM FORCES 
 

 

A.1 SHORT-BEARING APPROXIMATION 
 

 In this Appendix, the derivation of the oil-film forces from the Reynolds 

equation [25] using the short-bearing approximation is presented.  In this thesis, a full-

film bearing model is used in Chapters 2 and 3 and an oscillating π -film cavitation 

model is used in Chapters 4, 5 and 6. Hence, in this Appendix, the forces are derived for 

two types of film extents: full-film and oscillating π -film. Since oil-whirl is a vibration 

problem characterised by frequency and amplitude, the stiffness and damping 

coefficients are derived from the Reynolds equation that governs the pressure 

distribution in a thin film, for constant viscosity [20]. The Reynolds equation for a 

dynamically loaded journal for a constant viscosity oil-film in polar co-ordinates is of 

the following form: 

 

 
3
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  (A.1) 

 

where θ  is the circumferential (angular) position on the bearing; bR  is the radius of the 

journal bearing; Z  is the axial coordinate along the length of the bearing; P  is the 

pressure in the lubricant at the point ( ), Zθ ; bη  is the lubricant viscosity; ω  is the 

journal angular velocity (speed); C   is the clearance; n  is the eccentricity ratio and φ  is 

the attitude angle. Since Reynolds equation is insoluble in the closed form and is two 

dimensional, it is often reduced to a one dimensional problem by using the short-bearing 



APPENDIX A OIL-FILM FORCES     

220 

 

approximation [18] or the long bearing assumption [26]. Then they are applied for a 

very short-bearing and very long bearing respectively based on their length to diameter 

ratio bl D . As the floating ring bearings in turbochargers have a very low bl D  ratio, 

the short-bearing approximation should be applicable. According to the short-bearing 

approximation [18], for very short journal bearings, pressure gradients in the 

circumferential direction are much smaller than those in the axial direction, so that the 

first term on the left-hand side of Eq. (A.1) is negligible and the Reynolds equation 

simplifies into [18]: 

 

 3 6 ( 2 ) 12 cosB B
P h dnh C
Z dt

η ω φ η θ
θ θ
∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

& . (A.2) 

 

The solution which follows will therefore include that part of the circumferential flow 

proportional to the journal surface velocity and varying film thickness but will neglect 

the effect of the circumferential pressure gradient on this flow. Any change in the 

circumferential flow will directly influence the axial flow and the axial pressure 

gradient. In addition, the relationship between the oil-film thickness h  and the angular 

position θ  is given by: 

 

      (1 cos )h C n θ= + , (A.3) 

 

where, C  is the radial clearance of the bearing and n  is the eccentricity ratio ( n C - 

ratio of eccentricity to clearance). In the standard short-bearing approximation [18], it is 

assumed that the lubricant is Newtonian, so that the viscosity is constant. Integrating Eq. 

(A.2) twice with respect to Z  and applying the boundary conditions, pressure 0P =  at 

0Z =  and at BZ L=  is given by: 

 

 3 3

12 cos 6 ( 2 ) sin( )
2 (1 cos )

B BCn CnP Z Z l
C n

η θ η ω φ θ
θ

− −
= −

+

&&
.  (A.4) 

 

Figure A1 shows the co-ordinate system of a journal bearing with the oil-film forces. 

Resolving in directions 1, 2, the oil-film forces 1F  and 2F  become: 
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where, 1θ  and 2θ  mark the boundaries of the oil-film and are usually determined by the 

external supply pressure and are important in the determination of the oil-whirl onset 

characteristics. If the film is full without any cavitation due to rupture, then 1 0θ =  and 

2 2θ π= . Holmes [20] derived the forces using this boundary condition. This 

assumption is used in Chapter 2 and Chapter 3 in this thesis for the linear analysis. 

When the oil pressure drops below the atmospheric pressure, the film ruptures leading 

to cavitation in the bearing. If 1 0θ =  and 2θ π= , it is an oscillating π -film model. This 

is based on the assumption of half-film (180° extent) that rotates with the rotor [23]. 

This model is used in Chapters 4 and 5 for the nonlinear analysis. The following Sub-

Sections of this Appendix present the derivation of film forces for the full-film and the 

oscillating π -film bearing models. 

 

 

A.1.1 OIL-FILM FORCES IN FULL-FILM BEARINGS 
 

This Sub-Section presents the derivation of the oil-film forces in bearings with full oil-

film. As the oil-film rotates after the whirl initiation, the operating parameters at the 

incipient whirl frequencies will be different from that of the fully developed whirl 

frequencies. However, if there is 360° film, 1θ  and 2θ  are 0  and 2π  i.e. no cavitation, 

then the operating parameters remain valid for all the whirl frequencies and the whirl 

frequencies are modified by the system nonlinearities only [20]. This condition is 

achieved by adequate supply pressure.   In a turbocharger, due to its light weight, the 

dynamic load is much greater than the gravity load on the bearings. So, it can be 

assumed that the oil-film remains unruptured and is of full 360° extent. Integrating Eqs. 

(A.5) and (A.6), forces 1F  and 2F  become:  
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Under the steady-state condition, the journal centre moves to JSC  i.e., when 0n n= , 

0φφ = ,  0=n& , 0=φ& ,  the fluid forces become: 

 

 01 =F , (A.9) 
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From (A.10), it is clear that under the static loading, 2F F=  and 
20
πφ = . Thus, the 

fluid-film forces 1F  and 2F , in terms of the static eccentricity ratio 0n  and the static 

load F  become, 
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Considering a small oscillation of the journal with its centre to be JDC , and JSC  being 

the corresponding steady-state under the action of the static load F  as shown in Figure 

A2, the components of 1F  and 2F  along r  and s  axes are given by: 

 

         1 0 2 0cos sinrF F Fα α= − , (A.13) 

 

 1 0 2 0sin cossF F Fα α= + , (A.14)  

 

where 0sin s
Cn

α =   and  0
0cos Cn r

Cn
α +

=  . Using the trigonometric identities, the rate 

of change of the attitude angle is given by: 
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Thus rF  and sF are nonlinear functions of and r s . For very small oscillations, when 

0 0α ≈ ; 1cos 0 ≈α , Eqs.(A.13) and (A.14) can be written as: 
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 1 2s
sF F F
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= + . (A.17) 

 

After linearising [20], the radial and the tangential forces on the journal are defined as:  

 

 r rr rsF b r a s= − −& , (A.18) 
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where the stiffness coefficients rsa  and sra  are given by:  
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and the damping coefficients, rrb  and ssb are given by : 

 

 2
rr srb a

ω
= ,  2

ss rsb a
ω

= . (A.22) 

 

Since in the steady-state, 0=rF , tF F= . There are only 4 coefficients, direct damping 

coefficients, ,rr ssb b  and cross-coupled stiffness coefficients, ,rs sra a  for a full-film whilst 

for a π -film, they would raise to 8 including the direct stiffness and cross-coupled 

damping terms [88]. The following Section shows the derivation of forces for a π -film. 

 

 

A.1.2 OIL-FILM FORCES IN BEARINGS WITH OSCILLATING π -

FILM CAVITATION  

 

This Sub-Section presents the derivation of the oil-film forces in bearings with an 

oscillating π -film. By integrating Eqs. (A.5) and (A.6) for the boundary conditions 

1 20,  θ θ π= = , the film forces in the bearing with an oscillating π -film are given by 

[23]:  
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where: 
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where mS  is the modified Sommerfeld number for the short-bearing approximation. and 

S  is the Sommerfeld number for the long bearing approximation. 
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integrals. Using Sommerfield substitution [88], let 

 

  
211 cos

1 cos
nn

n
θ

ψ
−

+ =
−

, (A.26) 

 

 ( )
( )

( )
( ) ( )

2 21 sincos 1cos ;  sin ;  
1 cos 1 cos 1 cos

nn nd d
n n n

ψψ
θ θ θ ψ

ψ ψ ψ

−− −
= = =

− − −
, (A.27) 

  

 
( )

( ) 2
1 5 22

1 1
21

I n
n

π π⎡ ⎤= +⎢ ⎥⎣ ⎦−
, (A.28) 

 

 
( )2 22

2

1

nI
n

= −
−

, (A.29) 

 

 
( )

3 3
2 22 1

I
n

π
=

−
. (A.30) 

 

Using Eqs. (A.28),(A.29)  and, (A.30), the non-dimensional force components in Eqs. 

(A.23) and (A.24) are given by:  
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( )

( )
( )

22

2 5 22 2

1 2(1 2 )

1 2 1
r m

n nnF S
n n

πφ⎧ ⎫⎛ ⎞+−⎪ ⎪⎜ ⎟= − +⎨ ⎬⎜ ⎟− −⎪ ⎪⎝ ⎠⎩ ⎭

, (A.31) 

 

 
( ) ( )3 222 2

(1 2 ) 2

14 1
s m

n nnF S
nn

π φ
⎧ ⎫⎛ ⎞
⎪ ⎪−⎜ ⎟

= +⎨ ⎬⎜ ⎟
−⎪ ⎪⎜ ⎟−⎝ ⎠⎩ ⎭

, (A.32) 

 

 
( ){ }

2 2 23

12
2 2 2 2

4(1 )

1 16

sB B B B
m

B
s s s

nL L RS S
R FC

n n n

ωη

π

⎛ ⎞ −
= = =⎜ ⎟
⎝ ⎠ − +

, (A.33) 

 

where sn  is the steady-state eccentricity ratio. 
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FIGURES 

 
 

Figure A1 Co-ordinate system of a journal bearing; BC  is the bearing centre; JSC  is the 
static journal centre due to a static load; JDC  is the dynamic journal centre; ω  is the spin speed; 
φ  is the attitude angle of the journal centre with respect to X  axis.θ  is the angular co-ordinate 
in the bearing with reference to the line of centres. [20] 
 

 

 

 
Figure A2 Oil-film forces shown in Figure A2 with reference to the bearing centre BC  in a 
journal bearing; JSC  is the static journal centre; JDC  is the dynamic journal centre; C  is the 
radial clearance in the bearing; n  is the eccentricity ratio. 0 0,n φ  are the eccentricity ratio and 
attitude angle (phase) corresponding to the static journal centre. 
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APPENDIX B FINITE ELEMENT MODEL  
 

 

B.1 ONE-DIMENSIONAL BEAM MODEL 

 

 In Chapter 3, the flexibility of the rotor is included in the mathematical model in 

terms of the influence coefficients. These coefficients are determined by using a simple 

finite element beam model. This Appendix details the modelling of a one-dimensional 

beam model with two degrees of freedom at each node and its assemblage for a multi-

degree of freedom system. 

 

Figure B1 shows a one-dimensional beam with one translation and one rotation at each 

node according to Euler-Bernoulli theory [69, 89]. This is a simplification of the linear 

theory of elasticity which provides a means of calculating the load-carrying and 

deflection characteristics of beams. It covers the case for small deflections of a beam 

which is subjected to lateral loads only. Using cubic displacement function for the 

element [69], the stiffness matrix of a beam is given by [69]: 

 

12 6 12 6L L−⎡ ⎤

 
2 2

3

2 2

6 4 6 2
12 6 12 6

6 2 6 4

L L L LEI
L LL

L L L L

⎢ ⎥−⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥−⎣ ⎦

K

E

, (B.1) 

 

where  is the stiffness matrix of the element,  is the Young’s modulus of the 

material, 

K

I  is the transverse moment of inertia of the beam and  is the length of the 

beam. Under static conditions, the lateral and angular deflections are given by: 

L
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ˆˆ

ˆ ˆ
F d

M

⎧
 

φ

⎫⎧ ⎫⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

K

ˆ  and  F ˆ ˆand d

, (B.2) 

 

where  are the force and the moment, M̂ φ  are the lateral and angular 

displacements respectively. Substituting for  from Eqs. K (A.1) and (B.2) becomes: 

 

 

11

2 2
1

2 2

ˆˆ 12 6 12 6
ˆˆ 6 4 6 2
ˆ

dF L L
M L L L LEI1

3
2 2

2 2

ˆ 12 6 12 6
6 2 6 4ˆ ˆ

L LLF d
L L L LM

⎧ ⎫⎧ ⎫ −⎡ ⎤
φ

φ

⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪−⎪ ⎪ ⎥
⎥

⎩ ⎭ ⎩ ⎭

1,2(.)

⎢=⎨ ⎬ ⎨ ⎬⎢− − −⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪−⎣ ⎦

, (B.3) 

 

where  denote the node numbers. Since the rotor is represented by an assembly of 

beams connected at the nodes, the stiffness matrices of the beams are assembled to get 

the global stiffness matrix. Figure B2 shows a simple assemblage of two beams. The 

corresponding two stiffness matrices are assembled as follows [69]: 

 

 

11

11

2 2
2 2 2 23

2 2

3 32 2

3 3

ˆˆ
12 6 12 6 0 0

ˆˆ 6 4 0 0
ˆˆ 12 6 12 12 6 6 12 6

ˆ ˆ6 2 6 6 4 6 2
0 0 12 6 12 6ˆ ˆ
0 0 6 2 6 4ˆ ˆ

dF L L
M L L
F dL L L LEI

L L L L L L L LLM
L LF d

L L L LM

⎧

φ

⎫⎧ ⎫
−⎡ ⎤ ⎪

2 26 2L L
⎪⎪ ⎪

⎢ ⎥ ⎪ ⎪⎪ ⎪
⎢ ⎥−

⎪ ⎪⎪ ⎪
⎢ ⎥− − + − + − ⎪

4 φ

φ

⎪⎪ ⎪ =⎨ ⎬ ⎢ ⎥ ⎨ ⎬− + + −⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎢ ⎥ ⎪ ⎪− − −
⎪ ⎪ ⎢ ⎥ ⎪ ⎪

−⎪ ⎪ ⎣ ⎦ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

. (B.4) 

 

Figure B3(a) shows the schematic of the finite element model of a turbocharger. The 

rotor is pinned at the bearings locations by arresting the lateral displacements of nodes 2 

and 3, allowing only rotation at these nodes. It is shown in Chapter 2, how the influence 

coefficients are determined from the finite element model. The natural bending 

frequency of the rotor can be determined by adding a mass matrix, which is given in the 

following Section.  
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B.2 NATURAL FREQUENCY 
 

 Figure B3(b) shows the finite element model of the turbocharger with lumped 

masses at the nodes 1 and 6. The equation of motion of a finite element beam under no 

external forces according to Newton’s second law of motion is given by: 

  

 0+ =Mx Kx , (B.5) 

 

where M  is the mass matrix and x  is the displacement vector. The mass matrix of the 

beam element with a translation and a rotation shown in Figure B1 is given by [69]: 

 

 
2 2

2 2

156 22 54 13
22 4 13 3
54 13 156 22420
13 3 22 4

L L
L L L LAL

L L
L L L L

ρ
−⎡ ⎤

⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥− − −⎣ ⎦

M , (B.6) 

 

where L  is the beam length. Similar to the method in Eq. (B.4), mass matrices are also 

assembled as: 

 

2 2

2 2 2 2

2 2

156 22 54 13 0 0
22 4 13 3 0 0
54 13 156 156 22 22 54 13

13 3 22 22 4 4 13 3420
0 0 54 13 156 22
0 0 13 3 22 4

L L
L L L L

L L L LAL
L L L L L L L L

L L
L L L L

ρ

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥+ − + −

= ⎢ ⎥− − − + + −⎢ ⎥
⎢ ⎥−
⎢ ⎥

− − −⎣ ⎦

1 2M + M , (B.7) 

 

where ,  1 2M M  are the mass matrices of the elements 1 2,  e e  respectively. The 

compressor and the turbine masses are lumped at node 1 and node 6 by adding them to 

the corresponding diagonal element. Inertia effect associated with the rotational degrees 

of freedom is assumed to be zero. Now assuming time-harmonic motion, and assuming 

a solution of the form ntjx Xe ω=  to Eq. (B.5) and re-arranging gives: 

 

 2 0nω⎡ ⎤− =⎣ ⎦K M x , (B.8) 



APPENDIX B FINITE ELEMENT MODEL     

232 

 

 

where nω  is the natural frequency of the system and X  is the amplitude. The 

eigenvalues of the determinant 2
nω⎡ ⎤−⎣ ⎦K M  and the corresponding eigenvectors for the 

pin-pin condition are calculated in MATLAB using steel properties i.e., 22 11  N/mE e=  

and 37850  Kg/mρ = . The pin-pin constraints are applied by arresting the translation 

for nodes 3 and 4, while the rotations are allowed.  These degrees of freedom are 

removed by deleting the corresponding rows and columns from the stiffness and mass 

matrices.  
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Figure B1 One-dimensional uniform beam element of length  with one translation  

and one rotation 

L ˆ
id

îφ  at each node i ;  are the forces and moments at these nodes 
where  are the node numbers. The cubic displacement function [69] is shown in dotted 
line. 
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Figure B2 Two beam elements of equal length , connected at node 2.  are the 
element numbers. 
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Figure B3  (a) Schematic of the finite element model with flexible mass-less beams 
representing the turbocharger rotor to determine the influence coefficients. Nodes 3 and 4 are 
fixed along y ; ˆ =0 id , where i  is the node number and allowed to rotate. (b) Schematic of the 
finite element model for calculating the eigenvalues; the compressor and turbine masses are 
lumped at node 1 and 6 respectively. 
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APPENDIX C EIGENVECTOR AND AD-JOINT 

EIGENVECTOR  
 

 

 In Chapter 4, the determination of the first Lyapunov coefficients and the 

application of Poore’s bifurcation algebra required the calculation of the eigenvectors 

of the Jacobian determinant A . In this Appendix, details are given about the calculation 

of the eigenvectors, following the procedure given by Myers [21]. The eigenvector q  of 

Jacobian A  corresponding to the eigenvalue 0ŝ i= Ω  is given by: 

 

      0 0i− Ω =A I q , (C.1) 

 

where { }1 2 3 4, , , Tq q q q=q matrix and I  is eigenvector. Eq. (C.1) gives three equations as 

below, while the fourth one is redundant: 

 

                  1 2ˆ 0sq q− + = , (C.2) 

 

 1 2 3 42 2 2 2ˆ 0xy xyxx xx k bk bq s q q q
ω ω ω ω

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− + − − + − + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, (C.3) 

 

 3 4ˆ 0sq q− + = . (C.4) 

 

Assuming 1 1 1i rq q iq= + , for the eigenvalue 0ŝ i= Ω , the elements of eigenvector are 

given as follows: 

 

 2 0 1q i q= Ω , (C.5) 
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2 2

0 0
3 1 1 1

0

Txx xx

xy xy

i b k
q q q

k i b

ω⎡ ⎤Ω − Ω −⎣ ⎦= ≡
⎡ ⎤+ Ω⎣ ⎦

, (C.6) 

 

 

 
2 2

0 0
4 0 3 0 1 0 1 1

0

Txx xx

xy xy

i b k
q i q i q i q

k i b

ω⎡ ⎤⎡ ⎤Ω − Ω −⎣ ⎦⎢ ⎥= Ω = Ω ≡ Ω
⎡ ⎤+ Ω⎢ ⎥⎣ ⎦⎣ ⎦

. (C.7) 

 

Similarly, the ad-joint vector p  from the transpose of the Jacobian matrix is given by: 

 

     0 0T i+ Ω =A I p , (C.8) 

 

where { }1 2 3 4, , , Tp p p p=p . Determinant in Eq. (C.8) is given by:  

 

  

 

0 2 2

1

02 2
2

3
02 2

4

02 2

0

1 0
0

0

0 1

yxxx

yxxx

xy yy

xy yy

kki

pbb i p
pk k

i
p

b b
i

ω ω

ω ω

ω ω

ω ω

Ω − −

⎧ ⎫
− + Ω − ⎪ ⎪

⎪ ⎪ =⎨ ⎬
⎪ ⎪− Ω − ⎪ ⎪⎩ ⎭

− − + Ω

,  (C.9) 

 

which results in the following equations: 

 

 0 1 2 42 2 0yxxx kki p p p
ω ω

Ω − − = , (C.10) 

 

                      1 0 2 42 2 0yxxx bbp i p p
ω ω

⎛ ⎞+ − + Ω − =⎜ ⎟
⎝ ⎠

,  (C.11) 

 

 2 0 3 42 2 0xy yyk k
p i p p

ω ω
− + Ω − = . (C.12) 
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Letting 4 1p = , eliminating 1p  from the Eqs. (C.10) and (C.11) results in : 

 

         0
2 2 2

0 0

yx yx

xx xx

i b k
p

k b i ω
Ω −

=
⎡ ⎤− Ω −Ω⎣ ⎦

, (C.13) 

 

 1 0 22 2
yx xxb bp i p
ω ω

⎛ ⎞= + − Ω⎜ ⎟
⎝ ⎠

, (C.14) 

 

 ( )3 22
0

1
yy xyp k k p

i ω
= +

Ω
, (C.15) 

 

where 1q  is determined from the normalisation requirement 
4

1
, 1j j

j
p q p q

=

= =∑  which 

gives: 

 

       
{ }1

1 2 0 3 1 0 1

1
+ T T

q
p p i p i

=
Ω + + Ω

. (C.16) 
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APPENDIX D THE METHOD OF AVERAGING 
 

 

 In Chapter 6, the method of averaging is applied to the equations of motion of 

the rotor-system with unbalance, for simplifying the analysis. In this Appendix, the 

theory behind the method of averaging is given in brief, based on the procedure given in 

[83] and [90]. 

 

The standard form of a perturbation problem for the application of averaging is given by 

[83]: 

 

 f( , ; ),   nx x t xε ε= ∈ℜ& , (D.1) 

 

where, x  is an n -dimensional real variable, t  is the time and ε  is a small parameter. 

Expanding Eq. (D.1) as a power series in ε  gives, 

 

  ( )1 2f ( , ) f ( , ) ...x x t x tε ε= + +& . (D.2) 

 

Using a near identity transformation up to the quadratic term [90],  

 

 2
1 2( , ) ( , )x W t W tξ ε ξ ε ξ= + + , (D.3) 

 

where, 1,2W  are called generating functions to be chosen so that, the transformed 

equations on ξ  is as simple as possible. Substituting Eq. (D.3) into Eq. (D.2) gives, 

 

 

 2 2 2
1 1 2 2 1 2f ( , ) f ( , ) ...x W W t W W tε ξ ε ε ε ξ ε ε= + + + + + +& . (D.4) 

 

Equation. (D.4) expands as [91]: 
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2 2 21 1 2 2
1 1 2 2 1 2

f f f ff ( , ) f ( , ) ...x t W W t W Wε ξ ε ε ε ξ ε ε
ξ ξ ξ ξ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= + + + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
& , (D.5) 

 

which up to second order term in 2ε  is given by: 

 

 2 1
1 1 2

ff ( , ) f ( , )x t W tε ξ ε ξ
ξ

⎡ ⎤∂
= + +⎢ ⎥∂⎣ ⎦
& . (D.6) 

 

The first derivative of Eq. (D.3) is given by: 

 

 

 21 1 2 2W W W Wx
t t

ξ ε ξ ε ξ
ξ ξ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂
= + + + +⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
& & && . (D.7) 

 

Equation. (D.7) re-arranges into [83] 

 

 

 21 1 2 2W W W Wx
t t

ξ ε ξ ε ξ
ξ ξ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂
= − + − +⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
& & && . (D.8) 

 

Substituting Eq. (D.6)  into Eq. (D.8) and considering up to second order in ε  gives, 

 

 21 1 1 2 2
1 1 2

ff ( , ) f ( , )W W W Wt W t
t t

ξ ε ξ ξ ε ξ ξ
ξ ξ ξ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂
= − − + + − −⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
& & & . (D.9) 

 

Let the averaged form of Eq. (D.2) be: 

 

 2
1 2f ( ) f ( )ξ ε ξ ε ξ= +& . (D.10) 

 

Equating Eqs. (D.9) and (D.10) leads to, 
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 2 21 1 1 2
1 2 1 2 1 1

ff ( ) f ( ) f ( , ) f ( , ) f ( )W W Wt t W
t t

ε ξ ε ξ ε ξ ε ξ ξ
ξ ξ

⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤+ = − + + − −⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
.(D.11) 

 

Now, equating the first order terms in Eq. (D.11) gives: 

 

Order ε : 

 

 1
1 1f ( ) f ( , ) Wt

t
ξ ξ ∂

= −
∂

, (D.12) 

 

where, 1W  is chosen in such a way that all the ( )O ε  terms on the right hand side 

disappear except their average value [90]. This result in,   

 

 
T

1 1
0

1f ( ) f ( , )
T

t dtξ ξ= ∫ , (D.13) 

 

where, T  is the period of excitation in the case of non-autonomous systems with 

periodic forcing, Eqs. (D.12),(D.13) imply that: 

 

 
T

1
1 1

0

1f ( , ) f ( , )
T

W t t dt
t

ξ ξ∂
= −

∂ ∫ . (D.14) 

 

Like-wise, equating the second order terms in Eq. (D.11) gives: 

 

Order 2ε :   

 

 1 1 2
2 2 1 1

ff ( ) f ( , ) f ( )W Wt W
t

ξ ξ ξ
ξ ξ

∂ ∂ ∂
= + − −

∂ ∂ ∂
. (D.15) 

 

Here again 2W  is chosen in such a way that only the average value of 2( )O ε  exists. This 

result in, 
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T

1 1
2 2 1 1

0

f1f ( ) f ( , ) f ( )
T

Wt W dtξ ξ ξ
ξ ξ

⎛ ⎞∂ ∂
= + −⎜ ⎟∂ ∂⎝ ⎠

∫ . (D.16) 

 

Thus, the second order averaged form given in Eq. (D.10) is evaluated from Eqs. (D.13) 

and (D.16) such as: 

 

 
T T

2 1 1
1 2 1 1

0 0

f1 1f ( , ) f ( , ) f ( )
T T

Wt dt t W dtξ ε ξ ε ξ ξ
ξ ξ

⎡ ⎤ ⎡ ⎤⎛ ⎞∂ ∂
= + + −⎢ ⎥ ⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫& , (D.17) 

 

where  [ ]
T

1 1 10
0 0

1f ( , ) f ( , )
T

t
s

W t dt t dtdsξ ξ= −∫ ∫ ∫  and 
T

1 1
0

1f ( ) f ( , )
T

t dtξ ξ= ∫ . 1,2f  are the first 

and second order coefficients respectively, of the original function given in Eq. (D.2) 

that is averaged. If the first order term degenerates to zero, then Eq. (D.17) simplifies to 

[85],  

 

 
T

2 1
2 1

0

f1 f ( , )
T

t W dtξ ε ξ
ξ

⎛ ⎞⎛ ⎞∂
= +⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

∫& . (D.18) 

 

In Chapter 6, the functions 1 2f , f  in Eqs. (6.33) and (6.34) are functions of two variables 

,  u ur φ . Hence, the standard form for averaging in Eqs. (6.33) and (6.34) are of the form: 

 

 ( ) ( )( )1 2f , , f , ,u r u u r u ur r t r tε φ ε φ= +& , (D.19) 

 

 ( ) ( )( )1 2f , , f , ,u u u u ur t r tφ φφ ε φ ε φ= +& , (D.20) 

 

where:  

[ ] ( )
T

1 1 10
0 0

1f ( , , ) f ( , , )   
T

t
s

r r rW r t dt r t dt dsϕ ϕ= −∫ ∫ ∫ ; 
T

1 1
0

1f ( , ) f ( , , ) 
Tr rr r t dtϕ ϕ= ∫ ; 

( )
T

1 1 10
0 0

1f ( , , ) f ( , , )  
T

t
s

W r t dt r t dt dsφ φ φϕ ϕ⎡ ⎤= −⎣ ⎦∫ ∫ ∫ ; 
T

1 1
0

1f ( , ) f ( , , ) 
T

r r t dtφ φϕ ϕ= ∫ . 
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Applying the averaged form in Eq. (D.17) to both the Eqs. (D.19) and (D.20) gives [92]: 

  

 

1 1
2 1 1 1T T

2
1 1 1

0 0 1 1
1 1

f ff ( , , )
1 1f ( , , )
T T

f ( , ) f ( , )

r r
r r

u r
r r

r

r t W W
r

r r t dt dt
W Wr r
r

ϕ

ϕ

ϕ
ϕ

ε ϕ ε
ϕ ϕ

ϕ

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂
+ +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎡ ⎤ ⎝ ⎠⎢ ⎥⎜ ⎟= +⎢ ⎥ ⎢ ⎥⎜ ⎟⎛ ⎞∂ ∂⎣ ⎦ ⎢ ⎥⎜ ⎟− +⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∫ ∫& , (D.21) 

 

 

 

1 1
2 1 1 1T T

2
1 1 1

0 0 1 1
1 1

f f
f ( , , )

1 1f ( , , )
T T

f ( , ) f ( , )

r

u

r

r t W W
r

r t dt dt
W W

r r
r

φ φ
φ φ

φ
φ φ

φ

ϕ
ϕ

ϕ ε ϕ ε
ϕ ϕ

ϕ

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞
+ +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎡ ⎤ ⎝ ⎠⎢ ⎥⎜ ⎟= +⎢ ⎥ ⎢ ⎥⎜ ⎟∂ ∂⎛ ⎞⎣ ⎦ ⎢ ⎥⎜ ⎟− +⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦

∫ ∫& , (D.22) 

 

where ,r φ   are the averaged variables. Note that if a function f  is not periodic in T , 

then the averaging is done over infinitely long time as in 
T

T
0

1lim f dt
T→∞ ∫ [93]. 
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