Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation

Trimarchi, James R., Liu, Lin, Smith, Peter J.S. and Keefe, David L. (2002) Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation American Journal of Physiology. Cell Physiology, 282, (3), C588-C594. (doi:10.1152/ajpcell.00365.2001). (PMID:11832344).


[img] PDF Am_J_Physiol_Cell_Physiol-2002-Trimarchi-C588-94.pdf - Version of Record
Restricted to Repository staff only

Download (412kB)


Cell shrinkage is an incipient hallmark of apoptosis and is accompanied by potassium release that decreases the concentration of intracellular potassium and regulates apoptotic progression. The plasma membrane K+ channel recruited during apoptosis has not been characterized despite its importance as a potential therapeutic target. Here we provide evidence that two-pore domain K+ (K(2P)) channels underlie K+ efflux during apoptotic volume decreases (AVD) in mouse embryos. These K(2P) channels are inhibited by quinine but are not blocked by an array of pharmacological agents that antagonize other K+ channels. The K(2P) channels are uniquely suited to participate in the early phases of apoptosis because they are not modulated by common intracellular messengers such as calcium, ATP, and arachidonic acid, transmembrane voltage, or the cytoskeleton. A K+ channel with similar biophysical properties coordinates regulatory volume decreases (RVD) triggered by changing osmotic conditions. We propose that K(2P) channels are the pathway by which K+ effluxes during AVD and RVD and that apoptosis co-opts mechanisms more routinely employed for homeostatic cell volume regulation

Item Type: Article
Digital Object Identifier (DOI): doi:10.1152/ajpcell.00365.2001
ISSNs: 0363-6143 (print)
Organisations: University of Southampton
ePrint ID: 188841
Date :
Date Event
March 2002Published
Date Deposited: 13 Jun 2011 13:04
Last Modified: 18 Apr 2017 02:04
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/188841

Actions (login required)

View Item View Item