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ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT
INSTITUTE OF SOUND AND VIBRATION RESEARCH
Doctor of Philosophy

ANTENATAL FOETAL MONITORING THROUGH ABDOMINAL PHONOGRAM RECORDINGS:
A SINGLE-CHANNEL INDEPENDENT COMPONENT ANALYSIS APPROACH

by Aida Jiménez Gonzalez

Today, it is generally accepted that current methods for biophysical antenatal surveillance do
not facilitate a comprehensive and reliable assessment of foetal well-being. Alternatively, there
is continuing development of existing technologies and research into new non-invasive methods
that aim to improve antenatal examination procedures. To this end, these methods rely on the
detection of information about the cardiac function and the overall foetal activity, which is done
by using passive transducers that sense electric, magnetic or vibration signals. Here, attention
has been paid to the vibrations that, recorded by a sensitive acoustic sensor positioned on the
maternal womb, give rise to a signal referred to as the abdominal phonogram. Such a signal,
recorded in a single-channel configuration, is rich in foetal information, but hidden by maternal
and environmental interferences whose characteristics turn its extraction into a difficult and

challenging task.

The research presented in this thesis studied Single-Channel Independent Component Analysis
(SCICA) as a novel signal processing approach for retrieving information for antenatal foetal

surveillance from the single-channel abdominal phonogram.

The study, conducted by developing three implementations of SCICA, gave rise to a
methodology that successfully exploits the rich time-structure in the abdominal phonogram for
decomposition purposes. Consequently, and especially outstanding for a Blind Source
Separation approach, the current implementation of SCICA not only retrieves estimates of the
sources underlying the abdominal phonogram, but also identifies their physiological origin (i.e.
foetal cardiac, maternal cardiac, maternal breathing, and noise). Moreover, and significant to
highlight in the aim of this research, is that a consistent extraction of foetal and maternal cardiac
information in separate traces is reached even though their cardiac beats may temporary concur
and completely hide the foetal activity. Clearly, these are exceptional achievements for such a

single-channel methodology which, thoroughly tested on segments of abdominal phonograms,



not only performed better at separating foetal information than a rigid empirical filter, but also
was more efficient at distinguishing foetal from maternal information than other methods

reported in the literature.

In this way, when applied to 25 noisy single-channel abdominal phonograms (recorded at
gestational ages ranging between 29 and 40 weeks) the current implementation of SCICA
addressed the problem of separating out the signal into its underlying components, which were
identified as the foetal phonocardiogram (PCG), the maternal PCG/pressure-wave, the maternal
respirogram, and noise. Next, knowing that the foetal heart sounds (FHS) were consistently
retrieved in the foetal PCG, this research explored the suitability of using such information for
surveillance purposes. To this end, the foetal PCG was further processed to obtain the beat-to-

beat foetal heart rate (FHR) and the average morphology of the FHS.

Results showed that the instantaneous FHR obtained from the foetal PCG constantly follows
the trend given by a reference obtained from the abdominal ECG, which is especially significant
when recalling that the PCG was retrieved from the noisy abdominal phonogram.
Complementary, further processing of the maternal PCG/pressure-wave and the maternal
respirogram showed that additional parameters such as the beat-to-beat maternal heart rate and
the maternal breathing rate can be respectively obtained, which might be of interest for antenatal
examination in future applications. This outcome, achieved by using semiautomatic algorithms,
showed that the signals retrieved by SCICA from the abdominal phonogram are likely to

provide useful information for foetal well-being surveillance.

Future work should focus on enhancing the quality of the estimated signals, developing better
algorithms for obtaining meaningful parameters from such estimates, and increasing the dataset

so that the suitability of using these estimates for foetal surveillance can be thoroughly tested.
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1 INTRODUCTION

1.1. Motivation

Antenatal foetal surveillance is an essential part of foetal care that aims to identify those
foetuses whose physiological defence mechanisms against hypoxemia are compromised. In this
way, obstetricians can (1) classify pregnancy as in low-risk or high-risk status and, whenever
necessary, (2) act before decompensation and severe/irreversible damage appear (Clerici et al.
2001; Gribbin and James 2004; Martin 2008). This is performed by keeping attention on a set of
unique physiological responses (i.e. adaptations) that the foetus puts into action against the
stress of hypoxemia (Clerici et al. 2001; Davies 2000; Rychik 2004; Tucker 2007). Such
adaptations, given by changes in the foetal heart rate (FHR), the foetal movements (FMs), the
foetal breathing movements (FBM), the blood flow distribution, and the behavioural states, are
proof of a mature and healthy autonomic nervous system (Clerici et al. 2001; Martin 2008;
Rychik 2004).

At present, clinical observation of these adaptations strongly relies on ultrasonography, a
screening tool that makes it possible the biophysical assessment of foetal well-being and thus,
the classification of pregnancy as in low-risk or high-risk status. Unfortunately, even though this
technological option has been used since the end of the 60s, the rate of foetal loss in the UK
over the last 40 years has not shown a significant reduction (Gribbin and James 2004). Most
importantly, it has been reported that the majority of stillbirths have happened in the low-risk
group (Gribbin and James 2004). Thus, when foetal surveillance is performed, there might be
some unidentified factors that result in the wrong identification of foetal risk and, consequently,
in the incorrect assignment of some women to the low-risk group (Gribbin and James 2004).
This poor outcome could be associated to human error, lack of a complete understanding of how
the foetus responds to prolonged hypoxemia or perhaps lack of sensitivity in the screening tools

currently available (Ansourian et al. 1993; Bocking 2003; Gribbin and James 2004; Heazell and
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Froen 2008; Jansen and Chernick 1991; Menihan and Kopel 2008). In any case, it is clear that
there is a need of methods that effectively identify foetuses at risk in apparently low-risk

pregnancies (Gribbin and James 2004).

In an attempt to increase the screening efficiency, it has been taken into account that a
normally oxygenated foetus can become abnormally hypoxemic (i.e. at risk) at any time during
pregnancy. Consequently, attention has been paid to long-term monitoring of foetal responses
such as FHR, FMs, and FBM to increase the possibilities of detecting dangerous hypoxemic
events as soon as they appear. Clearly, since long exposure to ultrasound might harm the foetus,
this screening tool becomes an unsuitable option for long-term monitoring and foetal distress
prediction (Barnett 2001; Holburn and Rowsell 1989). Alternatively, there has been continuing
development of existing technologies as well as research into new non-invasive methods that
aim to improve antenatal monitoring procedures. These non-invasive methods rely on the
detection of information regarding the cardiac function along with foetal activity, which is done
by using passive transducers that sense electric (abdominal ECG), magnetic (foetal MCG) or

vibration signals (abdominal phonography).

This work has paid attention to the vibrations recorded by positioning a sensitive acoustic
sensor on the maternal womb, i.e. the abdominal phonogram (Colley et al. 1986; Goovaerts et
al. 1989; Holburn and Rowsell 1989; Talbert et al. 1986; Zuckerwar et al. 1993). The signal,
usually recorded in a single-channel configuration, is rich in information about foetal activity
such as heart sounds (FHS), heart rate, and breathing/body movements (Colley et al. 1986;
Goovaerts et al. 1989; Talbert et al. 1986; Zuckerwar et al. 1993). Additionally, the spectral
overlapping of foetal and maternal cardiac activities in the abdominal phonogram is not as
significant as in the abdominal ECG and foetal MCG, which is an important characteristic.
Unfortunately, the acoustic energy of the foetal components in the abdominal phonogram is so
low that they are easily hidden by environmental, maternal, and artifactual (i.e. slow motion)
sources (Varady et al. 2003), which turns the extraction of foetal information into a challenging
task.

To date, in the quest of recovering foetal information from abdominal recordings, most
signal processing methods in the literature have followed the approach of using rigid and
empirical criteria to extract pre-selected components (e.g. FHS or FBM) and irreversibly
discarding other physiological information (e.g. maternal cardiac activity) (Goovaerts et al.
1989; Holburn and Rowsell 1989; Zuckerwar et al. 1993). As a result, methods with different
types of sensors (Colley et al. 1986; Goovaerts et al. 1989; Holburn and Rowsell 1989; Talbert
et al. 1986; Zuckerwar et al. 1993), number of channels (Moghavvemi et al. 2003; Varady et al.
2003), and signal processing schemes (Akay and Szeto 1995; Jimenez et al. 2001; Kovacs et al.

2000) have been proposed. However, even though high quality technology and powerful
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processing schemes have been combined to enhance the signal to noise ratio (SNR), the

effective extraction of foetal information for well-being surveillance may be still difficult.

The main problem, from the point of view of this research, is that a rigid approach does not
give any chance for a method to adapt to the natural variations that physiological phenomena
(i.e. the foetal adaptations) may present over time and between subjects. Besides, since some
information is discarded during the process, the richness of information in the abdominal
phonogram is being ignored, which might turn into loss of valuable observations about foetal
status or even maternal condition. As an alternative, this work has proposed that information of
interest can be better recovered by means of a data-dependent signal processing approach that,
by exploiting the wealthy temporal information in a single-channel recording, freely retrieves
the components underlying the abdominal phonogram as entire traces from where the beat-to-
beat heart rate can be monitored to determine foetal well-being (which is a valuable observation
since it changes in the stress of hypoxemia and rapidly reflects the foetal oxygenation status).
Such a signal processing perspective, referred to and studied as Single-Channel Independent
Component Analysis (SCICA) by Davies and James (2007), has been successfully applied to
biomedical signals such as EEG (James et al. 2006; James and Lowe 2000) and MEG (James

and Lowe 2001; Woon and Lowe 2004), but never to the abdominal phonogram.

The aim of the research presented in this thesis has been to study, for the first time, Single-
Channel Independent Component Analysis as an alternative signal processing approach to
retrieve information for antenatal foetal surveillance from the single-channel abdominal

phonogram.

The study, conducted through the development of three implementations of SCICA, has
produced a methodology that successfully exploits the rich time-structure in the abdominal
phonogram for decomposition purposes (Jimenez-Gonzalez and James 2008; Jiménez-Gonzélez
and James 2009; Jiménez-Gonzélez and James 2010b). Such a methodology is performed by

following three steps:

1. The single-channel abdominal phonogram is projected into a higher-dimensional
space by using the Method of Delays (MD) (Broomhead and King 1986). This
produces a matrix of delays, which is a rich representation of the states of the

dynamical system that generated the phonogram.

2. The matrix of delays is transformed by using Temporal Decorrelation source
SEParation (TDSEP) (Ziehe and Muller 1998), which is an ICA implementation that
exploits the time-structure of the sources to minimise the dependence of the output

components (i.e. Independent Components, ICs). This produces a set of spectrally
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disjoint components (Davies and James 2007) corresponding to the physiological

activities underlying the abdominal phonogram.

3. Similar ICs are grouped by using rhythmicity-based analysis, which is a method
developed in this research to disclose the rhythmic patterns in the ICs and thus, to
automatically identify the physiological processes underlying them. This produces
groups whose constituent ICs are used to consistently retrieve the estimates of the

physiological sources underlying the abdominal phonogram.

In this way, the methodology implemented in this work not only freely retrieves estimates
of the sources underlying the single-channel abdominal phonogram, but also automatically
identifies their physiological origin, which are two essential contributions of this research
(Jiménez-Gonzalez and James 2010a; Jiménez-Gonzalez and James 2010b). Indeed, as results
from 25 noisy single-channel abdominal phonograms showed, the current implementation of
SCICA consistently managed to retrieve entire estimates of the sources corresponding to the
foetal phonocardiogram (PCG), the maternal PCG/pressure-wave, the maternal respirogram,
and the noise (Jiménez-Gonzélez and James 2010b). Such estimates, further analysed to
successfully collect information of interest such as foetal/maternal heart rate and breathing rate,

have turned into promising sources of information for foetal well-being surveillance.

The next sections will give details on the organisation of this document, the specific

contributions of this research, and finally, the publications arisen from this work.

1.2. Thesis organisation

This thesis starts by presenting the literature review performed in this research, which is
contained in Chapter 2, Chapter 3, and Chapter 4. In Chapter 2, fundamentals of the adaptations
developed by the foetus in response to hypoxemia are introduced, which provide the
background needed to understand the significance of their observation for assessing foetal well-
being. Next, Chapter 3 discusses the methods used to observe such adaptations for antenatal
examination by means of subjective perception, ultrasound biophysical measurements and,
alternatively, non-invasive long-term recordings (i.e. the abdominal ECG, the foetal MCG, and
the abdominal phonogram). After that, Chapter 4 discusses some approaches reported in the
literature to process such non-invasive but noisy recordings in order to retrieve the foetal
information. Finally, this chapter focuses on the potential of using abdominal phonogram
recordings for foetal surveillance and proposes the idea of studying SCICA as an alternative

signal processing approach to do that.
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Chapter 5 describes the recording setup and the characteristics of the dataset available for
this research. Additionally, to illustrate how challenging the extraction of foetal information

from these signals is, some examples of abdominal phonograms are shown.

Chapter 6, Chapter 7, and Chapter 8 describe the development of SCICA necessary to
recover foetal information from the abdominal phonogram. Chapter 6 introduces the
fundamentals of source separation by SCICA and describes the former two implementations
developed in this research (based on MD, FastiICA/TDSEP, and K-means), which made it
possible to enhance the separation step and discuss the requirements for SCICA (i.e. based on
TDSEP) to truly become a robust signal processing alternative for antenatal surveillance. Next,
Chapter 7 details a comprehensive study designed in this work to gain knowledge about the
components separated by TDSEP. The study, based on descriptive, spectral, entropy, and
rhythmicity analyses, disclosed essential characteristics of the ICs and TDSEP that provided the
bases needed for improving the performance of SCICA. One of such improvements is described
in Chapter 8, where a novel scheme for classification purposes is presented. Such a scheme,
referred to in this thesis as rhythmicity-based analysis, not only groups similar ICs, but also
associates the groups to physiological phenomena, which is a desire quality in a blind source
separation approach. Thus, the method manages to successfully classify ICs into groups
corresponding to maternal respiratory activity, maternal cardiac activity, foetal cardiac activity,
and noise activity. Additionally, tests on segments of abdominal phonograms show that this
scheme performs faster than a classifier based on entropy and, additionally, that it is more

consistent than K-means.

Chapter 9 presents the evolution of SCICA through this research, both at the separation and
the grouping steps. To this end, the separate components and the resulting sources —of each
implementation— are illustrated and carefully discussed by focusing on their relevance for
antenatal surveillance purposes. Hence, it is possible to see how SCICA evolves into an
implementation that, working on segmented data, reliably retrieves traces of the physiological
sources underlying the abdominal phonogram (i.e. the foetal PCG, the maternal PCG/pressure-
wave, the maternal respirogram, and noise). Also, for comparison purposes, the foetal PCG

recovered by means of a rigid filter is included.

Chapter 10 presents the last stage of this research, which consist of (a) the reconstruction of
entire time-series of the sources underlying the abdominal phonogram and then, (b) the recovery
of information for performing foetal well-being surveillance. In (a), to perform the last
improvement for SCICA, the segmented traces retrieved by SCICA were concatenated to build
up entire time-series corresponding to the foetal PCG, the maternal PCC/pressure-wave, the
maternal respirogram, and noise. In (b), the signals were semiautomatically processed to obtain

the beat-to-beat FHR, the average morphology of the FHS, the beat-to-beat maternal heart rate
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(MHR), and the maternal breathing rate (MBR). The analysis of such parameters has shown that
the beat-to-beat FHR obtained from the foetal PCG consistently follows the trend given by the
reference FHR calculated from the abdominal ECG, which is especially significant since the
PCG comes from the noisy abdominal phonogram. Also, it has been seen that additional
parameters such as the beat-to-beat MHR and the MBR can be collected respectively from the
maternal PCG/pressure-wave and the maternal respirogram. These results, obtained from 25
recordings, indicate that the signals estimated by SCICA from the abdominal phonogram are

promising sources of information for foetal well-being surveillance.

Finally, Chapter 11 draws the conclusions of this work and outlines some physiological and

technological challenges that should be considered for future research.

1.3. Contributions

The contributions of this research have been categorised in terms of the development of SCICA
as a methodology to retrieve the sources underlying the abdominal phonogram and the findings

from the studies performed on the components/sources separated by this methodology. Thus:

1. Implementation and novel application of SCICA to the noisy abdominal phonogram
for adaptive separation into its underlying sources (Jimenez-Gonzalez and James
2008). As discussed in Chapter 7 and Chapter 9, such a separation is actually
performing as a spectral decomposition that depends on the temporal-structure of the
signals rather than on rigid pre-defined frequency bands. The decomposition is
sensitive enough to retrieve the traces of the physiological sources corresponding to
the foetal PCG, the maternal PCG/pressure-wave, the maternal respirogram, and noise,

all from a noisy single-channel recording.

2. Development of a new methodology for automatic identification and classification of
similar ICs. As discussed in Chapter 8, this is done by disclosing the rhythmic patterns
in the 1Cs, which makes it possible to identify the physiological processes driving the
components and, consequently, to classify ICs into physiological groups
corresponding to foetal cardiac activity, maternal cardiovascular activity, maternal

breathing activity, and noisy activity (Jiménez-Gonzélez and James 2010b).

3. Design of an extensive study of the ICs to disclose, for the first time, essential
characteristics of the components underlying the abdominal phonogram. As discussed
in Chapter 7, this is performed by combining four different methods for time-series
analysis that (i) revealed meaningful features of the components separated by TDSEP
and (ii) provided the bases needed to enhance the performance of SCICA: (1) the ICs

are spectrally disjoint, (2) the ICs are sorted according to their frequency content, (3)
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the slowest ICs are more likely to present strong regular patterns, and (4) the regular
patterns in the ICs are driven by well-known physiological processes, i.e. the maternal

breathing rate, the maternal heart rate, and the foetal heart rate.

Implementation of a study of the sources estimated by SCICA to explore their
appropriateness for antenatal surveillance purposes. As discussed in Chapter 10, this
was done by creating semiautomatic algorithms that further process the SCICA
estimates in order to obtain the beat-to-beat FHR, the average morphology of the FHS,
the beat-to-beat maternal heart rate (MHR), and the maternal breathing rate (MBR).
Preliminary results show that the FHR, the MHR, and the MBR collected from the
SCICA signals are likely to follow the trends given by reference signals. This means
that such estimates, identified as the foetal PCG, the maternal PCG/pressure-wave,
and the maternal respirogram, are promising sources of information for antenatal

surveillance of foetal well-being.
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0474-8.

A. Jiménez-Gonzalez, C. J. James. “Time-Structure Based Reconstruction of
Physiological Independent Sources Extracted from Noisy Abdominal Phonograms”.
Transactions on Biomedical Engineering, 57(9), pp. 2322-2330, 2010. DOI:
10.1109/TBME.2010.2051226.

Refereed conference papers

A. Jiménez-Gonzéalez, C. J. James. “Blind Source Separation to extract foetal heart
sounds from noisy abdominal phonograms: a single channel method”. In: Proceedings
of The 4th IET International Conference on Advances in Medical, Signal and

Information Processing MEDSIP (Electrophysiology, 1.1.4.), 2008.

A Jimenez-Gonzalez, CJ James. “Source separation of foetal heart sounds and
maternal activity from single-channel phonograms: a temporal independent
component analysis approach”. In: Proceedings of The 35th Annual Conference of
Computers in Cardiology, pp. 949-952, 2008.
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2 FUNDAMENTALS OF FOETAL PHYSIOLOGY

Antenatal foetal surveillance is an essential part of foetal care that aims to identify those
foetuses whose physiological defence mechanisms against hypoxemia are compromised. In this
way, obstetricians can (1) classify pregnancy as in low-risk or high-risk status and, whenever
necessary, (2) act before decompensation and severe/irreversible damage appear (Clerici et al.
2001; Gribbin and James 2004; Martin 2008). This is performed by keeping attention on the set
of unique physiological responses (i.e. adaptations) that the cardiovascular and neurological
foetal systems put into action to favour foetal survival when hypoxemic stress is present (Clerici
et al. 2001; Davies 2000; Rychik 2004; Tucker 2007). Such adaptations, given by variations in
the FHR, the FMs, the FBM, the blood flow distribution, and the behavioural states, have
become a key point in antenatal surveillance for foetal well-being assessing (Clerici et al. 2001;
Martin 2008).

This chapter presents the fundamentals necessary to understand how the cardiovascular and
nervous systems in the foetus respond to hypoxemia and thus, makes it clearer the importance

of paying attention to their adaptations during the antenatal assessment of foetal well-being.

2.1. The foetal cardiovascular system

Over the last 30 years, due to intensive research and new technologies development,
comprehension of the foetal cardiovascular physiology has advanced significantly (Hanson
1997; Rychik 2004). In its former stages, mainly performed on sheep and goats, such research
gave rise to significant information about the mammalian foetal circulation (Rychik 2004),
which formed the bases for understanding the human foetal cardiovascular physiology (Rudolph
and Heymann 1967). Later on, with the arrival of ultrasonic imaging and foetal
echocardiography, it was possible to observe the phenomena occurring during gestation in both
healthy and diseased foetuses, which expanded the knowledge of the cardiovascular system
(Blaas and Eik-Nes 2008; Cook et al. 2004; Rychik 2004). However, even though important

-9-



CHAPTER 2

structural and functional features about the foetal cardiovascular system have been elucidated,
there are still gaps to fill in before reaching a complete understanding of: (i) its function in
response to the stress of hypoxemia and then, (ii) the circumstances that make it fails and lead to

foetal damage or death.

The problem is neither easy to explain nor easy to solve and, as a first step, some bases
about the structure, function, and regulation of the foetal cardiovascular system must be

understood.

2.1.1. Structural characteristics

The cardiovascular system, by definition, is composed of the heart and the blood vessels
(Tucker 2007). In this section, due to their importance for supporting foetal life, the placenta

and the umbilical cord are mentioned as well:

a) The foetal heart: Shown in Figure 2.1, the foetal heart can be simply described as an organ
composed of four discrete chambers (the right and left atria, as well as the right and left
ventricles) and two arterial trunks (the aorta and the pulmonary artery). This organ starts
functioning between the fourth (Bahtiyar and Copel 2008) and fifth (Blaas and Eik-Nes
2008) weeks of gestation, and completes its formation by the sixth (Bahtiyar and Copel
2008) or eighth gestational weeks (Cook et al. 2004). By this time, some structures such as
the venous connections, the atrial and ventricular chambers, the arterial roots, and the
intrapericardial arterial trunks, have been completely formed. However, it is not until the
twelfth week that the atrioventricular and arterial valves have sufficiently developed to
produce a miniaturised version of the adult heart, although it is still difficult to visualise
(Cook et al. 2004).

The main foetal heart structures such as the myocardium, the heart valves, the foramen

ovale, and the crista dividens (shown in Figure 2.1), are described next:

1. The myocardium, which is the muscular wall of the heart, contracts to pump blood out

of the heart and then relaxes to allow the heart to refill with returning blood.

2. The heart valves ensure that blood flow goes from atria to ventricles and next out to
the great arteries, this by opening and closing in response to differences in blood

pressure on their two sides (Marieb 2004).

There are four heart valves, two atrioventricular and two semilunar valves. The
atrioventricular valves are located at each atrial-ventricular junction, and prevent
backflow into the atria when the ventricles are contracting. The valve at the right
atrial-ventricular junction is called the tricuspid valve, and the valve at the left atrial-

ventricular junction is called the mitral valve. On the other hand, the semilunar valves,
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which guard the bases of the large arteries issuing from the ventricles (the aorta and
the pulmonary trunk), prevent backflow into the left and right ventricles respectively.
These valves are named based on their anatomical position so that the valve at the
base of the aorta is called the aortic valve, whereas the one at the base of the

pulmonary trunk is called the pulmonary valve (Marieb 2004).

Aorta

Ductus arterosus
and
Aortic isthmus

Foramen ovale Fulmonary artery

Right atrium Left atrium

Crisfa dividens Mitral valve

Tricuspid valve Aortic valve

Pulmonary valve \ 1

Fight ventricle Left ventricle
Inferior vena cava Myocardium

Umbilical vein

Ductus venosus { Umbilical arferies
@l

Figure 2.1. The foetal heart and its main structures: the blood vessels (arteries —aorta and pulmonary
artery—, veins —vena cava and pulmonary vein-), the atrial and ventricular chambers (right and left), the
heart valves (right side —tricuspid and pulmonary—, left side —mitral and aortic-), and the two major
connections between the right and left sites of the foetal circulation (the_foramen ovale and the ductus
arteriosus) along with the crista dividens and the aortic isthmus. Other components of the cardiovascular
system are shown as well (umbilical vein/arteries and the ductus venosus), and those present only during
the foetal stage are indicated in both italic and underlined font. Modified from Stumper (2009).

3. The foramen ovale, which is present only during the foetal stage, is formed by the
overlap of the septum secundum over the septum primum and constitutes a straight
connection between the right and left atria. The crista dividens, which is the free edge
of the atrial septum (Creasy and Resnik 2004; Macdonald and Johnstone 1995),
separates out the oxygenated blood coming from the inferior vena cava into two

streams, one for the left atrium and another for the right atrium.

b) The blood vessels: Composed of the aorta, the pulmonary artery, and the vena cava

(inferior and superior branches), the blood vessels transport the foetal blood outside the
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c)

foetal heart and back to it (as described in the next section). Additionally, and present only
during foetal life, the ductus arteriosus connects the main pulmonary artery to the
descending aorta (as shown in Figure 2.1), which transports the majority of blood flow

towards the foetal lower body and the placenta (Rychik 2004).

The placenta: Shown in Figure 2.2, the placenta is an organ that carries out three important
functions in the foetal cardiovascular system such as (1) interface between the foetal and
maternal systems, (2) execution of many of the functions for the foetus that the lungs will
later assume in extrauterine life, and (3) metabolic exchange (Clerici et al. 2001; Menihan
and Kopel 2008; Rychik 2004). In other words, the placenta is fundamental for the foetus
since it brings in oxygen and nutrients whilst removes waste products (Menihan and Kopel
2008).

Ductus Arleriosus

Waste from
Felus

\

Placenta Aorta

Foramen Cwale
/i\ Lumg —_to
= Pulmonary Artery
.\\ Ductus Venosus
‘k"\\‘ - \ Liver

' .i‘ ¥
‘ Umbilical Cord \ ‘ .
Umbilical Vein &

B oxygon-ricn Biooo Umbilical Artenes

| | Owygen-poor Bload
. Mixed Blood

e

Left Kidnay
Food and
Oxygen from

Modhar

\

Figure 2.2. Anatomical structure of the foetal cardiovascular system. Changes in colour show oxygen
levels in the blood circulating through each structure. Taken from Driscoll-Children's-Hospital (2010).

d) The umbilical cord: Shown in Figure 2.2 as well, the umbilical cord is composed of the

umbilical vein and two umbilical arteries. The former transports oxygen-rich blood from
the placenta to the foetus whilst the latter transport deoxygenated blood from the foetus to
the placenta (Menihan and Kopel 2008; Rychik 2004). In addition, and present only during
foetal life, the ductus venosus connects the umbilical vein (after it enters into the foetal
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abdomen) with the inferior vena cava just as it enters the right atrium (as shown in Figure
2.2) (Rychik 2004).

2.1.2. Functional characteristics

Once the main structural components of the foetal cardiovascular system have been depicted, it
is possible to go further into the description of how they contribute to keep the foetal tissues
well oxygenated for foetal development. As this section explains, such good oxygenation is
possible due to (a) the paths followed by the blood throughout the foetal circulation and (b) the

adaptive mechanisms that provide high oxygen-carrying capacity during foetal life.

a) Foetal circulation: First of all, it is important to highlight that the foetal circulatory
patterns differ markedly from those of extrauterine life (Rudolph and Heymann 1967;
Rychik 2004; Tucker 2007). This is due to the presence of unique intracardiac and vascular
passages (i.e. shunts) that allow for blood streaming patterns that exist exclusively during
foetal life (see Figure 2.3). Thus, during the prenatal period, it is possible to distinguish two
fundamental features of the foetal circulation (Bahtiyar and Copel 2008; Rudolph and
Heymann 1967): (i) it works in parallel (see Figure 2.3), which means that left and right
ventricles work simultaneously instead of consecutively (as in the adult case) and (ii) it
possesses two major connections between its right and left sites, which are given by the

foramen ovale and the ductus arteriosus (see Figure 2.2).

The parallel function of the right and left ventricles is fundamental to keep the foetal body
and the placenta (a richly vascularised and low-resistance circuit that receives 50% of the
combined cardiac output of the foetal heart) perfused (Rychik 2004). To do this, once the
placenta performs the metabolic exchange necessary to sustain foetal life, highly
oxygenated blood is delivered back to the foetus through the umbilical vein (see Figure
2.4). Next, one part of such rich blood passes through the ductus venosus directly into the
inferior vena cava, whilst the remaining goes first throughout the foetal liver and then
enters into the inferior vena cava as well* (Bahtiyar and Copel 2008; Tucker 2007). After
that, the blood from the inferior vena cava enters the right atrium where the eustachian
valve, a tissue flap at the junction of the right atrium and the inferior vena cava, directs the

blood from the dorsal portion of the vein (where the more highly oxygenated blood flows)

! Blood entering into the inferior vena cava via the ductus venosus joins with that returning from the
lower part of the foetal body. Once in the inferior vena cava, since the blood from the umbilical vein has
not only a greater content of oxygen, but also a higher kinetic energy, it stays in a stream separated of the
blood returning from the lower body. As a result of this preferential streaming, the ductus venosus blood
is found along the left dorsal wall of the inferior vena cava.

-13-



CHAPTER 2

towards the foramen ovale (Tucker 2007). There, the crista dividens (Creasy and Resnik
2004; Macdonald and Johnstone 1995) splits this highly oxygenated flow into two streams,
with 50 to 60% being diverted into the left atrium and the rest into the right atrium (Tucker
2007).

Ductus
a). “,/’aﬁenbsus

= —~ _—=— ¢ - T» _$
o - |~

Right FEE, Foetal o
heart R e body ey

e

Faramen
4 TE ovale
T )L | |
- L —y o - )

Foetal
body

—

Figure 2.3. Circulatory system of (a) the foetus (parallel), and (b) the adult (serial). © 2007 SAUNDERS
Elsevier. Reprinted, with permission of the publisher?.

Once in the atria, right and left respectively, oxygenated blood mixes with deoxygenated
blood that returns through (1) the superior vena cava from the foetal brain, the coronary
sinus and the right dorsal side of the inferior vena cava, and (2) the (minimal) pulmonary
venous return (Tucker 2007). Next, this blood (still highly oxygenated) passes through the

atrioventricular valves to the corresponding ventricles where, upon contraction of the heart,

% This figure was published in Maternal, fetal, & neonatal physiology: a clinical perspective, Third
edition, Susan Tucker Blackburn, figure 9-13, pp. 294, SAUNDERS Elsevier 2007.
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Figure 2.4. Foetal circulation. © 2007 SAUNDERS Elsevier. Reprinted, with permission of the
publisher®.

% This figure was published in Maternal, fetal, & neonatal physiology: a clinical perspective, Third
edition, Susan Tucker Blackburn, figure 9-14, pp. 295, SAUNDERS Elsevier 2007.
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b)

is ejected. In this way, the right ventricle output flows directly into the main pulmonary
artery and the ductus arteriosus, with a small portion going to the vasoconstricted vascular
bed in the foetal lungs and the rest to the aorta respectively. Thus, the descending aorta,
the lower part of the body (the systemic circulation), and the placental circulations are
perfused by the right ventricle. On the other side, the left ventricle output is directed
towards the coronary and cerebral circulations, with a small portion crossing the aortic
isthmus to perfuse the lower body. Finally, the blood from the systemic circulation returns
through the iliac arteries and the umbilical arteries to the placenta, where the cycle starts
again (Rudolph and Heymann 1967; Rychik 2004).

Foetal oxygenation: The cardiovascular system is the first system in the foetus to function
(it begins as early as the end of the third week) (Bahtiyar and Copel 2008; Blaas and Eik-
Nes 2008; Tucker 2007). This is in response to the need for substrates to support the
exponential growth and rapid development of the foetus, which necessitates the early
development of a system that transports both nutritional elements and metabolic products to
and from the cells of the body (Tucker 2007). For this purpose, the parallel arrangement of
the system becomes fundamental since it provides the foetus with a continuous and large
flow of oxygenated blood. However, as this arrangement allows for mixing of oxygenated
and deoxygenated blood at the atria and great vessels (Tucker 2007), the partial pressure” of
oxygen in the foetal blood is much lower than in the adult blood (Clerici et al. 2001; Martin
2008). To override this situation, the foetal circulatory system develops adaptive
mechanisms that permit the foetus to maintain a level of oxygen supply similar to that in
extrauterine life (Clerici et al. 2001; Jensen et al. 1999; Martin 2008; Tucker 2007). Such
mechanisms, efficient enough to deliver levels of oxygen that exceed the metabolic needs
of foetal tissues, are given by (1) high levels of cardiac output and (2) high concentrations
of foetal haemoglobin (along with the oxygen dissociation curve of foetal erythrocytes)
(Clerici et al. 2001; Martin 2008; Tucker 2007):

1. The cardiac output is defined as the volume of blood pumped by the heart per minute.

In the foetal case, under normal conditions, the resting cardiac output is the highest of

* There is an important reason based on the structural and functional characteristics of the placenta for the
foetal partial pressure of oxygen to be lower than the maternal partial pressure, which is that the oxygen
diffuses from the mother to the foetus by following the gradient of pressure (Rudolph and Heyman,
1967). Another reason for such a foetal partial pressure is that lower PO, levels are necessary to keep the
lungs collapsed.
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any time of life with a combined value of 450 to 500 ml/min/kg® at term, compared
with approximately 75 ml/min/kg in a resting adult (Jensen et al. 1999; Martin 2008;
Mielke and Benda 2001; Tucker 2007). By maintaining these high values of cardiac
output the foetus meets its high oxygen consumption demands (1.5 to 2 times the adult
case) in spite of the low oxygen tension in the foetal blood (Martin 2008; Tucker
2007). This ability to maintain such a high output is due to the elevated foetal heart
rate and the cardiac shunts (given by the foramen ovale and the ductus arteriosus)
(Tucker 2007).

The heart rate is the most effective mechanism that the foetus has to control
ventricular function and cardiac output (Rychik 2004; Tucker 2007). In fact, there is a
direct relationship between heart rate and cardiac output so that a 10% increase in
foetal heart rate, above the resting level, is immediately followed by an increase in the
combined ventricular output, whereas a decrease in foetal heart rate decreases the
cardiac output (Tucker 2007).

The cardiac shunts, given by the foramen ovale and the ductus arteriosus (see Figure
2.4), make it possible for the ventricles to work largely in parallel rather than in series
to perfuse different parts of the body (Martin 2008; Rychik 2004). As a result, the
highest oxygenated foetal blood passes directly from the inferior vein cava (from its
left dorsal wall through the foramen ovale) to the left heart for preferential distribution
to the brain and myocardium (Martin 2008). At the same time, less oxygenated blood
from the right heart passes (through the ductus arteriosus) to the aortic artery, the
lower body, and finally, the placenta. In other words, blood from the right heart (after
perfusing the lower body) is preferentially returned to the placenta for reoxygenation
(Creasy and Resnik 2004).

The foetal haemoglobin in red blood cells has high affinity for oxygen even at low
oxygen concentrations that, in consequence, improves oxygen saturation as well as
facilitates transport of oxygen to the foetal tissues (Tucker 2007). This affinity
property is fundamental for red cells to become highly saturated with oxygen whilst

they circulate through the placenta (Creasy and Reshik 2004), and to easily release

> The reason to express the cardiac output in ml/min/kg rather than in ml/min (as its definition implies) is
for comparison purposes, which requires to take into account that the foetal volume of blood depends on
its weight (i.e. the foetal volume of blood is considerably lower than the adult volume of blood because of
the weight). In fact, during foetal life, the volume of blood significantly increases as the foetus gains more
and more weight. Conversely, in adult life, where the weight remains “steady”, the volume of blood does
not increase anymore. Thus, to properly compare foetal and adult cardiac outputs, the values in the former
are expressed per kg of weight.
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oxygen whilst they circulate through foetal tissues (Martin 2008; Tucker 2007).
Supplementary to such a higher affinity for oxygen, the foetus also has an increased
number of red blood cells, more haemoglobin, and more capillaries per unit of tissue.
As a result, the foetal oxygen-carrying capacity is even higher than the maternal one
(Tucker 2007).

2.2. Control of foetal circulation

At this stage, the main structural and functional features of the foetal cardiovascular system
have been described. This description, focused on its main components and mutual interactions,
depicted the path followed by the blood in the foetal circulation and the mechanisms developed
by the foetus to achieve a high oxygen-carrying capacity that satisfies its own consumption
needs. However, this description is not enough to understand the foetal circulation, which is a
complex and non steady-state phenomenon under continuous regulation. This regulation, also
referred to as control of foetal circulation (Tucker 2007), is performed by the foetal nervous
system and aims to favour foetal survival during the stress of hypoxemia, a task achieved by
regulating the blood flow throughout the cardiovascular system (i.e. the hemodynamic
adaptation to hypoxemia). This section describes how the foetal nervous system, both

structurally and physiologically, performs such a control of the foetal circulation.

First of all, it is important to notice that the control of foetal circulation requires (a)
continuous monitoring of changes in oxygen/carbon dioxide and arterial pressure levels, and (b)
fast mechanisms to restore significant changes in those parameters to normal conditions. These
tasks are performed by neural inputs and humoral factors such as catecholamines, vasopressin,
angiotensin 1l, and prostaglandins (Tucker 2007). In particular, this chapter focuses on the
neural inputs since they are related to both monitor and control tasks, the former by biological
sensors referred to as chemoreceptors and baroreceptors, and the latter by the Central Nervous

System (CNS) —via its sympathetic and parasympathetic branches—.

2.2.1. Biological sensors

The chemoreceptors are sensory nerves that monitor the chemical makeup of the environment
surrounding the foetus (Menihan and Kopel 2008). These receptors (present in the carotid
artery, carotid sinus, and aorta), become activated by pH changes due to either decreased levels
of circulating oxygen (i.e. hypoxemia) or increased levels of circulating carbon dioxide (i.e.
hypercapnia) (Tucker 2007). In response to these changes, the foetal brain sends nerve impulses
towards the heart to either speed up or slow down the heart rate (i.e. tachycardia or bradycardia
respectively) (Creasy and Resnik 2004; Menihan and Kopel 2008). The specific response

depends on which chemoreceptor is stimulated such that, stimulation of central or carotid
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chemoreceptors causes mild increasing of heart rate and rising up of arterial blood pressure (i.e.
hypertension). On the other hand, stimulation of aortic chemoreceptors causes bradycardia and

modest increasing of arterial blood pressure (Creasy and Resnik 2004).

The baroreceptors, present in arterial and venous vessels, are sensory nerves highly
sensitive to changes in the pressure of the blood against vessel walls. Arterial baroreceptors are
located in the walls of the aortic arch and the carotid bodies, whereas venous baroreceptors are
in the wall of the terminal portions of the vena cava and the right atrium (Tucker 2007). Thus,
when the arterial pressure rises above normal levels, the baroreceptors stimulate the vasomotor
centre and the vagus nerve, which results in reflex responses that produce vasodilatation of the
arterial vessels, bradycardia and, consequently, reduces the blood pressure. On the contrary,
when the arterial pressure falls below normal levels, the stimulation is reduced, the reflex
responses produce tachycardia and vasoconstrict the peripheral blood vessels so that the arterial
blood pressure rises up (Menihan and Kopel 2008; Tucker 2007). Finally, with regards to the
baroreceptors in the veins, they become activated by high venous blood pressure, which causes

the heart rate to increase.

In summary, activation of chemoreceptors and baroreceptors produces reflex responses of

the CNS that modify the blood flow in an attempt to promptly restore the foetal environment.

2.2.2. The central nervous system

Like the cardiovascular system, the CNS can be described according to its structure
(anatomically) and function (physiologically). The anatomic portion is composed of the brain
and the spinal cord, whereas the physiological part includes the somatic nervous system (which
is voluntary, SNS) and the autonomic nervous system (which is involuntary, ANS) (Menihan
and Kopel 2008). Both systems, SNS and ANS, consist of nerve fibres that connect the CNS
with structures of the body, the SNS with skeletal muscle and skin, and the ANS with smooth
muscle, glands, and cardiac muscle (Menihan and Kopel 2008). Here, as the interest is only on
the cardiac structure, the rest of this chapter will focus on the ANS and its control of the blood

flow distribution.

The ANS (as shown in Figure 2.5) is both structurally and functionally divided into the
parasympathetic and sympathetic branches, whose description is especially important as they
are responsible for the changes in the foetal heart rate and arterial pressure, i.e. in the control of
blood flow (Menihan and Kopel 2008).

The parasympathetic nervous system coordinates activities related to the restoration and
conservation of body energy, and the elimination of body waste. Its major component is the
vagus nerve, which connects the cardioinhibitory centre in the brain and the heart (Menihan and

Kopel 2008). Thus, when the parasympathetic branch becomes activated, the vagus nerve
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carries a message from the brain to the heart telling it to slow down the heart rate (i.e.
bradycardia) (Menihan and Kopel 2008). This communication commonly happens when the
foetal head is compressed, for example, during uterine contractions, foetal descent, or forceps

application (Menihan and Kopel 2008).

The sympathetic nervous system prepares the body for any intense muscular activity that
might be involved in meeting the challenges of a stressful situation. It connects the
cardioaccelerator centre in the brain to the heart (Menihan and Kopel 2008). Consequently,
when the sympathetic branch becomes activated, the brain tells the heart to accelerate the heart
rate (i.e. tachycardia) in order to shunt more blood to the vital organs. In the foetal case, this
response is evoked by loud noise, vibrations, maternal abdominal palpation, scalp stimulation,
or application of the spiral electrode (for recording intrapartum ECG) (Menihan and Kopel
2008).
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Figure 2.5. Foetal nervous system and foetal heart innervations. © 2008 Lippincott Williams & Wilkins, a
Wolters Kluwer business. Reprinted, from Electronic Fetal Monitoring: concepts and applications.
Second edition, Menihan & Kopel, figure 1-2, pp. 8, Lippincott Williams & Wilkins 2008.
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Thus, on the subject of the variations in the heart rate, the actions and effects of the
sympathetic and parasympathetic nervous systems counterbalance each other. Also, these
systems do not function independently but collaboratively in order to maintain a balance (unless
one is sufficiently stimulated to override the other). Such a balance, proof of a mature and
healthy ANS®, is evident by the presence of variations in the duration of each cardiac cycle (also
referred to as heart rate variability, HRV) (Clerici et al. 2001; Creasy and Resnik 2004; Martin
2008; Menihan and Kopel 2008; Tucker 2007). Hence, since HRV reflects the synergic work of
the sympathetic and parasympathetic nervous systems, and recalling that they become activated
by the CNS in response to changes in oxygen/carbon dioxide levels, the HRV becomes one
indicator of foetal oxygen autoregulation capability and, consequently, of neurological
development (Clerici et al. 2001; Creasy and Resnik 2004; Martin 2008; Menihan and Kopel
2008; Tucker 2007). The next section will describe in more detail how the HRV changes in
conditions of normal and abnormal oxygenation along with its association to the foetal

behaviour.

2.3. Oxygenation and foetal behaviour

Normally oxygenated foetuses are so active that, depending on the gestational age, they spend
two to three times as much time in activity than in rest. When the foetus is at rest, the rest
periods generally last less than 6 minutes before 20 weeks of gestation, and up to 37 minutes
after 32 weeks of gestation (Martin 2008). When the foetus is active, it performs body, eye, and
breathing movements, not independent but linked, e.g. simultaneous body and eye movements.
This linkage increases as the gestational age increases (especially after 36 weeks) and results in
a “reactive” HRV trace that shows increased variability and accelerations during these episodes.
Also, such movements become even more tightly linked as soon as the foetal behavioural states
emerge (i.e. foetus is asleep or awake) (Martin 2008). Conversely, in abnormally oxygenated
situations (referred to as long-lasting hypoxemia), the foetus adapts itself not only with
hemodynamic changes, but also with decreased growth and altered behaviour (e.g. reduced

episodes of body movements) (Clerici et al. 2001; Jensen et al. 1999; Martin 2008).

The hemodynamic adaptations (previously referred to as changes in the foetal circulation),
are the earliest foetal reaction to hypoxemia and are accomplished by changing the foetal heart

rate and redistributing the foetal cardiac output (i.e. the blood flow). Thus, in an intact foetus,

® The ANS is expected to be fully developed by approximately 32 weeks of gestation, although many
foetuses accomplish such development at earlier gestational ages. By this time, the ANS is capable of
effecting predictable responses to various stimuli as demonstrated by changes in the heart rate (Rychik,
2004).
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the initial response to sudden hypoxemia is performed by (1) temporary slowing the foetal heart
rate and increasing its variability (a chemoreceptor response mediated by the vagus nerve)
(Hanson 1997), and (2) redistributing the blood flow in favour of the most important organs
(brain, heart, and adrenals) and away from others (lungs, intestines, kidneys, and skeletal
muscles). This initial response is referred to as the “centralisation of circulation”, which is a
complex task that combines reflex, local, and humoral mechanisms (Clerici et al. 2001; Hanson
1997; Jensen et al. 1999; Martin 2008; Rychik 2004).

In those cases where this initial foetal response does not manage to compensate the
hypoxemic condition after some time (which is mostly due to placental vascular insufficiency),
the impedance to blood flow in the umbilical artery, renal artery, and aorta is further increased.
As a result, the hypoxemic foetal status is further increased, which produces more pronounced
blood flow redistribution. This affects the cardiac hemodynamics in such a way that the left
ventricle afterload is decreased and the right ventricle afterload is increased. In very long lasting
cases, this pronounced blood redistribution may lead to a decompensatory phase where the CNS
becomes affected, the sympatho-vagal balance fails, and the foetal cardiac function responds
weakly to prolonged hypoxemia (Clerici et al. 2001; Hanson 1997; Jensen et al. 1999; Menihan
and Kopel 2008; Rychik 2004). In those cases, unless the sympatho-vagal balance is restored
quickly (i.e. oxygenation), excessive amounts of lactic acid are produced by the anaerobic foetal
metabolism. Consequently, the activity in muscle cells becomes depressed, the muscle
responsiveness decreases, and the foetal behaviour is affected (Menihan and Kopel 2008). In
addition, the foetal heart rate shows changes in variability, amount of accelerations, tachycardia
and, ultimately, derives in terminal bradycardia (Menihan and Kopel 2008; Rychik 2004).
Finally, when the hypoxemic condition persists long enough to affect foetal tissues (i.e. turns
into chronic hypoxia), the foetus becomes in large risk of suffering permanent damage to organs
and progressing into a fatal condition (Clerici et al. 2001; Hanson 1997; Jensen et al. 1999;
Menihan and Kopel 2008; Rychik 2004).

Thus, once the dangerous effects of long-lasting hypoxemia on foetal well-being have been
depicted, it is easier to understand the principal aim of antenatal surveillance, which is the
identification of those foetuses whose physiological defence mechanisms against hypoxemia are
compromised (i.e. improperly oxygenated foetuses). Furthermore, since foetal responses to
hypoxemia can be clinically detected (through changes in foetal heart rate, distribution of blood
flow, and foetal motility/behaviour), it is clearer why their observation is a key point for
obstetricians to perform antenatal foetal surveillance (Martin 2008). This will be further
discussed in Chapter 3, where techniques used to observe foetal adaptations to hypoxemia will

be described.
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2.4. Summary

This chapter described how the foetal cardiovascular and nervous systems adapt to hypoxemia
in order to provide levels of oxygen that are appropriate for foetal development and survival.
During examination, antenatal surveillance observes the foetal heart rate, blood flow
distribution, foetal motility, and foetal behavioural states because their variations indicate the
maturity and health of the autonomic nervous system. Thus, their observation has become a key
mechanism for antenatal surveillance from where obstetricians aim to assess well-being and
detect compromised foetuses before they suffer permanent damage or death due to long-lasting
hypoxemic conditions. Chapter 3 will discuss techniques used for detecting these adaptations in

antenatal foetal surveillance.
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3 ANTENATAL FOETAL SURVEILLANCE

Chapter 2 described how the foetus exhibits a unique set of physiological responses to the stress
of hypoxemia. These responses, also referred to as adaptations —and observed through changes
in the foetal heart rate (FHR), the distribution of blood flow, and the foetal motility/behavioural
states— can be clinically detected and provide useful information for antenatal assessment of
foetal well-being (ACOG 2000; Clerici et al. 2001; Davies 2000; Menihan and Kopel 2008;
Rychik 2004; Tucker 2007). This chapter discusses the techniques used to observe such

adaptations for antenatal foetal surveillance.

3.1. Aims of foetal surveillance

The challenge of obstetric surveillance is to identify those foetuses whose physiological defence
mechanisms against hypoxemia are compromised so that obstetricians can: (1) classify
pregnancy as low-risk or high-risk status and, whenever necessary, (2) act before
decompensation and severe damage has occurred (ACOG 2000; Clerici et al. 2001; Davies
2000; Menihan and Kopel 2008; Rychik 2004; Tucker 2007). Also, according to (Gribbin and
James 2004), obstetricians can (3) optimise the timing of delivery, (4) avoid unnecessary
intervention in high-risk pregnancies, and (5) improve the understanding of foetal

pathophysiology.

According to Gribbin and James (2004), although neonatal mortality in the UK had fallen
from around 15 per 1000 live births in the 60’s to about 7 per 1000 in 2004, foetal death rates
had not followed the same trend. Indeed, by the time that such a study was reported, foetal loss
rates (in the same 40-year period) not only failed to show significant decline, but also accounted
for 50% of deaths between 20 weeks of pregnancy and one year of age. Moreover, since the
majority of stillbirths had occurred in the low-risk group, it was clear that the techniques used
for surveillance and assessing foetal well-being still present fundamental gaps that must be

filled. Such gaps are discussed in the next sections, where the techniques used for antenatal
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surveillance will be further described in blocks categorised as perceptual, biophysical, and

alternative.

3.2. Perceptual assessment of foetal well-being

The FHR and general foetal activity are particularly sensitive to hypoxemia/acidemia and
relatively easy to detect in the clinical environment (ACOG 2000; Davies 2000; Gribbin and
James 2004; Menihan and Kopel 2008; Tucker 2007). For these reasons, the observation of

these adaptations has become the basis of clinical techniques to detect hypoxemia.

3.2.1. Foetal movements

Maternal perception of foetal movements (FMs) is the oldest and most common tool used for
assessing foetal well-being (Govindan et al. 2007; Heazell and Froen 2008; Olesen and Svare
2004; Rolfe et al. 2006). Considered as one of the first signs of foetal life, FMs provide an
indirect measure of the functionality and integrity of the CNS (Berbey et al. 2001; Olesen and
Svare 2004). Thus, since the foetus adapts to prolonged hypoxemia by saving energy (i.e. by
reducing FMs) (Olesen and Svare 2004), the presence of regular FMs is considered an
expression of foetal well-being. Consequently, their observation is recommended as a way that
may prevent adverse events in the foetus and newborn (Berbey et al. 2001; Govindan et al.
2007).

Unfortunately, as the observation of FMs is based on the subjective perception of pregnant
women, the counting results and the time required for counting vary widely amongst individuals
(Davies 2000; Govindan et al. 2007; Heazell and Froen 2008; Olesen and Svare 2004).
Moreover, because of several counting protocols have been developed, neither the optimal
number of movements nor the ideal interval of time for counting have been defined (ACOG
2000; Mangesi and Hofmeyr 2007; Olesen and Svare 2004). In practice, when any reduction in
the number of FMs is perceived, further assessment is always required because such a reduction
might show either foetal distress or a merely maternal mistake (ACOG 2000; Berbey et al.
2001).

3.2.2. Foetal heart sounds

Foetal heart sounds (FHS) have been traditionally perceived with the foetal stethoscope since
1816, and from these the FHR can be estimated (Ansourian et al. 1993; Rolfe et al. 2006). In
this way, alterations in the FHR baseline such as tachycardia or bradycardia have been used
over time decades for intermittent assessment of foetal health in the antenatal period (ACOG
2000; Bocking 2003; Davies 2000; Gribbin and James 2004). However, since this FHR

auscultation is intermittently performed, it does not detect abnormal variations in the FHR,
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which is fundamental for detecting a suboptimally oxygenated foetus (ACOG 2000; Bocking
2003; Davies 2000; Gribbin and James 2004; Steer 2008). Alternatively, long-term monitoring
has been proven to be the core of foetal surveillance —before and during labour— as it ensures
that any FHR abnormality can be detected whenever it happens (i.e. at any time during

pregnancy) (Najafabadi et al. 2006).

3.3. Biophysical assessment of foetal well-being

Biophysical assessment of foetal well-being is also based on the observation of adaptations such
as general activity, muscle tone, and FHR, which is done by taking advantage of technological
development and signal processing schemes (Guimaraes-Filho et al. 2008; Menihan and Kopel
2008; Pattison and McCowan 1999). As a result, it has been possible not only to gain access to
better quality observations of such adaptations, but also to include the observation of blood flow
distribution. Thus, it has been possible to confirm results by (1) performing combined
observations of adaptations (e.g. FMs and FHR) and (2) including information like uterine

activity and foetal images (Guimaraes-Filho et al. 2008).

3.3.1. Cardiotocography

Antenatal cardiotocography (antenatal-CTG) is a form of foetal assessment that looks for signs
of hypoxia by performing simultaneous recording of FHR, FMs, and uterine contractions
(Pattison and McCowan 1999). The former two are measured by Doppler ultrasonography

(DUS), whereas the latter is measured by tocography (Menihan and Kopel 2008).

At present, antenatal-CTG is considered the primary method for antenatal monitoring and is
applied to pregnancies where foetal well-being is questioned, for example, in presence of
reduced FMs, post-term pregnancy or growth restriction (ACOG 2000; Bocking 2003; Davies
2000; Gribbin and James 2004; Olesen and Svare 2004; Pattison and McCowan 1999). In more
detail, the antenatal-CTG consists of a continuous record of the FHR that is obtained via an
ultrasound transducer placed on the maternal abdomen (Menihan and Kopel 2008; Pattison and
McCowan 1999). In this way, the FHR baseline, its variability, heart rate rising (i.e.
accelerations), and heart rate dropping (i.e. decelerations), whenever present, are electronically
recorded on a paper trace (Menihan and Kopel 2008; Pattison and McCowan 1999). Next, in
those cases where reduced variability and decelerations are present (i.e. abnormal traces that
could be associated to foetal distress and placental dysfunction), further tests are performed by
taking into account concurrent FMs and uterine activity (ACOG 2000; Menihan and Kopel
2008; Olesen and Svare 2004; Pattison and McCowan 1999). These tests are classified as:
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a)

b)

Contraction Stress Test (CST): This test is based on simultaneous recording of FHR and
uterine contractions (ACOG 2000; Devoe 2008; Olesen and Svare 2004). This antenatal-
CTG test relies on the premise that foetal oxygenation will be momentarily reduced by
uterine contractions. Accordingly, if the foetus is suboptimally oxygenated, then the
resultant intermittent reduction in oxygenation due to uterine contractions would lead to
late decelerations® in the FHR pattern (ACOG 2000; Davies 2000; Menihan and Kopel
2008; Olesen and Svare 2004; Tucker 2007).

The CST is supposed to last 10 minutes but, as it requires the appearance of at least three
spontaneous contractions that last more than 40 seconds each, it becomes time-consuming
in practical terms. Furthermore, in those cases where less than three contractions occur, it is
necessary to induce them by either administration of oxytocin or nipple stimulation (ACOG
2000; Davies 2000). Consequently, this test becomes invasive and contraindicated in cases
associated with increased risk of preterm labour and delivery, uterine rupture or uterine
bleeding (ACOG 2000; Barsoom et al. 2001).

Non-Stress Test (NST): This is a non-invasive test based on simultaneously recording the
FHR and FMs (ACOG 2000; Barsoom et al. 2001; Bocking 2003; Devoe 2008; Olesen and
Svare 2004). This antenatal-CTG test relies on the premise that a well-oxygenated and
neurologically healthy foetus will temporarily accelerate its FHR in presence of FMs. Thus,
an increase in the FHR baseline during FMs shows good oxygenation and satisfactory
coordination between the CNS and the heart (Alus et al. 2007). This behaviour, also
referred to as HR “reactivity”, is considered a good indicator of normal autonomic function
in the foetus (ACOG 2000; Bocking 2003; Davies 2000; Olesen and Svare 2004; Tucker
2007). However, loss of reactivity (given by either absence of accelerations or appearance
of decelerations associated with FMs) cannot be straightforward interpreted as it may be
due to either the beginning of hypoxemia, normal foetus/mother conditions (e.g. foetal
sleep cycles (ACOG 2000; Guimaraes-Filho et al. 2008; Olesen and Svare 2004), maternal
position (Alus et al. 2007; Cito et al. 2005; Tamas et al. 2007)) or even mistakes at
counting FMs. Thus, reliable classification of the non-reactivity NST becomes a big issue
that makes the method highly inconsistent and plenty of variations inter and intra observer
(Black and Campbell 1997; Devoe 2008; Heazell and Froen 2008). Additionally, it has
been reported that in those cases where the test lasts more than 20 minutes the mothers

experience back pain, which complicates the study (Alus et al. 2007).

! Late decelerations are defined as reductions of the FHR baseline that reach their maximum value after
the peak of the uterine contraction and that usually persist beyond the end of the contraction.
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An alternative option, although only for some non-reactive tests, is reached by using foetal
acoustic stimulation (FAS), which elicits FHR accelerations during periods of low-FHR
reactivity caused by sleep cycles (Devoe 2008; Pinette et al. 2005). As a result, the time
needed for testing well-being may be safely reduced (by reducing the number of non-
reactive CTGs traces due to foetal sleep states) without compromising the detection of
acidosis? (ACOG 2000; Olesen and Svare 2004; Pinette et al. 2005).

Real time ultrasonography: Sonography allows visual examination of foetal development
in uterus. In particular, real time ultrasonography (B-mode US) has made it possible to
further study foetal behavioural and physiological variables such as breathing/body
movements, foetal tone®, and amniotic fluid volume (Banks and Miller 1999; Gribbin and
James 2004; Magann et al. 1999; Olesen and Svare 2004; Sener et al. 1996).

Up to date, systematic observation of the foetus by B-mode US has provided plenty of
knowledge about the development of foetal behaviour. It has made it possible to study
foetal general body movements and to identify parameters such as onset, incidence, rest-
activity cycles, and diurnal rhythms (Luchinger et al. 2008; ten Hof et al. 1999).
Consequently, different patterns of foetal movements have been identified and categorised
as gross body movements (previously referred to as FMs), sucking/swallowing movements,
and breathing movements (FBMs) (Cosmi et al. 2003; Levy et al. 2005; Luchinger et al.
2008; ten Hof et al. 1999). A description of these movements is presented in the next

paragraphs.

1. FMs comprises complex and variable patterns that involve random movements of
trunk, limbs, and head (ten Hof et al. 1999). According to (Luchinger et al. 2008),
these movements evolve from “just discernible” to more complex movements as the
spinal and brainstem mature, which happens after the ninth week of gestation. Then,

as the third trimester progresses, FMs become naturally reduced (ten Hof et al. 1999).

2. Swallowing and sucking movements allow the development of the mechanisms
necessary for the baby to suck on the breast in neonatal life (Levy et al. 2005).
Swallowing movements appear about at week 11" and contribute to regulation and

homeostasis of amniotic fluid volume, intrauterine fluids, and foetal growth. Sucking

2 Acidosis is a blood condition in which the bicarbonate concentration is below normal values and results

from anaerobic processes during long-lasting hypoxemia.

% Foetal tone makes reference to the extension of a foetal extremity with return to flexion or
opening/closing a hand.
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d)

movements appear about at week 15", increase their rhythm in late pregnancy, and

change both rhythm and frequency in response to flavours.

3. FBMs in uterus are not associated with alveolar expansion or gas exchanging, but with
developing of diaphragmatic muscles and lungs, which prepares the respiratory system
to maintain breathing after birth (Ansourian et al. 1993; Cosmi et al. 2003). These
movements are described depending on (i) their regularity and frequency, which
ranges from 30 to 90 breaths per minute (Ansourian et al. 1993), and (ii) their links
with FMs and FHR (Cosmi et al. 2003). Thus, three patterns of FBMs have been
identified during pregnancy (Cosmi et al. 2003):

Rapid and regular movements: they are the most common FBMs and are characterised
by an average rate of 60/min and small amplitude. In addition, whenever present,

FBMs are accompanied by increased FMs and more variability in the FHR.

Rapid and irregular movements: they are low amplitude movements that appear

amongst slower movements of larger amplitude.

Abrupt and isolated movements: these movements are characterised by large-
amplitude excursions whose frequency ranges from 10 to 15 movements per minute.
These movements are usually recognised as hiccups and do not have any association
with FMs.

Ultrasound observation for foetal surveillance can take up to 30 minutes, and current
techniques for monitoring foetal well-being heavily rely on this technique (Sener et al.
1996). For example, in high-risk pregnancies, measurements of abdominal circumference
and estimations of foetal weight by US are considered as the most accurate way to predict
growth-restricted foetuses (Gribbin and James 2004). However, in terms of monitoring
foetal well-being, US has two disadvantages: (i) there is concern that long-term exposure to
ultrasound may be harmful to the foetus (Barnett 2001; Holburn and Rowsell 1989) and,
(ii) the US machine and its trained operator are an expensive resource. Consequently, US
observation cannot be applied for long periods of time in order to anticipate foetal distress
(Holburn and Rowsell 1989).

Biophysical profile (BPP): This considers that the accuracy of foetal well-being
assessment is increased by the combined used of five physiological variables (Devoe 2008;
Guimaraes-Filho et al. 2008; Olesen and Svare 2004). Thus, the BPP combines the CTG
(NST) along with four observations made by B-mode US, i.e. the FBMs, the FMs, the
foetal tone, and the amniotic liquid volume (ACOG 2000; Olesen and Svare 2004; Sener et
al. 1996).
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During the BPP study, each component is scored according to the perception of the
examiner and the total sum is used to qualify the foetal well-being (ACOG 2000; Davies
2000). The main problem with BPP is that correct interpretation of the results requires
proper understanding about not only foetal adaptations to hypoxemia, but also
intrinsic/extrinsic factors that may affect the result (e.g. the gestational age and sleep
cycles) (Guimaraes-Filho et al. 2008; Manning 2002). Thus, although the test should last up
to 50 minutes (i.e. 30 min for the ultrasonographic observation and 20 min for the NST), in
those cases where the foetus shows diminished biophysical activities and a non-reactive

NST, the test must be repeated and, consequently, the study lasts longer (Sener et al. 1996).

3.3.2. Umbilical artery Doppler velocimetry

Doppler velocimetry is a technique used to assess the hemodynamic components of vascular
impedance, i.e. the distribution of blood flow throughout the circulatory system (ACOG 2000).
In obstetrics, umbilical artery (UA) Doppler velocimetry has been applied to foetal surveillance
since 1977 (Korszun et al. 2002; Olesen and Svare 2004) and, amongst the set of Doppler
velocimetry studies, it has become the favourite option to be performed (Abramowicz and
Sheiner 2008; Korszun et al. 2002).

UA Doppler velocimetry is based on the observation of waveform patterns in the UA,
which show noticeable differences between normally-growing and growth-restricted foetuses
(ACOG 2000; Davies 2000; Olesen and Svare 2004). As a result, UA Doppler assessment of
high-risk pregnancies has been found to improve outcome and reduce hospital admissions
(Abramowicz and Sheiner 2008; Davies 2000; Seyam et al. 2002; Turan et al. 2007). On the
contrary, routine Doppler velocimetry in low-risk populations has not shown to benefit the
outcome, which means it is an unnecessary tool for screening the general population
(Abramowicz and Sheiner 2008; ACOG 2000; Davies 2000; Gribbin and James 2004; Seyam et
al. 2002).

So far this chapter has described the most important characteristics of the techniques used
by obstetricians to perform antenatal foetal surveillance. This information, necessary to
understand the gaps in such techniques (and why stillbirths may occur in the low-risk group),

can be summarised as follows:

(1) Reduction of perinatal mortality in the last decades confirms that observations of foetal
adaptations such as FHR and FMs are valuable to perform antenatal foetal surveillance
(Bocking 2003; Heazell and Froen 2008).

(2) Antenatal surveillance by CTG is the most popular test in the clinical environment.

However:

-31-



CHAPTER 3

* Reliable interpretation of non-reactive tests remains a big problem (Black and Campbell
1997; Heazell and Froen 2008). Most importantly, although better identification is
desirable, it will not necessary improve the outcome as an abnormal NST is a late indicator

of foetal hypoxemia (Korszun et al. 2002).

* Monitoring FHR by DUS is a reliable technique to detect the FHR baseline, but it
shows higher FHR variability in comparison to the variability recovered by using direct
ECG (Peters et al. 2004). Besides, since DUS is very sensitive to noise, it produces FHR
traces containing spurious data that may lead to wrong interpretations and unnecessary
interventions (Kahler et al. 2002; Menihan and Kopel 2008). Most importantly,
interpretation of FHR patterns shows large variations inter and intra observer (Parer and
King 2000).

(3) US techniques have provided plenty of knowledge about foetal behaviour development, but
it is unsuitable for long-term monitoring of foetal well-being (Holburn and Rowsell 1989).
Besides, DUS techniques generate a FHR signal with low temporal resolution, which makes it

impossible to obtain beat-to-beat information (Kahler et al. 2002; van Leeuwen 2004).

In summary, since stillbirths occur in the low-risk group (either by human error, lack of a
complete understanding of how the foetus responds to prolonged hypoxemia or perhaps lack of
sensitivity in the screening tools), it is clear that the problem of effective and non-invasive
monitoring of foetal well-being remains a challenge in the field of antenatal foetal surveillance
(Ansourian et al. 1993; Jansen and Chernick 1991; Lewis 2003; Rolfe et al. 2006). To
overcome the problem, and taking advantage of technological development of sensors (Rolfe et
al. 2006), data acquisition systems, and signal processing schemes, alternative methods have
been explored (Lewis 2003). These methods are discussed in the next section and, as the reader
will see, they aim to a long-term and non-invasive observation not only of foetal adaptations,
but also of further cardio-respiratory information that objectively reinforces the assessment of
foetal well-being (Lewis 2003).

3.4. Alternative assessment of foetal well-being

As previously mentioned, foetal well-being assessment is routinely performed based on FHR
calculation by means of DUS techniques that generate a FHR signal with low temporal
resolution (Kahler et al. 2002; van Leeuwen 2004). Alternatively, research has shown that the
study of morphological and temporal features of the signals produced by the foetal heart
function (e.g. electric, magnetic, and vibration) provide additional information about foetal
well-being (Kahler et al. 2002; Lewis 2003; Martens et al. 2007). Such extra information, along

with FHR calculation, may be extracted from non-invasive recordings referred to as foetal

-32-



ANTENATAL FOETAL SURVEILLANCE

electrocardiogram (Al-Zaben and Al-Smadi 2006; Lewis 2003; Martens et al. 2007; Matonia et
al. 2006; Pieri et al. 2001; Puthusserypady 2007; Zarzoso and Nandi 2001), foetal
magnetocardiogram (Comani et al. 2005a; Comani et al. 2004b; Comani et al. 2004c; Kahler et
al. 2002; Lewis 2003; van Leeuwen 2004), and abdominal phonogram (Ansourian et al. 1993;
Colley et al. 1986; Goovaerts et al. 1989a; Goovaerts et al. 1989b; Holburn and Rowsell 1989;
Moghavvemi et al. 2003; Rolfe et al. 2006; Varady et al. 2003; Zuckerwar et al. 1993). The
main characteristics of such recordings will be described in the next sections. Later on, in
Chapter 4, details about some typical signal processing methodologies for extracting

information of interest will be discussed.

3.4.1. Foetal electrocardiography

The foetal electrocardiogram (FECG) represents the summation of electrical activities of the
foetal heart seen from the surface of the maternal womb (Al-Zaben and Al-Smadi 2006). In a
general description, the FECG is a signal composed of the P, QRS, and T waves, which are
separated by the PR, and ST intervals (see Figure 3.1) (Al-Zaben and Al-Smadi 2006; Martens
et al. 2007). Also, the amplitude of the FECG ranges from 10 to 100 pV (Puthusserypady
2007), whereas its frequency content (i.e. bandwidth) ranges from 20 to 40 Hz (Matonia et al.
2006).

QRS
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Figure 3.1. The electrocardiogram and its components (P, QRS, and T waves). Taken from WIKIMEDIA-
project (2011).

The FECG records information about the conduction system of the foetal heart,
consequently, it provides valuable information about maturity of the foetal nervous system and

thus, about well-being (Puthusserypady 2007). This information is obtained by measuring the
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R-R interval, which makes it feasible to calculate the FHR and thus, to further analyse its
baseline, variability, and accelerations/decelerations (Al-Zaben and Al-Smadi 2006). Also, by
analysing changes on the PR- and PQ- intervals, the width of the QRS complex, the P wave, the
T wave, and the ST segment during labour, it has been attempted to find correlations between
these temporal characteristics and the level of foetal oxygenation (Lewis 2003; Martens et al.
2007; Matonia et al. 2006; Sato et al. 2007). As a result, it has been reported that the duration of
the P wave and the QRS complex linearly increases as the gestational age increases, which
could be used to evaluate foetal growth and status (Lewis 2003). Additionally, it has been found
that changes in the HRV in relation to a significant rising in the ST segment are more
pronounced in acidotic foetuses (i.e. under acute hypoxia) than in normally oxygenated foetuses
(Siira et al. 2007) and that the correlation between the PR and RR intervals changes from
positive to negative when occlusions of the umbilical (i.e. progressive asphyxia) are present
(Keunen et al. 1999; Westgate et al. 1998).

During pregnancy, the FECG can be transabdominally recorded by placing ordinary
electrodes on the maternal abdomen (Al-Zaben and Al-Smadi 2006; Martens et al. 2007;
Matonia et al. 2006). The method, referred to as abdominal electrocardiography (abdominal
ECQG), is passive and non-invasive, which makes it possible to use it for long-term ambulatory
recording (Martens et al. 2007; Matonia et al. 2006; Pieri et al. 2001; Puthusserypady 2007).
Unfortunately, when the abdominal ECG is recorded, it contains not only the FECG, but also
large artefacts such as the maternal ECG (MECG), maternal electromyogram (MEMG), power-
line interference, and artefacts due to electrode motion (Al-Zaben and Al-Smadi 2006; Martens
et al. 2007; Matonia et al. 2006; Pieri et al. 2001; Puthusserypady 2007). Besides, because of its
small amplitude, the FECG is easily swamped by the maternal ECG and, because of their
frequency bands similarity, it is impossible to separate them by using simple filtering methods
(Matonia et al. 2006). This problem is accentuated between 24 and 32 weeks of gestation, when
the SNR becomes severely degraded due to the insulating effect of the vernix caseosa* (Kahler
et al. 2002; Lewis 2003; Sato et al. 2007; Stinstra and Peters 2002).

To deal with such a contamination problem, several signal processing techniques have been
proposed to recover the FECG from the abdominal ECG, e.g. coherent time-averaging, matched
filtering, subtraction, blanking, noise cancelling (Assaleh 2007; Khamene and Negahdaripour
2000; Matonia et al. 2006; Pieri et al. 2001), and more recently, approaches based on blind
source separation methods, singular value decomposition, and H-infinity analysis (Al-Zaben
and Al-Smadi 2006; Martens et al. 2007; Najafabadi et al. 2006; Puthusserypady 2007; Sato et

* This is a waxy white substance that coats the foetal skin to keep it moisturised and protected against
environmental stress (e.g. the passage of bacteria).
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al. 2007; Zarzoso and Nandi 2001). Results have shown FECGs traces with only 65% of
detectable QRS complexes that have been used to estimate only average FHR values (Matonia
et al. 2006; Pieri et al. 2001). Thus, since the FECG is a weak signal (highly dependent on
uncontrolled factors such as gestational age and foetal orientation in the maternal abdomen), it
has been impossible to reconstruct accurate and complete traces of the whole FECG.
Consequently, reliable recovery of shapes/intervals of the FECG component waves —P, QRS,

and T—is still an unsolved problem.

In summary, although the FECG contains plenty of information about foetal well-being, a
huge part of such information (i.e. the R-R, PR- and PQ- intervals, the width of the QRS
complex, and changes in the P wave, the T wave, and the ST segment) becomes hardly
accessible as soon as the signal is transabdominally recorded (Comani et al. 2004b). Moreover,
although different signal processing schemes have been already applied, they only have
achieved a partial recovery of such information, which means that further research is still

needed. These will be further discussed in Chapter 4.

3.4.2. Foetal magnetocardiography

Magnetocardiography (MCG) is a non-invasive technique used to record the spontaneous
activity of the heart, which is done by measuring the weak magnetic field variations produced
by ionic currents that flow through the myocardium during the cardiac cycle (Comani et al.
20044a). This recording is performed by using superconducting systems called SQUIDs, which
detect the cardiac magnetic field without making any contact with the body and, most
importantly, with high sensitivity from a number of precise positions over the region of interest
(Comani et al. 2004a; Lewis 2003).

In the foetal case, the foetal magnetocardiogram (FMCG) non-invasively records, as early
as the 13™ week of gestation (van Leeuwen 2004), the electrical activity of the foetal heart by
measuring the associated magnetic field variations on the maternal abdomen surface (Comani et
al. 2005a; Comani et al. 2004a; Lewis 2003; Stinstra et al. 2002). Additionally, the FMCG
contains some maternal cardiac and muscle activity, uterine activity and, when present, FMs,
and foetal diaphragmatic activity due to sucking, swallowing, and hiccups (Popescu et al. 2007,
Popescu et al. 2008; Zhao and Wakai 2002).

The FMCG shows morphological and temporal similarities with the FECG and, because
there is no direct contact between the magnetometer and the maternal abdomen, interference due
to poor electrode contact or DC contact potentials is completely eliminated (Comani et al.
2005a; Comani et al. 2004a; Lewis 2003; van Leeuwen 2004). In addition, and contrary to the
abdominal ECG recording, it has been reported that the SNR increases as the pregnancy

progresses (Stinstra and Peters 2002). Consequently, the rate of extraction of the entire PQRST
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waveform patterns from the FMCG has been reported to be higher than the rate from the
abdominal ECG (100% and 70% respectively according to (Kahler et al. 2002)) and, most
importantly, less dependent on the gestational age and presence of the vernix caseosa (Comani
et al. 2005a; Lewis 2003; Popescu et al. 2008). Thus, after some signal processing stages (e.g.
components separation, reconstruction, and smoothing), it has been possible to identify the
onset and offset of the P, QRS, and T waves, foetal cardiac time intervals such as FHR (Comani
et al. 2005a; Comani et al. 2005b; Kahler et al. 2002; Mantini et al. 2005; Sreeman and
Brockmeier 2004; van Leeuwen 2004), and some patterns of diaphragmatic activity (Parer and
King 2000; Popescu et al. 2007; Popescu et al. 2008).

For practical applications, however, it is important to consider that the magnetometer is a
very high-tech and expensive system that must have not only high sensitivity to the smaller-
amplitude foetal signal (10 T), but also high rejection levels to the larger-amplitude magnetic
signals from the earth (~10* T), large nearby metallic objects (~107 T), and even metallic
objects worn by the patient (Lewis 2003). Thus, preparation of such a high-tech system for a
study requires considerable technical skills to successfully set it up and guarantee its correct
function. Also, ongoing costs must consider not only payment of trained personal, but also
purchasing of consumables (e.g. liquid helium) and outfitting of shielded facilities, which
results in a prohibitively expensive system for clinical applications (Lewis 2003; Sreeman and
Brockmeier 2004).

3.4.3. Abdominal phonography

Phonography is one of the oldest methods for detecting biophysical activities in the body and,
although its use lost popularity with the arrival of DUS during the 70s, the concern of possibly
harming the foetus by long-exposure to US along with the development of new sensors have
renewed interest in this method for foetal surveillance purposes (Ansourian et al. 1993;
Moghavvemi et al. 2003; Rolfe et al. 2006; Varady et al. 2003).

Phonography takes advantage of the fact that sounds generated in the human body can be
detected by using an acoustic transducer placed on the skin surface. Thus, monitoring of foetal
activity can be implemented with a sensitive transducer positioned on the maternal abdomen
(Ansourian et al. 1993; Colley et al. 1986; Goovaerts et al. 1989a; Goovaerts et al. 1989b;
Holburn and Rowsell 1989; Rolfe et al. 2006; Zuckerwar et al. 1993). The technique is passive,
non-invasive, and low-cost, consequently, can be used for long-term monitoring (Ansourian et
al. 1993; Holburn and Rowsell 1989; Moghavvemi et al. 2003; Varady et al. 2003). The
resulting recorded signal, referred to as the abdominal phonogram, carries valuable information
about physiological parameters such as FHS (mainly composed of S1 and S2, which are better

known as the first and the second heart sounds respectively), FMs, FBMs, and cardiac cycle
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timing (i.e. FHR, systolic and diastolic intervals). Together, these are considered to provide an
assessment of foetal well-being (Colley et al. 1986; Goovaerts et al. 1989a; Goovaerts et al.
1989Db; Holburn and Rowsell 1989; Moghavvemi et al. 2003).

Unfortunately, because of the acoustic damping in the maternal tissues, the foetal acoustic
energy in the abdominal phonogram is considerably low (Ansourian et al. 1993; Holburn and
Rowsell 1989; Zuckerwar et al. 1993). As a result, the foetal information is easily hidden by
external sources from the environment (e.g. speech), biological sources from the mother (e.g.
placental blood flow, digestive activity, aortic pressure wave®, heart sounds, and respiratory
sounds), and artifactual sources produced by small movements of the transducer (Holburn and
Rowsell 1989; Varady et al. 2003; Zuckerwar et al. 1993). Furthermore, since the
characteristics of such noises make it possible for them to completely bury the foetal
information, they make it difficult to extract reliable information about foetal activity. For
example, because of the lower energy (60 dB below the magnitude of some maternal signals
(Zuckerwar et al. 1993)) and wider spectral range of the FHS (20-150 Hz) (Holburn and
Rowsell 1989; Moghavvemi et al. 2003; Varady et al. 2003), they may be affected by almost
any source. On the other hand, the FBMs, which tend to be one order of magnitude larger than
the FHS (Ansourian et al. 1993; Holburn and Rowsell 1989) and with a lower bandwidth (0.5-2
Hz) (Ansourian et al. 1993; Goovaerts et al. 1989a; Holburn and Rowsell 1989), may be mainly
contaminated by the maternal breathing and artifactual sources. As a result, it may be virtually
impossible to distinguish foetal information in the abdominal phonogram so that its extraction

has become a challenging task.

At present, there have been significant efforts to develop long-term monitoring methods for
foetal well-being, some based on the detection of FHS (i.e. phonocardiography, PCG) or FBMs.
Indeed, FHS and FBMs have been long researched giving rise to methods with different types
of sensors (Ansourian et al. 1993; Colley et al. 1986; Goovaerts et al. 1989a; Goovaerts et al.
1989b; Holburn and Rowsell 1989; Talbert et al. 1986; Zuckerwar et al. 1993), number of
channels (Moghavvemi et al. 2003; Najafabadi et al. 2006), and signal processing schemes such

as digital filters, noise cancelling, and time-frequency analysis (Ansourian et al. 1993; Bassil

% The pressure wave is a transient increase in blood pressure that spreads like a pulse wave through the
arteries, starting in the aorta and pulmonary trunk. This wave follows the pumping action of the heart and,
consequently, reaches a peak when ventricles contract, and falls to a minimum when the ventricles relax
before it begins to rise and fall again in the next cardiac cycle. The intensity of this wave depends on the
artery where it is detected, happening to generally increase as the artery becomes closer to the heart
(Northrop 2001). Clearly, the closer the sensor position to the maternal aorta, the higher the possibilities
that the aortic pressure wave, referred to in the future as the maternal pressure wave, affects the foetal
components in the abdominal phonogram.
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and Dripps 1989; Goovaerts et al. 1989a; Goovaerts et al. 1989b; Holburn and Rowsell 1989;
Talbert et al. 1986; Zuckerwar et al. 1993). However, although some studies have shown some
improvement in the SNR of the signals (Goovaerts et al. 1989a; Jimenez et al. 1999; Kovacs et
al. 2000; Varady et al. 2003), the detection of FHS and FBMs may still be difficult. Thus, even
though high quality technology and processing schemes have been combined, the extraction of

reliable information from the abdominal phonogram remains a challenging task.

3.5. Summary

This chapter discussed methods used to observe foetal adaptations for antenatal surveillance. As
mentioned, it is generally accepted that current methods for biophysical antenatal monitoring do
not facilitate a comprehensive and reliable assessment of foetal well-being. Alternatively, there
is continuing development of existing technologies along with research into possible new and
non-invasive methods that aim to improve current antenatal monitoring procedures. These non-
invasive methods rely on the detection of information regarding the cardiac function along with
foetal activity, which is done by using passive transducers that sense electric, magnetic or
vibration signals. The resulting signals, recorded on the surface of the maternal womb and
referred to as abdominal ECG, FMCG, and abdominal phonogram, are plenty of information
about foetal condition. However, as described in this chapter, every measuring technique
records not only foetal information, but also additional interference signals from the mother and
the environment. Moreover, since the foetal information is completely buried by some of these
interferences, the recorded signals require further signal processing analyses to recover
information of interest. Chapter 4 will discuss signal processing methods used in the literature to
recover such foetal information from the abdominal ECG, the FMCG, and the abdominal

phonogram.
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FOR ANTENATAL SURVEILLANCE

Chapter 3 discussed methods used for antenatal monitoring and assessment of foetal well-being.
Some of these methods, resulting from continuous development of technologies and research,
provide new and non-invasive alternatives that might improve current antenatal monitoring
procedures. Such methods rely on the detection of information regarding the cardiac function
along with foetal activity using passive transducers that sense electric, magnetic or vibration
signals. The resulting signals, referred to as abdominal ECG, FMCG, and abdominal
phonogram respectively, are rich in information about both foetal cardiac function and activity.
However, because of their lower amplitude, foetal signals are deeply immersed in maternal and
environmental sources. Furthermore, all these sources may overlap foetal components in both
time and frequency making it difficult to extract reliable information about foetal activity.
Consequently, the extraction of foetal information from the abdominal ECG, FMCG, and

abdominal phonogram must be performed by using signal processing strategies.

This chapter discusses some of the approaches reported in the literature to process the
abdominal ECG, the FMCG, and the abdominal phonogram in order to extract foetal
information. Next, it introduces the approach that has been studied in this research for antenatal

surveillance purposes.

4.1. Processing the abdominal electrocardiogram

The FECG can be recorded during pregnancy by placing ordinary electrodes on the maternal
abdomen (Al-Zaben and Al-Smadi 2006; Martens et al. 2007; Matonia et al. 2006). However,
the signal recorded in this way, called abdominal ECG, encompasses not only the foetal FECG
(an electric signal from the foetal heart whose amplitude ranges between 5 and 100 puV
depending on electrode location, foetal position, and gestational age (Oldenburg and Macklin
1977; Puthusserypady 2007)), but also the MECG, some MEMG, power-line interference, and
artefacts due to electrodes motion (Al-Zaben and Al-Smadi 2006; Martens et al. 2007; Matonia
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et al. 2006; Pieri et al. 2001; Puthusserypady 2007). Amongst these interference signals, there is
one whose characteristics make the extraction of the FECG a task that cannot be performed by
using simple filtration methods, the MECG. The reason behind this is that the MECG possesses
not only a higher energy than the FECG (5-1000 times) (Adam and Shavit 1990), but also a
similar frequency content, which makes it possible for the MECG to completely overlap the

FECG in time and frequency domains (Matonia et al. 2006).

At present, different methods have been implemented to separate the FECG from the
MECG in the abdominal ECG. In general, two approaches can be identified, one strongly based
on the number and location of the electrodes, and another based mainly on the characteristics of
the signals underlying the abdominal ECG (i.e. statistics, amplitude, timing, frequency, or a
combination of them all). In the former approach, referred to as “weighted addition” or “spatial
filtering”, a linear (sometimes nonlinear) combination of signals from several electrodes is
calculated to remove the MECG from the electrodes measuring the abdominal ECG (Adam and
Shavit 1990; Bergveld et al. 1986; Bergveld and Meijer 1981). In the latter, or straightforward
approach, diverse signal processing techniques such as template subtraction (Azevedo and
Longini 1980; Horner et al. 1995; Oldenburg and Macklin 1977), noise cancelling (Adam and
Shavit 1990; Al-Zaben and Al-Smadi 2006; Assaleh 2007; Ferrara and Widrow 1982; Khamene
and Negahdaripour 2000; Puthusserypady 2007; Widrow et al. 1975), and blind source
separation (BSS) methods have been applied (Martens et al. 2007; Najafabadi et al. 2006;
Zarzoso and Nandi 2001).

4.1.1. Weighted addition for spatial filtering

This method relies on the idea that a special arrangement of surface electrodes can be used to
create a “virtual” electrode that contains a good-quality version of the MECG in the abdominal
ECG. This virtual MECG, estimated using a weighted combination of signals from some
electrodes, is then subtracted from the abdominal ECG to enhance the FECG (Bergveld and
Meijer 1981). Several variations of this perspective have been developed and, depending on the
method used to calculate the weighting factors and the virtual MECG, they can be classified as
manual and automatic (Adam and Shavit 1990; Bergveld and Meijer 1981; Vanderschoot et al.
1987).

In their work, Bergveld et al. (1981) mention that in the manual method, the virtual MECG
can be created by using a resistor/potentiometer network to combine some leads, by looking for
a separate and pure MECG (elsewhere on the mother and similar to the one in the abdominal
ECG), or by using the MECG in the abdominal ECG (detected using threshold levels and
timing). Conversely, in the automatic method, the “optimal” linear combination is computed

according to some criteria such as independence and orthogonality of the measurements, sign,
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and number of leads to record the foetal component on the maternal abdomen (Bergveld et al.
1986; Bergveld and Meijer 1981). In both cases, however, although the FECG has been

enhanced, the methods have failed to completely remove the MECG.

This failure can be explained by considering that the subtraction process assumes that (a)
there is a perfect match between the virtual MECG and the MECG in the abdominal ECG and
(b) there is a single and fixed linear combination that properly deals with changes in the MECG
shape, which is not the case since (a) the morphology of the MECG highly depends on the
electrode position and, (b) the signal changes beat-to-beat due to maternal breathing and other
movements. In addition, in the absence of a standard electrode configuration, the methods
remain highly dependent on the number and location of electrodes (some of them on the
abdomen and some on the chest). For example, whilst some authors have proposed that at least
four leads might be enough (using only one lead on the abdomen) (Bergveld et al. 1986;
Bergveld and Meijer 1981), others have suggested that a better separation could be reached
using more leads, especially on the maternal abdomen (Vanderschoot et al. 1987). In the end,
there is a need of having an expert to appropriately place the electrodes and look for good
quality signals, which complicates the application in the clinical environment (Adam and Shavit
1990; Bergveld and Meijer 1981).

4.1.2. Template subtraction
This method (Hon 1965), based on signal averaging, was first suggested for FECG

enhancement. To work, the method assumes that the two main signals contaminating the FECG
in the abdominal ECG, i.e. the MECG and the MEMG, can be considered as periodic and
random noise sources respectively (Oldenburg and Macklin 1977). Thus, the periodic MECG
can be removed from each lead by creating an average maternal waveform (a template), which
is subtracted every time the maternal component occurs in the recording. Next, the random
MEMG signal is reduced by averaging foetal waveforms and, as a result, the ratio of signal to
random noise is increased. However, although the idea seems very simple, all implementations
present the same problems (Oldenburg and Macklin 1977): (1) the timing process, used to detect
and remove/subtract the MECG, either removes foetal components or keeps maternal
information that affects the FECG average; (2) the averaging process, used to reduce the
MEMG in the FECG, requires a signal to be triggered (which is usually chosen by visual
inspection of the abdominal channel with the highest SNR) and; (3) results are highly dependent
on changes of foetal position which, as a result, not only demands continuous examination of
the recording, but also limits the SNR improvement by restricting the number of foetal cycles to

be averaged.
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Variations of the template subtraction method include synchronisation (for detecting and
aligning QRS complexes), scaling (for increasing the amount of the MECG suppressed), and
matched filtering (for tracking the FECG). The former, implemented by using correlation,
improves the maternal QRS detection, but makes the method easily corrupted by high-frequency
spikes and high-amplitude noise (Horner et al. 1995). Also, as the correlation does not make
any difference between a pure maternal QRS and an overlapped foetal-maternal QRS, it is
common for the method to cancel the foetal signal as well, causing loss of information that leads
to wrong interpretations (Horner et al. 1995). The scaling, implemented to adjust the weights for
the maternal components to be averaged and create the template (either for the whole MECG
(Martens et al. 2007) or for each wave component (Vullings et al. 2009)), although improving
the MECG suppression, still shows difficulties to deal with the variability of the MECG
morphology. Finally, the matched filtering method, implemented to recover the FECG, works
by creating a filter whose impulse response is the time inverse of the waveform to be detected,
i.e. the FECG (Azevedo and Longini 1980). However, as the FECG signal shape remains
unknown and variable from subject to subject, the generation of a foetal template faces the
problems of tracking and matching a signal that is immersed in extremely noisy signals that are

also time varying (Azevedo and Longini 1980).

4.1.3. Noise cancelling

Looking for an alternative method for tracking the time varying noise given by the MECG,
attention has been paid to noise cancelling, a variation of adaptive filtering that has been
considered to be advantageous for removing the MECG from the abdominal ECG. The method,
as shown in Figure 4.1, uses two inputs to work, one containing the signal of interest —corrupted
by additive noise (i.e. the abdominal ECG)-, and another containing a “reference” signal —
correlated with the noise that corrupts the signal of interest (i.e. a recording of thoracic ECG).
Then, the reference signal is adaptively filtered and subtracted from the abdominal ECG to
enhance the FECG.

aECG (FECG + MECG + MEMG)

/ +

Adaptive
coefficients

/

Figure 4.1. Noise cancellation of the MECG in the abdominal ECG for enhancing the FECG.

| FECG
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MECG >
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The scheme, first proposed by Widrow et al. (1975), is considered to allow the treatment of
signals that are deterministic or stochastic, stationary or time-variable, and shows good
performance to remove the MECG from the abdominal ECG to enhance the FECG. However, in
the next step, when applied to removing the MEMG, the resulting FECG was considerably
distorted by the effects of the LMS adaptive filter (Ferrara and Widrow 1982). These results
showed the difficulty of an LMS adaptive filter to track the FECG, a signal that, composed of
rapid and recurrent pulses in noise, possesses a high time-varying statistical character
(nonstationary) (Adam and Shavit 1990; Ferrara and Widrow 1982).

As an alternative, it was proposed that an adaptive filter that exhibited a rapid and varying
impulse response would be suitable for these applications. Such a filter, referred to as a time-
sequenced adaptive filter, is an extension of the LMS method and uses multiple sets of
adjustable weights to achieve the required impulse response (Adam and Shavit 1990; Ferrara
and Widrow 1982). To work, the method considers that, even though the FECG pulse changes
its morphology from beat-to-beat, it maintains similar statistical properties. Thus, if the FECG is
modelled as a stochastic process, then the pulses could be aligned in time to form an ensemble
whose statistical properties can be calculated and, consequently, each set of weights may filter a
particular pulse (Ferrara and Widrow 1982). As a result, the method performs better than any
time-invariant filter and beat-to-beat “averager”. It not only shows a sharper and more accurate
estimation of the underlying FECG, but also retains individual variations in pulse shape (Ferrara
and Widrow 1982). Its main problem, however, is that it needs good estimates of the foetal
pulse locations to synchronise the filter with the foetal heart cycle (Adam and Shavit 1990;
Ferrara and Widrow 1982).

Modern versions of the noise cancelling scheme include combinations of singular value
decomposition (SVD), H-infinity analysis, and inference systems (for improving the weights
adjustment), or time-frequency methods (for reaching a better detection of pulses) (Al-Zaben
and Al-Smadi 2006; Assaleh 2007; Callaerts et al. 1990; Khamene and Negahdaripour 2000;
Puthusserypady 2007). However, although this adaptive scheme has shown enough
enhancement of the FECG to measure an average FHR (Pieri et al. 2001), the assumption of
correlation between signals is not totally correct. As a result, the problem of extracting a good
quality FECG (i.e. a complete trace suitable for morphological analysis and study of the
conduction system in the foetal heart) has not been tackled. In response, some authors have
recently proposed that a reliable FECG extraction calls for a complete reformulation of the
problem, this by considering an approach that takes into account the fundamental aspects behind

the biological problem (Zarzoso and Nandi 2001).
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4.1.4. Blind source separation

Recently, it has been proposed that the problem of extracting the FECG can be better formulated
by considering the bioelectrical phenomena that controls the heart activity along with the
propagation of heartbeat signals across the body (Callaerts et al. 1990). In this approach, it is

considered that each of the p electrodes located on the maternal body, say x(t)= [X.(t), X2(t),...,

x,(1)]" € R”, records an instantaneous linear mixture of the bioelectric current sources of

interest. Assuming that the activity of such bioelectric sources can be modelled by means of ¢

unobservable independent source signals, s(t)= [sl(t),sz(t),...,sé(t)]T e R° , then the

measurements from the electrodes can be expressed as
x(t)= A s(t), (4.1)

where A is referred to as the mixing matrix, whose constant coefficients (1) give the mixing
weights and (2) are determined by the body geometry, the electrode/source positions, and the
conductivity of the body tissues (Vanderschoot et al. 1987). These coefficients are assumed
unknown since it is impossible to know the values in A without knowing all the properties of
the physical mixing system, which can be extremely difficult in general. In addition, since the
problem is that it is impossible to record them directly, the source signals are unknown as well,
which is what gives the name of blind source separation (BSS) to the problem, the need of
finding s(t) from x(t), and blind means that very little is known, if anything, about the original

sources (Hyvarinen et al. 2001; Stone 2004).

The BSS problem is solved by assuming that the mixing matrix is invertible and,
consequently, that exists an unmixing matrix (W) that makes it possible to estimate the sources,
§(t), as

S(t)=Wx(t). (4.2)

Figure 4.2 depicts a schematic representation of the BSS problem. There, the only
information available is given by the multivariate data, x(t), and, from this, the unmixing matrix
W must be found to make it possible the representation of the sources, §(t). To do this,
according to Hyvarinen et al. (2001), it is suitable to consider each signal in x(t) as a sample of
a random variable, and use very general statistical properties to find W (i.e. second-order or

higher-order statistics) and, consequently, to estimate the sources underlying x(t).

Considering the problem of processing the abdominal ECG for foetal surveillance, some
authors have proposed that BSS techniques are suitable to tackle the FECG extraction problem
by decomposing the abdominal ECG into its underlying sources. Thus, two variations of BSS

have been explored by different authors: principal component analysis (PCA) and independent
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component analysis (ICA). The former, explored by Vanderschoot et al. (1987) and Callaerts et
al. (1990), relies on the second-order statistics of the data and looks to remove second-order
dependencies amongst the observations x(t). Unfortunately, as the authors pointed at, the main
problem of the PCA method is that the quality of the separation strongly depends on the
electrode positions, i.e. for each subject, the most ideal electrode positions must be found to
guarantee that the foetal signals are sufficiently strong in comparison to all other unwanted
signals present in the recordings (Callaerts et al. 1990; Vanderschoot et al. 1987; Zarzoso and
Nandi 2001). In contrast, as shown by Zarzoso and Nandi (2001), since ICA exploits higher-
order statistics and looks for higher-order independence to estimate the sources (Hyvarinen et

al. 2001), the outcome is less dependent on the electrode location (Zarzoso and Nandi 2001).
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Figure 4.2. Schematic representation of the BSS problem. The measurements at the sensors, x(t), are
assumed to be composed of a linear mixture of the sources, s(t). A represents the unknown mixing matrix
and W represents the unmixing matrix that must be found in order to estimate the sources §(t).

Results on real and semi-synthetic data have shown that ICA is suitable for extracting the
FECG from the abdominal ECG (Najafabadi et al. 2006; Zarzoso and Nandi 2001).
Furthermore, Zarzoso and Nandi (2001) showed that ICA performs better than existing non-
blind separation methods, and described the quality of the reconstructed FECGs as “notably
superior” and less noisy. In addition, this work showed that (1) ICA is robust with respect to
electrode position and (2) ICA does not need a thoracic lead (reference) to work since the
abdominal signals are enough (Zarzoso and Nandi 2001). However, the authors also reported
that (1) ICA computing is time-consuming and therefore hardly suitable for on-line applications
(due to the large sample sizes required for higher-order statistical analysis), (2) further research
is still necessary to explore the relationship between physiological sources of cardiac activity
and the statistically-independent sources that ICA estimates and, according to (Martens et al.
2007), (3) under lower SNR conditions, produced between 24 and 32 weeks of gestation, ICA

performance experiences a considerable reduction.
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In general, it might be said that the main problem with the signal processing methods
applied to the abdominal ECG is that they usually impose rigorous requirements such as: a
relatively large number of abdominal signals and some form of maternal chest leads as a
reference (except in ICA analysis) (Assalen 2007; Martens et al. 2007; Pieri et al. 2001,
Puthusserypady 2007), a strict and non-standard configuration of electrodes or large time-
consuming algorithms (Matonia et al. 2006). Also, although different methods have been
proposed to improve the SNR, they have met with limited degrees of success that, consequently,
make it impossible to reconstruct a reliable and complete FECG trace. Moreover, it has been
reported that, from the FECG extracted, the percentage of foetal QRS complexes detected
remains lower than 70% (especially between 24 and 32 weeks of gestation, when the SNR is
severely degraded because of the insulating effect of the vernix caseosa) (Kahler et al. 2002;
Lewis 2003; Sato et al. 2007; Stinstra and Peters 2002). As a result, valuable foetal well-being
information in the abdominal ECG (e.g. shape and duration of the P-QRS-T waves, the beat-to-
beat heart rate and the presence of arrhythmias) remains unreachable and keeps the technique

far away from acceptance into routine clinical practice (Pieri et al. 2001).

4.2. Processing the foetal magnetocardiogram

The FMCG records the magnetic field variations occurring over the abdomen of a pregnant
woman. The data obtained contain a combination of signals that are mainly due to the
electromagnetic activity of both the foetal and the maternal hearts along with uterine activity
and, when present, FMs and foetal diaphragmatic activity (Comani et al. 2004b; Popescu et al.
2007; Popescu et al. 2008; Stinstra et al. 2002; Zhao and Wakai 2002). Moreover, as the
magnetic fields variations remain almost unaffected by the vernix caseosa, the quality of the
FMCG between 24 and 32 weeks of gestation is better than the quality of the abdominal ECG
during the same period (Stinstra et al. 2002). Consequently, the FMCG has made it possible to
reconstruct useful foetal traces from where a normal rhythm and conduction abnormalities have

been identified (van Leeuwen et al. 1999).

The FMCG shows not only morphological and temporal similarities with the FECG, but
also the inconvenience that foetal beats may be mainly hidden by the more intense maternal
beats. Also, although the quality of the FMCG is better than the quality of the abdominal ECG,
the FMCG data may still have a variable SNR, which is a function of the characteristics of the
acquisition system (whether it works in a shielded room or not), foetal age, position, and the
amount of noise and residual magnetic contamination (Comani et al. 2004a). Therefore, as in
the abdominal ECG case, the reconstruction of a reliable foetal trace, this time from the FMCG,
requires signal processing techniques that safely remove its main noise component, the maternal

signal (Comani et al. 2004a).
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As far as this literature review has gone, and contrary to all expectations, only two signal
processing methods to reconstruct the foetal trace from the FMCG were found: template
subtraction and ICA. The former, as mentioned in Section 4.1.2, first produces average
templates to subtract the MECG and then calculates average foetal beats to reduce the MEMG.

The latter, uses higher-order statistics to decompose the FMCG into its underlying components.

This section will not repeat how these methods work and, instead, it will focus on the
results produced by using both approaches (chosen depending on the information of interest):
either the estimate of an averaged beat or the reconstruction of the time-course of the cardio-
electric events during the whole recording (Comani et al. 2004b). To do this, the description of
the general characteristics of the systems, along with the recording process, and the resulting

multi-channel data will be presented.

4.2.1. MCG systems and signal acquisition

Due to technological development of superconducting quantum interference devices (SQUIDSs),
MCG systems provide both great sensitivity and multichannel recording. In these systems,
reduction of environmental noise in the recorded signals is either obtained by applying a strong
physical shielding or by using differential measures. As a result, the FMCG systems allow
simultaneous recording of good quality bio-magnetic field variations from several positions

over either the chest or the abdomen.

At present, authors in the literature have used systems with different numbers of channels

and arrangements:

1. Some authors reported a 31 channel SQUID Biomagnetometer (Phillips Medical
Systems) with a total diameter of 145 mm, but without further information about the
sensors arrangement (Frank et al. 2006; Kahler et al. 2002). The system, positioned
above the foetal heart (using sonographic localisation), recorded signals over 5
minutes using a sampling rate of 1 kHz and a filtering between 0.3 and 500 Hz. In
addition, the maternal ECG was simultaneously recorded. As a result, Frank et al.
(2006) reported a study where 39 out of 129 recordings (recorded from 1999 to 2003
with gestational ages between 35 and 40 weeks) were analysed, whereas an alternative
study by Kahler et al. (2002) reported that a total of 163 recordings (between 19 and

42 weeks of gestational age) were used.

2. Lowery et al. (2003) have reported the design of a system dedicated to reproductive
assessment called SARA (CTF Systems Inc, Port Coquitlam, Canada). This SARA
system is specifically dedicated to foetal monitoring during gestation and composed of
151 channels arranged on a curved surface that matches the abdomen shape. In

addition, and contrary to other systems, where the mother lies in a supine position; in
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the SARA system the mother sits and leans forward against the array surface. Data
recording was performed on 39 pregnant women at different gestational ages (from
weeks 27 to 39) producing a total of 102 sets. The signals, recorded between 6 and 12
minutes with a sampling rate of 312.5 Hz, were de-noised using information from
some sensors and then high-pass filtered with a cut-off frequency of 0.35 Hz (the

reasons for using these parameters were not provided by the authors).

3. Other authors have reported multicentre studies using systems with 19, 31, 32, 37, and
67 channels where data was generally sampled at 1 kHz (Stinstra et al. 2002; van

Leeuwen et al. 1999; van Leeuwen et al. 2004).

4. Horigome et al. (2001) used a nine-channel SQUID system where the sensors were
allocated using a square arrangement as detailed by Tsukada et al. (1995). The system,
positioned above the foetal heart after sonographic localisation, records signals at 1
kHz sampling rate and band-pass filters them from 0.1 and 100 Hz. Data were
recorded from a total of 95 foetuses with gestational ages between 20 and 40 weeks,
88 without maternal or foetal complications and the rest with foetal cardiomegalia (an

abnormal enlargement of the heart).

5. Comani et al. (2004b) have reported a system composed of 77 channels arranged in a
honeycomb grid of 230 mm diameter. In this system, 55 magnetometers are used for
measuring, whilst the rest are used for residual noise reduction. Besides, as the system
can be configured to record a different number of channels (e.g. 7, 12, 22 channels), it
is possible to change the spatial resolution. Data recording was performed for each
volunteer at different gestational ages (from week 22 to delivery) producing a total of
61 sets. The MCG system was positioned after the foetal heart position was
established by mode-2D pulsed colour Doppler echocardiogram (used as well to
evaluate the foetal heart condition). The signals, recorded during five minutes using a
sampling rate of 10 kHz, are filtered from 0.016 to 250 Hz and decimated by a factor
of 10 (to reduce the amount of data). In this way, the system generates fifty five

signals with a sampling frequency of 1 kHz.

6. Popescu et al. (2007, 2008) have reported a system with 83 channels, in a spherical
array, that completely covers the maternal abdomen whilst the mother sits on the
scanner chair. Data from two foetuses (after positioning the system by using
ultrasound information) were acquired in blocks of two minutes at a sampling rate of
1.2 kHz, and a band-pass filter between 0.5 and 300 Hz.

-48 -



REVIEW OF SIGNAL PROCESSING METHODS

4.2.2. Extraction of foetal signals and further analysis

In general, although the sets of recordings described in the previous section were produced by

different protocols, the signal analysis was performed using either template subtraction or ICA.

The former was used to process those sets described in points 1, 2, 3, and 4 (Frank et al. 2006;

Horigome et al. 2001; Kahler et al. 2002; Lowery et al. 2003; Stinstra et al. 2002; van Leeuwen

2004; van Leeuwen et al. 2009), whereas the latter was used to process those signals described
in points 5 and 6 (Comani et al. 2004b; Popescu et al. 2007; Popescu et al. 2008).

a)

b)

Template subtraction was used to remove the maternal component from the signals by
linearly subtracting a template. Such a template was calculated by averaging maternal
cycles from (1) each channel in the datasets recorded by Frank et al. (2006), Kahler et al.
(2002), and Horigome et al. (2001), (2) probably each channel (although not clearly
specified) recorded by Lowery et al. (2003), and (3) the channels closer to the maternal
heart in the sets recorded by Stintra et al. (2002) and van Leeuween et al. (1999). Next, the
template was used to find the maternal beats in the channels of interest, adjusted, and
subtracted to enhance the foetal components. After that, the foetal QRS complexes were
detected to:

1. Calculate the beat-to-beat intervals in order to (a) automatically identify foetal states
(Frank et al. 2006), or (b) semi-automatically identify foetal arrhythmias (van
Leeuwen et al. 1999).

2. Trigger an averaging process whose resulting foetal patterns were used to (a)
calculate a dipole and search for cardiac hypertrophy (Horigome et al. 2001), or (b)
verify the existence of P-wave, QRS complex, and T-wave. From these waves,
whenever possible, the P-wave, QRS, and T-wave duration as well as PR, PQ, QT,
and ST intervals were quantified at different gestational ages (Kahler et al. 2002;
Lowery et al. 2003; Stinstra et al. 2002; van Leeuwen 2004).

ICA was used to decompose the FMCG into its underlying components by considering (a)
channels grouped in clusters (according to either the spatial distribution or the intensity of
the signals recorded by Comani et al. (2004b)), or (b) the whole set obtained by Popescu et
al. (2007, 2008). In the experiment described by Comani et al. (2004b), from each cluster,
long, stable (i.e. with very low drift from the base-line) and simultaneous segments were
chosen, filtered (from 0.4 to 150 Hz), and decimated.

The datasets were processed using different implementations of ICA in order to find
independent components that were then used to (a) reconstruct the whole foetal trace (even
though a high percentage of those foetal complexes was hidden by the maternal complexes)

(Comani et al. 2005¢; Comani et al. 2004a; Comani et al. 2004b), detect waveforms,
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measure duration and intervals (Comani and Alleva 2007; Comani et al. 2005a; Comani et
al. 2005b; Mantini et al. 2005); or (b) reconstruct diaphragmatic activity related to hiccup
or sucking (Popescu et al. 2007; Popescu et al. 2008).

As can be seen, the FMCG analysis has not gone through as many signal processing
schemes as the abdominal ECG has gone. This could be because of the higher quality and
guantity of the signals that can be obtained during the study. As a result, template subtraction
seems to offer a suitable processing method to study features on preselected and averaged data.
Conversely, if spatial resolution and time-course analysis are important, then ICA shows good
performance. The problem, besides the costs, is that further research needs to be done to
properly exploit the power of both, the recording method and ICA. More specific, from the
point of view of this review, it is still necessary to establish standard protocols for (1) data
recording (e.g. number and configuration of sensors), (2) interpretation of extracted sources
(e.g. foetal, maternal or environmental) (Zarzoso and Nandi 2001), and (3) selection of sources
of interest and thus extraction of information to effectively perform foetal surveillance (e.g.
diaphragmatic activity, temporal and morphological characteristics of the foetal trace like the

shape and duration of P-QRS-T waves, beat-to-beat heart rate, and presence of arrhythmias).

4.3. Processing the abdominal phonogram

The abdominal phonogram, recorded by placing an acoustic sensor on the maternal abdomen,
carries valuable information about physiological parameters such as FHS, FMs, FBMs, and
heart cycle timing (e.g. FHR, systolic and diastolic intervals) (Colley et al. 1986; Goovaerts et
al. 1989a; Goovaerts et al. 1989b; Holburn and Rowsell 1989; Moghavvemi et al. 2003;
Zuckerwar et al. 1993). Nevertheless, because of the acoustic damping in the maternal tissues,
the foetal information in the abdominal phonogram has a low acoustic energy that is easily
disturbed by external sources from the environment (e.g. speech), biological sources from the
mother (e.g. placental blood flow, digestive activity, aortic pressure wave, maternal breathing,
heart and respiratory sounds), and artifactual sources produced by small movements of the
transducer (Holburn and Rowsell 1989; Varady et al. 2003; Zuckerwar et al. 1993). All these
noises may bury the foetal information and therefore make it hard to extract reliable information
about foetal activity. The maternal pressure wave (formerly referred to as aortic pressure wave),
as mentioned in Chapter 3, is constantly present and may reach an intensity that has been
reported to be least 60 dB larger than the intensity of the foetal information (with a broad

spectrum centred between 8 and 15 Hz) (Zuckerwar et al. 1993).

Traditionally, and contrary to the strategy followed when analysing the abdominal ECG

and FMCG, where multiple signals are simultaneously digitised and then processed to
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reconstruct foetal traces, the abdominal phonogram is first filtered in the time-continuous
domain —to separate either FHS or FBMs- and then digitised (Bassil and Dripps 1989;
Goovaerts et al. 1989a; Holburn and Rowsell 1989; Talbert et al. 1986). This strategy, along
with sensors especially designed, aims to separate FHS from FBMs and gives the possibility of
independent scaling for each signal, which is important since their amplitudes differ at least by
one order of magnitude (i.e. FHS typically cause maternal abdominal displacements between 5
and 10 um, whereas FBMs cause displacements in the order of 100 um) (Ansourian et al. 1993;
Holburn and Rowsell 1989). After that, some analyses have been implemented to find general
patterns, distinctive features (e.g. acoustic signature, frequency spectrum, and amplitude of
FHS) (Zuckerwar et al. 1993), or to measure heart and breathing rates (Ansourian et al. 1993;
Bassil and Dripps 1989; Goovaerts et al. 1989a; Holburn and Rowsell 1989; Talbert et al. 1986;
Zuckerwar et al. 1993).

a) Detection of general patterns: Former analyses used to look for profiles of the major
cardiorespiratory and movement patterns over long time periods. To this end, FIR filters
with an order of 128 taps and a bandwidth between 0.5 and 2 Hz for breathing patterns
(Goovaerts et al. 1989a; Goovaerts et al. 1989b) or between 50 and 100 Hz (sometimes
between 50 and 200 Hz) for FHS (Moghavvemi et al. 2003; Talbert et al. 1986; Zuckerwar
et al. 1993) have been used.

b) Extraction of distinctive features: It has been focused on the FHS. To do this, a set of
good quality heart sounds HS (i.e. free of artefacts) was manually chosen and averaged to
generate a template whose temporal and frequency features were calculated (Zuckerwar et
al. 1993).

¢) Rate measurements: It is performed by measuring distances from (a) consecutive events
in the whole recording to produce beat-to-beat measurements from the FHS, or (b)
available events in a segment to produce average measurements from the FHS or FBMs. In
particular, as they are present during the whole recording, the detection of the events
corresponding to FHS have received more attention giving rise to methods based on
template matching (Holburn and Rowsell 1989), smoothing in one (Bassil and Dripps

1989) or two frequency bands (Kovacs et al. 2000), and cross- or auto- correlation.

It can be seen that there have been efforts to develop methods for foetal well-being based
on the detection of FHS or FBMs by filtering the abdominal phonogram. Unfortunately,
although the idea may sound easy to implement because the signals cover different frequency
bands, it is important to highlight that this deterministic filtering does not necessary remove the
noise caused by the environment, the mother or the transducer movement. Thus, the SNR

remains very low and, although recent methods have included time-frequency analysis (Jimenez
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et al. 2001) and/or adaptive noise cancellation (Varady et al. 2003), or highly deterministic
criteria (Kovacs et al. 2000), it may be still difficult to detect FBMs or FHS and therefore to
collect reliable information for surveillance purposes (e.g. temporal and morphological
characteristics of the foetal breathing movements or the main heart sounds like breathing rate,

beat-to-beat heart rate, presence of arrhythmias, and acoustic signatures).

4.4. A novel approach for antenatal surveillance

So far, this chapter has discussed different approaches reported in the literature for extracting
foetal information from the abdominal ECG, FMCG, and abdominal phonogram. As noticed,
although different methodologies have been explored, the extraction of entire traces —from
where temporal and morphological characteristics can be collected to effectively perform foetal
surveillance— remains an unsolved problem. In the case of the abdominal ECG, the spectral
overlap between maternal and foetal cardiac information —as well as the presence of the vernix
caseosa— have made it impossible to recover complete traces of the FECG. As a result, only
average values of FHR have been obtained. In the case of the FMCG, although entire traces
have been separated by ICA, further research needs to be done to better exploit the advantages
of the recording process and ICA. Additionally, and very important in practical terms, is the
high cost involved in recording and analysis of FMCG data, which results in prohibitively
expensive systems for clinical applications. Finally, the case of the abdominal phonogram, a
signal that, although has two essential advantages over the former two (i.e. the maternal and
foetal cardiac activities do not spectrally overlap as in the former two signals and the recording
can be performed using a single-channel configuration), has not been successfully processed to

retrieve entire traces of the FHS (i.e. the foetal phonocardiogram, FPCG) and/or FBMs.

The research presented in this thesis has paid attention to the problem of extracting
information for antenatal surveillance by means of the abdominal phonogram. In this context,
this work believes that the methods used so far have been erroneously focused only on the
recording/extraction of one source (either FHS or FBMSs) and thus generally rely on rigid
empirical criteria and/or more than one channel to extract pre-selected information. Hence, once
a method has been adjusted according to specific criteria (i.e. fixed filters bandwidth), any
significant change in the SNR, produced by either the recording conditions or the
maternal/foetal behaviour, might not be properly managed by the method. Furthermore, because
of the interest in specific foetal information, there might be some extra and valuable
foetal/maternal information that is irreversibly discarded such as maternal heart and respiratory

rates, for instance.
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Some studies have shown some improvement in the SNR of the signals (Goovaerts et al.
1989a; Jimenez et al. 1999; Kovacs et al. 2000; Varady et al. 2003), but the extraction of entire
traces containing the FBMs or FHS may still be difficult (and therefore the calculation of the
beat-to-beat heart rate and the detection of arrhythmias, for instance), and it is clear that the
solution requires not only sophisticated signal processing methods, but also a complete different
signal processing perspective for the abdominal phonogram. This signal processing perspective,
instead of searching for a pre-selected component, should take advantage of the abundance of
information in the abdominal phonogram and separate all its components. Thus, by applying a
data-dependent analysis, and using only the temporal information present in a single-channel
recording, the method should decompose the phonogram into its underlying components. Such a
signal processing perspective, referred to and studied as Single Channel Independent
Component Analysis (SCICA) by Davies and James (2007), uses higher-order statistics for
separation purposes, which makes it more robust than methods based on second-order statistics
like PCA or SVD. Hence, SCICA has been successfully applied to biomedical signals such as
EEG (James et al. 2006; James and Lowe 2000) and MEG (James and Lowe 2001; Woon and

Lowe 2004), but never to the abdominal phonogram.

Therefore, in the aim of contributing towards the development of alternatives for antenatal
foetal surveillance, the research presented in this thesis studies, for the first time, a methodology
based on this single-channel approach for extracting sources contained in noisy abdominal
phonograms. Such sources, retrieved as entire traces, should make it possible to collect temporal
and morphological characteristics to perform foetal surveillance that, in this work, will be given
the beat-to-beat heart rate and the acoustic signature of the FHS (the former, as previously
mentioned, drops during the stress of hypoxemia, the latter, as mentioned by Zuckerward et al.
(1999), reflects the state of the heart valves). To this end, and to make it clear how complex the
extraction problem is, a further description of the recording setup and the available dataset will
be presented in Chapter 5. After that, Chapter 6 will focus on the fundamentals of SCICA and

the decomposition of the abdominal phonogram into its underlying sources.

4.5. Summary

This chapter discussed some approaches reported in the literature to process the abdominal
ECG, the FMCG, and the abdominal phonogram in order to extract foetal information. So far,
some reconstruction of foetal information has been possible (i.e. the average FHR), though there
is still some valuable temporal and morphological information that remains inaccessible (e.g.
beat-to-beat heart rate and typical shapes of the component waves) and whose access would

definitely improve the quality of antenatal surveillance.
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In general, the abdominal ECG and FMCG techniques are mainly characterised by multi-
channel recordings and empirical/rigid processing methods that usually discard valuable
information. In addition, they may result expensive due to time-consuming signal processing
algorithms, need of trained personal or high-cost consumables. The abdominal phonogram, on
the other hand, is easily recorded by using a single-channel configuration and rich in
information about foetal activity. Most importantly, the spectral overlapping of foetal and
maternal cardiac activities in the abdominal phonogram is not as significant as in the abdominal
ECG and FMCG, which is an important advantage. Unfortunately, the resulting signal is usually
affected by several interferences and, at present, it is still difficult to extract reliable foetal
information by applying signal processing methods usually based on rigid and empirical criteria

that discard valuable information.

As an alternative, this work proposes that a different signal processing perspective, which
exploits the richness of information in the abdominal phonogram, will provide better results.
Thus, by applying a data-dependent analysis perspective given by SCICA, it would be feasible
to separate the sources underlying the abdominal phonogram as entire traces from where the
beat-to-beat heart rate and the acoustic signature of the FHS will be collected. This SCICA
perspective will be discussed in Chapter 6 after a detailed description of the setup and the

available dataset is presented in Chapter 5.
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SURVEILLANCE

Previous chapters have introduced the problem of obtaining suitable information for antenatal
foetal surveillance by non-invasive means. As mentioned, although different signals and
processing methods have been explored over the last decades, they have only partially
succeeded in doing so and, although an average FHR has been obtained, some temporal and
morphological information that could reinforce foetal assessment (i.e. beat-to-beat heart rate and
shapes of the component waves) remains unreachable. In particular, since it is easily recorded
and rich in information about foetal activity, the research presented in this thesis focused on a
signal referred to as the abdominal phonogram. However, since the energy of the foetal
components in the abdominal phonogram is very low and easily hidden by other sources, their

extraction is a challenging task.

This chapter describes the process to record the signals used in this work and, to illustrate
how difficult the extraction of foetal information from the abdominal phonograms can be,

depicts some examples of the signal to analyse.

5.1. The process for data recording

The dataset for this research was recorded as detailed in the next two sections.

5.1.1. The recording setup

The recording setup, as shown in Figure 5.1, simultaneously recorded five signals
corresponding to the abdominal phonogram, the abdominal ECG, the FBM, the FMs, and the
maternal breathing (i.e. here referred to as the maternal respirogram) respectively (Ortiz-
Pedroza 2007). The former, as previously mentioned, is the signal of interest in this research
and will be analysed by SCICA in the next chapters. The other signals, as detailed in Chapter

10, will serve as “gold-standard” signals for evaluating the quality of the information extracted
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Figure 5.1. Setup used for antenatal recording of the single-channel abdominal phonogram and four gold-
standard signals (i.e. the abdominal ECG, the FBM marker, the FMs marker, and the maternal
respirogram). The transducers for the first four signals were located on the maternal womb and the
transducer for the maternal respirogram was located on the maternal chest. The signals were digitised at
500 Hz, displayed on a computer screen, and saved for further processing (Ortiz-Pedroza 2007).

by SCICA from the abdominal phonogram, especially the abdominal ECG, which will provide
(1) a temporal reference to identify maternal and cardiac signals in Chapter 9 and (b) a reference

beat-to-beat heart rate in Chapter 10. Here, further details on the recording setup are described:

a) Abdominal phonogram: This signal was recorded using a single PCG piezoelectric
transducer (TK-701T, Nihon Kohden™) connected to a general purpose amplifier (DA100,
Biopac Systems™). The transducer was positioned on the maternal abdomen close over the
foetal heart, which was located by using ultrasound imaging (SSA-320A, Toshiba™ with a
transducer of 3.5 MHz).

b) Abdominal ECG: This signal was recorded using four plate electrodes, three plates were
placed on the maternal womb to form an equilateral triangle (between 20 and 25 cm side)
as in Figure 5.2, whereas the fourth plate (i.e. the voltage-reference electrode) was placed
on the right leg, close to the ankle. The electrodes were connected to a lead selector-ECG
(PB-640G, Nihon Kohden™) to produce a one-lead abdominal ECG that was then provided
to an instrumentation amplifier (AB-621G, Nihon Kohden™) for conditioning purposes

(i.e. amplification and filtering).

The selection of the one-lead abdominal ECG to be recorded was performed by manually
switching the lead selector (to combine the signals from the electrodes on the maternal
womb each time) and looking at the resulting signal at the output of the amplifier. Thus, the

“best” lead was chosen as the signal where the foetal QRS complexes were more evident.
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Next, the amplifier gain and cut-off frequencies were carefully adjusted to visually improve

the quality of the signal by reducing the effect of low- and high-frequency interferences.

L 2025cm |

Figure 5.2. Location of the electrodes used to record the abdominal ECG. Three electrodes were
positioned on the maternal womb to form an equilateral triangle whilst the voltage-reference electrode
was positioned on the right leg.

¢) FBM and FMs: The signals corresponding to these movements were produced by two
observers watching foetal images, each one controlling a push-button switch that was
pressed whenever such movements were spotted in US images. The images, produced by
the ultrasound equipment previously mentioned, were simultaneously presented to the
observers in M-mode and B-mode to make it possible for one observer focusing on

detecting FBM whilst the other observer focused on detecting FMs.

Clearly, the transducer location and orientation were fundamental to produce images from
where the foetal movements were detected by the observers (as needed for the work
developed by Ortiz-Pedroza (2007)). To this end, the transducer was positioned on the
maternal abdomen and oriented to produce a frontal view of the foetus (formally referred to
as sagittal view in medical terms) such that (1) the thorax, diaphragm and/or abdomen, and
inferior limbs were evident in the B-mode image and (2) any thoracic or abdominal
displacement corresponding to the FBM were observed as oscillations in the M-mode
image. Figure 5.3 shows the US equipment used in this work and the images obtained by a
medical doctor from a foetus at a gestational age of 38 weeks. In (a), the transducer
positioned on the maternal abdomen and the electrodes for abdominal ECG, in (b), the
images presented to the observers. Notice that, in (b), the B-mode image illustrates the
cardiac cavity, the diaphragm, and the inferior limbs, whereas the M-mode image depicts

the oscillations produced by the abdominal movements when the FBM appeared.
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Figure 5.3. US equipment used to detect foetal movements and the abdominal sagittal view of a foetus at
a gestational age of 38 weeks. (a) the transducer positioned on the maternal abdomen and the electrodes
for abdominal ECG and (b) the images presented to the observers. The B-mode image illustrates the
cardiac cavity, the diaphragm, and the inferior limbs whilst the M-mode image depicts the oscillations
produced by the abdominal movements when the FBM appeared (Ortiz-Pedroza 2007).

The push-button switches were designed to produce a 5 V signal while pressed and 0 V
otherwise. Hence, the FMs observer was instructed to look at the B-mode image, keep the
push-button pressed while such movements were present, and release it when they
disappeared. The FBM observer, on the other hand, was instructed to look at the M-mode

image and to press and release the push-button according to the oscillations in the image.

d) Maternal respirogram: This signal was recorded using a respiratory effort transducer
(TSD101B, Biopac Systems™) connected to a respiratory amplifier (RSP100B, Biopac

Systems™). The transducer was positioned around the maternal chest.

5.1.2. The facilities and recording staff

The recording setup was installed in a room at the Centro de Investigacion Materno Infantil
Gen' (CIMI-Gen), a clinic that works based on an alternative and low-cost model to improve the
quality of the perinatal health services. The room, normally used for ultrasonographic studies,
but without any electric or acoustic isolation, was approximately 6 m length and 4 m width.
There, once the pregnant woman agreed to participate in the study, the recording procedure was

implemented by two medical doctors and an engineer, MD Ramén Gonzalez-Camarena’, MD

! Created in 1987 by the Asociacion Hispano Mexicana I.A.P and located at Av. Tlahuac No. 160, Col.
Lomas Estrella, C.P. 09890, Delegacién Iztapalapa, México City, México.

% Department of Health Sciences, Faculty of Biological Sciences and Health, Universidad Auténoma
Metropolitana-1ztapalapa. Av. San Rafael Atlixco No. 186, Col Vicentina, C.P. 09340, Del. Iztapalapa,
Meéxico City, México.
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Alfonso Martinez-Ortiz®, and Dr. Rocio Ortiz-Pedroza®.

5.2. The recorded signals

The dataset for this work was obtained from 18 pregnant women (24 + 3 years old) —with foetal
gestational ages ranging between 29 and 40 weeks and low to middle risk factors— who
provided their informed consent to participate in the study. The signals, digitised at a sampling
frequency of 500 Hz during three or five minutes (MP100 module and Acgknowledge software,

Biopac Systems™), were transmitted to a computer and saved for further processing.

Table 5.1 shows the gestational age distribution in the dataset recorded for this work.
There, it is important to notice that the number of recordings at weeks 33, 36, 37, and 40 are
larger than the number of subjects recorded, which means that some recordings were taken from
the same subject. Such extra recordings, according to the recording staff, were obtained
whenever a burst of foetal movements appeared at the end of a recording that was free (or
almost free) of them. This made it possible be certain that foetal movements were present in
some recordings and gave rise to a dataset containing a total of 25 recordings, each one
composed of the abdominal phonogram and the gold-standard signals (at least three of them as
shown in Table 5.2).

Table 5.1. Distribution of the gestational age in the dataset.

Number of subjects

Gestational age Number of recordings* recorded
29 1 !
33 2 !
34 2 2
36 10 7
37 2 1
38 4 4
39 1 !
40 3 !
TOTAL 25 18

* Some recordings were recorded from the same subject in the same session.

* Department of Electrical Engineering, Faculty of Basic Science and Engineering, Universidad
Auténoma Metropolitana-lztapalapa. Av. San Rafael Atlixco No. 186, Col Vicentina, C.P. 09340, Del.
Iztapalapa, México City, México.
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Table 5.2. Set of gold-standard signals simultaneously recorded with the abdominal phonogram.

Recordng el age Aol gy pyyg  Matral - Rearng
1 40 v J J 5
2 36 J v J 5
3 38 V v v 3
4 37 - v % 5
5 36 J J v 5
6 36 J v J 3
7 36 v J J 3
8 36 - J/ v/ © 5
9 38 - J/ YV © 3
10 36 J/ v/ J J/ 3
11 38 - v/ v 9 3
12 34 - J/ J/ J/ 3
13 38 - J/ J/ © 3
14 40 J J/ YV YV 5
15 40 J J/ J J 5
16 36 J/ v/ J/ J/ 5
17 36 J/ J/ J/ J/ 5
18 33 J/ J/ J/ J/ 5
19 36 - J/ v/ © 3
20 36 v J/ J YV 3
21 29 - YV J 9 3
22 33 J/ J/ J/ J/ 5
23 34 J/ J/ J/ J/ 5
24 37 - Y/ V % 5
25 39 - J/ J © 5

* s indicates that the signal was properly recorded, y indicates that the signal presents quantisation problems, and -- indicates that the signal was not

recorded at all.

Here it is important to highlight that, for unknown reasons, it was impossible to observe the

foetal QRS complexes in the abdominal ECG in some subjects. This problem rendered the
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abdominal ECG useless as a gold-standard and therefore left the signal out of the recording
process. As a result, as shown in Table 5.2, the set of gold-standard signals in some subjects is

composed of three instead of four signals.

Figure 5.4 illustrates the time (left-hand side) and frequency (right-hand side)
representations of some abdominal phonograms recorded at different gestational ages. The
frequency representation, or power spectral density (PSD), was estimated using the Welch’s
method with a Hanning window of 32 coefficients in length and an overlap of 50% (to produce
a smoothed PSD). From top to bottom, signals at (a) 29 weeks, (b) 33 weeks, (c) 34 weeks, (d)
36 weeks, (e) 37 weeks, (f) 38 weeks, (g) 39 weeks, and (h) 40 weeks. In the time domain, three
characteristics are visually evident in the signals: (1) they present different levels of noise,
although all of them are very noisy, (2) they show a slow component whose large amplitude is
more obvious in (c), (e), and (@), and (3) they also show some quasiperiodic peaks (the most
evident are indicated by arrows), which are clearer in (b), (d), and (e). In the frequency domain,
it can be seen that the power of the signals ranges from 0 to 250 Hz with the main content below
100 Hz (> -50 dB), although (b) and (f) show also some large power after 200 Hz. As can be
seen in the signals, the problem is that in most instances the FHS are not immediately evident, at

least in these representations.

Alternatively, Figure 5.5 depicts the time-frequency representation of the abdominal
phonogram in Figure 5.4 (h). Such a representation, i.e. the spectrogram, was calculated using a
Short-Time Fourier Transform with a Hanning window, 128 coefficients in length, and an
overlap of 120 samples. The red parts show that most of the signal power is below 100 Hz
(especially below ~10 Hz), which confirms the observations in the previous paragraph.
Additionally, further observation of the section below 100 Hz seems to show three types of
signals, one below ~10 Hz and constantly present, one between 10 and 50 Hz (although the
boundaries are not very clear sometimes) that appears at about three times per second (as

indicated by the downward arrows), and one at about 60 Hz and constantly present as well.

Since the purpose of this section is only to illustrate how the abdominal phonogram in the
dataset looks, not further discussion about the origin of information in Figure 5.4 and Figure 5.5
will be presented until further analysis is performed. Such an analysis will be described in the
next chapters, where the challenge of separating the components underlying the abdominal
phonogram will be tackled by SCICA. Thus, since the recording procedure has been described,
and the of noisy abdominal phonogram has been illustrated, the next chapter can focus on the
description and implementation of SCICA as an approach to separate the abdominal phonogram

into its underlying components, e.g. foetal, maternal, and noise.
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Figure 5.4. Time (left-hand side) and frequency (right-hand side) representations of abdominal
phonograms recorded at different gestational ages: (a) 29 weeks, (b) 33 weeks, (c) 34 weeks, (d) 36
weeks, (e) 37 weeks, (f) 38 weeks, (g) 39 weeks, and (h) 40 weeks. As noticed, although the signals may
clearly show a slow component along with some quasiperiodic peaks (indicated by downward arrows),
there is not a clear evidence of the FHS. The origin of such components will be discussed in the next
chapters after further analysis of the signals is performed.
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Figure 5.5. Spectrogram of an abdominal phonogram. The red colour indicates the sections were the main
power of the signal is present. The downward arrows indicate that there is some information between 10
and 50 Hz (approximately) that appears at about three times per second. Conversely, there is some
information below 10 and around 60 Hz that is present almost all the time. The origin of such components
will be discussed in the next chapters after further analysis of the signals is performed.

5.3. Summary

This chapter described the procedure used to record the dataset used in this work and illustrated
the concept of noisy abdominal phonogram (where the FHS are not immediately evident). The
dataset of 25 recordings, each composed of the abdominal phonogram and four gold-standard
signals, was recorded at gestational ages ranging between 29 and 40 weeks (between 3 and 5
minutes in length). The next step is to apply a signal processing alternative suitable to recover
foetal information from such noisy single-channel signals. This is done in Chapter 6, where
SCICA is introduced and used to process the noisy abdominal phonograms used in this work.
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6 AN ALTERNATIVE
SIGNAL PROCESSING APPROACH
FOR ABDOMINAL PHONOGRAM RECORDINGS

Chapter 4 discussed signal processing methods used to extract information for foetal
surveillance from the abdominal ECG, the FMCG, and the abdominal phonogram. As
mentioned, the abdominal ECG and FMCG (both characterised by multi-channel recordings and
temporarily spectral overlapping between foetal and maternal cardiac signals) have been
traditionally analysed using signal processing methods that have managed to recover foetal
traces from these signals (up to 70% of foetal QRS traces from the abdominal ECG and almost
100% from the FMCG (Kahler et al. 2002; Lewis 2003; Pieri et al. 2001)). However, these
signals are barely considered in routine clinical practice because (a) the SNR in the abdominal
ECG is highly dependent on the gestational age (i.e. becomes considerably reduced between 24
and 32 weeks of gestation due to the vernix caseosa) and (b) the FMCG is an expensive tool for

a clinical environment since it needs trained personal and high-cost facilities/consumables.

The abdominal phonogram, on the other hand, is a signal that conveys abundant
information about foetal activity in a single-channel recording. Most importantly, the spectral
overlapping of foetal and maternal cardiac activities in the abdominal phonogram is not as
significant as in the abdominal ECG and FMCG, which makes it a promising signal for clinical
applications (Jimenez-Gonzalez and James 2008a; Jimenez-Gonzalez and James 2008b;
Jiménez-Gonzalez and James 2009). Unfortunately, as discussed in previous chapters, the
acoustic energy of the foetal activity in the abdominal phonogram is so low that it becomes
easily hidden by environmental, maternal, and artifactual noises (Varady et al. 2003), which

turns the extraction of foetal information into a challenging task.

To date, with regards to the recovery of foetal information from abdominal recordings,
most signal processing methods in the literature have followed the approach of using rigid and
empirical criteria to recover pre-selected components (e.g. FHS or FBM), but have only

partially succeeded to do so and the extraction of entire traces containing FBMs or FHS may
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still be difficult. Alternatively, the research presented in this thesis proposes that information of
interest can be better recovered by means of a data-dependent signal processing approach that,
by exploiting the temporal information in a single-channel recording, freely retrieves the
components underlying the abdominal phonogram. Such a signal processing perspective,
referred to and studied by Davies and James (2007) as Single-Channel Independent Component
Analysis (SCICA), uses higher-order statistics for separation purposes and has been
successfully applied to biomedical signals such as EEG (James et al. 2006; James and Lowe
2000) and MEG (James and Lowe 2001; Woon and Lowe 2004), but never to the abdominal

phonogram.

The research described in this chapter explores, for the first time, a methodology based on
this single-channel approach for the extraction of the sources underlying the abdominal
phonogram. To this end, this chapter firstly introduces the fundamentals of SCICA, next
describes its practical implementation for decomposing the abdominal phonogram and, finally,
discusses the development needed for SCICA to truly become a robust signal processing

alternative for antenatal surveillance.

6.1. Fundamentals of source separation by SCICA

Since there is only a single-sensor involved, SCICA can be considered as an extreme case of
“undetermined” ICA that, according to different works (Cardoso 1998; Casey 2000; Castells et
al. 2004), can be studied by considering SCICA as a case of multidimensional ICA (MICA),
though applied to vectors of delayed samples (Davies and James 2007). This idea is described in

more detail next.

This section starts by recalling a popular model of observed data as a random vector,

x € R™, which consists of representing x as a linear superposition of vectors a; as

x:Z:Siai =As, (6.1)

where s; are the weights or coefficients, a; is a vector, A= [ay,..., ay] is a square and invertible
matrix, and s is a vector of coefficients s;. Usually, the vectors a; are chosen to form a basis in
the signal space such that an inverse equation is uniquely defined as s= Wx (where W= A™). In
this representation, if the coefficients s; are treated as independent random variables, then the
model in Equation 6.1 becomes a generative linear statistical model like the classic model given
by ICA (i.e. describes how the observed data are generated by a process of mixing components
(Hyvarinen et al. 2001)) (Davies and James 2007).
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Now, to apply this ICA representation to an Nr-valued scalar dataset, x(n), first it is
necessary to relax the constraint of ICA separation that requires the presence of at least as many
observations as sources (Hyvarinen et al. 2001; Hyvarinen and Oja 2000; Stone 2004). This can
be achieved by projecting the single-channel mixture onto a higher-dimensional space (Casey
2000; Castells et al. 2004; Tufillaro 1998), which is accomplished by breaking x(n) up into a
sequence of contiguous blocks of length m and by treating these as a sequence of vector

observations, x(n), given as (Broomhead and King 1986; Sauer et al. 1991; Tufillaro 1998)

x(n)z[x(nm),...,x(m(n—l)+l)]T, (6.2)

where n in x(n) works as the block index. After that, a standard ICA implementation applied to
x will learn a basis (A) whose interpretation has been discussed by Davies and James (2007) as

follows in the next sections.

6.1.1. SCICA as a filter bank

Understanding the meaning of the basis learnt by ICA requires keeping in mind that x comes
from a scalar time-series (Davies and James 2007). Additionally, it is important to take into
account that the components separated by ICA are usually mapped back to the original

observation domain, which results in a perfect reconstruction-decomposition as
x=>xV, (6.3)
i

where x(si) is the i" source in the original observation domain.
In standard ICA, it is possible to observe each source in the original domain by applying an

unmixing and mixing pair of operations given by

V=AW

(X (6.4)

()

Therefore, if Equation 6.4 is applied to the n block of the scalar time-series as defined in

Equation 6.2, then it gives
" (nm—r+1) = Axr,i)zm:W(i,c)X(”m—C”)’ (6.5)
c=1

where r and ¢ index over m samples.

Equation 6.5 is highly dependent on the block alignment with the data, i.e. is shift-variant.
This problem is solved by applying cycle-spinning, which is a method originally proposed in
wavelet analysis (Coifman and Donoho 1995). Basically, the cycle-spinning works by

generating an estimate for each possible block alignment with the data and then, from the m
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different estimates, calculates the average to obtain a shift-invariant estimate. Thus, the

application of the cycle-spinning method in this case produces

i 1 m m
xg)(n):—Zﬁhli)ZW(ivc)x(n—CH), (6.6)
mi= o1
which can be rewritten as (Davies and James 2007)
i 1
xg)(n)zaai (-n)=w, (n)*x(n), (6.7)
where each aj(n) is a finite impulse response (FIR) filter given by the column vector a;, and each

w;i(n) is an FIR filter given by the row vector w;.

Equation 6.7 can be still simplified by assuming that the signal has been pre-whitened,
which implies that the unmixing matrix W is orthogonal and thus, ai(n)= wi(n) (i.e. the filter is
symmetric around t = 0 and has zero-phase). Therefore, the separation basis learnt by SCICA
from pre-whitened data is a bank of zero-phase FIR filters. Moreover, as the filters commute, a
perfect reconstruction-separation in the observation domain is suitable by using only the
separation filter, fi(n), as (Davies and James 2007)

f.(n)=

S (~n)ew, (n). (6.8)

6.1.2. Notions of independence in SCICA

As mentioned in Section 4.1.4, ICA aims to decompose a set of observations into multiple
statistically independent components. Here, it has been seen that, to achieve such a

decomposition, ICA learns a set of zero-phase FIR filters (Davies and James 2007). The next
step in this chapter is to describe what happens to xgi) (n) in Equation 6.7 when such a set of

filters fi(n) is applied to the scalar time-series given by x(n) as
x" (n)= f,(n)*x(n). (6.9)

The answer that immediately arises is that the individual sources would be filtered versions
of x(n). However, the question that should be addressed is whether the separate components are

truly independent.

In their work, Davies and James (2007) took into account the fact that the basis learnt by
ICA generally contains shifted versions of the same filter (Hyvarinen et al. 2001), which led

them to propose a suitable answer based on the MICA model developed by Cardoso (1998).

In his model, Cardoso (1998) shows that an observed vector x can be decomposed into a

sum of K multidimensional independent vectors, xp, as
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x:i“xP , (6.10)

P=1

where (a) each xp lays in an N -dimensional subspace, Zp, and (b) the set of subspaces Z»
:{Zl,...,Z’K} are linearly independent. Most importantly, Cardoso (1998) also noted that the

multidimensional decomposition in Equation 6.10 can be achieved by standard ICA by first
calculating one-dimensional components, and then using dependence to group them in
subspaces. As a result, it was possible to reorganise the mixing matrix A into a set of K
submatrices A= [A;,...,Ax], where the columns of Ap span the linearly independent subspace
.

Applying this reasoning to the time-series, it can be assumed that x(n) can be represented as

the sum of mutually independent random processes, xp(n), as

x(n):zplxp(n), (6.11)

where each process xp(n) is considered as a filtered independent identically distributed random

process, sp(n), given by
Xe (n)=h, (n)*s,(n), (6.12)

where hp(n) is an Ny-order FIR filter. Notice that, although this model is more restrictive than
the model in Equation 6.11, it is similar to Equation 6.9, which is the model considered when
ICA is applied to a matrix of delays (i.e. SCICA).

Let x(n)= [x(n), x(n-1), ..., x(n-m+1))]" be the previously mentioned sequence of m-

dimensional delay vectors, then Equation 6.11 can be rewritten in matrix form as
x(n)=> Hes, (n), (6.13)
P

where Hp is the Toeplitz matrix for the filter hp= [hp(0),...,hp(Ny—-1)]" and sp(n)= [sp(n),
sp(n-1),...,5o(N-m-N;+2)]" (Davies and James 2007).

In particular, when solving for a single source s;(n), Equation 6.12 becomes equivalent to
the blind deconvolution problem where, according to Davies and James (2007), ICA learns a
single separating vector that is equivalent to the Shalvi-Weinstein deconvolution filter. Thus,
when used to learn the full unmixing matrix, ICA produces a matrix W whose rows convey m
approximate shifted versions of the deconvolution filter (Hyvarinen et al. 2001). Finally, if
assuming the presence of multiple components, then each hp is non-invertible, the

corresponding Hp is rank deficient and, consequently, the vectors xp(n)= Hp sp(n) lie in the
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subspace . Most importantly, if all the subspaces Zp are linearly independent, then the model

becomes a valid MICA model (Cardoso 1998; Davies and James 2007).

In conclusion, whenever applied to a scalar time-series, ICA manages to decompose any

process sp into basis vectors a; that can be certainly grouped into K subsets Ap such that a; « Zp

when i € Ap. Furthermore, since these basis vectors tend to be shifted approximations of the
individual filter hp, all the basis vectors associated with the subset Ap will have very similar

spectral support (Davies and James 2007).

Finally, to estimate the individual independent processes, the contributions of the separate
one-dimensional components within each subset must be summed. Recalling from Equation 6.9
that each component contribution can be estimated using the fi(n) filter, then each xp(n) can be
estimated as

X» (n)=>_ f(n)*x(n). (6.14)
ieyp

Thus, the decomposition of a stationary process x(n) by SCICA results in independent
stationary random processes xp(n) that are built from subsets of one-dimensional components
with very similar spectral characteristics (Davies and James 2007). In other words, in SCICA,

independence means that the separate sources have disjoint spectral support.

Notice that in this thesis, since x(n) refers to the single-channel abdominal phonogram, then
it is expected that the extracted independent processes (i.e. the underlying sources) will be
related to foetal, maternal, and environmental activities. The next section details the

implementation of SCICA for source separation of the abdominal phonogram.

6.2. Decomposing the abdominal phonogram by SCICA

Following the fundamentals described in Section 6.1, the practical implementation of SCICA
follows three steps to decompose a signal into its underlying sources (see Figure 6.1): first, the
single-channel signal is mapped into a higher-dimensional space. Next, multiple one-
dimensional independent components (ICs) are calculated using a standard implementation of
ICA (FastiCA or TDSEP in this work). Finally, after projecting the ICs back to the
measurement space, the resulting signals are clustered (based on their spectral similarity) to
recover the multidimensional independent sources underlying the abdominal phonogram. The

next sections will expand on each step.
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6.2.1. Transforming a single-channel signal into a multidimensional dataset

This step can be thought of as a preprocessing stage, which is necessary to fulfil one of the two
primary conditions to apply ICA (Hyvarinen et al. 2001; Hyvarinen and Oja 2000; Stone 2004),
i.e. the number of observations available is at least as large as the number of sources to be
extracted (Woon and Lowe 2004). Therefore, since the abdominal phonogram is a single scalar
time-series, and ICA is applied to a “multi-channel” representation of data, the abdominal
phonogram recording must be mapped into a higher-dimensional representation (Cardoso 1998;
Casey 2000; Castells et al. 2004; Golyandina et al. 2001; Salgado and Alonso 2006; Teixeira et
al. 2006; Woon and Lowe 2004). In this work, to exploit the characteristic temporal structure
(i.e. presence of rhythmic patterns or oscillations) of the physiological sources underlying the
abdominal phonogram (Castells et al. 2004), the mapping is done by using the method of delays

(MD), also otherwise known as dynamical embedding (Sauer et al. 1991).

ICs
—>
; Constructing a —> ;
Abdominal - X ! Underlying
phonogram — | Multidimensional » ICA A Grouping | sources
dataset
—>

Figure 6.1. SCICA, an alternative methodology for decomposing the single-channel abdominal
phonogram into its underlying sources.

The premise in dynamical embedding is that there is a system underlying the recorded time-
series (i.e. a phonogram generator) that can be modelled as a nonlinear system whose dynamics
reside on some unobservable system manifold embedded in the phase space. Furthermore, it is
assumed that a relatively small number of underlying nonlinear source generators contribute to
this unobservable manifold. Thus, it is possible to think of the abdominal phonogram as the
result of nonlinear interactions of just a few degrees of freedom (D) with additive noise. Takens’
theorem® (Takens 1981) allows for the reconstruction of such a D-dimensional dynamical
system that generated the measured time-series, this by constructing an empirical state phase
based on successive observations of the time-series (this is the method of delays) (Broomhead
and King 1986).

Y In his work, by considering M as a compact manifold of dimension D and x € M, Takens theorem states
that “For pairs (¢, y), : M > M as smooth diffeomorphism and y: M = R a smooth function, it is a

generic property that the map @, ) M > R*™", defined by @, = (Y(X).y(@(),--., Y(0’"(x))) is an
embedding.” Note that the symbols and characters have been used as in the original paper.
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The basic idea of the MD is to construct an m-dimensional matrix of delay vectors from

x(n) by simply extracting consecutive overlapped segments of length m from the time-series as
Vo (K)=[x(K), x(k+7),..., x(k+(m-2)7) ], (6.15)

and using them (for successive values of k) as vectors to form the matrix of delays, v, as
(Broomhead and King 1986; Woon and Lowe 2004)

x(k) x(k+7) - x(k+N7)
x(k.+r) X(kji-ZT) X(k+(.N+1)T)

x(k+(m-1)z) x(k+mz) - x(k+(m+N-1)r)

where t is the time-lag, m is the embedding dimension, and N is the number of consecutive
delay vectors (Broomhead and King 1986). Each vector represents a point on the system
manifold and together all the columns trace a trajectory on this manifold generated by the
Euclidean embedding. In Takens (1981), it was shown that the Euclidean embedding dimension,

€, must be at least as large as D, but in practice it must be at least
€>2D+1. (6.16)

In particular, when applied to real world data, because of dependencies in the time-series
and inherent noise in the system, m needs to be significantly larger than é. In fact, m needs to be
“big enough” to capture the information content necessary, especially when the time-series data
is heavily correlated (James and Lowe 2001). Thus, provided the data were sampled using a
reasonable rate (according to the Nyquist criterion), and by setting t to one, it is possible to
choose the practical minimum size for m only by considering the lowest frequency of the
periodic components of interest as (Golyandina et al. 2001; James and Lowe 2001; Teixeira et
al. 2006)

m>f/f, (6.17)

where f; denotes an appropriate sampling frequency and f; is the lowest frequency of interest in
the measured signal. For instance, considering a phonogram that was sampled at 500 Hz, and
knowing that the lowest frequency of the FHS is 20 Hz (Holburn and Rowsell 1989), then a

value of f; = 10 Hz seems appropriate and, consequently, m = 50.

Once the value for m is found, v is constructed using N consecutive delay vectors. This

value is determined by the length of the signal to be analysed (i.e. Na) as

N=N,-(m-1). (6.18)
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To select N, a matrix of delays that covered a quasi-stationary signal of length N, rather
than a non-stationary entire signal of length Ny, is considered (James and Lowe 2003). Here,
after testing different segments of size N, (i.e. 250, 500, 1000, 2500, 5000, and 10000 samples),
it was found that N, = 5000 samples (i.e. 10 s) made it suitable to build up a matrix of delays
that was successfully processed by the FastiCA algorithm (i.e. the algorithm converged to a
solution (Hyvarinen and Oja 1997)) as described in the next section. Conversely, for lower and
larger values of Na, where the amount of data was not enough for the statistical analysis
required by SCICA or where the segment became so large that is was not a quasi-stationary

segment anymore, FastICA had difficulties to converge.

Finally, once the choice of 1, m, and N is made, v conveys information about the states of
the underlying system that generated the time-series (Broomhead and King 1986; Sauer et al.
1991), and its data is now ready to be represented by a convenient spanning basis such as ICA
(Davies and James 2007; Sauer et al. 1991).

6.2.2. Transforming a multidimensional dataset into multiple independent
components

This step solves the BSS problem in Equation 4.1 by applying ICA. To do this, the input data —
the matrix of delays, v— is transformed so that the statistical dependences between the output
components § are minimised as (Hyvarinen et al. 2001; Hyvarinen and Oja 2000; James and
Hesse 2005)

$=Wy. (6.19)

a) Extracting statistically independent components: Currently, depending on the method
used to seek/define statistical independence (i.e. higher-order statistics or time-structure
based methods), different ICA algorithms have been developed (Hyvarinen et al. 2001;
Hyvarinen and Oja 2000; James and Hesse 2005; Stone 2004). Here, two of them have

been considered, FastiCA and Temporal Decorrelation source SEParation (TDSEP):

1. FastICA: Proposed by Hyvarinen et al. (1997), it is an ICA algorithm that has become

very popular due to its speed and stability of convergence.

FastICA belongs to the higher-order statistics based methods (HOS), which means that
the output components are found by maximising their non-Gaussianity. Therefore,
since a Gaussian distributed signal possesses zero kurtosis (i.e. the fourth-order
cumulant of the signal is zero), the aim of FastICA is maximising the magnitude of the
kurtosis to make § as non-Gaussian as possible (i.e. statistically independent). To do

this, FastICA treats the problem in Equation 6.19 as an optimisation problem with §
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(better known as the ICs) as its solution (Hyvarinen and Oja 1997; James and Hesse

2005), where W is estimated by searching for directions of maximum kurtosis as

2

wrt(W z) = E{(W 2)'}-3(E{(W 2)'} ] (6.20)

for a zero-mean random variable z (i.e. the whitened version of v).

2. TDSEP: Proposed by Ziehe et al. (1998), it is a computationally simple and efficient
ICA algorithm that is suitable for data with a significant temporal structure, e.g.

speech or biomedical signals.

TDSEP belongs to the methods that, instead of considering higher-order statistics,
consider the time-structure of the sources. In these implementations, independence is
defined as the absence of cross-correlations amongst the sources (Ziehe and Muller

1998). In addition, TDSEP assumes that the sources have temporal structure and,

consequently, that all time-delayed correlation matrices, R; , should be diagonal

(Wubbeler et al. 2000). Hence, TDSEP captures the dependence structure of the
observed signals, v in this work, by creating a set of square matrices, and then finds
the joint diagonaliser of that set, which turns out to be the mixing matrix (A) (James
and Hesse 2005; Wubbeler et al. 2000; Ziehe and Muller 1998). To this end, TDSEP

calculates a set of time-lagged correlation matrices of v as

R =Y v(n)v(n+k,), (6.21)
k, =0
where ky, (= 0, 1, 2, ..., kymax) represents the time-lag. Then, as for independent

components these matrices have to be diagonal, TDSEP performs a joint

diagonalisation of R; to estimate A along with the ICs. Finally, after calculating W

(which is the inverse of A), it is possible to substitute it in Equation 6.19 to estimate

the sources, better known as the ICs.

For this implementation to work, it is important to highlight that the value of Kymax
becomes essential as it defines the number of time-lags and the quality of the
separation. Here, in absence of a theoretical choice of kymax, results from several tests
have shown that kyms= 1 is suitable to extract 1Cs with a well defined single-peak

spectrum (Jimenez-Gonzalez and James 2008b).

b) Assumptions for recovering independent components: Before applying ICA, some
assumptions about the composition of the data are necessary: (i) the sources are statistically
independent (i.e. they have non-Gaussian distributions, for the FastICA algorithm, and they

have non-delta autocorrelations and non-cross correlations, for the TDSEP algorithm)
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(Hyvarinen et al. 2001; Hyvarinen and Oja 2000; Stone 2004; Ziehe and Muller 1998), (ii)
the abdominal phonogram is a linear summation of signals produced by the foetal heart and
different maternal/external sources, (iii) the sources underlying the abdominal phonogram
have disjoint spectral support (Davies and James 2007), and (iv) the matrix of delays, v,

successfully conveys a quasi-stationary signal (James and Hesse 2005).

As a BSS method, the first assumption is fundamental for FastiCA and TDSEP to work
whilst the second simplifies the solution to the BSS problem by considering linear mixtures
of ICs (Hyvarinen et al. 2001; Hyvarinen and Oja 2000; Stone 2004; Ziehe and Muller
1998). The third assumption is fundamental to the successful application of SCICA since it
defines how well the method is going to separate sources through the zero-phase FIR filter
bank learnt by ICA when v is processed (Davies and James 2007). The final assumption is
important to provide FastICA and TDSEP with a stable segment to work with and enough
data to perform the higher-order statistical analysis required by FastiICA to converge
(Hyvarinen and Oja 1997).

6.2.3. Transforming multiple independent components into underlying
sources

Once v has been constructed and transformed by a standard ICA algorithm, multiple one-
dimensional ICs are recovered (some of them associated to the same source or process)
(Cardoso 1998; Davies and James 2007). This implies that some post-processing is necessary to

group the relevant ICs together, although identifying ICs of interest is not a trivial task.

a) Restoring components in the measurement space: The step described in Section 6.2.2
produces at most 50 one-dimensional ICs (due to m= 50) that are projected back to the

measurement space using

Y =a s, (6.22)

where s; is the i IC (i= 1,...,50), a; is the corresponding column of the mixing matrix A
(which is the inverse of W), and Y' is a matrix of delays for that component (James and
Lowe 2001). Next, this elementary matrix is transformed into the i"" projected IC (ICip) by
applying a linear transformation known as diagonal averaging or Hankelization
(Golyandina et al. 2001; Salgado and Alonso 2006) as

i 1 u i
IC!, = —ZYZ](MH) . (6.23)
m z=1

Once the whole set of 1C,s have been calculated, and because some of them correspond to
the same process (i.e. FHS, maternal or line-noise), they must be grouped to construct the

related independent sources. More specifically, as ICA “learns” a zero phase filter bank
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(expressed in each column of A), every IC, corresponds to a filtered sequence of signals
that can be grouped by taking into account their spectral similarities (Davies and James
2007; James and Lowe 2001).

Grouping similar components: The Power Spectral Density (PSD) seems to be a suitable
attribute for the K-means algorithm to identify and cluster components corresponding to the
same process or activity. Here, this PSD information has been estimated using the Welch’s
method with a Hanning window of 32 coefficients in length and an overlap of 50%. The
resulting m PSDs, composed of Ngrr points each, are then provided to the K-means
algorithm (Nabney 2004) to be iteratively clustered into K disjoint and therefore
independent groups (IGp, P=1,...,K), where each IGp is represented by its mean vector and

each PSD' (i= 1,...,50) is assigned to the IGp with the closest vector.

In more detail (Teknomo 2006), once the PSDs are provided to K-means, the algorithm

treats each PSD as a vector (psdi e R ) whose coordinates are given by the values in its
frequency bins (f,)?, i.e. PSDifb. Next, to define whether two vectors psd’' and psd”
(psd” € R"*" ) belong to the same group in this work, the algorithm calculates the cosine

angular separation, 6! , between them as

Neer .
Z (PSDIfb ~ Hogp )(PSDZ ~ Hogpe )
g = —22 , (6.24)

Neer . 2 Neer 2
\/z (PSDIfb ~ Hogp ) z (PSDZ ~ Hogpe )

f,=1 f,=1

were
1 Nemr )
Moo = N ;PSD'fb : (6.25)
and
1 & p
Hogor = E le PSDY . (6.26)

%1In a simple example, if Neer were equal to four, and the PSD values of the first 1C, at each bin were
PSD';= 0.1, PSD,= 0.5, PSD';= 0.2, and PSD",= 0 respectively, then the coordinates of psd* would be
(0.1, 0.5, 0.2, 0.0).
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)

Then, since for closer vectors the cosine angular separation moves towards one, K-means
uses t9ip as the criterion to define whether the vector psdi belongs to the group represented

by the vector psd" as its centre, i.e. IGp.

In this way, K-means becomes a nice first clustering trial method because it converges

quickly as it minimizes the error function described by

K
error = > 6, (6.27)
P=1PSDs € IGp
However, although K-means is easy to implement, it requires the user to predefine the K
number of IG or clusters to be formed. In this work, after performing some experimental
work and empirical observations on the classification outcome for values of K between

three and fifteen, it can be said that:

1. A value of K larger than 10 is more likely to make K-means create more than one

group for the foetal group, sometimes including only one IC,.

2. A value of K smaller than 4 is more likely to make K-means break down and
misclassify either foetal components in the maternal group, or noise components in the

foetal/maternal groups.

3. A value of K between 4 and 10 (inclusive) is more likely to make K-means group

foetal and maternal components in different subspaces with less misclassified cases.

Being cautious, and because the work presented in this chapter is exploring the SCICA
methodology, K= 10 proves to be a good value so that K-means groups the 50 one-

dimensional IC,s into 10 independent-multicomponent groups called IGp (P=1,...,10).

Recovering independent sources: After clustering similar components, the time-series of
the independent sources (isp) are recovered by summing the ICys grouped in each IGp as
(Golyandina et al. 2001; Salgado and Alonso 2006)

is,= > ICs (6.28)

p
ICys < IGy

Finally, time and frequency information must be considered to manually identify sources as

foetal, maternal or line-noise.

6.3. SCICA for well-being surveillance: practical issues

So far, this chapter has gone from the presentation of the fundamentals of SCICA to its practical

implementation for decomposing the abdominal phonogram (see Figure 6.2). To this end, as
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already noted, parameters like the embedding dimension (m), the length of the segment to be
decomposed (N,), and the number of sources to be separated (K), have been adjusted to
decompose the abdominal phonogram. As a result, in a preliminary test, the current proposal has
managed to decompose the single-channel abdominal phonogram into ten independent sources
(Jiménez-Gonzalez and James 2009). This is an essential achievement in this study since it
demonstrates the feasibility of SCICA to separate the sources underlying the abdominal
phonogram. However, before claiming that the problem has been solved, it is imperative to
consider the current SCICA implementation in the interest of this research, which is the
extraction of entire traces from where information for surveillance purposes can be collected

(i.e. monitoring foetal well-being). This will be discussed in the next sections.

6.3.1. Working with segmented data

When creating the matrix of delays, v, the abdominal phonogram of length Nt is chopped up
into segments of length Na, which provides the ICA algorithms with a suitable quasi-stationary
set of observations to work with. This means that, to decompose the entire abdominal
phonogram, a number of Na-segments have to be processed and, most importantly, that the
recovered sources will be also N4 in length (i.e. SCICA is producing ten segmented independent
sources). For that reason, once the sources have been separated from all the segments, they must
be concatenated to assemble entire independent sources from where suitable information about

well-being can be obtained.

The task may sound easy to implement since each segment produces ten independent
sources and thus it should be simple to attach the equivalent sources between adjacent
segments. Unfortunately, there are two important ambiguities in ICA (and consequently in
SCICA) that make the task hard to achieve and require to be dealt with first:

a) Uncertainty in the order of components/sources (i.e. permutation ambiguity):
Recalling the BSS problem expressed in Equation 4.1, where both s and A are unknown, it
can be seen how easy it is for the ICA algorithm to freely change the position of the
columns in A and randomly name any of the ICs as IC" (and thus any of the IC,s as IC').
As a result, every time the ICA algorithm runs, even on the same abdominal phonogram
segment, the order of the components at the output will be different (i.e. the components are
randomly sorted) (Hyvarinen and Oja 2000). Besides, to complicate matters —because K-
means randomly initialises its centres p; as well-, such an arrangement uncertainty also

appears in the separate isp.

In practical terms, this permutation ambiguity means that the components/sources separated

from the segment sz will probably be sorted in a different way than the equivalent sources
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Figure 6.2. Implementation of SCICA for decomposing the abdominal phonogram into ten independent
sources (isp). The left-hand side shows the steps followed to process the single-channel signal, whereas
the right-hand side illustrates the corresponding outputs. From top to bottom, the projection of the signal
into a higher dimensional space (by the method of delays) along with the matrix of delays (v), the
extraction/projection of independent components (by TDSEP) along with eight of fifty one-dimensional
components (in the observation domain, ICip) and, finally, the grouping (by K-means) and recovery of ten
spectrally disjoint sources (i.e. independent sources). Notice that the PSDs show single and well-defined
peaks and that iss is still a mixture of a slow component and some peaks.
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in the adjacent segments (i.e. Sp1 and sz.1). Thus, even though adjacent segments are being
processed, it is impossible to predict which components belong to each source or the

arrangement of the sources finally separated by SCICA.

b) Uncertainty in the energy of components/sources (i.e. scaling ambiguity): As some
information may not be present in some segments, and the current proposal requires from
SCICA to recover (i) 50 ICs and then (ii) 10 sources, it is possible that, from each segment
(i) ICA extracts shifted versions of the same filter (Davies and James 2007; Hyvarinen et
al. 2001) and (ii) K-means recovers more than one source for the same process (e.g. two
sources corresponding to the FHS). As a result, adjacent segments sz and sz may show a
different number of components/sources for the same process. Consequently, when those
components are summed as in Equation 6.28 to recover the isp in each segment, the
resulting energy will be different (depending on the number of components used). Thus, the
amplitude of equivalent sources between adjacent segments may be different by a scaling

factor that, unfortunately, cannot be predicted.

In conclusion, further processing is still required for this proposal to reconstruct an entire
source across multiple recording windows. A possible solution will not be discussed here and,
for the moment, this chapter will leave open the question of how to take the segmented sources
produced by SCICA and reconstruct entire time-series that are suitable for surveillance? (This

will be further discussed in Chapter 10, where a solution will be presented).

6.3.2. Working with overcomplete data representations

So far, the blindness of ICA has been a convenient attribute for this work. In fact, such
blindness makes it possible to decompose a set of observations (knowing almost nothing about
the sources and the mixing matrix) only by assuming that the underlying sources are statistically
independent (i.e. spectrally disjoint). Thus, as illustrated in Figure 6.2, it is possible to recover
m-components/K-sources underlying the abdominal phonogram (Jiménez-Gonzalez and James
2009). However, the implementation of the algorithm requires the assumption of values for m
and K that, due to the lack of a priori information about the real number of underlying
components/sources, is not easy to define. To avoid this problem, higher values are commonly
used to produce an overcomplete representation from where the components/sources of interest
are manually selected. Unfortunately, finding components of interest is not an easy task. Here,
to emphasize how difficult it is to deal with an overcomplete representation, the 50 one-
dimensional IC,s produced in Section 6.2.2 will be analysed in terms of their relevance,

redundancy, and interpretation.

a) Relevance: As mentioned in Section 6.2.2, Equation 6.17 provides a criterion to separate

periodic components as far as f; Hz, which is an objective and consistent way to do so. In
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particular, as the current SCICA implementation aims to extract the FHS, this equation
indicates that 50 one-dimensional components must be extracted by ICA. Unfortunately,
amongst these 50 components, only some are related to physiological processes, whilst the
rest are related to environmental processes. This means that, in an overcomplete
representation, there is an unknown number of components that are relevant for

surveillance so that only these components should be considered in the postprocessing step.

The main advantage of working with relevant components would be to certainly focus on
physiological data and reduce postprocessing time. This would be especially useful since
the current SCICA implementation is applied not to one, but to a number of segments.
Unfortunately, finding relevant components (i.e. dimension reduction) can become a
subjective and demanding task that, at least for the components underlying the abdominal
phonogram (where no previous studies exist about their features), requires experience and

time to properly recognise them.

Redundancy: As mentioned in Section 6.2.3, another characteristic of the components
(either relevant or irrelevant) is that some of them correspond to the same process, either
maternal, foetal or noise and, because of that, they have to be grouped to recover the
sources. However, grouping components is not as easy to do as it might sound, especially in
the aim of surveillance, where the isp must be correctly extracted to be meaningful (i.e.

without contamination produced by misclassified or noisy components).

The current implementation of SCICA uses a solution that, although manages to quickly
group components, may fail at correctly classifying, which results in either redundant
sources or misclassified components. The redundancy problem in the sources, which is a
consequence of using an algorithm that a priori requires the number of groups to form,
could be acceptable for a first implementation of SCICA. The components
misclassification, on the contrary, is totally unacceptable since it may contaminate the
source and render it useless for surveillance purposes. Therefore, since the classification
given by K-means has presented problems in distinguishing components belonging to
different processes, it should not be used for surveillance purposes. This will be further
discussed in Chapter 8, where a formal evaluation of K-means will be presented as part of

the solution of the redundancy problem (Jiménez-Gonzalez and James 2010).

Interpretation: This is one of the most important and perhaps difficult tasks of analysing
biomedical signals by using BSS methods, establishing the relationship between a
recovered trace and a physiological process. Clearly, the task is far from the objective of
any decomposition method, but for practical purposes —as the one presented in this thesis—,

extracting the traces is meaningless per se unless they can be associated with specific
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processes, physiological or otherwise. Then, by assuming that the traces of the sources were
correctly extracted and associated with a physiological process of interest, it would be
possible to start the reconstruction of the entire time-series, which is necessary for

surveillance.

The task would be easier if there were precise information about the processes underlying
the abdominal phonogram -not only their number, but also their characteristics or
properties—. However, since such information is unavailable, visual examination of the
sources becomes the default way to identify them, which makes the analysis slow and

highly subjective.

In conclusion, although an overcomplete representation makes SCICA feasible to extract
components underlying the abdominal phonogram, further research needs to be done on how to
find/group relevant components so that the separate isp become suitable for surveillance
purposes. The solution is not described in this chapter, mainly because there is not any previous
research (i.e. knowledge) about the components underlying the abdominal phonogram.
Alternatively, since the separation by TDSEP has nicely separated the components underlying
the abdominal phonogram to produce spectrally disjoint IC,s as in Figure 6.2 (Jimenez-
Gonzalez and James 2008b), the next natural step is to study, for the first time, the ICys
characteristics in the aim of establishing an appropriate strategy to postprocess them. Hence,
due to the significance of both (i) the study of the separate components and (ii) the adjustment
of the postprocessing step, an entire chapter will be dedicated to each one. Consequently,
Chapter 7 will focus on the study of the components underlying the abdominal phonogram,

whereas Chapter 8 will focus on the method proposed to postprocess them.

6.4. Summary

This chapter introduced SCICA as an alternative signal processing approach for decomposing
the single-channel abdominal phonogram (a signal rich in temporal information about foetal
activity, but buried in unpredictable maternal and environmental noises). Contrary to traditional
signal processing schemes, where empirical filters are used to extract single pre-selected
information, SCICA performs a data-dependent analysis that separates out not one, but all the

sources underlying the abdominal phonogram (foetal, maternal, and noise).

Successfully applied to other biomedical signals such as the EEG and the EMG, SCICA
works in three steps: (1) the single-channel signal is projected into a multidimensional dataset,
(2) the dataset is transformed to extract statistically independent components by using a

standard algorithm of ICA (FastICA or TDSEP) and, (3) components corresponding to the same
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process/activity are grouped by K-means and used to recover the independent sources

underlying the abdominal phonogram.

As currently implemented, SCICA based on TDSEP is feasible to separate the components
related to different activities underlying the abdominal phonogram. This is an important first
achievement for this thesis, although still in need of further research in the context of well-being
surveillance, which is more rigorous about the length and quality of the separate sources.
Fortunately, although such requirements are not fulfilled by the current implementation, it is
evident which step of SCICA requires further development, which is the grouping step. Indeed,
preliminary results have made it possible to observe that K-means is unreliable to group
components and therefore inadequate for surveillance purposes (Jiménez-Gonzalez and James
2009). However, in a more critical analysis, at this stage it is impossible for this chapter to
certainly specify where the classification problem comes from: the classifier, the attribute used
(i.e. the PSD) or both of them. Hence, rather than testing more classifiers using the same
attribute (or other attributes using the same classifier), this research considered that a more
natural approach would be (1) to study the separate components (i.e. gain knowledge about their
characteristics) and then, (2) to propose an appropriate strategy for postprocessing them (i.e.
grouping). Thus, Chapter 7 will focus on the study of the components underlying the abdominal
phonogram and the chapters after that will present the solutions proposed to make SCICA

suitable for well-being surveillance.
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7 ON THE EXAMINATION OF THE
INDEPENDENT COMPONENTS SEPARATED
FROM THE ABDOMINAL PHONOGRAM

Chapter 6 introduced SCICA as an alternative signal processing methodology to extract the
components underlying the single-channel abdominal phonogram (Jiménez-Gonzalez and James
2009). Preliminary results showed that SCICA based on TDSEP manages to separate
components whose PSDs are characterised by a well-defined single-peak (i.e. band-limited)
(Jimenez-Gonzalez and James 2008), which are promising results from a decomposition
perspective. However, from a physiological perspective, which aims not only to separate, but
also to comprehend/infer the meaning of the components, these results need further analysis.
Hence, as the current problem is not related to the separation by SCICA but rather to the

interpretation of its outputs, a logical solution points towards the study of these components.

The work presented in this chapter aims to gain knowledge, from a physiological
perspective, about the components underlying the abdominal phonogram. To this end, methods
usually applied to the analysis of other physiological signals have been selected. Such methods,
proved to provide different perspectives about a time-series (i.e. descriptive, spectral,
complexity, and time-structure), seem promising for a study of the components underlying the
abdominal phonogram. This chapter starts with a description of such methods, next proceeds
towards their application to a dataset of ICs and, finally, discusses the physiological relevance

of the components separated from the abdominal phonogram.

7.1. Measures for physiological signal analysis

Physiological signals are traditionally described in terms of features such as amplitude and
frequency (e.g. the ECG ranges between 10 uV and 5 mV in amplitude and between 0.04 and
100 Hz in frequency, whereas the EMG ranges between 20 uV and 5 mV in amplitude and
between 5 and 2000 Hz in frequency, to mention a couple of signals (VuBovy 1978)). Such

parameters, although provide a general idea of the signal characteristics, do not really give any
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insight about the regulatory processes underlying the signal dynamics (e.g. the heart rate in the
ECG case), which requires the extraction of appropriate features. Unfortunately, finding
representative features usually becomes a difficult task. Certainly, the description of the
abdominal phonogram components is an excellent example of such a difficulty, especially
because of (1) the lack of prior knowledge about how a component should look (e.g. any
pattern), either foetal or maternal, and (2) the lack of a priori information about which
physiological process produced the components (e.g. foetal or maternal). Consequently, a
description of the components underlying the abdominal phonogram requires one to find
representative features that are not only sensitive (to distinguish components related to different
processes), but also specific (to identify whether a physiological process is either foetal or
maternal). This section describes four methods that might accomplish such
sensitivity/specificity requirements and thus become useful for the examination of the

components separated from the abdominal phonogram.

7.1.1. Traditional analysis: measures in the time and frequency domains

In a very preliminary analysis, physiological signals are traditionally characterised using
features related to the time and frequency domains. In general, a descriptive analysis in the time
domain looks for the mean (u), standard deviation (o), and skewness (y) of an N-valued scalar

time-series, x(n), as

y=—2x(n), (7.2)

G:\/NTl_li(x(n)—y)z , (7.2)

and

1 &
VZ(X(”)—/J)S
y=—Lrd = . (7.3)

On the other hand, frequency information is usually obtained by the Fourier Transform,
which makes it possible to estimate the PSD of a signal, S.(f). The PSD reveals the distribution
of power in the signal as a function of frequency and, when properly used, may become an
essential guide to further analysis like short-term correlations, for instance (Eke et al. 2000).
The PSD can be estimated by the periodogram, which is calculated as

2

, (7.4)

Ny

Z ¥ (n) efj(Zfrf/f; )n

n=1

1
JN;

S.(f)
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where f; is the sampling frequency and N7 is the number of samples in the time-series.

If x(n) is weighted by a window w(n)=[w(1),...,w(NT)] , then a modified
periodogram is produced as

2

1 §X(n)w(")e_j(mm)n
S.(f ):7 . | "
S Y |w(n)

n=1

whose characteristic high variance can be reduced by using Welch’s method as in the following

steps:
1. The time-series is divided into / overlapping segments of size window.
2. The modified periodogram of each segment is calculated.
3. The set of modified periodograms is averaged to produce S,(f).

Figure 7.1 illustrates the power spectral density S.(f) of a signal composed of a 200 Hz
sinusoid and additive random noise (normally distributed with an amplitude equal to 10% the
amplitude of the sinusoid): (a) depicts the estimation of S.(f) by the modified periodogram and
(b) depicts the estimation of S.(f) by Welch’s method (using a Hamming window of 128

samples in length and an overlap of 120 samples).

o

(a)

Power/frequency (dB/Hz)

-60

-60
0

(b)

Power/frequency (dB/Hz)
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Figure 7.1. Power spectral density S.(f) of a signal composed of a sinusoid and random noise: (a)
estimation by using the modified periodogram and (b) estimation by using Welch’s method.
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The PSD analysis is widely used since it is easy to implement on a computer. Besides,

when properly applied, it gives a good overview about the frequency content of a signal.

7.1.2. Entropy analysis: a measure of irregularity/complexity

Visual examination of signals’ behaviour some times gives the observer an intuitive idea of
their complexity. For instance, some signals show an extremely random behaviour (higher
complexity) whilst other signals show regular patterns at different intervals (lower complexity)
(Rezek and Roberts 1998). Frequently found in biological signals, such a complex behaviour
has been widely studied from the perspective of dynamical systems and chaos theory, which has
proven to be a powerful approach for studying biological systems (Eke et al. 2000; Pincus and
Goldberger 1994; Richman and Moorman 2000). In the field of cardiovascular research, for
instance, the degree of complexity/irregularity of a signal has been correlated with physiological
conditions, which shows potential for this work (Dawes et al. 1992; Ferrario et al. 2006; Lipsitz
et al. 1997; Nelson et al. 1998). Consequently, to consider this idea of complexity in a
biological signal, the research in this chapter also explores a method referred to as sample
entropy (SampEn), which uses the rate of generation of new information as an estimate of

irregularity (Pincus and Goldberger 1994; Richman and Moorman 2000).

As part of the methods for entropy analysis, SampEn has the advantage of enhancing
relevant features of a signal even though the amount of data is small (Ferrario et al. 2006;
Pincus and Goldberger 1994; Richman and Moorman 2000). In addition, SampEn overcomes
the characteristic shortcomings of its biased predecessor, approximate entropy (ApEn), which is
highly dependent on the signal length as well as highly inconsistent across datasets (Pincus and
Goldberger 1994; Richman and Moorman 2000). Thus, designed as an unbiased method by
discarding all self-matches, SampEn can be consistently applied to short and noisy time-series

like the ones used in this work (Comani et al. 2007; Richman and Moorman 2000).

SampEn quantifies the rate of generation of new information (i.e. irregularity) by looking
for similar patterns in a time-series, x(n). Thus, in a regular signal, which generates new
information at lower rates than an irregular signal does, the presence of more frequent and
similar patterns produces lower values of SampEn (Richman and Moorman 2000). In a formal
description, SampEn uses the conditional probability that two sequences in the time-series,
which are similar for m, samples, remain similar for m, + 1 samples (within a tolerance «)

(Richman and Moorman 2000). This is further described in the next paragraphs.

SampEn requires two parameters to work: m,, which specifies the pattern length and «,
which defines the criterion of similarity between patterns. This information is used to build a

subvector containing m, consecutive values of x(n). Such a vector, referred to as the pattern
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P, (1), begins at the «'" position of x(n) (1 < u < Ny — mj). Next, similar patterns are searched

by sliding p,, (u) through the signal, where two patterns p, (u) and p, (v) will be

considered similar whenever the difference between any pair of corresponding measurements is

less than or equal to « as

y(u+k)-y(v+k)<a, fori<k<m, and u=v. (7.6)

Now, by considering P, :{pm (1), p, (2),....p, (N; —ms)} as the set containing all
the patterns of length m; in x(n), it is possible to define the quantity C* (a) as

mg

Cl () =—]':/ﬁ‘ EZ) , (7.7)

where 1" () is the number of patterns in P, thatare similarto p, (u),and C* () is the

probability that two sequences will match for m, samples in the set an (Comani et al. 2007,

Richman and Moorman 2000).
Using Equation 7.7 it is suitable to define the probability, C™ (o), that any pattern
p,,, (u) is within g of P,

1 Np—mj

C" (a)= D> Cr(a) (7.8)

NT - mx u=1

and finally calculate SampEn as (Comani et al. 2007)

SampEn(mS,a,NT)zln( < j (7.9)

Cms +1

where C™ /C™" represents the conditional probability that the patterns p,, () and p,, (v),
which are similar for m, points, remain similar within a tolerance « for m, +1 points.

In this way, by discarding all self-matches, SampEn performs a more accurate (i.e.
unbiased) and faster evaluation of the irregularity of short time-series than ApEp does (Richman
and Moorman 2000). As a result, SampEn produces a single index that, being independent of
the amplitude and frequency of the signal, is suitable for comparison of datasets (Rezek and
Roberts 1998). Unfortunately, although SampEn gives a picture of the general behaviour of the
time-series, it does not identify the dynamics of the underlying “signal generator” (Ferrario et
al. 2006). In other words, the SampEn values of two signals will only reveal which signal is

more regular, but they will not say anything about the signal “generators”. Furthermore,
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regarding Equation 7.9, it is important to highlight that, since SampEn does not consider self-
matches, the occurrence of either In(0) or In(x) is unavoidable and must be carefully

interpreted. The former happens whenever no regularity is detected (i.e. C™ («)=0) so that the
conditional probability is zero. The latter happens when C”’»*l(a)z 0 and thus the conditional

probability is infinite. In those cases SampEn will be undefined and, most importantly,
meaningless. These possibilities must be taken into account when analysing time-series and

interpreting their SampEn values.

7.1.3. Rhythmicity analysis: a measure of time-structure

Today, it is well known that biological phenomena like heart beat, breathing, locomotion, states
of consciousness, bacterial protein synthesis, and photosynthesis (to mention a few) are
regulated by rhythmic dynamical processes (Barman and Kenney 2007; Giebultowicz 2001;
McAuley et al. 1997; Mor and Lev-Tov 2007; Vandenhouten et al. 2000). Clearly, this is
fundamental for living systems since it makes it possible for them to adapt to changes of
internal and external conditions, either by initiating/stopping or by accelerating/decelerating

individual processes or subsystems (Barman and Kenney 2007; Vandenhouten et al. 2000).

As a consequence of such a rhythmic regulation, signals recorded from biological
phenomena have time-structure (i.e. present rhythmic patterns or oscillations) that, depending
on the underlying process, range from fractions of a second to days or even years (Barman and
Kenney 2007; Huang et al. 2000; McAuley et al. 1997; Mor and Lev-Tov 2007; Vandenhouten
et al. 2000). Therefore, since the time-structure of a signal is caused by underlying process(es),
the analysis of its time-structure should provide information about such processes. To this end,
and because the time-structure is observed through rhythmic patterns or oscillations, a measure
of those oscillations disclose the processes underlying the signal (Barman and Kenney 2007;
Giebultowicz 2001; McAuley et al. 1997; Mor and Lev-Tov 2007; Vandenhouten et al. 2000).

Time-series oscillations can be measured either in the time or frequency domains, the
former by autocorrelation analysis and the latter by power spectral analysis (i.e. autospectrum)
(Barman and Kenney 2007). Autocorrelation analysis quantifies the correlation between the
same time-series at times n and n + k, for k. = 1,..., Ny Thus, it provides a measure of how well

a signal matches a time-shifted version of itself as a function of the time-lag %, as

N]
Ry, =2 x(n)x(n+k,), (7.10)
k=1

where R; is referred to as the autocorrelogram of x(x). In this way, even though the signal is

contaminated by noise, the autocorrelogram conveys a good representation of the dependence

structure of the time-series (i.e. its oscillations or rhythmic patterns) (Barman and Kenney 2007;
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D'Urso and Maharaj 2009). Next, in a further processing step, the autocorrelogram can be
transformed into the frequency domain so that the estimation of the oscillation(s) rate becomes
easier from the resulting S.(f) (also referred to as autospectrum) (Barman and Kenney 2007).
Figure 7.2 depicts an example of a signal composed of three sinusoids oscillating at different
amplitude and frequency, and the subsequent rhythmic patterns (i.e. oscillations) obtained in

both (a) time and (b) frequency domains (Barman and Kenney 2007).

As can be seen in Figure 7.2, the rhythmic pattern in the form of S,(f) makes it a lot easier
to identify the oscillations present in the mixed signal. Indeed, in a more detailed observation of
(b), is it suitable to establish not only the number of processes underlying the signal, but also
their characteristics, which becomes promising for this work. Thus, the time-structure analysis
clearly discloses the presence of three rhythmic processes, each one oscillating at different

frequency and intensity (assuming one process per sinusoid).

3.6 Hz
/v\ il
0 1 2 3 0 1 2 3 0 1 2 3
Time (s) Time (s) Time (s)

\

Mixed signal

(a) (b)

—_ Rhythmic pattern Rhythmic pattern

xn;x (Time domain) __ (Frequency domain)

£ %)

g £

> 0 1 2 3 >

2 Time (s) °

g @

= Q

g g

= =] : : SIS,
50 1 2 3 L0 2 4 6 8 10
< Lag (s) Frequency (Hz)

Figure 7.2. Rhythmic patterns (oscillations) obtained for a signal composed of three sinusoids oscillating
at different amplitude and frequency (Barman and Kenney 2007). (a) Estimation in the time domain by

the autocorrelogram ( R, ) and (b) estimation in the frequency domain by the PSD (S)).

At this stage, this chapter has described four methods normally used to analyse

physiological time-series. Amongst the many methods available for such an analysis, these four
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were selected mainly because they study the signals from different points of view, which
provide a wider perspective for studying the behaviour of the time-series. These methods,
previously used to analyse some cardiovascular signals, have been applied to the study of the

components underlying the abdominal phonogram for the first time in this work.

7.2. Measuring the components underlying the abdominal
phonogram

This section details the practical application of the traditional, entropy, and rhythmicity analyses
on the components separated from the abdominal phonogram by SCICA. First, some details
about the construction of the dataset of separate components are presented, and then the

preprocessing stage and the dataset analysis are described.

7.2.1. Constructing the components dataset

The twenty five signals in the dataset of abdominal phonograms have been processed by using a
slight modification of the methodology described in Chapter 6. In this modification, the
abdominal phonogram is fragmented into overlapped segments rather than in non-overlapped
segments. Such an overlapping, which consists of 50% of the segment, does not have any effect
on the stage for separating components, and will be useful for reconstructing the entire time-

series later on, in Chapter 10.

To recall the procedure followed by SCICA, Figure 7.3 illustrates the methodology for

extracting the one-dimensional components underlying the abdominal phonogram (1C,).

A

Projection | _1C,
Abdominal Mgg;:;sof by 'II%AéEP bar((:)IJ(et(c:) I‘:?lr(]-:‘ j
phonogram (step 1) (step 2) objerva_tlon -
omain | "~

Figure 7.3. Methodology for extracting one-dimensional components (IC’,) underlying the abdominal
phonogram by using SCICA (steps 1 and 2). The second step is implemented by TDSEP because it
produces components whose spectra present a single and well-defined peak (Jimenez-Gonzalez and
James 2008).

This methodology has been applied to the dataset of abdominal phonograms described in
Chapter 5. As a result, a number of one-dimensional components (10 s in length) is available for
the analysis described in this chapter, which would be too much data to be presented in this
thesis. Alternatively, to ease the analysis, only three segments per phonogram are used: one at

the beginning, one in the middle, and one at the end of each recording. In this way, the dataset
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of separate components to be analysed in this chapter was constructed by using 75 segments of
abdominal phonograms that, producing 50 components per segment (as shown in Figure 7.3),

ended up with a total of 3,750 one-dimensional components.

7.2.2. Preprocessing components

This stage is required only for the analysis of rhythmicity, and its purpose is enhancing the time-

structure of the IC,s, which is achieved as follows:

a) Envelope generation: This is performed by using the Hilbert Transform (H[]), a method
that has been successfully applied to narrowband signals where the envelope, e(n), is slow
compared to the temporal variations of the signal (e.g. the heart sounds) (Choi and Jiang
2008; Godinez et al. 2003; Xu et al. 2000). Thus, e(n) is calculated from the analytical

form, x,(n), of the signal under analysis x(n) as
X, (n)=x(n)+jH[x(n)]=e(n)exp(j¢)(n)), (7.11)
where H['] represents the Hilbert Transform given by

H[x(n)]=x(n)*i, (7.12)

wn

and,

e(n):\/x(n)2+H[x(n)]2 , (7.13)

p(n)=tan™ [%J : (7.14)

b) Detrend: This removes the linear trend in e(n) to reduce its influence on further

calculations.

7.2.3. Processing components

The components extracted from each segment of abdominal phonogram are processed by the
methods earlier described according to the specific parameters indicated herein. The result, as

illustrated in Figure 7.4, is a set of features corresponding to:

a) Descriptive analysis: To calculate the mean (p), standard deviation (o), and skewness (y)
of the IC,.

b) Spectral analysis (S;): Implemented by the Welch’s method, it makes use of a Hanning
window of 32 coefficients of length and an overlap of 50% (Jimenez-Gonzalez and James

2008; Jiménez-Gonzalez and James 2009). Next, from the characteristic single-peak in S,
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Ic*

_|2. Spectral
WW "I analysis

(Jimenez-Gonzalez and James 2008), its central frequency (S;) is used as the index to

represent the frequency content of the IC, as

S, =arg, max S, (f). (7.15)

1. Descriptive
analysis

0 100 200
Frequency (Hz)

,|3.Entropy

- — SampEn(m_a,N
analysis PEN(M.,c.N,)

IS}

~—~R=23Hz

4. Rhythmicity
analysis

—>

0 2 4
Frequency (Hz)

Figure 7.4. Methods used to analyse components separated from the abdominal phonogram. Each method
analyses the time-series from a different point of view and provides information about; time statistics
(mean p, standard deviation o, and skewness v), frequency content (S;), complexity (SampEn), and time-
structure (R).

c)

d)

Entropy analysis (SampEn): Implemented by Sample Entropy (Richman and Moorman
2000), it uses a pattern length of one sample (m,= 1), a criterion of similarity equal to 0.2
times the standard deviation of the IC,, i.e. o= 0.2-std(IC,), and a time-series length given
by the length of the IC,, which is therefore defined by N, i.e. 5000 samples. The former
two parameters were already used by Comani et al. (2007) to perform a sample-by-sample

analysis of independent components extracted from the FMCG.

Rhythmicity analysis (R): After preprocessing the IC,s to generate a detrended e(n), the

autocorrelogram of such an envelope is calculated as

Ny

R x, =2 e(n)e(n=k,) (7.16)

=

and transformed to the frequency domain using the Welch’s periodogram to produce S.(f).
In particular, due to the interest in the cardiac activity (which generates the HS), the length

of the window is chosen to enclose a suitable amount of information from the two possible
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processes, maternal and/or foetal. Thus, a window size of 2048 samples (~ 4 s since the
signals were sampled at 500 Hz) is used to include an average of four maternal and/or eight
foetal heart beats. Finally, from the resulting S, the frequency of the largest peak is taken

as the measure of rhythmicity', i.e. R.

Figure 7.5 and Figure 7.6 depict a set of 50 IC,s extracted by SCICA from one segment of
abdominal phonogram (25 components per figure) and the measures obtained when analysed by
using the methods described in this chapter. In Figure 7.5, from top to bottom, a segment of
abdominal phonogram and its first 25 one-dimensional components separated by SCICA (i.e.
from IC*, to ICZSP). In Figure 7.6, from top to bottom, the same segment of abdominal
phonogram and its last 25 one-dimensional components separated by SCICA (i.e. from IC26p to
IC5°p). In both figures, on the right-hand side of each IC,, the information provided by the four

methods of analysis considered in this chapter: descriptive, spectral, entropy, and rhythmicity.

Visual examination of Figure 7.5 and Figure 7.6 reveals some aspects about the time-series
and their measured features: firstly, that in the abdominal phonogram it is possible to distinguish
a slow component and some peaks (indicated by red upwards arrows), but not the FHS.
Secondly, that the first 40 1C,s show some spontaneous but unrecognisable activities, whereas
the last 10 1C,s show some periodic information that alternates (1) at more than two times per
second (e.g. 1IC*)), (2) at more than one time per second (e.g. 1C*,), (3) or much less than that
(ICSO,,). Thirdly, that the amplitude of the last IC,s is larger than the amplitude of the first IC,s.

Regarding the features, it can be seen that, whilst the entropy directly produces a single
value, the other methods generate a waveform (i.e. a pattern) from where specific measurements
are taken in this work. Additionally, in a more detailed examination of such patterns, it can be
seen that the histogram usually presents a unimodal distribution, although there is a possibility
that it shows a bimodal distribution as in IC5°p. The S, patterns, on the other hand, consistently
produce a single and well defined peak (from where S; is easily taken), whereas the S, patterns
may produce many peaks of which only the largest one is chosen to quantify R. Furthermore, a
closer observation of those measurements shows that those corresponding to S;, SampEn, and R
change from IC,-to-IC,, whereas ¢ and y seem to remain similar® (except for 1C*°,, whose v is

higher than the skewness of the other components by one order of magnitude).

! Note that in this work the term “rhythmicity” is being used as a measure of the frequency of the rhythm
in a signal. | should not be understood as a measure of how rhythmic the signal is.

2 The value of p has been excluded because it is zero by construction in ICA (Hyvarinen ez al. 2001).

-05-



CHAPTER 7

Time-series

ERE) T T T T T
==Y
28 2
=2 'E_ Il Il Il
e 0'2r T T T T T T T T T
O ord-4 * * W ¢ *
0 [ » oo ¢ 90~

02

c?
<) o
Mo N

& =
il

10
Ic®,
(=]

Time (s)

~
i

o <

Histogram

G9
)
Eo

-

i
J

g g

63 w

&
of

0=/0.0;

& =
=]
of

o ®

a9
S
8

S.q Siq Hugq B

gl i gug &

o s o i
g

JTR JTR TR

H g g g

8 § g9 &
g shag gaf 8§
o o o o
S g S
R TR R IR
2 g 8 5

o
g g
of ==
S
18
g
IS
T
5 &
y:
ﬂ
I
E;

i §

~

004 0 004

- .
R &
s 3

0=0.0

Hi
B
g
g
g

.<
i g
o
N

010 01

49

&
ol
8
&

°
2R

s g
h’.;
3

B
ol
g
R

g|
ol
g
R

.
Eé

0=/0.02
v=/0-01

5050 005
0=/0.02
v=)

6050 005
0=/0.02
150.92

605 0 005
050,02
% 01

004 0004
0=/0.01
v=

0050 005
0=0.02
v=

6040 004
0=0.01

10 0050 005

[ I
8 8 8
I )
4
N
S

-12(

Frequency
content

N
&

@
&

&

3
b
T
N

5
38

i
kY
T
N

-6

e
5
S 3

[
5 &
s 3
[ w v »
" 1
N N N
T
N

&
3
n
{1
N
T
N

.ﬂ
5
3

60| S=227 Hz

B
5 &
s 38
»
N
T
N

T
N

&
3
v
n
N
=Y
T
N

o
5
S

@
T
N

6

©
T
N

-6

3

S

o
5

s 8

» »

"

= N

w
N
I
N

-6

]

o
IS
3

o
"
©
T
N

»
n
®
8
T
N

7]
(l
]
El
T
N

=]
0
L
]
o
I
~

'y

g 8
[ [ [} [} n
" (] " n "
2 8 2 B %
& 3 2 2 3
I = I I I
E; F: z Es E;

v
"

»
||

-100)
0 100200

Irregularity
SampEn
=1.2
SampEn
=0.2

SampEn
=0.4

SampEn
=0.5

SampEn
=0.8
SampEn
=1.0

SampEn
=1.2

SampEn
=13

SampEn
=14

SampEn
=15

SampEn
=16

SampEn
=1.6

SampEn
=1.5

SampEn
=18
SampEn
=16

SampEn
=1.4

SampEn
=19

SampEn
=19

SampEn
=2.0

SampEn
=1.9

SampEn
=2.0

SampEn
=21

SampEn
=22

SampEn
=2.0

SampEn
=21

SampEn
=19

Frequency (Hz)

Time

structure

R=1.3 Hz

ﬁ—

Pl
(1]
[
I
N

Pl
1
o
T
N

p
(1

7 o 5

» L ° °

2 ° > 2

N I I I
b b b

El
(]
w
T
N

o) Pl Fol

(] [ (]

Lol 4 = h
o w

T T T

N N N

Fol

0
e
©
T
N

P vy vl o Py Pl P e Pl Y Py
(] n [ {0 n [ {l { (] i n
° ° ° = ° » ° ° = ° -~
& 2 g > & S & 2 % o >
I I I I I I I I I I I
b b b & b & s & b & b

)
i
e
9
T
N

Pl
i
4
o
T
N

012345

Frequency (Hz)

Figure 7.5. Example of the first 25 one-dimensional components underlying an abdominal phonogram
segment along with the features measured by using descriptive, spectral, entropy, and rhythmicity
analyses. From left to right: the time-series, the histogram with its statistics (standard deviation o, and
skewness v), S, with the frequency of its characteristic single-peak (S,), the irregularity value (SampEn),
and S, with its rhythmicity value (R) —which is taken from the largest peak—. From top to bottom: a
segment of abdominal phonogram (10 s in length) and 25 of its 50 one-dimensional components (i.e. from
IC', to IC?,). The mean value, p, has been deleted from the histograms because it is zero by construction

in ICA (Hyvarinen and Oja 2000).
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Figure 7.6. Example of the last 25 one-dimensional components underlying an abdominal phonogram
segment along with the features measured by using descriptive, spectral, entropy, and rhythmicity
analyses. From left to right: the time-series, the histogram with its statistics (standard deviation o, and
skewness v), S, with the frequency of its characteristic single-peak (S), the irregularity value (SampEn),
and S, with its rhythmicity value (R) —which is taken from the largest peak—. From top to bottom: a
segment of abdominal phonogram (10 s in length) and 25 of its 50 one-dimensional components (i.e. from
IC?, to IC*,). The mean value, p, has been deleted from the histograms because it is zero by construction
in ICA (Hyvarinen and Oja 2000).
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This behaviour is more evident in Figure 7.7, where the features obtained from each IC, are
depicted (except for the descriptive measurements, which were discarded for the reason

previously expressed).

As can be seen in Figure 7.7, S; and SampEn clearly show a particular tendency. In (a), it is
manifest that the S; of each component (except for the first and last couples) consistently
decreases as long as i increases (i= 1,...,50). In (b), the SampEn reveals different levels of
irregularity in the 1C,s and, most interesting, some similarities in the degree of regularity
between the first and last IC,s (i.e. a symmetric behaviour). Hence, according to SampEn, the
most regular components are located both, at the beginning and at the end of the sequence of
IC,s, whereas the less regular —or more complex components— are located in the middle. In (c),
where the rhythmicity is shown, finding a trend is a bit difficult at first sight, especially after the
evident tendencies shown in (a) and (b). In despite of this, focusing on the last ten ICs, it is
possible to see that (1) from IC*, to IC*,, the rhythmicity value is 2.4 Hz and (2) for IC*, and
IC“gp, the rhythmicity value is 1.3 Hz. Regarding the other components, their rhythmicity is
between 0.1 and 0.2 Hz.

(a) 300 T T T T T T T T T
250¢-0 , 4
o...
~—~ 200} "Oo. A
N .'°.o
5150, '-...... -
o) 100 .°'o-... -
LN ]
507 ........' ]
0 ! 1o
(b) 3 T T T T T T T T T More irregular
c 251 B
L
2 2+ ************* ****** . .
Q PRI * * * oy
g 15 - * * * 4
T 1} » *xy i
()] * * %
050, «* * e
0 * Less irregular
(C) 4 T T T T T T T T T
o
3+ ° .
I TP O 24Hz oo
L 2} o .
o oo ° o 1.3 Hz
................................................................... P
1k ° o o 4 © ° o ° o 1
o o ° o o © © 02Hz
gloooy KERREREEE [ g ®  060%000 o a ‘
1 5 10 15 20 25 30 35 40 45 50
IC

Figure 7.7. Behaviour of the features measured from the set of 1C,s underlying an abdominal phonogram
segment: (a) the frequency content by S;, (b) the irregularity by SampEn, and (c) the time-structure by R.

Figure 7.8 depicts the features as a function of S, In (a), the amplitude of the power

spectrum at S, (i.e. the amplitude of the peak in the S, pattern, aS)) versus S; is shown, in (b),
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SampEn versus S; is depicted, and finally, (c), illustrates the rhythmicity versus S;. As shown by
the grey areas, some regions in (a) and (b) present interesting behaviours as a function of S;. In
(@), two groups of IC,s have larger power, those with the lowest and those with the highest
frequencies, which are also the last and first components in the sequence of IC,s respectively. In
(b), the same two groups are clearly more regular than the other components. Conversely, in (c),
such two groups are not evident, although the rhythms at 1.3 and 2.4 Hz mentioned in Figure
7.7 (c) are clearly located in the region where the slowest components are found, which means
that they correspond to the last IC,s in the sequence. Regarding the rhythm at 0.2 Hz, it appears

in both the medium high and high frequency ranges (i.e. in the medium fast and the fastest

components).
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Figure 7.8. Dependence of features on S; (in log-log coordinates) measured from the set of IC,s
underlying an abdominal phonogram segment: (a) the amplitude of the peak in the S, pattern versus S, (b)
the SampEn versus S;, and (c) the rhythmicity versus S;. The grey areas mark the regions where the
features show some correlation with S;.
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So far, only the features obtained from the set of IC,s of a single abdominal phonogram
segment have been presented. This has made it easier to observe their behaviour along
components and detect some trends or particular characteristics, although the reader could be
already wondering whether such a behaviour remains throughout the whole dataset. This is
answered in Figure 7.9, which illustrates the typical tendencies and dependences of S; and
SampEn all through the dataset used in this chapter (R is not included since currently it is
difficult to see any trend due to multiple variations in its value). As can be seen, both S; and

SampEn keep their tendencies throughout the dataset.

(@) (b)

(c) L (d)

log(SampEn)

log(aS)

Figure 7.9. Typical tendencies and dependencies of S; and SampEn throughout the whole dataset of
components: (a) frequency content by S, (b) irregularity by SampEn, (c) aS; versus S;, and (d) SampEn
Versus S;.

7.3. Analysis of physiological relevance

In the previous section, IC,s features were obtained using methods that analyse time-series from
different points of view such as statistical, spectral, complexity, and time-structure. By
themselves, the features obtained by the latter three methods show not only consistent, but also
interesting behaviours along the IC,s dataset. This is an important step towards the
comprehension of the IC,s since it provides quantitative information about different aspects of

the time-series (i.e. the frequency content, irregularity, and rhythmicity). For the next step, this
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section analyses such information (both individually and as a whole) in order to establish their
physiological relevance and then, the potential meaning of the I1C,s that underlie the abdominal

phonogram.

7.3.1. The waveforms or patterns

As seen in Figure 7.5 and Figure 7.6, only the waveforms of the last ten 1C,s consistently show
periodic information. Indeed, according to the intervals measured in such time-series, this
information oscillates at: (1) ~2.5 Hz from IC*, to IC*,, which is in the interval reported for the
foetal heart rate (Guijarro-Berdinas et al. 2002), (2) ~1.3 Hz from IC*, to 1C*,, which is in the
interval reported for the maternal heart rate (Ogueh et al. 2009), and (3) ~0.28 Hz in ICSOP,
which is in the interval reported for the maternal breathing (van Leeuwen et al. 2009).
Therefore, based on this visual examination of the evident periodic information in the time-
series, it is possible to say that, at least, there are three physiological rhythms in the “last” IC,s
separated from the abdominal phonogram that are more likely to correspond to: the maternal
breathing rate (Ryz), the maternal heart rate (R,;), and the foetal heart rate (R;;). From now on,
this a priori knowledge will be used to give the calculated features a physiological

interpretation and thus, to study the 1C,s.

Further considering Figure 7.5 and Figure 7.6, and focusing on the waveforms or patterns
from where the features are measured, a profound difference between the waveforms produced
by S.(f) and S.(f) is noticed, which is the number of peaks. In S.(f), due to the band-limited
filters learnt by ICA (Jimenez-Gonzalez and James 2008), there is always a single-peak that
makes it easier to measure S;. In S,(f), multiple peaks might be present and make it necessary to
choose the largest peak to measure R, which might not be the best strategy. Indeed, a closer
inspection of 1C*,, 1IC*,, and 1C*,, for instance, makes it possible to see that their S, patterns
also have peaks centred at 0.24 and 2.6 Hz in I1C*,, at 1.3 Hz in IC*,, and at 1.4 and 2.4 Hz in
IC38p, which are values more consistent with the rhythms measured from the last ten 1C,s (i.e.
Rus, Rym, and Ryg). Furthermore, IC“Bp shows an interesting pattern where the rhythm of the
largest peak (2.7 Hz) is twice the rhythm of the smaller peak (1.3 Hz). Another interesting
pattern appears in those components where the largest peak is centred at a very low rate (0.1-0.2
Hz) and whose amplitude is so large that makes the contribution of other rhythms look

insignificant (e.g. first IC,s and those from IC*, to 1C*,).

From these observations, it is clear that the multi-peak pattern in S, currently affects the
measuring of R and distorts the time-structure results, which would not be an issue if such a
pattern were an isolated case. Unfortunately, as shown in Figure 7.5 and Figure 7.6, this pattern
appears so frequently that the measured R presents behaviours that are difficult to interpret, like

the one in Figure 7.7 (c). This means that, before having a final, and perhaps wrong, opinion
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about the time-structure analysis, this multi-peak pattern must be carefully analysed so that the
circumstances that give rise to an incorrect measurement of R are understood and then, a more

reliable way to measure R in S, can be proposed.

First of all, a multi-peak pattern in S, means that more than one rhythm is present in the IC,,
i.e. that a complete separation was not reached by SCICA. As a first impression, this result
might seem to conflict the former affirmation in Chapter 6 that SCICA learns a set of band-
limited filters, which would be a wrong interpretation. In fact, from these results it is possible to
better understand what SCICA does when processes the abdominal phonogram. Hence, after
carefully considering these results, it is possible to infer that, although SCICA successfully
learns a set of filters to separate a signal into disjoint spectral components (Davies and James
2007), it may fail to separate the physiological rhythms underlying the abdominal phonogram
(which happens whenever the signals regulated by such rhythms do not have disjoint spectral

support).

In other words, independent components by SCICA do not always mean independent
physiological components in the abdominal phonogram. This is an interesting finding regarding
SCICA performance that must be taken into account from now on when referring to the

“independent components” separated by this signal processing approach.

Now it is time to have a detailed look at the multi-peak patterns, not in terms of the
separation quality (i.e. the method), but in terms of the physiological evidence provided by them
(i.e. the underlying generator). To this end, this discussion will be based again on Figure 7.5 and
Figure 7.6 results, where three physiological rhythms have been clearly identified: a slower
rhythm at 0.2 Hz given by Ry, a middle rhythm at 1.3 Hz given by Ry, and a faster rhythm at
2.4 Hz given by Rgy. ldeally, as these rhythms contribute to the IC, with different rate and
power, they should not have any effect on each other. Hence, there should be reliable to identify
the dominant rhythm (previously referred as R) only by looking for the one whose power
overrules the power of other rhythms. However, in real world signals, where harmonic
frequencies exist, such a dominant rhythm might be the result of either (a) an actual
physiological rhythm or (b) another rhythm (whose larger power was coincidentally produced
by the contribution of some harmonic information). Here, such harmonic information comes
from the physiological rhythms given by Ryp, Rym, and Rry, whose harmonics do not affect
each other all the time. However, as it is still possible to have a pseudo-dominant rhythm, it is
necessary to know the cases that produce it and, whenever possible, prevent its occurrence (as

described in the next chapter).

a) Harmonics from R,;: Possessing the slowest rhythm, this is the one whose harmonics

cover the broadest range. As a result, the breathing harmonics may add power to a cardiac
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rhythm (either maternal or foetal), fake its contribution to the IC,, and thus wrongly point at

it as R (a potential situation when the power of Ry, and Rp is similar).

b) Harmonics from R, This rhythm may add its harmonic power to Rry making it
incorrectly look as R (a situation only possible whenever the maternal heart rate is half the

foetal rate which, although rarely, may happen).

¢) Harmonics by S1-S2: This is a very exceptional case that, as far as this study goes, only
happens in those I1C,s that perfectly enclose the pair of heart sounds S1 and S2. Indeed, as
observed during this study, the occurrence of these two events at every heart beat produces
a double-rhythm (i.e. composed of two rates) rather than a single-rhythm, one centred at the
heart rate (Ryz, either maternal or foetal) and another at twice this value (2Rgz). This
behaviour, although physiologically interesting, affects the measurement of R since the
harmonic power of Ry certainly increases the power at 2Ryz. As a result, the rhythm at
2Ry becomes a pseudo R and, consequently, a maternal 1C, containing S1-S2 would
erroneously “produce” a foetal rhythm, whereas a foetal IC, containing S1-S2 (i.e. the main
FHS) would “produce” a rhythm out of the normal physiological range. This may explain
what happened in IC“S,,, where the rate calculated directly from the time-series (~1.3 Hz)
differs with the rhythm measured by R in S, (2.7 Hz). After knowing this result, and by
carefully observing the time-series in IC“S,,, some double-oscillations can be noticed (as

indicated by downwards arrows in Figure 7.6).

In summary, it can be said that, as soon as the harmonic effect is reduced® to properly
measure and interpret R, the time-structure analysis provides a valuable feature that, as
expected, conclusively reveals the physiological process(es) that generated the IC, (e.g.
maternal breathing activity, maternal cardiac activity or foetal cardiac activity). Also important,
and unanticipated, (1) in those IC,s generated by a cardiac process, R may also reveal the
presence of the pair S1-S2 and (2) it has made it possible to interpret the degree of

independence amongst the components in a physiological sense.

7.3.2. The measured features

Once the physiological origin of some components has been established by both visual and
time-structure analyses, it is suitable to say that, in the sets of IC,s depicted in Figure 7.5 and
Figure 7.6, those components from IC*, to IC*, are generated by the foetal cardiac activity,

those from IC*, to 1C*, are generated by the maternal cardiac activity, and that IC*°, contains a

® For practical purposes, this discussion assumes that the harmonic effect has been somehow reduced so
that R is reliably measured. The solution to this problem requires some extra pre-processing that will be
presented in the next chapter.
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mixture of breathing and cardiac activities. The other IC,s, however, cannot be definitely

interpreted without first considering the tendencies of the features given by the frequency

content and irregularity.

a)

b)

Regularity: As seen in Figure 7.7 (b), SampEn shows a trend where the less regular
components are clearly positioned in the middle of the sequence of IC,s, whereas the most
regular are at the beginning and ending of it. This means that the 1C,s in the middle of the
sequence are more complex time-series and therefore closer to noise (or perhaps only
noisier) than the other 1C,s. To see whether such IC,s are noise, or only contaminated by
noise, the time-structure becomes a helpful feature that, as shown in Figure 7.5 and Figure
7.6, detects one or more rhythms in the components (although some of them are currently
unidentified). According to this, those IC,s are not pure noise, but rhythmic components
contaminated by such an amount of noise that they become less regular than, for instance,
the last IC,s. This can be confirmed by looking at the time-series in Figure 7.5 and Figure
7.6 where, whilst it is virtually impossible to visually identify physiological information in
the component with the largest SampEn value (ICZ“,,), it is easier to do so in the component
with the smallest value (IC5°p). Such an interesting behaviour is seen in Figure 7.8 (b)
where, in addition, the correlation between the SampEn and S; shows that the more regular

IC,s are also those components with the lowest and highest frequency contents.

Thus, as confirmed by Figure 7.9 (cases (b) and (d)), the entropy analysis consistently
shows that (independently on the segment/subject in the dataset), amongst the 50 IC,s
extracted by SCICA from one segment, the information of those components in the middle
of the sequence is mostly noise, whereas the information in the first and last IC,s is less
noisy. Furthermore, by taking into account the former observations it can be said that,
amongst such highly regular components, the last 1C,s are the components whose
information is more likely to be physiological and, most importantly, strongly related to
maternal and foetal processes of interest (whereas the first 1C,s might be related to some
unidentified regular processes). In other words, according to the entropy analysis, only a
few regular 1C,S in the sequence are more likely to be useful to reconstruct the

physiological independent sources underlying the abdominal phonogram.

Frequency content: As can be seen in Figure 7.7 (a), every IC, (except the first and last
two) has a different S; value, which has been previously explained as the consequence of
the band-limited set of filters learnt by SCICA. More interesting, and completely
unexpected, is to see that the IC,s extracted by SCICA are consistently sorted from the
highest to the lowest frequency, as confirmed by Figure 7.9 (a). Moreover, as shown in

Figure 7.8 (a) and confirmed by Figure 7.9 (c), such highest and lowest frequencies belong
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to the first and last components in the sequence respectively. Hence, the spectral analysis
shows that SCICA sorts the separate components by frequency content, Where IClp and

ICsop have the highest and lowest frequencies respectively.

According to these results, and recalling that the most regular-physiological components of
interest are at the end of the sequence of IC,s, then the physiological IC,s are also the
components with the lowest central frequency S;. Regarding the first IC,s, also regular as
indicated by SampEn, but with an origin currently unknown, they have been temporary
discarded until further research reveals whether they belong to a physiological process

useful for foetal surveillance purposes or otherwise.

Thus, according to the spectral analysis, only the slowest ICy,s in the sequence are more

likely to be usable to reconstruct the physiological independent sources.

7.3.3. The performance of SCICA

After focusing attention on understanding the information in the IC,s, now it is time to go
through the results about how SCICA is working when decomposing the abdominal phonogram
dataset. As mentioned in Section 6.3.1, one of the most important ambiguities of ICA is the
uncertainty about how it will arrange the components at the output (Hyvarinen et al. 2001;
Hyvarinen and Oja 2000; Stone 2004). Here, contrary to expectation, SCICA consistently sorts
the IC,s by frequency content from the highest to the lowest frequencies, where the slowest IC,s
tend to be the physiological components of interest. Also, in such an interesting trend it has also
been seen that the first and last couples of IC,s (outer frequencies) have the same S; value. Here

both situations will be analysed:

a) Ranking by frequency: To understand this behaviour, it is necessary to recall a couple of
details about the methodology used to extract the components underlying the abdominal
phonogram. First of all, as shown in Figure 7.3, TDSEP is the ICA implementation used to
separate the 1C,s since it produces components with disjoint spectral support (Jimenez-
Gonzalez and James 2008). Second, as highlighted in Section 6.2.2, the implementation of

TDSEP used in this research works on a stack of only two time-lagged correlation matrices

(ie. R, and R/ ), which is a very special case of TDSEP (Ziehe ez al. 2000).

In general, as proposed by Ziehe and Muller (1998) and Ziehe et al. (2000), TDSEP
estimates the mixing matrix A by jointly diagonalising the time-lagged correlation matrices

in two combined steps as

A="W'Q, (7.17)

- 105 -



CHAPTER 7

where ‘W is a whitening transformation of v. This step produces a transformed dataset, z=
W v, from where R;fz=1 can be exactly diagonalised by a unique orthogonal transformation

Q (i.e. the temporal correlation is minimised by a rotation matrix such that QQ’= 1) (Ziehe
et al. 2000).

In particular, for the case considered in this research, where only two matrices are

z

diagonalised, Q is obtained by the eigenvalue decomposition of szzl, which turns out to

be a spectral decomposition given by
Ri ,=Q"R{ ,Q=Q"A, Q. (7.18)
where (1) the eigenvalues (Akzzl) equal the largest possible variances of the projections of

z on the eigenvectors of R,fzzl (Q), (2) the direction of the largest variance of a projection

of z is defined by the eigenvector associated to the largest eigenvalue of R,fzzl, and (3) the
projections of z onto the eigenvectors are uncorrelated.

In practical terms, a detailed study of the code created in MATLAB by Ziehe et al. (1998)
showed that the eigenvalue decomposition in Equation 7.18 is implemented using a built-in
function (EIG.m). Furthermore, EIG utilises the DSYEV Fortran sub-routine that —found in
LAPACK (Linear Algebra PACKage) (LAPACK 2006)-, is an algorithm that always

returns the eigenvalues in ascending order. Thus, since the eigenvectors in Q follow the

order given by the eigenvalues in Akzzl, the column vectors in the mixing matrix A at

Equation 7.17 follow the same order (i.e. the first column is associated to the smallest
eigenvalue whilst the last column is associated to the largest eigenvalue). Moreover, since
an eigenvalue reflects the largest possible variance of a projection, the columns in A are
sorted according to such projections, therefore ranked from the projection with the smallest

variance to the projection with the largest variance.

Thus, as depicted in Figure 7.10, the fastest components, whose information contributes the
less to the variance, are more likely to be noisy 1C,s. Conversely, the slowest components,
whose information contributes the most to the variance, are more likely to be physiological
IC,s and, most importantly, correspond to the processes of interest in this research. In other
words, when applied to the abdominal phonogram, the spectral decomposition given by
SCICA returns a set of spectrally disjoint components that are sorted depending on the
energy of the underlying process that produced them. As a result, from the first to the last,

the IC,s are arranged as (1) noisy activity (that could be regular information buried in
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noise), (2) foetal cardiac activity, (3) maternal cardiac activity, and (4) maternal breathing

activity.
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Figure 7.10. Summary of the spectral decomposition performed by SCICA (based on TDSEP) on the
abdominal phonogram. The IC,s are sorted by frequency due to the characteristics of the processes
underlying the abdominal phonogram. The strongest physiological components, which respectively
correspond to the maternal breathing, maternal cardiac activity, and foetal cardiac activity, are the last
IC,s in the sequence. The other components could contain physiological information, but buried in noise.

b) Resolution at outer frequencies: The other unexpected result shows that the first and last
pairs of IC,s have the same S;. This is a curious result since consistently happens only to the
two slowest and the two fastest I1C,s and therefore could be produced because SCICA may
not properly resolve between such outer frequencies. In the former case, a suitable
explanation comes by recalling the criterion used to define the embedding dimension ()
during the construction of the matrix of delays (v). As explained in Section 6.2.1, Equation
6.17 provides an objective criterion to calculate m by considering the lowest frequency of
the periodic components of interest, which was 10 Hz for extracting the FHS. Thus, since
SCICA is being constrained to resolve frequencies as far as 10 Hz, and some underlying
physiological processes are slower than such a value, the filters learnt for them will
probably have the same S;, which has not been an issue so far. In fact, as only the breathing

process seems to be slower than 10 Hz, the 50 IC,s successfully manage to recover not only
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the FHS, but also the maternal activity in the form of cardiac, and breathing activity* (this

latter always in 1C*,).

Regarding the two fastest components, a frequency constraint seems to be the reason for
such behaviour as well, although in this case it has been assumed that such a constraint is
given by the frequency used to record the data (i.e. 500 Hz). Further research will have to
explore whether changes in m and f; truly affect the resolution at outer frequencies as

mentioned in this chapter.

In conclusion, when applied to a biomedical signal like the abdominal phonogram, where
the energy of the underlying physiological processes is likely to be different, and where the
slowest processes are likely to have the highest power (e.g. the breathing signal), the spectral
decomposition implemented by SCICA is likely to return a set of spectrally disjoint components
sorted from high to low frequency®. Thus, only the last components in the sequence of 1C,S seem
suitable to reconstruct the physiological information underlying the abdominal phonogram.
Furthermore, considering the rhythms found in such IC,s, combined with the trends/correlations
of the features along the whole dataset (as shown in Figure 7.8 and Figure 7.9), it can be said
that, amongst such last IC,s, three physiological rhythms are evident: (1) the last and slowest
IC, (i.e. IC5°p) conveys the slowest physiological rhythm (given by the maternal breathing, Ryz),
(2) the next group conveys a faster physiological rhythm (given by the maternal heart, Ryz), and
finally, (3) the fastest 1C,s convey the fastest physiological rhythm (given by the foetal heart,
Rry). The problem now, as indicated by the downwards arrows in Figure 7.10, is to objectively
define (1) how many IC,s are significant to represent the physiological information (i.e.
dimension reduction) and amongst them, as shown in Figure 7.8 (c), (2) which IC,s belong to
each physiological process or subspace (i.e. maternal breathing, MB, maternal cardiac, MC, or

foetal cardiac, FC). These questions will be addressed in the next chapters.

7.4. Summary

This chapter presented a comprehensive study that aimed to gain knowledge, from a
physiological perspective, of the components underlying the abdominal phonogram (separated

by SCICA). For this purpose, looking for a complete perspective to interpret the meaning of the

* Further research must be performed to verify the origin of such breathing information, either exclusively
maternal (as assumed in this work) or maternal and foetal (whenever the FBMs are present).

> Further research on simulated data (with different energy and frequency content), could reveal whether
the energy and frequency content of the underlying components truly defines how the components are
sorted by TDSEP.
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IC,s, different methods for time-series analyses were considered. Such methods, based on
descriptive, spectral, entropy, and rhythmicity analyses, revealed essential characteristics of the

ICs and TDSEP that provided the bases needed for improving the performance of SCICA.

In particular, the frequency content and time-structure information were useful to establish
a couple of interesting results of SCICA when processing the abdominal phonogram: (1)
although SCICA succeeds to spectrally separate components, it may fail to separate independent
physiological components, and (2) SCICA based on TDSEP consistently sorts the IC,s by
frequency content. Regarding the IC,s, it was established that, amongst the 50 components
separated by SCICA (as described in Chapter 6), only some of them are suitable to reconstruct
the physiological sources underlying the abdominal phonogram. Indeed, according to the
measured features, such IC,s are not only very regular, but also the slowest time-series in the set
of IC,s, consequently, they always appear at the end of the sequence of IC,s. Also, and
promising for this research, the rhythmicity analysis disclosed the physiological process(es)
driving the IC,s, which were clearly identified as maternal breathing activity, maternal cardiac

activity, and foetal cardiac activity.

Now the question to address is how to use this promising outcome to define the number of
IC,s in the significant physiological group and, amongst them, automatically identify which
IC,s belong to each physiological activity. These will be addressed in the next chapter, where a

novel idea for grouping IC,s will be presented.
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8 TIME-STRUCTURE BASED CLASSIFICATION
OF PHYSIOLOGICAL COMPONENTS
UNDERLYING THE ABDOMINAL PHONOGRAM

The previous chapter detailed a study of the components underlying the abdominal phonogram
that revealed valuable information about SCICA (based on TDSEP) and the IC,s. According to
the study, when applied to the abdominal phonogram, TDSEP performs a spectral
decomposition that, in addition, sorts the components according to their frequency content.
Furthermore, amongst the m IC,s separated by TDSEP, only the last components in the
sequence are relevant for reconstructing the physiological sources underlying the abdominal
phonogram. Also, and essential for this research, the rhythmic patterns in such physiological

IC,s identifies three physiological processes driving the components: Rgx, Ry, and Ryp.

Certainly, this study provides knowledge about the IC,s properties, but also with a proper
idea of the performance of SCICA based on TDSEP. Indeed, since TDSEP was sorting the
components according to their frequency content, it could be seen that: (1) the permutation
ambiguity had been tackled by TDSEP (at least for the case considered in this work), (2) only
the slowest components were significant to retrieve the physiological sources of interest and,
most importantly, (3) such meaningful 1C,s were generated by physiological processes that
could actually be identified as foetal cardiac, maternal cardiac or maternal breathing activities.
These were valuable outcomes for this research, but still represented a partial solution of the
bigger problem of recovering reliable estimates of the physiological sources underlying the

abdominal phonogram.

As mentioned in Chapter 6, recovery of reliable sources means that, once a good-quality
separation has been achieved, the estimates of the underlying sources can be carefully
reconstructed by excluding non-physiological or noisy IC,s. Therefore, similar IC,s must be
somehow identified and correctly grouped prior to retrieving estimates of the physiological

sources corresponding to foetal and maternal activities.
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At present, some studies in the literature have visually defined similarity and manually
grouped physiological components (Comani et al. 2004a; Comani et al. 2004b; Jimenez-
Gonzalez and James 2008a; Zarzoso and Nandi 2001), which is not only subjective, but also a
demanding and time-consuming task due to the number of components to be classified, which is
usually large. Alternatively, some studies have proposed automatic methods to group similar
ICs based on time and/or frequency content (Castells et al. 2004; Jimenez-Gonzalez and James
2008b; Jiménez-Gonzalez and James 2009; Mantini et al. 2005; van Leeuwen et al. 2004),
entropy (Comani et al. 2007), or mutual information (Kraskov et al. 2005). The methods based
on time-frequency content are easy to implement and fast to execute, but perform poorly
(Jiménez-Gonzalez and James 2009; Mantini ef al. 2005). On the other hand, the methods based
on entropy and mutual information perform better, but are slower to execute due to much larger

computational loads (Comani et al. 2007; Kraskov et al. 2005).

Here, it is proposed that grouping can be reliable and yet still efficiently executed, and this
is done by exploiting the time-structure of the physiological components underlying the
phonogram as the measure of similarity. So, based on the results in Chapter 7, this chapter
presents a rhythmicity-based analysis scheme that aims to automatically group the physiological
IC,s underlying the abdominal phonogram. To this end, this chapter first describes an upgraded
version of the method used in Chapter 7 to measure time-structure. Then, once an enhanced
measurement of the rhythmicity has been achieved, the IC,s with similar rhythms can be
automatically classified into physiological groups. Finally, a quantitative evaluation of the

performance of such a time-structure based classifier is presented.

8.1. Measuring time-structure: revisited

As mentioned in Chapter 7, biological processes commonly involve a rhythmic regulatory
process. As a result, signals recorded from those systems posses time-structure, i.e. present
rhythmic patterns. Such a time-structure is an evident feature of the physiological sources
underlying the abdominal phonogram (both cardiac and breathing) that, in addition, and
essential for this research, shows different periodicities (see Figure 8.1). In normal conditions, it
has been reported that the maternal heart rate ranges from 1.2 to 1.4 Hz (Ogueh et al. 2009)
whilst the foetal heart rate ranges from 2.0 to 2.7 Hz (Guijarro-Berdinas et al. 2002). The
maternal breathing rate, on the other hand, is considerably lower and ranges from 0.16 to 0.33
Hz (van Leeuwen et al. 2009). Therefore, by analysing the 1C,s rhythms it is possible to find
similar components and cluster them into: maternal breathing (MB), maternal cardiovascular
(MC), foetal cardiac (FC), and even noise (N) groups. To this end, it is essential to have a
reliable measurement of rhythmicity (R), which was partly achieved in Chapter 7, mainly

because of the harmonic effects. Therefore, this section revisits the method proposed to measure
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rhythmicity and, by considering the observations in Chapter 7, discusses an upgrade that aims,

not only to reduce the harmonic effects, but also to validate the measurement or R.
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Figure 8.1. Rhythmic patterns of the physiological sources underlying the abdominal phonogram in time
(left) and frequency (right) domains. From top to bottom: maternal breathing, maternal cardiac, and foetal
cardiac activities. The dotted box in the frequency domain shows the normal intervals reported by
Guijarro-Berdinas et al. (2002), Ogueh et al. (2009), and van Leeuwen et al. (2009), whereas the peak
within corresponds to a typical rate or rhythmic value (R). © 2010 IEEE. Reprinted, with permission,
from IEEE Transactions on Biomedical Engineering, Time-structure based reconstruction of
physiological independent sources extracted from noisy abdominal phonograms, Jiménez-Gonzalez A and
James CJ.

8.1.1. Animproved measurement of rhythmicity

As mentioned in Chapter 7, time-series rhythmicity can be measured either in the time or
frequency domains, the former by autocorrelation analysis and the latter by power spectral
analysis (Barman and Kenney 2007). Here, the benefits of working in both domains are
exploited by enhancing the time-structure in the former and by measuring R in the latter by
means of a modified version of the procedure described in Section 7.2.3 (d). Thus, the

procedure is as follows:
a) Generation of a detrended envelope, e(#n), as described in Section 7.2.2.

b) Autocorrelogram generation: This is the step that discovers the dependence structure in
e(n) (even though it may be masked by background noise) (Barman and Kenney 2007;
D'Urso and Maharaj 2009). It uses autocorrelation analysis to compare the signal with a

replica of itself that is gradually shifted in time as
Ny

R, v, =D e(n)e(n—k,) (8.1)

k=1
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where R, , referred to as the autocorrelogram of e(r), conveys a good representation of the

dynamics in the IC,, i.e. its rhythmic pattern.

Ideally, the dependence structure in R,fe should produce a single rhythmic pattern, either

from FC (Rry), MC (Ruy) or MB (R,) activities. However, since a physiological separation by

SCICA is not always possible (i.e. the IC, does not always contain clean components from one

underlying source), R, may convey more than one pattern, although oscillating at different

frequencies and intensities. In this case, the obvious solution would be to choose R as the
rhythm of the most significant pattern (i.e. the pattern with the largest energy). However, as the
rhythmic patterns also bring harmonic frequencies, there is a chance of harmonics-rhythms
overlapping that, as a result, would add “harmonic” energy to any pattern, diminish its actual
contribution, and more importantly, wrongly point to it as the most significant pattern. Thus,
unless the harmonic effects are reduced, the classifier would have to deal with unreliable
information about R and probably misclassify some I1C,s, which might considerable contaminate
the group and the reconstructed source. To prevent this problem, and based on the observations

in Chapter 7 about the harmonic effects, this section adds a simple step given by

¢) Filtering: This reduces the harmonic effects due to Ry and Ry, which is possible because

of their different rates (as shown in Figure 8.1). To this end, R,fp is decimated” by a factor

of 20 and the resulting signal is filtered, first by a low-pass filter (using a 10th-order FIR
filter with cut-off frequency of 3.1 Hz), and then by a high-pass filter (using a 10th-order
FIR filter with cut-on frequency of 0.7 Hz). Finally, the filtered signal is restored to the

original sampling frequency and detrended to produce R;. :

The cut-off frequency of 3.1 Hz was chosen to remove the Ry harmonic and to leave intact
the information at lower frequencies. The cut-on frequency of 0.7 Hz, on the other hand,
removes the effects of the maternal breathing by directly removing R, from the IC,. This
idea was implemented to easily deal with the wider frequency range influenced by R, and,
as a result, reduced the problem into the reliable measurement of cardiac rhythms, either
foetal or maternal. Here it is important to mention that this idea took into account the a
priori knowledge that the breathing information is consistently concentrated in the last

component of the 1C,s sequence (IC5°p). Thus, although the breathing rhythm is not present

! The decimation process first filters the input data with a low-pass filter, to avoid antialiasing problems,
and then resamples the resulting signal at a lower rate.
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at the stage of measuring R, the 1C, that mainly conveys such information remains intact to

represent the breathing group, i.e. MB.

d) Autospectrum: This step makes it easier to calculate R by transforming R_j. into a

frequency domain representation, S;(f), using the Welch’s method as described in Section
7.2.3 (d), i.e. with a Hanning window of 2048 samples in length and an overlap of 50%.
Finally, from the autospectrum Sy, as illustrated in Figure 8.1, the frequency of the largest

peak is taken as the measurement of rhythmicity (R).

8.1.2. A procedure to validate rhythmicity in noise

Once the harmonic effects due to Ry,s and Rry have been reduced, R should be easily
categorised as maternal or foetal. However, as some IC,s may still contain some degree of
mixture (Davies and James 2007), the classification is not a straightforward step, especially
because a “noisy” IC, can contaminate the physiological group and, as a result, render the
reconstructed source useless for further analysis. For this reason, some extra and a priori
information (learnt in Chapter 7) is necessary to assess how prevailing R is over the noise and
thus, the pertinence of the IC, to a group. Thus, three types of noisy IC,s (i.e. mixtures, M) may
appear when SCICA decomposes the abdominal phonogram: (1) the Mwysmc type, which
presents the maternal breathing and the maternal heart rhythms, (2) the Mycrcn type, which
presents a heart rhythm (either maternal or foetal) and background noise, and (3) the Mecmc

type, which presents foetal and maternal heart rhythms.

In particular, and important to be highlighted, the Mug.mc type is a unique IC, that always
seems to be dominated by the maternal breathing as its main source. Therefore, as discussed in
Chapter 7, whenever Myg.mc happens, it consistently appears at the very end of the sequence of
IC,s (i.e. ICSOP). Regarding the cardiac mixtures, either Myc/re.n OF Mic.me, Which may easily
degrade the FC group (by introducing either maternal cardiac information or background noise),
also have characteristics that, although empirical, become helpful for validating R. Hence, as
discussed in Chapter 7, a well separated IC, (both spectrally and physiologically independent) is
characterised not only by a single R (as in Figure 8.1), but also by a spectrum whose single-peak
(S;) appears in typical ranges depending on the IC, type (as exemplified in Figure 8.2). On the
other hand, the noisy version of such an IC, would show the same R in presence of either (a)
background noise and a different S; or (b) another cardiac source and a secondary rhythm (R").
Therefore, this chapter uses S; as one mechanism to validate R. Besides, to find out whether the
IC, is noisy due to R’, it uses a steadiness index (S;). In this way it is suitable to find not only a
noisy R, but also the best group for it: N, MC or FC. The steps used to calculate S; and S; are as

follows:
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Figure 8.2. An example of the spectra observed in the physiological IC,s separated from the abdominal
phonogram by SCICA (based on TDSEP). Each curve depicts the spectral content of a component in the
sequence of IC,s, whereas S; corresponds to the frequency of its single-peak. From lower to higher
frequencies: a maternal breathing IC,, four maternal cardiac IC,s, and five foetal IC,s. © 2010 IEEE.
Reprinted, with permission, from IEEE Transactions on Biomedical Engineering, Time-structure based
reconstruction of physiological independent sources extracted from noisy abdominal phonograms,
Jiménez-Gonzélez A and James CJ.

a)

b)

Spectral content index (S;): This was found as described in Section 7.2.3 (b) and

illustrated in Figure 8.2.

Steadiness index (S,): This index is focused on those IC,s that, composed of two high-
energy cardiac periodicities (R and R’), need further analysis as to which group they better
belong to. Such IC,s are found by taking into account that an ideal well-separated IC,
contains only one rhythmic pattern along the whole segment. Consequently, the
autospectrum of either the whole segment or large parts of it should produce the same rate
(i.e. a steady pattern). On the other hand, in those IC,s where two cardiac rhythms were
present, some parts would produce partial autospectra different to the whole autospectrum

(i.e. an unsteady pattern). Here, to evaluate such steadiness, a second rhythmic (R’) is
calculated from R{, though this time using a variation of the Welch’s periodogram. Such a
variation removes the step were the windowed FFTs are averaged so that it better detects
the frequencies in all the segments. After that, by comparing R and R’, the IC, is labelled as
steady (i.e. free of R’) and ready to be classified, or unsteady (i.e. contaminated by an R’)
and in need of further analysis.

Next, for the unsteady IC,s, the idea is to identify the most persistent process and then, the
best cardiac group. This is done by comparing Rj. against two ideal autocorrelograms, one

foetal and one maternal. These autocorrelograms are produced by using sinusoid signals of

amplitude one and frequencies given by the maternal and foetal Rs obtained from the stable
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IC,s. Then, Pearson’s coefficients between R and each sinusoid (P; P,,) are calculated to

see how much of an ideal maternal and an ideal foetal cardiac component is present in the
IC,.

Figure 8.3 sketches the rhythmicity-based analysis proposed to extract reliable information
about the time-structure in an IC,. In addition, to keep in mind the parameters provided to the

classifier, R, S;, P, and P,, are also indicated.

ICp
Re - P, ¢ MR
IC, Rhythmicity " | Steadiness >
> calculation R analysis P, MmC
; .pe
R Classifier FC
> >
Frequency content S N
> calculation o )

Figure 8.3. Rhythmicity-based analysis proposed to find similar 1C,s and cluster them into physiological
groups. R represents the rhythmicity, whereas S, P, and P,, assess its dominance over noise (i.e. R
reliability). The information is provided to the classifier in order to build groups corresponding to
maternal breathing (MB), maternal cardiac (MC), foetal cardiac (FC), and noise (N) activities.

8.2. A time-structure based classifier

Once some features about the time-structure of the 1C, have been obtained, the next part of this
methodology requires defining the set of rules that, by considering such information, cluster
similar 1C,s into their proper group: MB, MC, FC or N (as illustrated in Figure 8.3). Here, such
a set of rules has been designed based on knowledge obtained during the study described in
Chapter 7. Hence, this section starts by briefly pointing to the empirical information considered
to design the classifier. Next, Table 8.1 presents the time-structure based algorithm proposed to

automatically group the physiological components underlying the abdominal phonogram.
a) Empirical criteria:
(1) MB s significantly represented by 1C*,.

(2) Whenever a disagreement between features appears, the information given by S; always

overrules the information given by R (Jimenez-Gonzalez and James 2010a) and Py ).

(3) The ranges observed for R in the abdominal phonogram dataset are slightly wider than
those reported in other works (Guijarro-Berdinas er al. 2002; Ogueh et al. 2009; van
Leeuwen et al. 2009). Therefore, in this proposal, the ranges used by the algorithm are

different to the values previously reported as follows
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b) Empirical ranges per physiological group:

* For frequency content (SI):

1. S,_MC= (0.5 — thrS] Hz, which represents the frequency content assumed for a

maternal cardiac IC,.

2. S; FC= (thrS — 44.5] Hz, which represents the frequency content assumed for a foetal

cardiac IC,.

3. S;_N >44.5 Hz, which represents the frequency content assumed for either a noisy or

noise IC,.

* For rhythmicity (R):

1. R_MC=[0.83 - thrR] Hz (i.e. between 49.8 and #irR beats/min), which is the range

assumed for the maternal cardiac rate.

2. R FC= (thrR - 3.0] Hz (i.e. between thrR and 180 beats/min), which is the range

assumed for the foetal cardiac rate.

Table 8.1. A time-structure based algorithm for automatic classification of the IC,s separated from the

abdominal phonogram.

FOR i FROM 1 TO m DO
IFi==50 THEN % the component is more likely to represent the breathing

ELSE

END
END

Put IC’, in the MB group
% the component is either cardiac or noise
IF R and S; disagree about the group THEN % verify background noise
Put IC’, in the group indicated by S; (either MC, FC or N)
ELSE % R and S; agree
IF IC', is a steady component THEN % looking for another cardiac R
Put IC’, in the group indicated by R (either MC or FC)

ELSE
IF P, 5 and S; disagree about the group THEN
Put IC’, in the group indicated by S; (MC, FC, N)
ELSE % P., and S; agree
Put IC’, in the group indicated by P, , (either MC or FC)
END
END

END
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8.3. Classifier evaluation

A typical problem when recovery estimates of underlying sources is the natural absence of a
gold standard, which makes it difficult to quantify the quality of the decomposition and thus, the
quality of the retrieved sources. In an attempt to deal with this uncertainty, some studies have
used synthetic data to test the separation results by measuring the error between the “original”
sources and the sources estimated by their methods (Klemm et al. 2009; Mantini et al. 2006;
Wallstrom er al. 2004). This approach, although “evaluates” the decomposition performance,
has not been used in this research because it is frequently criticised due to the lack of knowledge
about (1) the true sources underlying the observations and (2) the mixing process.
Consequently, even though synthetic data attempt to emulate real sources and mixtures, since
the simulations strongly rely on assumptions not only about the number of underlying
processes, but also about their interactions, it is still impossible to know how representative of
the actual sources they are (Klemm et al. 2009). Hence, unless the real sources and mixing
processes are known (which is especially complicated for non-invasive recordings like the
abdominal phonogram), the simulated data will never actually represent the phenomena under
study (Klemm ez al. 2009). Alternatively, although this work is not yet estimating sources, it is
necessary to find a way to quantify its performance so far, at least in terms of the grouping
because, if wrongly done, it would give rise to sources that are useless for further analysis. The
next section presents the methodology followed to perform such an evaluation on the time-

structure based classifier proposed in this research.

8.3.1. A manually pre-classified dataset

The classifier was tested on a pre-classified dataset built from the dataset described in Chapter
7. Indeed, the difference between these two datasets is only the number of IC,s per sequence
contained in each one. The original dataset? contains the whole sequences of 50 IC,s extracted
per segment of abdominal phonograms (i.e. from IClp to IC5°,,), whereas the pre-classified
dataset contains subsequences composed of the last 10 IC,s of each sequence (i.e. from IC‘”p to
IC5°p). Consequently, as shown in Figure 8.4, this new dataset is composed of 75 subsequences

whose 1C,s were manually categorised as MB, MC, FC, or N (i.e. a total of 750 IC,s).

The reason behind using only the last 10 I1C,s was that they consistently show physiological
information over the background noise, which made it possible to manually classify them in

order to create the reference needed to quantify the classifier performance.

2 Recall that there are 25 abdominal phonograms and, from each phonogram, three segments of 10 s
length were selected. Next, each segment was decomposed to extract sequences of 50 IC,s (from IClp to
ICSOP). Therefore, the original dataset contains 75 sequences of 50 IC,s each.
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reference 1 | N FC EC FC FC FC MC  MC MC MB
a Kl a Kl a Kl a a a a

reference2 ' Fc -"Fc . FCc -~ FC . FC . Mc - MC  mMC - MC - MB
p— . ‘.“ . '5 . .ﬂ J ~.‘V N ..4 a '.“ o ‘.4 N '.4 . ..“ — 4

subsequence 1 | |C* ."IC®, -7 IC®, - IC*, 7 IC*, . IC*, T ICT, STIC®, S ICt, T ICE,

subject 1 subsequence 2 | IC*, IC*, IC®, ICY ~IC*, IC*, ICY, IC*, IC®, IC%,
subsequence 3 | IC*, IC®, IC¥, IC* IC®, IC*¥, ICY, IC*| IC®, IC*, | g
a
- mB
subsequence 73| IC*, IC¥, IC¥, IC¥, IC¥, IC*, ICY, IC*, IC®, IC*, | yp

subject 25 subsequence 74 |C41p ICAzp Ic® Tos Toss Toss Tosd c Ic* |C56

P P P P P P P P,

Subsequence 75 ICMp |C42p |C43p ICMP |C45p |C46p ICMp |C48p |C49p |C50p

Figure 8.4. Dataset used to test the performance of the time-structure based classifier. This dataset
contains subsequences of 10 IC,s because of their strong physiological content, which made it easier to
manually categorise them as FC, MC, MB or N and thus, to construct the reference to evaluate the
classifier.

8.3.2. Testing the classifier

Each subsequence of 10 IC,s in the dataset was analysed and automatically grouped as
described in the previous section, although now the index i of the algorithm in Table 8.1 is taken
from m — 9 to m. After that, the automatic classification results were compared with the
reference by calculating the Sensitivity (Se) and Specificity (Sp) as in Equation 8.2 and
Equation 8.3 respectively

TP
Se=———, (8.2)
TP+ FN
where TP is the number of true positives, FN is the number of false negatives, and
TN
Sp=——, 8.3
P TN + FP ®3)

where TN is the number of true negatives and FP is the number of false positives.

Here it is important to mention that, as MB has been consistently composed only of IC5°p
and, as seen in Table 8.1, R is not used to create this group, MB is not included in this
evaluation. In other words, Se and Sp measure the reliability of the classifier to distinguish
between foetal and maternal cardiac IC,s, which are the components whose misclassification
causes a larger contamination. In addition, as this rhythmicity-based analysis scheme is
composed of two parts (measurement and validation of R), the classifier was tested in order to

see the impact of the validation stage as follows:
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a) Test 1 (classification without validation of R): This tested the sensitivity and specificity of
R as the criterion for grouping. To this end, Se and Sp were measured not as a single value,
but as a function of #rR, which defines the limit between maternal and foetal rhythms.
Thus, by taking into account the rhythmicity range in Section 8.2 (b), #rR changed from
0.83 t0 3.0 Hz in steps of 0.2 Hz and, in each case, the corresponding Se and Sp values were

calculated.

b) Test 2 (classification with validation of R): This tested the sensitivity and specificity of
the whole grouping algorithm, i.e. R and its validation. To this end, Se and Sp were
measured as a function of #rS, which defines the limit between maternal and foetal
frequency contents. Thus, after fixing t4»R at 1.6 Hz (as discussed in the next section), and
by taking into account the frequency content range in Section 8.2 (b), ¢4rS changed from
0.5 to 44.5 Hz in steps of 2 Hz and, in each case, the corresponding Se and Sp were
calculated. In addition, to see how active the validation is during the classification process,
the average numbers of times that S; and Py, disagreed with R (and so overruled it) were

also calculated.

8.4. Performance of the time-structure based proposal

Figure 8.5 summarises the time-structure based methodology proposed for grouping the
physiological components underlying the abdominal phonogram. Based on rhythmicity analysis,
the first six blocks aim to obtain significant features (R, P, and P,,) so that, in combination with
Sy, the method automatically clusters similar components into groups corresponding to maternal
breathing activity in MB, maternal cardiac activity in MC, foetal cardiac activity in FC, and, in
this example, noise (or noisy activity) in N. Notice that, amongst the 10 IC,s considered in this
example, the classifier is grouping one component in MB (ICSOP), four components in MC (from
IC*, to 1C*,), four components in FC (from IC*, to 1C*,), and one component in N (IC*.,). In
particular, regarding the steps followed to achieve such a grouping results, the observation of

the signals in Figure 8.5 reveals interesting information about:

a) The rhythmicity measurement stage: The outputs of the first five blocks illustrate the
signals obtained during the procedure used to enhance/measure the time-structure in two
IC,s of the subsequence (IC*, on the left-hand side and 1C*, on the right-hand side). In
each case, from top to bottom, the figure depicts the time and frequency representations of
the normalised envelope, the autocorrelogram, and the filtered and normalised
autocorrelogram. As can be seen in both cases, even though e(#) is a noisy signal, every

subsequent step better defines the time-structure in the 1C,, which is clear in both domains.
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Figure 8.5. An upgraded time-structure based methodology for grouping the physiological components
underlying the abdominal phonogram. Based on rhythmicity analysis, the method obtains significant
features (R, P; P, S;) that are used to automatically classify similar components in groups corresponding
to foetal cardiac activity (FC, oscillating at 2.6 Hz), maternal cardiac activity (MC, oscillating at 1.5, 2.1
and 2.4 Hz), maternal breathing activity (MB, oscillating at 0.9 Hz) and, in this example, noise (N). The
example illustrates a subsequence of 10 IC,s that were grouped as: IC5°,, in MB, from IC“G,, to IC‘“’,, in
MC, from 1C*%, to IC*, in FC, and IC*, in N. The signals amplitude has been modified for visual

purposes.
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Thus, R, becomes more like a sinusoid wave, whereas S; tends more to a well defined

single-peak spectrum. Most importantly, the time-structure revealed in these 1C,s oscillates
at different frequencies: 2.6 Hz for the IC*, (which is in the foetal cardiac range) and 1.5

Hz for the IC*, (which is in the maternal cardiac range).

b) The rhythmicity grouping stage: As predefined in the algorithm, IC5°,, is used to construct
MB and, as seen in the corresponding Sj; this component does posses the slowest rhythm,
which is 0.12 Hz. Furthermore, both the time-series and S} show additional rhythms that,
according to S, oscillate at 1.5 and 3.0 Hz, where the latter is almost as large in amplitude
as Rye. Regarding the MC group, the S, of each component shows single-peak patterns,
although centred at different frequencies such as 2.1, 2.4 and 1.5 Hz. Furthermore, the time-
series corresponding to IC*, and IC*, seem to be noisier than 1C*, and 1C*, although,
with some effort, it is possible to see some patterns aligned with IC*®, and 1C*,. In the FC
group, the single-peak patterns of all its constituent IC,s are centred at 2.6 Hz, although
IC“SP seems to be noisier than the other components in the group (and still showing activity
aligned with the other IC,s). Finally, in the N group, although there is no visual evidence of

periodic patterns in the time-series, S, reveals one rhythm at 0.9 Hz.

Figure 8.6 shows the distribution of the R values measured by using (a) the methodology
described in Chapter 7 and (b) the methodology described in this chapter that reduces some
harmonic effects. As can be seen, both cases clearly have a three-modal distribution centred at
physiological rhythms (Ryz, Ry, and Rpey) and covering ranges wider than those reported by
other authors (Guijarro-Berdinas et al. 2002; Ogueh et al. 2009; van Leeuwen et al. 2009).
More detailed, in (a), the R values range from 0.1 to 5.0 Hz and the number of IC,s oscillating at
Ry is larger than the number of components oscillating at Ry and Rz In (b), the R values are
scattered from 0.1 to 3.0 Hz and redistributed so that the number of IC,s oscillating at Ry is
smaller than the number of components oscillating at R, and Ry, which is more consistent
with the observations in Chapter 7 (i.e. there is a single component in each sequence of IC,s

consistently associated to the maternal breathing, which is the slowest physiological rate).

Figure 8.7 shows the performance of the classifier at categorising cardiac 1C,s as maternal
or foetal (a) without and (b) with validation of R. In addition, (c) shows the average number of
times (per subsequence) that S; and P ,, found R unreliable and overruled it. As expected, Se
and Sp change depending on the thresholds (¢7R, thrS) used to decide between maternal and
foetal groups. Se increases whereas Sp decreases as the threshold increases, which makes it
possible to see the trade-off between them and look for the optimal threshold (i.e. their
intersection point). Thus, as shown by the dash-dotted vertical line, the optimal threshold

appears in (a) when thrR= 1.6 Hz, and in (b) when ¢th»S= 18.8 Hz, which respectively produces
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values for Se and Sp of 0.77 and 0.96. In (c), the activity of S; is always more frequent than the
activity of P ,,. Furthermore, at the optimal #4»S, where the validated method reaches the best
performance for Se and Sp, the average number of corrections performed by S; is 2.25 whilst by
Py is1.3.

(@)

Number of components/Hz

Number of components/Hz

R (Hz)

Figure 8.6. Distribution of the R values measured by using (a) the methodology described in Chapter 7
and (b) a new methodology that reduces the harmonic effects. Both cases show three-modal distributions;
although in (a) the values are spread from 0.1 to 5 Hz and the number of components at R, is larger than
the number of components at R, and Rpy. In (b), the values range from 0.1 to 3 Hz and the number of
components at R, is considerable smaller than the number of components at Ry, and Rgy. The dotted
lines show the normal intervals reported in other works (Guijarro-Berdinas et al. 2002; Ogueh et al. 2009;
van Leeuwen et al. 2009).
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Figure 8.7. Performance of the time-structure based classifier on categorising cardiac IC,s as foetal or
maternal (&) without and (b) with the validation of R by S; and P . In (c), the average number of times
(per subsequence) that S; and Py, found R unreliable and overruled it. The dash dot vertical line shows
the optimal threshold to distinguish I1C,s in each case. The optimal classifier performance increases from
() 0.77 to (b) 0.96 in as soon as the validation of R is included and, at that point, the average numbers of
corrections by S; and Py ,, are 2.5 and 1.3 respectively.
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8.5. How far from well-being surveillance?

This chapter described a time-structure based method that aimed to automatically classify
physiological, and therefore relevant, 1C,s underlying the abdominal phonogram extracted by
TDSEP (Jiménez-Gonzalez and James 2010b). The scheme, applied to a total of 750 IC,s
extracted from segments of 25 single-channel phonograms (and organised by subsequences of
10 IC,s), uses rhythmicity-analysis to progressively reveal and validate the time-structure in
each IC,. Then, by using such rhythmicity, it has been possible not only to group similar IC,s,
but also to associate the resulting groups to physiological phenomena, which is a further
achievement for this methodology. Thus, the method manages to successfully classify
components into groups corresponding to maternal breathing activity, maternal cardiac

activity, foetal cardiac activity, and noise.

Regarding the rhythmicity patterns found in the groups (see Figure 8.5), they present
interesting characteristics that deserve to be analysed in more detail. In MB, for instance, a
detailed observation of the multi-peak pattern not only shows that IC5°p was partly separated by
SCICA (as evident in the time-series), but also that the extra component, whose apparent main
rhythm oscillates at 3 Hz, could be wrongly interpreted as FC rather than as MC. Indeed, S;
shows a third and small peak centred at 1.5 Hz, which means that the second largest peak in the
pattern is oscillating at twice this rhythm. In other words, the peaks in S represent two
rhythmicities, one single-rhythm at 0.12 Hz that belongs to Ry, and one double-rhythm centred
at fo = 1.5 Hz and 2f, = 3.0 Hz that, consequently, belongs to Ry and its harmonic 2Ryc. This
double-rhythm, as mentioned in Chapter 7, reveals not only the presence of cardiac information
in IC5°p, but also the origin of such information, which is the maternal heart sounds pair (S1-S2).
Here, although in this particular case the multi-peaks S; is harmless for classification purposes
(as ICSO,, is classified regardless R), it was considered as important to be highlighted because the
rhythmicity-based analysis not only reveals improperly separated 1C,s (in a physiological
sense), but also the origin of the extra physiological information. Such information, when

properly interpreted and validated, may even reveal the presence of the HS pair.

For the MC group, where a few S, would wrongly have made the classifier put IC“ep and
IC‘”p into FC, the validation given by S; correctly identified them as belonging to MC and thus,
avoided the introduction of wrong and contaminating information into FC. Such components, as
previously mentioned, can be visually related to the maternal cardiac activity, but the rhythms at
2.1 and 2.4 Hz (which are different to the rhythms for the clearest maternal and foetal
components), remain as yet unidentified. For the FC group, although in this example the whole
IC,s showed the same rhythm, the validation was still important to determine the best group for
|C45

4l

either FC or N. Finally, for the N group, although there is a rhythm in its single

-126 -



A CLASSIFIER BASED ON TIME-STRUCTURE

component (whose origin is currently unknown), it is so immersed in noise that it cannot be

visually recognised and so safely® belongs to N.

So far, these results show the impact of the rhythmicity-analysis proposal that, by
combining an enhanced measurement of R (as shown in Figure 8.6) with the validation of it,
manages to properly group, not only well separated, but also noisy IC,s. In addition, as this
rhythmicity-analysis is implemented by using autocorrelation and PSD methods, the scheme
manages a classification which is not only automatic, but also faster than those methods based
on entropy or mutual information (Comani et al. 2007; Kraskov et al. 2005). On a PC with a
Core2 Duo processor at 2.40 GHz, the whole rhythmicity-based analysis scheme takes no longer
than 5 s to process a subsequence of ten IC,s, whereas the implementation by Comani et al.
(2007) takes almost 800 s only to calculate the Sample Entropy of the same subsequence.
However, although these results are promising, since the classifier deals with imperfectly
separated 1C,s (contaminated by other rhythms or background noise), it is important to be
conscious that groups completely free from contamination cannot be retrieved without losing
some physiological information. Therefore, this chapter considered a trade-off between the
quality of the grouping and the risk of contamination so that only the best quality (i.e. validated)
IC,s are used to form the physiological groups. Consequently, some physiological but noisy
information may be assigned to N and therefore missed at the time of reconstructing the
physiological sources. The unique exception is MB that, even though may contain a highly
contaminated ICSOP (as discussed), is never discarded because it consistently contains the

maternal breathing.

For the classifier performance, Figure 8.7 shows the specificity and sensitivity values
enhanced from 0.77 to 0.96 after including the validation by S; and Py ,). These values,
compared with the Se= 0.68 and Sp= 0.99 values produced by testing K-means once on the same
dataset, show that, whilst K-means may be better at identifying maternal cardiac components, it
poorly performs at identifying foetal cardiac components. On the other hand, the scheme
described in this chapter performs well at distinguishing between both components.
Additionally, this evaluation has also made it possible to corroborate/find the optimal thresholds
for both thrR and thrS so that the physiological intervals for foetal and maternal IC,s, required
by the algorithm in Table 8.1, have been established according to Figure 8.7 (i.e. thrR= 1.6 Hz
and thrS= 18.8 Hz). The former had already been proposed by considering other works
(Guijarro-Berdinas et al. 2002; Ogueh et al. 2009; van Leeuwen et al. 2009). The latter,

however, had not been previously proposed and therefore becomes an empirical value that

* Note that there are other noisy components that were disregarded in the IC,s between IC*, and 1C*,.
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certainly requires further analysis, especially because of its level of activity in the validation
stage, which averages 2 corrected IC,s per subsequence. This number of average corrections
may indicate that the IC,s are noisy due to background noise rather than due to cardiac

mixtures.

At this stage results show that the classification problem has been successfully dealt with,
although it is still desirable to reduce the dependence on empirical values to make the method
more robust (e.g. better to deal with harmonic effects and independent from preset values like
thrS and the number of components to be classified). Therefore, it is considered that further and
more specific analysis of the features obtained in Chapter 7 should make it possible to find more
robust criteria to (a) measure® R, (b) calculate s4rS, and (c) reduce the dimension of the
components to classify (e.g. 10 or 15 rather than 50 IC,s). By now, it is clear that the
redundancy issue of SCICA has been dealt with and therefore, the next step is the reconstruction
of the estimates of the segmented physiological sources underlying the 25 abdominal
phonograms in the dataset. This will be performed in Chapter 9 where, to emphasize the
evolution of this SCICA methodology, sources retrieved by the implementations discussed in

this thesis will be presented.

8.6. Summary

This chapter presented a method that exploits the time-structure of the physiological
components underlying the abdominal phonogram to automatically classify them into groups
corresponding to maternal breathing activity (MB), maternal cardiac activity (MC), foetal
cardiac activity (FC), and noise (N). To this end, a rhythmicity-based analysis scheme was
proposed and tested on a dataset composed of 750 ICs extracted by SCICA from segments of 25
single-channel phonograms (recorded at foetal gestation ages between 29 and 40 weeks). Based
on autocorrelation and PSD analysis, this scheme not only managed to quickly and
automatically group similar IC,s, but also correlated the groups with specific physiological

phenomena (either maternal or foetal), which is an additional achievement.

Further research should be conducted to explore alternatives to make the method more
robust and less dependent of empirical criteria. Now, and because this reliable grouping has
already solved the redundancy issue of SCICA described in Chapter 6, the next chapter will

retrieve the traces of the segmented physiological sources underlying the 25 abdominal

* Further research will have to explore whether the filtering and steadiness analysis steps are the best
options to deal with the harmonic effects when measuring rhythmicity.
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phonograms in the dataset. In a later chapter, the solution to recover entire time-series suitable

for well-being surveillance will be presented.
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9 RETRIEVING THE PHYSIOLOGICAL SOURCES
UNDERLYING THE ABDOMINAL PHONOGRAM

Previous chapters in this thesis have discussed different aspects associated with antenatal well-
being surveillance. First, antenatal foetal surveillance was introduced as a key part of maternal
and foetal care. Next, different methods (both standard and alternative) used for monitoring
foetal condition were analysed. After that, to exploit the advantages of the abdominal
phonogram over the abdominal ECG and the FMG (i.e. single-channel recordings where the
maternal and foetal cardiac activities do not spectrally overlap as significantly as in the latter
two signals), SCICA was presented as an alternative approach for recovering significant
physiological information from the single-channel abdominal phonogram (see Figure 9.1). The
method, developed through three implementations, has shown promising results (Jimenez-
Gonzalez and James 2008a; Jimenez-Gonzalez and James 2008b; Jiménez-Gonzalez and James

2009; Jiménez-Gonzalez and James 2010).

In a first implementation of SCICA (based on FastICA (Hyvarinen and Oja 1997) and K-
means), the phonogram was separated into components corresponding to FHS, maternal
breathing, maternal cardiovascular activity, and line-noise (Jiménez-Gonzalez and James 2009).
Thus, the outcome of this implementation showed, for the first time, the suitability of SCICA
for decomposing the abdominal phonogram and, most importantly, for recovering foetal
information (i.e. FHS). However, in that implementation the components were still
contaminated by some noise, a problem solved later on by Jimenez-Gonzalez and James
(2008b) by using TDSEP (Ziehe and Muller 1998), which is an ICA algorithm that utilises time-

structure to define independence rather than higher-order statistics.

As a result of the second implementation of SCICA (based on TDSEP and K-means), the
components separated by TDSEP always had spectra with a single and well-defined peak,
whereas those separated by FastICA usually had spectra with more than one peak (attributed to
contamination from other sources due to residual mixing after ICA) (Jimenez-Gonzalez and

James 2008b). This outcome was promising since it showed that SCICA improved its
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performance at separating foetal, maternal, and noise components. However, the enhanced
separation reached by this second implementation was still far from solving the problem of
recovering reliable estimates of the physiological sources underlying the abdominal phonogram,

which required a better-quality grouping step.

As an alternative solution, after further studying the components features, their rich time-
structure was exploited at the grouping stage, which led to a third implementation of SCICA
(based on TDSEP and rhythmicity-based analysis) that successfully groups spectrally
independent components into physiological groups (Jiménez-Gonzalez and James 2010). Such
groups, related to foetal cardiac (FC), maternal cardiac (MC), maternal breathing (MB), and
noise (N) activities, are ready to be used for retrieving the estimates of the physiological sources
underlying the abdominal phonogram. This will be performed in this chapter where, to show the
evolution of the SCICA proposal in this research, both I1C,s and sources produced by the three

implementations of SCICA will be presented.

ICs
—>
; Constructing a —> ;
Abdominal . s ! ~ 7 Underlying
phonogram_' multidimensional ICA A Grouping _ sources
dataset :
—>
T 7 A\
| / \ / \
| / \ / \
v ¥ x ¥ x
By the By By By By
Method of Delays FastICA TDSEP K-means Rhythmicity-based
analysis

Figure 9.1. SCICA, an alternative methodology for decomposing the single-channel abdominal
phonogram into its underlying sources. In this research two ICA algorithms (FastiICA and TDSEP) and
two methods for grouping (K-means and rhythmicity-based analysis) have been explored.

9.1. Aiming to decompose the abdominal phonogram: the
first implementation of SCICA

This section shows results achieved by the first implementation of SCICA that, as detailed in
Chapter 6, extracted m one-dimensional components by using FastiCA and then formed 10

independent groups (composed of spectrally similar components) using K-means.

9.1.1. The IC,s extracted by FastICA and grouped by K-means

Figure 9.2 depicts one segment of a noisy abdominal phonogram and sixteen of a total of fifty
IC,s separated by FastICA and grouped by K-means. From the abdominal phonogram, in the

time domain, it is only possible to distinguish a slower component (with large amplitude
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Figure 9.2. Four independent groups formed by K-means after clustering one-dimensional 1C,s separated
by FastICA from a segment of noisy abdominal phonogram. From top to bottom: the recorded abdominal
phonogram (normalised), 1Gs: 1C,s with activity mainly below 25 Hz, 1Gs: IC,s with activity between 10
and 60 Hz and a peak close to 30 Hz, IG;: IC,s with activity between 50 and 100 Hz and a peak close to
60 Hz, and 1Gg: IC,s with activity between 140 and 190 Hz and a peak at 160 Hz. The corresponding
power spectrum of the abdominal phonogram and its underlying 1C,s is shown on the right-hand side. The
arrows in the abdominal phonogram point at some evident peaks in the signal, whereas the arrows in 1G;
and 1Gg point at some spontaneous activity apparently aligned with the activity in 1Gs. © 2009 Springer
Science+Business Media. Reprinted, with kind permission from Medical & Biological Engineering &
Computing, Extracting sources from noisy abdominal phonograms: a single-channel blind source
separation method, 2009, 47(6): 655-664, A. Jiménez-Gonzélez and C. J. James, Fig. 1.

-133 -



CHAPTER 9

between + 2 volts) and some peaks (the most evident indicated by arrows). However, there is
not any clear evidence of FHS. In the frequency domain, it can be seen that the power of the

signal ranges from 0 to 250 Hz with most power below 75 Hz (> -30 dB).

Regarding the sixteen IC,s, grouped by K-means (based on their spectral similarity) to form
the independent groups 1G;3, 1Gs, 1G, and 1Gsg, it can be seen that: (i) 1G; is composed of seven
low frequency IC,s whose power is mainly distributed below 25 Hz. The first two, recovered as
IC*, and 1C**,, show the peaks previously referred to along with a signal between 150 and 160
Hz. The next five, IC¥,, IC*,, 1C*,, IC*, and 1C*,, show the slower component along with
other signals in IC¥, (60 Hz) and IC*, (200 Hz). In addition, it is also possible to distinguish
periodic activity in the slower component almost every 3.6 s. (ii) 1Gs is composed of five low
frequency 1C,s between 10 and 50 Hz with a well defined peak centred close to 30 Hz. The first
four, recovered as IC',, IC°,, IC'®,, and IC"’,, clearly show periodic information that alternates
at more than two times per second. The last component, IC3°p, shows this periodic information
as well, although contaminated by a signal that shifted the spectral peak from 30 to 50 Hz. (iii)
IG; is composed of two low frequency 1C,s whose power is mainly limited to between 50 and
100 Hz (> -80 dB) with a well defined peak centred at 60 Hz. These IC,s, recovered as IC24,, and
IC27,,, show some spontaneous activity, and some of it seems temporally aligned with the IC,s in
IG5 (the most obvious ones indicated by arrows). Finally, (iv) 1Gg is composed of two high
frequency 1C,s whose power ranges mainly from 140 to 190 Hz (> -80 dB) with a well defined
peak at 160 Hz. As in 1Gy, these IC,s, separated as I1C°, and IC",, also show some activity
aligned with 1Gs (a couple of arrows point to the most evident), although this time contaminated

by some low frequency information below 25 Hz.

9.1.2. The sources estimated by SCICA based on FastlICA and K-means

Figure 9.3 illustrates the estimates of the ten independent sources (isp) retrieved by the first
implementation of SCICA from the noisy abdominal phonogram depicted in Figure 9.2. From
top to bottom, the abdominal phonogram, the separate is» (P= 1,...,10) and, additionally, as a
visual reference to identify the cardiac sources (i.e. foetal and maternal) in the set of isp, the

abdominal ECG is shown.

The sources, constructed by adding the IC,s in the groups formed by K-means, can be
described as follows: (i) is; clearly involves the peaks referred to at the beginning of the
previous section (the most obvious of which are indicated by arrows) and, as shown in the
figure, the main power (> -40 dB) of this source is below 50 Hz. Also, every time these peaks
appear in is;, they show some delay in relation to the maternal QRS complex (indicated by a

dotted vertical line in a couple of complexes), which means that they are likely to represent
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Figure 9.3. Ten independent sources (isp) retrieved from a segment of noisy abdominal phonogram by the
first implementation of SCICA (based on FastICA and K-means). From top to bottom: the recorded
abdominal phonogram (normalised), its sources (maternal cardiovascular information in is;, an
unidentified source with activity at 207 Hz in is,, a slow motion artifactual source associated with the
maternal breathing in iss, an unidentified source with activity at 82 Hz in is, the FHS (S1 and S2) in iss,
an unidentified source at 130 Hz in isg, @ 68 Hz source in is; (line-noise), an unidentified source with
activity at 160 Hz in isg, maternal cardiovascular information plus noise source in isq, and an unidentified
high frequency source in isyo), and the abdominal ECG (only as a visual reference to identify the foetal
and maternal cardiac sources). The corresponding power spectrum of the abdominal phonogram and the
sources is shown on the right-hand side. The arrows in is; and isq point at some peaks that are also present
in the abdominal phonogram. © 2009 Springer Science+Business Media. Reprinted, with kind permission
from Medical & Biological Engineering & Computing, Extracting sources from noisy abdominal
phonograms: a single-channel blind source separation method, 2009, 47(6): 655-664, A. Jiménez-
Gonzalez and C. J. James, Fig. 2.
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some maternal cardiovascular activity (e.g. the maternal pressure wave and/or the maternal
heart sounds). (ii) is, represents a high frequency source whose power is mainly contained
between 175 and 245 Hz (> -80 dB) with a well defined peak centred at 207 Hz. In this signal it
is possible to see some spontaneous and high frequency activity from time to time. (iii) iss,
constructed from the 1G; described previously, shows a lower frequency source below 25 Hz
with periodic activity almost every 3.6 s that could be related to the maternal breathing. (iV) is,
shows a low frequency source whose power is mainly limited between 50 and 125 Hz (> -60
dB) with a well defined peak centred at 82 Hz. As in is;, some spontaneous activity is present,
although with shorter duration. (v) iss, constructed from the 1Gs described earlier, shows a low
frequency source with a well defined peak centred close to 30 Hz. As mentioned previously,
there is periodic activity in this signal, and from the figure it is clear that such activity is fully
aligned with the foetal QRS complex (indicated by a dashed-dotted vertical line in a couple of
peaks), which means that this source almost certainly corresponds to the FHS. Moreover, this
FHS source clearly shows the two main heart sounds, S1 and S2, the former with the highest
amplitude and always present, and the latter with lower amplitude and hard to detect in some
heart cycles. (vi) iss shows a medium frequency source whose power is mainly restricted
between 80 and 180 Hz with a peak at 130 Hz. (vii) is;, constructed from the 1G; described
previously, shows a low frequency source with a well defined peak centred close to 60 Hz. In
this signal the presence of sporadic activity is particularly evident in the entire segment, and
because of its frequency and time morphology, it could be mainly associated to /ine-noise. (viii)
isg, constructed from the 1Gg described earlier, shows a high frequency source with a well
defined peak centred at 160 Hz and additional information at frequencies below 25 Hz. As in is;
and is4, some sporadic activity appears from time to time. (ix) isy, Shows a source mainly
composed of two frequencies, one lower than 25 Hz and another with a peak centred at 60 Hz.
By comparing this source with is; and is, it can be said that there is a composition between the
maternal pressure-wave/heart-sounds (the peaks mentioned in is; are indicated by arrows) and
the line-noise. Finally, (X) is;o sShows a higher frequency source whose power is mainly above
200 Hz. This signal also depicts some sporadic activity over the whole segment as well,

although with different amplitude and duration.

Figure 9.4 depicts the FHS sources retrieved from two different segments of the noisy
abdominal phonograms recorded on three subjects. Before going into more detail, it is important
to notice that, for subject 1, one segment has been omitted. This “missing” segment corresponds
to the one presented in figures and paragraphs above, therefore, it was considered unnecessary
to repeat the segment and its analysis. As shown in the three subjects, in the time domain, even

though it is virtually impossible to distinguish the FHS in the abdominal phonograms, the
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Figure 9.4. FHS sources recovered from two different segments of the abdominal phonograms recorded
on three subjects. From top to bottom: Subject 1, segment b (one source); subject 2, segment a (three
sources), segment b (three sources); subject 3, segment a (one source), segment b (one source). The
corresponding power spectrum of the abdominal phonogram and its FHS sources is shown on the right-

hand side.
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method successfully extracted the corresponding sources, although with different number of
sources and amplitude. In the frequency domain, all the FHS sources show components from 10
to 60 Hz with a well defined peak between 30 and 50 Hz. More specifically, from subject 1-
segment b, the extraction looks quite good, it is not only possible to see one FHS source but also
to clearly distinguish the main two sounds, S1 and S2. In addition, there is a heart cycle at 2.3 s
where S2 is immersed in a transient source. For subject 2, even though the method extracted
three FHS sources from each segment, the extraction looks quite good in both segments. In
segment a, the three sources clearly show both S1 and S2 and slight differences in the frequency
components of each source. In segment b, both the first and third FHS sources show S1 and S2,
although they are better defined in the former. On the other hand, the second FHS source only
shows clearly S1 and less so S2. Again, as in segment a, there are slight differences in the
frequency components of each source. For subject 3, one noisy FHS source was extracted, so
only S1 can be seen in each cardiac cycle and S2 from time to time. In the frequency domain,

two well defined peaks close to 30 Hz and 150 Hz are present.

Figure 9.5 exemplifies the maternal sources recovered from those abdominal phonograms
discussed in the previous paragraph. These sources, previously described as a slower component
(with large amplitude) and some peaks (one of them indicated by an arrow), can be
distinguished in these abdominal phonograms, but mixed with other sources. Again, as in the

FHS case, only one segment for subject 1 is presented.

As illustrated in Figure 9.5, the maternal sources extracted by the method are different from
segment to segment in both number and amplitude, and they can still be related to the maternal
breathing activity and the maternal cardiovascular activity (for each source there is an arrow
pointing to a well defined peak only as a visual aid). For subject 1-segment b, for example, only
one maternal source, composed of both the respirogram (i.e. the breathing signal) and the
cardiovascular signals, was extracted. For subject 2, a different number of sources was extracted
from segments a and b. In segment a, three maternal sources appeared, the first one composed
of the breathing and pressure wave signals. The other two sources, which are free of such a
breathing component, contain either some pressure wave peaks (whose frequency is slightly
higher than that of the peaks presented in the first source) or the maternal heart sounds. From
these results it looks like the method did not completely separate the maternal information into
breathing and cardiovascular sources, but the maternal cardiovascular sources in a low and
high frequency parts (perhaps the pressure wave and heart sounds). In segment b, only one
maternal source was extracted, which is composed of both the respirogram and cardiovascular

signals. In subject 3-segment a, two maternal sources were extracted, one composed of the
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Figure 9.5. Maternal sources recovered from two different segments of the abdominal phonograms
recorded on three subjects. From top to bottom: Subject 1, segment b (one source); subject 2, segment a
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corresponding power spectrum of the abdominal phonogram and its maternal sources is shown on the
right-hand side. The peaks pointed at by an arrow represent the peaks that might be associated to the
maternal cardiovascular activity, either the pressure wave or the heart sounds.
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respirogram and cardiovascular signals, and another composed of the cardiovascular signal
along with a 60 Hz source. In segment » only one maternal source was extracted, which is

composed of both the breathing and cardiovascular signals.

Figure 9.6 depicts the performance on the extraction of FHS by a “general filter” versus the
SCICA-FastICA implementation. In this way it has been compared, in a visual manner, the
quality of the FHS extracted by two zero-phase filter banks. The former, whose coefficients
were generated once and remained invariable all over the signal; and the latter, whose
coefficients were learnt (in each column of A that corresponds to the FHS groups (Davies and
James 2007)) and changed from segment to segment according to the characteristics of the
abdominal phonogram. Hence, to calculate the coefficients for the general filter, the coefficients
learnt by FastICA for the FHS from five different segments were considered (segment 2,
segment 8, segment 14, segment 20 and segment 26), and their median value was used to
calculate the invariable coefficients. After that, the filter was applied to the abdominal
phonogram of subject 1 on two of those segments used to generate the filter (segments 8 and
26), and on two new segments (segments 23 and 29). As can be seen, the general filter
successfully extracted FHS in all segments as well, although it also included a slow component
that has been previously associated to the maternal breathing. This slow component is also
noticed in the power spectrum, where the general filter shows a wider response from 0 to 40 Hz
in comparison to the one by SCICA-FastICA, which not only shows a band limited spectrum

from 10 to 60 Hz but also a well defined peak centred close to 30 Hz.

9.1.3. Relevance of SCICA based on FastlCA and K-means

As previously mentioned, this first implementation of SCICA produced promising results and
raised the possibility of consistently retrieving foetal information from the abdominal
phonogram (i.e. from different segments and different subjects). In addition, this
implementation performed better than a “general” filter (whose coefficients remained the same
over the time). Hence, the filters learnt by FastICA (Davies and James 2007) seem to be more
selective, and this is because they are both band-limited and adaptive to the changes of the
physiological signals from segment to segment, and subject to subject. At first sight, it appears
that, even though the coefficients of an ordinary filter designed to extract the FHS (or any other
source) may be known, the varying characteristics of the physiological sources are more likely
to be better extracted by applying an adaptive data-driven method like the one studied in this
research. However, since the filtering outcome in Figure 9.6 illustrates that the general filter is
not removing as much of the lower frequencies as SCICA is removing, some of the filters used

to construct such a general filter were not truly for FHS, but for maternal
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Figure 9.6. FHS extracted from different segments (same subject) by using a general filter and the
proposed method. From top to bottom: Abdominal phonogram, FHS extracted by the general filter and
FHS extracted by the proposed method in segments 8, 26, 23 and 29. The corresponding power spectrum
of the abdominal phonogram and the FHS sources extracted is showed on the right-hand side.
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components, which means that K-means probably misclassified some maternal components as
foetal. Thus, to properly verify whether this SCICA approach overrules a general filter (or vice
versa), further research will have to quantitatively characterise the performance of both filtering
options, i.e. the data-driven filtering and the “general” filtering, especially on a larger dataset
(this will conducted in Chapter 10).

The value of the embedding dimension () must be carefully chosen as it affects the quality
of the separation of the underlying components. In fact, the appropriate selection of m depends
on the problem in hand and on preliminary information extracted from the time series
(Golyandina et al. 2001). For this work, due to the presence of periodic components such as
FHS, Equation 6.17 provided a clear criterion indicating a value for m (Golyandina et al. 2001).
In addition, although m is fundamental, the length of the segment N, is also important for this
single-channel approach, not only to construct the matrix of delays but also to provide enough
data for FastICA to converge (Hyvarinen and Oja 1997; Hyvarinen and Oja 2000). On the face
of it, it might appear that using a large N, would be better for FastiICA to converge more easily,
but it is also necessary to consider that the stationarity of the signal is also fundamental for
FastICA to work. So, N, must be selected by considering a trade-off between the amount of data
and its stationarity, otherwise FastiICA may not converge. In this work, a value of that N, =
5000 points (for a sampling frequency of 500 Hz) has been used to produce a matrix of delays
that provides enough data for FastICA to converge and, as has been seen, the results obtained
from three subjects are promising and show that the method extracts sources that can be related

to different activities such as foetal, maternal, line-noise, and some “unidentified” activities.

Regarding the foetal activity, which is virtually impossible to distinguish from the original
phonograms, it was effectively extracted in the form of FHS sources. These FHS sources,
extracted in different number and amplitude, show the presence of the two main heart sounds,
S1 and S2, the former with the largest amplitude. In addition, all the FHS sources showed a
band limited behaviour from 10 to 60 Hz and a well-defined peak between 30 and 50 Hz.
Regarding the maternal activity, composed of the respirogram and/or some cardiovascular
sources (present from time to time with an unpredictable contribution to the phonogram and
covering the bandwidth below 25 Hz), the method extracted most of it in all segments and
subjects. This extraction was not necessarily as separate sources such as breathing and pressure-
wave/heart-sounds (sometimes the signals were mixed with noise as well), but usually separate
from the FHS. Considering these foetal and maternal activities in more detail, it is essential to
point out the high performance of the method to extract these as separate sources. Thus, this
separation is especially significant because the maternal cardiovascular information may overlap
the FHS in the same way that the maternal QRS overlaps the foetal QRS in the abdominal ECG,

and the most outstanding feature is that it was achieved by using a single-channel method. In
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addition, because of the classifier used to group IC,s, the method converges fast to produce 10
independent sources. As a first implementation, considering a fixed value of 10 groups is quite
acceptable, since it is better having more than one group for one source (without

misclassification) than having 1C,s misclassified into the wrong groups.

In summary, this first implementation of SCICA demonstrated the possibility of retrieving
physiological information underlying the abdominal phonogram (e.g. FHS). However, the main
problem was that some components still presented some degree of mixing that made them
noisier and misclassified by K-means (a problem especially important when foetal or maternal

cardiac components were placed into the wrong group).

9.2. Aiming to enhance the separation stage: the second
implementation of SCICA

This section presents results achieved by the second implementation of SCICA that, as detailed
in Chapter 6, extracted m one-dimensional ICs by using TDSEP and then formed 10

independent groups (composed of spectrally similar components) by using K-means.

9.2.1. The IC,s extracted by TDSEP and grouped by K-means

Following the structure of the previous section, Figure 9.7 depicts the same segment of a noisy
abdominal phonogram along with sixteen of a total of fifty 1C,s separated this time by TDSEP
and grouped by K-means. From the abdominal phonogram, as described in Figure 9.2, it is only
possible to distinguish a slower component and some peaks (the most evident indicated by
arrows), but there is not any clear evidence of FHS. The power of the signal ranges from 0 to
250 Hz with its main part below 75 Hz (> -30 dB).

Regarding the IC,s, grouped into clusters by K-means (based on their spectral similarity) to
form independent groups like in 1G3, 1Gs, 1G7, and 1Gsg, it can be seen that, as shown by their
power spectra, the signals are more band-limited so that all of them present a single and well-
defined peak. In a more detailed observation of the groups, it can be seen that: (i) 1G; is this
time composed of six low frequency IC,s whose power is mainly distributed below 50 Hz. The
first three components, separated as 1C*,, IC*,, and IC*,, show periodic activity at more than
two times per second. The next two, separated as IC*, and 1C*,, show the peaks previously
referred to in the abdominal phonogram and, as shown by the arrows, periodically appear as a

rate slightly larger than one per second. The last component, IC®,, resembles the slower

)4l
component previously mentioned in the abdominal phonogram, which periodically appears

almost every 3.6 s. (ii) 1G; is composed of four low frequency IC,s between 10 and 75 Hz with
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Figure 9.7. Four independent groups formed by K-means after clustering one-dimensional IC,s extracted
by TDSEP from a segment of noisy abdominal phonogram. From top to bottom: the recorded abdominal
phonogram (normalised), 1G3: 1C,s with activity mainly below 50 Hz, 1G;: IC,s with activity between 10
and 75 Hz and a single-peak close to 40 Hz, 1Gg: IC,s with activity between 50 and 100 Hz and a single-
peak close to 70 Hz, and 1Gg: IC,s with activity between 25 and 75 Hz and a single-peak close to 60 Hz.
The corresponding power spectrum of the abdominal phonogram and its underlying IC,s is shown on the
right-hand side. The arrows in the abdominal phonogram point at some evident peaks in the signal (also

present in IC*
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a well defined peak centred close to 40 Hz. Such components, extracted as IC*,, 1IC*,, IC*,
and IC"’“,,, also show periodic information that alternates at more than two times per second. (iii)
I1Gs is composed of two low frequency 1C,s whose power is mainly limited to between 50 and
100 Hz (> -80 dB) with a well defined peak close to 70 Hz. These IC,s, extracted as IC35,,, and
IC36p, show some spontaneous activity, and some of it seems temporally aligned with the IC,s in
IG; (the most obvious ones indicated by arrows). Finally, (iv) 1Gg is composed of four IC,s
whose power ranges from 25 to 75 Hz with a well defined peak close to 60 Hz. As in I1Gg, these
IC,s, extracted as IC*,, 1C*,, 1C*,, and IC*°,, show some activity aligned with 1G; (the arrows

point to the most evident).

9.2.2. The sources estimated by SCICA based on TDSEP and K-means

Figure 9.8 shows the estimates of the ten isp retrieved by the second implementation of SCICA
from the noisy abdominal phonogram depicted in Figure 9.7. In addition, at the bottom, as a

visual reference to distinguish between foetal and maternal cardiac sources, the abdominal ECG

is shown.

The sources, constructed using the IC,s in the groups formed by K-means, can be described
as follows: (i) is; shows a medium frequency source whose power is mainly restricted between
80 and 150 Hz with a single-peak at 115 Hz. (ii) is; shows a medium frequency source whose
power is mainly limited between 75 and 125 Hz (> -60 dB) with a well defined peak centred at
100 Hz. As can be seen, some spontaneous activity is present in is; and is,. (iii) iss, constructed
from the 1G; described previously, shows a mixture whose frequency content is mainly below
50 Hz. There, the signal looks like a low-pass filtered version of the abdominal phonogram and
it is possible to distinguish both, the slow periodic activity almost every 3.6 s (that could be
related to the maternal breathing) and the peaks referred to at the beginning of the previous
section (the most obvious indicated by arrows). Also, every time these peaks appear in iss, they
show some delay in relation to the maternal QRS complex (indicated by a dotted vertical line in
a couple of peaks), which means that they are representing some maternal cardiovascular
activity (e.g. the maternal pressure wave and/or the maternal heart sounds). (iv) isq Shows a
higher frequency source whose power is mainly above 200 Hz. This signal also depicts some
sporadic activity over the whole segment, although of different amplitude and duration. (v) iss
shows a high frequency source with a single-peak centred at 170 Hz. As in isy, is», and is4, SOMe
sporadic activity is present. (vi) iss, constructed from the 1G¢ described earlier, shows a low
frequency source with a single-peak centred at 70 Hz. (vii) is;, constructed from the 1G;
described earlier, shows a low frequency source with a single-peak centred close to 40 Hz. As

mentioned previously, there is periodic activity in this signal, and from the figure it is clear that
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Figure 9.8. Ten independent sources (isp) retrieved from a segment of noisy abdominal phonogram by the
second implementation of SCICA (based on TDSEP and K-means). From top to bottom: the recorded
abdominal phonogram (normalised), its sources (two unidentified sources with activities at 115 Hz in is;
and 100 Hz in is,, a mixture of maternal breathing and cardiovascular activities in iss, three unidentified
sources with activities at 200 Hz in is4, 170 Hz in iss, and 70 Hz in iss, the FHS (S1 and S2) in is7, the
line-noise at 60 Hz in isg, and two unidentified sources at 200 Hz in ise, and 140 Hz in isyg), and the
abdominal ECG (used only as a visual reference to identify the foetal and maternal cardiac sources). The
corresponding power spectrum of the abdominal phonogram and the sources is shown on the right-hand
side. The arrows in the abdominal phonogram point at some evident peaks in the signal that are also
present in is.
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such activity is fully aligned with the foetal QRS complex (indicated by a dashed-dotted vertical
line in a couple of peaks), which suggests that this source corresponds to the FHS. Moreover,
this FHS source clearly shows the two main heart sounds, S1 and S2, the former with the
highest amplitude and always present, and the latter with lower amplitude and hard to detect in
some of the heart cycles. (viii) iss, constructed from the 1Gg described earlier, shows a low
source with a single-peak centred at 60 Hz. In this signal the presence of sporadic activity is
evident in the entire segment, and because of its frequency and time morphology, it could be
mainly associated to line-noise. (ix) iss shows a high frequency source whose power is mainly
contained between 175 and 245 Hz (> -80 dB) with a peak centred at 200 Hz. In this signal it is
possible to see some spontaneous and high frequency activity from time to time. Finally, (x) isio
shows a medium frequency source whose power is mainly restricted between 125 and 175 Hz
with a peak at 140 Hz. This signal also depicts some sporadic activity over the whole segment

as well, although of different amplitude and duration.

Figure 9.9 depicts a 10 s segment of noisy abdominal phonogram (subject 1- segment b
described in Figure 9.4) and three of ten is (a, b, and c) retrieved by using the SCICA-FastiICA
and SCICA-TDSEP implementations (Jimenez-Gonzalez and James 2008b). The sources have
been visually identified as: (a) FHS (S1-S2), (b) maternal activity (cardiovascular information
superimposed on a slow-breathing component), and (c) line-noise. At the bottom, and only as a
visual time reference, the abdominal ECG is shown. In addition, on the right-hand side of the

phonogram and its sources, the corresponding PSDs are shown.

In the time domain, for the physiological sources in (a) and (b), it is difficult to visually
distinguish differences between sources extracted by SCICA-FastiCA and SCICA-TDSEP
implementations, except that the amplitude in the FHS by TDSEP is a bit larger than the
amplitude in the FHS by FastICA. In (c), it is clear that the line-noise amplitude by TDSEP is
larger than that by FastiCA. In the frequency domain, there is a clear difference between
sources extracted by both methods in terms of the number of peaks in the PSD. For the signals
extracted by TDSEP, the PSDs always show a single and well-defined peak, whereas for
FastICA the PSDs usually show more than one peak. Similar results are present in different
segments and subjects, i.e. both implementations extract these sources, and the amplitude of the
sources retrieved by SCICA-TDSEP is larger than the amplitude of the sources retrieved by
SCICA-FastICA. In addition, the PSDs are more band-limited in the SCICA-TDSEP
implementation than in the SCICA-FastICA implementation.

9.2.3. Relevance of SCICA based on TDSEP and K-means

In general, as shown in the previous section, the second implementation of SCICA also

manages to retrieve estimates of the sources underlying the abdominal phonogram, both
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physiological and environmental and, again, foetal and maternal cardiac activities are extracted
separately from each other. In particular, by comparing the features of the sources extracted by
both implementations, it is clear that considering the temporal structure of the signal (by using
TDSEP) produces a better-quality band-limited separation. As a result, SCICA-TDSEP retrieves
sources whose PSDs have a single and well-defined peak and, consequently, that are less
dependent on each other than those extracted by SCICA-FastICA.

In summary, considering the time-structure in this second implementation helped ICA find
a more selective filter bank. However, in terms of the grouping stage, as seen in 1G; (Figure
9.7), K-means failed to differentiate amongst components corresponding to FHS, maternal
cardiovascular, and maternal breathing activities, which compromised the enhanced separation
achieved by TDSEP.
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Figure 9.9. A segment of noisy abdominal phonogram and three independent sources retrieved by using
the first (SCICA-FastICA) and second (SCICA-TDSEP) implementations of SCICA. From top to bottom:
the recorded abdominal phonogram (normalised), its sources ((a) FHS, (b) maternal activity, and (c) line-
noise), and the abdominal ECG (used as a visual reference to distinguish between maternal and cardiac
sources). The corresponding power spectrum of the abdominal phonogram and its independent sources is
shown on the right-hand side. The arrows in the abdominal phonogram point at some evident peaks in the
signal.
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9.3. Enhancing the grouping stage: the third implementation
of SCICA

This section shows results achieved by the third implementation of SCICA, which extracted m
one-dimensional ICs by using TDSEP and then formed physiological groups (composed of

components with similar rhythm) only using rhythmicity-based analysis.

9.3.1. The IC,s extracted by TDSEP and grouped by rhythmicity-based
analysis

Figure 9.10 depicts the results of analysing a segment of a noisy abdominal phonogram and

sixteen of a total of fifty I1C,s separated by TDSEP and grouped this time by using rhythmicity-

based analysis. The abdominal phonogram, as described in Figure 9.2, presents little evidence of

FHS, whereas its power spectrum is mainly below 75 Hz (> -30 dB). Additionally, as can be

seen on the right hand-side, its strongest rhythm appears at 0.24 Hz.

Regarding the IC,s, grouped into clusters by rhythmicity-based analysis to form four
independent groups physiologically identified as 1Ggc, 1Gmc, 1Gus, and IGy, it can be seen
that: as shown by the power spectra, the signals are band-limited so that present a single and
well-defined peak. More specifically, a detailed observation of the groups shows that: (i) IGgc is
composed of five slow IC,s whose power is mainly distributed below 45 Hz and, most
importantly, whose rhythm is centred at 2.3 Hz. Such components, extracted as 1C*, 1C*,,
IC*,, 1IC*,, and I1C*,, show periodic activity almost every 0.42 s and are very clean (except for
some small disturbances indicated by the downwards arrows). (ii) 1Guc is composed of three
slower IC,s whose power is mainly below 20 Hz, and whose rhythms are centred at 2.3 and 1.2
Hz. The last two components, extracted as IC*®, and IC*°,, present the peaks previously referred
to in the abdominal phonogram and show periodic activity almost every 0.83 s. The first
component, extracted as IC*,, shows some of such peaks (indicated by the upwards arrows)
along with some of the information in 1Ggc (indicated by the downwards arrows). (iii) 1Gyg is
composed of a single 1C, whose power is below 20 Hz and whose rhythm is centred at 0.24 Hz.
This IC,, extracted as IC*,, corresponds to the slowest component referred to in the abdominal
phonogram and, as seen, periodically appears almost every 3.6 s. Finally, (iv) IGy is composed
of seven IC,s whose power is larger than 45 Hz and whose rhythms range between 0.7 and 3.1
Hz. These IC,s, extracted as IC®,, 1IC*,, IC¥,, IC%,, 1C¥*,, IC*,, and I1C*, show spontaneous
activity, some aligned with 1Gy,c and some with 1Ggc (the downwards arrows illustrate the most

evident).
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Figure 9.10. The physiological groups formed by rhythmicity-based analysis after clustering one-
dimensional 1C,s (extracted from a segment of noisy abdominal phonogram by TDSEP). From top to
bottom: the recorded abdominal phonogram (normalised), IGgc: IC,s containing foetal cardiac activity at
2.3 Hz, IGyc: IC,s containing maternal cardiovascular activity at 1.2 Hz, IGyg: a single IC, containing
maternal breathing activity at 0.24 Hz, and IGy: noise or noisy I1C,s. The corresponding power spectrum
(S,) and rhythm (S)) of the abdominal phonogram and its underlying IC,s are shown on the right-hand
side. The upwards arrows in the abdominal phonogram point at some evident peaks in the signal (also
present in 1C*, and IC*)), whereas the downwards arrows in 1Gy point at some spontaneous activity
apparently aligned with the activity in 1Ggc.
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9.3.2. The sources estimated by SCICA based on TDSEP and rhythmicity-
based analysis

Figure 9.11 depicts a segment of noisy abdominal phonogram and the estimates of the
physiological sources (is) retrieved from a set of IC,s classified by the rhythmicity-based
analysis proposed in this research. From top to bottom, the time and frequency representations
of: the abdominal phonogram, three physiological traces, the noise trace, and the abdominal
ECG (used here to confirm the identity of the cardiac sources retrieved by this SCICA
implementation rather than to identify them, as in the previous sections) are shown. The
frequency representation, on the right hand side, shows two curves, the inner is the frequency

content (from where S;is calculated) and the outer is the autospectrum (which gives R).

The sources, constructed using the IC,s in the groups formed by rhythmicity-based
analysis, can be described as follows: (i) isec, constructed using the five IC,s in 1Ggc, shows a
low frequency source whose power spectrum is centred at 30 Hz and whose double-pattern
rhythm is centred at 2.3 and 4.6 Hz. As previously mentioned, the time-series shows periodic
activity every 0.42 s that is clearly aligned with the foetal QRS complex (indicated by a dotted
vertical line), which means that this foetal cardiac trace corresponds to the foetal PCG (where
the heart sounds can be seen). Thus, the time-series clearly shows the two main heart sounds, S1
and S2, the former with the highest amplitude and always present, and the latter with lower
amplitude and hard to detect in some heart cycles. (ii) ismc, constructed using the three IC,s in
IGwc, shows a lower frequency source whose power spectrum is centred at 2 Hz and whose
single-pattern rhythm is centred at 1.2 Hz. As seen in the time-series, this trace clearly presents
the peaks referred to when the abdominal phonogram was described (the most obvious indicated
by arrows) and show periodic activity almost every 0.83 s. Furthermore, every time these peaks
appear in isyc, they show some delay in relation to the maternal QRS complex (indicated by a
dotted vertical line), which means that they are likely to be related to some maternal
cardiovascular activity (e.g. the maternal pressure wave and/or the maternal PCG). (iii) isys,
constructed using the single IC, in IGug, shows another slower source whose power spectrum is
centred at 2 Hz and whose rhythm is centred at 0.24 Hz (calculated by using the FFT to make it
easier to see the lowest frequencies). As can be seen, the time-series presents a slow periodic
activity almost every 3.6 s, which could be related to the maternal breathing. (iv) is,
constructed using the seven IC,s in 1Gy, shows a low frequency source whose power spectrum
is centred at 63 Hz, and whose multi-pattern rhythm shows frequencies at 0.12, 1.1, 2.2, 2.5, and
5.2 Hz. As can be seen in the time-series, the presence of sporadic activity is evident in the
entire segment, and because of its frequency and time morphology, it could be mainly

associated to line-noise.
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Figure 9.11. Physiological sources (is) retrieved from a segment of noisy abdominal phonogram by the
third implementation of SCICA (based on TDSEP and rhythmicity-based analysis). From top to bottom:
the recorded abdominal phonogram (normalised), its sources (foetal PCG in isgc, pressure wave and/or
PCG in isyc, maternal respirogram in isyg, and line-noise in isy), and the abdominal ECG (used to
confirm the identity of the cardiac sources retrieved by this SCICA implementation and to identify S1-S2
and the maternal pressure-wave/heart-sounds). The corresponding power spectrum (S,) and rhythm (Sf) of
the abdominal phonogram and its sources are shown on the right-hand side. The arrows in the abdominal
phonogram point at some evident peaks in the signal that are also present in isyc.

9.3.3. Relevance of SCICA based on TDSEP and rhythmicity-analysis

As described in the previous sections, the third implementation of SCICA has made it possible
not only to better group similar 1C,s, but also to associate the groups directly to physiological
phenomena (i.e. FC, MC, and MB), which is an extra achievement of this implementation.
Thus, the method manages to successfully group similar IC,s and, from them, to retrieve
estimates corresponding to foetal cardiac activity (i.e. the FHS), maternal cardiovascular
activity (composed of the heart sounds and/or the pressure wave), maternal breathing, and
noise. Certainly, as mentioned in Chapter 7, because the method sometimes deals with
imperfectly separated IC,s, it is important to be conscious that a perfect trace will not always be
retrieved. Here, a trade-off between the quality of the signal and the risk of contamination was
considered so that only the best quality IC,s (i.e. less contaminated by noise) were used to
retrieve the estimates of the sources underlying the abdominal phonogram. Future work will

focus on the reconstruction of entire time-series suitable for well-being surveillance.
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In summary, considering the time-structure of the signal in this third implementation helps
SCICA find not only a more selective filter bank, but also a more robust way to classify the
separate components. As a result, it is possible to say that the performance of SCICA has been
enhanced so that it better retrieves the physiological sources underlying the segmented
abdominal phonogram than the previous implementations. The next chapter will be focused on
recovering entire time-series suitable for well-being surveillance as here only short segments

were considered.

9.4. Summary

This chapter presented the sources retrieved from the noisy abdominal phonogram by the
implementations of SCICA discussed in this thesis (i.e. SCICA based on FastICA and K-means,
SCICA based on TDSEP and K-means, and finally, SCICA based on TDSEP and rhythmicity-
based analysis). Results showed the evolution of the SCICA methodology and how its
performance is enhanced by using TDSEP —for separating ICs—, and rhythmicity-based analysis
—for grouping ICs—. As a result, the current implementation of SCICA not only retrieves the
sources underlying the abdominal phonogram, but also identifies the physiological processes
that originate them (foetal and maternal). Next, this work will focus on the last requirement for
SCICA, which is the reconstruction of entire time-series for well-being surveillance. This will
be presented in the next chapter as part of the procedure needed to extract information for
antenatal foetal surveillance in the form of beat-to-beat FHR and average morphology of the
FHS.
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1 O WELL-BEING SURVEILLANCE THROUGH
THE SOURCES ESTIMATED BY SCICA:
A FEASIBILITY STUDY

This research has studied SCICA as an alternative signal processing approach to estimate the
sources underlying the abdominal phonogram. Such a study, conducted through the
development of three SCICA implementations, has given risen to a methodology that not only
performs a spectral decomposition of the abdominal phonogram, but also identifies the origin of
its physiological components, which are essential contributions of this work (Jimenez-Gonzalez
and James 2008a; Jimenez-Gonzalez and James 2008b; Jiménez-Gonzélez and James 2009a;
Jiménez-Gonzélez and James 2010a; Jiménez-Gonzalez and James 2010b). Thus, as discussed
in Chapter 9, the current implementation of SCICA automatically retrieves estimates of the
sources corresponding to foetal cardiac activity (FC), maternal cardiovascular activity (MC),
maternal breathing activity (MB), and noise or noisy activity (N) (Jiménez-Gonzélez and James
2010b).

In particular, these separation results are especially significant since cardiac information
from maternal and foetal sources is being retrieved in separate traces even though the former
may temporarily overlap the latter (just like the maternal QRS overlaps the foetal QRS in the
abdominal ECG). Furthermore, since MC and FC are clearly aligned with maternal and foetal
QRS complexes respectively (as illustrated in Figure 9.11), it can be said that (a) MC is more
likely to represent the maternal phonocardiogram (PCG) and/or the pressure wave, whereas (b)
FC is more likely to represent the foetal PCG, a signal where the main foetal heart sounds (S1
and S2), can be seen. Hence, when applied to the abdominal phonogram, the foetal information
retrieved by SCICA corresponds to the FHS which, as discussed in Chapter 3 and Chapter 4, are

useful for monitoring well-being.

Now, since such foetal information is actually available, the work presented in this thesis
can proceed towards its last stage, which is the collection of parameters for antenatal well-being

surveillance. This task requires one to work on entire time-series rather than on the segmented
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traces currently retrieved by SCICA. Therefore, the segmented traces must be first concatenated
to assemble entire time-series from which well-being information can be collected. These were
performed as described in this chapter to produce the final results of this research, which will be
given by (a) the reconstruction of entire time-series of the sources underlying the abdominal
phonogram and (b) the recovery of preliminary information for performing foetal well-being
surveillance. The next sections detail the procedures proposed to do this, firstly by solving the
energy uncertainty between adjacent segments (s and s;) described in Section 6.3.1, and then
by detecting the temporal positions of S1 and/or S2 so that the beat-to-beat foetal heart rate

(FHR) and the heart sounds’ morphology can be estimated.

10.1. Transforming segmented traces into entire time-series

In order to concatenate segmented traces to form entire time-series, the two ambiguities of ICA
have to be overcome (i.e. permutation and scaling). The permutation ambiguity, as discussed in
Chapter 9, has been resolved due to the spectral decomposition performed by TDSEP and the
grouping given by the rhythmicity-based analysis, which make it possible to arrange the
retrieved traces as FC, MC, MB, and N. The scaling ambiguity, on the other hand, is tackled in

this section by finding an appropriate scaling factor between adjacent segments.

First of all, before going into the description of how such a scaling factor can be calculated,
it is important to be aware of the characteristics of an entire time-series reconstructed without
correcting the scaling ambiguity. Hence, Figure 10.1 illustrates an example of the abdominal
phonogram, five PCG segments retrieved by SCICA and, at the bottom, the entire time-series
reconstructed by directly concatenating them. As can be seen, even though the PCG traces are
extracted from overlapped segments (sharing 50% of their samples), their energies are
different'. Consequently, when these traces are directly used to reconstruct the entire time-
series, these differences in energy turn into sudden variations in the signal amplitude. Most
importantly, since such amplitude variations are unpredictable because of the scaling ambiguity,
they might be wrongly associated to changes in the foetal position and lead to erroneous

interpretations about foetal activity, e.g. presence of foetal movements.

Now that the consequences of directly reconstructing entire time-series have been

illustrated, it is time to describe the procedure followed to scale and concatenate segmented

! As mentioned in Section 6.3.1, empirical observations in this work indicate that such differences in
energy are likely to depend on the number of IC,s used to retrieve the sources rather than on the energy of
the 1C,s.
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Figure 10.1. The scaling ambiguity between adjacent segments and its effect on the reconstructed time-
series. From top to bottom: the abdominal phonogram divided into five overlapped segments, the PCG
retrieved by SCICA from each segment, and the entire time-series directly reconstructed by concatenating
such PCGs. The segments have a length of N, samples and overlap each other by »,,; samples.

traces for reconstructing entire time-series. For this purpose, and by following the idea by
Corsini et al. (2006), this work uses the information in the overlapped sections to estimate a
scaling factor that, by adaptively reducing the energy differences from segment to segment,

aims to smooth sudden variations in the amplitude of the entire time-series.

In their work, focused on electroencephalographic signals (EEG) for seizure prediction,
Corsini et al. (2006) estimated the scaling factor by comparing the variances within the
overlapped sections between segments sz and sz The idea, although managed to recover entire
time-series, failed to maintain continuity in cases where the EEG segments were corrupted
(Corsini et al. 2006). Therefore, for longer recordings, where the number of corrupted segments
usually increases, the authors argue that such a scaling methodology becomes an unreliable
option. Here, to test such a scaling methodology on the segmented traces retrieved by SCICA,
three entire time-series of foetal PCGs (composed of 59, 59, and 35 overlapped segments
respectively) were reconstructed as proposed by Corsini et al. (2006). The results, given by
empirical observations of the continuity produced on the reconstructed time-series, showed that
the scaling factor did not manage to reduce the energy differences from segment-to-segment,

but to increase them. Moreover, it was observed that such a scaling factor kept significantly
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changing from segment-to-segment? to become either larger (in the former signal) or smaller (in
the two latter signals). Consequently, after scaling and concatenating a few segments, the energy
differences became so large that it was impossible to see the reconstructed signal using a single
amplitude scale, which indicated that the estimation of the scaling factor by means of the

variance was not a suitable option for the foetal PCG.

As an alternative, this work explored the calculation of the scaling factor by comparing the

area under the curves (azand az) within the overlapped sections of szand s as

a,= Nz |5 (). (10.1)

1
k=—N
24

and

ay = [s, (k). (10.2)

where the resulting scaling factor, given by ajag, was steadier than the one proposed by Corsini
et al. Consequently, when applied to sz, this alternative scaling factor produced a scaled

segment, sz, suitable to be concatenated to sz as (Corsini et al. 2006)

s,(n+N,)=-Ls,(n+N,-N,,), forn=1...,N,,, (10.3)
aﬁ,.
or alternatively
Sﬂ(n+Novl)=a—ﬂsﬁ..(n), forn=1...,N,, (10.4)
aﬂ.

where N, and N,,,; are the length of the segments and the overlapped sections respectively, and
the concatenation uses either Equation 10.3 or Equation 10.4 to retain the segment with the

largest energy.

The whole scaling-concatenating procedure, as detailed in Table 10.1, is repeated until all
the segmented traces retrieved from an abdominal phonogram have been adaptively scaled and

concatenated into an entire time-series. The resulting time-series, free of sudden amplitude

2 Further research needs to be done to understand why the scaling factor is presenting such behaviour on
the foetal PCGs that, according to the results on the tests conducted in this research, seems to be likely to
exponentially change its value from segment-to-segment.
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variations due to ICA, and corresponding to an underlying physiological activity, should be now

ready for further analysis and recovery of information for well-being surveillance.

Table 10.1. Algorithm to reconstruct entire time-series by scaling-concatenating segmented traces
retrieved by SCICA from the abdominal phonogram.

BEGIN
p«1
scaled_signal < sgp
FOR g’ FROM 2 TO number_of segments DO
Ns «—LENGTH(scaled_signal)

N % calculating the area under the second half of the curve

a; < Z |sﬁ (k)| 9

k=2N,

iy,
ay, < zz |sﬁ, (k)| % calculating the area under the first half of the curve

k=1
§y % 5y % scaling the segment that will be attached

a

IF VARIANCE(s;) > = VARIANCE(S;) THEN
scaled _signal (k+Ng) <5, (k+N,-N,,), fork=1,...,.N,,
ELSE
scaled _signal (k+Ng—N,,, ) « 5, (k), fork=1...,.N
END
Sp<—Sp
END
END

10.2.0On the collection of information for foetal surveillance

Once the energy uncertainty has been sorted out and entire time-series are available, it is time to
focus on the analysis of such signals and collection of information for foetal surveillance
purposes. Here, in a preliminary study, the entire foetal PCG is analysed to estimate (a) the beat-
to-beat FHR and (b) the average morphology of the main FHS (S1, S2). To this end, as detailed
next, the temporal positions of S1 and/or S2 are first detected in the PCG. Then, by using those
positions, it is possible to (a) measure the distance between consecutive pairs and (b) align

sounds to produce an average morphology.

10.2.1. Detecting the main heart sounds in the foetal PCG

Defining a temporal position for a heart sound is not a straightforward procedure, especially
because there is not a consistent and well-known peak like the QRS in the ECG. Thus, as

described in the next paragraphs, the task first requires preprocessing the PCG to produce
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single-peaks (related to the FHS) that can be detected by setting a threshold. Next, whenever
necessary, manual corrections can be performed to improve the detection. The procedure,
implemented in four stages and applied to windows containing 5000 samples® (10 s in length), is

as follows:

a) Peaks generation: This stage enhances the FHS to ease their visual identification in the

window under analysis. It works in three steps
1. Normalisation: The PCG in each window is normalised as

. PCG —mean(PCG)
std (PCG)

PCG

(10.5)

to produce a signal with variance one (PCG’). Next, since large differences between
low and high intensity sounds might complicate to notice low-intensity FHS, PCG’ is

normalised by a sigmoid function given by

PCG,,, (n)= exp(9)-1 , (10.6)
exp(9)+1
where
(n) _ PCG —mean(PCG ) | 10.7)
sta’(PCG )

In this way, Equation 10.6 produces a signal where the differences between
amplitudes of high and low intensity sounds are shortened so that it is easier to

visualise most of the FHS in the window.

2. Envelope calculation: An envelope of PCG,,,,, is produced by means of the Hilbert

Transform as detailed in Section 7.2.2.

3. Smoothing: This step is implemented by an FIR band-pass filter with cut-off
frequencies of 4 and 11 Hz. The filter, adjusted to produce a single-peak envelope per
heart sound, makes it easier to seek a single point related to each heart sound, which in

this work is given by the maximum of the filtered envelope, e;(n).

® Note that this value of 5000 samples per window has nothing to do with the value of N, in the
decomposition by SCICA. The value of 5000 samples in this chapter has been chosen for each window to
contain about 25 heart beats, which makes it easier to conduct manual corrections on the detected peaks
whenever necessary. On the other hand, the value of N, was chosen in Chapter 6 to provide ICA with a
“quasi-stationary” segment for the algorithm to converge, and thus, to extract the independent
components underlying the abdominal phonogram.
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b) Peak detection: In this stage, the peaks of interest are found by manually establishing a
threshold (¢2r) for e;(n). As a result, all the peaks whose amplitude is larger than thr are
detected.

c) Peak correction: Due to the importance of an appropriate detection of the FHS positions in
this study, and knowing that the thresholding produces false positives (FP) and/or false
negatives (FN), it is necessary be certain that the peaks detected in this stage truly
correspond to peaks of interest. To this end, some manual correction is performed, either to
remove high-intensity peaks (due to artefacts) or to insert detections for low-intensity peaks
(due to FHS). In those cases where the abdominal ECG is available, the positions of the

foetal QRS are used as a visual aid.

The procedure, illustrated in Figure 10.2 for the detection of S1, is repeated segment to
segment until the entire foetal PCG has been processed so that the beat-to-beat temporal
positions of the visually enhanced FHS are known®. As noticed, the visual aid given by the
foetal QRS positions (shown by the downwards triangles) makes it easier to identify the peaks

corresponding to S1.

d) Final detection: This stage is implemented to remove the influence of the enhancing
procedure on the *“original” positions in the PCG, if any (produced by the second
normalisation). Thus, the positions estimated on the enhanced FHS become the reference to
automatically find the peaks on the smoothed envelope of the original PCG (i.e. without

enhancing), which are the positions used in the methods described in the next sections.

10.2.2. Calculating foetal heart rate and heart sounds morphology

Once the HS positions are known, it is time to obtain information for foetal surveillance. In this
work, as a preliminary study, the FHS positions are used to estimate (a) the instantaneous FHR
and (b) the average morphology of the FHS. The former, as described in Chapter 2, makes it
possible to promptly spot variations in the sympatho/vagal balance due to foetal oxygenation
changes. The latter, as described in Chapter 4, gives information about the status of the foetal

heart valves during the heart cycle.

a) Instantaneous foetal heart rate (FHR): This is calculated by measuring the beat-to-beat

distance between heart sounds (i.e. S1-S1 or S2-S2), which makes it suitable to monitor the

*S1 and S2 are detected only in those cases where their intensity is large enough to distinguish them from
background noise. In this study, only S1 is large enough to be easily detected by using a simple
methodology like the one described herein.
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Figure 10.2. Analysis of the foetal PCG to ease the detection of beat-to-beat temporal positions of the
FHS. In this example, the detection of the first heart sound (S1) is illustrated.
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FHR by means of the FHS. The procedure, either implemented by using S1 or S2°, is as

follows:

1.

Cardiotachogram generation (CTG), which is performed by measuring beat-to-beat

intervals given by the FHS.

CTG examination and correction: This is developed in two steps, inspection and
manual correction. The former, visually performed, carefully examines abnormal
intervals in the CTG (i.e. sudden variations towards either lower or higher heart rates)
to establish whether they are caused by peaks wrongly detected, or by real variations
in the cardiac intervals. In those cases where peaks are incorrectly detected, the CTG

is manually corrected by removing wrong peaks and by inserting right peaks.

Here it is important to mention that this step is often necessary in those subjects where
the QRS positions are unavailable. In those cases, the presence of artefacts around the
FHS and the lack of a reference signal complicate the selection of the right peak,

whose wrong selection becomes evident until the CTG is generated.

CTG trend estimation, which is performed by smoothing the CTG to produce the FHR
trend over time. For this purpose, the CTG is interpolated at 4 Hz by using a spline
function. Next, the interpolated CTG is low-pass filtered by using an FIR filter with
cut-off frequency of 0.3 Hz and 20 coefficients, parameters that preserve the CTG

trend.

b) Average heart sounds morphology (avgS): This is implemented by processing the foetal
PCG as follows:

1.

Extraction of FHS: By considering results in previous work (Jiménez-Gonzalez and
James 2009b), the FHS are extracted from the foetal PCG by using a window. The
window, of length 0.3 s for S1 and 0.2 for S2, is centred at the positions detected in
Section 10.2.1.

Selection of similar FHS: Useful FHS are chosen based on their similarity, which in
this work is measured by looking at the correlation between adjacent heart sounds.
Firstly, the extracted FHS are normalised so that their maximum amplitude is one.

Secondly, adjacent FHS are compared and only those showing correlations larger than

> When using S2 it should be taken into account that the resulting FHR is likely to include not only the
beat-to-beat variations, but also systolic variations (i.e. changes in the intervals between S1 and S2 due to
chronotropic changes in the heart function).
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80% are chosen. Finally, the selected heart sounds are aligned by using their

maximum cross-correlation.

3. Averaging FHS: The mean value of the aligned FHS is calculated to produce an
estimate of the average morphology of S1 (avgS1) or S2 (avgS2) in intervals of 60 s.
Such a morphology, as stated by Zuckerwar et al. (1993), provide information about

the status of the heart valves.

10.3. Complementing foetal observations

Before going into the final analysis of the foetal parameters already obtained, it is essential to be
aware that there is still some additional information that can be collected and, most importantly,
that such information can be used to complement the foetal CTG and help perform surveillance.
This information, present in the other physiological signals recovered by SCICA as well as in
the “gold standard” signals recorded simultaneously with the abdominal phonogram (as detailed
in Chapter 5), is here collected in the form of complementary parameters that will be finally
used in the analysis and discussion of the feasibility of SCICA for antenatal surveillance.
Hence, this section gives an overview of the set of signals currently available and describes the

procedures followed to collect additional parameters of interest.

10.3.1. Set of available signals

The available signals are classified depending on the method used to obtain them. Hence, FC,
MC, MB, and N, which result from the decomposition of the abdominal phonogram, will be
from now on referred to as the estimated signals. On the other hand, the additional variables,
which were recorded simultaneously with the abdominal phonogram, will be referred to as the

reference signals.

a) The estimated signals: As may be recalled, four physiological sources are retrieved by
SCICA here, the foetal PCG, the maternal PCG and/or pressure wave, the maternal
respirogram, and noise. Such signals have been consistently retrieved by applying SCICA

to a total of 25 single-channel abdominal phonograms.

b) The reference signals: To recall Chapter 5, at the time the abdominal phonogram was
recorded, whenever possible, the abdominal ECG was recorded. Also, the FBM, the FMs,
and the maternal respirogram were recorded. The FBM and FMs signals were produced as
event markers by two observers that pressed a push-button switch whenever such
movements were spotted in US images. The maternal respirogram, on the other hand, was
recorded by using a piezoelectric sensor positioned around the maternal chest. Thus, in

those cases where the abdominal ECG was available, a total of five variables were
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measured per recording session: the abdominal phonogram, the abdominal ECG, the FBM,

the FMs, and the maternal respirogram (see Table 5.2 for more details).

10.3.2. Additional parameters of interest

Given this important set of signals is available it is essential to be cautious and avoid ambitious
and complex analysis of them (i.e. attempt to collect as many parameters as possible by means
of different signal processing approaches). Thus, by keeping in mind that the objective of the
work presented in this chapter is exploring the feasibility of SCICA for antenatal surveillance,
the quest has been focused on the recovery of simple but significant parameters reflecting the
vital signs such as FHR, maternal heart rate (MHR), and maternal breathing rate (MBR).
Additionally, the average morphology of the main heart sounds and the SNR of the PCG have
been considered as information of interest. The next paragraphs describe the methods used to

collect additional parameters from the estimated and the reference signals.

a) Beat-to-beat signal to noise ratio (SNR(»)): Whilst the observation of FHR and FHS
average morphology provide information for well-being surveillance, this research
considers that observing the SNR in the foetal PCG will determine how reliable such
information is. Hence, as a rough beat-to-beat estimation, the SNR is calculated by using
the FHS positions and the smoothed envelope e,(n). To this end, as shown in Figure 10.3,
since the FHS are represented by peaks in the envelope, the amplitude of each peak is taken
as the instantaneous signal value (4s,.;), whereas the minimum point between adjacent
peaks is taken as noise. Next, to define an instantaneous noise value (noise,,;) per peak, its
adjacent noise values (i.e. the one on the left-hand side, noise;, and the one on the right-

hand side, noisez) are averaged. Finally, the SNR(z) is calculated as

hs . (n
SNR () = 20-log,, W((l) (10.8)
val

. th
i. peak . o s
e P 1 noise = mean(noise ' ,noise )

=
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Figure 10.3. Parameters used to estimate the instantaneous SNR in the foetal PCG according to S1. The

downwards triangles point at the peaks considered as signal (hsijd), whereas the upwards triangles point

at the valleys considered as background noise (noise’g , noisej; ).
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b)

d)

In this way, by using either S1 or S2, variations in the SNR of the foetal PCG have been

collected.

Instantaneous maternal heart rate (MHR): This is calculated to sketch the maternal
status at the time of recording and observe whether it has some influence on the foetal
CTG. To obtain it, the estimated maternal PCGs were processed as in Section 10.2.1 to
detect peaks associated to the maternal heart beat and then to generate a CTG that could be

finally examined and corrected as formerly described.

Reference maternal heart rate: Calculation of this parameter is useful to judge the quality
of the CTG generated by means of the maternal PCG, at least in those cases where the
abdominal ECG is actually available. To do so, since the SNR of the maternal QRS
complexes is typically higher, the maternal QRS complexes in the abdominal ECG are

detected and then the R-R intervals are measured as follows:

1.  Band-pass filtering: Implemented by an FIR filter with cut-off frequencies at 10 and
40 Hz, it removes breathing and high frequency noise from the abdominal ECG so that
the maternal QRS is easily detected. Next, the filtered signal is processed in windows

containing 5000 samples (10 s in length) as next described

2.  Maternal QRS detection: This step detects QRS complexes that are larger than a

threshold manually established according to the window under analysis.

3. Manual correction: In cases where QRS complexes are wrongly detected, they are

manually corrected by removing artefacts and by inserting missing complexes.

Steps 2 and 3 are repeated window by window until the entire filtered ECG has been

processed and the positions of the maternal QRS complexes are known.
4. CTG generation: This is performed by measuring R-R distances.

5. CTG examination and correction: As described in Section 10.2.2, this step carefully
reviews the CTG and corrects any abnormal intervals produced by QRS complexes

wrongly detected.

Reference foetal heart rate: As in the previous case, calculation of this parameter is useful
to judge the quality of the CTG generated, this time by means of the foetal PCG. To this
end, the filtered ECG is processed window by window again, although this time to detect

the foetal QRS complexes as

1. ORS detection: This step is performed by setting a manual threshold to detect foetal
QRS complexes. This means that, in those signals where foetal and maternal
complexes have the same sign, not only foetal but also maternal complexes are
detected.
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f)

Removing maternal QRS complexes: \Whenever foetal and maternal complexes are
detected, the already known maternal positions (used to calculate MHR) are subtracted

from the overall QRS vector so that the remaining peaks are mostly foetal complexes.

Manual correction: In cases where QRS complexes are wrongly detected, they are

manually corrected by either removing artefacts or inserting missing complexes.

Steps 1, 2, and 3 are repeated window by window until the entire filtered ECG has been

processed and the positions of the maternal QRS complexes are known.

4.

CTG generation: This is performed by measuring R-R distances, this time from the

foetal complexes.

CTG examination: Again, this step carefully reviews the CTG and corrects any
abnormal intervals produced by QRS complexes wrongly detected. Here it is essential
to mention that these abnormal intervals are usually due to a maternal complex
overlapping a foetal QRS, which makes it impossible to truly establish the position of
the foetal complex. As an alternative, the position of such a missing foetal complex is

estimated as in the middle of its foetal neighbours.

Maternal breathing rate (MBR): This vital sign is calculated to observe the maternal

status and determine whether it has some influence on the foetal CTG. To do so, the entire

estimated respirogram is processed using the FFT.

Reference maternal breathing rate: This is calculated by using the FFT as well, although

this time on the reference respirogram recorded by the piezoresistive sensor.

10.4. Foetal surveillance: the collected parameters

10.4.1. The estimates of the physiological time-series

Figure 10.4, Figure 10.5, and Figure 10.6 plot the entire time-series reconstructed by

concatenating the segmented traces retrieved by SCICA from subjects 1, 2, and 3 respectively.

From top to bottom, the time and frequency representations of (a) the foetal PCG, (b) the

maternal PCG and/or pressure wave, (c) the maternal breathing, and (d) noise. In the time

domain, the unscaled and scaled versions of each time-series are depicted along with a

magnified section of the scaled signal. In the frequency domain, the spectrum and autospectrum

of each time-series are illustrated, the unscaled case by a continuous black line and the scaled

case by a dashed-dotted red line. Additionally, the values of the frequency content (S;) and

rhythmicity (R) indexes are presented.
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In general, by observing the time-series in these figures, it can be seen that the scaled
signals are more continuous than the unscaled ones (i.e. present less sudden variations in
amplitude), which is especially clear in the foetal PCG. Furthermore, as shown in Figure 10.4
(a), Figure 10.5 (a), and Figure 10.6 (a), the two main FHS (i.e. S1 and S2) can be observed in
the foetal PCG, although with different intensity. In the frequency domain, the spectra and
autospectra shapes do not show important differences between the unscaled and scaled signals,
except for the noise autospectrum, which in the scaled cases presents an additional and
prominent peak within the interval corresponding to the maternal heart rate. Also, and important
to be noticed, is that every autospectrum shows a very slow rhythm within the maternal

breathing interval (van Leeuwen et al. 2009).

In particular, by looking at the magnified section in Figure 10.4 (a), it can be seen that the
intensity of S1 is considerably larger than the intensity of S2, which makes the former more
obvious along the signal. Considering the scaled time-series, it can be observed that their
amplitude is not only more continuous, but also larger than in the unscaled signals. In addition,
as noticed in the interval between 160 and 220 s, some large-intensity peaks (i.e. spikes) are
more obvious in the scaled signal than in the unscaled one, which is a phenomenon observed in
(b), (c), and (d) as well. In the frequency domain, the overall frequency content and rhythmicity
indexes are centred at .S; = 29.3 Hz and R= 2.3 Hz for the foetal PCG, at S; = 2.0 Hz and R=1.3
Hz for the maternal PCG, at S; = 2.0 Hz and R= 0.24 Hz for the maternal breathing, and at S; =
56.7 Hz for the noise. In (b), besides the slowest rhythm, the autospectrum shows another
rhythm centred at 2.6 Hz.

In Figure 10.5, the magnified section in (a) shows that both S1 and S2 are evident, being
the former the sound with the largest intensity along the signal. This pattern can be also
observed in the magnified section in (d), where the noise time-series seems to present
information related to cardiac activities. With regards to the time-series, it can be seen that the
overall amplitude of the scaled signals is this time smaller than in the unscaled versions. In the
frequency domain, the frequency content and rhythmicity indexes are centred at S; = 27.3 Hz
and R= 2.6 Hz for the foetal PCG, at S; = 2.0 Hz and R= 1.3 Hz for the maternal PCG, at S; =
2.0 Hz and R= 0.24 Hz for the maternal breathing, and at S; = 52.7 Hz for the noise. In (b),
besides the slowest rhythm, the autospectrum shows a secondary rhythm centred at 2.6 Hz. In

(c), the autospectrum shows two secondary rhythms centred at 1.3 and 2.6 Hz respectively.
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Figure 10.4. Physiological time-series reconstructed by concatenating segmented traces retrieved by
SCICA from the abdominal phonogram of subject 1 (40 weeks of gestational age). (a) Foetal PCG, (b)
maternal PCG and/or pressure wave, (c) maternal breathing, and (d) noise. The plots on the right-hand
side represent the frequency content and rhythmicity of the unscaled (continuous black line) and scaled
(dashed-dotted red line) signals. The zoomed section shows a 20 s portion of the scaled time-series.

In Figure 10.6, the magnified section in (a) shows that the intensities of S1 and S2 change
beat-to-beat, being still S1 the sound with the largest intensity and thus easier to visualise than
S2. In the frequency domain, the indexes are centred at S; = 33.2 Hz and R= 2.6 Hz for the
foetal PCG, at S; = 2.0 Hz and R= 1.3 Hz for the maternal PCG, at S; = 2.0 Hz and R= 0.24 Hz
for the maternal breathing, and at S; = 60.6 Hz for the noise. As in previous cases, the

autospectra show extra rhythms centred in (b) at 2.6 Hz and in (c) at 1.3 and 2.6 Hz.

- 169 -



CHAPTER 10

@ N Feumcaca |
05 I FC (unscaled)

0

0.5 |

Amplitude (V)

Amplitude (dB)

- 0'5
(b)
) s
g h "‘ Wi W il I
9 ‘
g
y phed A .

Amplitude (V)
S
b oo

-35
15 L -40
0.3
@ 02 N (unscaled) AL
< O ' sop | H
o 01 m it ol
s 50 \ Iy } I-“
2 0 wof L 1\
g 01 60 \j 7
< _02 5 \
: = -70
s 0
0.2 2
-80
= £ w0
S o1
8 %
E -90 i
=
E o1 E
< 100 100
0.2 |
0 50 100 150 200 250 300 0 5010015020050 0 1 2 3 4
Time (s) Frequency (Hz) Frequency (Hz)

Figure 10.5. Physiological time-series reconstructed by concatenating segmented traces retrieved by
SCICA from the abdominal phonogram of subject 2 (36 weeks of gestational age). (a) Foetal PCG, (b)
maternal PCG and/or pressure wave, (c) maternal breathing, and (d) noise. The plots on the right-hand
side represent the frequency content and rhythmicity of the unscaled (continuous black line) and scaled
(dashed-dotted red line) signals. The zoomed section shows a 20 s portion of the scaled time-series.

Similar results have been observed on the time-series reconstructed from the other single-

channel abdominal phonograms processed in this work. They can be summarised as follows:

1. From every abdominal phonogram, four scaled time-series are reconstructed, the
foetal PCG, the maternal PCG/pressure-wave, the maternal breathing, and the noise.
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Figure 10.6. Physiological time-series reconstructed by concatenating segmented traces retrieved by
SCICA from the abdominal phonogram of subject 3 (38 weeks of gestational age). (a) Foetal PCG, (b)
maternal PCG and/or pressure wave, (c) maternal breathing, and (d) noise. The plots on the right-hand
side represent the frequency content and rhythmicity of the unscaled (continuous black line) and scaled
(dashed-dotted red line) signals. The zoomed section shows a 20 s portion of the scaled time-series.

2. The reconstructed foetal PCG shows the main FHS, S1 and S2, being S1 the sound

with the largest intensity and thus easier to visualise in the signals processed in this

research.

3. Some portions of the reconstructed noise may still contain physiological information

of cardiac origin.
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4. The time-series spectrum is characterised by a single and well-defined peak that is
centred at different frequencies depending on the physiological activity underlying the

time-series.

5. Independently of the time-series, the autospectrum always presents a very slow
rhythm centred in the maternal breathing interval. Consequently, the time-series
autospectrum is composed of more than one rhythm (either MBR and FHR or MBR
and MHR). In some cases, as discussed in Chapter 7, there might be an additional
evident rhythm centred at either 2-MHR or 2-FHR.

Table 10.2 presents the overall frequency content and rhythmicity indexes of the time-series
reconstructed from 25 single-channel abdominal phonograms processed in this research. As can

be seen, the physiological time-series in this work present the next features:

a) Foetal PCG: Its frequency content is centred at [30.5 + 2.1] Hz and, according to the
autospectrum, the FHR is centred at [2.4 £ 0.2] Hz (i.e. [144 + 12] Beats/min).

b) Maternal PCG and/or pressure wave: Its frequency content is centred at [2.0 + 0.0] Hz
and, according to the autospectrum, the MHR is centred at [1.3 = 0.2] Hz (i.e. [78 £ 12]

Beats/min).

c) Maternal breathing: Its frequency content is centred at [2.0 + 0.0] Hz and, according to

the autospectrum, the MBR is centred at [0.30 = 0.08] Hz (i.e. [18 £ 4.8] Breaths/min).

d) Noise: Its frequency content is centred at [56.0 + 1.9] Hz, which is close to the line-noise

frequency.

Now that the overall frequency content and rhythm of the reconstructed time-series have
been presented, it can be seen that some global information about foetal and maternal status can
be actually inferred from R. However, the information obtained in this way represents only an
overview about the foetal and maternal condition and thus misses valuable details about
temporal variations due to temporal changes in the general status, which reduces the possibility
to promptly detect problems in foetal oxygenation. Alternatively, as discussed in Chapter 3 and
Chapter 4, some specific information can be obtained through the analysis of the foetal PCG,
which makes it suitable to collect parameters for foetal surveillance (i.e. the beat-to-beat FHR
and FHS morphology). Also, as mentioned in Section 10.3, complementary parameters can be
collected to verify foetal observations by means of a reference FHR, MHR, and MBR. The next

two sections show the specific information collected from the signals used in this work.
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Table 10.2. Overall frequency content (S;) and rhythmicity (R) values of the sources retrieved from the
abdominal phonogram.

] Maternal PCG Maternal
Gestational Foetal PCG and/or pressure Noise

Reccl)lgding age Wave respirogram
(weeks)
S;(Hz) RMHz) S;(Hz) RMHz) S (Hz) RMHz2) S;(Hz)
1 40 29.3 2.3 2.0 13 2.0 0.24 56.7
2 36 29.3 2.6 2.0 13 2.0 0.24 52.7
3 38 33.2 2.6 2.0 1.3 2.0 0.24 60.6
4 37 31.3 2.6 2.0 1.3 2.0 0.37 54.7
5 36 29.3 2.2 2.0 11 2.0 0.24 54.7
6 36 27.3 2.6 2.0 13 2.0 0.24 54.7
7 36 27.3 2.3 2.0 1.7 2.0 0.24 54.7
8 36 29.3 2.6 2.0 15 2.0 0.37 56.6
9 38 29.3 2.3 2.0 1.1 2.0 0.37 54.7
10 36 29.3 24 2.0 15 2.0 0.24 54.7
11 38 31.3 2.1 2.0 11 20 0.37 54.7
12 34 29.3 2.0 2.0 1.2 2.0 0.37 56.6
13 38 27.3 2.7 2.0 1.5 2.0 0.37 54.7
14 40 313 24 2.0 1.2 2.0 0.24 58.6
15 40 33.2 24 2.0 1.7 20 0.24 56.6
16 36 27.3 2.2 2.0 1.1 2.0 0.24 56.6
17 36 29.3 2.3 2.0 1.2 2.0 0.24 60.5
18 33 35.2 2.6 2.0 1.2 2.0 0.49 54.7
19 36 31.3 2.1 2.0 15 2.0 0.37 54.7
20 36 31.3 2.3 2.0 13 2.0 0.24 56.6
21 29 31.3 2.3 2.0 15 2.0 0.24 56.6
22 33 33.2 2.6 2.0 1.2 2.0 0.37 56.6
23 34 31.3 2.7 2.0 1.3 20 0.24 54.7
24 37 33.2 2.6 2.0 13 2.0 0.37 54.7
25 39 31.3 2.6 2.0 15 2.0 0.37 58.6
Mean 36.3 30.5 24 2.0 1.3 2.0 0.30 56.0
Std 2.5 21 0.2 0.0 0.2 0.0 0.08 1.9
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10.4.2. The estimated foetal PCG
Figure 10.7, Figure 10.8, and Figure 10.9 depict the instantaneous FHR and some

complementary parameters collected from subjects 1, 2, and 3 respectively. In (a), the reference
CTG obtained by using the foetal QRS positions, in (b), the estimated CTG by using the
positions of S1, in (c), the estimated CTG by using the positions of S2, in (d), from top to
bottom, the signal to noise ratio of S1 and S2, and in (e), from top to bottom, the manual
markers that indicate presence of foetal breathing movements or foetal movements. In (b), the
red regions indicate segments where the CTG presents lower (on the left-hand side) and higher
(on the right-hand side) variance values. In addition, the PCG portions and thus the FHS that

gave rise to such variances are shown.
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Figure 10.7. Instantaneous foetal heart rate and some complementary parameters collected from subject 1.
(d) CTG by the foetal QRS, (b) CTG by S1, (c) CTG by S2, (d) SNR (of S1 and S2), and (e) manual
markers to indicate presence of FBM or FMs. In (b), the red region on the left-hand side indicates a small-
variance CTG section that comes from a PCG portion with evident S1s, whereas the red region on the
right-hand side highlights a large-variance section that comes from a PCG portion with unclear S1s.

By having a look at the plots in these figures, four observations can be made:

a) CTG quality: Depending on the temporal position used to generate them (i.e. the QRS, S1
or S2), the noise level (i.e. beat-to-beat variations) in the CTGs changes, being the CTG by
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QRS the least noisy and the CTG by S2 the noisiest. Also, as shown by the red regions in
Figure 10.7 (b), Figure 10.8 (b), and Figure 10.9 (b), the level of noise in the CTG changes
over time, some times to improve and others to deteriorate the quality of the signals. The
same situation can be seen in Figure 10.7 (c), Figure 10.8 (c), and Figure 10.9 (c), where
the beat-to-beat variations in some portions of the CTG by S2 are larger than the variations

in other portions of the same signal.
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Figure 10.8. Instantaneous foetal heart rate and some complementary parameters collected from subject 2.
(a) CTG by the foetal QRS, (b) CTG by S1, (c) CTG by S2, (d) SNR (of S1 and S2), and (e) manual
markers to indicate presence of FBM or FMs. In (b), the red region on the left-hand side indicates a small-
variance CTG section that comes from a PCG portion with evident S1s, whereas the red region on the
right-hand side highlights a large-variance section that comes from a PCG portion with unclear S1s.

b) FHS intensity: According to the PCG portions that produced the red regions in the CTGs
in Figure 10.7 (b), Figure 10.8 (b), and Figure 10.9 (b), the FHS intensity seems to be
directly related to the CTG quality. It can be noted that in the PCGs from where the CTG
small-variance regions were obtained, where S1 is evident. On the other hand, as shown by
the PCGs from where the CTG large-variance regions were obtained, S1 is not as obvious
as before. These observations are confirmed by the SNR of S1 plotted in Figure 10.7 (d),
Figure 10.8 (d), and Figure 10.9 (d), whose intervals with values below < 20 dB match the
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c)

d)

@

(d

intervals with larger variance in the CTGs. The same case applies to S2 which, having less
intensity than S1 in this work, presents lower SNR values and therefore gives rise to noisier
CTGs.

Foetal movements: Presence of FMs sometimes affects the SNR of the FHS, which is
especially evident in Figure 10.7. In the interval between 150 and 240 s there were some
FMs, the SNR of both S1 and S2 seems to have a slight reduction below 20 dB, which
affects the CTGs in (b) and (c) by producing larger variations that are more obvious in (b).
In this particular case it is important to highlight that, although the presence of FMs made
the CTGs noisier, once they stopped the CTG by S1 returned to its previous variations,

whereas the CTG by S2 became less noisy than before.

CTG trend: This observation is especially important for the aim of this research and is
related not to the noisiness of the CTG by FHS, but to its trend. Such a trend, independently
on the point used to produce the CTG (either S1 or S2), seems to have a behaviour that is

similar to the trend given by the reference CTG.
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Figure 10.9. Instantaneous foetal heart rate and some complementary parameters collected from subject 3.
(d) CTG by the foetal QRS, (b) CTG by S1, (¢) CTG by S2, (d) SNR (of S1 and S2), and (e) manual
markers to indicate presence of FBM or FMs. In (b), the red region on the left-hand side indicates a small-
variance CTG section that comes from a PCG portion with evident S1s, whereas the red region on the
right-hand side highlights a large-variance section that comes from a PCG portion with unclear S1s.
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Figure 10.10 shows the CTGs collected from subjects 1, 2, and 3 as well as their estimated
trends. In (a), the CTGs of subject 1, in (b), the CTGs of subject2, and in (c), the CTGs of
subject 3. In each subject, from top to bottom, the reference CTG, the CTG by S1 with its
baseline (red line), and the CTG by S2 with its baseline (red line) are plotted. As can be seen
from the trends, even though the original CTGs are noisier, the low-pass filtering described in
Section 10.2.2 effectively smoothes them. As a result, an estimate of the FHR (here referred to
as the trend), whose beat-to-beat variations better resemble the variations in the reference CTG,
is obtained. The arrows in each case indicate whenever the reference trace (i.e. CTG by QRS)

goes either downwards or upwards, the trends follow the same direction.

Figure 10.11, Figure 10.12, and Figure 10.13 plot the information finally collected from the
foetal PCG of subjects 1, 2, and 3 respectively. Such information, given by the beat-to-beat
FHR baseline and the average morphology of the FHS minute-to-minute is presented as: (a) the
trend of the CTG by S1, (b) the average morphology of S1 every minute, (c) the baseline of the
CTG by S2, and (d), the average morphology of S2 every minute. In addition, for visual

confirmation in (a) and (c), the reference CTG is shown in black colour.

As can be seen in the (a) and (c) plots on each subject, the beat-to-beat FHR obtained in this
work (i.e. by means of the estimated foetal PCG) resembles the trend given by the reference
CTG. Furthermore, and important to highlight, the CTG estimated by S1 seems to match the
reference CTG better than the CTG estimated by S2 does, which has been consistently observed
in the dataset processed in this research. Hence, when visually comparing the CTGs by S1 and
by S2 against the CTG by QRS, it is more likely to find larger and more frequent variations in
the CTG by S2 than in the CTG by S1.

On the subject of the average morphology of the FHS, the plots in (b) and (d) in Figure
10.11, Figure 10.12, and Figure 10.13 show the average patterns calculated every minute. In
each subject, by visually comparing the duration of S1 versus the duration of S2, it seems that
S1 lasts longer than S2. Now, about the average morphology over time, in subject 1, the plots in
Figure 10.11 (b) show a repetitive S1 waveform that is composed of three obvious peaks. In
subject 2, only three of five plots in Figure 10.12 (b) —corresponding to the second, third, and
fourth minutes— depict an avgS1 waveform that is also composed of three evident peaks, but
different to the avgS1 in subject 1. Finally, in subject 3, although the three plots in Figure 10.13
(b) show a repetitive avgS1 waveform, it is composed not of three, but of five peaks, which is

completely different to the avgS1 in the other subjects.

-177 -



CHAPTER 10

(a)
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Figure 10.10. Trends of the CTGs collected by means of the FHS from three subjects. (a) CTGs of subject
1, (b) CTGs of subject 2, and (c) CTGs of subject 3. From top to bottom in each case: the reference CTG,
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the CTG by S1 with its baseline (red line), and the CTG by S2 with its baseline (red line).
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Figure 10.11. Beat-to-beat foetal heart rate and average morphology of the FHS collected from subject 1.
(a) Trend of the CTG by S1 (red trace), (b) average morphology of S1 minute-to-minute, (c) trend of the
CTG by S2 (red trace), and (d) average morphology of S2 minute-to-minute. The black trace in (a) and
(c) corresponds to the reference CTG given by the foetal QRS. The number on top of each morphology
represents the number of similar sounds used in its calculation.

Regarding the average morphology of S2, in subject 1, Figure 10.11 (d) shows an avgS2
that changes from a three peaks waveform (in the first minute) to a five peaks waveform (in the
next two minutes) and then back to a three peaks pattern in the last two minutes. Also, as shown
on the top of each pattern, the number of similar sounds used to calculate every avgS2 is

considerable lower than the number of sounds used to calculate every avgS1. In subject 2, the
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Figure 10.12. Beat-to-beat foetal heart rate and average morphology of the FHS collected from subject 2.
(@) Trend of the CTG by S1 (red trace), (b) average morphology of S1 minute-to-minute, (c) trend of the
CTG by S2 (red trace), and (d) average morphology of S2 minute-to-minute. The black trace in (a) and
(c) corresponds to the reference CTG given by the foetal QRS. The number on top of each morphology
represents the number of similar sounds used in its calculation.

plots in Figure 10.12 (d) show dissimilar patterns from where it is difficult to find a typical
morphology. In this case, what seems to consistently appear minute-to-minute is a large peak
centred at 100 ms. In subject 3, Figure 10.13 (d) shows an average morphology that presents
five peaks in the first minute, three peaks in the second minute, and five peaks again in the last
minute of recording can be seen. Additionally, like in subject 2, the number of similar sounds

used to calculate avgS2 is lower than the number of sounds considered to calculate avgS1.
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Figure 10.13. Beat-to-beat foetal heart rate and average morphology of the FHS collected from subject 3.
(a) Trend of the CTG by S1 (red trace), (b) average morphology of S1 minute-to-minute, (c) trend of the
CTG by S2 (red trace), and (d) average morphology of S2 minute-to-minute. The black trace in (a) and
(c) corresponds to the reference CTG given by the foetal QRS. The number on top of each morphology
represents the number of similar sounds used in its calculation.

Similar results have been observed in the morphologies estimated from the other signals in

the dataset, i.e. different morphologies, not only amongst cases, but also over time in the same

signal have been found.
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10.4.3. Complementary information

As mentioned in Section 10.3, since different signals are available in this work, it is suitable to
achieve a wider perspective of the antenatal status (at least at the time of recording) by
complementing the information collected from the foetal PCG with maternal vital signs such as
the heart and breathing rates. Thus, as part of this study, Figure 10.14 depicts the beat-to-beat
HR collected from the foetus and the mother in the cases corresponding to (a) subject 1, (b)
subject 2, and (c) subject 3. These traces, collected by means of the abdominal ECG (due to the
availability of the signal in these subjects), show the foetal CTG in black colour and the

maternal CTG in blue colour.

By looking at these traces, it can be seen that the maternal heart rate remained within a
physiologically reasonable range (Ogueh ez al. 2009) during the recording sessions. In addition,
the periodic information clearly identifiable along the whole trace in (a), mostly evident during
the first and third minutes in (c), and apparently missing in (b), oscillates at about 0.24 Hz in
these three cases. For the other signals, whenever the MHR was collected (either from the
abdominal ECG or from the estimated maternal PCG), such oscillations have been found to

range between 0.24 and 0.49 Hz.

Figure 10.15 illustrates segments of the maternal respirogram of (a) subject 1, (b) subject 2,
and (c) subject 3. In each case, the trace on the top represents the reference signal (i.e. recorded
by a piezoelectric sensor and multiplied by minus one for visual comparison), whereas the two
traces on the bottom represent, in blue colour, the signals estimated in this work (i.e. from the
abdominal phonogram) and, in red colour, a low-pass filtered version that is free of heart rate

information (i.e. filtered at 0.5 Hz).

As can be seen in the estimated respirograms, they contain information from maternal
cardiovascular origin. This is especially clear in (b) and (c) and means that some further
processing is necessary on the estimated respirogram to remove undesirable information and
ease the visual comparison against the reference signal. After low-pass filtering the signal at 0.5
Hz to produce the red trace, it can be noticed that the filtered signal better resembles the slow
oscillations given by the reference respirogram, which has been consistently observed along the

whole dataset.
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Figure 10.14. Cardiac information collected by means of the abdominal ECGs recorded from (a) subject
1, (b) subject 2, and (c) subject 3. In each case, two beat-to-beat heart rate traces are presented: the foetal

CTG (in black colour) and the maternal CTG (in blue colour).
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Figure 10.15. Segments of the maternal respirogram of (a) subject 1, (b) subject 2, and (c) subject 3. In
each case three traces are presented: the black trace represents the reference signal recorded by a
piezoelectric sensor (multiplied by minus one for visual comparison), the blue trace corresponds the time-
series estimated in this work, and the red trace is a low-pass filtered version of such an estimated signal.
On the right-hand side, the spectrum of the reference and estimated respirograms given by the FFT.
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10.4.4. Towards the final analysis

Figure 10.16 summarises the temporal variations in the statistics of the FHR in those cases
where the abdominal CTG is available (i.e. fifteen cases). In each case, the mean and standard
deviation of the FHR by QRS (in black colour) and the filtered FHR by S1 (in red colour) are
plotted in intervals of 30 s. The number on the left-hand side of each case represents the
recording ID as in Table 10.3, whereas the number below every couple of bars corresponds to

the average SNR in that interval.

As can be seen in all cases, the trend given by the reference signal is followed by the
estimated FHR, i.e. whenever the reference FHR increases, the estimated FHR increases and
vice versa. The variance, on the other hand, does not show such a nice and steady behaviour, in
fact, as already stated, it may significantly change over time. In this study, the variance of the
estimated FHR has been larger than the variance of the reference FHR, which is especially
obvious in cases 6, 10, 14, 15, 23, and during the last minute in case 18. However, as noticed in
case 7, it is possible for the estimated FHR to have less variance than the reference FHR.

Regarding the signal to noise ratio in these cases, as observed, it is usually lower than 20 dB.

Table 10.3 summarises the gestational age, the SNR, and the mean values of the vital signs
collected from the signals processed as described in this chapter, i.e. the estimated beat-to-beat
FHR, the reference beat-to-beat FHR, the estimated beat-to-beat MHR, the reference beat-to-
beat MHR, the estimated MBR, and the reference MBR.

In the foetal case, as can be seen in the fourth and fifth columns, the instantaneous FHR has
been collected from 21 out of the 25 estimated foetal PCGs, but only 15 cases have been
verified by a reference FHR (shown in italics). On the other hand, in the maternal case, as
shown in the sixth and seventh columns, it has been possible to collect the MHR in 21 cases
(from 18 estimated maternal PCGs and from the 15 available abdominal ECGs), but only 12
were validated by a reference MHR (shown in italics). Regarding the MBR, as seen in the
eighth and ninth columns, it has been suitable to collect and confirm the overall information by
using the maternal respirogram for all cases in the dataset (although in some cases the maternal
respirogram might not have been properly recorded). Thus, amongst the 25 cases studied in this
research, only eight (i.e. 2, 3, 5, 7, 10, 16, and 25) show small differences in the overall rates

calculated from the estimated and the reference respirograms.
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Figure 10.16. Mean and standard deviation of the FHR measured by the foetal QRS and by S1 in fifteen
cases. Each bar represents the mean and standard deviation of the FHR within an interval of 30 s, black
colour for the FHR by QRS and red colour for the FHR by S1. The number on the left-hand side of each
case indicates the recording 1D, whereas the number below each couple of bars indicates the average SNR
in that interval.
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Table 10.3. Mean values of the heart and breathing rates collected from the sources estimated by SCICA
and some reference signals. The age is expressed in weeks, the SNR is expressed in dB, the heart rate is
expressed in beats/min, and the breathing rate is expressed in breaths/min. The italic values in the FHR
and MHR columns indicate those cases from where it was possible to collect heart rate values from both,
the estimated signal and the reference signal.

Foetal Maternal

D Age SNR Estimated Reference Estimated Reference Estimated Reference

FHR FHR MHR MHR MBR MBR
1 40 22 142.66 142.67 78.27 78.26 13.8 13.8
2 36 24 154.22 154.23 80.40 80.38 16.2 17.4
3 38 20 149.71 149.70 80.64 80.61 15.6 12.6
4 37 16 151.00 -- 85.49 - 20.4 20.4"
5 36 23 127.83 127.84 63.01 63.01 16.2 13.8
6 36 15 145.66 145.64 73.89 73.90 16.2 16.2
7 36 17 141.45 141.42 94.74 94.72 13.8 12.6
8 36 16 119.08 - 89.07 - 22.2 22.2"
9 38 19 135.14 -- -- -- 21.6 216"
10 36 19 148.49 148.46 89.73 89.72 16.2 13.8
11 38 18 133.96 - - - 21.6 21.6"
12 34 - - - 7357 - 19.2 19.2
13 38 -- -- - 85.83 - 21.0 21.6"
14 40 16 145.01 145.06 - 79.55 14.4 14.4
15 40 16 146.38 146.40 - 79.34 14.4 14.4
16 36 18 136.34 136.37 61.51 61.51 16.8 13.8
17 36 23 142.52 142.52 - 77.08 16.2 16.2
18 33 17 162.31 162.30 75.89 75.89 27.6 27.6
19 36 - - - 93.01 - 27.6 27.6"
20 36 16 142.74 142.76 83.81 83.81 13.8 13.8
21 29 17 131.02 -- -- -- 16.2 16.2"
22 33 19 148.26 148.29 72.87 72.89 25.8 25.8
23 34 13 155.74 155.70 81.43 81.42 12.6 12.6
24 37 19 152.77 - 83.58 - 20.4 20.4"
25 39 -- -- - -- - 20.4 17.4"

-- Indicates that the datum is missing either because the abdominal ECG is unavailable or because the methodology described in this chapter did not

manage to collect it from the estimated PCGs, * indicates that the signal presents quantisation problems.
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Table 10.4 presents the statistical tests conducted on the FHR (for N= 15 cases), the MHR
(for N= 12 cases), and the MBR (for N= 25 cases) values in Table 10.3. As can be seen, the
paired r-tests show that there are not significant differences (p > 0.05) between the mean values
obtained from the signals estimated by SCICA and the mean values obtained from the reference
signals, i.e. the mean values of the parameters collected from the estimated signals are likely to

be equivalent to the mean values obtained from the reference signals.

Table 10.4. Paired #tests of the mean FHR, MHR, and MBR collected from the signals estimated by
SCICA and the reference signals used in this research. The heart rate is expressed in beats/min, whereas
the breathing rate is expressed in breaths/min.

Foetal Maternal
Estimated Reference  Estimated Reference Estimated Reference
FHR FHR MHR MHR MBR MBR
Mean 145.95 145.96 78.02 78.01 18.41 16.13
Std 8.16 8.15 9.63 9.62 4.32 452
N 15 12 25
p-value p=0.6946 p=0.1708 p=0.0544

Finally, regarding the concern raised in Section 9.1.3 about the performance of the data-
driven filters learnt by SCICA versus the performance of a “general” filter, Table 10.5 presents
the mean FHR values collected from the reference signal (i.e. the abdominal ECG), the PCG
estimated by SCICA, and the PCG obtained by filtering the abdominal phonogram using a
“general” FIR filter (50-order band-pass filter with cut-off frequencies of 18.8 and 44.5 Hz, i.e.
empirically filtered®). In addition, the table presents (1) the statistical test conducted on the
mean FHR values collected from the empirical PCG (for N= 15 cases) and (2) the mean square
error (MSE) values obtained when comparing the FHR collected from the reference signal with
the FHR collected from the PCG estimated by the empirical filter and with the FHR collected
from the PCG estimated by SCICA. As can be seen, the #test shows that the mean FHR values
collected from foetal PCGs extracted by a general filter (i.e. empirical) are significantly
different (» < 0.05) to the mean FHR values obtained from the reference signal given by the
abdominal ECG. In other words, when collected from empirically filtered PCGs as in this work,

the mean values of FHR are unlikely to be equivalent to the mean values of FHR given by the

® The order of the filter has been chosen to match the order of the filters learnt by SCICA (m= 50) and the
cut-off frequencies have been set according to the frequency interval used to validate foetal IC,s in
Chapter 8.
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abdominal ECG. Regarding the MSE values, it can be seen that the error values obtained from
the foetal PCG by SCICA are consistently lower than the values obtained from the empirical
PCG, which means that the level of variations (i.e. noisiness) introduced when collecting the
FHR from the PCG by SCICA is more likely to be lower than the level of variations introduced
when collecting the FHR from an empirical PCG. Thus, when talking about measuring FHR, it
must be taken into account that, even though the mean FHR values collected from the empirical
PCG might seem as closer to the reference values as the mean values collected from the PCG by
SCICA are, the FHR estimated from the empirical PCG is more likely to present larger errors
than the FHR estimated by the PCG by SCICA.

Table 10.5. Mean and mean square error (MSE) values of the FHR collected from the reference signal
(i.e. the abdominal ECG), the PCG estimated by SCICA, and the PCG obtained by applying a general
filter to the abdominal phonogram (i.e. empirically filtered). Additionally, for the values collected from
the empirical PCG, the paired #-test.

Abdominal ECG Foetal PCG Foetal PCG
(reference) (empirically filtered) (by SCICA)
Mean Mean MSE Mean MSE
(beats/min) (beats/min) (beats?’min®)  (beats/min) (beats¥/min?)
142.67 143.12 33.22 142.66 30.99
154.23 154.52 15.04 154.22 13.73
149.70 150.44 39.03 149.71 25.26
127.84 128.00 17.54 127.83 11.38
145.64 147.75 153.90 145.66 151.00
141.42 141.64 45.02 141.45 35.09
148.46 148.72 29.61 148.49 18.28
145.06 146.44 196.35 145.01 153.31
146.40 148.16 239.39 146.38 182.69
136.37 137.37 75.51 136.34 59.51
142.52 142.74 15.68 142.52 11.29
162.30 164.47 264.58 162.31 155.75
142.76 143.49 60.38 142.74 44.03
148.29 149.21 96.61 148.26 74.70
155.70 160.08 718.09 155.74 644.02
Mean 145.96 147.08
Std 8.15 8.79
N 15
p-value p=0.0018
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10.5. Foetal surveillance: is SCICA a suitable approach?

This chapter considers the methodology used to collect information for well-being surveillance
by means of the physiological sources retrieved by SCICA. For this purpose, three stages were
implemented, first, the segmented sources retrieved by SCICA in Chapter 9 were concatenated
to reconstruct the entire time-series underlying the abdominal phonogram, which have been
identified as the foetal PCG, the maternal PCG/pressure-wave, the maternal respirogram, and
noise. Second, the foetal PCGs were further analysed to collect information about foetal status
in the form of beat-to-beat foetal heart rate and average morphology of the FHS. Third, the
references signals (abdominal ECGs, maternal PCGs/pressure-waves, and maternal
respirograms) were processed to calculate the foetal and maternal heart rate as well as the
maternal breathing rate. The FHR was calculated for verification purposes by producing a
reference signal, whereas the maternal rates were calculated for becoming familiar on the
maternal status —by finding the beat-to-beat MHR and the breathing rate—, and their influence on

the foetal condition (if any).

Results are promising, the entire time-series of the sources underlying the abdominal
phonogram have been reconstructed and further processed to obtain information of interest, not
only foetal, but also maternal. Moreover, as seen in Table 10.4, the analysis of such information
has shown that the mean beat-to-beat FHR estimated from the foetal PCG, the mean beat-to-
beat MHR estimated from the maternal PCG, and the overall breathing rate estimated from the
maternal respirogram are likely to be equivalent to the values provided by the reference signals,
which is especially significant since the signals have been retrieved from the noisy abdominal
phonogram. Hence, as far as this preliminary study has gone, it seems that the signals retrieved
by SCICA from the abdominal phonogram are likely to become a suitable alternative for

antenatal well-being surveillance. The following sections discuss these results in more detail.

10.5.1. The scaling-concatenating procedure

In the first stage, results from 25 abdominal phonograms show entire time-series that are less
dependent on the amplitude of the segmented traces used to reconstruct them. Consequently, the
amplitude of the reconstructed signals is currently less likely to present abrupt variations over
time, which means that the scaling-concatenating methodology used in this research is
managing to correct the energy uncertainty produced by ICA, at least partially. This can be seen
in Figure 10.4, Figure 10.5, and Figure 10.6 where, even though some sudden variations are still
present in the scaled signals, their intensity and incidence are considerably lower than in the

unscaled versions, which is a promising result for a first attempt.

The scaling-concatenating method is fast, although it still needs further development to

decrease the side-effects that the scaling may have on the reconstructed time-series: overall
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attenuation and spikes enlargement. The overall attenuation, as observed in Figure 10.5, reduces
the amplitude of the scaled signal in comparison to the unscaled one. On the other hand, the
spikes enlargement, as seen in the interval between 160 and 220 s in Figure 10.4, magnifies
some “already large-amplitude” components in the signal. Even though the amplitude of the
scaled signals is steadier than in the unscaled versions, there is a possibility for the
reconstructed signals either to be fully attenuated or to present some significant spikes. Here, a

closer analysis of these cases has shown that:

a) The overall attenuation, produced by scaling factors lower than one during the
concatenation process, appears in those cases where the area of the first segment is lower
than the area of the second segment and becomes a trivial issue that should be easily
corrected by being certain that, at least for the first couple of segments, the scaling factor is
larger than one. So far, this amplitude issue does not seem to harm the analysis currently
performed, although further research is still necessary to evaluate the limitations, if any, of

the scaling methodology used in this research.

b) The spikes enlargement is due to a scaling factor larger than one and is particularly
magnified in those cases where the main characteristics of s can be described as (1)
energy considerably lower than in s; and (2) composed of some large-amplitude spikes.
Thus, when the scaling factor is calculated, it becomes significantly larger than one because
of (1) and, since it is equally applied to sz, the result is a scaled segment that, because of

(2), presents enlarged spikes.

These side-effects have been seen in some reconstructed time-series and, at least in this
preliminary study, their presence have not become a major problem at the time of collecting the
heart rate, mainly because of the normalisation step in the procedure for peaks detection.
Clearly, for more ambitious implementations, like automatic thresholding, such a normalisation
might not be enough to deal with the spikes enlargement effect. Additionally, since the longest
recording time in this study is 5 min, is it impossible to predict the performance of this scaling-
concatenating methodology on long-recording conditions, which means that further research

needs to be conducted on the matter of reconstructing entire time-series.

10.5.2. The estimates of the physiological time-series: a content overview

The scaling-concatenating methodology, in spite of its side-effects, allows one to reconstruct
entire time-series from where information of interest has been collected, the next paragraphs
will focus on discussing the potential of using such information for well-being surveillance

purposes.
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Let this section start by looking at Table 10.2, which provides a general characterisation of
the reconstructed time-series by presenting their frequency content and rhythmicity. As can be
seen, and expected due to the SCICA implementation, the main part of the energy and rhythm
of the time-series recovered from the abdominal phonogram ranges in specific intervals
depending on the physiological activity driving the time-series. Thus, as shown in the last seven
columns, the maternal respirogram is the signal with the lowest frequencies (S; = 2.0 Hz and R=
0.30 Hz), followed by the maternal PCG/pressure-wave (S; = 2.0 Hz and R= 1.3 Hz), the foetal
PCG (S;=30.5 Hz and R= 2.4 Hz), and the noise (S; = 56.0 Hz).

The rhythms in these underlying signals, as discussed in Chapter 8, agree with well-known
physiological intervals at pregnancy (Guijarro-Berdinas et al. 2002; Ogueh et al. 2009; van
Leeuwen et al. 2009). Their frequency content, on the other hand, have not been intensively
researched, at least for the signals recovered from the abdominal phonogram. Consequently,
corroboration of the values of S; in Table 10.2 becomes a difficult task that, in the case of the
foetal information, was performed by looking at works where the recorded foetal PCG has been
studied (Ruffo et al. 2010; Talbert et al. 1986; Zuckerwar et al. 1993). In such works, the
authors reported peak values centred at 30 Hz for S1 and at 75-100 Hz for S2 (Talbert et al.
1986), at 23 Hz for S1 and at 19 Hz for S2 (Zuckerwar et al. 1993), and between 37 Hz to 54 Hz
for S1 (Ruffo et al. 2010). Hence, since the frequency content of the foetal PCGs estimated in
this research has been typically centred at about 30 Hz, it means that S1 is the most
representative heart sound in the signals retrieved in this research, which corroborates the visual

observations of the zoomed sections in Figure 10.4 (a), Figure 10.5 (a), and Figure 10.6 (a).

The fact that a single number like S; has consistently shown typical values for cases where
the foetal PCG is mainly composed of S1 seems promising, especially because it might quickly
provide an idea of the main information enclosed in the signal (i.e. S1, S2 or noise). Ideally, if
typical S; values for dominant S1s and dominant S2s were identified, then the procedure for
collecting information could be focused on the detection of the most representative heart sound
in the signal, which would save processing time. Unfortunately, since for all the foetal PCGs in
this work the dominant heart sound is S1, this idea will remain as a possibility, at least for the

research described in this thesis.

10.5.3. The estimated foetal PCG as a source of specific information
As described in Section 10.2, the estimated foetal PCG was further analysed to obtain

information in the form of the instantaneous heart rate and the average morphology:

a) The instantaneous FHR: Initially collected from to subjects 1, 2, and 3, showed that
measuring the beat-to-beat FHR by using S1 (i.e. CTG by S1) and S2 (i.e. CTG by S2) was
possible. The results, depicted in Figure 10.7 (a) and (c), Figure 10.8 (a) and (c), and Figure
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b)

10.9 (a) and (c), have shown that both estimates are more likely to present larger beat-to-
beat variations than the reference CTG (i.e. CTG by QRS). Such variations, here referred to
as noisiness, have been found to be larger and more frequent in the CTG by S2 than in the
CTG by S1, which means that the SNR of the heart sounds is more likely to be an

important factor for the purpose of measuring the beat-to-beat intervals.

To deal with the noisiness problem, and aiming to produce an estimated CTG more similar
to the reference CTG, the CTGs by S1 and by S2 were low-pass filtered to obtain their
trend (i.e. the long-term variations). The resulting signals, illustrated in Figure 10.10, are
more alike to the trend of the reference CTG, which can be better seen in Figure 10.11 (a)
and (c), Figure 10.12 (a) and (c), and Figure 10.13 (a) and (c). However, as can be noticed,
the filtered CTG by S2 is still noisier than the filtered CTG by S1 and therefore noisier than
the CTG by QRS. Moreover, the noisiness in the CTG by S2 has turn into slow oscillations
that might be easily taken as normal variations and lead to wrong interpretations about
foetal status, which is an inconvenient outcome. Based on these results, and knowing that
lower SNR values of S2 were likely to persist in the others foetal PCGs, the calculation of
the instantaneous FHR by means of S2 was excluded of this study (at least until a more

robust CTG estimation becomes available).

The average morphologies of the FHS (avgS1 and avgS2): As seen in Figure 10.11 (b)
and (d), Figure 10.12 (b) and (d), and Figure 10.13 (b) and (d), they present variations over
time and amongst signals that make it difficult to talk about a consistent waveform (i.e. a
characteristic acoustic signal). On the other hand, it has been consistently observed that (1)
avgS2 changes a lot more than avgS1 over time and (2) that the number of sounds used to
calculate avgS2 is considerable lower than the number of sounds used to calculate avgS1.
This means that, according to the similarity criterion, S2 is significantly changing over time
in the signals, probably due to its lower SNR, which makes it easily distorted by

background noise and therefore unreliable for this study.

On the matter of S1, results herein might look promising since the waveform does not seem
to change a lot over time. However, in those foetal PCGs where the SNR of S1 is lower,
avgS1 shows the same behaviour of avgS2 (i.e. morphological variations over time and a
significant reduction in the number of sounds used in the calculation), which makes it also

unreliable for this study.

Now, although finding acoustic signatures related to the FHS would have been valuable for
surveillance purposes (as it reveals the heart valves condition), it was impossible for this
research to achieve such a goal. Certainly, since this study was based only on the

observation of the temporal features of avgS, it probably missed some details, which means
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that further research must be conducted on the study of the average morphology so that
significant features can be found (e.g. in frequency domain or in time-frequency domain).
This quest will be left as part of the future work and, from now on, the discussion will focus

on the foetal information that has shown the most consistent behaviour, i.e. the CTG by S1.

Once the analysis of the information collected from the foetal PCG has pointed at the beat-
to-beat FHR by S1 as the most consistent parameter in the dataset, it is time to proceed towards
some quantitative analysis by using Figure 10.16 and Table 10.3. In Figure 10.186, it is possible
to observe the statistics of the CTG by S1 over time for the fifteen cases whose abdominal ECG
was available. In addition, the SNR of S1 is presented in the form of an average value. As can
be seen, whilst the mean values between the reference and the CTG by S1 are similar over time,
the standard deviation of the latter is larger’ and, additionally, changes over time depending on
the SNR of S1. Thus, according to this figure, the larger the SNR of S1, the closer the variance
of the CTG by S1 to the variance of the reference signal and, most importantly, to a reliable
observation of variations in the heart rate due to the foetal condition (i.e. foetal well-being). In
particular, it has been observed that SNR values larger than 20 dB are good enough to produce
estimates that are similar to the reference, although it needs to be tested on a larger dataset

before the definition of the definitive value can be achieved.

Table 10.3 summarises the foetal and maternal vital signs collected in this study, which
makes it suitable to (1) study the values finally obtained by means of the signals estimated by
SCICA, (2) verify such values by using the reference signals, and (3) look for correlations
between foetal and maternal status or between the SNR and the gestational age. Here, to make
the analysis easier, it will be performed by focusing on two types of information in the table, the
behaviour of the data in each column (i.e. the vital signs in the dataset) and the presence/absence

of correlations/influences between columns.

a) The vital signs: As seen in the table, it was impossible to obtain the beat-to-beat heart rate

for all cases, both foetal and maternal.

1.  The estimated FHR: The SNR of the estimated PCGs in some cases was so low that
the current methodology did not manage to detect the FHS, which reduced the number
of cases to study in the fourth column from 25 to 21. Amongst these 21 cases, 15 were

corroborated by means of the abdominal ECG, which has shown that (i) it is feasible

"' Subject 7 could be thought as an exception of this statement, which makes it imperative to highlight
that, in this particular case, the signal to noise ratio of the foetal QRS in the abdominal ECG was
considerably lower than in the other cases. Consequently, although the CTG by S1 in this case is less
noisy than the reference, the SNR of S1 is very low as well, which means that the standard deviation of
this CTG is not reliable at all.
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to use S1 for estimating the beat-to-beat FHR and (ii) the quality of the CTG depends
on the SNR of S1.

Regarding the six unverified cases, three of them presented standard deviations larger
than 30 beats/min, which indicates an important level of noise in their CTGs.
Conversely, and important to highlight is case 24, which presented one of the lowest
standard deviation in the whole dataset and resulted from a PCG processed without
neither visual help by the QRS nor manual correction. In fact, this case is particularly
promising for this research since shows the possibility for SCICA to take a noisy
abdominal phonogram and truly estimate a foetal PCG that can be easily processed to
measure the instantaneous FHR and thus, perform foetal surveillance. The question
that raises now is how to increase the probability of cases with such a nice result,
which points the attention at the recording setup, whose improvement would certainly

enhance the final outcome.

2. The maternal vital signs: Collected to gain perspective on the maternal status, are
shown in columns sixth, seventh, eighth, and ninth in the form of mean heart and

breathing rates.

As seen in the sixth and seventh columns, amongst the 25 cases in this study, the
instantaneous MHR was obtained from 21 of them, fifteen by means of the abdominal
ECG and 18 by means of the maternal PCG/pressure-wave estimated in this work,
which indicates the possibility of using this latter signal to monitor the MHR,
especially whenever the pressure wave is evident. Clearly, since the number of cases
is this study might not be representative enough, further research on a larger dataset
will have to be implemented on the matter of evaluating the use of this signal to

estimate the instantaneous MHR.

On the subject of the maternal breathing rate, columns eight and nine show that the
FFT made it suitable to obtain the MBR from all the respirograms in the dataset, both
the estimated and the reference signals. Moreover, it has been seen that the values
calculated from the estimated signals are equivalent to the reference values, which is
statistically shown in Table 10.4. However, since such MBR values were calculated as
an overall index rather than a breath-to-breath one, further research is still needed to
explain why some particular cases in Table 10.4 (i.e. 2, 3, 5, 7, 10, 16, and 25) gave
different rates when collected from the estimated signals than when collected from the

reference signals.

b) The influences/correlations: As formerly mentioned, the purpose of collecting additional

parameters was to look for any influences on the estimated foetal CTG that would help

-195-



CHAPTER 10

verify or perhaps understand its behaviour. Thus, three correlations were explored, the
influence of the maternal status on the foetal CTG, the influence of the SNR on the foetal

CTG, and finally, the influence of the gestational age on the foetal CTG. Thus

1. In the maternal-foetal case, current results do not make evident any sort of influence
from the maternal activity on the foetal status, neither from the maternal cardiac nor
from the maternal breathing activities. The values in the table do not show any

correlation between the maternal rates with the foetal FHR.

2. In the SNR-foetal case, as previously discussed, the quality of the CTG by S1 is likely
to depend on the SNR of S1.

3. In the gestational age-foetal case it was unsuitable to find any correlation, neither
between the gestational age versus the SNR of S1 nor between the SNR of S1 versus
the FHR. Hence, according to these results, the gestational age does not say anything
about the possible SNR of S1 and therefore the CTG quality. In other words, and
totally unexpected, larger gestational ages do not guarantee larger SNR of S1, which
raises again the question of what to do in order to increase the number of recordings

with outcomes similar to case 24.

Finally, after statistically testing the information collected in this chapter (Table 10.4), it
can be said that the signals retrieved by SCICA from the abdominal phonogram are likely to be
useful for antenatal surveillance purposes. In particular, as far as the study described in this
chapter has gone, it has been observed that the mean values of the heart and breathing rates
collected from the signals estimated by SCICA are statistically equivalent to the values given by
the reference signals used in this work. Also, by using the mean beat-to-beat FHR values
collected from the foetal PCGs retrieved by (1) SCICA and (2) an empirical filter (Table 10.5),
it has been seen that the mean FHR collected from the signals retrieved by SCICA is
statistically equivalent to the mean FHR collected from the abdominal ECG. Conversely, the
FHR collected from the signals retrieved by the empirical filter has been statistically different to
the FHR collected from the abdominal ECG. Thus, although further research on a larger dataset
must be performed, the results achieved in this work show the feasibility of performing
antenatal well-being surveillance by means of the single-channel independent component

analysis approach studied in this research.

10.6. Summary

The work described in this chapter studied the possibility of collecting information for well-
being surveillance from the physiological sources retrieved by SCICA. For this purpose, the

segmented traces retrieved by SCICA were concatenated to reconstruct entire time-series
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corresponding to the foetal PCG, the maternal PCC/pressure-wave, the maternal respirogram,
and noise. Next, the signals were further processed to obtain the beat-to-beat FHR, the average
morphology of the FHS, the beat-to-beat MHR, and the MBR. Statistical tests on 15 out of 25
cases showed that the foetal PCG retrieved by SCICA provide estimations of the mean beat-to-
beat FHR values (by using S1) that are equivalent to the mean beat-to-beat FHR values given by
the abdominal ECG. In addition, it was observed that the CTG by S1 becomes more similar to
the CTG by QRS as long as the SNR of S1 is larger than 20 dB, behaviour that in the current
dataset was independent on the gestational age. Regarding the maternal parameters, the MBR
was successfully obtained in all 25 cases, whereas the instantaneous MHR was easily obtained
from those maternal PCGs whose pressure-wave was evident. Thus, although further research
needs to be done, it can be said that the signals recovered by SCICA from the abdominal

phonogram are promising sources of information for antenatal well-being surveillance.
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11.1.Conclusions

Today, it is generally accepted that current methods for biophysical antenatal surveillance do
not facilitate a comprehensive and reliable assessment of foetal well-being. Alternatively, there
is continuing development of existing technologies and research into new non-invasive methods
that aim to improve antenatal monitoring procedures. These non-invasive methods rely on the
detection of information regarding the cardiac function along with foetal activity, which is done
by using passive transducers that sense electric, magnetic or vibration signals. Here, attention
has been paid to the vibrations recorded by positioning an acoustic sensor on the maternal
womb, i.e. the abdominal phonogram. The signal, recorded in a single-channel configuration,
contains information about foetal activity, but hidden by maternal and environmental
interferences whose characteristics turn the extraction of foetal information into a challenging
task.

The research presented in this thesis studied, for the first time, Single-Channel Independent
Component Analysis (SCICA) as an alternative signal processing approach to retrieve

information for antenatal foetal surveillance from the single-channel abdominal phonogram.

The study, conducted through the development of three SCICA implementations, has
produced a methodology that successfully exploits the time-structure in the abdominal
phonogram for decomposition purposes (Jimenez-Gonzalez and James 2008b; Jiménez-
Gonzélez and James 2009; Jiménez-Gonzdalez and James 2010b). As a result, the methodology
implemented in this work not only retrieves estimates of the sources underlying the noisy
abdominal phonogram, but also identifies their physiological origin, which are essential
contributions of this research (Jiménez-Gonzéalez and James 2010a; Jiménez-Gonzalez and
James 2010b). Indeed, as results from 25 noisy single-channel abdominal phonograms show, the

current implementation of SCICA has consistently managed to retrieve estimates of the sources
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related to the foetal cardiac activity, the maternal cardiovascular activity, the maternal

breathing activity, and the noise or noisy activity (Jiménez-Gonzélez and James 2010b).

In this outcome two facts were particularly remarkable. Firstly, that the cardiac information
from maternal and foetal origins was consistently retrieved in separate traces by SCICA (as
maternal cardiovascular and foetal cardiac). Secondly, that each trace was aligned with the
maternal and foetal QRS complexes respectively. The former was a significant result in terms of
separation performance, especially because the maternal cardiovascular activity may
temporarily overlap the foetal cardiac activity (like the maternal QRS overlaps the foetal QRS in
the abdominal ECG), and the most outstanding feature is that it was achieved by using a single-
channel methodology. The latter was helpful in terms of physiological interpretation and made
it possible to infer that (a) the maternal cardiovascular trace was more likely to represent the
maternal phonocardiogram (PCG) and/or the pressure wave, whereas (b) the foetal trace was
more likely to represent the foetal PCG, a signal where the main foetal heart sounds (FHS), S1

and/or S2, can be seen.

These results were promising in terms of decomposing the single-channel abdominal
phonogram. Most importantly though, they showed that additional developments were still
necessary in order to (1) improve the separation stage and (2) objectively identify the separate
components in the grouping stage (Jimenez-Gonzalez and James 2008a; Jimenez-Gonzalez and
James 2008b; Jiménez-Gonzalez and James 2009). These are typical challenges for BSS
methodologies and require further research on the signals of interest in order to find a suitable
solution. Here, as already mentioned, the solution of both problems was achieved by exploiting
the rich time-structure in the abdominal phonogram. In the separation stage, it was performed
by using TDSEP, an implementation of ICA that in this work produces a spectral
decomposition of the abdominal phonogram (Jimenez-Gonzalez and James 2008b). Next, for
the grouping stage, a methodology was developed to disclose the rhythmic patterns in the ICs
and thus, to automatically identify the physiological processes underlying the separate

components (Jiménez-Gonzélez and James 2010b).

Arriving to a solution that not only separates components, but also identifies their origin
was one of the most important achievements in this research and, because of that, deserves
further attention of the procedure followed and its outcome. In fact, the task was especially
challenging since previous studies on the components underlying the abdominal phonogram
were unavailable. As a solution, as soon as the separation stage was enhanced by TDSEP —in
the second implementation of SCICA- so that the ICs were available, this work proceeded
towards the most natural option, i.e. an extensive study of the components separated by TDSEP.
Hence, four different methods for time-series analysis were incorporated to obtain meaningful

features that, for the first time, revealed valuable characteristics of the components separated
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from the abdominal phonogram by TDSEP: (1) the ICs are spectrally disjoint, (2) the ICs are
sorted according to their frequency content, (3) the slowest 1Cs are more likely to present strong
regular patterns, and (4) the regular patterns in the ICs are driven by well-known physiological

processes, i.e. the maternal breathing rate, the maternal heart rate, and the foetal heart rate.

The implications of the findings from this research were immediately evident. First, since
the ICs were sorted according to their frequency content —which in this work matched the
physiological relevance—, it was clear that TDSEP was actually removing the permutation
ambiguity of ICA. Moreover, because the components were spectrally disjoint and consistently
arranged from higher to lower frequency, it was possible for this work to learn the typical
central frequencies of the physiological sources underlying the abdominal phonogram
(Jiménez-Gonzalez and James 2010a). Second, since the strongest regular patterns were
retrieved in the slowest ICs, it was clear that amongst the m components separated by TDSEP,
only some were physiologically relevant and therefore suitable for recovering information of
interest. Most importantly, because the rhythms of such patterns depended on the physiological
process underlying the ICs, their quantification made it possible to objectively establish whether

an IC was foetal cardiac, maternal cardiovascular, maternal breathing or noise.

In this way, the exploitation of the time-structure present in the abdominal phonogram led
to an enhanced third implementation that, by combining the method of delays, TDSEP, and the
rhythmicity-based analysis developed in this work, (1) successfully decomposes the single-
channel signal into spectrally disjoint components, (2) objectively identifies their underlying
physiological processes, (3) automatically finds similar components (i.e. forms physiological
groups) and, finally, (4) consistently retrieves the estimates of the physiological sources
underlying the single-channel abdominal phonogram, i.e. the foetal PCG, the maternal
PCG/pressure-wave, the maternal breathing, and noise (Jiménez-Gonzalez and James 2010b).
The method, tested on segments of abdominal phonograms, showed that (5) the filters learnt by
ICA are more likely to follow the variations in the abdominal phonogram —along time and from
subject to subject— than a rigid empirical filter (Jiménez-Gonzélez and James 2009), and (6) a
classifier based on time-structure performs faster than a classifier based on entropy and,

additionally, is more consistent than K-means (Jiménez-Gonzalez and James 2010b).

Clearly, these results showed that the third implementation of SCICA was close to
addressing the fundamental problem faced in this work, which was the extraction of information
for foetal surveillance from the abdominal phonogram. In fact, being certain that SCICA
decomposed the abdominal phonogram and, most importantly, that consistently retrieved four
traces (corresponding to the foetal PCG, the maternal PCG/pressure-wave, the maternal
breathing, and noise), made it easier to continue towards the next stage, i.e. reconstructing the

entire time-series of the sources underlying the abdominal phonogram. Certainly, since the task

-201 -



CHAPTER 11

required solving the scaling ambiguity of ICA, it became the ultimate challenge for this research
in terms of decomposing the abdominal phonogram. Here, following the idea by Corsini et al.
(2006), the problem was solved by developing a scaling-concatenating methodology that
managed to reduce the energy uncertainty due to ICA. As a result, it was possible to reconstruct
entire time-series that were less dependent on the energy of the segmented traces used to build
them up. Consequently, the amplitude of the reconstructed sources was less likely to present

abrupt variations over time, and therefore, less likely to lead to wrong interpretations.

Finally, as soon as SCICA addressed the problem of decomposing the abdominal
phonogram, and knowing that foetal information corresponding to the FHS (i.e. the foetal PCG)
was consistently retrieved, this research explored the suitability of using such information for
surveillance purposes. This need gave rise to a preliminary study of the sources estimated by
SCICA that aimed to collect, and confirm (whenever possible), information about foetal status in
the form of the beat-to-beat heart rate and the average morphology of the FHS. Results so far
have been promising, the entire sources estimated by SCICA were further processed by
relatively simple algorithms that managed to collect/verify valuable parameters, not only foetal
but also maternal. More specific, preliminary analysis of such parameters has shown that the
beat-to-beat FHR obtained from the foetal PCG consistently follows the trend given by the
reference FHR calculated from the abdominal ECG, which is especially significant since the
PCG comes from the noisy abdominal phonogram. Also, it has been seen that additional
parameters such as the beat-to-beat MHR and the maternal breathing rate can be collected
respectively from the maternal PCG/pressure-wave and the maternal respirogram. Therefore, as
far as this study has gone, it can be said that the signals estimated by SCICA from the

abdominal phonogram are promising sources of information for foetal well-being surveillance.

In summary, this research has given rise to an implementation of SCICA that separates the
single-channel abdominal phonogram into its underlying components. Such components,
identified as the foetal PCG, the maternal PCG/pressure-wave, and the maternal respirogram,
are promising sources of information for antenatal surveillance of foetal well-being. Future
work should focus on enhancing the quality of the estimated signals, developing better
algorithms for collecting meaningful parameters from such estimates, and increasing the
dataset so that the suitability of using these estimates for foetal surveillance can be thoroughly

tested.

11.2. Future work

Antenatal detection of the hypoxemic foetus is a challenging task that so far remains as an

unsolved problem. Certainly, since a number of stillbirths occur in the low-risk pregnancy group
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(Gribbin and James 2004), it is obvious that the techniques currently used for screening and
assessing foetal well-being have gaps that must be filled. This could be associated to human
error, lack of a complete understanding of how the foetus adapts to prolonged hypoxemia, or
perhaps lack of sensitivity in the screening tools currently available (Gribbin and James 2004).
In any case, it is evident that there is a need of further research on methods that effectively
identify foetuses at risk in apparently low-risk pregnancies (Gribbin and James 2004). Clearly,
the study described in this thesis belongs to the research category that attempts to increase the
screening sensitivity by long-term monitoring the foetal condition, an idea that aims to enlarge
the possibilities of detecting hypoxemic events as soon as they appear. To this end, this research
was focused on studying SCICA as a novel approach for recovering the foetal information
immersed in the noisy abdominal phonogram. As a result, it has been possible to develop an
implementation of SCICA that manages to recover useful information for foetal surveillance,
which makes this signal processing approach promising for further and more ambitious stages,

both physiological and technological.

11.2.1. Physiological challenges

These challenges refer to the extraction of meaningful physiological information from the
abdominal phonogram so that foetal well-being assessment can be better performed. As the
reader may recall, the foetal information in the abdominal phonogram is composed of the heart
sounds and, sometimes, of the breathing movements and/or body movements, all significant for
well-being surveillance. In this work, the task corresponding to the separation of the foetal PCG
was addressed by SCICA, which means that further research could focus on the separation of
the FBM and FMs. Also, although the methods in Chapter 10 did not manage to reliable collect
the average morphology of the FHS and the instantaneous FHR by S2, their extraction from the
estimated foetal PCG would be priceless for foetal surveillance. The morphology would be
useful for studying the heart valves condition, whereas the FHR by S2 would give the
possibility (1) of corroborating FHR measurements along time and, perhaps, of choosing the
temporal event (S1 or S2) that provides the most reliable FHR estimation and (2) of estimating

the systolic and diastolic intervals during the cardiac cycle.

Certainly, the research on the subject of using the abdominal phonogram for detecting the
hypoxemic foetus is still plenty of challenges, not only on the separation of the physiological
components (i.e. the foetal adaptations), but also on the recovery/interpretation of meaningful
information. From the perspective of this research, there are four major challenges to work on:
(1) further separation of the abdominal phonogram, either to obtain the FBM/FMs estimates or
to enhance the current estimates (e.g. the foetal PCG), (2) better analysis of the separate signals
for efficient detection of physiological events such as S1, S2, FBM, and FMs, (3) reliable

collection of parameters such as the instantaneous FHR, the systolic and diastolic intervals, the
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FHS/FBM/FMs patterns, and finally, (4) a thoroughly study in a large dataset of normal and
abnormal subjects to accurately test the suitability of using SCICA for foetal surveillance

purposes.

Clearly, none of these challenges will be easily undertaken and they will definitely require
extensive studies to develop appropriate solutions. Some of them will probably require using
other approaches to be solved, for example, automatic algorithms for detecting events (either
periodic like the FHS or asynchronous like the FBM/FMs), or time-frequency analysis for
studying/characterising the FHS/FBM/FMs patterns. Also, as seen in Chapter 10, although the
current implementation of SCICA is recovering the FHS, there is a possibility of finding either
some foetal cardiac information in the noise estimate or some maternal cardiovascular
information in the maternal breathing estimate. Consequently, additional studies are still
necessary to be certain that each physiological estimate contains the most of the corresponding
activity with the minimum of noise. Then, assuming that an enhanced separation and better
algorithms will ease the collection of meaningful information, it should be feasible to better
understand the foetal adaptations to hypoxemia and then, to reliably perform foetal surveillance.
Finally, the application of such an enhanced analysis to a larger dataset should make it possible
to find out what makes some abdominal phonograms easier to decompose than others and, most

importantly, whether the gestational age and the maternal status are involved.

At this time, it is impossible to provide specific details about the solutions for these
problems. Alternatively, since these tasks do not have to be consecutively solved, the current
availability of signals makes it suitable to start searching for and testing alternatives to recover

information of interest.

11.2.2. Technological challenges

This research sees two core technological challenges in terms of foetal monitoring, improved
recording of the abdominal phonogram and mobile implementation of SCICA for foetal

surveillance.

a) Improved recording of the abdominal phonogram: So far, it has been seen that SCICA
is suitable to address the problem of decomposing the abdominal phonogram, but with
different degrees of separation amongst signals. As a result, the SNR in some estimates is
so low that complicates the extraction of meaningful information for foetal surveillance.
This situation has attracted attention towards the recording setup and thus, raised the
question of whether it could be modified to help SCICA estimate better-quality foetal PCGs

from the abdominal phonograms.

To this end, two approaches could be explored (1) keeping a single-channel configuration

and using a more sensitive acoustic sensor, which would increase the financial cost of the
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b)

system, or (2) increasing the number of channels so that not only temporal, but also spatial
information can be exploited during the separation stage, which would increase both the
financial and computational costs. In any case, by testing these configurations in a large
population, there should be possible to find the circumstances that make some phonograms
easier to be decomposed by SCICA than others (e.g. the recording setup, the gestational
age, or perhaps some physiological conditions that modify the spectra of the underlying
components), and develop recording protocols that increase the possibilities of a good-

quality separation.

In this context, it is important to recall that, currently, the recording protocol described in
Chapter 5 uses US images to find a suitable position for the acoustic sensor on the maternal
womb. This might be acceptable for a study like the one described in this thesis, where a
signal processing methodology is being explored and validated. However, when thinking of
future work and “trouble-free” implementations of a system for well-being monitoring, the
need of the US in the recording protocol becomes a key issue. Thus, the technological
challenges in this research also involve the development of alternatives that simplify the

procedure for sensor positioning and eliminate the US from the recording protocol.

As a preliminary idea, taking into account that the SNR of the FHS seems to have an effect
on the quality of the CTG, it has been considered that an SNR index could be useful to
establish whether the sensor is close to the foetal heart or whether it has to be relocated.
Also, in a more complete implementation that deals with the possibility of a foetus
changing its position (and the resulting SNR reduction) without having to relocate the
sensor, a set of sensors could be positioned all over the maternal womb. In this way, by
monitoring the SNR in each single-channel, it should be feasible to find the most
favourable channel for recording and automatically switch to it whenever the foetus moves
and the SNR changes.

Mobile implementation of SCICA: This could be considered as the ultimate challenge in
terms of foetal surveillance by means of the abdominal phonogram, developing a portable
instrument that records the signal(s), performs the decomposition, retrieves the foetal

sources, and collects/transmits parameters for assessing foetal well-being (e.g. the FHR).

Certainly, assuming that the separation issues have been overcome, one of the most
important challenges for developing a portable instrument would be given by the on-line
implementation of the algorithms for separation and collection of parameters of interest.
Additionally, depending on the number of channels to record and the recording time, the
memory of the system would be required to be large and fast enough to make it possible the

recording, processing, storing, and transmission of data in a simultaneous way. Eventually,

- 205 -



CHAPTER 11

in a more ambitious implementation for home-monitoring, the system could also be
required to perform the analysis of the collected information by itself and thus, identify

foetuses at risk.

Ideally, an instrument like this would increase the screening sensitivity by performing long-
term monitoring, either in the hospital or at home. However, longer and more frequent
screening also means more data for clinical interpretation. Moreover, if it is taken into
account that several monitors will be working simultaneously, then the amount of data for
clinical interpretation will considerably increase. This means that another challenge for a
mobile implementation would be associated to appropriate storage media and data
managing in the hospital that guarantees proper access to the information, either for clinical

diagnosis or for research purposes.

Finally, assuming that such a foetal monitor could be developed, obstetricians would be
able to perform foetal surveillance as often and longer as needed without exposing the
foetus to US radiation. Additionally, the availability of more frequent and longer
observations of the foetal adaptations to hypoxemia could lead to further understanding of

them and, perhaps, give rise to tools for a more assertive evaluation of foetal risk.
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