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In this work, density functional theory (DFT) was used to obtain microscopic struc-

tures of heterogeneous catalysts based on rhodium supported on a metal oxide (γ-

Al2O3). Two different methodologies were used. The first methodology uses a periodic

model and a plane-wave basis set to solve the Schrödinger equation in the framework

of Bloch’s theorem. The optimised structures of RhI(CO)2/γ-Al2O3 species obtained at

this level of theory have bond lengths in agreement with experimental EXAFS deter-

minations. The weighted linear combination of Rh K-edge XANES spectra computed

using the three most dominant structures reproduces well the phase and shape of the

oscillations of the experimental XANES spectrum, providing support for the computed

structures.

The second methodology is based on hybrid quantum mechanical (QM)/molecular

mechanical (MM) calculations. Within this scheme the support is described at the

MM level of theory while the region of interest, the absorption site where the sur-

face RhI(CO)2 complex lies, is described with a suitable QM approach. These hybrid

calculations performed at the PBE/ECP/cc-pVDZ level of theory were used to ob-

tain minimum-energy structures and harmonic stretching frequencies of RhI(CO)2/γ-

Al2O3 species. The computed bond lengths and harmonic stretching frequencies were

in good agreement with the experimental evidence and with the results obtained using

periodic models.
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CHAPTER 1

INTRODUCTION

1.1 Aims of the Thesis

This project aims to provide a theoretical description of the chemical properties and

activity of a particular class of heterogeneous catalysts based on a transition metal

supported on a metal oxide surface.

The study of catalysis dates back to early in the nineteenth century [1]. Since the

discovery that some chemical reactions occured faster when they were carried out in

the presence of a particular material –then called a catalyst–, catalysis has had a tremen-

dous impact on the development of the industrial world: it is estimated that about 90%

of all modern chemical products involve the use of a catalyst in at least one stage in

their manufacture [2, 3]. Huge efforts have been made to understand the mechanisms

with which catalysts work and to improve the efficiency of catalytic reactions.

Often, a solid catalyst is a substance characterised by the presence of structural de-

fects and different crystalline structures. This makes the correlation between structural

properties and catalytic behaviour very difficult to determine. In this case, theory can

be very valuable to gain a better understanding of the way a catalyst works by investi-

gating its electronic structure.

The catalyst under investigation in this project is rhodium supported on γ-Al2O3

(γ-alumina). The main objective was to compute the electronic structure of different

rhodium gem-dicarbonyl (RhI(CO)2) surface species, whose presence has been well

characterised experimentally [4–7]. In this thesis, an original theoretical approach has

1



1.2 Catalysis

been developed and tested on some simple complexes containing rhodium, before be-

ing applied to the study of catalyst surface species.

1.2 Catalysis

A rigorous definition of a catalyst is “a substance that increases the rate of a reaction

without modifying the overall standard Gibbs energy change in the reaction” [2]. This

means that the catalyst chemically interacts with the reactants and lowers the energy

barrier necessary for the formation of the products. Catalysts are usually divided into

two main categories called homogeneous and heterogeneous.

In homogeneous catalysis the reactants and the catalyst are in the same phase, be

it liquid or gas. The advantage of having the catalyst and the reactants in the same

phase is that they can easily interact with one another and as consequence the catalyst

has a high activity. Fine control of the structure of the catalyst active site allows the

achievement of a high degree of selectivity, allowing the catalyst to make a specific

reaction pathway more favourable when multiple pathways are possible.

In heterogeneous catalysis the reactants and the catalyst are in different phases, typi-

cally the catalyst is a solid. In such catalysts only the surface is exposed to the reactants

and promotes the reaction. The surface active species generally exhibits a number of

different structures, and this can result in a reduced selectivity. The separation and

the re-use of a heterogeneous catalyst is nonetheless far more easy compared to re-

use of homogeneous catalysts: this leads to a reduced use of solvents and generally a

smaller production of waste, which makes this approach appealing for the perspective

of environmentally sustainable chemistry.

1.2.1 Heterogeneous Catalysis

The surface area-to-volume ratio of a physical object increases as the size of the object

decreases, i.e. small objects have a relatively large surface area-to-volume ratio com-

pared to large objects. In heterogeneous catalysis only the surface of the catalyst is

2



1.2 Catalysis

(a) (b)

Figure 1.1: Different types of heterogeneous catalysts. (a) Platinum gauze used
for the catalytic oxidation of ammonia in the production of nitric acid [9]. (b) A
ceramic honeycomb support used for the removal of nitrogen oxides from diesel
exhaust.

accessible to the reactants and becomes engaged in a chemical reaction: it is therefore

of fundamental importance to maximise the surface area-to-volume ratio in order to

increase the catalyst activity.

Transition metals are used as catalysts due to their unique ability to coordinate sev-

eral kinds of chemical species. They are normally used finely divided or dispersed

on a high-area porous support [8], although pure metals can be used for particular

applications (see Figure 1.1).

Examples of metallic heterogeneous catalysts include Raney nickel, a porous solid

used in the hydrogenation and desulfurisation of organic molecules. It is prepared

by treating an aluminium-nickel alloy with concentrated sodium hydroxide. This dis-

solves most of the aluminium in the alloy and leaves a finely-divided highly-porous

nickel powder [10]. In the industrial production of nitric acid, a gauze composed of

small platinum wires is used to catalytically oxidise ammonia to nitric oxide [11]. More

often however the metal is dispersed on a high-area porous support that prevents the

3



1.2 Catalysis

metal particles from sintering together, and provides the mechanical strength that a

commercial catalyst must have in order to be used in practical applications, whose

operating conditions often involve high pressure and temperature. Furthermore, the

interaction between the metal and the support can alter significantly the properties of

the catalystab: a recently developed approach for the synthesis of catalysts focuses on

precise control of the active site architecture using macroporous and mesoporous zeo-

lites. The high degree of selectivity is reached by anchoring the catalyst to well-defined,

monodispersed and easily accessible molecular units on the support’s surface. The re-

sulting single-site catalyst thus has the selectivity of a homogeneous catalyst and the

strength of a heterogeneous catalyst [12, 13]. Achieving all these features is not easy

and requires a precise understanding of the catalysed reaction pathway, as well as a

careful synthesis ot the catalyst.

The reaction mechanism in heterogeneous catalysis is characterised by a sequence

of events that can be summarised as follows [2]:

1. Diffusion of the reactants through the gas or liquid phase to the catalyst surface.

2. Adsorption of the reactants on the catalyst surface. Chemisorption occurs when

new chemical bonds are formed. In contrast, physisorption occurs when only weak

electrostatic interactions are present between the adsorbate and the substrate.

3. Surface diffusion of the adsorbed species. The mobility of the reactants on the

catalyst’s surface is of fundamental importance for the reaction to take place.

4. Reaction between the adsorbed reactants. The activation energy of the catalysed

reaction is lower than the analogous uncatalysed reaction, resulting in a more

rapid reaction.

5. Desorption of the products and their subsequent diffusion into a different phase.

The activity of a catalyst is the extent to which it influences the rate of a reaction,

which depends on the surface absorption mechanism and on the thermodynamic vari-

ables pressure, volume, molar fraction and temperatue. The absorption mechanism of

4



1.2 Catalysis

a gas over a surface involves two steps:

A(g)
k1a−→ A(a) (1.1)

A(a)
k1d−→ A(g) (1.2)

The rate of adsorption of the species A(g) in step (1.1) is given by:

−
d[A(g)]

dt
= k1a(1− θA)PA (1.3)

where PA is the pressure of gas and θA is the fractional blocking of the surface by the

adsorbate. When the surface is completely filled by the adsorbate the absorption rate is

zero and consequently θA = 1. The rate of desorption of the species A(a) due to reaction

(1.2) is given by:

−
d[A(a)]

dt
= k1dθA (1.4)

which depends only on the fractional coverage of the surface θA. At equilibrium the

absorption and desorption rates are equivalent, therefore it follows that

k1a(1− θA)PA = k1dθA (1.5)

This gives

θA =
k1PA

1 + k1PA
(1.6)

where k1 = k1a/k1d is the adsorption equilibrium constant. This expression is known

as the Langmuir isotherm.

In heterogeneous catalysis there are two main reaction mechanisms, depending on

whether one or more reactants are adsorbed on the catalyst surface. In the first mecha-

nism, called the Eley-Rideal mechanism [14], the reaction occurs between an adsorbate

and a gas (see Figure 1.2). This process can be described as a species A being adsorbed

on the catalyst surface, and then reacting directly with a species B in the gas phase to

give C, that is adsorbed on the surface and subsequently desorbed. The overall mech-

5



1.2 Catalysis

 0  0.2  0.4  0.6  0.8  1

R
a

te

Pressure

θ
A

=1

Figure 1.2: Eley-Rideal Mechanism: the reaction occurs between an adsorbate
A (white atoms) and a gas B (blue atoms). The reaction rate (at PB = constant.)
depends on the adsorbate coverage θA only.

anism of this reaction can be written as:

A(g)

k1a−⇀↽−
k1d

A(a) (1.7)

A(a) + B(g)
k2−→ C(a) (1.8)

C(a)
k3−→ C(g) (1.9)

Assuming that step (1.8) is rate-limiting the overall process, it follows that the rate of

the reaction is given by:
d[C(a)]

dt
= k2θAPB (1.10)

(the surface coverage of C(a) can be neglected since it desorbs rapidly). At equilibrium

the surface coverage is in a steady state:

dθA
dt

= k1a(1− θA)PA − k1dθA − k2θAPB = 0 (1.11)

It follows that,

θA =
k1aPA

k1aPA + k1d + k2PB
(1.12)

6



1.2 Catalysis

Substitution of equation (1.12) into equation (1.10) yields:

d[C(a)]

dt
=

k1ak2PAPB
k1aPA + k1d + k2PB

(1.13)

At PB = constant, this equation can be rewritten as:

d[C(a)]

dt
=
k′k2PAPB
1 + k′PA

(1.14)

where k′ =
k1a

k1d + k2PB
is a complex rate constant. This is known as the Eley-Rideal

equation. The rate changes from first order in [A] at low pressure of A, to zero order in

[A] at high pressure, as shown in the right panel of Figure 1.2.

The second mechanism is called the Langmuir-Hinshelwood mechanism [14] and

involves both reactants being adsorbed on the catalyst surface before reaction occurs

(see Figure 1.3). The process can be described as follows.

Consider the reaction A(a) + B(a) −→ C(g) where both reactants are adsorbed on the

catalyst surface. The full mechanism of the reaction is then:

A(g)

k1a−⇀↽−
k1d

A(a) (1.15)

B(g)

k2a−⇀↽−
k2d

B(a) (1.16)

A(a) + B(a)
k3−→ C(a) (1.17)

C(a)

k4−⇀↽− C(g) (1.18)

The surface coverage θA and θB depends now on the pressure of both species. At

equilibrium, the rate of change of the surface coverage is:

dθA
dt

= k1a(1− θA − θB)PA − k1dθA − k3θAθB = 0 (1.19a)

dθB
dt

= k2a(1− θA − θB)PB − k2dθB − k3θAθB = 0 (1.19b)

Assuming the loss of the adsorbed reactants due to the formation of C(a) can be ne-

7
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 0  0.2  0.4  0.6  0.8  1

R
at

e

Surface Coverage  θA

Figure 1.3: Langmuir-Hinshelwood Mechanism: the reaction occurs between
two adsorbates A (white atoms) and B (blue atoms). The reaction rate depends
on the the adsorbate coverage of both species.

glected, i.e. :

k3θAθB � k1a(1− θA − θB)PA − k1dθA (1.20a)

k3θAθB � k2a(1− θA − θB)PB − k2dθB (1.20b)

Then, as a consequence, the term k3θAθB = 0 and the Langmuir isotherms for the

reactants are obtained by reordening the equations 1.19a and 1.19b:

θA =
k1PA

1 + k1PA + k2PB
(1.21a)

θB =
k2PB

1 + k1PA + k2PB
(1.21b)

were k1 =
k1a
k1d

and k2 =
k2a
k2d

are the adsorption equilibrium constants. Assuming that

the rate-limiting step is again the (1.17), the rate equation has the following form and

is known as the Langmuir-Hinshelwood equation.

d[C(a)]

dt
= k3θAθB =

k1k2k3PAPB
(1 + k1PA + k2PB)2

(1.22)

At low pressures the rate is of the first order in [A], as shown in the right panel of

8



1.2 Catalysis

surface adatom vacancy step kink

Figure 1.4: Schematic representation of different surface structures.

Figure 1.3. The highest rate of conversion is reached when the ratio of the surface

compositions are similar to the stoichiometry of the reaction.

The equations presented in this section provide a quantitative way of assessing the

activity of a catalyst. These simple mechanisms are useful because the macroscopic

behaviour of a catalyst is correlated to its microscopic structure. In principle, the ab-

sorption energies of reactants and reaction intermediates can be computed using the-

oretical methods, and then used to determine the rate constants as a function of the

catalyst surface composition and morphology.

1.2.2 Catalyst structure

In this thesis the structure-activity relationship of supported rhodium catalysts is in-

vestigated with theoretical methods. Particular attention is given to the role played

by the support, in terms of the geometrical constraints it provides and the electronic

interaction between the metal active centre and the support atoms.

Figure 1.4 shows a schematic representation of the principal structures involved in

heterogeneous catalysis. The most common structure is a flat surface exposing a

specific crystallographic face. Surface atoms have a coordination number smaller than

bulk atoms, and experience an anisotropic field that modifies greatly their chemical

properties, making them more able to coordinate other species. Defects on surfaces

can occur, and they too contribute to the final properties of the catalysts. A vacancy is

a single atom missing from a crystal surface and an adatom is a single atom adsorbed

on a crystal surface. These kinds of defects are involved in surface growth and often

promote the adsorption of reactants. The dislocation between bulk atoms causes a
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1.3 The Chemistry of Alumina

mismatch between crystal planes and the formation of steps and kinks. The atoms

in steps and kinks have a very low coordination number, a high free energy and as a

consequence a high reactivity and a strong binding energy for an adsorbate.

Such a rich surface topography makes a supported metal catalyst extremely difficult

to characterise. Preparation of a metal single crystal followed by cleavage exposing a

particular crystal plane is a technique widely used in surface science. It can be used as a

model for the fundamental understanding of the interactions between the adsorbates

and the metal, but it does not account for the effect of the support. Deposition of a

thin film of metal on a low-area planar support (such as TiO2) provides a structurally

simple model that accounts for the support interaction. Although the well-defined and

measurable properties of these surfaces make them appealing as catalyst models, the

deposited metal particles show a non-uniform distribution of size and shape that limit

the correlation of measured average properties with catalytic properties.

Another class of support for heterogeneous catalysis includes high surface area ce-

ramic materials such as γ-alumina. This material has a typical surface area of 100 m2/g

[15] and a bulk structure characterised by an octahedral aluminum sub-lattice with a

percentage of tetrahedral aluminum sites of about 25-31% [16]. The statistical charac-

ter of the γ-alumina structure makes the structure-activity relationship very difficult to

detemine experimentally, and this will be discussed in more detail in the next section.

1.3 The Chemistry of Alumina

One of the most used supports in heterogeneous catalysis is undoubtly γ-alumina.

There are many reasons for this choice: primarily its mechanical strength and thermal

stability, its stability under oxidising conditions, and finally its high surface area-to-

volume ratio. Alumina surfaces have also remarkable chemical properties: surface

OH groups act as weak Brønsted acids, where unsaturated Al3+ atoms act as Lewis

acid sites and O2− atoms act as Lewis base sites. Due to the rigidity of the surface,

these groups coexist without reacting with one another. Although alumina is a cat-
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alyst used on its own for many commercially important reactions (for example, it is

used as a desulphurising agent in the Claus process), it is more commonly used as

a support for transition metals. For some supported metal catalysts there is no de-

pendence on surface structure, while for others the catalytic behaviour of the metal

changes significantly in response of its interaction with the surface atoms. For sup-

ported Rh/Al2O3catalysts, it has been shown that surface OH− groups are involved

in the disruption of small rhodium particles under a CO atmosphere, leading to the

formation of monodispersed rhodium gem-dicarbonyl species and molecular hydro-

gen [6]. The nature of the support also determines the size and distribution of the

metal particles, and hence the nature of the surface species produced under operating

conditions.

1.3.1 The Bulk Structure

The structure of γ-alumina is usually characterised1 by techniques such as IR spectros-

copy, NMR spectroscopy, X-ray diffraction (XRD), transmission electron microscopy

and a variety of computational methods ranging from atomistic simulations [18–22] to

plain-wave/pseudopotential density functional calculations [16, 23–25].

Although a large scientific effort has been devoted to the characterisation of γ-

alumina, its structure still remains a matter of investigation. The transformation se-

quence that leads aluminium hydroxides such as AlOOH (bohemite) to be converted

into α-alumina (corundum)2, gives rise to a series of metastable phases, known as tran-

sition aluminas [24]:

AlOOH
450 ◦C−−−−−→ γ-Al2O3

750 ◦C−−−−−→ δ-Al2O3
1000 ◦C−−−−−→ θ-Al2O3

1200 ◦C−−−−−→ α-Al2O3

The transition aluminas can be produced in the laboratory: depending on the synthetic

1See the comprehensive review of the fundamental aspects of γ-alumina by M. Trueba and S. P. Trasatti
and the references therein [17].

2The most thermodynamically stable phase of aluminium oxides with stoichiometry Al2O3
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1

Acta Cryst. B47, 617 (1991) [26]
a 7.911 α 90. space group: Fd3m
b 7.911 β 90. unit cell: cubic
c 7.911 γ 90.

2

Phys. Rev. B 65, 012101 (2001) [23]
a 7.887 α 90. space group: Fd3m
b 7.887 β 90. unit cell: cubic
c 7.887 γ 90.

3

J. Phys. Chem. B 105, 5121 (2001) [16, 27]
a 5.587 α 90. space group: P21/m
b 8.413 β 90.59 unit cell: monoclinic
c 8.068 γ 90.

4

Phys. Rev. B 68, 144110 (2003) [28]
a 5.652 α 90. space group: I41/amd
b 5.652 β 90. unit cell: tetragonal
c 7.871 γ 90.

Table 1.1: Overview of four recently proposed models of the γ−alumina bulk
structure.

method used, a mixture of different polymorphs is obtained, with a variable degree of

amorphous structure. All transition aluminas share some common structural prop-

erties: they have a well-defined oxygen sublattice that forms interstices filled by alu-

minum atoms occupying octahedral and tetrahedral sites. Traditionally the structure

of γ−alumina is regarded as a defect cubic spinel type, where the magnesium atoms in

the ideal spinel MgAl2O4 are replaced with aluminum atoms. To satisfy the Al2O3 stoi-

chiometry, some sites remain empty and form defects whose exact position is difficult

to determine. The controversy regarding the alumina structure arises from the fact that

the position of defects determines the space group of a given polymorph: γ−aluminas

prepared from different precursors have been reported to have a cubic structure with

tetragonal distortion, while other studies report only a tetragonal structure [17].

In Table 1.1, four recently proposed structures have been considered as possible can-

didates for the simulation of γ−alumina as a support for heterogeneous catalysts. The

model no. 3, shown in Figure 1.5, was chosen in this present work because it accounts
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1.3 The Chemistry of Alumina

Figure 1.5: The structural model of γ-Al2O3 proposed by Digne et al. [27] has a
monoclinic cell containing eight Al2O3 units. Red atoms are oxygen, grey atoms
are aluminium.

for the surface hydroxylation/dehydroxylation process induced by temperature effects

[16, 27, 29]. In the original work [29], this model has been optimised with the use of

calculations performed at the plane-wave/DFT level of theory with periodic boundary

conditions. The bulk structure obtained is consistent with XRD, IR and NMR determi-

nations, and in particular gives a realistic representation of the alumina surfaces by

taking into account the presence of different types of surface hydroxy groups, correlat-

ing their properties with the chemical environment, morphology and composition of

the exposed crystal planes.

1.3.2 Surface Properties

The acid-base properties of γ−alumina surfaces determine the dispersion of the sup-

ported active species and ultimately the characteristics of the final catalyst. The reac-

tivity and the acidity of surface hydroxyl groups is determined by their local chemical

environmentab: up to seven different bands have been identified in the IR spectrum

of hydroxylated alumina surfaces. These bands are generally assigned to OH groups

in different environments depending on the number of aluminum atoms coordinated

to the oxygen, and to their coordination number [30]. Although this simple model is

the most widely used, it suffers of serious limitations due to the crude representation
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of alumina surfaces. The bulk model of γ−alumina proposed by Digne et al. contains 8

Al2O3 units and offers the best compromise in terms of computational cost and struc-

tural accuracy. In reference [29], the computed surface density and vibrational proper-

ties of the surface hydroxyl groups are in agreement with the experimental data, and

have been shown to be dependant on the morphology of γ−alumina surfaces. There-

fore, this model appears to be the most suitable candidate for the representation of

γ−alumina supported heterogeneous catalysts.

1.4 Supported Rhodium Catalysts

1.4.1 Industrial Use and Applications

Supported rhodium catalysts are very important in industry since the metal centre can

easily coordinate different ligands and, for example, activate the C-H bond in alkanes

[31–33] and the H-H bond in hydrogen [34]. The primary use of rhodium however is

in the automotive industry for the production of three-way catalytic converters. These

devices are practical examples of heterogeneous catalysts: they consist in a monolithic

ceramic support coated with a high area material such as γ−alumina that acts as a sup-

port for the active catalyst, a mixture of the precious metals platinum, palladium and

rhodium. Three-way catalytic converters promote the removal of pollutants such as

nitrogen oxides, carbon monoxide and unburnt hydrocarbons from exhaust emissions,

as shown in Figure 1.6. Rhodium is an efficient catalyst for NOx reduction, whereas pal-

ladium and platinum metals are used in CO and hydrocarbon oxidation reactions, in

particular during ‘cold start’. The simultaneous conversion of all pollutants is achieved

when the fuel is burned in stoichiometric conditions. When the engine does not oper-

ate under these conditions, the exhaust stream contains more reducing reactants (CO

and CxHy) or more oxidising reactants (O2 and NOx) and the conversion efficiency of

the catalyst decreases. To overcome this problem, reversible metal oxides such as ceria

(CeO2) and zirconia (ZrO2) are added to the catalyst. In this way the catalyst is able to

store some oxygen that can be reversibly released when the exhaust does not contain
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1.4 Supported Rhodium Catalysts

Figure 1.6: The automobile three-way catalytic converter is a practical example
of heterogeneous catalysis. The device catalyses the oxidation of CO and hydro-
carbons, and the reduction of nitrogen oxides.

enough oxygen.

The interactions between oxygen and precious metals are complicated and the inter-

action mechanism is not fully understood. A practical problem is the ageing of the cat-

alyst due to thermal treatments and oxidation/reduction cycles: it has been shown that

the loss of activity is related to the reduction of surface area, the sintering of rhodium

particles and the encapsulation of rhodium particles into the porous support [35].

1.4.2 Surface Species

Due to the complex structure of supported metal catalysts, a wide range of parameters

can be expected to affect catalytic selectivity and activity such as type of metal used,

the type and porosity of the support, the introduction of promoters to the catalyst

composition, and the size and shape of the agglomerated Rh particles. Moreover, some

changes in catalytic activity are ascribed to a modification of the electronic properties

of the metal particles induced by a metal-support interaction e.g. the hydroxyl groups

of the alumina support are effective in particle degradation and subsequent formation

of oxidised metal centres such as Rh+ [6]. The strong interaction between Rh metal and

the γ-alumina support may lead to a decreased catalytic activity at high temperature,

e.g. rhodium forms an oxide phase and is encapsulated into the support, thus lowering

the total amount of active catalyst [35].

In 1957 a pioneering IR study on the chemisorption of CO on rhodium supported on

high area alumina reported the presence of several types of rhodium carbonyl species,
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1.4 Supported Rhodium Catalysts

including a single CO molecule bound to a rhodium atom, a bridged CO molecule

connecting two rhodium atoms and two CO molecules bound to a rhodium atom [4].

In 1985 Van’t Blik et al. [5] investigated the behaviour of highly dispersed metallic

rhodium particles supported on γ-alumina. The oxidative adsorption of CO at room

temperature led to the disruption of the Rh crystallites and formation of monodis-

persed geminal dicarbonyl species in which rhodium has an oxidation state of +1 and

is surrounded by two carbon monoxide molecules and three oxygen atoms. Later stud-

ies confirmed the presence of isolated gem-dicarbonyl rhodium species [36–41], sug-

gesting a square planar coordination for the rhodium centre [42, 43] while other work

confirmed the interaction with three basal oxygen atoms [44].

Other studies investigated the influence of chlorine on the lability of rhodium par-

ticles, some concluding that chlorine stabilises the gem-dicarbonyl species (thus pro-

moting the disruption of rhodium particles) [45], while other workers claimed that

chlorine-free monodispersed gem-dicarbonyl species were observed in a catalyst pre-

pared from chlorinated precursors [44].

Even though a number of experimental techniques have been employed to investi-

gate the nature of supported rhodium catalysts, open questions still remain. In partic-

ular the morphology of monodispersed rhodium species on γ−alumina surfaces is not

fully established.

1.4.3 Preparation

The samples of Rh/γ-Al2O3 studied in the laboratory by experimental research groups

are in general synthesized according to a standard protocol, in order to make the mea-

surements reproducible. There are two methods to prepare supported Rh/Al2O3 cata-

lysts.

In the first method, the samples are prepared by metallo-organic chemical vapour

deposition (MOCVD) of a stable complex such as [Rh(CO)2Cl]2 onto hydroxylated γ-

Al2O3. In this case the Al2O3 is first dried in a He flow at about 500 K for 6 hours.

Under these conditions the alumina is dried but not extensively dehydroxylated. The
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[Rh(CO)2Cl]2 is then sublimed onto the γ-Al2O3 to produce a yellow powder. The cat-

alyst so produced is finally stored under an inert He atmosphere and kept refrigerated

until use [42].

In the second method the samples are prepared by a wet incipient impregnation of

the γ-Al2O3 with an aqueous solution of a Rh salt, usually RhCl3 · 3H2O, with an ade-

quate amount of the Rh precursor for particular surface loading. To prepare chlorine-

free catalysts, Rh(NO3)3 is used. The sample is then dried in air to remove the solvent

and calcined for 6 hours at 673 K in 5% O2/He. It is then reduced for 5 hours under

flowing 5% H2/He at 573 K [42].

1.4.4 Characterisation

The morphological characterisation and the quantitative assessment of catalyst effi-

ciency involves the use of surface science techniques carried out under operating con-

ditions, i.e. in-situ. The study of heterogeneous catalysts can be reliably achieved by us-

ing a combination of complementary techniques such as Energy Dispersive Extended

X-ray Absorption Fine Structure (EDE), Mass Spectrometry (MS) and Diffuse Reflec-

tance Infrared Fourier Transform Spectroscopy (DRIFTS) carried out simultaneously,

under well-defined conditions [7, 42, 46, 47].

X-ray absorption spectroscopy is a powerful technique used to study the evolution

of the electronic and the local structure of matter. Its sensitivity to short range order

and its chemical selectivity make it complementary to X-ray diffraction. The recording

of X-ray absorption spectra in a dispersive mode takes advantage of the absence of any

mechanical movement of the spectrometer, thus allowing the acquisition of a complete

spectrum in a timescale of ∼ 300 ms [46].

In EDE, a quasi-parallel and polychromatic beam, supplied by a synchrotron ra-

diation source, is dispersed and focused by an elliptically curved crystal. Because

the incident X-ray strikes the crystal at slightly different angles along its length, the

bent crystal acts as a polychromator, diffracting a different energy at each point. This

energy-dispersed beam converges to a focal point at the sample position, it is trans-

17



1.5 Theoretical Studies

mitted through the sample and then it diverges toward a detector. The position of the

beam on the detector can be directly correlated to energy. The X-ray absorption spec-

trum is obtained by taking the logarithm of the ratio of I0 and I1 data, where I0 and I1

are spatial X-ray intensity distributions with and without the sample, respectively [48].

Infrared spectroscopy is a technique that is widely used to characterise molecules

in solution and in the gas phase. This technique is limited to the analysis of sam-

ples transparent to IR radiation, that can be formed into the shape of a self-supported

pellet. DRIFTS is a powerful technique for non-transparent materials and for in-situ

measurements under varying environmental and reaction conditions. This kind of

spectroscopy offers a number of advantages including minimal or no sample prepara-

tion, a very high sensitivity to surface species, the ability to study most non-reflective

materials and finally the ability to investigate irregular surfaces or coating [49–51].

Mass spectrometry is an analytical tool used for measuring the molecular mass of a

gaseous sample, and its breakdown pattern on electron impact. In a mass spectrome-

ter, the gas molecules are converted into charged particles, typically positive ions, by

electron bombardment generated from a hot wire filament. These ions are extracted

into the analyser region of the mass spectrometer where they are separated according

to their mass-to-charge ratios (m/z). The separated ions are detected and the signals

sent to a data system where the m/z ratios are stored together with their relative abun-

dance for presentation in the format of a m/z spectrum. In in-situ experiments the m/z

spectrum gives informations about the nature of species produced during a chemical

reaction.

1.5 Theoretical Studies

Quantum chemical methods, especially when used in combination with accurate ex-

perimental investigations, are powerful tools in exploring the molecular basis of catal-

ysis. In particular, they are used to model accurately the structure of active sites and

ultimately to explain the mechanism of catalytic reactions [52].
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The main pieces of information that can be obtained from a quantum mechanical

calculation is the energy E and the wavefunction Ψ of a system. This follows directly

from the Schrödinger equation:

ĤΨ = EΨ (1.23)

where for each set of coordinates of a system, a Hamiltonian Ĥ can be set up that can

give the energy E of this structure. The minima of the energy with respect to structural

coordinates define the structure of reactants, intermediates and products. The accuracy

of a quantum mechanical calculation depends on the theoretical method used: this can

pose serious limitations to the size of the system investigated. For this reason, different

theoretical methodologies are employed to study systems of different type.

1.5.1 Methodologies

Very accurate solutions of the Schrödinger equation (1.23) are obtained with theoret-

ical methods that use very large basis sets and account for effects such as electron

correlation or multi configurational character of an electronic state. These methods are

called ab-initio, meaning from first principles, because they are based entirely on theory

(although some approximations are made). Methods based on the density functional

theory (DFT) cannot be defined ab-initio because the functional form of the electron

density, on which the theory is based, is unknown and is determined empirically.

Accurate theoretical methods are time-demanding and can be applied to systems

containing a limited number of atoms. One of the aims of contemporary catalytic sci-

ence is to deal with environmental effects, and for heterogeneous catalysts this means

taking into account the interactions between the support and the active catalyst, i.e.

the metal centre. There is, therefore, a strong interest to use methods that allow the

study of large systems. In this section three different theoretical approaches are de-

scribed, each one employing different levels of approximation to describe the effect of

the extended environment [52].

The molecular cluster approach In this approach, the active site is represented as a
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molecular cluster. Due to the intrinsic simplicity of such a model, this approach

allows the use of sophisticated electronic structure-based methods. Here the

main source of error is the cutting of chemical bonds at the cluster boundary,

which is partially corrected for by saturating the resulting dangling bonds with

appropriate atoms or chemical residues. This approach ignores the effect of the

sourrounding atoms and is generally used to investigate the fundamental interac-

tions between the metal and some ligands (see, for example, the work of Russo et

al. [53, 54]). This method has been successfully used by Andrews and co-workers

to compute harmonic frequencies for small rhodium carbonyl complexes, and the

results compared with infrared measurements performed in a solid neon matrix

[55, 56].

The embedded molecular cluster approach This approach is more sophisticated

compared the molecular cluster approach. Electrostatic, steric and possibly elas-

tic constraints on the cluster imposed by its environment are included by embed-

ding the cluster in some way. Within this approximation, just a small portion

of the system is studied at the quantum mechanical (QM) level of theory, while

the interaction between this small region and the rest of the system is accounted

for with a suitable embedding scheme. This approach is motivated by the fact

that the active region of a catalyst typically includes a few atoms. Such hybrid

methods are popular in the literature because they combine the high accuracy

provided by an ab-initio method with the efficiency of a molecular mechanics

(MM) approach (see for instance the Oniom method [57] and the program Guess

[58, 59]).

The periodic approach The periodic nature of condensed matter is often better repre-

sented using the theoretical framework derived from Bloch’s theorem. The wave-

function of a periodic system is then computed using plane waves, whose wave-

vectors are linear combinations of the reciprocal lattice vectors of the system. This

approach has been used to study catalysis over metal, metal oxide surfaces and
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metal/metal oxides interfaces [16, 60–66], where the delocalised electronic states

are of fundamental importance. For a supported catalyst, a possible source of

error is the size of the repeated unit cell, composed by the active site and the

support. Too small a unit cell results in a unphysical repetition of defects (if

present) and a high density of active sites. A large unit cell correctly represents

a monodispersed and non-interacting active site, but the computational cost of

such a calculation would be very expensive.

The work presented in this thesis will take advantage of all three theoretical approaches

described in this section.

1.6 Outline of the thesis

This thesis is organised as follows. The Chapter 2 gives an extensive description of

all the theoretical methods used in this thesis work. In Chapter 3 the properties of

γ-alumina, the structure of the bulk and the structure of the most important crystal

surfaces are computed at the plane-wave DFT level of theory. It is also presented a

comparison with the same structures computed at the Molecular Mechanics level of

theory. Chapter 4 focuses on benchmarking different theoretical methods applied to

the study of small molecules containing one or more rhodium atoms, and Chapter 5

gives the results of periodic and hybrid calculations on supported rhodium catalysts.

Finally in Chapter 6, conclusions and suggestions for a further extension of this work

are presented.
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CHAPTER 2

THEORETICAL METHODS

In quantum mechanics all the relevant information of a molecular system can be ob-

tained from first principles by solving the time independent Schrödinger equation

(1.23). However, exact solutions of this equation can be calculated only for a few

special cases [67], e.g. hydrogen-like atoms: H, He+, Li2+. Solving the Schrödinger

equation exacly for a multi-electron molecular system is not possible and only appro-

ximate solutions can be obtained. The choice of approximations can take advantage of

the chemical knowledge of the system: a remarkable example is the Hückel method

[68] for determining the energies of molecular orbitals of π electrons in conjugated

hydrocarbon systems. Despite its simplicity, the results are often in agreement with

experimental observations and this method is still used for didactic purposes.

In order to obtain quantitative predictions, accurate theoretical methods have been

developed that correct the errors introduced by the approximations needed to solve the

Schrödinger equation. In this Chapter these approximations will be discussed, along

with the limits and applicability of different theoretical approaches, with particular

emphasis on the theoretical methods used in this thesis.

2.1 Approximate Solutions of the Schrödinger equation

This section focuses on the approximations that are the foundations of Hartree-Fock

theory [69–71], a powerful method to compute approximate solutions of the time-

independent Schrödinger equation. In this method all the terms of the exact Hamil-
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tonian (2.7) are rewritten as a sum of one-electron operators, thus making the determi-

nation of the energy and wavefunction of equation (1.23) a solvable task.

2.1.1 Born-Oppenheimer Approximation

The Born-Oppenheimer (BO) Approximation [72] states that the electronic coordinates

can be separated from the nuclear coordinates in a molecule. In mathematical terms,

this means the total wavefunction is written as the product of nuclear and electronic

components:

ΨT (R, r) = ΨN(R)Ψe(r) (2.1)

This approximation is based on the big difference in mass between electrons and nuclei

(a factor of 103–105) and assumes that the electrons move in a fixed potential generated

by the nuclei.

In the rest of this Chapter, the all-electron wavefunction Ψe will be noted as Ψ to

simplify the notation.

2.1.2 Spin Orbitals and Space Orbitals

A common way of solving the time-independent Schrödinger equation for a many-

electron system is to assume that each electron in the system can be considered sep-

arately. This approximation is known as the one-electron approximation [73, 74]. The

total wavefunction for the system is then written as a product of one-electron wave-

functions, the molecular orbitals (MO) [75]

Ψ(r1, r2, . . . , rn) = φ1(r1)φ2(r2) . . . φn(rn) (2.2)

In equation (2.2), the functions φi are called spatial orbitals and they are functions of

the position vector r = {x, y, z} that describes the spatial coordinates of an electron.
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Spatial molecular orbitals are assumed to be orthonormal:

∫
φ∗i (k)φj(k)drk =

〈
φi
∣∣φj〉 = δij (2.3)

In (2.3), the (k) following each MO wavefunction is a shorthand indicating the coordi-

nates of the electron k.

To completely describe an electron, it is necessary to specify its spin coordinate. This

is done by introducing two orthonormal functions
∣∣α〉 and

∣∣β〉, i.e. spin up (↑) and spin

down (↓). The wavefunction for an electron that describes both its spatial distribution

and its spin is called a spin orbital, ψ, and is defined as:

ψ(i) =

 φ(ri)
∣∣α〉

φ(ri)
∣∣β〉 (2.4)

Since two electrons can occupy the same space orbital, provided that they have a dif-

ferent spin1, the spin orbitals can be constrained to have the same spatial function for

any
∣∣α〉 and

∣∣β〉 couple. It follows that given a set of K spatial orbitals {φ1, . . . , φK},

one can thus form a set of 2K restricted spin orbitals [76]. In contrast, unrestricted spin

orbitals have different spatial functions for
∣∣α〉 and

∣∣β〉 spins.

2.1.3 Slater Determinants

As electrons are fermions, the all-electron wavefunction must satisfy the Pauli exclu-

sion principle [77]:

“A many-electron wavefunction must be anti-symmetric with respect to in-

terchange of the coordinates of any two electrons.”

This means that the total wavefunction must change sign when any two electrons in

the system are interchanged. A way to ensure the antisymmetry of a wavefunction of

1This follows from the Pauli exclusion principle. A rigorous definition is given in the next Section.
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a molecular system with n electrons, is by using Slater determinants [73]:

Ψ =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(1) ψ2(1) · · · ψn(1)

ψ1(2) ψ2(2) · · · ψn(2)
...

... . . . ...

ψ1(n) ψ2(n) · · · ψn(n)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.5)

This Slater determinant has n electrons occupying n spin orbitals. It is easy to demon-

strate that the resulting wavefunction –a linear combination of MOs– is antysymmetric

with respect to the exchange of two electrons. For n = 2 equation (2.5) becomes:

Ψ(1, 2) =
1√
2

∣∣∣∣∣∣ ψ1(1) ψ2(1)

ψ1(2) ψ2(2)

∣∣∣∣∣∣
=

1√
2

[
ψ1(1)ψ2(2)− ψ1(2)ψ2(1)

]
Permutation of electron 1 and electron 2 gives:

Ψ(2, 1) =
1√
2

[
ψ1(2)ψ2(1)− ψ1(1)ψ2(2)

]
= −Ψ(1, 2)

The exchange of two electrons is equal to the exchange of two rows in the determinant,

which results in a change of sign.

The normalised single Slater determinant wavefunction (2.5) will now be re-written

using the short-hand bra-ket notation:

∣∣Ψ〉 =
∣∣ψ1ψ2 . . . ψn

〉
(2.6)
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2.1.4 Hartree-Fock Theory

The electronic Hamiltonian operator for a many-electron system is (in atomic units)

[75]:

Ĥ =
∑
i

ĥi +
∑
i<j

ĝij + ĥ0 (2.7)

In the equation (2.7), ĥi is the one-electron Hamiltonian consisting of the electron ki-

netic energy and nuclear attraction terms,

ĥi = −1

2
∇2
i −

∑
µ

Zµ
riµ

(2.8)

where riµ = |ri −Rµ|, Zµ is the nuclear charge and ∇2
i is the gradient operator for the

ith electron

∇2
i =

∂2

∂x2i
+

∂2

∂y2i
+

∂2

∂z2i
(2.9)

ĝij is the two-electron operator that describes the interaction between two electrons

ĝij =
1

rij
(2.10)

and ĥ0 is the repulsion between the nuclei in the system

ĥ0 =
∑
µ<ν

ZµZν
Rµν

(2.11)

In the equations (2.10) and (2.11), rij = |ri − rj| and Rµν = |Rµ − Rν |. Within the

BO approximation, the term (2.11) is an additive constant and it will be omitted in

the following derivation. It should be noted however that the electronic wavefunction∣∣Ψ〉 still retains a parametric dependence on the nuclear coordinates {R} through the

nuclear attraction term in the operator (2.8).

Using the Slater-Condon rules [73, 78] to express the one- and two-electron opera-

tors over a Slater determinant wavefunction, it is possible to evaluate the energy as an
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expectation value of the Hamiltonian [79]:

Ē[Ψ] =
〈
Ψ
∣∣Ĥ∣∣Ψ〉

=
∑
i

〈
ψi
∣∣ĥi∣∣ψi〉+

1

2

∑
i,j

[〈
ψiψj

∣∣ĝ∣∣ψiψj〉− 〈ψiψj∣∣ĝ∣∣ψjψi〉] (2.12)

=
∑
i

〈
ψi
∣∣ĥi∣∣ψi〉+

1

2

∑
i,j

〈
ψi
∣∣Ĵj − K̂j

∣∣ψi〉
=
∑
i

〈
ψi
∣∣ĥi∣∣ψi〉+

1

2

∑
i

〈
ψi
∣∣Ĵ − K̂∣∣ψi〉 (2.13)

where
〈
ψaψb

∣∣ĝ∣∣ψcψd〉 denotes the integral

〈
ψaψb

∣∣ĝ∣∣ψcψd〉 =

∫
ψ∗a(1)ψ∗b (2)

1

r12
ψc(1)ψd(2)dr1dr2 (2.14)

In the equation (2.13), Ĵj and K̂j are called Coulomb and exchange operators. They are

defined through their action on an arbitrary function ψi such that

Ĵj(1)ψi(1) =

[∫
ψ∗j (2)ψj(2)

r12
dr2

]
ψi(1) (2.15)

K̂j(1)ψi(1) =

[∫
ψ∗j (2)ψi(2)

r12
dr2

]
ψj(1) (2.16)

The total Coulomb and exchange operators are defined as:

Ĵ(1) =
∑
i

Ĵi(1) (2.17)

K̂(1) =
∑
i

K̂i(1) (2.18)

In order to determine the spin orbitals that define the Slater determinant wavefunction∣∣Ψ〉, the variation principle is applied to the energy expression (2.13). In doing so, the

implicit assumption is that the orbitals leading to the lowest total energy are the best.

The minimum of the energy is found when the energy change with respect to a small
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2.1 Approximate Solutions of the Schrödinger equation

(infinitesimal) change in the spin orbital

ψi ← (ψi + δψi) (2.19)

is equal to zero. The substitution (2.19) leads to a change in the total wavefunction∣∣Ψ〉← ∣∣Ψ + δΨ
〉

and in the energy expression (2.12)

Ē[Ψ + δΨ] =
〈
Ψ + δΨ

∣∣Ĥ∣∣Ψ + δΨ
〉

= Ē[Ψ] + {
〈
δΨ
∣∣Ĥ∣∣Ψ〉+

〈
Ψ
∣∣Ĥ∣∣δΨ〉}+ . . .

= Ē[Ψ] + δĒ + . . . (2.20)

The first order variation δĒ can now be expressed by collecting the terms linear in δψ

δĒ =
∑
i

〈
δψi
∣∣ĥi∣∣ψi〉+

∑
i,j

[〈
δψiψj

∣∣ĝ∣∣ψiψj〉− 〈δψiψj∣∣ĝ∣∣ψjψi〉]
+
∑
i

〈
ψi
∣∣ĥi∣∣δψi〉+

∑
i,j

[〈
ψiψj

∣∣ĝ∣∣δψiψj〉− 〈ψiψj∣∣ĝ∣∣ψjδψi〉]+ . . .

=
∑
i

〈
δψi
∣∣ĥi∣∣ψi〉+

∑
i

〈
δψi
∣∣Ĵ − K̂∣∣ψi〉+ . . .

=
∑
i

〈
δψi
∣∣f̂ ∣∣ψi〉+ . . . (2.21)

In (2.21), f̂ is the one-electron Fock operator

f̂(1) = ĥ1 + Ĵ(1)− K̂(1) (2.22)

The minimum of the energy is found when the variation δĒ vanishes, which according

to (2.21) implies 〈
δψi
∣∣f̂ ∣∣ψi〉 = 0 (2.23)

The δψi term in (2.23) can be re-written in terms of occupied ψj and unoccupied (vir-
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tual) ψa molecular orbitals

δψi =
∑
j

δijψj +
∑
a

δiaψa (2.24)

where δij denotes infinitesimal quantities. The first term in (2.24) vanishes since it

describes an (infinitesimal) transformation of occupied molecular orbitals which leave∣∣Ψ〉 invariant2 [79]. From the second term of (2.24), the equation (2.23) can be used to

derive 〈
ψa
∣∣f̂ ∣∣ψi〉 = 0 (2.25)

This expression is known as the general Hartree-Fock equation. The left-hand side of

equation (2.25) is equivalent to

f̂ψi =
∑
k

λkiψk (2.26)

where k runs over occupied molecular orbitals. Since f̂ is hermitian, the matrix λλλ can

be expressed in a diagonal form δkjεk. Using this property of λλλ, equation (2.26) can be

re-written as

f̂ ψ̃i = εiψ̃i (2.27)

where ψ̃i are new molecular orbitals obtained from the linear transformation

ψ̃i =
∑
k

ψkVki (2.28)

where V denotes the matrix which diagonalizes λλλ (λλλV = Vεεε, εεε diagonal).

The equations (2.27) are referred to as the canonical Hartree-Fock equations [75]. The

corresponding orbitals are the Hartree-Fock (HF) molecular orbitals, and the eigenval-

ues εi are the orbital energies. The physical meaning of the orbital energies is explained

2This is a consequence of the Brillouin theorem [76, 80]:

Singly excited determinants
∣∣Ψ′

a

〉
will not interact directly with

a reference Hartree-Fock determinant
∣∣Ψ0

〉
, i.e.

〈
Ψ0

∣∣Ĥ∣∣Ψ′
a

〉
= 0.
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2.1 Approximate Solutions of the Schrödinger equation

in Koopmans’ theorem [81], which states:

The negative of the orbital energy of occupied orbitals from a Hartree-Fock

calculation gives the best zeroth order approximation of the vertical ioniza-

tion energy, and the orbital energy of virtual orbitals gives the best zeroth

order approximation of the electron affinity.

Finally, it is easy to demonstrate that the total energy Ē 6=
∑

i εi. From the (2.13) it

follows that

Ē =
∑
i

εi −
1

2

∑
i

〈
ψ̃i
∣∣Ĵ − K̂∣∣ψ̃i〉 (2.29)

In this derivation the spin coordinates have not been explicitly considered, since

the antisymmetry of the wavefunction has been assured with the use of Slater deter-

minants. Spin coordinates can be introduced in the Hartree-Fock equations using the

substitutions (2.4) and the rules for spin integration

〈
α
∣∣α〉 =

〈
β
∣∣β〉 = 1 (2.30a)〈

α
∣∣β〉 = 0 (2.30b)

With these conditions, an energy expression which involves only spatial orbitals can

be obtained, i.e. equation (2.12) becomes

Ē =
∑
i

〈
φi
∣∣ĥi∣∣φi〉+

1

2

∑
i(α)j(α)

[〈
φiφj

∣∣ĝ∣∣φiφj〉− 〈φiφj∣∣ĝ∣∣φjφi〉]
+

1

2

∑
i(β)j(β)

[〈
φiφj

∣∣ĝ∣∣φiφj〉− 〈φiφj∣∣ĝ∣∣φjφi〉]+
∑

i(α)j(β)

〈
φiφj

∣∣ĝ∣∣φiφj〉 (2.31)

From this expression it can be seen that the Coulomb operator term always remains

unchanged on integration over spin, whereas the exchange operator term is non-zero

only between electrons having the same spin. As a consequece, the Fock operator (2.22)
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2.1 Approximate Solutions of the Schrödinger equation

will be now different depending if it operates on α or β electrons

f̂ (α)(1) = ĥ1 + Ĵ(1)− K̂(α)(1) (2.32a)

f̂ (β)(1) = ĥ1 + Ĵ(1)− K̂(β)(1) (2.32b)

In these expressions, the new exchange operators K̂(α) and K̂(β) are defined by:

K̂(α) =
∑
i(α)

K̂i (2.33a)

K̂(β) =
∑
i(β)

K̂i (2.33b)

This is known as the Unrestricted Hartree-Fock (UHF) method [82] and it is used for

open-shell systems. However, it should be noted that UHF wavefunctions are not

generally eigenfunctions of the spin operators Ŝ2 and Ŝz.

For a closed-shell system of n electrons, the space orbitals for electrons occupying

the same MO can be constrained to be the same. Therefore the energy in equation (2.31)

becomes [83]

Ē = 2

n
2∑
i=1

〈
φi
∣∣ĥi∣∣φi〉+

n
2∑

i,j=1

[
2
〈
φiφj

∣∣ĝ∣∣φiφj〉− 〈φiφj∣∣ĝ∣∣φjφi〉] (2.34)

where the summations in (2.34) are over n/2 doubly occupied orbitals. Since the α and

β orbitals have identical spatial parts, the Fock operators (2.32a) and (2.32b) must be

the same, and can be rewritten as:

F̂ (1) = ĥ1 +

n
2∑
i=1

2Ĵi(1)− K̂i(1) (2.35)

This is known as the Restricted Hartree-Fock (RHF) method and it is the most commonly

used since the work and memory requirements are reduced by about 50% compared

to other Hartree-Fock methodologies [79].

To summarise, the essence of HF theory is to approximate the complex many-electron
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problem by a one-electron problem in which the instantaneous interaction between an

electron i and all the other electrons is replaced with a mean field potential due to the

remaining electrons.

2.1.5 Hartree-Fock-Roothaan equations

Although the theoretical framework offered by the HF theory represents an immense

simplification of the original Schrödinger equation, the determination of the unknown

molecular orbital functions remains a complicated problem to be solved [75]. Expand-

ing an arbitrary function as a series of known orthogonal functions is a common way

of addressing this kind of problem. In quantum chemistry it is common practice to ex-

pand the (spatial) molecular orbitals φi(r) as a Linear Combination of Atomic Orbitals

χp(r) (the LCAO method):

φi(r) =
K∑
p=1

Cpiχp(r) (2.36)

In (2.36), Cpi are numerical coefficients and the χp(r) are a set of K basis functions. In

practice a finite number of basis functions is used to express the molecular orbitals,

thus introducing a truncation error that decreases as the number of basis functions in-

creases.

For closed-shell singlet systems the HF eigenvalue equations (2.27) can be re-written

in terms of restricted space orbitals:

F̂ (1)φi(1) = εiφi(1) (2.37)

Substitution of equation (2.36) into (2.37) gives

F̂
∑
q

Ciqχq = εi
∑
q

Ciqχq (2.38)

Multiplying from the left by χ∗p and integrating over the space coordinates gives the so
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2.1 Approximate Solutions of the Schrödinger equation

called Roothaan-Hall equations [75]:

∫
χ∗pF̂

∑
q

Ciqχqdr = εi

∫
χ∗p
∑
q

Ciqχqdr (2.39)

∑
q

Ciq

∫
χ∗pF̂χqdr = εi

∑
q

Ciq

∫
χ∗pχqdr (2.40)

∑
q

CiqFpq = εi
∑
q

CiqSpq (2.41)

where Fpq are elements of the Fock matrix

Fpq =

∫
χ∗p(r)F̂χq(r)dr =

〈
χp
∣∣F̂ ∣∣χq〉 (2.42)

and Spq is the overlap matrix

Spq =

∫
χ∗p(r)χq(r)dr =

〈
χp
∣∣χq〉 (2.43)

Both matrices Fpq and Spq are hermitian and K × K in size. equations (2.41) can be

written as a single equation between matrices

FC = SCεεε (2.44)

where C is the coefficient matrix and εεε is the diagonal matrix of orbital energies. As the

Fock matrix depends on its own solutions (through the Coulomb and exchange opera-

tors), the solutions of (2.44) must be obtained in an iterative way until self-consistency

is achieved. For this reason, the LCAO-HF theory is also called self-consistent field

(SCF) theory.

In the SCF procedure, an initial estimate of the electronic wavefunction is feeded

into an algorithm that solves the equations (2.44) via the following steps:

1. Use an initial estimate of the LCAO coefficients Ciq.

2. Evaluate the matrix Spq.
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3. Evaluate the matrix Fpq.

4. Solve the set of linear equations

|F− Sεεε| = 0 (2.45)

i.e. requirements for non-trivial solution of equations (2.44).

5. For each εεε, determine the new coefficients Ciq from equations (2.44).

6. Go back to (3.) and use the new coefficients to evaluate new matrix elements

Fpq. Repeat until some pre-determined tolerance (usually the overall energy) is

reached.

The energy computed with this SCF procedure is an upper limit of the EHF energy,

whose exact value can be computed only with a LCAO expansion that uses a complete

(i.e. infinite) basis set.

2.1.6 Basis Sets

The evaluation of the electron energy using the LCAO expansion is done variationally,

by optimizing the molecular orbital coefficients in the basis set expansion (2.36). The

most obvious choice of basis functions are atomic orbitals (AO), as obtained from the

exact solutions of the Schrödinger equation for the hydrogen atom. These functions

are local (i.e. centered on each atom) and are of the form [84]:

ψ(r) = R(r)Ylm(θ, φ) (2.46)

where Ylm(θ, φ) is an angular function and R(r) is a radial function. The AO wave-

function has a cusp at the nucleus, and it decays exponentially when the electron is far

from the atomic nucleus. Such a behaviour is assured by using Slater-type AOs, which
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2.1 Approximate Solutions of the Schrödinger equation

have the functional form [74]:

χSTO(r) = P (r)e−ζrYlm(θ, φ) (2.47)

where P (r) in (2.47) is a polynomial in the radial coordinate. Although STOs have a

correct physical behaviour, the evaluation of two-electron integrals cannot be achieved

analytically but only numerically, with great computational effort. A more success-

full approach uses gaussian-type functions, with which two-electron integrals can be

evaluated analytically. The gaussian-type atomic orbitals (GTO) expressed in cartesian

coordinates are [85, 86]:

χGTO(r) = (x− Ax)k(y − Ay)l(z − Az)me−α(r−A)2 (2.48)

Each function is completely specified by the postition of the centre A, the gaussian

exponent α and the powers k, l and m. Compared to STOs, GTOs represent atomic

orbitals less well, particularly at short and long distances as shown in Figure (2.1).

However, this problem can be easily corrected by using a linear combination of several

GTOs to represent an atomic orbital. Such functions are known as contracted gaussian-

type atomic orbitals (CGTO) [87]:

χCGTOi =
∑
a

caiχ
GTO
a (2.49)

The use of CGTOs reduces the number of basis functions used to compute SCF ener-

gies, and leads to a better representation of the MOs.

Gaussian basis sets generally contain contracted and uncontracted (i.e. single) func-

tions. In addition to functions of these types, additional functions are added to account

for different effects. When an atom forms a chemical bond, the shape of its orbitals

can change significantly and in particular its electron density may be displaced from

a nucleus-centred position towards the bond direction. This change is accounted for

with the use of polarization functions, i.e. gaussian functions with the same orbital ex-
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χ
(r

)

Radial distance, r

STO
GTO

Figure 2.1: Comparison between a Slater-type atomic orbital (STO) and a
gaussian-type atomic orbital (GTO). The GTO does not have a cusp at r = 0,
and its radial distribution decays more rapidly than the STO, that is less phys-
ically realistic. To correct these problems, contracted GTOs are used instead of
single GTOs.

ponents but with an angular momentum quantum number larger than the angular

momentum quantum number of the valence electrons.

Negatively charged ions experience a relaxation of their atomic orbitals, because

they carry more electrons compared to a neutral state. In this case, diffuse functions,

i.e. gaussian functions with very small orbital coefficients, are added to the basis set to

allow the AOs to have a greater spatial extention.

A basis set that uses a single basis function for each formally occupied AO is said

to be a minimal basis set. If two basis functions are used for each formally occupied

AO, then the basis set is said to be of double zeta (DZ) quality. Analogously, basis sets

of triple zeta, quadruple zeta,. . . quality can be constructed.

The split-valence basis sets, first introduced by Pople and coworkers [88, 89], are

designed to achieve a compromise between economy and flexibility in a molecular

orbital calculations. In these basis sets, a minimal set of basis functions are used to

describe the core electrons, and a basis set of a higher quality is used to describe valence
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electrons. In the same spirit, effective core potentials (ECP) [90–92] are used to describe

the core electrons in heavy atoms.

A completely different kind of basis set is composed of plane waves (PW) and is

generally used in calculations involving systems with periodic boundary conditions,

such atoms in a crystal. Plane wave functions are of the form [93]:

χPW (r) = CGe
iG·r (2.50)

where CG is the wave amplitude and G is the reciprocal lattice vector defined by G·l =

2πm, with l a lattice vector and m an integer. The plane waves described in equation

(2.50) have a kinetic energy that increases as the vector G increases. In particular,

plane waves with a small kinetic energy have a more important role compared with

those with a large kinetic energy [94]. The introduction of an energy cut-off therefore

reduces the basis set to a finite size.

Plane wave functions are non local, i.e. independent of atomic positions, and are

mutually orthogonal. On the other hand, a large number of plane waves is required

to accurately describe a molecular system. Plane wave basis sets are often used in

combination with atomic pseudopotentials that replace the Coulomb potential for the

electron-nuclear interaction with an effective potential that accounts for the presence

of core electrons, as well as relativistic effects.

2.2 Electron Correlation

A wavefunction
∣∣Ψ〉 does not have a physical meaning on its own. However, the inte-

gral ∫ r1

r0

Ψ∗Ψdri (2.51)

gives the probability of finding the electron i in the interval
∣∣r1 − r0

∣∣ [95]. Such a

probability is (or, should be) influenced by the presence of other electrons. In HF theory

this is not exactly the case: each electron does not interact instantaneously with all the
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other electrons, but only with a mean potential through the Coulomb and exchange

terms in the Fock operator. The uncorrelated motion of the electrons in HF theory is

the origin of the electron correlation error, defined as the difference between the “true”

energy of a system and the HF energy computed at the complete basis set limit [96], i.e.

Ecorr = Eexact − EHF (2.52)

However, electronic motion is not completely uncorrelated in HF theory. The single

determinant wavefunction prevents two electrons from occupying the same position

in space: in this case the coordinates of two electrons would be identical and as a

consequence the Slater determinant (2.5) vanishes. This correlation is only due to the

antysimmetry of the wavefunction and is often referred as Fermi correlation [97]. The

exchange term in the Fock operator also accounts for some electron correlation, since

it describes the interaction between electrons with the same spin.

The electron correlation, which is neglected in HF theory, can be divided into two

categories. The first kind is called nondynamic electron correlation and arises from the

inadequacy of a single Slater determinant wavefunction to describe an electronic state

influenced by other electronic configurations that contribute to lower its electronic en-

ergy [98]. This effect is observed in phenomena involving long-range effects such as

molecular dissociation, and is usually dealt with multiconfigurational SCF (MCSCF)

techniques, in which the wavefunction is expressed as a linear combination of single

determinant wavefunctions Ψi obtained from the ground-state HF wavefunction

ΨMCSCF =
∑
i

CiΨi (2.53)

In this expansion, the MCSCF coefficients Ci are optimised variationally. One of the

most widely used MCSCF techniques is the complete active space SCF (CASSCF) me-

thod [99, 100], in which a set of active orbitals (composed of occupied and unoccupied

MOs) is used to generate the excited determinants Ψi appearing in equation (2.53). All

possible Slater determinants arising from the excitation of the electrons in the active
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Ψ
SCF

exact

Figure 2.2: The interelectronic cusp. The wavefunction is plotted against the
distance between two electrons.

space are considered in the CASSCF wavefunction.

The second kinf of electron correlation energy is referred to as dynamic and arises

from overstimation of short-range electron interaction in Hartree-Fock wavefunctions

[98, 101]. This error originates from the r−1ij term in the Hamiltonian operator, which is

singular as rij → 0. To remove this singularity, the exact wavefunction must satisfy the

so-called cusp condition [102, 103]:

(
∂Ψ

∂r

)
r=0

=
1

2
Ψ(r = 0) (2.54)

This equation shows that the wavefunction has a linear trend in the region close to

r = 0, as shown in Figure 2.2. Hence dealing with dynamical electron correlation

means describing this cusp behaviour. Among the methods that account for dynami-

cal electron correlation, one of the most complete is the configuration interaction (CI)

method. The CI wavefunction consists of a linear combination of excited Slater deter-

minants obtained from the ground-state HF wavefunction Ψ0 [104]:

ΨCI = c0Ψ0 +
∑
i

∑
a

caiΨ
a
i +

∑
i>j

∑
a>b

cabij Ψab
ij + . . . (2.55)

In equation (2.55) Ψa
i , Ψab

ij , . . . are excited determinants, i, j, . . . are the index of occupied
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MO in Ψ0, a, b, . . . are the index of unoccupied MO in Ψ0, and Ψab
ij denotes a configura-

tion obtained by exciting two electrons in MOs i and j to MOs a and b. All the excited

configurations appearing in equation (2.55) have the same total angular and spin mo-

mentum as the reference wavefunction Ψ0. A full CI wavefunction is obtained when

all excitations are considered and it is (at the complete basis set limit) a complete ex-

pansion of the exact wavefunction. However in practical cases only a few levels of

excitations are considered, typically a CI with single and double excitations (CISD). A

limit of truncated CI models is that they are not size consistent, i.e. the energy of two

molecular systems placed at very long distance is not twice the energy of the single

system.

The CI approach can be easily extended to handle non-dynamical effects: in this case

other electronic states are included in the CI expansion: this gives the multi-reference

CI (MRCI) approach.

In the next paragraphs, three different approaches to account for the dynamical elec-

tron correlation are discussed.

2.2.1 Perturbation Theory

Perturbation theory (derived by Rayleigh and Schrödinger, [105]) is a mathematical

procedure to solve the Schrödinger equation when the exact solution is not known.

The simple assumption behind this theory is that the Hamiltonian describing a phys-

ical problem can be separated into a part whose solution is known, and a part which

has no analytic solution. The latter is treated as a small perturbation of the original,

unperturbed system.

In the Møller-Plesset formulation [106], the correlation energy is assumed to be a

perturbation added to the HF Hamiltonian:

Ĥ = f̂ + λV̂ (2.56)

where f̂ is the Fock operator (2.22) and V̂ is defined as the difference between the
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instantaneous and the average electron-electron interaction included in the HF theory:

V̂ =
∑
i<j

ĝij −
∑
i

Ĵ(i)− K̂(i) (2.57)

It is straightforward to verify that substution of equation (2.57) into (2.56) gives the

exact Hamiltonian operator (2.7). The parameter λ in equation (2.56) is a real number

with a value between 0 and 1. When λ = 0, the Schrödinger equation using the Hamil-

tonian in equation (2.56) is soluble and the solutions are the HF wavefunctions and

the HF MO energies. As the perturbation is added to the problem, the solutions of the

Schrödinger equation can be written as an expansion in powers of λ:

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + λ3E

(3)
i + . . . (2.58)

ψi = ψ
(0)
i + λψ

(1)
i + λ2ψ

(2)
i + λ3ψ

(3)
i + . . . (2.59)

where Ei, E
(0)
i , . . . are total energies. The nth-order treatment is denoted as MPn. The

sum of zero-th and first order energies corresponds to the HF energy, therefore the first

MP level to go beyond the HF level includes the second order correction term and is

denoted as MP2. However, to recover a sufficient amount of correlation energy, higher

order of perturabative terms should be used.

2.2.2 Coupled-Cluster Methods

In coupled-cluster (CC) theory, the CI wavefunction is formed with an excitation oper-

ator given in exponential form. The ansatz is therefore [107, 108]:

ΨCC = eT̂Ψ0 (2.60)

were T̂ is the excitation operator. The CC wavefunction can be expanded as

ΨCC = (1 + T1 + T2 + T 2
1 + T1T2 + T 2

2 + T3 + . . . )Ψ0 (2.61)
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The excitation operators in (2.61), T1, T2, T3,. . . , correspond to different levels of exci-

tation. A wavefunction computed at the CC level of theory that employs all levels of

excitation would be the exact solution of the Schrödinger equation within a given basis

set. However, this method is extremely expensive and can be applied only to small

systems. In practical cases, the expansion (2.61) is truncated to a finite order because

the importance of excitations decreases at higher levels of excitation.

The CC method with single and double excitations is denoted as CCSD, and the

corresponding excitation operator is therefore

T̂ = T̂1 + T̂2 (2.62)

Substitution of (2.62) into (2.60) gives the following CC wavefunction:

ΨCCSD = (1 + T1 + T2 + T 2
1 + T1T2 + T 2

2 )Ψ0 (2.63)

With a large enough basis set, the CCSD method recovers about 95% of the correla-

tion energy for a molecule at the equilibrium geometry [109]. Additional excitations

are denoted with letters such as triple (T), quadruples (Q) and so on. An interesting

compromise between accuracy and computational cost is represented by the CCSD(T)

method, in which the single and double excitations are accounted for using the CC

theory, and the triple excitations are included with perturbation theory.

2.2.3 The Density Functional Theory

The Density Functional Theory (DFT) uses a completely different approach to recover

the electron correlation energy. The key point is to replace the complicated many-

body problem of N electrons (3N coordinates) with the electron density ρ(r), which

depends only on 3 spatial coordinates. The formulation of DFT is based on the work

of Hohenberg and Kohn [110, 111], who proved that the total energy of a system is a
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unique functional of the ground state density:

E0 = E [ρ(r)] (2.64)

In 1965, Kohn and Sham suggested the following expression for the total energy func-

tional [112]:

E [ρ(r)] =

∫
ρ(r)Vion(r)dr +

1

2

∫∫
ρ(r)ρ(r′)∣∣r− r′

∣∣ drdr′ +G [ρ(r)] (2.65)

In equation (2.65), the first term is the Coulomb interaction between electrons and nu-

clei, the second term is the Coulomb interaction between the electrons, and the last

term is an universal functional of the electron density. This functional can be approxi-

mated in the following way:

G [ρ(r)] ≡ Ts [ρ(r)] + Exc [ρ(r)] (2.66)

where Ts [ρ(r)] is the kinetic energy of a system of non-interacting electrons with den-

sity ρ and Exc [ρ(r)] is the exchange and correlation energy of an interacting system of

electrons with density ρ.

If the electron density is sufficiently slowly varying (and this is the case for the elec-

tronic ground state density), the exchange and correlation energy can be written as

Exc [ρ(r)] =

∫
ρ(r)εxc [ρ(r)] dr (2.67)

where εxc [ρ(r)] is the exchange and correlation energy of a homogeneous electron gas

of density ρ. This expression for the exchange and correlation energy is known as the

local spin-density approximation (LDA).

The electronic ground-state density is found by solving the Kohn-Sham (KS) one-
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particle Schrödinger equation [112]:

[
−1

2
∇2 + Vion(r) +

1

2

∫
ρ(r′)∣∣r− r′

∣∣dr′ + µxc(r)

]
ψi(r) = εiψi(r) (2.68)

where

µxc(r) =
d (ρ(r)εxc [ρ(r)])

dρ(r)
(2.69)

is the exchange and correlation contribution to the chemical potential of a uniform

gas of electrons with density ρ(r). The single-particle wavefunctions ψi(r) in equation

(2.68) are known as the KS orbitals and are related to the electron density as follows:

ρ(r) =
N∑
i=1

∣∣ψi(r)∣∣2 (2.70)

where N is the number of electrons. This formulation leads to a self-consistent proce-

dure analogous to that in HF theory, where an initial estimate of the electron density

ρ(r) is used to solve the equations (2.68) and the new set of KS orbitals is used to gen-

erate the new density ρ̃(r) from (2.70), until self-consistency is achieved.

The inhomogeneity of the electron density usually present in a molecular system

can be accounted for by including gradient corrections [113]. This is done by making

the correlation energy a functional of the density and its gradient, and therefore this

approach is known as the generalised-gradient approximation (GGA). The correlation

energy (2.67) is thus re-written as:

EGGA
xc [ρ(r)] =

∫
ρ(r)εxc [ρ(r)] dr +

∫
Fxc [ρ(r),∇ρ(r)] dr (2.71)

Unfortunately, the exact expression of the functional Fxc is unknown and as a result

a multitude of different functionals have been proposed in the literature. Commonly

used functionals include the Perdew-Burke-Ernzerhof (PBE) and Becke (B) gradient-

corrected exchange functionals [114, 115], the Lee-Yang-Parr (LYP) gradient-corrected

correlation functional [116] and the hydrid functional B3LYP [117], which uses a com-
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2.3 Systems with Periodic Boundary Conditions

bination of exchange energy from Hartree-Fock theory with exchange and correlation

energy from Becke and Lee-Yang-Parr functionals.

2.3 Systems with Periodic Boundary Conditions

The atoms in a crystal are disposed in such a way to form a regular periodic array R,

called a Bravais lattice, and to generate a potential U(r) which has the same periodicity

of the underlying lattice, i.e.

U(r + R) = U(r) (2.72)

The periodicity of the potential U(r) has major consequences for the solutions of the

Schrödinger equation for electrons in a periodic system. It is convenient to define here

a set of wave vectors K that yield plane waves with the same periodicity of a given

Bravais lattice. The lattice defined by the vectors K is known as a reciprocal lattice

[118], and the corresponding plane waves have the following properties:

eiK·(r+R) = eiK·r (2.73a)

eiK·R = 1 (2.73b)

2.3.1 Bloch’s Theorem

Bloch’s theorem [119] states that the wavefunction of an electron within a periodic

potential can be written as the product of a wave-like part and a cell-periodic part

ψi,k(r) = eik·rui,k(r) (2.74)

where k is a wavevector that is confined to the first Brillouin zone3. The cell-periodic

part can be expressed as a sum of the plane-wave basis functions (2.50). With this

3i.e. the smallest unit cell in the reciprocal space.
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2.3 Systems with Periodic Boundary Conditions

substitution, equation (2.74) can be re-written as

ψi,k(r) =
∑
G

Ci,k+G ei(k+G)·r (2.75)

This expression for the electronic wavefunctions leads to a reciprocal-space represen-

tation of the Kohn-Sham equations. Substitution of (2.75) into (2.68) and integration

over r gives the secular equation [94]

∑
G′

[
1

2
|k + G|2δGG′ + Vion(G−G′) + VCoul(G−G′) + µxc(G−G′)

]
Ci,k+G′ = εiCi,k+G′

(2.76)

where the first term is the kinetic energy, the second is the ion-electron interaction, the

third is the Coulomb interaction between electrons and the fourth term is the exchange

potential. In can be shown that the kinetic energy in (2.76) is diagonal and the other

potential terms are described in terms of their Fourier transform [94].

As the wave-vector k varies, the eigenvalues of equation (2.76) –the energy levels

εi– vary continuously, i.e.

εi = εi(k) (2.77)

This gives rise to a description of the energy levels of an electron in a periodic potential

in terms of an infinite family of solutions characterised by the band index i, each with

the periodicity of the reciprocal cell. The information contained in these functions is

referred to as the band structure of the solid.

2.3.2 Pseudopotential Approximation

The solutions of equation (2.76) proceed by diagonalisation of a Hamiltonian given by

the terms in brackets in equation (2.76), with matrix elements Hk+G,k+G′ . The size of

this matrix is determined by the basis set cut-off energy and by the number of electrons

in the system. For a large system containing core and valence electrons this problem

becomes quickly intractable; in particular, a large number of plane waves would be
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Figure 2.3: Comparison between the all-electron wavefunction for rhodium
(solid line) and the pseudopotential-wavefunction (dashed line). The second
panel shows the corresponding pseudopotential (dashed line) and, as reference,
the classic Coulomb potential (solid line). The vertical line represents the pseu-
dopotential cut-off radius, rc = 2.10 a.u. Calculations were performed with the
program Opium [123, 124].

required to satisfactorily describe the tightly bound core electrons.

Based on the assumption that the chemical and physical properties of solid mat-

ter depend mainly on valence electrons, the pseudopotential approximation [120–122]

reduces the number of plane-wave basis functions required to expand the wavefunc-

tion by removing the core electrons and replacing the strong ionic potential with a

smooth pseudopotential [94]. A comparison between an all-electron wavefunction

and a pseudopotential-wavefunction, along with the corresponding ionic potential and

pseudopotential, is shown in Figure 2.3. The pseudopotential-wavefunction has the

same scattering properties (i.e. phase shift) of the all-electron wavefunction, but no

nodes in the core region. Outside the core region, the pseudopotential becomes identi-

cal to the Coulomb potential and as a consequence in this region the pseudopotential-

wavefunction and the all-electron wavefunction are indistinguishable. The most gen-

eral form for a pseudopotential is obtained by projecting the all-electron wavefunction
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into a specific spherical harmonic function
〈
lm
∣∣, and by multiplying each component

for a specific pseudo-potential, i.e.

PVNL =
∑
lm

∣∣lm〉Vl〈lm∣∣ (2.78)

where the subscript NL stands for non-local. A pseudopotential that uses the same po-

tential for all the angular components of the wavefunction is referred to as local and is a

function only of the distance from the nucleus [94]. A norm-conserving pseudopotential

[125] is constructed to ensure that the pseudopotential- and all-electron wavefunctions

give identical electron density inside the core region. If the norm conservation is not

required, the pseudopotentials can have a very smooth behaviour in the core region,

resulting in a smaller basis set required to describe the valence electrons. Such a pseu-

dopotential is referred to as ultrasoft [126].

2.4 Molecular Mechanics

In molecular mechanics the Newtonian laws of motions are used to model molecular

systems. Within this approximation, the atoms are considered as classical spheres with

a given charge and mass, and the bonds between atoms are represented with appro-

priate interaction potentials. Other types of potential are used to model bond angles,

dihedral angles, etc. This approach can be used to study very large systems composed

of thousands of atoms since it is computationally much less expensive than quantum

mechanics. On the other hand, this approach cannot be used to study chemical reac-

tions involving bond making and breaking.

2.4.1 Atomistic Model

In molecular mechanics the energy of a system is a function of the atom positions only,

i.e. the motion of electrons is completely neglected and their effect may be accounted

for by effective atoms. The energy of a system can thus be decomposed into an expan-
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sion in terms of interactions between atoms:

U =
N∑
i=1

Ui +
N∑
i=1

N∑
j=1

Uij +
N∑
i=1

N∑
j=1

N∑
k=1

Uijk + . . . (2.79)

where the first term represents the self energies of the atoms, the second the pairwise

interaction, etc. This decomposition is exact if performed to a high enough order [127].

However, the contribution of high-order terms becomes progressively smaller and as

a consequence a finite number of terms is usually sufficient to describe a given sys-

tem. The functional form of the interaction terms is chosen according to the physical

properties of the system, and the parametrisation of each potential term is done using

experimental and theoretical methods. The ensemble of potentials used to calculate

the energy of a system is referred to as a force field.

2.4.2 Force Fields

In a typical force field the atoms are represented as point particles connected by two-

three- and four-body interaction terms, as shown in equation (2.79). The potential

energy of the ionic interaction between two particles is described by a combination of

repulsive and attractive terms, given in a radial or exponential form. Potentials of this

type are the Lennard-Jones-type potential [128]

ULJ
ij =

Cm
rmij
− Cn
rnij

(2.80)

and the Buckingham potential [129]

UB
ij = Ae−

rij
ρ − C6

r6ij
(2.81)

Both potentials have a long-range attractive term due to dispersion interactions, and a

short range repulsive term that accounts for the repulsion between overlapping elec-

tron densities experienced at short distances.
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The vibrational structure of covalently bound atoms is better described by the Morse

potential [130], that also accounts for the anharmonicity of real bonds:

UM
ij = De

[
1− e−a(rij−r0)

]2
(2.82)

In this expression, the parameter De is the electronic dissociation energy and the pa-

rameter a =
√
ke/2De is proportional to the square root of force constant of the bond,

ke. The three-body potential term is defined as

UT
ijk =

1

2
k2(θijk − θ0)2 +

1

6
k3(θijk − θ0)3 +

1

24
k4(θijk − θ0)4 (2.83)

Here θijk is the angle formed between the atoms i, j and k. However, additional poten-

tial terms are added for particular purposes, e.g. describing the torsional angle between

two groups or the inversion of a flexible group.

In molecular mechanics force fields, the Coulomb interaction, and usually also the

dispersion term, is subtracted from interactions between neighbouring atoms. This

is done so that the parameters in the two- and three-body potentials can be directly

equated with experimentally observable quantities, such as force constants from spec-

troscopy [127]. The quality of a force field strongly depends on the determination of

a large number of parameters from experimental reference data: this ensures the reli-

ability and accuracy of a given MM approach, but also restricts its application to the

classes of molecules for which it has been designed [131].

2.4.3 Shell-Model Method

In the core-shell model [132] an ion is divided into a core, which represents the nucleus

and the inner electrons, and a mass-less shell, which mimics the valence electrons. The

core and shell are linked by an harmonic constant, as illustrated in Figure 2.4. This ap-

proach reproduces a dipolar polarisability by coupling the core and shell charges with

a harmonic spring of force constant kcs . If the shell charge is qs , then the polarisability
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Uij

Atom i Atom j

cores

shell centre

Figure 2.4: Schematic representation of the core-shell model, composed of a pos-
itively charged core and a negatively charged shell with no mass and spherical
charge distribution. Atom i is polarised and atom j is unpolarised. The electro-
static interaction occurs between all cores and shells except for the core and shell
of the same atom.

of the ion in vacuo is given by [127]:

α =
q2s
kcs

(2.84)

By convention, the short-range forces are specified to act on the shell, while the long-

range Coulomb potential acts on both core and shell. As a consequence, the short-range

forces actively modify the polarisability by modifying the spring constant, and thus the

polarisability is environment dependent.

The core-shell model is particularly effective in the description of solids with co-

valent character such as silica polymorphs because the polarisability of an ion is phe-

nomenologically equivalent to a charge tranfer between two atoms.

2.5 Combined QM/MM Calculations

The idea behind the quantum and molecular mechanics (QM/MM) approach is to di-

vide a large molecular system into two regions and to compute the properties of each

at two different levels of theory. This approach is particularly well suited to study

point defect in crystals [58, 133–136], active sites in enzymes [137–141] and catalysts

[142–148] because it enables the reactive chemical site to be studied with the precision
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Figure 2.5: The division of space in an hybrid QM/MM calculation: the quantum
cluster is surrounded by a region where the atom positions are optimised at the
molecular mechanics level of theory. The system is finally embedded in a lattice
of fixed ions.

of QM, whereas the structural and electrostatic constraints due to the rest of the sys-

tem are treated with a suitable MM scheme [149]. Several hybrid QM/MM models

have been proposed in the literature [57, 58, 131, 150–154], combining semiempirical,

density functional or ab-initio methodologies with different kinds of force field.

2.5.1 The Guess approach

The Guess code for hybrid QM/MM calculations has been successfully applied to

study bulk defects and surface vacancies in various metal oxides [58, 59, 135], and

will be used in this thesis to study supported rhodium catalysts.

The Guess program is a hybrid QM/MM code that uses the program Gaussian [155]

for the computation of the QM part and the program Gulp [127] for the MM part. A

schematic representation of the embedding scheme implemented in Guess is showed

in Figure 2.5. A quantum cluster (of up to several tens of ions) is embedded in a finite

array of point charges located at the lattice sites. The part of the ions closest to the
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2.5 Combined QM/MM Calculations

quantum cluster is treated by the core-shell model, and these ions interact with them-

selves and with the quantum cluster atoms via a force field. The interface between

the quantum cluster and classical ions is constituted of positive ions represented using

ECPs and a minimal basis set with tight functions for the valence electrons. The atoms

in the interface region interact quantum mechanically with atoms of the quantum clus-

ter and classically with the rest of ions in the system. In this way the interface region

prevents an artificial spreading of electronic states outside the quantum cluster. The

positions of the cores and shells in the classical region are optimised in response to

the changes in the charge density distribution within the quantum cluster to minimise

the total energy of the whole system. The rest of the point ions form a region of fixed

non-polarisable ions, which provide the correct electrostatic potential distribution in

the quantum cluster and in MM region [58].

2.5.2 Computational procedure

The scheme of embedding that interfaces the QM treatment of a QM cluster with the

classical representation of the lattice polarisation is described in references [156, 157].

The total energy of the system can be written as [58]:

E =
〈
Ψ
∣∣Ĥ0 + Venv

∣∣Ψ〉+
1

2

∑
env

qiqj
Rij

+
1

2

∑
env

Wij +
1

2

∑
env

kiρ
2
i +

∑
i∈QM

∑
j∈env

Wij (2.85)

where Ĥ0 is the Hamiltonian of a free cluster, and

Venv =
∑
i∈QM

∑
j∈env

qj∣∣ri −Rj

∣∣ +
∑
i∈QM

∑
j∈env

Ziqj∣∣Ri −Rj

∣∣ (2.86)

is the electrostatic potential due to point charges qi of cores and shells representing

the polarisable environment of the QM cluster. The first term in equation (2.85) is the

QM energy of electrons in the potential of the nuclei of the QM cluster and the exter-

nal monopoles and dipoles representing ions of the polarisable environment [equation

(2.86)]. The second and third terms are respectively the Coulomb interaction, between
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the point charges of cores and shells in the environment and the short-range interac-

tion Wij , between the shells. The fourth term in equation (2.85) represents the elastic

interaction between cores and shells that are connected by a spring with the spring

constant ki and are separated by the distance ri . The last term in equation (2.85) is due

to the short-range interaction of the ions of the QM cluster and those of the environ-

ment. It is calculated using the short-range part of interatomic potentials, Wij , and is

included in order to describe better the Pauli repulsion and the dispersion interaction

across the QM cluster border. The total forces acting on each centre, i.e. the QM ions

and the classical cores and shells, are calculated by differentiating the total energy with

respect to the coordinates of corresponding species.

In this scheme total forces are calculated on both QM and classical ions. In such

a way the total energy of the system is simultaneously minimised with respect to the

electronic coordinates and the positions of QM ions and classical ions.

2.6 Computational Details

The calculations presented in this thesis work are based on the theoretical methods

described in this Chapter, and have been carried out on the Columbus and Magellan

clusters at the National Service for Computational Chemistry Software4. The Colum-

bus cluster is based on servers with two 2.4GHz Opteron processors and 8 GB of mem-

ory for each node (250 CPUs in total). The Magellan cluster is a Silicon Graphics Altix

4700 server with 224-core, 1.6GHz, Montecito Itanium2 processors, 896 GB of memory

and 15 TB of disk space. SUSE Linux Enterprise with SGI ProPack 4 is installed on

Magellan and RedHat Enterprise Linux is installed on Columbus.

A small number of calculations have been carried out on the Iridis2 cluster man-

tained by the University of Southampton. Iridis2 is a Beowulf cluster5 based on AMD

4Website: http://www.nsccs.ac.uk

5A Beowulf cluster is a scalable performance cluster based on commodity hardware, on a private system
network, with open source software (Linux) infrastructure (http://www.beowulf.org).
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2.7 Conclusions

Opteron processors, running RedHat Enterprise Linux. It has over 1000 processor-

cores (of which approximately 600 are single-core CPUs and approximately 480 are

dual-core CPUs), 900 GB of memory and over 30 TB of local disk storage.

2.7 Conclusions

An overview of the theoretical methods employed in this thesis work has been pre-

sented in this chapter. The plane-wave/DFT methodology, as implemented in the

program Castep [158], is used in Chapters 3, 4 and 5 to study the γ-Al2O3 support,

several molecular rhodium species and finally the supported catalyst. The results of

these calculations are compared with ab-initio and DFT calculations performed with

the programs Gaussian [155] and Molpro [159].

Ab-initio molecular orbital calculations have been used to compute the geometries

and reaction enthalpies for some selected rhodium complexes. The results are pre-

sented and compared with experimental results in Chapter 4.

Molecular mechanics, as implemented in the program Gulp [127], is used to simu-

late the structure of hydroxylated γ-Al2O3 surfaces through different force fields, and

comparison is made with results of periodic DFT calculations. The results are reported

in Chapter 3.

The QM and MM methodologies are then used to study supported rhodium cata-

lysts using the hybrid QM/MM scheme, as implemented in the program Guess [58].

The results of these calculations are presented in Chapter 5 and compared with the

calculations performed at the periodic-DFT level of theory.
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CHAPTER 3

SIMULATION OF HYDROXYLATED

γ-ALUMINA SURFACES

The aim of the work described in this Chapter is to simulate hydroxylated γ-Al2O3

surfaces using theoretical methods. As stated in the Introduction (Chapter 1), the bulk

structure of γ-alumina was taken from the work of Digne et al. [16, 27, 29] because this

model has been proved to reproduce the physical and chemical properties of hydroxy-

lated γ-alumina surfaces, with particular emphasis on hydroxylation/dehydroxylation

processes induced by temperature [29].

In the work of Digne et al., the simulations were performed at the plane-wave/DFT

level of theory, with periodic boundary conditions applied to the systems investigated.

In this thesis work, the plane-wave/DFT approach was used as implemented in the

program Castep [158]. The crystal model of γ-Al2O3 was optimised and used to gen-

erate the principal crystallographic surfaces via a periodic model composed of a slab

of appropriate thickness coupled with a vacuum gap large enough to avoid unphys-

ical interactions between the top and bottom surfaces of the slab. At this stage, the

program Gdis [160] was used to cleave the bulk structure along the desired crystallo-

graphic plane and to build slab models of surfaces.

An important point in solid state calculations is to check computed quantities such

as energies and forces with respect to the simulation parameters in order to have mean-

ingful results. Once a set of simulation parameters has been chosen that gives the best

compromise in terms of computational demand and accuracy, the same approach can
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be used to compute minimum-energy structures of supported rhodium species that are

found to be present on the catalyst surface (see Chapter 5).

The simulations performed in this thesis work were tested on γ-Al2O3 and the re-

sults compared with those published by Digne et al. [16, 27, 29]. Additional tests were

performed on α-Al2O3 (corundum), whose structure is well known experimentally [161–

169]. The bulk modulus is an important physical parameter that it is correlated to the

character of chemical bonds and is used as an indicator for the strength and hardness

of crystals [170]. The bulk modulus of α and γ alumina have been computed in this

thesis work by optimising the crystal bulk structure in the presence of an external pres-

sure. The equilibrium unit cell volumes, obtained for a range of pressures from 0 to 250

GPa, were used to obtain a pressure-to-volume (PV) dataset that was fitted using the

third-order Birch-Murnagham equation of state [171, 172]:

P (V ) =
2

3
K0

[(
V0
V

) 7
3

−
(
V0
V

) 5
3

]{
1 +

3

4
(K ′0 − 4)

[(
V0
V

) 2
3

− 1

]}
(3.1)

whereK0 is the bulk modulus, V0 the equilibrium unit-cell volume at zero pressure and

K ′0 =
dK0

dV
(the value of K ′0 is actually fitted). The fit was performed with the program

Gnuplot [173] by minimising the least-square residues between the binding curve and

the data points.

In the second part of this chapter, molecular mechanics (MM) is used to investigate

the structure of bulk and hydroxylated surfaces of γ-Al2O3. The aim was to find a

force field capable of reproducing the mechanical and electrostatic properties of hy-

droxylated γ-Al2O3 surfaces and to use it for hybrid QM/MM calculations, described

in Chapter 5. Several force fields were used to study the crystal structure of α-Al2O3, γ-

Al2O3, and diaspore (AlOOH), an aluminium hydroxide. Among the force fields which

give the best agreement with the reference structures optimised at the plane-wave/DFT

level of theory, one was modified in order to account for the presence of surface hy-

doxyl groups. The structures calculated at the MM level of theory were found to be in

good agreement with the reference structures.
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3.1 Plane-wave DFT Simulations

3.1 Plane-wave DFT Simulations

The calculations presented in this section were performed at the plane-wave/DFT level

of theory, following the methodology described in the work of Digne and co-workers,

from which the model of γ-Al2O3 was taken. In the original work [27, 29], the PW91

functional was used in the calculations. In this thesis work, the PBE functional has been

used because it gives essentially the same results as the PW91 functional, although it

has a simplier form [114] and this makes the calculations easier to carry out. The other

simulation parameters were chosen according to convergence of quantities such as

total electron energy and forces with respect to parameters such as the basis-set energy

cut-off, the k-point grid and the fast Fourier Transform (FFT) numerical grid.

The (h k l) surface was simulated by slicing the bulk structure in the (h k l) crystallo-

graphic direction and coupling the resulting slab with a vacuum gap. The stability of

the results and the quality of the simulations were checked by studying the variation

of the surface free energy (Esurf) with respect to the slab thickness and the vacuum gap

until convergence of the value Esurf is obtained. The surface energy is defined as:

Esurf =
Eslab − Ebulk

A
(3.2)

where A is the total area of the surface in the slab model, Eslab is the computed energy

of the slab and Ebulk is the energy of an equivalent amount of bulk atoms.

3.1.1 Simulation Parameters

The calculations presented in this thesis work are based on the plane-wave/DFT ap-

proach, as implemented in the program Castep [158]. The gradient-corrected exchange

correlation functional PBE [114] was used to solve the Kohn-Sham (KS) equations, with

periodic boundary conditions applied to the systems under investigation. Vanderbilt

ultrasoft pseudopotentials [126] were used to describe the ion-electron interaction and

the core electrons. The KS orbitals were expanded in a plane-wave basis set, with a
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Figure 3.1: Convergence of the total electronic energy and the force acting on
the first oxygen atom (see the output file of a Castep calculation, on Support
Information A.1) with respect to the basis set energy cut-off. A cut-off energy
Ecut = 380 eV was chosen for the calculations presented in this thesis work. The
inset in the left-hand side of this Figure shows the relative energy difference (in
eV) in the region from Ecut = 380 eV to Ecut = 800 eV.
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Figure 3.2: Convergence of the total electronic energy and forces with respect to
the number of k-points. A grid of 12 points, obtained with a k-point spacing of
0.05 Å−1, was chosen for the calculations presented in this thesis work. Speci-
fying the grid spacing instead of the total number of k-points yields a constant
density of points regardless of the size of the unit cell.

cut-off energy of 380 eV. The basis-set cut-off energy was determined on the basis of

single-point calculations performed on the bulk structure of γ-Al2O3. The total elec-

tronic energy and the atomic forces computed as a function of the basis-set energy

cut-off are shown in Figure 3.1. Both the total electronic energy and the forces acting
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Figure 3.3: Convergence of the total electronic energy and forces with respect to
the fast Fourier transform (FFT) grid. A value of 2.1 was chosen for the calcula-
tions presented in this thesis work. The computed forces shown in the right-hand
side do not show a clear dependance on this parameter.

on atoms smoothly converge to stationary values. The difference between the energy

computed at Ecut = 380 eV and the value computed at higher cut-off energies is shown

in the small inset of Figure 3.1. As can be seen, the error due to a finite basis set is really

small (about 0.04 eV/atom).

The first Brillouin zone is defined as the Wigner-Seitz primitive cell of the reciprocal

lattice (i.e. the k-space). The bigger the unit cell, the smaller the first Brillouin zone

will be. Therefore a relatively large number of k-points is required for an accurate k-

sampling of small unit cells such as those of α and γ alumina, whereas a few points are

required for large unit cells. For very large unitary cells such as the one of an isolated

molecule, just the point at k = 0 (known as the Γ point) is used for calculations in

the reciprocal space. Figure 3.2 shows the convergence of the total electronic energy

and forces of bulk γ-Al2O3 with respect to the number of k-points. The number of k-

points increases as the distance between k-points decreases. In practice, satisfactory

energies and forces were computed with a k-point spacing of 0.05 Å−1. The advantage

of specifying the k-point spacing instead of a fixed grid is to assure a constant sampling

in the k space independently of the unit cell size.

Fast Fourier transformation (FFT) is used to transform between real and reciprocal
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Figure 3.4: Convergence of the surface energy and forces computed for the (100)
surface of γ-Al2O3. The calculations are carried out varying the thickness of the
slab. A fractional thickness of three units was chosen as a compromise between
computational cost and accuracy.
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Figure 3.5: Convergence of the relative total electronic energy and forces com-
puted for the (100) surface of γ-Al2O3. The calculations are carried out varying
the vacuum gap. A vacuum gap of 13 Å was chosen for the calculations pre-
sented in this thesis work.

space. The fineness of the grid for numerical integration in real space is given as a

multiple of the diameter of the plane-wave sphere1 in the k-space. A value of 2.1 was

used to yield accurate energy calculations, as shown in Figure 3.3. The computed forces

do not show a clear dependance on this parameter.

1i.e. the sphere that contains the wave-vectors, that satisfies the condition
(G + k)2

2
≤ Ecut.
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Parameter Castep keyword Value
XC functional xc_functional PBE
Energy cut-off cut_off_energy 380 eV
FFT grid grid_scale 2.1
k-point grid finess kpoints_mp_spacing 0.05 Å−1

Pseudopotentials species_pot Ultrasoft

Table 3.1: Summary of the parameters used for the simulations performed with
the program Castep.

The surfaces are modelled as slabs cleaved from the bulk structure of the crystal.

Periodic boundary conditions are applied in all directions and a vacuum gap added

in the direction perpendicular to the surface in order to avoid unphysical interactions

between the periodic images of the system. The top and bottom surfaces in the slab

are identical, and the cell volume is kept fixed in all the geometrical optimisations. The

convergence of the surface energy Esurf was studied as a function of the slab thickness

and the vacuum gap. A slab thickness of 3.0 fractional units has been chosen as the

best compromise between accuracy and computational cost. Figure 3.4 shows a rapid

convergence of the computed forces to stationary values, and a slow convergence of

Esurf with respect to the fractional thickness of the slab. A vacuum gap of 13 Å is found

to give accurate energy and forces, as shown in Figure 3.5. For this test, the relative

variation of the surface energy is shown. It should be noted that because of their non-

locality, a large number of plane waves is required to simulate the vacuum gap, thus

increasing significantly the computational cost of the calculations. A summary of the

parameters used for the plane-wave/DFT simulations carried out in this thesis work

is presented in Table 3.1.

3.1.2 Computed Structures

The structure of corundum (α-Al2O3) is rhombohedral with two Al2O3 units in each

primitive cell, and its space group isR3̄c. The three primitive lattice vectors have equal

lengths and are separated by equal angles. The lattice can also be viewed as a hexago-
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nal lattice containing six formula units per cell with lattice parameters a and c, where

the c-axis is the threefold axis of the primitive rhombohedral cell and c is the length

of the primitive cell along that axis [174]. A comparison of the two representations is

shown in Figure 3.6.

The rhombohedral representation was used in the present calculations because, be-

ing smaller than the hexagonal representation, it also has a smaller computational cost.

The computed equilibrium structure at P = 0 GPa has lattice vectors a = 5.181632 Å

and angles α = 55.290794 deg. The resulting cell is slightly bigger than the experimen-

tal cell, and the corresponding density lower (see Table 3.2). However, this is a known

effect since the GGA approximation is known to give longer bond lengths and smaller

bond force constants compared to the LDA approximation [175]. A summary of the

computed and experimental properties of corundum is reported in Table 3.2.

The calculated bulk modulus of α-Al2O3 is 227.5 ± 0.2 GPa, and the fit of the theo-

retical PV data-set is shown in Figure 3.7. As expected, the calculated bulk modulus

is smaller than the experimental value of about 250 GPa. Theoretical values of the

0

a

a

c

0
Rhombohedral Hexagonal

Figure 3.6: Rhombohedral and hexagonal representation of the corundum unit
cell. Red atoms are oxygen, grey atoms are aluminium.
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Source a c c/a V0 K0 density
Exp. [164] 4.7657 (9) 13.010 (14) 2.730 (8) 85.298 254.4 3.9699
Exp. [167, 176] 4.7540 (5) 12.9820 (6) 2.7308 (4) 84.697 255 3.9980
Exp. [168, 177] 4.7602 (4) 12.993 (2) 2.7295 (5) 84.990 252 3.9843
Theo.a[174] 4.7665 12.969 2.7209 85.059 248.7 3.9810

This workb 4.8085 13.125 2.7296 87.609 227.5 (2) 3.8647
a Total-energy calculations performed with the all-electron, full-potential linear

combinations of Gaussian type orbitals-fitting function technique.
b Calculations performed at the plane-wave/PBE level of theory with periodic

boundary conditions.

Table 3.2: Comparison of theoretical and experimental properties of corundum:
the hexagonal cell lattice constants a and c (Å), c/a ratio, zero-pressure volume
of the rhombohedral cell V0 (Å3), bulk modulus K0 (GPa) and density (g/cm3).

bulk modulus calculated by other research groups show a better agreement with the

experimental value (see below):

Bulk modulus (GPa) 248.7 248 253.5 246.9 243.7

XC functional LDA LDA LDA LDA GGA

Reference [174] [178] [179] [180] [181]

In the cited works, the bulk modulus has been computed by (i) fitting the modified

“universal” equation of state [182, 183], (ii) from theoretical elastic constants [184], and

(iii) using the Cohen’s empirical formula [185].

The discrepancy with the value computed in this thesis work can be attributed ei-

ther to the GGA approximation, or to the different methodology used to compute the

bulk modulus. In this thesis work, the bulk modulus was computed with the Birch-

Murnagham equation of state (3.1) because it describes the phenomenological response

of a crystal to compression. The advantage of such an approach is that it can be used to

fit PV data-sets obtained from MM calculations, and the results compared with those

obtained at the plane-wave/DFT level of theory.

The electronic density of states (DOS) computed for bulk corundum at the plane-

wave/DFT level of theory is shown in Figure 3.8. The computed electronic band gap

is 5.94 eV, a value typical for highly insulating metal oxides, is nevertheless lower
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Figure 3.7: Cell volume of α-Al2O3 (in the rhombohedral representation) calcu-
lated at the plane-wave PBE level of theory, at different pressures. The dataset is
fitted with the Birch-Murnagham equation of state (3.1) to yield the bulk modu-
lus.

than the experimental value of 8.8 eV [186]. Calculations performed by other research

groups show similar results (see below):

Band gap (eV) 6.14 6.6 6.33 6.23 6.29 6.72 8.0

XC functional LDA LDA LDA GGA LDA LDA –

Reference [174] [179] [180] [181] [187] [188] [189]

The band gap computed in reference [189] has the best agreement with the experimen-

tal value: in this article the electronic structure of corundum was computed using the

first principles extended tight-binding method, tuning the exchange parameter to re-

produce the experimental band gap [189]. For the other calculations, the computed

band gap is lower than the experimental value. This discrepancy is associated with the

fact that DFT systematically underestimates the band gap width in solids.

The structure of γ-alumina used in this thesis work is monoclinic with eight Al2O3

units in each primitive cell, and its space group is P21/m. Compared to the traditional

defective spinel-like structure, this model does not impose constraints on the type and

number of interstices occupied by aluminum atoms, and it gives significantly lower

electronic energies [27]. The present model has 25% of aluminium atoms in tetrahedral
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Figure 3.8: Comparison between the total density of states (DOS) for the corun-
dum and γ-alumina bulk models at zero pressure computed at the plane-wave
PBE level of theory. The two phases show a remarkably similar electronic struc-
ture. The band gap of corundum is bigger than the band gap of γ-alumina, in
agreement with the experimental determinations.

sites and the rest in octahedral sites. The unit cell is shown in Figure 3.9

The computed equilibrium structure at P = 0 GPa has a cell volume/Al2O3 unit

equal to 47.38 Å3, in very good agreement with the experimental mean value of 46.39

Å3 [190]. The bulk modulus was computed using the same approach described for

corundum, and similar considerations apply. The PV data-set from which the bulk

modulus has been computed is shown in Figure 3.10. The computed value of 175.7±0.4

GPa is in good agreement with the theoretical value of 171 GPa, calculated on the same

bulk structure [27]. This value matches the experimental value of 162 ± 14 GPa [191]

better than values computed at the DFT level with spinel-like models, that lead to

larger values (Table 3.3).
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Figure 3.9: Unit cell of the γ-Al2O3 bulk, according to Digne et al. [27]. The cell is
monoclinic with space group P21/m and contains eight Al2O3 units. Red atoms
are oxygen, grey atoms are aluminium.
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Figure 3.10: Cell volume of γ-Al2O3 calculated at the plane-wave PBE level of
theory, at different pressures. The dataset is fitted with the Birch-Murnagham
equation of state (3.1) to yield the bulk modulus.

The computed electronic density of states of bulk γ-alumina is shown in Figure 3.8.

The computed band gap is 4.70 eV which is lower than typical experimental values,

which range from 7.0 eV [191] to 8.7 eV [192]. Despite the fact that the band gap is

understimated with DFT, the DOS vs Energy plots of α and γ alumina are similar.

This result is in agreement with the fact that the experimental band gap for these two
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Reference XC functional K0 Band gap
[23] LDA 219 4.0
[179] LDA 232 3.9
[180] LDA 204.0 4.22

This work GGA (PBE) 175.7 (4) 4.70

Table 3.3: Comparison between the bulk modulus K0 (GPa) and band gap (eV)
of γ-alumina computed using different XC functionals.

Figure 3.11: Morphology of a typical γ-Al2O3 nanoparticle, according to reference
[27]. The indeces of the crystallographic planes (001), (100) and (101) correspond
to the indeces (100), (110) and (111) in the spinel representation.

insulators is very similar, suggesting that their electronic structures are also similar.

Hydroxylated surfaces of γ-alumina were generated by cleaving the bulk structure

along the plane defined by the (h k l) Miller indices. The topology of γ-alumina sur-

faces depends mainly on the fcc oxygen atom sublattice. In the spinel-type indexation,

the (100) surface has a square oxygen atom sublattice, the (110) surface has a rectangu-

lar oxygen atom sublattice and the (111) surface has a hexagonal one. In the work of

Digne and co-workers [27], the γ-alumina surfaces are indexed in this way. In this the-

sis work, these surfaces are indexed according to the Miller indexes of the monoclinic

bulk structure. Therefore the correspondence is:

Original notation [27]: (100) (110) (111)

This work: (001) (100) (101)

A pictorial view of a typical γ-Al2O3 nanoparticle, adapted from reference [27], is

shown in Figure 3.11. According to the morphology of a typical γ-alumina nanoparti-

cle proposed by Digne et al. [27], the (100) surface accounts for 74% of the total exposed
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surfaces, the (001) for 16% and the (101) surface accounts for 10% of the total exposed

surfaces [27].

The slab model of these surfaces were obtained following the convergence criteria

described in the previous section. The (001) and (100) surfaces were generated with a

slab cut along the (h k l) direction and coupled with 13 Å of a vacuum gap added in the

direction normal to the resulting plane. Each slab contains 24 Al2O3 units, correspond-

ing to 12 atomic planes. The resulting periodic cells are orthorhombic with the follow-

ing lattice parameters (in Å): the (001) surface has cell axes a = 5.584061, b = 8.405571

and c = 40.200000; the (100) surface has cell axes a = 8.410048, b = 8.068898 and

c = 33.400000. Only the (100) and (001) surfaces have been considered in this thesis

work because of the high computational cost of the simulations.

A stoichiometric number of water molecules was added to both sides of each slab in

order to reproduce the degree of hydroxylation of the alumina surfaces under experi-

mental conditions. As stated in the paragraph 1.4.3, the samples of supported rhodium

catalysts are synthetised by wet impregnation of γ-alumina followed by thermal treat-

ment at temperature T = 500 K. Under these conditions the alumina is dried but not

extensively dehydroxylated [42]. Thus the number of water molecules used to cap the

surface atoms has been chosen according to the most thermodynamically stable surface

coverage of water at 500K, as determined in reference [29]:

(001) (100) (101)

θ 8.8 11.8 14.7

where θ is the surface coverage index in [OH nm−2].

The simulation parameters used to optimise the position of surface atoms and water

molecules are the same as employed for the optimisation of the bulk structure. During

the optimisation of the hydroxylated γ-Al2O3 surfaces, the water molecules undergo

into dissociation, leading to formation of different kinds of hydroxyl groups and re-

organisation of surface atom positions. The morphology of such surfaces has been

described extensively in references [27, 29] and will not be further discussed here. From

the point of view of catalysis, the aim of this work was to obtain realistic models of
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(001) (100)

Figure 3.12: Pictorial view of the (001) and (100) hydroxylated γ-Al2O3 surfaces
after the geometrical optimisation performed at the plane-wave PBE level of the-
ory. The (001) surface model contains 132 atoms, and the (100) surface model
contains 144 atoms.
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hydroxylated alumina surfaces to be used to study the metal-support interaction. A

pictorial view of the minimum-energy structures obtained for the (001) and (100) γ-

alumina surfaces is given in Figure 3.12.

3.2 Molecular Mechanics (MM) Simulations

The calculations presented in this section were performed at the MM level of theory,

using the core-shell approximation, as implemented in the program Gulp [127]. In this

method, interatomic potentials are used to model the interactions between ions in the

molecular system considered. This method has been applied to study a great variety

of materials, ranging from biological systems and organic molecules, to metal oxides

and defective crystals. The family of transition aluminas in particular has been the

subject of a huge number of studies in the past 40 years, resulting in several published

potential libraries which are available for use. The results presented in Tables 3.4 and

3.5 show the capability of these force fields to reproduce the structural properties of

both α and γ alumina.

3.2.1 Simulation Parameters

Several force fields published in the literature were used to optimise the bulk structure

of different aluminium oxides and hydroxides. The aim was to select a force field able

of reproducing the structural and electrostatic features of hydroxylated γ-alumina sur-

faces to be used for hybrid QM/MM calculations. The collection of force fields that

comes with the program Gulp, as well as others taken from the database of published

interatomic potential parameters2, were used to optimise the bulk structure of corun-

dum and γ-alumina.

For corundum, very good agreement between the experimental and computed stru-

cture was found using the potentials proposed by Grimes (1999), Streitz and Mintmire

2Website: http://www.dfrl.ucl.ac.uk/Potentials/
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Potential library1 a (Å) c (Å) V0 (Å3)
Grimes (1999) 4.81305 12.72738 255.335
Catlow (1992) 4.78796 12.49673 248.100
Bush (1994) 4.82006 13.01165 261.798
Bush-modified2 4.83065 12.93743 261.451
Streitz and Mintmire (1994) 4.74550 13.00733 253.678
Gale (2005)3 5.10027 13.43181 302.588
Baram (1996) 4.77925 12.56377 248.525
Sauer (1997) 4.79651 12.69413 252.921
Binks (1994) 4.81306 12.72797 255.348
Maglia (2008)4 4.97137 13.11363 280.676
Sun (2006)5 4.77268 12.99000 256.250
De Leeuw and Parker (1999)6 4.81765 12.68044 254.879

Experimental [167] 4.7540(5) 12.9820(6) 254.09(6)
Reference7 4.80853 13.12546 262.827
1 Potential libraries taken from the Database of Published Interatomic Po-

tential Parameters website http://www.dfrl.ucl.ac.uk/Potentials/ , un-
less otherwise specified.

2 Three-body potential taken from Catlow’s library.
3 From “Handbook of Materials Modelling” [193].
4 From reference [22].
5 From reference [177].
6 From reference [194].
7 Reference structure of α-Al2O3 optimised in this thesis work at the

plane-wave/DFT level of theory.

Table 3.4: Computed cell parameters for the α-Al2O3 unit cell in the hexagonal
representation.

(1994), Sauer (1997) and Binks (1994) and De Leeuw and Parker (1999) [194–196]. For

γ-alumina, good agreement (in terms of calculated lattice parameters) was also found

using these potentials. However, the lattice vectors computed with these potentials

are in general bigger compared to the lattice vectors of the reference structure. This

effect is compensated with an expansion of the lattice angle β. For this reason, a more

realistic structure is the one obtained using the Bush potential modified by adding the

three-body potential taken from the Catlow force field.

The simulation of γ-Al2O3 surfaces using a shell-model presents more difficulties
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Potential library a (Å) b (Å) c (Å) β (deg.) V0 (Å3)
Grimes (1999) 5.5481 8.4205 8.1182 92.66 378.85
Catlow (1992) 5.5328 8.3757 7.9667 92.40 368.86
Bush (1994) 7.6610 9.4875 7.3123 81.30 525.38
Bush-modified 5.6917 8.5493 7.9796 90.27 388.29
Streitz and Mintmire (1994) 5.5684 8.4266 8.0186 91.99 376.03
Gale (2005) 5.8930 8.9430 8.5834 93.21 451.64
Baram (1996) 5.5058 8.3672 8.0309 92.57 369.60
Sauer (1997) 5.5386 8.4568 8.1098 92.43 379.51
Binks (1994) 5.5483 8.4208 8.1182 92.66 378.88
Maglia (2008) 5.7311 8.6701 8.0240 92.01 398.46
Sun (2006) 7.6734 9.2158 7.7187 88.37 545.61
De Leeuw and Parker (1999) 5.5385 8.4434 8.0567 92.66 376.35

Reference1 5.5853 8.4100 8.0689 90.59 379.20
1 Reference structure of γ-Al2O3 optimised in this thesis work at the plane-

wave/DFT level of theory.

Table 3.5: Computed cell parameters for the γ-Al2O3 unit cell obtained using
different force fields.

compared with those of the bulk structures, because additional potential terms are

needed to account for the interaction of water molecules adsorbed on metal oxide sur-

faces. Also, surface atoms experience a different potential compared to bulk atoms.

The force field proposed by De Leeuw and Parker (DLP) [194] was designed to study

the chemisorption and physisorption of water molecules on α-alumina surfaces, and

appeared to be the most obvious choice for the study of hydroxylated γ-alumina sur-

faces. Figure 3.13 shows the different atom types present in (001) and (100) γ-alumina

surfaces. Oxygen atoms belonging to the bulk structure are designed as O1, oxy-

gen atoms from hydroxyl groups are designed as O2 and oxygen atoms from water

molecules are designed as O3. Tetrahedrally coordinated aluminium atoms on the

(100) surface are designed as Al2.

The original DLP force field was modified [197] in order to be used with the program

Gulp, and used to optimise the structure of an aluminium oxide hydroxide (AlO(OH),

or diaspore) in order to test the Al–OH and O–OH interactions, as performed in the
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Figure 3.13: Definition of atom types in the modified DLP force field.

original paper from which the force field has been taken [194]. Two additional terms

were added to the Buckingham potential in order to account for the long-range repul-

sion between the hydrogen atoms and the bulk oxygen atoms, and between hydrogen

atoms. The potential parameters were fitted with the program Gulp on the experi-

mental structure of diaspore. The resulting potential parameters used in this work are

listed in Table 3.6.

The slab models for the (001) and (100) planes were built using the program Gdis

[160], following the same methodology described for the simulation of surfaces at the

plane-wave/DFT level of theory. The positions of adsorbed water molecules and hy-

droxyl groups in the initial configurations were chosen according to the DFT struc-

tures. The optimisation of the hydroxylated surfaces was achieved in about 1000 steps,

and convergence problems were experienced for the (100) surface. In this case, the

analysis of the computed trajectory revealed a mispositioning of the surface hydroxyl

groups coordinated to tetrahedral aluminium atoms. To solve this problem, a three-

body potential whose parameters were fitted to reproduce the structures obtained at

the plane-wave/DFT level of theory was used for tetrahedrally coordinated surface

aluminium atoms (Table 3.7). With this included, the geometrical optimisation of the

hydroxylated (100) surface was achieved.
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3.2 Molecular Mechanics Simulations

Ion or ion pair Parameters and values
Core-shell model

core shell K2 (eVÅ−2)
Al 3.00 – –
H 0.40 – –
O1 (oxide) 1.00 -3.00 60.78
O2 (hydroxide) 0.90 -2.30 74.92
O3 (water) 1.25 -2.05 209.449602

Buckingham potential
A (eV) ρ (Å) C (eVÅ6) rmin rmax

Alcore-O1shell 1474.40 0.30060 0.00 0.0 16.0
Alcore-O2shell 1032.08 0.30060 0.00 0.0 16.0
Alcore-O3shell 590.04 0.30060 0.00 0.0 16.0
O1shell-O1shell 22764.00 0.14900 27.88 0.0 16.0
O1shell-O2shell 22764.00 0.14900 13.94 0.0 16.0
O1shell-O3shell 22764.00 0.14900 28.92 0.0 16.0
O2shell-O2shell 22764.00 0.14900 6.97 0.0 16.0
O2shell-O3shell 22764.00 0.14900 8.12 0.0 16.0
Hcore-O1shell 353.73 0.24700 0.49 0.0 20.0
Hcore-O2shell 311.97 0.25000 0.00 1.2 20.0
Hcore-O3shell 396.27 0.25000 10.00 1.2 20.0
Hcore-Hcore 1126.07 0.25200 32.86 1.7 20.0

Lennard-Jones potential
A (eVÅ12) B (eVÅ6) rmin rmax

O3shell-O3shell 39344.98 42.15 0.0 20.0

Morse potential
De (eV) α (Å−1) r0 (Å) rmin rmax

Hcore-O2shell 7.052500 3.17490 0.94285 0.0 1.2
Hcore-O3shell 6.203713 2.22003 0.92376 0.0 1.2

Coulomb subtraction
Scale rmin rmax

Hcore-O2shell 0.5 0.0 1.2
Hcore-O3shell 0.5 0.0 1.2
Hcore-Hcore 0.5 0.0 1.7

Three-body potential
K (eVrad−2) Θ0 (deg) r(1−2)max r(1−3)max r(2−3)max

O3shell-Hcore-Hcore 4.19978 108.69 1.2 1.2 1.7

Table 3.6: Interatomic potential parameters used in this work, adapted from De
Leeuw and Parker [194]. Cut-off radii are given in Å. The core-shell model is
defined in Section 2.4.3, and the atom types are defined in Figure 3.13.
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3.2 Molecular Mechanics Simulations

Ion pair Parameters and values
Core-shell model

core shell K2 (eVÅ−2)
Al2 3.00 – –

Buckingham potential
A (eV) ρ (Å) C (eVÅ6) rmin rmax

Al2core-O1shell 1474.40 0.30060 0.00 0.0 16.0
Al2core-O2shell 1032.08 0.30060 0.00 0.0 16.0
Al2core-O3shell 590.04 0.30060 0.00 0.0 16.0

Three-body potential
K (eVrad−2) Θ0 (deg) r(1−2)max r(1−3)max r(2−3)max

Al2core-O1shell-O1shell 6.24339 119.658 2.1 2.1 4.5
Al2core-O1shell-O2shell 6.24339 119.658 2.1 2.1 4.5
Al2core-O1shell-O3shell 6.24339 119.658 2.1 2.1 4.5

Table 3.7: Additional potential terms used to assure a tetrahedral coordination
for surface aluminium atoms coordinated to hydroxyl groups on the (100) sur-
face. The potential parameters of the Buckingham potential are identical to those
of bulk aluminium atoms, where the parameters of the three-body potential have
been fitted on the reference structure of γ-alumina.

3.2.2 Computed Structures

The modified DLP force field was employed to optimise the bulk structure of diaspore,

corundum and γ-alumina, giving in all cases good agreement with experimental unit

cells and the results of analogous optimisations performed at the plane-wave/DFT

level of theory.

The structure of diaspore is orthorhombic, it belongs to the space group Pbnm and

has the following experimental lattice constants: a = 4.4010 Å, b = 9.4210 Å, c = 2.8450

Å, and α = β = γ = 90 ◦[198]. The zero-pressure unit cell optimised using the modified

DLP force field is in good agreement with the experimental structure, as shown in Table

3.8. A pictorial view of the optimised unit cell is shown in Figure 3.14.

The calculated primitive cell volumes of corundum and γ-alumina also are in agree-

ment with the reference structures optimised at the plane-wave/DFT level of theory.

The rhombohedral unit cell of corundum has a volume of 84.960 Å3 (cell volume of the

76



3.2 Molecular Mechanics Simulations

Molecular Mechanics Reference
a b c V0 a b c V0

Diaspore 4.4440 9.1141 2.9510 119.52 4.4010 9.4210 2.8450 117.96
Corundum 5.0599 5.0599 5.0599 84.960 5.1816 5.1816 5.1816 87.609
γ-Alumina 5.5386 8.4435 8.0569 376.37 5.5853 8.4100 8.0689 379.20

Table 3.8: Lattice parameters (in Å) and zero-pressure unit cell volumes (in Å3)
computed at the MM level of theory using the DLP force field. Reference struc-
tures from plane-wave/DFT calculations were obtained in this thesis work, ex-
cept for diaspore (experimental structure taken from ref. [198]).

Figure 3.14: Structure of diaspore optimised using the force field from De Leew
and Parker.

reference structure is 87.609 Å3) and the unit cell of γ-alumina has a volume of 376.355

Å3 (cell volume of the reference structure is 379.20 Å3). These results prove that struc-

tural properties computed with the DLP force field are in good agreement both with

the experimental data and with DFT results. A summary of the lattice parameters

computed for bulk structures is given in Table 3.8.

The bulk modulus of corundum and γ-alumina was determined by fitting the Birch-

Murnagham equation of state (3.1) to a PV data-set obtained by optimising the unit cell

structure in a range of pressures from 0 to 250 GPa. The data-sets and the fitted curves

for the two systems are shown in Figures 3.15 and 3.16. The calculated bulk modulus

of α-Al2O3 is 333.9 ± 0.7 GPa, and the bulk modulus of γ-Al2O3 is 182 ± 8 GPa. These

values are higher than the corresponding values computed at the DFT level of theory,
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Figure 3.15: Calculated cell volume at different pressures and fitted Birch-
Murnagham equation of state for α-Al2O3 (corundum).
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Figure 3.16: Calculated cell volume at different pressures and fitted Birch-
Murnagham equation of state for γ-Al2O3.

but nevertheless they are in agreement with the experimental values.

The structures of hydroxylated (001) and (100) γ-Al2O3 surfaces were successfully

optimised using the DLP force field. As stated in the previous section, tetrahedally

coordinated aluminium atoms on the (100) surface had to be considered with an addi-

tional three-body potential (Table 3.7) in order to maintain their coordination geometry.

Using these settings the position of surface atoms was relaxed until convergence of the
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3.2 Molecular Mechanics Simulations

(a) (b)

Figure 3.17: Comparison between the structures of the hydroxylated (001) γ-
alumina plane computed at the plane-wave/DFT level of theory (a) and at the
molecular mechanics level of theory (b).

(a) (b)

Figure 3.18: Comparison between the structures of the hydroxylated (100) γ-
alumina plane computed at the plane-wave/DFT level of theory (a) and at the
molecular mechanics level of theory (b).

total energy was reached. Both surfaces retained their bulk coordination while the

surface atoms experienced a re-organisation of their positions.

The overall structure of hydroxylated surfaces is well reproduced using interatomic

potentials. A graphical comparison between the morphology of (001) and (100) sur-
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faces optimised at the DFT and MM level of theory is presented in Figures 3.17 and

3.18. Small differences in the position of bulk atoms are due to the difference between

the cell angle β of the primitive unit cell in the reference structure and in the MM struc-

ture. Also, surface hydroxyl groups are oriented in a different way in the MM struc-

tures. However, compared to DFT simulations, the MM approximation has a major

advantage in terms of computational cost. As an example the geometrical optimisa-

tion of the (001) surface, performed at the plane-wave/DFT level of theory on a cluster

of Silicon Graphics Altix 4700 servers with 1.6GHz Montecito Itanium2 processors (24

cores used), took about 10000 CPU hours of computing time. The geometrical optimi-

sation of the same surface computed at the MM level of theory took about 1 hour of

computing time on a desktop workstation. Thus this method appears to be an attrac-

tive alternative for a cheap estimation of the structural properties of complex systems

such as hydroxylated γ-Al2O3 surfaces.

3.3 Conclusions

The structure of the hydroxylated (001) and (100) surfaces of γ-alumina were simu-

lated at the plane-wave/DFT and MM levels of theory. The two theoretical methods

were first applied to compute the structural properties (zero-pressure lattice param-

eters and bulk modulii) of corundum, γ-alumina and diaspore. The results obtained

at the plane-wave/DFT level of theory are in good agreement with the experimental

evidence and results of similar published calculations. The results obtained at the MM

level of theory are consistent with DFT calculations and have the major advantage of

being computationally inexpensive.

For high-quality DFT calculations, the simulation parameters were determined to

assure complete convergence of the computed results, and to give the best compro-

mise between accuracy and computational cost. The determination of such parameters

was performed for the bulk corundum and γ-alumina systems. The set of simulation

parameters that gives the best compromise in terms of quality of calculations and com-
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3.3 Conclusions

putational cost was used in all the simulations presented in this thesis work.

The structures of hydroxylated γ-alumina surfaces computed in this thesis work

are in agreement with the theoretical results of Digne and co-workers [27, 29]. This

model of surfaces has been shown to reproduce the experimental chemical and physi-

cal properties of hydroxylated γ-alumina surfaces at 500K, and is therefore reliable for

the simulation of supported rhodium catalysts under operating conditions.

For MM calculations, a force field taken from the published literature [194–196] was

used to study hydroxylated γ-alumina surfaces. This force field was first validated by

determining the lattice parameters and structural properties of corundum, γ-alumina

and diaspore, and then applied for the geometrical optimisation of hydroxylated γ-

alumina surfaces. The resulting models of surfaces were found to have a morphology

similar to the ones obtained using electronic structure methods.

The structural models of hydroxylated γ-alumina surfaces will be used in Chapter

5 to study the chemisorption of supported RhI(CO)2 species at the plane-wave/DFT

level of theory and at the QM/MM level of theory using the modified DLP force field

described in this Chapter.
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CHAPTER 4

CALCULATIONS ON RHODIUM

COMPOUNDS

In this chapter electronic structure methods have been applied to study small rhodium

complexes, whose structures and properties have been previously characterized either

experimentally or theoretically. The aim was to test different theoretical methods and

to select a method that gives the best agreement with the results published in literature,

at an affordable computational cost.

As soon as computational resources made it possible for research groups to carry out

accurate ab-initio calculations, the use of theoretical methods quickly became a essential

tool to interpret the results of experimental determinations and to make predictions. In

1988, McKee and Worley studied isolated Rh-carbonyl species at the HF level of theory

in order to gain information on CO surface species adsorbed on supported rhodium

catalysts [199]. Two years later, Barnes and co-workers presented a systematic theo-

retical study of the first- and second-row transition-metal mono- and dicarbonyl pos-

itive ions performed with the size-consistent modified coupled pair functional [200],

and in 1994 Dai and Balasubramanian used a multi-configurational approach to com-

pute potential energy surfaces for Rh-CO and Rh-OC interactions [201]. The role

of the rhodium basis set was first investigated by Couty and co-workers in 1996 by

calculating the exothermicity of the oxidative addition of methane to (cyclopentadi-

enyl)rhodium carbonyl at the MP3, MP4 and QCISD levels of theory, using different

basis sets with an increasing number of basis functions [202]. Following these studies,
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in 1997 McKee and Worley presented a new study of the interaction of rhodium with

dinitrogen and carbon monoxide performed at the B3LYP level of theory, where a split-

valence triple-ζ (TZ) quality basis was used for all the atoms and a ECP [6s5p3d] basis

set was used for rhodium [203]. Similar computations were performed for rhodium

mono-carbonyl species and the computed results were compared with evidence from

infrared spectra of RhCO+, RhCO, and RhCO− in solid neon [56]. In 1999 a comparison

between experimental and computed quantities were made for the optical absorption

spectrum of the octahedral RhCl3−6 complex, investigated at the CASSCF level, fol-

lowed by a second-order perturbation correlation treatment CASPT2 [204]. In 2001

the vibrational spectrum and structure of cis-Rh(NH3)(CO)2Cl were investigated at the

BLYP/6-311G∗∗ level of theory, using an ECP [6s5p3d] basis set for rhodium [205],

and in 2003 the ionisation and fragmentation of [RhCl(PF3)2]2 was investigated at the

DFT/VTZ level of theory [206].

In the recent literature, the combination of DFT and ECP basis sets has been success-

fully applied to compute 0◦K structures and vibrational spectra of many rhodium com-

plexes [207–209]. In particular, Stevens and co-workers showed that DFT is a viable

method to describe the rhodium-ligand bond when the system under investigation

can be represented as a single electronic configuration but it fails to produce quantita-

tive agreement with the experimental evidence when the molecule has a strong multi-

configurational character [209]. A great variety of density functionals has been devel-

oped to reproduce specific thermodynamic properties and to give accurate molecular

geometries. Truhlar and co-workers have presented a systematic assessment of den-

sity functional methods applied to transition-metal chemistry, giving guidelines as to

which functional is best suited to study a specific problem [210, 211].

From this literature survey, it was decided to test a selection of density functionals

and post-HF methods on small rhodium complexes in this work. The results of these

calculations are presented in the first part of this chapter. Plane-wave/DFT calcula-

tions, with periodic boundary conditions applied, have been used to study the same

rhodium complexes and the results compared with reference theoretical determina-
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4.1 Basis Set Design

tions; this is described in section 4.3 of this chapter.

4.1 Basis Set Design

to The choice of basis set is of fundamental importance to high-quality calculations.

Wavefunction based theoretical methods such as MPn, CI and CC are very sensitive to

the quality and size of the basis set because a good representation of the atomic wave-

function requires an adequate number of basis functions of different types. Basis sets

which use effective core potentials (ECP) to describe the core electons are based on the

assumption that the chemical properties of an element depend mainly on the valence

electrons; therefore the exclusion of the core electrons and their representation via a

pseudopotential does not alter significantly the behavior of the valence electrons. This

approximation leads to a reduction of the total number of basis functions needed to de-

scribe a many-electron atom, but maintains an adequate representation of the valence

electrons. Furthermore, relativistic effects can be included in effective potentials.

At the beginning of this thesis work, a survey of a database containing published

gaussian basis sets (the EMSL Basis Set Exchange website, https://bse.pnl.gov/bse)

revealed that only a few rhodium ECP basis sets were available for use. From these, the

Los Alamos ECP basis set [212–214] was used to design new basis sets for the valence

electrons of rhodium. The Lanl2DZ basis set is a standard published basis set with

double-ζ (DZ) quality, that uses the Los Alamos ECP (denoted as Lanl2) to describe

the 28 core electrons 1s22s22p6 3s23p6 3d10, and 22 contracted functions for the valence

4s24p64d85s1 electrons.

ROHF calculations were performed on the Rh 4F state, with a 4d85s1 electronic con-

figuration, using an increasing number of uncontracted basis functions. The MO coef-

ficients computed at this level of theory were then used as contraction coefficients to

give a new basis set.

The basis sets obtained with such a procedure were employed to compute ionization

energies (IE) and electron affinities (EA) at the unrestricted CCSD(T) level of theory
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4.1 Basis Set Design

Basis Set Contractions (s/p/d/f) Basis IE EA
Lanl2DZ (3,4,1/3,2,1/3,1) 22 6.7173 0.3867
Lanl2DZ+1d1f (3,4,1/3,2,1/3,1,1/1) 34 7.0173 0.6285
Lanl2DZ+2s2p2d2f (3,4,3x1/3,2,3x1/3,3x1/1,1) 54 7.2972 1.0399
Lanl2-[5s4p4d2f] (11,12,3x1/9,3x1/10,3x1/1,1) 51 7.3275 1.0669
Lanl2-[6s4p4d2f] (11,12,4x1/9,3x1/10,3x1/1,1) 52 7.3376 1.0724
Lanl2-[10s8p7d3f2g] (16,16,8x1/13,7x1/13,6x1/3x1/1,1) 108 7.4671 1.1218
Experimental 7.4589 1.1370

1.1429

Table 4.1: Different ECP basis sets for rhodium. The Rh ionisation enery (IE)
and electron affinity (EA), in eV, have been computed at the UCCSD(T) level of
theory with Gaussian G03 rev. C.02, neglecting spin-orbit coupling. The exper-
imental IE is from laser spectroscopy [215], and the experimental EAs is from
laser photoelectron spectroscopy [216] and laser spectroscopy [217].

with the program Gaussian G03 Rev. C.02 [155]. No allowance was made for spin-

orbit coupling. The result of these calculations is shown in Table 4.1.

The calculations performed on Rh, Rh+ and Rh− with the Lanl2DZ basis set gave

poor agrement both in terms of IE and EA (see Table 4.1). In particular, the very large

error in the EA indicates that diffuse functions are required to describe the expanded

orbitals of the Rh− ion. When two augmented functions (1d 1f) are added to this basis

set the relative error decreases from 11% to 6% for the IE and from 195% to 81% for

the EA. Further incorporation of diffuse and polarisation functions reduces these fig-

ures. The best agreement with the experimental values is obtained using the largest

basis set. The errors obtained at the UCCSD(T)/Lanl2-[10s8p7d3f2g] level of theory

are of 0.1% for IE and 7.4% for EA (see Table 4.1). In the calculations presented in this

work, the Lanl2DZ+1d1f basis set is used for a routine estimations of molecular prop-

erties, and the Lanl2-[6s4p4d2f] basis set, composed of 52 basis functions, is used as an

augmented-polarised TZ basis set for high-quality calculations.

The basis sets presented in this section, printed in the Gaussian94 format, are shown

on Table A.1, section A.3 of the Appendix.
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4.2 DFT and MP2 Calculations

4.2 DFT and MP2 Calculations

The Lanl2-[6s4p4d2f] basis set was used to compute minimum energy structures, har-

monic vibrational frequencies and relative energies of rhodium mono- and di-carbonyl

species at different levels of theory. For all the molecules in this study, different elec-

tronic configurations were considererd in order to determine the correct ground state.

4.2.1 Rhodium Mono-carbonyl Complexes

Coordinatively unsaturated metal carbonyls have been suggested as active catalyst

sites in several processes, particularly for rhodium supported on alumina [55]. Neutral

and ionic RhCO species have been studied theoretically at the DFT level and experi-

mentally by infrared matrix-isolation spectroscopy [55, 56, 218], providing a method to

correlate the carbonyl stretching frequency with the oxidation state of the metal centre.

In this thesis work, rhodium mono carbonyl species in different electronic states

have been studied at the unrestricted MP2 and B3LYP levels of theory. The Lanl2-

[6s4p4d2f] basis set was used for rhodium, and the cc-pVTZ basis set was used for

carbon and oxygen.

For RhCO− the ground state is found to be a 1Σ+ state at both the MP2 and B3LYP

levels of theory. For RhCO, the ground state is a 2∆ state and for RhCO+ the ground

state is found to be a 3∆ state. These results are in agreement with previous calcula-

tions [55, 203]. The relative energies for all the rhodium monocarbonyl species are also

consistent with that given in references [55] and [203]. In Table 4.2 the relative ener-

gies, S2 values, and geometrical parameters are reported for different electronic states

computed at the MP2 and B3LYP level of theory. Not all the states computed at the

MP2 level have been obtained at the B3LYP level. The reason is that the use of a DFT

method often leads the calculation converging to a more stable state.

For a linear triatomic molecule (Figure 4.1) 4 real frequencies are expected, and 3

real frequencies are expected for a bent structure. When all the computed harmonic

vibrational frequencies are real, the electronic state is a minimum in energy. If one or
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4.2 DFT and MP2 Calculations

Relative Binding Geometry (Å, deg)
Molecule State Energy Energy S2 Rh–C C–O RhCO ν(CO)a

MP2
RhCO+ C∞v

1Σ+ 11.16977 0.63379 0.0000 1.807 1.141 180◦ 2084.2
RhCO+ C∞v

3∆ 10.24426 -0.29171 2.0081 1.965 1.135 180◦ 2166.4
RhCO C∞v

2Σ+ 2.29191 -0.94697 0.7555 1.774 1.168 180◦ 1955.4
RhCO C∞v

2∆ 2.13391 -1.10498 0.7795 1.810 1.161 180◦ 2046.3
RhCO C∞v

2Π 3.35138 0.11250 0.8016 1.919 1.151 180◦ 2106.0
RhCO− C∞v

1Σ+ 0.00000 -2.50104 0.0000 1.731 1.225 180◦ 2067.7
RhCO− C∞v

3Σ+ 1.71062 -0.79042 2.0196 1.774 1.195 180◦ 1915.1
RhCO− C∞v

3Π 2.83240 0.33136 2.0264 1.759 1.185 180◦ 1852.0

B3LYP
RhCO+ C∞v

1Σ+ 10.10390 -0.78694 0.0000 1.837 1.128 180◦ 2207.1
RhCO+ C∞v

3∆ 9.35718 -1.53367 2.0037 1.972 1.122 180◦ 2252.6
RhCO C∞v

2Σ+ 1.40982 -1.76948 0.7514 1.817 1.153 180◦ 2044.7
RhCO C∞v

2∆ 1.35411 -1.82518 0.7557 1.841 1.148 180◦ 2085.3
RhCO Cs

4A′ 2.82867 -0.35063 3.7585 2.033 1.146 148◦ 2026.0
RhCO C∞v

4∆ 2.92025 -0.25905 3.7612 2.031 1.137 180◦ 2120.3b

RhCO− C∞v
1Σ+ 0.00000 -2.01503 0.0000 1.746 1.181 180◦ 1887.6

RhCO− C∞v
3Σ+ 0.77861 -1.23641 2.0043 1.833 1.171 180◦ 1914.1

Experimentalc ν(CO) (cm−1)
RhCO+ 2174.1 RhCO 2022.5 RhCO− 1828.6
a For a minimum energy structure, 4 real frequencies are expected for C∞v symme-

try, and 3 real frequencies are expected for Cs symmetry.
b Transition state.
c From reference [55].

Table 4.2: Electronic states, relative energies (eV), binding energies (eV), expec-
tation value of S2 of the wavefunction, bond lengths, angles and harmonic fre-
quencies (cm−1) computed at the MP2 and B3LYP levels of theory.

more vibrational frequencies are imaginary, the electronic state is a transition state.

As shown in Table 4.2, at the B3LYP level the 4∆ state of RhCO is a transition state,

and two doubly degenerate imaginary frequencies are present. The computed geomet-

rical parameters for this state are in agreement with the findings of Mineva et al. [53]

who computed the structure at the B3LYP level with the Lanl2DZ basis set for rhodium

and 6-311+G* basis sets for carbon and oxygen.

In conclusion, the calculations presented in this thesis work agree well with previ-
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4.2 DFT and MP2 Calculations

Figure 4.1: Computed structure of linear RhCO. The red atom is oxygen, the
dark grey atom is carbon and the aquamarine atom is rhodium.

Relative Geometry (Å, deg)
Molecule Symm. State Energy S2 Rh–C C–O ∠Rh,C,O

McKee and Worley [203]
RhCO+ C∞v

3∆ 9.34085 2.00 1.959 1.123 180◦

RhCO C∞v
2Σ 1.42125 0.75 180◦

RhCO C∞v
2Π 2.45746 0.77 180◦

RhCO C∞v
2∆ 1.32356 0.76 1.832 1.148 180◦

RhCO− C∞v
3Σ 0.78450 2.00 180◦

RhCO− C∞v
1Σ 0.00000 0.00 1.740 1.181 180◦

Zhou and Andrews [55]
RhCO+ C∞v

3∆ 10.021 - 1.913 1.147 180◦

RhCO C∞v
2∆ 1.613 - 1.824 1.173 180◦

RhCO C∞v
2Σ+ 1.583 - 1.791 1.180 180◦

RhCO− C∞v
1Σ+ 0.000 - 1.736 1.209 180◦

Table 4.3: Electronic states, relative energies (eV), expectation value of S2 of the
wavefunction, bond lengths and angles computed at the B3LYP/ECP level of
theory by McKee and Worley [203] (upper panel) and at the BP86/ECP level of
theory by Zhou and Andrews [55] (bottom panel).

ous theoretical and experimental determinations published in the literature for these

systems. For comparison, a summary of the results presented in the cited works is

shown on Table 4.3.

From the literature cited in this chapter and from the calculations performed on

rhodium monocarbonyls, DFT calculations with an ECP basis set appeared to be a vi-

able approach to reproduce the chemical properties of rhodium metal complexes. A

selection of the density functionals cited in the literature reported in this chapter was

used to compare the computed harmonic stretching frequency of CO with the com-

puted Mulliken charge on the metal centre in rhodium monocarbonyl neutral, cation
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Figure 4.2: Plot of experimental RhCO+, RhCO and RhCO− carbonyl stretching
frequencies vs net local charge on Rh for each species (black line), assumed to be
+1, 0 and -1 [56]. For comparison, Rh Mulliken charges vs harmonic frequencies
computed at different DFT levels of theory are also plotted. The results obtained
with the OPBE, OPW91 and OP86 density functionals are very similar.

and anion. In Figure 4.2 the carbonyl stretching frequencies vs the net local charge on

rhodium in RhCO species are reported. The experimental trend shows a clear correla-

tion between the CO stretching frequency and the net charge of the molecular species.

As the negative charge increases on the molecule, the π back donation from rhodium

to carbon monoxide strengthens and the bond order of the ligand decreases. As a con-

sequence, the CO stretching frequency diminishes. This effect is well reproduced for

calculations performed at the DFT level of theory, for which the computed carbonyl

stretching frequency is plotted as a function of the rhodium atomic Mulliken charge.

The functionals that give the best agreement with experimental IR frequencies are the

BPW91, BP86, PBE, OPW91, OP86 and OPBE functionals. The results obtained for iso-

lated rhodium monocarbonyl species suggest that the carbonyl stretching frequency

can be used to estimate the local charge on Rh(CO) sites in supported catalysts [56].

The implicit assumption is that most of the electronic charge of the molecule is car-

ried by the rhodium atom; therefore a change in the rhodium oxidation state affects
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4.2 DFT and MP2 Calculations

the strength of the metal-carbon bond. In order to support this idea, the electronic

densities computed at the B3LYP level were used to display the electrostatic potential

around each molecule of RhCO+, RhCO and RhCO−.

The electrostatic potential describes the potential energy associated with a charge

distribution at a given position in space. It is defined as the electrostatic energy of a

test particle divided by the charge of the particle itself. The unit of the electrostatic

potential in molecular orbital calculations is the electronvolt (eV). The electrostatic po-

tential generated by the charge distribution around the RhCO+, RhCO and RhCO−

molecules has been computed with the program Molekel [219] and it is displayed in

Figure 4.3 as color-coded isosurfaces. To provide a reference, the computed electro-

static potential of carbon monoxide is also shown. The ground state of CO computed

at the B3LYP/cc-pVTZ level of theory is a 1Σ+ state. The computed Mulliken charges

are 0.02707 for oxygen and -0.02707 for carbon; the relative sign of the charges is in

agreement with that expected from high-level ab-initio calculations [220, 221]. How-

ever, calculations performed at the B3LYP/6-311+G* level of theory found the same

electronic ground state but a dipole moment with opposite direction.

As shown in Figure 4.3, the rhodium centre carries most of the net electronic charge

of the molecule, confirming the relationship between the oxidation state of rhodium

and the CO stretching frequency. In RhCO+, the positive charge is centred mainly

on rhodium (blue region) while the negative charge is centred on oxygen. In RhCO,

the metal centre shows a neutral charge while the oxygen carries some negative charge.

Again, back donation from the metal to CO causes the electron density between carbon

and rhodium atoms to increase, and the one between carbon and oxygen atoms to

decrease. In RhCO−, most of the negative charge (red region) is carried by the rhodium

atom, whose d orbitals are the main component of the highest occupied MOs.

From this analysis it can be concluded that the variation in the harmonic CO stretch-

ing frequency in neutral, cation and anion RhCO species is indeed correlated to a

change in the rhodium oxidation state.
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Figure 4.3: Colour-coded electrostatic potential isosurfaces of RhCO species com-
puted at the B3LYP/cc-pVTZ level of theory. The electron density on rhodium
increases as the net charge of the molecule increases. The program Molekel was
used to display the isosurfaces, using a contour value of 0.02 au.

4.2.2 Rhodium Di-carbonyl Complexes

Rhodium dicarbonyl species have been investigated previously by several research

groups using electronic structure calculations [53, 55, 56, 200, 201, 203].
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1 2 3

Figure 4.4: Computed structures for rhodium dicarbonyl species.

In this thesis work, the ground state of rhodium dicarbonyl neutral, cation and anion

have been computed at the MP2 and B3LYP levels of theory using the same basis sets

described in the previous section, and the results compared with the results in the

literature.

The ground state for Rh(CO)−2 is found to be a 1A1 electronic state at both the MP2

and B3LYP levels of theory. The optimised geometry at the B3LYP level for that state

is bent with a C-Rh-C angle of 128.8◦and a Rh-C-O angle of 163.2◦. The optimised

geometry at the MP2 level is similar. This result is in agreement with previous DFT

calculations [55, 203].

For Rh(CO)2 the computed ground state at the B3LYP level is a 2∆g state, but it is a
2B2 state at the MP2 level. This result is not in agreement with the calculations of Zhou

and Andrews [55] who found the ground state to be a 2B2 state, and the 2∆g state 0.24

eV higher in energy at the BP86 level. Furthermore, the computed geometrical param-

eters for the 2B2 state computed at the MP2 level differ from those obtained by Zhou

and Andrews at the BP86 level for the same state [55]. However, the computed geo-

metrical parameters for the 2B2 state obtained in this present work at the MP2 level are

in good agreement with the DFT calculations of McKee and Worley [203] and Mineva

et al. [53] for this state.

In this present work, the 2B2 and 2∆g states are found to be very close in energy at

both the B3LYP and MP2 levels. At the MP2 level, the 2B2 state has an energy 0.02 eV

lower than the 2∆g state. However, the computed wavefunction for the 2B2 state has

an high degree of spin contamination which makes the computed energy not reliable.
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Relative Binding Geometry (Å, deg.)
Molecule State Energy Energy S2 Rh–C C–O CRhC RhCO ν(CO)a Shape b

Rh(CO)+2 C2v
1A1 11.21580 -0.63296 0.0000 1.798 1.144 83.2 178.5 2061.4 2113.0 1

Rh(CO)+2 D∞h
1Σ+

g 12.04570 0.19693 0.0000 1.977 1.135 linear 2125.1 – 3
Rh(CO)+2 C2v

3A2(b
1
1, b

1
2) 12.23956 0.39079 2.0153 2.058 1.134 117.1 178.9 2161.2 2187.3 1

Rh(CO)+2 C2v
3B2(a

1
1, b

1
2) 11.64466 -0.20410 2.0166 2.005 1.136 105.7 176.4 2137.3 2155.5 1

Rh(CO)+2 D∞h
3∆g(δ

1
g , σ

1
g) 11.22874 -0.62002 2.0088 2.021 1.134 linear 2151.7 – 3

Rh(CO)2 C2v
2A1 4.96266 0.41099 0.7619 1.768 1.164 75.7 172.5 1949.2 2067.4 2

Rh(CO)2 C2v
2A2 8.17105 3.61938 0.8813 1.864 1.178 85.3 177.8 1944.8 2351.9c,d 1

Rh(CO)2 C2v
2B1 5.90332 1.35165 0.7919 1.773 1.169 82.1 178.4 2009.3 8266.4c 2

Rh(CO)2 C2v
2B2 3.09063 -1.46104 0.7844 1.839 1.159 97.8 170.9 1972.4 2021.6 1

Rh(CO)2 D∞h
2Σ+

g 3.33964 -1.21204 0.7545 1.924 1.151 linear 1966.7 – 3
Rh(CO)2 D∞h

2∆g 3.10674 -1.44493 0.7674 1.933 1.149 linear 1996.9 – 3
Rh(CO)−2 C2v

1A1 0.00000 -3.81383 0.0000 1.855 1.184 126.8 164.4 1870.3 1900.1 1
Rh(CO)−2 D∞h

1Σ+
g 0.55075 -3.26307 0.0000 1.897 1.175 linear 1777.7 – d 3

Rh(CO)−2 C2v
3B2(b

1
2, a

1
1) 2.14012 -1.67371 2.0616 1.812 1.178 94.1 174.2 1931.3 1958.5 1

Rh(CO)−2 D∞h
3Σ+

g (σ1
g , σ

1
g) 3.74106 -0.07277 2.0044 1.923 1.152 linear 1934.7 – d 3

Experimentale ν(CO) (cm−1)
Rh(CO)+2 2184.7 Rh(CO)2 2033.2 Rh(CO)−2 1902.7, 1813.2
a For this molecule, 9 real frequencies are expected for C2v symmetry, and 10 real frequencies are expected for D∞h

symmetry.
b The shape of molecule refers to Figure 4.4.
c The computed wavefunction has an high spin contamination; the computed frequencies are not reliable.
d Transition state.
e From reference [55].

Table 4.4: Electronic states, relative energies (eV), binding energies (eV), expectation value of S2 of the wavefunc-
tion, bond lengths, angles, harmonic frequencies (cm−1) and molecule shapes computed at the MP2 level of theory.
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Relative Binding Geometry (Å, deg.)
Molecule State Energy Energy S2 Rh–C C–O CRhC RhCO ν(CO)a Shape b

Rh(CO)+2 C2v
1A1 10.29394 -2.69332 0.0000 1.861 1.127 87.3 178.1 2191.2 2241.5 1

Rh(CO)+2 D∞h
1Σ+

g 10.74153 -2.24572 0.0000 1.999 1.122 linear 2225.8 – 3
Rh(CO)+2 C2v

3B2(a
1
1, b

1
2) 10.43115 -2.55610 2.0061 2.035 1.123 105.8 175.3 2225.6 2252.7 1

Rh(CO)+2 D∞h
3∆g(δ

1
g , σ

1
g) 10.13296 -2.85429 2.0044 2.056 1.120 linear 2248.7 – 3

Rh(CO)2 C2v
2A1(a

1
1, b

2
2, b

2
1) 2.19541 -3.08029 0.7548 1.944 1.142 150.4 171.7 2066.0 2107.7 1

Rh(CO)2 C2v
2A1(b

2
1, a

2
2, a

1
1) 3.95759 -1.31811 0.7524 1.841 1.149 82.1 170.3 2032.5 2079.6 2

Rh(CO)2 C2v
2B2 2.24965 -3.02605 0.7565 1.888 1.146 101.5 170.3 2036.6 2094.1 1

Rh(CO)2 D∞h
2Σ+

g 2.21295 -3.06278 0.7516 1.954 1.139 linear 2068.2 c 3
Rh(CO)2 D∞h

2∆g 2.16181 -3.11390 0.7553 1.964 1.137 linear 2095.5 – 3
Rh(CO)−2 C2v

1A1 0.00000 -4.11143 0.0000 1.858 1.172 128.8 163.2 1872.7 1949.3 1
Rh(CO)−2 D∞h

1Σ+
g 0.38720 -3.72423 0.0000 1.905 1.160 linear 1915.7 – c 3

Rh(CO)−2 C2v
3B2(b

1
2, a

1
1) 1.46295 -2.64849 2.0080 1.874 1.164 100.4 176.0 1916.2 1950.4 1

Experimentald ν(CO) (cm−1)
Rh(CO)+2 2184.7 Rh(CO)2 2033.2 Rh(CO)−2 1902.7, 1813.2
a For this molecule, 9 real frequencies are expected for C2v symmetry, and 10 real frequencies are expected for D∞h

symmetry.
b The shape of molecule refers to Figure 4.4.
c Transition state.
d From reference [55].

Table 4.5: Electronic states, relative energies (eV), binding energies (eV), expectation value of S2 of the wave-
function, bond lengths, angles, harmonic frequencies (cm−1) and molecule shapes computed at the B3LYP level of
theory.
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The same problem has been found for the 2B1 electronic state computed at the MP2

level.

The ground state for Rh(CO)+2 is a 3∆g state at the B3LYP level. This result is in

agreement with previous DFT calculations1 [55, 203]. The computed ground state at the

MP2 level is a 1A1 state. Nevertheless the 3∆g state computed at this level is just 0.013

eV higher in energy. For Rh(CO)2 and Rh(CO)+2 , the presence of electronic states close

in energy suggests that multireference calculations are required to describe accurately

the true ground state, and obtain reliable relative energies between states.

The calculation of harmonic vibrational frequencies reveal which states are transi-

tion states. For Rh(CO)2, 9 real frequencies are expected for C2v symmetry and 10 real

frequencies are expected for D∞h symmetry. For a transition state, one or more fre-

quencies will be imaginary. A summary of the results obtained from calculations at the

MP2 and B3LYP levels respectively is shown in Tables 4.4 and 4.5.

To conclude, the results of electronic structure calculations carried out on rhodium

mono- and di-carbonyl species indicate that a combination of DFT and a TZ quality

basis sets such as Lanl2-[6s4p4d2f] produce high-quality results. A detailed analysis

of all the possible electronic states for each rhodium species has been carried out, and

a good agreement with the published results has been obtained. Comparison with the

different results in the literature (e.g. the geometrical parameters for the 2B2 state of

Rh(CO)+2 computed by Zhou and Andrews [55], McKee and Worley [203], and Mineva

et al. [53]), shows that the results obtained in this work are closer to the results of

calculations performed at the highest level of theory.

4.2.3 Rhodium Carbonyl Chloride Complexes

The cis-[Rh(CO)2Cl2]
− and [Rh(CO)2Cl]2 molecules have been widely studied in the

literature as they are precursors of catalytic systems and ideal prototypes for supported

RhI(CO)2Cl species [7, 42, 207, 222, 223]. These molecules are closed shell with a C2v

1In the cited papers only the 1A1, 3B2 and 3∆g states have been considered.

95



4.2 DFT and MP2 Calculations

1 2

Figure 4.5: Computed structures for the cis-[Rh(CO)2Cl2]
− anion with C2v sym-

metry: (1) square-planar, (2) tetrahedral. Red atoms are oxygen, dark grey atoms
are carbon, aquamarine atoms are rhodium and green atoms are chlorine.

symmetry for the ground state structures. Calculations were carried out using the

computational procedures described in the previous sections, with the only difference

being the aug-cc-pVTZ basis set was used for chlorine atoms.

For cis-[Rh(CO)2Cl2]
−, the computed ground state is a 1A1 state at both the MP2

and B3LYP levels of theory, with the rhodium coordinating the ligands in a square

planar geometry in the optimised structure. The optimised geometry of the excited
3B2 state is found to be tetrahedral (Td-type) at both levels of theory. A pictorial view

of the two different molecular geometries is given in Figure 4.5. These results are in

agreement with previous calculations performed at the B3LYP and CCSD(T) levels of

theory [222]. A summary of the results is given in Table 4.6. The computed Mulliken

charges reveal a significant change in the electronic distribution on the molecule for

different geometries and electronic states.

For [Rh(CO)2Cl]2 (IUPAC name: di-µ-chloro-bis[dicarbonyl-rhodium(I)] ), the com-

puted ground state is a C2v
1A1 state at both the MP2 and B3LYP levels of theory, in

agreement with previous theoretical determinations [207, 223]. The first excited state

is found to be a D2h
3B3g state at both the MP2 and B3LYP levels of theory. Rela-

tive energies and Mulliken atomic charges computed for different electronic states of

this molecule are shown on Table 4.7. For this molecule the calculation of frequen-

cies at the MP2 level of theory was not performed because of their high computational
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Relative Mulliken atomic charges
Sym. State Energy S2 Rh Cl C O im.a Shapeb

MP2
C2v

1A1 0.00000 0.00000 1.764 -1.031 -0.063 -0.288 0 1
C2v

1A1 1.51234 0.00000 0.744 -0.762 0.205 -0.315 1 2
C2v

3B2 3.39944 2.04981 1.570 -0.969 -0.070 -0.246 4 1
C2v

3B2 2.27352 2.04216 1.102 -0.858 -0.076 -0.269 0 2
B3LYP

C2v
1A1 0.00000 0.00000 1.194 -0.909 -0.043 -0.145 0 1

C2v
1A1 1.42211 0.00000 0.248 -0.667 0.232 -0.189 1 2

C2v
3B2 2.35882 2.01289 1.102 -0.832 -0.153 -0.066 4 1

C2v
3B2 1.35823 2.01093 0.818 -0.771 -0.022 -0.116 0 2

a Number of computed imaginary frequencies. For this molecule, 15 real fre-
quencies are expected.

b The shape of molecule refers to Fig. 4.5.

Table 4.6: Results of MP2 and B3LYP calculations for cis-[Rh(CO)2Cl2]
−. Relative

energies (eV), electronic states, Mulliken atomic charges, and computed frequen-
cies are shown.

cost. Instead, a systematic study was carried out on the ground-state by computing

minimum energy geometries and harmonic frequencies with some of the density func-

tionals listed in Figure 4.2. Among the functionals cited in this work, the BP86 func-

tional has been reported to give reliable bond distances, vibrational frequencies, and

dipole moments for rhodium complexes [55, 209, 224]. Furthermore, functionals with

Handy’s optimised exchange (denoted with the prefix O ) [225] have been reported to

give accurate geometries and energies for different spin states of organometallic com-

plexes [226–228]. The calculations presented in this section were therefore performed

using the B3LYP, BPW91, BP86, O3LYP, OPW91, OP86, BB1K and PBE density func-

tionals.

The results of calculations performed at the B3LYP, OP86 and PBE levels of theory

are shown on Table 4.8. The computed ground-state structural parameters are close

to the parameters determined experimentally by X-ray diffraction. Small differences

in the θ (Rh,Cl,Cl,Rh) dihedral angle and consequently the distance between rhodium

atoms is due to the fact that the calculations are performed on the isolated molecule,
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Relative Mulliken atomic charges
Sym. State Energy S2 Rh Cl C O im.a

MP2
C2v

1A1 0.00000 0.00000 1.698 -0.850 -0.250 -0.174 –
D2h

1Ag 0.33697 0.00000 1.775 -0.959 -0.230 -0.178 –
C2v

3B2 3.06573 2.04684 1.370 -0.818 -0.132 -0.144 –
D2h

3B3g 1.73137 2.17518 1.743 -0.868 -0.254 -0.183 –
B3LYP

C2v
1A1 0.00000 0.00000 1.257 -0.765 -0.218 -0.028 0

D2h
1Ag 0.05018 0.00000 1.332 -0.876 -0.189 -0.039 1

C2v
3B2 2.78613 2.00573 1.003 -0.637 -0.174 -0.009 1

D2h
3B3g 2.35621 2.01868 1.391 -0.771 -0.273 -0.037 0

a Number of computed imaginary frequencies. For this molecule, 30
real frequencies are expected.

Table 4.7: Results of MP2 and B3LYP calculations for the [Rh(CO)2Cl]2molecule.
Relative energies (eV), electronic states, Mulliken atomic charges, and computed
frequencies are shown.

while the experimental structure refers to the crystal structure. The harmonic vibra-

tional frequencies computed at the B3LYP level are within 2.7% of the experimental

values, those computed at the OP86 level are within 0.1% and finally those computed

at the PBE level are within 1.1%. Similar results were obtained with the other density

functionals studied.

The last molecule considered in this study was [Rh(CO)2Cl(py)], where py stands

for pyridine (IUPAC name: cis-[chloro-dicarbonyl-pyridyl-rhodium(I)] ). For this com-

plex, the computed ground state is a C1
1A electronic state at both the MP2 and B3LYP

levels of theory. The ground state geometries and harmonic vibrational frequencies for

this molecule were computed using the same density functionals as used to study the

[Rh(CO)2Cl]2 complex. The ground state geometries computed at the DFT level of the-

ory are similar, and all are in agreement with the X-ray crystal structure [231].ligand A

summary of the results obtained at the B3LYP, OP86 and PBE levels of theory is shown

in Table 4.9: the harmonic frequencies computed at the B3LYP level are within 2.8% of

the experimental values [232], those computed at the OP86 level are within 0.2% of the
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Parameter Experimentala B3LYPb OP86b PBEb PBEc

r(Rh–C) 1.840, 1.853 1.866 1.824 1.847 1.885
r(Rh–Cl) 2.382, 2.386 2.426 2.384 2.408 2.409
r(C–O) 1.128, 1.129 1.138 1.153 1.153 1.164
r(Rh–Rh) 3.138 3.280 3.082 3.123 3.215
ω (C,Rh,C) 90.7 90.7 88.7 90.0 90.6
ω (Cl,Rh,Cl) 85.2 84.3 84.2 84.3 84.7
θ (Cl,Rh,Rh,Cl) 128.0 132.5 123.0 123.6 129.5
θ (Rh,Cl,Cl,Rh) 126.8 133.1 121.2 122.0 129.1
ν(CO), B1 2043 2102.5 (1465) 2043.0 (1205) 2019.5 (1243) –
ν(CO), B2 2095 2150.9 (1351) 2096.0 (1163) 2069.5 (1182) –
ν(CO), A1 2107 2165.7 (154) 2113.0 (201) 2086.3 (192) –

a Structural parameters from X-ray measurements [229], infrared frequencies from
gas phase measurements [230].

b Computed with Gaussian 03 using the basis sets desctibed in the previous sections.
c Computed with Castep 4.4 at the plane-wave/PBE level of theory (section 4.3).

Table 4.8: Comparison between the experimental structures of the [Rh(CO)2Cl]2
molecule and the minimum energy structures computed at the DFT level of the-
ory with different programs. The calculated harmonic CO stretching frequencies
(cm−1) have not been multiplied by a calibration factor; intensities (km/mol) in
parentheses, bond lengths (r, Å), bond angles (ω, deg), dihedral angles (θ, deg).

experimental values and finally those computed at the PBE level are within 1.2% of the

experimental values.

The results presented in this section show that single-reference methods such as DFT

are capable of reproducing correctly the ground state properties of the rhodium com-

plexes considered in this study. In particular, the structures and harmonic frequencies
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Parameter Experimentala B3LYP OP86 PBE
r(Rh–Cl) 2.347(4), 2.344(3) 2.362 2.323 2.345
r(Rh–N) 2.122(7), 2.114(7) 2.157 2.143 2.145
r(Rh–C) 1.84(1), 1.81(1) 1.868, 1.872 1.828, 1.825 1.850, 1.852
r(C–O) 1.12(1), 1.14(1) 1.137, 1.144 1.159, 1.152 1.160, 1.152
r(N–C2) 1.35(1), 1.34(1) 1.341 1.344 1.350
r(C2–C3) 1.37(1), 1.38(1) 1.385 1.390 1.391
ω (Cl,Rh,N) 91.3(2), 90.6(2) 88.1 88.3 88.1
ω (Cl,Rh,C5) 177.5(3), 176.6(3) 178.1 178.2 178.2
ω (Cl,Rh,C6) 87.4(4), 87.2(5) 88.0 88.1 88.5
ω (N,Rh,C5) 91.2(4), 92.8(4) 92.1 92.8 92.4
ω (N,Rh,C6) 175.7(5), 177.7(5) 176.2 177.4 176.6
ω (C5,Rh,C6) 90.1(5), 89.4(6) 91.7 89.9 91.0
θ (C2,N,Rh,C5) 141.9, 139.2 129.1 122.3 131.8
θ (C5,Rh,C6,Cl) 179.8, 179.5 178.2 178.5 178.3
ν(CO), A 2014 2073.5 (807) 2017.1 (674) 1992.2 (683)
ν(CO), A 2090 2147.8 (738) 2093.6 (647) 2067.4 (663)

1

2

34

5 6

a Structural parameters from X-ray measurements [231], infrared frequencies
from measurements in benzene [232].

Table 4.9: Comparison between the experimental and computed structures of
the [Rh(CO)2Cl(py)]. The calculated harmonic CO stretching frequencies (cm−1)
have not been multiplied by a calibration factor; intensities (km/mol) in paren-
theses, bond lengths (r, Å), bond angles (ω, deg), dihedral angles (θ, deg).

of various rhodium complexes computed at the DFT level of theory with a TZ quality

basis set that includes polarisation functions for all the atoms and diffuse functions for
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chlorine and rhodium, are in good agreement with the experimental values.

4.2.4 Enthalpy of a Splitting Reaction

In 1976, Pribula and Drago published a detailed calorimetric and spectroscopic study

of the acid-base chemistry of [Rh(CO)2Cl]2 in benzene [232]. This complex is known to

undergo reactions of various types with Lewis bases, depending on the experimental

conditions used and the specific base involved. When [Rh(CO)2Cl]2 reacts with pyri-

dyne, the observed reaction is:

Cl

Cl

Rh Rh

N

+2 2

O O

Rh

Cl

C CN
CO

COOC

OC

(4.1)

Among the bases considered in the experimental work of Pribula and Drago [232],

pyridine is the ligand with the smallest number of atoms and for this reason reaction

(4.1) is the best suited to be studied from a computational point of view.

Ground state geometries, energies and harmonic vibrational frequencies have been

computed in this work for the species involved in reaction (4.1). For the [Rh(CO)2Cl]2

and [Rh(CO)2Cl(py)] molecules, the results of calculations have been reported and dis-

cussed in the previous section. For pyridine, the computed geometries and harmonic

stretching frequencies are not reported in this thesis work. However, it was verified

that the computed values are in good agreement with the experimental determina-

tions.

Classically, the free enthalpy is defined as [233]:

H = U + PV

= U + nRT (4.2)
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The internal energy U for an isolated molecule in the gas phase is the sum of the total

electronic energy and the thermal energy:

U = Eelec + Etherm (4.3)

where the total electronic energy Eelec is computed with an ab-initio or DFT method

and the thermal energyEtherm is the sum of the translational, rotational, and vibrational

energies:

Etherm = Etrans + Erot + Evib

In this work the translational and rotational terms were accounted for classically as the

sum of
1

2
RT for each degree of freedom, and the zero-point vibrational energy was

calculated from the computed vibrational frequencies. From equations (4.2) and (4.3)

the enthalpy of the reaction 4.1 can be written as:

∆H = ∆Eelec + ∆Etherm −RT (4.4)

where ∆n = −1 and RT = 0.592 kcal/mol at room temperature (T = 298 K).

The thermal energy in equation (4.3) has been computed at the DFT level of theory

using the functionals described in the previous secton, while the electronic energy has

been computed at the DFT and CC levels of theory in order to have two different ways

to estimate the electron correlation energy for this system. Due to the high computa-

tional cost of the CC method, only single-point energy CC calculations on ground-state

DFT geometries have been carried out.

To ensure that a single-reference description of the reactants and products is ade-

quate, a multi-configurational self-consistent field method (the CASSCF method) has

been used to compute the multi-reference ground state wavefunctions. The CASSCF

calculations have been performed with the Multi program of the Molpro computer

suite [234] using a DZ quality basis set. The contribution of the main single configura-

tion in the computed ground-state wavefunctions is 97.4% for [Rh(CO)2Cl]2, 98.4% for
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Figure 4.6: Infrared spectra for reaction (4.1) computed at the OP86 cc-pVTZ level
of theory and measured experimentally in benzene (from reference [232]). The
solid line refers to [Rh(CO)2Cl]2 and the dashed line refers to [Rh(CO)2Cl(py)].
A scale factor of 0.998 has been applied to the computed frequencies, and a sto-
ichiometric factor of 2 has been used to multiply the computed intensities of the
[Rh(CO)2Cl(py)] spectrum. The infrared spectrum of pyridine does not have ab-
sorption frequencies in the region shown in this plot and it is therefore not re-
ported.

pyridine and 95.8% for [Rh(CO)2Cl(py)]. From these results it can be concluded that

the electronic ground state of these molecules does not have multi-reference character.

The experimental infrared spectrum of reaction (4.1) taken before and after reaction

with pyridine is shown in Figure 4.6. For comparison, the simulated infrared spec-

tra of [Rh(CO)2Cl]2 and [Rh(CO)2Cl(py)] computed at the OP86 level of theory are

shown on the left-hand side of the same Figure, where a scaling factor of 0.998 has

been used for the computed frequencies. According to equation (4.1) the molar ratio

of the reactants and products is 1:2, therefore the intensity of the simulated spectrum

of [Rh(CO)2Cl(py)] has been multiplied by a stoichiometric factor of 2. As can be seen

in Figure 4.6, the computed spectra are in very good agreement with the experimental

spectra in terms of both the computed frequencies and relative intensities.
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4.2 DFT and MP2 Calculations

Method Geometrya Basis set
B3LYP OP86

CCSD -17.832 -17.873 cc-pVDZ for H,C,N,O; aug-cc-pVDZ for Cl;
Stuttgart-RSC+2f for Rh.CCSD(T) -20.666 -20.165

CCSD -13.991 -14.152 cc-pVTZ for H,C,N,O; aug-cc-pVTZ for Cl;
Lanl2-[6s4p4d2f] for Rh.CCSD(T)b -15.973 -15.572

a CC single-point calculations performed on the DFT-optimised ground-state
geometry, thermal contribution from the corresponding DFT calculation.
DFT calculation.

b Extrapolated value, see the text for details.

Table 4.10: Computed enthalpies for the reaction 4.1 (kcal/mol). The calcula-
tions were performed at the CCSD and CCSD(T) levels of theory on minimum-
energy geometries optimised at the B3LYP and OP86 level. Zero-point energies
are computed at the DFT level of theory. The experimental value for this reaction
is −12.5± 0.2 kcal/mol in benzene solvent [232].

4.2.5 Basis Set Effect

The enthalpy for reaction (4.1) computed at the CCSD and the CCSD(T) levels of theory

is shown on Table 4.10, while the enthalpy computed at the DFT level of theory is

shown on Table 4.11. The experimental enthalphy for reaction (4.1), measured in

benzene solvent, is 12.5± 2 kcal/mol [232]. For CC calculations, the best agreement is

found for the enthalpy computed at the CCSD level of theory with a TZ quality basis

set (-14.0 kcal/mol). To reduce the computational cost of high-level calculations, the

total electronic energies computed at the CCSD(T)/TZ level were extrapolated as the

sum of the TZ quality CCSD energy and the DZ quality triples excitation contribution.

Here the assumption is that the triples excitation contribution to the total electronic

energy computed with the DZ quality basis set is the same as the TZ quality basis set

[235]. Although the enthalpies computed at the CCSD(T) level are less negative than

those computed at the CCSD level (with the same basis set), the CCSD(T) method is

expected to give better results using larger basis sets2.

For DFT calculations, the best agreement with the experimental value of the reac-

2The amount of correlation energy included in CC calculations is basis set dependent [236, 237].
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B3LYP BPW91 BP86 O3LYP OPW91 OP86 BB1K PBE
∆Ha -15.717 -13.682 -16.199 -10.395 -6.344 -8.581 -11.166 -17.492
∆Hb -12.630 -11.105 -13.535 -7.987 -4.363 -6.497 -8.586 -14.651
∆Etherm

b 2.923 2.888 2.857 2.931 2.943 2.924 2.926 2.835
IR error -2.9% 1.4% 1.6% -2.0% -0.5% -0.3% -7.5% 1.2%

Basis Sets used:
a cc-pVDZ for H,C,N,O; aug-cc-pVDZ for Cl; Lanl2DZ+1d1f for Rh.
b cc-pVDZ for H; cc-pVTZ for C,N,O; aug-cc-pVTZ for Cl; Lanl2-[6s4p4d2f] for Rh.

Table 4.11: Enthalpies for the reaction 4.1 (kcal/mol), thermal contributions and
harmonic frequency errors computed at different DFT levels of theory. The ex-
perimental value for this reaction is −12.5 ± 0.2 kcal/mol in benzene solvent
[232].

tion enthalpy is obtained at the B3LYP/TZ level (-12.6 kcal/mol). The calculations

performed using hybrid-GGA and GGA functionals with the Becke exchange gave re-

action enthalpies within 2 kcal/mol of the experimental value, while the functional

with Handy’s optimised exchange gave a poorer agreement in terms of reaction en-

thalpy, but a smaller error on the computed harmonic frequencies. From Table 4.11

it can also be seen that the use a TZ quality basis set corrects the computed reaction

enthalpies by about 3 kcal/mol with respect to the calculations performed with a DZ

quality basis set. A similar improvement is found for the results obtained at the CCSD

and CCSD(T) levels of theory carried out with DZ and TZ quality basis sets.

To conclude, the enthalply for reaction (4.1) computed at the CCSD, CCSD(T) and

DFT levels of theory is found to be in very good agreement with the experimental

value. The presence of diffuse functions on chlorine and rhodium is of considerable

importance to compute correctly the wavefunction for the species involved and to pre-

vent the basis-set superposition error (BSSE) [238]. From these results it can be as-

sumed that the most important source of error in the computation of reaction enthalpy

arises from the number and type of basis functions used.

It should also be noted that the experimental work of Pribula and Drago [232] was

performed in a solvent (benzene) and no account of this has been taken in the calcula-

tions that were carried out in this work.

105



4.3 Periodic DFT Calculations

4.3 Periodic DFT Calculations

Plane-wave DFT calculations can be applied to isolated molecules by using a large unit

cell containing just one molecule. In such a way, the molecule does not interact with

its periodic images. In this section, plane-wave/DFT calculations have been used to

study the [Rh(CO)2Cl]2 complex and the results compared with the DFT calculations

performed using gaussian basis sets.

The system under investigation is composed of an orthorombic unit cell with vectors

a = 12.5, b = 15.0 and c = 11.0 Å. These values have been determined by computing the

total electron energy as a function of the cell vector size, until convergence is achieved.

The aim of this study was to test the capabilities of a plane-wave basis set to repro-

duce the structural properties of a complex containing rhodium, and to compare the

results with high-quality calculations carried out with a gaussian basis set. The vali-

dation of this theoretical approach is necessary before this method can be applied to

study supported rhodium catalysts.

4.3.1 Simulation Parameters

The calculations presented in this section were performed at the plane-wave/DFT level

of theory, as implemented in the program Castep. The functional PBE in conjunction

with Vanderbilt ultrasoft pseudopotentials was used to solve the Kohn-Sham equa-

tions, with periodic boundary conditions applied to the system. The convergence of

parameters such as basis set energy cut-off, FFT grid and k-point spacing was tested

for the total electronic energy of [Rh(CO)2Cl]2, as was done for tests performed on γ-

Al2O3 described in Chapter 3. A basis set cut-off energy of 380 eV was found to yield

reliable total energy and forces, as shown in Figure 4.7. A FFT grid of 1.2 and a k-point

spacing of 0.05 Å−1 were also found to be sufficient to give reliable energies and forces.
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Figure 4.7: Convergence of the total electronic energy and forces of [Rh(CO)2Cl]2
computed with respect to the basis set energy cut-off. A cut-off energy Ecut = 380
eV was chosen for the calculations presented in this thesis work. The inset in the
left-hand side of this Figure shows the relative energy difference in the region
from Ecut = 380 eV to Ecut = 800 eV.

4.3.2 Computed Structures

The structure of [Rh(CO)2Cl]2 optimised at the plane-wave/PBE level of theory is re-

ported in Table 4.8, section 4.2.3. The agreement of this structure with the experi-

mental structure and those computed with conventional DFT calculations using the

B3LYP, OP86 and PBE functionals is good. The computed band gap is 2.69 eV, in ex-

cellent agreement with the HOMO-LUMO energy difference (2.67 eV, computed at the

PBE/ECP/cc-pVTZ level of theory with the program Gaussian G03). The harmonic

frequencies have not been computed because this facility it is not (yet) implemented in

the program Castep.

From this calculation it can be concluded that the structure of [Rh(CO)2Cl]2 calcu-

lated at the plane-wave/PBE level of theory is in agreement with high-quality calcula-

tions carried out at the DFT level of theory using TZ quality gaussian basis sets. The

simulation parameters used in these plane-wave calculations are the same as those

used to simulate the structure of hydroxylated γ-Al2O3 surfaces; therefore this method

appears to be appropriate to study supported rhodium catalysts.
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4.4 Conclusions

In this chapter DFT and ab-initio methods have been applied to the study of different

rhodium compounds. For rhodium mono- and di-carbonyl species, a strong depen-

dence between the carbonyl stretching frequency, molecular geometry and electronic

state has been found. For rhodium monocarbonyl Rh(CO)−1,0,1, the plot of computed

Mulliken rhodium charges versus the computed carbonyl stretching frequencies (Fig-

ure 4.2) shows that the functionals tested in this work reproduce well the experimental

trend. In particular, the harmonic frequencies computed with the BPW91, BP86, PBE,

OPW91, OP86 and OPBE functionals are within 2% of the experimental values.

Some electronic states of rhodium di-carbonyl Rh(CO)−1,0,12 computed at the MP2

and B3LYP levels of theory have been found to be very close in energy, and mul-

tireference methods should be applied to establish what the ground state is for these

molecules. However, the results presented in this thesis work are in agreement with

single-reference calculations found on the literature. Optimised geometries and har-

monic frequencies of [Rh(CO)2Cl]2 and [Rh(CO)2Cl(py)] computed at the B3LYP lev-

els of theory were found to be in good agreement with experimental determinations.

In Figure 4.6 the experimental and computed infrared spectra are reported for these

molecules. The harmonic vibrational frequencies computed at the OP86 level of the-

ory are within 0.2% of the experimental values, and the computed intensities repro-

duce well the relative intensities of the most intense bands in the experimental infrared

spectrum. CASSCF calculations on these species reveal that a dominant single config-

uration describes their ground states.

The enthalpy of the reaction 4.1 has been computed at the DFT and the CC levels of

theory using different basis sets. From the results presented in this work, the functional

that gives the best agreement with the experimental value is the the B3LYP functional.

The values obtained at the CCSD and CCSD(T) levels of theory are within 3 kcal/mol

of the experimental value. The results obtained with all the methods presented in

this thesis work showed a strong dependance on basis set size. In particular, diffuse

functions on chlorine and rhodium atoms are found to be essential to give accurate
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electronic energies.

Finally, the structure of [Rh(CO)2Cl]2 optimised at the plane-wave/DFT level of the-

ory was found to be in agreement with DFT calculations performed with gaussian-type

TZ quality basis sets and with the experimental structure. The simulation parameters

used in these plane-wave calculations were the same as those used to optimise the

structure of hydroxylated γ-Al2O3 surfaces.

109



CHAPTER 5

SIMULATION OF SUPPORTED

CATALYSTS

In this chapter electronic structure methods are used to study supported rhodium cat-

alysts. One approach is based on plane-wave DFT with periodic boundary conditions,

as described in Chapter 3. In this method, the catalytic centre, that is, the rhodium

atom(s), and the atoms of the support are studied at the same level of theory. In this

way the chemical interaction between the metal centre and the metal oxide support

is accounted for explicitly. However, to describe an isolated catalytic species on the

support surface, the slab model of the surface must be big enough to avoid unphysical

side-by-side interaction between the periodic images. This approach is the chosen ref-

erence to model materials characterised by electronic states de-localised over the entire

structure, and it is limited only by the size of the system that can be investigated.

A different approach is based on the finite-cluster method, which is suited to study

localised states such as those produced by point defects or isolated species mono-

dispersed on surfaces. In this method, a finite cluster of atoms is studied at the quan-

tum mechanical level of theory, while the effects of the environment are accounted for

by an appropriate embedding scheme. The program Guess [58, 59, 239] combines a

quantum-mechanical treatment of a subset of atoms with a molecular mechanics de-

scription of the surroundings. This program has been successfully applied to model

point defects in solids [59, 135, 240] and surfaces [58, 157, 241, 242], and was employed

in this work to study isolated rhodium atoms on γ alumina surfaces.
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5.1 Periodic Simulations

Plane-wave/DFT simulations have been widely used in the literature to investigate the

absorption of molecules on well-defined metal surfaces (see for instance the studies

concerning the Rh (111) surface [62–64, 243]), but only a few of them have considered

the absorption of metal atoms on hydroxylated metal oxide surfaces [66, 244, 245].

In this work, plane-wave/DFT calculations were employed to obtain minimum-

energy structures of isolated RhI(CO)2 species supported on γ-alumina surfaces. The

simulations were performed employing the parameters used to study hydroxylated

γ-alumina surfaces and isolated rhodium complexes, as discussed in Chapters 3 and 4.

The molecular models of supported RhI(CO)2 species were built with the program

Gdis [160] starting from the optimised structures of hydroxylated (001) and (100) γ-alu-

mina surfaces studied in Chapter 3. In order to keep the molecular systems electrically

neutral and closed-shell, the models of supported RhI(CO)2 species must be consistent

with the formation mechanism proposed by Basu and co-workers [6]:

Rh(s) + 2CO(g) + (Al2O3)n(H2O)m −→ RhI(CO)2(Al2O3)n(H2O)m−1(OH) +
1

2
H2 (5.1)

The equation 5.1 describes the oxidative disruption of metallic rhodium nanoparti-

cles on hydroxylated alumina surfaces [denoted as (Al2O3)n(H2O)m] followed by reac-

tion with carbon monoxide yielding supported rhodium carbonyl species [denoted as

RhI(CO)2(Al2O3)n(H2O)m−1(OH)] plus molecular hydrogen.

The surface density of the supported species was chosen to match a metal loading

of about 2.5 % in weight. For a commercial alumina sample with a typical surface area

of 100 m2/g [15], this loading gives a surface concentration of about 1.5 Rh/nm2. The

slab model of the (001) γ-alumina plane has a surface area of 46.973 Å2, while the slab

model of the (100) plane has a surface area of 67.860 Å2. In order to accommodate

one rhodium atom per slab, a (1x2x1) super-cell was used for the (001) plane, while a

unitary cell was used for the (100) plane.

In a typical catalytic sample, a number of different configurations is likely to be
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present on the support surface. To reproduce this situation and make the models suit-

able to be studied computationally, single-site surface species were modelled and op-

timised separately. In this way, the properties of the real system can be represented as

an average of the properties of the most representative structures, chosen according to

their Boltzmann weighting factors.

In the initial models of supported RhI(CO)2 species, the rhodium atom was coordi-

nated to one, two or three oxygen atoms of the support. Four complexes were mod-

elled on the (001) plane and five were modelled on the (100) plane. These structures

were fully optimised, and the ground-state properties were determined by perform-

ing plane-wave/DFT calculations with periodic boundary conditions applied. The

Perdew-Burke-Ernzerhof (PBE) gradient-corrected functional [114] was used, and ul-

trasoft pseudopotentials generated with the PBE exchange and correlation functionals

were used to describe the core electrons. The electronic wave-functions were expanded

in a plane-wave basis set with an energy cut-off of 380 eV. These settings were deter-

mined variationally, as described in Section 3.1.1, and they are summarized in Table 3.1.

The program Castep version 4.3 was used to perform all the calculations presented in

this work.

5.1.1 Computed Structures

Nine structural models of surface RhI(CO)2 species were considered in this study. For

convenience, each structure is named from (001)-s1 to (001)-s4 for the species supported

on the hydroxylated (001) γ-Al2O3 plane, and from (100)-s1 to (100)-s5 for the species

supported on the hydroxylated (100) plane. Each model was built by removing a hy-

drogen atom from a hydroxylated surface of γ-alumina previously relaxed, and replac-

ing it with a RhI(CO)2 group. Different starting geometries were considered, with the

rhodium atom coordinated with one, two or three oxygen atoms from the surface. A

pictorial view of the periodic slab models used in this work is given in Figure 5.1, while

the relaxed structures of supported RhI(CO)2 species are shown in Figure 5.2.

Every calculation was parallelized on a 24-cores Silicon Graphics Altix 4700 server
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(001)-s1 (100)-s1

Figure 5.1: Pictorial view of the (001)-s1 and (100)-s1 RhI(CO)2 species supported
on hydroxylated γ-Al2O3 surfaces. The optimised structures were computed at
the plane-wave/PBE level of theory with periodic boundary conditions applied.
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based on 1.6GHz Montecito Itanium2 processors. The typical time employed to carry

out a geometrical optimisation run was of about 5000 CPU hours. The longest time

employed to carry out a single run was 7127 CPU hours for the (001)-s2 complex.

In all the optimised structures the surface rhodium complexes exhibit a square-

planar coordination geometry, regardless to the starting configuration used in the cal-

culation. The formal oxidation state of rhodium in these complexes is +1, which gives

the electronic configuration 4s24p64d8. It is therefore expected that this configuration,

coupled with a strong ligand field, promotes the formation of a square-planar com-

plexes as also observed for d8 metal cations such as Ir+, Pt2+, Pd2+ and Au3+ cations

[246].

The coordination geometry of supported RhI(CO)2 species obtained in this thesis

work is in agreement with in-situ infra-red and EXAFS spectroscopy measurements

made by Evans and co-workers, who investigated supported Rh/γ-Al2O3 catalysts [7,

43, 247–250], and with quantum chemical calculations1 performed by Vayssilov and

co-workers [251]. Analogous conclusions have been reported for rhodium dicarbonyl

in highly dealuminated zeolite Y investigated by EXAFS, infra-red spectroscopy and

quantum mechanical calculations by Goellner and co-workers [252].

The rich morphology of hydroxylated γ-Al2O3 surfaces offers several docking sites

for the formation of surface RhI(CO)2 species. For all the complexes supported on

the (001) plane and for the (100)-s4 and (100)-s5 complexes, a small reconstruction

of the surface was observed during the geometrical optimisation. For these systems,

the surface OH groups are arranged in a position that promotes the coordination of

rhodium in a square-planar geometry. For the (100)-s1, (100)-s2 and (100)-s3 com-

plexes, a strong reconstruction of the surface was observed. In these complexes the

presence of rhodium induced a change in the position of OH groups, eventually fol-

lowed by a re-arrangement of the other OH groups in order to maximise the number

1Molecular cluster calculations of stable RhI(CO)2 complexes in dealuminated Y (DAY) zeolite were per-
formed at the ECP/DFT level of theory. In the computed structures, the supported RhI(CO)2 complexes
exhibit a pseudo square planar structure with the Rh cation bonded to two oxygen centres belonging to
the zeolite framework.
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(001)-s1 (001)-s2 (001)-s3

(001)-s4 (100)-s1 (100)-s2

(100)-s3 (100)-s4 (100)-s5

Figure 5.2: Models of surface RhI(CO)2 complexes optimised at the plane-
wave/DFT level of theory. The periodic vectors on the alumina plane are drawn
as rectangles around each structure.

of hydrogen bonds on the surface.

The complex (001)-s2 (Figure 5.2) lies in the proximity of the support surface. This
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Complex r(Rh–C) r(C–O) r(Rh–O)
Plane (001)

s1 1.869 1.881 1.168 1.168 2.195 2.100
s2 1.867 1.892 1.168 1.167 2.244 2.134
s3 1.862 1.868 1.170 1.170 2.202 2.337
s4 1.865 1.905 1.167 1.171 2.254 2.153

Plane (100)
s1 1.880 1.876 1.168 1.168 2.096 2.215
s2 1.872 1.887 1.165 1.165 2.101 2.168
s3 1.872 1.883 1.165 1.167 2.124 2.228
s4 1.881 1.898 1.163 1.169 2.131 2.118
s5 1.889 1.859 1.169 1.162 2.122 2.267

Experimentala

1.814 (2) 1.189 (3) 2.038 (2)
a Structural parameters from EXAFS measurements [247].

Table 5.1: Bond lengths (Å) relative to surface RhI(CO)2 species optimised at the
plane-wave/PBE level of theory.

leads to a distorted angle (RhCO) = 168.8◦ for one CO group. The complex (001)-s4

also has a distorted structure, which is caused by the repulsion between one CO group

and neighbouring hydroxyl groups. In all the other complexes, the rhodium has a

square-planar coordination geometry, with a typical RhCO angle close to 180◦.

A comparison between the theoretical and experimental bond distances for surface

RhI(CO)2 complexes is presented in Table 5.1. The agreement between the computed

Rh–C, C–O and Rh–O bond lengths and the EXAFS values [247] is good. Small dis-

crepancies in the Rh–O bond distance can be attributed to the presence in the EXAFS

spectrum of signals of molecular species with different coordination geometries.

The formation energy of each surface RhI(CO)2 species was determined according

to the equation 5.1. The electronic energies of metallic rhodium and gaseous CO and H2

species were determined at the plane-wave/DFT level of theory using the same param-

eter settings employed to study the surface complexes. For CO and H2, orthorhombic

unit cells were used to simulate the isolated molecules. The experimental unit cell of

rhodium is a face centred cubic (FCC) with space group Fm3̄m and lattice parame-
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Complex Energy Complex Energy
Plane (001) Plane (100)
s1 -18.205 s1 -27.611
s2 -12.779 s2 -21.527
s3 -12.504 s3 -27.300
s4 -14.228 s4 -10.850

s5 -14.693

Table 5.2: Formation energies (kcal/mol) of surface RhI(CO)2 species computed
at the plane-wave/PBE level of theory, relative to the reagents in equation 5.1.

ter 3.803 Å, while the minimum-energy structure has a lattice parameter 3.892 Å. The

energy of the support, that is, (Al2O3)n(H2O)m, is the one of hydroxylated (001) and

(100) γ-Al2O3 surfaces described in Chapter 3. As supported RhI(CO)2 complexes on

the (001) surface were modeled on a (1x2x1) super-cell (Figure 5.1), the energy of the

support was twice the energy of the slab model for the hydroxylated (001) surface (Fig-

ure 3.12). For supported RhI(CO)2 complexes on the (100) surface, the energy of the

support was that of the slab model for the hydroxylated (100) surface. A summary of

the computed formation energies is shown on Table 5.2. No zero-point correction was

applied to the energies listed in this table.

On the (001) plane, the most stable complex is therefore the (001)-s1 complex, which

has a formation energy of -18.205 kcal/mol. The complexes (001)-s2, (001)-s3 and (001)-

s4 have formation energies 5.4, 5.7 and 4.0 kcal/mol higher than the (001)-s1 complex,

respectively.

On the (100) plane, the most stable complexes are the (100)-s1 complex, which has a

formation energy of -27.611 kcal/mol, and the (100)-s3 complex, which has a relative

formation energy just 0.311 kcal/mol higher. The complexes (100)-s2, (100)-s5 and

(100)-s4 have a relative formation energy 6.084, 12.918 and 16.761 kcal/mol higher.

From this trend, one can conclude that the most stable RhI(CO)2 complexes are those

bonded to oxygen atoms and hydroxyl groups with a high coordination number, i.e. in

the most stable complexes, the rhodium atom is bonded to oxygen atoms belonging to

the alumina surface rather than hydroxyl groups adsorbed on the surface. However,
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the computed energies of supported species may be affected by artefacts due to side-

by-side interaction between the periodic images.

5.1.2 Theoretical XANES Spectra

X-ray Absorption Near-Edge Spectroscopy (XANES) is a powerful experimental tech-

nique for studying the local structure of atoms, due to its directional short range order

sensitivity and its chemical selectivity. XANES spectra of a 2% in weight Rh/γ-Al2O3

catalyst were recorded in transmission mode at the ESRF, beamline BM29 [253] (Greno-

ble, France). The spectra were collected at the Rh K-edge with a Si(111) double-crystal

monochromator. Measurements of the catalyst sample were performed under a CO

atmosphere at room temperature: under these experimental conditions the Rh clusters

are disrupted and surface RhI(CO)2 species are formed [36–43].

Structural models of supported rhodium catalysts obtained from plane-wave/DFT

calculations were used to simulate theoretical XANES spectra in order to assess their

consistency with the experimental XANES spectrum. The reason of doing such a com-

parison is that the XANES spectrum is sensitive to both the angular and radial distribu-

tion of atoms around the photo-absorber element [254]. The program Feff version 8.4

[255] was used to carry out a full multiple scattering XANES calculation for a cluster

of atoms centred on the absorbing atom (i.e. rhodium). Atoms up to 7 Å from rhodium

were included to obtain converged XANES calculations.

Since the experimental spectrum is an average over all the configurations present

in the sample during the measurements, the theoretical spectrum was obtained as the

average of the spectra computed from different structures, each weighted with the cor-

responding Boltzmann factor and the relative abundance of the alumina crystal plane2.

2In a typical γ-Al2O3 nanoparticle, shown in Figure 3.11, the plane (100) accounts for 74% of the total
exposed surfaces, the plane (001) for 16% and the plane (101) 10% [27]. For the calculation of the the-
oretical XANES spectrum, only the planes (100) and (001) were considered. The relative abundance of
these planes was rounded to 80% for the (100) plane, 20% for the (001) plane and 0% for the (101) plane.
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Figure 5.3: Comparison between experimental and theoretical XANES spectra at
the Rh K-edge. The theoretical spectrum was calculated from the structure of
complexes (001)-s1, (100)-s1 and (100)-s3. The resulting spectra were averaged
using Boltzmann-weighting factors (see text).

The Boltzmann factors of systems with energy Ei are given by the equation:

ρ(Ei, T ) =
Ni

N
=
e−Ei/kBT

Z(T )
(5.2)

whereEi is the formation energy of the complex (Table 5.2), kB the Boltzmann constant,

T the temperature and Z(T ) =
∑

i e
−Ei/kBT is the partition function. In Equation 5.2, all

the systems were considered as non-degenerate. According to the Boltzmann factors

computed at T = 300K, the most important surface complexes are the (100)-s1, (100)-s3

and the (001)-s1 which have relative weights of 0.41, 0.39 and 0.20 respectively.

The theoretical XANES spectrum obtained by averaging the spectra of the (001)-

s1, (100)-s1 and (100)-s3 structures is shown in Figure 5.3. The theoretical spectrum

reproduces well the features of the experimental spectrum, such as phase and shape

of the oscillations, providing support for the structural parameters used. Amplitude

discrepancies in the edge region may indicate the presence of metallic rhodium in the

sample investigated [256], and therefore this feature is not reproduced with the struc-
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tural models used. The first derivative of the spectra (right-hand side of Figure 5.3)

shows that the obscillations of the theoretical and experimental spectra are in phase.

The agreement between the experimental and theoretical spectrum is measured by the

root mean square (RMS) of the difference between the absorption cross sections:

RMS =
1

n

√√√√ n∑
i=1

(µ
exp
i − µtheo

i )2 (5.3)

where n is the number of data points in the experimental spectrum. The RMS com-

puted for the theoretical XANES spectrum was found to be 0.0296 a.u.

5.2 Embedded Molecular Cluster Calculations

The calculations presented in this Section have been performed using the program

Guess developed by Dr. Peter Sushko and Prof. Alexander Shluger (University Col-

lege of London) [58, 59, 239], which implements a theoretical scheme to perform finite

cluster calculations using a hybrid QM/MM approach. Within this scheme, the re-

gion of interest is studied with a quantum-mechanical methodology such as DFT. The

quantum-mechanical (QM) cluster is embedded in a finite region of polarizable ions

(referred to as region I) described with the shell model (Section 2.4.3), which provides

a convenient way of describing the electrostatic and steric constraints produced by

the atomic environment of the QM cluster. Fixed non-polarizable ions placed outside

region I form the so-called region II. This region provides the correct electrostatic po-

tential in the QM cluster and in region I. A schematic view of the division of the space

is illustrated in Figure 5.4.

The interface region between the quantum-mechanical cluster and the classical re-

gion is composed of positive ions represented using ECPs. The interface atoms interact

quantum-mechanically with atoms of the QM cluster and classically with the classical

environment. The ECP on each interface atom replaces the potential hole created by

a point charge with a potential which allows the electronic wavefunction to decrease
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Quantum Cluster region

Interface region

Region I (classical relaxed)

Region II (classical fixed)

Figure 5.4: Division of space in an embedded molecular cluster calculation as
implemented in the program Guess.

smoothly towards the cluster boundary.

In Guess, the total energy includes contributions due to the interaction of the QM

region with the rest of the host lattice, the ionic and electronic polarization of the lattice

by the QM region, and the reciprocal effect of the lattice polarization on the QM region

itself. In this way, the electronic structure of the QM region is consistent with the

perturbation which it induces on the polarizable environment and vice-versa [240].

The total forces acting on each centre, i.e. the QM ions and the classical cores and

shells forming region I, are calculated by differentiating the total energy with respect

to the coordinates of the corresponding species. The positions of the cores and shells

for each ion are optimized in response to changes in the charge density distribution

within the quantum cluster, until minimization of the total energy is achieved [239].

In this work, the DFT method as implemented in the program Gaussian [155] was

used to calculate the quantum-mechanical contribution to the total energy. The PBE

gradient-corrected exchange functional [114] was used in conjunction with a double-ζ

quality basis set. The Lanl2DZ+1d1f ECP basis set was used for rhodium (see Section

4.1), and Dunning’s correlation consistent cc-pVDZ basis set [257] was used for all the

other atoms. The interface atoms in the QM cluster were represented using large-core

Lanl2 ECPs [213] and they have a minimal basis set with high exponent (tight) s and p

functions.
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The structural units used to build the finite-cluster models of γ-Al2O3 surfaces were

obtained from minimum-energy structures computed at the MM level of theory, as

described in Section 3.2.2. The force field used to model region I is therefore consistent

with the modified De Leeuw and Parker force field described in Tables 3.6 and 3.7.

5.2.1 Preliminary Operations

The finite cluster of atoms included in a hybrid QM/MM calculation is constructed

from repetition of structural elements which should have a dipole moment equal to

zero. In this way, the electrostatic potential provided by region II remains constant in

region I and provides the correct long-range Coulomb potential. To simulate a sup-

ported rhodium catalyst, the structural unit is a slab model of a hydroxylated γ-Al2O3

surface relaxed at the MM level of theory, as described in Section 3.2.2. The top and

bottom surfaces of the alumina slab are identical, and the dipole moment of the slab

must be zero only in the plane parallel to the surface. Structural units with these char-

acteristics are constructed from the periodic unit cell of γ-Al2O3 surfaces according to

the procedure described in this Section. In the following derivation, the position of

atoms is given in fractional coordinates, e.g. xi ∈ [0, 1].

The Cartesian components of the electrical dipole moment generated by N point

charges can be written as

Dx =
N∑
i=1

qixi (5.4)

If the position of all the charges is shifted by a constant value x0, an important condition

is that the dipole moment does not change:

Dx =
N∑
i=1

qi(xi − x0) = Dx + x0

N∑
i=1

qi = Dx (5.5)

i.e. for a neutral system,
∑N

i=1 qi = 0. If the coordinate x of the N th point charge is
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qN(1− α) qNα

0 1 x

Figure 5.5: A schematic diagram which shows a point charge split between the
fractional coordinates xN = 0 and xN = 1.

shifted to zero, i.e. x0 = xN , equation (5.5) can be re-written as

Dx =
N∑
i=1

qi(xi − xN) =
N−1∑
i=1

qi(xi − xN) = Dx (5.6)

The dipole moment in the latter equation is equivalent to the dipole moment generated

by a distribution of point charges in which the charge qN is placed at xN = 0. In this

particular case the point charge qN can be split between the periodic images of the unit

cell, corresponding to the fractional coordinates 0 and 1, as illustrated in Figure 5.5.

Equation (5.6) implies that α = 0. For α 6= 0, the dipole moment becomes:

D∗x =
N−1∑
i=1

qi(xi − xN) + αqN = Dx + αqN (5.7)

where xN = 1 has been omitted. Therefore, the condition to have D∗x = 0 is that

Dx + αqN = 0

α = −Dx

qN
(5.8)

In this way, the dipole moment of the surface structural unit can easily be set to zero.

Figure 5.6 shows a system in which the charge of two atoms have been split to give a

structural unit which has no dipole moment along the cartesian directions x and y.

This procedure has been implemented in a program called cell-dipole.pl writ-
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Figure 5.6: To make the dipole moment zero in the plane ab, two atoms are se-
lected inside the unit cell and translated (right-hand side panel) to the positions
(0, b) and (a, 0). The charge of each atom is then split between their periodic
images and the coefficients αi and αj can be computed.

ten in the perl scripting language3. This program takes a slab model for the surface

given in the CIF standard crystallographic format [258], computes the coefficients αi

for every atom in the unit cell and asks the user to chose two atoms to give a “building-

block” structural unit. This system is saved as a Cartesian coordinate file (XYZ format),

with an additional column containing the charge of every species. The program has

been tested on two high-symmetry systems (α-Al2O3 and NaCl) and it correctly com-

putes the coefficients α for a finite-cluster model of the plane (001). For hydroxylated

γ-alumina surfaces, the periodic slab models of the (001) and (100) planes optimised

at the MM level of theory (Section 3.2.2) have been used to create the structural units

used to build the finite-cluster model of supported rhodium catalysts.

After the building-block has been created, the program xyz_slab_NxM is used to

build a finite cluster of atoms as a NxM repetition of the structural unit. Afterwards,

the program nc_slab_to_guess takes the finite-cluster model and the radius for re-

gion I as input data, and writes a Guess template file for a hybrid QM/MM calculation.

These two programs have been written with the help of Dr. Peter Sushko (University

College of London).

3This program and all the other programs mentioned in this Section are given in full in Appendix A.4.
All the software presented in this Section is original work developed to help writing the input files for
hybrid QM/MM calculations.
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The size of region I should be large enough to accommodate the lattice distortions

induced by the adsorbed species in the QM cluster. Furthermore, the Coulomb poten-

tial induced by region II should be constant inside region I or at least it must have a

value with numerical noise smaller than the energy differences investigated by hybrid

QM/MM calculations. The program epotential_2D is used to compute the electro-

static potential for atoms in a finite-cluster model. From this information, the size of

region I can be determined.

The force field used in hybrid QM/MM calculations is written with the program

make_input_guess.pl, that takes as input a force field in the Gulp format and

the INTER section of the Guess input file. Finally, the bash scripts missing.sh,

divide.sh and charge.sh are used to select the QM cluster inside region I. Detailed

instructions on how to perform these operations are given in Section A.5.

5.2.2 γ-Alumina Surfaces

Finite-cluster models of the hydroxylated (001) and (100) γ-Al2O3 planes were gener-

ated and studied with the embedded molecular cluster approach. The surface (001)

was represented with a 13x9 super-cell containing 10786 atoms. The surface area of

this model is 54.715 nm2. The surface (100) was represented with a 9x9 super-cell con-

taining 8442 atoms, whose surface area is 55.103 nm2. In both cases, the structural units

were generated from the periodic slab model of the corresponding surfaces optimised

at the MM level of theory, as described in the previous Section. For atoms represented

with the shell model (i.e. the oxygen atoms), the position of the cores was used, while

the charge was set as the sum of the core+shell charges.

In order to determine the size of region I, the electrostatic potential inside the whole

cluster model, shown in Figure 5.4, was computed with the program epotential_2D.

The electrostatic potential was computed for equivalent atoms, i.e. for atoms lying on

the same plane, that is, z = z0. For a system of Na atoms, the electrostatic potential
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Figure 5.7: Electrostatic potentials of a cluster model of a hydroxylated (001) γ-
Al2O3 surface composed of 13x9 structural units.

experienced by the atom i is defined as

Ve(i) =
Na∑
j=1
i 6=j

qj
rij

(5.9)

for every i : z0 − δ ≤ zi ≤ z0 + δ, where δ is a numerical tolerance, set to 0.01 Å.

The electrostatic potential of different species on the planes (001) and (100) is shown in

Figures 5.7 and 5.8.

For aluminium and bulk oxygen (i.e. O1) atoms, three series were computed for

planes in different positions. For atoms belonging to surface groups such as hydroxyl

(i.e. O2) and water (i.e. O3), the planes were chosen to intersect the position of each

species. It was found that the mean Coulomb potential has a small variance at the

centre of the finite-cluster model and its value increases at the borders. Furthermore,
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Figure 5.8: Electrostatic potentials of a cluster model of a hydroxylated (100) γ-
Al2O3 surface composed of 9x9 structural units.

atoms on the surface experience fluctuations of the Coulomb potential larger than

atoms in the bulk. For the systems considered here, a radius of 10 Å from the cen-

tre of the system was chosen to define the boundary between region I (classical relaxed

ions) and region II (classical fixed ions). The standard deviation of the Coulomb po-

tential in region I was found to range from 0.14 to 0.50 eV for atoms in the (001) plane,

and from 0.0003 to 0.002 eV for atoms in the (100) plane. The differences between the

standard deviations in the two planes depend on the morphology of the surfaces and

on the area of the finite-cluster model. For a finite-cluster model, a smaller standard

deviation is obtained using a larger super-cell. However, for the (001) plane the super-

cell used (13x9 structural units) was chosen as the best compromise between accuracy

and size of the system.

In order to test the embedded molecular cluster approach, the structure and elec-
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[AlO3(OH)2]
5−[Al∗5]

15+ (1) [Al2O5(OH)2(H2O)]6−[Al∗8]
24+ (2)

[Al4O8(OH)2(H2O)]6−[Al∗10]
30+ (3) [Al6O13(OH)2(H2O)]10−[Al∗14]

42+ (4)

Figure 5.9: Optimised configurations of four quantum clusters used in the em-
bedded cluster calculations of the hydroxylated (001) γ-Al2O3 surface. Red atoms
are oxygen, white atoms are hydrogen, grey atoms are aluminium and violet
atoms are interface aluminium.

tronic properties of hydroxylated γ-Al2O3 surfaces were computed with finite-cluster

models and the results of the calculations were compared with results obtained with

periodic models (Section 3.1.2). Calculations of the hydroxylated (001) γ-Al2O3 surface

were performed for a sequence of clusters with increasing size. The clusters were cho-

sen so that all the anions were fully coordinated by cations, as recommended in Ref.

[58]. The largest cluster considered in this work included 20 aluminium and 16 oxy-

gen atoms, of which two oxygen atoms were in hydroxyl groups and one oxygen atom

was in a water molecule. The force field used in region I was that of De Leeuw and

Parker [194]. No additional potential terms were added to correct the lattice distortions

induced by interface aluminium atoms. However, it has been found that the displace-

ment of interface atoms was small compared to the positions occupied by these atoms

in a lattice entirely relaxed at the MM level of theory.

The optimised structures of the QM clusters 1 to 4 obtained for the (001) surface
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Property QM1 QM2 QM3 QM4 PM Structure

Al1-O3 2.027 1.984 2.093 2.033 1.987
Al1-O4 1.940 1.845 1.835 1.940 1.834
Al2-O5 – 1.935 1.943 1.977 1.960
Al2-O6 1.886 1.852 1.832 1.830 2.047
q(O3) -1.21 -0.98 -0.97 -0.98 -0.97
q(O4) -0.75 -0.42 -0.41 -0.21 -1.04
q(O7) -1.50 -1.03 -0.97 -0.57 -1.08
q(O8) – -1.45 -1.45 -0.97 -1.16
q(Al1) 0.73 0.71 0.78 0.38 1.73
q(Al2) – 0.97 0.98 0.64 1.70
Egap 6.074 5.738 5.222 5.178 4.557

1
2

3

45

6
7

8

Table 5.3: Comparison between geometrical parameters and atomic charges
(from Mulliken population analysis) computed for embedded QM clusters 1 to
4 (as in Figure 5.9) and a periodic model (PM) of the hydroxylated (001) plane.
Bond lengths are given in Å, charges in |e| and band gap energies in eV.

are shown in Figure 5.9. A comparative analysis of the structures obtained with this

method is presented in Table 5.3. The agreement between the structures obtained with

the finite model and the periodic model is good, in particular the morphology of the

hydroxylated surface is well reproduced within the QM cluster. The computed Mul-

liken charge on oxygen atoms in hydroxyl groups and water molecules is smaller than

the charge on bulk oxygen atoms. This trend is well reproduced with the finite-cluster

model, although the charge on oxygen atoms coordinated with interface aluminium

atoms is higher than on oxygen atoms coordinated with QM Al atoms. However, the

discrepancy introduced by the interface atoms becomes less important as the size of the

QM cluster increases. The embedded molecular cluster calculations produce a band-

gap higher than the band-gap computed with the periodic model. Even in this case,

the difference between the band-gap energy computed with finite and periodic models

decreases with the size of the QM cluster.

To assess the ability of the embedded molecular cluster scheme to reproduce the

electronic structure of γ-Al2O3 surfaces, the density of states (DOS) has been computed

as function of the cluster size. The main features of the DOS computed with a periodic
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Figure 5.10: Density of states calculated for a hydroxylated (001) γ-alumina sur-
face using the embedded QM clusters 1 to 4 (as shown in Figure 5.9) and a
periodic model. In the top panel, embedded cluster DOS calculated at the cc-
pVDZ/ECP/PBE level of theory for clusters of increasing size are shown. In the
bottom panel, the DOS calculated using a periodic model and a plane-wave basis
set is presented. In all cases, the top of the valence band has been shifted to zero.

model are correctly reproduced with the finite-cluster model, as shown in Figure 5.10.

The position of peaks in the valence and conduction bands is similar in all the QM

clusters considered in this work.

The hydroxylated (100) γ-Al2O3 surface was studied in a similar way. Four QM

clusters were generated, and their structure optimised until convergence of the total

energy was achieved. The optimised structures of QM clusters 5 to 8 are shown in

Figure 5.11, and a comparison of the bond lengths, Mulliken charges and band-gap

energies is presented in Table 5.4.

The morphology of this surface is preserved in the QM clusters, although some

differences with the periodic structure are present. The position of surface hydroxyl
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[AlO(OH)2]
−[Al∗2]

6+ (5) [Al3O4(OH)4]
3−[Al∗5]

15+ (6)

[Al3O5(OH)6]
7−[Al∗9]

27+ (7) [Al7O13(OH)8(H2O)]13−[Al∗22]
66+ (8)

Figure 5.11: Quantum clusters used in the embedded cluster calculations of the
hydroxylated (100) γ-Al2O3 surface. Red atoms are oxygen, white atoms are hy-
drogen, grey atoms are aluminium and violet atoms are interface aluminium.

groups labelled 7 and 8 in Table 5.4 are well reproduced with the finite-cluster model,

while the position of other atoms (e.g. oxygen 5 and 9) are more sensitive to the QM

cluster size. However, differences between bond lengths obtained with finite and peri-

odic models are within 0.1 Å. The choice of the QM cluster size influences also the dis-

tribution of the electronic density, as can be seen from the computed Mulliken charges.

Here differences arise in the ground state of each QM cluster: in cluster number 8 for

instance there is a hydrogen transfer from an hydroxyl group to a oxygen atom. This

change in the morphology of the cluster is reflected in the computed DOS, as can be

seen in Figure 5.12.

The band gap obtained for the finite-cluster models is higher than the band gap
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Property QM5 QM6 QM7 QM8 PM Structure

Al1-O5 1.763 1.762 1.824 1.869 1.767
Al2-O6 1.889 1.875 1.935 1.833 1.846
Al2-O7 – 1.774 1.790 1.798 1.773
Al3-O8 – 1.752 1.788 1.790 1.769
Al4-O9 – 1.867 1.855 1.806 1.771
q(O5) -0.48 -0.45 -0.67 -0.42 -1.09
q(O6) -0.88 -0.46 -0.43 -0.60 -1.07
q(O7) – -0.38 -0.38 -0.37 -1.08
q(O8) – -0.42 -0.43 -0.42 -1.04
q(O9) – -1.37 -1.38 -1.00 -1.17
q(Al1) 1.01 1.01 0.73 0.73 1.91
q(Al2) – 0.77 0.69 0.69 1.81
q(Al3) – 0.62 0.65 0.76 1.82
Egap 5.363 4.138 5.218 4.357 3.997

1
2

3

4

5 6

7
8

9

Table 5.4: Comparison between geometrical parameters and atomic charges
(from Mulliken population analysis) computed for embedded QM clusters 5 to
8 (as in Figure 5.11) and a periodic model (PM) of the hydroxylated (100) plane.
Bond lengths are given in Å, charges in |e| and band gap energies in eV.

obtained with the periodic model. However, the main features of the DOS are retained

although some differences between the peaks in the valence band are present. These

differences are related to the ground states geometries obtained for the finite-cluster

models.

In Guess the harmonic vibrational frequencies are calculated numerically by geo-

metrical perturbation of the optimised structure. To establish the correct step length

(∆) to be used, harmonic bond stretching frequencies of surface OH groups were com-

puted for step lengths in the range 0.00001 to 0.63 Å. The optimal step value should

be large enough to give a significant difference in the potential value (especially in the

case of shallow energy potential curves) which is also small enough to avoid going

beyond the harmonic region. The computed values of low- and high-frequency OH

stretching vibrations on the hydroxylated (001) and (100) γ-Al2O3 planes are shown in

Figure 5.13. The optimal step length was chosen as ∆ = 0.0008 Å, and it was used for

all the stretching frequency calculations presented in this work.
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Figure 5.12: Density of states calculated for a hydroxylated (100) γ-alumina sur-
face using the embedded QM clusters 5 to 8 (as shown in Figure 5.11) and a
periodic model. In the top panel, embedded cluster DOS calculated at the cc-
pVDZ/ECP/PBE level of theory for clusters of increasing size are shown. In the
bottom panel, the DOS calculated using a periodic model and a plane-wave basis
set is presented. In all cases, the top of the valence band has been shifted to zero.
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Figure 5.13: Convergence of the low and high vibrational modes of isolated OH
groups on the (001) and (100) planes with respect to the step length parameter ∆.
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5.2.3 Surface Rhodium Species

The hydroxylated surfaces of γ-Al2O3 have a complex morphology and, as a con-

sequence, several adsorption sites can be identified for the formation of supported

RhI(CO)2 species. Using the molecular visualisation program Gdis [160], six models

of surface RhI(CO)2 species were built on the hydroxylated (001) γ-Al2O3 plane, and

another six models were built on the (100) plane. A pictorial view of a finite-cluster

model of supported RhI(CO)2 species is shown in Figure 5.14. The size of the finite-

cluster model and that of region I were identical to those of the finite-cluster models

of hydroxylated (001) and (100) γ-Al2O3 planes discussed in the previous section. The

size of the QM clusters was chosen to minimise the effects of the interface region. The

QM clusters of hydroxylated γ-Al2O3 surfaces presented in the previous section were

used, as appropriate, as absorption sites for surface RhI(CO)2 species.

Each model was optimized using the program Guess. The calculations in the QM

cluster were performed at the PBE level of theory using the program Gaussian [155].

The Lanl2DZ(+1d1f) basis set was used for rhodium and the cc-pVDZ basis set was

used for all the other atoms. The interface aluminium atoms were described with the

Lanl2 ECP plus a minimal sp basis set for valence electrons, as described in the previ-

ous section. All the QM clusters studied in this work were chosen to be closed-shell

and in a singlet state. No classical potential was used to describe the rhodium atoms

and the CO molecules, i.e. the adsorbed rhodium complex interacts with the support

through the atoms included in the QM cluster, and with the rest of the system only

electrostatically. Figures 5.15 and 5.16 show a pictorial view of the optimised struc-

tures of supported rhodium species on hydroxylated (001) and (100) γ-Al2O3 surfaces.

A comparison between the labels used for the finite-cluster models and for the periodic

models (section 5.1.1) is shown in Table 5.5.

As explained in Section 5.1, the formation energy of supported RhI(CO)2 species

was computed according to equation (5.1). Minimum-energy structures of the reac-

tants and products were determined at the PBE/cc-pVDZ level of theory with the

program Gaussian [155], while the energy of the γ-Al2O3 support and the supported
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5.2 Embedded Molecular Cluster Calculations

Figure 5.14: Pictorial view of a finite-cluster model for an embedded QM/MM
calculation. The atoms in the QM cluster are represented as spheres with van
der Waals radii, the atoms in region I are shown with a ball-and-stick representa-
tion, and form a cylindrical region, and the atoms in region II are represented as
shadow-less points. The box around region II is drawn to mark the shape of the
whole system.

rhodium carbonyl complex was computed with the program Guess. The stoichiome-

try of the embedded QM clusters was chosen to be consistent with the oxidative ad-

sorption of a rhodium atom, i.e. one hydrogen atom was removed from a QM cluster

representing the support, and it was replaced with a RhI(CO)2 complex to give a finite-

cluster model of the supported rhodium species. For metallic rhodium, nanoclusters

of different size were optimised in vacuum. As a reliable representation of a metallic

nanocluster strongly depends on its size (as outlined in reference [259]), rhodium nan-

oclusters containing 2, 4, 6, 10 and 14 atoms were considered in this work. The ground

state for the Rh2 cluster was a 1Σg state, for the Rh4 cluster it was a 1A1 state, for the Rh6

cluster it was a 3A state, for the Rh10 cluster it was a 3B2g state and finally for the Rh14

135



5.2 Embedded Molecular Cluster Calculations

(001)-c1 (001)-c1b (001)-c2

(001)-c2b (001)-c3 (001)-c4

Figure 5.15: Models of supported RhI(CO)2 complexes optimised with a finite-
cluster model of the hydroxylated (001) γ-Al2O3 surface. Initial structures were
optimised at the cc-pVDZ/ECP/PBE level of theory. Red atoms are oxygen,
white atoms are hydrogen, grey atoms are aluminium, violet atoms are interface
aluminium, grey atoms are carbon and aquamarine atoms are rhodium.

cluster the ground state was a 3A state. The total energy per rhodium atom converges

to a stationary value as the nanocluster increases its size, as shown in Figure 5.17. The

energy of a rhodium atom was extrapolated from this trend, as suggested in reference

[260].

The formation energies of supported RhI(CO)2 species computed in such a way are

overestimated with respect to those obtained using periodic model approach (Table

5.2), as can be seen from the values reported in Table 5.6. The formation energies com-

puted with a periodic model are expected to be more reliable than formation energies

computed with a finite model since in periodic plane-wave/DFT calculations a reason-

ably large plane-wave basis set was used and all the reactants and products in equation

5.1 were studied in their more stable phase (e.g. metallic crystal rhodium). For finite-
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5.2 Embedded Molecular Cluster Calculations

(100)-c1 (100)-c2i (100)-c2b

(100)-c3 (100)-c4 (100)-c5

Figure 5.16: Models of supported RhI(CO)2 complexes optimised with a finite-
cluster model of the hydroxylated (100) γ-Al2O3 surface. Initial structures were
optimised at the cc-pVDZ/ECP/PBE level of theory. Red atoms are oxygen,
white atoms are hydrogen, grey atoms are aluminium, violet atoms are interface
aluminium, grey atoms are carbon and aquamarine atoms are rhodium.

cluster calculations more realistic values are expected to be obtained using the energy

of a metallic rhodium nanocluster adsorbed on γ-Al2O3 surfaces. Furthermore, it has

not been verified how much the computed results change with respect to the dimen-

sion of the QM cluster and with respect to the basis set size. However, the formation

energies obtained with the embedded molecular cluster approach are useful to esti-

mate relative stability of isomers such as complexes (001)-c1 and (001)-c1b, which have

the same number of atoms but different configurations.

The bond lengths of the minimum-energy structures are summarised in Table 5.7.

Good agreement is found with the experimental data from EXAFS determinations

[247]. For the Al–O distances, the mean value with the standard deviation is reported
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5.2 Embedded Molecular Cluster Calculations

Plane (001) Plane (100)
PM FC PM FC
s1 c1 s1 c1

c1b c2i
s2 c2 s2 c2b
s3 c2b s3 c3

c3 s4 c4
s4 c4 s5 c5

Table 5.5: Correspondence between the labelling used to name supported
RhI(CO)2 species modelled using the periodic model (PM) and the finite-cluster
model (FC).

Complex Energy Complex Energy
Plane (001) Plane (100)
c1 -84.772 c1 -88.949

c1b -84.627 c2i -68.550
c2 -73.665 c2b -69.925

c2b -87.118 c3 -65.478
c3 -68.017 c4 -89.804
c4 -71.571 c5 -82.948

Table 5.6: Formation energies (kcal/mol) of supported RhI(CO)2 species com-
puted with the embedded molecular cluster approach. The labelling of the com-
plexes is given in Figures 5.15 and 5.16.

for oxygen atoms coordinated to more than one aluminium atom. In all the optimised

structures, rhodium complexes have a square-planar coordination geometry and a

morphology consistent with the equivalent structures optimised with a periodic model

(see Table 5.5 for the labels of equivalent structures).

Surface rhodium complexes adsorbed on the (001) surface induce a small reconstruc-

tion of the adsorption site. The (RhCO) angle in the complexes (001)-c2 and (001)-c4

is distorted because of the presence of the neighbouring hydroxyl groups. Complex

(001)-c2 has a distorted angle (RhCO) = 168.29◦ and complex (001)-c4 has a distorted

angle (RhCO) = 162.31◦, in agreement with the equivalent structures obtained with

periodic models which have distorted (RhCO) angles equal to 168.80◦ and 161.42◦ re-
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Figure 5.17: Electronic energy per rhodium atom in metallic rhodium nanoclus-
ters Rhn, n = 2, 3, 6, 10, 14. Calculations were performed with respect to vacuum
at the PBE/ECP level of theory. Cluster shape and point group are shown as
insets.

spectively. The complex (001)-c3 is an isomer of (001)-c4 and has a distorted angle

(RhCO) = 166.34◦. The higher distortion gives rise to a relative formation energy 3.5

kcal/mol higher than the (001)-c4 complex.

The surface rhodium complexes adsorbed on the (100) surface induce a significant

reconstruction of the adsorption site, leading to more stable structures. The complex

(100)-c2i is ~1.4 kcal/mol more stable than the complex (100)-c2b, but it has a simi-

lar electronic structure, as can be seen from the computed Mulliken charges shown in

Table 5.8. The geometrical optimisations of complexes (100)-c3, (100)-c4 and (100)-c5

induce a reconstruction of the surface. For the complex (100)-c4, the γ-Al2O3 surface

changes its morphology because of dissociation of a water molecule yielding two sep-

arate hydroxyl groups. The complex (100)-c5 has a distorted angle (RhCO) = 171.65◦

that is similar to that in the equivalent complex obtained with a periodic approach,

which has an angle (RhCO) = 172.43◦.

The harmonic frequencies computed at the QM/MM level are reported in Table 5.9.

The computed symmetric and anti-symmetric stretching frequencies of the carbonyl
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5.2 Embedded Molecular Cluster Calculations

Complex r(Rh–C) r(C–O) r(Rh–O) r(O–Al)
Plane (001)

c1 1.839 1.850 1.161 1.161 2.053 2.114 1.896 1.933
c1b 1.837 1.840 1.161 1.162 2.085 2.116 1.894 1.914
c2 1.824 1.864 1.160 1.163 2.092 2.178 1.944 1.979(45)

c2b 1.836 1.847 1.164 1.164 2.097 2.113 1.880 2.085
c3 1.821 1.856 1.159 1.166 2.191 2.240 1.909(55) 1.971(27)
c4 1.828 1.857 1.163 1.165 2.134 2.172 1.880 2.005

Plane (100)
c1 1.831 1.842 1.162 1.163 2.063 2.093 1.89(12) 1.893
c2i 1.836 1.840 1.158 1.161 2.086 2.104 1.879 1.881
c2b 1.832 1.843 1.159 1.159 2.090 2.152 1.865 1.880
c3 1.829 1.838 1.159 1.162 2.178 2.221 1.880(65) 1.897
c4 1.835 1.850 1.158 1.164 2.096 2.110 1.795(17) 1.851(43)
c5 1.827 1.846 1.160 1.162 2.137 2.143 1.864 1.911(38)

Experimentala

1.814 (2) 1.189 (3) 2.038 (2)
a Structural parameters from EXAFS measurements [247].

Table 5.7: Bond lengths (Å) relative to surface RhI(CO)2 species optimised with
the embedded molecular cluster approach. QM calculations performed at the
cc-pVDZ/ECP/PBE level of theory with the program Gaussian GO3-D02. For
oxygen atoms coordinated with more than one aluminium atom, the mean value
of bond length is reported, with standard deviation in parentheses. The labelling
of the complexes is given in Figures 5.15 and 5.16.

groups are in good with experimental IR values. From this result, it can be concluded

that the computed models of the surface RhI(CO)2 species give a realistic representa-

tion of the actual material.

As the computed infrared frequencies show good agreement with the experimen-

tal values and the formation energies are overestimated, it is proposed to compare the

simulated XANES spectrum of each species with the experimental XANES spectrum,

as a way to assess the reliability of each structure. Rh K-edge XANES spectra of sup-

ported RhI(CO)2/γ-Al2O3 species were computed with the program Feff version 8.4

[255] on the basis of full-multiple scattering theory. Atoms up to 7 Å from rhodium

were included to obtain converged XANES calculations. The spectra were calculated
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Complex q(Rh) q(C) q(C) q(O) q(O)
Plane (001)

c1 0.092 -0.012 -0.007 -0.020 -0.023
c1b 0.148 -0.056 -0.036 -0.013 -0.022
c2 -0.203 -0.030 -0.004 -0.026 -0.016

c2b -0.291 -0.031 0.012 -0.035 -0.041
c3 0.073 -0.040 -0.020 -0.006 -0.052
c4 0.055 -0.034 -0.034 -0.021 -0.013

Plane (100)
c1 0.272 -0.082 -0.089 -0.012 -0.018
c2i 0.195 -0.048 -0.068 0.009 0.004
c2b 0.201 -0.044 -0.054 0.005 0.011
c3 0.088 -0.045 -0.029 -0.005 -0.016
c4 0.326 -0.075 -0.065 -0.030 0.004
c5 0.212 -0.048 -0.082 0.020 -0.002

Table 5.8: Computed Mulliken charges (|e|) of rhodium, carbon and oxygen
atoms obtained from hybrid QM/MM simulations. The labelling of the com-
plexes is given in Figures 5.15 and 5.16.

using the Hedin-Lundqvist model of the exchange potential.

Figures 5.18 and 5.19 show the spectra of complexes optimised on hydroxylated

(001) and (100) γ-alumina surfaces, respectively. The agreement with the experimental

spectrum is good for most of the computed spectra, as can be seen from the RMS values

in Table 5.10.

The best agreement is found for the complex (100)-c4, which has a RMS = 0.0129 and

which is the complex with the most negative formation energy in Table 5.6. The worst

agreement is found for complexes (001)-c2 and (100)-c3, which have a RMS of 0.0213

and 0.0234, respectively. The formation energy of complexes (001)-c2 and (100)-c3 is

also among the least negative, suggesting that complexes with the lowest formation

energy have also unrealistic structures. However, it should be noted once again that

many different structures make a contribution in the experimental spectrum, which

is better described by a linear combination of the spectra of all the more energetically

stable structures.

From these results it can be concluded that embedded molecular cluster calcula-
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Complex ν(CO) (cm−1) Complex ν(CO) (cm−1)
Plane (001) Plane (100)

c1 2018.14 2079.40 c1 2009.19 2070.05
c1b 2015.90 2078.06 c2i 2029.33 2092.11
c2 2010.92 2078.06 c2b 2031.83 2092.92

c2b 1993.12 2059.99 c3 2019.45 2082.79
c3 – – c4 2008.40 2077.10
c4 2001.45 2064.22 c5 2014.72 2075.81

Experimentala

2027(2) 2095(1)
a IR measurements for a 2% wt supported rhodium catalyst

under CO atmosphere [4].

Table 5.9: Harmonic stretching frequencies of surface RhI(CO)2 species com-
puted with the embedded molecular cluster approach. The QM calculations were
performed at the cc-pVDZ/ECP/PBE level of theory with the program Gaussian
GO3-D02.

Plane (001)
complex c1 c1b c2 c2b c3 c4
RMS 0.0195 0.0185 0.0213 0.0181 0.0204 0.0207

Plane (100)
complex c1 c2i c2b c3 c4 c5
RMS 0.0191 0.0182 0.0192 0.0234 0.0129 0.0200

Table 5.10: Root mean square (RMS) values indicating the difference between the
theoretical XANES spectra and the experimental XANES spectrum.

tions of supported rhodium species have produced reasonable microscopic models of

the actual catalyst, being able to give very good agreement between the experimental

structural and spectroscopic evidence and the corresponding computed structural and

spectroscopic properties.

5.3 Conclusions

In this chapter periodic and finite-cluster models of supported rhodium catalysts have

been produced. For periodic models, the plane-wave/DFT method was used to obtain
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Figure 5.18: Comparison between experimental and theoretical XANES spectra
at the Rh K-edge. Theoretical spectra were calculated using the structure of
RhI(CO)2 complexes optimised on the hydroxylated (001) γ-Al2O3 plane using
the embedded molecular cluster approach.

minimum-energy structures and formation energies of supported RhI(CO)2 species.

In all the optimised structures, the surface rhodium complexes exhibit a square-

planar coordination geometry, in agreement with the experimental evidence available

for these species. Good agreement was found between the computed bond lengths

and the bond lengths determined by EXAFS spectroscopy [247]. Furthermore, a Rh

K-edge XANES spectrum was calculated on the basis of full multiple-scattering theory

as an average of the spectra derived from the three most energetically stable struc-

tures. Good agreement was found between the experimental and theoretical XANES

spectra. As XANES spectra are very sensitive to the spatial distribution of the atoms

surrounding the photo-absorber -in terms of either bond lengths and bond angles- it

can be concluded that the models obtained with this approach are highly realistic.

Finite-cluster models of supported RhI(CO)2 species were studied using an hybrid
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Figure 5.19: Comparison between experimental and theoretical XANES spectra
at the Rh K-edge. Theoretical spectra were calculated using the structure of
RhI(CO)2 complexes optimised on the hydroxylated (100) γ-Al2O3 plane using
the embedded molecular cluster approach.

QM/MM approach, as implemented in the program Guess [58, 59, 239]. This method

was used to study hydroxylated γ-alumina surfaces; in particular properties such as

bond lengths and electronic structure were investigated as a function of the dimension

of the cluster studied at the QM level of theory. Supported rhodium species were stud-

ied at the PBE/ECP/cc-pVDZ level of theory: twelve structures were obtained by min-

imisation of the total energy and it was found that these structures had bond lengths

which were within 0.02 Å of the experimental bond lengths, as determined by EXAFS

spectroscopy [247]. The morphologies of the optimised complexes are consistent with

that of complexes obtained using periodic models, but it was found that the forma-

tion energies computed with the finite-cluster model are overestimated with respect to

those obtained with a periodic model. This result is likely due to over-estimation of

the energy of the reactants, in particular the energy of rhodium is derived from QM
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calculation of small rhodium nano-clusters with respect to the vacuum. In compari-

son, plane-wave/DFT calculations give more reliable energies since all the reactants

and products in equation 5.1 were considered in their more stable phase.

To improve the results obtained using the finite-cluster approach, it is proposed to

study the interaction of metallic rhodium nano-clusters with surfaces of γ-alumina, to

consider the effect of a larger basis set in the calculations and to test the stability of

results with respect to the size of the QM cluster.

The symmetric and anti-symmetric stretching modes of carbonyl groups of sup-

ported RhI(CO)2 species were computed numerically and they were found to be in

very good agreement with the experimental IR determinations. Multiple-scattering

calculations were carried out on the optimised structures. Theoretical Rh K-edge spec-

tra are in very good agreement with the experimental XANES spectrum, confirming

that the morphology of the RhI(CO)2 adsorption sites is well described with the struc-

tural model of supported rhodium catalysts presented in this work.
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CHAPTER 6

CONCLUSIONS

The main objective of this project was to provide a theoretical description of the chem-

ical properties and reactivity of a particular class of heterogeneous catalysts based on

transition metals supported on a metal oxide such as γ-alumina. The system inves-

tigated in this work was RhI(CO)2/γ-Al2O3, a species that is formed when a cata-

lyst composed of metallic rhodium supported on hydroxylated γ-Al2O3 is exposed to

gaseous CO at room temperature [4–7, 43]. Supported RhI(CO)2/γ-Al2O3 species have

been characterised experimentally by using a combination of complementary tech-

niques such as energy-dispersive EXAFS (EDE), mass spectrometry (MS) and infrared

spectroscopy (IR) carried out simultaneously, under well-defined conditions [7, 42, 47].

Two theoretical methods were used to compute the ground-state properties of sup-

ported RhI(CO)2 species. A plane-wave/DFT method with periodic boundary condi-

tions, as implemented in the program Castep [158], was used to obtain realistic models

of hydroxylated γ-Al2O3 surfaces, using the bulk model of γ-Al2O3 proposed by Digne

and co-workers [16, 27, 29]. This model was chosen because it has been shown to repro-

duce the physical and chemical properties of hydroxylated γ-alumina surfaces, with

particular emphasis on hydroxylation/dehydroxylation processes induced by temper-

ature. Parameters of simulations presented in this work, such as basis set cut-off en-

ergy, slab thickness and vacuum thickness, were determined variationally in Chapter

3. This theoretical method was applied to compute the structural properties (zero-

pressure lattice parameters and bulk modulii) of corundum, γ-alumina and diaspore,

and the results obtained show good agreement with experimental data and with re-
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sults of similar calculations published in the literature.

The structures of hydroxylated γ-alumina surfaces computed in this thesis work

are in agreement with the results of equivalent calculations carried out at the plane-

wave/DFT level of theory [27, 29]. Plane-wave/DFT calculations were also employed

to optimise the complex [Rh(CO)2Cl]2 in Chapter 4, obtaining bond lengths in agree-

ment with X-ray measurements [229] and with equivalent calculations performed at

the PBE/ECP/cc-pVTZ level of theory.

Nine different structures of surface RhI(CO)2/γ-Al2O3 species were optimised at

the plane-wave/DFT level of theory. In all the optimised structures the rhodium atom

exhibits a square-planar coordination geometry, in agreement with in-situ infra-red and

EXAFS spectroscopy measurements [7, 43, 247–250]. The formation energies for these

complexes were computed using the formation mechanism proposed by Basu and co-

workers [6] (equation 5.1). In all cases, a negative formation energy was found.

Formation energies were used to compute Boltzmann weighting factors at 300K.

According to these factors, the three most dominant structures of surface RhI(CO)2

species were used to compute Rh K-edge XANES spectra on the basis of full-multiple

scattering theory with the program Feff version 8.4 [255]. The weighted linear combi-

nation of the computed spectra reproduces well the features of the experimental spec-

trum, such as phase and shape of the oscillations, providing support for the theoret-

ical structures used to compute the XANES spectra. From this study it can be con-

cluded that reliable microscopic models of supported RhI(CO)2/γ-Al2O3 species were

obtained from calculations carried out at the plane-wave/DFT level of theory with

periodic boundary conditions applied.

The other theoretical method used to study supported rhodium catalysts was the

embedded molecular cluster (EMC) approach as implemented in the program Guess

[58, 59, 239]. Within this scheme the region of interest is studied at the quantum me-

chanical (QM) level of theory. The QM cluster is then embedded in a region of polar-

izable ions described with the shell-model [132], which provides a convenient descrip-

tion of the electrostatic and steric constraints produced by the atomic environment of
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the QM cluster. Fixed non-polarizable ions placed outside these two regions provide

the correct electrostatic potential, simulating the potential produced by an infinite sur-

face.

Basis sets based on the Los Alamos effective core potential (ECP) [212–214] were

designed for the Rh atom and used to investigate the Rh ionisation energy and electron

affinity at the UCCSD(T) level of theory with the program Gaussian [155]. The Rh

ECP basis sets were also used to perform calculations at the DFT level of theory on

small rhodium complexes, and very good agreement with the available experimental

evidence was found (Chapter 4).

A force field proposed by De Leeuw and Parker (DLP) [194] was used to obtain

structural models of hydroxylated γ-Al2O3 surfaces using the program Gulp [127].

This force field was modified to achieve agreement with the morphology of structures

optimised at the plane-wave/DFT level of theory, as described in section 3.2.2. The

modified DLP force field was also used to compute the structural properties (zero-

pressure lattice parameters and bulk modulii) of corundum, γ-alumina and diaspore,

and good agreement with the experimental data and with the results of plane-wave

DFT calculations carried out in this thesis work was obtained.

Hybrid QM/MM calculations were carried out with the program Guess. Hydrox-

ylated (001) and (100) γ-Al2O3 surfaces were studied as a function of the QM cluster

size. Calculations on the QM clusters were carried out at the PBE/ECP/cc-pVDZ level

of theory, while the embedding region was accounted for at the MM level of theory

using the DLP force field. The computed bond lengths and electronic structures of hy-

droxylated γ-Al2O3 surfaces were found to be in agreement with the results of plane-

wave/DFT calculations. In particular, better agreement was found for the QM clusters

with the larger size.

Twelve structures of surface RhI(CO)2 species were studied using the same ap-

proach used to carry out hybrid QM/MM calculations on hydroxylated γ-Al2O3 sur-

faces. The optimised structures of surface RhI(CO)2 species have the Rh atom in a

square-planar coordination geometry and morphologies of the adsorption sites con-
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sistent with those obtained at the plane-wave/DFT level of theory. Good agreement

was found between the computed bond lengths and the bond lengths determined by

EXAFS spectroscopy [247]. The XANES spectra computed at the Rh K-edge are in

good agreement with the experimental XANES spectrum, providing support for the

optimised structures used to compute the XANES spectra. The computed RhC–O har-

monic stretching frequencies were in good agreement with IR values [4], suggesting

that the bond order for the RhC–O bond is reproduced correctly, and hence also for

the Rh–CO bond. The formation energies computed with the EMC approach are over-

estimated with respect of formation energies computed at the plane-wave/DFT level

of theory. This effect is likely to be due to over-estimation of the energy of metallic

rhodium in equation 5.1.

6.1 Future work

The results presented in this thesis showed that reliable microscopic structures of tran-

sition metal complexes adsorbed on hydroxylated γ-alumina surfaces can be obtained

using an appropriate theoretical methodology. Plane-wave/DFT calculations provided

an accurate description of the structural and electronic properties of supported rho-

dium species, although calculations of this kind require a significant amount of com-

puting time.

The results of hybrid QM/MM calculations are consistent with the results of plane-

wave/DFT calculations, with the significant difference of being computationally less

expensive. However, the results presented in this thesis work were computed using a

DZ-quality basis set. More accurate results are expected to be obtained using a larger

basis set, as outlined in Chapter 4. In future work, it is proposed to improve the results

of hybrid QM/MM calculations in the following way.

• To optimise the structure and to compute harmonic frequencies of supported

RhI(CO)2 species for QM clusters of increasing size.

• To study the adsorption of small metallic rhodium nano-clusters on hydroxy-
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lated alumina surfaces. The energy of metallic rhodium atoms in adsorbed nano-

clusters should be lower than the energy of rhodium atoms in a nano-cluster in

vacuum. In this way, more realistic formation energies can be obtained.

• To carry out hybrid QM/MM calculations at a higher level of theory, e.g. using a

TZ-quality basis set for all the atoms in the QM cluster.

• To study other surface rhodium species adsorbed on hydroxylated γ-Al2O3 sur-

faces. In particular it is proposed to study chlorinated mono-dispersed rhodium

species since it has not been established experimentally whether the presence of

chlorine atoms influences the stability of rhodium particles.

• To study the properties of supported rhodium species in the presence of promoter

and stabiliser species such as ceria (CeOx) and zirconia (ZrO2).

• To study the physical and chemical properties of supported rhodium catalysts

in electronic states with high spin multiplicity. The properties of such electronic

states have not been investigated and therefore it has not been established if these

states are ground or excited states.

• To investigate the mechanism of reactions such as oxidation of CO and/or re-

moval of NOx on supported rhodium catalysts by the mean of hybrid QM/MM

calculations.
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APPENDIX A

SUPPORT INFORMATION

A.1 Castep Input Files

The program Castep [158] requires two input files to perform an electronic structure

calculation: the cell file describes the simulation cell and its contents, and the param file

describes the type of run to be performed (e.g. geometrical optimisation, band structure

calculation, etc.) and any options which may be required.

As an example, the input files for the geometrical optimisation of bulk γ-Al2O3 are

shown here.

gamma-Al2O3-JCatal_226_54.cell

%block lattice_abc
5.5853 8.4100 8.0689
90.0000 90.5200 90.0000
%endblock lattice_abc

%block positions_frac
O 0.8888 0.4053 0.8990
O 0.6049 0.9175 0.6136
O 0.3565 0.4055 0.8533
O 0.1369 0.9166 0.6369
O 0.1112 0.9053 0.1010
O 0.3951 0.4175 0.3864
O 0.6435 0.9055 0.1467
O 0.8631 0.4166 0.3631
O 0.1112 0.5947 0.1010
O 0.3951 0.0825 0.3864
O 0.6435 0.5945 0.1467
O 0.8631 0.0834 0.3631
O 0.8888 0.0947 0.8990
O 0.6049 0.5825 0.6136
O 0.3565 0.0945 0.8533
O 0.1369 0.5834 0.6369
O 0.8814 0.7500 0.8747
O 0.3629 0.7500 0.8899
O 0.1186 0.2500 0.1253
O 0.6371 0.2500 0.1101
O 0.6138 0.2500 0.6405
O 0.1329 0.2500 0.6264
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O 0.3862 0.7500 0.3595
O 0.8671 0.7500 0.3736
Al 0.3670 0.0752 0.6127
Al 0.1163 0.5787 0.8621
Al 0.6330 0.5752 0.3873
Al 0.8837 0.0787 0.1379
Al 0.6330 0.9248 0.3873
Al 0.8837 0.4213 0.1379
Al 0.3670 0.4248 0.6127
Al 0.1163 0.9213 0.8621
Al 0.3779 0.7500 0.1261
Al 0.8755 0.7500 0.1253
Al 0.6151 0.7500 0.7453
Al 0.6221 0.2500 0.8739
Al 0.1245 0.2500 0.8747
Al 0.3849 0.2500 0.2547
Al 0.8681 0.2500 0.4988
Al 0.1319 0.7500 0.5012
%endblock positions_frac

kpoints_mp_spacing 0.05 1/ang
symmetry_generate

%block species_mass
O 15.9989995956
Al 26.9820003510

%endblock species_mass

%block species_pot
O ~/Pseudo/O_00PBE.usp
Al ~/Pseudo/Al_00PBE.usp

%endblock species_pot

%block species_lcao_states
O 2
Al 2

%endblock species_lcao_states

gamma-Al2O3-JCatal_226_54.param
task GeometryOptimization
reuse gamma-Al2O3-JCatal_226_54.check
num_backup_iter 1
xc_functional PBE
spin_polarized false
cut_off_energy 380
grid_scale 2.1
finite_basis_corr 2
finite_basis_npoints 3
elec_energy_tol 2.00e-06
max_scf_cycles 100
fix_occupancy true
nextra_bands 0
geom_energy_tol 1.00e-05
geom_force_tol 0.03
geom_stress_tol 0.05
geom_disp_tol 1.00e-03
geom_max_iter 200
geom_modulus_est 250 GPa
fixed_npw false
calculate_stress false
popn_calculate false
calculate_densdiff false
pdos_calculate_weights false
num_dump_cycles 0
opt_strategy_bias +3
data_distribution gvector

The basis set cut-off energy was determined variationally using a bash script. With the

same approach, it is possible to study any parameter on which the calculation depends.
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convergence-param.sh
#!/bin/bash
task=cutoff
seed=gamma-Al2O3-JCatal_226_54
numcpu=8
i=0
imax=20
# starting cut-off energy.
p=200

# Save the results into a file.
echo "# $task Final Energy (eV) Force O1 Force Al1 (eV/A)"> $task.dat

function write_param {
cat <<EOF
task SinglePoint
reuse gamma-Al2O3-JCatal_226_54.check
xc_functional PBE
spin_polarized false
page_wvfns 0
cut_off_energy $p
grid_scale 2.1
finite_basis_corr 0
elec_energy_tol 2.00e-06
max_scf_cycles 100
fix_occupancy true
nextra_bands 0
num_dump_cycles 0
opt_strategy_bias +3
data_distribution gvector

EOF
}

while [ $i -lt $imax ]; do
number=‘printf "%02d" $i‘
write_param > $seed.param
# run the program
mpirun -np $numcpu /usr/local/Castep-4.3/castep $seed
energy=‘tail -n 60 $seed.castep | grep "Final energy" - | awk ’{print $4}’‘
force1=‘tail -n 50 $seed.castep | grep "* O 1 " - | awk ’{printf "%9.5f",'
sqrt($4**2+ $5**2 +$6**2)}’‘
force2=‘tail -n 50 $seed.castep | grep "* Al 1 " - | awk ’{printf "%9.5f",'
sqrt($4**2+ $5**2 +$6**2)}’‘
mv $seed.castep $seed.$task.$number.castep
echo $p $energy $force1 $force2 >> $task.dat
p=$((p + 30))
i=$((i+1))

done

A.1.1 Building a Slab Model of Surfaces with Gdis

To build a slab model of γ-Al2O3 surface, the program Gdis [160] was employed. Start-

ing from the bulk structure, the following operations were performed:

1. Cleave a plane 4.0 fractional units deep from the bulk structure using the utility

Tools→Building→Surfaces.

2. Save the structure as a standard crystallographic CIF format [258].
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3. Open the CIF file with a text editor and modify it: delete all the atom fractional

coordinates and add to the c axis the required vacuum layer. Save the CIF file

with a different name.

4. Open the original and the modified CIF files with Gdis. The modified CIF file

appears as an empty box.

5. Click on the slab model of the surface (the original CIF file). Left-click and select

the atoms in the model, then go to the menu Edit→Copy.

6. Click on the empty box (the modified CIF file). Go to the menu Edit→Paste.

7. The position of the slab inside the unit cell can be adjusted with the utility Tools-

→Building→Editing.

8. Water molecules and hydroxyl groups can be added following the same proce-

dure. The position of a selected group of atoms can be changed graphically by

pressing Ctrl + mouse central button, Ctrl + mouse right button or Ctrl + Shift +

mouse right button.

A.2 Gulp Input Files

gamma-alumina14_100.08.gin

# Original potential:
# Nora H. de Leeuw and Stephen C. Parker
# J. Am. Ceram. Soc. 82, 3209 (1999).
#
# Modified adding additionalpotential terms:
# * Buckingham interaction between H-H and H-O1
# fitted on the experimental structure of diaspore.
# * three-body potential on surface Al2-O1-O1 Al2-O1-O2 Al2-O1-O3 groups.
#
# NOTE:
# The Buckingham potential acts on both Al and Al2 atoms.
#
# Keywords:
opti rfo conv

# Created by GDIS version 0.89.0
# Options:
maxcyc 2500
switch bfgs gnorm 0.2000
name gamma-alumina14_100.08
dump gamma-alumina14_100.08.res
output movie arc gamma-alumina14_100.08.arc
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scell
8.056864 8.443484 90.000000
sfractional region 1
H core 0.395664 0.968305 2.994247
H core 0.998237 0.761688 2.725421
H core 0.318827 0.722883 2.692477
H core 0.954603 0.018702 2.442884
O2 core 0.355784 0.621931 2.419791
O2 core 0.356782 0.957424 2.118174
O2 core 0.920151 0.787319 2.104201
H core 0.088443 0.141846 1.989189
O3 core 0.968797 0.117971 1.955344
H core 0.127632 0.604360 1.450810
H core 0.154953 0.921033 1.385929
H core 0.697451 0.523079 1.137799
O2 core 0.644093 0.623502 1.096267
Al core 0.420797 0.587050 0.854289
Al2 core 0.779918 0.791342 0.848360
O1 core 0.672648 0.969682 0.780758
O1 core 0.670624 0.305273 0.735703
Al2 core 0.455848 0.956236 0.613738
Al2 core 0.869406 0.229668 0.578453
O2 core 0.162588 0.595289 0.560043
O1 core 0.095639 0.257432 0.483014
O2 core 0.167359 0.935267 0.470836
O1 core 0.396018 0.764687 -0.345477
O1 core 0.376489 0.440014 -0.390406
O1 core 0.386407 0.112319 -0.497872
Al core 0.128846 0.764691 -0.517851
Al core 0.525048 0.279743 -0.550811
Al core 0.146462 0.424009 -0.689957
O1 core 0.889060 0.762810 -0.695546
Al core 0.160098 0.100925 -0.766643
O1 core 0.910102 0.419371 -0.870615
O1 core 0.910033 0.101104 -0.893167
O1 core 0.112646 0.611581 -1.858204
O1 core 0.110645 0.916250 -1.896027
Al core 0.867401 0.589620 -1.959151
Al core 0.864494 0.932426 -1.983553
Al core 0.501483 0.752003 -2.034647
O1 core 0.640302 0.587165 -2.038634
O1 core 0.137150 0.263027 -2.074346
O1 core 0.638747 0.917889 -2.121468
O1 core 0.629916 0.262304 -2.150193
Al core 0.885700 0.263357 -2.167316
O1 core 0.894019 0.760393 -3.266773
Al core 0.603406 0.086092 -3.319314
Al core 0.132976 0.763335 -3.327641
Al core 0.610735 0.433563 -3.396194
O1 core 0.844053 0.102062 -3.402856
O1 core 0.361940 0.760334 -3.455955
O1 core 0.848812 0.417799 -3.460915
O1 core 0.378403 0.086039 -3.505886
O1 core 0.384142 0.427999 -3.559710
Al core 0.254267 0.258889 -3.614521
Al core 0.733095 0.764325 -4.618165
O1 core 0.604010 0.594690 -4.671498
O1 core 0.608651 0.937010 -4.723170
O1 core 0.139539 0.603518 -4.772887
O1 core 0.625972 0.261543 -4.774346
O1 core 0.142878 0.919439 -4.823151
Al core 0.377617 0.588492 -4.843840
Al core 0.383377 0.935888 -4.899359
Al core 0.854888 0.257462 -4.902583
O1 core 0.093625 0.261369 -4.968052
Al core 0.101500 0.758330 -6.059315
O1 core 0.357958 0.760561 -6.080088
O1 core 0.348533 0.103194 -6.105800
O1 core 0.850556 0.759305 -6.156154
O1 core 0.347407 0.433673 -6.191066
Al core 0.485968 0.268652 -6.191637
Al core 0.123104 0.088954 -6.251343
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Al core 0.120540 0.431782 -6.277510
O1 core 0.877321 0.105448 -6.334645
O1 core 0.875133 0.410113 -6.378897
O1 core 0.078381 0.919757 -7.342415
O1 core 0.077005 0.602265 -7.357847
Al core 0.829048 0.920192 -7.476382
Al core 0.840289 0.597259 -7.533565
O1 core 0.098343 0.258772 -7.543327
Al core 0.463247 0.745083 -7.679431
Al core 0.858651 0.257046 -7.714969
O1 core 0.603976 0.910122 -7.770806
O1 core 0.610246 0.582562 -7.797433
O1 core 0.590466 0.258118 -7.883706
O2 core 0.821926 0.086025 -8.694281
O1 core 0.892514 0.762370 -8.716750
Al2 core 0.118979 0.787974 -8.802764
O2 core 0.821025 0.425004 -8.803741
Al2 core 0.532426 0.067640 -8.861432
O1 core 0.317961 0.712380 -8.957651
O1 core 0.315339 0.049475 -8.988826
Al core 0.563957 0.437746 -9.053345
Al2 core 0.207144 0.226901 -9.085373
O2 core 0.343030 0.393726 -9.366327
H core 0.290342 0.493498 -9.493293
H core 0.841457 0.093874 -9.605223
H core 0.850824 0.414051 -9.706465
O3 core 0.021457 0.899080 -10.190490
H core 0.902290 0.873819 -10.248180
O2 core 0.068299 0.228908 -10.351220
O2 core 0.623299 0.067408 -10.395710
O2 core 0.629472 0.417271 -10.636670
H core 0.037260 0.996276 -10.704090
H core 0.652642 0.154929 -10.931350
H core 0.987321 0.254287 -10.949510
H core 0.563274 0.392069 -11.376870
O2 shel 0.357588 0.626911 2.316514
O2 shel 0.366007 0.957569 2.086586
O2 shel 0.918015 0.785829 2.064186
O3 shel 0.969233 0.117611 1.948224
O2 shel 0.644419 0.623403 1.068942
O1 shel 0.665089 0.952839 0.767552
O1 shel 0.676798 0.297238 0.614747
O2 shel 0.161751 0.598422 0.539553
O2 shel 0.165571 0.931321 0.439702
O1 shel 0.087413 0.256713 0.366538
O1 shel 0.377554 0.438787 -0.324845
O1 shel 0.400208 0.764466 -0.343966
O1 shel 0.387001 0.112595 -0.444115
O1 shel 0.888707 0.764660 -0.676748
O1 shel 0.910919 0.106088 -0.940183
O1 shel 0.916228 0.418209 -0.978969
O1 shel 0.107155 0.618741 -1.803109
O1 shel 0.106100 0.909598 -1.845244
O1 shel 0.139648 0.261589 -2.068153
O1 shel 0.642562 0.592404 -2.102062
O1 shel 0.627080 0.262900 -2.152188
O1 shel 0.640880 0.914819 -2.170377
O1 shel 0.893474 0.760919 -3.244534
O1 shel 0.837584 0.110525 -3.338252
O1 shel 0.840943 0.407879 -3.398835
O1 shel 0.359063 0.758865 -3.429408
O1 shel 0.383506 0.092399 -3.575386
O1 shel 0.387640 0.423305 -3.625445
O1 shel 0.600447 0.599288 -4.606181
O1 shel 0.603601 0.930464 -4.653082
O1 shel 0.628772 0.263140 -4.801227
O1 shel 0.147308 0.613549 -4.834870
O1 shel 0.149468 0.910853 -4.887677
O1 shel 0.094113 0.260932 -4.989644
O1 shel 0.346368 0.106367 -6.056628
O1 shel 0.360907 0.759952 -6.077707
O1 shel 0.345076 0.428489 -6.128415
O1 shel 0.848154 0.760725 -6.162180
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O1 shel 0.882018 0.112298 -6.383086
O1 shel 0.880532 0.403217 -6.437364
O1 shel 0.071126 0.603490 -7.251818
O1 shel 0.077128 0.914760 -7.292909
O1 shel 0.098625 0.256763 -7.561921
O1 shel 0.603032 0.909852 -7.816509
O1 shel 0.609517 0.583870 -7.869600
O1 shel 0.586171 0.258400 -7.885580
O1 shel 0.900782 0.763081 -8.599335
O2 shel 0.824309 0.089447 -8.662938
O2 shel 0.821479 0.421561 -8.784939
O1 shel 0.311861 0.720992 -8.838501
O1 shel 0.322687 0.066644 -8.980546
O2 shel 0.342473 0.394105 -9.340816
O3 shel 0.021016 0.899351 -10.184560
O2 shel 0.070119 0.230527 -10.308370
O2 shel 0.619925 0.074731 -10.328280
O2 shel 0.619336 0.416540 -10.573770

sbulkenergy -1270.459052

species
Al core 3.00
O1 core 1.00
O1 shel -3.00
O2 core 0.90
O2 shel -2.30
O3 core 1.25
O3 shel -2.05
H core 0.40
end

buckingham
Al core O1 shel 1474.40 0.3006 0.00 0.0 16.0
Al core O2 shel 1032.08 0.3006 0.00 0.0 16.0
Al core O3 shel 590.04 0.3006 0.00 0.0 16.0
O1 shel O1 shel 22764.00 0.1490 27.88 0.0 16.0
O1 shel O2 shel 22764.00 0.1490 13.94 0.0 16.0
O2 shel O2 shel 22764.00 0.1490 6.97 0.0 16.0
O1 shel O3 shel 22764.00 0.1490 28.92 0.0 16.0
O2 shel O3 shel 22764.00 0.1490 8.12 0.0 16.0
H core O1 shel 353.73 0.2470 0.49 0.0 20.0
H core O2 shel 311.97 0.2500 0.00 1.2 20.0
H core O3 shel 396.27 0.2500 10.00 1.2 20.0
H core H core 1126.07 0.2520 32.86 1.7 20.0

lennard 12 6
O3 shel O3 shel 39344.98 42.15 0.0 20.0

morse
H core O2 shel 7.052500 3.17490 0.94285 0.0 1.2
H core O3 shel 6.203713 2.22003 0.92376 0.0 1.2

coulomb
H core O2 shel 0.5 0.0 1.2
H core O3 shel 0.5 0.0 1.2
H core H core 0.5 0.0 1.7

three
O3 shel H core H core 4.19978 108.690 1.2 1.2 1.7
Al2 core O1 shel O1 shel 6.24339 119.658 2.1 2.1 4.5
Al2 core O1 shel O2 shel 6.24339 119.658 2.1 2.1 4.5
Al2 core O1 shel O3 shel 6.24339 119.658 2.1 2.1 4.5

spring
O1 60.78
O2 74.92
O3 209.449602

print 1
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Lanl2DZ+1d1f Lanl2-[5s4p4d2f] Lanl2-[10s8p7d3f2g]
(3,4,1/3,2,1/3,1,1/1) (11,12,3x1/9,3x1/10,1,1,1/1,1) (16,16,8x1/13,7x1/13,6x1/3x1/1,1)

α c α c α c
S 3 1.00 S 11 1.00 S 16 1.00
2.6460 -1.3554084 327.68 -0.00098 327.68 -0.00098
1.7510 1.6112233 163.84 0.00555 163.84 0.00555
0.5713 0.5893814 81.92 -0.01983 81.92 -0.01983
S 4 1.00 40.96 0.05444 40.96 0.05444
2.6460 1.1472137 20.48 -0.15623 20.48 -0.15623
1.7510 -1.4943525 10.24 0.35118 10.24 0.35118
0.5713 -0.8589704 5.12 -0.62654 5.12 -0.62654
0.1438 1.0297241 2.56 -0.12911 2.56 -0.12911
S 1 1.00 1.28 0.84712 1.28 0.84712
0.0428 1.0000000 0.64 0.41475 0.64 0.41475
P 3 1.00 0.32 0.13264 0.32 0.13264
5.4400 -0.0987699 S 12 1.00 0.16 -0.04012
1.3290 0.7433595 327.68 0.00024 0.08 0.02865
0.4845 0.3668462 163.84 -0.00133 0.04 -0.01729
P 2 1.00 81.92 0.00490 0.02 0.00765
0.6595 -0.0838056 40.96 -0.01360 0.01 -0.00197
0.0869 1.0244841 20.48 0.04123 S 16 1.00
P 1 1.00 10.24 -0.09654 327.68 0.00024
0.0257 1.0000000 5.12 0.20073 163.84 -0.00133
D 3 1.00 2.56 0.00361 81.92 0.00490
3.6690 0.0760059 1.28 -0.30111 40.96 -0.01360
1.4230 0.5158852 0.64 -0.24362 20.48 0.04123
0.5091 0.5436585 0.32 -0.09089 10.24 -0.09654
D 1 1.00 0.16 0.21902 5.12 0.20073
0.1610 1.0000000 S 1 1.0 2.56 0.00361
D 1 1.00 0.07935 1.00000 1.28 -0.30111

0.08 1.0000000 S 1 1.0 0.64 -0.24362
F 1 1.00 0.03450 1.00000 0.32 -0.09089

0.50 1.0000000 S 1 1.0 0.16 0.21902
0.015 1.00000 0.08 0.48529

P 9 1.00 0.04 0.42748
163.84 0.00047 0.02 0.07300
81.92 -0.00324 0.01 0.00131
40.96 0.01012 S 1 1.00
20.48 -0.04490 6.1035156 1.00000
10.24 0.09310 S 1 1.00

5.12 -0.24125 2.4414063 1.00000
2.56 0.20575 S 1 1.00
1.28 0.54008 0.9765625 1.00000
0.64 0.35055 S 1 1.00

P 1 1.0 0.390625 1.00000
0.225 1.00000 S 1 1.00

P 1 1.0 0.15625 1.00000
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0.075 1.00000 S 1 1.00
P 1 1.0 0.0625 1.00000

0.024 1.00000 S 1 1.00
D 10 1.00 0.025 1.00000
37.481337 -0.00039 S 1 1.00
20.822965 -0.00320 0.01 1.00000
11.568314 0.00202 P 13 1.00
6.4268410 -0.00457 163.84 0.00047
3.5704672 0.04447 81.92 -0.00324
1.9835929 0.21699 40.96 0.01012
1.1019961 0.27892 20.48 -0.04490
0.6122200 0.28645 10.24 0.09310
0.3401222 0.21125 5.12 -0.24125
0.1889568 0.13850 2.56 0.20575
D 1 1.0 1.28 0.54008

0.54 1.00000 0.64 0.35055
D 1 1.0 0.32 0.10109

0.18 1.00000 0.16 0.00394
D 1 1.0 0.08 0.00354

0.06 1.00000 0.04 -0.00067
F 1 1.0 P 1 1.00

0.5 1.00000 5.0 1.00000
F 1 1.0 P 1 1.00

0.08 1.00000 2.0 1.00000
P 1 1.00

0.8 1.00000
P 1 1.00

0.32 1.00000
P 1 1.00

0.128 1.00000
P 1 1.00

0.0512 1.00000
P 1 1.00

0.02045 1.00000
D 13 1.00
37.481337 -0.00039
20.822965 -0.00320
11.568314 0.00202
6.426841 -0.00457

3.5704672 0.04447
1.9835929 0.21699
1.1019961 0.27892

0.61222 0.28645
0.3401222 0.21125
0.1889568 0.13850
0.104976 0.05512
0.05832 0.01531
0.0324 0.00037

D 1 1.0
2.7648 1.0

D 1 1.0
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1.152 1.0
D 1 1.0

0.48 1.0
D 1 1.0

0.2 1.0
D 1 1.0
0.0833333 1.0
D 1 1.0
0.0347222 1.0
F 1 1.0

1.215 1.0
F 1 1.0

0.27 1.0
F 1 1.0

0.06 1.0
G 1 1.0

0.5 1.0
G 1 1.0

0.08 1.0

Table A.1: Contracted gaussian basis set for the Rh atom constructed from the
Lanl2DZ basis set. Orbital exponents are indicated as α and coefficients are indi-
cated as c. Courtesy of Dr. Ed Lee (University of Southampton).

Lanl2DZ+2s2p2d2fa Lanl2-[6s4p4d2f]a

(3,4,3x1/3,2,3x1/3,3x1/1,1) (11,12,4x1/9,3x1/10,3x1/1,1)

S 0.085 0.015 0.080 0.040 0.020 0.01
P 1.000 0.120 0.225 0.075 0.024
D 1.000 0.080 0.540 0.180 0.060
F 0.500 0.080 0.500 0.080

a Contracted gaussian functions are listed in Table A.1.

Table A.2: Exponents of uncontracted gaussian functions of two basis sets for the
Rh atom. Contracted functions are the same as in Table A.1. Courtesy of Dr. Ed
Lee (University of Southampton).
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Program cell-dipole.pl
#!/usr/bin/perl
# 1.0 - 2 Sept 2009
# 1.1 - 10 Nov 2009

# Static variables
$help="Usage: cell-dipole [OPTIONS] -f structure.cif\n
This program reads a crystal structure in CIF format
(ortorhombic cell, P1 space group only) and translates
atoms along a and b directions and computes the
coefficientsalpha_i and alpha_j that make the dipole
moment zero on the plane XY.\n
Option Description
------------------------------------------------------------
-h, --help Print this help.
-d [int] Output format (default is 6, e.g. %11.6f).'
\n";

$dig="11.6f";

for my $i(0 .. $#ARGV){
if ($ARGV[$i] eq "-f"){

$fileinput=$ARGV[$i+1];
}

elsif ($ARGV[$i] eq "-d" && $ARGV[$i+1] =∼ /\d/){
$dig=sprintf("%i".".%i"."f",$ARGV[$i+1]+5,'
$ARGV[$i+1]);

}
elsif ($ARGV[$i] eq "-h" || $ARGV[$i] eq "--help"){die'

$help;}
}
$char=length($fileinput)-4;
$fileout=substr($fileinput,0,$char);
$warning="Input file $fileinput not found.
Type ’cell-dipole -h’ for more informations.\n";

# Read the input file.
$count=0;
open(INPUT,"<$fileinput") || die $warning;
while(my $line=<INPUT>){

$cif_head=$cif_head.$line if $count == 0;
my @data = field($line);

# unit cell parameters.
$cell[0]=$data[1] if $data[0] eq "_cell_length_a";
$cell[1]=$data[1] if $data[0] eq "_cell_length_b";
$cell[2]=$data[1] if $data[0] eq "_cell_length_c";

# check the fields in the fractional coordinate part.
if ($data[0] =∼ /^\_atom/){

$cif_head=$cif_head.'
"_atom_site_fract_x\n_atom_site_fract_y\n_atom_site_fract_'
z\n";
while($data[0] =∼ /^\_atom/){

$atom_label = $count if ($data[0] eq "_atom_site_label");
$fract_x = $count if ($data[0] eq'
"_atom_site_fract_x");
$fract_y = $count if ($data[0] eq'
"_atom_site_fract_y");
$fract_z = $count if ($data[0] eq'
"_atom_site_fract_z");
my $line2=<INPUT>;
@data = field($line2);
$count++;

}
$count--;

}

# reads the fractional coordinates
if ($data[$atom_label] =∼ /\w/ && $data[$fract_x] =∼ /\d/'
&& $data[$fract_y] =∼ /\d/ && $data[$fract_z] =∼ /\d/ &&'
$fract_x != $fract_y){
push my @tmp, $data[$atom_label],$data[$fract_x],$data['
$fract_y],$data[$fract_z];
push @site, \@tmp;

# check if $data[0] is present in @atom_type
my $check=0;
foreach my $tmp(@atom_type){

$check++ if $tmp ne $data[$atom_label];
}
push(@atom_type,$data[$atom_label]) if $check>'
$#atom_type;

}
}
close(INPUT);

# Atomic charges.

print "Enter the charge of each atomic species in the unit'
cell.\n";
foreach my $i( 0 .. $#atom_type){

print "$atom_type[$i]: ";
$atom_charge[$i]=<STDIN>;
chomp $atom_charge[$i];

}

# Compute the (fractional) dipole components a and b
for my $i(0 .. $#site){

for my $j(0 .. 1){
#print "$site[$i][$j+1] ";
$dip[$j] += $site[$i][$j+1]*charge($site[$i][0]);

}
#print "\n";

}

# compute alpha coefficients along the directions a and b
printf "%5s %4s %19s %19s\n",’index’,’atom’,’alpha_x’,'
’alpha_y’;
for my $i(0 .. $#site){

#my $q=charge($site[$i][0]);
printf "%-5i %4s ",$i,$site[$i][0];
for my $j(0 .. 1){

$alpha[$i][$j]= -$dip[$j]/charge($site[$i][0]);
printf "%19.15f ",$alpha[$i][$j];

}
print "\n";

}
print "Select the index for the alpha coefficients\nalpha_x:";
for my $j(0 .. 1){

print "alpha_y: " if $j == 1;
$index[$j]=<STDIN>;
chomp($index[$j]);

}
#print "0:$index[0] 1:$index[1]\n";

# Write a CIF file with the new fractional coordinates.
open(CIF,">$fileout"."_d.cif");
print CIF "$cif_head";
print CIF "_atom_site_occupancy\n";
# write a XYZ file.
open(XYZ,">$fileout".".xyzq");
printf XYZ "%i\n %12.6f %12.6f\n",$#site+3,$cell[0],$cell[1];

# Print a list of atoms
for my $i(0 .. $#site){

if ($i != $index[0] && $i != $index[1]){
printf CIF "%-3s %$dig %$dig %$dig %$dig\n",$site[$i][0],'
$site[$i][1],$site[$i][2],$site[$i][3],1.0;
printf XYZ "%-3s %$dig %$dig %$dig %$dig\n",$site[$i][0],'
$site[$i][1]*$cell[0],$site[$i][2]*$cell[1],$site[$i][3]'
*$cell[2],charge($site[$i][0]);

}
}
#print "$index[0] $index[1]\n";

# Print the components of the two border atoms
$i=$index[0];
printf CIF "%-3s %$dig %$dig %$dig %$dig\n",$site[$i][0],'
$site[$i][1],$site[$i][2],$site[$i][3],1.-$alpha[$i][0];
printf CIF "%-3s %$dig %$dig %$dig %$dig\n",$site[$i][0],'
$site[$i][1]+1.0,$site[$i][2],$site[$i][3],$alpha[$i][0];
printf XYZ "%-3s %$dig %$dig %$dig %$dig\n",$site[$i][0],'
$site[$i][1]*$cell[0],$site[$i][2]*$cell[1],$site[$i][3]'
*$cell[2],(1.-$alpha[$i][0])*charge($site[$i][0]);
printf XYZ "%-3s %$dig %$dig %$dig %$dig\n",$site[$i][0],('
$site[$i][1]+1.0)*$cell[0],$site[$i][2]*$cell[1],$site[$i]['
3]*$cell[2],$alpha[$i][0]*charge($site[$i][0]);

$i=$index[1];
printf CIF "%-3s %$dig %$dig %$dig %$dig\n",$site[$i][0],'
$site[$i][1],$site[$i][2],$site[$i][3],1.-$alpha[$i][1];
printf CIF "%-3s %$dig %$dig %$dig %$dig\n",$site[$i][0],'
$site[$i][1],$site[$i][2]+1.0,$site[$i][3],$alpha[$i][1];
printf XYZ "%-3s %$dig %$dig %$dig %$dig\n",$site[$i][0],'
$site[$i][1]*$cell[0],$site[$i][2]*$cell[1],$site[$i][3]'
*$cell[2],(1.-$alpha[$i][1])*charge($site[$i][0]);
printf XYZ "%-3s %$dig %$dig %$dig %$dig\n",$site[$i][0],'
$site[$i][1]*$cell[0],($site[$i][2]+1.0)*$cell[1],$site[$i]['
3]*$cell[2],$alpha[$i][1]*charge($site[$i][0]);
close(CIF);
close(XYZ);

# Split a line into fields. Separators are one or more
# blankspaces (\s) and/of tabs (\t)
sub field{

my $str=$_[0];
chomp $str;
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my @out = split /[\s\t]+/, $_[0];
shift @out if $out[0] eq "";
return @out

}

# Retrieve the atomic charge from the atom label
sub charge{

my $out=0;
for my $tmp(0 .. $#atom_type){
if ($atom_type[$tmp] eq $_[0]){

$out=$atom_charge[$tmp];
}}
return $out;

}

Program xyz_slab_NxM.f
programs xyz_slab_nm
implicit none

c
c Peter V. Sushko UCL Oct 2008
c
c Reads a slab supercell in expands it in X and Y
c Generates coordinates for CRYSTAL slab calculations:
c x_fra y_fra z_car
c
c Format:
c
c N_atm
c lattice_vec_X lattice_vec_Y
c Smb1 X1 Y1 Z1
c Smb1 X2 Y2 Z2
c Smb1 X3 Y3 Z3

integer max_atm
parameter ( max_atm = 5000 )

integer iof_inp
integer iof_out
integer n_atm_uc
integer n_x,n_y
integer i,j,ix,iy
real*8 car_uc(3,max_atm)
real*8 chg_uc(max_atm)
real*8 vec_x,vec_y
character*3 smb_uc(max_atm)
character*30 file_inp
character*80 line

iof_inp = 51
iof_out = 52

call getarg(1,file_inp)

c ___ Read the input file

open(iof_inp,file=file_inp,status=’old’)
read(iof_inp,*) n_atm_uc
if(n_atm_uc.gt.max_atm) stop ’Too many atoms ’
read(iof_inp,*) vec_x,vec_y
do i = 1, n_atm_uc

read(iof_inp,’(a)’) line
smb_uc(i) = line(1:3)

c read(line(3:),*) (car_uc(j,i),j=1,3)
read(line(4:),*) (car_uc(j,i),j=1,3),chg_uc(i)

enddo
close(iof_inp)

c ___ Read additional info

write(*,’(a)’)
write(*,’(a)’) ’The unit cell will be expanded in X'
and Y’
write(*,’(a)’) ’Expand in X by N lattice vectors.'
Enter N’
write(*,’(a)’)
read(*,*) n_x
write(*,’(a)’) ’Expand in Y by M lattice vectors.'
Enter M’
write(*,’(a)’)
read(*,*) n_y

write(*,’(a)’)
write(*,’(a,i5)’) ’Expand in X (x times) = ’,n_x
write(*,’(a,i5)’) ’Expand in Y (x times) = ’,n_y

c ___ Delete atoms occupying the same position
c do i = 1, n_atm_uc
c
c enddo

c ___ Generate and print new coordinates

open(iof_out,file=’xyz_slab_nxm.xyz’,status=’unknown’)
write(iof_out,’(i6)’) n_atm_uc*n_x*n_y
write(iof_out,’(a,i3,a,i3)’)

+ ’Slab extended by ’,n_x,’ x ’,n_y
do i = 1, n_atm_uc

do iy = 1, n_y
do ix = 1, n_x

write(iof_out,’(a,2x,3f12.6,3x,f12.6)’)
+ smb_uc(i),
+ car_uc(1,i) + vec_x * (ix - 1),
+ car_uc(2,i) + vec_y * (iy - 1),
+ car_uc(3,i),
+ chg_uc(i)

enddo
enddo

enddo
close(iof_out)

c ___ Input for CRYSTAL SLAB calculations

open(iof_out,file=’xyz_slab_nxm.slab_crd’,'
status=’unknown’)
write(iof_out,’(i6)’) n_atm_uc*n_x*n_y
write(iof_out,’(a,2f12.6)’) ’Input for CRYSTAL SLAB'
Vx Vy = ’,

+ vec_x * n_x,
+ vec_y * n_y

do i = 1, n_atm_uc
do iy = 1, n_y

do ix = 1, n_x
write(iof_out,’(a,2x,3f12.6)’) smb_uc(i),

+ (car_uc(1,i) + vec_x * (ix - 1)) / ('
vec_x * n_x),
+ (car_uc(2,i) + vec_y * (iy - 1)) / ('
vec_y * n_y),
+ car_uc(3,i)

enddo
enddo

enddo
close(iof_out)

stop
end

Program nc_slab_to_guess.f

program nc_slab_to_guess
implicit none

c
c Peter V. Sushko UCL Oct 2008
c
c Generates a slab template for the GUESS calculations
c
c Input file already contains coordinates of the
c nanocluster, which were generated as N x M extension
c of a "building block"
c
c This program generates a semi-ready GUESS input ONLY.
c
c Input format:
c
c n_atm
c emply line
c Smb_1 x_1 y_1 z_1 q_1
c Smb_2 x_2 y_2 z_2 q_2
c Smb_3 x_3 y_3 z_3 q_3
c ..... ... ... ... ...
c
c It is assumed that the slab is oriented
c perpendicular to Z-axis

integer max_atm
parameter ( max_atm = 100000 )

real*8 tol_chg_typ
parameter ( tol_chg_typ = 1.0d-5 )

real*8 tol_dst_glue
parameter ( tol_dst_glue = 0.01d0 )

integer iof_inp
integer iof_out
integer iof_xyz
integer n_atm,n_atm1,n_atm_r1
integer n_chg_typ
integer i,j,k,l,i_atm
integer ityp_nc(max_atm) ! atom types
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real*8 car_cnt(3)
real*8 car1(3,max_atm)
real*8 car(3,max_atm)
real*8 car_nc(3,max_atm)
real*8 chg1(max_atm)
real*8 chg(max_atm)
real*8 chg_nc(max_atm)
real*8 chg_typ(max_atm)
real*8 dst(max_atm)
real*8 rad_r1_cyl
real*8 aux,z_max,dd

character*3 smb1(max_atm)
character*3 smb(max_atm)
character*3 smb_nc(max_atm)
character*3 smb_chg_typ(max_atm)
character*3 ch2
character*30 file_inp
character*80 line
logical l_found
logical l_mark(max_atm)
logical l_r1(max_atm)

c ----------------------------------------------------------
c ----- Start here -----
c ----------------------------------------------------------

iof_inp = 51
iof_out = 52
iof_xyz = 53

call getarg(1,file_inp)

c ___ Read coordinates of the nanocluster with charges

write(*,’(a)’)
write(*,’(a)’) ’Read coordinates of the nanocluster ['
A]’
write(*,’(a)’)

open(iof_inp,file=file_inp,status=’old’)
read(iof_inp,*) n_atm1
if(n_atm1.gt.max_atm) stop ’Too many atoms ’
read(iof_inp,*)

do i = 1, n_atm1
read(iof_inp,’(a)’) line
smb1(i) = line(1:3)
read(line(4:),*) (car1(j,i),j=1,3),chg1(i)

enddo
close(iof_inp)

c ----------------------------------------------------------
c __ Scan all coordinates and "glue" atoms together IF
c they occupy the same site
c ----------------------------------------------------------

l = 0

do i = 1, n_atm1
l_mark(i) = .false.

enddo

do i = 1, n_atm1 - 1
if(.not.l_mark(i)) then

do j = (i + 1), n_atm1
if(.not.l_mark(j)) then

dd = 0.d0
do k = 1, 3

dd = dd + (car1(k,i) - car1(k,j))**2
enddo
dd = sqrt(dd)
if(dd.lt.tol_dst_glue) then

c write(*,’(a,2i5,2x,2f12.6,2x,f12.6)’)
c + ’Found a pair to "glue":’,
c + i,j,chg1(i),chg1(j),dd

l = l +1
chg1(i) = chg1(i) + chg1(j)
chg1(j) = 0.d0
l_mark(j) = .true.

endif
endif

enddo
endif

enddo

write (*,’(i,a)’) l,’ pairs of atoms "glued".’
write (*,*)

c ___ Update the list of coordinates:

k = 0

do i = 1, n_atm1
if(.not.l_mark(i)) then

k = k + 1
do j = 1, 3

car(j,k) = car1(j,i)
enddo
chg(k) = chg1(i)
smb(k) = smb1(i)

endif
enddo
n_atm = k

c ----------------------------------------------------------
c ----- Define regions -----
c ----------------------------------------------------------

c ___ Find the geometrical centre

do i = 1, 3
car_cnt(i) = 0.d0

enddo
do i = 1, n_atm

do j = 1, 3
car_cnt(j) = car_cnt(j) + car(j,i)

enddo
enddo
do j = 1, 3

car_cnt(j) = car_cnt(j) / dfloat(n_atm)
enddo

c ___ Shift the centre at the origin

do i = 1, n_atm
do j = 1, 3

car(j,i) = car(j,i) - car_cnt(j)
enddo

enddo

c ___ Define region I as a cylinder

write(*,’(a)’)
write(*,’(a)’) ’Enter the radius of a cylinder region'
I [A]’
write(*,’(a)’)
read(*,*) rad_r1_cyl

do i = 1, n_atm
l_r1(i) = .false.
aux = car(1,i)**2 + car(2,i)**2
if(sqrt(aux).lt.rad_r1_cyl) l_r1(i) = .true.

enddo

c ___ Copy the coordinates into the NC list

i_atm = 0

! Region I
do i = 1, n_atm

if(l_r1(i)) then
i_atm = i_atm + 1
do j = 1, 3

car_nc(j,i_atm) = car(j,i)
enddo
chg_nc(i_atm) = chg(i)
smb_nc(i_atm) = smb(i)

endif
enddo
n_atm_r1 = i_atm

! Region II
do i = 1, n_atm

if(.not.l_r1(i)) then
i_atm = i_atm + 1
do j = 1, 3

car_nc(j,i_atm) = car(j,i)
enddo
chg_nc(i_atm) = chg(i)
smb_nc(i_atm) = smb(i)

endif
enddo

c ___ Order the atoms in Region I with respect to the
c distance from the "top"

! Find the largest Z in Region I
z_max = -1000000.d0
do i = 1, n_atm_r1

if(car_nc(3,i).gt.z_max) z_max = car_nc(3,i)
enddo
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! Calculate the distances from the point 0,0,z_max
car_cnt(1) = 0.d0
car_cnt(2) = 0.d0
car_cnt(3) = z_max
do i = 1, n_atm_r1

aux = 0.d0
do j = 1, 3

aux = aux + (car_nc(j,i) - car_cnt(j))**2
enddo
dst(i) = dsqrt(aux)

enddo

! Order
do i = 1, (n_atm_r1 - 1)

do j = (i + 1), n_atm_r1
if(dst(j).lt.dst(i)) then

aux = dst(i)
dst(i) = dst(j)
dst(j) = aux
aux = chg_nc(i)
chg_nc(i) = chg_nc(j)
chg_nc(j) = aux
do k = 1, 3

aux = car_nc(k,i)
car_nc(k,i) = car_nc(k,j)
car_nc(k,j) = aux

enddo
ch2 = smb_nc(i)
smb_nc(i) = smb_nc(j)
smb_nc(j) = ch2

endif
enddo

enddo

c ___ Print out Regions I and II

open(iof_xyz,file=’guess_region1.xyz’,'
status=’unknown’)
write(iof_xyz,’(i7)’) n_atm_r1
write(iof_xyz,’(a)’) ’Region I’
do i = 1, n_atm_r1

write(iof_xyz,’(a,2x,3f12.6,2x,f12.6)’)
+ smb_nc(i),(car_nc(j,i),j=1,3),chg_nc(i)

enddo
close(iof_xyz)

open(iof_xyz,file=’guess_region2.xyz’,'
status=’unknown’)
write(iof_xyz,’(i7)’) n_atm - n_atm_r1
write(iof_xyz,’(a)’) ’Region II’
do i = (n_atm_r1 + 1), n_atm

write(iof_xyz,’(a,2x,3f12.6,2x,f12.6)’)
+ smb_nc(i),(car_nc(j,i),j=1,3),chg_nc(i)

enddo
close(iof_xyz)

c ___ Calculate the number of atoms with different charges.
c These are used to define the number of atom types
c Assign the types to the atoms of the nanocluster

n_chg_typ = 0

c write(*,’(a)’) ’ smb i q’
do i = 1, n_atm

l_found = .false.
do j = 1, n_chg_typ

aux = chg_nc(i) - chg_typ(j)
if( dabs(aux) .lt. tol_chg_typ ) then

if (smb_nc(i).eq.smb_chg_typ(j)) then
l_found = .true.

endif
endif

enddo
if(.not.l_found) then

n_chg_typ = n_chg_typ + 1
chg_typ(n_chg_typ) = chg_nc(i)
smb_chg_typ(n_chg_typ) = smb_nc(i)

c write(*,’(a,2x,a,i5,f12.6)’) ’Found a new type’,
c + smb_chg_typ(n_chg_typ),
c + n_chg_typ,chg_typ(n_chg_typ)

endif
enddo

c write(*,’(a,i5)’) ’Total number of different charges'
= ’,n_chg_typ

write(*,’(a)’)
write(*,’(a)’) ’Atom types found in the system:’
write(*,’(a)’) ’ i smb q’

do i = 1, n_chg_typ
write(*,’(i4,2x,a,2x,f12.6)’) i,

+ smb_chg_typ(i),chg_typ(i)
enddo

c ___ Assign atomic types

do i = 1, n_atm
do j = 1, n_chg_typ

aux = dabs(chg_typ(j) - chg_nc(i))
if(aux.lt.tol_chg_typ) then

if (smb_nc(i).eq.smb_chg_typ(j)) then
if(i.le.n_atm_r1) then

ityp_nc(i) = j
else

ityp_nc(i) = j + n_chg_typ
endif

endif
endif

enddo
enddo

c ----------------------------------------------------------
c ----- Print the charges and the coordinates -----
c ----------------------------------------------------------

open(iof_out,file=’guess.template’,status=’unknown’)

write(iof_out,’(a)’) ’OPTIONS’
write(iof_out,’(a)’) ’gauss’
write(iof_out,’(a)’) ’single’
write(iof_out,’(a)’) ’cluster’
write(iof_out,’(a)’) ’bfgs’
write(iof_out,’(a)’) ’#---------’
write(iof_out,’(a)’) ’ROOTS’
write(iof_out,’(a)’) ’gauss’
write(iof_out,’(a)’) ’/PUT/IT/HERE/’
write(iof_out,’(a)’) ’#---------’
write(iof_out,’(a)’) ’THRES’
write(iof_out,’(a)’) ’max_opt_count = 300’
write(iof_out,’(a)’) ’max_eng_count = 600’
write(iof_out,’(a)’) ’ee_tol = 0.'
00000010000’
write(iof_out,’(a)’) ’f_tol = 0.'
00050000000’
write(iof_out,’(a)’) ’x_tol = 0.'
00050000000’
write(iof_out,’(a)’) ’#---------’
write(iof_out,’(a)’) ’INTER’
write(iof_out,’(a)’) ’charges’
write(iof_out,’(a)’) ’## ’
write(iof_out,’(a)’) ’## Classical relaxed ’
write(iof_out,’(a)’) ’## ’
do i = 1, n_chg_typ

write(iof_out,’(a,a,3f10.6,2x,3f10.6,2x,f10.5,i5)’)
+ smb_chg_typ(i),
+ ’ 1 ’,
+ chg_typ(i),0.d0,0.d0,
+ chg_typ(i),0.d0,0.d0,
+ 0.d0,
+ i

enddo
write(iof_out,’(a)’) ’## ’
write(iof_out,’(a)’) ’## Classical fixed ’
write(iof_out,’(a)’) ’## ’
do i = 1, n_chg_typ

write(iof_out,’(a,a,3f10.6,2x,3f10.6,2x,f10.5,i5)’)
+ smb_chg_typ(i),
+ ’ 1 ’,
+ chg_typ(i),0.d0,0.d0,
+ chg_typ(i),0.d0,0.d0,
+ 0.d0,
+ i+n_chg_typ

enddo
write(iof_out,’(a)’) ’## ’
write(iof_out,’(a)’) ’## QM and Interface: introduce'
them here’
write(iof_out,’(a)’) ’## ’
write(iof_out,’(a)’) ’end_of_block’
write(iof_out,’(a)’)
write(iof_out,’(a)’) ’potential’
write(iof_out,’(a)’) ’end_of_block’
write(iof_out,’(a)’)
write(iof_out,’(a)’) ’#---------’
write(iof_out,’(a)’) ’GEOM’
write(iof_out,’(a)’) ’## ’
write(iof_out,’(a)’) ’## Region I’
write(iof_out,’(a)’) ’## ’
do i = 1, n_atm_r1

write(iof_out,’(a,i3,i3,3f12.6,3x,f12.6,2x,a)’)
+ smb_nc(i),ityp_nc(i),0,
+ (car_nc(j,i),j=1,3),chg_nc(i),’ 1 1 1 ’

enddo
write(iof_out,’(a)’) ’## ’
write(iof_out,’(a)’) ’## Region II’
write(iof_out,’(a)’) ’## ’
do i = (n_atm_r1 + 1), n_atm
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write(iof_out,’(a,i3,i3,3f12.6,3x,f12.6,2x,a)’)
+ smb_nc(i),ityp_nc(i),2,
+ (car_nc(j,i),j=1,3),chg_nc(i),’ 0 0 0 ’

enddo
write(iof_out,’(a)’) ’#---------’
write(iof_out,’(a)’) ’GAUSS’
write(iof_out,’(a)’) ’options’
write(iof_out,’(a)’) ’%NprocShared=8’
write(iof_out,’(a)’) ’%Mem=512Mb’
write(iof_out,’(a)’) ’#P’
write(iof_out,’(a)’) ’nosymm’
write(iof_out,’(a)’) ’charge’
write(iof_out,’(a)’) ’iop(5/13=1)’
write(iof_out,’(a)’) ’iop(3/24=10)’
write(iof_out,’(a)’) ’scf=(direct,conver=8)’
write(iof_out,’(a)’) ’B3LYP’
write(iof_out,’(a)’) ’gen’
write(iof_out,’(a)’) ’gfinput’
write(iof_out,’(a)’) ’guess=(huckel)’
write(iof_out,’(a)’) ’pseudo=cards’
write(iof_out,’(a)’) ’end_of_block’
write(iof_out,’(a)’)
write(iof_out,’(a)’) ’comments’
write(iof_out,’(a)’) ’end_of_block’
write(iof_out,’(a)’)
write(iof_out,’(a)’) ’charge’
write(iof_out,’(a)’) ’end_of_block’
write(iof_out,’(a)’)
write(iof_out,’(a)’) ’basis’
write(iof_out,’(a)’) ’end_of_block’
write(iof_out,’(a)’)
write(iof_out,’(a)’) ’short_range’
write(iof_out,’(a)’) ’end_of_block’
write(iof_out,’(a)’) ’#---------’
write(iof_out,’(a)’) ’#---------’
write(iof_out,’(a)’)

close(iof_out)

stop
end

Program epotential_2D.f
programs epotential_2D
implicit none

c
c Otello M. Roscioni Univ. Southampton Aug 2009
c
c Reads a slab model of surface (XYZQ format) and
c computes the electrostatic potential for every atom
c belonging to a given plane.
c
c Input format:
c
c N_atm
c comment
c Atom1 X1 Y1 Z1 Q1
c Atom2 X2 Y2 Z2 Q2
c Atom3 X3 Y3 Z3 Q3

integer max_atm
parameter ( max_atm = 30000 )
real*8 ev
parameter ( ev = 14.39964381 )

integer iof_inp
integer iof_out
integer n_atm
integer i,j,iz
real*8 coord(3,max_atm)
real*8 charge(max_atm)
real*8 dist(max_atm)
real*8 pot(max_atm)
real*8 centre(3)
real*8 z0,tol,z_min,z_max,rad
character*3 atom(max_atm)
character*3 atom_n(max_atm)
character*3 str
character*30 file_inp
character*80 line
iof_inp = 51
iof_out = 52

call getarg(1,file_inp)

c ___ Read the input file

open(iof_inp,file=file_inp,status=’old’)
read(iof_inp,*) n_atm
if(n_atm.gt.max_atm) stop ’Too many atoms ’

c Discard the comment line.
read(iof_inp,*)
do i = 1, n_atm

read(iof_inp,’(a)’) line
atom(i) = line(1:3)
read(line(4:),*) (coord(j,i),j=1,3),charge(i)

enddo
close(iof_inp)

c ___ Find the geometrical centre

write(*,’(a)’) ’Centre of the system’
do i = 1,3

centre(i) = 0.d0
enddo
do i = 1, n_atm

do j = 1,3
centre(j) = centre(j) + coord(j,i)

enddo
enddo
do j = 1, 3

centre(j) = centre(j) / dfloat(n_atm)
enddo
write(*,’(a,f12.6)’) ’X = ’,centre(1)
write(*,’(a,f12.6)’) ’Y = ’,centre(2)
write(*,’(a,f12.6)’) ’Z = ’,centre(3)

c ___ Read additional info

write(*,’(a)’)
write(*,’(a)’) ’Enter the value of the plane'
Z=const’
read(*,*) z0
write(*,’(a)’) ’Enter the tolerance along Z (Angstrom)'
’
read(*,*) tol
z_min = z0 - tol
z_max = z0 + tol

c ___ Compute the electrostatic potential for all the
c ___ atoms belonging to the plane z=z0

iz = 1
do i = 1, n_atm

if ( (coord(3,i).le.z_max) .and. (coord(3,i).ge.'
z_min)) then

rad = (coord(1,i) - centre(1))**2 + (coord(2,i) -'
centre(2))**2
dist(iz) = sqrt(rad)
pot(iz) = 0.d0
atom_n(iz) = atom(i)
do j = 1, n_atm

if (j.ne.i) then
rad = (coord(1,i) - coord(1,j))**2 + (coord(2,i) -'
coord(2,j))**2

+ + (coord(3,i) - coord(3,j))**2
rad = sqrt(rad)
pot(iz) = pot(iz) + ( charge(j)*ev) / rad

endif
enddo
iz = iz + 1

endif
enddo
iz = iz - 1

c ___ Order the atoms with respect to the distance
c ___ from the central axis.

do i = 1, (iz - 1)
do j = (i + 1), iz

if(dist(j).lt.dist(i)) then
rad = dist(i)
dist(i) = dist(j)
dist(j) = rad
str= atom_n(i)
atom_n(i) = atom_n(j)
atom_n(j) = str
rad = pot(i)
pot(i) = pot(j)
pot(j) = rad

endif
enddo

enddo

c __ Write the results to the the file epot.dat

open(iof_out,file=’epot.dat’,status=’unknown’)
write(iof_out,’(a)’) ’# atom r (Ang) epot (eV)’
do i = 1, iz

write(iof_out,’(a4,f12.6,f12.6)’) atom_n(i),dist(i)'
,pot(i)

enddo

stop
end
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Program glue_xyz.f
programs xyz_glue
implicit none

c
c Check all the atoms in a XYZ file and glue together
c the atoms occupying the same position
c (tolerance = 0.01 Angstrom).
c
c Format:
c
c N_atm
c
c Smb1 X1 Y1 Z1 Q1
c Smb1 X2 Y2 Z2 Q2
c Smb1 X3 Y3 Z3 Q3

integer max_atm
parameter ( max_atm = 100000 )

integer iof_inp
integer iof_xyz
integer n_atm,n_atm_short,i_atm
integer i,j,k
real*8 car(3,max_atm)
real*8 chg(max_atm)
real*8 dist_tol,dd
character*3 smb(max_atm)
character*2 ch_key
character*30 file_inp
character*80 line,comment
logical l_read_q
logical l_use(max_atm)

iof_inp = 51
iof_xyz = 52

call getarg(1,file_inp)
call getarg(2,ch_key)

if(ch_key.eq.’-q’) then
l_read_q = .true.

else
write(*,’(a)’)
write(*,’(a)’) ’Use key "-q" to read charges if'
needed’
write(*,’(a)’)
l_read_q = .false.

endif

c ___ Read the input file

open(iof_inp,file=file_inp,status=’old’)
read(iof_inp,*) n_atm
if(n_atm.gt.max_atm) stop ’Too many atoms ’
read(iof_inp,’(a)’) comment

if(l_read_q) then
do i = 1, n_atm

read(iof_inp,’(a)’) line
smb(i) = line(1:3)
read(line(4:),*) (car(j,i),j=1,3),chg(i)

enddo
else

do i = 1, n_atm
read(iof_inp,’(a)’) line
smb(i) = line(1:3)
read(line(4:),*) (car(j,i),j=1,3)

enddo
endif
close(iof_inp)

c ___ Glue

dist_tol = 0.01
do i = 1, n_atm

l_use(i) = .true.
enddo

do i = 1, (n_atm - 1)
if(l_use(i)) then

do j = (i+1), n_atm
if(l_use(j)) then

dd = 0.d0
do k = 1, 3

dd = dd + (car(k,i) - car(k,j))**2
enddo

dd = dsqrt(dd)
if(dd.lt.dist_tol) then

chg(i) = chg(i) + chg(j)
chg(j) = 0.d0
l_use(j) = .false.

endif
endif

enddo
endif

enddo

c ___ Calculate the number of atoms n the short list

i_atm = 0
do i = 1, n_atm

if(l_use(i)) i_atm = i_atm + 1
enddo
n_atm_short = i_atm

c ___ Print the short list

open(iof_xyz,file=’fixed.xyz’,status=’unknown’)
write(iof_xyz,’(i7)’) n_atm_short
write(iof_xyz,’(a)’) comment
if(l_read_q) then

do i = 1, n_atm
if(l_use(i)) then

write(iof_xyz,’(a,3x,4f12.6)’)
+ smb(i),(car(j,i),j=1,3),chg(i)

endif
enddo

else
do i = 1, n_atm

if(l_use(i)) then
write(iof_xyz,’(a,3x,3f12.6)’) smb(i),(car(j,'
i),j=1,3)

endif
enddo

endif
close(iof_xyz)

stop
end

Program make_input_guess.pl
#!/usr/bin/perl
# Note: the file "guess_charges" must contains the
# following comment lines:
#
# ## Classical relaxed
# ## Classical fixed
# ## QM and Interface
#
# The atom labels should be the same as in
# in the file "guess_charges" (e.g. O1, O2)

open(GUESS,"<guess_charges") || die "guess_charges not'
found\n";
open(GULP,"<gulp_potentials") || die "gulp_potentials not'
found\n";

# Read the atom species in "guess_charges"
while(my $line=<GUESS>){

my @data = field($line);
# check if $data[0] is present in @atom_type
my $check=0;
foreach my $tmp(@atom_type){

$check++ if $tmp ne $data[0];
}
push(@atom_type,$data[0]) if $check> $#atom_type && $data['
0] !∼ /^#/;

}
close(GUESS);

# Initialise the array @index
for my $i(0 .. $#atom_type){

$index[$i]=-1;
}

# Put guess atom indexes in the array-of-array @atom_index
# The array-of-array @region contains the information about
# the GUESS regions:
# 1="Classical relaxed"
# 2="Classical fixed"
# 3="QM and Interface"
open(GUESS,"<guess_charges");
$tmp=1;
while(my $line=<GUESS>){

my @data = field($line);
$tmp++ if $line =∼ /Classical fixed/ || $line =∼ /QM and'
Interface/;
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for my $i(0 .. $#atom_type){
if ($atom_type[$i] eq $data[0]){

$index[$i]++;
$atom_index[$i][$index[$i]]=pop(@data);
$region[$i][$index[$i]]=$tmp;

}
}

}
close(GUESS);

# Control routine
#for my $i(0 .. $#atom_type){
# print "$index[$i]\n";
# print "$atom_type[$i]:";
# for my $j(0 .. $index[$i]){
# print " $atom_index[$i][$j]";
# print " $region[$i][$j]";
# }
# print "\n";
#}

while(my $line=<GULP>){
my @data = field($line);
$type=$data[0] if ($data[0] ne "" && $#data == 0);

# print "$type\n";

if ($type eq "buckingham" && $#data> 0){
# atom 1
push my @tmp, $data[0];
# atom 2
push @tmp, $data[2];
# A [eV]
push @tmp, $data[4];
# r_0 [A]
push @tmp, $data[5];
# C [eV A^6]
push @tmp, $data[6];
# r_{min} [A]
push @tmp, $data[7];
# r_{max} [A]
push @tmp, $data[8];
# D [eV A^8]
push @tmp, $data[9];
push @buck, \@tmp;

}
elsif ($type eq "morse" && $#data> 0){

# atom 1
push my @tmp, $data[0];
# atom 2
push @tmp, $data[2];
# A [eV]
push @tmp, $data[4];
# \alpha [A^{-1}]
push @tmp, $data[5];
# r_0 [A]
push @tmp, $data[6];
# r_{min} [A]
push @tmp, $data[7];
# r_{max} [A]
push @tmp, $data[8];
push @morse, \@tmp;

}
elsif ($type eq "three" && $#data> 0){

# atom 1
push my @tmp, $data[0];
# atom 2
push @tmp, $data[2];
# atom 3
push @tmp, $data[4];
# k [eV rad^{-2}]
push @tmp, $data[6];
# \Teta_0 [deg]
push @tmp, $data[7];
# r_{12} [A]
push @tmp, $data[8];
# r_{13} [A]
push @tmp, $data[9];
# r_{23} [A]
push @tmp, $data[10];
push @three, \@tmp;

}
elsif ($type eq "spring" && $#data> 0){

# atom 1
push my @tmp, $data[0];
# k_2 [eV A^{-2}]
push @tmp, $data[1];
# k_4 [eV A^{-4}]
push @tmp, $data[2];
push @spring, \@tmp;

}
elsif ($type eq "lenjen" && $#data> 0){

# atom 1
push my @tmp, $data[0];
# atom 2
push @tmp, $data[2];
# A [eV A^m]

push @tmp, $data[4];
# m
push @tmp, $data[5];
# B [eV A^n]
push @tmp, $data[6];
# n
push @tmp, $data[7];
# r_{min} [A]
push @tmp, $data[8];
# r_{max} [A]
push @tmp, $data[9];
push @lenjen, \@tmp;

}
}
close(GULP);

# Now write the potentials for GUESS.

# Buckingham potential
for my $i(0 .. $#buck){

# Find the atom’s index.
for my $j(0 .. $#atom_type){

$atom1=$j if $buck[$i][0] eq $atom_type[$j];
$atom2=$j if $buck[$i][1] eq $atom_type[$j];

}
# remove numbers from atom names.
my $atom1_s=$buck[$i][0];
my $atom2_s=$buck[$i][1];
$atom1_s=∼ s/\d//g;
$atom2_s=∼ s/\d//g;
# Print the allowed combinations of atom1 and atom2,
# excluding interactions between region2-region2
# and region3-region3.
for my $j(0 .. $index[$atom1]){

for my $k(0 .. $index[$atom2]){
if ($region[$atom1][$j] == 2 && $region[$atom2][$k] =='
2 || $region[$atom1][$j] == 3 && $region[$atom2][$k]'
== 3) {
} else {

#print "$region[$atom1][$j] $region[$atom2][$k]'
\n";
# Do not count twice the interaction between
# a couple of identical atoms.
if ($buck[$i][0] eq $buck[$i][1]){

if ($k>=$j){
print "buck\n";
printf "%-3s%3i%3s%3i%10.2f%10.5f%7.2f%5.1f%5.'
1f%5.1f\n",$atom1_s,$atom_index[$atom1][$j],'
$atom2_s,$atom_index[$atom2][$k],$buck[$i][2],'
$buck[$i][3],$buck[$i][4],$buck[$i][5],$buck[$i]['
6],$buck[$i][7];

}
} else {

print "buck\n";
printf "%-3s%3i%3s%3i%10.2f%10.5f%7.2f%5.1f%5.'
1f%5.1f\n",$atom1_s,$atom_index[$atom1][$j],'
$atom2_s,$atom_index[$atom2][$k],$buck[$i][2],'
$buck[$i][3],$buck[$i][4],$buck[$i][5],$buck[$i]['
6],$buck[$i][7];

}
}

}
}

}

# Morse potential
for my $i(0 .. $#morse){

# Find the atom’s index.
for my $j(0 .. $#atom_type){

$atom1=$j if $morse[$i][0] eq $atom_type[$j];
$atom2=$j if $morse[$i][1] eq $atom_type[$j];

}
# remove numbers from atom names.
my $atom1_s=$morse[$i][0];
my $atom2_s=$morse[$i][1];
$atom1_s=∼ s/\d//g;
$atom2_s=∼ s/\d//g;
# Print the allowed combinations of atom1 and atom2
for my $j(0 .. $index[$atom1]){

for my $k(0 .. $index[$atom2]){
if ($region[$atom1][$j] == 2 && $region[$atom2][$k] =='
2 || $region[$atom1][$j] == 3 && $region[$atom2][$k] =='
3) {
} elsif ($region[$atom1][$j] == 2 && $region[$atom2][$k]'
== 3 || $region[$atom1][$j] == 3 && $region[$atom2][$k]'
== 2) {
} else {

#print "$region[$atom1][$j] $region[$atom2][$k]'
\n";
# Do not count twice the interaction between
# a couple of identical atoms.
if ($morse[$i][0] eq $morse[$i][1]){

if ($k>=$j){
print "morse\n";
printf "%-3s%3i%3s%3i%10.6f%10.6f%10.6f%5.1f%5.'
1f\n",$atom1_s,$atom_index[$atom1][$j],$atom2_s,'
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$atom_index[$atom2][$k],$morse[$i][2],$morse[$i]['
3],$morse[$i][4],$morse[$i][5],$morse[$i][6];

}
} else {

print "morse\n";
printf "%-3s%3i%3s%3i%10.6f%10.6f%10.6f%5.1f%5.'
1f\n",$atom1_s,$atom_index[$atom1][$j],$atom2_s,'
$atom_index[$atom2][$k],$morse[$i][2],$morse[$i]['
3],$morse[$i][4],$morse[$i][5],$morse[$i][6];

}
}

}
}

}

# Three body potential
for my $i(0 .. $#three){

# Find the atom’s index.
for my $j(0 .. $#atom_type){

$atom1=$j if $three[$i][0] eq $atom_type[$j];
$atom2=$j if $three[$i][1] eq $atom_type[$j];
$atom3=$j if $three[$i][2] eq $atom_type[$j];

}
# remove numbers from atom names.
my $atom1_s=$three[$i][0];
my $atom2_s=$three[$i][1];
my $atom3_s=$three[$i][2];
$atom1_s=∼ s/\d//g;
$atom2_s=∼ s/\d//g;
$atom3_s=∼ s/\d//g;
# Print the allowed combinations of atom1, atom2 and atom3
for my $j(0 .. $index[$atom1]){

for my $k(0 .. $index[$atom2]){
for my $l(0 .. $index[$atom3]){

if ($region[$atom1][$j] == 2 && $region[$atom2][$k] =='
2 && $region[$atom3][$l] == 2 || $region[$atom1][$j]'
== 3 && $region[$atom2][$k] == 3 && $region[$atom3][$l]'
== 3) {
} elsif ($region[$atom1][$j] == 2 && $region[$atom2][$k]'
== 3 || $region[$atom1][$j] == 3 && $region[$atom2][$k]'
== 2) {
} elsif ($region[$atom2][$k] == 2 && $region[$atom3][$l]'
== 3 || $region[$atom2][$k] == 3 && $region[$atom3][$l]'
== 2) {
} elsif ($region[$atom1][$j] == 2 && $region[$atom3][$l]'
== 3 || $region[$atom1][$j] == 3 && $region[$atom3][$l]'
== 2) {
} else {

# Do not count twice the interaction between
# a couple of identical atoms.
if ($three[$i][1] eq $three[$i][2]){

if ($l>=$k){
print "three\n";
printf "%-3s%3i%3s%3i%3s%3i%10.6f%10.2f%5.1f%5.1f%5.'
1f\n",$atom1_s,$atom_index[$atom1][$j],$atom2_s,'
$atom_index[$atom2][$k],$atom3_s,$atom_index[$atom3]['
$l],$three[$i][3],$three[$i][4],$three[$i][5],$three['
$i][6],$three[$i][7];

}
} else {

print "three\n";
printf "%-3s%3i%3s%3i%3s%3i%10.6f%10.2f%5.1f%5.1f%5.'
1f\n",$atom1_s,$atom_index[$atom1][$j],$atom2_s,'
$atom_index[$atom2][$k],$atom3_s,$atom_index[$atom3]['
$l],$three[$i][3],$three[$i][4],$three[$i][5],$three['
$i][6],$three[$i][7];

}
}

}
}

}
}

# Spring potential
for my $i(0 .. $#spring){

# Find the atom’s index.
for my $j(0 .. $#atom_type){

$atom1=$j if $spring[$i][0] eq $atom_type[$j];
}
# remove numbers from atom names.
my $atom1_s=$spring[$i][0];
$atom1_s=∼ s/\d//g;
# Print the spring potential (region1 only)
for my $j(0 .. $index[$atom1]){

if ($region[$atom1][$j] == 1) {
print "spring\n";
printf "%-3s%3i%12.6f%12.6f\n",$atom1_s,$atom_index['
$atom1][$j],$spring[$i][1],$spring[$i][2];

}
}

}

# Lennard-Jones potential
for my $i(0 .. $#lenjen){

# Find the atom’s index.
for my $j(0 .. $#atom_type){

$atom1=$j if $lenjen[$i][0] eq $atom_type[$j];
$atom2=$j if $lenjen[$i][1] eq $atom_type[$j];

}
# remove numbers from atom names.
my $atom1_s=$lenjen[$i][0];
my $atom2_s=$lenjen[$i][1];
$atom1_s=∼ s/\d//g;
$atom2_s=∼ s/\d//g;
# Print the allowed combinations of atom1 and atom2
for my $j(0 .. $index[$atom1]){

for my $k(0 .. $index[$atom2]){
if ($region[$atom1][$j] == 2 && $region[$atom2][$k] =='
2 || $region[$atom1][$j] == 3 && $region[$atom2][$k]'
== 3) {
} else {

# Do not count twice the interaction between
# a couple of identical atoms.
if ($lenjen[$i][0] eq $lenjen[$i][1]){

if ($k>=$j){
print "lenjen\n";
printf "%-3s%3i%3s%3i %10.4f%3i %10.4f%3i%5.1f%5.'
1f\n",$atom1_s,$atom_index[$atom1][$j],$atom2_s,'
$atom_index[$atom2][$k],$lenjen[$i][2],$lenjen[$i][3]'
,$lenjen[$i][4],$lenjen[$i][5],$lenjen[$i][6],'
$lenjen[$i][7];

}
} else {

print "lenjen\n";
printf "%-3s%3i%3s%3i %10.4f%3i %10.4f%3i%5.1f%5.'
1f\n",$atom1_s,$atom_index[$atom1][$j],$atom2_s,'
$atom_index[$atom2][$k],$lenjen[$i][2],$lenjen[$i][3],'
$lenjen[$i][4],$lenjen[$i][5],$lenjen[$i][6],$lenjen['
$i][7];

}
}

}
}

}

# Split a line into fields. Separators are one or more
# blank spaces (\s) and/of tabs (\t)
sub field{

chomp $_[0];
my @out = split /[\s\t]+/, $_[0];
shift @out if $out[0] eq "";
return @out

}

Program missing.sh
#!/bin/bash
usage()
{
cat<< EOF

Usage: missing [options] file1 file2

Write a XYZ file containing the atoms in file1 that
are not present in file2. file1 and file2 are XYZ
files.

Options:

-l Print the index of atoms in file1 that are not
present in file2.

Example:

missing all.xyz left.xyz > missing.xyz

EOF
}

function error(){
echo "Input file(s) missing."
echo "Type missing -h for more information."
exit 0;

}

# default input files
file1=$1
file2=$2

case "$1" in
-h|--help)

usage
exit 0
;;

-l)
file1=$2
file2=$3
;;

"")
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error
esac

if [ "$file2" == "" ]; then
error

fi

# Remove the header (i.e. the first two lines)
# from the input files
cat $file1 |(read; read; cat)>tmp1_$$
cat $file2 |(read; read; cat)>tmp2_$$

if [ "$1" == "-l" ]; then
diff -e -B tmp1_$$ tmp2_$$ |sed -e "s/d//" -|tac -

else
atoms=‘diff -B tmp1_$$ tmp2_$$ |grep "<" -|wc -l‘

diff -e -B tmp1_$$ tmp2_$$ |sed -e "s/d//" -e "s/,/ /" -'
|tac -|awk ’{if ($2 == "") print "head -n " $1 " dummy'
|tail -n 1 -"}{if ($2 != "") printf "head -n %i dummy'
|tail -n %i -\n",$2,1+$2-$1}’ | sed -e "s/dummy/tmp1_$$/" -'
>tmpscr_$$

echo $atoms
echo "Atoms from $file1 that are not present in $file2"

bash tmpscr_$$
rm -f tmpscr_$$
fi

rm -f tmp1_$$ tmp2_$$

Program divide.sh
#!/bin/bash
usage()
{
cat<< EOF

Usage: divide file1 file2 file3

File1 and file2 corresponds to all.xyz and left.xyz
respectively. Cut the GEOM section from a GUESS input
file and paste it into file3 (without the GEOM keyword).
The number of atoms in file1 and file3 should be the
same and additionally they should be printed in the same
order.

The program ’divide’ is used to divide the atom list in
file3 into two sections, corresponding to the QM region
and the classical relaxed region (i.e. region I).

Check your input files with:

missing file1 file2 > qm.xyz

before you run this program.

Example:

divide all.xyz left.xyz geom.txt > temp

Then copy back the contents of ’temp’ into the GEOM section
of your GUESS input file.

EOF
}

function error(){
echo "Input file(s) missing."
echo "Type divide -h for more information."
exit 0;

}

# default input files
file1=$1
file2=$2
file3=$3

case "$1" in
-h|--help)

usage
exit 0
;;

"")
error

esac

if [ "$file2" == "" ]; [ "$file3" == "" ]; then
error

fi

# Remove the header (i.e. the first two lines)
# from the input files.
cat $file1 |(read; read; cat)>tmp1_$$
cat $file2 |(read; read; cat)>tmp2_$$

# print the QM region.
echo -n "sed -n ’s/ 0 / -1 /;" >tmp3_$$;\
for n in $(diff -e -B tmp1_$$ tmp2_$$ |sed -e "s/d/p/" -'

|tac -);\
do echo -n ${n}\;>> tmp3_$$;\

done; echo -n \’ $file3>>tmp3_$$
echo "">>tmp3_$$

# print the classical relaxed region.
echo -n "sed ’">>tmp3_$$;\
for n in $(diff -e -B tmp1_$$ tmp2_$$ |tac -);\

do echo -n ${n}\;>> tmp3_$$;\
done; echo -n \’ $file3>>tmp3_$$

# execute the script.
bash tmp3_$$

# remove the temporary files.
rm -f tmp1_$$ tmp2_$$ tmp3_$$

Program charge.sh
#!/bin/bash
# determine the total charge of a cluster of atom, assuming
# that every atom is in its formal oxidation state.
#
# Usage: charge.sh input_file

# count the number of atoms for each element in the system.
al=‘grep Al $1 |wc -l‘
rh=‘grep Rh $1 |wc -l‘
h=‘grep H $1 |wc -l‘
c=‘grep C $1 |wc -l‘
o=‘grep O $1 |wc -l‘

# check if all the atoms have been included
lines=‘grep ’\w’ $1 | wc -l‘
total=$(echo "$al+$rh+$h+$c+$o" | bc -l)
if [ $lines != $total ]; then

echo "There are unknown species in the system!!"
exit 0;

fi

# compute the charge
charge=$(echo "$al*3+$rh+$h+$c*2 -$o*2" | bc -l)
echo "Total charge: $charge"

A.5 Guess Tutorial

In this section a schematic flow-chart is presented, which can be followed in order to

perform a hybrid QM/MM calculation using the program Guess.

Step 1. Prepare the finite-cluster model.
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• Force field validation with the program Gulp. Obtain a minimum-energy struc-

ture to be used to create a finite-cluster model of the material investigated, and

save the structure as a standard crystallographic CIF format.

• Create a structural unit with the program cell-dipole. The program takes

the charges of each atomic species interactively. The atomic charges must be

consistent with those of the force field used; for core–shell atoms, the sum of

core and shell charges should be used.

• Create a NxM supercell with the program xyz_slab_NxM.

• Determine the size of region I by studying the electrostatic potential inside the

NxM supercell. Fix the input structure with xyz_glue and then determine the

electrostatic potential with the program epotential_2D.

• Create a template input file for a Guess calculation using the program nc_s-

lab_to_guess.

• Create two files named guess_charges and gulp_potentials, containing

the INTER section of the Guess template file and the force field as in a Gulp

calculation.

• Run the program make_input_guess.pl and copy the output to the POTEN-

TIAL section of the Guess template file. Examples are given at the end of this

section.

• Replace any atom labels (e.g. O1) with the atomic symbol (e.g. O).

• Use Guess to optimise the region I at the MM level of theory. This will relax the

position of all the shells.

• Use the restart file (Guess.rst) to perform a hybrid QM/MM calculation.

Step 2. Perform a hybrid QM/MM calculation.
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• Open the file Guess.xyz.region with the program Gdis, go to the last frame

from the menu Tools→Visualization→Animation. Save the last frame as a XYZ file

(e.g. all.xyz).

• Select the QM cluster graphically: on the left-hand side panel of the program

Gdis select Model: Display and then Stick. Left-click on each atom that will form

the QM cluster and then on Ball & Stick. After the cluster is selected, the system

should appear as in the following illustration:

• Delete the atoms belonging to the QM cluster and save the remaining system as

a XYZ file (e.g. left.xyz).

• Create a stand-alone file of the QM cluster with the program:

$ missing all.xyz left > qm.xyz

• Open the Guess.rst with a text editor, cut and paste the GEOM section into a

new file (e.g. geom.txt).

• Divide the atoms of the GEOM section into the QM cluster region and the classi-

cal region (Region I) using the program:
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$ divide all.xyz left.xyz geom.txt > temp

• Copy back the GEOM section from the file temp to the file Guess.rst. Change

the labels in the QM cluster according to the INTER section. Finally, rename the

file Guess.rst before to start a new calculation.

File guess_charges

Notes: The atom index is taken from the value on the last column. However, Guess

takes the atom index from the line number.

##
## Classical relaxed
##
O2 2 0.900000 -2.300000 0.000000 0.900000 -2.300000 0.000000 15.99900 1
Al1 1 3.000000 0.000000 0.000000 3.000000 0.000000 0.000000 26.98200 2
H 1 0.400000 0.000000 0.000000 0.400000 0.000000 0.000000 1.00800 3
O1 2 1.000000 -3.000000 0.000000 1.000000 -3.000000 0.000000 15.99900 4
Al2 1 3.000000 0.000000 0.000000 3.000000 0.000000 0.000000 26.98200 5
O3 2 1.250000 -2.050000 0.000000 1.250000 -2.050000 0.000000 15.99900 6
##
## Classical fixed
##
O2 1 -1.400000 0.000000 0.000000 -1.400000 0.000000 0.000000 15.99900 11
Al1 1 3.000000 0.000000 0.000000 3.000000 0.000000 0.000000 26.98200 12
H 1 0.400000 0.000000 0.000000 0.400000 0.000000 0.000000 1.00800 13
O1 1 -2.000000 0.000000 0.000000 -2.000000 0.000000 0.000000 15.99900 14
Al2 1 3.000000 0.000000 0.000000 3.000000 0.000000 0.000000 26.98200 15
O3 1 -0.800000 0.000000 0.000000 -0.800000 0.000000 0.000000 15.99900 16
O1 1 -1.976307 0.000000 0.000000 -1.976307 0.000000 0.000000 15.99900 17
O1 1 -0.023693 0.000000 0.000000 -0.023693 0.000000 0.000000 15.99900 18
O1 1 -1.940792 0.000000 0.000000 -1.940792 0.000000 0.000000 15.99900 19
O1 1 -0.059208 0.000000 0.000000 -0.059208 0.000000 0.000000 15.99900 20
##
## QM and Interface: introduce them here
##
O2 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 15.99900 21
Al1 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 26.98200 22
H 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.00800 23
O1 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 15.99900 24
Al2 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 26.98200 25
O3 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 15.99900 26
Al1 1 3.000000 0.000000 3.000000 3.000000 0.000000 3.000000 26.98200 27
Al2 1 3.000000 0.000000 3.000000 3.000000 0.000000 3.000000 26.98200 28
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File gulp_potentials

Notes: In Guess the coulomb subtraction potential is reproduced using the Lennard-

Jones potential. The Coulomb potential (in eV) is defined as 14.4
Z1Z2

r
, where Zi is the

atomic charge in |e| and r is the interatomic distance in Å.

buckingham
Al1 core O1 shel 1474.40 0.3006 0.00 0.0 16.0
Al1 core O2 shel 1032.08 0.3006 0.00 0.0 16.0
Al1 core O3 shel 590.04 0.3006 0.00 0.0 16.0
Al2 core O1 shel 1474.40 0.3006 0.00 0.0 16.0
Al2 core O2 shel 1032.08 0.3006 0.00 0.0 16.0
Al2 core O3 shel 590.04 0.3006 0.00 0.0 16.0
O1 shel O1 shel 22764.00 0.1490 27.88 0.0 16.0
O1 shel O2 shel 22764.00 0.1490 13.94 0.0 16.0
O2 shel O2 shel 22764.00 0.1490 6.97 0.0 16.0
O1 shel O3 shel 22764.00 0.1490 28.92 0.0 16.0
O2 shel O3 shel 22764.00 0.1490 8.12 0.0 16.0
H core O1 shel 353.73 0.2470 0.49 1.2 20.0
H core O2 shel 311.97 0.2500 0.00 1.2 20.0
H core O3 shel 396.27 0.2500 10.00 1.2 20.0
H core H core 1126.07 0.2520 32.86 1.7 20.0

lenjen
O3 shel O3 shel 39344.98 12 42.15 6 0.0 20.0
H core O2 shel 0.00 0 -6.624 1 0.0 1.2
H core O3 shel 0.00 0 -5.904 1 0.0 1.2
H core H core 0.00 0 1.152 1 0.0 1.7

morse
H core O2 shel 7.052500 3.17490 0.94285 0.0 1.2
H core O3 shel 6.203713 2.22003 0.92376 0.0 1.2

three
O3 shel H core H core 4.19978 108.690 1.2 1.2 1.7
Al2 core O1 shel O1 shel 6.24339 119.658 2.1 2.1 4.5
Al2 core O1 shel O2 shel 6.24339 119.658 2.1 2.1 4.5
Al2 core O1 shel O3 shel 6.24339 119.658 2.1 2.1 4.5

spring
O1 60.78
O2 74.92
O3 209.449602
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