The University of Southampton
University of Southampton Institutional Repository

Semiometrics: producing a compositional view of influence

Semiometrics: producing a compositional view of influence
Semiometrics: producing a compositional view of influence
High-impact academic papers are not necessarily the most cited. For example, Einstein's 'Special Relativity' paper from 1905 received (and continues to receive) fewer citations from other papers than his 'Brownian Motion" paper of the same year, despite the former radically changing the course of an entire scientific discipline to a much greater extent. Similarly, 'impact' metrics using citation count alone are, it is argued, not adequate for determining the scientific influence of papers, authors or small groups of authors. Although valid, they remain controversial when used to determine influence of larger groups or journals. While the term 'impact' has become closely linked to a journal's citation-based Journal Impact Factor score, this thesis uses the term 'influence' to describe the wider effectiveness of research, combining citation and metadata analysis to allow richer calculations to be performed over large-scale document networks. As a result, more qualitative influence ratings can be determined and a broader outlook on scientific disciplines can be produced. These ratings are best applied using an ontology-based data source, allowing more efficient inference than under a traditional RDBMS system, and allowing easier integration between heterogeneous data sources. These metrics, termed 'Semantic Bibliometrics' or 'Semiometrics', can be applied at a variety of levels of granularity, allowing a compositional framework for impact and influence analysis. This thesis describes the process of data preparation, systems architecture, metric value and data integration for such a system, introducing novel approaches at all four stages, thereby creating a working semiometrics system for determining influence at different semantic levels of granularity.
McRae-Spencer, Duncan
5e12c74e-c6e9-42d2-8085-0b075330edfb
McRae-Spencer, Duncan
5e12c74e-c6e9-42d2-8085-0b075330edfb
Shadbolt, Nigel
5c5acdf4-ad42-49b6-81fe-e9db58c2caf7

McRae-Spencer, Duncan (2007) Semiometrics: producing a compositional view of influence. University of Southampton, School of Electronics and Computer Science, Doctoral Thesis, 159pp.

Record type: Thesis (Doctoral)

Abstract

High-impact academic papers are not necessarily the most cited. For example, Einstein's 'Special Relativity' paper from 1905 received (and continues to receive) fewer citations from other papers than his 'Brownian Motion" paper of the same year, despite the former radically changing the course of an entire scientific discipline to a much greater extent. Similarly, 'impact' metrics using citation count alone are, it is argued, not adequate for determining the scientific influence of papers, authors or small groups of authors. Although valid, they remain controversial when used to determine influence of larger groups or journals. While the term 'impact' has become closely linked to a journal's citation-based Journal Impact Factor score, this thesis uses the term 'influence' to describe the wider effectiveness of research, combining citation and metadata analysis to allow richer calculations to be performed over large-scale document networks. As a result, more qualitative influence ratings can be determined and a broader outlook on scientific disciplines can be produced. These ratings are best applied using an ontology-based data source, allowing more efficient inference than under a traditional RDBMS system, and allowing easier integration between heterogeneous data sources. These metrics, termed 'Semantic Bibliometrics' or 'Semiometrics', can be applied at a variety of levels of granularity, allowing a compositional framework for impact and influence analysis. This thesis describes the process of data preparation, systems architecture, metric value and data integration for such a system, introducing novel approaches at all four stages, thereby creating a working semiometrics system for determining influence at different semantic levels of granularity.

Text
00376008.pdf - Other
Download (2MB)

More information

Published date: March 2007
Organisations: University of Southampton

Identifiers

Local EPrints ID: 191379
URI: http://eprints.soton.ac.uk/id/eprint/191379
PURE UUID: 1647e89e-d392-49e1-b899-366d2d0b0d9a

Catalogue record

Date deposited: 11 Jul 2011 13:50
Last modified: 14 Mar 2024 03:44

Export record

Contributors

Author: Duncan McRae-Spencer
Thesis advisor: Nigel Shadbolt

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×