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Abstract

The dynamics of real-world systems often involve multiple
processes that influence system state. The timescales that
these processes operate on may be separated by orders of
magnitude or may coincide closely. Where timescales are not
separable, the way that they relate to each other will be im-
portant for understanding system dynamics. In this paper, we
present a short overview of how modellers have dealt with
multiple timescales and introduce a definition to formalise
conditions under which timescales are separable.

We investigate timescale separation in a simple model, con-
sisting of a network of nodes on which two processes act. The
first process updates the values taken by the network’s nodes,
tending to move a node’s value towards that of its neighbours.
The second process influences the topology of the network,
by rewiring edges such that they tend to more often lie be-
tween similar individuals. We show that the behaviour of
the system when timescales are separated is very different
from the case where they are mixed. When the timescales
of the two processes are mixed, the ratio of the rates of the
two processes determines the systems equilibrium state. We
go on to explore the impact of heterogeneity in the system’s
timescales, i.e., where some nodes may update their value
and/or neighbourhood faster than others, demonstrating that
it can have a significant impact on the equilibrium behaviour
of the model.

Introduction

Real-world adaptive systems typically involve many inter-
acting parts and processes operating at multiple timescales.
However, models of these systems often proceed by identi-
fying a single substantive timescale. Faster processes are of-
ten idealised as essentially instantaneous, while slower pro-
cesses are often treated as a constant background influence
that parametrises the model’s dynamics.

For instance, Kauffman’s (1993) NK landscape model of
adaptation on rugged fitness landscapes has a single substan-
tive timescale. At each step the genotype of a genetically fix-
ated population is updated to one of the fitter adjacent geno-
types. In reality, a newly discovered fitter mutant takes time
to reach fixation. This process is idealised as instantaneous.
During a single run of Kauffman’s model, the parameters [V

and K, which determine the length of a genome and the de-
gree of epistasis within it, are held fixed. They parametrise
the system’s dynamics. Of course in reality both N and K
vary as a consequence of evolutionary change. The security
of Kauffman’s idealisations hinges on whether these pro-
cesses are separable: the faster processes are much faster,
and the slower processes much slower, than the timescale of
the process that he focuses on. There are various interpreta-
tions of this kind of concept and in the scope of this paper we
define separation of timescales as follows. The timescales of
two processes are separated if one process leads the system
into equilibrium before the other process influences the sys-
tem. This means when the second process sets in, the system
has already reached equilibrium.

Where processes take place over similar timescales and
affect each other, i.e., they are coupled, dealing with these
interacting timescales becomes an important issue. For real-
world systems there are further considerations that may be
significant. To what extent is there component-wise hetero-
geneity in the rates at which different components operate?
While, on average, a genome’s alleles might mutate with
probability p, it may be the case that some alleles are more
vulnerable to mutation than others. While, on average, the
children in a schoolyard might update their social ties at
rate r, some might update these ties more often than oth-
ers. Moreover, a system’s timescales might vary with time.
The traffic on a network might be diurnal, with higher rates
during the day. The rate of plasticity in a neural component
might decay with the age of the component.

Here we are interested in exploring these issues in the con-
text of adaptive processes modelled on networks. In the co-
evolutionary networks literature (Gross and Blasius, 2008),
two processes are typically modelled: one governing the
tendency for nodes to change their state, and one govern-
ing topological change in the network. These two processes
may occur on separable timescales where interactions be-
tween the two processes can perhaps be neglected. If the
timescales for the two processes are not separable, their in-
terplay will affect the behaviour exhibited by the network.

Here we explore a very simple coevolutionary network in



which both state and topology evolve over time. We first
vary the rates of change for both processes and demonstrate
that their ratio impacts on the equilibrium state of the net-
work. We proceed to explore the impact of heterogeneity
in timescale, demonstrating that it can impact on both the
distribution of node states and the topology at equilibrium.
Before introducing the simple model and its results, we re-
view some literature demonstrating the issue of timescale in
modelling adaptive systems. We conclude with discussion
of the results presented here and ideas for future work.

Dealing with timescale
Synchrony vs. asynchrony

Several studies have revealed that models of adaptive sys-
tems can be sensitive to the updating scheme chosen. Us-
ing a synchronous model of the iterated prisoner’s dilemma,
Nowak and May (1992) found complicated spatial patterns
within which co-operation persisted. Using an asynchronous
update scheme for the same model, Huberman and Glance
(1993) found that spatial patterns disappeared with defec-
tion the only strategy adopted. While Kauffman (1993) has
shown that synchronous Random Boolean Networks can ex-
hibit many stable cyclic behaviours, glossed as analogous
to the multiple cell types that may result from the same
genome, Harvey and Bossomaier (1997) showed that the
same Random Boolean Networks with asynchronous update
would tend to evolve to a fixed point.

Multiple timescales

Artificial life has typically considered multiple adaptive
timescales in the context of interactions between learn-
ing and evolution (Ackley and Littman, 1992; Belew and
Mitchell, 1996), such as the Baldwin effect (Hinton and
Nowlan, 1987). Further examples where the separation of
timescales is critical to adaptive dynamics include the inter-
action between processes of neurotransmission and (much
slower) neuromodulation (Buckley et al., 2004, 2005; Buck-
ley, 2008; Husbands et al., 2010), and the interaction be-
tween the evolution of individual behaviours and ecological
relationships (e.g., Powers et al., in press; Watson et al., in
press; Van Der Laan and Hogeweg, 1995).

Timescales on networks

Most research involving dynamic networks has focused on
addressing either the dynamics ‘on’ a network, or the dy-
namics ‘of’ the network (Gross and Blasius, 2008). The
dynamics ‘on’ a network describe the state transitions of
the network’s nodes, while the dynamics ‘of” a network de-
scribe topological changes. Research on so-called coevolu-
tionary networks recognises that these processes are inher-
ently reflexive, with network state influencing topological
change (as when edges are formed between similar nodes),
and topology constraining state change (as when neighbours
exchange information) (Blasius and Gross, 2009; Gross and

Blasius, 2008; Gross and Sayama, 2009). Coevolutionary
networks have been the subject of recent study in the context
of the epidemic spread of diseases (Newman, 2002; Zhong
et al., 2010; Funk and Jansen, 2010; Van Segbroeck et al.,
2010), cascading network behaviour (Watts, 2002), opinion
dynamics (Kozma and Barrat, 2008; Demirel et al., 2011),
diffusion of innovations / information (Onnela and Reed-
Tsochas, 2009; Ke and Yi, 2008), evolution of social groups
(Palla et al., 2007), the growth of social networks (Sun and
Wang, 2008), co-operation (Pacheco et al., 2006; Van Seg-
broeck et al., 2009), community formation (Bryden et al.,
2010), synchronisation (Zhu et al., 2010) and global adap-
tation (Watson et al., in press). The dynamical interplay of
state update and rewiring processes are typically central to
the evolution of these systems.

Heterogeneous timescales

Typically, models make a simplifying assumption that all
components update their state at a shared characteristic rate,
while structural relationships change at some other arbitrary
rate. However, some models have explored systems with
heterogeneous rates. Van Segbroeck et al. (2009), for in-
stance, found that increased diversity in their model acceler-
ates the rate of evolution to an equilibrium state where co-
operation is a robust and dominant strategy. Pacheco et al.
(2006) employed variable re-wiring rates in a social agent
model. Their results suggest that introducing heterogeneity
has an effect on the system as a whole which can change the
frequency of co-operation observed at equilibrium.

A simple model

To study the influence of timescale separation we introduce
an abstract model based on models of opinion dynamics that
include adaptive change in network topology as well as the
spread of opinions over the network (e.g., Kozma and Bar-
rat, 2008). Here, nodes have an internal value and tend to
update this value in the direction of their neighbours’ val-
ues. The second process changes the network topology by
rewiring edges between nodes such that nodes disconnect
from dissimilar neighbours and connect to nodes with more
similar values.

To illustrate what kind of processes this model could be
related to we could assume that each node’s value represents
the opinion of a different person and that edges represent so-
cial interactions between people. In this setup, we can imag-
ine that either rewiring or state update might be the faster
process. If we assume a node’s value represents something
such as the religion a person believes in or a political affil-
iation, we can assume that this value changes very slowly.
We can further assume that therefore a person would more
readily change to associate with individuals sharing a simi-
lar opinion than change their own opinion to match that of
their neighbours. In this case, the rewiring process would
be faster than the value update process. At the other end of



Figure 1: A typical network after initialisation.

the spectrum, we could assume a node’s value represented
a person’s preference for meeting friends at one restaurant
rather than another. In this case the individuals would be
likely to change their opinion based on the opinions of their
friends, rather than changing their friends on the basis of
their restaurant preference. In between these two extremes
we can think of intermediate cases where individuals have a
preference for socialising with individuals that share a sim-
ilar opinion, but also change their own opinion towards that
of their neighbours.

The model

The model consists of a network of N interconnected nodes
(here N = 100). Each node has a single value in the inter-
val [0.0,1.0]. Even though a node’s value can be any value
between 0 and 1, each starts with the value 0.0 or 1.0, with
equal probability. Nodes are connected by undirected, un-
weighted edges, meaning an edge is either present or absent
and if node a cuts a tie to b, b also loses it’s connection to
a. Self-connections are not allowed. To initialise the net-
work between the nodes, we specify an average degree d
and generate a random network by making an edge between
each possible pair of unique nodes with probability ﬁ. In
the examples presented here, we use an average degree of
d = 10. A visualisation of a typical network after initialisa-
tion is given in Figure 1.

Value Update: When a node ¢ updates its value, it chooses
a random individual n from the set of its neighbours. It then
discovers the value of its neighbour v(n) and calculates the
difference v(n) — v(i) between the neighbour’s value and
its own. The node then updates its state towards the state
of its neighbour, proportional to the difference in values:
V()41 = v(4) + m(v(n) — v(i)). The factor m determines
the maximal change that can occur in one step. Here we
choose m = 0.01, to ensure that it takes several updates for
two nodes to reach the same value. If the updating node and

its chosen neighbour have the same state, i.e., v(¢) = v(n),
the update results in no change to v(i).

Rewiring: When node i rewires, it compares its own value
to the values of its neighbours, identifying the neighbour
with which it is most dissimilar, n. The node 7 then gen-
erates a list of all neighbours of all of its neighbours, com-
prising all nodes that are two edges away. Members of this
list that are already neighbours of ¢ are discarded. If the
list is non-empty, ¢ drops the connection to n and rewires
this edge to a randomly chosen member of the list of neigh-
bours’ neighbours. This implies that, if an individual is al-
ready connected to all neighbours of its direct neighbours,
an attempt to rewire will result in no topological change.

Timescales: In each step of the algorithm, a list is gener-
ated containing all nodes that are ready to update their state
in the current time step. These nodes are then updated in a
random order, one at a time. After this, the same procedure
is repeated for all nodes ready to rewire. Whether a node is
ready to update or rewire depends on the timescales of the
two processes. The relation of the timescales is incorporated
in the model as follows. Each node is assigned two values,
V; and R;, specifying the number of time steps in the in-
terval between two consecutive value updates for ¢ and two
consecutive rewiring events for 4, respectively. In the case of
homogeneous timescales, all nodes have identical values for
V' and identical values for R, i.e., ViV; =V and ViR; = R.
In the case of heterogeneous timescales this constraint does
not hold and values for the two rates may differ from node
to node. The algorithm stops when neither the state update
nor rewiring process effects any change in the network. We
will consider this stopping criterion in more detail next.

Equilibriation: Both the value update and the rewiring
process can only change the system’s state if there is a lo-
cal difference between two nodes. A local difference is
present if two nodes that are connected by an edge have non-
identical values. This difference can be reduced by updating
the value of one or both nodes or by deleting the edge be-
tween the two nodes and rewiring it to a node with a more
similar value. Once there there are no local differences in the
system anymore, neither the value update process nor the
rewiring process change the system’s state when invoked.
Therefore both processes need a value difference between
connected nodes to operate. Thus, we can see the difference
in values between connected nodes as some kind of energy
available to the two processes to use for changing the sys-
tem’s state. Both processes can only operate if there is en-
ergy left in the system and both processes reduce the energy,
at least locally. One way of formally defining this energy is
as the sum of absolute value differences between all pairs of
connected nodes, e = > |v(i) —v(j)].

4,7 connected

The energy specified in this way reduces over time and



once it has reached zero, the system’s state cannot change
any more. Therefore, we can use reaching zero energy as a
formal stopping criterion and terminate the algorithm when
the energy has reached zero. Note that, from the initial con-
ditions considered here, each process is capable of reducing
energy to zero in the absence of the other.

In the case of homogeneous timescales, whether they are
separated depends on the ratio of the values V' and R. For
R >> V the timescales of the two processes are separated,
with only the value update process influencing the dynam-
ics. We also have separation of timescales in the opposite
case, V. >> R, where the rewiring process dominates the
dynamics. Let us now specify further when exactly the
timescales are separated to find values for the parameters
V and R for which we can be certain the timescales are
separate. Based on the definition presented in the introduc-
tion, the timescales of the two processes are separate if one
process acts after the other process has reached equilibrium.
Based on the equilibrium definition as a zero energy state,
we define the equilibrium points ¢z and ¢y as the number
of steps the rewiring or value update process takes in isola-
tion to reduce the energy of the system to zero and therefore
reach equilibrium. We measure these two points for a par-
ticular set of initial conditions by running the algorithm with
only one of the two processes operating. Measuring the time
the system takes to reach zero energy when only one process
acts on it is the equilibrium time for that process, ty or tg.
If the second process acts only after the system has reached
equilibrium, it is unable to change the system state as there is
no energy for it to exploit (i.e., no value difference between
connected nodes). This means that the timescales of the two
processes are separated in two cases. The first case is when
V' > tgr, meaning that the value update only happens after
the rewiring process has brought the system to equilibrium.
In the second case, for R > ¢y, the rewiring process hap-
pens after the value update process has already reduced the
system’s energy to zero. In any other case the timescale are
mixed to some degree.

Results

We now observe the system behaviour for varying ratios g,
first for homogeneous timescales and then for varying de-
grees of heterogeneity.

Homogeneous timescales

If only the rewiring process is active and its rate is the same
for all nodes, the system reaches equilibrium after ¢tz ~ 10.0
steps. If only the state update process is active, it takes
longer for the system to reach equilibrium, ¢y, ~ 6500. Hav-
ing measured these values, we can assign values to the pa-
rameters V and R for which the timescales are separated and
one of the two processes dominates the dynamics.

Setting V = 100 and R = 1' the timescales are separated

!Note that the equilibrium times measured above assume that

as V > trp = 10, with only the rewiring process influenc-
ing the dynamics as it reaches equilibrium before the state
change process has time to affect the network.

The equilibrium state of the system under these parame-
ters is shown in Figure 2a”. Since the network is initially
populated by equal numbers of nodes with value 0.0 and
value 1.0, the rewiring process removes edges between dis-
similar nodes and replaces them with edges linking nodes
with identical value, forming two homogeneous compo-
nents, one containing all the nodes with value 0.0 and the
other containing the nodes initialised with value 1.0. At the
other extreme, V = 1 and R = 10000 > ¢,, only the state
update process shapes the network. Figure 2j depicts the
equilibrium state under these conditions. Node values have
gradually changed towards the average value of the initial
population until all nodes have exactly this value. Since all
the nodes have identical values no rewiring can take place
and the network topology does not change at all.

Intermediate cases where the timescales are mixed are
shown in Figures 2b-2i. Where the rewiring process is
fast relative to the state update process, the network breaks
up into several components, each eventually consisting of
nodes with the same value, but with values differing signifi-
cantly between the components (see, e.g., Figure 2b). Where
the system’s dynamics are more influenced by the state up-
date process (see, e.g., Figure 2e) the values adopted by dif-
ferent components tend to be less diverse and closer to the
system mean. Eventually, the state update dynamic is fast
enough to equilibrate the network before the rewiring pro-
cess can cause it to fragment (see, Figures 2h—2j).

These results show that the system reaches the predicted
equilibrium when the timescales are separated. For the in-
termediate cases with mixed timescales however, the ratio
between the two timescales determines which equilibrium
the system ends up in and the character of this equilibrium,
in terms of the node values and the network topology.

Figure 3 depicts how the distribution of node values at
equilibrium varies with % It shows that for very low values
of g, the rewiring process dominates the system dynam-
ics and only the initial values (0.0 and 1.0) are present. As
% increases, we observe more and more intermediate val-
ues, converging to the average value in the system. For high
values of %, there is only one value present in the system,
corresponding to the mean of the system’s initial values.

A similar transition can be observed for the topology of
the network. Figure 4 depicts how the distribution of com-
ponent sizes at equilibrium varies with % Here we ob-
serve that when rewiring dominates, the two network com-
ponents have nearly the same size, consisting of roughly half
of the nodes each (one is larger as a consequence of the ini-

the process considered happens each time step (V = 1 or R = 1).
We therefore set the frequency of the faster process to 1.

YIn the examples presented here, the same initial network
shown in Figure 1 is used.



tial random allocation of value to the population of nodes).
For mixed timescales, components are smaller and isolated
nodes (with component size 1) exist. As we move towards
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Figure 2: Networks at equilibrium for different values of R
and V. Node shading indicates the nodes states, with the
heaviest shading indicating 0.0 and no shading indicating
1.0.
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ratios %. For each value the system is started with the same
initial conditions.

100

90

80

70

60 &

50 -

40 F

sizes of components

30

20

0 L tyidoy oo s
0.01 0.1 1 10 100 1000 10000

Figure 4: Component sizes present in the equilibrium state
for different ratios %. For each value the system is started
with the same initial conditions.

the regime where the state update process dominates the
systems dynamics, larger components exist at equilibrium.
Once state update is the only active process, only one con-
nected component is present at equilibrium.

Comparing these two graphs, we observe that the appar-
ent thresholds in system behaviour exhibited by node val-
ues and network topology are different. From the perspec-
tive of node values, we can see three regimes separated by
two threshold values of g. First, a transition occurs around
% = 0.5, with a second qualitative change in the equilib-
rium behaviour at around % = 250. However, when we
consider the network’s equilibrium topology, the equivalent
transitions seem to occur around g = 0.1 and % = 2500.
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Figure 5: Node values present at equilibrium for differ-
ent levels of heterogeneity in the value update and rewiring
intervals. Only «, which specifies the heterogeneity of
timescales, is varied here (with a = ay = —apg). The
runs are otherwise identical and share the same initial con-
ditions. For each value of « all node values, v(7), present at
equilibrium are displayed.

Heterogeneity in timescales

We now consider the case where some nodes might update
their value or their neighbourhood faster than others. We
model this by allocating each node, ¢, a pair of values, V;
and R;, governing the individual rates of change for value
and neighbourhood, respectively. The V; and R; values are
Pareto-distributed, meaning that while most of the values are
close to the characteristic population mode, V' or R, a few
are significantly different, due to the long tail of the distri-
bution. Values are generated by transforming a uniform ran-
dom variable U by the functions /s for V; and i
for R; (Newman, 2004). The parameters oy and ar deter-
mine the spread of values in each distribution. We set a to
a negative value and ay to a positive value so that the tails
of the distribution point towards each other. Large absolute
magnitudes for o (such as a = 100) lead to a relatively
small average distance between the resulting values and the
modal value, V or R, whereas small absolute values for «
(e.g., @ = 2.5) produce a larger spread. This introduction
of heterogeneity into the model means that each node has its
own internal clocks governing when to update its state and
when to rewire.

The effect of heterogeneity on the value process is as-
sessed for the case in which V' = 1 and R = 50, as this
is an intermediate case where both processes influence the
dynamics. Figure 5 shows that for a low degree of hetero-
geneity in both processes (higher values of «) the distribu-
tion of values present at equilibrium is not very different
from the base case without heterogeneity. For higher levels
of heterogeneity, however, the diversity of values increases

significantly. The effects of heterogeneity on the network
topology are illustrated in Figures 6 and 7 for V' = 1 and
R = 2000, as this ratio of % is the threshold separating sin-
gle component equilibria from multi-component equilibria.
Without heterogeneity, the network forms one component
(Figure 7a) with a degree distribution that differs from that
of the initial network (compare Figures 6a and 6b). In the
presence of heterogeneity however, the network fragments
into eleven components (Figure 7b) with a qualitatively dif-
ferent degree distribution (Figure 6c).

Discussion

The results presented here show that in the cases where the
timescales are separated, the system behaves as we would
expect: if only the value update process is active, there is
no topological change and the values of all nodes converge
to the average of the initial network. If only the rewiring
process acts on the system state, we only observe changes in
topology and the network splits into two components, with
nodes being sorted according to their initial value. The num-
ber of components in that case depends only on the number
of initial values present in the system. For example, if we
initialise the system with three (e.g. 0.0, 0.5, 1.0) different
values instead of two the network fractures into three clus-
ters. To sum up, when timescales are sufficiently separated,
the system behaves in the same way as an equivalent system
with the slower process ‘switched off”.

The results also show that if the timescales are not sepa-
rated, the exact ratio between the rates of the two processes
influences the system’s equilibrium state. If the rewiring
process dominates the dynamics, the values we find in the
system in equilibrium differ significantly. As the value up-
date process gains more influence, the values of the compo-
nents found in the equilibrium state become more and more
similar. We can explain this behaviour by observing the
system dynamics over time. Starting from a random initial
network, the rewiring process stretches the network into a
predominantly white and a predominantly black end. In be-
tween, there are nodes of intermediate value. At this stage, if
the rewiring is fast, the network fractures at several points.
In the case where the value process is the main influence
on the system, the values of nodes are more similar at the
point when the rewiring sets in, as sufficient time has passed
for the node values to become more similar. Therefore, the
rewiring fractures the network into fewer and larger clusters.

Furthermore, we have shown that heterogeneity changes
the state the system reaches in equilibrium. Although the in-
fluence of heterogeneity is clearly visible, it is not as strong
as we had anticipated. The heterogeneous case needs to be
investigated further as we do not fully understand how het-
erogeneity in the rates influences the dynamics.

We have presented a definition for timescale separation in
the case of homogeneous and therefore well defined rates,
but we need an extended definition for the case of hetero-
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Figure 6: Histogram of the degree distribution under differ-
ent conditions. The rate parameters used are V = 1 and
R = 2000. In the heterogeneous case the o values are
ay = 2.1 and QR = —4.1.

geneous rates. There are of course further complications in
real-world systems that we have not considered in the model
presented here. For example, processes often have dynamic
rates, i.e., the change of the rate is a process itself, perhaps
influenced by the current state of the system.

(b) heterogeneity in rates of both processes

Figure 7: The effect of heterogeneity on network topology
forV =1, R =2000, ay = 2.1 and ap = —4.1.

Conclusions

In this paper we have presented an initial investigation of
timescale separation in adaptive networks, by identifying ex-
amples from the literature of different ways of dealing with
multiple timescales and proposing a definition of timescale
separation, based on the time taken by a system to reach
equilibrium under the action of individual processes. Given
this definition, we confirmed that, if the timescales of two
processes are sufficiently separated, we can ignore their in-
teraction. Where timescales do not separate cleanly, how-
ever, the system dynamics exhibit higher variability and
hence become more difficult to predict. Heterogeneity com-
plicates matters further as it can result in the system relax-
ing to different equilibria in comparison to the same system
under homogeneous conditions. Where we can not be cer-
tain that the timescales are sufficiently separated in a system
under consideration, we should expect the dynamics to be
sensitive to the interplay between the timescales of the pro-
cesses present.

Acknowledgements

This work was supported by an EPSRC Doctoral Training Centre
grant (EP/G03690X/1) and grant (EP/G036926/1.)



References

Ackley, D. H. and Littman, M. L. (1992). Interactions between
learning and evolution. In Langton, C. G., Taylor, C., Farmer,
J.D., and Rasmussen, S., editors, Artificial Life II, pages 487—
509. Addison-Wesley, Redwood City, CA.

Belew, R. K. and Mitchell, M., editors (1996). Adaptive Individuals
in Evolving Populations: Models and Algorithms. Addison-
Wesley, Reading, MA.

Blasius, B. and Gross, T. (2009). Dynamic and topological inter-
play in adaptive networks. In Schuster, H. G., editor, Annual
Reviews of Nonlinear Dynamics and Complexity, volume 2,
chapter 3, pages 63—106. Wiley-VCH, Weinheim.

Bryden, J., Funk, S., Geard, N., Bullock, S., and Jansen, V. A. A.
(2010). Stability in flux: community structure in dynamic
networks. Journal of the Royal Society Interface, 7:1257-
1274.

Buckley, C., Bullock, S., and Cohen, N. (2004). Toward a dy-
namical systems analysis of neuromodulation. In Schaal,
S., Ijspeert, A. J., Billard, A., Vijayakumar, S., Hallam, J.,
and Meyer, J.-A., editors, Eighth International Conference on
Simulation of Adaptive Behavior, pages 334-343. MIT Press,
Cambridge, MA.

Buckley, C., Bullock, S., and Cohen, N. (2005). Timescale and
stability in adaptive behaviour. In Bentley, P., Capcarrere,
M., Freitas, A. A., Johnson, C. G., and Timmis, J., editors,
Eighth European Conference on Artificial Life, pages 292—
301. Springer, Berlin.

Buckley, C. L. (2008). A systemic analysis of the ideas immanent
in neuromodulation. PhD thesis, School of Electronics and
Computer Science, University of Southampton, UK.

Demirel, G., Prizak, R., Reddy, P. N., and Gross, T. (2011). Cyclic
dominance in adaptive networks. The European Physical
Journal B - Condensed Matter and Complex Systems, pages
1-8.

Funk, S. and Jansen, V. A. A. (2010). Interacting epidemics on
overlay networks. Physical Review E, 81(3):036118.

Gross, T. and Blasius, B. (2008). Adaptive coevolutionary net-
works: a review. Journal of The Royal Society Interface,
5(20):259-271.

Gross, T. and Sayama, H., editors (2009). Adaptive networks: The-
ory, Models and Applications. Springer, New York.

Harvey, I. and Bossomaier, T. (1997). Time out of joint: Attractors
in asynchronous random Boolean networks. In Husbands, P.
and Harvey, L., editors, Proceedings of the Fourth European
Conference on Artificial Life, pages 67-75. MIT Press, Cam-
bridge MA.

Hinton, G. E. and Nowlan, S. J. (1987). How learning can guide
evolution. Complex Systems, 1:495-502.

Huberman, B. A. and Glance, N. S. (1993). Evolutionary games
and computer simulations. Proceedings of the National
Academy of Sciences USA, 90(16):7715-7718.

Husbands, P, Philippides, A., Vargas, P., Buckley, C. L., Fine, P.,
Di Paolo, E., and O’Shea, M. (2010). Spatial, temporal, and
modulatory factors affecting gasnet evolvability in a visually
guided robotics task. Complexity, 16(2):35-44.

Kauffman, S. A. (1993). The Origins of Order. Oxford University
Press.

Ke, H. and Yi, T. (2008). Information diffusion on adaptive net-
work. Chinese Physics B, 17(10):3536.

Kozma, B. and Barrat, A. (2008). Consensus formation on adaptive
networks. Physical Review E, 77(1):016102.

Newman, M. (2004). Power laws, Pareto distributions and Zipf’s
law. Arxiv preprint cond-mat/0412004.

Newman, M. E. J. (2002). The spread of epidemic disease on net-
works. Physical Review E, 66(1):016128.

Nowak, M. A. and May, R. M. (1992). Evolutionary games and
spatial chaos. Nature, 359(6398):826-829.

Onnela, J. P. and Reed-Tsochas, F. (2009). The spontaneous emer-
gence of social influence in online systems. Proceedings of
the National Academy of Sciences, 107(43):18375-18380.

Pacheco, J. M., Traulsen, A., and Nowak, M. A. (2006). Coevolu-
tion of strategy and structure in complex networks with dy-
namical linking. Physical Review Letters, 97(25):258103.

Palla, G., Barabdsi, A., and Vicsek, T. (2007). Quantifying social
group evolution. Nature, 446(7136):664—667.

Powers, S. T., Penn, A. S., and Watson, R. A. (in press). The con-
current evolution of cooperation and the population structures
that support it. Evolution.

Sun, C. and Wang, S. (2008). Modeling adaptive behaviors on
growing social networks. In Fourth International Confer-
ence on Natural Computation, volume 1, pages 465-469, Los
Alamitos, CA, USA. IEEE Computer Society.

Van Der Laan, J. and Hogeweg, P. (1995). Predator-prey coevo-
lution: interactions across different timescales. Proceedings:
Biological Sciences, 259(1354):35-42.

Van Segbroeck, S., Santos, F. C., Lenaerts, T., and Pacheco,
J. M. (2009). Reacting differently to adverse ties promotes
cooperation in social networks. Physical Review Letters,
102(5):058105.

Van Segbroeck, S., Santos, F. C., and Pacheco, J. M. (2010). Adap-
tive contact networks change effective disease infectiousness
and dynamics. PLoS Computational Biology, 6(8):¢1000895.

Watson, R. A., Mills, R., and Buckley, C. L. (in press). Global
adaptation in networks of selfish components: Emergent as-
sociative memory at the system scale. Artificial Life.

Watts, D. J. (2002). A simple model of global cascades on random
networks. Proceedings of the National Academy of Sciences
USA, 99(9):5766-5771.

Zhong, L.-X., Qiu, T, Ren, F., Li, P., and Chen, B. (2010). Time
scales of epidemic spread and risk perception on adaptive net-
works. Europhysics Letters, 94(1):18004.

Zhu, J.-F., Zhao, M., Yu, W., Zhou, C., and Wang, B.-H. (2010).
Better synchronizability in generalized adaptive networks.
Physical Review E, 81(2 Pt 2):026201.



