The University of Southampton
University of Southampton Institutional Repository

The dynamics of O-2 adsorption on Pt(533): Step mediated molecular chemisorption and dissociation

Record type: Article

The dissociative adsorption of oxygen on the stepped Pt(533) surface has been investigated using supersonic molecular beams by measuring the initial dissociative sticking probability S-0 as a function of incident kinetic energy E-i, angle Phi, surface temperature T-S, and S as a function of coverage Theta. By comparison with dynamical data available on the Pt(111) surface we have been able to establish that step sites dominate the dissociative adsorption process. S-0(E-i) for oxygen on Pt(533) at T-S=200 in the energy range 52 meV-1.4 eV shows a similar functional dependence to results on Pt(111), however, the magnitude of S-0 on Pt(533) is significantly greater at all energies. The measurement of S-0(Phi), scattering in a plane perpendicular to the step direction at E-i=1.18 eV at T-S=350 K, reveals a strong and asymmetric angular dependence which contains contributions associated with activated adsorption and dissociation of the chemisorbed precursor on the (111) terraces, and a second contribution associated with activated dissociation through a similar channel at the step sites. The latter exhibits a maximum in S-0(Phi) at 35 degrees, near the angle corresponding to the normal of the (100) step plane. S-0(T-S) at E-i=1.18 eV and Phi =0 degrees reveals a much smaller temperature dependence in the range 150 >T-S(K)> 800 on Pt(533) than on Pt(111). At E-i=1.18 eV and Phi =0 degrees ca. 15%-25% of dissociation takes place through molecules impinging directly at step sites. The remaining fraction dissociate through activated adsorption of the chemisorbed species on the (111) terrace and subsequent partition between desorption, and dissociation at step sites. Dissociation of the chemisorbed precursor on the (111) terrace appears highly activated, a result which is consistent with theory. The rapid decrease in S-0(E-i) observed below 0.15 eV on Pt(533), observed also on Pt(111), is consistent with a trapping mechanism where the need to dissipate energy limits the probability of adsorption, and subsequent dissociation, of the physisorbed precursor. Kinetic modelling of this partition on Pt(533), between the conversion of the physisorbed precursor to the chemisorbed species, and desorption yields DeltaE=120 meV and v(d)/v(pc)=80. We conclude that the effective barrier to conversion of the physisorbed to chemisorbed species on Pt(533) is effectively zero. We conclude that defects will tend to dominate this conversion process on the close packed surface. In addition to this channel, at E-i=0.05 meV ca. 50% of molecules dissociate through the same channel operating at higher energy on Pt(533).

Full text not available from this repository.


Gee, A. T. and Hayden, B. E. (2000) The dynamics of O-2 adsorption on Pt(533): Step mediated molecular chemisorption and dissociation The Journal of Chemical Physics, 113, (22), pp. 10333-10343. (doi:10.1063/1.1323229).

More information

Published date: 8 December 2000
Keywords: absorption fine-structure, oxygen-adsorption, pt(111) surface, sticking, desorption, precursor, beam, spectroscopy, kinetics, energy


Local EPrints ID: 19037
ISSN: 0021-9606
PURE UUID: c227754f-1c11-4344-b86b-a93fdfc472f8
ORCID for B. E. Hayden: ORCID iD

Catalogue record

Date deposited: 21 Dec 2005
Last modified: 17 Jul 2017 16:34

Export record



Author: A. T. Gee
Author: B. E. Hayden ORCID iD

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.