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Noise transmission problems where sound propagates in flow ducts occur in a variety of
contexts. The work in this paper is motivated by the turbofan aircraft engine application.
Simulating the acoustics of turbofan duct systems is a challenging problem because this can
necessitate the modelling of high-frequency sound propagation in ducts containing sheared
mean flow and with acoustically-lined walls. The purpose of this work is to develop fast
and efficient simulation methods, that can be used to calculate the propagation of sound
in lined flow ducts. In this paper, preliminary results are presented obtained from a new
finite element code which has been developed specifically to determine the pressure modes
in ducts containing shear flow. The formulation of the finite element method is outlined.
Preliminary results are shown which compare the duct modes with different boundary layer
profiles. These results provide examples of finite element solutions of pressure modes in
an annular duct. The results show how the shape of the boundary-layer profile can affect
the duct modes.

I. Introduction

The adoption of state-of-the-art noise-reduction technologies is of primary interest in the aerospace in-
dustry. To achieve optimal fuel efficiency, modern turbofan aero-engines are designed with very high bypass
ratios (up to 9:1), which results in fan noise being a dominant noise source at both take-off and landing. An
effective means of reducing fan noise is through the design of sound-absorbing intake and bypass turbofan
duct acoustic liners, which can be ‘tuned’ to an optimum frequency range, resulting in significant attenuation
of part of the fan noise spectrum.

Earlier liner designs were based on prediction methods where the intake and bypass ducts were typically
modelled as straight, axisymmetric, circular and annular ducts, containing uniform mean flow. These meth-
ods used the Ingard–Myers lined boundary condition1 formulated by imposing a vortex sheet at the duct
walls. It has become evident that such models are not sufficiently accurate to foster the development of the
next generation of acoustic liner configurations.

More accurate mathematical models, which take into account the complex geometry and flow field of
a turbofan duct system are nowadays used more routinely. Sound transmission in more realistic intake
and bypass duct geometries can be solved using numerical techniques; for example, finite element (FE)
methods, based on solutions of the convected wave equation, are also commonly used in duct acoustics.
These frequency domain methods use an irrotational mean flow, with the Myers lined boundary condition.
However, these methods cannot be used with a parallel shear flow. In general, with a sheared mean flow,
solutions of the linearized Euler equations (LEE) in the frequency domain can be obtained, but at high
frequencies the problem size can become prohibitively large.

In this paper we investigate the pressure modes in ducts containing a mean sheared flow comprised of
uniform core flow and boundary layers at the duct walls, and with acoustically-lined walls. A key objective
is to accurately predict the sound attenuation in lined flow ducts, taking into account the presence of a
boundary layer, at the high frequencies of interest associated with the modern high bypass ratio turbofan
application.

Emphasis is given to the implementation of fast and efficient methods which may be used to calculate
noise transmission losses at high frequencies. ‘Rotor-locked’ and ‘rotor-stator interaction’ tones generated
in the fan stage, which are predominant over the broadband noise spectrum, occur at harmonics of the
engine shaft frequency and blade passing frequency, respectively. In modern turbofan engines the blade
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passing frequency (BPF) corresponds to values of Helmholtz number ka between 20 and 30. Therefore, the
frequency range of interest goes up to values of k of the order of 100, i.e. fourth or fifth harmonic of BPF.
At such high frequencies, the acoustic wavelength λac and the boundary-layer thickness δ have comparable
length scales, and the sound waves suffer refraction as a result of the non-uniformity of the flow.

In order to achieve our objectives, we restrict our attention to straight, axisymmetric (cylindrical or
annular) ducts; for this simple geometry the acoustic field can be decomposed into normal-mode solutions,
which yield an immediate reduction in the dimension of the problem. Following Nayfeh, Kaiser and Telionis2
and Eversman,3 each flow quantity in a turbofan engine duct can be regarded as the superposition of an
unsteady, time-periodic perturbation on a steady, incompressible, inviscid, isentropic, parallel mean flow.

Let (r, θ, z) be a cylindrical polar coordinate system. At source frequency η, the acoustic field may be
built up by superposition of small-amplitude, upstream- and downstream-running, shape-preserving, pressure
modes of the form

p(r, θ, z, t) =
∞∑

m=−∞

∞∑
n=1

{
A+
mnψ

+
mn(r)e

j (ηt−mθ−kλ+
mnz) +A−mnψ

−
mn(r)e

j (ηt−mθ−kλ−mnz)
}
. (1)

In equation (1) k = η/c0 and c0 is the speed of sound, the parameter λ = kz/k and kz is the axial
wavenumber, m ∈ Z is the circumferential wavenumber, and ± denote positive (downstream) or negative
(upstream) propagating modes. For convenience, in the following we assume that r and other distances have
been scaled by the outer wall radius rout, time by rout/c0, velocities by c0, and acoustic pressure by ρrc20
(where ρr is a reference fluid density).

Assuming subsonic, shear mean flow without swirl, combining the first-order conservation equations
(linearized Euler equations) and seeking solutions of the form given by equation (1), this leads to the
Pridmore-Brown equation

(1−Mλ)
d2ψ

dr2
+
[
1−Mλ

r
+ 2λ

dM
dr

]
dψ
dr

+ (1−Mλ)

[
k2

[
(1−Mλ)2 − λ2

]
− m2

r2

]
ψ(r) = 0 , (2)

where M = M(r) is the Mach number of the parallel mean flow. Combining equation (2) with appropriate
duct wall boundary conditions leads to an eigenvalue problem to determine the eigenvalues, λ, and corre-
sponding eigenfunctions, ψ. Prediction of the acoustic field at high frequencies requires that a large number
of modes are calculated. Thus, it is crucial that calculations at a prescribed (high) frequency are fast and
efficient.

The paper is divided into two main sections. In section II the solution of the Pridmore-Brown equation,
to calculate the pressure modes at high frequencies in lined ducts with shear flow, is obtained using the finite
element (FE) method. The axial wavenumbers kz mn = kλmn and the pressure mode shapes ψmn(r) can be
determined via the solution of a one-dimensional problem, meaning the method is very efficient even at high
frequencies. Then, in section III preliminary results from the FE method are presented. Pressure modes
are calculated for a number of different boundary layer profiles. Following an article in 1974 by Nayfeh,
Kaiser and Shaker,4 we investigate whether the pressure modes for different boundary-layer profiles having
matching thickness and/or shape factorb are similar.

II. Finite element method

II.A. Theory

We follow the same methodology outlined by Gabard and Astley,5 but reduce the dimension of the problem
by one by taking the circumferential variation of the acoustic pressure field to vary as e−jmθ, since we are
restricting our attention to axisymmetric, circular or annular ducts. We solve the Pridmore-Brown equation
(2) together with the Ingard–Myers boundary conditions

dψ
dr
− j k Ah (1−Mλ)2ψ = 0 on r=h , (3a)

dψ
dr

+ j k A1 (1−Mλ)2ψ = 0 on r=1 , (3b)

aNon-dimensional free field wavenumber scaled by a suitable lengthscale, which in this context is the outer wall radius of
the duct, rout.

bThe shape factor is the ratio of displacement to momentum thickness.
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where Ah and A1 denote the non-dimensional specific acoustic admittance of the inner and outer duct wall,
respectively.c The problem is recast, after some lengthy algebraic manipulations, as the following variational
formulation

α+ λβ + λ2γ + λ3δ = 0 , (4)

where

α = −
1ˆ

h

(
dφ
dr

dψ
dr

+
m2

r2
φψ

)
r dr + k2

1ˆ

h

φψ r dr − (Aφψ r |r=1 +Aφψ r |r=h) , (5a)

β =

1ˆ

h

M

(
dφ
dr

dψ
dr

+
m2

r2
φψ

)
r dr − 3k2

1ˆ

h

M φψ r dr

+3 j k (AM φψ r |r=1 +AM φψ r |r=h) + 3

1ˆ

h

φ
dM
dr

dψ
dr

r dr , (5b)

γ = k2
(
3

1ˆ

h

M2φψ r dr −
1ˆ

h

φψ r dr
)
− 3 j k

(
AM2 φψ r |r=1 +AM2 φψ r |r=h

)
, (5c)

δ = −k2
( 1ˆ

h

M3φψ r dr −
1ˆ

h

M φψ r dr
)

+ j k
(
AM3 φψ r |r=1 +AM3 φψ r |r=h

)
,

and φ is any sufficiently regular function.
Subdividing the solution domain, h ≤ r ≤ 1, into NE finite elements, we replace ψ and φ by their

approximations of the form

ψ(r) =
NG∑
i=1

ψiNi(r) and φ(r) =
NG∑
i=1

φiNi(r) ,

where {Ni}i=1,2,...NG
is a finite element basis, NG is the number of global nodes (which depend on the degree

of the Lagrangian element selected), and the coefficients ψi are the unknown values at the nodes ψi = ψ(ri).
A cubic eigenvalue problem for λ is obtained, expressed compactly in the form

C(λ)ψ = 0 . (6)

The matrix C(λ) is an NG by NG matrix polynomial defined as

C(λ) =
3∑

n=0

λnCn , (7)

and ψ is the vector defined by
ψT = [ψ1, ψ2, . . . ψNG

] . (8)

Cn are defined as

C0 = k2M(0) −K(0) − j kZ(0) , (9a)

C1 = −3 k2M(1) + K(1) + 3 j kZ(1) + 3S , (9b)

C2 = k2
(
3M(2) −M(0)

)
− 3 j kZ(2) , (9c)

C3 = −k2
(
M(3) −M(1)

)
+ j kZ(3) , (9d)

cThe non-dimensional specific acoustic impedance Z = 1/A.
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where M(n), K(n), Z(n) and S, for n = 0, 1, 2, 3, are defined, in index notation, as

M
(n)
ij =

1ˆ

h

[
M(r)

]n
NiNj r dr , (10a)

K
(n)
ij =

1ˆ

h

[
M(r)

]n (dNi
dr

dNj
dr

+
m2

r2
NiNj

)
r dr , (10b)

Z
(n)
ij = A1

[
M(r)

]n
NiNj r |r=1 +Ah

[
M(r)

]n
NiNj r |r=h , (10c)

Sij =

1ˆ

h

Nj
dM
dr

dNi
dr

r dr . (10d)

Equation (6) can be expressed as a linear eigenvalue problem of the form

Aq = λBq , (11)

where

A =

 0 I 0
0 0 I
−C0 −C1 −C2

 , B =

I 0 0
0 I 0
0 0 C3

 , q =

 ψ

λψ

λ2ψ

 , (12)

and 0 and I are the null and identity matrices, respectively. The matrices Cn are obtained via the usual
finite element assembly process.

II.B. Implementation

The FE method has traditionally been coded in procedural programming paradigm. However, since the
introduction of the object oriented paradigm in the early 1990s, a number of articles on applying this
programming style to the FE method have been published. Some of the first papers on the subject are
by Zimmermann, Dubois-Pelerin and Bomme6 and Mackie,7 both published in 1992. In our work the
object-oriented programming style has been adopted for the development of the FE code. Details of the
implementation are not included here. However, the supported configurations which are included in the code
are listed below.

1. Field equation: convected Helmholtz equation or Pridmore-Brown equation.

2. Boundary conditions: rigid or acoustically-lined (locally-reacting) duct wall.

3. Duct geometry: axisymmetric, circular or annular waveguide.

4. Mean flow: parallel shear flow, Mach number M(r).

5. FE implementation: linear and quadratic Lagrange basis functions; numeric and symbolic (where
possible) integration schemes; solution of the generalized eigenvalue problem (11) via the QZ-algorithm
due to Moler and Stewart8 from the IMSL C library.

6. Post-processing: routine to identify and sort the modes (i.e. hydrodynamic or acoustic, positive or
negative propagating modes).

II.C. Validation

The purpose of this subsection is to quantify the accuracy of the numerical model by inspecting the conver-
gence of the relative error of the axial wavenumbers, by increasing the number of mesh points. The relative
error used here is defined as

e =
|kz − kz,ref|
|kz,ref|
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where kz,ref is a reference axial wavenumber obtained numerically with a very high-resolution mesh.
The mesh resolution is typically characterized by the number of elements per wavelength

ne =
λac
h

where λac is the acoustic wavelength and h is the typical element size in a given mesh. Therefore we define
kh = 2π/ne, where k is the Helmholtz number and h is the non-dimensional element size scaled by the outer
duct radius rout.

The test case of a lined annular duct with hub-to-tip ratio h = 0.8, uniform mean flow M0 = 0.5, non-
dimensional specific acoustic impedance Z = 2 − 3j , and Helmholtz number k = 20 is considered. The
relative error, e, is plotted as a function of the radial mode order and for different mesh resolutions in figure
1. The resolution of the mesh used to produce kz,ref is kh = 0.01142. As a general trend, the relative error
grows as modes of higher radial order are considered. This is expected as the higher the radial order, the
resolution of the mode becomes less accurate using the finite element method. For the cut-on modes, results
obtained with relatively coarse meshes are very similar to those obtained with much finer meshes. Moreover,
the relative error reduces systematically for all the modes shown here when using finer meshes. Also the
relative error as a function of kh for a number of prescribed modes is shown plotted in figure 2. Again this
shows how, in general, the relative error falls as kh is reduced.

(a) (b)
Figure 1. Relative error of the calculated axial wavenumbers with different mesh resolutions for the test case of a lined
annular duct with uniform flow, h = 0.8, M0 = 0.5, Z = 2− 3j , k = 20: (a) m = 0, negative (upstream) modes, (b) m = 0,
positive (downstream) modes.

Figure 2. Convergence of the calculated axial wavenumbers with increased mesh resolution for the test case of a lined
annular duct with uniform flow, h = 0.8, M0 = 0.5, Z = 2 − 3j , k = 20. Convergence is shown for positive and negative
modes, radial orders n = 1 to 5.
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III. Preliminary results

Preliminary results are shown for both a rigid and an acoustically-lined annular duct. In the case of the
lined duct, results are provided for a locally-reacting acoustic lining with (non-dimensional) specific acoustic
impedance Z = 2− 3j . Sample results are provided for an annular duct with hub-to-tip ratio h = 0.8, and
a frequency which corresponds to Helmholtz number k = 20.

The eigenmodes have been computed for three different mean-flow profiles:

1. Uniform flow;

2. Linear boundary-layer;

3. 1/7th power law boundary-layer.

The flow profiles for the shear flow test cases are

M(r) =


M0

(
r − rin
δ

)1/N

rin 6 r < rin + δ,

M0 rin + δ 6 r 6 rout − δ

M0

(
rout − r

δ

)1/N

rout − δ < r 6 rout

(13)

whereM0 is the core flow Mach number, rout and rin are the outer and inner wall duct radius, and N defines
the power (N = 1 for case (2), N = 7 for case (3)). Also, in all the results the uniform flow is taken to be
M0 = 0.5.

Our objective is to examine the pressure modes for different boundary-layer profiles. For each test case,
the eigenvalues λ = kz/k are shown plotted on an Argand diagram. Only the acoustic modes are shown
(the continuous spectrum of hydrodynamic modes is not shown). Both positive (downstream) and negative
(upstream) running modes are shown. The linear boundary layer profile can be adjusted by permitting a slip
velocity at the wall.d Varying the velocity at the duct wall allows the shape factor of the profile to be altered,
whilst keeping the boundary-layer thickness fixed. Accordingly, in all the following test cases, each boundary-
layer profile has the same thickness δ, but two linear boundary-layer profiles are assessed. One profile has
no slip at the wall, whilst the other profile has a slip velocity (duct wall Mach number 0 ≤ Ms ≤ M0) such
that the linear with slip boundary-layer profile has the same shape factor as the 1/7th power law boundary
layer. This allows comparisons to be made between two different profiles having matching thickness and/or
matching shape factor as well. Results are provided taking the non-dimensional boundary layer thickness to
be δ = 0.01 (1% of rout) and δ = 0.05 (5% of rout).

Figures 3 and 4 show the eigenvalues λ = kz/k for a rigid and a lined annular duct with k = 20,
respectively. Modes having circumferential order m = 0 and m = 10 are shown, for boundary-layer profiles
with thickness δ = 0.01 and δ = 0.05. Some examples of the pressure mode shapes ψ(r) are shown in
figures 5 and 6. These show the positive and negative modes with circumferential order m = 0, and radial
orders n = 1 and 2. The boundary layer thickness is δ = 0.05. Finally, in figure 7 a further example of the
eigenvalues λ = kz/k is provided for a rigid annular duct with k = 20 and δ = 0.05, now showing a range of
circumferential orders from m = 0 to m = 20.

IV. Discussion

Whilst no definitive conclusions are possible based on the small selection of preliminary results presented
in section III, there are several features which can be observed in these results which warrant further in-
vestigation. In figures 3 and 4 it is seen that the inclusion of a boundary layer alters the eigenvalues (axial
wavenumbers kz = kλ), and unsurprisingly there is greater variation with the thicker boundary-layer profile.
There are no clear trends evident when comparing the eigenvalues for the different profiles, albeit there is
slightly more variation in the values of λ with the negative propagating modes, i.e. modes propagating
against the mean flow. Conversely, in the rigid duct, the values of λ for the positive propagating (cut-on)
modes are very similar for each of the different boundary-layer profiles.

dThis requires a slight modification to equation (13) to allow a non-zero Mach number at r = rin and/or r = rout.
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The other notable feature in these results is that with the 1/7th power law boundary layer and δ = 0.05,
there are two isolated modes in the upper and lower right quadrants of the complex λ-plane, which have
shifted from the upper and lower left quadrants where all the other modes in their families are located. This
does not occur with the linear boundary layer. These eigenvalues are seen in both figures 3 and 4 with the
rigid and lined duct, and their values are similar in both cases. Accordingly, these modes are not related
to the presence of the acoustic liner, such as surface acoustic waves which can be detected in lined ducts.
Inspection of the pressure mode shapes has confirmed that these are, also, acoustic modes.

In figures 5 and 6 there are comparisons of some low-order pressure mode shapes (eigenfunctions ψ(r))
with circumferential order m = 0. As expected the largest variation in the mode shapes occur for n = 1.
In the rigid duct, (m,n) = (0, 1) is the plane wave mode. The inclusion of a boundary layer means that
this mode shape is not planar, hence the seemingly large variation in the eigenfunctions for this mode order.
There is less variability in radial order n = 2, although as already noted the variability is greater with the
negative propagating modes. Although these results are only for a limited number of test cases, it is seen
that for these low-order modes the 1/7th power law boundary layer and the linear without slip boundary
layer have similar mode shapes for this test case.

In figure 7 there is a further example of the eigenvalues λ with Helmholtz number equal to 20, for a
range of azimuthal orders from m = 0 to 20. The families of modes calculated with a boundary layer are
markedly different to the modes for uniform flow. Comparing the eigenvalues for the 1/7th power law and
linear (without slip) boundary layers, these appear similar apart from the presence of clusters of modes in
the upper and lower right quadrants with the power law profile. These clusters of modes appear in the upper
and lower left quadrants with the linear profile, so appear to have been shifted to the right hand side of the
λ-plane with the power law profile.

V. Conclusions

The objective of this work is the development of fast and efficient methods to calculate the pressure
modes in lined flow ducts at high frequencies. In the case of axisymmetric, circular or annular ducts, a finite
element method has been found to provide an efficient calculation method at high frequencies, because only
a one-dimensional mesh is required since the pressure mode shapes only depend on radial position. Thus,
calculations at very high frequencies are possible (with only modest computational cost), providing large
quantities of modes per simulation. Typically around 300 elements have been used to produce the results
shown in this paper.

Having calculated a set of modes for a prescribed test case, part of the post-processing requires that these
modes are classified and sorted. This is not a trivial task, but it is essential since there will be different
types of solutions calculated by the FE method. This includes modes which are predominantly acoustic or
hydrodynamic, as well as positive and negative propagating modes. We are currently evaluating a procedure
which determines the group velocity of the modes, in order to verify their propagation direction, and also
that the modes are stable.

A number of previous articles have examined the pressure modes in a duct with thin boundary layers
on the walls. With a thin boundary layer, it may be reasonable to neglect the boundary layer and assume
that the mean flow is uniform. It has also been postulated that with a thin boundary layer, the effect of
the profile shape is not particularly significant on the attenuation of the low-order modes in a lined duct.
We have started to examine a linear boundary layer, to assess whether this profile could be used in place
of other, more realistic, boundary-layer profiles when calculating the pressure modes. This is an attractive
profile to consider since it offers the potential to find analytic solutions, for example, see Goldstein and Rice.9
However, some caution must be exercised because the profile’s gradient has a discontinuity at the edge of
the boundary layer.

Our future aim is that approximate solutions for boundary-layer profiles (calculated using perturbation
methods) will be compared to full numerical solutions calculated using the finite element method, at high
sound frequencies. The validity of using approximation methods at high frequencies will be investigated. The
computational effort using approximation methods will be similar to that required to compute the pressure
modes at high frequencies with uniform mean flow (for which a closed-form analytic solution exists). This
offers an attractive approach whereby the effect of duct wall boundary layers can be included in the modelling
without significantly increasing the complexity or cost of the modelling procedure.
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(a) δ = 0.01, m = 0. (b) δ = 0.01, m = 10.

(c) δ = 0.05, m = 0. (d) δ = 0.05, m = 10.
Figure 3. Eigenvalues λ = kz/k for a rigid annular duct (h = 0.8, M0 = 0.5, k = 20) with mean flow profiles: (U) Uniform
flow; (T ) 1/7th power law boundary-layer; (S) Linear boundary-layer with slip; (L) Linear boundary-layer without slip.
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(a) δ = 0.01, m = 0. (b) δ = 0.01, m = 10.

(c) δ = 0.05, m = 0. (d) δ = 0.05, m = 10.
Figure 4. Eigenvalues λ = kz/k for a lined annular duct (h = 0.8, M0 = 0.5, k = 20, Z = 2 − 3j ) with mean flow profiles:
(U) Uniform flow; (T ) 1/7th power law boundary-layer; (S) Linear boundary-layer with slip; (L) Linear boundary-layer
without slip.
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(a) Negative (upstream) modes; n = 1 (b) Negative (upstream) modes; n = 2

(c) Positive (downstream) modes; n = 1 (d) Positive (downstream) modes; n = 2

Figure 5. Examples of pressure mode shapes ψ(r) for a rigid annular duct (h = 0.8, M0 = 0.5, δ = 0.05, k = 20) for
circumferential order m = 0. Mode shapes are shown for different flow profiles—see key.
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(a) Negative (upstream) modes; n = 1 (b) Negative (upstream) modes; n = 2

(c) Positive (downstream) modes; n = 1 (d) Positive (downstream) modes; n = 2

Figure 6. Examples of pressure mode shapes ψ(r) for a lined annular duct (h = 0.8, M0 = 0.5, δ = 0.05, k = 20, Z = 2−3j )
for circumferential order m = 0. Mode shapes are shown for different flow profiles—see key.
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(a) Uniform flow. (b) 1/7th power law boundary layer, δ = 0.05.

(c) Linear with slip boundary layer, δ = 0.05. (d) Linear without slip boundary layer, δ = 0.05.

Figure 7. Eigenvalues λ = kz/k for a rigid annular duct (h = 0.8, M0 = 0.5, k = 20).
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