The University of Southampton
University of Southampton Institutional Repository

Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster ovary cells overexpressing NADPH-cytochrome P450 reductase

Fussell, Karma C., Udasin, Ronald G., Gray, Joshua P., Mishin, Vladimir, Smith, Peter J.S., Heck, Diane E. and Laskin, Jeffrey D. (2011) Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster ovary cells overexpressing NADPH-cytochrome P450 reductase Free Radical Biology & Medicine, 50, (7), pp. 874-882. (doi:10.1016/j.freeradbiomed.2010.12.035). (PMID:21215309).

Record type: Article

Abstract

Diquat and paraquat are nonspecific defoliants that induce toxicity in many organs including the lung, liver, kidney, and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling. In this study, diquat and paraquat redox cycling was characterized using human recombinant NADPH-cytochrome P450 reductase, rat liver microsomes, and Chinese hamster ovary (CHO) cells constructed to overexpress cytochrome P450 reductase (CHO-OR) and wild-type control cells (CHO-WT). In redox cycling assays with recombinant cytochrome P450 reductase and microsomes, diquat was 10-40 times more effective at generating ROS compared to paraquat (K(M)=1.0 and 44.2?M, respectively, for H(2)O(2) generation by diquat and paraquat using recombinant enzyme, and 15.1 and 178.5?M, respectively for microsomes). In contrast, at saturating concentrations, these compounds showed similar redox cycling activity (V(max)?6.0nmol H(2)O(2)/min/mg protein) for recombinant enzyme and microsomes. Diquat and paraquat also redox cycle in CHO cells. Significantly more activity was evident in CHO-OR cells than in CHO-WT cells. Diquat redox cycling in CHO cells was associated with marked increases in protein carbonyl formation, a marker of protein oxidation, as well as cellular oxygen consumption, measured using oxygen microsensors; greater activity was detected in CHO-OR cells than in CHO-WT cells. These data demonstrate that ROS formation during diquat redox cycling can generate oxidative stress. Enhanced oxygen utilization during redox cycling may reduce intracellular oxygen available for metabolic reactions and contribute to toxicity

PDF sdarticle.pdf - Other
Restricted to Repository staff only
Download (1MB)

More information

Published date: April 2011
Organisations: Other

Identifiers

Local EPrints ID: 190493
URI: http://eprints.soton.ac.uk/id/eprint/190493
ISSN: 0891-5849
PURE UUID: b095937c-2a10-4493-a2e4-5a2b49eb3541
ORCID for Peter J.S. Smith: ORCID iD orcid.org/0000-0003-4400-6853

Catalogue record

Date deposited: 13 Jun 2011 10:44
Last modified: 18 Jul 2017 11:38

Export record

Altmetrics

Contributors

Author: Karma C. Fussell
Author: Ronald G. Udasin
Author: Joshua P. Gray
Author: Vladimir Mishin
Author: Diane E. Heck
Author: Jeffrey D. Laskin

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×