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Abstract 
 
A new shear lag (SL) type model for stress transfer in a composite with cylindrical fibres is derived. 
It accounts for fibre end stresses in an approximate yet realistic manner, and leads to a new formula 
for predicting the Young’s modulus of the composites.  The predictions of this model were found to 
agree well with data for metal matrix composites (MMCs) with fibres of various aspect ratios.  The 
accuracy and relative simplicity of the new model have been exploited in the development of an 
approximate analytical model for the stress transfer and macroscopic yield stress of a composite 
that contains a weak layer in the matrix adjacent to the reinforcement.  With the aid of the latter 
model, the proof stress of MMCs which contain a precipitate free zone (PFZ) around the 
reinforcement, can be studied; experimental data obtained for aged 8090 MMCs is consistent with 
the model predictions. 
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1. Introduction 
 
The elastic response of composite systems to externally applied stress can be predicted by Eshelby 
type models, which are valid for ellipsoidal inclusions [1,2,3,4], or by shear lag (SL) type models, 
which have been proposed for aligned cylindrical inclusions [5,6,7,8]. Even though stress fields 
around cylindrical inclusions are very similar to those around ellipsoidal inclusions with the same 
aspect ratio [9], Eshelby type model predictions differ considerably from SL type model predictions 
with regard to stress transfer in short fibre and particulate composites [5,8,10]. This indicates that, 
as a result of quite crude assumptions concerning the magnitude of the stresses at the ends of the 
fibres, the current SL type models severely underestimate the load transfer to the reinforcement. 



 

Hence, Eshelby type models have tended to be favoured over SL type models. Nevertheless, SL 
type models offer advantages both in terms of the relative ease of the modelling and because they 
represent a better approximation of the often angular shapes of inclusions in various real 
composites.  
 
Apart from the elastic response, also the yielding in composites can be analysed with SL and 
Eshelby type models.  Several studies of yield strength of composites with a homogeneous matrix 
yield strength have been presented [11,12].  However, in the present paper, the focus is on 
composite systems that have a weak interfacial matrix layer around the reinforcement. These types 
of interfaces are for instance encountered in Al-Li and Al-Si-Mg based composites, in which a 
matrix layer devoid of the strengthening precipitates forms in the course of the ageing temper 
[13,14,15,16]. This type of layer in a precipitation strengthened metallic material is generally 
called a precipitate free zone (PFZ). The relative simplicity of SL type models can be exploited to 
modify them for specific situations. In the present paper, it is shown that an SL type model can be 
used to derive analytical expressions for stress transfer of a composite system that contains a weak 
matrix layer adjacent to the reinforcement.  
 
Thus, the aim of the present paper is twofold. Firstly, it is shown that improving the description of 
the stresses at the fibre ends can enhance the accuracy of the shear lag model. Secondly, an SL type 
model is derived for the case of a composite system that contains a weak interface layer between 
matrix and reinforcement. 
 
 
2. A new shear lag model 
 
2.1. Formulation 
 
According to the shear lag model (see schematic of geometry in Fig. 1), the axial stress in the 
cylindrical fibre is given by (see e.g. [10]): 
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where εc is the average macroscopic strain of the composite, 
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Er and Em are the Young’s moduli of the reinforcement and the matrix, respectively, νm is Poisson’s 
ratio of the matrix, fr is the volume fraction of reinforcement and ro is the radius of the fibre cross-
section. Constants A and B are dependent on the assumed stress at the fibre ends, σe. Taking the 
origin at the middle of the fibre and accounting for the symmetry gives: 
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where sr is the aspect ratio of the fibre. Hence it follows that the stress at z = 0 is given by: 
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In the literature several ways of determining σe have been proposed [8,10,17,18]. In the most 
simple version of the shear lag model, here denoted as the debonded shear lag (DSL) model, σe is 
simply neglected, that is, σe = 0. The DSL model is not reasonable for well-bonded fibres with 
relatively low aspect ratio, but is quite adequate for fibres with high aspect ratio. In his modification 
of the DSL model, Clyne [10] suggested that it is reasonable to assume σe as the average of the 
remote matrix stress and the peak fibre stress in the absence of fibre end stresses. It can be shown 
[10] that this leads to: 
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From this the average longitudinal stress σc can be calculated and the corresponding composite 
modulus according to the CSL model is obtained as [5,10]: 
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The latter equation gives the average stress in the composite as the weighted average of the mean 
stress in the reinforcement (1st term on the right hand side of the latter equation) and the average 
stress in the matrix (2nd term on the right hand side of the latter equation). It has been shown that 
Clyne’s version of the shear lag model (CSL) is an improvement over the DSL model in terms of 
the prediction of Young’s modulus data of Al-SiC composites. However, both versions 
underestimate Young’s modulus of such composites [10].  
 
In the present work it is proposed that within the framework of the shear lag model, a more 
consistent approach would be to take σe as the average of the average matrix stress (Emεc) and the 
peak fibre stress in the presence of fibre end stresses. Hence, it follows: 
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which leads again to Eq. (5) but with mE ′ redefined as 
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This version will be denoted as the SSSL model.  Combining Eqs 7 and 9 gives: 
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Jiang et al. [8] have also proposed an SL type model based on an expression for σe which differs 
from the ones presented above. In the discussion that follows, this version will be referred to as the 
JSL model.  It is further noted that the semi-empirical Tsai-Halpin equation [19] has also been used 
to describe the elastic response of composite systems. 
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Fig. 1 Geometry of cylindrical fibre in a composite material which is subjected to external 

loading.  The extend of the weak zone around the fibre is indicated by the dotted line. 



 

2.2. Comparison with experimental data 
 
In comparing the predicted Ec with measured values, it is important to select only data on alloys for 
which the reinforcement is approximately cylindrical (or approximately ellipsoidal) with aspect 
ratios that have been characterised in detail.  Such data is available for SiC reinforced Al-based 
alloys with sr of about 2 [20,21*], sr of about 3 [22] and sr of about 4 [8,23]. The predictions from 
the various models are compared with these data in Fig. 2 (sr = 2), Fig. 3 (sr = 3), Fig. 4 (sr = 4) and 
Fig. 5. It should be noted that Em depends on the composition of the Al-based alloys, especially the 
Li content.  In order to make valid comparisons for cases in which Em varies considerably between 
the alloys, in some figures the ratio Ec/ Em rather than Ec is plotted. In these cases Em is taken as the 
average value for the alloys considered. The plots in Figs 2-5 show that the present SSSL model fits 
well to the measured data, and, in comparison with the other models, it appears to provide the best 
overall fit. 
 
The relative accuracy of the model predictions depends critically on the aspect ratio of the 
inclusions (see Fig. 5). As a consequence, the present comparison of data and model predictions 
should only be considered as just an indication of the SSSL model's accuracy, since, in many real 
MMCs, the range of aspect ratios of the inclusions is quite broad whilst the inclusions are not 
perfectly aligned [22]. This point is illustrated via an investigation of Ec data on so-called 
particulate reinforced, Al-based MMCs [24,25,26,27], which are technologically important 
because they possess relatively homogeneous properties and are relatively cheap to produce. Single 
particulate reinforced MMCs generally contain a range of angular particles. Within a single 
composite a broad range of reinforcement sizes and shapes can be encountered and aspect ratios 
vary between 1 and 4 [24,27].  Due to the thermo-mechanical processing (extrusion, rolling), the 
longer axis of the reinforcing particles (especially the ones with higher sr) tend to be aligned along 
the axis of the main working direction and, for various MMCs, the effective sr along this axis has 
been estimated at 1.4 to 1.8 [20,25,27,28].  Comparison of data on Ec along the axis of the main 
working direction with the predictions of the models (Fig. 6, with sr = 1.5) shows that for these 
composites the best fit is provided by the Eshelby model (see also Refs. [13,24,25,27]). The SSSL 
model, whilst showing a considerable improvement over the CSL model, underpredicts this data by 
about 15 to 25%.  In discussing this finding it is important to note that these each composite 
contains angular reinforcements with a broad range of shapes and aspect ratios, and, hence, the 
suitability of any one of the models or the adopted effective average aspect ratio may be 
questionable. Hence, these data do not provide a conclusive proof as to the validity of the various 
models, but they do indicate that at these very low aspect ratios the Eshelby model is more 
appropriate than the SSSL model. 
 

                                                 
* Actually, the SiC fibres in the 6061 Al based composites studied by McDanels [21] have a wide range of 
aspect ratios. In correspondence to Clyne’s assessment [10] we estimate the effective aspect ratio of the 
fibres in these composites at about 2. This older data is included in the present paper to facilitate comparison 
with Clyne’s work. 
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Fig. 2 Comparison of predicted and measured Young’s modulus of Al-SiC composites with sr =2. 

(EAl = 71 GPa, ESiC = 450 GPa.) 
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Fig. 3 Comparison of predicted and measured Young’s modulus of Al-SiC composites with sr =3. 

(EAl = 71 GPa, ESiC = 450 GPa.) 
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Fig. 4 Comparison of predicted and measured Young’s modulus of Al-SiC composites with sr =4. 

(EAl = 78 GPa, ESiC = 450 GPa.) 
 
 
In more general terms the present comparison of the various models with the available data 
indicates that neither the Eshelby model nor any SL type model can fit the available data for all 
volume fractions and aspect ratios.  This is thought to be mainly due to the approximations made in 
the development of these models (mean field assumptions in the Eshelby model, approximations for 
fibre end stresses in SL models), whilst inconsistency between assumed and actual shape of 
inclusions may also play a part.  Nevertheless, in terms of predictive capability, the SSSL model is 
clearly a considerable improvement over other SL type models†, and, on balance, this relatively 
simple, closed form solution appears to perform in some cases nearly as well as, and in other cases 
better than the Eshelby model.  From a modelling perspective, it is further encouraging to note that 
of the four SL models considered, the SSSL model predictions are generally closest to those of the 
Eshelby model. Thus, the present SSSL model alleviates the problem of the large discrepancies 
[5,10] between previous shear lag (DSL, CSL) and Eshelby model predictions (see Fig. 5). 
Specifically, the SSSL model predicts Er ≥ Ec ≥ Em for all sr, resolving the physically unreasonable, 
for perfectly bonded fibres, CSL model predictions of Ec < Em,Er for low sr (that is, for sr < 0.9 in 
Al/SiC composites). 
 
 

                                                 
†   It should also be noted that, whilst the JSL model [8] predictions for Ec appear, in general, to be less 
accurate than the corresponding ones by the SSSL model, the strength of the JSL model lies especially in its 
capability of predicting local stresses in the matrix and in assessing the effect of residual stresses on the yield 
behaviour of composites.   
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Fig. 5 Comparison of Young’s modulus of Al-30vol%SiC composites as predicted by different 

shear lag type models and by the Eshelby model. (EAl = 71 GPa, ESiC = 450 GPa.) 
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Fig. 6 Comparison of predicted and measured Young’s modulus of particulate reinforced Al-SiC 

composites. sr is estimated to equal 1.5. (EAl = 78 GPa, ESiC = 450 GPa.) 



 

In summarising this section, it is concluded that the present modification of the shear lag model, the 
SSSL model, fits well to the experimental data on fibre reinforced composites and avoids the 
physically unreasonable predictions made by earlier SL type models. 
 
 
3. The effect of a weak interface layer on the yield stress 
 
3.1. Modelling 
 
The present analysis of the yield strength of a composite with a weak interface layer is based on the 
SSSL model described in the previous section. Although the model is described in a general 
manner, several assumptions and examples are chosen especially with metallic matrices reinforced 
by relatively stiff fibres in mind. Some simplifying assumptions are made with the aim of obtaining 
explicit, closed form solutions. 
 
When a weak interface layer is present around the reinforcement, the stresses that can be sustained 
by the weak interface layer before local yielding occurs are limited and the stress transfer to the 
reinforcement will be reduced. In order to arrive at a mathematically tractable solution, first the 
strains at the fibre ends will be estimated in the simple case when the weak interface layer is very 
weak in comparison to the matrix ( << ). The fibres are assumed much stiffer than the 
matrix (Er >> Em). Hence, the elastic deformation of the fibres is negligibly small and the composite 
deforms via deformation of matrix and weak interface layer only. Thus, the elongation of the weak 
interface layer at the fibre ends should be compatible with that of the matrix at some perpendicular 
distance from the fibre where matrix strain is approximately equal to composite strain. This 
condition gives: 
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where dPFZ and εe are, respectively, the thickness and strain of the layer, L is the half-length of the 
fibre (Fig. 1) and εc the composite strain. From (11a), it follows: 
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Since dPFZ is much smaller than L, it is evident from Eq. 11b that the maximum stress at the fibre 
ends in the presence of a weak interface layer will reach the yield strength of that layer, , well 
before significant yielding throughout the remainder of the matrix of the composite occurs. As a 
consequence, the stress transfer due to stresses at the fibre ends is essentially reduced by a factor 

/ , in comparison to a composite with homogeneous matrix strength. 
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Apart from the stresses at the fibre ends, the stresses at the sides of the fibre will also be influenced 
by the presence of the weak interfacial layer, and, especially for longer fibres, the shear stresses in 
the yielding layer adjacent to the fibre sides will be important in determining the overall stress 
response of the composites.  An indication of this influence is provided by the SL prediction of the 
interfacial shear stress distribution along the fibre side. This shear reaches a maximum near the 
fibre ends and the composite strain initiating yield locally is found equal to 
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Since Er is much greater than Em and  is smaller than the matrix yield stress , it is clear 

from the latter equation that, for fibres with large aspect ratio, yielding of the interface layer on the 
fibre side will start well before the matrix yields. In order to generate a simple mathematical model 
for this gradual weakening process, the assumption is here made that the average fibre stress is 
reduced by the factor /  where σe is the fibre end stress for non-yielding matrix at identical 

σc.  This assumption leads to the following expression for the overall stress in the composite: 

PFZ
yσ m

yσ

PFZ
yσ eσ

 

mr
e

PFZ
y

r

r

r

'
mr

rr
c

c )1()tanh(1 Ef
s

s
E

EEEf −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

σ
σ

γ
γ

ε
σ

 (13) 

 
As indicated by Eqs. 3 and 4, for fibres with a small aspect ratio, the stress transfer at the fibre ends 
is the dominant factor in determining the overall response. Thus, the average fibre stress is very 
close to σe, therefore the weak interface layer will only yield at the fibre end face and Eq. 13 can be 
applied without significant loss of accuracy. In contrast, for fibres with a large aspect ratio, there is 
considerable stress transfer remaining at the side of the fibre even after yielding of the weak layer 
has occurred at the fibre ends. The present treatment essentially approximates the weakening of this 
stress transfer due to the presence of the weak layer by assuming that the shear stress averaged over 
one half of the fibre is proportional to σe.  The proposed approximation may, however, become less 
accurate with increasing aspect ratio. 
 
As the total volume of the weak interface layer will generally be very small, the yielding in the 
weak interface layers will not lead to a major deviation from linearity of the stress-strain curve of 
the composite, that is, on a macroscopic scale, the yielding in the weak interface layers will be 
barely detectable. Significant deviation from linearity will occur when yielding occurs in the 
remainder of the matrix, that is, when the average stress in the matrix exceeds the matrix yield 
stress (see also [8]). Hence, it follows: 
 

 m
yr

e

PFZ
y

r

r

r

'
mr

rrc
c
y )1()tanh(1 σ

σ
σ

γ
γ

εσ f
s

s
E

EEEf −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=  (14) 

 



 

The strain in the composite may be further approximated at the yield point by m
m
yc Eσε ≅ and, 

hence, Eq. 14 can be rearranged to give a linear relationship between the macroscopic yield strength 
of the composite and the yield strength of the matrix: 
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or, by using Eq. 5: 
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It is noted that when e

PFZ
y σσ equals 1, it follows from Eqs. 7 and 15 that m

y
c
y σσ = Ec/Em. This 

case however represents an unrealistic situation of no local matrix yielding over the reinforcement-
matrix interface. Hence the composite behaves linearly until overall yield which coincides with 

matrix yield, that is, at strain 
m
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In most real composites, the PFZ will strain harden during plastic deformation and for this effect to 
be accounted for by the proposed model, the stress at the fibre ends can be calculated from a 
theoretical expression of strain hardening [29,30]: 
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where  is the yield strength of the weak interface layer at zero pre-strain, εe is the strain in the 
plastic zone calculated using Eq. 11 and K is a parameter which depends on the strain hardening 
capability of the PFZ (for 8090 K is estimated at about 150 MPa). 
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3.2. Verification and application 
 
The present model of MMCs with a weak interface region adjacent to the particles should be valid 
for various heat treatable Al-based MMCs in which a PFZ around the reinforcement develops. An 
example of such a composite is the 8090 (Al-Li-Cu-Mg) alloy reinforced with SiC particles. The 
matrix of this composite is strengthened by GPB zones, S′ (Al2CuMg) and δ′ (Al3Li) precipitates 
[14,31,33,32], but a layer devoid of the strengthening δ′ (Al3Li) precipitates forms around the SiC 
particles as a result of Li depletion of the zone caused by the formation of Li containing precipitates 
on the SiC/matrix interface [14]. The SiC particles are angular, and, although they are clearly not 
cylindrical, SL type models with cylindrical inclusions should provide a better approximation of the 
stress transfer as compared to the Eshelby type model with ellipsoidal inclusions. In a recent study 
[33] of the proof strengths of various Al-Li-Cu-Mg based composites and monolithic alloys, a 



 

comprehensive model for the strength of the matrices of these alloys and composites based on a 
detailed assessment of the microstructures is presented and validated. The values of  and  
obtained in that study are used to validate the model presented in this section of the present work. It 
should be noted that obtaining  and  for heat treatable, PFZ-containing MMCs is not a 
straightforward matter, because both these strengths vary with ageing time and cannot be measured 
directly. 
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Account should also be taken of the fact that, due to the high load transfer to the reinforcement 
resulting from plastic deformation, MMCs have a high work hardening rate, and consequently the 
(0.2%) proof stress can be considerably higher than the yield stress. In order to account for this 
“plastic stress transfer”, the corresponding strength increment, , as predicted by the Eshelby-
type model presented in Ref. [

pstσΔ
34], is used. The latter work shows that  depends on fr, sr, 

elasticity constants and the plastic strain of the composite , and is estimated at about 20 MPa for 
the material data of the tested MMCs considered here (Table 1). For the composites with a weak 
interface layer, the “plastic stress transfer” is taken account of by assuming that, similarly to the 
elastic stress transfer, the effect is proportional to . Thus, Eq. 16 is modified to: 
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The results of the assessment of the 0.2% proof stress, presented in Table 1, show that the proposed 
model predicts the proof stresses of the 8090 MMC samples quite well. In particular, it accurately 
predicts that, for this composite, the potential strengthening effect due the SiC is reduced to zero as 
a result of the presence of the PFZ. 
 
 
Table 1 Yield strengths of 8090/17vol%SiC composites after ageing for several times at 170ºC. 

and  are obtained from a quantitative analysis microstructure in combination with 
a comprehensive model of the strengthening of Al-Li-Cu-Mg alloys [
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Fig. 7 The ratio of the yield strength of Al-SiC composites to the yield strength of the matrix for 

m
y

PFZ
y σσ = 0.75, vs. the aspect ratio of the cylindrical SiC reinforcement. (EAl = 71 GPa, 

ESiC = 450 GPa.) 
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Fig. 8 The ratio of the yield strength of Al-SiC composites to the yield strength of the matrix vs. 

m
y

PFZ
y σσ . The aspect ratio of cylindrical SiC inclusions is 2. (EAl = 71 GPa, ESiC = 

450 GPa.) 
 

0.9

0.95

1

1.05

1.1

0 5 10 15
aspect ratio ->

yi
el

d 
st

re
ng

th
 ra

tio
 ->

fr = 0.1
fr = 0.2
fr = 0.3
fr = 0.4

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.2 0.4 0.6 0.8 1

yi
el

d 
st

re
ng

th
 ra

tio
 ->

fr = 0.1
fr = 0.2
fr = 0.3
fr = 0.4



 

 
The above analytical expressions can be readily evaluated for any composite and selected results for 
the case of Al-SiC composites are presented in Fig. 7 and Fig. 8. For the sake of clarity of 
presentation the strain hardening of the PFZ has been neglected, that is, a perfectly plastic matrix is 
considered. The present simplified model predicts that for a perfectly plastic matrix, the thickness 
of the PFZ, dPFZ, does not influence the yield strength of the composite.  
 
Fig. 7 shows that even for a relatively limited softening of the interface layer ( m

y
PFZ
y σσ = 0.75) the 

strengthening of the material as a result of the addition of fibres is predicted to be significantly 
reduced. This effect is especially marked for low aspect ratios of “reinforcement”. Fig. 8 further 
illustrates the effect of a combination of a weak interface layer and low fibre aspect ratio. This 
figure shows that for composites with inclusions of fixed aspect ratio (sr = 2), strengthening due to 
the SiC is only achieved if m

y
PFZ
y σσ  is larger than a critical value (for sr = 2 this critical value is 

0.7).  
 
Having successfully applied the present model for a composite with a weak interface layer to data 
on one specific MMC, it is clear that more work on these type of systems is needed to obtain a full 
assessment of the accuracy of the model.  Especially data on the effect of variation of the aspect 
ratio of the fibres would enhance understanding of the stress transfer in these composites with a 
weak interface layer.  This kind of understanding can be achieved by finite element modelling, 
which, in addition, will lead to a detailed examination of the localised microscopic yield behaviour 
of the weak interface. 
 
 
Summary 
 
A new version of the shear lag (SL) model for bonded fibres has been derived. This new version 
(SSSL) accounts for fibre end stresses in an approximate yet realistic manner. It is shown that the 
SSSL model agrees well with experimental data and resolves some of the discrepancies between 
Eshelby type models and previous SL type models. 
 
The accuracy and relative simplicity of the SSSL model have been exploited to derive an analytical 
model for the stress transfer in a composite that contains a weak layer in the matrix adjacent to the 
reinforcement. Evaluation of the equations for the example of an Al-SiC metal matrix composite 
shows that a relatively small strength differential of the weak layer with the rest of the matrix can 
significantly reduce the apparent macroscopic yield strength of the composite. The model 
predictions are consistent with yield strength measurements of aged 8090 (Al-Li-Cu-Mg) MMC 
samples. 
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