The University of Southampton
University of Southampton Institutional Repository
Warning ePrints Soton is experiencing an issue with some file downloads not being available. We are working hard to fix this. Please bear with us.

Noninvasive measurement of potassium efflux as an early indicator of cell death in mouse embryos

Noninvasive measurement of potassium efflux as an early indicator of cell death in mouse embryos
Noninvasive measurement of potassium efflux as an early indicator of cell death in mouse embryos
Programmed cell death (apoptosis) occurs in nearly all cell types examined, including mammalian oocytes and embryos, where it may underlie some forms of infertility in humans. Although the molecular machinery participating in apoptosis have been intensely investigated, the accompanying physiological changes have not received similar attention. In this study, a novel electrophysiology technique has been employed to monitor real-time perturbations in the physiology of mouse embryos undergoing apoptosis evoked by hydrogen peroxide, diamide, and staurosporine. Despite differences in their mode of action, these agents evoked a similar early change in cellular physiology; namely, a pronounced, transient, potassium efflux through tetraethylammonium-sensitive potassium channels accompanied by cell shrinkage. Mouse zygotes exposed to 200 microM H(2)O(2) exhibited potassium efflux that elevated the potassium concentration of the media surrounding embryos by 1.4 +/- 0.1 microM. Pretreatment with tetraethylammonium inhibited this increase (0.2 +/- 0.1 microM). Our results indicate that potassium efflux through potassium channels and concurrent cell shrinkage are early indicators of cell death in embryos and that noninvasive measurements of potassium pathophysiology may identify embryos undergoing cell death prior to the manifestation of other morphological or molecular hallmarks of cell death.
apoptosis, developmental biology, signal transduction
851-857
Trimarchi, James R.
dc15c269-2b07-41fb-b3e5-a9ac457c7994
Liu, Lin
51bc0635-5ce3-4ade-9edf-624ec8a1750b
Smith, Peter J.S.
003de469-9420-4f12-8f0e-8e8d76d28d6c
Keefe, David L.
a1d0a08b-d76a-4d64-b2dd-4d1a5fc04451
Trimarchi, James R.
dc15c269-2b07-41fb-b3e5-a9ac457c7994
Liu, Lin
51bc0635-5ce3-4ade-9edf-624ec8a1750b
Smith, Peter J.S.
003de469-9420-4f12-8f0e-8e8d76d28d6c
Keefe, David L.
a1d0a08b-d76a-4d64-b2dd-4d1a5fc04451

Trimarchi, James R., Liu, Lin, Smith, Peter J.S. and Keefe, David L. (2000) Noninvasive measurement of potassium efflux as an early indicator of cell death in mouse embryos. Biology of Reproduction, 63 (3), 851-857. (doi:10.1095/?biolreprod63.3.851). (PMID:10952931)

Record type: Article

Abstract

Programmed cell death (apoptosis) occurs in nearly all cell types examined, including mammalian oocytes and embryos, where it may underlie some forms of infertility in humans. Although the molecular machinery participating in apoptosis have been intensely investigated, the accompanying physiological changes have not received similar attention. In this study, a novel electrophysiology technique has been employed to monitor real-time perturbations in the physiology of mouse embryos undergoing apoptosis evoked by hydrogen peroxide, diamide, and staurosporine. Despite differences in their mode of action, these agents evoked a similar early change in cellular physiology; namely, a pronounced, transient, potassium efflux through tetraethylammonium-sensitive potassium channels accompanied by cell shrinkage. Mouse zygotes exposed to 200 microM H(2)O(2) exhibited potassium efflux that elevated the potassium concentration of the media surrounding embryos by 1.4 +/- 0.1 microM. Pretreatment with tetraethylammonium inhibited this increase (0.2 +/- 0.1 microM). Our results indicate that potassium efflux through potassium channels and concurrent cell shrinkage are early indicators of cell death in embryos and that noninvasive measurements of potassium pathophysiology may identify embryos undergoing cell death prior to the manifestation of other morphological or molecular hallmarks of cell death.

Text
851.full.pdf - Version of Record
Restricted to Repository staff only
Request a copy

More information

Published date: September 2000
Keywords: apoptosis, developmental biology, signal transduction

Identifiers

Local EPrints ID: 190237
URI: http://eprints.soton.ac.uk/id/eprint/190237
PURE UUID: bda99855-4281-4de1-8245-8fea24141a1f
ORCID for Peter J.S. Smith: ORCID iD orcid.org/0000-0003-4400-6853

Catalogue record

Date deposited: 14 Jun 2011 09:28
Last modified: 21 Nov 2021 03:04

Export record

Altmetrics

Contributors

Author: James R. Trimarchi
Author: Lin Liu
Author: David L. Keefe

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×