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ABSTRACT
FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
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Doctor of Philosophy
MECHANISTIC ASPECT OF THIAMINE BIOSYNTHESIS IN ESCHERICHIA
CoLl
by Martin R. Challand

The biosynthesis of the vitamin thiamine is laden with interesting chemistry. In anaerobic
bacteria (such as Escherichia coli) a reactive intermediate, dehydroglycine, required for the
biosynthesis of the thiazole moiety is derived from cleavage of the Ca—Cp bond of tyrosine in
a reaction catalysed by the radical S-adenosyl-L-methionine (SAM) enzyme, tyrosine lyase
(ThiH). The aromatic by-product of this reaction in vivo was unequivocally characterised as p-
cresol, a result which supported previous in vitro observations. Development of a reproducible
activity assay for ThiH activity initiated detailed studies on the kinetics. ThiH, isolated either in
a complex with thiazole synthase (ThiG), or as a monomer displayed pre-steady state burst
phase kinetics. The SAM cleavage products (5’-deoxyadenosine (DOA) and methionine) were
identified as inhibitors of ThiH activity and this inhibition could be alleviated by addition of 5°-
methylthioadenosine / S-adenosylhomocysteine nucleosidase (MTAN), which catalysed rapid
hydrolysis of DOA to adenine and 5’-deoxyribose. The addition of MTAN increased the
activity of the ThiGH complex but drastically increased the amount of observed uncoupled
cleavage of SAM. The in vitro products of tyrosine cleavage (glyoxylate and ammonium ions)
were also identified as inhibitors of the ThiH mediated tyrosine cleavage reaction. However,
reductive cleavage of SAM continued in an uncoupled manner. Experiments with tyrosine
analogues showed that 4-hydroxyphenylpropionic acid compounds could support uncoupled
SAM cleavage, but the Ca—Cp bond cleavage reaction was dependent on a correctly orientated
a-amino functional group. A mechanistic model was constructed, based on the available
experimental data, which explained the observed product inhibition, uncoupled turnover and
complex formation between ThiH and ThiG. The model proposes that ThiH controls the

tyrosine cleavage reaction in order to co-ordinate the generation of the intermediate,



dehydroglycine, with its utilisation in the thiazole forming cylisation reaction, catalysed by

ThiG.
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1 Introduction

1.1 Radical Chemistry in Biology

1.1.1. Introduction to Radical Chemistry

A free radical is “any species capable of independent existence that contains one or more
unpaired electrons”™. The unpaired electron occupies a molecular orbital by itself and can arise
by loss or gain of an electron (i.e. by oxidation or reduction of a species) or by homolytic fission
of a covalent bond (bond dissociation). Unpaired electrons are observed to exist on transition

metals or on an organic molecule™ 2,

Free radicals are generally very reactive due to the presence of the unpaired electron. As such
they are more often very short lived species and typically have half lives of less than 10 s.
Their lifetime can be controlled either by thermodynamic or kinetic factors. Kinetic stability is
mostly governed by steric constraints, such as crowding around the radical centre can prevent it
reacting with another molecule and this increases the half life of the radical. Thermodynamic

stability is related to the enthalpy of dissociation of a bond (Scheme 1.1).

AH

R—H

Scheme 1.1. Enthalpy of dissociation of a bond.

This is termed bond dissociation energy (BDE). The BDE is related to the stability of the
resultant radical species which is dependent on both the nature of the atom on which the

unpaired electron is centred and the delocalisation of the unpaired electron. The BDE’s (R—H)



of some organic molecules are shown in Table 1.1. The factors which contribute to the

thermodynamic stability of radicals are:

Hyperconjugation — which affects the order of alkyl radical stability: teritiary > secondary >

primary > methyl (see examples 1 — 4 in Table 1.1).

Hybridisation — planar radicals are more stabilised as the unpaired electron can purely occupy a
p orbital (see examples 5 — 7 in Table 1.1, which have a higher BDE’s due to the hybridisation

of the radical).

Mesomerisation — leads to stabilisation of a radical by resonance, such as in an allylic, benzylic

or phenolic radical (see examples 8 — 11 in Table 1.1).

Captodative effect — leads to stabilisation of an unpaired electron by an adjacent electron
donating and an electron withdrawing group. The captodative effect is a common mechanism
for the stabilisation of radicals in biology. For example glycyl radicals (see example 13 in Table
1.1) which form on a peptide backbone are stabilised by the captodative effect (see Figure

1.1)#,

1 r P 1S
RO 0T < Ry o R"@'ﬁ)e\o’R

Figure 1.1. Stabilisation of a glycyl radical by the captodative effect.



Example R—H BDE / kdmol™
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Table 1.1 Selected examples of BDE’s for some organic radicals®



1.1.2. Utilisation of Reactive Radicals in Biology

In biological systems, free radicals are often considered to be harmful due to their high
reactivity. Their uncontrolled generation, for example through oxidative stress or photolysis, can
initiate harmful chain reactions. A healthy diet includes antioxidants such as vitamin C and
vitamin E which quench potentially harmful radical speciest). However, this thesis probes an
example of a biological process which harnesses the reactivity of free radicals to its advantage.
More specifically, the discussion focuses on the mechanism by which radical chemistry is
utilised to overcome challenging biological transformations. Radical reactions in organic
chemistry usually occur in the gas phase or in relatively inert solvents?. An environment where
radical chemistry is prevalent is in the upper atmosphere, where the low concentration of
molecules prolongs the lifetime of reactive free radicals. In biological systems reactions occur in
an aqueous environment and there is a multitude of other molecules at a relatively high
concentration which could induce side reactions. Radical mediated biotransformations are
usually enzyme catalysed and so take place in a proteinaceous active site. A major challenge for
biological systems that intend to exploit the reactivity of radical intermediates to its advantage is

the control of generation and subsequent reaction of reactive radicals.
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Scheme 1.2 Examples of radical mediated transformations in biology. The radical species that
are generated in the active site are shown in boxes. These intermediates initiate the

biotransformations by abstracting hydrogen atoms shown in red.

Three examples demonstrating the diversity of radical initiated biotransformations are shown in
Scheme 1.2. Ribonucleotide reductases (RNR’s) function to reduce ribonuleotides to
deoxyribonucleotides, which provides the only source of these building blocks of
deoxyribonucleic acid (DNA) and therefore, provides a key link in the evolution to life. The
reaction catalysed by RNR’s is mediated by the generation of a catalytic thiyl radical (3) on an
active site cysteine residue, which then activates the substrate by abstracting a hydrogen atom
(shown in red in Scheme 1.2)™°!. The reduction of ribonucleotides to deoxyribonucleotides is a
chemically difficult transformation and there is no precedent for such a reaction in synthetic
chemistry. By contrast, in living systems the enzyme catalysed transformation is achieved under

very mild conditions, at physiological temperature and pH. The second example shown is



Isopenicillin-N-synthase which catalysis the formation of the bycyclicpenicillin nucleus. B-
lactam formation is energetically demanding and is initiated by the iron oxygen radical (6)
(shown in the box)!®. The third example is biotin synthase (BioB), which inserts a sulphur atom
into dethiobiotin (7) in the final step of biotin (8) biosynthesis. The two new C—S bonds are
formed at unactivated carbons. BioB uses the 5’-deoxyadenosyl radical (9) (generated from S-
adenosylmethionine (SAM)) to abstract hydrogen atoms from the two carbons, activating them
for formation of a new C—S bond!™. As C—H bonds are common to many biological
molecules, control of the reactive free radical is essential to prevent unwanted side reactions.
The three examples shown demonstrate the complexity of possible radical mediated reactions
and the unusual chemistry involved. All three examples represent a single metabolic step and
are catalysed by a single protein. This highlights that the types of catalysis made possible once
an enzyme has control of a reactive radical intermediate can be remarkably efficient. For
comparison, in the 1950’s Sheehan reported the chemical synthesis of penicillin V, which

involved several synthetic steps and the B-lactam forming step alone gave ~10% yield'®.

The example studied in this thesis is a biotransformation involved in the biosynthesis of the
vitamin, thiamine (vitamin B1), by the bacterium Escherichia coli (E. coli). The challenge
presented to the micro-organism is the generation of an electrophilic (oxidised) intermediate,
dehydroglycine (11), under anaerobic (reducing) conditions. The precursor to dehydroglycine is
tyrosine (10) and the enzyme which catalyses the reaction is tyrosine lyase (ThiH) (see Scheme
1.3). ThiH belongs to the rapidly expanding radical S-adenosyl-L-methionine (radical SAM)
superfamily. Radical SAM enzymes generate a reactive, primary radical and utilise it to initiate
chemically demanding transformations. The work presented herein seeks to elucidate the
mechanisms by which ThiH controls and utilises reactive radicals to initiate Co—Cp bond

cleavage of tyrosine.



Aromatic byproduct

ThiH
HO SAM
Reductant
HO,C™ “NH,
10 HO,C™ NH,
©)
11

Scheme 1.3. ThiH cleaves the C,—C; of tyrosine to form dehydroglycine.



1.2 Radical SAM Enzymes

1.2.1 Overview of the Mechanism of Radical SAM Enzymes

A commonly occurring pathway for the generation of a radical for biological catalysis comes
from reduction or oxidation of a transition metal followed by electron transfer to form an
organic radical. All radical SAM proteins require the reductive cleavage of SAM to generate the
reactive 5’-deoxyadenosyl radical (9). As discussed in the previous section, access to highly
reactive radical species permits initiation of some truly remarkable biotransformations. The first
radical SAM enzyme to be discovered in the 1970’s was lysine 2,3-aminomutase (LAM). This
enzyme had an absolute requirement for SAM to allow the radical initiated transformation of a-
lysine (12) to p-lysine (13) (see Figure 1.2)!* ', This 1, 2 migration of a functional group is
similar to typical examples S-adenosylcobalamin (vitamin By,) (27) (see Figure 1.3) dependent
rearrangements and suggested that SAM was playing the role of the already characterised S-
adenosylcobalamin coenzyme. Both S-adenosylcobalamin dependent enzymes and radical SAM
enzymes generate the 5°-deoxyadenosyl radical (9) as an intermediate to initiate catalysis and as
such the two may be evolutionarily related 2. Upon interaction with a protein S-
adeosylcobalamin undergoes cleavage of the weak carbon-cobalt bond (BDE ~130 kJmol™)
generating cobal(IT)amin and a 5’-deoxyadenosyl radical (9); however radical SAM enzymes
generate this intermediate by cleavage of a carbon-sulfur bond (see Figure 1.3). The BDE of the
carbon-sulfur bond in SAM is ~250 kdmol™, therefore fission of this bond is much more
energetically demanding and needs to be facilitated by reduction of the sulfonium ion. The mid-
point potential for a tri-alkyl sulfonium ion in solution is in the order of -1.8 V3. The crux of
radical SAM chemistry is the thermodynamically unfavourable reduction of the sulfonium ion
as a prelude to carbon sulfur bond homolysis and generation of the reactive radical. Reduction

of SAM in radical SAM enzymes is catalysed by a 4Fe-4S cluster.
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Figure 1.2. Selected examples of transformations catalysed by the radical SAM family.



S-Adenosylmethionine Adenosylcobalamin </
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Figure 1.3 Stuructural similarities between S-adenosylmethionine and adenosylcobalamin and

the generation of the common 5’deoxyadeosyl radical intermediate.

Iron sulfur clusters are involved in a diverse range of chemical reactions in nature. Their most
common function is in redox chemistry, where the iron ions switch between 2+ and 3+
oxidation states. Depending on their environment the redox potential of Fe-S clusters can range
from -500 to +300 mV. Some of the known functions of Fe-S clusters include acting as donors
and acceptors of electrons, for example in hydrogenases, ferridoxins, mitochondrial and
bacterial respiratory complexes I-111 and enzyme catalysis™!, which includes radical SAM
enzymes. Radical SAM proteins all contain a 4Fe-4S cluster, ligated through three of the iron
atoms by three conserved cysteine residues (28) (see Scheme 1.4)1"> ¢!, Typically these three

cysteine residues form part of a conserved CXXXCXXC motif™”), where X is an arbitrary

10



amino acid. As suggested by their name, radical SAM proteins are also dependent on SAM for
activity and the fourth, un-ligated iron co-ordinates to the amino acid functionality of SAM in a
bidentate fashion (29) (see Scheme 1.4)1*!. The 4Fe-4S cluster can access an overall 2+ or 1+
redox state and functions to receive an electron from an electron donor (such as flavodoxin,
ferridoxin or a chemical replacement) and mediate its transfer onto the sulfonium ion of SAM,
which causes spontaneous homolysis of the C-S bond. This yields methionine (33) and a 5°-
deoxyadenosyl radical (9)"* 2%, This primary radical is very reactive and provides the key to all
radical SAM catalysed reactions. Subsequent chemical steps are initiated by abstraction of a
hydrogen atom from a substrate. In some cases the substrate is another protein, for example in

activating enzymest®.
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Scheme 1.4 Mechanism of generation of the highly reactive 5’-deoxyadenosyl radical in radical

SAM enzymes.

The range of reactions catalysed by members of the radical SAM family is highlighted by the
examples shown in Figure 1.2. Many radical SAM enzymes perform essential transformations
in the cell, including key steps in vitamin and co-factor biosynthesis. The large activation
energies implicit in these chemically demanding transformations result in relatively slow
turnover (in the order of 10 s™, see Table 1.2), but it seems probable that the priority is
successful synthesis of the essential metabolite rather than achieving a high catalytic efficiency.
Indeed, some members of the family are constrained to a single turnover in vitro (eg BioB and
LipA) and achieving catalytic activity in an in vitro system can be very difficult®*?!, The
common steps in the mechanism of radical SAM enzymes is shown in Scheme 1.4 and

summarised below:
Step 1 — Ligation of SAM to the unique iron of the 4Fe-4S cluster (reversible).

Step 2 — Transfer of an electron to the 4Fe-4S cluster to reduce it to the overall +1 redox state.
In vivo this is usually accomplished by cellular redox proteins (for example flavodoxin in E.

coli) (reversible).

Step 3 — Inner sphere electron transfer from the 4Fe-4S cluster to SAM promoted homolysis of
the C5-S bond, generating the 5’deoxyadenosyl radical and methionine (this step has been

shown to be reversible in some cases).

Step 4 — The 5’-deoxyadenosyl radical abstracts a hydrogen atom from a substrate to generate a

substrate radical (this step has been shown to be reversible in some cases).
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1.2.2 Classes of Radical SAM Enzymes

Radical SAM enzymes can be classified based on their use of the 5’-deoxyadenosy! radical.
This can sometimes (such as for LAM) lead to more efficient turnover (see Table 1.2). The three

classes are summarised in Scheme 1.5 and discussed in the following paragraphs. There are also

several reviews published which address this issue in detail™® 2% 27,
COy + H‘°’C\H/S\CoA Class 2
35
H
. E H CH, Ad
HS-CoA T S\R - \H)ﬁ\/% . w
o) 15° OH OH
32
H3C%OH
(6] *H
34 § oM *, H o
N PFL-AE
H FeN OH
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14 1 NH:
0
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HO “CH,  Ad - *CHy  Ad
o L \?O?‘

LAM  Cjlass 1
PLP

-Met
OH OH OHOH
hiy i
HN™ “NH OH
H H BioB H,N
NH, O
H” H” ™(CHy)sCOOH | ° 13
7
Class 3
o)
L H\CH Ad
HN™ NH ) 20
H H *
OH OH

S” "(CH,)sCOOH

8

Scheme 1.5 Three classes of radical SAM enzymes shown with a well characterised example of

each class.
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Apparent rate

Class  Protein Organism constant (s™)* T (°C) Reference
Clostridium 1 o [28]
1 KAM subterminale SB4 40s 3r°C
SpL Geobacnlus_ 1461 [29]
stearothermophilus
2 PFL AE E. coli 6.41x10"s*  37°C [0l
BioB E. coli 12x107%st  37°C 1]
LipA E. coli 29 x 10* s 37°C 132]
3 MiaB Thermotoga 10x10%s?  50°C &
maritima
AtsB K. pneumoniae 60 x 10-* s 37°C 341
BtrN Bacillus circulans 383x10"*s*  28°C -

Table 1.2 Rate contants for several members of the radical SAM family.

Class 1 — Enzymes which use SAM as a co-enzyme

Lysine 2,3-aminomutase (LAM)®® 3 and DNA spore photoproduct lyase!®® * are two well
characterised examples of enzymes that use SAM as a reversible source of the 5°-
deoxyadenosyl radical. The 5’deoxyadensyl radical (9) mediates hydrogen transfer and is
regenerated during the mechanism. Hence, these two enzymes use SAM as a co-enzyme and it
is regenerated in each catalytic cycle. LAM also uses pyridoxal-5-phosphate as a cofactor in the

mechanism. (see Scheme 1.6).
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Scheme 1.6 Mechanism of LAM.

Class 2 — Activating enzymes — generating a glycyl radical intermediate

Enzymes of this class consist of two subunits: a catalytic subunit and an activating subunit. The
activating subunit (activase) is responsible for generating a catalytic radical and is essential for
activity®?. In anaerobic systems, activase’s are often Radical SAM enzymes. These enzymes
reductively cleave SAM generating the 5’-deoxyadenosyl radical (9). The substrate for these
enzymes is the catalytic subunit itself and the 5’-deoxyadenosyl radical abstracts the pro-S
hydrogen atom of a conserved glycine residue in the peptide backbone of the catalytic subunit.
The resulting glycyl radical (15) is stabilised by the captodative effect (see Figure 1.1, p2).
Radical SAM activating enzymes require a stoichiometric amount of SAM with respect to the
number of hydrogen atom abstractions and hence equivalents of glycyl radicals generated. The

glycyl radical is transferred to a cysteine residue, generating a thiyl radical. This thiyl radical
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interacts with the substrate and is regenerated in quenching the product radical as the final step
of the catalytic cycle. Examples of enzymes with a radical SAM activase include: pyruvate
formate lyase (PFL)"* — which was the second member of the radical SAM family discovered
in 1984 anaerobic ribonucleotide reductase (An-RNR)® and 4-hydroxyphenylacetate

decarboxylase?.

Class 3 — Enzymes that use SAM as a co-substrate

Both class 1 and class 3 of radical SAM enzymes involve direct abstraction of a hydrogen atom
from the substrate by the 5’-deoxyadenosyl radical. Enzymes in this class use SAM a co-
substrate and require a stoichiometric amount of SAM with respect to the number of hydrogen
atoms abstracted. Tyrosine lyase (ThiH), the focus of this thesis, falls into this category of
radical SAM enzymes. Other examples include: HemN (heme biosynthesis)®, MoaA
(molybdopterin biosynthesis)®** **), BtrN (butirosin biosynthesis)™ *°! and the sulfur transfer
proteins: lipoyl synthase (LipA)¥?* 24" and biotin synthase (BioB)®2"***®l, These enzymes
have the potential to behave catalytically, under the proviso that there is an adequate quantity of
SAM and reductant available. BioB is the most widely studied radical SAM enzyme in this
class. The source of sulfur in LipA and BioB has been a source of some debate with the most
likely source being a second iron sulfur cluster contained within the protein. As such a single
turnover of these proteins results in depletion of the holo-protein and limits them to a single
turnover in vitro. This limitation segregates these two proteins into a subclass that cannot
behave catalytically in vitro. The generally accepted mechanism proposed by Jarrett and co-
workerst®!, for biotin formation by BioB is shown in Scheme 1.7. The sulfur is inserted into
unreactive C-H bonds, which are activated by hydrogen atom abstraction, forming a substrate
radical. LipA is thought to follow an analogous mechanism, with stepwise insertion of two
sulfur atoms®!. The lipoyl and biotin products of LipA and BioB are oxidised in relation to the

substrates and therefore SAM can be considered an oxidant in these mechanisms. BioB has been
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shown to behave catalytically in vivo. This is thought to be as the depleted iron sulfur cluster

can be re-formed by the cell’s host iron sulfur cluster biosynthesis machinery™. Indeed,

recently BioB has been shown to form a complex with HscAP® | a protein which has been

shown to act as a chaperone for iron sulfur clusters.
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Scheme 1.7 Mechanism for BioB proposed by Taylor et al.[*]

LAM utilises SAM as a reversible source of a catalytic 5’deoxyadenosyl radical. It has been
proposed from ENDOR, XAS and X-ray structural analysis of LAM®* ! that reversible SAM
cleavage may be driven by electron transfer from the unique iron atom of the 4Fe-4S cluster to
the sulfonium ion of SAM. The resultant hexavalent geometry at the unique iron atom (31) (see
Figure 1.4) has also been proposed to provide a thermodynamic driving force for reductive

cleavage of SAM. ENDOR!® and Se-XAS experiments'® on PFL-AE and BioB have lead to
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an alternative mechanistic hypothesis for reductive cleavage of SAM in radical SAM enzymes
that use the 5’-deoxyadenosyl radical stoichiometrically and have not been shown to reversibly
cleave SAM. Instead of ligation to the unique iron atom of the 4Fe-4S cluster after reductive
cleavage, the methionyl sulfur atom was found to be associated with a neighbouring sulfide ion
in the 4Fe-4S cluster (47) (see Figure 1.4), implying that electron transfer was facilitated from
the sulfur atom. However, the interpretation of more recent X-ray crystallographic data® has
suggested that the mechanism for reductive SAM cleavage (shown in Scheme 1.4, p11) is likely
to be consistent throughout the radical SAM family. This concept is discussed in more detail in

the next sections.
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_Ad
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Figure 1.4 Proposed mechanism for SAM interaction with the 4Fe-4S cluster for reductive

cleavage in LAM (reversible cleavage) and PFL-AE (non-reversible cleavage).

18



1.2.3 X-Ray Structural Studies on Radical SAM Enzymes

In 2004 Berkovitch et al. reported the X-ray crystal structure of BioB (see Figure 1.5). Along
with the X-ray structure of HemN*¥, this data provided the initial structural evidence for radical
SAM chemistry. The crystal structure confimed that the 4Fe-4S cluster was ligated to the
protein backbone through three of its iron atoms by the three cysteines in the conserved
“CXXXCXXC” motif and that SAM was ligated to the fourth iron in a bidentate fashion. This
supported the mechanistic hypothesis described in section 1.2 that reductive cleavage of SAM
was facilitated by electron transfer from the 4Fe-4S cluster. Since the publication of the BioB
structure structures of several radical SAM proteins have been reported, including LAM®,
PFL-AE® MoaA®! HemN™! and HydEX". To date all the solved structures have consistently
shown similar ligation of the 4Fe-4S cluster to the protein backbone and SAM. In addition all
the radical SAM protein structures have shown similar structural folds, all of which form a
(a/PB)g triosephosphate isomerase (TIM) barrel. The 4Fe-4S cluster binds at one end of the TIM
barrel with SAM and other substrate(s) binding along the barrel and sealing off the active
site®, It is essential that the active site is sealed; in particular so solvated molecules do not
infiltrate and interfere with the delicate radical chemistry occurring within. This structural trend
in radical SAM proteins is similar to S-adenosylcobalamin dependent enzymes and suggests and
evolutionary link between the twol®. The positioning of the 4Fe-4S cluster binding motif as a
loop positioned at the end of the TIM barrel (shown in pink in Figure 1.5) and close to the
protein surface suggests the potential that S-adenosylcobalamin dependent enzymes could have
replaced the function of this loop with the S-adenosylcobalamin binding subunit and that the

TIM barrel is required for chemistry involving the 5’deoxyadenosyl radical.

The positioning of the 4Fe-4S cluster close to the surface is also significant for its assembly and
reduction by redox co-factors (such as flavodoxin in E. coli). In bacteria the biogenesis of iron

sulfur clusters involves cysteine desulfurases and iron sulfur cluster assembly proteins (ISC or
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SUF machinery™). Thus the region of the protein co-ordinating the 4Fe-4S cluster must be able
to involve protein-protein interactions for iron-sulfur cluster assembly and for reduction of the

cluster by flavodoxin (in E. coli) to initiate the radical SAM chemistry.

Figure 1.5 X-ray crystal structure of the BioB monomer shown with substrates bound. The a-
helices and B-sheets of the (0/B)g TIM barrel are coloured blue and red respectively. Side chains
of amino acid residues ligating the iron sulfur clusters are also shown (C = grey; O =red; N =
blue; S = yellow). The 4Fe-4S binding loop is coloured pink and the lid loop that binds the
carboxylate of dethiobitin is coloured green.
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Analysis of sequence alignments of radical SAM proteins in conjunction with the data available
from the BioB structure enabled Nicolet et al. to identify several important motifs involved in
SAM binding!®®. The majority of radical SAM proteins can be identified by the characteristic
“CXXXCXXC” motif, which binds the 4Fe-4S cluster. Additionally this motif contains an
aromatic amino acid (X =Y, F of H) at the position just before the third cysteine, i.e.
“CXXXCXX@C”. The function of this aromatic residue is to form m stacking and hydrogen
bonding interactions with the adenosyl moiety (see Figure 1.6). In addition two other glycine
rich motifs were identified and labelled the “GGE” motif and the “GXIXGXXE” motif (see
Figure 1.7). The “GGE” motif binds to the amino group of the methionine on SAM and the
“GEIXGXXE” motif interacts with the adenosyl moiety. Other highly conserved residues were
identified to be involved in SAM binding including an arginine (R173 in EC BioB), which
forms a salt bridge with the carboxylate functional group on SAM and an aspartic acid (D155 in

EC BioB), which forms hydrogen bonds with the ribose moiety!®.

“GXIXGXE”
motif

“GGE”
motif

“CXXXCXXanC”
motif

Figure 1.6 Active site of BioB from E. coli showing SAM (orange) co-ordinated to the 4Fe-4S

cluster (brown and yellow) and the conserved residues with a role in SAM binding.
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Figure 1.7 Active site region of A) BioB®!, B) PFL-AE™, C) KAM™® and D) MoaA®®
showing the conserved 4Fe-4S and SAM binging motifs. Colour scheme is as follows:
“CxxxCxxyC” motif is in light blue; “GGE” motif is in green; “GxIxGxxE” motif is in pink;
SAM is in orange and substrate (DTB, RVSGYAYV heptapeptide or lysine and PLP) in dark red;
4Fe-4S cluster is in brown and yellow; side chains of amino acids are coloured by CPK. (C =

grey; O =red; N = blue; S = yellow)
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1.2.4 Mechanisms of Generation and Control of Reactive Radicals

The high reactivity of radicals is paramount in unlocking the biosynthetic potential for the
unusual transformations catalysed by radical SAM enzymes. However, the sensitivity and high
reactivity of the chemistry occurring in the active site of these enzymes has potential for
unwanted side reactions if it is not suitably controlled. For example, SAM could undergo
electrophilic attack on the 4Fe-4S cluster™® ™ or uncontrolled generation of the
5’deoxyadenosyl radical could result in abstraction of hydrogen atoms from the peptide
backbone or other solvated molecules. Therefore, radical SAM enzymes require exquisite
control not only over the generations of radicals, but also in directing the reaction towards the

desired products.

The X-ray crystal structurest® €671 haye provided a great deal of insight into both the
chemical mechanism of radical SAM enzymes and the way in which they control the radical
chemistry. The presence of the (o/f)s TIM barrel, which is sealed off by binding of the
substrates provides a hydrophobic environment in the active site, preventing the interference of
solvent molecules. In addition, the SAM is locked in position, adjacent to the 4Fe-4S cluster by
hydrogen bonding, electrostatic, hydrophobic and = stacking interactions with the adenosyl
moiety. This holds the sulfonium ion close to the cluster in order to permit inner-sphere electron
transfer. In the majority of the solved structures the sulfur atom of SAM is positioned in close
proximity (~3 — 4 A) from the unique iron. The substrate is also orientated so that the 5> carbon
of SAM is positioned near to the hydrogen atom that will be abstracted from the substrate. The
close proximity of the iron-sulfur cluster and substrates to each other greatly favours radical
intermediates reacting with the juxtaposed substrate target, rather than initiating unwanted side
reactions. A potential problem for all radical SAM enzymes is the uncontrolled (or uncoupled)
generation of the 5’-deoxyadenosyl radical (see Scheme 1.8). If this highly reactive intermediate

is formed in the absence of a substrate then it can react with whatever molecules are adjacent. In
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the active site, this is likely to involve abstraction of a hydrogen atom from the protein
backbone, which risks the cleavage of peptide bonds and destruction of the protein, in addition
to the wasteful cleavage of a SAM molecule. Uncoupled turnover has been reported for a
number of radical SAM enzymes including: ANRNR-AE, SPL, HydG, HydE, BioB, LipA and
HemNE" 3237731 The problem of uncoupled turnover with respect to tyrosine lyase is

discussed in detail in Chapter 4 of this thesis.

[4Fe-4S]*  [4Fe-4S]** Productive pathway

5 { H—R
SAM Met + DOAe DOA—H + R* — P

Y <«— X* + DOA—H

Non-productive pathway
(uncoupled turnover)

Scheme 1.8 Uncoupled formation of DOA in radical SAM enzymes.

The problem of uncontrolled generation of the 5’-deoxyadenosyl radical intermediate is partly
overcome by the energetic demands of reductive cleavage of SAM. The redox potential for
reduction of SAM is estimated to be ~ -1800 mV/[™!, however, a [4Fe-4S]**"** couple is in the
order of -450 mV!™). Therefore, the reduction of SAM by a [4Fe-4S]** cluster of a radical SAM
enzyme has been measured to be an extremely energetically uphill process (a difference of ~ 1.4
V which corresponds to ~ 130 kJmol™). Hinkley and Frey™ reported that the mid-point
potential for the 4Fe-4S cluster in LAM was raised slightly by the binding of SAM or a SAM
analogue. The mid-point potential with SAM as the fourth ligand was found to be ~ 80 mV
higher than in the presence of dihydrolipoyl, dithiothreitol (DTT) or cysteinyl ligands. This raise
in mid-point potential brings the 4Fe-4S cluster into the range that it can be reduced by

physiological reductants, such as ferridoxins or flavodoxin and could suggest the requirement of
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substrate binding to tune the redox potential of the 4Fe-4S cluster. This represents one

mechanism by which reduction of radical SAM 4Fe-4S clusters is controlled.

Further studies on the mid-point potentials of the 4Fe-4S cluster of LAM by Wang and Frey[™

showed that the energy barrier for reduction of SAM by the cluster could be overcome by
binding energy. It was reported that the binding of SAM lowered the energy barrier by 80
kJmol™ and the binding of lysine gave a further 17 kJmol™. Examination of the X-ray crystal
structures of radical SAM active sites (Figure 1.5, Figure 1.6 and Figure 1.7) shows the
extensive interaction of SAM with surrounding protein residues and also the other substrate(s).
These interactions are proposed to fix the substrates in position for the reaction and may explain
the lowering of the energy barrier for reductive cleavage by substrate binding. An additional
consideration is that upon reductive cleavage the unique iron atom binding the N / O atoms of
SAM changes from a pentacoordinate geometry (30) to a thermodynamically more favourable
hexacoordinate iron atom (31) (Scheme 1.4 and Figure 1.4), thus further promoting reductive

cleavage of SAM by the 4Fe-4S cluster.

LAM has been shown to use SAM as a co-enzyme and as such cleaves SAM reversibly by
electron transfer from the unique iron of the 4Fe-4S cluster. As was discussed and shown in
Figure 1.4 the nature of the interaction between SAM and the 4Fe-4S cluster is proposed to
differ in radical SAM enzymes that perform non-reversible SAM cleavage and require an
equivalent of SAM for each hydrogen atom abstraction. In these cases the sulfonium ion is
proposed to interact with the sulfur in the cluster neighbouring the unique iron atom (see Figure
1.4). Recently, however, with the increase in biochemical and structural data available on
different examples of the radical SAM family a consensus mechanism for reductive SAM

cleavage is emerging. Some of these examples are discussed in the following paragraphs.
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The crystal structure of PFL-AE (non-reversible SAM cleavage) has been solved with SAM
bound to the cluster in both the presence and absence of a heptapeptide mimic of the glycyl
radical domain of the PFL catalytic subunit'®!. In the structure without the heptapeptide the
SAM is disordered and not all of the molecule could be resolved in the structure (Figure 1.8 A).
In the structure with the heptapeptide bound the SAM was far more ordered and the sulfonium
ion of SAM was fixed much closer to the 4Fe-4S cluster (Figure 1.8 B). It can also be noted that
the sulfonium occupies a similar position to other radical SAM enzymes, close to the unique
iron atom. These two structures further demonstrate how the binding of both substrates position
the molecules for radical SAM chemistry and contribute to the lowered energy barrier observed

by Wang and Frey.

Figure 1.8 X-ray structure of SAM ligation to the 4Fe-4S cluster in the A) absence and B)
presence of heptapeptide substrate. In the absence of substrate the SAM is disordered and the

adenosyl moiety is not fully resolved.

BtrN is a recently characterised radical SAM enzyme which catalyses the oxidation of 2-deoxy-

scyllo-inosamine (48) as part of the butirosin biosynthetic pathway®®. This is another example

26



where SAM is acting as an oxidant®! (like BioB and LipA discussed earlier). BtrN has been
shown to have a stoichiometric requirement of SAM, which would suggest the SAM cleavage is
not reversible. The mechanism proposed by Yokoyama et al.*™ is shown in Scheme 1.9.
Deuterium labelling of the substrate identified the hydrogen atom abstracted by the 5°-
deoxyadenosy!l radical. When the deuterated substrate was incubated in the assay it was found
that some di-deuterated DOA was formed. This indicates that the hydrogen atom abstraction is
reversible and the substrate radical can re-abstract a hydrogen atom from DOA-H. The
experiments on BtrN with the deuterated substrate showed a very small Kinetic isotope effect.
The small size of the kinetic isotope effect led the authors to speculate that hydrogen atom
abstraction was not the rate determining step. Instead the formation of the ketone was proposed
to be rate limiting. Grove et al.[*! have demonstrated by Mossbauer spectroscopy that BtrN has
a second 4Fe-4S cluster that binds the substrate (48) and showed by EPR that it functions as an
electron acceptor during catalysis to complete the oxidation. This has led to the postulation of a
potential consensus mechanism for enzymes that mediate radical SAM dependent dehydration,

such as AtsBB,
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Scheme 1.9 Mechanism for BtrN proposed by Yokayama et al.™®. The proposal that the

electron recycles to reduce the 4Fe-4S cluster has not been resolved experimentally.
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Similar deuterium labelling experiments have been reported for BioB, where the C9 and C6
positions of dethiobiotin were labelled with deuterium. It was unexpectedly found that both the
9-mercaptodethiobiotin (9-MDTB) intermediate and biotin product contained up to four
deuterium atoms®!, A small amount (2 — 6%) of the deuterium was found to be transferred to
different carbons, other than C9 or C6 of 9-MDTB or biotin. This observation was explained by
the hydrogen atom abstraction step being reversible and not specific to the C9 or C6 carbons.
However, subsequent sulfur insertion only occurs at the C9 or C6 positions, meaning any other
substrate radical has the chance to non-specifically re-abstract a hydrogen atom from DOA, thus
re-forming the 5’-deoxyadenosyl radical, which in turn could react with methionine and the
4Fe-4S cluster to regenerate SAM. Uncoupled turnover has been reported for BioB (e.g. the
ratio of DOA formed to biotin formed is greater than 1), however it is not as a result of non-
productive SAM cleavage as no DOA is produced in the absence of dethiobiotin substrate",

The excess of DOA produced during in vitro BioB assays was instead assigned to the formation

of a dethiobiotin derived intermediate.

BioB has been shown to assert additional control to prevent uncoupled SAM cleavage. Ugulava
et al.’Y demonstrated that the two substrates of BioB bind in a cooperative manner, with the
affinity for SAM being greatly increased (by a factor of >20) in the presence of dethiobiotin. As
already discussed, SAM interacts with the other substrate in radical SAM enzymes and in the
case of BioB, dethiobiotin makes substantial van der Waals contacts with 50% of the surface of
SAM. Dethiobiotin also interacts with the protein, including a hydrogen bonding interaction of
the carboxylate with two conserved threonine residues (T292 and T293)%!. These two residues
are part of a loop (shown in green in Figure 1.5) that is proposed to close over the active site

upon substrate binding, thus further sealing off the TIM barrel for radical SAM chemistry.
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HydE is a radical SAM protein which along with HydG and HydF, is involved in the maturation
of [FeFe]-hydrogenase cofactors (H clusters)!’®". The substrate for HydE is unknown, but it is
most likely to be responsible for the biosynthesis of a dithiolate bridge present in the [FeFe]-
hydrogenase H cluster. The X-ray crystal structure of HydE has been solved with the SAM and
the SAM cleavage products DOA and methionine bound to the active site®® ®). In the structure
of HydE with SAM bound, the sulfonium ion of SAM was found to reside closest to the unique
iron of the 4Fe-4S cluster (Fe;—S&+ = 3.25 A), similar to other radical SAM enzymes. In the
structure with DOA and methionine bound, the position of the adenosine moiety had undergone
only very small changes in orientation, whereas the methionine moiety had moved more
significantly. The Fe,—S&+ distance was observed to decrease to 2.67 A%l The two structures
were used to perform computational experiments on the mechanism of SAM cleavage and
model the transition state (the results of these experiments are summarised in Figure 1.9). The
calculated activation energy barrier was 54 kimol™ which was in good agreement with the
experimentally determined value of 54.4 kJmol™ for LAM in the absence of substrate or 37.7
kdmol™ in the presence of substratel”. In the model of the transition state the Fe,—S&+ had
decreased to 2.62 A and the 5°C—S&+ bond had increased to 3.33 A. The decrease in Fe,—S&+
distance between the SAM bound structure and the DOA and methionine bound structure was
attributed to the change in co-ordination environment of the unique iron, having a pseudo-
octahedral co-ordination in the products. This accounts for the slightly lower energy of 45.6

kdmol™ estimated for the 5°deoxyadenosyl radical and [4Fe-4S]-methionine intermediates.
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H2 /AdO

Figure 1.9 Energy profile for reactions catalysed by radical SAM enzymes, showing the

distances in Angstroms (shown in blue) and energy levels are as reported by Nicolet et al.l*®.

The substrate for HydE remains unknown at this stage, therefore, it remains unclear how the
presence of a substrate positioned for hydrogen atom abstraction would affect the structure of
the transition state (52). At the end of their paper Nicolet et al.’ speculate that, based on the
geometry of SAM and the 4Fe-4S cluster in available radical SAM crystal structures, the
modelled mechanism for reductive cleavage of SAM, with the electron transfer to the sulfonium
ion occurring via the unique iron atom, may be common to all members of the radical SAM

family. However, this raises an important question about the reversibility of SAM cleavage in
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radical SAM enzymes. The reversibility of reductive cleavage of SAM may not depend on the
mechanism of electron transfer but may rely on other factors, such as the affinity of the products
(DOA and methionine) for the enzyme which may permit the reverse reaction, or the nature of

the chemistry being catalysed by the 5’deoxyadenosyl radical.

Radical SAM enzymes can be classified based on their utilisation of the 5’-deoxyadenosyl
radical, as discussed in section 1.2.2. All three classes share the mechanistic steps of reductively
cleaving SAM through electron transfer from the unique iron of the 4Fe-4S cluster. The
variations in subsequent steps, specific to each class (or individual enzyme), including possible
variations in rate of reaction (see Table 1.2) could be reflected by differences in the energy
levels of subsequent intermediates and transition states and is represented in the energy profile
shown in Figure 1.10. LAM utilises the 5’-deoxyadenosyl radical catalytically and as such the
system recycles at the high energy levels (see red arrows in Figure 1.10). There is always a
reactive radical species (at high energy) at each intermediate during catalysis. BioB on the other
hand uses the 5’-deoxyadenosy| radical stoichiometrically with respect to hydrogen atom
abstraction steps. The hydrogen atom abstraction generates a radical intermediate which will be
similar in energy to the 5’-deoxyadenosyl radical (i.e. a primary or secondary carbon radical —
see Scheme 1.7 and Table 1.1). The next step forms a new carbon-sulfur bond (44 in Scheme
1.7) and the 2Fe-2S cluster acts as an electron acceptor, thus quenching any organic radicals. As
such, this is a much more exothermic step, potentially providing the thermodynamic driving
force for the reaction (see blue arrow in Figure 1.10). PFL-AE uses the 5’deoxyadenosyl radical
stoichiometrically to generate a catalytic radical. The product of PFL-AE is a glycyl radical on
the backbone of the PFL catalytic subunit. This radical is stabilised relative to the 5°-
deoxyadenosy!l radical (see Table 1.1) and does not provide the very large energetic advantage
of quenching the radical as proposed for BioB. This may be reflected in the differences in the

observed rate constant for the different classes of radical SAM enzyme shown in Table 1.2.
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catalytic radical and BioB (shown in blue) uses DOA« non-catalytically in the direct generation

of a product.
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1.2.5 Variations within the Radical SAM Family

The radical SAM superfamily was identified in 2001 in a bioinformatics study which noticed
the characteristic “CXXXCXXC” motifl*). This diagnostic motif was reportedly present in
>600 proteins sequences and characterised as radical SAM enzymes. It has recently been
discovered that variations in the cluster binding motif are possible and radical generation from
SAM cleavage by a 4Fe-4S cluster can be achieved in proteins which do not have the
“CXXXCXXC” motif. During thiamine biosynthesis, ThiC is the only protein required to
convert 5-aminoimidazole ribonucleotide (AIR) into 4-amino-5-hydroxymethyl-2-
methylpyrimidine phosphate (HMP-P)®. In vitro biochemical studies™ ® have demonstrated
the presence of an oxygen labile [4Fe-4S] cluster and a dependence on SAM and a reductant for
activity. Despite these clear indicators of a radical SAM mediated reaction, analysis of the ThiC
sequence does not show the presence of the “CXXXCXXC” motif close to the N-terminus.
However, a highly conserved “CXXCXXXXC” motif is present near the C-terminus of the

enzyme, which has been shown through X-ray structural data to coordinate the 4Fe-4S cluster.

Another variation of the cysteine triad has been observed in HmdB, a protein proposed to
function in the maturation of the cofactor for the hydrogen forming methylene-H,-
methanopterin dehydrogenase (HmdA)®. The HmdB sequence shows most similarity to a
group of radical SAM enzymes (BioB, ThiH, HydE and HydG), but the cluster binding cysteine
triad is modified to a “CXsCX,C” motif. Studies to probe the biochemical function of HmdB
indicate the presence of a [4Fe-4S] cluster capable of binding SAM that upon reduction yields

DOA.

A further expansion of the radical SAM family was reported very recently. A novel 4Fe-4S

cluster containing protein, termed Dph2, is involved in the post translational modification of a
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histidine residue in the biosynthesis of diphthamide® ®!. The 4Fe-4S cluster is bound to Dph2
through three conserved cysteine residues; however these do not form the classical
“CXXXCXXC” motif. Remarkably, structural analysis of Dph2 has shown that the 4Fe-4S
cluster is coordinated by three cysteine residues derived from three different domains (Cys59,
Cys163 and Cys287), an arrangement that achieves a similar function to the CX3;CX,C motif but
uses a completely different structural framework. The 4Fe-4S cluster is proposed to interact
with SAM in a similar fashion to in classical radical SAM enzymes; however the electron
transfer from the 4Fe-4S cluster to the sulfonium ion occurs slightly differently. Rather than
homolysis of the 5°C-S bond, generating the 5’deoxyadenosyl radical which forms DOA after
abstraction of a hydrogen atom, Zhang et al.[®! reported the formation of 5’methylthioadenosine
(54) (and not DOA) as a by product of Dph2 activity. This implies that Dph2 breaks the S-C
bond to the 3-amino-3-carboxy-propyl group and not the 5’C-S bond, thus generating the 3-
amino-3-carboxypropyl radical (55) which can then functionalize the histidine residue. The X-
ray crystal structure of Dph2 reported does not show the enzyme in a complex with SAM.
Despite this lack of evidence it is tempting to speculate that SAM would be orientated slightly
differently around the 4Fe-4S cluster than in classical radical SAM enzymes. Thus allowing for

overlap for the appropriate 6* orbital with the electron donating orbital in the 4Fe-4S cluster.
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Scheme 1.10 The involvement of Dph2 in generating the 3-amino-3-carboxy-propyl radical

towards the biosynthesis of diphthamide.
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1.3 Bacterial Thiamine biosynthesis and Tyrosine Lyase

1.3.1 Thiamine and its Biological Function

Thiamine pyrophosphate (TPP) (58) is the biologically active form of vitamin B; and functions
as the coenzyme of several enzymes, including pyruvate decarboxylase, pyruvate
dehydrogenase and transketolase!®. Its structure was elucidated and synthesis was reported in
the 1930’s and it was found to contain two distinct structural subunits; a pyrimidine (4-amino-5-
hydroxymethyl-2-methyl pyrimidine) and thiazole (4-methyl-5-(B-hydroxyethyl) thiazole)
(Figure 1.11). Thiamine is readily biosynthesised™" ®! by many micro-organisms and higher
plants, but mammals require thiamine as an essential part of their diet, the recommended daily
dose for the average adult male being about 1.5 mg®. Its deficiency can lead to beriberi, a
disorder that seriously affects the heart, cardiovascular and nervous systems. It is therefore
readily available as a supplement and frequently added to food products, such as bread and the

annual world production of this vitamin is in excess of 4000 tonnes.
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Figure 1.11 Structure of thiamine pyrophosphate (TPP), the biologically active form of the

vitamin.
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The chemistry of the thiamine pyrophosphate co-factor relies on the weakly acidic proton
adjacent to the C2 carbon of the thiazole moiety. This proton has a pKa of about 18 due to the
stabilisation of the resulting anion by the adjacent positive charge. Deprotonation of TPP yields
the active ylid (59), which functions either as a nucleophile or as a leaving group® *!!. This
feature of the TPP ylid is the key to its biological activity and enables the catalytic cleavage of
C—C bonds, in particular the decarboxylation of a-keto acids and the formation of activated
aldehydes. An example which demonstrates this is the biosynthesis of 1-deoxy-D-xylulose-5-
phosphate (DXP) (67) from pyruvate (60) and glyceraldehyde-3-phosphate (63) (see Scheme
1.11). This reaction is catalysed by DXP synthase (Dxs), an enzyme which utilises TPP as a co-
factor. The TPP ylid nucleophilically attacks the ketone of pyruvate (60) and the adduct then
undergoes a decarboxylation. A resonance form of the resulting intermediate (64) has a negative
charge on the carbonyl carbon meaning the polarity of this atom has been reversed. This anion
reacts with the aldehyde functional group of glyceraldehyde-3-phosphate (63) forming a new
carbon-carbon bond. The final step of the mechanism of is release of the DXP product (67) and

the catalytic TPP ylid (59)[ 94,
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Scheme 1.11 Mechanism for the biosynthesis of DXP.
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1.3.2 Thiamine Biosynthesis in Bacteria

The biosynthesis of TPP (58) involves the coupling of the independently formed thiazole and
HMP moieties in the final steps. In bacteria, the HMP moiety is formed in a single step by an
extremely complicated rearrangement of 5-aminoimidazole ribotide (AIR). Paradoxically, one
of three precursors to the thiazole moiety is DXP (67). The other two precursors are a sulphur
atom, derived from cysteine (71) and transferred via a sulphur carrier protein, ThiS (see Scheme

1.12) and dehydroglycine (11).

These three precursors act as substrates for thiazole synthase (ThiG), an enzyme responsible for
formation of the 5-membered thiazole ring (86) (see Scheme 1.13). Thiazole synthase has a
highly conserved lysine residue (K96 in Bacilus subtilis) which is positioned in the active site
and forms an imine (78) with the carbonyl of DXPP!. Formation of an iminium species is a
common process in enzyme reactions and results in a 10 fold increase in the acidity of the
proton at the a—carbon. The next step in the mechanism of thiazole synthase is indeed the
deprotonation at the a—carbon, a step which is facilitated by the basic glutamate residue (E98 in
B. subtilis) present in the active site. This catalyses an Amadori type rearrangement with a

ketone group now at the C3 position (80) (rather than C2, as in DXP).

The next step in the mechanism involves incorporation of the sulfur atom, which is facilitated
by nucleophilic attack by a thio-carboxylate group (76). This thio-carboxylate group is
positioned at the C-terminus of the sulphur carrier protein (ThiS). ThiS can form a tight
complex with thiazole synthase® and another protein involved in bacterial thiazole
biosynthesis called ThiF. ThiF along with IscS and Thil catalyses the transfer of a sulphur atom

from cysteine to form the C-terminal thio-carboxylate on ThiS (see Scheme 1.12). The C-
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terminus of ThiS has two conserved glycine residues providing a protruding appendage which
can infiltrate the active site of thiazole synthase (see Figure 1.12), placing the thiocarboxylate in
close proximity to the DXP derived intermediate (80). Formation of the new carbon-sulfur bond

is followed by an S/O acyl shift and elimination of a water molecule and the ThiS-carboxylate

(68) [96-99] .
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Scheme 1.12 Mechanism of sulfur transfer generating ThiS-thiocarboxylate.

Figure 1.12 X-ray structure derived image of ThiS docking to the active site of thiazole

synthase. (Adapted from®®)
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The final steps of the mechanism of thiazole formation involve the insertion of the C2—N3
fragment and closing of the 5-membered ring. The third precursor, dehydroglycine (11), serves
an an electrophile and reacts with the deprotonated thiol group (82). A subsequent 5-exo-trig
cyclisation forms the thiazole ring™®. Finally the lysine side chain is released and made
available for another catalytic cycle. In Bacilus subtilis, the product of thiazole synthase was
recently characterised as the non-aromatic thiazole carboxylate (86)"°1. Another enzyme, called
Tenl, is responsible for aromatisation of the thiazole ring. Decarboxylation occurs during the

coupling of thiazole phosphate to HMP,
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Scheme 1.13 Mechanism of thiazole biosynthesis catalysed by ThiG, proposed by Settembre et

al..[’®l
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The formation of dehydroglycine (11) represents the primary difference in aerobic and
anaerobic prokaryotic thiazole biosynthesis. The model organism for studying the mechanism
described above was Bacilis subtilis (B. subtilis), which is an aerobe. This organism sources
dehydroglycine by oxidising glycine (87) in a reaction mediated by glycine oxidase (ThiO),
which is dependent on flavin adenine dinucleotide (FAD)!%. The catalytic cycle of ThiO
involved the reduction of an oxygen molecule to hydrogen peroxide. Organisms that exist in an
anaerobic environment, such as Escherichia coli (E. coli), require a different mechanism for
arriving at this electron deficient intermediate as oxygen will not always be available. The
pathway employed by these organisms utilises tyrosine (10) and requires cleavage of the
Co—Cp bond, with the Ca—N fragment ending up incorporated into the thiazole ring®® 141,
The enzyme which catalysis this cleavage reaction is tyrosine lyase (ThiH) which is a member

of the radical SAM family!® and as such, requires SAM and a reductant for activity™®® 71,

Aerobes Anaerobes
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Scheme 1.14 Formation of dehydroglycine in aerobic and anaerobic bacteria.

The biosynthesis of the 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) moiety involves
a complicated rearrangement of 5-aminoimidozole ribotide (AIR)! ! (89) yielding HMP
monophosphate (90), which is then phosphorylated to HMP diphosphate (94). The
rearrangement is mediated by HMP synthase (ThiC) and the phosphorylation is dependent on
HMP kinase (ThiD)™. AIR (89) is an intermediate on the purine biosynthetic pathway and it

was previously noted that formation of HMP in vivo was dependent on methionine. ThiC has
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recently been rigorously characterised and has expanded the radical SAM family®"®%, which
explains this observation (SAM is biosynthesised from ATP and methionine). Labelling studies
have shown that all the atoms in HMP originate from AIR™!, and alluded to an extremely
complex rearrangement mechanism. Very recently a more detailed study has begun to elucidate
the mechanism and showed that two by-products derived from AIR are formate and carbon
monoxide!**?. One equivalent of DOA was formed in the reaction, however, AIR bearing
deuterium labels at C4” and C5’ showed that both are transferred to DOA (see Figure 1.13 B).
This result indicates that the 5’deoxyadenosyl radical initiates the reaction by generating a
radical at one of these positions (despite the observation of a backbone free radical on ThiC in a
different study). Rearrangement of this substrate radical yields a second intermediate radical,
which is quenched by hydrogen atom abstraction from DOA, reforming the 5’-deoxyadenosyl
radical. A second hydrogen atom abstraction then yields another intermediate radical which
undergoes further rearrangement. This radical would appear to be quenched by a different
mechanism to account for the equivalent of DOA which forms in the reaction. The observation
of two different hydrogen atom abstractions from the same substrate by the same 5°-
deoxyadenosyl radical was unprecedented prior to the studies on ThiC. As was discussed in
Section 1.2.5, ThiC ligates its 4Fe-4S cofactor through three conserved cysteines which form
part of a motif not originally classified as a radical SAM enzyme. It will be interesting to note
from future studies (either on ThiC or other radical SAM enzymes that may emerge with the
same 4Fe-4S binding motif) whether this difference in reactivity is linked to the different

binding motif?
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Figure 1.13 A summary of the labelling studies reported on ThiC** 2],

The biosynthesis of TPP in B. subtlilis is completed by coupling the independently formed
thiazole and HMP moieties, a step accomplished by thiamine phosphate synthase (ThiE)**!.
Phosphorylation to the biologically active form of the co-factor, thiamine pyrophosphate by
thiamine phosphate kinase (ThiL) completes the biosynthetic pathway. The mechanism of ThiE
begins with loss of a phosphate from HMP pyrophosphate (91) and generation of a carbocation
(92) (see Scheme 1.15). This charged species is stabilised by the adjacent aromatic ring.
Nucleophilic attack of thiazole phosphate (94) forms thiamine monophosphate (95) which is the
product of ThiE. ThiE can accept both thiazole and the carboxylated form of the thiazole, which
is formed by ThiG, as substrates. A fact which initially led to the mis-assignment of the ThiG
product, as ThiG activity was analysed by its ability to form thiamine monophosphate by the
addition of ThiE and HMP pyrophosphate™. There is no available information in the literature
as to where or how the decarboxylation of thiazole or thiamine occurs. It is likely that
decarboxylation of thiamine would be more favourable than decarboxylation of thiazole as the

resultant anion would be stabilised by the neighbouring positive charge on the nitrogen.
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1.3.3 Tyrosine Lyase

The aerobe: Bacilus subtilis has been used as the model organism for elucidating the bacterial
thiamine biosynthetic pathway. A mechanistic understanding exists for each step towards the
biosynthesis of thiazole phosphate in this organism!®. However, there is only a limited
understanding of the mechanism from which the intermediate, dehydroglycine, is derived from
tyrosine in anaerobic bacteria. This step is seemingly wasteful as it requires cleavage of the
tyrosine Ca—Cp bond, which is an energetically demanding step, and dispenses with the
aromatic portion of tyrosine as a byproduct. The mechanism by which aerobes generate this
electrophilic intermediate is dependent on dioxygen“®2. Organisms that exist in anaerobic
environments, such as E. coli, cannot depend on oxygen as an electron acceptor and as such

require an alternative mechanism to arrive at electron deficient (or more oxidised) molecules.

Tyrosine lyase (ThiH) has been isolated as a complex with thiazole synthase (ThiG) and has
been identified as a member of the radical SAM superfamily™®. The protein sequence includes
the characteristic “CXXXCXXC” 4Fe-4S binding motif and after careful chemical
reconstitution the presence of the 4Fe-4S cluster was inferred by EPR (see Figure 1.14) and UV-
vis spectroscopy™. The 4Fe-4S cluster was far more labile towards reduction in the presence
of SAM which is consistent with observations on other members of the radical SAM family!™!.
Mutation of some of the residues conserved among other radical SAM enzymes thought to be

responsible of SAM or 4Fe-4S cluster binding suppressed thiazole biosynthesis in vivo, further

supporting the notion that ThiH is a radical SAM enzyme!*%!.
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Figure 1.14. EPR spectra of ThiGH A) reconstituted ThiGH; B) A plus tyrosine; C) A plus
SAM,; D) A plus tyrosine and SAM; E) subtraction of C from D. The sharp spike at 338

milliteslas (mT) in each spectrum is a background signal. (Adapted from!**)

The E. coli thiazole biosynthetic pathway was reconstituted in vitro and was found to have an
absolute requirement for L-tyrosine, SAM and a reductant. The EPR studies shown in Figure
1.14 used sodium dithionite as a chemical reductant. Reconstitution of the thiazole biosynthetic
pathway utilised flavodoxin (FIdA), flavoprotein NADPH oxidoreductase (Fpr) and NADPH as
a source of electrons. Flavodoxin is thought to be the physiological reductant for radical SAM
4Fe-4S clusters in E. coli. Use of the assumed physiological reductant is important as it has
more relevance to in vivo function of the enzyme. In particular as radical SAM enzymes use
redox potential as a method of controlling radical generation (see Section 1.2.4) and reduction

with dithionite can increase the amount of uncoupled reductive SAM cleavage. This is reflected
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in the fact that in the absence of SAM ~20% of the cluster is reduced (Figure 1.14, spectra A),

compared to >90% in the presence of SAM (Figure 1.14, spectra C).

Improvements in the isolation and chemical reconstitution enabled in vitro assays to be scaled
up allowing for NMR characterisation of the reaction mixture™®!. Uniformly labelled **C-
tyrosine was incubated with the ThiGH complex along with SAM and the FIdA / Fpr / NADP
reducing system. After removal of the protein a **C NMR spectra was the recorded of the
reaction mixture and the signal of any tyrosine derived molecules was enhanced due to the **C
label. In addition the labelling gave unique coupling of each carbon derived from tyrosine as it
would be adjacent to a spin active *C isotope. **C NMR experiments identified glyoxylate (98)
as one of the products of tyrosine cleavage in vitro. Glyoxylate was proposed to result from the
rapid hydrolysis of dehydroglycine (see Scheme 1.16). An organic extract of the reaction
mixture was prepared to characterise the aromatic by-product of tyrosine cleavage. A
characteristic doublet with a chemical shift of 20 ppm was found to correspond to a benzylic
methyl group, which suggested that the aromatic byproduct was p-cresol (88)™*°!. This was an
unexpected observation as a previously reported by product of thiamine biosynthesis in E. coli
was 4-hydroxybenzyl alcohol (97)™!. This observation was made from in vivo experiments and
it was considered that the in vitro observations might be an artefact of the experiment. This
observation raised an important question about the potential for variation in the products of
ThiH in vitro and in vivo and is addressed in Chapter 2 of this thesis. It is essential that the in
vitro experiments are relevant to in vivo metabolism before a valid mechanistic hypothesis for

tyrosine cleavage by ThiH can be constructed.
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Scheme 1.16 Variation in the products of ThiH mediated tyrosine cleavage in vivo and in vitro.
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1.4 Aims of this Thesis

The primary objective of this thesis is to build a mechanistic model for ThiH mediated tyrosine

Ca-Cp bond cleavage.

This will be achieved by:

- Confirming that in vitro experiments are relevant to in vivo metabolism
- Developing a robust assay for measuring ThiH activity
- Elucidating the mechanism using kinetic measurements, isotopic labelling and

experiments with structural analogues of L-tyrsosine
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2 Studies on Thiamine Biosynthesis in vivo

2.1 Introduction

The nature of the aromatic by product derived from tyrosine during thiamine biosynthesis was
first investigated by White, who used GCMS to identify the accumulation of 4-hydroxybenzy!l
alcohol (4-HBA) (97) in cultures of E. coli actively biosynthesising thiamine!'®!. Experiments
in which cultures of an E. coli B strain were fed with **C labelled tyrosine were shown to
produce **C 4-HBA. The characterisation of 4-HBA required extraction of the cell culture into
DCM and analysis of the organic phase by GC-MS. Our recent results, discussed in chapter 1
(Section 1.3.3), demonstrated that the products of tyrosine cleavage in vitro were p-cresol (88)
and glyoxylic acid (98), which is the hydrolysis product of dehydroglycine (11) (see Scheme
1.16), a result clearly in disagreement with the observations of White™™®!. It is important to
consider that the observations made in vitro might well be an artefact of the experiment (e.g. 4-

HBA was reduced to p-cresol by a chemical reductant).

The observation of p-cresol in vitro has raised important questions about the fate of the aromatic
by-product in the formation of dehydroglycine from tyrosine, in particular the potential for
variations in the by-products formed in vitro and in vivo. In order to validate the observations
made from in vitro experiments and subsequently build a mechanistic model relevant to in vivo
thiamine biosynthesis, measurement of the formation of p-cresol in vivo was required. These
experiments were based on the experimental methods developed by White, but included several
refinements. In particular it was necessary to also define the requirement of ThiH in this
metabolic process. Therefore, a prerequisite for these studies was an experiment to determine

whether ThiH is functional in vivo.
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2.2 Invivo assay for ThiH function

E. coli has several mechanisms to regulate the thiamine biosynthetic pathway, including the thi-
box riboswitch to inactivate the expression of ThiCEFSGH™" ™!, The biosynthesis of TPP
involves some metabolically inefficient steps and the riboswitch provides a regulation
mechanism to avoid the cell producing an excess of TPP. However, this regulation is a
disadvantage for studying the chemistry of TPP biosynthesis in vivo as it would restrict the
formation of any metabolites which could make their characterisation difficult. To overcome
this potential problem, a strain of E. coli from the Keio collection, which had had the genomic
copy of ThiH deleted™ was utilised. As such, this strain was auxotrophic for the thiazole
moiety of TPP. Two derivatives of this strain were produced: one transformed with pRL1020
which would enable ThiH expression and the other with pBAD-His as a negative control (see
Table 2.1). Under minimal growth conditions these two derivative strains would be dependent
on biosynthesized TPP in order to grow. The control of the expression of genes harboured on a
pBAD derived plasmid (including ThiH) is dependent on the arabinose concentration and is
independent of thiamine concentration. Thus in the presence of arabinose, ThiH would be
overproduced and any ThiH dependent reactions, including tyrosine cleavage reactions may
readily occur, potentially providing a sufficient quantity of the aromatic by product for

unequivocal characterization.

For these experiments, an important negative control is a culture of cells lacking a copy of
ThiH. This would allow for the detection of any tyrosine metabolite derived from a non-
thaimine biosynthetic pathway. The principle of the biological in vivo assay is that only cells
actively biosynthesising thiamine should grow. Therefore, cultures of these strains would need
to be supplemented with thiamine. To monitor the growth of these cultures over long time
periods a method was developed which made use of a plate reader (see Method 20). 200 pL

were prepared in a 96 well, transparent microplate and incubated in the plate reader. The

50



absorbance at 600 nm was monitored over a period of up to 24h. It was found that cultures in
the plate reader could not be incubated at 37 °C, as evaporation and condensation interfered with

absorbance reading. Therfore, cultures in the plate reader were incubated at 30 °C.

Strain Plasmid Genes present Ability to biosynthesise TPP

pRL1020 ThiFSGH Yes
BW25113 (-thiH)
pBAD-His None No

Table 2.1 E. coli derivatives used to study thiamine biosynthesis in vivo

The derivative strains were initially cultured overnight, from a glycerol freeze stock, in nutrient
rich media. The cells were then isolated, washed and cultured in Davis Mingioli minimal media
(DM media)*!. To allow any bacterial growth at all, it was necessary to supplement DM media
with glucose to provide a readily available carbon source. However, it was soon discovered that
while growing in rich media, cells could accumulate and store enough TPP to grow for some
time when they were subsequently transferred to a minimal medium. To combat this, a period of
‘starvation’ was introduced where the cells were harvested from rich media, then re-suspended
and cultured in 100 mL of DM media for 24 h, during which time, the previously accumulated
store of thiamine was depleted (see Method 19). After the starvation phase, the culture was used
to inoculate fresh 200 uL aliquots of DM media on a 96 well micro-plate and cultured in the
plate reader at 30 °C. As a result of this period of starvation a significant difference was
observed in the growth of pBAD-His and pRL1020 transformed mutants in DM media that
lacked thiamine supplement (see Figure 2.1). This demonstrates that the thiH gene on the

pRL1020 plasmid is complementing the role of the deleted chromosomal copy of thiH.
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Figure 2.1 Growth of starved derivatives of —thiH mutant strains in 200 pL cultures of minimal
media incubated at 30 °C in a plate reader. (—) = —thiH (pBAD-His), no supplement; (—) = -
thiH (pBAD-His) + thiamine supplement; (—) = -thiH (pRL1020), no supplement; (—) = -thiH

(pRL1020) + thiamine supplement. Data is the average of a triplicate data set.
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2.3 Organic Extraction of E. coli Cell Cultures

It was anticipated that an organic extraction would permit the isolation of some of the organic
metabolites which the bacteria may excrete into solution during growth. Diethyl ether was
considered to be a suitable solvent as it had been employed in detecting in vivo formation of p-
cresol previously™?. Dichloromethane (DCM) was also tested as this was the solvent
previously employed by White in the detection of 4-HBAM®!. The volatility of both these
solvents is an advantage as the organic extract needed to be concentrated in vacuo prior to
analysis. The efficiency of the extraction was measured in a positive control experiment in
which 10 uM of both p-cresol and 4-HBA were added to 100 mL of DM media. After extraction
of the media, the concentration of p-cresol and 4-HBA in the extract was estimated by HPLC
analysis (see Method 22b) and the efficiency of organic extraction is shown in Table 2.2.

Diethyl ether was chosen as it was shown to extract both p-cresol and 4-HBA.

Efficiency of
Extraction Solvent Compound
Extraction (%)
p-cresol 71
DCM
4-HBA 6
p-cresol 49

Diethyl ether
4-HBA 64

Table 2.2 The estimated efficiency of the organic extraction of p-cresol and 4-HBA from DM

media. Concentrations were estimated by HPLC analysis.
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Cell cultures of derivatised —thiH mutant strains were used to inoculate 100 mL of fresh DM
media, after 24h of ‘starvation’, and then cultured for 24h. After this time the culture was
cleared by centrifugation and the supernatant extracted into diethyl ether and the organic extract
dried and concentrated in vacuo. Initial analysis of this organic extract by normal phase TLC
(see Method 22a) made use of the elution conditions developed by Kriek in the characterization
of p-cresol in vitro™® (see Figure 2.2). The extract from the ThiH complimented culture
showed several clearly resolved spots, which were visible under UV light and after staining with
potassium permanganate. Comparison with standards of several potential aromatic by-products
inferred the presence of p-cresol. The sensitivity and resolution in these initial experiments did
not allow any definite conclusions to be drawn. However the potential for this strategy was
demonstrated and prompted further studies employing analytical methods with much greater

resolution and sensitivity.

Solvent —
front

p-Cresol
R¢,=0.42 >

Origin —>

Figure 2.2 Normal phase TLC of organic extract from —thiH (pRL1020) (lane 1), developed in
15:1 chloroform:'butanol and visualized by staining with KMnQO,. lane 2 = p-cresol; lane 3 = 4-
HBA,; lane 4 = 4-hydroxybenzoic acid; lane 5 = 4-hydroxybenzyl aldehyde; lane 6 = mixed

spot.
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To improve the resolution of the analysis, the mixture of compounds extracted from the cell
culture were analysed by HPLC (see Method 22b). Comparison with synthetic standards further
implied the presence of p-cresol and also suggested the presence of 4-HBA (see Figure 2.3).
However, under the chromatographic conditions employed several compounds with similar
retention times to p-cresol (~21 min) and 4-HBA (~7 min) were observed in both cultures. This
problem was partially resolved by optimizing the separation slightly. Careful comparison of the
region of the chromatogram between 19 — 22 minutes showed a slight difference in the thiH
containing strain (-thiH(pRL1020)) to the negative control (-thiH(pBAD-His)). Compounds
observed in the thiH containing strain but not in the negative could potentially result from

reactions catalyzed by ThiH and the inference is that one compound formed is p-cresol.
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Figure 2.3 HPLC analysis of organic extracts from -thiH(pRL1020) (—), -thiH(pBAD-His) (—
), compared to standards of p-cresol (—) and 4-HBA (—). Traces are displaced upwards for

clarity.
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To confirm this observation organic extracts were co-injected with synthetic standards of p-
cresol and 4-HBA. The co-injected sample of pRL1020 appeared to have enhancement of the
peaks in the p-cresol and HBA regions of the chromatograms. This suggested the presence of
both these compounds in this extract. The region of the chromatogram at 7-8 min, where 4-HBA
elutes was puzzling. The pBAD-His negative control appeared to contain compounds with a
very similar retention time to 4-HBA, but the peak was not enhanced when co-injected.
Additionally this peak was apparently not observable in the pRL1020 extract. Figure 2.4 shows
the region of the chromatogram where p-cresol elutes and demonstrates an enhancement to the
suspected p-cresol peak in the pRL1020 extract (the shoulder at 20.5 mins in Figure 2.4B), but

no peak enhancement in the same region from the pBAD-His extract (see Figure 2.4A).

HPLC analysis had suggested the accumulation of p-cresol in cell cultures expressing ThiH,
however, the results were by no means unequivocal. Reverse phase chromatography of
metabolites isolated from an organic extraction was made difficult by the requirement to re-
dissolve the mixture in a suitable solvent for injection onto a reverse phase HPLC column. A
mixture of methanol / water was used to prepare the samples and this led to variations in the
retention time of up to 0.5 minutes. The HPLC chromatograms show multiple peaks derived a
series of unknown metabolites, some of which overlap. As such, HPLC lacked the required
resolution to analyse such a complicated mixture with confidence. To improve the time
resolution of the chromatography and the confidence with which peaks could be assigned, it was

advantageous to use GCMS.
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Figure 2.4 Samples of organic extracts of A) —thiH(pBAD-His) and B) —thiH(pRL1020) co-

injected with standards of 4-HBA and p-cresol (—), compared to the original sample (—).
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2.4 Characterisation of p-Cresol as the in vivo By-product of ThiH Reactions

Organic extracts of cell cultures were prepared as described in Method 21. Prior to GCMS

analysis the organic extracts concentrated in vacuo to 1 mL and this sample directly analysed,

thus negating the problem of re-dissolving the sample. Comparisons between organic extracts

from cultures of the two derivative strains and synthetic standards of p-cresol could be made.

For clarity the design of the experiment is shown in Figure 2.5.

E. coli ThiH mutants
Keio collection

Transform with ThiH expression
plasmid (pRL1020}

Transform with control plasmid with
no ThiH expression {pBAD-His}

l

i

ThiH expression

No ThiH

i

l

Thiamine biosynthesis

No thiamine biosynthesis
{require external thiamine)

v

A4

Prepare organic extract of growth medium
Analyse for p-cresol by GC-MS

Figure 2.5 Flow chart showing the strategy for confirming p-cresol as the aromatic byproduct

of tyrosine cleavage by ThiH in vivo
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Figure 2.6 Section of the GCMS chromatogram of an extract of medium from E. coli cultures

that express ThiH ((—), displaced upwards for clarity) and the negative control sample (—).
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Figure 2.7 Mass spectrum of the peak at 13.38 min (displayed in red in figure 2.6) in the GC of

an organic extract of —thiH(pRL1020).
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A synthetic standard of p-cresol was shown to elute with a retention time of 13.38 minutes
under the conditions used (see Method 22c). Figure 2.6 shows this region of the chromatogram
when analyzing organic extracts of —thiH(pBAD-His) and —thiH(pRL1020). The pattern of
peaks observed in both these samples was very similar however; the strain with the requirement
for functional ThiH in order to biosynthesise TPP in order to grow had a new peak with a
retention time of 13.38 min (shown in red). The EI mass spectrum of this peak corresponded to
the observed spectrum of a standard sample of p-cresol. The extremely consistent pattern of non
p-cresol (background) peaks between the two samples gave increased confidence in the
reproducibility of the GCMS analysis. The fact that it is not observed in the strain not
biosynthesizing TPP suggests that it is generated as a result of thiamine biosynthesis and almost
certainly as a result of tyrosine cleavage by ThiH. The small peak (relative abundance < 1.0 x
10™®) observed in the negative control sample, with a similar retention time of 13.38 minutes
does not show a mass spectrum consistent with p-cresol. Interestingly, thiamine biosynthesis

appears to be the only pathway in E. coli that leads to the generation of p-cresol.

It was not possible to resolve 4-HBA using the GC-MS conditions described (see Method 22c).
A procedure for derivatising a synthetic standard of 4-HBA with trfluoroacetic anhydride was
developed. However, analysis of derivatised organic extracts proved unsuccessful. The evidence
obtained that p-cresol accumulated in vivo in cultures of cells actively biosynthesising thiamine,
combined with in vitro results gave enough confidence that the correct assignment of the
aromatic by-product from tyrosine cleavage by ThiH was p-cresol. The correct assignment of

the products allows for a more accurate and detailed mechanistic model to be constructed.

60



2.5 Implications for the Mechanism of ThiH

The observation of p-cresol (88) and glyoxylate (98) (the hydrolysis product of dehydroglycine
(11)) as the products of ThiH reactions in vitro was a significant advancement in understanding
the role of ThiH. In particular, the fact that dehydroglycine is formed as a discrete intermediate
in the biosynthetic pathway. Additionally the aromatic byproduct of the reaction was
characterized as p-cresol. This result disagreed with previous observations of White™™®! which
reported that 4-HBA (97) was the by-product. This difference may arise because the
measurements made by White were in vivo. The results presented in this chapter clearly
demonstrate that p-cresol does accumulate in vivo as a result of thiamine biosynthesis. This
result supports and validates in vitro experiments on ThiH™*], eliminating the possibility that in

vitro observations were an artefact of the experiment.

The apparent contradiction in observations reported here to those reported by White can be
explained by the nature of the cell strain used. One consideration is that p-cresol may be toxic
for the cell and as a result, the bacterium may have a mechanism for removal of this toxin,
possibly via oxidation to the more water soluble 4-HBA. The organism: Pseudomonas putida
has been shown to express an enzyme called p-cresol methyl hydroxylase (PCMH), which
converts p-cresol to 4-HBAM? yet sequence similarity searching failed to yield any similar
enzymes present in E. coli. However, certain strains of E. coli have been shown to possess a
gene which expresses an enzyme characterized as an aromatic hydoxylase, which has been
demonstrated to accept p-cresol as a substrate™*. White’s study, which demonstrated 4-HBA as
a thiamine biosynthetic by-product utilized a B strain of E. coli, which possesses this gene.
However, the strain employed in our study is a K-12 strain and does not contain a chromosomal
copy of this gene. It is, therefore, probable that p-cresol is formed in vivo but is converted to

HBA in strains that contain a suitable oxidase.

61



In vitro studies have shown ThiH to possess a 4Fe-4S cluster and can bind a molecule of SAM
and as such it is proposed that ThiH can reductively cleave SAM, generating methionine and a
5’deoxyadenosyl radical intermediate (Scheme 1.4)1%. This reactive, primary radical is
proposed to generate a substrate radical. This could occur through abstraction of the phenolic
hydrogen atom, generating a phenolic tyrosine radical (99) (Scheme 2.1, A and B), or by a by
abstraction of a hydrogen atom from the amine, generating the ammonium radical cation (104)
(Scheme 2.1, C) The initial hypothesis was that generation of a phenolic radical would result in
homolysis of the Ca—Cp bond yielding a glycine radical (100)™* (Scheme 2.1, A). This
hypothesis was attractive as the byproduct of this cleavage mechanism is quinone methide
(101), which could react with water to yield 4-HBA (97). The observation of p-cresol (88) as the
by-product has provided a precedent for a second potential cleavage mechanism of the phenolic
tyrosine radical (Scheme 2.1, B). Abstraction of the phenolic hydrogen atom results in an
electron deficient m-system, thus facilitating attack from the lone pair located on nitrogen
followed by heterolytic cleavage of the Co—Cp bond. This mechanism directly forms
dehydroglycine (11) along with a resonance stabilized radical anion (102), which can be
reduced to form p-cresol (88). As depicted in structure 102a the radical anion has an electron
poor oxygen and an electron rich carbanion. The resonance stabilisation of the radical anion can
be explained by a single electron being delocalised throughout the z-orbitals of the benzene

ring.

The detection of p-cresol does not rule out the hypothesis of a homolytic cleavage mechanism.
Modelling the thermodynamics of the reaction® has shown that the homolytic cleavage, towards
the glycine radical (100) and quinone methide (101), (see Scheme 2.1) is more favourable by 33

kdmol™ (+ 5 kdmol™)™*!. The modelling studies fail to take account of any interactions within

! Modelling was conducted by Dr. Anna Croft at the University of Bangor and is described in reference
115
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the active site, such as hydrogen bonds that may preferentially stabilize certain intermediates or
transition states. Reduction of the quinone methide (101) could occur in situ negating the
possibility of it being released to solution and reacting with water to form 4-HBA (97). Indeed
the glycine radical (100) needs to be oxidised and it could be that electron transfer to the quinine
methide (101) facilitates this step and thus reduces the quinone methide to the resonance
stabilised radical anion (102), which is subsequently reduced to p-cresol (88). Generation of the
ammonium radical cation by abstraction of an ammonium hydrogen atom could also facilitate
homolytic cleavage of the Co—Cf bond (Scheme 2.1, C). This would also lead directly to
dehydroglycine (11) and the resonance stabilised radical anion (102), which is reduced to form

p-cresol (88). The thermodynamics for this potential pathway were not modelled.
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SAM, mediated by the 4Fe-4S cluster.
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The proposed heterolytic mechanism (Scheme 2.1, B) involving an umpolung has some features
that are analogous to those in the mechanism of p-hydroxyphenylacetate decarboxylase (HPAD)
proposed by Selmer and Andrei?. The function of the HPAD enzyme in Clostridium difficile is
to form p-cresol (88), which acts as a toxin to other competing bacteria in the human intestine
(122,125 'n_Cresol is formed by decarboxylation of p-hydroxyphenylacetate (106), which is
derived from tyrosine. The enzyme expressed in C. difficile that catalyses this reaction is p-
hydroxyphenylacetate decarboxylase (Hpc) this organism p-hydroxyphenylacetate (106)
undergoes decarboxylation and is catalysed by the hydroxyphenylacetate decarboxylase (Hpd)
group of enzymes, one of which (HpcB) has an iron sulfur cluster and is dependent on SAM for
activity™ 1. HPAD is a glycyl radical enzyme™ “> 2"l and as such the activase sub-unit
contains the enzymatic machinery to reductively cleave SAM and eventually generate a
catalytic thiyl radical. This is proposed to form a substrate radical (107) by abstraction of the
phenolic hydrogen atom of p-hydroxyphenylacetate (see Scheme 2.2). This initiates
decarboxylation, which forms the same resonance stabilised radical anion (102), proposed for
heterolytic cleavage of tyrosine by ThiH. Although ThiH and HPAD utilise different radical
centres to initiate the reaction, it seems likely that there are similarities in subsequent steps of
the mechanism. In HPAD cresol is proposed to be formed by re-abstracting a hydrogen atom
from the cysteine residue, thus reforming the catalytic thiyl radical. ThiH has been shown to use
SAM as a substrate, so it is unlikely that a hydrogen atom is re-abstracted from DOA.
Therefore, ThiH must source the electron from a different source (potentially the 4Fe-4S

cluster) to reduce the radical anion to p-cresol.
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2.6 Summary and Conclusions

In vivo experiments were designed to support the observation made from in vitro experiments
that the by-product of ThiH mediated tyrosine cleavage was p-cresol. ThiH forms part of the
thiamine biosynthesis gene cluster in anaerobic bacteria and as such these in vivo experiments
were designed to show a relationship between the accumulation of p-cresol and the cell’s ability
to actively biosynthesise thiamine. It was found that deletion of the thiH gene prevented growth
in media deficient in thiamine. GC-MS analysis of organic extracts of cell cultures confirmed
the presence of p-cresol, only in strains that were expressing ThiH. The increased confidence
that p-cresol is the by-product of tyrosine cleavage has allowed for the proposal of a more
accurate mechanistic model Cao—Cp bond cleavage. Some of the key questions to address are:
what is the site of hydrogen atom abstraction from tyrosine? And what is the source of the
electron that reduces the aromatic intermediate to p-cresol? (see Scheme 2.1). Subsequent
chapters in this thesis seek to design an in vitro activity assay to seek the answers to these

questions.
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3 Development of a Catalytic Activity Assay for
Tyrosine Lyase

3.1 Introduction

The products of tyrosine cleavage by ThiH have been characterised as dehydroglycine (11) and
p-cresol (88) (angew). In vivo, dehydroglycine is proposed to be transferred to ThiG, where it
reacts with a DXP derived intermediate (82) to form the thiazole moiety of thiamine. In vitro
experiments on the purified ThiGH complex defined the product of the ThiH catalysed reaction
as glyoxylate (98), presumably as a result of rapid hydrolysis of dehydroglycine after it is

released from the enzyme.

An overview of the chemistry involved in the ThiGH activity assay is shown in Figure 3.1. At
selected timepoints, ThiH turnover is stopped by the addition of a strong acid, which causes the
proteins to precipitate. Precipitated material can then be removed by centrifugation. HPLC
analysis of the resulting solution gives a quantitative detection of p-cresol and DOA (shown in
boxes in Figure 3.1). Glyoxylate can be quantified by pre column derivitization with o-
phenylenediamine, under acidic conditions, to the fluorescent 2-quinoxalinol™® *?! (see Figure
3.1 D). This in vitro study analysis (Figure 3.2) showed that glyoxylate (98) and p-cresol (88)
formin a 1:1 ratio with the first order rate constants and maximum product concentrations
shown in Table 3.6. In a separate experiment it was demonstrated that DOA was formed in an
approximate 1.3:1 ratio with respect to p-cresol, indicating some uncoupled SAM cleavage had
occurred. These time course experiments had been designed as single turnover experiments, by
limiting the amount of substrates and reducing equivalents present in the assay'*'> '#!, The assay
utilises the assumed natural reducing system for E. coli proteins, Flavodoxin (FIdA),
Flavoprotein:NADPH oxidoreductase (Fpr) and NADPH. This has the advantage of being more
selective for reduction of the 4Fe-4S cluster of ThiH and could restrict uncoupled SAM
cleavage due to the carefully controlled redox potential of the 4Fe-4S cluster (see Section
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1.2.4)". The alternative reagent employed in studies of radical SAM enzymes is dithionite!*
13 "a powerful reductant that is more likely to react with other molecules in the assay, including
enzyme derived products. The mechanistic hypothesis discussed in Chapter 2 (see Scheme 2.1 —
p65) requires input of 2 electrons in order to arrive at the products (1 for reductive cleavage of
SAM and 1 for reduction of the aromatic radical anion by-product to p-cresol). NADPH
provides 2eq of electrons (Figure 3.1A) and thus 1 equivalent of NADPH is required per

turnover of ThiH.

The stability of the protein, in particular the oxygen sensitive 4Fe-4S cluster, meant that a small
proportion of ThiH precipitated during time course experiments. It was also anticipated that
ThiH, like some other members of the radical SAM family’, such as BioBF and LipA[SZ] may
not be able to function catalytically in vitro. BioB and LipA function to insert sulphur atoms to
their respective substrates and are constrained to a single turnover in vitro due to the depletion
of the holo-protein derived sulphur source. This makes studying these reactions challenging as
obtaining sufficient quantities of enzymatically derived products / intermediates to characterise
can require relatively large amounts of protein. This constraint is negated by many of the radical
SAM enzymes, which although they require stoichiometric quantites of SAM, the 4Fe-4S
cluster can repeatedly access the reduced +1 oxidation state, providing a molar excess of SAM
and reducing agents are available. The vulnerability of 4Fe-4S clusters to oxygen makes
preparations of large quantities of the active form of these proteins difficult. Therefore, it is

desirable to achieve multiple turnovers to make studying the enzyme catalysed reaction easier.
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Figure 3.1 A) The flavin moiety of flavin mononucleotide (the co-factor of FIdA) and flavin
adenine dinucleotide (the cofactor of Fpr) in the oxidised form, when partially reduced to the
semiquinone and fully reduced. B) Electron transfer involved in the reuduction of the 4Fe-4S
cluster of ThiH bu NADPH. C) Scheme showing the substrates, reagents and products in ThiH
activity assays. The boxes highlight that these two compounds can be analysed by HPLC,
without the need for derivitisation. D) Derivitisation of glyoxylate to the fluorescent 2-

quinoxalinol.
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Figure 3.2 Time course of glyoxylate (e) and p-cresol (®) formation in ThiGH activity assays
restricted to a single turnover. Assays contained ThiGH (444 uM), tyrosine (350 uM), SAM

(655u M), FIJA (50 pM), Fpr (9 M) and NADPH (540 pM). (Adapted from™*))

Rate constant Final concentration

Product (x102 min ) (M)
Glyoxylate 6.3+1.1 171.6+7.9
p-Cresol 4.6 +0.7 176.2+7.8

Table 3.1 Kinetic parameters of product formation by ThiGH, obtained by fitting data in figure

3.1 to a first order process. (Adapted from!*l)

These results represented significant progress on understanding ThiH, but for further
development, two areas needed improvement. Firstly the experiments reported by Kriek and

Martins were designed assuming single turnover and it important to test whether ThiH can
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function catalytically. Secondly, the ThiH used in these studies was substantially purified, but
was known to exist in two forms: a large, hexadiameric complex of ThiG and ThiH (i.e.
(ThiGH)) and a monomeric form!*%!. Isolation of these two forms of the protein may also be
beneficial in developing an understanding of the chemistry catalysed by ThiH in the context of

thiazole biosynthesis.

In E. coli the thiH gene forms part of the thiCEFSGH operon. Extensive expression studies have
demonstrated that a soluble form of ThiH can be obtained during aerobic growth of E. coli
BL21(DE3) by co-expressing ThiH with ThiF, ThiS and ThiG. The plasmid, pRL1020 (Figure
3.5), which is used to express ThiH contains the thiFSGH part of the natural operon with a
hexahistidine (Hisg) tag at the C-terminus of ThiH, allowing for purification by Ni-affinity
chromatography. Despite the fact that ThiH could be expressed aerobically, purification
required strictly anaerobic conditions due to the oxygen sensitive nature of the 4Fe-4S cluster
and upon oxidation the protein tended to precipitate™*. The experiments described above were
known to contain a mixture of (ThiGH)g and ThiH, obtained from the pRL1020 expression
plasmid and purified by Ni-affinity chromatography. The characterisation of (ThiGH) and

monomeric ThiH was achieved by analytical gel filtration chromatography™®!.

The work presented in this chapter sets out to optimise a robust and routine assay for ThiH

activity. This involves:

- Investigating different expression systems for ThiH

- Optimising the purification

- Optimising the HPLC analysis of ThiH activity assays

- Investigating potential for catalytic activity by adding an excess of substrates and

reductant
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3.2 HPLC Detection of Reaction Products

As shown in Figure 3.1, quantitative detection of DOA (32) and p-cresol (88) can be achieved
by HPLC as they both have relatively strong absorbance’s. DOA can be detected by monitoring
absorbance a 254 nm and p-cresol can be detected by monitoring absorbance at 280 nm. The
primary reason to optimise the HPLC analysis of ThiH activity assays is to accurately quantify
these two products. As p-cresol is a product of tyrosine cleavage and DOA is a product of SAM
cleavage, quantification of these two products enables the monitoring of two distinct steps in the
mechanism. This provides scope to probe the kinetics of the ThiH catalysed reaction in detail
and is of particular relevance to understanding uncoupled SAM cleavage!®!. Other potentially
interesting compounds were included in the optimisation of the HPLC method including
adenine, which results from hydrolysis of SAM or DOA, MTA, an impurity present in SAM
stocks and two structural analogues of tyrosine (4-hydroxyphenypropionic acid (4-HPPA) (119)
and 4-hydroxycinamic acid (4-HPCA)). These tyrosine structural analogues are discussed in

Chapter 4 (Section 4.5).

SAM (26) can degrade by various pH dependant routes™? (see Scheme 3.1). Hydrolysis results
in formation of the adenine base (116) and S-ribosylmethionine (117). A second pathway,
which occurs under basic conditions, is nucleophilic addition by the a-carboxylate onto the y-C
of methionine, resulting in homoserine lactone (115) and methylthioadenosine (MTA) (114). To
allow for these side reactions in subsequent experiments, the retention times of adenine and
MTA was also an important consideration to avoid co-elution of any of these SAM derived
impurities with assay substrates and products. MTA was routinely observed as the major
impurity in commercial SAM stocks, with varying levels (up to ~20%) depending on the age

and batch of the SAM. This proved problematic when trying to quantify the amount of SAM
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utilised in assays as obtaining accurate calibrations was difficult. The work up procedure for
assays with ThiGH involves precipitating the protein with perchloric acid and there was a
concern that any SAM or DOA in the assays might potentially hydrolyse, releasing adenine.

This problem was circumvented by storing assay samples at -80 °C and analysing them as soon

as possible.
NH,
N X NH
s ¢ f\N o ?
-~ N N/) +
] ® Basic pH o) o]
S " / 115
P NH, OH OH
N 114
N
N
°s L
N—>N NH, |
o) H,N s
Hzo N \N +
OH OH Acidic pH </ | /) (@] OH
cidic p N
NN 0~ “OH
26 OH OH
116 117

Scheme 3.1 Two potential degradation pathways of SAM which occur at different pH.

A summary of different HPLC methods is shown in Table 3.2. Previous efforts to optimise the
HPLC separation were successful in achieving quantification of tyrosine, DOA and p-cresol™?%.
This provided a good method to accurately quantify p-cresol, but it was difficult to achieve
reproducible data for DOA due to noise in the baseline. To study the kinetics of ThiH in detail it
was deemed important to find a highly reproducible method to quantify p-cresol and DOA from
the same sample. The highly polar nature of the substrates in comparison with the relative
hydropobicity of the products make finding a universal method for separating all the compounds
by reverse phase chromatography difficult. The initial variation was to increase the length of the

HPLC column from 150 mm to 250 mm. Several mobile phase conditions were investigated,
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including the use of sodium octane sulfonate. This surfactant is useful in reverse phase HPLC as
it ion pairs to polar compounds, greatly increasing their retention times. The disadvantage of
using this method was that it was difficult to separate all the compounds from each other. The
use of phosphate buffer improved the retention time for SAM; however, it was found that this
method was not very reproducible. Eventually method 2 in Table 3.2 was selected as it gave the
best all round separation and was highly reproducible. An example chromatogram is shown in

Figure 3.3 and the full protocol described in the experimental section (Method 17).
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Method Aqueous Organic
Column Comments
No. solvent solvent
Good separation for Adenine,
20mM
Gemini 5u, 20mM DOA and MTA.
NH,OAc, pH
1 C18 (250 x | NH4OAc, pH Poor separation for tyrosine,
6 in 50:50
4.6mm) 6 SAM, 4-HPPA, 4-HPCAand
H,O:MeCN
p-cresol
Good separation for tyrosine
Gemini 5u, DOA, MTA, 4-HPPA, 4-
0.1% AcOH/ | 0.1% AcOH/
2 C18 (250 x HPCA, p-cresol.
H,O MeCN
4.6mm) Adenine and SAM have short
retention times
25 mM AcOH,
25 mM AcOH,
8 mM sodium
Gemini 5u, | 8 mM sodium Good retention time for SAM,
octane
3 C18 (250 x octane but very difficult to separate
sulfonate /
4.6mm) sulfonate / all the compounds
50:50
H,O
MeCN:H,0O
Good separation and retention
HICHRO 50 mM time for tyrosine, SAM,
M, S5, Na,HPO, / Adenine, DOA, MTA.
4 Methanol
C18 (250 x | 0.5% TFA, pH 4-HPPA and 4-HPCA co-elute
4.6 mm) 3.0 with p-cresol. Not very

reproducible

Table 3.2 Summary of HPLC conditions for analysing ThiH activity assays.
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Figure 3.3 HPLC chromatogram, monitoring the absorbance at 280 nm (—) of a ThiH activity
assay using method 2 in table 3.2. Also shown is the proportion of organic solvent in the mobile
phase (—). Peaks were identified as: 1) SAM; 2) adenine; 3) tyrosine; 4) DOA; 5) MTA, 6)
riboflavin (derived from the reducing system); 7) p-cresol. Inset A is an example of poor peak
shape for tyrosine elution and inset B shows the baseline noise that can sometimes occur in the
region of the chromatogram where DOA elutes. In these cases integration of the peak area was

achieved by adjusting the baseline, shown by the dashed line.

The disadvantage is that to separate SAM and tyrosine the initial mobile phase consisted of
100% aqueous buffer. At low amounts (<5%) of organic buffer the mixing of the aqueous and
organic buffers is inaccurate and can lead to strange peak shapes in compounds eluting at the
start of the gradient. Unfortunately this affects the analysis of tyrosine in this case (see inset A

in Figure 3.3).
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3.3 Modifying the ThiH Assay Buffer

In vitro experiments on ThiGH, including the time course shown in Figure 3.2, used phosphate
buffer at pH 7.5. This was selected as data from **C NMR experiments could be more easily
interpreted as there was no background signal from the assay buffer. The disadvantage is that
the ThiGH protein used in these experiments is unstable and some precipitation was often
observed during in vitro experiments®?. This is particularly a problem when trying to monitor
the kinetics of the reaction as protein inactivation due to precipitation could be a limiting factor.
Therefore, it was considered necessary to optimise the assay buffer to increase the stability of
the enzyme and ensure that it remained in solution during turnover experiments. During the
extensive development of the ThiH purification protocol™® 14129331 ‘it was found that ThiH
was stable and able to be stored, frozen at -80 °C, in Buffer D (50 mM MOPS, pH 7.7, 100 mM
NaCl, 12.5% (w/v) glycerol, 5 mM DTT) (see Method 10). This buffer was used as a template
for a new assay buffer and an experiment was designed to test the four buffers shown in Table
3.6 for their suitability for ThiH activity assays. Protein isolated by Ni-affinity chromatography
was reconstituted (Method 14a) and split into four fractions and exchanged into one of buffers
1-4. Protein precipitation was visually observed and activity assays were prepared (method 16)

to measure how the turnover was affected by each buffer.

The presence of glycerol and sodium chloride was required to maintain the solubility of the
protein. However, regardless of this fact it was surprisingly found that the amount of DOA and
p-cresol formed was similar in all assay buffers. One explanation of this observation is that the
precipitated protein was inactive, possibly due to inefficient reconstitution. All subsequent
activity measurements were conducted in Buffer 1 (see Table 3.6) as the protein remained

soluble, allowing for increased confidence in any observations.
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Precipitation [DOA] [p-Cresol]
Buffer Buffer contents
observed? formed after 1h  formed after 1h

50 mM MOPS pH 7.5
1 100 mM NaCl No 192 uM 178 uM

5% (w/v) glycerol

50 mM MOPS pH 7.5
2 Yes 205 pM 177 uM
100 mM NacCl

50 mM MOPS pH 7.5
3 Yes 198 yM 179 uM
5% (wi/v) glycerol

4 50 mM MOPS pH 7.5 Yes 181 pM 169 pM

Table 3.3 Variations in the buffer used for ThiH activity assays.

Unfortunately, the presence of glycerol in assay samples presented a problem in the HPLC
analysis. The baseline in the region between 15 — 25 minutes (see inset B in Figure 3.3) became
variable and noisy. This was attributed to the presence of glycerol and could largely be
overcome by washing the HPLC column, by injecting a water (blank) sample between the
injections of each assay sample. When integrating any peaks that were affected by the baseline
variation, the baseline was adjusted to provide the best possible estimate of the peak area (see

inset B in Figure 3.3).
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3.4 Increasing the Amount of Substrate and Reductant in Tyrosine Lyase assays

As noted in Section 3.1, previous time course experiments were limited by the amount of
substrate and reductant added. The reducing agent in tyrosine lyase activity assays is NADPH,
however for efficient reduction of the iron sulphur cluster flavodoxin (FIdA) and
flavoprotein:NADPH oxidoreductase (Fpr) are also required. The electron transfer chain to
reduce the cluster (Figure 3.1 B) first involves a two electron reduction of the Fpr co-factor:
flavin adenine dinucleotide (FAD). This then reduces the FIdA cofactor: flavin mononucleotide
(FMN) to the semiquinone in a one electron reduction. The FMN semiquinone is then

responsible for the 1 electron reduction of the iron sulfur cluster (Equation 3.1).

[4Fe — 4S]2* + FMN. SQ < [4Fe — 4S]* + FMN. Ox (Eq3.1)

The mid-point redox potential of FMN.SQ <> FMN.Ox has been reported to be -260 mVv*,
The midpoint potential for reduction of [4Fe-4S]** « [4Fe-4S]" is significantly lower and is
also dependent on the environment of the cluster. In LAM, when SAM is ligated to the 4Fe-4S

cluster the midpoint potential has been estimated as -450 m\V/"!.

The large discrepancy in these two values may explain why it is necessary to incubate a mixture
of NADPH, Fpr and FIdA prior to addition to ThiGH to ensure a high proportion of FMN.SQ
(observable by its blue colour). The Nernst equation™* (Equation 3.2) describes the
relationship between the ratios of oxidised or reduced species to the actual redox potential of the

system.
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RT Red
Ereqa = EQred T ZF [[Ox]]

(Eq. 3.2)

Where E, is the potential of the system, E®\q is the mid-point potential, R is the ideal gas
contant, T is temperature, z is the number of electrons and F is the Faraday constant. >99% of
FMN needs to be in the semiquinone (reduced) form in order for the potential to reach the mid-
point potential typical of a 4Fe-4S cluster. This suggests that the position of equilibrium in

Equation 3.1 is quite far to the left.

The stoichiometry of single turnover of tyrosine lyase requires the input of two electrons (one to
reduce the iron sulphur cluster and one to reduce the aromatic portion to p-cresol after Co—Cp
bond cleavage — see Scheme 2.1) and hence requires one equivalent of NADPH. In order to
achieve multiple turnovers an excess of NADPH needs to be added to assays. Table 3.4 shows
the amounts of the components of the reducing mixture added in assays reported by Kriek et
al.'® and the design of a modified reducing mixture with the potential to stimulate catalytic

activity of tyrosine lyase.

Thus, assays were prepared with the modified reducing mixture which also contained >10
equivalents of tyrosine and SAM. After 1 h incubation at 37 °C the proteins were acid
precipitated and pelleted by centrifugation (see Method 16). The resulting supernatant was
analysed by HPLC (see Method 17) to estimate the amount of DOA and p-cresol formed. It was
found that after one hour, ThiH had achieved nearly four turnovers. Unfortunately there were
some rather irreproducible variations in time dependent product formation (see Figure 3.4 and
Figure 3.7). This is discussed in the remainder of this chapter. Subsequent experiments in which
catalytic activity was measured routinely contained 1 mM of tyrosine and SAM, which

corresponded to at least 10 molar equivalents of these substrates, relative to the concentration of
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ThiH. The variable in each experiment was the ThiH concentration, due to variability in the

isolation and reconstitution and this is reported in the figure legends for any activity

measurements.
A
Stock Volume added  Concentration
Concentration
Component concentration/  to reducing mix in reducing mix
in assay’ /uM
mM / uL / mM
FIdA 0.61 60 0.41 25
Fpr 0.46 21 0.11 6.5
NADPH 100 9 10 600

' From 15 pL addition to a 200 pL assay

B
Stock Volume added  Concentration
Concentration
Component concentration/  to reducing mix in reducing mix
in assay' /uM
mM / uL / mM
FIdA 0.61 90 0.37 37
Fpr 0.46 30 0.09 9.
NADPH 100 30 20 2000

' From 15 pL addition to a 150 pL assay

Table 3.4 Concentration of the components of the reducing mixture in A) Single turnover

experiments reported by Kriek et al.*'* ! and B) Catalytic turnover experiments reported in

this thesis.
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Figure 3.4 Catalytic activity of chemically reconstituted ThiGH, isolated by Ni-affinity
chromatography. Formation of DOA (e—) and p-cresol (e—) in a ThiGH activity assay was
monitored by HPLC. The assays contained: ThiGH (83 uM); SAM (830 uM); tyrosine (830
uM); FIdA (36 uM); Fpr (9 uM) and NADPH (2 mM) and were stopped at selected time points

by protein precipitation with perchloric acid.
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3.5 Expression and Purification of Tyrosine Lyase

3.5.1 Investigating Different Expression Systems for ThiGH

A typical sample of ThiGH, expressed from pRL1020 (Method 9) and purified by Ni-affinity
chromatography, then desalted on a S-75 column (Method 10) contained ~1 equivalent of iron,
compared to the expected 4 equivalents from the 4Fe-4S cluster*®. Therefore, careful chemical
reconstitution is necessary in order to achieve active protein (see Method 14a). In an attempt to
improve the iron content of isolated ThiGH or ThiH, the ThiFSGH operon was co-expressed
with IscS, IscU, IscA, IscB and HscA. These proteins are responsible for the assembly of iron
sulphur clusters in bacteria and it was anticipated that they might promote in vivo assembly of
the 4Fe-4S cluster of ThiH™®). The plasmid pRL1021 (see Figure 3.5) contains the same
thiFSGH insert as pRL1020 with the addition of the iscS, iscU, iscA, iscB, hscA and fdx genes.
Previous attempts to purify ThiH / ThiGH from this expression system in BL21 were
unsuccessful, due to the expression of Yqjl, which co-purified with ThiGH on a Ni-affinity
column. To avoid this problem a mutant strain with deletion of the ygjl gene was investigated as

a potential strain for expression of ThiH from pRL1021.

pRL1020 pRL1021

6896 bp 11605 bp

MCS - 7932

MCS - 3223

Figure 3.5 Plasmid maps of pRL1020 and pRL1021, which are used to express ThiH.
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Unfortunately, growing this strain on a large scale gave very low yields of cell paste (typically
12-15 g per 5 L media, see Table 3.5). This is probably due to the adverse effect of
overexpressing the Isc proteins in this strain. It is feasible that the expression of Yqjl in nhormal
BL21(DE3) was induced by a part of a feedback mechanism to mitigate the harmful effects
these enzymes have on the cell’s metabolism. It was also found that there was no significant
improvement in yield or iron content of purified ThiH expressed from pRL1021 (see Table 3.5)
and it also appeared as if there was a slight increase in the amount of monomeric ThiH isolated
(see Figure 3.6). This observation was investigated by further purifying the protein (isolated by
Ni-affinity chromatography) by S200 gel filtration chromatography. In addition the activity of

ThiGH isolated from the two expression systems was investigated.

. Proteins . Yield of Yield of Equivalents
Plasmid expressed Cell Strain ) paste’  ThiGH* of Fe

pRL1020 ThiFSGH-His BI21(DE3) 38-429g 150-250 mg 18+01

ThiFSGH-His,
pRL1021 IscS, IscU, IscA, -ygjl 12-15¢g 20-40 mg 20+£01
IscB, HsCA

" values obtained from a typical 5L cell culture (see Methods 9 and 10)

Table 3.5 Yields of cell paste and ThiGH obtained from different expression systems.

The activity of ThiGH from pRL1020 (BL21) and pRL1021 (yqjl-) is shown in Table 3.6.
ThiGH expressed from pRL1021 shows an apparent slight improvement in activity. This was
further investigated by monitoring the time dependent formation of products (Figure 3.7) The
time course data showed some variations in the rates of product formation which at this stage of
the investigation were difficult to interpret. One possible source of variation was the presence of
both ThiGH complex and monomeric ThiH in the assay. As these can be readily separated by

gel filtration chromatography, the further purification of these two forms may simplify the
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kinetic profile. Therefore, an additional preparative gel filtration step in the purification protocol

of ThiH was developed.

A
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Figure 3.6 SDS-PAGE analysis of ThiH purification by Ni-affinity chromatography from A)
pRL1021 (-ygjl) and B) pRL1020 (BL21). M = molecular weight marker; L = lysate; FT = flow

through; number = fraction number.
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Number of Turnovers w.r.t.

5’-DOA p-Cresol
pRL1020 (BL21) 3.7+04 21102
pRL1021 (yqjl-) 40+0.1 2.8+0.0

Table 3.6: Comparison of the number of turnovers in 1 h by ThiGH from the different

expression systems, pRL1020 (BL21) and pRL1021 (yqgjl-)

4.5 ~
——pRL1020 5-DOA
47 —e— pRL1020 p-cresol
35 | pRL1021 5'-DOA
' —< -pRL1021 p-cresol
(2]
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>
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Figure 3.7 Comparison of the activity of ThiGH isolated from the different expression systems,

PRL1020 (BL21) and pRL1021 (ygjl-).
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3.5.2 Isolation of Monomeric ThiH and ThiGH complex

Analytical gel filtration chromatography™®® has shown that the protein isolated from the initial
nickel-charged chelating Sepharose column contained a mixture of two forms of ThiH: as part
of a large multimeric complex with at least 6 ThiGH heterodimers (apparent MW ~440 kDa); or
as a monomer (apparent MW ~42 kDa). Resolution of these two species was achieved by
preparative gel filtration chromatography using Sephadex 200 resin. The protein isolated after
nickel-charged chelating Sepharose chromatography (ThiGH / ThiH mixture) (see Method 10)
was chemically reconstituted (see Method 14a) to improve the stability of ThiH!™*% allowing it
to be concentrated to ~25 mg / mL for application to the preparative gel filtration column (see
Method 13). Typically a 1:1 molar ratio of ThiGH:ThiH was isolated from the Ni-affinity
column and successfully separated, with approximately 1 umol of each being successfully
isolated, by gel filtration (see Figure 3.8 and Table 3.7). Despite working under anaerobic
conditions (less than 1 ppm O,), the labile 4Fe-4S cluster did not remain intact during this
purification step and the iron content (see Method 15) of purified protein fractions was reduced
to 3.1 + 0.2 mol equivalents of Fe per ThiGH and 2.5 £ 0.3 mol equivalents of Fe per ThiH (see
Table 3.7). UV-visible spectroscopy also showed that the 4Fe-4S cluster had degraded during
this purification step (Figure 3.9 C). The cluster was reconstituted again (see Method 14b)
before activity measurements and the effectiveness of this reconstitution assessed by UV -visible

spectroscopy (Figure 3.9 D).
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Figure 3.8 Gel filtration chromatography of ThiGH / ThiH. A) Elution of hexadiameric ThiGH
and monomeric ThiH from a sephadex 200 gel filtration column. B) SDS-PAGE analysis of
protein containing fractions. M, low molecular weight marker; numbers correspond to protein

containing fractions.
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Fraction Contents

Moles of

Protein (x107)

Equivalents

of Iron

2 (ThiGH)s
3 (ThiGH)¢
4 (ThiGH)¢
5 (ThiGH)s
6 (ThiGH)s
7 ThiH
8 ThiH
9 ThiH
10 ThiH
11 ThiH

23%5

250 + 50

430 + 100

280+ 70

50 + 15

54+10

160 + 50

390 =60

280 =50

85+9

24+0.1

3.3+0.2

3.2+0.2

29+0.3

3.6+0.3

3.2+0.2

3.4+0.2

21+0.2

1.6+£0.02

2.4 +0.01

Table 3.7 Moles of protein and relative iron content in ThiH containing fractions from S200 gel

filtration column. Moles of protein was estimated by the Bradford assay (Method 6)!*** and iron

content was assayed by the method of Fish (Method 15)1*"),
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Figure 3.9 UV-vis spectroscopy of ThiH samples. A) Protein isolated by Ni affinity
chromatography; B) Protein isolated by Ni affinity chromatography after chemical
reconstitution; C) ThiGH fractions isolated by Sephadex 200 gel filtration chromatograpthy; D)
ThiGH fractions isolated by Sephadex 200 gel filtration chromatograpthy after chemical
reconstitution. The broad absorbance at 400 nm is due to the 4Fe-4S cluster (ref. 17). The

spectra are displaced upwards for clarity.
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3.6 Kinetic Studies on ThiH

3.6.1 Activity of the ThiGH Complex

The time dependence of product formation was studied with ThiGH complex isolated by gel
filtration chromatography. In previous experiments, tyrosine lyase activity had been limited to
less than one turnover (angew) but this may have resulted from insufficient reductant or
substrate in the assay. ThiGH assays were therefore prepared with greater than 10 mol.
equivalents of tyrosine and SAM and a large excess of reductant (2 mM NADPH) to ensure the
[4Fe-4S] cluster could repeatedly access the +1 oxidation state during catalytic turnover.
Analytical HPLC was used to quantify the formation of the products DOA and p-cresol.
Reactions were stopped at a range of selected time points up to 1 hour. The data from the time
course showed a pre-steady state burst phase and could be fitted to a function which contains a

single exponential and a linear, steady state component (see Figure 3.10)™**:

[P]=[E](1—e® =) + Lt (Eq. 3.3)

where [P] is the observed concentration of product; [E] is the amplitude of the burst phase and is
equal to the concentration of enzyme active sites in the reaction; kp, is the observed single
exponential rate constant for the burst phase; L is the observed linear rate and t is time. The rate
constant for the steady state phase (ks) was derived by dividing the observed linear rate by the
burst amplitude. This analysis gave the rate constant for p-cresol formation in the pre-steady
state, exponential phase of 53 + 5.9 x 10 s™ and during steady state phase k., was calculated as
1.6 £0.2 x 10™ s™". The rate constant for formation of 5’-deoxyadenosine was 63 + 10 x 10* s™
during the burst phase phase, but this slowed to 2.9 + 0.2 x 10™ s™ during the steady state phase.
The fitting of the data gave values of 89 + 3.5 and 90 + 4.4 uM for burst phase amplitude, which

corresponds to the concentration of ThiH active sites and is in good agreement with the ThiGH
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concentration estimated by the Bradford assay™® (see Method 6) of 80 uM. This data is

summarised in Table 3.8 (p99).
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Figure 3.10 In vitro time course of tyrosine lyase activity by ThiGH. Formation of DOA (e—)
and p-cresol (8—) in a ThiGH activity assay (containing 80 uM of ThiGH) was monitored by
HPLC. Data are the average of experiments carried out in duplicate, shown with the standard
error and were fitted to a pre steady state burst phase function (equation 3.3) to give the results

shown in Table 3.8 (p99).

The pre-steady state burst phase (up to approximately 10 min, Figure 3.10) reflects the catalytic
rate for the chemical reaction. The observation of burst phase kinetics indicates a rate limiting

step that occurs after chemical catalysis, which can be a conformational change or the release of
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products from the active site (see Scheme 3.2). ThiH yields four reaction products providing
potential for a complex pattern of product inhibition. The hydrolytic instability of
dehydroglycine implies that a tight interaction with ThiGH would be advantageous, helping to
sequester the imine away from the aqueous environment. Dehydroglycine needs to be
transferred to the ThiG active site where it is a substrate for thiazole formation and it seems
likely that the transfer of dehydroglycine from ThiH to ThiG is tightly controlled and may
explain the functional role of complex formation between ThiH and ThiG. It is essential to
avoid its release from ThiGH and subsequent rapid hydrolysis to glyoxylate and ammonium, as
this would not only result in formation of compounds potentially damaging to the cells

metabolism, but also a wasted turnover of ThiH, which is a metabolically expensive step.

Substrate binding

(fast)
+SAM +Tyr
ThiGH - ThiGH.SAM.Tyr
Product release ) .
kes = 1.6 x 105" -DOA\R\ / ReaC_tlon Catal}f'i
TR -DHG - Cre Kpurst = 53 x 10 s

ThiGH.DOA.Met.DHG.Cre

Scheme 3.2 Catalytic cycle of ThiGH. The first turnover results in saturation of the enzyme
active site with products. To allow for subsequent turnovers, the products need to be released
making the active site available for a new substrate molecule to bind. The rate of substrate
binding is assumed to be very fast relative to the observed rates of reaction catalysis and product

release.

In a typical experiment, after 1 h, ThiGH had generated 1.8 mole equivalents of p-cresol and 2.3
mol equivalents of DOA, with an overall DOA:p-cresol ratio of 1.3:1, indicating that there was

some uncoupled turnover of SAM to DOA. During the burst phase, when reaction catalysis is
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rate limiting, there is efficient coupling of DOA formation to tyrosine cleavage: for example,
after 5 minutes, the concentration of DOA was 79 £ 6.0 uM and the concentration of p-cresol
was 71 + 2.3 UM, giving a DOA to p-cresol ratio of 1.1:1. However, after the first turnover,
when the release of products becomes rate limiting, the reaction slows down and uncoupled
turnover of SAM become more significant. In the steady state phase (after about 15 mins,
Figure 3.10) the ratio of the rate of formation of DOA to the rate of p-cresol formation increases
to 1.7:1. Experiments on inhibition of ThiH activity by the products are reported in Chapter 4.
Discussion on the implications for the mechanism of tyrosine cleavage and uncoupled SAM

cleavage is developed in Chapter 4 in light of these observations.
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3.6.2  Activity of Monomeric ThiH

Size exclusion chromatography allowed the purification of ThiGH complex and monomeric
ThiH. The natural pathway for thiazole biosynthesis includes efficient transfer of
dehydroglycine from ThiH to ThiG and it was therefore of interest to determine the kinetic
properties of ThiH in the absence of ThiG. The time course obtained using HPLC analysis of
activity assays with monomeric ThiH is shown in Figure 3.11. The kinetics of product
formation from ThiH showed burst phase similar to that observed with ThiGH and the data
could be fitted to equation 3.3. Fitting of the data to equation 3.3 gave a burst phase rate
constant (32 + 7.8 x 10™ s™ for p-cresol) that is marginally slower than for ThiGH, but a
substantially faster steady state rate (5.9 + 0.2 x 10™ s™ for p-cresol) which is consistent with a
faster (but still rate limiting) product release step. Therefore, the rate of product release is
different depending on whether ThiH is in a complex with ThiG and this may indicate the
importance of the transfer of dehydroglycine. However, without any structural data it is
extremely difficult to rationalise this and no firm conclusions can yet be drawn from this

experiment.

The observation of a higher steady state rate constant for monomeric ThiH helped to explain the
observations presented in Figure 3.7. Protein purified by Ni-affinity chromatography from the
pRL1021 expression system appears to have a slightly higher proportion of monomeric ThiH,
relative to ThiGH complex (Figure 3.6). Therefore, time course experiments on protein
expressed form pRL1021 that had not been purified by gel filtration showed a kinetic profile
more characteristic of monomeric ThiH. Protein expressed from pRL1020 contained relatively
more of the ThiGH complex and this is reflected in the kinetic profile, where the steady state
rate appears slightly slower. These results highlight the importance of fully optimising the

purification of a protein to permit interpretation of the kinetics.
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Figure 3.11 In vitro time course of tyrosine lyase activity by ThiH. Formation of DOA (e—)
and p-cresol (e—) in a ThiH activity assay (containing 35 uM of ThiH) was monitored by
HPLC. Data are the average of experiments carried out in duplicate, shown with the standard
error and were fitted to a pre steady state burst phase function (equation 3.3) to give the results

shown in Table 3.8.
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Form of ThiH Product [EJ/UM  Kpus (X 10%sh)  Ke(x10*sh)  R?
p-Cresol 89+3.5 53+59 1.6+0.2 0.99
ThiGH complex
DOA 90+44 63 + 10 29+0.2 0.99
p-Cresol 38+4.4 32+7.8 5.9+0.2 0.99
Monomeric ThiH
DOA 42 +8.9 27 +11 10.7+1.0 0.99

Table 3.8 Kinetic analysis of tyrosine lyase activity. These results were obtained by fitting data
to equation 3.3. [P] is the observed concentration of product; [E] is the observed burst

amplitude; ko is the observed single exponential rate constant for the burst phase and kg is the

steady state rate constant, derived by dividing the observed linear rate by the burst amplitude.

Data are presented with standard errors and R? is a measure of the goodness of fit.
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3.7 Summary and Conclusions

An assay that utilised reverse phase HPLC was developed to routinely quantify the amount of
DOA and p-cresol in ThiH activity assays. Modification of the assay buffer to contain both
sodium chloride and glycerol was necessary to avoid protein precipitation during assay
experiments. Using the developed assay it was possible to achieve multiple turnovers of ThiH
when an excess of substrates and reductant were present. The kinetics of ThiH was investigated
and product formation was shown to follow a pre-steady state burst phase profile. It was
preferential to perform kinetic experiments on purified monomeric ThiH or ThiGH complex to
simplify the interpretation of the data. Purification of the ThiGH complex and monomeric ThiH
(isolated in a mixture by Ni-affinity chromatography) was achieved by preparative gel filtration
using Sephadex 200 gel filtration resin. A slight improvement in the ratio of monomeric ThiH
could be achieved by using an expression system that included the Isc operon. However, protein
expression from this system required the use of an E. coli strain with deletion of the ygjl gene,
to avoid the co-purification of this gene product. This gave a much lower yield of cells with no

improvement to the yield of protein.

The development of the assay has allowed for resolution of the kinetics of ThiGH and ThiH.
Additionally, in developing these experiments a great deal of experience, which built on the
understanding developed by Leonardi™® " 131 Kriek™* % and Martins™®, of handling the
ThiH protein was achieved. In particular, the importance of maintain strictly anaerobic
conditions at all times, but especially during chemical reconstitution of the 4Fe-4S. This
understanding, combined with the robust assay for ThiH activity allowed for a diverse range of
in vitro experiments to further elucidate the mechanism of ThiH to be undertaken, which are

reported in the next chapter.
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4 Mechanistic Studies on Tyrosine Lyase

4.1 Introduction

The lack of any structural data for ThiH or ThiGH makes elucidation of the enzymatic
mechanism of tyrosine cleavage difficult. However, several clues to the mechanism have been
gleaned from studies on other members of the radical SAM family. The mechanism of SAM
cleavage, generating the 5’-deoxyadenosyl radical in ThiH, is extremely likely to be similar to
what is suggested from structural and spectroscopic observations on other members of the
radical SAM family!® ¢ (see Section 1.2). One possible hypothesis is that direct hydrogen atom
abstraction form tyrosine by the 5’-deoxyadenosy! radical (9) mediates Ca—Cp bond cleavage,
possibly by one of the mechanisms shown in Scheme 2.1 (p64). However, developing an
understanding of the mechanism of tyrosine cleavage in the context of thiazole formation
presents a far greater challenge. Dehydroglycine (11) is an electrophilic intermediate required
for the ThiG mediated formation of the 5-membered thiazole ring (see Scheme 1.13, p40). As
such it can be thought of as an “electron deficient” species and its formation from an amino acid
moiety (tyrosine (10) or glycine (87)) involves a loss of electrons from the amine. Compared to
the direct oxidation of glycine in B. subtilis (and other aerobic bacteria), the use of tyrosine as
the source of this intermediate in E. coli (and other anaerobic bacteria) is puzzling, especially as
the aromatic by-product, characterised as p-cresol (88), is toxic to the cell. Additionally, the
tyrosine cleavage reaction uses SAM stoichiometrically (generating methionine and DOA as
products) and requires the input of two electrons, which adds a further metabolic cost to the
reaction. This raises the important question of why anaerobes choose to use this ThiH mediated

pathway and highlights the importance of its regulation to avoid unproductive reactions.
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In Chapter 3 it was shown that tyrosine lyase could function catalytically in vitro, providing
there was ample reductant present allowing the 4Fe-4S cluster to repeatedly access the overall
+1 oxidation state. Analysis of the kinetic data suggested that the enzyme was prone to
inhibition by accumulation of the products. This product inhibition could result from the
hydrolytic sensitivity of one of the products, dehydroglycine and may serve a useful function,
preventing further turnovers of ThiH in the absence of ThiG or one of its substrates. The
generation of four reaction products provides a potentially complex pattern of product inhibition
and in this chapter the inhibitory effects of some of the products, either individually or
cooperatively, are examined. In addition studies with structural analogues of tyrosine which
could undergo partial reactions were used to provide evidence for the site of hydrogen atom
abstraction from tyrosine and the importance of certain functional groups on Ca—Cp bond
cleavage. The results of product inhibition experiments and substrate analogue experiments
could be integrated into a broader mechanistic hypothesis. A more detailed model of the
mechanism is presented towards the end of the chapter which provides an explanation for
observed uncoupled turnover and is rationalised with the functional requirement of ThiH in the

biosynthesis of thiazole.
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4.2 Inhibition by DOA and Methionine

Product inhibition by the SAM cleavage products, DOA and Methionine, have been studied
previously on biotin synthase™™ and lipoyl synthase!®®l. Biotin synthase (BioB) and lipoy!
synthase (LipA) are radical SAM proteins which insert sulfur atoms during the final step of the
biosynthesis of biotin® 2! and lipoyl groups®® %1, In vitro activity assays have shown that
biotin or lipoyl groups are produced in a stoichiometric ratio with the BioB or LipA proteins®
> as a result of single enzyme turnover, probably due to depletion of the sulfur donor. (A recent
report™® has actually suggested BioB can behave catalytically in vitro providing an excess of
sulfide is present. The activity also showed burst phase kinetics). The potential for product
inhibition by DOA and methionine in vitro had only been reported in the literature for a single
example protein from the radical SAM family, biotin synthase (BioB). These experiments have
yielded conflicting results: data from Ollagnier-de-Choudens et al. ™ indicated almost
complete inhibition of BioB at a molar ratio of 1.5 DOA per BioB, corresponding to a DOA
concentration of ~ 55 pM. However, this was not observed by Tse Sum Bui et al. ®® who
reported that BioB was not inhibited by DOA. However, Ziegert observed co-operative
inhibition of BioB in vitro by DOA and methionine™** **2. In his studies he reported that the
individual compounds had a weak inhibitory effect, which was greatly increased when they
were present in equimolar amounts. This is relevant as DOA and methionine are generated in a
1:1 ratio as products of radical SAM enzymes that use SAM stoichiometrically. Ziegert also
reported that addition of 5’-methylthioadenosine / S-adenosylhomocysteine nucleosidase
(MTAN) alleviated any inhibition by DOA. These results were consistent with the observations
of Choi-Rhee and Cronan**! who demonstrated that BioB could function catalytically in vivo
(20 — 60 molecules of biotin formed per BioB), but the catalytic activity was dependent on
MTAN. It was found that MTAN could hydrolyse the glycosidic bond of DOA (32) to yield
adenine (116) and 5°-deoxyribose (118)*1*! (see Scheme 4.1), thus extending the substrate
specificity of this enzyme which had previously been reported to utilise S-
adenosylhomocysteine (SAH) and 5’-methylthioadenosine (MTA)"*?!. Choi-Rhee and Cronan
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suggested that variable amounts of MTAN in BioB preparations could account for variations in
ability of DOA to inhibit BioB and provides an explanation for the previously reported

contradictory observations.

NH,
N~ SN CH ek
<) MTAN 0 OH NN
CH3 N N + </ I N
o oy
H,O OH OH H
OH OH 118 116
32

Scheme 4.1 MTAN mediated hydrolysis of DOA to adenine and 5’-deoxyribose.

Analogous studies by Douglas!****"!, demonstrated a similar pattern of product inhibition by
DOA and methionine on lipoyl synthase. Taken together these observations on LipA and BioB
suggest a trend of product inhibition of radical SAM enzymes by DOA and methionine which
use SAM stoichiometrically (see Section 1.2.2). Tyrosine lyase falls into this category of radical
SAM enzyme but is also capable of multiple turnovers as the protein does not act as a substrate,
which is the case for BioB and LipA. These observations on BioB and LipA combined with the
observed pre-steady state burst phase kinetics on tyrosine lyase inspired studies of the potential

inhibition of ThiGH by DOA and methionine.
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4.2.1 The Effect of DOA and Methionine on ThiH Activity

To investigate the possibility that the SAM cleavage products inhibit tyrosine lyase activity,
increasing amounts of each product was added to activity assays (see Method 25). Relative
activity was calculated by comparison with a standard assay to which no products had been
added and was assessed by the amount of p-cresol formed. This strategy negated the variations
in the kinetics of ThiGH and ThiH and the experiments reported in this section were conducted
on the ThiH / ThiGH mixture isolated by Ni-affinity chromatography which was not further
purified by gel filtration chromatography. Methionine had no observable effect on the activity,
even at a concentration of 1 mM, which is far greater than might accumulate in a typical in vitro
assay (Figure 4.1 — blue dots). DOA was found to be a weak inhibitor (Figure 4.1 — red dots)
and 1 mM of DOA only resulted in 50 — 60% inhibition. As DOA and methionine are produced
in equimolar amounts, their potential to inhibit in a cooperative manner was investigated. The
addition of a combination of DOA and methionine to assays resulted in a greater degree of
inhibition than the individual compounds (Figure 4.1 — purple dots). The inhibition could be
fitted to a 3 parameter logistic sigmoid to give the apparent ICs, for ThiGH under the assay

conditions of 445.6 + 35 uM.
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Figure 4.1 The effect of methionine (), DOA (@) and equimolar amounts of DOA and

methionine (@) on tyrosine lyase activity. Data were fitted to a 3 parameter logistic sigmoid

The data for the effect of methionine could not be fitted.
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4.2.2  Kinetic Analysis of MTAN with DOA as the Substrate

Choi-Ree et al. have demonstrated that DOA is a substrate for MTAN™ To further understand
the substrate diversity, the kinetic parameters of this enzyme with DOA as the substrate were
investigated. MTAN activity assays were prepared at seven different substrate concentrations
and the disappearance of DOA and formation of adenine monitored by HPLC (Figure 4.2 — see
Method 27). The initial rate of reaction was estimated by fitting the formation of adenine to a
linear function. The initial rates of reaction at the seven substrate concentrations were then fitted
to the Michaelis-Menten equation™*® (see Figure 4.3) giving the kinetic parameters which are
reported in Table 4.1. Although the disappearance of DOA could be monitored by HPLC, it

could not be fitted with such confidence, especially at high DOA concentrations.
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Figure 4.2 HPLC analysis of MTAN activity. Adenine (peak A) and DOA (peak B) were

detected by monitoring the absorbance at 254 nm.
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Figure 4.3 Michaelis-Menten plot for MTAN with 5°-DOA as the substrate.

V max Catalytic Efficiency
Substrate Kv/pM  Keg /S
/ pmol min™"mg™ /Mgt
DOA 120 + 3 33+3 49 1.5 x 10°
MTA 370 0.40 150 370 x 10°
SAH No Data 4.3 No Data No Data

Table 4.1 Kinetic constants of MTAN. Data for MTA and SAH were derived from Della

Ragione et. al.**]

108



4.2.3 Removal of DOA from ThiH Activity Assays

Having demonstrated that MTAN can rapidly hydrolyse DOA, we sought to test it as a solution
to potentially problematic inhibition by methionine and DOA. Therefore, the effect of adding
MTAN to in vitro activity assays that had been doped with inhibitory concentrations of DOA
and methionine was investigated. After incubation at 37 °C, the comparison of activity assays
with and without MTAN shows that MTAN restored the activity (Figure 4.4, sample 2). The
activity in the MTAN containing samples exceeds the observed activity of the positive control
(Figure 4.4, samples 1 and 3), due to the hydrolysis of the DOA formed during the reaction.
This conclusion is supported by the observation that the addition of MTAN to an activity assay

from the beginning of the reaction resulted in a reproducible enhancement of activity (Figure

4.4, samples 4).

Radical SAM proteins can be divided into two groups, based on whether they use the
deoxyadenosyl radical catalytically or stoichiometrically™®. The enzymes that utilize the DOA
radical catalytically (e.g. lysine amino mutase and DNA spore photoproduct lyase) are unlikely
to accumulate enough DOA or methionine to reach inhibitory concentrations. However, ThiH is
like the majority of family members characterised thus far, and forms DOA as a product that is
released from the active site at the end of each catalytic cycle. The apparent 1Cs, value for co-
operative inhibition by DOA and methionine suggests that inhibition by these two products has
a significant effect during in vitro assays. The addition of the nucleosidase MTAN relieves the
cooperative inhibition of tyrosine lyase and furthermore, results in a significant increase in the
amount of product formed (Figure 4.4). This is likely to be due to any potentially inhibitory

DOA formed during the reaction being hydrolysed by MTAN in situ.
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Figure 4.4 Effect of adding MTAN to tyrosine lyase activity assays. Assays were supplemented
with the following additional reagents: sample 1, no further additions; sample 2, DOA and

methionine (1 mM of each); sample 3, MTAN (10 uM), DOA and methionine (1 mM of each);

sample 4, MTAN (10 puM).

These observations of product inhibition by DOA and methionine are consistent with
observations made on BioB and LipA™?. It was also found that the inhibition could be relieved
by addition of MTAN. Thus, the addition of MTAN to radical SAM activity assays may
represent a useful general approach that is applicable to the large number of radical SAM
proteins currently subject of mechanistic investigation. The absence of product inhibition may

simplify kinetic analysis as well as increase the observed rates of reactions.
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4.3 Kinetics of Tyrosine Lyase in the Presence of MTAN

The observation of burst phase kinetics in time course experiments on tyrosine lyase had
implied a potentially complex mechanism of product inhibition. As MTAN was shown to
relieve product inhibition by DOA and methionine it was considered that addition of MTAN to
tyrosine lyase activity assay might simplify the interpretation of subsequent kinetic experiments.
Therefore, a time course was conducted with 10 uM MTAN present in the assay. The results are
shown in Figure 4.5. Adenine could be readily quantified using the same analytical HPLC
protocol developed in chapter 2 (R; = 6.0 min — peak 2 in Figure 3.3). During the quantification
of adenine produced in these time course experiments, particular care was required with
negative control samples (lacking reductant), as commercial supplies of SAM contain a small
proportion of 5’-methylthioadenonine (MTA) (114), which also yields adenine upon hydrolysis
by MTANM. Care was then taken to ensure that this background was subtracted from activity

assays, giving the data shown in Figure 4.5.

The addition of MTAN changed the profile of the ThiGH activity time course. In situ hydrolysis
of the DOA eliminated the burst phase and extended the period of relatively rapid turnover
(where ke for the formation of cresol was in the range 30-50 x 10 s™) beyond a single
turnover. The rate of product formation slowly declined and could be fitted as a first order

process:

[P1=1-([Plme™) (Eq. 4.1)

where [P] is the observed concentration of product; [P]max is the maximum observed product

concentration and k is the observed first order rate constant.
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Figure 4.5 In vitro time course of tyrosine lyase activity by ThiGH coupled with MTAN
mediated hydrolysis of DOA. Formation of adenine (®) and p-cresol (@) in a ThiGH activity
assay (containing 95 uM of ThiGH), coupled with MTAN mediated hydrolysis of DOA, were
monitored by HPLC. Data are the average of experiments carried out in duplicate, shown with

standard errors and were fitted to a first order exponential function (equation 4.1).

To derive the initial turnover number (ke the following equation was used:

o K[PLs,

. Eq. 4.2
ca €] (Eq. 4.2)

where [E] is the ThiGH concentration as estimated by the Bradford assay™*°!.
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The final p-cresol from the fit of equation 4.1 to the data ([P]mnax) concentration was 220 + 5.2
MM (~2.3 turnovers). Subsequent experiments with lower ThiGH concentrations demonstrated
that after 1 h, ThiGH could produce up to seven equivalents of p-cresol (see Table 4.2).
However the maximum concentration of p-cresol measured in any ThiGH assay did not exceed
250 pM. The initial turnover numbers (kcato) for ThiGH calculated from the initial rates are 37 +
3.0x 10" s and 51 + 6.4 x 10 s™ for the formation of p-cresol and adenine respectively. These
initial rates are similar to those observed in the absence of MTAN. At time points beyond five
minutes, a further increase in uncoupled turnover of SAM was observed and the final
concentration of adenine reached 590 + 24 uM, corresponding to a ratio of adenine:p-cresol of
2.7:1. The addition of MTAN to monomeric ThiH assays did not abolish the burst phase;
however, it did increase the degree of uncoupled turnover (see Figure 4.6). This suggests that

for monomeric ThiH, a step other than release of DOA is rate limiting.

[ThiGH] / pM  [p-Cresol] / pM  Number of turnovers

95 214 + 26 2.3
64 227+2.0 3.6
ol 207 +1.5 4.1
38 175+ 1.6 4.6
26 129+1.0 5.1
13 779%1.6 6.1
6.5 46.0+2.5 7.2

Table 4.2 Number of turnovers of tyrosine cleavage achieved by ThiGH. The assays contained
ThiGH (as shown), SAM (1 mM), tyrosine (1 mM), flavodoxin (36 pM), flavodoxin NADPH
reductase (9 uM) and NADPH (1.9 mM) and were incubated at 37 °C for 1h. The concentration

of p-cresol was estimated by HPLC (Method 17).
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Figure 4.6 In vitro time course of tyrosine lyase activity by monomeric ThiH, coupled with
MTAN mediated hydrolysis of DOA. Formation of adenine (®) and p-cresol (®) in a ThiH
activity assay (containing 90 uM of ThiH), coupled with MTAN mediated hydrolysis of DOA,
were monitored by HPLC. Data are the average of experiments carried out in duplicate, shown

with standard errors and were fitted to equation 3.3.
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4.4 Inhibition of Tyrosine Lyase by Glyoxylate and Ammonium lons

The addition of MTAN to tyrosine cleavage assays with the ThiGH complex altered the
kinetics, giving a prolonged period where reaction catalysis was assumed to be rate limiting.
However, despite there being an excess of SAM, tyrosine and NADPH the maximum
concentration of p-cresol observed remained at about 220 pM. In assays on monomeric ThiH
the steady state rate of tyrosine cleavage was not altered by the addition of MTAN, also
implying inhibition by a different product. Therefore, the potential of dehydroglycine to inhibit
the reaction was tested. A different strategy was required for investigating the potential of
dehydroglycine to inhibit tyrosine lyase. The hydrolysis of dehydroglycine is a rapidly
reversible equilibrium and the addition of relatively high concentrations of glyoxylate and
ammonium ions yields a low concentration of dehydroglycine in the solution. This method was
used advantageously by Begley and co-workers™! during studies in which they demonstrated
that the addition of glyoxylate and ammonium ions provided sufficient dehydroglycine to

reconstitute the ThiG dependent cyclisation reaction.

Using this approach to examine the effect of dehydroglycine on tyrosine lyase activity,
increasing concentrations of glyoxylate and ammonium ions were added to activity assays. To
ensure product inhibition by DOA did not disguise any effects of glyoxylate and ammonium
ions, these assays also contained sufficient MTAN to hydrolyse the DOA produced in the assay
to adenine (116) and 5’-deoxyribose (118) (see Scheme 4.1). The effects of glyoxylate and
ammonium ions on ThiH activity were measured using HPLC analysis, measuring tyrosine
cleavage by detecting the production of p-cresol and reductive cleavage of SAM by detecting

the production of adenine. The data for p-cresol was fitted to a 4 parameter logistic sigmoid:
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A=A+ DA (Eq. 4.3)

1+([|]]
IC,,

where A is the observed activity; A, is the minimum activity, AA is the difference between the
maximum and minimum observed activity; [I] is the concentration of inhibitor (glyoxylate and
ammonium ions) and h is the Hill co-efficient. This fit showed that the combination of
ammonium ions and glyoxylate inhibited the cleavage of tyrosine with an apparent ICs, of 440 +
55 uM and a Hill co-efficient of 1.1 + 0.1, suggesting a 1:1 complex of the inhibitor and the
enzyme, although it is not possible to determine from this experiment whether glyoxylate or
dehydroglycine is binding to the enzyme. In contrast, no inhibition of SAM cleavage was
observed over the whole range of glyoxylate and ammonium concentrations. At high glyoxylate
and ammonium concentrations (2 mM), greater than 90% of the reductive cleavage is
uncoupled, resulting in the accumulation of up to 600 uM of adenine but only 40 uM of p-
cresol. Similar results were obtained in experiments using either ThiGH complex or monomeric
ThiH, suggesting the presence of ThiG alone does not influence this inhibition. Subsequent
experiments in which 1 mM of the individual species was added to activity assays (Figure 4.8)
showed this inhibition was also observed when only glyoxylate was added and that there was no
effect by adding only ammonia. Therefore, it cannot be differentiated whether glyoxylate or

dehydroglycine is interacting with the protein.
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Figure 4.7 Inhibition of tyrosine lyase activity by glyoxylate and ammonium ions. Assays were
coupled with MTAN mediated hydrolysis of DOA to preclude the possibility of inhibition by
DOA and methionine. A) Tyrosine Ca—Cp bond cleavage was measured by the formation of p-
cresol and was fitted to equation 4.3. B) SAM cleavage was measured by the formation of
adenine. Assays were incubated for one hour and analyzed by HPLC and values are relative to
standard assays with no additions. Data are the average of experiments carried out in duplicate

and shown with standard error.
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Figure 4.8 Inhibition of tyrosine lyase activity by glyoxylate and ammonium ions. Assays were
coupled with MTAN mediated hydrolysis of DOA to preclude the possibility of inhibition by
DOA and methionine. A) Tyrosine Ca—Cf bond cleavage was measured by the formation of p-
cresol. B) SAM cleavage was measured by the formation of adenine. Assays were incubated for
one hour and analyzed by HPLC. Assays were supplemented with the following additions:
sample 1, no additions; sample 2, ammonium ions (1 mM); sample 3; glyoxylate (1 mM);
sample 4, glyoxylate and ammonium ions (1 mM of each). Data are the average of experiments

carried out in duplicate, shown with the standard errors.
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4.5  Activity Assays with Tyrosine Analogues

To obtain further insight into the mechanism of tyrosine cleavage, the reactivity of structural
analogues of tyrosine in ThiGH activity assays was investigated. These studies had two main
objectives: to define which functional groups were required for tyrosine cleavage and what
factors promoted uncoupled turnover. The analogue assays were incubated at 37 °C for one hour
and analysed by HPLC. This allowed two steps in the mechanism to be monitored: the
formation of DOA indicated the extent of the reductive cleavage of SAM and the formation of
p-cresol or other aromatic products allowed the measurement of the Ca—Cp bond cleavage
step. As the assays were not designed to monitor the Kinetics, they were performed on the ThiH
/ ThiGH mixture, isolated by Ni-affinity chromatography which was not further purified by gel
filtration chromatography. An initial investigation of several tyrosine analogues (see Figure 4.9)
was undertaken using this strategy. The negative control for these experiments (which contained
chemically reconstituted ThiGH, SAM and a reductant, but no tyrosine) was particularly
important as very little uncoupled SAM cleavage occurred in the absence of tyrosine. It was
found that tyramine (122) and L-phenylalanine (120) were not substrates and did not show an
increase in the cleavage of SAM relative to the negative control. However, it was found that 4-
hydroxyphenylpropionic acid (4-HPPA) (119) and 4-hydroxyphenyl-a-hydroxypropionic acid
(4-HPHPA) (121) led to the formation of ~50% of the amount of DOA compared to the positive
control (with tyrosine as the substrate). Careful examination of the HPLC trace (Figure 4.10)
confirmed that little or no p-cresol was formed in assays containing 4-HPPA (less than 5%
relative to positive control samples). This result suggests that this analogue was not undergoing

Ca—Cp bond cleavage but can support uncoupled SAM cleavage.
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Figure 4.9 Structures of tyrosine analogues.
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Figure 4.10 A) Analytical HPLC traces of tyrosine lyase activity assays with tyrosine

analogues. B) Section of the HPLC chromatogram showing the p-cresol elution at x5

magnification. The detector measures the absorbance at 280 nm. The traces are for assays with

(from top to bottom): 1) L-tyrosine (10), I1) 4-HPHPA (121), 111) 4-HPPA (119), IV) tyramine

(122), V) L-phenylalanine (120), V1) no substrate (negative control). Comparison with authentic

samples identified the following peaks: a, tyrosine; b, DOA; ¢, MTA,; d, 4-HPHPA,; e, 4-HPPA;

f, p-cresol.
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In assays containing 4-HPHPA (121), a small amount of p-cresol was observed to form relative
to positive control assays. The amount of p-cresol formed was variable, ranging between 5 —
40% (see Table 4.3) and the average of four experiments implied that 20 + 8% of Ca—Cf bond
cleavage of 4-HPHPA (121) occurred, relative to the amount of Ca—Cp bond cleavage
observed for tyrosine (10). This result suggests that this analogue also increases the amount of

uncoupled turnover.

Experiment SAM Cleavage/ %  Ca—Cp Cleavage / %

1 47 12
2 62 41
3 47 4.5
4 66 21
Average 565 20 8

Table 4.3 Activity measurements of assays with 4-HPHPA (121). SAM cleavage and Ca—Cp
cleavage was measured as the relative amounts of DOA and p-cresol formed compared to a
positive control assay (with tyrosine (10) as the substrate) conducted in parallel. The average

value is shown with the standard error.

This strategy of analysing for DOA formation was used to screen further tyrosine analogues (see
Table 4.4). Analogues with different functional groups at the phenol position were investigated,
specifically 4-amino- (123), 4-methyl- (124) and 4-fluoro-L-phenylalanine (125). None of these
tyrosine analogues increased SAM cleavage or yielded detectable aromatic products. Assays
with p-tyrosine showed relatively slow uncoupled SAM cleavage, but no p-cresol formation was

observed. Further experiments in which reaction products or potential substrate mimics were
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added to activity assays are shown in Table 4.5. They show that combinations of reaction

products do not increase uncoupled SAM cleavage unless L-tyrosine is present in the mixture.

Compound SAM cleavage (%)
L-Tyrosine (10) 100
4-Hydroxyphenylpropionic acid (119) 50.9+3.0
4-Hydroxyphenyl-a-hydroxypropionic acid (121) 55.5+5.0
p-Tyrosine 14.3
4-Hydroxyphenylcinnamic acid 72122
Tyramine (122) 59+3.0
L-Phenylalanine (120) 54+13
4-Amino-L-phenylalanine (123) 4.8+0.6
4-Methyl-L-phenylalanine (124) 3.0
4-Fluoro-L-phenylalanine (125) 2.6
No Substrate (negative control) 6.6+17

Table 4.4 Amount of turnover from substrate analogues. SAM cleavage was assessed by
monitoring the amount of DOA produced. Values are given as a percentage with respect to the
amount of activity observed in a standard assay (including tyrosine as the substrate) that was

measured in parallel. Standard errors are given where the results have been replicated.
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Compound(s) SAM

cleavage (%0)

Co—C; bond

cleavage (%0)

L-Tyrosine 100
NH," + glyoxylate + L-tyrosine 117+£7.0
Glycine + p-cresol 8.4
p-Cresol 7.8
NH," + glyoxylate + p-cresol 6.9
Glycine 6.8
NH," + glyoxylate 4.8

100
252+5.1
N/A
N/A
N/A
N/A

N/A

Table 4.5 Amount of turnover measured from combinations of in vitro products or potential

substrate mimics. SAM cleavage was assessed by monitoring the amount of DOA generated and

Co—CP bond cleavage was assessed by monitoring the amount of p-cresol formed. Values are

given as a percentage with respect to the amount of activity observed in a standard assay

(including tyrosine as the substrate) that was measured in parallel. Standard errors are given

where the results have been replicated.
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4.6 Discussion of the Mechanism of Tyrosine Lyase

All of the tyrosine structural analogues that replaced the phenol functional group were inactive
and it appears that ThiH is very sensitive to modifications at this position. Fluorine has 97% of
the van der Waals radius of oxygen, but 4-fluoro-L-phenylalanine (125) was not sufficiently
similar to L-tyrosine to increase SAM cleavage above the background level. Although the
ArO—H bond is weak in phenols such as tyrosine, a comparison of the bond dissociation
energy (BDE) of phenol (ArO—H, 360 kJmol™), aniline (ArNH—H, 388 kJmol™) and toluene
(ArCH,—H, 355 kdmol™) (see Table 1.1, p3)® indicate that 4-amino- (123) and 4-methyl-L-
phenylalanine (124) ought to be susceptible to hydrogen atom abstraction by the
5’deoxyadenosyl radical. As neither of these analogues resulted in SAM cleavage, the subtle
substrate selectivity of tyrosine lyase cannot be based purely on the bond strength. The
substrates that permitted SAM cleavage, L- and p-tyrosine, 4-HPPA (119) and 4-HPHPA (121)
(Figure 4.10 and Table 4.4) share a common structural motif of being 4-

hydroxyphenylpropionic acids and the phenol appears to be required for SAM cleavage.

The problem of uncoupled SAM cleavage in radical SAM proteins is well documented®®. The
reactivity of the primary 5’-deoxyadenosyl radical makes its uncontrolled formation potentially
hazardous for the cell. There are several mechanisms by which this family of enzymes regulate
uncoupled SAM cleavage, including modifying the redox potential of the 4Fe-4S cluster in
response to substrate binding™ ™! or by cooperative substrate binding™. The nature of the
reductant has been proposed to have a role in the degree of uncoupled SAM cleavage with less
uncoupling being observed when using the natural electron donor systems. The ThiH activity
assay uses the NADPH, flavodoxin and flavodoxin reductase system, which is assumed to be
the natural intracellular reductant for E. coli ThiGH and therefore, limits uncoupled turnover.
The fact that when ThiGH is incubated with SAM and the reducing system, but no substrate

(negative control in the substrate analogue experiments) results in very little DOA formation
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implies that formation of the 5’-deoxyadenolsyl radical is controlled by the presence of a
substrate. This also suggests that only a very small proportion of uncoupled turnover occurs as a
result of the 5’deoxyadenosyl radical becoming quenched by reacting with a compound other

than the intended substrate.

The strong preference shown by tyrosine lyase for a phenolic substrate does not rule out the
potential for Ca—Cp bond cleavage to be initiated by abstraction of a hydrogen atom other than
from the phenol functional group; for example formation of the ammonium radical-cation
intermediate by hydrogen atom abstraction from the amino functional group (see Scheme 2.1 C,
p65). However, the fact that no reaction was observed when ThiH was incubated with tyramine
(122), phenylalanine (120) or any of the 4-substituted phenylalanine analogues (123, 124 and
125) makes it difficult to find a precedent for this mechanism from the data currently available.
Unequivocal assignment of the site of hydrogen atom abstraction from tyrosine requires
structural determination of tyrosine and SAM bound to the active site of ThiH. The results
presented here strongly indicate that hydrogen atom abstraction occurs at the phenolic position

and this is what will be discussed hereafter.

The selectivity of ThiH for phenolic substrates highlights the importance of a phenolic O—H
bond in the active site as a prerequisite for SAM cleavage. However it does not provide
evidence for concerted SAM cleavage and phenolic hydrogen atom abstraction. The formation
of a tyrosine radical is thermodynamically favourable as a result of the reactivity of the primary
deoxyadenosyl radical, the strength of the C—H bond formed in 5’-deoxyadenosine and relative
weakness of the phenolic O—H bond (see Table 1.1, p3). The strong dependence of DOA
formation upon a phenolic substrate suggests that reductive cleavage of SAM (detectable as the
formation of DOA) is coupled to the generation of a phenolic tyrosine radical. However, the fact

that the aniline analogue (123) was not a substrate may suggest an interaction of the lone pairs
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on the phenol with juxtaposed protein residues may help to facilitate hydrogen atom abstraction
by orientating the phenolic O—H bond to ensure appropriate overlap of the O—H o* orbital

with the radical on the 5’ carbon of DOA.

The observed product inhibition, uncoupled turnover and studies with tyrosine analogues can be
integrated into an improved mechanistic model, shown in Scheme 4.2. The model proposes two
possible fates for the phenolic radical (126): either turnover leading to product formation; or
completion of a futile cycle leading back to tyrosine. Turnover leading to product formation is
facilitated by the electron deficient nature of the phenolic radical, which can undergo Ca—Cp
bond cleavage with the assistance of the lone pair of electrons on the a-amine of tyrosine. Such
a mechanism provides a direct route to dehydroglycine (11) and the resonance stabilized radical
anion 102a«102b that requires reduction and protonation to form the observed product, p-
cresol (88). A reduction step in addition to reductive cleavage of SAM is unusual for a radical
SAM proteint®. The immediate source of the additional reducing equivalent is unknown, but
the [4Fe-4S] cluster that is used to accelerate the reductive cleavage of SAM is a possible

candidate.

To achieve uncoupled turnover, the phenolic tyrosine radical (126) is proposed to undergo
immediate reduction to the phenoxide (127) followed by protonation, giving a direct route back
to tyrosine. In this model, the difference between the uncoupled and product forming pathways
depends on the timing of the reduction of either phenolic radical (126) or (102) relative to the
Co—Cp bond cleavage step. It may be that that the observed uncoupled turnover is accelerated

in the in vitro assay by the presence of a large excess of reducing equivalents.
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Scheme 4.2 Proposed mechanism of tyrosine lyase including uncoupled turnover by completion

of a futile cycle. The reductive cleavage of SAM yields the 5’-deoxyadenosyl radical which can

abstract a hydrogen atom from the phenolic O—H bond. The resultant phenolic radical (126)

can follow two possible reaction pathways and the nature of the group R can effect which of

these two pathways is favoured. Immediate reduction, followed by protonation completes an

unproductive futile cycle back to the substrate. For L-tyrosine (R=NH,) (10), cleavage of the

Ca—Cp bond yields dehydroglycine (11) and the resonance stabilized radical anion

102a«>102b which requires the addition of two protons and an electron to give p-cresol (88).

In a scenario where the Ca—Cp is dramatically slowed down, such as in the case of the

analogues 4-HPPA (119) which lacks the a-nitrogen lone pair, then reduction of the tyrosine

radical becomes kinetically more favourable. This reduction step, leading to a futile cycle,

guenches any potentially reactive radical species and has the net result of generating methionine

and DOA from reductive cleavage of SAM with no overall change to the tyrosine substrate.

Hence this futile cycle is a source of uncoupled SAM cleavage in ThiH. In the case of b-

tyrosine and the analogue 4-HPHPA (121), little or no Co—Cp bond cleavage was observed
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despite the presence of a a-lone pair and these substrates appear to be restricted mainly to futile
cycling. Again, a precise stereoelectronic explanation for the observed substrate selectivity will
require a structural model of the ThiH active site. However, it can be implied from these
observations that the orientation of the a-lone pair may be crucial to driving Ca—Cp bond

cleavage.

The effects of a phenolic radical on tyrosine have been investigated using computational
methods. It was found that there was a small conformationally driven structural change in line
with potential cleavage. The Ca—Cp bond becomes longer when the lone pair on the nitrogen
was aligned antiperiplanar to the electron deficient n cloud of the phenolic radical (see Figure
4.11 B). Also, when the nitrogen- Ca—Cp bond-phenol was fixed in an antiperiplanar
orientation the singly occupied molecular orbital (SOMO) is shown to have some spin density
on the nitrogen (see Figure 4.11 A). Therefore this orientation of tyrosine provides good orbital
overlap to allow delocalisation of the spin. One interpretation of this data is that if the tyrosine
was held in a fixed orientation by the enzyme active site, then this may provide substantial
catalysis for Ca—Cp bond cleavage. This could include fixing the Ca—Cp bond c* orbital in a
position that would allow for donation of electrons from the nitrogen lone pair, the result of
which would be the resonance stabilised radical anion (102) (see Scheme 4.2 and Figure 4.12).
Appropriately positioned residues could also help to improve the stability of this radical anion.
Computational attempts to break the Ca—Cp bond of the phenolic tyrosine radical in the gas
phase were unsuccessful. Therefore, it is suggested that a substantial enzyme component is

required to drive this cleavage (Dr. A. Croft (University of Bangor), personal communication).
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Figure 4.11 A) Spin density of the SOMO of the tyrosine radical in the gas phase when the
nitrogen lone pair is aligned antiperiplanar to the pi-cloud. (Image was constructed by Dr. A.
Croft (University of Bangor) and shared in a personal communication). B) The effect of rotating

the Ca—N bond (see inset) on the length of the Ca—Cp bond length.
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proposed to be driven by the enzyme fixing the orientation of tyrosine, possibly by hydrogen

bonds to the amino acid moiety.

The hydrolytic instability of electrophilic dehydroglycine (11) implies that a tight interaction
with ThiGH would be advantageous, helping to sequester the sensitive imine away from the
aqueous medium. This concept was introduced in Chapter 3 and used to explain the observed
burst phase kinetics. The observed product inhibition by a combination of glyoxylate and
ammonium ions (which are in rapid equilibrium with a low concentration of dehydroglycine)

may reflect such a tight binding constant. A more surprising observation was the almost
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complete (>90%) uncoupling of SAM turnover from the tyrosine cleavage reaction in the
presence of relatively high concentrations of glyoxylate and ammonium ions (2 mM of each).
This apparently wasteful process is unlikely to occur in a cellular context and the effect was
maximized under specific in vitro conditions with the addition of MTAN plus high
concentrations of glyoxylate and ammonium. However, the experiment does indicate that in
cells where ThiGH is not actively synthesizing the thiazole carboxylate, one of the functions of
product inhibition by DOA may be to reduce the uncoupled turnover of SAM. The release of
dehydroglycine observed in vitro is unlikely to occur during cellular thiamine biosynthesis,

when transfer of the dehydroglycine probably occurs directly between ThiH and ThiG.

As was alluded to earlier, turnover of ThiH is a metabolically costly process and in addition to
the consumption of tyrosine, also uses up an equivalent of NADPH and an equivalent of SAM,
which is biosynthesised from ATP and methionine. The generation of dehydroglycine needs to
be synchronised with the generation of its cyclisation partner on ThiG (82) (see Figure 4.13).
The formation of this nucleophilic thiol intermediate (82) is by no means trivial and involves the
interaction of at least two proteins. The transfer of dehydroglycine from ThiH to ThiG may
explain the functional reason behind ThiGH complex formation. Additionally the regulation and
transfer of dehydroglycine is crucial to avoid wasted turnover of ThiH. Where the tight binding
of dehydroglycine to ThiGH will help in its transfer, the product inhibition by DOA and
methionine may help to minimise uncoupled SAM cleavage. Although evidence has been found
in these studies for product inhibition of tyrosine lyase by both DOA and dehydroglycine, the
complexity of the reaction catalysed by ThiGH does not allow the description of a definitive

kinetic model for product release or transfer at this stage.
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Figure 4.13 Scheme depicting the need for synchronisation of the activity of ThiH and ThiG. A

turnover of ThiH results in consumption of one equivalent of tyrosine, ATP and NADPH.

In the context of the substrate analogue experiments however, the observation of almost
complete uncoupled turnover at high glyoxylate and ammonium concentrations may help to
further elucidate the Ca—Cp bond cleavage mechanism. It has already been inferred that the
observation of SAM cleavage (by monitoring the formation of adenine in this experiment) is
coupled to generation of a phenolic tyrosine radical. It may be the case that the binding
interaction between tyrosine and ThiH which orientates the substrate and drive Co—Cp bond
cleavage may also function to bind dehydroglycine and help to sequester it away from the
aqueous media and aid its transfer to ThiG. If glyoxylate or dehydroglycine were interacting

with some of the ThiH residues that drive the cleavage reaction then this may explain the
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observed uncoupled turnover at high glyoxylate and ammonium concentrations. This analysis is
further supported by the observation that uncoupled turnover is found to be more prevalent
during steady state, when it is proposed that release of dehydroglycine from the active site is
rate limiting. Additionally, the amount of SAM cleavage observed in assays containing
glyoxylate and ammonium ions was observed to be slightly greater than in assays that didn’t
contain any of these inhibitors (~110% relative to positive controls). This again may suggest
that, even at low concentrations, dehydroglycine or glyoxylate is interacting with ThiGH in a

manner that increases uncoupled turnover.
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4.7 Summary and Conclusions

The rate of ThiH mediated tyrosine cleavage is strictly controlled by the accumulation of the
products. The function of this product inhibition in cells actively synthesising thiamine may be
to coordinate the rate of formation of dehydroglycine by ThiH with its’ utilization by ThiG for
thiazole formation. Structural analogues of tyrosine have been used to define the substrate
requirements of the enzyme and in particular the need for a phenolic O—H bond. Furthermore,
phenolic tyrosine analogues which lacked a correctly positioned amine functional group were
able to undergo a partial reaction leading to uncoupled SAM cleavage, but the rate of Ca—Cp
bond cleavage was dramatically reduced in the absence of a correctly positioned amine
functional group. A precise mechanistic interpretation of these observations will require
structural information on the ThiH active site, but an improved mechanistic model was
constructed from the data on product inhibition and substrate analogues. This model was
particularly useful for explaining uncoupled turnover of ThiH, which is postulated to proceed

through a futile cycle of the tyrosine radical.
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5 Deuterium Labelling and a Kinetic Isotope
Effect on Tyrosine Lyase Activity

5.1 Introduction

Deuterium labelling of substrates is a common technique in elucidating enzyme
mechanisms®™. It is a convenient way of monitoring hydrogen transfer steps, either by
detection of deuterated products, or in some cases a kinetic isotope effect can be observed,
which provides information on the kinetics and can reveal the rate limiting step of catalysis. The
mechanistic proposal discussed in Chapters 2 and 4 suggests (Scheme 2.1, p65, Scheme 4.2,
p127 and Figure 4.12, p130) that the exchangeable, phenolic hydrogen atom is abstracted from
tyrosine. Abstraction of an exchangeable hydrogen atom is unusual for a radical SAM enzyme
and in the majority of examples studied to date the substrate radical is generated by cleavage of
a non-exchangeable C—H bond™® #’). In order to clarify the site of hydrogen atom abstraction
from tyrosine by the 5’-deoxyadenosyl radical, the substrate was labelled with deuterium atoms.
As a negative control, tyrosine that was uniformly deuterated at all the non-exchangeable
positions was incubated with ThiGH. To obtain tyrosine that was deuterated at all the

exchangeable positions, it was necessary to prepare ThiGH assays in D,0.

DOA can be detected by LCMS (with positive ion electrospray detection), using the liquid
chromatography conditions that were routinely used for activity assays. Abstraction of a
deuterium atom would result in the formation of 5°-deutero-DOA (D-DOA) with an increased
mass of one unit with respect to proteo-DOA (H-DOA), which forms normally (see Scheme
5.1). The initial objective was to monitor the formation of D-DOA to clarify the site of
hydrogen atom abstraction. However, an apparent kinetic isotope effect was observed which

provoked some more detailed, kinetic experiments.
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5.2 Initial Deuterium Labelling Studies

N.B. The ThiH activity measurements reported in this section were conducted on the ThiH /
ThiGH mixture isolated by Ni-affinity chromatography which was not further purified by gel

filtration chromatography.

Initial experiments were designed simply to monitor any formation of D-DOA by LCMS from
ThiGH activity assays incubated with tyrosine deuterated at the non-exchangeable positions
(128), or from an assay incubated in 50% D0, in which 50% of the tyrosine will be deuterated
at the exchangeable positions (129) (see scheme 5.1). Compound 128 did not cause any D-DOA
to form (data not shown). However the mass spectra of the DOA peak from the LCMS
chromatogram from a series of assays prepared in either 100% H,O, or 50% D0 (as described
in Method 32) is shown in Figure 5.1. From the assay incubated in 50% D,O, there is a clear
increase in the relative abundance of the m/z = 253 mass ion. In the positive control assay
(incubated in 100% H,0), this ion is due to the natural abundance of *3C in the DOA. It can be
assumed that the increase in relative abundance of this mass ion is due to the presence of D-

DOA in this sample.

It would be expected, however, that as the assays were prepared in 50% D,O and if no other
factors perturb the reaction, the relative abundance of D-DOA and H-DOA should be equal. The
results shown in Figure 5.1 shows that this is not the case. One possible interpretation of these
observations is that relatively less D-DOA was being formed, consistent with a kinetic isotope
effect on the hydrogen atom abstraction. This is supported by the smaller amounts of products
forming in assays incubated in 50% D0 relative to 100% H,O (see Table 5.1), implying a
slower rate of reaction.
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Figure 5.1 Mass spectra of DOA obtained from A) a synthetic standard of DOA; B) a positive
control ThiGH activity assay incubated in 100% H,O; C) a ThiGH activity assay incubated in

50% D,0 / H,0.
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Conditions 1hin H,O 1hin50% D,O 2hin 50% D,O

DOA formed / pM 126 83 (66%) 103

p-Cresol formed / pM 87 52 (60%) 56

Table 5.1 Amount of product formed in ThiGH assays monitored by HPLC. The numbers in

brackets is the relative amount of product relative to the positive control.
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5.3 Measurement of a Kinetic Isotope Effect in 50% D,0

N.B. The ThiH activity measurements reported in this section were conducted on the ThiGH

complex which had been purified by gel filtration chromatography (Method 13).

5.3.1 Initial Data Collection

To follow up on the observations shown in Table 5.1 a time course experiment of tyrosine lyase
activity in 50% D,0O was carried out. In order to draw direct comparisons, a positive control
time course in 100% H,O was performed in parallel (see Method 32). As discussed later in this
chapter, experiments with very high percentages of D,O (approaching 100%) were
unsuccessful. Unfortunately, derivation of an estimate for the kinetic isotope effect from
substrates that are not isotopically pure is slightly more complicated as a direct measurement of

the rate of reaction from pure deuterated (Vp) substrate is not obtainable.

The data obtained from time course experiments is shown on Figure 5.2 and was fitted to
equation 3.1 (as described in Section 3.6). The experiment in 50% D,0 / H,O caused an
observable change on the initial rate and the burst phase amplitude. In 50% D,0 / H,O the
majority of products formed in the assays are as a result of the rate of turnover in H,O (the 50%
of the assay that is abstracting a hydrogen atom from tyrosine and thus turning over at the
normal rate). Information about the small amount of product formed as a result of deuterium
atom abstraction (Vp) requires a subtraction of the observed rate (Vqps) in 50% D,0. The level of
complexity is compounded by the fact that ThiGH displays burst-phase kinetics. Therefore, the
rate of the tyrosine cleavage reaction is reflected in the burst phase rate only. It is apparent from
these experiments that the presence of D,O may also be affecting the rate at steady state, but

further experiments are required to clarify this observation.
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Figure 5.2 Time course data comparing the observed rates of product formation in 100% H,0O
and 50% D,0O / H,0 A) p-cresol formation in 100% H,O (e) and 50% D,0 / H,0 (0); B) DOA
formation in 100% H,O (m) and 50% D,0O / H,O (o). Data is the average of a duplicate data set

shown with standard errors.
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5.3.2 Data Analysis

A deuterium Kinetic isotope effect is the ratio of the rates of reaction with proteo substrate

against the rate of reaction with deutero substrate (equation 5.1).

KIE = 2 (Eq. 5.1)

D

Therefore, in order to estimate the KIE an estimate of Vy and Vp, is required. The data from both
time courses (in 100% H,0 and 50% D,0 / H,0) was fitted to equation 3.1, as for previous time
course experiments discussed in chapters 3 and 4. Fitting of the data to equation 3.1 gave values

of [E], keurst and L with their associated errors (see Table 5.2).

[P]=[E]@—e“"=")+ Lt (Eq. 3.1)

In order to calculate the initial rate of reaction (V,s), equation 3.1 was differentiated, giving
equation 5.1. The initial rate of reaction in 100% H,O (Vy) and in 50% D,0O / H,0O, was derived

by substituting t = 0 into equation 5.1, (note that at £= 0, efurset = 1).

d[P] -
Vobs =~ = [El kpurst- e 7ourst® + L (Eg. 5.2)
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Product Conditions [E]/pPM  Kpuws/ min?  L/pMmin?  Veo/ pMmin?  R?

100% H,O 43.8+18 0.40+0.05 0.70 £ 0.06 18.2+2.3 0.99
p-Cresol
50% D,0 27.3+13 0.42+0.07 0.24 £0.04 11.7+2.0 0.98

100% H,O 65.2+4.1 0.26+0.04 1.7+0.1 179+ 2.7 0.99
DOA
50% D,0 426+29 0.28+0.05 0.80+0.08 12.7+23 0.99

Table 5.2 Values of [E], kyust and L derived from fitting data to equation 3.1 and shown with
their standard error. Vi, was calculated by substituting these values into equation 5.3. Details of

the estimate of the error associated with V=, are described at the end of this chapter.

For substrates that are not isotopically pure it is necessary to correct the observed rate (Voys) t0
calculate the rate of reaction for pure deutero substrate (Vp). This is achieved by equation 5.3,
which can be rearranged to equation 5.4 in order to directly calculate Vp from Vs, measured

form a reaction with an isotopically impure substrate and V.

Vops = VX + Vp(1 = X) (Eq. 5.3)
Vobs—VuX
Vo-=5 (Eq. 5.4)

X is the fraction of isotopic impurity to the total substrate concentration and described by

equation 5.5. For experiments in 50% D,0, X =0.5
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LSk] (Eq 5.5)

~ [Syl+[Sp]

Calculated values of Vy, Vp and the KIE with respect to p-cresol formation and DOA formation
are shown in Table 5.3. There was an observable KIE on the rate of formation of both these
products. The experimental errors associated with both observe KIE’s is very large (for
derivation of the errors see Section 5.6). These large errors are due to the fact that several
calculations are required to derive the KIE’s from the data collected. This is despite the

relatively good fit (R? = 0.99) of equation 3.1 to the data.

Product  Vy/pMmin®  Vp/pMmin®  Vy/Vp

p-Cresol 182+23 5.2+4.6 3.5+31

DOA 17927 7.5+53 2417

Table 5.3 Estimate of the deuterium KIE derived from the estimated rates of reaction, att =0,
with proteo tyrosine and deutero tyrosine derived from the formation of two products, p-cresol
and DOA. The derivation of the errors associated with these values of Vp and V, / Vp are

described at the end of the chapter.
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5.3.3 Potential Improvements to the Experiment

The most obvious adjustment to the experimental design that would increase the accuracy of the
observed KIE would be to obtain a direct measurement of Vp. In the case of ThiH, this requires
incubating ThiGH, along with substrates and reductants, in a buffer containing 100% D,0O. The
practical considerations of preparing multiple ThiGH assays, suitable for a time course
experiment, in 100% D,0 are very serious. The ThiGH activity assay requires strictly anaerobic
conditions and contains four proteins (ThiGH, FIdA and Fpr) and three organic compounds
(SAM tyrosine and NADPH). Additionally, as was shown in Chapter 3, the stability of ThiGH
is dependent on the presence of sodium chloride and glycerol in the buffer. Several attempts
were made to optimise the assay to permit the use of 100% D,0O, without success. Initially, each
compound required for the assay (tyrosine, SAM and NADPH) was dissolved in D,O buffer.
The proteins (ThiGH, FIdA and Fpr) were exchanged into D,O buffer using NAP-10 columns.
In order to maximise the degree of buffer exchange, this step was repeated three times.
However, during this time the co-factors (4Fe-4S cluster, FMN or FAD) became dissociated
from the protein. Attempts were made to overcome this by adding fresh aliquots of FMN and
FAD (prepared in D,0O) to FIdA or Fpr. However this gave very little observed activity, even in
positive control assays in 100% H,O. (NB. Positive control experiments involve identical
protein manipulations. For example, the number of buffer exchange steps are the same, but

carried out in H,O buffer).

The lack of success of the trial experiments to achieve activity in 100% D,0 was attributed to
the instability of ThiGH and the fact that multiple buffer exchange steps were irreversibly
degrading the 4Fe-4S cluster. One possible solution to this problem would be to chemically
reconstitute the 4Fe-4S cluster after ThiGH had been exchanged into D,O buffer. The
experiments described in this chapter divide chemically reconstituted ThiGH into two, to

directly compare the activity in D,0 to the activity in H,O. Chemical reconstitution of the 4Fe-
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4S cluster can lead to small batch to batch variations in the amount of active ThiH. One
potential source of variability in ThiH activity measurements can be eliminated by dividing the
protein after chemical reconstitution. Chemically reconstituting ThiGH in D,O may help
overcome the loss of activity due to repeated buffer exchange steps, but this will reduce the
confidence in making direct comparisons between activity measurements made in H,O and

D,0.

Addition of MTAN to ThiGH activity assays altered the kinetic profile and p-cresol formation
could be fitted to a first order process. This gave an increased period where the rate of reaction
catalysis was rate limiting. In contrast, in the absence of MTAN, ThiGH shows a burst phase
profile where product release becomes rate limiting after an initial turnover. Simplification of
the kinetics by the addition of MTAN may help improve the accuracy of estimating the KIE.
However, the observation that the rate of SAM cleavage (by monitoring the formation of DOA)
and the rate of tyrosine cleavage (by monitoring the formation of p-cresol) were affected by
changing the rate limiting step is potentially highly significant in understanding the mechanism
of ThiH. The relative rate of uncoupled turnover was significantly higher in assays containing
MTAN reported in chapter 4. Therefore, it must be considered that although the addition of
MTAN may help to derive a value for the KIE in terms of productivity of the enzyme, it may be

less useful in fully understanding the connection between SAM cleavage and tyrosine cleavage.

In the interests of balancing the level of understanding gleaned from the experiment with the
practical difficulties, it may be the case that simply performing the experiment in higher
amounts of D,0 is the best option. This could be achieved by adding small volumes of highly
concentrated ThiGH stocks to assays prepared purely in D,O. It is estimated that an assay

containing >85% D,0 / H,0 could be prepared in this way.
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5.4 Discussion of the Kinetic Isotope Effect

The observation of a kinetic isotope effect suggests that hydrogen atom abstraction is the rate
limiting step of catalysis. This has been observed for other members of the radical SAM family,
including LipAP? ' and anaerobic Sulfatase Maturating Enzyme (anSME)™?. The KIE of 3.5
observed on the rate of tyrosine cleavage is within the expected range of between 1 and 7 for a
deuterium isotope effect™ . The KIE observed for the rate of anSME catalysis (see Scheme
5.2) was 5.6. Interestingly, although a KIE of 5.6 was observed on the rate of anSME catalysed
oxidation of the substrate, no KIE was observed on DOA formation. In the experiment with the
deuterated substrate anSME produced 4.5 times more DOA than peptide derived product. This
would imply that uncoupled turnover observed for anSME occurs via an abortive pathway. In
reactions with deuterated cysteinyl peptide, the rate of hydrogen atom abstraction is

dramatically slowed down causing the abortive pathway to become more favourable.

H,C-Ado DH,C-Ado

D__SH . -SH
E\NL(H% /: f\NJ;W/QZ
anSME H
H o (0]
131

132

Scheme 5.2 Hydrogen atom abstraction from cysteinyl peptide by the 5’-deoxyadenosy! radical

produced by anSME.

The experiments on ThiGH showed an apparent KIE on both tyrosine cleavage and SAM
cleavage. It was inferred from previous experiments on substrate analogues (see Section 4.5)
that SAM cleavage is directly coupled to formation of a substrate radical, particularly as
incubation of ThiGH with SAM and a reductant, but no substrate gave only a very small amount

of detectable SAM cleavage. This implies that the observed uncoupled turnover occurs via a
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futile cycle with quenching of the tyrosine radical (see Scheme 4.2, p127), rather than by
quenching of the 5’deoxyadenosyl radical. Assuming the phenolic hydrogen atom is abstracted,
the relative BDE’s would suggest that formation of the 5’deoxyadenosyl radical in the presence
of tyrosine would result in rapid hydrogen atom abstraction, generating the more stable phenolic
radical. The KIE observed on DOA formation may reflect a concerted mechanism for SAM
cleavage and hydrogen atom abstraction in ThiH. However there is no precedent for this
interpretation from studies on other members of the radical SAM family and it is widely

accepted that the 5’deoxyadenosyl radical is an intermediate.

However, one consideration is that the relative stability of the phenolic radical may provide a
thermodynamic driving force for ThiH catalysis. Therefore, the SAM cleavage step and
hydrogen atom step are not necessarily concerted, but are dependent on one another to drive the
reaction. This interpretation of a thermodynamic driving force would also suggest that reductive
cleavage of SAM and hydrogen atom abstraction are both reversible steps and that the ability of
ThiH to generate a relatively stable intermediate shifts the equilibrium of reductive SAM
cleavage. Reversible SAM cleavage and hydrogen atom abstraction would be consistent with
data emerging for other members of the radical SAM family that use SAM as a substrate,
including BioB and BtrN. (see Section 1.2.4)1*" 3!, Careful observation of the mass spectra of
DOA formed in assays incubated in 50% D,O shows an enhancement of the m/z = 253.1 ion.
This is consistent with the formation of some D-DOA in these assays. The m/z ion at 254.1 is
consistent with the natural abundance of **C in the D-DOA formed in the assay. There is no
evidence in these experiments, on ThiH, for the formation of di-deutero or tri-deutero DOA.
Studies on BtrN'®* have demonstrated that both these species are formed when the enzyme is
incubated with a deuterated substrate. These results have been used to support a mechanism in
which the hydrogen atom abstraction step is reversible. For BioB and BtrN the substrate radical
is generated by cleavage of a C—H bond, generating a carbon centred radical. At least for that

case of BioB, this can be a primary radical (by abstraction of a hydrogen atom from C9 of
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dethiobiotin), which will be similar in reactivity to the 5’-deoxyadenosyl radical as the C—H
BDE’s will be similar. It is perfectly feasible, therefore, that this radical intermediate could react
with DOA to re-abstract a hydrogen atom which would re-form the 5’deoxyadenosyl radical. In
the case of ThiH, the substrate derived radical is far less reactive, so re-abstraction of a
hydrogen atom from DOA by the tyrosinyl radical would be unfavourable. If the formation of
the phenolic radical is very favourable and the reverse reaction is slow, insofar that it is not
measurable, then the forward reaction becomes, for practical purposes, irreversible and this may

explain why no di-dutero or tri-deutero DOA is observed in these experiments on ThiH.

This interpretation is explained by Figure 5.3. Reductive cleavage of SAM generates the
reactive 5’-deoxyadenosyl radical intermediate (9) and is an energetically uphill process. In the
absence of tyrosine, the position of equilibrium of this step is far to the left (e.g. k.; > ky). If
tyrosine is present, then the reactive 5’-deoxyadenosyl radical intermediate abstracts a hydrogen
atom from tyrosine (10), generating a stabilised radical intermediate (99). This is an
energetically downhill step, so the position of equilibrium is far to the right (i.e. ky > k).

Therefore, the reverse reaction for this step is unfavourable.
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Figure 5.3 Energy diagram representing the early steps of ThiH catalysis.
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5.5 Summary and Conclusions

Incubation of ThiGH activity assays in 50% D,O / H,O gave an observable kinetic isotope
effect of 3.5 on the rate of catalysis. This was estimated from the rates of formation of p-cresol,
which is a product of tyrosine cleavage. Additionally, a kinetic isotope effect of 2.4 could be
estimated from the rates of formation of DOA, which is a product of SAM cleavage. The errors
associated with these values were very large and this was attributed to methods of calculation
and significant improvement in the experimental design is required to increase the confidence of
these estimates. Improvements would initially be incubating the assay in higher concentrations
of D,O with the ultimate objective being the use of 100% D,O which would give a direct

measurement of the rate of catalysis with deuterated substrate.
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5.6 Derivation of Error in the Kinetic Isotope Effect
5.6.1 Derivation of Error in Vs

Values of Vs were derived from differentiating equation 3.1, giving:

da[p _
Vops = % = [E] Kpurst-€ kpurstt 4 [,

To calculate the error on Vs the following equation was used:

AVZ = %]2 -A[E]Z + [ﬁ]z -A(kburst)2 + [(;_‘L/]Z 'ALZ

Which is derived to give the following equation:

(Eq. 5.1)

(Eq 5.6)

- _ _ 2
AV? = [kpyrse- e T¥ourstt ]2 A[E]? + [[E] kpurst (. e Fburstt) + A(e~*ourst)) | (Akyyypgr)? + AL

When t = 0, this equation can be simplified to:

AVZ = [kburst]z-A[E]2 + [[E]]Z-A(kburst)2 + ALZ
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The values and standard errors for kyys, [E] and L shown in Table 5.2 were substituted into this

equation to give the calculated variation on Vs, also shown in Table 5.2.
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5.6.2 Derivation of Error in Vp

To calculate Vp equation 5.3 was used:

Vpo w0 (Eq. 5.3)
To calculate the error in Vp, Equation 5.3 was first rearranged:
Vp = 2Vops — Vi (Eq 5.9)
The error in Vp is calculated by the following equation:
AVp? = 22.AV,, % + AVy* (Eq. 5.10)

Error in Vp, for p-cresol:

AVp? = 22.2.02 4+ 2.32

AVp?% =21.29
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Error in Vp for DOA:

AVp? = 22,2.32 4 2.72

AVp?% = 28.45
AVp =5.3
Product  Vy/pMmin™ AVy Vo / pMmin™ AVp
p-Cresol 18.2 2.3 5.2 4.6
DOA 17.9 2.7 75 5.3

Table 5.4 Values of Vy, and Vp shown with the variance calculated as described above.
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5.6.3 Derivation of Error in Vg / Vp

To calculate the error in Vy / Vp, the following equation was used:

[A(VH/VD)]Z _ [Aﬁ]z N [Aﬁ]z

()] ~Lond Lo

Substituting with the values shown in Table 5.4 gives:

Error in Vy / Vp for p-cresol (Vi / Vp = 3.5):

A(VH/VD)Z_ 2.3]2 [4.6]2

(VH/VD) =182l *52
M 2 =0.799
("v,)
. (VH/VD) = 0.894
("4,
a(Vafy Y=3.1

Therefore Vi / Vp for p-cresol =3.5+ 3.1
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Error in Vy / Vp for DOA (Vy / Vp = 2.4):

2
_[2.7 2+[5.3 2
N 7.5

[A ("H,)

(VH /VD) 17.9
[A (VH/VD)] =0.522
("4,
: (VH/VD) =0.723
("v,)
a("hy,) =17

Therefore Vy / Vp for DOA=2.4+ 1.7
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6 Conclusions and Future Outlook

6.1 Conclusions

6.1.1 Improved Mechanistic Model for ThiH

The aromatic by-product of radical mediated Ca—Cp of tyrosine by ThiH was unequivocally
characterised as p-cresol from in vivo experiments. Development of an in vitro activity assay
showed that ThiH could function catalytically when an excess of substrates and reductant was
present. The kinetics of ThiH turnover was investigated using either purified ThiGH complex or
monomeric ThiH and product formation could be fitted to a pre-steady state burst phase profile.
The interpretation of the kinetic profile was that product release was rate limiting when the
enzyme was undergoing multiple turnovers. The products DOA and methionine were found to
co-operatively inhibit ThiH activity. This inhibition could be removed by the addition of the
nucleosidase, MTAN which catalysed rapid hydrolysis of DOA to adenine and 5’deoxyribose.
Addition of MTAN to time course experiments on the ThiGH complex altered the kinetic
profile and product formation could be fitted to a first order process. In addition the amount of
uncoupled SAM cleavage was observed to greatly increase. Additional product inhibition
studies showed that addition of glyoxylate inhibited the tyrosine cleavage reaction and greatly
increased uncoupled turnover. Structural analogues of tyrosine were used to define the substrate
requirements of the enzyme and in particular the need for a phenolic O—H group. Furthermore,
phenolic tyrosine analogues that lacked a correctly positioned amine functional group were able
to undergo a partial reaction leading to uncoupled SAM cleavage but with no evidence for
Ca—Cp bond cleavage. Experiments in D,O confirmed that an exchangeable hydrogen atom

was abstracted by the 5’deoxyadenosyl radical and this step appeared to be rate limiting.
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These observations were integrated into an improved model for the mechanism of tyrosine

cleavage by ThiH, which is shown in Scheme 6.1. The information on each step of the

mechanism which has been gleaned from the studies presented in this thesis is summarised

below.

Step 1:

Step 2:

Step 3:

Reductive cleavage of SAM generating the 5°-deoxyadenosy! radical

This step is likely to be reversible
SAM cleavage is not observed to occur in the absence of tyrosine (or a 4-

hydroxyphenylpropionic acid analogue)

Abstraction of the phenolic hydrogen atom

This is suggested to be the rate determining step (RDS) of reaction catalysis
The tyrosine radical can be reduced and protonated to reform tyrosine, resulting in a
futile cycle and uncoupled SAM cleavage

Very little uncoupled SAM cleavage appears to occur as a result of an abortive pathway

Co—Cp bond cleavage

This step can be inhibited by glyoxylate (98), or by accumulation of dehydroglycine
(11)

This step appears to be sensitive to the orientation of the substrate

This step also shows a requirement for an a-amino group

Inhibition of this step results in a much greater amount observed uncoupled turnover

and would suggest a far greater amount of futile cycling
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Step 4: Reduction of the radical anion (102) to p-cresol (88)

- The rate of this step is likely to be similar to the rate of futile cycle (2c)

- The source of the electron for this step is unknown

Step 5: Release of products

- Thisis the RDS at steady state.
- Under physiological conditions dehydroglycine is transferred to ThiG where it reacts to

form thiazole
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Scheme 6.1 Current mechanistic model for radical mediated tyrosine cleavage, catalysed by

ThiH.
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6.1.2 Implications of the Mechanistic Model

Tyrosine was identified as the source of the C2-N3 fragment of the thiazole moiety of thiamine
in anaerobic bacteria in 19781% 1% However, an understanding of why this seemingly wasteful
step in thiamine biosynthesis was necessary in these organisms required elucidation of the
mechanism of thiazole biosynthesis®®® ' 1 Thiazole biosynthesis, catalysed by ThiG,
requires the electrophile, dehydroglycine (11) as an intermediate. Where aerobic bacteria can
derive this intermediate by oxidation of glycine, anaerobic bacteria require an alternative
pathway to this intermediate that can function under anaerobic conditions, where oxidising
equivalents are not readily available. ThiH functions in anaerobic bacteria to cleave the Ca—Cp
bond of tyrosine to generate this intermediate. ThiH is a member of the radical SAM family and
like all members of this family; catalysis is initiated by the reductive cleavage of SAM by a
reduced 4Fe-4S cluster generating the reactive 5’-deoxyadenosyl radical intermediate. This
radical intermediate initiates the tyrosine cleavage reaction by abstraction of a hydrogen atom
from tyrosine. Thus, the 5’-deoxyadenosyl radical is acting as an oxidant as this step involves
loss of an electron form the substrate?”). Cleavage of the Co—Cp and formation of
dehydroglycine involves a further loss of electrons from the amine, into the aromatic ring of
tyrosine. Therefore, the use of tyrosine as the precursor to dehydroglycine and the formation of
p-cresol as the byproduct can be explained by the overriding need to form the electron poor

dehydroglycine intermediate under anaerobic conditions.

The necessity for this chemically wasteful pathway means that the biosynthesis of thiamine
needs to be strictly controlled. This is achieved at the level of gene expression by the Thi-Box
riboswitch™ "1, The implications from this mechanistic model are that control of thiamine
biosynthesis extends to the regulation of some of the individual biochemical steps, thus
avoiding wasteful turnovers. It is apparent that ThiH mediated tyrosine cleavage is strictly

controlled by the accumulation of the products, which results in a burst phase kinetic profile.
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The function of this product inhibition in cells actively synthesizing thiamine may be to
coordinate the rate of formation of dehydroglycine by ThiH with its utilization by ThiG for

thiazole formation.

ThiH is not unique in its ability to cleave the Ca—Cp bond of an aromatic amino acid.
Recently, HydG has been shown to perform an extremely similar tyrosine cleavage reaction,
which formed p-cresol as a product. The other products of HydG mediated tyrosine cleavage
were characterised as cyanide (134)"** and carbon monoxide (135)™*** which ultimately
function as ligands in the complex active site cofactor of [FeFe]-hydrogenases*®). Evidence
was found that dehydroglycine was formed as an intermediate in the biosynthesis of cyanide
and carbon monoxide, implying that the early steps in the mechanism are identical to ThiH.
HydG shows extremely high homology to ThiH, but has an additional ~70 amino acids at its C-
terminus, thought to be responsible for the decarbonylation of dehydroglycine to cyanide and
carbon monoxide. Sequence analysis of several radical SAM proteins showed that ThiH and
HydG formed a small subfamilyalong with another enzyme, NosL (Figure 6.1)""). NosL is a
radical SAM enzyme required for the rearrangement of tryptophan to provide the 3-
methylindolyl moiety during the biosynthesis of the antibiotic Nosiheptide. This rearrangement
requires a Co—Cp bond cleavage and the extrusion of the Ca—N fragment of tryptophan
(Figure 6.2). ThiH, HydG and NosL share the common feature of cleaving the Ca—Cf bond of
aromatic amino acids and it is likely these transformations proceed by related mechanisms,

potentially forming aromatic radicals and resulting in a benzylic radical intermediate.
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Figure 6.1 Phylogenetic reconstruction of representative radical SAM proteins. The grouping of

the Co-Cp lyase subfamily is shown with a red circle. (Adapted from™)
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Figure 6.2 The Ca-Cp lyase subfamily with currently characterised biochemical functions.
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6.2 Further Experiments

The mechanistic model presented for tyrosine lyase is consistent with the currently available
data. However, to resolve some of the outstanding questions, such as to unequivocally assign
the site of hydrogen atom abstraction from tyrosine reuires further experimentation. An X-ray
crystal structure of tyrosine lyase would assist in providing a stereoelectronic explaination for
the mechanism of tyrosine cleavage and may highlight key residues in the enzyme active site
that assist in reaction catalysis. The improved purification protocol is likely to be useful in
obtaining any crystals of the enzyme and it would be worthwhile attempting to crystalise both
the monomeric form of ThiH and the ThiGH complex. Structural data on the ThiGH complex
may prove essential in fully interpreting the complex issue of product transfer from ThiH to

ThiG.

EPR spectroscopic characterisation of the tyrosine radical may also provide vital data on
understanding the subtle control of the tyrosine Ca—Cp cleavage reaction. The proposed
mechanism provides two possible fates of the tyrosine radical; either Co—Cp cleavage, or
reduction and protonation back to tyrosine in a futile cycle. Despite the anticipated stability of
the tyrosine radical the potential for reduction may mean that this intermediate does not pesist
long enough to obtain an EPR spectrum unless rapid freeze quench techniques are used. Or one
alternative is to use a photoreductant, such as deazaflavin, which could stoichiometrically
reduce to 4Fe-4S cluster, allowing for reductive SAM cleavage, but not providing the necessary
electron to reduce either tyrosine of the resultant radical anion, allowing for characterisation of

any substrate radicals by EPR.

The 4-hydroxyphenylpropionic acid analogues described in Chapter 4 were initially chosen for

their potential to trap any tyrosine radical intermediates. No EPR data was obtained during the
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course of the research presented in this thesis, however a further sub-set of tyrosine analogues
with modifications at the 3-position (see Figure 6.3) may also prove useful in stabilising any

tyrosine derived radical intermediates.

OH OH
NH2 OH NH2 NH2
HO HO HO ® 00
OH F N
0 138 O 139 © 140 ©

Figure 6.3 3-substituted tyrosine analogues.

The compounds shown in Figure 6.3 were analysed by the same method described in Chapter 4
(Method 31). 3-hydroxy-L-tyrosine (L-DOPA) (138) and 3-fluoro-L-tyrosine (139) were
observed to turn over apparently with greater activity that the positive control, with tyrosine as
the substrate. Modifications of the 3-position of a phenol will affect the BDE of the phenolic
O—H bond™*®, by stabilisation of the resultant phenolic radical. Stabilisation of a phenolic
radical may result in an observed change in the rate of hydrogen atom abstraction due to the
weakening of this bond. The observation that hydrogen atom abstraction by the 5°-
deoxyadenosyl radical was the rate limiting step of ThiH catalysis made these experiments
potentially significant. However, information on the relative binding affinities of these
compounds relative to tyrosine is required to make these observations relevant. Data on the
binding affinity could be obtained from spectroscopic experiments analogous to Ugulava et

al.BtYor by performing detailed kinetic measurements and estimating values for Ky and V jax.
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7 EXxperimental

7.1 General Experimental Methods

7.1.1 Materials

Wizard® Plus Minipreps were purchased from Promega (Southampton). Bacto Tryptone, Yeast

Extract and Bacto Agar, for culture media, were purchase from Oxoid and Difco.

DTT, NADPH, IPTG and antibiotics were obtained from Melford Laboratories Ltd.
Polyacrylamide-bis polyacrylamide (30% w/v, 37:5:1) was purchased from Amresco, Protein
chromatograpy media (Superdex 75 (S-75), Superdex 200 (S200), and Chelating Fast Flow
resins) were purchased from Pharmacia. All other chemicals used were purchased from

Aldrich, Sigma or Fluka.
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7.1.2 Equipment

FPLC. All aerobic enzyme purifications were performed using a Pharmacia FPLC System in a
cold room, maintained at 4 °C. Anaerobic enzymes were purified using an AKTA Prime FPLC

from Amersham biosciences in the glove box maintained at 20 °C.

pH determination. pH measurements were performed using a Mettler Delta 340 pH meter
connected to a Mettler Toledo Inlab 413 Combination Electrode. This was calibrated at pH 4.0

to 7.0 or pH 7.0 to 10.0 before use and stored in 3 M potassium chloride.

UV-Vis Spectroscopy. Absorbance readings and UV-vis spectra were recorded on a Lamba 2
spectrophotometer (Perkin-Elmer), or on a USB2000 spectrophotometer using a light source

Mini-D2-GS (Ocean Optics (Duiven, The Netherlands)).

Centrifugation. Samples were centrifuged at 4 °C using a Sorval centrifuge fitted with a
SLC6000 or a JA-14 rotor. For small volumes (< 1.5 ml) a bench top microcentrifuge was used

at room temperature.

HPLC Analysis. A Gilson System Workcenter including 321 pumps and 234 Gilson
Autoinjector was connected to a Shimadzu RF-10AxI fluorimeter and/or to a Gilson UV/Vis-
155 detector, and used for high performance liquid chromatography (HPLC) analysis at room

temperature.
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LCMS. LCMS analysis data was obtained using a Gilson HPLC coupled to a Thermo Finnigan
Surveyor MSQ single quadrupole mass spectrometer with electrospray ionization. The data

were collected and processed using the XCalibur software system.

GCMS. GCMS analysis data was obtained on a Thermo TraceMS equipped with an AS800

autosampler and a PE-Wax (30 m x 0.25 mm x 0.25 pum) column.
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7.1.3  Anaerobic Techniques

All anaerobic experiments (protein purification, reconstitution and activity assays) were carried
out in an anaerobic glove box (Belle Technology, Weymouth, UK) maintained at less than 1
ppm O,. All containers (bottles, jars, tubes, beakers etc.) and equipment required during the
experiments were degassed overnight inside the glove box. Buffers and solutions were bubbled
with N, for 10 minutes before being introduced into the glovebox and were allowed to

deoxygenate overnight before use.

UV-vis spectra of anaerobic proteins were recorded on an Ocean Optics (Duiven, The
Netherlands) USB2000 spectrophotometer using a light source Mini-D2-GS connected by

optical fibers P-400-2-UV/SR to a cuvette holder inside the glove box.

For anaerobic protein purification, columns were placed outside the box but the buffer lines
were introduced in a sealed gastight fashion into the box so that the anaerobic buffers could be
pumped through the system and used to equilibrate the column, wash and elute the proteins; the
column flow through was fed back into the box to permit anaerobic fraction collection. Protein

elution was monitored by absorption at 280 nm.
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7.1.4  General Microbiological Methods

Standard sterile techniques were applied throughout microbiological experiments. Growth
media and heat stable solutions were sterilised in a PriorClave autoclave (Priorclave Ltd) at

121 °C for 25 min., whilst heat labile solutions were filter sterilised through 0.22 um filters
(Millipore). Growth media were supplemented with the appropriate antibiotic (see Table 7.1 and
Table 7.12, p177). Liquid bacterial cultures were incubated in an Innova 4400 Incubator Shaker
(New Brunswick Scientific) or in an Innova 4230 Refrigerated Incubator Shaker (New
Brunswick Scientific) at 180 rpm. Bacterial plate cultures were grown at 37 °C overnight in an

Economy Incubator Size 2 (Gallenkamp).

Antibiotic Final Concentration Stock Concentration
Ampicillin 100 pg / mL 100 mg/ mL in H,O
Kanymycin 30 pg/ mL 30 mg/ mL in H,O
Streptomycin 10 ug / mL 10 mg/ mL in H,O

Table 7.1 Stock solutions and amount of antibiotics added to growth media.

Method 1: Prparation of competent cells. Competent cells were prepared by the rubidium
chloride method (ref Sambrook). A smear of selected strain was incubated overnight at 37 °C in
2-YT 9 media (10 mL), which did not contain any antibiotic. The culture was then used as a
1% inocula into fresh 2-YT media (100 mL), again with no antibiotic, and the culture grown at
37 °C to an ODg of 0.6 (c.a. 2 h). All further manipulations were conducted in a cold room at
4°C. Cells were harvested by centrifugation (4000 rpm, 10 min 4 °C) and the supernatant
removed, before being re-suspended in ice cold TBF I buffer (10 mL) (Table 7.2). Suspension

was maintained on ice for 10 min before further centrifugation (4000 rpm, 10 min 4 °C) and
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removal of the supernatant. The cells were then re-suspended in TBF Il buffer (1.5 mL) (Table

7.3) and 200 pL aliquots were immediately frozen on dry ice.

Reagent Quantity
Potassium acetate 0.588 g
Rubidium chloride 2429

Calcium chloride 0.294 g
Manganese chloride 209

Glycerol 30 mL
Deionised water Adjust volume to 200 mL

pH adjusted to 5.8 with 1% acetic acid

Table 7.2 TBF | buffer

Reagent Quantity

MOPS 0.21g
Rubidium chloride 0.121 ¢

Calcium chloride 1.10¢g

Glycerol 30 mL
Deionised water Adjust volume to 100 mL

pH adjusted to 6.5 with dilute NaOH

Table 7.3 TBF Il buffer

Method 2: Transformations. Aliquots of competent cells (150 - 200 pL) contained in 1.5 mL

tubes were defrosted on ice for 10 min before the addition of purified plasmid DNA (1-2 uL).
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The tubes were maintained on ice for 30 min and then heat-shocked for 45 sec at 42°C. The cell
suspensions were returned to ice for 2 min and mixed with room temperature SOC medium
(250uL) (Table 7.4). Cell suspensions were incubated in an orbital shaker at 37 °C (230 rpm)
for 1 h before being plated onto 2-YT agar plates and incubated at 37 °C overnight. Plates were
then stored in a cold room at 4 °C. Positive colonies (those containing the correct construct),
were identified as well isolated single colonies. These were picked from plates with a 10 pL
sterile tip and incubated overnight in 2-YT medium (10 mL), supplemented with ampicillin

(100pg/mL) for further investigation or storage.

Reagent Concentration Volume
MgCl, 1M 1mL
MgSO, 2M 1mL
Glucose 20% (w/v) 1mL

2-YT medium - Make up to 100 mL

Table 7.4 SOC Medium

Method 3: Glycerol Freeze Preparation. Well isolated single colonies were picked from
plates with a 10 pL sterile tip and incubated overnight at 37 °C in 2-YT medium (10 mL),
supplemented with the appropriate antibiotic. Glycerol (125 pL) was added to the cell culture

(500 pL), mixed vigorously, before storage at —80 °C.

Method 4: Minipreps. Plasmid DNA was isolated using Wizard® Plus Minipreps DNA
Purification System, used as stated in manufacturer’s instructions. Sterile water was used to

elute the isolated plasmid DNA.
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Method 5: Analytical Restriction enzyme digestion. Analytical digestion of plasmid DNA
(45 uL, 50-75 ng / uL) isolated from bacterial culture (5 - 10 mL) was carried out using the

conditions shown inTable 7.5.

Volume Concentration Total Quantity
Plasmid 5uL 50 - 75 ng/ pL 250 - 375 ng
Buffer 1 uL 10X 1X
BSA 1 uL 1mg/ mL 1pg
Restriction Enzyme (each) 0.5 uL 10U/ puL 5U
Sterile Water 2 ulL

Table 7.5 Analytical digestion reaction mixture

Reactions were incubated at 37 °C for 1.5 hours before loading onto a 1% agarose gel.

Method 6: Protein concentration determination. Protein concentration was assayed using the
method of Bradford™®. Bradford reagent (1 mL) was added to a protein sample (20 uL) and
incubated at room temperature for 5 min, then Asgs was measured using pure Bradford reagent
as a control. The sample was diluted if Asgs exceeded 1.0. Appropriate correction factors for
proteins of unknown concentration were obtained from calibration curves constructed with BSA

standards.

Method 7: 15 % SDS-PAGE denaturing gel. For 10 mL of resolving gel solution (5 mL per
plate) the following components were mixed in the order as shown inTable 7.6. 4 mL of this

solution was then poured into each plate, the surface covered with a thin layer of water and
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allowed to set for 45 minutes. The water was then removed carefully and the stacking gel was

prepared as in Table 7.7.

Reagent Quantity
H,O 2.2mL
30 % Acrylamide / bis acrylamide 5.0 mL
1.5 M Tris/HCI (pH 8.8) 2.6 mL
10 % SDS 0.1mL
10 % Ammonium Persulphate 0.1mL
TEMED 4L

Table 7.6 Resolving gel mixture

Reagent Quantity
H.O 3.4 mL
30 % Acrylamide / bis acrylamide 0.83 mL
1.5 M Tris/HCI (pH 8.8) 0.63 mL
10 % SDS 0.05 mL
10 % Ammonium Persulphate 0.05 mL
TEMED 5mL

Table 7.7 Stacking gel mixture
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This mixture was then directly poured onto the top of the resolving gel and a Teflon comb

inserted into the gel solution. Teflon combs were removed after one hour and gels immediately

used or stored at 4 °C.

Samples were prepared by mixing 20 uL protein sample with 20 uL sample loading buffer

(Table 7.8) and denaturing at 95 °C for 5 minutes. Samples (20 uL)were then applied to the gel.

Reagent Quantity
0.2 M Tris/HCI (pH 6.8) 25mL
DTT 154 mg
SDS 200 mg
Bromophenol Blue 10 mg
Glycerol 1mL

Deionised water

Adjust volume to 10 mL

Table 7.8 Sample loading buffer stock solution

Reagent Quantity

Tris Base 151¢g

Glycine 94 g

10% SDS solution 50 mL
Deionised water Adjust volume to 1000 mL

Table 7.9 SDS-PAGE running buffer (x5 stock solution)
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Reagent Quantity

Coomassie brilliant blue 2590
Methanol : water (1 : 1) 90 mL
Glacial acetic acid 10 mL

Table 7.10 Coomassie brilliant blue protein stain

Reagent Quantity
Deionised water 4375 mL
Methanol : water (1 : 1) 375 mL
Glacial acetic acid 250 mL

Table 7.11 Destain solution

Electrophoretic separation was at 200 V (~15 V / cm) in SDS-PAGE running buffer (Table 7.9)
and analysed. Gels were stained using Coomassie brilliant blue stain (Table 7.10) and destained

(Table 7.11).

Method 8: Small scale expression experiments. An overnight starter culture (10 mL)
(inoculated from glycerol freeze stock) was used to inoculate 2-YT medium (100 mL)
containing appropriate antibiotics (Table 7.13). Culture was incubated in a shaker (37 °C, 180
rpm), and growth monitored by ODgo. Cells were induced at ODgy = 0.6 by the addition of
arabinose for pBAD expression vectors (final concentration 0.2 %). The incubation temperature

was reduced to 27 °C and cells grown for a further 4 h before harvesting by centrifugation
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(20 min, 5,000 rpm, 4 °C). Cell pellets were resuspended in lysis buffer (750 uL) and lysed by
sonication (6 x 3 s on / off). Cell debris was separated by centrifugation (13,000 rpm, 10 min)
and the supernatant decanted. Cell debris was resuspended in lysis buffer (100 x pellet
volume). Protein concentration was then estimated by Bradford assay (Method 6). The protein

content of both supernatant and pellet were analysed by SDS-PAGE (Method 7).

Method 9: Large scale protein expression. An overnight starter culture was used as a 1 %
innocula for 4 x 1.25 L 2-YT medium (containing appropriate antibiotic). Cultures were
incubated in an orbital shaker (37 °C, 180 rpm) and cell growth monitored by ODggo. At ODggg
0.6 cells were induced by the addition of arabinose for pBAD expression vectors (final
concentration 0.2 %), or IPTG for pET expression vectors (final concentration 1 mM) and the
incubation temperature lowered to 27 °C for four hours. Cells were harvested by centrifugation

(SLC6000, 6,000 rpm, 30 min, 4 °C) and stored at -80 °C.
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7.1.5 Protein Purification

Protein Plasmid Antibiotic Inducer Technique Reference
ThiGH pRL1020 Ampicillin ~ Arabinose  Ni affinity Toe]
LPETGGHise(2) Cation
FIdA Kanamycin IPTG [160]
(pFlav) exchange
pLLC155
Fpr Ampicillin ~ Arabinose  Ni affinity  unpublished
(pFdr-His)
pProExHTApfs
MTAN Ampicillin IPTG Ni affinity [150]
(pPfs)

Table 7.12 Summary of expression and purification techniques for proteins used in this study.

Method 10: Expression and purification of ThiGH. Cells were cultured and protein

expressed by method 9. A typical yield of wet cell paste was 40 g.

For purification, the frozen cell pellet (~40 g) was transferred to the glove box and suspended in
anaerobic buffer A (50 mM MOPS pH 7.7, 200 mM NacCl, 12.5% (wi/v) glycerol, 50 mM
imidazole) (~100 mL). Lysozyme (0.1 mg / mL) was added and the suspension stirred for 1 h
before the cells were lysed, on ice, by sonication (30 min, amplitude: 20, 1 sec pulse).
Benzonase (10 pL) was added and the lysate cleared by centrifugation (Beckmann JA14,
125000 rpm, 25 min, 4 °C). The supernatant was loaded onto a Chelating Sepharose column (50
ml) previously charged with NiSO, and equilibrated with anaerobic buffer A (250 mL). The
column was washed with buffer B (50 mM MOPS pH 7.7, 500 mM NaCl, 12.5% (w/v)
glycerol, 50 mM imidazole) (300 mL), and then buffer A (50 mL). The protein was eluted with

buffer C (50 mM MOPS pH 7.7, 200 mM NaCl, 12.5% (w/v) glycerol, 500 mM imidazole) at
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an increasing gradient of 0 — 50% of buffer C over 50 mL, followed by an isocratic wash at 50
% buffer C . 5 mL fractions were collected and the six fractions (30 mL) containing the most
concentrated ThiGH complex (typically 15 — 20) were pooled and immediately loaded onto a S-
75 gel filtration column, previously equilibrated with anaerobic buffer D (50 mM MOPS

pH 7.7, 200 mM NaCl, 12.5% (w/v) glycerol, 5 mM DTT) (150 mL). The column was eluted
with buffer D yielding 5 x 10 mL fractions which were stored at -80 °C. SDS-PAGE was used

to determine the composition of each fraction.

N.B. The instability of ThiH in buffers containing high imidazole concentrations meant that it

was preferable to avoid time consuming SDS-PAGE analysis after the Ni-affinity step.

Method 11: Flavodoxin Expression purification. Cells were cultured and protein expressed
by method 9. The media was supplemented with flavin mononucleotide (2 mg/ L) and a further
addition was affected when protein expression was induced. A typical yield of wet cell paste

was 15g which was blue-grey in colour.

For purification, the frozen blue-grey cell pellet (50 g) was suspended in buffer E (10% (w/v)
glycerol / 50 mM Tris, pH 8.1) (150 mL) and lysozyme (15 mg) added. The suspension was
stirred for a further 15 min before cell lysis by sonication (12 x 30 s on / 30 s off). Benzonase
(10 uL) was added and the suspension stirred for a further 10 min before removal of the cell
debris by centrifugation (SLC15000, 12000 r.p.m., 30 min, 4 °C). The supernatant was then
loaded onto a Q-Sepharose ion exchange column (180 mL), which had been pre-equilibrated
with Buffer F (50 mM Tris, pH 8.1) (300 mL), Buffer G (1 M NaCl, 50 mM Tris, pH 8.1) (300
mL) and again with Buffer F (300 mL). The column was washed with Buffer F (500 mL),

during which time the protein underwent a colour change from blue — yellow, before elution
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with a gradient of 0% — 20 % Buffer G over 100 mL followed by 20% — 70% over the next 900
mL. When the yellow colour was observed to begin to elute (~32 % of Buffer G), 10 mL
fractions were collected and every third fraction analysed for protein concentration and by SDS-
PAGE. Fractions that were observed to contain > 95% (fractions 26 — 34) of flavodoxin by

SDS-PAGE were pooled and stored at 4 °C overnight.

The protein was reconstituted by the addition of 5 equivalents of flavin mononucleotide and
stirred at 4 °C for 45 min, before concentrating to a volume of 50 mL on a 10 KDa NMCO
membrane. The excess flavin mononucleotide was removed by desalting the protein, in two
batches of 25 mL each, into Buffer H (200 mM NaCl, 50 mM Tris, pH 8.1) via a S-75 gel
filtration column (50 mL), equilibrated with Buffer H (150 mL). Protein containing fractions (3
mL) from both batches were pooled and the final protein concentration determined as 12.1 mg /
mL. UV-vis spectroscopy confirmed the presence of the bound co-factor. Flavodoxin was stored

in ImL aliquots at -80 °C.

Method 12: Flavoprotein: NADPH oxidoreductase (Fpr) expression and purification. Cells
were cultured and protein expressed by method 9. The media was supplemented with flavin
adenine dinucleotide (2 mg / L) when protein expression was induced. A typical yield of wet

cell paste was 40g.

For purification, the frozen blue grey cell pellet (40 g) was suspended in buffer E (10% (w/v)
glycerol / 50 mM Tris, pH 8.1) (120 mL) and lysozyme (0.1 mg / mL) added. The suspension
was stirred for 15 min before cell lysis by sonication (12 x 30 s on / 30 s off). Benzonase

(10 uL) was added and the suspension stirred for a further 10 min before removal of the cell

debris by centrifugation (SLC15000, 12000 r.p.m., 30 min, 4 °C). The supernatant was then
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loaded onto chelating sepharose fast flow column, charged with NiSO, and equilibrated with
Buffer J (50 mM Tris, pH 8.1, 200 mM NacCl, 25 mM Imidazole). The column was washed with
300 mL of Buffer J before a gradient to 500 mM Imidazole over 100 mL using Buffer K (50
mM Tris, pH 8.1, 200 mM NaCl, 500 mM Imidazole). Fractions (5 mL) were analysed by SDS-
PAGE and those containing >95% Fpr were pooled and concentrated to ~20 mL on a 10 KDa

NMCO membrane.

Fpr was reconstituted by stirring with 5 eq. FAD for 45 min, dialysed into buffer H (50 mM
Tris, pH 8.1, 200 mM NacCl) and the final protein concentration estimated to be 12.5 mg / mL.

Flavodoxin reductase was stored in 150 pL aliquots at -80 °C.

Method 13: Purification of ThiGH and ThiH by Sephadex 200 gel filtration
chromatography. The protein was chemically reconstituted (method 14) and concentrated to a
volume of less than 5 mL using a 10 kDa molecular weight cut off filter (Millipore). The
concentrated protein was then applied to a Sephadex 200 gel filtration column (2.6 x 60 cm)
pre-equilibrated in anaerobic buffer D (50 mM MOPS pH 7.7, 100 mM NaCl, 12.5% (w/v)
glycerol, 5mM DTT). The column was eluted with buffer D (~100 mL) until the A,g, was
observed to rise, at which point 7.5 mL fractions were collected. The ThiGH complex typically
eluted in the first six fractions and the ThiH-monomer in the following six fractions (see figure
3.x). An aliquot of each fraction (150 uL) was retained for SDS-PAGE (method 7) and iron
analysis (method 15) and the remainder stored at -80 °C in sealed 15 mL Falcon tubes for

further investigation.
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7.1.6  ThiGH Reconstitution and activity assays

All protein manipulations were carried out in the anaerobic glove box. The following are
optimised methods that were developed throughout the course of experiments reported in

Chapter 3.

Method 14a: ThiGH reconstitution. The ThiGH / ThiH mixture isolated by Ni affinity
chromatography (method 10) was thawed inside the anaerobic glove box (maintained at less
than 1 p.p.m. Oy). DTT (5 mM) was added and the solution gently mixed. After 15 min, 5 mol
eq of FeCl; (10 mM solution in anaerobic water) were added dropwise. After a further 15 min
gentle mixing 5 mol eq of Na,S (10 mM solution in anaerobic water) were added likewise. The
protein solution was gently mixed at room temperature for a further 2 h. Precipitated iron
sulfide was removed by centrifugation and the protein was concentrated using a 10 kDa
molecular weight cut off filter. The protein was then applied to a NAP-10 gel filtration column
equilibrated in anaerobic buffer L (50 mM MOPS pH7.5, 100 mM NaCl and 5% (w/v)
glycerol). Successful chemical reconstitution was assessed by UV-vis spectroscopy.
Reconstituted ThiGH was used immediately for further investigation. However it is possible to
store reconstituted ThiGH (maximum concentration of 6 mg/ mL, in buffer D) at -80 °C

overnight.

Method 14b: Reconstitution of ThiH or ThiGH that had been purified by Sephadex 200
gel filtration chromatography. The same protocol (method 14a) was followed except that only

2.5 molar equivalents of FeCl; or Na,S were added.
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Method 15: Iron analysis. The amount of iron present in purified ThiGH was analysed by the
methods of Fish™"! and was determined either in duplicate or triplicate. For the iron analysis,
the following solutions were prepared: reagent A, 0.142 M KMnQ, in 0.6 M HCI, obtained by
mixing equal volumes of 1.2 M HCI and 0.284 M KMnQ, in H,O (445 mg in 10 mL), and
reagent B, 6.5 mM ferrozine, 13.1 mM neocuproine, 2 M ascorbic acid, 5 M ammonium acetate
in H,0O, prepared by first dissolving the ammonium acetate (4.85 g) and ascorbate (4.4 g) in H,O
(12.5 mL) followed by ferrozine and neocuproine (40 mg each). Reagent A was freshly
prepared every time, whilst reagent B was stored in the dark for no longer than 3 weeks.
Standards were prepared from a stock solution of FeSO,-7 H,0 in water (500 pg in 10 ml, 180

M) as indicated in Table 7.13.
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180 uM Fe ?* Stock Solution / pl H,O / ul nmoles of Fe %*

400 600 72
350 650 63
300 700 54
250 750 45
200 800 36
150 850 27
100 900 18
50 950 9
30 970 5
10 990 2
0 1000 0

Table 7.13 Summary of prepared stock concentrations of Fe** solutions

ThiGH-His samples were diluted to 1 mL with water and incubated, together with the standards,
for 2 h at 60 °C after the addition of reagent A (500 pL). At the end of the 2 hour incubation,
samples were allowed to cool down to room temperature before adding reagent B (100 pL).
When the purple colour was completely developed (15-20 min) the Asg, of the samples was
measured. If necessary, protein precipitate was removed by centrifugation before reading the
absorbance. The amount of iron present in the ThiGH-His samples was estimated from standard

calibration curves constructed in parallel.
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Method 16: ThiH activity assays. Stock solutions of SAM and NADPH were prepared by
dissolving pre-weighed aliquots in anaerobic water. Tyrosine stock solutions were prepared by
addition of a 33 mM solution of tyrosine, prepared by dissolving in 200 mM HCI (350 pL) to
1 M NaOH (120 pL) to give a tyrosine stock at a pH suitable for adding to buffered protein
solutions without causing precipitation. Assays (150 pl) were prepared in 1.6 ml
microcentrifuge tubes by addition of components to the following final concentrations (see
Table 7.14: ThiH protein (either ThiGH / ThiH mixture isolated by Ni-affinity chromatograph
or Sephadex 200 purified ThiGH complex or monomeric ThiH) (35-100 uM), SAM (1 mM),
and tyrosine (1 mM). The assay solutions were equilibrated at 37 °C by incubating in a water
bath contained within an anaerobic glove box for 5 min. A stock solution of the reductant
system was prepared containing flavodoxin 1 (280 uM), flavoprotein:NADPH oxidoreductase
(70 puM), and NADPH(15 mM) and incubated at room temperature for 15 min to permit the
formation of the blue-coloured semiquinone. The assays were initiated by the addition (20 ul) of
the reductant system (final concentrations of flavodoxin 1 (37 puM), flavoprotein:-NADPH
oxidoreductase (9 uM), and NADPH (2 mM)). Each time point (1-60 min) was stopped by
protein precipitation with 20% perchloric acid (10 pl) and then cleared by centrifugation
(Eppendorf 5415D microcentrifuge, maximum speed). Supernatants were stored at -80 °C until

analysis by HPLC.
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Stock Volume Final

Component
concentration added / pl  concentration
ThiGH / ThiH Variable 119.9 Variable'
SAM 33 mM 4.5 1mM
Tyrosine 26 mM 5.6 1 mM
FIdA: 280 uM FIdA: 37 uM
Reducing mixture Fpr: 70 uM 20 Fpr: 9 uM
NADPH 15 mM NADPH 2 mM

! Greater than 35 puM is desirable to improve the accuracy of the product concentration in the
burst phase.

Table 7.14 Summary of ThiH activity assay preparation.

Method 17: HPLC analysis of ThiH activity assay supernatant. Supernatants were analysed
by HPLC using a Gemini Cyg, 5 um, 110 A reverse phase column (Phenomenex). The mobile
phase solvents were 0.1% AcOH in water (Solvent A) or 0.1% AcOH in acetonitrile (Solvent B)
and the flow rate was 0.8 mL/min. An initial isocratic phase of 100% solvent A for 8 minutes
was followed by a linear gradient to 50% solvent B over 32 min, followed by an increase to
100% solvent B over 3 min, which was held for 5 min before returning to 100% solvent A over
2 min and re-equilibration for 10 min (total time of 60 min). A typical assay chromatogram is
shown in Figure 7.1. The dual wavelength detector monitored the absorbance at 254nm for
detection of DOA and related compounds and 280 nm for detection of p-cresol and tyrosine.
Concentrations of DOA and p-cresol in assays were estimated by comparing to a calibration

curve derived from synthetic standards (see Figure 7.2).
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Figure 7.1 Example chromatogram from a ThiH activity assay incubated for 1h. The UV-
detector records the absorbance at 280 nm and peaks were identified as follows: 1) SAM; 2)

adenine; 3) tyrosine; 4) DOA,; 5) MTA (from SAM stock); 6) riboflavin (from reductant); 7) p-

cresol.
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Figure 7.2 Typical calibration plots for determining the concentration of DOA and p-cresol in

ThiH activity assays
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7.2 Experimental for Chapter 2

Method 18: Preparation of derivatised —thiH mutant cell strains. An E. coli K-12 strain,
BW25113, with specific deletion of the thiH gene (baba) were made competent (Method 1) and
transformed with either pRL1020 (RL FBS) (positive sample) or pBAD-His (negative control
sample) (Method 2). Single colonies were picked, grown overnight in 2-YT medium (10 ml)

and the culture used to prepare glycerol freeze stocks (Method 3).

Method 19: Starvation of derivatised —thiH mutant cell strains. Glycerol freeze stocks were
used to inoculate overnight starter cultures in 2-YT medium (10 ml), which were harvested by
centrifugation (4000 rpm, 10 min, 4 °C). The cell pellet was washed twice by re-suspension in
medium A [Davis Mingioli medium!*? (Table 7.15) modified with the addition of ampicillin
(100 pg / ml), arabinose (0.2 %) and glucose (0.4%)] (5 ml) followed by centrifugation (4000
rpm, 10 min, 4 °C). The pellet was re-suspended in medium A (10 ml) and this was used as a
1% innocula into fresh medium A (100 ml). The culture was incubated at 37 °C for 24 h before

being used as 1% innocula fresh medium for further experiments.

Method 20: Monitoring growth of derivatised —thiH mutant cell strains. Either medium B
[medium A plus tyrosine (0.2 mM)] or medium C [medium A plus tyrosine (0.2 mM) and
thiamine (50 pM)] (190 pL) was added to a well of a 96 well microplate. Cell cultures prepared
by method 19 were diluted to an ODgg, 0f 0.8. 10 pl of the culture was used to inoculate each
well of the microplate. The plate was then incubated at 30 <:C on the plate reader, monitoring

the ODgo every 400 seconds.
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Reagent Quantity

K,HPO, 7.0g
KH,PO, 309
Nas-citrate.3H,0 059
MgS0,.7TH,0 01g
(NH,),SO, 1.09
Deionised water Adjust volume to 1,000 mL

Table 7.15 Davis Mingioli medium!*2!

Method 21: Organic extraction of cell cultures. Cell cultures prepared by method 19 were
used as a 1% innocula into medium B [medium A plus tyrosine (0.2 mM)] for pRL1020 (-thiH)
(positive sample) or medium C [medium A plus tyrosine (0.2 mM) and thiamine (50 puM)] for
pBAD-His (-thiH) (negative sample), conditions which ensure growth of these strains. The
cultures were incubated at 37 °C for 24 h and after this time the cells were removed by
centrifugation (4000 rpm, 10 min, 4 °C). The cleared supernatant was stirred vigorously with
diethyl ether (50 ml) for 30 min and the phases separated. The agqueous phase was then re-
extracted with diethyl ether (3 x 40 ml) and the combined organic phases dried over anhydrous

MgSQ, and concentrated in vacuo to a volume of 1 ml.

Method 22a: Analysis of the Organic Extract by TLC. The concentrated organic extract was
used to spot a normal phase TLC plate, which was developed in 15 : 1 chloroform : ‘butanol.

Visualisation was achieved by UV light or staining with KMnQ,.
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Method 22b: Analysis of the organic extract by HPLC. The concentrated organic extract was
reduced to dryness under a stream of N,. The sample was then re-dissolved in 50 uL of
methanol and 250 pL. of 20 mM ammonium formate. This was centrifuged (13,000 rpm, 5 min,
r.t.) and the soluble and insoluble phases separated. The insoluble layer was washed (2 x 100
uL 20 mM ammonium formate) and the soluble phases combined, giving a sample volume of
500 pL. 40 pL was injected onto a Phenomenex, Hypersil, 5 p, C18 column (150 x 4.60 mm).
The mobile phase (0.8 mL / min) began at 5% MeOH (0.1% AcOH) (solvent B); 95% H,0
(0.1% AcOH) (solvent A) for 7 min, followed by an increase in solvent B to 50% over 22 min,
where it was held for 5 min. The column was then washed by increasing solvent B to 70%
(over 0.5 min) followed by 4 min isocratic wash. The mobile phase was then returned to
original 5% solvent B over 5 min. Detection of compounds was achieved by UV at 280 nm and

standards of HBA were observed to elute after c.a. 7 min and p-cresol after c.a. 20.5 mins.

Method 22c: Analysis of the organic extract by GCMS. The concentrated organic extract was
reduced to dryness under a stream of N, and weighed. It was then redisolved in diethyl ether (1
mL) and analysed by GC-MS, employing a PE-Wax (30 x 0.25 mm). Helium was used as a
carrier gas (flow 1 ml/min) and samples (1.0 ul) were injected with a speed of 10 (ul/s). The
temperature was held at 40 °C for 4 mins followed by an increase, at 20 °C / min, to 240 °C
where the temperature was held for a further 6 mins. The detector was set at 70 eV EI-MS, the
source temperature at 200 °C with a trap current 150 pA and using the full scan acquisition

mode (2 scans/s from 20-500 amu).
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7.3 Experimental for Chapter 3

Method 23: Expression and purification of ThiGH from pRL1021(-yqji). An E. coli strain
with specific deletion of the ygjl gene was made competent (method 1) and transformed with
pRL1021 (method 2). Single colonies were picked, grown overnight in 2-YT medium (10 ml)
and the culture used to prepare glycerol freeze stocks (method 3). Protein was expressed and

purified on a large scale by method 10.

Method 24: Investigating different assay buffers. ThiGH was reconstituted (method 14a),
concentrated and split into 4 batches and loaded onto a NAP-10 column pre-equilibrated in
either buffer 1 — 4 (see Table 7.16). The protein was maintained at ambient temperature for 30
minutes and any observed precipitation noted. The activity of each protein sample was then
assessed by monitoring the amount of products formed after 1h at 37 °C using Methods 16 and

17.

Buffer Buffer contents

50 mM MOPS pH 7.5
1 100 mM NacCl
5% (wi/v) glycerol

50 mM MOPS pH 7.5

2 100 mM NacCl

3 50 mM MOPS pH 7.5
5% (w/v) glycerol

4 50 mM MOPS pH 7.5

Table 7.16 Composition of buffers used to test ThiGH stability.
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7.4  Experimental for Chapter 4

Many experiments described in this section utilise the ThiH activity assay described in Method
16 and Table 7.14 (p 187). For any experiments requiring extra additions (e.g. reaction products
to measure product inhibition or MTAN) the volume of ThiGH / ThiH was reduced to

accommodate these additions and maintaining a consistant assay volume of 150 pl.

Method 25: Investigating product inhibition by DOA and methionine. ThiGH isolated by
Ni-affinity chromatography (Method 10) was chemically reconstituted (Method 14a). To
investigate product inhibition, the reaction products (DOA, methionine or DOA plus
methionine) were added to activity assays (prepared as described in Method 16) at selected
concentrations between 0 — 1 mM. The activity of each protein sample was then assessed by

monitoring the amount of p-cresol formed after 1h at 37 °C by HPLC (Method 17).

Method 26: Expression and purification of MTAN. Cells were cultured and protein

expressed by Method 9. A typical yield of wet cell paste was 40 g.

The cell pellet (40 g) was suspended in lysis buffer (10% (wi/v) glycerol / 50 mM Tris, pH 8.1)
(120 mL) and lysozyme (0.1 mg / mL) added. The suspension was stirred for 15 min before cell
lysis by sonication (12 x 30 s on / 30 s off). Benzonase (10 uL) was added and the suspension
stirred for a further 10 min before removal of the cell debris by centrifugation (SLC15000,
12000 r.p.m., 30 min, 4 °C). The supernatant was then loaded onto chelating sepharose fast
flow column, charged with NiSO, and equilibrated with Buffer A (50 mM Tris, pH 8.1, 25 mM
Imidazole). The column was washed with 300 mL of Buffer A before a gradient to 250 mM
Imidazole over 50 mL using Buffer B (50 mM Tris, pH 8.1, 200 mM NacCl, 500 mM
Imidazole), followed by an isocratic wash at 250 mM Imidazole. Fractions (5 mL) were

analysed by SDS-PAGE and those containing >95% MTAN were pooled and concentrated to
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~20 mL on a 10 KDa NMCO membrane. MTAN was dialysed into 50 mM Tris, pH 8 and the
protein concentration estimated as 40 mg / mL. MTAN was stored in 1 mL aliquots at — 80 C. A
1 mL aliquot was slit into further aliquots of 50 L, which were diluted up to 0.5 mL (4 mg/ mL)

with anaerobic assay buffer prior to addition to ThiH activity assays.

Method 27: MTAN activity assay. The MTAN activity assay contained MTAN (5 nM), DOA
(12.5-800 pM), ammonium acetate (20 mM, pH 7.5) and BSA (0.1 mg mL™). To estimate the
Kwm for DOA, assays were initiated in parallel in a 96 well PCR plate incubated at 37 “C. Assays
were initiated by the addition of MTAN and stopped at time points (0 -5 min) by the addition of
perchloric acid (1% v/v). The precipitated protein was removed by centrifugation, supernatants
(100 pL) neutralised with ammonium hydroxide and analysed by RP-HPLC using a Gemini Cyg
(4.6 x 250 mm, 5 um, 100 A) reverse phase HPLC column (Phenomenex). The mobile phase
(0.7 mL / min) was an initial 5 min isocratic phase of 5% acetonitrile in 20 mM ammonium
acetate, pH 6.0, followed by a 10 min linear gradient to 50 % acetonitrile. Standards of adenine
and DOA had retention times of 10 min and 13 min respectively and were used to construct a

calibration curve to quantify the concentration of DOA and adenine in activity assays.

Method 28: Investigating alleviation of product inhibition with MTAN. ThiGH isolated by
Ni-affinity chromatography (Method 10) was chemically reconstituted (Method 14a). Activity
assays were prepared as described in Method 16 and reaction products (DOA, methionine or
DOA plus methionine) (1 mM) and / or MTAN (10 pM) were added. Before addition MTAN
applied to a NAP-10 gel filtration column equilibrated in anaerobic buffer L to exchenge the
protein into anaerobic assay buffer. The activity of each protein sample was then assessed by
monitoring the amount of p-cresol formed after 1h at 37 °C by HPLC (Method 17) and

comparing to a positive control assay with no additions.
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Method 29: ThiH activity assays with the addition of MTAN. ThiGH / ThiH isolated by
Sephadex 200 gel filtration chromatography (Method 13) was chemically reconstituted (Method
14b). Activity assays were prepared as described in Method 16. To investigate the effect of
removing DOA formed in situ during the experiment, the reaction assays were supplemented

with MTAN (10 uM) which had been previously exchanged into anaerobic buffer L.

Method 30: Investigating inhibition by glyoxylate and ammonium. ThiGH / ThiH isolated
by Sephadex 200 gel filtration chromatography (Method 13) was chemically reconstituted
(Method 14b). Activity assays were prepared as described in Method 16. To investigate
inhibition by glyoxylate and ammonia these compounds (10 — 2000 uM) were added to the

assay.

Method 31. Experiments with substrate analogues. Stock solutions (33 mM) of substrate
analogues were prepared in 100 mM ammonium bicarbonate and deoxygenated in an anaerobic
glove box overnight. ThiGH / ThiH isolated by Ni affinity chromatography (Method 10) was
chemically reconstituted (Method 14a). Assays were prepared with chemically reconstituted
ThiGH / ThiH mixture (60 — 90 uM), SAM (1 mM), substrate (1 mM). The amount of products

formed after 1h at 37 °C were estimated by HPLC (Method 17).
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7.5 Experimental for Chapter 5

Method 32: Preparation of ThiH activity assays in 50% D,O / H,0. Stock solutions of SAM
and NADPH were prepared by dissolving pre-weighed aliquots in anaerobic water. Tyrosine
stock solutions were prepared by addition of a 33 mM solution of tyrosine, prepared by
dissolving in 200 mM HCI (350 pL) to 1 M NaOH (120 pL) to give a tyrosine stock at a pH
suitable for adding to buffered protein solutions without causing precipitation. Chemically
reconstituted ThiGH was concentrated, using a 10kDa MWCO ultrafiltration membrane and
The protein was then applied to a NAP-10 gel filtration column equilibrated in anaerobic buffer
M (100 mM MOPS pH7.5, 200 mM NaCl and 10% (w/v) glycerol). Assays (250 pl) were
prepared in 1.6 ml microcentrifuge tubes by addition of the amounts of stock solutions shown in
Table 7.17 as follows: ThiH protein (either ThiGH / ThiH mixture isolated by Ni-affinity
chromatograph or Sephadex 200 purified ThiGH), SAM, tyrosine and D,0 (125 ul) were
incubated at room temperature for 30 minutes to allow for proton / deuteron exchange. In all
cases a positive control, in which H,O (125 ul) was added instead of D,O was prepared in
parallel in order to draw direct comparisons. The assay solutions were then equilibrated at 37 °C
by incubating in a water bath contained within an anaerobic glove box for 5 min. A stock
solution of the reductant system was prepared containing flavodoxin 1 (280 pM),
flavoprotein:NADPH oxidoreductase (70 uM), and NADPH (15 mM) and incubated at room
temperature for 15 min to permit the formation of the blue-coloured semiquinone. The assays
were initiated by the addition (33.3 pl) of the reductant system (final concentrations of
flavodoxin 1 (37 uM), flavoprotein-NADPH oxidoreductase (9 pM), and NADPH (2 mM)).
Each time point (1-60 min) was stopped by protein precipitation with 20% perchloric acid

(20 pl) and then cleared by centrifugation (Eppendorf 5415D microcentrifuge, maximum
speed). Supernatants were stored at -80 °C until analysis by HPLC (Method 17) or LCMS

(Method 33).
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Stock Volume Final

Component
concentration added / pl  concentration
> 140 uM
ThiGH / ThiH 74.5 > 40 uM
(~10 mg/ml)
SAM 33 mM 7.6 1mM
Tyrosine 26 mM 9.6 1 mM
D,0 (or H,0)* - 125 -
FIdA: 280 uM FIdA: 37 uM
Reducing mixture Fpr: 70 uM 33.3 Fpr: 9 uM
NADPH 15 mM NADPH 2 mM

! For preparation of positive control assays in 100% H20, the addition of D,O was replaced

with H,O

Table 7.17 Summary of ThiH activity assay preparation for assays that contained 50% D,0.

Method 33: LCMS analysis of ThiH assays. Supernatants (100 pl injection volume) were
anlaysed by LCMS using identical chromatography conditions (column, mobile phase and UV
detection) as described in method 17. A 1:4 split, followed by dilution with 3% formic acid in
50% methanol / water was used to achieve MS analysis. Data processing was achieved using the
XCaliber software. DOA eluted with a retention time of ~20 min and was identified by
comparison with a synthetic standard. The peak width was typically 0.8 minutes. To achieve the
spectra shown in Figure 5.1 (p137) the mass ions in the chromatogram from 0.4 minutes before
and 0.4 minutes after the DOA peak elution were subtracted from the mass ions present in the

peak corresponding to DOA.
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