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Abstract 
 

We decompose the score statistic for testing for shared finite variance frailty in 
multivariate lifetime data into marginal and covariance-based terms. The null properties 
of the covariance-based statistic are derived in the context of parametric lifetime models. 
Its non-null properties are estimated using simulation and compared with those of the 
score test and two likelihood ratio tests when the underlying lifetime distribution is 
Weibull. Some examples are used to illustrate the covariance-based test. A case is made 
for using the covariance-based statistic as a simple diagnostic procedure for shared frailty 
in a parametric exploratory analysis of multivariate lifetime data. 
 
 
Key words:  Finite variance frailty; Gamma frailty; Multivariate lifetimes; Positive stable 
frailty; Proportional hazards; Score statistic; Survival analysis; Weibull distribution.
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1. Introduction 
 
Suppose we have an independent sample of n p-variate lifetimes (p > 1) where the ith 
observation is . A simple example of a situation in which such data would 
arise is a matched pair study (p = 2) in which component j (j = 1, 2) receives treatment j 
and the lifetime of each component is observed. Frailty modelling is a natural approach to 
modelling such data, see Duchateau and Janssen (2008) and Wienke (2011) for recent 
texts on this topic. In particular the shared frailty model is a natural extension to standard 
lifetime data modelling (see, for example, Collett, 2003). In this shared frailty model the 
conditional cumulative hazard of lifetime (i, j) is given by 

1 2( , ,..., )T
i i ipt t t

 
(1.1) ( | ) ( )ij ij j i ij ijH t z z H t= , 
 
where  is the frailty, a random effect that is shared by all lifetimes in observation i.  
Note in passing that if we replace  by , where the  are mutually independent, then 
we obtain a marginal frailty model.  

iz

iz ijz ijz

 
We shall refer to ( )ij ijH t in (1.1) as the cumulative hazard of the underlying lifetime 
distribution for the random variable corresponding to . When ijt 1iz ≡  then there is no 
frailty and we shall refer to this as the null model. 
 
When  varies with i, then the shared frailty model induces correlation between the p 
lifetime components and may also affect the marginal behaviour of the lifetime 
components. For example, if the underlying lifetime distribution is Weibull and the 
shared frailty is gamma distributed, then we obtain a multivariate Burr distribution for the 
p-variate lifetimes, which has positively correlated lifetime components and univariate 
Burr marginals (see, for example, Crowder, 1985).  

iz

 
A common approach is to adopt a Cox model for the underlying distribution with 
unspecified underlying cumulative hazard function:  
 
(1.2) , 0( ) exp( ) ( )T

ij ij j ij j ijH t x H t= β
 
where the ijx  are fixed covariates and 0 ( )j ijH t  is an unspecified baseline hazard. Also, 
the distributional form, such as the gamma distribution, of the  is commonly specified 
(see, for example, Siegmund et al, 1999). However, in some situations there may be 
background information on the form of the underlying distribution, perhaps via a weakest 
link argument, use of extreme value theory or from past experience. A Weibull 
distribution is a common choice, particularly in reliability and material strength 
applications. Moreover, the shared frailty is an unobservable random variable and so we 
may prefer not to be too prescriptive about the frailty distribution, at least at the 
exploratory stage of an analysis. 

iz
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In this paper we consider testing for the presence of shared frailty using only simple 
quantities that are readily available from standard lifetime data analyses. We shall use 
models (1.1) with (1.2) but, unlike the Cox model approach, we shall specify the baseline 
hazard function up to a small number of unknown parameters in line with standard 
parametric lifetime data analysis. Taking 0 ( ) j

j ij ijH t tφ= would be appropriate for a 
Weibull-based model, for example. We shall assume that the frailty distribution has mean 
1 and variance 1/  ( ). This is a weak assumption relative to assuming a specified 
distributional form but is an assumption nonetheless because, for example, it rules out 
distributions with infinite variance.  

δ 0δ >

 
We shall also assume that the lifetime of component j of observation i may be censored at 

 and that is an indicator taking the value 1 if the lifetime is observed and 0 if it is 
censored. Crowder and Kimber (1997) have obtained a score statistic to test for shared 
frailty but we will use the approach of Commenges and Andersen (1995) to decompose 
the score statistic into two parts, one of which is potentially useful in the shared frailty 
context. The score statistic in the notation is 

ijc ijδ

 

(1.3) 
2

1

1

( 1)ˆ
2 2

n
i i i

p i i
i

sU n s− • • •
• •

=

⎧ ⎫δ δ −
= − δ −⎨ ⎬

⎩ ⎭
∑ , 

 

where δ = , where and a hat indicates that any 

unknown parameters have been estimated by maximum likelihood under the null model. 
1

p

i ij
j

•
=

δ∑
1

p

i ij
j

s s•
=

= ∑ 1ˆ ˆ( ) ( )ij ij
ij ij ij ij ijs H t H cδ −δ=

 
The corresponding score statistic to test for marginal frailty in component j is, trivially 
adapting the result given Kimber (1996),  
 

(1.4)    
2

1

1

ˆ
2

n
ij

j i
i

s
V n s−

•
=

ij

⎧ ⎫⎪ ⎪= − δ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ . 

 
 
In section 2 we obtain the null properties of the new statistic. In section 3 we compare he 
power and robustness of the new statistic with the score test and also likelihood ratio 
methods. Some illustrative examples are given in section 4 and further discussion appears 
in section 5. Technical details are outlined in an appendix. 
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2.  A covariance statistic and its null properties 
 
Let  

(2.1) 1
,

1

ˆ ( )(
n

j k ij ij ik ik
i

T n s s−

=

)= − δ − δ∑  

 
for j, k = 1, 2, … p (though we shall only use the cases where j<k).  
 
Then, following Commenges and Andersen (1995), it is easy to show that  
 

(2.2) ,
1

ˆ ˆ
= <

= + ˆ∑ ∑
p

p j
j j k

U V Tj k . 

 
This analysis of variance type decomposition of the score statistic for shared frailty into 
the sum of score statistics for marginal frailty and the sum of covariance type terms is a 
natural one because finite variance frailty affects the underlying survival distribution by 
acting on the marginal distributions and by inducing association between components.   
 
The null properties of  and the  are available using the methods of Crowder and 
Kimber (1997) and Kimber (1996). So here we shall concentrate on the null properties of 
the . For the remainder of his section all the properties derived are for the null, no 
frailty case. 

ˆ
pU ˆ

jV

,
ˆ

j kT

 
Consider initially the case of no censoring, so that for all i and j 0.δ =ij  First, suppose for 
now that all the parameter values in the ijH  are known. Then the probability integral 
transform indicates that in the null case the  are independent observations from the 

exponential distribution with mean 1. Thus, it is trivial to show that 
ijs

,
ˆ

j knT  has mean 0 

and variance 1. Also, by the central limit theorem ,
ˆ

j knT  is asymptotically normally 
distributed. Again, it is easy to show from first principles that the p(p+1)/2 terms in the 
decomposition (2.2) are uncorrelated. 
 
Now, if we allow unknown parameters in the ijH  and estimate them using maximum 
likelihood, we may use the approach of Pierce (1982) to find the asymptotic null 
distribution of ,

ˆ
j knT  (as used by Crowder and Kimber (1997) and Kimber (1996) to find 

the asymptotic null distributions of  and  respectively). The key element here is 

that, unlike  and , there are no  terms, so that the “correction” term for the 

asymptotic variance of 

ˆ
pU ˆ

jV
ˆ

pU ˆ
jV 2

ijs

,
ˆ

j knT  that allows for parameter estimation is 0. See the 
Appendix for further discussion of this point.  
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Having obtained the null asymptotic variance of ,
ˆ

j knT  and using the results of Crowder 

and Kimber (1997) and Kimber (1996), we see that the null asymptotic variance of  is 
simply the sum of the null asymptotic variances of the p(p+1)/2 terms in the 
decomposition, so that the terms in the decomposition (2.2) are asymptotically 
uncorrelated. 

ˆ
pU

 
If we now allow for censoring to occur, then the above null properties still hold with 
some adjustment to the asymptotic variance of ,

ˆ
j knT . This may now by estimated by  

 

(2.3)   1
,

1

ˆˆ ( ) (1 )(1− −−

=

= − −∑ ij ik

n
d d

j k
i

Var nT n e e ) , 

where  with any unknown parameters replaced by their null maximum 
likelihood estimates. In the simple case of type I censoring with no covariates, then 

and for all i, so that 

ˆ ( )ij ij ijd H c=

=ij jc c ij jd d=
 
(2.4)    ,

ˆˆ ( ) (1 )(1− −= − −j kd d
j kVar nT e e ) . 

 
Note that as expected the right hand side of (2.4) tends to 1 (the result for the uncensored 
case) as the censoring points grow large. 
 
Let 

(2.5)     ,
ˆ ˆ

<

= ∑p j
j k

T T k . 

  
Returning to the general censoring case, we have that p̂nT  has a null distribution that is 
asymptotically normal with mean 0 and variance that may be estimated by 
 

(2.6)    1

1

ˆˆ ( ) (1 )(1− −−

< =

= − −∑∑ ij ik

n
d d

p
j k i

Var nT n e e ) . 

 
Thus, either or the may be used as diagnostic test statistics for detecting frailty to 

augment use of . Note that all these statistics depend the , which are simply Cox-
Snell residuals (Cox and Snell, 1968). Such residuals are routinely available for standard 
survival distributions like the Weibull distribution. Large positive values of either or 

the are indicative of departures from the null hypothesis of no shared frailty.  

ˆ
pT ,

ˆ
j kT

ˆ
pU ijs

ˆ
pT

,
ˆ

j kT
 
Note that for these results to hold there must be separate parameters for each of the p 
components so that under the null, no frailty model we have essentially p independent 
data sets with no parameters in common. We shall discuss this further in section 5. 
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Note also that in (2.3), (2.4) and (2.6) the particular form of the underlying distribution 
enters only in calculating the . This is in contrast to the corresponding properties of 

derived in Crowder and Kimber (1997) where different underlying distributions lead 
to different variances. For example, in the case in which the underlying distribution is 
Weibull with both parameters unknown the null variance of  when there is no 
censoring is  

ijd
ˆ

pU

ˆ
pU

 2

( 3) 6(1 )
2

p p p+
− +

π
. 

 
The corresponding result for an exponential underlying distribution is  
 

 ( 1
2

p p )+ . 

 
The reason is that the “correction term” in the variance to allow for parameter estimation 
(Pierce,1982) is non-zero for  and involves the expected information matrix of the 
null model, which depends on the particular underlying distribution being used. See the 
Appendix. 

ˆ
pU
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3. Power calculations 
 
The most widely used standard parametric survival distribution is the Weibull and so we 
investigate our frailty tests for p-variate Weibull survival data, mostly with p=2 which 
corresponds to matched pairs. For each situation (n, p, frailty distribution, censoring 
regime) we used 2000 simulated samples of size n to estimate the percentage power, so 
that, using the binomial distribution, an upper bound (attained when the true power is 
50%) for each percentage power estimate is 1.1% . The numerical results given here are 
reported for the case n = 50 and for a 5 per cent significance level. Other combinations 
give qualitatively similar results but are omitted for brevity. Since shared frailty can 
induce correlation and affect marginal behaviour, the results reported cover the cases: 
correlation and marginal effects (finite variance frailty), correlation only (infinite 
variance frailty) and marginal effects only (marginal frailty). 
 
 
3.1 Comparison of the performances of score-based and likelihood ratio tests for 
frailty 
 
A natural alternative to using score-based procedures is likelihood ratio testing for frailty. 
There are two issues here. First, likelihood ratio tests require the frailty model to be fitted 
explicitly, which is certainly more computationally challenging than fitting, say, a 
standard Weibull model followed by use of standard residuals. Secondly, a likelihood 
ratio test for frailty requires the frailty distribution to be specified (a gamma distributed 
frailty distribution is often used in practice). Since the frailty distribution is unobservable, 
the robustness of likelihood ratio tests in this context is not obvious. 
 
We consider the bivariate case (p=2) where the underlying distribution is Weibull. We 
shall investigate the four test statistics ,  (= ),  and 2Û 2̂T 1,2T̂ GL PSL , where the last two are 
likelihood ratio statistics assuming that the frailty distribution is gamma and positive 
stable respectively. Note that the positive stable distribution does not have finite variance 
and so lies outside the class of frailty distributions our score-based tests were set up to 
detect.  
 
Tables 1 and 2 show respectively the power results for n=50 using a 5 per cent 
significance level with no censoring and no covariates for the situations where the frailty 
distribution is (a) gamma with mean 1 and variance 1/ δ  ( 0δ > ) and (b) positive stable 
with characteristic exponent  ( 0.ν 5 1< ν < ). Note that δ = ∞  and 1ν = correspond to the 
null case of no frailty. Note also that since the Cox-Snell residuals are invariant to 
changes in the Weibull scale and shape parameters, an exponential underlying 
distribution with mean 1 was used in the simulation study, though in calculating all the 
statistics it was assumed that the density of each underlying Weibull distribution had 
unknown shape and scale parameters. Other values of n gave qualitatively similar results. 
 
If we consider first the score-based tests, we see from Table 1 that in this “ideal” situation 
(i.e. shared frailty with finite variance),  is slightly more powerful than . However, 2Û 2̂T
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in Table 2 we see that  is more robust than  in that it maintains its power much 
better when the frailty distribution has been misspecified. From these two tables it is clear 
that if the form of the frailty distribution is correctly specified, then the relevant 
likelihood ratio test is the most powerful of the four tests (though the score-based tests 
are still competitive in the gamma frailty case). However, if the form of the frailty 
distribution is incorrectly specified, then the likelihood ratio test does rather worse than 

. Thus, on robustness grounds, together with simplicity and numerical convenience, 

there is certainly a case for using . 

2̂T 2Û

2̂T

2̂T
    
3.2 The effect of censoring on the powers of the score-based methods 
 
As before, Tables 3 and 4 show respectively the power results for n=50 using a 5 per cent 
significance level with no censoring and no covariates for the situations where the frailty 
distribution is (a) gamma with mean 1 and variance 1/ δ  ( 0δ > ) and (b) positive stable 
with characteristic exponent ν  ( 0.5 1< ν < ), but this time with three censoring regimes: 
(i)  (ii)  (iii) 1 2 2.97c c= = 1 2 1.80c c= = 1 21.20;c c= = ∞ . Case (i) corresponds to 
approximately 5% censoring in each margin, case (ii) corresponds approximately to 
approximately 16.5% censoring in each margin, while case (iii) corresponds to 
approximately 30% censoring in one margin only.  
 
The relative performances of  and  are qualitatively similar to those in the no 

censoring case:  is somewhat more powerful than  when the frailty has finite 

variance, but  is considerably more powerful when the frailty distribution is 
misspecified in the sense of having infinite variance.  However, in the finite variance case 
the effect of censoring is to reduce the powers of both tests. In contrast, in the infinite 
variance case the effect of censoring is broadly to increase the powers relative to the no 
censoring case. An explanation is (Caroni and Kimber, 2004) that the effect of finite 
variance frailty tends to manifest itself as upper outliers, whereas the positive stable 
frailty distribution tends to produce lower outliers. Thus, for the gamma frailty 
distribution censoring tends to mask the effect of frailty, thereby making it more difficult 
to detect. However, for the positive stable frailty distribution, where frailty effects are 
concentrated in the lower tail and dissipated in the upper tail, censoring means that the 
lower tail effects are not watered down by relatively uninformative upper tail values.  

2Û 2̂T

2Û 2̂T

2̂T

 
 
3.3 Powers of the score-based tests when there is marginal but not shared frailty 
 
Tests based on  and  have been designed to detect shared, finite variance frailty. In 
this section we consider the case in which there is only marginal frailty. We model this 
by simulating samples that comprise independent pairs of observations, each observation 
having a Burr distribution (Crowder,1985) obtained by combining an underlying Weibull 
survival time with a gamma frailty with mean 1 and variance 1/

2Û 2̂T

δ  ( 0δ > ).  
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Tables 5 shows the power results for  and for n=50 using a 5 per cent significance 
level with no covariates for the situation where there is marginal gamma frailty with 
mean 1 and variance 1/  ( ) when there is (a) no censoring,  (b)  (c) 

. Broadly speaking, when there is censoring in both margins the powers 

of  and  are both low. However, when one or more margin is not censored  has 

non-negligible power for moderate to strong marginal frailty, whereas  does not. Thus, 

 tends not to give a significant result when only marginal frailty is present but  
tends to give a significant result when not all margins are subject to censoring. 

2Û 2̂T

δ 0δ > 1 2 1.80c c= =

1 21.20;c c= = ∞

2Û 2̂T 2Û

2̂T

2̂T 2Û

 
3.4 Powers of tests based on the score-based tests when p=3 
 
Tables 6 and 7 show respectively the power results for n=50 and p=3 using a 5 per cent 
significance level with no censoring and no covariates for the situations where the frailty 
distribution is (a) gamma with mean 1 and variance 1/ δ  ( 0δ > ) and (b) positive stable 
with characteristic exponent ν  ( 0.5 1< ν < ). The relative performances of  and  are 

qualitatively similar to those in the bivariate case:  is somewhat more powerful than 

 when the frailty has finite variance, but  is more powerful when the frailty 
distribution is misspecified in the sense of having infinite variance.  Not surprisingly, the 
powers of the tests are higher than in the bivariate case with the same n and frailty 
distribution since there are 50% more items of data per sample when p=3 than when p=2. 

2Û 2̂T

3Û

3̂T 3̂T
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4. Examples 
 
Example 1: infant nutrition 
 
We first use a set of data on the ages of introduction of two types of potentially allergenic 
food in infant diets. Further details of the data may be found in Kimber (1996). The data 
comprise the ages in months at which fish and egg were first given to each of 55 infants 
in an infant nutrition study carried out in Madrid, Spain. There is no censoring present in 
the data and the null model assumed is that  
 
(4.1) ( ) ( ) exp( ) j

ij ij j ij j ijH y H y yφ= = α , 
 
with i = 1, 2, …,55 and j = 1,2. Thus, the null model is that the two ages of introduction 
are independent Weibull random variables, but it is felt that there may be a shared frailty 
effect, possibly corresponding to unmeasured psycho-social factors of the main carers for 
the infants. 
 
Now, under the null model  is approximately Normal with mean 0 and variance 

; see Crowder and Kimber (1997) for details. The observed value of 
2Û

23(1 4 / ) / n− π
2

2
ˆ / 3(1 4 / )nU − π  is 3.45, which is highly significant. Taken on its own, this result 

would seem to indicate the presence of shared frailty. However, 2̂nT = 1.41, which, 
using the results of section 2, may be referred to the standard normal distribution. 
Clearly, this result is not significant at the 5% level. Taking these two diagnostic tests 
together suggests that frailty may be present but that the evidence for shared frailty is 
relatively weak.  
 
Example 2: reaction times 
 
Crowder and Kimber (1997) investigated the pre-test and post-test reaction times in 
seconds of n = 9 rats in a study on the effect of lead levels. These data are a coherent 
subset of a larger data set, full details of which are given in Crowder (1989). A feature of 
the data is that reaction times that exceed 250 seconds have been censored. The data set is 
smaller than is ideal for detecting frailty but it does illustrate how the test may be applied 
in the presence of censoring. The null model is of the same form as (4.1) used in Example 
1. The nine data pairs are (45, 214), (40, 218.5), (52.5, 250*), (57, 211), (40.5, 117.5), 
(26.5, 250*), (58.5, 179.5), (35.5, 193.5), (33, 141.5). With 1 2 250c c= =  and using 
Weibull maximum likelihood estimation for each marginal distribution, we obtain 

and . Thus, using (2.4) we see that 1 2457.66d = 2 1.53323d = 2̂nT  has estimated null 

standard deviation 0.886. However, 2̂ 0.039nT = −  and since large positive values of 

2̂nT  are significant, it is clear that there is no evidence of frailty here. This is in line 

with the analysis based on  given in Crowder and Kimber (1997), which also gave a 
non-significant result. Thus, overall there is little evidence for shared frailty in the data. 

2Û
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Example 3: braided cords 
 
Crowder and Kimber (1997) give trivariate strength data for 40 braided cords (so that the 
“survival time” is in fact strength in this example). The null model is as for (4.1) in 
Example 1 except that here j=1, 2, 3.  Crowder and Kimber (1997) show that  is highly 

significant but we now carry out the test based on . Now, after fitting the null Weibull 

model to the three sets of strengths we obtain 

3Û

3̂T

1,2
ˆnT =16.272, 1,3

ˆnT = 12.979 and 

2,3
ˆnT = 11.498. Further, the null distribution of 3̂3

nT  is standard Normal since each of 

the three ,
ˆ

j knT  terms has null asymptotic variance 1 and they are asymptotically 

uncorrelated. The observed value of 3̂3
nT  is (16.272 12.979 11.498) / 3+ + = 23.526, 

which is clearly highly significant. The two results together indicate that the shared frailty 
model is plausible here. 
 
Example 4: exercise times to angina 
 
Pickles and Crouchley (1994) studied the time to angina of patients after being given a 
dose of isosorbide dinitrite. Table 8 shows the data we shall use here. Here 21 patients 
were given a dose of the drug and 1 hour and 3 hours after receiving the drug they used 
exercise bikes until they felt angina or were too exhausted to continue, the latter situation 
corresponding to censoring.  
 
The null model   
 
(4.2)    0 1( ) exp( ) j

ij ij j j i ijH y x yφ= β + β  
 

was fitted with i = 1, 2, …, 21 and j = 1,2; here ix  is the dose given to patient i. Table 9 
gives the null maximum likelihood estimates for this model. Using these results to obtain 
the Cox-Snell residuals yields 2̂ 2.938nT = . Since there is censoring the null asymptotic 
variance of this statistic is, by inspection of (2.3), clearly less than 1. Thus, even without 
evaluating this variance explicitly, it is clear that the result is highly significant so that 
there appears to be shared frailty in the data.    
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5. Discussion 
 
We shall discuss our results using the matched pair set up as an illustration.  
 
Doing an initial check on whether there is shared frailty may have value in terms of 
modelling the lifetime data and may be useful in checking whether the matching has 
worked. For example, in a quality control procedure if one selects each pair from a 
different batch, a non-significant test for shared frailty may be indicative that the batch to 
batch variability is low. Conversely, an indication of high batch to batch variability may 
give a warning. 
 
In the spirit of wanting a simple initial analysis that uses standard lifetime data methods 
both  and are simple to calculate (but see below) and give slightly different 

information. If  and  are both significant, then there is evidence of shared frailty. If 
neither is significant, then the data give little evidence of shared frailty (though of course 
that could be because censoring has masked the presence of frailty). More interestingly, if 

 is significant but  is not, then there is an indication that marginal frailty may be 

more important than shared frailty. Likewise if is significant but  is not, then this 
may suggest that there is shared frailty but possibly not with finite variance. Note that for 
the censoring regimes considered in this paper it is easy to obtain an estimate of the null 
asymptotic variance of  but it can be more tricky to do so for  (see the calculations 
performed in Crowder and Kimber (1997) and compare these with (2.3), (2.4) and (2.6)).   

2Û 2̂T

2Û 2̂T

2Û 2̂T

2̂T 2Û

2̂T 2Û

 
Models such as (4.1) with no explicit covariate information are clearly very simple but 
may still be useful. For example, if component j corresponds to treatment j then (4.1) 
allows for a treatment potentially to impact on all its within component parameters. Thus, 
there is flexibility here and at the exploratory analysis stage one is not forcing a particular 
treatment effect model on the data. On the other hand, models such as (4.2) still allow 
this flexibility of treatment effect but impose more structure on the effects of other 
prognostic variables. Because there must be no overlap in parameters between 
components, there is still some flexibility in modelling the effects of prognostic variables 
(i.e. we do not force the effect of a prognostic variable to be the same in each 
component).  
 
We have concentrated on the Weibull underlying distribution because of its ubiquity in 
many branches of lifetime data analysis. The exponential and Rayleigh distributions 
remain popular choices in some branches of reliability and these can easily be 
incorporated in the models we have used by setting  1jφ =  and 2 respectively for all j in 
our Weibull models and the results of section 2 apply unchanged. Other lifetime 
distributions could also just be slotted in to the results of section 2 provided all maximum 
likelihood estimation required is regular (so, for example, the two parameter exponential 
distribution with unknown location parameter could not be used since estimation of the 
location parameter is not regular). 
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The simple structure of the null model means that the only constraint on the prognostic 
variables is that they allow all null parameters in a component to be estimable. However, 
we envisage statistics such as as being most useful when the number of prognostic 
variables is small. 

2̂T

 
Another approach for paired data has been set out by Owen (2005) where by using ratios 
of variables in an accelerated failure time set up (see, for example, Collett, 2003) he 
enables shared frailty terms to cancel out, so that the frailty distribution essentially 
disappears from the analysis; see also Wang (2010). Since with a Weibull underlying 
distribution the proportional hazards and accelerated failure time frailty models are 
equivalent this is an alternative if frailty is simply a nuisance and of no interest in itself. 
Also, in order to obtain simple distributional results the ratio approach requires equal 
Weibull shape parameters across components, which may not be appropriate in all 
applications. For p > 2 such ratio methods would become increasingly complex.  
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Appendix 
 
We use Crowder and Kimber (1997) and Pierce (1982) to show that the null asymptotic 
variance of  is the same whether all parameters are known or estimated by maximum 
likelihood.  

2̂T

 
Let  and  denote the null variances of  with and without regular parameter 
estimation respectively. Let λ denote the parameter vector for the null model. Then 
putting Pierce’s result in the present context 

nv ˆnv 2̂T

 
(A1) , ˆ T

n n n nv v B J B= − n

 
where  is the expected information matrix for the null model and nJ nB  is the null mean 

vector of when there is no parameter estimation required. We now show that 2̂ /T∂ ∂λ nB  
is the zero vector, which gives the required result. 
 
To show this, take the contribution to nB  of observation i and then drop the subscript i for 
simplicity and suppose without loss of generality that θ  is a component 1 parameter. 
Then the contribution is  if both components are observed,  if 
only component 2 is censored, 

1 2 1 2 1s s s s− − + 1 2 2s d d−

1 2 1d s d−  if only component 1 is censored, and  if 
both components are censored. The derivatives of the contribution with respect to 

1 2d d
θ  

involve component 2 via a multiplicative factor 2 1s − when component 2 is observed and 
via a multiplicative factor when component 2 is censored. Since the variables in the 
null model are independent the double integral required to find the expectation is 
separable. Thus, the expectation of the derivative is proportional to 

2d

 
 . 2

2
2 2 2 2 20

( 1)exp( ) exp( ) 0
d

d
s s ds d s ds

∞
− − + − =∫ ∫ 2

 
Hence the required result for . The result clearly generalises to  since the 

components of  are asymptotically uncorrelated under the null model and are of the 

same form as .  

2̂T ˆ
pT

ˆ
pT

2̂T
 
Note that the correction term in (A1) involves the information matrix, which clearly 
depends on the form of the underlying distribution.  Thus, when nB  is non-zero, as is the 

case for  (Crowder and Kimber, 1997) , then different underlying distributions will 

lead to different expressions for the variance. This is contrast to the variance of  where 
the variance result (2.6), for example, applies across underlying distributions. 

ˆ
pU

ˆ
pT
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Table 1 Estimated powers (%) of ,  (= ),  and 2Û 2̂T 1,2T̂ GL PSL  when p=2, n=50, the 
underlying survival distribution is Weibull and the frailty distribution is gamma with 
mean 1 and variance 1/ .  δ
 
 

δ 
2Û  2̂T  GL  PSL  

0.5 100.0 100.0 100.0 100.0
1 99.7 97.7 99.9 99.0 
2 90.5 82.4 92.2 71.3 
4 56.2 47.6 58.6 33.7 
8 27.4 23.3 27.9 15.4 
16 12.6 11.4 15.2 8.8 

 
 
 
 
 
Table 2 Estimated powers (%) of ,  (= ),  and 2Û 2̂T 1,2T̂ GL PSL  when p=2, n=50, the 
underlying survival distribution is Weibull and the frailty distribution is positive stable 
with characteristic exponent ν.  
 
 

ν 
2Û  2̂T  GL  PSL  

0.5 87.9 99.0 96.0 100.0
0.6 70.6 90.4 87.2 99.0 
0.7 48.8 68.9 63.3 94.9 
0.8 26.7 38.1 37.0 75.1 
0.9 12.7 17.7 14.8 35.8 
0.95 7.2 8.9 10.3 15.2 
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Table 3 Estimated powers (%) of  and  (= ) when p=2, n=50, the underlying 
survival distribution is Weibull and the frailty distribution is gamma with mean 1 and 
variance  under three censoring regimes: (i) 

2Û 2̂T 1,2T̂

1/ δ 1 2 2.97c c= =  (ii)  (iii) 
. 

1 2 1.80c c= =

1 21.20;c c= = ∞
 

Case (i)  (ii)  (iii)  
δ 

2Û  2̂T  2Û  2̂T  2Û  2̂T  
0.5 99.9 100.0 99.7 99.5 100.0 100.0
1 97.9 96.4 94.6 93.5 97.9 95.7 
2 78.5 74.1 67.0 63.1 78.5 71.0 
4 43.6 40.0 35.0 32.4 45.2 37.1 
8 22.4 20.1 16.3 15.3 19.8 16.7 
16 11.9 11.7 10.6 9.9 11.5 10.0 

 
 
 
 
Table 4 Estimated powers (%) of  and  (= ) when p=2, n=50, the underlying 
survival distribution is Weibull and the frailty distribution is positive stable with 
characteristic exponent ν under three censoring regimes: (i)  (ii) 

 (iii) . 

2Û 2̂T 1,2T̂

1 2 2.97c c= =

1 2 1.80c c= = 1 21.20;c c= = ∞
 

Case (i)  (ii)  (iii)  
ν 

2Û  2̂T  2Û  2̂T  2Û  2̂T  
0.5 97.7 99.6 98.9 99.5 93.3 99.7
0.6 88.1 94.3 91.1 94.7 80.5 95.3
0.7 63.9 72.6 72.4 78.3 53.9 74.5
0.8 36.3 42.5 41.4 46.2 31.1 44.8
0.9 13.8 17.0 16.7 17.8 14.2 18.6
0.95 8.6 9.8 9.0 10.0 8.1 10.0
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Table 5 Estimated powers (%) of  and  (= ) when p=2, n=50, the underlying 
survival distribution is Weibull and there is marginal gamma frailty with mean 1 and 
variance  under three censoring regimes: (a) no censoring (b)  (c) 

. 

2Û 2̂T 1,2T̂

1/ δ 1 2 1.80c c= =

1 21.20;c c= = ∞
 

Case (a)  (b)  (c)  
δ 

2Û  2̂T  2Û 2̂T  2Û  2̂T  
0.5 96.3 13.5 7.6 4.7 70.6 14.5
1 80.0 12.0 9.0 5.4 56.0 11.0
2 47.8 9.5 7.7 5.7 31.9 8.6 
4 22.5 7.6 5.6 4.1 16.0 6.3 
8 11.3 6.0 5.0 5.0 9.7 6.4 
16 7.6 5.4 5.2 5.7 6.8 4.6 
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Table 6 Estimated powers (%) of  and  when p=3, n=50, the underlying survival 
distribution is Weibull and the frailty distribution is gamma with mean 1 and variance 

.  

3Û 3̂T

1/ δ
 
 

δ 
3Û  3̂T  

0.5 100.0 100.0
1 100.0 100.0
2 98.8 97.5 
4 80.9 75.1 
8 43.5 38.5 
16 22.0 18.7 

 
 
 
 
 
Table 7 Estimated powers (%) of  and  when p=3, n=50, the underlying survival 
distribution is Weibull and the frailty distribution is positive stable with characteristic 
exponent ν.  

3Û 3̂T

 
 

ν 
3Û  3̂T  

0.5 99.9 100.0
0.6 99.2 100.0
0.7 92.6 97.1 
0.8 66.3 75.9 
0.9 25.8 31.6 
0.95 12.4 15.0 
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Table 8 Exercise time to angina in seconds of 21 patients 1 hour and 3 hours after each 
had received a dose of oral isosorbide dinitrite (* corresponds to a censored observation). 
 

1 hour 3 hours Dose (mm/kg)
445* 393* 0.58 
232 258 0.24 
121 110 0.38 
504* 519* 0.41 
110 123 0.37 
230 264 0.24 
540* 370 0.49 
733* 492 0.2 
250 150 0.38 
651 624 0.51 
565* 504* 0.51 
306 206 0.34 
248 298 0.37 
580 613 0.32 
264 210 0.37 
145 172 0.53 
403 290 0.44 
432 291 0.31 
743* 566 0.24 
559* 557* 0.27 
327 280 0.24 

 
 
Table 9 Null Weibull maximum likelihood estimates for model (4.2) for the data given in 
Table 8. 
 

Parameter 01β  11β  1φ  02β  12β  2φ  
Estimate -10.14 -0.12 1.61 -11.52 -1.22 1.98 

 

20 


	M11-09
	Frailtypaper_1

