The University of Southampton
University of Southampton Institutional Repository

Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames

Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames
Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames
The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane-air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. “Back supported” lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by
progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.
775-792
Richardson, E.S.
a8357516-e871-40d8-8a53-de7847aa2d08
Granet, V.E.
0976f1c9-9e4c-41d4-a76a-a12477bb6852
Eyssartier, A.
1bc08002-7f25-40ef-9e62-9ec72afe9f3e
Chen, J.H.
fd295f97-acff-4984-a655-ee18d3b2a734
Richardson, E.S.
a8357516-e871-40d8-8a53-de7847aa2d08
Granet, V.E.
0976f1c9-9e4c-41d4-a76a-a12477bb6852
Eyssartier, A.
1bc08002-7f25-40ef-9e62-9ec72afe9f3e
Chen, J.H.
fd295f97-acff-4984-a655-ee18d3b2a734

Richardson, E.S., Granet, V.E., Eyssartier, A. and Chen, J.H. (2010) Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames. Combustion Theory and Modelling, 14 (6), 775-792.

Record type: Article

Abstract

The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane-air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. “Back supported” lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by
progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.

Text
CTM_strat_final.pdf - Other
Restricted to Repository staff only
Request a copy

More information

Published date: 2010
Additional Information: Funded by U.S. Department of Energy: Sandia National Laboratories (DE-AC04-94-AL85000)

Identifiers

Local EPrints ID: 191099
URI: http://eprints.soton.ac.uk/id/eprint/191099
PURE UUID: fe3982e9-102d-4f5e-9203-7a699cfb278d
ORCID for E.S. Richardson: ORCID iD orcid.org/0000-0002-7631-0377

Catalogue record

Date deposited: 16 Jun 2011 13:39
Last modified: 15 Mar 2024 03:37

Export record

Contributors

Author: E.S. Richardson ORCID iD
Author: V.E. Granet
Author: A. Eyssartier
Author: J.H. Chen

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×