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FORCE RESPONSE OF LOCUST SKELETAL MUSCLE

by Emma Wilson

The force response of the locust hind leg extensor muscle to input excitation pulses is mod-

elled. Despite the processes behind muscle contraction being well established, no broadly valid

method of modelling skeletal muscle exists. Studies that compare the merits of existing models

are extremely scarce and researchers make various assumptions in order to simplify the com-

plex, nonlinear behaviour of the muscle. Locusts provide an opportunity to develop a muscle

model in a simpler system, that will still show similar properties to that of mammalian muscles.

In developing a model previous work is considered, and complexity is introduced in the exper-

imental conditions in stages. This meant a model could be built up in parts. This approach

reduces the need for questionably valid assumptions.

The main focus of this work is modelling activated isometric muscle. Experimental data was

collected by stimulating the extensor muscle and measuring the force generated at the tibia.

In the first instance the response to individual stimulus pulses is modelled. This is extended

to develop a predictive model capable of estimating the isometric force response to general

pulse train inputs. In developing the model, data was fit to existing models, and from this

an improved isometric model developed. The effect of changing the isometric muscle length is

considered. Commonly changing the muscle length is assumed to just scale the force response.

This assumption is poor. The dynamics of the force response were found to be modified by the

change in muscle length, and the isometric model adapted to include this dependency.

Results related to the non-isometric behaviour are also presented. Passive muscle is usually just

modelled over the lengthening period, however, the whole stretch-shorten cycle is considered

here. A model, adapted from the standard linear model, is developed to describe the passive

force response.
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Chapter 1

Introduction

Muscles and tendons are the interface between the nervous system and skeletal dynamics

[1]. The neural and muscular systems are dynamically coupled. Both systems play a role

in movement and force generation [2] and are both utilised to control locomotion. This is

demonstrated by Fig. 1.1 which gives a representation of the neuromuscular control during

locomotion. Neural activity causes muscles to contract, thus muscles can be thought of as

the actuators that do the work in moving the skeleton [3]. It is essential in the analysis of

the neuro-muscular-skeletal control system to have an understanding of these actuators and

mathematical descriptions of their dynamics [4].

By studying muscular function in a system where the neural components are well understood

and simple, a greater insight into the neuromuscular system can be gained [5]. This thesis is

concerned with the behaviour of invertebrate muscle, namely the extensor muscle of the locust

metathoracic (hind) leg. Many studies on muscular function focus on vertebrate muscle. The

functional processes that occur during contraction are similar in invertebrate muscle [6, 7],

with calcium being the key regulatory factor of contraction. The muscles of invertebrates differ

from those of vertebrates due to details of innervation. Invertebrate muscle is innervated by

only a small number of neurons. These neurons are often identifiable, hence the neural events

leading to contraction are tractable and relatively easily produced in experiment. The neural

components controlling the locust hind leg extensor muscle are well known [8–13] and simple.

This, combined with the muscles relatively large size, makes it ideal to study.

1.1 Motivation

Muscle models can provide an important step in enhancing our understanding of the neuromus-

cular system. It could be argued that the best description of a system is the system itself [16].
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Sensorimotor
control

Muscle mechanics

Skeletal dynamics

Behaviour,
External Environment

Musculoskeletal system

Sensory feedback Mechanical feedback

kinematics, forces

motor commands
u(t)

Fm(t)

Exteroceptive feedback
(e.g. touch, odour)

Proprioceptive
feedback
(e.g. contact,
strain)

Preflexes
(Visco-elastic response)

Figure 1.1: Neuromuscular control during locomotion. The central nervous system gener-
ates motor commands that activate the musculoskeletal system. The musculoskeletal system
acts on the external environment, causing movement. Both neural and mechanical feedback
play roles in controlling locomotion. Muscle mechanics play a central role in determining the

movement. Figure adapted from [14, 15].

However, it is hard to extract information from the actual system, especially given that the

muscle is history dependent and fatigues after repeated stimulation [17, 18]. A mathematical

model highlights the important functions of the muscle system and can provide a predictive

insight into its behaviour. The model should provide a simplified representation of the system’s

behaviour which is easier to interpret. A model with predictive capabilities is able to provide

insight into how the muscle will respond to a given input.

Skeletal body dynamics are induced by muscular contraction. Being able to predict the response

of a muscle to a given input enables one to infer the resultant body dynamics. Figure 1.1 shows

how the musculoskeletal system is coupled into locomotion. Musculoskeletal modelling has uses

in controlling movement, such as in functional electrical stimulation (FES) as well as helping

to build devices that restore function after injury [19]. The characterisation of the functional

role of the muscle is also useful in the development of robotic devices that are driven by virtual

muscles [15].

An improved model of the locust skeletal muscle will inform on the general behaviour of inver-

tebrate and mammalian muscle with the eventual aim of improving models of human muscles,

embracing prosthetic construction and muscle therapy. An accurate muscle model can help

to drive FES protocols by enabling the prediction of the force response to a range of inputs,

removing the need to record the actual muscle response to such a large range of inputs. This

helps to minimise fatigue, reduce the number of necessary tests, and can speed up the process

2



1. Introduction

of identifying the optimal stimulation routine [20]. Furthermore, the relatively simple neural

components of the locust hind leg extensor muscle mean that coupling a muscle model into

the neural system (as in Fig. 1.1) is a realistic goal. In characterising the neuromuscular

control system that is utilised during a simple task such as a kick or walking more insight

would be gained on neuromuscular control. This could provide a better control strategy for

the development of robotic devices such as hexapod robots.

In vertebrates a wide range of models have been used to describe muscle responses. Despite

the processes behind muscle contraction being well established no broadly valid method of

modelling skeletal muscle exists. Two main factors are thought to be responsible for this.

Firstly, researchers tend to deal solely with their own model: studies that compare the merits

of different types of model are extremely scarce. Secondly, the muscle is a highly complex

non-linear system; this leads to researchers making various assumptions in order to simplify

the behaviour. As a result, models of the muscle range from black-box models, that are derived

solely from input-output characteristics, to models based on the detailed properties of tissue

that take the system’s physiology into account [21]. Due to the lack of comparative studies

it is difficult to establish which model to use and to know if a simpler model would be as

good at describing the behaviour. By building up a model through introducing complexity

in the experimental conditions in stages, fewer assumptions are necessary. For example, the

contractile and activation components of the muscle are often assumed to be uncoupled. By

comparing how the isometric force response changes dependent on the length this assumption

can be investigated. Also, in developing a model, previous research is considered and existing

models are fitted to data. In doing this, existing models can be assessed in terms of both the

goodness of fit and in relation to parameter definitions.

1.2 Comparisons Between Invertebrate and Vertebrate

Muscle

The muscles of invertebrates differ from those of vertebrates due to details of the innervation.

Vertebrate muscle is supplied by a large number of nerve fibres, and the number of motor units

which are in a state of active contraction are varied in order to control the tension developed

[11]. This method of contraction uses a large number of muscle fibres and correspondingly

large numbers of nerve fibres to innervate them. In contrast, invertebrate muscle is innervated

by only a small number of motor axons [22]. In invertebrate muscle each nerve fibre exerts a

particular physiological effect [11] with the effects being common to every muscle fibre.

Despite differences in the innervation between vertebrate and invertebrate muscle the contrac-

tile components are similar. The molecular basis of force generation, thin filament structure

3



1. Introduction

and the fact that Ca2+ is the key regulatory factor in contraction are common features to both

vertebrate and invertebrate muscle [6].

The locust extensor tibia (ETi) muscle is an invertebrate muscle and so each neuron stimulates

a different physiological effect. It is innervated by only two excitatory neurons. In studying

muscular function in an invertebrate, as opposed to a vertebrate, the effect of each input to

each neuron can be separated. This makes the response more tractable and also allows for

consistency in stimulation. The locust ETi in particular is an ideal muscle to study due to

the fact that the neural components are well described in the literature [8–13]. Furthermore,

it has a relatively large size for an invertebrate muscle, making the practicalities of measuring

the force response easier.

Locusts provide an opportunity to develop a muscle model in a simpler system, that will still

show similar properties to that of mammalian muscle. The problem is further simplified by

studying a simply innervated muscle, thus further reducing the number of assumptions that

need to be made regarding the system behaviour.

1.3 Physiological Basis of Muscle Contraction

In developing a model it is important to understand the physical processes that underlie con-

traction. The structure of skeletal muscle and processes behind its contraction are summarised

in this section.

1.3.1 Muscle Structure

The function of a tissue is reflected in its structure [4]. The function of skeletal muscle is to

generate force, or produce movement. The structure of skeletal muscle is an essential element

to understanding how the muscle produces force. The muscles of invertebrates and vertebrates

share fundamental similarities [6].

Figure 1.2 shows the components of which skeletal muscle is comprised and the functional

arrangement of these. Skeletal muscle is made up of bundles of fibres, each fibre being a multi-

nucleated cell. These fibres are arranged in bundles (known as fasciculi). Within the muscle,

each of these bundles is lined with connective tissue. Each fibre is made up of myofibrils, with

these in turn being comprised of arrays of myofilaments [23]. Two primary types of protein

are contained within the myofilaments, actin and myosin. The myofilaments are divided into

serial repeating regions termed sarcomeres. The sarcomeres are the smallest functional unit of

the muscle.
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A specialised plasma membrane, the sarcolemma, surrounds each muscle fibre. Electrical im-

pulses conducted by the sarcolemma travel along transverse-tubules (T-Tubules). These are

narrow tubes which invaginate the Sarcolemma. The electrical impulses, or action potentials,

are the trigger for muscle contraction. The Sarcoplasmic Reticulum (SR) surrounds the sar-

comeres; this is an internal membrane system. The primary function of the SR is to store

calcium ions; these are released when the muscle is activated. The membrane of the SR has

pumps for the active transport of calcium ions back into it.

Muscle

Muscle Fibres

Myofibril

Sarcomere

Fasciulus
Muscle fibres

Myofibril

Sarcomere
Z-line

Myosin (thick filament)

Actin (thin filament)

Actin and Myosin
spatial arrangement of
Cross-section showing

Figure 1.2: Structure of skeletal muscle, adapted from [24]. Each major component of the
muscle structure is shown.
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1.3.2 Activation-Contraction Dynamics

Although some ambiguity remains in the finer details, the processes behind muscle contraction

are well established [4]. The calcium ion, Ca2+, is known to be a regulator in many biological

processes. All nucleated animal cells have the calcium messenger system as one of their fun-

damental control schemes [25]. Calcium is also fundamental to muscle contraction, being the

key regulatory factor of muscle contraction at the molecular level in all types of muscle [26].

In the absence of stimulation, calcium ions are accumulated in the SR by an ATP (adenosine

triphosphate) driven protein pump, which pumps calcium ions out from the sarcoplasm [4]. In

the absence of Ca2+ in the sarcoplasm, tropomyosin blocks access to the myosin binding site of

actin. In rest conditions there is a large calcium ion concentration gradient between the inside

and outside of the SR, but the permeability of the membrane is low. Neural stimulation causes

a depolarising signal to propagate, spreading along the T-tubules. The change in membrane

potential is effective in causing the muscle to contract [27]. This signal is transmitted to the

SR and temporarily increases the permeability of the membrane, causing calcium ions to be

released into the sarcoplasm. The released ions bind to tropomyosin, resulting in the myosin

having access to binding sites on actin. Myosin hydrolyses ATP and undergoes a conformational

change into a high-energy state. The head group of myosin binds to actin forming a cross-bridge

between the thick and thin filaments. The energy stored by myosin is released, and ADP and

inorganic phosphate dissociate from myosin. The resulting relaxation of the myosin molecule

entails rotation of the globular head, which induces longitudinal sliding of the filaments

[27]. This process happens continuously, hundreds of times each second as long as the calcium

is attached to tropomyosin. This causes the length of each sarcomere to decrease and the

muscle to contract via a paddling type action. Relaxation occurs when the muscle is no longer

stimulated, and the calcium is pumped back into the SR [28].

The function of cross-bridges as tension generators, and the sliding filament mechanism of

muscle contraction is virtually universally accepted [29]. The sliding filament mechanism is

based on the findings of Huxley et al [30, 31]. It states that length changes occur due to a

relative sliding motion between the thick and thin filaments, with the length of each filament

remaining substantially unaltered. The sliding filament mechanism is supported by the fact

that the lengths of the muscle A-bands do not alter when the muscle is stretched or shortened,

and by the fact that electron microscopy shows each myofibril to be made up of two sets of

filaments [30, 31].
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1.4 Approach

The behaviour of the locust hind leg extensor muscle is investigated in this thesis. The aim is

to develop a simple mathematical model capable of describing the force response of the muscle

to pulse train inputs for a range of initial conditions. A mathematical model consists of a set of

assembled equations that describe a physical system or process [32]. The muscle is a biological

physical system. Bernotas et al [33] recognised that all physical systems are non-linear with

infinite dimensions. Hence, in characterising the muscle by using a mathematical model with

fixed dimensions, it is inevitable that the system will be simplified. In simplifying a system

the resultant model needs to retain a valid description of the behaviour, yet be of reduced

dimension [32]. Modelling should provide a simplified representation of the system and should

promote understanding of the system’s behaviour. There are advantages to using as simple

a model as possible to describe a system, with model characteristics responsible for observed

effects being more evident in simpler models [34]. Hence, in this study no prior assumptions

are made to define the model complexity. In developing a model we also consider the ability

of existing models to describe the force response of the muscle, and compare the performance

of a range of models.

The main focus of this work is modelling activated, isometric muscle. In the isometric case the

muscle is held at constant length. In modelling activated, isometric muscle the model inputs

are the neural stimulus and the muscle length, with the output being the developed force.

By fully characterising the isometric behaviour a strong foundation is built. This is used to

investigate how controlled departures from isometric conditions affect the developed force.

The muscle is a complex non-linear system. To limit the number of simplifying assumptions

needed to model the force response the conditions during experiments were constrained; by

using increasingly fewer constraints on the experimental conditions a model of the muscle be-

haviour can be built up. First the isometric (muscle held at constant length) force response to

a single input pulse is considered, this case provides an important building block for further

development of a model. Next the isometric force responses to constant frequency pulse trains,

then to random pulse train inputs, are measured. From this a general isometric model is devel-

oped. The muscle length is then changed; during stimulation the muscle is held isometrically

at a range of differant lengths, thus enabling the effect of changing the muscle length on the

isometric force to be established. Finally the effect on the force in changing both the muscle

length and velocity is considered.
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1.5 Contributions

By studying the response of the locust extensor muscle to a range of different conditions more

insight into the system is gained. This thesis provides more data and information on the

specific locust extensor muscle-joint system, as well as contributing to the more general field of

muscle modelling. Movement, and the corresponding neuromuscular control system is still not

fully understood [14]. Locust specific contributions can be used to try to understand muscular

function, movement and locomotion in a simple invertebrate. General modelling results have

potential applications to other species as well as the locust in particular. The contributions of

this thesis are outlined below,

Muscle Measurement

1. There have been relatively few studies on invertebrate muscle and modelling its response.

Experimental data and its analysis provide more information on the behaviour of inver-

tebrate muscle, namely the locust extensor muscle.

2. Related to the extensor muscle of the locust hind leg, a method of calculating the joint

dimensions of the hind leg femoral-tibial joint without dissecting the joint has been de-

veloped.

3. A new experimental method to measure the relationship between muscle force and muscle

velocity has been used.

Muscle Modelling

1. Systematic testing of the best model order to describe the isometric force response to a

single input pulse has shown it to be well described using a linear second order model.

This model provides a building block for further investigation of the system.

2. For the isometric response, the case where input pulses are closely spaced so that re-

sponses sum is investigated. Assuming the system is quasi-linear and investigating how

the parameters of a linear model of each individual pulse change depending on the input

conditions provides with more insight into the behaviour of the muscle.

3. Investigation and comparison of existing muscle models has led to the development of a

new model capable of predicting the isometric force response to pulse train inputs. This

new model eliminates some of the problems such as parameter redundancy that were

found in existing models.
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4. The assumption made in existing models that the activation and contraction dynamics

are not coupled and can be modelled as two distinct systems in series is tested. There is

found to be coupling between the two systems.

5. A dynamic model to describe the passive force-velocity-displacement characteristics of

the extensor muscle has been developed.

1.6 Outline

The remainder of this thesis is organised as follows

Chapter 2 reviews the literature, and evaluates existing methods used to model the force

response of muscle. Chapter 3 provides an outline of the experimental methods used to

measure the force response of the locust hind leg extensor muscle under a range of different

conditions. Chapter 4 looks at how the isometric response of the muscle to each individual

input can best be modelled. An analysis of how parameters and model orders change with

input conditions is provided. Chapter 5 uses a range of models to describe the isometric force

response. An optimum model is developed and presented. Chapter 6 examines the effect of

changing the muscle length on the isometric behaviour, while Chapter 7 examines the effect

on the force of changing the muscle velocity and length. Chapter 8 concludes the thesis:

contributions made and avenues for future investigation are given.

9



Chapter 2

Models Describing the Response

of Skeletal Muscle

2.1 Introduction

In modelling a muscle as a dynamic system one attempts to describe a set of processes that con-

vert an input, which is often some neural stimulus, into an output, which is often muscle force.

The processes through which a motor neuron spike is commonly modelled to be transformed

into a force by the musculo-tendon complex are summarised in Fig. 2.1. The assumption that

the transformation of a neural input u(t) into a muscle force Fm(t) can be modelled in two

stages is shown in Fig. 2.1A. Figures 2.1A and B sumarise the processes thought to occur in

each of these stages. In the first stage the neural input is converted into an activation. In the

second stage the muscle activation acts through the muscle-tendon complex to develop a force,

which is exerted on the environment. This chapter summarises and evaluates the state of the

art of models developed to describe the force response of skeletal muscle.

Virtually all existing models assume that the activation and contraction dynamics are uncou-

pled, as in Fig. 2.1A, leading to models of the activation and contraction dynamics being

developed in separate stages. Muscle activation is used to represent an intermediate state in

muscle contraction and is similar to Hill’s concept of active state [36, 37]. The assumption

has physical justification since the activation represents some internal muscle tissue state that

is thought to be associated with the Ca2+ triggering of the contractile process [1]. Ebashi

and Endo [26] defined the activation as representing the relative amount of calcium bound

to tropopnin; this is a common conceptual assumption [28, 35, 38–41]. The activation is a

concept of modelling and itself is immeasurable [38]. It is a relative quantity, with the acti-

vation a(t) = 1 when the muscle has been maximally excited. Activation is the output of the
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Muscle Contractionneural

u(t) a(t)

muscle
force

Fm(t)

T-tubule reticulum

recovery

Ca2+ binding

x

force

Fm(t)

Musculo-Tendon Complex

Leg environment

Muscle Tendon

C) Muscle-tendon complex and leg

B) Activation Dynamics

A) Muscle Tissue Dynamics
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(excitation-contraction)

Dynamics
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muscle
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activation
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External
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Figure 2.1: A system model showing the modelled stages that occur during the neuro-
muscular transform: A) a neural input, u(t) is transformed into a muscle force, Fm(t) in two
stages, with activation and contraction dynamics assumed uncoupled (adapted from Zajac
[1]). B) Muscle activation model (adapted from Riener and Quintern [35]) summarising
the processes occurring when a neural input, u(t) is transformed into an activation, a(t);
C) musculo-tendon complex and leg: the muscle is activated through the musculo-tendon
complex and leg; this causes a force to be exerted on the environment. A feedback loop
represents the fact that the reaction force influences the response of the muscle (adapted

from Ghigliazza and Holmes [28]).

excitation-contraction dynamics, and input to the contractual mechanism. The processes that

occur during activation are shown in Fig. 2.1B.

Muscle contraction dynamics model how the muscle activation is transformed into a muscle

force. The developed force is commonly assumed to depend upon the level of muscle activation,

muscle velocity and muscle length. Traditionally in modelling the muscle contractile dynam-

ics the relative muscle activation is held constant at maximum (a(t)=1) and a model of the

dynamics is then developed for constant activation.

By modelling the activation and contraction dynamics as two distinct systems, as is common

practice, one assumes that the activation and contraction dynamics are uni-directional and
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independent of each other. This assumption is used as it simplifies the system [1, 42], however

there is data to suggest that there is coupling between the two systems [18, 43–47]. Huijing [47]

concludes that the muscle activation and length-force characteristics are not independent, with

history of activation, and shortening and lengthening of the muscle affecting the force-length

relationship of muscle. By assuming uni-directional independent activation and contraction

dynamics, these history dependent effects cannot be modelled.

2.2 Activation Dynamics

2.2.1 Isometric Equivalence

During an isometric contraction the muscle is activated but held at constant length. An

example of such a contraction is pushing against a solid wall where the muscle is activated but

there is no resultant movement. Due to the fact that it simplifies the problem, modelling the

isometric force is a useful building block in developing an overall model [48].

Commonly, as in Fig. 2.1A the activation and contraction dynamics are assumed to be un-

coupled. If the effects of any elasticity are also assumed small then the force generated in an

isometric contraction is dependent only on the muscle activation. Due to the proportionality

that is commonly assumed to exist between the isometric force and muscle activation, this

section discusses both isometric force models and pure activation models.

Hill, [37] used the term ‘active state’ to define the force that the muscle exerts when its

contractile component is held at a constant length. In an isometric contraction these conditions

are met if the compliance of the muscle fibres is assumed small. Making these assumptions, and

combining a model of the isometric force response (which in effect gives the muscle activation)

with contraction dynamics, means a model that is valid for static and dynamic contractions

can be developed [35, 48, 49].

Modelling the isometric force is a popular choice in developing a muscle model. This is due

to the reduced system complexity in holding the muscle length constant and the use of the

isometric force as a building block. There are a range of methods to model the isometric force

response. These include linear approximations [41, 50–55] , models that take the steps that

occur during muscle activation (Fig. 2.1B) into account [20, 28, 39, 40, 56–61], and using local

model networks [62–65]. The most prevalent ways of modelling isometric muscle are discused

in more detail below.
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2.2.2 Linear Models

Linear models are attractive due to their simplicity and ease of analysis. Linearisation of an

inherently non-linear system, however, will always lead to a loss of information [66].

Mannard and Stein [51] investigate the frequency response of isometric contractions of the cat

soleus muscle. They find that for isolated input pulses, or low stimulation rates, the muscle

behaves as a critically damped second order system. For different values of mean stimulation

rate, muscle length or active units the nerve-muscle system could be described by a family of

second order systems, the parameters of each system being dependent upon input conditions.

If the system were truly linear the frequency response to any input would be equivalent to the

Fourier transform of the impulse response; the impulse response of the muscle system being

approximately equivalent to the response to a single pulse [67]. The fact that the parameters

of the linear model depend upon input conditions suggests that the system is modelled as

quasi-linear. It can be linearised about a given input, but the linear model changes due to

the relatively long time constants associated with the non-linearities. As the stimulation rate

increases errors in fits increase, and a linear frequency response becomes a less good model.

This is probably due to increasing non linear summation of the responses to individual stimuli

[51].

Baratta and Solomon [54] also find the frequency response of muscle to be well described

by a linear second order system. Their model consists of a linear second order model with

double real poles and a pure time delay. They find different muscles have different pole values.

Likewise, Bobet et al [50] describe isometric muscle using a linear-second-order system, this

being a critically damped low-pass system. Like Mannard and Stein [51], they find that to

provide a good fit to data, parameters of the model need to be allowed to vary. In their model

estimated coefficients were held constant across each interpulse interval (IPI) but allowed to

vary between input pulses. In effect they model the muscle as a linear, time-varying system.

Zhou et al [68] confirm a model of the medial gastrocnemius muscle of the cat to be second

order. They found that if the effect of the joint is included an extra pole and zero improved

the model.

It is suggested by Mannard and Stein [51] that the fact that a second order model provides a

good fit may indicate that, despite many rate constants being involved in activation-contraction

coupling and the sliding filament model ([27, 29, 69, 70]), only two constants are rate limiting.

Further research by Bawa et al [52, 53] suggests that one rate constant is associated with

viscoelastic properties and the other with the reuptake of calcium into the SR.

In support of using a second-order model Bobet et al [48] find that the critically damped second

order model provides close to the best possible fit when using a linear model. However, they
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also found that no linear model provides a good fit to to the data. This indicates that for most

conditions a linear model is not capable of providing a good description of muscle force. This

is also indicated through the fact that parameters in the linear models of Mannard and Stein

[51] and Bobet et al [50] need to change dependent on input conditions for acceptable fits to

be obtained.

2.2.2.1 Non-Linear Effects

The isometric muscle force response is inherently non-linear and while under certain conditions

a linear assumption may be valid, one cannot model the general behaviour well using just a

linear time invariant model [39].

The response to a single stimulus is known as a twitch response [23]. If the muscle is re-

stimulated whilst there is still some contractile activity from a previous pulse then responses

will sum. If the muscle is stimulated such that it does not relax between inputs, then a smooth

sustained contraction, termed tetanus, occurs [23]. Figure 2.2 represents wave summation and

tetanus.

Fo
rc

e

Time (ms)

Increasing
frequency

Figure 2.2: Representation of the non-linear summation of responses that occurs when the
inputs are closely spaced. Adapted from [23]

Repetitive stimulation of muscles produce tensions that sum non-linearly [50, 71–75]. Stein and

Parmiggiani [71] report a less-than-linear summation (depression) during the rising phase of a

twitch and a more-than-linear summation (facilitation) during the falling stage. They attribute

this depression to a first order saturable reaction and facilitation to increasing stiffness of the

muscle facilitating force transmission, and to Ca2+ release mechanisms [52, 53].
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This non-linear summation is investigated by Stein et al [71, 72]. The experimentally de-

termined force response to n − 1 pulses was subtracted from that to n pulses, leaving the

contribution of the nth pulse. This is demonstrated in Fig. 2.3A with the resultant contribu-

tions given in Fig. 2.3B. This approach is also used by Raikova et al [74, 75] and Celichowski et

al. [76]. They model the summation of twitches for various types of motor units by describing

the response to constant frequency trains (CFTs) in terms of the response to each individual

stimulus. In their work an analytical function is used which describes the twitch shape using six

parameters [76]. Given that other studies found the response to each pulse to be well described

by a second order system, a model with fewer parameters may provide equally good fits to the

measured response.
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Figure 2.3: Contribution to overall force response by each individual pulse response A)
Illustrates how the response to a second pulse (shaded) can be extracted from the response
to two pulses, B) Contributions of the first 4 pulses of a CFT, from [72]. C1 - C4 give the

contributions due to the 1st-4th pulse.

Although the contributions of individual pulses have been extracted by assuming a quasi-

linear system, much of this work has focused on the qualitative behaviour. There has been

little attempt to quantify the changes in pulse shapes and use this to model entire contractions.

In this thesis the contribution from individual stimuli in CFTs is investigated in Chapter 4.

2.2.3 Hammerstein Models

A Hammerstein structure (static non-linearity1 (SNL) followed by linear dynamics (LDS)) is

a common choice for modelling electrically stimulated muscle [33, 42, 48, 64, 77, 78]. Often all

the dynamics of the muscle system are contained in the LDS and the SNL is assumed to be a

function of the electrode/nerve coupling characteristics [77]. Figure 2.4 gives a Hammerstein

model structure, this is a NL (nonlinear - linear) system. The linear dynamic system (muscle

dynamics) is commonly represented as a second order system [33, 42, 77, 78]. The SNL is

assumed to represent the recruitment, this is often represented by a isometric recruitment

curve (IRC) which has the form given in Figure 2.5. The stimulus activation level can be

varied by changing the stimulation frequency, pulse width or pulse amplitude.
1A static non-linearity is described by a non-linear function which does not vary with time
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Figure 2.4: Hammerstein Model Structure. The system is comprised of a static nonlinearity
(N) followed by a linear dynamic system (L), it is a NL system.
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Figure 2.5: Isometric recruitment curve (IRC), the effect of input on muscle force is shown.

Although a Hammerstein model is a common choice for modelling electrically stimulated muscle

it is argued that it is not a very accurate method. The poles of the muscle system change with

the level of activation [64]. Each muscle twitch has a different shape dependent upon the level of

activation [77] (see Sec. 2.2.2.1). These changes in the dynamic properties of the muscle cannot

be accounted for using a Hammerstein structure as it is assumed that the muscle dynamics

are linear. The activation and contraction blocks are uncoupled and unidirectional, so the

activation cannot influence the dynamics.

2.2.4 Cascade Model

Another popular choice for modelling the activation dynamics is a system made up of two

coupled second order ODEs (effectively one fourth order ODE) followed by a non-linearity

[28, 35, 39, 41, 49, 79, 80]. This is a specific case of a Wiener system. The Wiener structure is

similar to the Hammerstein structure, but the non-linearity is placed after the linearity. The

model is of LN (linear - nonlinear) structure. This model is based on the cascade of processes

that occur during activation, as summarised in Fig. 2.1B. A feedback loop is shown in Fig.

2.1 this is used to account for muscle fatigue. In a cascade model the fatigue loop is often

ignored. The first of the differential equations is assumed to convert the neural input, u(t),
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into a T-tubuli depolarisation β(t), and the second to convert this depolarisation into a free

calcium concentration γ(t), as

β̈(t) + φ1β̇(t) + φ2β(t) = φ3u(t) (2.1)

γ̈(t) + φ4γ̇(t) + φ5γ(t) = φ6β(t) (2.2)

φ1 - φ6 are muscle specific constants. The muscle activation a(t) is then estimated from the

free calcium concentration γ(t). Commonly a non-linear sigmoid shaped function (with similar

shape to that used in the Hammerstein structure) is used to estimate the muscle activation

from the free calcium concentration. This transform is modelled by Riener and Quintern [35]

and Ghigliazza and Holmes [28] as

a(t) =
a0 + (ργ(t)µ(t))2

1 + (ργ(t)µ(t))2
(2.3)

where ρ and a0 are muscle specific constants with ao ≈ 0, and µ(t) is a fitness variable used

to account for fatigue. This method of modelling the isometric force is thought to capture the

essential dynamics of the system. This form of model, originally used by Hatze [39] has also

been adopted by Riener and Quintern [35], Ghigliazza and Holmes [28], Holmes et al [79], Van

Zandwijk [41] and Zakotnik et al [49, 80]. The model structure, as related to a Wiener model

is given in Fig. 2.6.

T- tubule reticulum
Ca2+ binding a(t)u(t)

LDS SNL

β(t) γ(t)
Sarcoplasmic

Figure 2.6: Block diagram of the LN cascade model structure; this structure is a special
case of a Wiener model with a LDS proceeding a SNL.

This method uses a much higher model order than others to describe the system dynamics,

with a fourth order ODE used, as opposed to second order. It may be that a fourth order

model is required to capture the necessary dynamics, or it could overfit the data. There have

been no comparative studies that include the cascade model; where used it is just stated, and

hence from the literature it is unclear whether the model overfits, or fourth order dynamics are

necessary. This, given the popularity of the model, is strange. The lack of comparison between

existing models is unfortunately a prevalent theme in muscle modelling [48].
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2.2.5 Local Models

Non-linear models of the muscle response which are based upon local model networks (LMN)

have also been developed [62–65, 81]. In using LMNs the nonlinear modelling task is divided

into smaller subtasks, each sub-task is then handled locally by a simpler model [81]. A scheduler

is used to decide, based on the current operating conditions, how relevant each model is. The

models are weighted according to relevance and the overall model given as the sum of the

weighted models.

In a sense the LMN approach is a more formalised way of extending the finding [50, 64, 71, 72,

74, 75] that the shape of each response to an individual input pulse (and similarly the system

dynamics), differ dependent upon input conditions. LMNs are able to capture the changing

dynamics of the muscle system. Hunt et al [64] find the dynamic performance of combined

local models to be significantly better than the performance of a model with Hammerstein

structure. The downsides to using a LMN approach are that it can involve the identification

of a large number of parameters [81], and in the model complexity the physical relevance of

the model may be lost [34].

2.2.6 Contemporary Nonlinear models

To the author’s knowledge only two previous studies compare the performance of existing

isometric models [48, 82]. Furthermore, of these only Bobet et al [48] compare different models

by fitting to measured data. Bobet et al [48] find the models of Ding et al [20] and Bobet and

Stein [73] to give the best fits to data. Using terminology from Frey Law and Shields [82] we

refer to these models as contemporary nonlinear models. These models are of LNL (linear -

nonlinear - linear) structure. The two models have similar structures, each consisting of low

pass-filters in series with a static non-linearity. The time constant of one of the filters becomes

large at high levels of activation.

By standardising the governing equations for these two models and writing each in the same

format, as a series of coupled first order differential equations and non-linear equations, the

relationship between the models is more clear.

2.2.6.1 Bobet and Stein Model

Bobet and Stein’s [73] model takes a pulse train as input and gives the isometric force as the

output. A block diagram of the muscle model is given in Fig. 2.7. The model is an extension to

using a second order linear model. The model consists of two first order differential equations
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which act as low pass filters, separated by a static non-linearity which saturates force. The

second of the differential equations has a variable rate constant that varies with the force.

q̇(t) + aq(t) =
n∑
i

δ(t− ti) (2.4)

x(t) =
q(t)m

q(t)m + km
(2.5)

Ḟ (t) + bF (t) = Bbx(t) (2.6)

b = bo

(
1− b1F (t)

B

)2

(2.7)

Pulse train∑
δ(t− ti)

Filter
Static

Filter

Force Feedback

q(t) x(t) F (t)

Linear
Nonlinearity

Figure 2.7: Block diagram showing the stages through which a pulse train input is trans-
formed into a force in Bobet and Stein’s [73] model.

The model has 6 parameters, a, bo, b1, B, k,m. It is speculated that the first filter (Eq.(2.4))

represents calcium release and re-uptake. The static non-linearity may represent calcium bind-

ing to troponin (Eq. (2.5)). The final filter could account for (Eq. (2.6)) the cross-bridge

dynamics, with the non-linearity in rate constant (Eq. (2.7)) accounted for by cross-bridge

detachment.

2.2.6.2 Ding et al Model

The model developed by Ding et al [20, 60, 61] is of higher order than that of Bobet and Stein

[73], but uses the same number of parameters. The structure of the model is given in Fig. 2.8.

It consists of three first-order low pass filters in series, with a static non-linearity which occurs

before the final filter.
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q̇(t) +
q(t)
τc

=
n∑
i

Riδ(t− ti) (2.8)

ĊN (t) +
CN (t)
τc

=
q(t)
τc

(2.9)

x(t) =
CN (t)

k + CN (t)
(2.10)

Ḟ (t) +
F (t)

τ1 + τ2x(t)
= Ax(t) (2.11)

Ri = 1 + (Ro − 1) exp
(−(t− ti)

τc

)
(2.12)

Pulse train Linear
Filter

Static
Nonlinearity

Filter
x(t) F (t)

Ri

Linear
Filter CN (t)

∑
δ(t− ti) q(t)

Figure 2.8: Block diagram showing the stages through which a pulse train input is trans-
formed into a force in Ding et als [20] model.

The model has six parameters, τc, Ro, A, k, τ1, τ2. The term Ri (Eq. (2.12)) is used to account

for the non-linear summation when fibres are stimulated by two closely spaced pulses. Equa-

tions (2.8) and (2.9) represent the muscle activation and are said to do this by modelling the

dynamics of the rate limiting step that leads to formation of the Ca2+-troponin complex. The

variable CN is said to represent the normalised amount of the Ca2+ complex. The development

of mechanical force from activation is represented by Eq. (2.10) and (2.11).

2.3 Contraction Dynamics

The muscle contraction dynamics describe how a muscle activation is converted into a muscle

force [1]. Since the activation and contraction dynamics are almost always assumed uncoupled,

as in Fig. 2.1C, to describe the contraction dynamics it is common that the muscle is maximally

activated, so that a(t) = 1. For cases where the activation is submaximal the contractile model

developed under maximal activation is scaled by the activation.

Muscles are made up of series of fibres. The arrangement of these fibres depends on the

muscular function [23, 83–85]. Common functional arrangements of muscle fibres are given in

Fig. 2.9.
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Figure 2.9: Different arrangements of muscle fibres within a muscle. The boxes represent
the muscle fibres and the lines radiating from these the tendons. Double headed arrows (f)
indicate the direction of force exerted by individual fibres and single headed arrows (F ) the
direction of force exerted by the whole muscle. A) Parallel muscle B) Pennate muscle C)

Bi-pennate muscle. Adapted from [86].

During muscular contraction, it is the sliding filaments in the individual sarcomeres that shorten

the muscle. Thus, the fibres shorten in a direction parallel with their line of action. The

shortening of the global muscle occurs as a result of the shortening of each individual fibre. To

describe contraction of the whole muscle it is commonly assumed that the properties of fibres

are just scaled up from sarcomeres, and muscle properties scaled up from fibres. A factor is

used to account for the pennation angle [1, 39]. This approach ignores the individual differences

in force, displacement, velocity and timing of each sarcomere [47].

2.3.1 Hill-Model

A.V. Hill [36] was an early pioneer in muscle research, finding that during shortening as well

as doing mechanical work a muscle produces extra heat. The extra heat is proportional to the

distance shortened [36]. Thus, the total energy produced in excess of an isometric contraction

is given as (Fm + ah)xms, where Fm is the force of the muscle, xms the distance shortened

and ah a constant of proportionality which relates the heat of shortening to distance shortened

[36, 38, 87]. By definition, the rate of extra energy liberation during an isometric contraction

is zero, therefore,

(Fm + ah)vms = (Fo + ah)bh (2.13)
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where vms = (dxms/dt), the muscle shortening velocity, Fo is the maximal isometric force and

bh is a constant which defines the absolute rate of energy liberation. This relation can be

re-written to give Hill’s characteristic equation, often referred to as the Hill equation,

(Fm + ah)(vms + bh) = (Fo + ah)bh = constant (2.14)

or equivalently

Fm =
Fobh − ahvms

bh + vms
(2.15)

SE CE

Figure 2.10: Hill’s model of skeletal muscle. The model comprises a contractile element
(CE) which is characterised by Eq. (2.14) in series with an elastic element (SE). Adapted

from [87]

Based on experimental observations Hill went on to conclude that active skeletal muscle is

a two-component system consisting of an undamped purely elastic element in series with a

contractile element, as shown in Fig. 2.10. The properties of this contractile element are

governed by Eq. (2.14). Hill states that there are probably also viscoelastic and viscous

elements as well.

2.3.2 Hill-Type Lumped Component Models

A Hill-type lumped-component model is frequently used in bio-mechanical models of the

musculo-skeletal system [1, 15, 28, 39, 40, 42, 57, 59–61, 79, 85, 88–92]. It is a popular

choice due to its mathematical simplicity. In the lumped component model, the Hill model

(Fig. 2.10) is commonly supplemented with an extra parallel elastic component (PE) in paral-

lel with the contractile element. Popular functional arrangements of the elements are given in

Fig. 2.11.

Commonly, as in Fig. 2.11, muscle is viewed as consisting of three basic structural elements: the

contractile element (CE) which is active and controllable, the passive and negligibly damped

series elastic element (SE) and the parallel elastic element (PE) which is both passive and

negligibly damped. Variations to the general model given in Fig. 2.11 exist [93].
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SE CE

PE

SE CE

PE

A) B)

Figure 2.11: Popular functional arrangements of Hill-type lumped component models. A)
Hill model with PE component in parallel with the CE. B) Hill model with PE component

in parallel with both the SE and CE. Adapted from [87]

The model assumes that all the fibres are excited at exactly the same time, and the properties

are scaled up from that of a sarcomere. Under these assumptions the lumped component

models provide an equivalent representation of the actual distributed system [1, 39]. The

lumped component model is a conceptual model so does not apply to actual components.

2.3.2.1 Contractile Element

The behaviour of the CE is key to the active muscle response. The CE is active and controllable.

Hill used his equation to describe the response of the contractile element (Eq. (2.14)). However,

Hill’s equation applies only to limited contractile conditions [4, 36, 87] : maximal activation,

shortening contractions, from optimal muscle length, lo. Optimal muscle length is defined as

the length at which the muscle develops the greatest active tension [94]. In a relaxed state

the length of the muscle is usually at optimal length [95]. Constraining conditions for which

the model is valid limits its physiological applications [34]. Therefore, as an extension to Hill’s

equation and to include the full range of muscle lengths the contractile force is commonly

assumed [1, 28, 42, 57, 79, 96] to be given by

FCE = a(t) · FL(lm) · FV (vm) (2.16)

where a(t) is the activation, FV (vm) is a force-velocity relation which is assumed to be a function

of the muscle velocity only, and FL(lm) is a force-length relation, assumed to be a function of

the muscle length only. In expressing the contractile force as a function of force-length, force-

velocity and activation properties as in Eq. (2.16) one assumes mutual independence of these

properties [97]. The activation, a(t) is obtained from isometric experiments (see Sec. 2.2). The

FV and FL relations are essentially established by fitting to experimental data [38, 98–100].

The FL relation gives the relation between isometric length and muscle force. Typically, to

estimate the force length relation the muscle is held at a range of different lengths and at each
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length the isometric force in response to maximal activation recorded. The resultant force-

length relation of the contractile element has the form given in Fig. 2.12A. In Fig. 2.12A, lo

refers to the muscle rest length, at which the maximum isometric force Fo is produced. Figure

2.12B gives the force velocity relation, in which the shortening velocity is defined as negative,

and where vo defines the maximal shortening velocity. The FL component of the contractile

force is generally assumed to vanish outside the range lmin < lm < lmax. The lengths lmin

and lmax are the lower and upper bound for the admissible range of muscle lengths, outside of

which damage may occur [28].
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Figure 2.12: Normalised force response under maximum activation A) Relation between
isometric force and muscle length, B) Relation between muscle force and velocity

The sliding filament mechanism of muscular contraction [27, 101] provides an explanation for

the shape of the force-length curve of the CE shown in Fig. 2.12A. Contraction occurs due

to a relative sliding motion between thick and thin filaments, with the length of each filament

remaining substantially unaltered [27]. The degree of overlap of these filaments affects the

developed tension. This is demonstrated in Fig. 2.13. Various equations have been used to

fit to force-length data, however equations that describe the FL relation in Hill-type models

are not based on the physical processes as given in Fig. 2.13; they just provide a fit to the

measured behaviour.

To estimate the FV relation, again the muscle is maximally excited. It is initially held at a

given length (often optimal length) by a force, F1, which is then suddenly reduced to F2 which

enables the muscle to shorten. The force F1 is then plotted against the shortening velocity.

The muscle is released against a range of different forces, giving a force-velocity profile.

The Hill-hyperbola of Eq. (2.14) describes the response of the contractile element to shortening

at optimal length. To describe the total force-velocity relation two equations are commonly

used, one to describe shortening (vm ≤ 0) and the other lengthening (vm > 0). The form of

the FV relation of the CE is shown in Fig. 2.12B. The FV relation has been estimated by

many groups [28, 39, 102]. The vast majority find data comparable to the Hill-hyperbola over

the shortening range. Although Hill’s relation relates the force-velocity to muscle energetics

the FV relation is essentially, like the FL relation, just a fit to experimental data [38]. One

proposed FV relation given in terms of the normalised muscle velocity ṽm = l̇m/vo is [28],
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Figure 2.13: Features of the force-length curve explained using sliding filament theory.
From stages 1-2 the proportion of bridges of the thick filament which are overlapped by
the corresponding thin filament increases constantly (assuming uniformly distributed cross-
bridges where present). Thus the number of cross-bridges that can be formed increases and
so the tension increases. There is a plateau in force from stages 2-3 as there is no further
increase in the number of cross-bridges that can be formed. As the thin filaments start
to overlap (3-4) the force starts to decrease. From stages 4-6 the ends of the thick filament
collide with the z-lines. This reduces the number of crossbridges capable of generating tension

and there is a corresponding decrease in tension. Figure adapted from [101].

F̃V =



1− f̃ 1 + b̃

f̃ − 1
ṽm

1− 1 + b̃

f̃ − 1
ṽm

, ṽm > 0 (Lengthening),

1− ṽm

1 +
ṽm

b̃

, ṽm ≤ 0 (Shortening)

(2.17)

where the parameters b̃ and f̃ are constants for each muscle. Since b̃ and f̃ are constants, the
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shortening region of Eq. (2.17) is mathematically equivalent to the classic Hill equation of Eq.

(2.14).

This form of equation (2.17) is commonly used to model the FV relation, although particular

equations describing the lengthening and shortening portions differ. Alternatively, Giat et

al [96] present the force-velocity relationship using one equation which describes force as a

function of shortening or lengthening velocities as,

FV = 1 + arctan(cg1ṽ
3
m + cg2ṽ

2
m + cg3ṽm) (2.18)

where cg1, cg2 and cg3 are muscle specific parameters.

This method of describing the CE assumes that the FV component is unaffected and uncoupled

from the muscle length. This is an important and arguable assumption. Brown et al [57, 102]

observe that active shortening and active lengthening regions of the force velocity curve cannot

be scaled congruently for all lengths; to account for this a length dependency is included in the

FV relation,

F̃V =


vo − vm

vo + (cvo + cv1lm)vm
, vm ≤ 0 (Shortening),

bv − (avo + av1lm + av2l
2
m)vm

bv + vm
, vm > 0 (Lengthening).

(2.19)

where avo, av1, av2, bv, cvo and cv1 are introduced as constants. Brown et al’s [57] equation

for the shortening section of the FV relation is similar to that of Hills, but also includes

some dependency upon current length. If this length dependency is removed then the relation

becomes mathematically equivalent to Hills relation.

2.3.2.2 Series Elastic Element

The SE element is a non-contractile component of the muscle that lies in series with the

contractile element. The SE components store energy when stretched and contribute to the

elasticity of muscle. Some chose to neglect the SE [1, 28, 42, 57, 79, 91]. Zajac [1] argues that

including a SE means that the fibre lengths and velocities will not be proportional to sarcomere

lengths and velocities and that in many muscles tendon compliance dominates, so any series

elasticity within muscle fibres should be ignored. Others equivalently assume that the SE has

infinite stiffness and can hence be ignored.
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2.3.2.3 Parallel Element

The PE is generally assumed to generate force only where the muscle is stretched beyond the

optimal muscle length. If the SE is assumed infinitely stiff then the PE describes the passive

tension developed when the CE is inactivated (more details on passive tension are given in Sec.

2.4). The response of the PE is commonly assumed to be negligibly damped [28] and the force

it develops assumed only to be a function of length. In some cases some viscous damping is

included [79]. The response of the PE modifies the force length curve of the muscle and the

total force-length curve is described by the sum of the response of the contractile and parallel

element, as shown in Fig. 2.14.
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Figure 2.14: Relation between muscle length and force. The total force length relation
( ) is given as the sum of the active (×××) and passive ( ) contributions.

2.3.3 Issues with Hill-Type Models

Lumped component, Hill-type models (introduced in Sec. 2.3.2) are widely used [1, 15, 28,

39, 40, 42, 57, 59–61, 79, 88, 90, 91]. Their popularity stems from their mathematical sim-

plicity and the ease with which model parameters can be estimated [38, 87]. They have been

shown to capture a variety of experimental findings [88] and utilised effectively for the study of

higher excursion tasks [38, 103]. However, they are not widely used to study movements that

involve lower speeds and submaximal activation [88]. Such conditions are relevant to naturally

occurring, normal, everyday movements [88, 97, 104]. Perreault et al [97] and Barratta et al

[104] conclude that Hill-type models have the largest error when applied to naturally occurring

movements, suggesting that the model has limited functional relevance.

A primary source of error in Hill-type models is that the force response of the contractile

element is assumed to be instantaneous and single valued. However, length, velocity and

activation are not independent determinants of muscle function [4, 5, 47]. The muscle is well
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known to exhibit history dependent behaviour [18, 43], which includes force enhancement and

force depression, fatigue and sag [105]. The steady-state isometric force following stretching

of a muscle is greater than the force for a purely isometric contraction [57, 105–113]. This is

known as force enhancement. Similarly the maximum force following shortening is depressed

[108, 113, 114]; this is termed force depression. This behaviour cannot be predicted using Hill

models as the equations implicitly assume a unique relation between force, velocity and length.

Hill-type models are considered to be phenomenological. Regardless of anatomical locations or

levels of muscular organisation within a muscle all elastic properties are pooled into either the

SE or PE element. All contractile properties that do not involve elasticity are concentrated

in the CE [47]. Another issue with Hill-type models is that the division of forces between the

CE and PE and separations of elongation between the SE and CE is somewhat arbitrary [87].

Although the model is phenomenological this arbitrary division makes it hard to associate the

theoretical elements of the model with any biological structure [87]. Furthermore, rather than

the force-velocity and force-length properties of the CE being obtained as a resultant behaviour

of a combination of simpler elements, the CE introduces the FV and FL relations.

2.3.3.1 Modifications to Hill-Type models

Adapted Hill-models have been utilised to account for the errors associated with assuming an

invariant force-velocity and force-length relation [56–59, 97, 102, 115–117]. Brown et al [56–

59, 102, 115] build a ‘next generation’ model to account for these effects. In their model the

force-velocity relation is a function of length as well as velocity (see Eq. 2.19). They include

coupling between the activation and a delayed representation of muscle length; sag and fatigue

are also accounted for in the activation model. Similarly Shue et al [116, 117] incorporate

length dependent coupling between activation and velocity in a model with Hill-type structure.

These models are able to replicate some of the known interactions between muscle velocity,

length and activation as well as some history dependency. However, the overall models are

relatively complicated, with many parameters and governing equations compared to Hill-type

models.

2.3.3.2 Alternative to Hill-type Models

In addition to the issues discussed in the previous sections, Hill-type models do not tend to

describe the chemo-mechanical energy conversion process (energetics) that occur during the

transformation from a neural action potential to force [118]. Commonly the Electromyography

(EMG) is recorded, and the EMG signal (lightly filtered and rectified) is used as the input to the

muscle model [38]. The EMG measures the electrical activity of the muscle, and EMG driven

models rely on measured muscle activity to estimate muscle force. Alternatively, activation
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can be considered as almost instantaneous, with deactivation a slower process, and modelled

as a first order relation [38]. There being no correlate between the activation model used in

some Hill-type models to the processes that occur during contraction may contribute to the

inability of these models to perform well at sub-maximal levels of activation.

In this work an alternative approach is used to model the isometric force. The model is based

on the muscle energetics, and is of similar form to the models of Bobet and Stein [73] and

Ding et al [20] described in section 2.2.6. Instead of using the EMG signal as a model input,

the stimulus pulse is used directly. The processes that are modelled during the transformation

from input to muscle force can be linked to the physiological processes that occur during muscle

contraction described in section 1.3. This approach provides more insight into the physiological

phenomenon, and muscle energetics during contraction. Hill-models perform worst at low levels

of activation, this may be due to the fact they are unrelated to the events that occur during

the electro-chemical transform.

One of the main attractions of Hill-type models is their mathematical simplicity. In this thesis

a simple alternative is presented. The model of isometric force at a fixed length contains six

parameters, and is made up of two coupled first order differential equations. This model is

able to predict the isometric force response to a wide range of inputs, including physiological

relevant inputs. The model is extended to an isometric model that can describe the force

response at any isometric length. This introduces an extra five parameters to the model, and

includes coupling between the activation and contraction dynamics. This number of additional

parameters is equivalent in some cases to the number of parameters introduced by the FL

relation in Hill-models (i.e. in the model of Ghigliazza and Holmes the FL relation is described

by 5 parameters). The developed model has the distinct advantage that coupling between the

activation and contraction dynamics is included. The model is more physiologically relevant

than a Hill-type model, and provides an alternative that is able to model the force at a wide

range of levels of activation. Furthermore, modelling the force response to a voltage input,

as opposed to the electrical activity of the muscle (EMG input) has more direct relevance in

aiding with FES stimulation protocols.

2.3.4 Huxley-Type Models

There also exist biophysical models describing muscle behaviour [4]. These models are based

on the sliding filament theory of contraction. They describe the muscle behaviour based on the

current state and attachment and detachment rates of crossbridges. The original and simplest

model of this form is presented by Huxley [119]. These models form a conceptual foundation

for contraction. They are, however, rarely used with biomechanical application, such as to

model global muscle forces or motions [87]. This is attributed to the fact that these models
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are mathematically complex and represent sarcomere as opposed to fibre behaviour [4]. These

models do not address the interaction between electrical stimulation and calcium activation,

dependence of activation upon length or sarcomere inhomogeneity [87].

2.4 Passive Muscle Properties

2.4.1 Mechanism for Passive Force Development

The force developed in an inactivated muscle is termed the passive force. The passive muscle

force develops due to the presence of the giant protein titin [120–123]. Within the sarcomere,

titin connects the M-line (centre of sarcomere) to the Z-line (end of sarcomere) as shown in

Fig. 2.15. The section between the Z-line and the thick filament (i.e. edge of the A-band) is

extensible and acts as an elastic molecular spring [122]. It is this section that gives the muscle

its passive tension, as well as centring the thick filaments.

Z-line

Titin

Myosin

M-line
A-band

Actin

half
I-band

Figure 2.15: A schematic diagram of titin, myosin (thick filament) and actin detailing the
location of titin within the sarcomere. Taken from [124]

When stimulated, muscles contract and activated muscles can only exert a pulling force. There-

fore, muscles often work in agonist-antagonist pairs [28]. These pairs consist of an extensor

muscle (agonist) which increases the joint angle when activated, and a flexor (antagonist) which

acts in the opposite sense. Figure 2.16 gives a representation of an agonist-antagonist pair.

When one muscle of the pair is activated it contracts while the other undergoes passive length-

ening. If the activation of the muscle is then stopped, passive shortening can occur in one of

the pair and lengthening in the other back to the joint rest position.

2.4.2 Modelling Passive Force Development

Little attempt has been made to characterise the contractile response of passive muscle. How-

ever, passive contraction, as well as passive lengthening can occur in muscles that act as

agonist-antagonist pairs. Models describing the response of passive muscle commonly only

describe the force response of the muscle as it undergoes lengthening from rest conditions. In

these models the passive force is commonly assumed to be negligibly damped and described
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Figure 2.16: Agonist-antagonist pair. A) Shows how the two muscles work together to
enable the joint to move in both directions. B) Gives a phenomenological Hill-type repre-

sentation of a agonist-antagonist pair, adapted from Ghigliazza and Holmes [28].

by a non-linear spring. The force is assumed to be zero for cases where the muscle length is

shorter than the optimal length. For lengthening from the optimal length the non-linear spring

is often described algebraically as either a power law or exponential. Both forms of equations

produce relations similar to that given in Fig. 2.14.

Biological materials are known to display both viscous and elastic behaviour [23]. Passive

muscle has also been measured to behave viscoelastically [125–128]. If the muscle is considered

as a viscoelastic material the shape of the passive curve will be influenced by the initial muscle

length, stretch history and rate of change of length as well as the current length [129]. Thus, if

a passive model is based only on the lengthening response of the muscle from optimal length,

it cannot describe this viscoelastic behaviour. There has been little attempt to characterise

the viscoelastic behaviour of passive skeletal muscle [130]. However, there has been some

attempt to model the viscoelastic behaviour of smooth muscle2 and other biological materials

[23, 126, 131]. Tian et al, [131] model the passive mechanical properties of a leech body wall

using a combination of series and parallel non-linear springs and dampers. Similarly, the passive

response of larangal soft tissue and rabbit detrustor smooth muscle have been modeled using

Kelvin/Voigt type viscoelastic models [132–134].

2.5 Invertebrate Specific Models

There have been a number of studies that measure the force response of invertebrate muscle

[5, 9, 49, 135–141], however, there have been few attempts to develop a model describing the

response.
2Smooth muscle is one of three types of muscle found in the body of mammals, the others being skeletal and

cardiac muscle. Smooth muscle is found in the walls of internal organs and blood vessels (excluding the heart).
The muscle has the form of thin layers of sheet so does not appear striated. It contracts without conscious
control

31



2. Models Describing the Response of Skeletal Muscle

Full and Ahn [142] use a Hill-type model with the form given in Fig. 2.11B in developing

a model of the hind leg of the death head cockroach. Similarly, a Hill-type model is used

by Zakotnik et al [49, 80] to model the response of the extensor muscle to SETi stimulation.

Zakotnik et al [49, 80] use standard FV and FL relations and do not measure these properties

directly. Their activation model is extended from the cascade model described in Sec. 2.2.4

and is given by

δ2β

δt2
+ φ1

δβ

δt
+ φ2β = u(t) (2.20)

δ2γ

δt2
+ φ3

δγ

δt
+ c(f)φ4γ = β(t) (2.21)

c(t) =
t2

K1 + t2
− t2

K2 + t2
+ 1 ; t ≡ 1/f (2.22)

where u(t) gives the input action potential and γ(t) the active state of the muscle. The model

has 6 parameters, φ1, φ2, φ3, φ4, K1 and K2.

Cofer et al [143] also use a Hill-type model to model the locust hind leg flexor and extensor

muscle in a neuromechanical simulation of a locust jump. The model converts a change in

muscle membrane voltage to tension using a sigmoid shaped curve (similar approach to using

a Hammerstein model with IRC curve, see Sec. 2.2.3). The tension value is then scaled based

on the muscle length, using a FL curve. The scaled tension is then applied to the muscle by

a force generator to produce a contraction. A Hill-type model is again used to describe the

behaviour of cockroach muscle by Ghigliazza and Holmes [28, 79]. Parameters of their model

are found by fitting to data from a cockroach.

Each of these studies embodies the muscle model into an overall system. The muscle models

are just used as actuators to describe the overall response. For example Cofer et al [143] study

locust jumping and are more concerned with the details of other mechanical components in

the system, Full and Ahn [142] use their model in describing wedging behaviour, Zakotnik et

al [49, 80] to characterise locust scratching and Ghigliazza et al [28, 79] as a component in

describing locomotion.

2.6 Conclusions

A wide range of methods have been used to model the response of skeletal muscle. There exists

very little literature describing comparisons between existing models. Even in cases where the

modelling method is similar, e.g. Hill-type, there is still little crossover between the models of
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different researchers. The individual components of the models (e.g. FV relation) are described

using different sets of equations by different research groups.

Muscle is a complex system, therefore simplifying assumptions are used to model it. These

assumptions limit the range of applicability of the model, but help to reduce the complexity of

the system. There is a trade-off between having a simple tractable model and a precise complex

model. Studying invertebrate muscle simplifies the neural part of the neuro-muscular system.

Despite this there have been few attempts to describe the force response of invertebrate muscle.
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Chapter 3

Materials and Methods

3.1 Introduction

Force measurements were made under two different conditions: isometric and non-isometric.

This required two distinct experimental set ups. This chapter summarises the experimental

set ups and acquisition methods used in obtaining data. The chapter starts by describing the

length and mass measurements recorded in each locust. Next, an introduction to the anatomy

and neurology, relevant to the hind leg extensor muscle, of the locust (Schistocerca gregaria,

Forsk̊al) is provided. Details of the femoral-tibial (FT) joint are then described. During

isometric experiments force was measured external to the muscle, at the tibia. The method of

estimating the muscle force from the tibial force, which involves estimating joint dimensions in

each locust, is then provided. Next the set up, stimulation protocol and acquisition methods

used to measure the isometric force response are described. Finally the set ups, inputs and

acquisition methods used to measure the force response under non-isometric conditions are

provided.

3.2 Locusts

Adult locusts (Schistocerca gregaria, Forsk̊al) of both sexes, taken from a colony at the Uni-

versity of Southampton, were used for experiments. The sex, length, mass, femur length,

tibial length and femur width of each locust were recorded. Leg measurements refer to the

left (looking from ventral side, with head at top) hind leg. To measure the lengths, specific

reference points on the locusts were used for consistency between measurements in different

animals. The reference points used to measure the lengths are defined in Fig. 3.1. Callipers

with accuracy of ±0.01mm were used to measure lengths. The locust mass was recorded by
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placing it on a balance with measurement accuracy of ±0.005g. Table 3.1 summarises the mean

measurements in 25 adult locusts, taken from the colony.

A) B)

C)

Locust length

Femur length

Tibial length

Femur width

Figure 3.1: Definitions of length measurements in each locust. In each locust measurements
were taken between the same visually identifiable reference points.

Table 3.1: Sample mean measurements with confidence interval at the 95% confidence level,
(25 locusts)

Measurement Sample mean, x̄ Conf interval of mean
Locust length (mm) 44.6 43.4 ≤ µ ≤ 45.9
Femur length (mm) 20.1 19.4 ≤ µ ≤ 20.5
Tibial length (mm) 19.3 18.8 ≤ µ ≤ 19.9
Femur width (mm) 3.96 3.83 ≤ µ ≤ 4.10
Locust mass (g) 1.47 1.34 ≤ µ ≤ 1.61

3.3 The Locust Hind Leg Anatomy

The hind legs of locusts are specialised for powerful kicking and jumping movements. As a

result, the hind leg is significantly larger than than the front and mid legs. The hind leg joints

are: thoraco-coxal, coxal-troxhanteral, trochantero-femur, femoro-tibial, tibio-tarsal and tarso-

ungual [8]. The components of the hind leg and these joints are depicted in Fig. 3.2A. The

muscle of interest in this thesis is the extensor tibia (ETi). This muscle contracts to extend the

tibia about the femoro-tibial (FT) joint. Figure 3.2B shows the FT joint more clearly with the

muscles that move the tibia, tarsus and unguis given. The much enlarged size of the extensor

muscle, relative to the flexor is evident in Fig. 3.2B.

3.3.1 Structure of the Extensor Muscle

The hind leg extensor muscle is a bi-pennate muscle. Muscle fibres attach between the extensor

apodeme and the femur cuticle. The fibres vary in length, due to the shape of the femur and

the fact that the attachment angles of fibres to the apodeme vary. A plan diagram of the left
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Femur

Tibia

A) B)Thorax

Unguis

135

136Coxa
Trochanter

Femur

Tibia

Tarsus

Figure 3.2: A) Components of the locust hind leg. B) Locust hind leg, from [8]. The
muscles are numbered according to convention: 135 extensor tibia, 136 flexor tibia, 137

levator tarsi, 138 depressor tarsi, 139 retractor unguis.

ETi, viewed from the ventral surface, is given in Fig. 3.3. This provides a representation of

the structure of the ETi.

a
b c d e f

Nerve and
trachea enter
here

retractor unguis

Figure 3.3: Plan view of the left ETi viewed from the ventral surface. taken from [9].
Marked regions a-f contain different fibre structures and innervations. The retractor unguis

muscle is also shown, this muscle controls movement of the unguis.

Experiments were performed in which the entire extensor muscle was exposed. This was done

by removing the ventral section of the femur, flexor muscle and air-sacs. During dissection the

exposed section was bathed in locust saline. Toludine blue was used to highlight features of

the muscle, enabling individual fibres and corresponding pennation angles to be seen. Images

of the exposed extensor were taken down the microscope (Wild, Germany) for a range of FT

angles. For the required magnification it was not possible to fit the whole muscle into a single

picture. Therefore, sections of the muscle were photographed, then combined using reference
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points. An image of the extensor muscle, obtained using the described method, is given in Fig.

3.4. The variation of fibre length and pennation angle along the muscle is clear.

Figure 3.4: Photograph of the exposed extensor muscle, taken at an FT angle of 90◦.

3.3.2 Innervation of the Extensor Muscle

The physiology and control of the ETi muscle of the locust hind leg has been throughly studied

[8–10, 12, 13]. The ETi is innervated by only four neurons [9], each of which has been uniquely

identified. These neurons consist of a fast (FETi) and slow (SETi) excitatory motor neuron,

a common inhibitor (CI) and a dorsal unpaired motor neuron (DUMETi). During fast move-

ments, such as jumping or kicking, both FETi and SETi are active. For slow movements, such

as walking, only SETi is active. The axon supply to the ETi from the point of entry to the

end of the femur is given by Hoyle [9]. The extensor muscle innervation is common to mul-

tiple units; muscle units are not supplied with independent nerve branches. Different regions

of the extensor muscle play different functional roles [9]. This thesis is concerned with the

force response to FETi stimulation. The mechanical response to FETi dominates the overall

response of ETi [9]. FETi stimulation is relatively easily produced during experiment and the

stimulation routine used in experiments is described in Sec. 3.5.1.

3.3.3 The Femoral-Tibial Joint

The FT joint is a hinge joint so movement of the tibia is in-plane. The joint is controlled by the

flexor tibia and extensor tibia muscles that work as an agonist-antagonist pair. Contraction of

the extensor muscle extends the tibia, whereas contraction of the flexor causes tibial movement

in the opposite direction. The range of movement of the FT joint is from approximately 10◦,

where the flexor and tibia lie almost parallel, to 160◦ when the tibia is fully extended [144].

The FT joint is specialised for jumping and kicking. Jumping and kicking are high-speed,

high-power movements. Muscle cannot produce high-power, high-speed movements as there

is a trade off between velocity and force. Such behaviour is captured by Hill’s equation (Eq.

(2.14)). The FT joint has a section of sclerotised cuticle, known as the semilunar process.

Prior to a jump the tibiae are held flexed for 300-600ms [145], during this time the flexor and
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extensor muscles co-contract isometrically. This co-contraction distorts the semilunar process.

The semilunar process stores approximately half of the energy which is released during a jump

or kick [145]. This enables the resultant high-power, high-velocity jumping or kicking movement

to occur. A diagram showing the anatomy of the femoro-tibial joint and the semilunar process

is given in Fig. 3.5.

Femur
Semilunar process

Extensor apodeme

Flexor apodeme

Tibia

Cover plate

Figure 3.5: Anatomy of FT joint, showing the semilunar process.

The mass of the extensor is approximately 5 times that of the flexor [8]. The extensor muscle

can exert a stronger force than the flexor. During co-contraction the relatively weak flexor

muscle must pull with the same force as the strong extensor. The joint is specialised so co-

contraction can occur. When the tibia is fully flexed (i.e. FT angle=10◦) the extensor tendon

is working at a significant mechanical disadvantage. The hind leg contains a lump (Heilter’s

lump) and the flexor tendon rides on top of this lump. The lump changes the angle with which

the flexor tendon pulls on the tibia which gives the flexor mechanical advantage meaning that

co-contraction of a relatively weak flexor and strong extensor muscle can occur.

3.4 Joint Transform

3.4.1 Calculating Muscle Force from Tibial Force

In the isometric experiment forces were measured external to the muscle, at the tibia (Sec.

3.5.1). The internal muscle force needs to be found from the known external force [146]. To

calculate muscle force from the tibial force, knowledge of the FT joint is required.

The structure of the FT joint was assumed to match Heitler’s description [147]. This assumes

that the joint is a hinge joint and that, due to the relative distal origin of the extensor muscle,
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the extensor apodeme remains parallel to the femur. The assumed structure is given in Fig.

3.6 with ABCD assumed to be rigid and free to pivot about B.

Flexor

B

C

D

λr

θc

θb

b+ λr
A

B

C

D

λ

θc

θb

A) B)

LExtensorA
g

b+ λ

Figure 3.6: Assumed structure of the FT joint, adapted from [147]. A) The extensor muscle
is at resting length, B) the extensor muscle is at a general length.

An expression for the relative length change of the extensor, (L − g) in Fig. 3.6, is obtained

from the joint geometry as

∆L = a cos(b+ λ)− c (3.1)

with

a = AB, b = θb − θc, c = AB cos(θb − θc + λr)

Here λ is the FT angle and λr the angle at which the lengths are measured relative to, the

dimension AB and angles θb and θc are defined in Fig. 3.6. The lengths were measured relative

to the muscle resting length (λr = 80◦), hence the relative length change ∆L gives the change

from muscle resting length.

After isometric experiments, the extensor muscle was exposed for length measurements by

cutting a window in the distal part of the femur close to the FT joint. The overlying flexor and

air-sacs were dissected out. The FT angle was varied from 20◦ to 140◦ . Figure 3.7 gives an

example of the change in length ∆L against FT angle λ in one locust. By curve fitting, using

a least-squares estimate, to a plot of ∆L against λ using Eq. (3.1) estimates could be obtained

for the length AB and angle θb − θc for each locust. Figure 3.7 gives an example of the fit.

In order to convert the measured tibial force into a muscle force, equilibrium of moments can

be taken about the joint pivot point. In isometric experiments there was no joint rotation,
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Figure 3.7: Example of data (*) and fit (—) for relative muscle length at different FT
angles for one locust.

Table 3.2: Mean estimates for AB and θb − θc with confidence intervals at the 90% confi-
dence level (25 locusts)

Measurement Sample mean, x̄ Conf interval of mean
Length of AB (mm) 0.46 0.42 ≤ µ ≤ 0.49
Angle θb − θc (rad) 0.15 0.06 ≤ µ ≤ 0.23

therefore the moment due to the tibial force can be equated to the moment due to the muscle

force. To do this, as well as knowing AB, θb−θc and λ, the location of the pivot point and the

perpendicular distance from the line of action of the tibial force to the pivot, are also required.

The pivot point B was found by tracking a point on the tibia as the femur was rotated (this

was done prior to the dissection to find AB and θb−θc). A circle could be fitted between points

(justifying the hinge joint assumption), with the centre of rotation found at the centre of the

circle. Figure 3.8 provides an example of the tracked points, fitted circle and the corresponding

pivot point. The point of measurement on the tibia was marked and recorded for each locust.

Hence, once the pivot point was located, the moment due to the tibial force could be found

straightforwardly. This moment was equated to the moment due to the muscle force, which

could be calculated for each locust using the relevant values of AB and θb− θc for each locust.

Re-arrangement gave the corresponding muscle force at a given FT angle from the measured

tibial force.

3.4.2 Joint Estimates

Table 3.2 provides a summary of estimates for AB and θb−θc using the method described above.

The obtained lengths for AB and θb − θc can be compared to Heitler’s [147] who measured

AB=0.76mm and θb − θc = 0.018 radians in one locust with tibial length of 21mm. These

measurements are of comparable order of magnitude and the variability could be accounted for

by variation between locust colonies. Heitler’s measurements were obtained from scale drawings

and photographs of the dissected joint. The method described above leaves the joint intact.

The distal end of the femur is encased in a hard cuticle, the semi-lunar process. Dissecting this

away to expose the joint is difficult and causes some loss of structural integrity of the joint.
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Figure 3.8: Example of tracking a point on tibia to find the centre of rotation. A circle (- .
-) was fitted to the tracked points (x) on the tibia as the joint was rotated to give the pivot

point (⊗).

After estimation of joint dimensions using the method described a few joints were dissected open

and dimensions measured. Estimated angles and lengths were found to be similar between the

two methods, although exact measurements from dissection were difficult due to the difficulties

in determining exact insertion points. Estimates using the method described, where the joint

dimensions were estimated from tracking changes in muscle length, are shown superimposed

on a dissected joint in Fig. 3.9 for a range of FT angles. The method of determining joint

dimensions without joint dissection and direct measurement is thought to provide reasonably

accurate estimates of the joint dimensions, the merits in this method lying in the fact that

no joint dissection is necessary. The inaccuracies of this method arise from tracking the mark

imprecisely and difficulties in exactly determining the FT angle. FT angle measurements are

accurate to about ± 0.035rad.
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Figure 3.9: Photographs of dissected joint at a range of FT angles showing estimate for
AB (—) and the pivot point (*), where visible the edges of the extensor apodeme (- - -) are
marked. A) FT angle = 15◦, B) FT angle = 85◦, C) FT angle = 130◦, D)FT angle = 155◦.
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3.5 Force Measurements

3.5.1 Isometric Measurements

Locusts were securely fixed ventral side up using modelling clay. The left (looking from ventral

side, with head at top) hind leg was clamped ventral side up so that the femur was fixed but

the tibia and tarsi of the leg were free to move with their full range [144]. The FT angle was

set to 80◦ using a protractor, with a pin used to hold the tibia at 80◦. A schematic of the set

up is given in Fig. 3.10. A photograph of the set-up is shown in Fig. 3.11.

Load cell

Femoral axis

Tibial axis
Femur, fixed down in Plasticine

Tibia

Protractor

Tarsus

Stimulation electrodes

Bent pin

Figure 3.10: Schematic of force experiments. Stimulation electrodes were used to activate
the extensor muscle and cause the tibia to exert a pushing force on the load cell.

Locust

electrodes
Stimulation

Load
cell

Figure 3.11: Photograph of isometric force experiments. The locust was mounted under a
microscope.
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During experiments the muscle was held isometrically by constraining the FT angle at 80◦.

Figure 3.12 depicts the maximum tetanic force, measured at a fixed point along the tibia, for

5 locusts at a range of FT angles. The force measured at the tibia is maximum when the

FT angle is set to 80◦. The signal to noise ratio is improved by using the angle at which the

maximum force was recorded, therefore an angle of 80◦ was used throughout experiments.
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Figure 3.12: Maximum force measured at the tibia during tetanic stimulation for a range
of FT angles. Results from 5 locusts shown, a different symbol is plotted for each locust.
The force was normalised in each locust by dividing by the maximum tetanic force recorded

in each locust.

During a jump the ETi produces a maximum isometric force of approximately 15N [12], this

provides an upper-bound on the ETi force. However, in response to a single input pulse the

maximum force developed by the ETi can be much lower, of the order of 1N. It is important

that the maximum force is within the range of measurement, but that it is also possible to

resolve small force changes. In experiments forces are measured at the tibia. The expected

maximum force, measured at mid-point along the tibia, is 0.5N. As well as using equipment

suitably matched to measure the expected force, conditions must be isometric. Therefore, any

defections must be very small, such that an isometric approximation is acceptable. An S100

SMD (Strain Measurement Devices, USA) thin film load cell, with range up to 1N was used

to measure the force at the tibia. Under a force of 0.5N the tip deflection of the load cell

was measured to be less than 0.4mm. During the full range of motion the movement of the

mid-point of the tibia is of the order of 25mm, therefore departures from isometric conditions

due to load cell deflection were assumed to be negligible.

The output of the load cell was fed into a Fylde FE-369-TA (UK) transducer amplifier to

amplify and filter the signal prior to acquisition. The filter cut-off frequency was set to 1kHz

(-3dB). Both the input to the muscle, and the load cell output, were recorded with a sampling

frequency of 2.2kHz using a Cambridge Electronic Design 1401 A/D interface using Spike2

software.

Measuring the force at the tibia, as opposed to cutting the apodeme and attaching a force

transducer directly to the apodeme has the advantage that the muscle remains in vivo. Con-

ditions during testing will be physiologically relevant as it will not be possible to shorten or
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stretch the muscle beyond what the structure of the FT joint permits. During the force mea-

surement stage no dissection is necessary, meaning the response should be more relevant to

conditions in which ‘normal movement’ occurs. The muscle was assumed to be held isomet-

rically during force measurements. This was done by constraining the tibial position using a

load cell and pin. Due to mechanical compliance of the femoral tibial joint system, although

tibial movement is constrained to be negligible, there may be some departure from isometric

conditions. The assumption that the muscle is held isometrically was tested by estimating the

maximum expected movement of components of the femoral tibial joint system.

The apodeme can be considered to be a stiff link [12] but other components of the joint that may

provide some serial elasticity are the semi-lunar process and the tibia. During the experiment

the tibia is stressed in the same direction as in a jump. Heitler [145] measures approximately

2◦ of tibial bending in response to a force of 0.02N when the tibia is treated like a cantilever of

length 14.5mm. This corresponds to a stiffness of approximately 80Nmm−1. Considering that

the peak forces measured at the tibia, during preliminary experiments, are of the order of 0.8N,

there is likely to be less than 0.01mm deflection of the tibia when stressed during experiments.

The other element that may contribute towards a departure from equilibrium is the semi-lunar

process. By using the relation of Gabriel [148], which relates the deformation of the semi

lunar process to the applied load, an expected maximum deformation could be calculated. The

maximum tetanic force of 10N, recorded during preliminary experiments, provides an upper

bound for the applied load. According to Gabriel’s relation 10N of force would result in up to

0.19mm of joint deformation. This value is a very conservative upper-bound and in practice

the deformation of the semi-lunar process is likely to be significantly less. This deformation

assumes co-contraction of the flexor and extensor with a small FT angle so that the flexor has

significant mechanical advantage over the extensor [8, 144]. Neither of these conditions were

met during experiment. Considering that during the whole range of motion of the FT joint

the total displacement of the apodeme from rest is approximately ±0.5mm, it is possible that

the motion is not small enough to ignore. However, in practice this motion is expected to be

significantly less. Furthermore, around an FT angle of 80◦ preliminary experiments indicated

that the force-length relation tends towards a plateau. Hence, although movements in the

apodeme may not be small enough to ignore, it is thought that the resultant changes in the

force profile are negligible and so assuming the measured force to be equivalent to the isometric

force response is acceptable.

In measuring the force at the tibia the flexor muscle could also contribute to the overall mea-

sured force. Steps were taken to ensure that the measured force due to the flexor muscle was

negligible. The stimulation electrodes were inserted directly into the extensor muscle and so

should not cause activation of the flexor muscle. To remove the passive contribution due to

the flexor (also removes passive contribution due to the extensor) once the leg was in position,
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as in Fig. 3.10, the force was zeroed prior to stimulation. In doing this it is assumed that

neither muscle is activated when the force is zeroed so just the passive component of force is

removed. This approach assumes that the passive resistance is constant for a given muscle

length; passive muscle displays some visco-elastic behaviour. However, for zero velocity con-

ditions as in the isometric case this assumption is reasonable. Since the locust is alive during

experiments, co-contraction may occur, also since the load cell constrains the leg movement

the locust may, instinctively, push back against it. The output signal from the load cell was

continually monitored throughout the experiments. Any activity could be seen clearly on the

force trace and the force was zeroed only when no activity was evident on the force trace. The

force returned to zero after each contraction. Therefore it is thought acceptable that zeroing

removes only the passive components of the force.

It is also assumed that the measured output (contractile force) is entirely due to the given

input. Since the locust is alive during experiments it is possible that voluntary or reflexive

activity may contribute to the measured force, these contributions would not be as a direct

result of the input and so are undesirable. Voluntary movements are clearly shown on the force

trace and any force traces that include extra voluntary movements were discarded. Sensory

feedback comes from the femoral chordotonal organ, hair sensilla which monitor joint angle and

campaniform sensilla which monitor cuticle strains [149, 150]. During this set up conditions

were isometric, so the joint angle is unchanged during each experiment, furthermore, the contact

area on the tibia is only very small. Under these conditions the sensory feedback is minimal

and so not considered further for isometric conditions. In later experiments, where conditions

departed from isometric, the nerve N5 supplying the muscle was cut in the thorax to avoid

neural feedback loops.

3.5.1.1 Stimulation Protocol

The extensor muscle was stimulated by implanted electrodes. Points of attachment of the

extensor muscle are visible as dark patches on the femur cuticle [9]. The sixth attachment

point from the proximal end of the femur was used as a marker to place the electrodes on the

anterior side (this corresponds to the outside region c in [9], defined in Fig. 3.3).

Pulses of 3ms duration and 5V amplitude were used to activate the muscle. Pulses of 3ms

duration were used as they give a consistent response. In preliminary tests the stimulus pulse

amplitude was increased until a single, unitary amplitude response was elicited, as to rule

out the potential confounding factors caused by inhibitory motor neuron activation. Similar

amplitude levels were then used in experiments (5V). In using the lowest possible stimulation

level it is assumed that only the FETi is excited. The number of input pulses (n) and interpulse

interval (IPI) were varied during experiment. The pulse duration (d) and amplitude (Vmax)
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were kept constant. The recorded force was normalised by dividing by the maximum tetanic

force (recorded during a 40 pulse, 67Hz train of input pulses) for each locust.

Different patterns of stimulation were considered; constant frequency pulse trains (CFTs) and

non-constant frequency pulse trains (NCFTs). In measuring the response to a CFT a Master-8

pulse stimulator (A.M.P.I., Israel) was used to generate the pulse train neural stimulus to the

muscle. This hardware enabled constant frequency pulse trains of given pulse number, pulse

duration, interpulse frequency (IPF) and amplitude to be input to the muscle. The pulse

output was triggered by inputing a voltage pulse greater than 1V to Master-8. A different

approach was used to measure the response to a NCFT. This was due to the fact that the

programable output of Master-8 does not lend itself to generating NCFTs. To generate a

NCFT the times of the individual pulses in the NCFT were defined by generating a Matlab

vector of zeros everywhere, except one at the start time for each input pulse. This was output

by a measurement computing USB 2527 data acquisition board. This output was amplified so

that the maximum of the signal was greater than 1V and input to the Master-8. A stimulus

pulse was thus generated by the Master-8 each time the programmed Matlab signal was non-

zero.

3.5.1.2 Data Acquisition

Figure 3.13 shows a block diagram summarising the stages involved in acquisition, the inputs

and recorded outputs. During isometric experiments the voltage input to the stimulation

electrodes and the voltage out from the transducer amplifier are measured (Fig. 3.13). The

experimental data is used to develop a muscle model, capable of describing the muscle force

in terms of the input. Therefore, the voltage output needs converting into a muscle force.

Calibration experiments were used to find the tibial force from the output voltage (Vout).

Figures 3.14A and B summarise the calibration set up. An example of calibration results are

given as Fig. 3.14C, where a straight line was fitted to data to obtain a calibration factor. The

method used to convert the tibial force into a muscle force is given in Sec. 3.4.

Time delays between the input stimulus and measured force response, caused by both the

hardware and neural transmission within the locust, were removed. The response was assumed

to be instantaneous. As a result of this assumption this work does not consider time delays in

the muscle model caused by neural transmission.

3.5.1.3 Isometric Experiments at Different Lengths

In addition to isometric experiments where the FT angle was held at 80◦, isometric experiments

were also performed at a range of FT angles. This enabled the effect of muscle length on the
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Figure 3.13: Block diagram to show stages involved in the acquisition of signals during
experiment.
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Figure 3.14: Calibrating to find force from voltage. A) Diagram of the experimental set up
; B) block diagram of calibration; C) example of calibration result during loading ( c) and

unloading ( s).
isometric force to be assessed, thus testing the assumption that the activation and contraction

dynamics are uncoupled. The experimental set up was as described in Sec. 3.5.1, but the FT

angle varied from 80◦.

There are limitations as to how much data can be collected from each locust before factors

such as fatigue1, or muscle damage due to the inserted wires start to affect results. Changing

the angle imposes further limits on the amount of repeatable data that can be collected from

each locust. The resultant change in muscle length as a result of changing the FT angle whilst

the stimulation wire is still inserted causes some muscle damage. The alternative is to remove

and replace the wires each time but, again, this causes some muscle damage. Therefore, only
1Muscle fatigue is characterised by the failure of a muscle to maintain the required or expected force output.
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a limited set of data is recorded at each FT angle. Further details on the repeatability and

specific data recorded at each FT angle are provided in Chapter 6.

3.5.2 Non-Isometric Experiments

In previous experiments the extensor muscle was held isometric, therefore the muscle velocity

was zero. Experiments were also performed in which the effect on the force of changing the

muscle velocity, as well as the length, were measured.

3.5.2.1 Experimental Set-Up

As with the isometric experiments, locusts were securely fixed in modelling clay with the left

hind leg clamped ventral side up. A window in the ventral surface, extending to above the FT

joint, was made in the femur cuticle to expose the flexor apodeme. The flexor apodeme and

any air sacs were then dissected out, exposing the extensor apodeme.

A diagram of the experimental set up is provided in Fig. 3.15 and a photograph in Fig. 3.16.

During these experiments forces were measured directly at the apodeme; as opposed to at the

tibia as was the protocol in the isometric experiments. In these experiments, unlike in the

isometric case, the load cell must measure a pulling as well as pushing force at the tibia. To

measure the pulling force, the load cell needed to be attached to the tibia. Unfortunately,

preliminary experiments were unable to find a way of attaching the load cell to the tibia and

produce accurate, repeatable results when the position of the tibia was changed. The solution

to this issue was to grasp the apodeme directly with forceps. This method has the disadvantage

that the joint is no longer left intact. The advantage of this approach is that factors such as

joint friction and the passive flexor force will not be recorded. Furthermore, the displacement

range of the shaker is within the range of muscle length changes during normal movements.

Custom modified forceps were used to grab the extensor apodeme. The forceps modifica-

tions were: the length was significantly shortened, the tips were filed down to firmly grip the

apodeme, and a small bolt was drilled through which enabled the forceps to clamp firmly

shut. These forceps were allowed to clamp shut around the extensor apodeme. The end of

the apodeme on the distal side of the forceps from the ETi muscle was cut away and the tibia

removed. The forceps were attached to a S100 SMD (Strain Measurement Devices, USA) thin

film load cell with range up to 20N. A load cell with increased range to that used in isometric

experiments was used to allow for the fact that forces at the apodeme are much higher than

at the tibia. This load cell was mounted on a shaker (LDS, type 101). A stand was built;

this was used to hold the head unit of a Keyence LK-G32 CCD laser displacement sensor and
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measure the displacement of the load cell. The shaker-load cell-laser system was mounted on

a manipulator, allowing the clamped position to be altered.

Laser measures
displacement
of load cell where
forceps attached

Forceps clamp around
extensor apodeme Movement of shaker head moves

apodeme back and forward, so mus-
cle length and velocity change

Shaker body attached
to manipulator

Custom aluminium stand

Shaker

Load cell

Forceps

Laser
Displacement
Sensor

Figure 3.15: Diagram showing set up for non-isometric experiments. The laser system was
attached to the shaker body (green section) and used to measured displacement. The forceps
and load cell system (yellow section) were attached to the shaker head, and used to shake

the apodeme and measure the force.

Locust

Stimulation
electrodes

Forceps

Load cell

Laser head

Shaker

Figure 3.16: Photograph of the non-isometric experiments.

During experiments it is the displacement of the end of the load cell that is measured. Due

to space constraints, this was done using a 45◦ mirror to reflect the laser beam. The muscle
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displacement is determined by the displacement at the tip of the forceps. The forceps system

is rigidly linked to the end of the load cell so this should be equivalent to the measured dis-

placement. However, the angle of the mirror system was slightly off 45◦, resulting in measured

displacements being scaled by a factor from the tip displacement. Calibration experiments

were used to determine the scale factor to convert the measured displacement into a tip dis-

placement. These were carried out by using a second laser head to measure the displacement

of the tip of the forceps, whilst simultaneously measuring the displacement using the laser-

mirror system. Calibration experiments were also performed, so as to convert the transducer

amplifiers voltage output (Vout) into the corresponding force at the tip of the forceps.

3.5.2.2 Data Acquisition

Load Cell

Transducer
Amplifier

fc = 1000Hz

Data Aquisition CED 1401, Spike2 fs = 2222Hz

Vout(t)

VLC

Vbridge

Master8
IPI, d, n, Vmax

USB 2527
DA converter Amplifier

signal

DA conversion and amplification

Electro-
magnetic
Shaker

Extensor
MuscleVS Fm

Vin

Activation,
for passive muscle
Vin = 0

VS(t)
Vin(t)

Laser

Filter
Vx(t)

Figure 3.17: Block diagram of non-isometric experiment.

The shaker was driven using the analogue output of a USB 2527 Measurement Computing

data acquisition system. The voltage driving the shaker was recorded using Spike2 software,

with a sampling frequency of 2222Hz. The output of the load cell was fed into a Flyde FE-

369-TA transducer amplifier, to filter and amplify the signal prior to acquisition. The filter

cut-off frequency was set to 1KHz (-3dB). The output of the laser displacement sensor was

low-pass filtered with a cut-off frequency of 1KHz. Both the laser and load cell outputs were

also recorded using Spike2 software, with a sampling frequency of 2222Hz. Figure 3.17 provides

a block diagram of the experimental set up.

3.5.2.3 Input to Shaker

The expected displacement range (from rest) of the muscle under normal physiologically rele-

vant conditions was found by considering the results of preliminary experiments that measured

the relative length change at different FT angles (see Sec. 3.4.1). The displacement range was

estimated to be of the order of ±0.5mm. During normal walking the FT angle changes by 90◦

in around 0.1s [151], which results in an average muscle velocity of 5mms−1. Instantaneous
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velocities may be higher and are assumed to be of the order of ±10mms−1. During experi-

ments the shaker was driven to produce apodeme movements relevant to this range (±0.5mm,

±10mms−1).

The shaker input is also limited by the system’s frequency response. The magnitude response of

the shaker-load-cell-forceps system is given in Fig. 3.18. Results are shown for the displacement

measured using the mirror system and the displacement measured at the forceps tip. There

exists a scale factor between the two measurements in the range up to 30Hz. There is a system

anti-resonance around 40Hz. Shaker inputs were frequency limited to be below 30Hz to avoid

the anti-resonance and operate in the range where there is a frequency independent relation

between the measured displacement and tip displacement.
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10
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1
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Figure 3.18: Displacement magnitude response of shaker-load-cell-forceps system. The
displacement is measured both at the forceps tip (—) and at the end of load cell using a

mirror (—).

The described set up was used to obtain both the passive and active responses under non-

isometric conditions. To measure the passive response the muscle was not stimulated. The

extensor apodeme was grabbed as described above. The real-time force output from the load-

cell was displayed on a monitor. The manipulator on which the shaker, load-cell, and forceps

system was mounted was then used to move the end of the forceps backwards and forwards

in line with the muscle apodeme. To find the muscle rest length, the muscle was shortened so

that the response displayed upon the monitor was just zero. The rest length was used as the

start point for experiments.

To obtain the active response the resting length was again used as a start point for experi-

ments. To avoid possible neural feedback loops due to the muscle movement a small window

was made in the thorax to expose the nerve N5 supplying the muscle, which was then cut.

During experiment the open thorax was continuously bathed in locust saline. Stimulation was

elicited using the same protocol as the isometric experiments, described in Sec. 3.5.1. During

experiments, both the stimulus input to the muscle and the voltage driving the shaker could

be varied. The stimulus input, shaker input and output voltages from the laser and transducer

amplifier were all recorded during experiment.
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3.5.2.4 Response With Nothing Attached

During experiments where the muscle length is changed a component of the measured force

is the force required to accelerate the mass of the load-cell-forceps system. This force was

measured by shaking the system without attaching the forceps to anything. The resultant

response to three input types is shown in Fig. 3.19. During these experiments the displacement

was measured. This displacement signal was used to calculate the acceleration of the system.

The force required to accelerate the mass of the load-cell-forceps system should be equivalent

to the mass of these components multiplied by the acceleration. The mass of the components

was measured to be 0.015kg. The resultant estimated force is also given in Fig. 3.19. It is clear

that the load-cell-forceps system can be modelled as an accelerating mass. The force response

is well described as the mass of the system times the acceleration. In experimental results the

force contribution due to accelerating the mass is removed by subtracting 0.015× acceleration.

This means that the force developed by the extensor muscle is isolated.
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Figure 3.19: Estimated (—) and measured (—) force due to accelerating the mass of the
load cell-forceps system.
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3.6 Conclusions

The main experimental protocols were summarised in this chapter. Experimental details,

relevant to specific results, are included with the results in subsequent chapters for clarity. All

experiments for this thesis were performed by the author.

Two distinct experimental set ups were used to measure the muscle force under isometric and

non-isometric conditions. This was necessary due to the extra complexity of the non-isometric

experiments. In each locust there are practical constraints on the amount of data that can

be obtained before factors such as fatigue start to affect results. This was a consideration

when deciding on the best stimulation routines. Due to practical limitations, separate sets

of locusts were used for isometric and non-isometric experiments. Locusts in the colony are

quantitatively different, due to their differing anatomy and morphology. However, the general

qualitative behaviour of all locusts is similar. In each set of experiments at least five different

locusts were tested so as to investigate the statistical variations of the general behaviour.
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Chapter 4

Isometric Force Response to

Single and Multiple Pulses:

Analysing the Contribution of

Individual Pulses

4.1 Introduction

The isometric force contribution due to individual stimulus pulses is analysed in this chapter.

Having a clear understanding of how the muscle behaves in response to a single input pulse

is important for further investigation of the muscle under more physically relevant conditions.

This further investigation is given in Chapters 5-7. In Chapter 5 the isometric response to

pulse train inputs is considered. Chapter 6 uses the findings of Chapters 4 and 5 as building

blocks to look at how the isometric force response is affected by changes in the muscle length.

This is further developed in Chapter 7, where the muscle velocity is not constrained to be zero,

and the force response under non-isometric conditions is analysed.

In this chapter, first a model that describes the twitch response of the locust extensor muscle

is developed from experimental data. The isometric twitch response provides an important

building block to a more general model. In developing a model it was assumed that the

response to a single isolated stimulus was linear. The twitch response can be well approximated

as linear because many of the non-linear effects that occur when pulses sum [50, 71–75] do not

occur. There are merits in using as simple a model as possible to describe a system since model

characteristics, essential to observed effects, are often more evident in simpler models [34]. The
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behaviour of a single twitch is simple enough to allow models of a range of orders to be fitted

to data. Hence, no assumptions or prior models are used to define the model order in this

study. Models of various orders are fitted to data. Doing this enables the best model order to

describe the twitch response to be found and removes any assumptions regarding the model

order. This approach differs to that used in the development of other mathematical muscle

models. Often studies deal with the authors’ own models and few studies comparing models

of different orders exist.

Next, the study of the twitch response is extended by considering the response to trains of

pulses. By decomposing the response to constant frequency trains (CFTs) of varying frequen-

cies and number of pulses into the response to each individual pulse, the behaviour of a muscle

to a wide range of inputs can be investigated. The ability to describe the response to each pulse

using linear models of various orders is investigated. Model parameters are allowed to vary

from one pulse response to the next. Examining how these vary with the pulse train history

gives insight into how the response of the muscle to each pulse changes with pulse number or

frequency. In effect this assumes that the response is quasi-linear, i.e. the response to a pulse

is linear, but the model parameters change slowly with time: the time constants associated

with nonlinear effects (summation, depression, etc) are much larger than the time constants

associated with the response to an individual pulse.

4.2 Methods

The physical set up is described in Chapter 3. Here, the specific stimulation protocol and

method of extracting the response to each pulse are described in more detail.

4.2.1 Stimulation Protocol

To determine the twitch response the extensor muscles of seven locusts were excited by both

five and ten pulse trains, with interpulse intervals (IPIs) of 10s and 1s respectively. In these

pulse trains the response to one stimulus pulse had decayed to zero before the arrival of the

subsequent stimulus input. Hence, the force response to isolated pulses was found by averaging

the response to each of the 15 stimulus pulses. Two pulse trains, with IPIs ranging from 0.1s

to 0.015s were also used to excite the extensor muscles of these seven locusts.

The extensor muscles of a further 14 locusts were stimulated using n pulse CFTs, where

n = 1, 2, ..., 20. This was done for an interpulse frequency (IPF) of 12.5Hz and another of

40Hz. Stimulus trains of 1 to 20 pulses were delivered to the muscle at both IPFs. The

results were used to calculate the response to the nth pulse. The higher frequency CFT (40Hz)
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corresponds to the frequency at which muscle tetanus first occurred. Instantaneous frequencies

can naturally be much higher that tetanus frequencies, often reaching 100Hz during a kick

[152].

4.2.2 Extracting Individual Pulses

Where input pulses are not well separated isolated twitches are not generated and summation

of responses occurs. If the response were linear the response to two pulses would be equivalent

to the response to two individual pulses added together. It it well known that the muscle

does not behave linearly [39]. In estimating the response contributed by each pulse it was

assumed that the response was quasi-linear, with the time constants of the non-linearities

being long in comparison to the responses of individual pulses [50, 71]. The response to two

pulses was assumed to be equivalent to the response of two individual pulses, with the specific

form of each individual pulse dependent upon the input history, and not equivalent as in the

linear case. To estimate the force contributed by each individual pulse the response to n − 1

pulses was subtracted from the response to n pulses (Fig. 4.1). This method has inaccuracies

that were mainly due to the response not being exactly repeatable (as demonstrated in Fig.

4.1). Furthermore, fatigue and recovery inevitably affect the muscle response and hence errors

accumulate when subtracting the response to n− 1 pulses from that to n pulses. During some

experiments the locust moved and any data that included clear movement artefacts are not

included in the analysis.

In Fig. 4.1 there is a clear change in magnitude between the response of the first pulse in a

two pulse train and the response to a single pulse. The response to a two pulse train with

IPI=100ms is shown for an additional three locusts in Fig. 4.2, with the twitch response

superimposed. The behaviour given in Fig. 4.2 is representative of the behaviour across all

locusts, this shows that in each case the magnitude of the single pulse is either very similar,

or more than that of the first pulse in a two pulse train. Since the locust cannot know that

a second pulse is coming this discrepancy is likely to be due to the input history and the fact

that the single pulses were input to the muscle prior to the two pulse trains.

4.3 Model Estimation Algorithms

Three different methods were used to estimate the best model and parameters for the twitch

response. These were: fitting in the frequency domain, fitting in the time domain using an

ODE solver, and fitting in the time domain using an ARX model. The estimation algorithms

used are described in more detail below.
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Figure 4.1: Examples showing how pulses are extracted. A) Example showing how the
response to a second pulse is extracted. The response to a single input (- - -) is subtracted
from the response to two stimuli (—), IPI=0.08s. The resultant response to a second pulse
in shown as the shaded area. B) Example data showing the force response to an n pulse
CFT (IPF=12.5Hz), where n = 1...20. The contribution from the nth pulse is found by

subtracting the response to n− 1 pulses from the response to n pulses.
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Figure 4.2: A-C) Response of three different locusts to a single pulse ( ) and a two
pulse train with IPI=100ms ( ).
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4.3.1 Frequency Domain Identification

Fitting was performed in the frequency domain. The time series data was Fourier transformed

to give the data in the frequency domain. It was assumed that the twitch response is the

response to an impulse. A model of the form

G(s) =
dms

m + dm−1s
m−1 + ....+ do

sn + an−1sn−1....+ ao
=
N(s)
D(s)

(4.1)

was fitted to data, where m is the number of zeros in the transfer function and n the number

of poles. These numbers were varied during estimation to find the model order that gave the

best fit. Increasing the number of zeros did not improve the fit to data, hence the model given

in Eq. (4.2) was simplified to

G(s) =
do

sn + an−1sn−1....+ ao
=
N(s)
D(s)

(4.2)

To estimate the coefficients do, an−1...ao a least squares approach was adopted, by minimising

J =
r∑

k=1

w(ωk) |G(jωk)D(jωk)−N(jωk)|2 (4.3)

where G(jωk) is the transfer function of the original data (found from the Fourier transform

of the impulse response data), N(jωk) and D(jωk) are the numerator and denominator of the

transfer function being estimated, r is the length of the data, w a weighting function, and ωk

gives the frequencies at which the cost function is evaluated. The coefficients, do, an−1...ao are

given by [153]

x = (ATA)−1AT b (4.4)

where

x =
[
an−1 . . . a1 ao do

]T
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A =

266666666666664

G(jω1)(jω1)n−1 . . . G(jω1)(jω1) G(jω1) −1

G(jω2)(jω2)n−1 . . . G(jω2)(jω2) G(jω2) −1

...
...

...
...

...

G(jωr)(jωr)n−1 . . . G(jωr)(jωr) G(jωr) −1

377777777777775

b =
[
−G(jω1)(jω1)n −G(jω2)(jω2)n . . . −G(jωr)(jωr)n

]T
The response was weighted by frequency so that emphasis could be given to the frequency

range of interest. Most of the power in the force response signal was contained to frequencies

below 80Hz, hence these frequencies were given a weighting of one. The weighting factor

was rolled off above 80Hz to zero at 200Hz. Frequencies above 200Hz were discarded to avid

fitting to noise in the signal. An initial estimate for the coefficients was made from Eq. (4.4).

More accurate estimates were then found by applying the Gauss-Newton algorithm to the

minimisation problem,

min
r∑

k=1

w(ωk)
∣∣∣∣G(jωk)− N(jωk)

D(jωk)

∣∣∣∣2 (4.5)

The estimation was implemented in Matlab using the function invfreqs.

4.3.2 Identification in the Time Domain: Differential Equation Ap-

proach

The relationship between input and output was assumed to be described by the nth order ODE,

dnFm(t)
dtn

+ an−1
dn−1Fm(t)
dtn−1

+ ...+ aoFm(t) = dou(t) (4.6)

where Fm(t) represents the output force and u(t) the input. The input, u(t) was found by

normalising the measured input, Vin(t), so that the area under the pulse was equal to one and

defining t = 0 as the time at which the twitch is generated. An initial estimate was made

for the parameters ao-an−1, do and a solution for the ODE found using a fourth order Runge-

Kutta method. Iteration using a Gauss-Newton algorithm was used to solve the non-linear

least squares problem of finding the coefficients ao-an−1, do. The function minimised was,
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min
r∑

k=1

(Fm(t)− F̂m(t))2 (4.7)

where Fm(t) is the measured force and F̂m(t) the estimated force

4.3.3 Identification in the Time Domain: Filter Approach

The response was modelled using a AutoRegressive model with eXogeneous input (ARX

model). This is a discrete time model, as opposed to the continuous time model of section

4.3.2. The form of an ARX model in the general case (not specifically applied to the twitch

model) is

P (q)y(t) = R(q)z(t) + e(t) (4.8)

P (q) = 1 + p1q
−1 + ....+ pnq

−n (4.9)

R(q) = r1q
−1 + ....+ rmq

−m (4.10)

where e(t) is input/output measurement noise, z(t) is the input sequence and y(t) the output.

q−1 denotes the backward shift operator q−1y(t) = y(t − 1). In estimating an ARX model it

was assumed that the error could be neglected. The ARX prediction model for the estimated

output, ŷ can then be written as

ŷ(t|θ) = R(q)z(t) + (1− P (q))z(t) (4.11)

where the model parameters are written as θ = [−p1, ...,−pn, r1, ...., rm]T . This can be written

as a linear regression problem

ŷ(t|θ) = xT (t)θ (4.12)

where x(t) = [y(t− 1), ..., y(t− n), z(t− 1), ..., z(t−m)]T .

To apply an ARX modelling approach to the twitch model, the relationship between input and

output was again assumed to be described by the nth order ODE given in Eq. (4.6). Using a

third order model as an example the estimation algorithm using an ARX modelling approach

is detailed in the following steps.

The differential equation,
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d3Fm(t)
dt3

+ a2
d2Fm(t)
dt2

+ a1
dFm(t)
dt

+ ao = dou(t) (4.13)

is first discretised, where Fm gives the output and u the input. Using an Euler approximation,

dFm

dt
≈ Fm(n+ 1)− Fm(n)

T
(4.14)

d2Fm

dt2
≈ Fm(n+ 2)− 2Fm(n+ 1) + Fm(n)

T 2
(4.15)

d3Fm

dt3
≈ Fm(n+ 3)− 3Fm(n+ 2) + 3Fm(n+ 1)− Fm(n)

T 3
(4.16)

These expressions were substituted into (4.13), with n = n− 3, to give

Fm(n)− 3Fm(n− 1) + 3Fm(n− 2)− Fm(n− 3)
T 3

+

a2

(
Fm(n− 1)− 2Fm(n− 2) + Fm(n− 3)

T 2

)
+

a1

(
Fm(n− 2)− Fm(n− 3)

T

)
+ a0Fm(n− 3) = d0u(n− 3) (4.17)

Simplifying Eq. (4.17) and equating coefficients gives

Fm(n) = −c1Fm(n− 1)− c2Fm(n− 2)− c3Fm(n− 3) + c4u(n− 3) (4.18)

where

c1 = −3 + a2T (4.19)

c2 = 3− 2a2T + a1T
2 (4.20)

c3 = −1 + a2T − a1T
2 + a0T

3 (4.21)

c4 = d0T
3 (4.22)

The difference equation (4.18) can be put into matrix form as

Y = SP (4.23)
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where

Y = Fm(n) (4.24)

S = [−Fm(n− 1)− Fm(n− 2)− Fm(n− 3)u(n− 3)] (4.25)

P =


c1

c2

c3

c4

 (4.26)

The pseudo Matrix inverse was used to give the coefficients in P

P = (STS)−1STY (4.27)

Equations (4.19)-(4.22) can then be used to estimate the ‘continuous’ coefficients a2 − a0, d0.

In using this method the input signal needs to be persistently excitatioral [153]. A persistently

excitatioral signal generates an input-output data set that is rich enough for the estimates to

converge to their true values [154]. The response to a single pulse is well approximated as

an impulse response, however an impulse input is too transient to be a good input for the

ARX model estimation. Therefore, the response was assumed to be equivalent to an impulse

response and integrated to give the step response. The step response was used as the output

and a step as input to the ARX model. The advantage of this approach is that the step input

provides continuous excitation as the signal is not zero at any time after the start time.

4.3.4 General Form of Model

It was found that increasing the number of zeros in the estimated model when using the

frequency domain estimation did not improve the fit. Therefore, estimated transfer functions

were assumed to be of the form

TFd =
θ
(n)
0

θ
(n)
d sd + θ

(n)
d−1s

d−1 + ....+ 1
(4.28)

where d is equivalent to the model order and θ(n)
j ; j = 0, ..., d are the estimated model param-

eters found by fitting to the nth pulse in a CFT.

The resultant error between the measured data x and estimated response xe is defined as
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4. Isometric Force Response to Single and Multiple Pulses

E =

∑
i

(xi − xe,i)2∑
i

(xi)2
× 100% (4.29)

with the sums being taken over all measured data points, i. The specific definition of the error

to be minimised affects the final estimate of the model parameters, in terms of bias and/ or

random error. In this case the error is defined as the normalised sum of the square differences

between estimated and actual data. The fact that differences are squared (as opposed to for

example taking the mean absolute error) means that small differences will be reduced, but

large differences greatly amplified. This error measure will therefore favour estimated models

with a lot of small discrepancies between the measured data and the estimate, as opposed to a

model with a few large differences. The choice to normalise by the sum of the measured data

may further affect estimates, and such limitations in the optimization should be kept in mind

during the analysis of models.

4.4 Force Response to Isolated Pulses

The average twitch force, as was measured in seven different locusts, is shown in Fig. 4.3. Both

the actual muscle force and the normalised force, obtained by dividing by the maximum tetanic

force (recorded during a 40 pulse 67Hz input train) for each locust, are shown. Qualitatively

the behaviour of each locust is similar: the rise time is fast in comparison to the decay time

and the system is heavily damped. However, the specific shape of each pulse varies, due at

least in part to variability in the locusts’ morphology. An example of the response to the 15

individual pulses, used to obtain the average twitch response of one locust is shown in Fig. 4.4.

This shows that within each locust the variability is small.

Each twitch response can be characterised by specific measurements. To characterise each

response we used the following measurements (as defined by Frey Law and Shields [82]); peak

force (PF), defined as the maximum recorded force; force-time integral (FTI), defined as the

area under the force trace; half relaxation time (HRT) defined as the time for the force to

decay from 90% to 50% of the peak force; late relaxation time (LRT), defined as the time for

the force to decay from 40% to 10% of the peak force; and the time to peak tension (TPT)

defined as the time required to reach 90% of the peak force from time zero. Figure 4.5 defines

each measurement in relation to the measured twitch response.

The chosen model order (the number of poles and zeros) inevitably affects the fit to the mea-

sured data. As the model order is increased the errors in fit will decrease, as with more

parameters the better the fit of the model to data [155]. However, although increasing the

model complexity improves the accuracy of the fit in terms of minimising the error, if the
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Figure 4.3: Average twitch response as measured in 7 different locusts, A) gives the actual
muscle force, B) the normalised muscle force. The individual locust data is measured (—)
and means estimated using a frequency domain fit to two pole (- - -) and three pole (—)

models.
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Figure 4.4: Example of 15 repeated twitches in one locust.

model order is too high the accuracy of the estimated parameters decreases [153]. Problems

such as overfitting occur, e.g. fitting to the noise in the data.

A plot of the error between measured data and the estimated response (calculated using Eq.

(4.29)) for models with one zero and different numbers of poles is shown in Fig. 4.6. These

errors were calculated from fitting in the time domain, using a least squares approach. The

corresponding frequency domain errors are not shown as for high model orders (above 3rd

order) the inverse of a singular matrix was required and so no estimates could be made for

higher order models. Figure 4.6 shows the effect of increasing the number of poles on the

error; increasing the number of zeros in the estimation gave no improvement in fit. It was

found that a transfer function with three poles and no zeros provided the best fit (in terms of

minimising error, without overfitting) between estimated and actual data; acceptable fits were
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Figure 4.5: Definition of twitch characteristics: peak force (PF), force time integral (FTI),
half relaxation time (HRT), late relaxation time (LRT) and time to peak tension (TPT)

also obtained when a transfer function with two poles and no zeros was used. When the model

order was above three there was negligible improvement in the fit and the inverse of a singular

matrix was sometimes involved in the estimation in the frequency domain. This suggests that

a fourth order model is too high a model order.

There is no benefit to a model which when compared to data has errors that are less than

the repetition error in the experiment. This indicates that the model overfits the data. The

standard deviation provides an indication of the spread of experimental results. Table 4.1 gives

the mean twitch parameters for a second and third order estimated model (using frequency

domain fit), as well as parameters relevant to the mean experimental response and normalised

standard deviation (n.s.d). The results given in Table 4.1 are summarised in Fig. 4.7. Error

bars are plotted in Fig. 4.7, these give the upper and lower 95% confidence limits for the

estimate of the mean of experimental data. For each model (second and third order) the errors

predicted in the force characteristics are greater than the repetition errors in the experiments.

For the twitch response, only second and third order models are considered further.

An estimate of the average modelled response using both a two and three pole model is also

given in Fig. 4.3B. This was obtained by reconstructing the response using the average parame-

ters, θ̄. The second and third order models have similar shapes but there are some discrepancies;

the second order model predicts a lower maximum force, shows more undershoot at the end

of the pulse, and rises faster from time t = 0. In Fig. 4.3B, the ‘mean’ is the response of an

abstract locust whose parameters, θ are the means of those estimated. This measure of the

average response differs from that obtained by averaging the time series data, both methods

have the potential to generate average behaviour that does not represent the behaviour of any

locust. Averaging across the time series data would smear the response, for example the total
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Figure 4.6: Errors in fit to twitch response when using models with one zero and increasing
numbers of poles, both data from individual locusts (·) and means (*) are plotted. The

reduction in error when using models with more than three poles is negligible.

Table 4.1: Model parameters and errors for twitch response. For each locust the specific
twitch characteristics are extracted from the mean twitch response. The characteristics of
the 2nd and 3rd order model fits, from fitting in the frequency domain, are also extracted.
The normalised standard deviation (n.s.d.), defined as σ/µ×100%, is given for experimental

twitch responses

Average Mean (µ)
PF FTI HRT LRT TPT

Mean 0.84 (nsd 0.69%) 99.4 (nsd 5.3%) 45.5 (nsd 4.9%) 95.2 (nsd 6.7%) 31.3 (nsd 4.4%)

L1 2 poles 0.81 99.0 51.1 81.0 28.1
3 poles 0.85 99.0 49.2 88.3 29.4
Mean 0.39 (nsd 2.0%) 38.8 (nsd 5.0%) 30.4 (nsd 9.2%) 62.6 (nsd 13%) 35.0(nsd 3.6%)

L2 2 poles 0.36 38.0 44.2 52.9 30.4
3 poles 0.40 38.3 36.8 60.7 36.8
Mean 0.66(nsd 4.5%) 56.9(nsd 7.0%) 20.2(nsd 19%) 52.0(nsd 9.7%) 35.0(nsd 2.0%)

L3 2 poles 0.63 55.5 37.3 41.4 27.1
3 poles 0.69 55.8 30.4 44.2 33.6
Mean 0.89(nsd 1.9%) 108.4(nsd 2.9%) 52.4(nsd 5.0%) 114.1(nsd 7.2%) 31.7(nsd 2.9%)

L4 2 poles 0.83 108.7 55.2 97.1 27.6
3 poles 0.87 108.7 53.8 105.8 28.5
Mean 0.93(nsd 2.2%) 114.7(nsd 5.9%) 51.5(nsd 3.8%) 62.6(nsd 11%) 46.0(nsd 1.3%)

L5 2 poles 0.85 112.9 55.7 63.5 40.0
3 poles 0.94 114.2 47.4 72.2 46.9
Mean 0.36(nsd 2.1%) 40.7(nsd 7.0%) 32.7(nsd 14%) 30.8(nsd 19 %) 50.6(nsd 6.3%)

L6 2 poles 0.34 39.2 49.7 46.9 42.3
3 poles 0.38 40.8 37.3 39.1 56.6
Mean 0.30(nsd 9.4%) 24.3(nsd 10%) 33.1(nsd 11%) 27.1(nsd 100 %) 58.9(nsd 8.7%)

L7 2 poles 0.26 23.8 39.1 35.9 33.6
3 poles 0.29 24.2 31.3 32.7 43.2
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Figure 4.7: A-E) Specific force characteristics of measured and modelled twitch response
in 7 locusts. The mean characteristics of the measured data (*) are plotted with error bars
that indicate the upper and lower 95% confidence limits. The modelled characteristics when

using a 2nd order (*) and 3rd order model (*) are also plotted.

contraction time of the average locust would be equivalent to the maximum total contraction

time measured across the locusts. In the presented model the estimated parameters are directly

related to the gain and poles of the system. The poles of a system define the rate of decay,

and oscillatory behaviour of the response. Averaging across parameters effectively averages the

time decay and oscillatory behaviour of each pole, and so averaging the parameters produces a

representation of the average behaviour in terms of the total magnitude, rise, and decay times

which are the salient features of interest. The use of average parameters to provide an idea

of the average locust behaviour does have potential dangers, as does any averaging method,

of misrepresenting the behaviour. However, a comparison between the model using average

parameters and mean measurements of specific twitch characteristics given in Tab. 4.1 shows

that estimates are similar, with differences likely due to the choice of model, this shows that
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4. Isometric Force Response to Single and Multiple Pulses

in this case averaging the parameters is reasonable.

An example of the estimated response in the time domain for one locust, obtained using each

fitting method for both a two and three pole model, is shown in Fig. 4.8. The associated

estimated parameters are given in Table 4.2. This shows that the coefficients estimated using

the different methods are, as expected, similar. The parameters relevant to the second and

third order fits are similar, with the extra contribution due to θ
(1)
3 in the third order model

small. In the ARX model θ(1)3 is very small and the resultant improvement in fitting error

between the second and third order models is, therefore, small.

Table 4.2: Example of parameters estimated for one locust (L2) when fitting to twitch
response, using a second and third order model for different fitting methods.

Second Order Model Third Order Model
Fit θ

(1)
2 θ

(1)
1 θ

(1)
0 Err % θ

(1)
3 θ

(1)
2 θ

(1)
1 θ

(1)
0 Err %

Freq. 0.0020 0.071 0.0077 1.53 1.77× 10−5 0.0020 0.080 0.0077 0.24
ODE 0.0019 0.070 0.088 1.08 1.07× 10−5 0.0019 0.075 0.0088 0.35
ARX 0.0025 0.070 0.0076 2.52 1.12× 10−6 0.0024 0.070 0.0076 2.2

The fit to one locust using each method is given as an example (Fig. 4.8); fits to other locusts

have similar characteristics. Both two and three pole models give good fits to the data with

errors of 1.53 and 0.24% respectively for the second and third order models when using the

frequency domain estimation. The frequency domain and ODE methods give the best fits to

data in terms of minimising error. The fit using an ARX model is not as good. The ARX

method has limitations; the input-output error was neglected and the input signal assumed to

be exactly known. Furthermore, the input signal needs to be sufficient to excite all relevant

modes in the model for identification. Using the ODE method is more computationally expen-

sive and produces similar results to the computationally efficient frequency domain method.

Therefore, further fits to single input pulses will be presented for just the frequency domain

method.

Due to the small errors in the estimates it is thought that the assumptions of a linear model

with the twitch response being equivalent to an impulse response are acceptable for isolated

pulses. The second order model predicts a force that rises too quickly from t = 0 and has too

much overshoot towards the end of the response in comparison to the modelled data. A better

fit is obtained using a third order model. This is also confirmed by comparing the specific force

characteristics given in Table 4.1.
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Figure 4.8: Example of force response to input pulse (—) and fits using second (—) and
third order (—) models for one locust. A) fits using frequency domain method, B) fits using

ODE method, C) fits using ARX method.
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4.5 Force Response to Second Pulse

The extensor muscle response to a train of two pulses is next considered. These trains do not

generate isolated twitches, so summation of muscle responses occurred. The force contributed

by the second stimulus was calculated by subtracting the recorded response to a single stimulus

from the total recorded response to two stimuli and time shifting the response by the IPI [71].

An example of this is given in Fig. 4.1A, the shaded area giving the response to the second

pulse. There is a slight discrepancy in the peaks of the first pulses, most likely caused by the

fact that muscle is a physiological, time varying entity that may respond differently given slight

environmental fluctuations. Since the response to the second pulse was time shifted by the IPI

so that it starts at time zero, data before the start of the second pulse was effectively neglected

in the analysis of the response to the second pulse.

The responses of the extensor muscle of seven locusts to two stimulus pulses for IPFs of 12.5Hz

and 40Hz are shown in Fig. 4.9. Some measurement noise is visible in the recordings. As

with the twitch response, the responses of each locust are similar but specifics differ between

locusts, due in part to their variable morphology. The twitch contraction time (time to reach

peak force in response to a single input) was approximately 0.05s. This corresponds to an IPF

of 20Hz. In Fig. 4.9B the IPF was greater than the twitch contraction frequency and the pulses

can be seen to fuse into one pulse. When the IPF was lower two distinct peaks were evident,

as in Fig. 4.9A.

Results when both two and three pole models were fitted to second pulse data are presented.

Model orders greater than three, as with the isolated pulses, were found to overfit the data:

inverses of nearly singular matrices were involved in the frequency domain estimation. An

example of the data from one locust and the fit to both models is shown in Fig. 4.10. The

response of this extensor muscle was in general representative of the response of each locust.

From the experimental data (Fig. 4.10A) it is clear that forces do not sum linearly. As

the IPF increases the maximum force and time to reach peak force increase. Facilitation

(more-than-linear summation) is evident during the falling stage of the second pulse and some

depression (less-than-linear summation) during the rising stage. As the IPF increases the

depression and facilitation increase. The simulated pulses obtained from the two pole fit show

too much undershoot towards the end of the response and underpredict the maximum force

(Fig. 4.10B): these issues increase with increasing IPF. The third order model reproduces the

general shape well; the estimated magnitude of the peak force and contraction time compare

well with experimental data. However, the last part of the pulse is somewhat oscillatory. The

oscillations arise as the poles are found using a least squares fit and happen to be complex

(although highly damped). If poles were constrained to be real then the oscillations do not

occur but errors in the least squares fit increase.
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The error when using a two pole model increases significantly with IPF: the mean error was

approximately 2% for isolated pulses (IPF=0). This increased to 7% when the IPF was in-

creased to 67Hz (Fig. 4.11). The errors in fit of the three pole model were of the order of 1%,

and the error increased by less than 1% across the range of IPF values. Thus, while a second

order model fits the response to an isolated twitch reasonably well, the response to the second

pulse requires at least a third order model.

Fig. 4.12 shows the estimated second pulse parameters as a function of IPF for the third order

model. Each parameter increases with IPF until saturating above an IPF of approximately

40Hz. There are variations in parameter values between locusts, but the general shape of how

the parameters change is similar for all locusts.

The response of the ‘average locust’ to two pulses when a three pole model is used to describe

the second pulse was calculated (Fig. 4.9). This was found by first reconstructing the twitch

response using the average of parameters1 θ̄(1), as estimated from fitting to a single pulse

response, then reconstructing the second pulse contribution using a new set of average param-

eters, θ̄(2), found when fitting to a second pulse for a given IPF. The total average response to

two pulses was then found by time shifting the estimate for the response to the second pulse

by the IPI, and adding this to the estimate of the twitch response. The third order model

provides a good description of the average behaviour. The poles of the response to a second

pulse reconstructed using the average parameters were calculated. The third order model poles

are a complex conjugate pair with one real pole. As the IPF increases these poles became more

oscillatory and the magnitude of their real part decreases.

Figure 4.9: Force response to two input pulses: individual locust data (light continuous)
and response of the three (heavy dashed) pole model estimated using parameter means;
(A) IPF=12.5Hz, (B) IPF=40Hz. The mean third order average model response gives a

representation of the behaviour of the average locust.

1Averaging parameters gives a different result to averaging across time series data. This is discussed further
in terms of a single twitch in the preceding section.
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Figure 4.10: Comparison between isolated twitch (- - -) and force contributed by a second
stimulus for various IPFs. Arrows show change as IPF is increased, (A) Experimental data
(B) Fits using 2nd order model, (C) Fits using 3rd order model. The second order model
underestimates the peak response and predicts too much undershoot towards the end of
the pulse compared to the measured data, with the third order model providing a better

description of the behaviour.
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Figure 4.11: Errors in fit to the 2nd pulse for second-order model (- - -) and third order-
model (—), with average errors given in bold. The mark (·) indicates the lines which refer
to the individual locust used as an example and plotted in Fig. 4.10. Errors increase
significantly with IPF for the second order model, while the goodness of fit of the third order

model is less dependent on IPF.
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Figure 4.12: Change in parameters θi with IPF for the second pulse, estimated for each
locust using a 3rd order model (A,B,C,D), with means given in bold. Parameters increase

with IPF before saturating above an IPF of approximately 40Hz.
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4.6 Force Response to nth Pulse

The extensor muscle response to longer CFTs was also analysed. The pulses were not well sep-

arated, so that summation of the muscle responses occurred. To estimate the forces generated

by each pulse the response to (n − 1) pulses was subtracted from the response to n pulses.

This was done for n = 1...20 (where n = 1 is equivalent to an isolated pulse). One CFT with

an IPF higher (IPF=40Hz) than the twitch contraction frequency and one with a lower IPF

(IPF=12.5Hz) were used.

Figure 4.13: Force contributed by the nth stimulus in a CFT: n = 1 shown by a dashed
line and arrows show change as n increases from 2, (A) Experimental data, IPF=12.5Hz,
(B) Fit to IPF=12.5Hz data using 3rd order model, (C) Experimental data, IPF=40Hz, (D)

Fit to IPF=40Hz data using 3rd order model.

Figure 4.13 shows example data from one locust, showing the force contribution of the nth

pulse in a pulse train when the IPF=12.5Hz and 40Hz. It is clear that the forces do not sum

linearly. When the IPF=12.5Hz the magnitude and contraction time of the pulses increase over

the first three pulses, with each pulse showing increased facilitation and depression. After the

first three pulses the pulse shape remains approximately constant, with only slight fluctuations

in amplitude. Comparing this to the case when the IPF=40Hz shows that the pulse shape

depends on the IPF. When the IPF=40Hz there is an initial increase in the maximum force

and contraction time from the first pulse to the second pulse. Subsequent pulses show more

early depression, the magnitude decreases from the magnitude of the second pulse, and the

contraction time increases. After approximately 8 pulses the pulse shape again saturates and

becomes approximately constant. The magnitudes of these pulses, when n is high, are less
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than those of the isolated twitches (n = 1), with the contraction time being much larger and

the decay time smaller.

The estimated errors when fitting to the nth pulse are shown in Fig. 4.14. For an IPF of

12.5Hz the three pole model provides a good fit to the data. Estimated errors are small for

all pulses, with the average error being less than 1% for the whole range of pulse numbers.

When the IPF was increased to 40Hz the fit was not as good (Fig. 4.13), the time at which the

maximum force occurred was not modelled accurately. Estimated errors when the IPF=40Hz

increase with pulse number from 0.5% for the first pulse up to almost 4% for the 20th pulse.

For both IPFs the end of the modelled response is oscillatory. Fitting to data using fourth

order and higher order models gives slight reductions in errors as would be expected. For some

locusts, however, this reduction in error was negligible and using frequency domain methods

to estimate models resulted in the inversion of nearly singular matrices. This suggests that in

some cases a fourth order model overfits the data. In cases where a fourth, or higher order,

model improved the fit the modelled peak force when the IPF=40Hz still occurred too early

and, although slightly reduced, oscillations in the tail of the response were still evident. In

general, as the IPF or n increases the errors increase. Considering also that the fitted responses

wrongly predicted the time at which the peak force occurs and that the fits became oscillatory,

even when higher model orders are used, suggests that the assumptions of a linear response

may not hold well for such cases.

The estimated parameters for each locust obtained using a third order model are shown in

Fig. 4.15 with the mean parameter values in bold. It is clear that there is wide variation

between individual locusts in the estimated parameters. However, the general trends and

qualitative relation between pulse number and parameters are similar. With the exception of

θ0 for IPF=40Hz, as the pulse number increases the parameter values increase and eventually

saturate. Parameter values are higher when the IPF=40Hz. This supports the observations

from Fig. 4.12 that as the IPF or n increase the parameters increase and eventually saturate.

The parameter θ0 when IPF=40Hz was an exception to this trend, increasing for small n then

decreasing. This effect is due to the fact that the peak pulse amplitudes when IPF=40Hz

decrease when n is greater than 2. The fact that tetanus was reached at around 40Hz may

account for the decrease, the individual pulse amplitude decreasing resulting in the overall force

not increasing above a certain value.

Figures 4.16 and 4.17 show the responses of 12 locusts to a 20 pulse train when the IPF=12.5Hz

and 40Hz respectively. Again the responses for each locust are qualitatively similar, however,

the magnitude and decay time vary significantly between locusts. Responses were reconstructed

from models using the average parameter values estimated for each individual pulse, i.e. at each

time a pulse was input, the average model parameters θ̄ are used to describe the response to

the next pulse (Figs. 4.16, 4.17). Using mean parameters gives a representation of the response
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of the ‘average locust’. The model of the average locust provides a good representation of the

behaviour over most of the response, except at the end where the modelled response is too

oscillatory. The response to each individual pulse in a 20 pulse CFT is given also in Figs. 4.16

and 4.17, both the actual data from one locust and the modelled response being presented. The

results again show that the modelled response is oscillatory at the end of the pulse. It is also

clear that a steady state pulse shape is reached when the IPF=12.5Hz. When the IPF=40Hz

(Fig. 4.17B) for higher n the shapes of successive pulse responses are similar. The increase

and the subsequent decrease in the pulse magnitude when IPF=40Hz is very clear. Comparing

the modelled response and the response for one locust also shows that as the IPF and/or n

increase the modelled pulse shape shows increasing deviation from the actual pulse shape.

By calculating the poles of the model it was found that the average model poles show the same

characteristics as those seen for individual locusts. In general, the magnitude of the real part

of the poles tends to decrease with pulse number before reaching an approximately constant

value. The real parts of the poles are smaller when the IPF=40Hz compared to when the

IPF=12.5Hz, supporting the observation that as the IPF or n increase the response to each

input deviates more from the response of the isolated pulse. For the first pulse one of the

poles has a large magnitude so decays quickly, contributing little to the overall response, hence

explaining why for a single pulse a second order fit is acceptable.

Figure 4.14: Median errors when fitting to the nth pulse in a CFT, The fit using a 2 pole
model for IPF=12.5Hz (- - -) and IPF=40Hz (. . .) and the fit using a 3 pole model for

IPF=12.5Hz (- . -) and IPF=40Hz (—) are given.
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Figure 4.15: Change in parameter values with pulse number, n in a CFT, A,B,C,D show
parameter changes in a CFT of IPF=12.5Hz and E,F,G,H in a CFT of IPF=40Hz. Parame-
ters were estimated for each locust using a 3rd order model, with means (bold). In general,
except for the estimate of θ0 when using a third order model (H), parameter values increase

before saturating at pulse numbers greater than approximately six.
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Figure 4.16: Force response to a 20 pulse CFT (IPF=12.5Hz). (A) The individual locust
data is measured and mean (bold) estimated from average model parameters. (B) Exper-
imentally decomposed responses from one locust. (C) Estimated response for each pulse.
The main discrepancies in fit are that the end of the modelled pulse is slightly oscillatory.
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Figure 4.17: Force response to a 20 pulse CFT (IPF=40Hz) for twelve locusts. (A) The
individual locust data (faint lines) is measured and ‘average locust’ (bold) estimated from
average model parameters. (B) Experimentally decomposed responses from one locust. (C)
Estimated response for each pulse. The main discrepancies in fit are that the location of the
peak force occurs too soon in modelled data and that the end of the modelled response is

oscillatory.
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4.7 Discussion

4.7.1 Estimated Models

In modelling each contraction in CFTs using a linear model with a simple form, changes in

both the form of the model and model parameters are easily tracked. This is in contrast to the

few previous studies that have been done on decomposing muscle force into contributions from

individual stimuli [50, 74–76]. In these, where models were developed, a general model was

fitted to each contraction, with no attempt made to minimise model order or investigate how

the model may change over the course of the CFT. More focus was given to the properties of

each force trace (e.g. twitch contraction time) as opposed to the estimated model parameters.

The locust extensor muscle shows similar nonlinear summation to mammalian muscle with fa-

cilitation and depression occurring in pulses that are not well separated [71, 72]. This similarity

is expected. Ebashi [7] recognised that calcium was the key regulatory factor of muscle con-

traction at the molecular level in all kinds of muscle. Facilitation and depression are thought

to be caused, at least in part, by mechanisms involving calcium [71, 72]. The facilitation is

thought to be caused by an improved transmission of force and prolonged release of Ca2+ [72]

and the depression by a first order saturable reaction, such as Ca2+ binding to troponin [71].

There have been relatively few studies into insect muscle [80]. Demonstrating that facilitation

and depression occur in the locust extensor muscle reinforces the hypothesis that calcium is

key to muscular contraction and that mechanisms involving calcium are responsible for some

of the non-linear behaviour.

The summation of successive pulses in a CFT was nonlinear in the sense that the responses

to subsequent stimuli differ. However, in most cases the responses to individual pulses in a

CFT could be modelled as quasi-linear, with the time constants of nonlinear effects being large

compared to the pulse response. This shows that the processes responsible for nonlinear effects

are slow compared to the processes involved in each individual contraction. Trends were seen in

parameters estimated for successive pulses in the CFT. In general the value of the parameters

describing each subsequent pulse increase before saturating and reaching a constant value.

The fact that the parameter values saturate suggests that the processes behind the nonlinear

behaviour are saturable. This ties in with the non-linearities being caused by the processes

suggested by [72] and [71] (improved force transmission, prolonged release of Ca2+, first order

saturable reaction such as Ca2+ binding to troponin).

Both well-separated pulses and low IPF two-pulse trains can be modelled adequately using a

second order, linear model; use of a third order model improves the fit. Modelling the response

as a second order system is supported by research by [50–53] and [156]. As the IPF increases

for the two pulse train, the errors using a two pole model increase and a three pole model
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becomes necessary to model the response. The fact that an extra parameter is needed suggests

an extra process in the contraction becomes important as the IPF increases. This is confirmed

by the fact that the magnitude of the real parts of all the poles (including the extra pole)

decreased as the IPF increased. This indicates an increase in the associated time constants.

Muscular contraction is well described by Huxley’s sliding filament theory [27]. Mannard and

Stein [51] suggest that despite many rate constants being involved in activation, as described

by Huxley’s theory, only two are rate-limiting. However, as pulses sum and the IPF increases

the present study finds an extra process becomes important. [52, 53] suggest that of the two

observed rate-limiting steps one is involved with visco-elastic properties and the other with the

reuptake of Ca2+ into the sarcoplasmic reticulum. Possible processes responsible for the extra

parameter found here are the limited number of available binding sites, or the increase in Ca2+

concentration that occurs as pulses sum.

A third order model is not a common choice for modelling isometric muscle. However, Zhou

et al [68] find that although the muscle alone is best described by a second order model with

double poles and a time delay, when the joint is included in measurements the model is modified

by the introduction of an extra pole and zero. In the experiments described here the effect of

the joint is also included in measurements. More commonly the response of isometric muscle is

described by two coupled, linear, second order ordinary differential equations (effectively one

fourth order ODE) followed by a non-linear term. In some locusts, however, a fourth order

model was found to overfit the data. In other locusts, using a fourth or higher order model

slightly reduced errors in the fit, yet the location of peak force was still wrongly predicted and

the end of the response still modelled as too oscillatory.

When the IPF is high and the number of pulses in the train increases, the errors in using a third

order linear model increase. The main discrepancies in the fit were not reduced substantially

by using a linear model of higher order. The large errors when long, high frequency pulse trains

were used suggest that the assumption that the response to each pulse is linear may not hold.

The main discrepancies between measured and estimated data were in the location of the peak

force and across the decaying part of the response, which was modelled as being too oscillatory.

4.7.2 Linear Approximation

In estimating a model of the twitch it was assumed that the response was linear. The muscle

is known to exhibit non-linear properties [1, 39, 50, 71–73, 88]. In the case of a single twitch,

however, it was found that the nonlinearities are weak and a linear model provides a good fit

to data. Here, a linear model is taken to mean that the relation between input and output can

be described using a linear equation, where a linear equation is an algebraic relation in which

each term is a constant or the product of a single variable and a constant. The justification for
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using a linear model to describe the twitch response can be found by considering the processes

that occur during muscle contraction.

It is thought that saturable reactions involved in the activation process do not affect the twitch

response, as the input is very low, hence the muscle operates in a linear region well before

the occurrence of saturation. The binding of calcium ions to troponin is a saturable reaction

that occurs during muscle activation; saturation occurs due to the limited number of available

binding sites. For the case of a single twitch however, the input is low, resulting in few binding

sites being occupied during contraction [24]. Moreover, since the input pulses are well separated

the muscle relaxes between stimulations, freeing binding sites as calcium is pumped back into

the SR and returning the muscle to its original state. The response to a single input pulse

should also not be modified by the increasing stiffness of the muscle because the muscle is in

a relaxed state when the next stimulus pulse occurs since the pulses are well separated.

Muscle fatigue can be characterised by the muscles failure to maintain the force output [17].

Fatigue often occurs during repeated activation of the muscle and is increased by increasing the

stimulation frequency or intensity [20]. Single stimulus pulse inputs should not cause muscle

fatigue as the stimulus is of very low intensity and frequency. The relative importance of

muscle properties are task specific [88], hence muscle fatigue is not relevant to the single twitch

response. Thus it is thought that a linear model fits well to the response to an isolated pulse

since many of the effects that introduce non-linearities are unlikely to occur in the response to

a single pulse. This is not the case for pulses that are not well separated such that summation

occurs.

4.8 Conclusions

The dynamics of the responses of individual pulses vary depending on the input conditions.

This is attributed to the non-linear behaviour of the muscle. For most cases this behaviour

could be approximated as quasi-linear. When the IPF was low and the number of pulses in

the train small, a second order model provided a reasonable fit to each pulse and a third

order model a better fit. The fit using a second order model deteriorates with increasing IPF.

For moderate IPF and longer CFTs the second order model breaks down and a third order

model is necessary to model each pulse. When the input comprised long CFTs of high IPF the

assumption that the response was linear could not be confirmed. No linear model of any order

provided a good fit to individual pulse data.

In this chapter the behaviour and dynamics of individual pulses that make up summed isometric

contractions were considered. This provides more insight into the behaviour of the muscle and

the non-linear summation of the response to individual pulses under isometric conditions,
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providing a solid background for the studies in subsequent chapters. In the next chapter the

response to pulse train inputs is considered.
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Chapter 5

Isometric Force Response to

Pulse Trains: A Predictive Model

of the Isometric Force Response

5.1 Introduction

In the preceding chapter, the response to each pulse in a CFT was considered. Fitting a model

to each pulse in a CFT provides insight into the behaviour of the muscle during a sustained

contraction. It does not, however, provide a model of the force response that has predictive

capability. In each instance force was fitted to measured data, as opposed to being modelled.

A predictive model is developed in this chapter.

In this chapter, predictive isometric models that exist in the literature are considered. A new

model, adapted from an existing model is also presented. The ability of the existing isometric

models to predict the isometric force response to pulse train inputs is assessed alongside the

new Adapted model. The modelling capabilities of the models are compared by considering

goodness of fits in the least squares sense and using Akaike’s and Bayesian information criteria

(AIC, BIC). The ability of each model to describe the underlying behaviour, i.e. the response

of each individual pulse in a contraction, is also investigated. The new Adapted model was

found to provide the best description of the isometric force response. This model was further

investigated with regard to parameter sensitivity and the behaviour of the model as related to

physiological processes.
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5.2 Methods

The ability of a range of models to capture the isometric force response to a pulse train input

of the form

u(t) =
n∑

i=1

δ(t− ti) (5.1)

is assessed in this chapter. Input pulses (3ms in duration and of 5V amplitude) are assumed to

be equivalent to impulses. The preceding chapter showed that the assumption of the response

to each individual pulse being equivalent to the impulse response was reasonable. The physical

set up is described in Chapter 3, however the specifics of the stimulation protocol are discussed

below.

5.2.1 Fitting Algorithm

In the preceding chapter, fits to individual pulse data were found using a black-box model.

In this chapter, the model structures are pre-determined (these are defined in the subsequent

section). Model structures are based on those used in the literature and use prior knowledge.

Parameters of such models are determined by fits to measured data. Assuming a prior model

structure, then estimating corresponding parameters is a form of grey-box modelling. Grey-

box models are based on both experimental data and physical insight into the system. The

advantage of this approach is that some a priori knowledge about the system can be introduced.

Parameters were estimated by finding the values that gave the smallest squared differences

between the model and measured force data, when using training data. This was done using the

Matlab function lsqnonlin and a fixed step ODE solver. An initial estimate for parameters

was made, then parameter values iterated using a trust-region-reflective algorithm to find the

parameters which provided the best fit to data [157]. The parameter optimisation routine was

re-run using a range of initial parameter estimates to avoid estimating local minima.

The data was split into training and test data sets. The model parameters were estimated

using the training data, and minimising the least squares error between the training data and

the estimated response. The model and these estimated parameters were then applied to test

data. The fit to the test data was used to evaluate the model. This method ensures that

the trained model parameters do not overfit the model. Using a separate training data set

to estimate model parameters reduces overfitting, which as noted previously occurs when the

model fits to noise as opposed to the underlying relation [158].
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5.2.2 Stimulation Routine

In experiments the amount of data that can be collected is limited as muscle fatigue increases

with input. Fatigue is characterised by the failure of the muscle to maintain the expected

force output and is seen in results as a reduction in the maximum force over time in response

to a repeated input. The inclusion of a suitable recovery period counteracts the effects of

fatigue, however there is a trade off as this increases the time that the stimulating electrodes

are inserted into the muscle, and so the chances of the muscle becoming damaged. As well as

this physical constraint, care was take to ensure that both training and test data contained a

rich range of frequencies to stimulate a range of muscle behaviour.

By stimulating the model with more physiologically relevant inputs, developed models can be

tested over a relevant range of behaviour. During experiments the ETi muscle is stimulated

directly, leading to contraction of the entire muscle due to activation of the terminals of the

FETi motor neuron. FETi activity is associated with fast movements such as those that occur

during jumping, kicking or hopping [8, 10, 144, 152, 159]. Examples of the FETi spike signal

recorded during a kick were taken from the literature. These signals were simplified, as shown

in Fig. 5.1, by replacing each maximum with a single input pulse (of 3ms duration and 5V

amplitude). Five physiological inputs were found using this method with FETi data taken

from Fig. 2A in [152], Figs. 4A and 8A in [159] and Fig. 5 from [144]. Five simplified kick

signals were obtained and they are shown in Fig. 5.2. Table 5.1 summarises the properties of

these kick signals. These kick signals were used as inputs to provide physiologically relevant

test data.

Figure 5.1: Method of obtaining simplified kick input. Each spike in the FETi recording
(—) is approximated as a pulse of 3ms duration and 5V magnitude (—).

In addition to physiological inputs, some general pulse inputs were also used to stimulate the

muscle. The highest instantaneous frequency in the FETi activity recorded during a kick is of

the order of 100Hz. Signals with instantaneous frequencies up to 100Hz were therefore used

to stimulate the muscle. If the muscle is stimulated repeatedly with inputs that result in high
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Figure 5.2: Simplified kick inputs used to stimulate muscle. A) Kick signal 1, obtained
from Fig. 2A in [152], B) Kick signal 2, obtained from Fig. 4A in [159], C) Kick signal 3,
obtained from Fig. 8A in [159], D) Kick signal 4, obtained from Fig. 8A in [159], E) Kick

signal 5, obtained from Fig. 5 in [144].

Duration of Number of Lowest instantaneous Highest instantaneous
activity (ms) spikes frequency (Hz) frequency (Hz)

Kick1 336 16 20 78
Kick2 688 25 20 63
Kick3 567 17 5 90
Kick4 544 19 15 90
Kick5 381 20 15 108
Mean 503 19 15 86

Table 5.1: Summary of the properties of the FETi signals recorded during a kick.

force outputs, the muscle fatigues [96]. This results in the decay of maximum force over time.

To minimise the effects of fatigue, high-frequency pulse trains were separated by 5 individual

pulses with IPI of 5s. As well as minimising fatigue, the inclusion of these separated pulses

enables any decay in force levels, due to fatigue, to be monitored. Schematic representations

of the input types used to stimulate the muscle are given in Fig. 5.3. The specific stimulation

protocol is summarised in Fig. 5.4, with an example of the input and force output in the time

domain given in Fig. 5.5.

To evaluate model performance, parameters were estimated using a training data set, and the

performance evaluated using a different test data set. The set of training data was chosen by

training the model with different combinations of the different data sets shown in Fig. 5.4.

The physiological data was not used in training as this provides good test data to assess the

ability of the model to predict the response to a physiologically relevant input. Combinations

of all other data sets were used. The final set of training data was chosen as it provided small

errors when fitting to test data, including physiologically relevant data, whilst keeping the

cost of input data low. Training data consisted of five isolated pulses, a 40 pulse CFT with

IPI=15ms, a pulse train of 29 pulses which increased then decreased in frequency (back to

initial value) with a maximum frequency of 100Hz and minimum of 10Hz, and a 60 pulse train

which decreased then increased in frequency (back to start value) with a minimum frequency
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of 1Hz and maximum of 50Hz. The training data sets are shown in Fig. 5.5 by the highlighted

sections. Test data consisted of both general pulse trains and physiological kick type data.
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Figure 5.3: Schematic representation of different input types. A) CFT, B) NCFT of
decreasing-increasing frequency, C) NCFT of increasing-decreasing frequency, D) NCFT

Physiological type input.

5.3 Candidate models

A range of different models were used to describe the isometric force response. These models

were selected due to their popularity, and the fact they all take a pulse train u(t) as an input

and produce isometric force Fm(t) as an output. The force Fm(t) was normalised with respect

to the maximum tetanic force in each locust and models fitted to normalised data. In this

chapter all experiments were performed at an FT angle of 80◦. This means that for each locust

one factor is used to convert all tibial force recordings into a muscle force. In normalising the

data this factor is changed, but no information is lost. The modelled normalised force can be

converted into an actual force. The following models from the literature were used to describe

the isometric force response.
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Figure 5.5: Example of A) input, B) output data used to fit to and assess models

5.3.1 Linear Model

In the analysis of individual pulses (Ch. 4) it was found that a third order model was of optimal

order for fitting over a range of pulse frequencies, therefore a linear model of third order is used,

i.e.

θ3
...
F (t) + θ2F̈ (t) + θ1Ḟ (t) + F (t) = θ0u(t) (5.2)

This model has 4 parameters θ3, θ2, θ1, θ0 with units of s3, s2, s, and dimensionless respectively,

for the case where the force is normalised.

5.3.2 Wiener Model

For a pulse train input of the form given in Eq. (5.1), the Hammerstein model reduces to

a linear model and so is not considered, instead the related Wiener model is considered. A

second-order linear differential equation is used to describe the linear dynamics. A second-order

model was chosen as this is a popular choice for the linear section of a Hammerstein model.

Furthermore, a second order model provided an acceptable linear fit to the twitch response

(Ch. 4). The static nonlinearity was assumed to have a similar form to that of existing models

[28, 35],

θ2q̈(t) + θ1q̇(t) + q(t) = θ0u(t) (5.3)

F (t) =
q(t)m

q(t)m + km
(5.4)
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This model has 5 parameters θ2, θ1, θ0, m, and k with units of s2, s, dimensionless, dimen-

sionless, and dimensionless respectively, for the case where the force is normalised. A dummy

variable q(t) is used to couple the nonlinear to the linear model.

5.3.3 Cascade Model

The cascade model is a special case of a Wiener model. Unlike the Wiener model described

above the linear dynamics are assumed to be of fourth-order. This model is a popular choice

in the literature [28]. It is given by,

θ4
....
q (t) + θ3

...
q (t) + θ2q̈(t) + θ1q̇(t) + q(t) = θ0u(t) (5.5)

F (t) =
q(t)m

q(t)m + km
(5.6)

This model has 7 parameters, θ4, θ3, θ2, θ1, θ0, m, and k with units of s4, s3, s2, s, dimensionless,

dimensionless, and dimensionless respectively, for the case where the force is normalised. The

variable q(t) is a dummy variable, used to couple the nonlinear and linear equations. It is

commonly assumed to represent the calcium release from the SR [28]. It is often the case that

the linear dynamics (Eq. 5.5) are written as two coupled second order ODEs, with the T-tubuli

depolarisation response given as an intermediate step to finding the calcium release [28].

5.3.4 Ding et al Model

Ding et al [20] find their model gives good fits to data. It is given by

q̇(t) +
q(t)
τc

= u(t) (5.7)

ĊN (t) +
CN (t)
τc

=
q(t)
τc

n∑
i

Ri (5.8)

x(t) =
CN (t)

k + CN (t)
(5.9)

Ḟ (t) +
F (t)

τ1 + τ2x(t)
= Ax(t) (5.10)

Ri = 1 + (Ro − 1) exp
(−(ti − ti−1)

τc

)
(5.11)

This model has 6 parameters, τc, τ1, τ2, A, Ro, and k with units of s, s, s, s−1, dimensionless,

and dimensionless respectively, for the case where the force is normalised. The variables Ri,

CN (t), q(t) and x(t) are intermediate stages in the model. The variable q(t) is used as an
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intermediate in calculating CN (t), which is said to represent the normalised amount of the

Ca2+ complex. The variable x(t) describes the non-linear saturation, and Ri (dimensionless) is

used to account for nonlinear summation when the muscle is stimulated by two closely spaced

pulses, where ti defines the time of the ith stimulation.

5.3.5 Bobet and Stein Model

Bobet and Stein [73] present a model that they find to provide good fits to the force produced

by cat muscle. The model is

q̇(t) + aq(t) = u(t) (5.12)

x(t) =
q(t)m

q(t)m + km
(5.13)

Ḟ (t) + bF (t) = Bbx(t) (5.14)

b = bo

(
1− b1F (t)

B

)2

(5.15)

This model has 6 parameters, a, m, k, bo, b1, and B with units of s−1, dimensionless, di-

mensionless, s−1, dimensionless, and dimensionless respectively, for the case where the force is

normalised. The parameter a is thought to represent the decay of free calcium concentration,

m and k define a nonlinearity that might represent the binding of calcium ions to troponin,

and B is a scale factor. The nonlinearity in Eq. 5.14 is thought to represent the decay of force

under different conditions.

5.4 Development of Adapted Model

The model of Ding et al [20] (described by Eqs. (5.7) - (5.11)) provides reasonable fits to

data, however, the physiological meaning of the model and parameters is hard to interpret. A

sensitivity analysis by Frey Law and Shields [82] that looks at trying to better understand the

relationship between model parameters and muscle contractile properties finds the parameter

definitions of Ding et al to only be partially supported. Furthermore, no physical reason was

given, or could be found, as to why the time constants in Eqs. (5.7) and (5.8) should be the

same. Therefore, a model variation in which the time constant in Eq. (5.7) was allowed to

differ from that in Eq. (5.8) was investigated, giving the model the following form:
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q̇(t) +
q(t)
τR

= u(t) (5.16)

ĊN (t) +
CN (t)
τc

=
q(t)
τc

n∑
i

Ri (5.17)

x(t) =
CN (t)

k + CN (t)
(5.18)

Ḟ (t) +
F (t)

τ1 + τ2x(t)
= Ax(t) (5.19)

Ri = 1 + (Ro − 1) exp
(−(ti − ti−1)

τc

)
(5.20)

This introduces an extra parameter, τR. It was found that the resultant fit was insensitive to

the value of the parameter τR, and good fits could be obtained for a range of values of τR. The

original model was thus simplified and adapted in an attempt to reduce parameter redundancy

and make the essential characteristics of the model clearer. The form of the simplified model

is given as

ĊN (t) +
CN (t)
τc

= u(t) (5.21)

x(t) =
CN (t)m

CN (t)m + km
(5.22)

Ḟ (t) +
F (t)

τ1 + τ2x(t)
= Ax(t) (5.23)

This model has 6 parameters, τc, τ1, τ2, m, k, and A. For the case where F (t) is normalised

the time constants τ1, τ2 and τc have units of seconds, A units of s−1, and all other parameters

are dimensionless. This model is termed the ‘Adapted model’.

In the Adapted model, the order of the model is reduced, and the parameter τR neglected,

hence, the state variable q(t) is not required. The relation between input and output is sec-

ond rather than third order. The variable Ri, which was said to account for the non-linear

summation in response to two closely spaced pulses, has been removed. This was done as Ri

is a function of discrete as opposed to continuous time, so it is hard to physically interpret

its influence on a continuous time system and model. Instead, an extra parameter, m, was

included to allow the specific form of the non-linearity to change. Figure 5.6 shows how the

saturation curve changes with the value of m.

The developed model needs to be capable of capturing the nonlinear behaviour and the changing

shape of individual pulses found in Chapter 4 (see Figs. 4.10, 4.16, 4.17). To better understand

the behaviour of the model described in Eqs. (5.21)-(5.23) and establish if it is capable of
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Figure 5.6: The change in saturation nonlinearity given in Eq. (5.22) with m.

capturing this behaviour, the total force response and corresponding contribution by each

individual pulse was computed when using the model. This was done for both a high and low

frequency CFT. The ability of the model to replicate the behaviour of Figs. 4.16 and 4.17 was

assessed. In each simulation parameters were fixed with τc = 0.1, τ1 = 0.1, τ2 = 0.1, k = 1,

A = 5, m = 2. Figure 5.7 gives the results of this simulation. From this it is clear that the

model is able to capture the fundamentals of the underlying behaviour and is a reasonable

candidate model. Therefore the Adapted model described by Eqs. (5.21)-(5.23) is also used as

a candidate model.
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Figure 5.7: Simulated force response when using the model given in Eqs (5.21)-(5.23). A)
Contribution of individual pulses to total force response for low frequency CFT (12.5Hz),
B) contribution of individual pulses to total force response for high frequency CFT (40Hz),
C) total force response for low frequency CFT (12.5Hz), D) total force response for high
frequency CFT (40Hz). Corresponding experimental data is given in Figs. 4.16 and 4.17.

5.4.1 Behaviour of the Model Under Different Assumptions

It has been shown that the Adapted model is capable of capturing the nonlinear behaviour and

changing shape of the individual pulse responses. To establish if a further simplified form of
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the Adapted model is also capable of modelling this behaviour, the response of the model to

given parameters under different assumptions was investigated. In each simulation parameters

were again fixed so τc = 0.1, τ1 = 0.1, τ2 = 0.1, k = 1, A = 5, m = 2.

5.4.1.1 Assumption 1

Small CN was assumed. This linearises the problem and the model equations become

ĊN (t) +
CN (t)
τc

= u(t) (5.24)

Ḟ (t) +
F (t)
τ1

= ACN (t) (5.25)

The resultant force responses are given in Fig. 5.8. It is clear that by linearising the model

one cannot replicate the changing pulse shapes seen in experimental data.
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Figure 5.8: Simulated force response when using the Adapted model with Assumption 1.
A) Contribution of individual pulses to total force response for low frequency CFT (12.5Hz),
B) contribution of individual pulses to total force response for high frequency CFT (40Hz),
C) total force response for low frequency CFT (12.5Hz), D) total force response for high

frequency CFT (40Hz).

5.4.1.2 Assumption 2

It is assumed that τ2 = 0, giving the following model:
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ĊN (t) +
CN (t)
τc

= u(t) (5.26)

x(t) =
CN (t)m

CN (t)m + km
(5.27)

Ḟ (t) +
F (t)
τ1

= Ax(t) (5.28)

This model has 5 parameters, τc, τ1, m, k, and A. The corresponding force behaviour is given

in Fig. 5.9. The model is able to replicate the changing pulse shape. The change in pulse

shape is dependent upon the frequency, this is also the case in the experimental data. The

model with τ2 = 0 is capable of describing the fundamentals of the underlying behaviour. The

Adapted model with τ2 = 0 is therefore used as a candidate model. This model is termed the

‘Simplified Adapted model’.
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Figure 5.9: Simulated force response when using the Adapted model with Assumption 2.
A) Contribution of individual pulses to total force response for low frequency CFT (12.5Hz),
B) contribution of individual pulses to total force response for high frequency CFT (40Hz),
C) total force response for low frequency CFT (12.5Hz), D) total force response for high

frequency CFT (40Hz).

Assumption 3

It is assumed that that the nonlinearity appears only as a multiplying factor to the time

constant τ2 and so the modelled force is,
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ĊN (t) +
CN (t)
τc

= u(t) (5.29)

x(t) =
CN (t)m

CN (t)m + km
(5.30)

Ḟ (t) +
F (t)

τ1 + τ2x(t)
= ACN (t) (5.31)

Figure 5.10 depicts the simulated force behaviour under this assumption. In each case the pulse

magnitude increases, the removal of the extra non-linear term means that the force saturation

is not modelled and the simulated force keeps increasing with increasing input. In real data

there is a limit to the maximum force (tetanus). This is not replicated, hence this simplification

of the model is poor and so not considered further.
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Figure 5.10: Simulated force response when using the Adapted model with Assumption 3.
A) Contribution of individual pulses to total force response for low frequency CFT (12.5Hz),
B) contribution of individual pulses to total force response for high frequency CFT (40Hz),
C) total force response for low frequency CFT (12.5Hz), D) total force response for high

frequency CFT (40Hz).

5.5 Performance of Models

The performance of each model (Linear, Wiener, Cascade, Ding, Bobet and Stein, Adapted,

Simplified Adapted) was assessed by looking at goodness of fits, AIC and BIC, parameter

sensitivity and the capability of the model to replicate the underlying behaviour of individual

pulses.
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5.5.1 Goodness of Fits

For each model, parameters were estimated in five different locusts; Tables 5.2 to 5.8 give

estimated parameters and errors for each model. The errors in estimation using each model

are summarised in Table 5.9. Presented errors refer to the least squares fit between model and

data. Errors in the fit to training data (Etrain), the fit test data which consists of general pulse

trains (Etest1
1), and the fit to test data from kick type inputs (Ekick

2), are given. An example

of the fit to training data for one locust (termed locust LE) using each model is given in Fig

5.11, the fit to pulse train test data in Fig. 5.12, and kick test data in Fig 5.13. This locust is

representative of, and produced qualitatively similar results to the set of locusts.

Table 5.2: Estimated parameters and least square errors between measured and modelled
data when using a Linear model. Errors are given as percentages for the fit to training
data (Etrain), the fit to general pulse data (Etest1) and the fit to kick type inputs (Ekick).

Locust θ3 (s3) θ2 (s2) θ1 (s) θ0 Etrain Etest1 Ekick

LA 8.0× 10−6 3.3× 10−3 0.28 0.025 11 14 10
LB 4.2× 10−6 5.4× 10−3 0.23 0.022 10 14 7.8
LC 4.1× 10−5 3.6× 10−3 0.26 0.023 13 16 10
LD 2.8× 10−5 4.0× 10−3 0.26 0.024 13 15 9.1
LE 2.5× 10−5 3.6× 10−3 0.26 0.024 12 15 10
Mean 2.1× 10−5 4.0× 10−3 0.26 0.023 12 15 9.4

Table 5.3: Estimated parameters and least square errors between measured and modelled
data when using a Wiener model. Errors are given as percentages for the fit to training
data (Etrain), the fit to general pulse data (Etest1) and the fit to kick type inputs (Ekick).

Locust θ2 (s2) θ1 (s) θ0 m k Etrain Etest1 Ekick

LA 1.0× 10−3 0.011 0.20 1.6 0.013 2.7 2.9 1.8
LB 5.9× 10−6 0.011 0.19 1.6 8.8× 10−5 3.7 4.1 2.7
LC 1.6× 10−6 0.010 0.17 1.6 2.0× 10−5 2.9 2.7 1.6
LD 9.4× 10−7 0.012 0.17 1.6 1.1× 10−5 2.9 2.3 1.5
LE 1.9× 10−1 0.011 0.17 1.6 2.3 2.5 2.5 1.2
Mean 3.8× 10−2 0.011 0.18 1.6 0.46 2.9 2.9 1.8

Table 5.4: Estimated parameters and least square errors between measured and modelled
data when using a Cascade model. Errors are given as percentages for the fit to training
data (Etrain), the fit to general pulse data (Etest1) and the fit to kick type inputs (Ekick).

θ4 θ3 θ2 θ1 θ0 m k Etrain Etest1 Ekick

(s4) (s3) (s2) (s) - - -
LA 2.2× 10−6 1.1× 10−4 0.018 0.20 0.0030 1.6 0.035 3.0 2.6 3.0
LB 3.8× 10−6 2.0× 10−4 0.018 0.20 0.0014 1.6 0.020 4.5 4.0 4.5
LC 3.0× 10−6 2.0× 10−4 0.018 0.20 0.0073 1.6 0.093 4.1 3.5 4.3
LD 2.6× 10−6 2.0× 10−4 0.018 0.20 0.0044 1.6 0.052 3.8 2.8 2.4
LE 2.1× 10−6 2.0× 10−4 0.018 0.20 0.0093 1.6 0.12 3.2 3.2 2.7
Mean 2.7× 10−6 2.0× 10−4 0.018 0.20 0.0051 1.6 0.060 3.7 3.2 3.4

The linear model provides the poorest fit to data. The model is unable to describe the range of

behaviour and both under- and over-predicts the isometric force. This inability to describe the
1Test1 data includes all test data except the physiological kick data
2Kick data includes just the physiological kick data
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Table 5.5: Estimated parameters and least square errors between measured and modelled
data when using Ding model. Errors are given as percentages for the fit to training data

(Etrain), the fit to general pulse data (Etest1) and the fit to kick type inputs (Ekick).

Locust τc (s) τ1 (s) τ2 (s) A (s−1) Ro k Etrain Etest1 Ekick

LA 0.019 0.14 0.16 5.3 0.73 0.19 1.7 1.6 3.0
LB 0.022 0.079 0.24 5.3 0.92 0.25 1.3 1.7 3.1
LC 0.027 0.087 0.17 5.6 1.3 0.28 2.1 1.5 2.6
LD 0.036 0.093 0.18 5.3 1.2 0.23 1.5 1.0 3.0
LE 0.023 0.11 0.18 5.3 1.1 0.24 1.7 1.5 3.3
Mean 0.023 0.10 0.19 5.4 1.0 0.24 1.7 1.5 3.0

Table 5.6: Estimated parameters and least square errors between measured and modelled
data when using Bobet and Stein’s model. Errors are given as percentages for the fit to
training data (Etrain), the fit to general pulse data (Etest1) and the fit to kick type inputs

(Ekick).

Locust a (s−1) m bo (s−1) b1 B k Etrain Etest1 Ekick

LA 15 2.5 8.4 0.27 1.0 0.72 1.3 0.83 0.80
LB 16 2.7 8.7 0.13 0.97 0.77 1.5 1.6 0.98
LC 15 2.4 9.5 0.19 0.96 0.71 1.8 1.1 0.83
LD 16 2.4 7.9 0.09 0.99 0.63 1.6 0.86 0.81
LE 14 2.4 8.7 0.15 0.97 0.75 1.4 0.94 0.74
Mean 15 2.5 8.6 0.17 0.99 0.72 1.5 1.1 0.83

Table 5.7: Estimated parameters and least square errors between measured and modelled
data when using the Adapted model. Errors are given as percentages for the fit to training
data (Etrain), the fit to general pulse data (Etest1) and the fit to kick type inputs (Ekick).

Locust τc (s) τ1 (s) τ2 (s) k A (s−1) m Etrain Etest1 Ekick

LA 0.076 0.12 0.06 0.70 6.2 2.1 1.3 0.62 0.57
LB 0.059 0.066 0.15 0.52 5.3 1.7 0.94 1.1 1.0
LC 0.074 0.072 0.09 0.56 6.2 1.8 1.6 0.85 0.69
LD 0.064 0.079 0.12 0.44 5.5 1.6 1.3 0.60 1.1
LE 0.077 0.080 0.09 0.60 6.1 1.9 1.2 0.79 0.71
Mean 0.070 0.083 0.10 0.57 5.8 1.8 1.3 0.80 0.82

Table 5.8: Estimated parameters and least square errors between measured and modelled
data when using the Simplified Adapted model. Errors are given as percentages for the
fit to training data (Etrain), the fit to general pulse data (Etest1) and the fit to kick type

inputs (Ekick).

Locust τc (s) τ1 (s) k A (s−1) m Etrain Etest1 Ekick

LA 0.076 0.14 0.80 7.1 2.4 1.4 0.71 0.73
LB 0.065 0.13 0.78 7.5 2.7 1.5 1.6 0.98
LC 0.073 0.12 0.73 7.7 2.5 1.8 1.0 0.83
LD 0.066 0.14 0.64 7.2 2.4 1.6 0.85 0.81
LE 0.077 0.13 0.77 7.5 2.5 1.4 0.91 0.73
Mean 0.071 0.13 0.75 7.4 2.5 1.5 1.0 0.81

100



5. Isometric Force Response to Pulse Trains

Table 5.9: Summary of average errors estimated using each model. Errors are given as
percentages for the fit to training data (Etrain), the fit to general pulse data (Etest1) and the

fit to kick type inputs (Ekick).

Model type Etrain Etest1 Ekick

Linear 12 15 9.4
Wiener 2.9 2.9 1.8
Cascade 3.7 3.2 3.4
Ding et al 1.7 1.5 3.0
Bobet and Stein 1.5 1.1 0.83
Adapted 1.3 0.80 0.82
Simplified Adapted 1.5 1.0 0.81

A)

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

B)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

C)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

D)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time [s]

Figure 5.11: A-D) Fitting each model to each set of training data (bold) to estimate
parameters. The input pulse train used to generate each force response is shown above each
graph of force response. Fitted models are: Linear (-O-), Wiener (. . .), Cascade (-×-), Ding

et al (-+-), Bobet and Stein (—), Adapted (- - -), Adapted simple (...).
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Figure 5.12: A-E) Comparison between measured (bold) and modelled force data for pulse
train inputs. The input pulse train used to generate each force response is shown above each
graph of force response. Fitted models are: Linear (-O-), Wiener (. . .), Cascade (-×-), Ding

et al (-+-), Bobet and Stein (—), Adapted (- - -), Adapted simple (...).

behaviour is expected from the analysis in the preceding chapter. A linear model was found to

produce a good fit to the twitch response. When summation occurs non-linear effects become

important, and a linear model cannot describe the behaviour unless coefficients describing each

individual pulse response are allowed to change (even in this case, high frequency, high pulse

number trains cannot be modelled well).

The inclusion of a static nonlinearity, as in the Wiener and Cascade Models, provides an

improvement on the linear fit. The static non-linearity allows some of the nonlinear behaviour

to be described. The Cascade model is of higher order, yet gives larger errors than the Wiener
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Figure 5.13: A-E) Comparison between measured (bold) and modelled force data for kick
type inputs. The input pulse train used to generate each force response is shown above each
graph of force response. Fitted models are: Linear (-O-), Wiener (. . .), Cascade (-×-), Ding

et al (-+-), Bobet and Stein (—), Adapted (- - -), Adapted simple (...).

model. This suggests that in the Cascade model a local minimum may be estimated. The fact

that in the Cascade model for most locusts some of the parameters (θ1, θ2, m) do not change

from their initial estimates suggests that the model has redundant parameters. In the Wiener

model there is a lot of variability in some of the parameters (θ2, k) between locusts. The

Wiener, Cascade and Linear models give lower errors when fitting to the kick data compared

to the training data. They are better at replicating the response to short high-frequency pulse

trains (kick type inputs), than the force response to lower frequency pulse trains.
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Models of linear-nonlinear-linear (LNL) structure (Ding, Bobet and Stein, Adapted and Sim-

plified Adapted models), with the exception of the model of Ding et al, outperform models

with the simpler linear-nonlinear (LN) structure (Wiener and Cascade). The fit to kick data

is worse in the model of Ding et al when compared with the Wiener model. In the model of

Ding et al the fit to kick data is much worse than the fit to general test data. This suggests

that this model is less good at predicting physiologically relevant behaviour and better suited

to lower frequency pulse train inputs.

The improved fit obtained with LNL models, with the exception to that of Ding et al, is

attributed to the increased structural complexity of the LNL models, however a good fit does

not prove that a model is correct, but suggests that it is a better option than a model that

fits the data poorly. The LN structure assumes linear dynamics; there is no nonlinear element

that changes the system’s time constants. The LNL models all provide similar fits to training

data. In each LNL model any differences in estimated parameters between locusts are small

and likely to be as a result of the fact that the measured force responses of each locust are

quantitatively different.

The performances of Bobet and Stein’s model, the Adapted model and the Adapted Simplified

model are similar in terms of kick errors. The Adapted model provides a better fit to general

pulse train data. The estimated force traces for just these three models are shown in Figs. 5.14

to 5.16 for a clearer view of the model dynamics. The three models are of similar form and

the modelled force-time traces are similar. The Adapted Simplified model and the model of

Bobet and Stein predict very similar force trajectories. Marginally better fits to data are given

by the Adapted Simplified model when compared to Bobet and Stein’s model. The form of

the Adapted Simplified model is similar to that of Bobet and Stein, yet the model has one less

parameter as the variation in time constant with force level is not included (the parameter b1

is effectively zero). This suggests that the force feedback included in Bobet and Stein’s model

is not necessary when describing the isometric force response of the locust extensor muscle. It

should also be noted that the errors presented in Table 5.6 when fitting using Bobet and Stein’s

model are much lower, especially at low levels of contraction than those quoted by Bobet and

Stein [73]. This could be attributed to the training data used by Bobet and Stein not being

‘rich’ enough.
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Figure 5.14: A-D) Fitting each model to training data (bold) to estimate parameters. The
input pulse train used to generate each force response is shown above each graph of force
response. Fitted models are: Bobet and Stein (—), Adapted (- - -), Adapted simple (...).
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Figure 5.15: A-E) Comparison between measured (bold) and modelled force data for pulse
train inputs. The input pulse train used to generate each force response is shown above each
graph of force response. Fitted models are: Bobet and Stein (—), Adapted (- - -), Adapted

simple (...).
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Figure 5.16: A-E) Comparison between measured (bold) and modelled force data for kick
type inputs. The input pulse train used to generate each force response is shown above each
graph of force response. Fitted models are: Bobet and Stein (—), Adapted (- - -), Adapted

simple (...).
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5.5.2 Model Selection Using AIC and BIC

Comparing least square errors between measured and modelled data indicates the goodness of

fit of each model. However, the least squares statistic does not take into account the trade-off

between model complexity and estimation errors. Models of increased complexity can better

adapt to fit to data. However, additional parameters may fit to measurement noise and not

describe any important processes. This can make the underlying governing behaviour harder

to interpret. Using solely the model that gives the lowest mean square error will often just

lead to the largest model being selected as best. The ‘best’ model should balance simplicity

and goodness of fit; model characteristics essential to observed effects are often more evident

in simpler models [34].

Akaike’s information criterion (AIC) [155] is used as a tool for model selection. This method

takes account of the trade off between model complexity (measured as the number of model

parameters) and accuracy. AIC attempts to find the model that provides the best description

of the data whilst keeping the number of free parameters to a minimum. The AIC in the

general case is defined by

AIC = 2k − 2 ln(`(θ̂|x)) (5.32)

where k is the number of parameters, and `(θ̂|x) the likelihood function of the model parameters

θ, given the data x. The second term tends to decrease as more parameters are added to the

approximate model, while the first gets larger [155]. The model errors are assumed to be

normally and independently distributed with the variance of model errors unknown but equal

for all models. The AIC then becomes

AIC = 2k + n

(
ln
(
RSS

n

))
(5.33)

where RSS is the residual sum of squares and n gives the number of observations. For small

sample sizes the AIC requires a bias-adjustment term, the AIC for small samples (AICc) being

given by

AICc = AIC +
2k(k + 1)
n− k − 1

(5.34)

As the size n of the data set increases the adjustment term becomes negligible, therefore the

small sample adjustment is used for all AIC calculations. AIC differences (∆i) were computed

for each model and are given in Table 5.10. The AIC was computed both for the entire set

of test data (including physiological data) and for just physiological data. Low values of ∆i
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5. Isometric Force Response to Pulse Trains

indicate a better model, and zero the best model in AIC terms. The results suggest that the

Adapted model provides the best description of all behaviour. The data sets used to compute

the AIC values given in Table 5.10 were very large with n = 46556 for all test data and

n = 13915 for kick data. The AIC complexity penalty tends to zero for large data sets, so that

the complexity is relatively less important when the sample size is high [160]. Therefore the

AIC differences for smaller resampled data sets were also computed. The data was resampled,

so that n = 150 and the AIC value computed. Resultant values are given in Table 5.11. The

AIC differences given in Table 5.11 again suggest that the Adapted model is the best model for

describing all test data. For fitting to physiologically relevant kick data the Simplified Adapted

and Adapted models perform equally well in terms of their AIC values.

Table 5.10: Average AIC differences across 5 locusts (∆i = AICi - minAIC) for whole data
set

Model No. Params. ∆i for all test data ∆i for kick data
Linear 4 131000 35200
Wiener 5 52900 10600
Cascade 7 65600 19600
Ding 6 46500 20200
Bobet and Stein 6 9240 530
Simplified Adapted 5 7140 200
Adapted 6 0.00 0.00

Table 5.11: Average AIC differences across 5 locusts (∆i = AICi - minAIC) for resampled
data set

Model No. Params. ∆i for all test data ∆i for kick data
Linear 4 422 365
Wiener 5 170 112
Cascade 7 214 214
Ding 6 151 218
Bobet and Stein 6 30.1 5.65
Simplified Adapted 5 21.1 0.01
Adapted 6 0.00 0.00

The disadvantage of AIC model selection is that as n → ∞ more complex models tend to be

selected as the complexity becomes relatively less important. Bayesian information criteria

(BIC) is an asymptotically consistent alternative selection criteria [161]. As the sample size

becomes large the probability that BIC will select the correct model tends towards one. BIC

has stronger penalties for additional parameters than AIC. The disadvantage of using BIC is

that for small or moderately sized samples, due to the complexity penalty, BIC can choose

models that are too simple. The general formula for the BIC is

BIC = k ln(n)− 2 ln(`(θ̂|x)) (5.35)
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The model errors are again assumed to be independent and normally distributed with the

variance of all models equal and unknown. The BIC is then

BIC = k ln(n) + n

(
ln
(
RSS

n

))
(5.36)

Table 5.12 gives the BIC differences for the whole data set. Due to the disadvantages of BIC

when using a small sample set, the BIC was not computed for the resampled data set. Table

5.12 indicates that according to the BIC selection criteria the Adapted model is the best model

for describing the isometric force response of the locust hind leg extensor. This is in agreement

with the AIC selection criteria.

Table 5.12: Average BIC differences across 5 locusts (∆i = BICi - minBIC) for whole data
set

Model No. Params. ∆i for all test data ∆i for kick data
Linear 4 131000 194000
Wiener 5 52900 78600
Cascade 7 65600 97500
Ding 6 46524 69153
Bobet and Stein 6 9230 13800
Simplified Adapted 5 7130 10600
Adapted 6 0.00 0.00

5.5.3 Response of Individual Pulses

The ability of each model to capture the underlying behaviour and describe the response of

each individual pulse is now considered. The experimental response to each individual pulse

is given in Chapter 4. Modelled individual pulse contributions were obtained by assuming the

behaviour was quasi-linear and subtracting the simulated response to n − 1 pulses from that

to n pulses. The simulated response is presented using parameters relevant to locust LE as an

example for each model.

Figures 5.17, 5.18 and 5.19 summarise the modelled response to each individual pulse for a

second pulse when the IPF is varied, the nth pulse in a low frequency CFT, and the nth pulse

in a high frequency CFT respectively. In each figure the experimentally obtained contribution

by each pulse is also given. Due to constraints on the maximum amount of data that can

be collected from each locust whilst maintaining repeatability, the experimental response is

plotted for a different locust to modelled responses. The qualitative behaviour between locusts

is similar, thus the ability of each model to describe the trends (not specific details) seen in

experimental data is considered.

No model describes the response to a second pulse well (Fig. 5.17). This is due to the fact that

training data did not contain any two pulse trains and so models were not trained to describe
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Figure 5.17: Comparison between A) Experimental, and B-H) modelled response to a
second pulse for a range of IPFs, arrows indicate increasing IPF. The response to a single
pulse is given in bold for comparison. Modelled responses are for B) Linear model, C)
Wiener Model, D) Cascade Model, E) Ding Model, F) Bobet and Stein model, G) Adapted

Simplified Model, H) Adapted Model.

the behaviour of a second pulse. Some models are better able to capture some of the underlying

dynamics. The Linear model, as expected, does not capture any of the non-linear dynamics.

It performs the worst in terms of goodness of fit, due to this lack of ability to describe the

underlying non-linear behaviour. The Cascade and Wiener models are able to describe the

fact that the magnitude of the second pulse is increased from the first. These models do not

however describe the change in pulse shape or the variation in the response of a second pulse

with IPF. The underlying behaviour described by the model of Ding et al is very different to

that found experimentally, suggesting that the model may not provide an accurate description

of the behaviour. As with the goodness of fit, AIC, and BIC findings, the models of Bobet and

Stein, Simplified Adapted model and the Adapted model provide the best description of the
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Figure 5.18: Comparison between A) Experimental, and B-H) modelled response to the
nth pulse for a low frequency IPF (12.5Hz). The response to the first pulse is given in bold.
Modelled responses are for B) Linear model, C) Wiener Model, D) Cascade Model, E) Ding
Model, F) Bobet and Stein model, G) Adapted Simplified Model, and H) Adapted Model.
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Figure 5.19: Comparison between A) Experimental, and B-H) modelled response to the
nth pulse for a high frequency IPF (40Hz). The response to the first pulse is given in bold.
Modelled responses are for B) Linear model, C) Wiener Model, D) Cascade Model, E) Ding
Model, F) Bobet and Stein model, G) Adapted Simplified Model, and H) Adapted Model.
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behaviour. The early force depression is well predicted, with this being more evident in the

Adapted model. The later force enhancement and increased force enhancement with increasing

IPF is not well described by any model.

The response of the nth pulse in a low frequency CFT (Fig. 5.18) is reasonably well described

by all models, with exception of the linear model. The main discrepancy between modelled and

experimental data is that the modelled amplitude changes are less extreme than those seen in

the experimental data.

Examination of the response to each pulse in a high frequency pulse train (Fig. 5.19) it is

clear that again, as expected, the linear model cannot describe the underlying behaviour. As

with the second pulse (Fig. 5.17), the model of Ding et al describes the underlying behaviour

poorly, again suggesting that the model does not provide a good description of the behaviour

of the locust hind leg extensor muscle. The other models capture the increase and subsequent

decrease in the pulse magnitude seen in the experimental data. It is the inclusion of a non-

linear saturation function that enables these models to capture this behaviour, and the fact

that behaviour is frequency dependent.

Figures 5.17 and 5.19 show that the model of Ding et al provides a poor model of the underlying

behaviour. This is attributed to the relation used by Ding et al to describe the non-linear

summation of closely spaced pulses. The form of Ri (Eq. (5.11)) found using average model

parameters is shown in Fig. 5.20. It is clear that Ri is not strongly influenced by the pulse

separation. The model assumes that the force enhancement always increases with IPF, but

this is not the case. For long high IPF trains the magnitudes of later pulses are less than

for low IPF trains. In other words the force at the end of high IPF trains is less enhanced

than for low IPF trains. Since Ri cannot describe this behaviour, it is thought that the best

solution is for Ri not to change much with IPF. This influences the value of τc which is used as

a time constant in other parts of the model. Furthermore, the expression for Ri is a function

of discrete time, while muscle contraction occurs in continuous time. The discrete time model

is conceptually less easy to interpret and relate to the processes occurring during contraction.

The poor description of the underlying behaviour in the Ding et al model is thought to be due

to the function describing Ri not providing a good model to describe the force enhancement.

In terms of their ability to describe the underlying behaviour, goodness of fit, AIC and BIC it

was seen in the previous section that the ‘best’ models to describe the behaviour of the locust

hind leg extensor muscle are Bobet and Stein’s model, the Simplified Adapted model, and the

Adapted model. Looking at the response to individual pulses, the most notable weakness of

these models is their inability to describe the response of a second pulse in a two pulse train.

This could, however, be a weakness in the choice of training data as opposed to the models.

In order to test if the models could describe the behaviour of a second pulse better with more
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Figure 5.20: Dependence of IPI (Eq. (5.11)) on the value of Ri in the model of Ding et al,
found using average estimated parameters.

appropriate training data, two pulse trains were included in training data. Due to practical

constraints on the amount of data that could be collected from one locust, this was done for a

different set of locusts. The predicted behaviour of a second pulse for a range of IPFs and for

each of the three ‘best’ models is given in Fig. 5.21. It is evident, by comparing the modelled

response in Fig. 5.21 to measured data in Fig. 4.10, that the models are in fact able to capture

the behaviour in response to a second pulse. The Simplified Adapted model and Bobet and

Stein’s model behave similarly. The Adapted model is able to better describe the increasing

early depression with increasing IPF.
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Figure 5.21: Response of second pulse in comparison to twitch (—) for A) Bobet and
Stein’s model, B) Simplified Adapted Model, C) Adapted model. The second pulse for a
range of IPIs are shown; 100ms (—), 90ms (—), 80ms (—), 70ms (—), 60ms (—), 50ms (—),
40ms (—), 30ms (—), 25ms (—), 20ms (—), 15ms (—). The graphs on the right hand side

show in more detail the section of the force trace up to 0.05s.
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5.5.4 Parameter Sensitivity

Parameter sensitivity analysis provides an indication of which parameters contribute most to

the output variability, which parameters are highly correlated with outputs and what the result

of changing a given input parameter is. It is useful for finding any insignificant parameters that

can be eliminated from the model, as well as finding any parameters that require additional

research to reduce output uncertainty [82, 162]. Understanding of the system and relationships

can be improved by a sensitivity analysis.

A sensitivity analysis was carried out on the Adapted model. The Adapted model was chosen as

the AIC and BIC calculations indicated it was the best model. The next best model according

to AIC and BIC was the Simplified Adapted model. This model is equivalent to the Adapted

model, with τ2 = 0, and so a Sensitivity Analysis on the Adapted model will also provide some

indication of the behaviour of the Simplified Adapted model.

A one-at-a-time approach was used, due to its conceptual simplicity. This approach is similar

to that used by Frey Law and Shields [82] and provides a ‘local’ sensitivity estimate [162]. Each

parameter was varied in turn by up to ±10% of its nominal value. Corresponding changes in

the force profile were measured by the Frey Law and Shields [82] force characteristics. These

characteristics were defined for a twitch in Fig. 4.5. For a pulse train an extra characteristic,

the Relative Fusion Index (RFI), is included. This is defined as the mean of the last 4 minima

in the pulse responses divided by the corresponding peaks (RFI=1 indicates smooth sustained

contraction, RFI=0 indicates no summation of subsequent pulses). For pulse train data the

HRT and LRT refer to the decay from the final peak value, and the TPT to the time to reach

90% of the first peak force.

Initial parameter values were set to the average values given in Table 5.7. The model was

stimulated by a single input, a low frequency pulse train, a high frequency pulse train, and

a kick type input so as to test the model behaviour under a range of conditions. Figures

5.22, 5.24, 5.26 and 5.28 show how the predicted force-time profile is altered by a change in

each parameter. Figures 5.23, 5.25, 5.27 and 5.29 indicate the percentage change in each force

characteristic as each parameter is changed by up to ±10% from its initial value. The effect on

the force response to each different input type is considered in terms of how each parameter in

turn affects the response.

The parameter A scales the force response. Percentage changes in A result in equivalent per-

centage changes in the PF and FTI. Changing A has no effect on the force time measurements

(HRT, LRT, TPT) or RFI, as expected. The model is fitted to normalised data, with maximum

tetanic force equal to one. To apply the model to actual force data the parameter A would

just change by the relevant scale factor, with all other being parameters unchanged.
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Figure 5.22: Change in force-time response to single pulse when each parameter is in turn
changed from its average value (—) by up to ±10%. Individual parameter increments are
+2.5% (—), +5% (—), +7.5% (—), +10% (—), −2.5% (—), −5% (—), −7.5% (—), −10%
(—). A) Changing τc, B) changing τ1, C) changing τ2, D) changing k, E) changing A, F)

changing m.

118



5. Isometric Force Response to Pulse Trains

−10 −5 0 5 10

−10

−5

0

5

10

A)

C
ha

ng
e 

in
 P

F
 [%

]

Change in parameter [%]
−10 −5 0 5 10

−10

−5

0

5

10

B)

C
ha

ng
e 

in
 F

T
I [

%
]

Change in parameter [%]

−10 −5 0 5 10

−10

−5

0

5

10

C)

C
ha

ng
e 

in
 H

R
T

 [%
]

Change in parameter [%]
−10 −5 0 5 10

−10

−5

0

5

10

D)
C

ha
ng

e 
in

 L
R

T
 [%

]

Change in parameter [%]

−10 −5 0 5 10

−10

−5

0

5

10

E)

C
ha

ng
e 

in
 T

P
T

 [%
]

Change in parameter [%]

 

 

Figure 5.23: Percentage change in specific force characteristics and corresponding percent-
age change in parameter values in response to a single input pulse. A) Peak force, B) Force
time integral, C) Half-relaxation time, D) Late-relaxation time, E) Time to peak tension.

Parameters are changed one by one and are τc(—), τ1(—), τ2(—), k(—), A(—), m(—).
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Figure 5.24: Change in force-time response to low frequency CFT (12.5Hz) when each
parameter is in turn changed from its average value (—) by up to ±10%. Individual param-
eter increments are +2.5% (—), +5% (—), +7.5% (—), +10% (—), −2.5% (—), −5% (—),
−7.5% (—), −10% (—). A) Changing τc, B) changing τ1, C) changing τ2, D) changing k,

E) changing A, F) changing m.
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Figure 5.25: Percentage change in specific force characteristics and corresponding percent-
age change in parameter values in response to low frequency CFT (12.5Hz). A) Peak force,
B) Force time integral, C) Half-relaxation time, D) Late-relaxation time, E) Relative fusion
index, F) Time to peak tension. Parameters are changed one by one and are τc(—), τ1(—),

τ2(—), k(—), A(—), m(—).
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Figure 5.26: Change in force-time response to high frequency CFT (40Hz) when each pa-
rameter is in turn changed from its average value (—) by up to ±10%. Individual parameter
increments are +2.5% (—), +5% (—), +7.5% (—), +10% (—), −2.5% (—), −5% (—),
−7.5% (—), −10% (—). A) Changing τc, B) changing τ1, C) changing τ2, D) changing k,

E) changing A, F) changing m.
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Figure 5.27: Percentage change in specific force characteristics and corresponding percent-
age change in parameter values in response to high frequency CFT (40Hz). A) Peak force,
B) Force time integral, C) Half-relaxation time, D) Late-relaxation time, E) Relative fusion
index, F) Time to peak tension. Parameters are changed one by one and are τc(—), τ1(—),

τ2(—), k(—), A(—), m(—).
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Figure 5.28: Change in force-time response to kick type input when each parameter is in
turn changed from its average value (—) by up to ±10%. Individual parameter increments
are +2.5% (—), +5% (—), +7.5% (—), +10% (—), −2.5% (—), −5% (—), −7.5% (—),
−10% (—). A) Changing τc, B) changing τ1, C) changing τ2, D) changing k, E) changing

A, F) changing m.
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Figure 5.29: Percentage change in specific force characteristics and corresponding percent-
age change in parameter values in response to kick type input. A) Peak force, B) Force
time integral, C) Half-relaxation time, D) Late-relaxation time, E) Time to peak tension.

Parameters are changed one by one and are τc(—), τ1(—), τ2(—), k(—), A(—), m(—).
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5. Isometric Force Response to Pulse Trains

Changes in the parameter k have the most effect on the PF and FTI. An increase in k causes

a corresponding decrease in PF and FTI. This is expected, since in Eq. (5.28) a function

including the reciprocal of k appears as a scaling factor, multiplying A. Changes in k have a

small effect on force-time properties, due to the fact a function of k scales the time constant

τ2. The effect on time properties is small because τ2 is small.

The parameter m changes all force characteristics a small amount. For a twitch, increasing m

decreases the PF and FTI a little, but for other inputs the PF and FTI are increased. This is

caused by the fact that m changes the specific shape of the non-linearity as shown in Fig. 5.6.

An increase in m decreases the value of the non-linear function for small inputs, yet increases

it for high inputs.

The parameter τc is the time constant associated with the low pass filtering of the input pulses

(Eq. (5.26)). The time constant τc is directly associated with the decay time and so increases

in τc cause increases in HRT and LRT. The change in decay time also affects the peak force

and so τc has an indirect influence on PF, TPT, FTI and RFI.

The parameter τ1 is also a time constant, associated with force development. Increases in τ1

cause increases in HRT and LRT as expected. The time constant in turn affects the force

magnitude and increases in τ1 also result in increases in TPT, RFI (except for high frequency

inputs), PF, and FTI.

The parameter τ2 has less influence on force characteristics. This is expected as from Figs.

5.14 to 5.16 it is evident that the fit is not changed much when τ2 is not included in the model.

The parameter τ2 has most influence on force magnitude characteristics (PF, FTI).

The force response is not particularly sensitive to changes in any of the parameters. In most

cases a ±10% change in input results in a less than ±10% change in output. The exception to

this is for a twitch, changing k, but output changes are still low at ±12.5%.

It is noted that the TPT and RFI for high frequency inputs are not affected by any changes in

parameters. This is attributed to the fact that in these cases the responses are saturated and

more extreme changes in parameters are required to change these characteristics.

5.6 Discussion

5.6.1 Optimum Model Behaviour

Both the AIC and BIC indicate that the Adapted model provides the best description of the

isometric force response of the locust hind leg extensor muscle. This is further supported by

the goodness of fit statistics and the ability of this model to capture the underlying behaviour
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5. Isometric Force Response to Pulse Trains

reasonably well. The model is relatively simple, has six parameters, and is able to predict

the isometric force response to physiologically relevant inputs, as well as to general pulse train

inputs.

Adapted model parameters, relevant to the average locust, as given in Table 5.7 were used to

simulate each stage of the modelled force generation. The Adapted model consists of two first

order differential equations. The first describes a linear relationship between the input pulse

and the quantity CN (t), and acts as a low pass filter. Figures 5.30A, B and C depict how the

input pulse train is transformed by Eq. (5.21) into the quantity CN (t). The second equation

(Eq. (5.23)) contains nonlinear terms. These terms act both to restrict the amplitude of the

total muscle force and to modify the time constants of the system. Figures 5.30D and E depict

how the quantity CN (t) is transformed into a muscle force.
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Figure 5.30: Behaviour of Adapted model in response to 10 pulse 40Hz CFT broken down
into stages, A) Input pulses, u(t), B) Contribution of each pulse to CN , C) Total CN , D)

Contribution of each pulse to overall force, E) Total isometric force.
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5.6.2 Relation of Model to Physiological Processes

The behaviour and form of the Adapted model has physiological relevance. The physical events

that occur during muscular contraction are described in Chapter 1. These processes can be

summarised as follows [28]: i) Excitation: the arrival of an action potential (AP) releases

neurotransmitters, exciting the muscle fibre; ii) Excitation-contraction: the AP propagates

through the T-tubuli and gates in the sarcoplasmic reticulum (SR) open and release Ca2+ into

the muscle filaments; iii) Contraction: Ca2+ binds to troponin, freeing binding sites on the

thick filaments, a cross-bridge between thin filaments is formed and a subsequent conformal

change slides the thin filament over the thick one, shortening the muscle. This is followed by

relaxation.

The quantity CN is thought to represent the calcium concentration in muscle filaments, and

the input pulse u(t) the excitation, with the parameter τc describing the time constant for

calcium release from the SR. The binding of calcium ions to troponin is a saturable nonlinear

reaction that occurs during muscle activation; saturation occurs due to the limited number of

available binding sites. It is thought that the nonlinear term on the right hand side of Eq.

(5.23) reflects the fact that as the calcium concentration increases, eventually the number of

cross-bridges reaches a maximum due to there being no more available binding sites, and so

the maximum force also reaches a maximum (tetanic force). The nonlinear function on the

left of Eq. (5.23) captures the fact that the time constant of the force response to individual

pulses within a pulse train changes with time, because it depends on pulse train history. This

could be related to the fact that for the muscle to relax, active transport is required to pump

calcium out from the muscle filaments and back into the SR. Ebashi [7] recognised the fact that

calcium is the key regulatory factor in muscle contraction. This is supported by the general

model and by the fact that the calcium concentration CN plays a key role in determining the

overall isometric force response.

The second equation Eq. (5.23) and the time constants τ1 and τ2 describe how the free calcium

concentration relates to isometric force. The equation is likely to describe the rate-determining

step in the formation of a cross-bridge between thick and thin filaments.

The form of the model tends towards that of a simple linear second-order model in the case

where there are few, well-separated input pulses (e.g. single pulse input), since the effects of the

nonlinear terms become small. Modelling the response to a single input as linear is supported

both by previous research [50–53, 156] and the analysis provided in Chapter 4. As the input

increases the effects of nonlinearities increase.
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5.7 Conclusions

There exist in the literature very few comparisons of existing models, with authors tending

to just use their own model. In this chapter seven different isometric models were compared,

five taken from the literature and a further two new models adapted from the literature. In

comparing models it was clear that a simple Linear model could not describe the inherent

nonlinear behaviour of the muscle and, in cases other than where pulses are well separated,

provides a poor method of describing the force response to pulse train inputs. The inclusion

of a nonlinearity improves the fit as the model is then able to describe some of the nonlinear

behaviour. The Cascade model was found to overfit the dynamics, and a better model was

one in which the linear part of the model was described by a second order (‘Wiener model’),

as opposed to a fourth order relation. With the exception of the model of Ding et al, models

of LNL structure further improved the fit. The model of Ding et al performed worse than the

Wiener model when describing the response to physiological kick data. It was also found that

this model provided a poor description of the underlying behaviour. The best models were

Bobet and Stein’s model, the Adapted model and the Simple Adapted model. The structures

of these models, and hence their modelling capabilities, are similar.

The Adapted model was found to be the best model in terms of goodness of fits, AIC and BIC.

A parameter sensitivity analysis on this model found that the force response was not overly

sensitive to parameter changes. The structure and model parameters of the Adapted model

can be related to the underlying physiological behaviour and the model highlights the key role

that calcium plays in muscle contraction.
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Chapter 6

Effect of Muscle Length on Force

Response

6.1 Introduction

The results given in Chapters 4 and 5 refer to isometric conditions in which the muscle is held

at a constant length throughout. All experiments were performed at a fixed muscle length,

with the FT angle set to 80◦. This chapter investigates the effect on the isometric force of

changing the muscle length.

Changing the isometric length is often just assumed to scale the data, as contraction and acti-

vation dynamics are commonly assumed uncoupled. In Hill-type models, the relation between

maximum tetanic force and muscle length is modelled. This is then used as a scaling factor

to describe the isometric behaviour at a range of different lengths (see Ch. 2, Sec. 2.3 for

further details). In this chapter the force-length (FL) relationship of the extensor muscle is

investigated. The common method (Sec. 2.3.2.1) of just looking at the maximal isometric force

under tetanic conditions is extended. The maximum force vs. muscle length for a range of

different stimulation patterns is given. If activation and contraction dynamics are uncoupled

these profiles should be scaled versions of each other. Under the uncoupled assumption the

type of activation does not affect the contraction dynamics (i.e. the force-length relation).

However, it is found that the stimulation type does affect the shape of the force-length curve

(FL curve).

As well as looking just at the effect of muscle length on the force-length relationship, as is

common practice, the specific shape of the force response at a variety of different lengths is

considered. Data, recorded at a number of different muscle lengths, are fitted using the Adapted
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6. Effect of Muscle Length on Force Response

model presented in the preceeding chapter. This provides a quantitative measure of how the

activation dynamics are effected by muscle length. There have been few previous attempts to

quantify the changes in the activation dynamics when the muscle length is changed [87]. By

estimating a new set of Adapted model parameters at each length, these changes are tracked

and quantified. These findings are used to develop a general isometric model that includes the

effect of muscle length in the model.

6.2 Methods

The physical set-up is as described in Chapter 3. Here the specific stimulation protocol used

to stimulate the muscle and the angles at which the FT angle was fixed are described in more

detail. The main limitation of these experiments was the amount of data that could be collected

from each locust.

6.2.1 Stimulation Protocol

The FT angle was set, in the given order to either 80◦, 100◦, 120◦, 60◦, 40◦, 20◦, and 80◦; or

90◦, 130◦, 110◦, 90◦, 70◦, 50◦, 30◦, and 90◦. Two different protocols were used to limit the

amount of data being collected from each locust. Using the whole set of angles in one locust

did not produce repeatable results. The 80◦ and 90◦ measurements were repeated to track the

reproducibility and any changes in the response due to the changing input history. At each

angle the muscle was stimulated with the training data-set from Chapter 5. This data-set was

used because in Chapter 5 it was shown that it can train the model reasonably well whilst

keeping the quantity of data small. The amount of data that can be collected from each locust

is limited by fatigue (as discussed in Sec. 5.2.2). Unfortunately, due to limits on the amount

of data that could be collected and the fact the inputs needed repeating at each different FT

angle, the extensor muscle could not be stimulated with additional test data. In this chapter

the presented errors and fitted data correspond only to the fit to training data.

6.2.2 Tibial to Muscle Force Conversion

The muscle force was converted into a tibial force at each FT angle using the process described

in Chapter 3, Sec 3.4. At each angle the conversion factor changes due to the changing me-

chanical advantage of the extensor muscle. Results in this chapter, hence refer to the muscle

force and are not normalised as in preceding chapters, unless specifically stated.
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6.2.3 Non-Uniform Stimulation

Preliminary experiments were performed to set the voltage level used to stimulate the muscle,

as described in Chapter 3. In these the stimulus amplitude was increased until a single unitary

response was elicited. Similar amplitude levels were then used in experiments. This ampli-

tude level was set at the start of experiments. However, over the course of the stimulation

the threshold level to produce a single unitary response to a single input changed. This phe-

nomenum was not seen in data where the angles were not changed. This is possibly due to the

decreased time during which the fixed angle experiments took place. This effect meant that

within the pulse train response, in some cases, additional neuron stimulation occurred. This

phenomenum is demonstrated in Fig. 6.1 which shows the outputs for two repeated inputs

for the same locust and FT angle. In one of the responses the extra stimulation response to

some of the input spikes is clear. As this happened within the pulse trains the stimulation level

could not easily be changed. Data in which extra stimulation occurs were very easy to identify.

This data were discarded so that the effects due to the extra stimulation are not included, thus

isolating the effects due to changing the isometric length.

Data were collected from eight locusts. However, in data from three of these locusts the effect

of non-uniform stimulation was pronounced, so they were not analysed further. The remaining

five locusts are termed LV, LW, LX, LY, and LZ. Within these five data-sets results at some

angles were discarded due to the presence of non-uniform stimulation.
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Figure 6.1: Problems with stimulation. In one force trace (...) for each case a single,
unitary response is elicited. In the other trace (—) for some responses extra stimulation
occurs. Presented forces are normalised so the maximum tetanic force recorded in each

locust is one.
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6.3 Results

6.3.1 Repeatability

The aim of this chapter is to investigate the effect of changing the muscle length on the isometric

force response. The changed input history at each length may also cause changes in the force

response. Therefore, the repeatability of the response at one angle was assessed to establish

which effects are due to the changing input history and which arise from the experimental set

up.

6.3.1.1 Angle Unchanged

In order to distinguish the effect of changing the FT angle from history dependent effects,

the repeatability of measurements at the same angle was investigated. The training data set

was input to the muscle eight times and the resultant force response measured. Figure 6.2

shows the force-time traces for the eight repeats in response to each of the different inputs

in one example locust. In a couple of the force responses (corresponding to the first and

second repeat) there is some slight deviation in the behaviour, however the broad behaviour is

reasonably repeatable. To further investigate and quantify the repeatability, model parameters

relevant to the Adapted model were estimated for each set of training data. Figure 6.3 shows

the estimated model parameters for each repeat. There is some change in parameters, especially

during the first few repeats. This is expected as the force-time traces of these repeats differed

slightly. In general the parameter values are very similar and appear to change little over time.
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Figure 6.2: Repeatability of the data when angle held at 80◦. A-D) Give the response to
each different input type. Eight repeats are shown and the first ( ) and second ( )

repeats differ slightly from the other repeats.
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Figure 6.3: Estimated Adapted model parameters, found from fitting to 8 repeated sets of
normalised training data with the FT angle held at 80◦. The estimated parameters are A)

τc B) τ1 C) τ2 D) k E) A F) m.
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6.3.1.2 Angle Changed

When the muscle was held at a fixed FT angle of 80◦ then restimulated, the responses were

reasonably repeatable. During force length experiments the FT angle is changed, therefore the

effect of changing the FT angle on repeatability is also considered. During experiments the FT

angle was set in turn to 80◦, 120◦, 100◦, 80◦, 60◦, 40◦, and 80◦; or 90◦, 130◦, 110◦, 90◦, 70◦,

50◦, 30◦, and 90◦ and stimulated using training data at each angle. The repeatability of these

90◦ and 80◦ measurements, when all other measurements were also taken, was investigated.

The force-time traces for these repeated angles are shown in Figs. 6.4 to 6.7 for three locusts.

The force corresponds to the force exerted by the extensor muscle. The main discrepancy in

repeated data is the reduction in magnitude over time. A possible cause for this is muscle

damage, caused by muscle movement whilst the stimulation wire is inserted, which arises when

the FT angle is changed. The observation that there was no similar force degradation when

the angle was not changed supports this. Removal and re-insertion of the wire did not help

to improve the repeatability. Inaccuracies may also arise when setting the FT angle; it is

estimated that the accuracy in setting the FT joint to a given angle is ± 2.5◦.

Aside from the obvious decline in force magnitude, the shape of the force response appears

reasonably repeatable. Adapted model parameters were estimated for each repeat and these

are given in Fig. 6.8. The largest changes were seen between repeat two and three in the

parameter A. In locusts LZ and LW the average normalised standard deviation (n.s.d.) in

the parameter A is 39%. Reasonable variations are also seen in the parameter τ1, with the

average n.s.d. 33%. The n.s.d.s of other parameters are significantly lower. The parameter A

corresponds to the magnitude and the fact it varies the most supports the observation that it

is mainly the magnitudes of responses that are not repeatable. Compared to the case where

the angle was not changed, there is also more variation in the other parameters over repeats.

These changes in the response over time will be kept in mind when analysing how changes in

the FT angle affect results.

Figure 6.9 shows the normalised (so that the maximum tetanic force recorded at each angle is

equal to one) and actual muscle force responses to the four different input types at each angle

in one locust (LZ). From the normalised data in Fig. 6.9, the shapes of the 80◦ repeats are

similar. This confirms that the main discrepancies in repeated recordings made at the same

FT angle relate to the magnitude. The decay in magnitude with repeat number is clear and

will be kept in consideration during analysis of results.

Figure 6.9 shows that the shape of the force response depends on the FT angle, and hence

on the muscle length. This phenomenum is more clear when considering the normalised force

traces. As the FT angle decreases (muscle length increases) the time to reach the peak force
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Figure 6.4: Repeatability of twitch response in three different locusts (termed LV, LW, LZ)
when angle is changed. A) 90◦ data from LV, only two repeats are shown B) 80◦ data from
LW, C) 80◦ data from LZ. Up to three repeats are given; Repeat one (- - -), Repeat two

(—), Repeat three (...).
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Figure 6.5: Repeatability of response to 40pulse, 40Hz CFT in three different locusts
(termed LV, LW, LZ) when angle is changed. A) 90◦ data from LV, only two repeats are
shown B) 80◦ data from LW, C) 80◦ data from LZ. Up to three repeats are given; Repeat

one (- - -), Repeat two (—), Repeat three (...).
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Figure 6.6: Repeatability of response to increasing-decreasing frequency pulse train in three
different locusts (termed LV, LW, LZ) when angle is changed. A) 90◦ data from LV, only
two repeats are shown B) 80◦ data from LW, C) 80◦ data from LZ. Up to three repeats are

given; Repeat one (- - -), Repeat two (—), Repeat three (...).
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Figure 6.7: Repeatability of response to decreasing-increasing frequency pulse train in three
different locusts (termed LV, LW, LZ when angle is changed. A) 90◦ data from LV, only
two repeats are shown B) 80◦ data from LW, C) 80◦ data from LZ. Up to three repeats are

given; Repeat one (- - -), Repeat two (—), Repeat three (...).
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Figure 6.8: Estimated Adapted model parameters in three different locusts (LZ◦, LW ×,
LV 5) for repeated data where angles changed between repeats.

increases, and the shape of the force response is smoother and ‘less square’. This suggests that

the activation and contraction dynamics can not be assumed to be uncoupled. This concept is

investigated further in the remainder of this chapter.

6.3.2 The Force-Length Relation

As described in Chapter 2, the change in force with muscle length is commonly described

by use of a scaling factor which corresponds to the muscle length. A unique scaling factor

is used to scale the activation at each length. This factor is obtained from the force-length

relation. The force-length relation is found by plotting the maximum isometric tetanic force
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Figure 6.9: Example of force-time response recorded in one locust at a range of angles.
A) Response to single input, B) response to 40 pulse CFT with IPF=40Hz, C) response to
29 pulse NCFT with IPF=10-100Hz, D) response to 60 pulse NCFT with IPF=10-50Hz.
The right hand column shows the normalised force and the left muscle force. The force
was recorded in the given order at the following angles: 80◦(***), 120◦(+++), 100◦(. . .),

80◦(OOO), 60◦(...), 40◦(—), 80◦(- - -).

at a range of different muscle lengths. Commonly, a curve is then fitted to these data to

provide a continuous function that relates muscle length to maximal isometric force. This

approach assumes that the activation and contractile dynamics are uncoupled. If the activation

and contractile dynamics are uncoupled then the shape of the force-length curve should be

unaffected by the type of input used to estimate it. The assumption of uncoupled activation

and contraction dynamics was tested by plotting the maximum force at each muscle length in

response to a range of different inputs. These inputs resulted in both maximal and sub-maximal

contractions. Maximal contractions refer to contractions in which the maximum steady-state

isometric force (tetanic force) is reached, sub-maximal contractions are all contractions for

which maximal activation is not achieved [163]. Figure. 6.10 shows the maximum force at a

range of muscle lengths (i.e. FT angles) measured in five different locusts for four different

input types. The input types used were equivalent to the training data inputs used in Chapter

5. Of these inputs, the high frequency CFT leads to tetanus and so would be the standard input
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type to use in estimating the force-length relation. In response to the increasing-decreasing

and decreasing-increasing frequency pulse trains the force reaches the tetanic force at some

point, hence these contractions are also termed maximal. In Fig. 6.10 the normalised muscle

length is given. The muscle length at 80◦ was used as a reference point and assumed to be the

muscle rest length (lo). The normalised muscle length was obtained by dividing the current

muscle length by the muscle length at 80◦.
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Figure 6.10: Maximum force responses at each isometric length for a range of different
muscle lengths, given for 5 locusts (x, O, ◦, ♦, *). A) Response to a 40 pulse 40Hz CFT,
B) response to single input, C) response to increasing-decreasing frequency pulse train, D)

response to decreasing-increasing frequency pulse train.

At each angle the force is zeroed before the muscle is stimulated, therefore measured forces

refer to the contractile force. The passive force is not included in the measurements. In Fig.

6.11 the actual force is normalised by dividing by the maximum force recorded in each locust

in response to each specific input. From Figs. 6.10 and 6.11 it is evident that the type of

input does influence the shape of the FL curve. The twitch response (Fig. 6.11B) gives a

FL curve of similar shape to that seen in the literature (see Fig. 2.12), with the maximum

force occurring around the muscle’s mid-length. The FL curves from the other input types are

similar to each other, but differ from the FL curve for the twitch. The twitch response is an

example of a submaximal contraction, as the maximum tetanic force is not reached. The other

inputs give rise to maximal contractions. Previous studies [163–165] also found the shape of the

FL curve to differ between maximal and submaximal contractions. These studies found that

during submaximal levels of stimulation, peak active tension occurs at longer lengths than for

maximal stimulation. Rassier [163] suggests that this could be as a result of length-dependent

changes in Ca2+ sensitivity. The opposite trend is seen in Figs. 6.10 and 6.11. This could be
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Figure 6.11: Normalised (so that maximum response to each input is one in each locust)
maximum force responses at each isometric length for a range of different relative muscle
lengths, given for 5 locusts. A) Response to a 40 pulse 40Hz CFT, B) response to single
input, C) response to increasing-decreasing frequency pulse train, D) response to decreasing-

increasing frequency pulse train.

due to repeatability issues, with the decrease in force for longer lengths a result of the decline

in force levels over time, as opposed to any internal mechanism. Alternatively, it could be

a result of the joint’s specific specialisation. In response to maximal stimulation, the force

increases as the muscle length increases; there is no subsequent decline in the force magnitude.

A possible reason for this could be due to the specialisation of the locust hind leg extensor

muscle for jumping and kicking. In response to high frequency sustained contractions the force

is maximal when the muscle length is large. This corresponds to a small FT angle. Prior

to a jump or kick, co-contraction of the extensor and flexor muscles takes place. During co-

contraction the FT angle is small as the tibia is fully flexed. Therefore, it makes physiological

sense for the extensor muscle to be optimised to develop the most force when the FT angle

is at a minimum (i.e. the muscle at its longest). Single isolated twitch inputs are not used

during co-contraction, so the maximum force developed in response to these inputs need not

be optimised to occur when the tibia is fully flexed. Furthermore, the FT joint is specialised,

and the mechanical advantage of the extensor muscle changes with joint angle. At low or high

angles more muscle force is required to produce the same force at the tibia. The locust does not

tend to need to produce high tibial forces when the joint is extended, but does prior to a jump

when the joint is flexed. Therefore, the mechanics of the joint also mean that the extensor

muscle force being maximal at small FT angles (long lengths) is physiologically optimal.

In mammalian muscle the muscle length is assumed to change between 0.5-1.5lo during a

contraction [1] where lo is the muscle resting length. This is a much larger range than the
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6. Effect of Muscle Length on Force Response

changes in length of the locust extensor muscle under the physiological range of movement

(i.e. joint rotation from 10◦–160◦). If it is assumed that the rest length of the locust extensor

muscle is at an FT angle of 80◦, the expected length changes are of the order of 0.95-1.03lo.

This corresponds to a change in the fibre length of the order of 0.86-1.08lof , where lof is the

average fibre length, measured from photographs taken through a microscope. The structure

of the locust hind leg extensor muscle (given in Ch. 3) means that the individual fibre lengths

are significantly shorter than the total muscle length. It is the individual fibres that contract

and result in global contraction of the muscle. Therefore, the change in relative fibre length is

perhaps of more significance in this muscle. Although these length changes are much less than

those expected in mammalian muscle, they are similar to the ranges measured by Gushlbauer

et al [5] in the stick insect extensor muscle. They measure a change in muscle length of 0.97-

1.03lo, and in fibre length of 0.80-1.18lof within the physiological range of motion (i.e. 30◦ -

180◦). The differing ranges could be due to the specific muscles and joints of interest, and their

specialisations. Zajac’s [1] value of maximum length change of 0.5-1.5lo is based on assumptions

from human muscle. These assumptions may not be valid for the locust leg. Mechanics of

the joint may restrict the working range. In the present experiment the measurements were

recorded at the tibia, with the muscle and joint kept intact. This is not the case in many

studies: in these previous studies the muscle can be stretched or shortened beyond its normal

working range.

The locust extensor muscle was studied by Zakotnik et al [49, 80]. They set the relative extensor

muscle length according to the standard model proposed by Zajac [1] to be 1 at an FT angle of

90◦, 0.5 for 0◦ and 1.5 for 180◦. These changes were assumed, not measured. It was found in

practice that the relative length changes in the locust hind leg extensor muscle are significantly

different than the values quoted by Zajac and commonly used to apply to mammalian muscle.

Figures 6.12 and 6.13 show the relative muscle and fibre lengths plotted on axes that range

from 0.5-1.5lo and 0.5-1.5lof respectively. This shows clearly how the measured length changes

relate to the values commonly used for mammalian muscle. The reduced range of motion is

clear, even when considering the fibre lengths. The different force-length profile in response to

high frequency inputs to that seen in the literature could be a result of this reduced range of

muscle movement. It is possible that only part of the standard FL curve is replicated as only

a section of the standard motion (in mammalian muscle) was used to create it.
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Figure 6.12: Normalised (so that maximum response to each input is one in each locust)
maximum force responses at each isometric length for a range of different relative muscle
lengths, given for 5 locusts. The range of the abscissa is defined by the maximum length
change in mammalian muscle; the physiologically possible length change in the locust exten-
sor muscle (vertical lines) is also plotted. A) Response to a 40 pulse 40Hz CFT, B) response
to single input, C) response to increasing-decreasing frequency pulse train, D) response to

decreasing-increasing frequency pulse train.
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Figure 6.13: Normalised (so maximum that response to each input is one in each locust)
maximum force responses at each isometric length for a range of different relative fibre
lengths, given for 5 locusts. The range of the abscissa is defined by the maximum length
change in mammalian muscle; the physiologically possible length change in the locust exten-
sor muscle (vertical lines) is also plotted. A) Response to a 40 pulse 40Hz CFT, B) response
to single input, C) response to increasing-decreasing frequency pulse train, D) response to

decreasing-increasing frequency pulse train.
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6.3.3 Influence of Muscle Length on Force Profile

The fact that the force-length relation depends on the input type suggests that one cannot as-

sume uncoupled activation and contraction dynamics. The differing FL curve shape, dependent

on whether the contraction is maximal or submaximal, has also been reported in the literature

[163–165]. However, there has been little attempt to characterise how changing the muscle

length affects the activation dynamics, either in terms of how the force-time response changes

or how a model describing the activation dynamics changes. Perumal et al [166] consider how

the ‘Ding model’ is affected by the isometric muscle length by estimating isometric model pa-

rameters at a range of different knee flexion angles. They only allow parameter A to change,

finding it able to account for most of the changes in force production. In the model A is a

scaling factor for force development, hence by allowing only this parameter to change, changes

in the specific dynamics, such as the changing shape of the force-time profile, cannot be mod-

elled. In effect, they use A to model the force-length relation. As with Hill-type models, their

approach still assumes uncoupled activation and contraction dynamics. The results presented

in Figs. 6.10-6.13 suggest that there are changes in the dynamics of the force response, as well

as in magnitude. The effect of the muscle length on the specific form of the force response

has not been well documented. In this section, along with further examination of the effect

of the muscle length on the shape of the force responses, changes in the force response with

muscle length are quantified by estimating a different set of Adapted model parameters at each

isometric length. From this, the change in Adapted model parameters with muscle length can

be established. Trends in model parameters are then assessed, to establish exactly how the

activation dynamics are affected by the muscle length.

Figure 6.14 shows the muscle force recorded at a range of different isometric lengths and the

modelled response, using the Adapted model for one locust. The model parameters relevant

to Fig. 6.14 were estimated by allowing only the parameter A to vary with muscle length and

holding the other parameters constant. In effect allowing A to change accounts for the FL

scaling. This method assumes uncoupled activation and contraction dynamics, and is similar

to the approach used by Perumal et al [166]. The corresponding errors in fit for the given

locust are shown in Fig. 6.15. The errors in estimation are reasonable, with all estimated

errors across the range of FT angles being less than 3.5% in this particular case. Despite the

fact that this method of accounting for muscle length changes gives reasonable errors in the

least squares sense, Fig. 6.14 highlights some shortcomings of this modelling method. The

peak values are wrongly predicted, with the maximum force being overpredicted at large FT

angles and underpredicted at small FT angle. Some of the error in estimating the peak may

arise as a result of the decline in force level with time, as discussed in Sec. 6.3.1. In Fig. 6.14

only the parameter A was allowed to change between FT angle, therefore changes in the model

dynamics between angles cannot be modelled. However, a change in model dynamics between

143



6. Effect of Muscle Length on Force Response

0 2 4 6 8 10 12 14 16 18
0

5

10

15

M
us

cl
e 

F
or

ce
 [N

]C)

0 2 4 6 8 10 12 14 16 18
0

5

10

M
us

cl
e 

F
or

ce
 [N

]A)

0 2 4 6 8 10 12 14 16 18
0

5

10

M
us

cl
e 

F
or

ce
 [N

]B)

0 2 4 6 8 10 12 14 16 18
0

5

10

15

M
us

cl
e 

F
or

ce
 [N

]D)

0 2 4 6 8 10 12 14 16 18
0

10

20

M
us

cl
e 

F
or

ce
 [N

]E)

0 2 4 6 8 10 12 14 16 18
0

10

20

Time [s]

M
us

cl
e 

F
or

ce
 [N

]F)

Figure 6.14: Measured (—) and modelled (- - -) force response at a range of FT angles
for one example locust (LV), the location of stimulus pulses is given at the top of the figure.
The modelled trace is fitted to data using the Adapted model, where the parameter A was
allowed to vary with FT angle. A) FT=130◦, B) FT=110◦, C) FT=90◦ (the measured repeat

(—) is also given), D) FT=70◦, E) FT=50◦, F) FT=30◦
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Figure 6.15: Errors between measured and modelled data, for locust LV, at a range of FT
angles when using the Adapted model and allowing the parameter A to vary between angles.

FT angles is evident in the measured response. The tetanic response at 130◦ is a lot more

square (i.e. maximum force is reached sooner) than the recorded response at 30◦. The model

is unable to recreate this behaviour.

In order to assess and attempt to quantify changes in the dynamics of the model with muscle

length, a different set of adapted model parameters were estimated at each angle, for each

locust. The resultant fit to one example locust is shown in Fig. 6.16. It is clear that using

this method provides a good fit to the experimental data, however the method requires a large

number of parameters to be estimated for each locust. Furthermore, the model only fits the

behaviour at a discrete set of FT angles and cannot be utilised to estimate the behaviour at

other angles. The estimated errors and parameters in each locust at each FT angle are shown

in Figs. 6.17 and 6.18 respectively. The low errors confirm that the fit to data is reasonable.

The errors are, as expected, lower than for the case where only the parameter A was allowed

to change.

Ideally the dependence of each parameter on the FT angle (or equivalently the muscle length)

should be contained within the model, rather than a separate parameter set be estimated at

each angle. This would enable the model to predict the response when the FT angle is set

to angles other than those measured. Consequently parameters in the model are assumed to

be functions of the FT angle and the model fitted across all angles using these relations. The

functions used to describe the dependence of each parameter on the FT angle are given by

τc = p1λ+ p2 (6.1)

τ1 = const (6.2)

τ2 = r1 exp(r2λ) + r3 (6.3)

k = const (6.4)

A = s1λ
2 + s2λ+ s3 (6.5)

m = const (6.6)
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Figure 6.16: Measured (—) and modelled (- - -) force response at a range of FT angles for
one example locust (LV), the location of stimulus pulses is given at the top of the figure.
The modelled traces were obtained using the Adapted model and estimating a new set
of parameters at each FT angle using a least-squares fit. A) FT=130◦, B) FT=110◦, C)
FT=90◦ (the measured repeat (—) and corresponding fit (- - -) are also shown), D) FT=70◦,

E) FT=50◦, F) FT=30◦.

where λ is the FT angle in radians. These were found to minimise the fitting errors, while being

relatively simple functions. The parameters k and m are assumed to be constant as there are

no clear trends in the variations of these parameters with FT angle (Fig. 6.18). Although there

is a slight increasing trend in the parameter τ1 the resultant fit errors were little better than

those found by holding τ1 constant, hence τ1 is also assumed to be constant. The parameter

A is described by a function similar to functions used to estimate the FL relation in Hill-type
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Figure 6.17: Errors estimated in 5 locusts (LV (♦), LW (O), LX (×), LY (*), LZ (◦)) when
the Adapted model is used and a new set of parameters are estimated at each FT angle.
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Figure 6.18: Estimated Adapted model parameters at different FT angles for 5 locusts (LV
(♦), LW (O), LX (×), LY (*), LZ (◦)).

models. Although trends in parameter A are not clear, likely due to repeatability issues, using

the given function to describe the parameter A improved fit errors. The relation between τ2

and the joint angle was assumed to be exponential. An exponential relation was used as when

τ2 was plotted on a log-axis there was an apparently linear trend with the FT angle (see Fig.

6.19).
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Figure 6.19: Estimates for parameter τ2 at each FT angle, plotted with a logarithmic
y-axis. For 5 locusts (LV (♦), LW (O), LX (×), LY (*), LZ (◦)).
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Using the parameter dependencies given in Eq. (6.1) to (6.6) the Adapted model was used to

estimate the force across all joint angles in each model. The estimates for the Adapted Model

parameters at each individual FT angle were not fitted directly to Eq. (6.1) to (6.6); instead

the whole data set for all angles (for each locust) was fit to, with the parameters described as

the functions in Eq. (6.1) to (6.6). Functions to describe each parameter, with the exception

of A, were obtained from the trends shown in Fig. 6.18 as described in the preceding text. The

function defining A was chosen to minimise overall fit errors. The resultant fit to experimental

data is shown for one locust in Fig. 6.20, with the corresponding errors given in Fig. 6.21. The

fit to data appears reasonable with the main source of error coming from scaling the magnitude.

The fitted functions describing the dependence of estimated parameters on FT angle are shown

in Fig. 6.22, along with the individual parameter estimates for each angle. The trend in the

parameter τ2 with FT angle is clear. The value of τ2 for locust LY differs significantly for

larger angles. This can be attributed to the fact that for this locust no estimates were made

for larger angles (because the data showed non-uniform stimulation). Functions describing the

parameter τc for each locust are broadly consistent, with the exception of locust LY. This could

again be due to the lack of data available for Locust LY. Functions describing the parameter A

show the most inconsistency, probably due to issues in recording the magnitude. The muscle

length is a function of the FT angle and depends on the joint dimensions of each individual

locust. Figure 6.23 shows the parameters as functions of the change in muscle length relative

to that at an FT angle of 80◦.

The experimental data measured for locust LZ are shown in Fig. 6.24. Figures 6.25 and 6.26

show the predicted force response to each input when only parameter A is allowed to depend

on the FT angle and when the parameters are defined as functions of the FT angle respectively.

The shape and magnitude of the force response can be clearly seen to depend on FT angle

in the experimental data. The model where only parameter A is allowed to change is unable

to capture this variation as at each angle the data is just a scaled version of data at other

angles. With the exception of the twitch data, the model where the parameters depend on the

FT angle (Fig. 6.26) provides a reasonable description of the experimental behaviour, and the

change in the pulse shape is captured.

The main source of error when using the Adapted model and the functions given in Eq. 6.1

to 6.6 to describe the parameters was the magnitude being wrongly predicted. This could be

linked to the repeatability issues discussed in Sec. 6.3.1. The inability of the model to fit to

the measured magnitude could be a consequence of the decay in magnitude that was measured

over time. There is no merit in having a model that fits to data with smaller errors than the

variability than is seen in the data. Figure 6.27 shows the estimated errors for a range of cases.

The variability between repeated recordings at 90◦ is also shown, along with the estimated

errors when using: the Adapted model and only allowing the parameter A to change with FT
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Figure 6.20: Measured (—) and modelled (- - -) force response at a range of FT angles for
one example locust (LV), the location of stimulus pulses is given at the top of the figure.
The modelled traces were obtained using the Adapted model, with parameters described
as functions of the FT angle as defined in Eq. (6.1)-(6.6). A) FT=130◦, B) FT=110◦, C)
FT=90◦ (the measured repeat (—) is also shown), D) FT=70◦, E) FT=50◦, F) FT=30◦.
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Figure 6.21: Estimated errors when using the adapted model and describing parameters
as functions of the FT angle. Errors are given for 5 locusts (LV (♦), LW (O), LX (×), LY

(*), LZ (◦)).
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Figure 6.22: Fitted parameters of the Adapted model as functions of the FT angle (contin-
uous lines). The individual parameter estimates at each FT angle are also given (*). Results

are given for 5 locusts (LV (♦), LW (O), LX (×), LY (*), LZ (◦)).
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Figure 6.23: Relation between estimated parameters and muscle length change. Length
changes are measured relative to the muscle length at 80◦. Results are given for 5 locusts

(LV (♦), LW (O), LX (×), LY (*), LZ (◦)).
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Figure 6.24: A-D) Measured force-time traces for locust LY for each input type and angle
(130◦ (+++), 110◦ ( . . ), 90◦ (***,OOO), 70◦ (...), 50◦ (- - -), 30◦ (—)). A) Response to
single input, B) response to 40 pulse CFT with IPF=40Hz, C) response to 29 pulse NCFT

with IPF=10-100Hz, D) response to 60 pulse NCFT with IPF=10-50Hz.

angle, the Adapted model when all parameters are allowed to change with FT angle, and the

Adapted model when changes in parameters are described by a function of the FT angle. In

each case the average estimated model errors are less than the variation due to experimental

repeatability. Therefore, these errors do not provide much insight into the suitability of each

model. The ability of the model to describe the underlying dynamics and behaviour as the FT

angle is changed is thus assessed by studying the predicted form of the force response in the

time domain.

In order to show more clearly the changing dynamics and shape of the force response with

FT angle, the normalised tetanic force is shown in Fig. 6.28 for both the experimental and

modelled cases. The force was normalised so that in each response the maximum force was one.

This shows clearly that by only changing A one is unable to capture the changing dynamics.

The model where parameters are allowed to change as a function of FT angle provides a good

description of the normalised behaviour, further suggesting that the model is good, but the

magnitude prediction is affected by the problems of magnitude repeatability in the measured

data.
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Figure 6.25: A-D)Modelled force-time traces, found using the Adapted model and allowing
parameter A to depend on the FT angle. Parameters were estimated by minimising the least
squares fit to the data in Fig. 6.24. The modelled response to each angle is plotted (130◦

(+++), 110◦ ( . . ), 90◦ (***,OOO), 70◦ (...), 50◦ (- - -), 30◦ (—)). A) Response to single
input, B) response to 40 pulse CFT with IPF=40Hz, C) response to 29 pulse NCFT with

IPF=10-100Hz, D) response to 60 pulse NCFT with IPF=10-50Hz.
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Figure 6.26: A-D) Modelled force-time traces, found using the Adapted model and defining
the parameters as functions of the FT angle. Parameters were estimated by minimising the
least squares fit to the data in Fig. 6.24. The modelled response to each angle is plotted
(130◦ (+++), 110◦ ( . . ), 90◦ (***,OOO), 70◦ (...), 50◦ (- - -), 30◦ (—)). A) Response to
single input, B) response to 40 pulse CFT with IPF=40Hz, C) response to 29 pulse NCFT

with IPF=10-100Hz, D) response to 60 pulse NCFT with IPF=10-50Hz.
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Figure 6.27: Errors in fit at different FT angles for each modelling case. The individual
errors at each angle and averaged error (continuous line) are given for: the Adapted model
when only A is changed (♦), the Adapted model when all parameters are changed (◦), and
the Adapted model when parameters are changed as functions of the FT angle (O). The

experimental variability, measured at 90◦, is also plotted (—).
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Figure 6.28: Normalised tetanic force response at each FT angle (130◦ (+++), 110◦ ( . . ),
90◦ (***,OOO), 70◦ (...), 50◦ (- - -), 30◦ (—)). A) Experimental data; B) Modelled data
when Adapted model is used and only parameter A depends on the FT angle; C) Modelled
data when the Adapted model is used and all parameters are defined as functions of the FT

angle.
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6.4 Discussion

6.4.1 Modifications to Isometric Model as Muscle Length Changes

If the parameters A, τc and τ2 are assumed to be functions of the FT angle, the Adapted model

provides a reasonable description of how the force response changes with the muscle length.

The overall model’s form is

ĊN (t) +
CN (t)
τc(λ)

= u(t) (6.7)

Ḟ (t) +
F (t)

τ1 + τ2(λ) CN (t)m

CN (t)m+km

= A(λ)
CN (t)m

CN (t)m + km
(6.8)

where

τc(λ) = p1λ+ p2 (6.9)

τ2(λ) = r1 exp(r2λ) + r3 (6.10)

A(λ) = s1λ
2 + s2λ+ s3 (6.11)

The model has two inputs, the neural stimulus u(t) and the FT angle in radians λ, while the

output is muscle force. This model has 11 parameters. Its originality stems from the fact that

it contains the dependency of muscle length on isometric force by defining some parameters as

functions of the FT angle. A similar approach was used by Perumal et al [166] but only for

the parameter A which scaled the force response, such that they were unable to capture the

changing dynamics.

6.4.2 Changes in Model Parameters

In this section the physical significance of the relations between parameters and FT angle are

discussed in more detail. Due to the magnitude repeatability issues, which are reflected in the

parameter A, the relation between A and the FT angle is not considered further.

A linear function that increases with increasing FT angle is used to describe the changes

in parameter τc with FT angle. The value of τc defines the time constant associated with

the low pass filtering of the input. The parameter is thought to describe the time constant

associated with the decay in free calcium concentration CN after an initial depolarising input

u(t). As the muscle length decreases (FT angle increases) the free calcium concentration decay

time increases. This finding is in contrast to the work of Balnave and Allen [164] who find
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no relation between Ca2+ concentration and muscle length in mouse muscle. However, studies

[167] in amphibian muscle do find a link between Ca2+ concentration and muscle length. These

studies report an initial increase in Ca2+ concentration with muscle length, then a decrease as

the muscle is progressively stretched beyond its slack length. In the results presented here, the

initial increase is not evident, but the subsequent decrease in Ca2+ concentration with muscle

length is evident in the decrease in the parameter τc with muscle length. Balnave and Allen

[164] suggest that the dependence of length on Ca2+ concentration could be species-dependent.

Calcium concentrations were not measured during experiments, hence the reported effect of

the muscle length changing on the calcium concentration is speculative and only arises as a

result of the fitted model parameters.

The importance of the parameter τ2 increases significantly (exponentially) as the muscle length

is stretched beyond its length at 80◦ (i.e. as the FT angle decreases from 80◦) when it is

assumed to be slack. This suggests that although in the preceeding chapter the parameter τ2

was found to have little influence on the force characteristics at 80◦, as the FT angle decreases

the importance of the parameter τ2 increases. The parameter τ2 is a time constant that along

with τ1 describes the transformation from free calcium concentration into a muscle force. The

parameter τ2 is multiplied by a non-linear saturating equation, the resultant non-linear term

captures the fact that the time constant of the force responses to individual pulses within a

pulse train changes. The fact that the parameter τ2 increases when the FT angle is below 80◦

suggests that this non-linear behaviour is more pronounced for longer muscle lengths.

6.4.3 Coupling between Activation and Contraction Dynamics

The results presented here suggest that the activation of the muscle is length dependent, this

is supported by [164]. Thus the assumption of uncoupled activation and contraction dynamics

is not valid. The fact that the parameters τc and τ2 were strongly dependent on the muscle

length suggests that the development of muscle force with time is affected by the muscle

length. Without measuring the calcium concentration directly it is difficult to ascertain how

physiologically relevant the observed changes in parameters are. It is clear that the model

provides a good simple way of modelling the force response of the locust hind leg extensor

muscle at a range of physiologically relevant muscle lengths.

6.4.4 Variation in Model Parameters

In the results of this chapter (as in those from preceding chapters) significant variations in

the responses between different locusts are evident, these manifest as variations in the model

parameters (Fig. 6.18). Previous studies on insect muscle have also found the muscle forces
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measured to be variable between animals. Guschlbauer et al [5] study the stick insect extensor

muscle and find that the maximum tetanic force at 200Hz has a relative s.d. of ±29.8% with

the variability greater for lower stimulation frequencies (±72.3% at twitch). Ahn and Full [168]

also obtain results with considerable variability of muscle force (relative s.d. of ±38% in muscle

177c at twitch and ±31% at tetanus) in measurements of the cockroach Blaberus discoidalis leg.

In the locust the peak twitch tension measured by Burns and Usherwood of the mesothoracic

leg in response to FETi stimulation varied by ±49% [169]. Hoyle measures a range of twitch

tensions for fast fiber stimulation of 29 − 39mN at the tibial tip. Zakotnik [49] also observes

considerable variability in force measurements. Since the variability has been measured in a

range of previous studies in different sets of experiments it is unlikely that the variability in

the results presented here is due to systematic errors in preparation. The variability could be

a property of the muscle, or be correlated with factors such as age, muscle mass, femur size,

and muscle resting length. Correlations between muscle force and other factors have not been

studied in detail in either this work or other literature.

There is also variability between measurements in the same locusts (see Fig. 6.18). This is

likely to be due to the repeatability issues discussed in section 6.3.1. The sensitivity analysis of

the Adapted model given in section 5.5.4 showed that in general, changes in model parameters

led to smaller, or equivalent changes in muscle force properties. Conversely this means that in

the case where a change in parameter value leads to a smaller change in the properties of the

force trace any small differences in measured force traces could be amplified in terms of the

change in parameter values.

6.5 Conclusions

This chapter investigated the effect of changing the muscle length on the isometric force. It

was found that the dynamics of the isometric force response change depending on the muscle

length. The Adapted model, presented in the preceeding chapter, was able to model the

changing dynamics if the parameters A, τc and τ2 were assumed to be functions of the FT

angle. The changing shape of the force-time profile suggests that the assumption of uncoupled

activation and contraction dynamics is poor. This is further confirmed by the fact that the

shape of the FL curve was found to be dependent on the type of input used to generate it.

Despite these findings the assumption of uncoupled activation and contraction dynamics is

common, mainly because this assumption simplifies the problem. The model presented in

this chapter provides a mathematically and conceptually simple way of dealing with coupled

activation and contraction dynamics.
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In this chapter the muscle was held isometrically and the effect of changing the muscle length

investigated. The subsequent chapter is concerned with the force response when the muscle

velocity is not constrained to be zero so that conditions are not isometric.
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Chapter 7

Effect of Muscle Velocity on

Force Response

7.1 Introduction

The main body of this thesis focuses on modelling the isometric response, as was considered

in the previous chapters. In this chapter, the isometric constraint is removed.

In this chapter the muscle velocity is allowed to be non-zero. The passive response, where the

muscle is not stimulated, is considered in detail. A model describing the main components of

the passive behaviour is presented. A model describing the active response is an area of work

in progress. Some results where the muscle was activated under non-isometric conditions are

presented and discussed. An extension to the work presented in this chapter is to develop a

general non-isometric model. Protocols to do this are discussed in the following chapter.

7.2 Methods

During experiments the apodeme was grasped directly with forceps mounted on a shaker. The

shaker was driven with a voltage to apply a force and hence change the muscle length. Details of

the experimental procedure are discussed in more detail in Chapter 3. Specific details regarding

inputs and processing of signals are given in this section. Both active and passive experiments

were performed. Passive muscle is not stimulated, whereas active muscle is.
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7.2.1 Passive Inputs

During passive experiments the shaker was driven with a mainly constant voltage. The re-

sultant force generated by the shaker is approximately proportional to the input voltage. An

example of the voltage input used to drive the shaker is shown in Fig. 7.1. The muscle length

was set to its rest length prior to the shaker being driven. Different maximum voltages and

rates at which the voltage was ramped up and down were used to drive the shaker. This

excitation protocol was used as it is simple and provides a good indication of the viscoelastic

behaviour. A summary of the voltages used to drive the shaker is provided in Table 7.1. These

voltages were amplified before being used to drive the shaker. The amplification was set so

that the resultant maximum muscle displacement from rest was of the order of 0.5mm and

velocity of the order of 5mms−1. These ranges were used as they are close to the physiological

range of motion of the muscle. Further details on how the physiological range was calculated

and on the input to the shaker are given in Sec. 3.5.2.3.

VS

Time

1

2

3

Figure 7.1: Example of voltage input to the shaker used during passive experiments.

7.2.2 Active Inputs

Traditionally, the force-velocity curve is obtained from hold and release experiments (see Sec.

2.3.2.1). In these experiments the muscle is maximally activated. The activation and con-

traction dynamics are assumed uncoupled and so the level of activation is assumed to just

scale the force response. In Chapter 6 the effect of muscle length on the force response was

investigated. It was found that the level of activation does change the form of the force length

relation, and so activation and contraction dynamics cannot be assumed to be uncoupled. It

is, therefore, likely that the force velocity curve will be affected by the level of activation.

Previous research also suggests this [47]. Force-velocity experiments should, therefore, ideally
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Input number Maximum voltage (V) Rate of voltage change (Vs−1)
1 0.4 1
2 0.4 2
3 0.4 3
4 0.4 4
5 0.4 5
6 0.4 6
7 0.4 7
8 0.1 4
9 0.2 4
10 0.3 4
11 0.4 4
12 0.5 4
13 0.6 4

Table 7.1: Voltages that are amplified and used to drive shaker. In inputs 1-7 the maximum
voltage is held constant and the rate of change of voltage varied, in 8-13 the rate of voltage

change is constant and maximum voltage varied.

take place under a range of different levels of activation to assess and model this effect. In this

chapter only the active response of maximally excited muscle is considered. This represents a

first step in modelling the muscle behaviour when the velocity is not zero. Investigating the

maximally activated case provides a foundation for considering submaximally activated muscle

in the future.

During active experiments the muscle was maximally excited, to tetanus. Whilst at tetanus the

shaker was activated so that the muscle displacement and velocity were changed. Both chirp

and ramp type inputs were used to drive the shaker. The use of these extended inputs is one of

the fundamental differences between the experiments presented here and the traditional hold

and release experiments. Typically the FV relation is found by measuring the initial velocity

(after transients have decayed) after a step change in force. The method presented in this

chapter has the advantage that by using extended inputs and outputs to model the behaviour,

history and time dependent effects can be measured.

7.2.3 Processing Signals

In experiments the force and displacement are measured. The velocity and acceleration can then

be calculated by differentiating and double differentiating the signal respectively. Numerical

differentiation can greatly amplify noise in the data. To reduce this effect, the signal can be low

pass filtered prior to differentiation. An alternative approach is to differentiate the sampled

data by using discrete wavelet transforms [170]. The wavelet method can also greatly reduce the

noise amplification in the differentiation [170]. The velocity and acceleration were calculated

using both a wavelet method with a Haar mother wavelet and the level of decomposition set

to 5 (developed by Luo et al [170]), and using a zero-phase low pass filter. When a third-order

161



7. Effect of Muscle Velocity on Force Response

Chebyshev filter with 1dB of ripple in the pass band and a cut off frequency of 40Hz was used

the velocity traces using the wavelet and filter method were very similar. The wavelet method

was used to find the acceleration and velocity of all signals presented in this chapter. Due to

the similar characteristics obtained using a wavelet, or linear filter in this case, the choice of a

wavelet method is somewhat arbitrary.

7.3 Passive Response

Under passive conditions the muscle is not activated. The behaviour in response to the ramp

up, hold, ramp down changes in the shaker excitation is considered in this section. To date

little attempt has been made to characterise the contractile response of passive muscle. Passive

models in the literature tend to apply only to muscle as it is stretched beyond its optimal length

[28]. These models do not describe the behaviour if the muscle is held passively at a constant

length, nor the behaviour if the stretch is decreased and the length returned to the rest length.

7.3.1 Passive Force Data

An example of the muscle displacement and resultant measured force in the time domain are

shown in Fig. 7.2 for a range of different voltage inputs. Relaxation, seen as a reduction

in force during the period where the input to the shaker is held constant, is apparent in the

results. This suggests that the muscle behaves as a viscoelastic material. The main difference

between muscle and a conventional viscoelastic material is that there is very little overshoot in

the muscle case when the voltage is ramped back down and the muscle is returned to the rest

position. Also, during the period where the input to the shaker is held constant there is a slight

increase in the displacement. The displacement and corresponding force are shown in Fig. 7.3.

There is a clear nonlinear relationship between the force and displacement. During the period

where the muscle is stretched rapidly, the force can be well described by a cubic nonlinearity

(i.e. F = kl1xm + kn1x
3
m). Previous studies of the response to a passive stretch also find a

cubic nonlinearity to provide a good description of the behaviour [28]. The force-displacement

relation when the muscle lengthens differs to that when it shortens. This indicates that the

passive muscle displays hysteretic behaviour and that during the stretch-shorten cycle energy is

dissipated, most likely as heat. The force-displacement traces when the velocities are changed

and the maximum stretch is kept the same are similar (Fig. 7.3A, C, E). This suggests that

the velocity has little influence on the relation between displacement and force. When the

maximum stretch is changed, and velocity held constant, the force-displacement relations over

the period of decreasing stretch differ (Fig. 7.3B, D, F).
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Figure 7.2: The displacement and force as functions of time in response to inputs of the
form given in Fig. 7.1. A) The voltage rate is varied, but maximum voltage constant, B)

the maximum voltage is varied but rate of voltage change held constant.

7.3.2 Theoretical Viscoelastic Model

The ability of the standard linear model (SLM) to capture the trends seen in the data was

initially considered. Nonlinear models will be considered in the following sections. A SLM was

used, as it is the simplest model that describes both creep and stress relaxation. The model is

commonly used to describe the behaviour of viscoelastic materials. The force response of the

model shown in Fig 7.4 to displacements of the form shown in Fig. 7.7 was estimated. The

force is found from the relation

Ḟm

kl2
+
Fm

cd
=
(

1 +
kl1

kl2

)
ẋm +

kl1

cd
xm (7.1)

where kl1, kl2 and cd are the spring and damper coefficients, and Fm and xm the force and

displacement of the muscle, as defined in Fig. 7.4.

If the shaker stiffness is included in the system and the passive muscle is assumed to be described

as a SLM the general system is equivalent to that in Fig. 7.5. From Fig. 7.5 the following

relation is obtained
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Figure 7.3: Measured force-displacement relation in one locust to a range of different shaker
inputs. In A), C) and E) the voltage rate is varied but maximum voltage held constant, in B),
D) and E) the voltage rate is held constant but maximum voltage is varied. The duration of
the hold period is increased from A and B to C and D to E and F. Arrows show the direction

of movement.

kl1

kl2cd

Fm, xm
z1

Figure 7.4: SLM with linear springs and a linear viscous damper. Model used to simulate
force response to a given displacement signal.

Ḟt

kl2
+
Ft

cd
=
(

1 +
kl1

kl2
+
ks

kl2

)
ẋm +

(
kl1

cd
+
ks

cd

)
xm (7.2)
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kl1

kl2cd

z1

Ft, xt

kS

Figure 7.5: Model of the shaker and muscle system. The muscle is assumed to be described
by a SLM and the shaker to have stiffness ks.

where Ft is the combined muscle and shaker force. The response is modified if the shaker

stiffness is included in the model. During experiments, both the force and displacement of the

muscle were measured. These were used in further analysis of the system. This means that

the behaviour of the shaker is removed and does not need to be included in the model. The

force response of the SLM was simulated using Eq. (7.1). The model coefficients of the SLM,

kl1, kl2 and cd, were set arbitrarily to 2Nmm−1, 5Nmm−1 and 2Nsmm−1 respectively in order

to simulate the behaviour of this system. Figure 7.6 shows the force-time response to a range

of different displacements (these displacements are also shown). Figure 7.7 shows the corre-

sponding force-displacement relations. When these simulated responses are compared to the

experimentally measured responses (Figs. 7.2 and 7.3) some differences are clear. The model

has linear springs so is unable to model the nonlinear spring hardening behaviour measured in

the muscle. When the length is returned back to the resting length the simulated data shows

too much overshoot in comparison to actual data where there is very little overshoot. Also, as

a consequence of the input displacement to the simulated model being fixed, the displacement

increase during the hold period is not modelled.

Models in the literature, which describe the force response of passive muscle to lengthening

from rest, assume that force is generated only when the muscle is stretched beyond the optimal

muscle length [28, 39]. The responses given in Figs. 7.6 and 7.7 refer to the response to a

stretch, hold, relax input protocol.

When the muscle is passive there are no cross-bridges between the thick and thin filaments.

When the muscle is stretched beyond its rest length, passive force is generated as a result

of the elasticity of titin [171]. When the muscle is slack, or compressed so that lm ≤ lo, no

passive force is generated. Slack muscle is analogous to a slack string under compression. In

the experimental response shown in Figs. 7.2 and 7.3 only a very small compressive (negative)

165



7. Effect of Muscle Velocity on Force Response

0

0.5

1

1.5

2

2.5

3

D
is

pl
ac

em
en

t
A)

0 2 4 6 8
−5

0

5

10

15

20

Time [s]

F
or

ce

0

1

2

3

4

D
is

pl
ac

em
en

t

B)

0 2 4 6 8 10 12 14

0

5

10

15

20

25

F
or

ce

Time [s]

Figure 7.6: Simulated force response for a typical viscoelastic material to given displace-
ments in the time domain; A) for varying velocities, B) for varying displacements.
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Figure 7.7: Simulated force response vs displacements for a typical viscoelastic material,
arrows show the direction of movement; A) for varying velocity, B) for varying displacements.
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force is generated by the muscle. Due to the structure of the muscle, this force is almost zero.

The passive muscle is not able to generate the negative forces predicted by the SLM.

7.3.3 Modelling the Passive Behaviour

Since the ramp up and hold experiments capture the viscoelastic relaxation, data from these

were used to develop a model capable of describing the passive force response. From the

measured displacement the force was estimated and compared to the measured force. Any

model must capture both the force-time relation and the force-displacement relation. Just

minimising the error between the estimated force and the measured force as a function of time,

as has been done previously in this thesis, is not sufficient. This is due to the fact that the hold

period is significantly longer than the sections where the displacement is ramped up or down.

This results in the fit to the hold section influencing the error more if all data samples are

weighted equally. In estimating the parameters of the springs and dampers a weighted least

squares error was used. The weighting function used was

wi = |ẋm|i + aw|xm|i (7.3)

0 1 2 3 4 5
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Time  [s]

M
ag

ni
tu

de

Figure 7.8: Weighting function (- - -) for an example input. The corresponding displace-
ment (—) and force response (...) are also shown.

where wi is the weight for the ith sample, and aw is a constant with units of s−1 to ensure

dimensional consistency in the weighting function. By having velocity in the weighting function,

increased importance is given to quick changes in displacement. The displacement is also

included in the weighting function. The displacement xm is defined as the change in muscle

length from rest length. Including xm in the weighting function means that a better fit to quasi-

steady-state behaviour, during which the velocity is very small, can be obtained. If the muscle

velocity is small the force is not necessarily zero if xm is non-zero. The weighting function

could be further optimised by changing the value of aw, however good fits were obtained with

aw set to 1s−1 so this parameter was not further optimised.
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As an example, the weighting function is shown in Fig. 7.8 for one input. The weighting

function gives increased importance to the ramp up and ramp down sections, to account for

the short time for which they occur. When using the weighting function, the error function

that is minimised is thus

Ew =
∑

i(wi Fm,i − wi F̂m,i)2∑
i(wi Fm,i)2

× 100% (7.4)

The parameters (i.e. the spring and damper coefficients) were estimated by finding the values

that gave the smallest weighted errors between the modelled and measured force. This was

done using the matlab function lsqnonlin and a fixed step ODE solver. A range of models

with different arrangements of components were investigated. Candidate passive models that

display viscoelastic behaviour were used. These models were based on, and adapted from, the

form of a SLM. They are shown in Figs. 7.9 to 7.14. In these models Sn is used to denote a

spring, and FSn the related spring force. Likewise, Dn denotes a damper, with FDn the related

damper force.

S1 (kl1, kn1)

S2 (kl2, kn2)D1 (cd)

Fm, xm

FS1 = kl1xm + kn1x
3
m

FS2 = kl2(xm − z1) + kn2(xm − z1)3

FD1 = cdż1

z1

Figure 7.9: Passive model 1, SLM with nonlinear springs S1 and S2, and a linear viscous
damper D1. Coefficients kl1, kn1, kl2 and kn2 are spring stiffnesses and cd a damping

coefficient.

S1 (kl1, kn1)

S2 (kl2, kn2)D1 (cd)

Fm, xm

FS1 = kl1xm + kn1x
3
m

FS2 = kn2(xm − z1) + kn2(xm − z1)3

FD1 = cdż1

z1

S3 (kl3, kn3)D2 (ce)

u1

FS3 = kl3(xm − u1) + kn3(xm − u1)3

FD2 = ceu̇1

Figure 7.10: Passive model 2, SLM with additional spring and damper in parallel. All
springs are nonlinear with stiffnesses kl1, kn1, kl2, kn2, kl3 and kn3, dampers are viscous

with damping coefficients cd and ce.
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S1 (kl1, kn1)

S2 (kl2, kn2)D1 (cd, cd1, cd2)

Fm, xm

FS1 = kl1xm + kn1x
3
m

FS2 = kl2(xm − z1) + kn2(xm − z1)3

FD1 = (cd + cd1z1 + cd2z
2
1)ż1

z1

Figure 7.11: Passive model 3, SLM with nonlinear springs and nonlinear damper. The
spring stiffnesses are kl1, kn1, kl2 and kn2. The damper force is assumed to be a function of

velocity and displacement, with damping coefficients cd, cd1 and cd2.

S2 (kl2, kn2)

S1 (kl1, kn1)

D1 (cd)

Fm, xm

FS1 = kl1z1 + kn1z
3
1

FS2 = kl2(xm − z1) + kn2(xm − z1)3

FD1 = cd(ẋm − ż1)

z1

Figure 7.12: Passive model 4, spring in series with a parallel spring and damper. The
springs are nonlinear with stiffnesses kl1, kn1, kl2 and kn2 and the damper is viscous with

damping coefficient cd.

S1 (kl1, kn1)

S2 (kl2, kn2)D1 (cd)

Fm, xm

FS1 = kl1xm + kn1x
3
m

FS2 = kl2(xm − z1) + kn2(xm − z1)3

FD1 = cdż1

z1

D2 (ce)

FD2 = cexmẋm

Figure 7.13: Passive model 5, SLM with nonlinear springs and linear damper in parallel
with a nonlinear damper. The parallel damper force is a function of the displacement and
velocity. Spring stiffnesses are kl1, kn1, kl2 and kn2 and damping coefficients are cd and ce.
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S1 (kl1, kn1)

S2 (kl2, kn2)D1 (cd)

Fm, xm

FS1 = kl1xm + kn1x
3
m

FS2 = kl2(xm − z1) + kn2(xm − z1)3

FD1 = cdż1

z1

D2 (ce, ce2)

FD2 = (ce + ce2x
2
m)ẋm

Figure 7.14: Passive model 6, SLM with nonlinear springs and linear damper in parallel
with a nonlinear damper. The parallel damper force is a function of the displacement and
velocity. Spring stiffnesses are kl1, kn1, kl2 and kn2 and damping coefficients are cd, ce and

ce2.

In each case, the estimated force Fm cannot be negative because the muscle becomes slack and

hence cannot support any compressive force. Models which allowed the force to be negative

did not fit the measurements as well. Therefore, in each case the estimated force was given by,

F̂m =

F̂m if F̂m > 0

0 if F̂m ≤ 0
(7.5)

The fitted results to one example locust (termed Lna) using each model are summarised in

Table 7.2. Model 6 (Fig. 7.14) gives the lowest weighted error and a low total error, with a

moderate number of model parameters. The SLM model with nonlinear springs (model 1) is

much improved by an extra parallel branch that contains either a spring and damper (model

3) or a damper whose damping factor is dependent on displacement and velocity (models 5

and 6).

Model Parameters Ewt % E %
1 5 1.67 9.21
2 8 0.84 7.42
3 7 0.90 7.52
4 5 4.41 7.16
5 6 0.79 7.17
6 7 0.68 7.23

Table 7.2: Errors in fit when using each of the candidate passive models in one example
locust (Lna).

170



7. Effect of Muscle Velocity on Force Response

7.3.4 Optimal Passive Model

Model 6 was chosen as the optimal passive model. The fitted parameters and resultant errors

for six locusts (termed Lna, Lnb, Lnc, Lnd, Lne, Lnf) when using model 6 are shown in Table

7.3. The damping factor cd is estimated as being reasonably large in comparison to ce, with

ce being close to zero in all locusts. This implies that removing ce in model 6 would result in

a good model with one parameter fewer.

From Table 7.3 it is clear that the errors of the example locust (Lna), presented in Table 7.2 are

below average. Larger errors occur in some locusts as there is a larger negative component to

the force, or due to movement artifacts in the data. Locust Lna provides a good representation

of the behaviour as data recorded from it do not contain any movement artifacts.

kl1 kn1 cd kl2 kn2 ce ce2 Ewt E
(Nmm−1) (Nmm−3) (Nsmm−1) (Nmm−1) (Nmm−3) (Nsmm−1) (Nsmm−3) % %

Lna 0.14 0.18 0.22 0.20 1.1 0.058 0.082 0.68 7.2
Lnb 0.070 1.9 0.38 0.16 2.8 0.077 0.19 1.7 10
Lnc 0.068 0.22 0.069 0.075 0.78 0.0043 0.028 1.3 12
Lnd 0.00 0.55 0.59 0.00 0.76 0.0035 0.028 0.80 10
Lne 0.0036 0.57 0.67 0.021 0.79 0.0062 0.039 0.62 12
Lnf 0.012 0.69 0.52 0.0038 1.0 0.0064 0.030 0.63 9.3

Table 7.3: Estimated coefficients and errors when model 6 is fitted to passive data from six
locusts.
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Figure 7.15: Measured (—) and modelled (- - -) passive force response vs displacement; A)
for varying voltage rates, B) for varying maximum voltage.

The estimated forces for locust Lnc using model 6 are shown in Figs. 7.15 to 7.17. It is clear

that the main source of error arises due to the assumption that the muscle force cannot be

negative, in practice there is some overshoot. Aside from this limitation, the model provides

a reasonable description of both the force-time and force-displacement response. It is capable

of capturing the force response to a range of different displacements. The measurement of a

negative force suggests that the muscle does sustain some negative force. Previous studies on
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Figure 7.16: Measured (—) and modelled (- - -) passive force response in the time domain.
The rate of ramp up and down in voltage is varied in A-F, with the rate of voltage change

corresponding to input numbers 1-6 in Table 7.1.

passive muscle have not measured any negative force [1, 23]. This is likely to be as a result

of these studies only considering the behaviour of passive muscle as it is lengthened, hence

the viscoelastic behaviour is not considered. The SLM, which is commonly used to describe

a viscoelastic material shows some force overshoot (and so negative force) in simulations that

input a displacement profile similar to that measured in experiments (see Fig. 7.7). In the

SLM this overshoot is caused by the presence of a damper, which is in series with a spring

(Fig. 7.4). It is reasonable to draw analogies between muscle and a viscoelastic material and

therefore fair to assume that some of the overshoot is due to a similar mechanism.

The model is comprised of a SLM with nonlinear springs in parallel with an extra nonlinear

damper. This extra damper has a damping factor that is dependent upon displacement as well

as velocity. The damping has previously been measured to be asymmetric betwen lengthen-

ing and shortening [172]. This is also the case in this measured data. The overshoot after

shortening is significantly less than the force relaxation after lengthening. Krause et al [172]
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Figure 7.17: Measured (—) and modelled (- - -) passive force response in the time domain.
The maximum stretch is varied in A-F). Input numbers 8-13 in Table 7.1 summarise the

voltages that are amplified then used to drive the shaker.

allow the damping coefficients and spring constants in their model to have different values

during lengthening and shortening. This approach could be one way of dealing with the small

measured force overshoot.

Results show that the muscle exhibits a lot of hysteresis, which model 6 is able to capture.

This measurement of significant hysteresis is in line with previous work on passive tissue [173].

Classical approaches to model hysteresis do not transfer well to the muscle. This is due to the

fact that when the length is equivalent to rest length (xm = 0) the force is zero, whether on

the assending or descending limb. This is not the case in traditional hysteretic models that

predict some force overshoot.

173



7. Effect of Muscle Velocity on Force Response

7.4 Active Force

Modelling the force when the muscle is activated and the muscle velocity varies is an area of

ongoing research. Some measurements have been made on fully activated muscle and examples

of these are presented here. As yet, no model which describes the active force response of the

muscle under non-isometric conditions has been developed and no data where the muscle is

not fully activated have been collected.

An example of the data collected from the active force experiments is shown in Fig. 7.18. The

corresponding input to the shaker is also shown in Fig. 7.18; the spike at 1s triggers the muscle

stimulation. As in the passive case, both the muscle force and displacement were recorded

during the experiment. Due to movement of the shaker head in response to the applied force,

there is a decrease in displacement as the muscle is activated (muscle contracts). Tetanic forces

measured at the apodeme using the shaker-load cell-forceps system are substantially lower than

those which were measured at the tibia and converted into a muscle force, as in Chapters 4-6.

The reason for this is that previous measurements were made under isometric conditions, with

the system in static equilibrium. In the current set up, the muscle contracts during activation,

causing the shaker platform to move and the muscle length to change. This is shown by the

measured change in displacement in Fig. 7.18. The data of most interest are where the muscle

is active and the muscle displacement is imposed by the shaker. In the remainder of this

chapter, the active force will be presented as the change in force from the tetanic level at the

onset of shaking.

Considering the case of maximal activation, the region of interest is the area in which the shaker

displacement is varied. These data during this period of time were extracted and the change

in force (from tetanus) plotted against the displacement and velocity (Fig. 7.19). For clarity,

Fig. 7.20 shows the force-velocity and force-displacement plots on separate axis. The relation

between the force and displacement appears to be dependent on the input type and, as with the

passive response, some hysteretic viscoelastic behaviour is also evident. Since active muscle

appears to behave viscoelastically it is expected that the input type, and the time history

of the input, will influence the specific form of the force-displacement relation. The force-

velocity relation appears much less clear and the active force appears to be more dependent on

the muscle length than the velocity. In experiments both the velocity and displacement were

varied simultaneously. In order to isolate the effect of velocity or length on the force Figs. 7.21

and 7.22 show the force-length relation when the velocity is approximately constant and the

force-velocity relation for an approximately constant length respectively. In holding the length

approximately constant tolerances of ±0.01mm were used, with tolerances of ±0.05mms−1 used

for the velocity.
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Figure 7.18: Example of input (A-C) which is amplified and used to drive the shaker
and corresponding outputs (D-F), both force (—) and displacement (—) are measured. A,
D) chirp type excitation, B, E) ramp down then up excitation, C, F) ramp up then down

excitation.
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Figure 7.19: A 3D plot showing the change in force level from tetanus when the shaker
is activated. Data is collected from chirp (—), ramp up-down (—) and ramp down-up (—)

inputs.
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Figure 7.20: The A) force-displacement and B) force-velocity response when the muscle is
fully activated and both the velocity and displacement are varied. Data is collected from

chirp (—), ramp up-down (—) and ramp down-up (—) inputs.

From Fig. 7.21 it can be seen that there is a clear relation between the muscle force and

displacement. The force increases with increasing displacement (i.e. muscle length). This is

the same trend as was observed in Chapter 6. This is expected because for the case where the

velocity is approximately zero this is just a different method of measuring the FL relation to

that presented in Chapter 6. The effect of velocity on force is shown in Fig. 7.22. There are

no clear trends between the muscle velocity and the force in the active muscle. This could be

due to the force not being dependent on the velocity. Further experiments and analysis are

required to investigate this.

7.5 Discussion

Published force-velocity relations are usually obtained using hold and release experiments (see

Sec. 2.3.2.1). They generally apply to the initial velocity (measured as soon as transients

have subsided) during an isotonic contraction [38]. In obtaining the force-velocity relation the

muscle is often fully activated, with activation and contraction dynamics assumed uncoupled.

The main issues with this method are the assumption of uncoupled activation and contrac-

tion dynamics, measuring isotonic lengthening and that history dependent effects cannot be

measured [174]. Furthermore, the results do not necessarily correspond to conditions under

which the muscle would normally operate as all conditions are constrained to be isotonic with

constant velocity [174]. A new method of obtaining the force-velocity relation is presented in

this chapter. This method is similar to the work loop approach to measuring muscle power

output. In work loop experiments, the muscle is subjected to sinusoidal length changes and
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Figure 7.21: Force-displacement relation when the velocity vm is held approximately con-
stant for chirp (.), ramp up-down (×) and ramp down-up (+) inputs. A) vm ≈ −3mms−1,
B) vm ≈ −2mms−1, C) vm ≈ −1mms−1, D) vm ≈ 0mms−1, E) vm ≈ 1mms−1, F)

vm ≈ 2mms−1, G) vm ≈ 3mms−1,

stimulated with a single stimulus at a chosen phase in the length cycle. A plot of the muscle

force against length forms a loop with the area describing the net work per cycle. In the ex-

periments described in this chapter, the muscle was first stimulated and then length changes

imposed. This method has advantages as both the lengthening and shortening behaviours can

be measured. The imposed length changes can be varied, enabling history dependent effects

to be measured.
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Figure 7.22: Force-velocity relation when the displacement xm is held approximately con-
stant for chirp (.), ramp up-down (×) and ramp down-up (+) inputs. A) xm ≈ −0.5mm, B)
xm ≈ −0.4mm, C) xm ≈ −0.3mm, D) xm ≈ −0.2mm, E) xm ≈ −0.1mm, F) xm ≈ 0mm,

G) xm ≈ 0.1mm, H) xm ≈ 0.2mm,

7.5.1 Passive Model

To the author’s knowledge, the behaviour of passive skeletal muscle under shortening conditions

has not been previously studied. To date passive measurements have commonly been taken

on muscle lengthening from rest. In measuring the passive behaviour of the extensor muscle

under lengthening and shortening, as in this chapter, the viscoelastic behaviour of the muscle

was clear. By using a combination of non-linear cubic springs and dampers, this behaviour

could be described well. The slight overshoot and the negative force measured after the muscle

is shortened back to its rest length were not well described by the model. It was assumed that

the passive muscle could not sustain any negative force, yet a small negative component was

measured.
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This method results in the force-velocity-length relation arising as a consequence of simpler

viscoelastic elements as opposed to being introduced by empirical relations. The advantage of

this is that the estimated model has more physical significance.

7.5.2 Active Model

In this thesis no model of the dynamics of the active muscle has been developed, and this

remains an area of work in progress. In the presented results, a notable finding is that the

force does not seem very dependent upon the muscle velocity. An example of a commonly

assumed relation between the contractile force, length and velocity is shown as a F-L-V surface

in Fig. 7.23. In Fig. 7.23 the force is a single-valued function of length and velocity. This

ignores any history dependent effects, and assumes that the relation between force, length and

velocity is single valued. Comparing Fig. 7.23 to the F-L-V surface plotted from results shown

in Fig. 7.19, it is clear that the measured relationships between force, length and velocity differ

significantly for the locusts in this study. More experiments, with more locusts, that measure

the force and displacement (and hence velocity) under maximal stimulation are required to

further investigate this finding.

0
0.5

1
1.5

2

−2
−1

0
1

2
0

0.5

1

1.5

Relative LengthRelative Velocity

R
el

at
iv

e 
F

or
ce

Figure 7.23: Standard F-L-V surface from FL and FV relations presented in the literature.
This particular plot is reconstructed from the relations of Ghigliazza and Holmes [28].

In this section experiments on active muscle were performed under maximal activation. The

aim is to first develop a non-isometric model that applies to maximal activation conditions, then

to see if and how this model varies dependent upon the level of activation. A similar approach

to that described in Chapter 6 for modelling the force-length relation could be utilised.
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7.6 Conclusions

This chapter considered contraction under non-isometric conditions. A new method of mea-

suring the force-length-velocity relation was presented. This allows the voltage input to the

shaker to be varied in a user defined way, meaning the applied force, and so displacements, can

be effectively varied, easing modelling of history dependent effects.

Passive muscle was seen to behave as a viscoelastic material and modelled using a combination

of nonlinear springs and dampers. Modelling active muscle under non-isometric conditions

remains an area of work in progress; this is discussed along with other future work directions

in the following chapter.
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Chapter 8

Conclusions and Future Work

In this thesis, the force response of the locust hind leg extensor muscle to input pulses under

a range of conditions was investigated. Results presented in this thesis have been discussed in

detail in individual chapters. In this last chapter, the main findings of the thesis are concluded.

An outline of future work, which would extend the work of this thesis, is also detailed.

Skeletal muscle is a highly complex, nonlinear system. A wide range of models have been used

in the literature to describe the muscle force response to a neural stimulus. This is a result

of the varying assumptions made by researchers. In this thesis complexity was introduced

in the experimental conditions in stages. This meant a model could be built up in parts.

This approach reduces the need for questionably valid assumptions. Furthermore, some of the

common assumptions made when modelling muscle could be tested. By doing this a greater

understanding of the neuromuscular system can be gained. Enhanced understanding of the

neuromuscular system leads to more realistic muscle models. This can lead on to more realistic

models in the field of modelling movement, as well as improving models used in FES, controlling

movement, and in developing devices to restore function after injury [19].

In Chapter 4 the response to individual pulses was investigated. It was found that a second-

order linear model provided an adequate description of the response to an isolated input pulse,

however the fit using a third-order linear model was better. The fact that the response to

isolated pulses could be modelled as linear suggests that much of the non-linear behaviour

of the muscle arises as a result of the summation of the responses to closely spaced pulses.

As the IPI was decreased and pulses started to sum the behaviour could be approximated as

quasi-linear under most conditions. For moderate IPFs the second-order fit deteriorated and

the response to each individual input pulse could be modelled using a third-order linear model

if parameters describing each pulse were allowed to vary. For long trains at high IPF, the fit
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deteriorated, likely due to the assumption of quasi-linear behaviour no longer holding. These

findings indicate that the nonlinear behaviour increases with increasing IPF.

The isometric response to each individual pulse was extended by considering predictive models

to describe the total force response (Ch. 5). Existing isometric models were fit to data from

the locust extensor muscle. Studies that compare existing models are extremely scarce [48].

From this analysis, a new ‘Adapted model’ was developed. This model builds upon the models

of Ding et al [20] and Bobet and Stein [73], and has an equivalent number of parameters (six).

The Adapted model was found to provide a better fit to data, and to provide a more accurate

model of the underlying response to each individual pulse. The model contains two nonlinear

saturation terms. These terms are able to capture the nonlinear behaviour of the muscle in

response to closely spaced input pulses. When the input is low (e.g. for isolated input pulses)

the nonlinearities are weak and the model approximates a linear second-order model, equivalent

to that found to provide an adequate fit to individual pulse data.

From the isometric model, developed for a single muscle length, the effect of changing the

muscle length on the isometric force was investigated (Ch. 6). A very common assumption

in muscle models is that of uncoupled activation and contraction dynamics. However, it was

found that the dynamics of the isometric force response depend on the muscle length. This

suggests that the assumption of uncoupled activation is poor. The Adapted model was able to

model the changing dynamics if the model parameters A, τc and τ2 were described as functions

of the FT angle. The overall isometric model for the locust hind leg extensor muscle is given

in Chapter 6 as Eq. (6.7) to (6.11).

The isometric case has been thoroughly studied, characterised, and a model to describe the

behaviour developed. This thesis contains some additional results regarding the nonisometric

case (Ch. 7). The passive response of the muscle could be modelled using an adaption of the

SLM, as shown in Fig. 7.14. The passive model is comprised of a SLM with nonlinear springs

and a linear damper in parallel with an extra nonlinear damper, where this extra damper has a

damping factor which depends on displacement and velocity. The passive muscle was assumed

to be unable to sustain any compressive force and so the estimated force was constrained to

be greater or equal to zero. The main source of error in the passive model arises as a result of

this assumption that the force cannot be negative; in practice the passive muscle does sustain

some negative force. The force response of activated muscle, when the velocity is non-zero, has

not been fully characterised. This is one area of future work and is discussed in the following

section.
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8.1 Future work

The muscle system investigated in this thesis is relatively simple, making it ideal to study.

In comparison to mammalian muscle, the muscles of invertebrates are innervated by a much

smaller number of identifiable neurons. Invertebrate muscle systems lend themselves to the

testing and development of muscle models as one can isolate the response to single neurons.

Furthermore, in studying muscular function in system where the neural component is well

understood, a greater insight into the workings of the neuromuscular system as a whole can

be gained. Further work should exploit the benefits of this muscle system, as well as looking

at how well the models developed describe the behaviour of mammalian muscle. The main

avenues of further investigation are: a) to study the response to each individual neuron and

investigate how the force is affected; b) to extend the force-length experiments; c) to investigate

how applicable the developed model is to mammalian muscle. These areas are discussed in more

detail below.

8.1.1 Study the Response to Each Individual Neuron

The results presented in this thesis refer to the force response to FETi stimulation. One inter-

esting avenue of further investigation would be to do a similar analysis for SETi stimulation.

The ability of the model (in Eq. (6.7) to (6.11)) to describe the resultant force response, and

the change in any model parameters could be investigated. This might indicate whether the

model forms developed in this thesis have much wider generality and applicability.

In mammalian muscle motor units are generally recruited in order of smallest to largest as

stimulation increases. In invertebrate muscle individual neurons can be targeted to stimulate

particular physiological effects. Stimulating individual neurons is not possible in mammalian

muscle. Looking at the effect of stimulation on the force response would provide further insight

into the link between the neural and muscular systems. To date the author is not aware of any

similar studies.

8.1.2 Extend the Force-Velocity Experiments

The active force experiments, described in Chapter 7, represent an area of work in progress.

Some measurements have been made in fully activated muscle. These need extending so that

the force response to the physiological range of motion (displacement of ±0.5mm, velocity of

±10mms−1) can be studied. A range of different input types should be used so that any history

dependent influences on the force are evident. From these results, the first step is to develop
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a model to describe the force response in fully activated muscle when the muscle velocity is

non-zero.

Once the fully activated muscle has been characterised, the next step is to investigate how the

level of activation affects the force response. This can be achieved by stimulating the muscle to

a range of quasi-steady-state submaximal levels of activation and driving the shaker to change

the muscle length. From this it could then be established if and how the level of activation

affects the nonisometric force response.

The final step would be to couple these results to the isometric model, as was done when the

muscle length was varied in Chapter 6, and develop a model able to predict the response to

a generalised input when there are no constraints on the motion. A model able to predict

physiological behaviour in response to a range of inputs when the muscle is not constrained

would be the ultimate goal. The ability to model unconstrained physiological motion is an

ideal test of the capability of the resultant model.

8.1.3 Applicability to Mammalian Muscle

The applicability of the developed isometric model to mammalian muscle would provide another

interesting avenue for further work. Invertebrate muscle provides a simple system to study and

model muscle behaviour. However, many of the benefits of muscle modelling, such as FES,

or the development of devices to restore function after injury, are applicable to mammalian

muscle. It would therefore be useful to take the isometric model developed for the locust

extensor muscle and see how applicable this is to mammalian muscle. Once developed, a

similar approach could be used for a non-isometric model.

Mammalian muscle is supplied by a much larger number of nerve fibres and has a correspond-

ingly large number of muscle fibres. In mammalian muscle the number of motor units in a

state of active contraction is varied to control the tension developed. When a single motor

neuron is activated, all fibres that are innervated by the particular motor neuron contract.

The activation of a single motor neuron causes a weak, distributed contraction. Activation

of subsequent motor neurons will result in a stronger contraction, as more muscle fibres are

activated. One possible way to use the developed model to describe mammalian muscle would

be to have a function to describe the recruitment of motor units preceding the model. The

resulting contractile force developed by each unit could then be calculated by the model pre-

sented in this thesis, and the resultant force given by the sum of the contribution due to each

motor unit. Methods that average out the behaviour of each individual motor unit and smear

the resulting behaviour may provide a simplification of this approach.
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