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ABSTRACT
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SPINORS, EMBEDDINGS AND GRAVITY

by Simon Timothy Swift

This thesis is concerned with the theory of spinors, embeddings and
everywhere invariance with applications to general relativity. The
approach is entirely geometric with particular emphasis on the use
of natural structures. A clear indication of the interaction between
the above topics is given; this interaction then sheds light on
various aspects of general relativity theory.

The main ideas discussed are:—~ (i) Spinors, conformal structure
and the spacetime projective null bundle framework. (ii) Spaces of
embeddings. (iii) Embeddings and spin structure. (iv) Null em-
beddings and the null limit (a technique for obtaining differential
equations on null hypersurfaces). (v) Quasi-local momentum.

(vi) The space of metrics, natural group actions and generalized
conformal structure. (vii) Everywhere invariance and the invariance
equation as a method for obtaining spacetime symmetries.

Three appendices are also provided:- These give comprehensive
summaries of the theories of principal bundles, conformal structure

and asymptotic simplicity.
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CHAPTER O INTRODUCTION

Since we have provided each of the four principal chapters
of this thesis with an individual introduction, this general in-
troduction serves only to indicate the underlying themes and
philosophy, to point out the novel ideas and to define notions
and notation relevant to the thesis as a whole. The thesis
comprises two main parts:- The first consists of Chapters One,
Two and Three and discusses spinors and embeddings, whilst
Chapter Four constitutes the second part and is concerned with
a study of everywhere invariance and spaces of metrics. Although
here we have distinguished between the two parts, there exist
certain connections between them; firstly because each of the
parts is concerned with the application of geometric frameworks
to certain aspects of general relativity theory, secondly through
our use of infinite dimensional manifolds wherever appropriate
throughout the thesis, and finally because of more specific links
(indicated at the appropriate points within the text).

The main themes of this thesis are spinors, embeddings, null
and conformal structures, metrics and symmetry (manifested in the
form of natural and physically important group actions). We show
how all of these themes are important, if not essential, to the
theory of general relativity. We also indicate the way in which
these concepts interact with one another, thereby illuminating
certain aspects of general relativity theory. Indeed, all of these
themes (and many more!) have been an important ingredient in much

of twentieth century theoretical physics, and, if we go by recent



trends in the interaction between geometry and physics, it seems that
the relationship will become ever more intimate.

Our philosophy, based on the underlying themes mentioned above,
is to organize and to geometrize:- On the one hand, we collect to-
gether, in a coherent unified fashion, appropriate geometric notions
and we demonstrate how these have an impact on gravity theory. On
the other hand, we consider various developments within the theory
of general relativity in a geometric light. Our aim is to show how
these two interacting approaches clarify certain links between
geometry and physics, unify ideas within general relativity theory
and also lead to new frameworks within which to study physical ideas.
Let us now describe the novel aspects of the thesis in more detail:-

Chapter One is concerned with the theory of spinors on mani-
folds. We develop the theory carefully, emphasizing the necessary
geometric structures within a framework of principal fibre bundles.
After developing the required background, we show how spinor ideas
fit neatly within the theory of general relativity. Much of this
material is standard, although our exposition tends to highlight
the real differential geometric aspects rather than complex aspects
based on algebraic geometry. Certain novel suggestions appear in
section 1.4 where we discuss the possibilities for a spinor-metric
configuration space. The ideas of this section are based upon the
canonical principal (S)0(n)-bundle associated with any (oriented)
n-manifold, and this bundle makes several appearances throughout
the thesis. Section 1.5 features a self-contained treatment of
the relationship between the 2-sphere and the Lorentz group, a
relationship which underpins several important ideas in the theory

of general relativity. The 2-sphere-Lorentz group interaction is,



of course, well known, but, since the 2-sphere (and the Lorentz
group!) play several roles in the thesis and since the interaction
is an excellent illustration of the way in which spin and conformal
structures come together, we thought it appropriate to include a
discussion based upon our own approach (but, at the same time,
utilizing standard notation!). The framework considered in section
1.9 is our geometrization of an idea which has appeared in several
places in the general relativity literature. This is the idea of
constructing a natural 2-sphere bundle over spacetime so as to make
use of the 2-sphere-Lorentz group interaction at each spacetime
point. This projective null bundle may be regarded as a Lorentzian
version of the Penrose twistor space in Riemannian geometry. In
addition to pointing out applications of this framework, we show
how the idea brings together many of the notions discussed in
sections 1.1 to 1.8.

Chapter Two consists of a thorough treatment of embeddings
and their use in general relativity theory. 1In particular, we
emphasize infinite~dimensional applications and, in section 2.2,
we consider geometric aspects of the structure of spaces of em-
beddings. In particular, we examine the natural group actions,
metrics and connections associated with these spaces. In section
2.3, we describe the interaction of spinors and embeddings.
Although this interaction underlies various topics in general
relativity theory, we have not seen a general discussion in the
literature and therefore we considered it appropriate to include
this section. At the end of section 2.3, we show how the general
theory is applied to the important cases in four-dimensional

Lorentzian geometry. This section also indicates links between



other sections of the thesis and places in context various formalisms
(for example, GHP) used in general relativity theory.

In Chapter Three, we move on from the non-~degenerate embeddings
of Chapter Two and we describe various aspects of null embeddings.
The main new idea is that of the null limit (see section 3.2) which
is a method for obtaining null versions of spacelike equations. In
section 3.4, we apply this technique to obtain a very useful spinor
null propagation equation which has been used in important work in
the area of general relativistic kinematics. The propagation
equation turns out to be the null limit of the (Maxwell-)Sen-Witten
equation. In order to put the kinematical application in context,
we present a thorough and unified review of gravitational momentum
— at the asymptotic level in section 3.3 and at the quasi-local
level in section 3.4. We indicate several links between the various
approaches to this fundamental problem. Another reason for in-
cluding a discussion of momentum is to provide an important example
of the essential use of spinorial concepts within the theory of
general relativity.

The subject of Chapter Four is everywhere invariance, and this
constitutes the second part of the thesis. The term everywhere
invariance is to be understood on two levels:- Firstly, the term
refers to a general philosophy of considering natural (usually
infinite-dimensional) structures associated with manifolds and related
group actions. This is essentially the study of section 4.1 and, to
some extent, section 4.6. The second use of the term everywhere
invariance refers to a specific concept - a geometrization of the
earlier idea of functional form invariance. In sections 4.2 - 4.6

we develop the theory of everywhere invariance and related concepts.
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This theory is interesting for two reasons:- Firstly, from a
practical viewpoint, it gives a technique for finding the symmetries
of a spacetime metric (we illustrate this technique in section 4.5),
.and secondly on a more abstract level, everywhere invariance involves
the study of group actions for which we consider the stabilizers of
subsets under the action, rather than of just one element. In section
4,1, we present a survey of the space of metrics on a manifold. Most
of the material is standard, but spread out over the literature and
therefore we found it useful to bring it together. Two novel aspects
of section 4.1 are the suggested use of the canonical O0(n)-bundle
as a means for resolving the singularities in the space of geometries,
and also the consideration of the action of subgroups of the auto-
morphism group of the frame bundle on the space of metrics.

In addition to the principal Chapters One, Two, Three and Four,
we have also included three appendices, collected together in
Chapter Six. The purpose of these appendices is to collect together
basic definitions and results of which we have made use throughout
the thesis:- Appendix 6.1 consists of a comprehensive summary of
the necessary facts from the theory of principal bundles and associated
concepts. The second appendix reviews conformal structures - an
important ingredient in several of the notions discussed in the main
body of the thesis. Note that section 6.2 also includes a list of
formulae giving the transformation properties of various useful
spinor quantities under a complex conformal deformation of spacetime
metric. The third appendix, section 6.3, gives the basic definitions
relevant to a study of asymptotically flat spacetimes. We also
include a description of semidirect product groups since examples
of these arise in several places within the thesis.

Qur basic notation is more~or-less standard:- M, N, ... denote
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(finite~dimensional) manifolds and C(M,N) denotes the manifold of
smooth maps from M into N (the superscript <« is always omitted
since, for us, everything is smooth). The symbol D is almost always
used to mean the (Fréchet) derivative of a map between manifolds,
whilst V 1is used for covariant derivatives. The symbols d and §
refer to the exterior derivative and (on a Riemannian manifold) the
exterior coderivative respectively. The signature of a spacetime is
taken to be =2 (so that the local diagonal form of a spacetime
metric is (+ - - -)). If G 4is a Lie group, then the Lie algebra
of G, denoted LG, 1is the space of left-invariant vector fields
on G and is naturally isomorphic with TlG'
Note that we make no attempt to discuss the global analysis
underlying the infinite-dimensional spaces which appear in this
thesis. Appropriate analytical references are given where appropriate.
For physics, we use geometrized units in which the Newtonian
gravitational constant G and the speed of light ¢ are both
unity. In these units, any physical quantity with dimension
8 u+8+y’ and

o . . . . .
L*t™M’  in nongeometrized units possesses dimension L

the corresponding numerical conversion factor required for trans-

GYCB-ZY. For

forming from nongeometrized to geometrized units is
example; energy, mass and electric charge all have geometrized

dimension L, whilst angular momentum has geometrized dimension LZ.



1.0 Introduction - Why Spin?

In this chapter, we introduce and develop the theory of spinors
as geometrical objects on a differential manifold. Our aim is to
present the material in a real geometric setting as a precursor to
using spinor ideas in general relativity, especially in Chapter
Three. In this brief introduction, we present an outline of the
reasons why spin structure is so important in physics in general,
and in general relativity in particular. Many of the points we
make in this section will be expanded and clarified in the main
body of this chapter.

From a historical point of view, spinors have been associated
with much of the theoretical physics developed this century. There
has also been an increasing relevance of spinors to ''pure mathe-
matics", especially in differential geometry, both real and complex,
and in topology during recent years. We indicate some of these
more mathematical developments below.

For ease of discussion we (artificially) partition the various
interactions between spinor theory and physics into three loose
categories, hopefully demonstrating the widespread appearance of
spinor ideas in twentieth century physics.

Category 1 may be called 'general relativity - spinors as a
tool', category 2 is 'spinors and general relativity - a deeper
relationship?', and, finally, category 3 is 'the rest of physics -
spinors as matter'.

We begin by considering category 3. This refers to the seminal

influence of Dirac [D 6 ] and followers such as Infeld and Van der



Waerden [I 1 ], Laporte and Uhlenbeck [L 3 ], Proca [P19],

Ruse [R # ], Veblen [V 3 ], and many post-1930 theoretical physicists.
These workers successfully developed the idea of spinors, in par-
ticular four component or Dirac spinors, as a representation of
spin-7 fields. The study of spinors as representing matter fields
and of the fundamental equations of physics which they satisfy has
continued to the present day. In recent years fermions of spin—§~
appearing in supertheories have been added to the list of particles
having such a spinorial representation. The interaction between
spinors and physics, represented by category 3, may be regarded as
fundamental in that fermions arising in nature have a natural in-
terpretation as spinor fields, or rather quantized spinor fields,
on spacetime.

Category 3 1is concerned with spinor fields propagating on
the arena that is spacetime. We now turn to the arena itself and
how spinors shape its geometry. Category 1 refers to the use,
especially over the past thirty years, of spinors as a tocl in
general relativity. In particular, we point out the simplifica-
tions introduced when structures intrinsic to general relativity
are translated into spinor form. For instance conformal and null
structures, curvature quantities and FEinstein's equations have
all enjoyed greater analysis in the spinor setting (see, for
example, Penrose and Rindler [P 1], and Geroch et al. [CG F 1).
The spinors used here are the two component or Weyl spinors, and
are introduced initially as a tool, although the physical and
geometrical insights aroused by the transition to spinor form
already suggests that there is, perhaps, a deeper underlying

structure in gravity theory which is related to spinors.



The tensor » spinor translation used in general relativity
rests heavily on the original work of Infeld and Van der Waerden
(fr 11, [V411), which was developed by other workers such as
Bade and Jehle [B 7 ], Bergmann [B % ], Buchdahl [B2%] and
Payne [P & ]. Even Einstein himself realized that spinor-
techniques were of use in discussing his theory - see, for example,
[E 77]. The geometrical version of the tensor » spinor transla-
tion is introduced in section 1.7.

The 1960's saw a huge unsurge in the popularity of spinor
methods in general relativity - inspired by the earlier workers
of the 30's, 40's and 50's, and spurred on by the insights of
people such as Roger Penfose - see most of the Penrose literature
referenced in Chapter 7, but in particular [P 6 ] and [P 40] for
the earliest work by him. The spinor tool was, by now, being
applied to basic questions in gravitational theory such as radia-
tion and asymptotic structure. We review some of these develop-
ments in Chapter 3 and references to literature may be found there.

Through the work of the 60's and 70's, it became clearer and
clearer that spinors were a very powerful technical tool in
analyzing the structure of general relativity. The theory of
twistors, again initiated by Penrose [P410], was partly inspired
by the obvious importance of two component spinor methods.

Twistor theory has lead to further mathematical developments (see,
for example, Wells [W44 ] as well as being of use in modelling
physical phenomena. Whether or not twistors have anything of
importance to say about the underlying structure of quantum gravity
(as is hoped by certain workers) remains to be seen, but the theory

is certainly an important contribution to complex geometry in its
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own right, as well as shedding light on real geometry and real physics.
We now consider category 2 wherein spinors and spacetime seem
to be much more closely linked. Many properties of topology and the
geometry defined by Lorentzian metrics in dimension four already
contribute to the possibility of spinors in analyzing specetime
structure, but since around 1980, these properties, along with cer-
tain other observations, have lead to the suspicion that spinors
in classical general relativity are not only very useful, but
fundamental. In fact, it may be that we shouldn't talk about
spinors in general relativity, but about general relativity in
spinors.
The main contributions to the suspicion just mentioned are
the following four instances: (i) The use of hypersurface Weyl
equations in proving the positivity of gravitational mass. This
was due to Witten [W 9 ] for the mass at spacelike infinity, and
to Ludvigsen and Vickers, also see Horowitz and Tod [H 14], for
the mass at null infinity. Ludvigsen and Vickers have also proved
other important physical inequalities using similar methods [L121.
(ii) The use of spinors in formulating quasi-local definitions
of kinematical quantities in general relativity. We refer mainly
to the work of Ludwig¢en and Vickers [L10]. These definitions -
of mass, momentum and, (unfortunately) to a lesser extent, angular
momentum - are apparently fundamentally non-tensorial, and
depend upon the use of spinors. Case (iii), which we wish to
cite, is along similar lines as (ii), but using a twistorial
definition of quasi-local quantities, again in a fundamentally
intrinsic way. The spinorial link between (ii) and (iii) is not

fully understood, but see Shaw [S 7% ], and remarks in Chapter 3
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of this thesis. (iv) concerns very interesting suggestions of
Ashtekar [A 75] in relation to a spinorial formulation of the
canonical or 341 formalism in general relativity. A possible
corollary of Ashtekar's work is the seemingly inseparability

of spinors and gravitational energy - SL(2,C) (two component)
spinors arise, not because of the Lorentzian signature of space-~
time, but rather because of a complexification of the group SU(2)
associated with a splitting of space and time, as would occur in
considerations of energy in a four dimensional setting.

The four cases discussed above are all, a priori, in the
context of classical general relativity. It seems possible,
however, that the real (or complex!) significance of spinor struc-
ture might emerge when the supposed quantum nature of physical
reality is taken into account. Ashtekar, in particular, resolves
some of the problems encountered previously with a 'quantization'
of gravity in his spinorial version of the canonical set-up. In
fact his methods lead to a new Hamiltonian in terms of a non-
local variable. We have already hinted at the fact that twistor
theory is motivated, in part, by a desire for a quantum theory
of spacetime, so if this desire is realised, there should be some
important r6le for the Penrose, or other, quasi-local quantities
to play - perhaps as generators of non-local symmetries in some
sense.

Recent developments, such as string theory, which extend or
encompass general relativity, also use spin structure in a funda-
mental way (see, for example, Seiberg and Witten [S 411 ]), but we
do not discuss such matters here. Indeed, our main eventuél

concern will be the use of spinors (fundamental or otherwise) in
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classical general relativity, in particular in relation to kine-
matical quantities. See Chapter Three.

We complete this introduction with a few words concerning the
influence of spinors on topology and geometry over recent years.
Some of these influences are motivated by physical ideas and some
have been of great use in developing physical models of our universe,
giving another demonstration of the fruitful interplay between
physics and mathematics.

Work of a mathematical nature interacted with the physical use
of spinors even in the early days; perhaps especially in the
early days, of spin history. The work of Cartan [C 2 ] was essen-
tially the first treatise on the subject, and influenced other
expositions such as those of Brauer and Weyl [B 25 ], Taub and
Veblen [T 2 ] and Whittacker [W 6 ]. As differential geometry
began to influence mathematics more, so spinors began to reach
a wider audience, especially in the 50's and 60's, when the work
of Chevalley [C 4 ], Crumeyrolle [C 4] and Lichnerowicz [L ¢ ]
were published.

We mention a few diverse areas of contemporary mathematics
where spinor ideas have had an impact. 1In differential geometry,
spinor techniques have been useful in the study of curvature
(Lawson and Yau [L 14 ], elliptic operators (Hitchin [H40]) and
geometric quantization (Blattner and Rawnsley [BA44]). In
topology and related areas, there have been applications to
K-theory (Atiyah et al. [A 25]), index theory (Baum and Douglas
[B 4 ]) and the spectral theory of Tdplitz operators (Boutet de
Monvel and Guillemin [B1%]).

We hope that this brief introduction has served to indicate



the widespread use of spinors in mathematics and physics, and the
bridging rdle they play between these disciplines. Spinors will
obviously continue to constitute an important part of general
relativity, and the current tantalizing glimpses of the funda-
mental nature of spinors will hopefully lead to a fuller under-
standing of the structure of spacetime in the near future.

In the meantime, as we have indicated above, the main aim of
this chapter is to explain the theory of spinors necessary for
Chapters Two and Three. We also point out several constructions
not emphasized in existing literature, in particular in sections
1.4 and 1.9, wherein certain important notions are geometrized.

We will be concerned with Weyl spinors rather than with
Dirac spinors, since the former are more important in gravity
theory and are also mathematically more basic. Since Dirac or
Majorana spinors do not make an appearance in this particular
work, we do not give any treatment of Clifford algebras in this
chapter. We also avoid the use of complex geometry if real
methods suffice, and we make no attempt to discuss the algebraic
topological constructions involved in spin structures. Results
concerning obstructions and so on will be quoted without proof.
In fact, since many of the proofs of results quoted in this
chapter are standard, we omit them here.

Chapter One is arranged as follows: 1In section 1.1, we
define spinor structures in both a metric dependent and metric
independent manner. Examples of concepts introduced in section
1.1 are given in section 1.2, as well as some extensions of these
ideas. For physics (and geometry!), we need covariant deriva-

tives of spinor fields, and these are discussed in section 1.3.
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We always regard principal bundles as central and vector bundles
as derived, so that covariant derivatives are introduced via
connections in principal bundles, though their use will, of course,
rely on the Koszul interpretation as a derivation on sections of
algebra bundles. The basic results concerning principal bundles
which we use in this chapter (and others) are summarized in
section 6.1, and we assume that these are known.

Any physical theory requires a configuration space (or at
least a phase space), and in section 1.4, we define certain
possibilities for such a space for the case of spinor fields.

We show the intimate connection with the metrics defining the
geometry of the underlying manifold and then, in section 1.6,
we demonstrate the inherent difficulties of introducing an
appropriate symmetry or invariance group for the configuration
space.

Conformal geometry is anotﬁer important constituent of the
theory of general relativity, since the null and causal structure
of spacetime are associated with a conformal class of Lorentzian
metrics, rather than with just a fixed metric. We develop some
relationships between spin and conformal structure in section 1.5.
Incidentally, sections 1.5 and 1.6 are both concerned with the
relationships between the structure of the space of metrics on a
manifold on the one hand and the structure of the spinor con-
figuration space on the other. The ideas of everywhere invariance
in the context of the space of metrics (see Chapter Four) may
lead to further insight into the structure of the space of spinor
fields, and this presents an important avenue for future work.

Since spinors are so useful in physics in general, and in



general relativity in particular, it seems natural to assume that
the spacetime manifold admits a spin structure, and hence spinors
and spinor fields. In section 1.7 we show that spin structures
and four dimensional spacetimes fit especially neatly together,
and that the requirement of spin structure is a very weak one.
Indeed, spin structures will automatically be admitted if other
basic physical desires, such as causality, are to be encompassed.
Section 1.8 turns around the ideas of section 1.7, and gives a
construction of global spacetime geometry starting from a basic
assumption of spinors on a four dimensional manifold. The idea
that one should regard geometry as derived from a more basic
spinor structure is not unattractive, and indicates links with

a discrete spacetime structure (see Penrose and MacCallum [P 40 ]).

We conclude Chapter One by bringing together ideas of earlier
sections and demonstrating, in section 1.9, how the very concrete
concept of the space or null directions may be analyzed in terms
of spinors and conformal structure. The space of null directions
may even be used as an arena in which the equations of physics
may be formulated. This material is a geometric unification of
ideas of earlier workers and may be regarded as a framework for
future work.

Chapter One provides a basic account of the spinor ideas we
use in the rest of the thesis; it attempts to unify natural notions
such as metrics, conformal structures, symmetries, null structure
and, of course, spinors and we hope that it goes at least a part

of the way towards answering the question 'Why Spin?’'.
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1.1 Spin Structures and Metrics

Let M be a differential manifold of dimension n. M 1is
usually assumed to be connected, and for simplicity we deal only
with the case of orientable manifolds (with a given orientation)
in this section. Extensions to the non-orientable case will be
briefly discussed in section 1.2. We will be considering metrics
on the manifold M, and for definiteness we restrict our atten-
tion to Riemannian metrics, i.e. signature zero metrics, in this
section. Section 1.2 will give examples of the pseudo-Riemannian
case, and all the definitions and results of this section will
apply to these metrics. Eventually, of course, we will be mainly
concerned with Lorentzian metrics (of signatureminus two) on four
dimensional manifolds - see sections 1.7, 1.8, 1.9 and Chapters
Two and Three. In the Lorentzian case we assume that (M,g)

(g the Lorentzian metric under consideration) is not only oriented
(a concept which depends only on topology), but also time oriented
(a g-dependent concept in general), i.e. we assume that any
Lorentzian manifold is spacetime oriented. Whichever signature we
use, we will denote the space of metrics of that signature on the
manifold M by Met(M). See Chapter Four for more details on the
structure of the infinite dimensional manifold Met(M).

Let GL+(M) be the principal GL+(n,RU-bundle of oriented
frames of the oriented manifold M, so that we may write

m

+ + M
GL (n, R) &~ GL (M) — M 1.1.1
where GLT(n,R) = {A € GL(n,R) : det A > O} 1is the identity

component of the group of linear automorphisms of R". To be
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strict we should use the symbol Ty to represent the principal
bundle, but it will be convenient to abuse notation and refer to
any bundle using its total space. If we wish to be explicit we
use an expression of the form 1.1.1. Properties of principal
bundles and associated concepts are summarized in section 6.1.

We should note that the frame bundle GL+(M) is a very dis-
tinguished member of the class of principal GL'(a,R)-bundles
over the manifold M. In fact GL+(M) is much more intimately
connected with the base M due to the existence of the canonical
or soldering l-form on GL+(M). The frame bundle may be charac-
terized as the unique principal GL+(n,R)-bundle over a manifold,
which possesses a l-form enjoying the properties of the soldering
form (see Appendix 6.1). For this reason, bundles associated with
the frame bundle have special properties, for instance the tensor
bundles over a manifold are acted upon by the diffeomorphism
group in a natural way. The spin bundles we shall define shortly
are prolongations of the frame bundle, and they too are more rigidly
fixed to the base than other principal Spin(n)-bundles. So, although
spinors are not as natural a concept as tensors on a 'bare' mani-
fold M are, they are, at least, bound to the structure of M in
an important way. We introduce the spin soldering in section 1.3.
The idea of soldering leads, via a connection, to torsion, and
although torsion vanishes in classical general relativity, it still

plays an important rdle (see Trautman [T 2 ] and, for an interesting

account of spin-torsion interplay, see Rapoport and Sternberg [R 1 ]).
Now we recall that an SO(n)-structure on M 1is a reduction of
+ .
GL (M) to a principal SO(n)-subbundle, and that SO(n)-structures

are in bijective correspondence with Riemannian metrics on M: Tor
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any g € Met(M), the bundle

M
S0(n) <> SO(M,g) — M 1.1.2,

of oriented g-orthonormal frames is an 80(n)-structure. Conversely,
given any SO(n)-structure P, there exists a unique g 6 Met(M)
for which S0(M,g) = P.

Let T: 6L'(n,R) — GL'(n,R), A: Spin(n) —» SO(n) be the
unique, nontrivial (n 2z 2) double covers of GL+(n,EU, S0(n)
respectively (see, for example, Crumeyrolle [C 74]). These covers
are both universal for n 2 3, and have the following properties:
Ker T' = ZZ < Cent(%ﬁ+(n,mj) , Ker A = Zz < Cent(Spin(n)), and
rlspin(n) = A, so that [ 1(S0(n)) = Spin(n) ¢ &0F(a,R).

We now introduce the notion of spin structure on the manifold
M. This is just a prolongation of a frame bundle that agrees with
the double covering on each fibre, so that the local group acting
at each point in M becomes a double cover of the frame group.

In fact we define two notions of spin structure. The first is more
universal in that it is metric independent whilst the second is
associated with Riemannian structures on M. We demonstrate that
the two concepts are closely related and, in fact, that there is
essentially a unique notion of spin structure on a manifold. An
account of spin structures may be found in many places in the
literature, for example Hitchin [HA40 ], Crumeyrolle [C14],
Dabrowski and Percacci [D 4 ] and Milnor [M F].

Definition (1.1)1l: A spin structure s on M is a r'-prolongation

+ .
S, ) of atm to &T@,R). i.e. ST is a principal

YT o + . .
Eﬁ+(n,ﬂo-bundle over M, and n: GL (M) — GL (M) dis a principal
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bundle homomorphism over the identity, idM, of M, such that

n(SA) = n(WT(A), for all v e i, 4e &k, R).

Two spin structures 815 8, on M are said to be equivalent,

81 v Sy

are equivalent T'-prolongations of GL+(M). i.e. 1f there exists a

if the respective prolongations (5%;(M),nl), (Eﬁ;(M),nz)

o\ N ny
principal Gﬁ+(n,EU-bundle isomorphism f: EEI(M) - G%;(M) over

y
id such that o f =

M )

o
Let Z{(M) denote the set of all spin structures on M, and

ﬂl-

let (M) = %(M)/m denote the set of equivalence classes of spin
structures on M. Note that (M) could be empty since, in
general, the fibrewise double coverings will not glue together con-
tinuously to form a bundle (i.e. a topological obstruction will
exist). If (M) + ¢L we say M 1is spin.

Definition (1.1)2: Let g € Met(M). A g-spin structure Sg on

uy
M is a A-prolongation (SO(M,g), ﬂg) of SO(M,g) to Spin(n).

Two g—-spin structures, s _ , s on M are said to be
g1 g2
equivalent sg v sgz, if the respective prolongations
1
Ay Ny .
(S0, (M,g), n_ ), (SO,(M,g), n_) are equivalent A-prolongations
1 g1 2 g9
of SO(M,g).

n
Let X(M,g) denote the set of g-spin structures on M, and
n,
let 1(M,g) = =(M,g)/~ denote the set of equivalence classes of
Y Y]
g-spin structures on M. For s_ = (SO(M,g),ng) € x(M,g),

(=4

v
SB(M,g) is called the bundle of (g,s )-spin frames.
2

Given any g € Met(M), define a map

%g: Y — F(M,g); (Byn) — (%g,ng) 1.1.3,

. n, o4
(where, for convenience, we write P rather than GL (M))

n, -1 v
where P = SO(M, and n = n|P .
. n T (S0(M,g)) o Py
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Y
(Pg’ ng) is clearly a g-spin structure on M for each spin

n n v
structure s = (P,n) on M, so rg does indeed map into IZ(M,g).

n
In fact it is not hard to show that ¥g is a bijection of I (M)

"]
onto I{(M,g), for each g € Met(M). The inverse map, %gl'

V] V]
I (M,g) — IL(M), may be constructed as follows: Suppose
oy v Wy
sg z (SO(M,g),ng) € Z(M,g). Spin(n) < GL (n,R), so there exists
the natural left action by group multiplication of Spin(n) on

oy
GL+(n,EU. Hence we may form the associated bundle

N

avav 'V\J+
P = SO(M,g) X% GL (n,R). Note that SO(M,g) 1is a reduc-

Spin(n)
tion of GL+(M), and so the extension SO(M,g) XSO(n) GL+(n,ﬂ)
may be canonically identified with GL+(M). Now we may define
4 AV
n: B— LT = so(M,g) x et (m,BR) by n([(,A1)
50(n)
n
= [(ﬂg(a), rea))], for all [(g,A)} € P. The map n is well

iy AY]
defined, and it is clear that the map: (SO(M,g),ng) —> (P,n)

=1 o o
just constructed is precisely rg : IM,g) — Z(M).
. ,\l ,\1 . ] -
In fact if 1 N Sqs then rg(sl) N rg(sz) (similarly if
(s) hen T.(s ) ori(s_ ), andso T
s vis v then r s U o s , and so ~t rojects to
S N g g’ g g g P

a well defined bijection of the quotients by ~:
Y] N
rg: Z(M> I Z(Mag); [(P,n)] P {(Pgang)] 1.1.4.

We summarize the above result: Given any g € Met(M);
L(M,g), the set of equivalence classes of g-spin structures on M,
is in bijective correspondence with ZI(M), the set of equivalence
classes of spin structures on M. In particular, card (Z(M,g"))
= card(f(M,g)) for all metrics g, g', and M is spin, i.e.
(M) + ¢, if and only if I (M,g) + ¢ (any g € Met(M)).
Therefore, the topological obstruction to the prolongation of

+ v , .
GL (M) to GL+(n,R) is precisely the same as the obstruction to
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prolonging SO(M,g) to Spin(n) (for any g € Met(M)). It is
well known that this obstruction is the second Stiefel-Whitney
class, w,(TM) € HZ(M;ZZ), of the tangent bundle, TM, of M
(See, for example, Milnor [M F ]). If WZ(TM) vanishes, then,
for any g € Met(M), there will exist at least one g-spin struc-
ture on M, and hence at least one spin structure on M. In
general there will exist inequivalent (g-) spin structures if
M 1is spin.

It is known that HI(M;ZZ) has a natural free transitive
action on Z(M,g) (for any g € Met(M)), and hence on I (M),
so that I(M) 1is an affine space for Hl(M;ZZ). The action:
Hl(M;ZZ) x L(M) — (M) may be constructed using a Steenrodesque
argument using transition functions and a representation of co-
homology classes as %ech—cocycles. Fixing an arbitrary

[(%O,no)] € I(M), we obtain a bijection:

B (M52Z,) — £(M); o > o [(P_,n)] 1.1.5,

and so the different equivalence classes of spin structures are
parameterized (after choosing an arbitrary origin) by the elements
of Hl(M;zzz).

Note that, a priori, given two inequivalent spin structures
(%l,nl), (%Z,WZ), the inequivalence could be due to the fact that

"
P

1° Py belong to different iso-

the principal G (n,R)-bundles, B
morphism classes, or, given Pl 2 PZ’ Ny and Ny might still be
inequivalent maps. We will remark on the possible physical signi-
ficance of such inequivalences in section 1.3.

We have shown that, for any g € Met(M), g-spin structures

are in bijective correspondence with spin structures. In other
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words, there is only one notion of spin structure on a manifold M.
The inter-relationship between spin structures and metrics will be
explored in greater depth in sections 1.4, 1.5 and 1.6, but we make
one remark now concerning this inter-relationship:
Let %Met(M) = {(g,sg): sg is a g-spin structure, g € Met(M)].
%Met(M) is a bundle over Met(M) with projection;
(gsg) — g, and the fibre over the metric g 1is precisely %(M,g).
Now define r: Met(M) x $(M) — SMet(M); (g,s) —> (g,??g(s)),
where %g is defined as in equation 1.1.3. Then we have, for each

. . s Y .
spin structure s on M, a section r of IMet(M), given by:

¥ i Met(M) — IMet(M); g > T(g,s) 1.1.6

for each metric g on M.

This trivial construction will simplify some of this discussion
in section 1.4.

In this section, we have introduced the notion of a spin struc-
ture on a manifold M and the equivalent notion of a g-spin structure.
These two ideas will form the basis of our constructions of spin
objects for use in physics and geometry, namely spinors, spinor
fields and spin connections. Recall that a spin structure contains
two pieces of data; a principal bundle and also a bundle map. The
former will be used to construct associated bundles, in particular
vector bundles of spinors and thence spinor fields by taking
sections. The bundle map part of a spin structure will be used
to prolong linear connections on the manifold M, the resulting
connections in the bundle of spin frames being the so-called spin
connections, essential for constructing spinor differential equa-

tions. We will discuss fields and connections in section 1.3,
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but first, we give some examples illustrating the ideas of this
section. We also extend the definitions to show how non-orientable
manifolds may be treated, and we introduce the case of Lorentzian

metrics.

1.2 Examples and Extensions

1.2.1: If the manifold M is parallelizable (i.e. if GL' (M)

is trivializable, so that it admits a gliobal section), then M

is spin. Obviously, in this case, there is no obstruction to pro-
, . Aty

longing the frame bundle to a principal GL (n,R)-bundle. The

converse to this is not true in general, as examples given below

will illustrate, so spinor fields, for instance, may exist without

the need for a global frame field.

1.2.2: If M 1is a compact, oriented manifold of dimension < 3,

then M 1is spin. 1Indeed, in the cases dimM = 1,3, M is
parallelizable and hence spin by 1.2.1. In dimension two, the
Stiefel~Whitney class is just the Euler class modulo two, but the
Fuler class x = 2(l-g), where g 1s the genus of M, so again
the obstruction to spin vanishes. In fact, there are 48 inequi-
valent spin structures on a two dimensional oriented compact
manifold, so for the two sphere 82, for example, there is a
unique (up to equivalence) spin structure.

In dimension four, the above result is not wvalid, e.g. P2
(two dimensional complex projective space) does not admit a spin

structure, since wz(Tsz) + 0. TP2 is of interest to gravity

theory since it represents a gravitational instanton.



—24—

1.2.3: We now consider an example which will be of utmost impor-

tance to Chapters Two and Three, and indeed, to general relativity
in general; the case of non-compact Lorentzian four-manifolds.
Suppose (M,g) 1is a non-compact, spacetime oriented (see section
1.7), four dimensional Lorentzian manifold, i.e. a possible model
for spacetime. Then M admits a g-spin structure if and only if
M 1is parallelizable. This result is proved in Geroch [G 2 ], and
in a more general setting in Parker [P 2 ]. For example, any
globally hyperbolic Lorentzian manifold of dimension four will
always admit a spin structure and, since asymptotically simple

and empty spacetimes (see section 6.3 and Chapter 3) are globally
hyperbolic, spinors will exist in important physical situations.

Another important feature of non-compact Lorentzian four-
manifolds is that any principal SL(2,T) (= spin(l1l,3); see
section 1.7)-bundle is necessarily trivial (see Isham, [I 1§ 1) and
so the information concerning inequivalent spin structures is
carried by the bundle map part of the spin structure.

We note that there do exist non-compact Lorentzian four-
manifolds which are not spin. Of course, such manifolds must
necessarily be non-parallelizable. For example, (see Plymen [P 74]),
let M= TP2- {#} so that M is a non-compact (real) four-
manifold. Since M 1is non-compact it admits a Lorentzian metric
g, and, since M 1is simply connected, (M,g) 1is spacetime
orientable. It can be shown that wz(TM) + 0 so M is not spin.
In fact, M does admit countably many inequivalent spinc—structures
(see 1.2.6 for a definition of a spinc—structure), so a certain
kind of spinor structure does exist on M.

We shall usually assume that spacetime is non-compact (see
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section 1.7), but compact spacetimes sometimes provide interesting
examples. For completeness, we mention briefly the case of spin
structures on compact spacetimes. We refer the reader to Whiston
[W& ] for more (topological) details:

Let (M,g) be a spacetime oriented Lorentzian four-manifold
which is spin. If M 1is non-compact, then we have noted above that
M 1is parallelizable, but this is not necessarily the case if M
is compact. Indeed, by a theorem of Hirzebruch and Hopf, a compact
spin spacetime is parallelizable if and only if its Pontrjagin
number 1is zero. An example of a compact, non-parallelizable, spin
spacetime (M,g) may be constructed as follows: Let Zz act con-
tinuously on the four-torus T = (sl by conjugation in each
Sl-factor. The sixteen singularities in the resulting quotient
space may be smoothed out to form the Kummer surface K. In order
to introduce a Lorentzian metric, the Euler number, e(K) = 24,
must be killed off, and this may be achieved by performing twelve
spherical modifications. The resulting manifold M then admits
a Lorentzian metric g. (M,g) now provides an example of a
compact spacetime which is spin but not parallelizable (since the

Pontrjagin number of M 1is non-zero).

1.2.4: Let M = Sn, the n~sphere, and let can € Met(Sn) be

, . . n .
the standard Riemannian metric on S, dinduced by the round embed-

ding of s" in Rp+l . Then the bundle of oriented can-orthonormal

frames is given by

so(n) < s0(s",can) — s" 1.2.1,
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v
where SO(Sn,can) = S0(n+l), and s" is obtained as the

(Riemannian) homogeneous space SO(n+l)/SO(n)'

Now we consider spin structures on spheres. Tor details of
constructions, see, for example, Dambrowski and Trautman [D Z 1).
The case n = 1 1is exceptional in that s! admits two inequiva-
lent spin structures, whereas for n > 2, there is a unique spin

A%

structure. The case n = 1 1is as follows: S! ¥ 30(2) ¥ U(1) ¥ Spin(2),

and Spin(1l) 2z The two spin structures are given by

9

pr, pry
—> U(1), U(1) x Z, - = U(1) 1.2.2,
1

8,: Z, “—— U(l) x Z

1 2 2

syt Z, > (1) HEE, g, U(L) f’-q—ﬁa-—f-‘im) 1.2.3.
2

. . n .,
For n 2 2, the unique can-spin structure on S is:

A

Spin(n) <— Spin(n+l) — ST, Spin(n+1) —~;—a~so(n+1) 1,2,4,
using obvious notation.
1.2.5: For completeness, we shall now make several remarks con-

cerning non-orientable manifolds, although below we shall only
consider orientable (or rather spacetime orientable in the case of
general relativity) manifolds. Recall that in the case of a non-
orientable manifold equipped with a metric, a reduction of the
bundle of orthonormal frames to the group O(n) dis possible,

but not to 80(n) 1in general. For a notion of spin structure,
therefore, we must consider coverings of O(n). Note that 0(n)

(or its indefinite analogue O0(p,q)) must be used if we wish
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consider reflections (or space reflections and time reversals),
even in the case of an orientable (or spacetime orientable)
manifold.

We recall that SO(n) admits a unique, non-trivial (for
n x 2), double cover (universal for n 2 3) by Spin(n). However,
the full orthogonal group O0(n) has, in general several equiva-
lent double coverings (see, for example, Whiston [W A-]). A simple
example is the case n = 1; 0(1) & ZZ, so(1) & 1, spin(l) ¥ ZZ,
and we have the unique (trivial) double cover: Spin(l) —§+SO(1).
The orthogonal group has two inequivalent coverings given by
+

AN: Zox ZL,—Z Nz, —7Z

2 2 9 4 99 and, in fact, for any n,

there exist two such inequivalent double coverings of 0(n). The
corresponding covering groups are known as Pin+(n), Pin (n), so
that we have A+: Pin+(n) —0(n), A : Pin (n) — 0(n) as the
two double coverings of 0(n) (see Atiyah et al. [A24]). Spin(n)
may be obtained from either of Pini(n) by taking the identity
component. The covering A: Spin(n) — SO(n) 1is then just
AilSpin(n).
A Pini-structure on M 1is then defined in a way analogous
to that of a Spin structure in section 1.1, di.e. as a prolongation
of the bundle of g-orthogonal frames, O0(M,g), (g € Met(M)) to
the group Pini(n).
The topological obstructions to the existence of Pini—structures
are different from each other. In some cases one exists whereas
the other doesn't (see, for example, Dabrowski and Trautman [D 2 ]).
The number of distinct notions of (s)pin-structures (corres-
ponding to the number of inequivalent double coverings of the

corresponding orthogonal group) increases if we consider the case
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of indefinite metrics. For example, in the Lorentzian case, there
are eight inequivalent double coverings of 0(1,3). These
coverings correspond to the various combinations of signs for
Pz, Tz, (PT)2 where P(T) 1is a choice of one of the two spin
transformations in the fibre above space reflection (time
reversal) in 0(1,3). Each covering will give rise to a dif-
ferent notion of "(s)pin' structure on a spacetime manifold,
and hence, if such a structure exists, to different notions of
spinors, spinor fields and spin connections. An example of
such a construction, where the manifold is taken to be

M = M5b x R2 ("space" = Mob x R, MSb is the Mobius band),
may be found on p. 421 in Choquet-Bruhat et al. [C & ]. See

also Whiston [W 4 ].

1.2.6: Returning now to the case of orientable manifolds, we
mention certain generalizations of the notion of spin structure.
A generalization of the definition given in section 1.1 may be
required for various reasons; perhaps because the underlying
manifold is not spin, although 1.2.3 indicates that in cases

of interest in general relativity, there will be a spin structure.
Recall, however, that one considers occasionally compact four-
manifolds (often s* in particle physics) rather than imposing
boundary conditions on fields propagating on non-compact space-
time, or in a Euclideanization procedure. In the compact case,
a spin structure need not exist (Cf. 1.2.2). Another reason for
generalizing spin structures is in order to incorporate extra

structure into the theory -~ perhaps additional physical fields
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whose spin transformation group is different from Spin(n).

A generalization which has appeared in the literature (see
Isham [I 8 ], Isham and Avis [ A29], Hawking and Pope [H € 1)
is that of enlarging the group Spin(n) to a group of the form

G = Spin(n) x 7 H, where H 1is a group whose centre contains
2

Zz. An important example is the so called spinc structure
where H 1is taken to be S! - this may be taken as the appro-
priate structure in electromagnetism where one has charged spinor
fields coupling to a connection in a principal S!-bundle.

Extending the spin group in the way just described can
ensure that a particular manifold M admits a generalized struc-
ture, even though M 1is not spin in the sense of 1.1. For ex-
ample, an analogue of the result stated in 1.2.2 is that any
compact, oriented manifold of dimension < 4 admits a spin
structure (Whitney's theorem). This result is not true for
dimension >4, e.g.: SU(3>/SO(3), (E]szZZ S! do not admit

2
spinc structures (see, for example, Killingback and Rees [K & ]),
so a further enlargement of the spin group may be necessary to
remove the obstruction.

More details concerning the above examples may be found in
the references cited. From now on we deal only with the spin
structures as defined in 1.1, although the conformal spin structure
which we discuss in section 1.5 may be regarded as a slight
generalization. We will be concerned with orientable manifolds
and, when we discuss spacetimes, Lorentzian metrics. Embeddings
into a spacetime may induce on their domain a metric of positive

(or negative)-definite signature, so the Riemannian case is not

unimportant in general relativity, especially when induced spin
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structures and so on, are considered (see Chapters 2, 3).
Armed with a supply of examples convincing us that the con-
cepts introduced in section 1.1 are not empty, we move onto the

notion of spinor fields and spin connections.

1.3 Connections and Fields

Let M be an oriented n-dimensional spin manifold and let g
be a metric on M. We choose an equivalence class [(%B(M,g),ng)]
of g-spin structures on M and, for ease of exposition, we work
with an arbitrary representative g-spin structure
sg = (EB(M,g),ng) € %(M,g). sg corresponds, via %g’ to a unique
spin structure on M. The purpose of this section is to consider
bundles associated with the principal Spin(n) bundle %B(M,g), and
to comstruct connections in EB(M,g) using ng. Choosing a
different representative of [(EB(M,g),ng)] will lead to isomorphic
associated bundles and equivalent connections. On the other hand,
different elements of I(M,g) will give rise to inequivalent bundles
and connections, and this may have repercussions on any physical
situation being described (See Avis and Isham [A2%], Isham [T 2 1).

We remark on the use of elements of ZIZ(M,g) rather than ele-
ments of Z(M). Since I(M,g) 1is in bijective correspondence with
(M), we could start with a representative spin structure
s = (E&+(M),n) of an element of (M), and then consider the
bundles associated with af+(M) and connections in af+(M). How-
ever, to define spinor fields representing useful geometrical and
physical quantities, we require that the fields transform under

representations of Spin(n) (the double cover of the physically
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significant rotation group SO(n)) rather than of Ef+(n,R).

In other words, a given metric g € Met(M) is needed to act qua
Higgs field, and to break the symmetry by reducing the structure
group down from GL+(n,R) to S0(n).

Given any metric g, then we must just consider the g-spin
structure %g(s), corresponding to any spin structure s on M,
so, from a mathematical point of view, considering g-spin struc-
tures only involves no loss of generality. We may also wish to
consider the coupled configuration space of metrics and spinor
fields (see section 1.4), and then we must take into account the
fact that each metric gives rise to a distinct space of spinor
fields. These distinct spaces fit together as fibres of an
infinite dimensional vector bundle over Met(M) (or algebra
bundle if we consider sums over all representations). There is
also the possibility of taking into account the fact that there
may exist inequivalent spin structures, and then the metric-spinor
field configuration space should be extended to a metric-spin
structure space. We investigate these configuration spaces in
more detail in section 1.4, but, for the moment, let us return
to a fixed metric g and a fixed g-spin structure sg.

We have at our disposal a principal Spin(n)-bundle gB(M,g)
together with a principal bundle homomorphism ng: gB(M,g) > S0(M,g),
such that ng(ﬁA) = ng(l\l’)A(A), for all u € S0(M,g), A € Spin(n).
Suppose, now, that S € Hom(Spin(n), Diff(V)) is a left action of
Spin(n) on a manifold V. We may form the associated bundle

Ny .
SOM,g) x V with typical fibre V. 1In particular, given

Spin(n)
any p € Hom(SO(n), Diff(V)), we have the lifted left action

3 = p°A € Hom(Spin(n), Diff(V)), and the corresponding bundle
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isomorphism (over idM):
(o) : S8(M,g) x V — SO(M
M — X
NgtP &) “spin(n) M8 *50myY

defined by ng<p><[<t,am = [(ng@),a)] 1.3.1,

Y] oy
for all [(u,g)] 6 SO(M,g) Of course, in general, there

XSpin(n)V'
will exist actions of Spin(n) which do not arise as 1lifts of
SO(n)-actions. Indeed, those actions, in particular representations,
of Spin(n) which are not equivalent to lifts of S0(n)-actions, are
one of the reasons for the introduction of spin structures in the
first place. e.g. : the classification, using spin, of particles
transforming under irreducible representations of the Poincaré
group in particle physics (See Wigner [W 15]).

We now restrict to the case where V 1s a vector space (often
finite dimensional) and 3 € Hom(Spin(n), GL(V)) 1is a representa-

tion of Spin(n) on V. 1In this case, the associated bundle

oy
SB(M,g) X . V dis a vector bundle over the manifold M.
Spin(n)
. » - r\/\)
Definition (1.3)1: Let sg = (SO(M,g),ng) be a g-spin structure

av]
on the manifold M, and let p be a representation of Spin(n) on
the vector space V. Then a spinor of type (sg,g, V) is any
Ny
element of the associated vector bundle SO(M,g) x._ . V, and
Spin{(n)

a spinor field of type (SQ,S,V) is any element of

: “8
T (SO(M,g) XSpin(n)V)'
Typical examples of representations 3 of gpin(n) arise
as representations of the Clifford algebra of (IRn, can) or, as
described above, 1lifts of representatiomns of SO(n). 1In the latter

case, suppose p 6 Hom(SO(n), GL(V)), then we have an isomorphism

of vector bundles:



~33-

(0) S8, 8) x Vv — 1.3.2
: «Je

where ng(p) is defined as in equation 1.3.1. This isomorphism

will be important in section 1.7. For example, let o be the

defining representation of S0(n) on Rn. Then we have the
vector bundle isomorphism:
. PP n
ng(p> : S0(M,g) xspin(n)m — M 1.3.3,
since, in this instance, the vector bundle associated, via p, to

the bundle of g-orthnormal frames SO(M,g) 1is precisely the tangent
bundle, TM. An analogue of equation 1.3.3 will form part of the
Infeld-Van der Waerden isomorphism in section 1.7.

Before defining spin connections and associated covariant
derivatives, we make two remarks: Firstly, using the fact (see
section 6.1) that there is a bijective correspondence between
(%B(M,g),v), we may regard

vy
r(soM,g) x ) and C

Spin(n)v Spin(n)

a spinor field as an equivariant map from the bundle of (g,sg)—
spin frames into the vector space V (this map just associates
with each spinor field the components of the field at a point
with respect to a particular spin frame at that point). Secondly,
once we have spinor bundles, we may consider k-forms on the
manifold M which take their values in such bundles, i.e. spinor
valued differential forms on M. Such vector bundle valued forms
may be used in the formulation of definitions of quasi-local
momenta in general relativity (see Chapter 3).

In order to write down spinor differential equations as are
used in particle physics (for example the Dirac and Weyl equations,

and also the wave equations of supertheories) and in general
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relativity (the spinor versions of Einstein's equations, for in-
stance, as well as the spinor propagation/initial value equations
used in positivity proofs and in quasi-local kinematics - see
Chapter 3), we need the notion of covariant derivatives of spinor
fields. These arise from a connection in the bundle of spin
frames, as we now indicate.

Consider the principal bundle homomorphism ng: gB(M,g) + S0(M,g),
arising from sg (s %(M,g). This homomorphism is two-to-one on each
fibre but Dng: Tga(M,g) —> TSO(M,g) restricts to an isomorphism
of each tangent space of EB(M,g) onto the corresponding tangent
space of SO0(M,g). The Levi-Civitda connection, wg € Conn(S0(M,g)),
of g gives rise to a distribution on SO(M,g) which may be
pulled back using Dng to a distribution on EB(M,g). Since ng
is a homomorphism of principal bundles, the induced distribution
on gB(M,g) will define a connection in g%(M,g). A more useful
construction of this induced connection is in terms of the con-
nection forms (see section 6.1 for more details concerning induced
connections):

Let A, = DA(e): L(Spin{(n)) — L(SO(n)) be the Lie algebra
isomorphism induced by the covering A: Spin(n) — SO0(n). Then

Y]

n
the connection form w = w(sg) corresponding to the distribution

constructed above may be written

B = Ai_l o n“ w 1.3.4,

uy
i.e. for all E € S0(M,g) and % € TEEB(M,g), we have

'\Jr\,f\,_-—l n AV V)
w(u).v = A, (wg(ng(u)).Dng(u).v) 1.3.5.
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Definition (1.3)2: Let 3 € Conn(%B(M,g)) be as just constructed.

Y
Then w 1is called the spin connection associated to the g-spin

structure sg on M.
. f\" 3 ,\J -

Given w, and a representation p of Spin(n) on a vector
space V, we may define various derivations as in section 6.1:
Let E be any vector bundle over the manifold M, and let
k k,
Q(E) =T(A'TM ® E) be the space of k~forms on M taking their

!
values in the vector bundle E. Here we take E = SB(M,g)X . v,
Spin(n)

Y]
and, using w, we obtain the exterior covariant derivatives:

e

i+ ofE) — oKy 1.3.5,

for k > 0, and, in the case k = 0O:

V]
7 . I(E) — al(E) 1.3.6,

v
w R ) . . . .
so that V is just the covariant derivative on spinor fields of

"
type (sg, Py V).
Using again the results summarized in section 6.1, we have
0
an analogue of equation 1.3.4 relating the curvature forms = d gwg,

Y
n w v . v .
2 =d w of the connections wg, w respectively (Note that the

€c

d appearing here is not the same as those in equation 1.3.5,

although there does exist a relation between the two ~ see section 6.1):
y x
Q = A" o ng 9] 1.3.7.

We now have enough machinery to construct spinor differential
equations, but we conclude this section by remarking on the notion
of spin soldering, referred to earlier in this chapter.

vy
There exists on SO(M,g) another vector valued form, independent
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of connections in SO(M,g). Recall that on the frame bundle of
any manifold is defined the canonical R™- valued 1-form or
soldering form 6 (see section 6.1). The form © restricts to
GL+(M), and thence to SO(M,g), for any g € Met(M). We denote
the restricted soldering form by the same letter 8, so that

6 € Ql(SO(M,g), ng is a tensorial 1-form of type (p(l,O)’Rp),

where p(l’o) is the defining representation of S0(n) on Rr"

8 is defined by:

8(u).v K-l(DW (u).v) 1.3.8,
u M

for all v € TuSO(M,g), u & S0(M,g), and where

n . . .
kK ¢ Ro— T M 1is the usual isomorphism of vector spaces

u y(w)
corresponding to the g—orthonormal frame u.
I3 . ,\’r\J I3
Given the g-spin structure sg = (SO(M,g),ng), we may lift
n v v * uy A
8 to an R -valued l1-form 8 = e(sg) = nge on SO(M,g). Since
6 wvanishes on vertical vectors in TSO(M,g), and since ng is
a principal bundle homomorphism whose derivative restricts to an
vy
isomorphism on fibres of TSO(M,g), we see that 8 also

Uy v
vanishes on vertical vectors (in TSO(M,g)), and also that 6

is equivariant:

AV Y
= o(A 7).0 1.3.9,

%
@

for all A € Spin(n), and where 8 = 0o A € Hom(Spin(n), GL(n,R)) ,

n, ny
and R 1is the right action of Spin(n) on SO(M,g). 1i.e.

4] "y n
6 € 0l(S0(M,g),R™) is a tensorial l-form of type (o,R").
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n
Definition (1.3)3: 8, as just constructed, is called the spin

soldering form associated to the g-spin structure Sg on M.

As with any tensorial l-form on a principal bundle, g may
be regarded as l-form on M taking its values in the appropriate
associated vector bundle. In this case, the vector bundle is’

n a

vy .
SO(M,g) XSpin(n) R = TM by equation 1.3.3, so that

8 € F(TNM 8 TM) ¥ I'(End(T™)). 1In fact, since 6 corresponds to

the identity endomorphism of TM under this identification, so
Y
does 6, but note that there is an additional step in the
n
identification of 8, namely that which uses equation 1.3.3,
and hence ng(p) which depends on the spin structure
Uy Y ‘
sg = (SO(M,g),ng). In other words, 6 may be regarded as the
identity endomorphism of TM, but only after a spin structure-
dependent identification.
Soldering and connections give rise to torsion forms. We
w w
have that the torsion, 08 =g g@, vanishes identically because
. . - 1] - ,\J'\l,\l
w is the Levi-Civita connection of g. Let hor, hor be the
Ly
horizontal projections on TSO(M,g), TSO(M,g) corresponding to the

v
connections wg, w Yrespectively. Then it is easily shown that:

Bor o n’ *on 1.3.10
or = n_ ° hor . 3.
ﬂg g s
r\l r\J‘r\J ,\/\l ata (v\' e ota ofa
so that @ = d°§ = (hor ° d)(n 8) = hor(nde) = ng(d‘*’@) =n, 0 =0,
"
so that w has vanishing "torsion'" also. So the 'spin torsion"

associated with a spin connection as given by definition (1.3)2
vanishes identically, but the fact that it exists is important, just
as the Levi-Civita torsion is important - fluctuations within

Conn(SO(M,g)) about wg will introduce torsion + 0.
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We complete this section with some remarks on the use of spinor
differential equations. In Chapter Three, we examine certain spinor
differential equations, in particular on embedded submanifolds of a
spacetime, and we shall introduce the required explicit formulae
involving spin connections when we need them. Spinor differential
equations, in addition, are used extensively in geometry (see
the references cited in section 1.0). Of particular importance is
the Dirac operator (associated with the Dirac representation of
the Clifford algebra CRn,can) and with the Levi-Civita con-
nection of a metric), and corresponding Weitzenb®ck type formulae
for the "Dirac Laplacian'. The use of one such formula is an
essential ingredient in the Witten proof of the positivity of the
ADM mass in general relativity. See Chapter Three and also
Witten [W 9 ], Parker and Taubes [P 4 ]. The Dirac operator is
also very important in string theory, see for example, Mikkelson
IM117].

The spin connections defined in this section depend both on the
metric and the particular spin structure used (The fact that we have
used a particular representative of the equivalence class of spin
structures [sg} € £ (M,g) 4is unimportant because, as we have
remarked above, equivalent spin structures give rise to equivalent
connections). In the next section, we examine more closely the
inter-relationship between metrics and spinor fields, an inter-
relationship that is important in any dynamical theory of metrics

and fields.
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1.4 Configurations

In this section we attempt to examine more closely the coupled
configuration space of metrics and spinors. We commence with a
definition of the canonical principal SO(n)-bundle of a manifold.

Definition (1.4)1: Let M be an oriented manifold of dimension

n. Then the canonical principal SO(n)-bundle of M is given by:

6]
M
S0(n) &> SO(M) —> Met(M) x M 1.4.1,

where SO(M) = {(g,u) € Met(M) x GL'(M): u € SO(M,g)}, and
qﬂ(gsu) = (g,WM(u)), for all (g,u) € SO(M).

There exists a natural free right action of S0(n) on SO(M)
defined by ((g,u),a) > (g,ua) for all (g,u) € SO(M), a € SO(n),
and it is easy to see that Oy> @s just defined, is the corres-
ponding quotient map making equation 1.4.1 a principal S0(n)-
fibration.

Let pry! Met(M) x M — Met(M) be projection onto the first
factor. Then (prl ° GM)_l(g) ¥ S0(M,g), for each metric g on
M. 1i.e. the fibre above g in PT° Oy SO(M) — Met (M) 1is pre-
cisely the bundle of oriented g-orthonormal frames.

Now let us assume M 1is spin and let s 6 %(M) be a spin
structure on M. s 1is a T-prolongation (Eﬁ+(M),n) of GL+(M)
to the group Eﬁ+(n,ﬁ0, and we may now define a A-prolongation
of SO(M) to Spin(n) as follows:

Let $0(M,s) = {(g, )€ Met() x & T: e n l(soM,g))},
and define n(s): EB(M,S) — SQ(M) ; (g,ﬁ) > (g,n(g)), for each
(g,ﬁ) € gB(M,s). Now let gM(S); EB(M,S) —> Met (M) x M;

+
(g,ﬁ) Pﬁ>(g,% (ﬁ)), where % : Eﬁ (M) — M is projection.
M M p
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It is clear that

N )
Spin(n) & SO(M,s) — Met(m)*x M 1.4.2,
is a principal Spin(n)-bundle, and that (%B(M,s),n(s)) is a
A-prolongation of SO(M) to Spin(n).

Choosing an equivalent spin structure s' on M 1leads to a
prolongation (EB(M,S'),W(S')) which is equivalent, qua prolonga-
tion, to (BB(M,s),n(s)). Therefore, each o € I(M) gives rise
to an equivalence class F(a) = [(%B(M,s),n(s))] (any s € a) of
A-prolongations of SOM) to Spin(n).

Now fix the spin structure s (representing o € (M) - any
other choice of representative leads to equivalent structures in
what follows, so that all the constructions are natural). We now

define the projection:
A" Ay
p(s) = pry ° OM(S): SO(M,s) — Met(M) 1.4.3,

so that, for each metric g, p(s)_l(g) is just the bundle of
(g, % (g))-spin frames (see the remark following definition (1.1)2
regarding the notion of (g, sg)—spin frames for a g-spin struc-
ture sg). The principal Spin(n)-bundle EB(M,S) may be thus
regarded as a kind of universal s-spin bundle in the sense that
it contains all the spin frames (coming from s) for all the
metrics on M.

Now suppose 3 € Hom(Spin(n), GL(V)) 1is a representation of
Spin(n) on the vector space V. We may define the associated

Vv
vector bundle SO(M,s) X so that, for each g € Met(M),

Spin(n)v’

the bundle of spinors of type (%g(s), 8, V) dis precisely the
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fibre (pr, o o )_l(g), where o : SO(M,s) x. . V — Met (M) xM
1 s s Spin(n)
is projection.

A similar construction using the sum over representations of
Spin(n) will lead to an algebra bundle over Met(M) xM which, when
prl—projected onto Met(M), has, as fibre over g € Met(M), the
spinor algebra bundle associated to g and s.

For a fixed representation 3 of Spin(n) on V, the
associated vector bundle may be therefore regarded as a coupled
configuration space of metrics and type-(s, 3, V) spinors. To

obtain a configuration space of metrics and spinor fields, we

consider the (infinite dimensional) vector bundle
E(M, s, §) — Met(M) 1.4.4,

where EQM, s, p) = {(g,¥): g € Met(M) and ¥ € F((prlogs)"l(g))},
and projection is just projection onto the first factor. The fibre
of E(M, s, 3) over a particular metrie g is then the CM)-
module of spinor fields of type (%g(s), S, ).

Choosing another representative spin structure s' will yield
an isomorphic vector bundle E(M,s', 3) and hence an equivalent
metric-spinor field configuration space. We write E(M, d, 3) for
the vector bundle isomorphism class of metric-spinor field configura-
tion spaces E(M,s, 3), where s 1s a representative of o € I(M).
There are as many E(M, «, S) as there are elements in HI(M;ZZ),
as was discussed in section 1.1. Obviously, an analogous construc-
tion gives rise to an isomorphism class of algebra bundles A(M,a)
— the fibre of a particular representative A(M,s) in this case

being the algebras of spinor fields for the metrics on M arising

from the spin structure s.



—49-

Returning now to, say, E(M,s,g), we remark that, in general,
there is no natural way of identifying the fibres of E(M,s,g), i.e.
we can't identify the spaces of spinor fields arising from different
metrics. In certain cases, however, an identification of these
spaces may be made, and we discuss two such possibilities in sections
1.5 and 1.6. 1In section 1.5 we restrict our attention to a sub-
space of Met(M) consisting of a conformal class C of metrics,
and then there is an association of the spinor fields arising from
different metrics in the conformal class C. Indeed, we may con-
struct a spin conformal structure which depends on € only, and
not on a particular choice of representative metric. 1In section
1.6, we discuss the action of the diffeomorphism group on spinor
fields. The diffeomorphism group action may be interpreted as an
identification of the spaces of spinor fields arising from the
subspace of metrics corresponding to an orbit of a particular
metric on M, in other words, to a geometry on M.

A further enlargement of, say E(M,a,g) may be made in order
to take into account the possible existence of inequivalent spin
structures on M (depending, of course, on the cohomology group
Hl(M;ZZ)). We may introduce the metric-spin structure-spinor
field configuration space E(M,g) = {(g,s,¥): g € Met(M),

s € %(M) and ¢ 1is a spinor field of type (%g(s), S, V) }.
Quotienting %(M,g) by the equivalence relation ~ on spin struc-
tures s on M yields a space E(M,g) equipped with obvious
projections onto Met(M) and onto I(M). Since we shall always
be concerned with a particular representative spin structure s
of a fixed o € I(M), we shall pursue the study of E(M,g) no

further here. Obviously, the metric-spin structure-spinor field
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space E(M,g) would be important in a dynamical theory in which a
transition between inequivalent spin structures could take place.
In such a theory, an integration over E(M,g) would be performed
in any path integral approach, and such an integration would in-
veolve a summation over inequivalent spin structures, as well as
over spinor fields and metrics.

This section has introduced possibilities for a configuration
space in the theory of spinors and we have indicated some of the
complications inherent in building up a space of coupled metrics
and spinor fields. 1In sections 1.5, 1.6 we investigate two ways
in which structures on the space of metrics influence the coupled
configuration space. There is obvious scope for further explora-
tion of the way in which the structure of Met(M), some aspects
of which are discussed in Chapter Four, interacts with that of
such spaces as E(M,a,g).

The diffeomorphism group action of section 1.6 is actually
an action on E(M,g) (some 3), or on E(M,a,g) if our attention
is restricted to diffeomorphisms leaving invariant the spin
structure. Before considering the diffeomorphism group, we turn
to a study of spinors and conformal structure - an interaction

which makes several appearances in this thesis.

1.5 Spinors and Conformal Structure

The reasons for this section are two-fold. Firstly, as we
remarked in section 1.4, in general there is no way of identifying
the spinor fields associated with different metrics, but if the

metrics are members of some parameterized subspace of Met(M), as
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in Chapter Four, an identification may sometimes be made. A simple
example of such a parameterized subspace is provided by a conformal
class.

A second reason for being interested in spinors and conformal
structure is that the interaction between the two is important in
various aspects of general relativity. One important area of general
relativity where spinors and conformal structure come together is
that of null structure. Null structure is very closely linked with
conformal structure (see section 6.2), and, as we shall see in
Chapter Three, there exist very natural and important spinor propa-
gation equations on null hypersurfaces.

A particular example we shall give in this section, namely
the spin conformal structure on 82, is precisely the source of
the notion of spin and conformally weighted functions, used in
general relativity. Another example of hew spin structure and
conformal structure come together in a very physical situation
is given in section 1.9.

We use the notation of section 6.2 throughout this section.
Alternative approaches to this topic may be found in Huggett and
Tod [H16], Penrose [Pg ], Penrose and Rindler [P41 ], and
Plymen and Westbury [P 15 ]. More geometrical interactions are
discussed in Hijazi [H © ] and Branson [B23].

The natural setting for spinors and conformal structure is
a spin conformal structure and we discuss this idea shortly.
Firstly though, following the spirit of section 1.4, we may con-
sider a more naive identification of fibres in E(M,s,g) over
metrics belonging to a given C € Con(M) (see, for example,

Hijazi [E® ] for an application of these ideas to the Dirac
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operator, and section 6.2 for computations showing how the spin con-
nections corresponding to metrics in the conformal class are related).
Suppose M 1is a spin manifold, g 1is a metric on M and
V" . . +
sg = (SO(M,g), ng) is a g-spin structure on M. Let f € C (M)
and fg the corresponding conformally related metric. The func-
tion f gives rise to an isomorphism Ce of principal SO0(n)-

bundles, given by:

hof—

SO(M,g) — SO(M,fg); u +> {f(ﬂM(u))_ e} 1.5.1,

C.:

for all u = {ea} € S0(M,g). We recall (equation 1.3.2) that, for

any p € Hom(SO(n), GL(V)), V any vector space, there exists an

— SO(M,g) x of vector

- hi (0): S8M,g) v
. X
isomorphism ng p): ' 8 S0(n)

Spin(n)V

"
bundles. Here, Spin(n) acts on Vvia o = p ° A, as before.
We therefore have an isomorphism (in fact an isometry) of (SO(n)-)

vector bundles
( %"?j M V — SO(M, £ \Y 1.5.2
o . X X . .
cglp) ony 0) M,g) Spin(n) SOM, £g) *gq(p) J

using equations 1.3.2 and 1.5.1.
We now let EB(M,fg) be the unique principal Spin(n)-bundle

over M, such that SO(M,fg) x is the vector bundle

so(n)"’

an,
associated with SO(M,fg) via the representation E of Spin(n)
Ay
on V. In other words, SO(M,fg) is defined to be the bundle of

Spin(n)-frames for the vector bundle SO(M,fg) XSO(n)V' The

I3 . » . r\/r\J -
identification of SO(M,fg) XSpin(n)V with SO(M,fg) XSO(n)V

used to define SO(M,fg) gives rise to a homomorphism:

neg $0(M,fg) — SO(M,g) 1.5.3,

of principal bundles over id and then we may define a unique lift

M’
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Ef of the principal S0(n)-bundle isomorphism Ces SO that gf

is an isomorphism of principal Spin(n)-bundles

n Ny y
cf SO(M,g) —_— SO(M,fg) 1.5.4,
h that ° = °o ¢
suc cf ng = nfg cf.

Using the fact that Ce gives rise to isometries of vector
bundles associated with SO(M,g), it is easily seen that

Ny
(so(M,fg), nfg) is a fg~spin structure on M.

We summarize the above construction: Given any g-spin
uny

structure Sg = (SO(M,g), ﬂg) for some metric g on the spin
manifold M, there is a natural fg-spin structure ng
= (ES(M,fg), nfg) for any metric fg 1in the conformal class Cg
defined by g. Moreover, there is a corresponding identification
of spinors (and hence spinor fields) of type (sg,g,v) with
spinors (spinor fields) of type (sfg,g,v), for any
S € Hom(Spin(n), GL(V)). This identification is such that any
spinor (field) associated with fg has the same components (in
V) with respect to any (sfg’ fg)-spin frame as the corresponding
spinor (field) associated with g has with respect to the corres-
ponding (sg,g)~spin frame. Corresponding identifications of
connections and so on may similarly be made, but it is more natural
to consider such questions within the framework of spin conformal
structures as we now indicate:

Suppose C € Con (M) is a conformal structure on the oriented
manifold M. Then C 1is equivalent to a reduction CO(M,C) of
the bundle GL+(M) of oriented frames of M to the subgroup
Co(n) ¥ sSO(n) % Eﬁ_ of GL+(n, R). We recall that any representation

~
~

o of (€O(n) on a vector space V is of the form p(a,r) = rp(a),
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for all (a,r) € CO(n), where W& € (or R if V is real) is

called the conformal weight of the representation p, and p is

some representation of the group S0(n) on V.
There exists a trivial extension of the double covering
A: Spin(n) ~— SO(n) to a non-trivial (nz2), double covering

~

(universal for nz3) A of CO(n) given by:

>

A s 88(n) — co(m): (A,r) — (A(A),T) 1.5.5,

. +
Spin(n) x R .

I

HAVAY
for all (A,r) € CO(n)
We may now define a C-spin structure s, on M in an obvious

manner:

Definition (1.5)1: Let M be an oriented manifold of dimension n

and let C € Con(M). Then a C-spin structure 5o is a A-prolonga-

Ay any
tion (CO(M,C),nC) of CO(M,C) to the group CO(n).

We denote the set of C-spin structures on M by %(M,C) and
the set of equivalence classes by ZIZ(M,C), as in section 1.1. The
obstruction to defining a C-spin structure on M 1is identical to
that for a spin structure or a g-spin structure, namely the second
Stiefel-Whitney class WZ(TM). We have analogous maps to those in
section 1.1: %(M,C) <~ %(M), Z(M,C)«> (M), for any C € Con()
and we may perform similar constructions to those in sections 1.3
and 1.4 for g-spin structures.

[avav:
Any representation of CO(n) is of the form:
4V
Sa,r) = ) 1.5.6,

for all (A,r) € Ea(n), where w € £ (or R if the representation

is real) is called the conformal weight of the representation 8,
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Y]
and p 1s some representation of Spin(n). A differential form on
M with values in the vector bundle %B(M,C) xaa(n)V, associated
vy . . A Wy .
to CO(M,C) wvia the representation 0 € Hom(CO(n), GL(V)), is said
to have conformal weight w. In particular for the case of O-forms
any
on M with values in CO(M,C) x%B(n)V’ we have the notion of a
spinor field of type (sc, é, V); we say such a spinor field has

~
conformal weight w and spin (representation) 0.

[AvaV)
Definition (1.5)2: Let s; = (CO(M,C),nC) be a C-spin structure
on the oriented manifold M where C is some conformal structure
A Y ,
on M. Let p € Hom(CO(n), GL(V)) have conformal weight w € C
AV
and spin (representation) p &€ Hom(Spin(n), GL{(V)). A spinor of
A . W . .
type (sc, o, V), i.e. an element of CO(M,C) XEB(n)V’ is said to

N
have conformal weight w and spin (representation) p. Similarly

for spinor fields, ¢ € F(EB(M,C) XEB(n)V)'

If the spin transformation properties of a particular spinor
field are known, then the conformal weight w may often be assigned
using geometrical or physical considerations: For example, a Dirac
spinor field has dimension (Length)_g/z, and so such a field is
assigned conformal weight w = -3/2 (see Penrose and Rindler [P 41 ]
and Audretsch et al. [A2% ] for more discussion of such matters).

The definition of spin conformal connection follows that of a

spin connection in section 1.3. We have

~

~ L
A = Di(e,1): L(CO(n)) — L(CO(n)) 1.5.7,

~

[a¥aV)
is an isomorphism of the Lie algebra L(CO(n)) z L{Spin(n)) & R

onto the Lie algebra L(CO(n) = L(SO(n)) ¢ R, so given any con-
. . , . VY
nection we in CO(M,C), we may define a connection w = w(sC,C)

. Y
in CO(M,C) by
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1.5.8.

4"}
w 1is uniquely defined by the requirement that DnC maps

v
w—-horizontal subspaces onto w, horizontal subspaces (see sections

C

1.3 and 6.1). 8 is called a spin conformal connection.

The bundle of oriented C-frames is a subbundle of GL+(M)

and so has induced on it a soldering form 6, and hence the notion

w w
of (conformal) torsion ©O ¢ = d "9, associated with any con-
w
nection wC in CoO(M,C). If © ¢ vanishes, we say that Wo is a
Weyl connection. Similarly, we have a spin conformal soldering on

Y] Y]
w
d” w.

tH

VAV
CO(M,C) with associated spin conformal torsion o
Y]
Since L(CO(n)) = L(SO(n)) # R, we may write any connection

We in CO(M,C) in the form:

v
We = wc$qh.l 1.5.9,

\'d
where we is a 1-form on CO(M,C) taking its values in L(S0(n)),
and ¢C is an R-valued l-form on CO(M,C). We have a similar

splitting for the form KC:

1 1.5.10,

where ® is L(Spin(n))-valued, and $C is TR=-valued.
Equations 1.5.9, 1.5.10 enable a splitting of curvature,

covariant derivatives, etc., into a "spin'/"rotation" part and a

"conformal" part. The following example will illustrate the

above ideas:

Example (1.5)1: (The two-sphere; SZ). To demonstrate the ideas

just discussed, and to introduce the very useful spin and conformally

weighted functions, we give the example of the standard two-sphere.
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There is also the concept of spin and boost weighted functions
(related to an embedding of S2 into a Lorentzian four-manifold,
or, more generally to a m* reduction of the bundle of spacetime
oriented Lorentzian—-orthonormal frames) which we discuss in
section 2.3. See also Geroch et al. [G # ], Penrose and Rindler
[P11 ], Curtis and Lermer [C19], Dray [D12].

Let can be the standard (round) Riemannian metric on SZ,
and denote by Can = CCan the standard conformal structure on
S2. The standard conformal two sphere turns out to play an
important role in general relativity. Indeed, we show below that
Conf(S?, Can) is isomorphic to the restricted Lorentz group. We
have already discussea spin structures on n-spheres (see 1.2.4),

and for the case n = 2, we have the bundle of oriented can-

orthonormal frames:

sl €&—s 50(3) — 82 1.5.11,

and the unique can-spin structure:

sle ., g3 s2, g3 «—;\—» S0(3) 1.5.12,

where 8!¢— §3 ——32 ig a Hopf fibration and n = A 1is the

usual double covering.

We also have a unique prolongation (EB(SZ,Can),n) of the

bundle CO(S2,Can) to the group %8(2) 2 Spin(2) X]K+ X Eh

. . AN D 2
The total space of the prolongation is CO(S?,Can) = T< - {0}
+ .
2 s3x R, and the projection is the standard projection:

T
T2 - {0} —— P! ¥ $2, Thus the unique (up to equivalence

of prolongations) spin conformal structure of (S2,Can) may be
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written:

T & €2 - {0} — 52 1.5.13.

1.

Given any representation of on a vector space, we may

form the associated vector bundle as ahove. In particular, we

may consider representations of T = sl x Rf. on . Let

A %
Pe € Hom(L , GL(1,T)) be given by:

b

é (rele); z k¢>r—2w eZISez 1.5.14,

‘5 "
for all re1 €T z € L, where w €L and 2s € Z. The

)

. = + s
splitting € ¥ s!x R corresponds to the usual splitting of

y +

CO(n) = Spin(n) xR , and we refer to w as the conformal

weight of Ss W’ and to s as the spin weight of és W' We
3 3

have changed our usual definition of conformal weight by a factor
of -2 in order to conform with standard conventions in the litera-
ture of general relativity (for example, Held et al. [H'# ]).

Let E(s,w) = (T2 - {oh) X0 T be the complex line bundle

. . . A
over S2 associated with the representation s w of C on GC.
3

Definition (1.5)3: A function of spin weight s and conformal

weight w is a section of E(s,w).

It can be shown that the Chern class (which completely

e

characterizes line bundles) of E(s,w) is -2s € H2(S%2:;Z) 7Z,

so that, although the bundles E(s,w) arise from different re-~
presentations of E*, they are not all topologically distinct
(E(s,w) is topologically bundle isomorphic to E(s,w'), for

all s,w,w'). We also note the natural identifications (reflec-

ting the various representations), E(s,w) = E(-s,w) and

E(s,w) @E E(s',w') = E(s+s',wtw').
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Spin and conformally weighted functions on S2 have been
used in geometry (see, for example, Parker and Rosenberg [P 3 ]
for an application of the natural conformal Laplacian acting
on such sections), but for us their relationship with structures
in general relativity will be most important. We will investi-
gate some of these relationships in section 1.9 and in Chapters
Two and Three, and as preparation for this we now interpret spin
and conformally weighted functions in a more suitable way. We
show, in particular, how the group SL(2,T) relates to conformal
structures on S2, and since SL(2,T) is the "spin group" of
four dimensional Lorentzian geometry (see section 1.7), this
provides a basis for the use of spin and conformally weightéd
functions in general relativity. Similar, but less geometrical,
approaches to the link between Lorentzian geometry in four
dimensions on the one hand and the two sphere on the other have
been made by Penrose [P 6 ], Newman and Penrose [N 2 ], Held et al.
[H# 1], Lind et al. [L # ] and Hansen et al. [H 3 ].

The standard conformal structure Can on S? stems in a
natural way from a group action when s? is regarded as being
one-dimensional complex projective space TP , and we demon-
strate this fact below (see 1.5.48). We construct the required
actions as follows:

Suppose first that we are given an action

G xY ——>Y 1.5.15,

of a group G on a set Y. Suppose also that H 1is a normal
subgroup of G, and then the induced action of G on Y passes

to a quotient action
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G/H x Y/H — Y/H ; (gH, [y]H) — [gy]H 1.5.16,

for all gH € G/H [y]H € Y/H. Let us now use 1.5.16 in the case

* *
where we take G = GL(2,T), H=C (=T ﬂz) and Y = €% - {0}
with action given by

GL(2,T) x (T? - {0}) — T2 - {0} ; (A,z) > Az 1.5.17,

for all A € GL(2,T), z € T? - {0}. The quotient group G/H is,

in this case, SL(2,C) (we have the short exact sequence of groups

1 T < CL(2,T) —2 SL(2,T) — 1 1.5.18,

where 1 1is inclusion and

S

a(A) = (det A) 2 A 1.5.19,

for all A € GL(2,E), where we take the principal value of the
. : . 2 * 1Y @2
square root). The induced quotient action on &“-{0}/CT = CTP'= S

is given by ¢ € Hom(SL(2,T), Diff(Sz)) where

9,(IzD) = [Az], 1.5.20,

for all A € SL(2,T) and [z] € S2 (Here [z] m(z) € s2
denotes the E*—orbit of z € €% - {0}).

It is straightforward to show that Ker ¢ = ZZ, and so
Im ¢ = {¢A : A 6 SL(2,0)} < Diff(S?) is isomorphic to SL(Z,E)/ZZ.
However, we demonstrate below in section 1.7 that there exists a
double covering by SL(2,T) of the restricted Lorentz group

so’(1,3), and hence Ims Y SL(2,0)/Z, * s0’(1,3). We now show

that Conf(Sz,Can) X Imd:
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Firstly we exhibit more explicitly the SL(2,T)-action given
by ¢. We introduce a family of coordinate charts on S2 in the
following way: for each A 6 SL(2,T), let

U, = f{lz) es?: (az)! + 0} 1.5.21,

w0
where, for each w € C?-{0}, we write w = (wl] with respect to

the standard basis { {é},[g} } of T2. Note that 82 - UA con-
sists of a single point for each A € SL(2,T). Now define the

coordinate mappings:

g, —— T ;

ta A s [zl —— (A2)Y/(az)! 1.5.22,

and also, for future reference, the real valued functions PA’

K(A,B) and A(A,B) defined by
P, = 11 +¢, Z‘) 1.5.23,
Koag) = (1 +z, EB)(!agB + b2 + |cr,B + dl2)'l 1.5.24,
exp(ih, gy) = (egy + d) (el + ot 1.5.25,

- 3
for all A, B € SL(2,T) satisfying BAB L. [i SJ € SL(2,T).

We shall see shortly that K(A B) may be interpreted as the local
conformal factor associated with a transformation from CB— to CA-
coordinates (regarded as an active local diffeomorphism) whilst

A(A B) is the local angle of rotation between the corresponding
b

1 .
CA (constant) and g (constant) curves in UA f\UB'

z = Cﬂ‘ corresponds to the usual coordinate on the complement

2
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of the north pole in the Riemann sphere. For each A € SL(2,O),
(UA, CA) is a chart of $2 with L, an (analytic) diffeomorphism
of UA onto &€ with

-1 -1 w

gy )= (AT (D] 1.5.26,

for all w € T.

From equation 1.5.2%, it follows that

agg + b
g, = — 1.5.27,
cZy + d
. -1 _ ja b .
on UAm UB if AB = [C dJ . In particular
Ty, - 2agtbhb 1.5.28,
cg +d
so that
-2
dgA = (cg + d) "dg 1.5.29,
b

for all A = {i J € SL(2,C). Another useful formula, again

d

straightforward to verify, is

%A ° ¢B = Ln on UAB r\¢B (UA) 1.5.30,

and hence

-1
P ) = P on UAB A ¢B (UA) 1.5.31,

so that the g-coordinate representation of the SL(2,T)-action

is given by

. -1 _ -1, aw + b
C °e (i)A C - CA C 5 w cw + d 1.5.32,
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for all w € (g o ¢;l)(U) and A = }i B} € SL(2,T).

Equation 1.5.32 (and corresponding equations for other Ly~
coordinate systems) provides the most general holomorphic trans-
formation of CP!, 1i.e. the most general ronformal and orienta-
tion preserving transformation of (S2,Can). Note that A and
-A(A € SL(2C)) both give rise to the same conformal transforma-
tion of §2, reflecting the fact demonstrated above that
Im¢ z SL(Z,E)/ZZ. Since any element of Im¢ induces a con-
formal transformation on $2 as in equation 1.5.32, and con~
versely since any conformal transformation arises in this way,

we have shown that
Conf(S2,Can) =~ 1Ims = sot(1,3) 1.5.33,

since this bijection is, by inspection, a homomorphism of Lie
groups. We give an alternative demonstration of the isomorphism
Conf(S2,Can) ¥ so*(1,3) below in section 1.9.

We now calculate explicitly the effect of the SL(2,T)-action
on the standard conformal structure Can, 1in particular on the
round representative can. In this complex geometric setting,
the metric can is identified with the Fubini-Study metric on TP!

and so

2 _
P~ dr dg 1.5.34,

[

canlU

i

where P =P 1(1 + z¢z): U— R. In what follows, we

E‘Z
write can rather than canIV, where V 1s any open dense

subset of 82. Now we have ¢2(can) = ¢;(P_2 dzdr)

-2 — - —
= (P o ¢A) d(g o $,0d(C ° ¢,) = PAzd:A dg, (by equations 1.5.30
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and 1.5.31) = K2 can, where

A
- = 2 241
K, = K(A’ﬂ2 ) (1 +cz)(lag + b|2 + ez + d]2) 1.5.35,
for all A = (i S} 6 SL(2,L), where we have used equation 1.5.29.
¢ d

To summarize,

* - 2
¢ , (can) Kj can 1.5.36,

showing directly the conformal action of S0%*(1,3) on (S2,Can).

The (U charts may be used to locally trivialize the

0 )
spin conformal bundle m*<=+-m2-{9} -+ 82, and hence show that
definition (1.5)3 coincides with the usual definition of spin and
conformally weighted function (see the references cited above). We

also refer the reader to Curtis and Lerner [C 19 ].

Corresponding to each A € SL(2,T), we define a local cross

section e,: U, — CO(52,Can) T2-{0} by

A A

-

e ([z]) = [ /7 a2)! P2 (2] 2 1.5.37,
A

A

for all [z] € U Then, for any A,B € SL(2,L), we have

.-
1 - 1
e ([z1) = ((42)1P2(121) 1 ((B2) P2 ((2]))ey ([2]) 1.5.38,

for all [z] € UA,q UB' We may now define (au Steenrad) the principal

® WY w2 - .
€ -bundle CO(S%,Can) by the transition functions

.

g(A,B): UA r\UB —> & , given by:

3 - 1
B (2D = ((3B2)'22([21) 7 ((42)'P3([2 ) 1.5.39,

for all [z] € UA p,UB. We obtain the corresponding transition
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functions for any associated vector bundle by applying the appro-

priate representation, so for the complex line bundle E(s,w), the

E(s,w)
&(a,B) °

oo

U, —— qL(C) 2 T ,

Up N B

transition functions are

given by

E(s,w)

_ -2w
8a,B)  ~ T(a,B) ) 1.5.40,

exp(lee(A,B)

exp (18 ) on Uy, nUg:

where g) gy T T(a,B) (A,B)

Using equations 1.5.24, 1.5.25, 1.5.27, 1.5.39 and 1.5.40, we

obtain

E(s,w) _ . w .

g(A,B) K(A,B) exp(is A(A,B)> 1.5.41,
with K defined as in equations 1.5.24, 1.5.25 res-

(4,8)° “(a,B)

pectively. Now recall that the corresponding local transformation
law for a section n of E(s,w) (i.e. for a spin and conformally

weighted function on s?) is given, in terms of local representa-

. _ E(s,w)
tives {nA}, by nA g(A,B) nB, so we have, on UA(q UB’
= K, exp(is A ) 1.5.42
"a (a,8) P Mam)’ s e

Conversely, any family {nA} of local complex-valued functions on
s2 satisfying the transformation law given by equation 1.5.42
defines a section n of E(w,s). Note that equation 1.5.42 is
precisely the usual definition of a spin and conformally weighted
function given by Newman and Penrose [N 2 ], Held et al. [H# ],

so we have shown that definition (1.5)3 is consistent with the

usual one. From a geometrical viewpoint the definition in terms

of T(E(s,w)) 1is more illuminating, whilst equation 1.5.42 is often

more useful for calculational purposes.
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In order to make use of spin and conformally weighted func-
tions, we must introduce a connection and hence covariant deriva-
. . . . N, 2
tives. There is, in fact, a natural connection w in EB(S ,Can)
which is just the 1lift of the standard Weyl connection in
C0(S2,Can) as in equation 1.5.8, but it is more convenient to

n, %
introduce w directly as a connection in the principal T -bundle

T
r2-{0} —> S$2. 1In fact, starting from the "bare"

AVAY]
C0(s?,Can)
fibration w, we may construct not only the spin conformal con-
nection g, but also rederive Can as the Fubini-Study conformal
structure arising in a natural way as the projection of the canonical
Hermitian structure on the total space:

Let h be the Hermitian metric on EZ—{Q} defined by
' —
h(z) ((z,u), (z,v)) = <u,v> = o%° + o'yl 1.5.43,

for all (z,w), (z,v) € T (€*-{0}) = {(z,w): w € T?}, z € T-{0}.

Note that € acts homothetically on (T —{9},h):

R'h = [r]2 n 1.5.44,

for all A € T, where R is the right action of € on t?-{0}.

Let V = Ker Dr be the vertical distribution arising from ,

so that
V.= pREW).T = {(z, wz): w € T} 1.5.45,

B * Z
where, for each z € T2-{0}, RZ: ¢ — C2- {0}; A+ Az so that DR=(1)

& Y
is an isomorphism of L(T ) = T onto VZ < TZ(EZ—{Q}). Now let H

be the h-orthogonal complement of V, so that H is a differentiable
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distribution on T?-{0} with

H = {(zw €7 (C’-{0}): <z,u> = O} 1.5.46,

and T (¢*-{0}) = H_ @V, for each z € T’-{0}. The distri-

bution H 1is equivariant under the C’—action, i.e. le =

= DRA<§)'H2’ and hence we may define a connection in 7m by re-
quiring that H 1s the corresponding horizontal distribution.

Y
Using 1.5.45 and 1.5.46 it follows that the connection form w

is given by

<z,u> 1.5.47,

for all (z,u) € T (T>-{0}), z € T>-{0}. We have called this
connection 3 since it may be shown that it coincides with the
1lift of the Weyl connection in CO(SZ,Can) mentioned above. We
shall return to 3 below, but first let us give a description
of how Can falls out of the fibration .

Each horizontal subspace HZ carries a Hermitian inner
product induced by the Hermitiaﬂastructure h in T(EZ-{Q}),
and we define a unique conformal structure on 52 by requiring
that Dﬂ(g)le: Hz — T S% be a homothetic isomorphism for

[z]

each z € Ez—{g}. i.e. we define the cos(angle) of u, v, € T[Z]S2

to be:

Il ~Lgr 1L
u, v, h(g)((_Z_,gE), (g,zg)) 1.5.48,

where u,yv, 6 are the unique horizontal vectors in HZ projecting

onto u,v respectively. The conformal structure given by 1.5.48

oLa
®

is well defined because U acts on (Ez—{gj,h) homothetically



-61-

(see equation 1.5.44).

The above construction is a straightforward generalization
of the construction of the Fubini-Study metric from the Hopf
fibration §!&— S2n+l — CP (see, for example, Kobayashi
and Nomizu [K € ]) - here we just product with R to get the

+
ol _ {0} — CP" (n = 1 in our case),

fibration € S T
and hence the Fubini-Study conformal structure, rather than a
specific representative metric. Thus, the conformal structure
defined by 1.5.48 is precisely Can and contains the standard
round metric can (which is, of course, just the Fubini~Study
metric on CP! given by equation 1.5.34). We have thus demon-
strated that the standard conformal structure on §2 may be
reconstructed from the spin conformal bundle EB(SZ,Can)

= EZ—{Q}-E+ S2 in a natural way.

We now return to the connection ® which also arises in a
natural way from the fibration =, but may equivalently be re-
garded as coming from a conformal connection on $S%. This con-
nection B induces covariant derivatives on sections of the
associated vector bundles E(s,w) in the usual way, so that we
may write down differential equations involving spin and confor-
mally weighted functions on S2. Note that E* is abelian, and
so the curvature in E(s,w) may be regarded as a global
L(E*) g.m - valued 2-form on S2. 1In fact it may be shown (see,
for example, Dray [D 4 ]) that the curvature in E(s,w) 1is just
is vol(can) corresponding to the fact that the Chern number of

i

e A B - -
E(s,w) 1is >n { (curvature) 2n | is vol {can) 2s.
s2 52

Dray [D 421 also gives local expressions for the connection

1-forms and these may be used to derive an explicit formula for the
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covariant derivatives acting on spin and conformally weighted func-
tions. These covariant derivatives are essentially the & (eth)-
operators introduced by Newman and Penrose [N 2 ], and we now
give the usual local expressions for & using the notation given
above:

Recall that we have introduced a family of charts {(UA,CA)}
on S?2 parameterized by SL(2,L) (see 1.5.21, 1.5.22), and also
a family of functions {P,}. It is straightforward to show that

A
the functions PA defined in 1.5.23 give rise to a global section
P of the complex line bundle E(0,1). The section P 1is just the
Hermitian norm arising from <,> (see equation 1.5.43) wunder the
usual correspondence between sections of associated bundles on the

one hand and equivariant mappings on the total space of a principal

bundle on the other. For each A € SL(2,C), let us define the

quantity

m, = V2P S 1.5.49,

which can be regarded as either an element of I‘(TES2 8 E(l,-l)|UA),
or equivalently as a complex vector field on UA<E s2, In fact,

mA is a null vector field since it has zero norm in the inner pro-

duct in TES2 obtained by extending can.

1
Now let V(S’w): T(E(s,w)) —*Q (E(s,w)) be the covariant

n
derivative operator in E(s,w) induced by the connection w. The

eth operator on UA is just the directional covariant derivative

in the mA—direction. Namely, let S(Z’W): F(E(s,w)lUA)
—»T(E(s+1,w—1)lUA) be defined by
7(sw)  _ o g(s,w) 1.5.50,
A m

A
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where 1y denotes interior multiplication by a vector field X.

To be more explicit, we restrict our attention to the open set

U= U]1 and use the vector field m = my = /2 p 5an The cor-
2 (s,w) (s,w) 2 -
responding eth ¥ °° = HH" then reduces to the usual definition:
2
y(&w) - _ 5 pvs ?a%i P57 1.5.51,

for all spin and conformally weighted functions n on U. Note

(s,w)

that & = & lowers the conformal weight by one as well as

increasing the spin weight by one.
The operators g(z,w) defined in equation 1.5.50 give rise
to a globally defined operator 3: TI'(E(s,w)) — T(E(s+l,w-1)),
since SAnA and 3énB are related according to equation 1.5.42
(with s rveplaced by s+l, w replaced by w-1). Regarding

n € I'(E(s,w)) as an equivariant map from €2-{0} into T, we have

an explicit formula:

- —
gp~liz1" 2n _ o —2“—0 1.5.52.
azl 0z

According to equations 1.5.17 - 1.5.36, a conformal trans-
formation of S2 arises from a GL(2,L) transformation of
mz—{g}. Under this GL(2,T)-action, P will not be invariant,
and so ¥ will not be conformally invariant in general. For
special choices of (s,w) however, we do have conformal invariance.
In particular, for w-s + 1 € Z+', the operator
(g(s,w))w—s+l: T'(E(s,w))>T(E(w+l,s-1)) is conformally invariant
(see Eastwood and Tod [E 3 ]).

The relationship between 82  and sot(1,3) given by 1.5.33

leads to the use of the B&-operators in general relativity, and we
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shall take up this below. Further geometrical properties of &
have been discussed by various authors:

Further insights into & may be gleaned by regarding S?  as
tPl!, and associating & with the 3-(or 3-) operator of complex
analysis. We refer the reader to Eastwood and Tod {E 3] for a
treétment along these lines. The Laplacian ¥y acting on sections
of E(s,w) may also be introduced. This leads to the notion of spin
and conformally weighted spherical harmonics (i.e. eigensections of
33). See Dray [D# ], [D 12], Goldberg et al. [G13 ], Kuwabara [Ki%].
Penrose and Rindler [P44 ].

Note that there exist various slightly different conventions
regarding &. The differences arise b&th because of overall multi-
plications by normalizing factors, and also because of the possi-
bility of associating & with 3 rather than with 3 in the
complex geometric interpretation. Our conventions are essentially
those of Fastwood and Tod [E3 ], and the reader may refer to
pp. 307-8 of Penrose and Rindler [P#1 ] for details of the relation-
ship between the different conventions in use.

The importance to us of the various structures related to
(S?2,Can) comes about because §2 z EZ—{Q}/E* is the typical fibre
of the bundle of future null directions of a (conformal) Lorentzian
4-manifold (the total space of this bundle being a Lorentzian version
of the Penrose twistor space) and because the conformal group of
(82,Can) is isomorphic to the restricted Lorentz group. These
links will be taken up in section 1.9 and in Chapters Two and Three.
This concludes, for the moment, our discussion of the spin con-
formal structure on the 2-sphere.

In this section, we have considered notions of spin associated
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with conformal structures. In the next section, we continue with our
theme concerning the relationship between metrics and spin structures.
We may regard a conformal structure as an orbit under the action of
the (abelian) group C+(M) on Met(M). In section 1.6, we consider
the action of the group Diff(M) on Met(M), and we discuss how

this action interacts with spin structures.

1.6 Diffeomorphisms and Spinors

In this section, we give a brief survey of the inter-relationship
between diffeomorphisms of a manifold M and spin structures on M.
We consider in particular the transformation of spinor fields, in
connection with the ideas of section 1.4.

Let M be an oriented manifold of dimension n, and let
Diff (M) denote the group of orientation preserving diffeomorphisms
of M. Let DiffO(M) < Diff(M) be the group consisting of all
orientation preserving diffeomorphisms of M which are isotopic to
the identity. Note that Diffo(M) is generally a simple group.

See Chapter Four for more discussion of diffeomorphism groups.

The reasons for studying the action of diffeomorphisms on
spinors are manifold. Spinor fields arise as important geometrical
and physical objects, and so it is important to consider group
actions on the space of spinor fields. 1In particular it is impor-
tant to investigate the r8le of symmetry groups. In geometry and
general relativity, one such symmetry group is the diffeomorphism
group - a universal group in many respects, so any natural action

of Diff(M) (or some subgroup thereof) on spinor fields is of

interest.



—66-

One class of subgroups of Diff(M) of particular importance
is the class of one parameter subgroups. These arise as the local
one parameter families of (in general, local) diffeomorphisms
generated by a vector field on the manifold M. The action of one
parameter subgroups on geometrical objects leads to the very useful
concept of Lie derivatives. The typical situation is as follows:
Let V¥ € T(B) where B is some bundle over M on whose sections
there exists a right action by pullback of Diff(M) (denoted by
(V,9) ¢*w). Let X be a vector field on M generating the
local one-parameter group of diffeomorphisms {¢t}. Then the Lie

derivative of Y with respect to X 1is defined by:

LXdJ = Egd)t U] 1.6.1,

if this exists, so that Ly € TwT(B)-

Thus, in order to define the notion of Lie derivative of spinor
fields, a starting point is the action of Diff(M) on the space
of spinor fields (if such an action is meaningful). Alternative
approaches to Lie derivatives of spinor fields have been investigated
by Lichnerowicz [L 76 ] (for the case of Killing vectors with res-
pect to the metric giving rise to the spinor fields), by Huggett
and Tod [H76 ] (for conformal Killing vectors), and by Kosmann
[K10 ] (a more general and extensive treatment).

The problem here is that the relationship of spinors to the
diffeomorphism group is very different to that of other geometrical
objects. For instance, given any natural vector bundle B over
the manifold M, there exists a pullback action of Diff(M) on
B, which induces a pullback action on sections of B. Typically,

such bundles B are tensor bundles associated with some reduction
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of the frame bundle of M, or perhaps sub-bundles of such bundles.

For example; the bundle of metrics (of a given signature) on
M is a sub-bundle of GZT*M, which, in turn, is a sub-bundle of
L) 2T*M. These bundles admit an action of Diff(M) which induces
an action on sections, so, for instance, we have the important
action of the diffeomorphism group on the space of metrics (see
Chapter Four). Another example which has been analyzed in the
literature is the action of Diff(M) on conformal structures -
see Fischer and Marsden [(F & ].

The action of a group on a space becomes much more impor-
tant if the action leaves invariant the structures of geometrical
or physical importance. The diffeomorphism group itself does
play the rdle of such a symmetry group in geometry and in general
relativity, particularly when we consider the space of metrics:
The important geometrical maps on Met(M) are all equivariant

with respect to pullback action of Diff(M) on sections of tensor

e o
* x

bundles. For instance, Fo¢ = ¢ ¢ F, for all ¢ € Diff(M),

where F = Riem, Ric, Scal, Vol mapping Met(M) into the space

of sections of the bundles End(A2TM), O2T M, Mx R, AT M

respectively. In this sense, it is only the Diff(M)-orbit of a

metric which is important in geometry and general relativity
(since Ein(g) = Ric(g) - 1Scal(g)g), and hence the space of
interest is the space of geometries of M, Geom(M) = Met(M)/Diff (M),
sometimes called the superspace of M. See Chapter Four and
references therein.

The situation with spinor fields is complicated by the structure
of the spinor field configuration space. The space of all

Riemannian metrics, for example, forms an open cone in the vector
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space S,(M) = F(GZT*M), and the action of Diff(M) arises by
restriction of the action on SZ(M). On the other hand, the spinor
fields we use in geometry and physics arise from an a priori
specification of a spin structure on M and of a metric (or
possibly conformal structure - see section 1.5) on M. For each
metric, there is a distinct space of spinor fields, and the
configuration space of all spinor fields turns out to be the
(infinite dimensional) wvector bundle E(M,a,g) (or E(M,g))
described in section 1.4. This bundle has base space Met(M),
and the fibre over the metric g on M 1is just the space of
spinor fields of type (sg,g,v) (sg = ?g(s), some s € a,
S € Hom(Spin(n), GL(V))). Since a diffeomorphism ¢ transforms
a metric g 1into the metric ¢*g, the space of spinor fields
over g should be transformed into the space of spinor fields
over ¢*g.

If we assume that an action of Diff(M) does not change
the spin structure equivalence class a (for instance, any
element of DiffO(M) could not change «), then this action
would be by automorphisms of E(M,u,g) which covers the action
of Diff(M) on Met(M). The situation is even more complicated
if Hl(M;ZZ) + 0, so that there exist inequivalent spin structures
on M. Elements of Diff(M) could permute the elements of
Hl(M;Zé) and hence transform a spin structure into an inequivalent
spin structure. This would constitute an action of Diff(M) on
E(M,0).

We see therefore that the diffeomorphism group might act on
spaces of spinor fields at various different levels. A particular

spin structure s € %(M) (representing o € L(M)) might be fixed,
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and we would wish to consider the action of all those diffeomorphisms
which leave s invariant on spinors and spinor fields arising from
s, and perhaps a choice of g € Met(M). Another level of action
would be to consider transformations under arbitrary subgroups of
Diff(M) - ©possibly even the entire group. This second level of
Diff (M)~action would be important in any considerations of the
symmetries of a theory in which changes in spin structure are
necessary.

We now give a brief discussion of how those actions may be
realised. The basic constructions may be found in Dabrowski and
Percacci [D 4 ]. Let us initially consider the case of diffeo-
morphisms which do not change the spin structure:

Let ¢ € Diff(M), where M 1is an oriented spin manifold .

Let ¢ be the automorphism of GL+(M) induced by ¢, so that:
¢(u) = {D¢(WM(u)).ea} 1.6.1,

for all u = {ea} € GL+(M) (see definition (6.1)27).

Let g € Met(M) and consider the transformed metric ¢*g.
Any oriented ¢*g-orthonormal frame is mapped by $ into an oriented
g—orthonormal frame, so that $ = $|SO(M,¢*g) is an isomorphism

of principal SO0(n)-bundles:

b : S0, g) — S0(M,g) 1.6.2,

(Cf: equation 1.5.1 for the analogous isomorphism induced by an
element £ of the group C+(M). See also section 4.1 for a

unification of 1.5.1, 1.6.2).
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A A,
(GL (M),n) € ¥ (M) be a spin structure on M.

Now let s
. W
We assume that ¢ 1lifts to a GL (n,R)-automorphism % of

E%+(M) such that

Noel® = 4o 1.6.3.

A

For example, ¢ will certainly admit such a 1lift if ¢ € DiffO(M).

Definition (1.6)1: If ¢ € Diff(M) is such that ¢ € Aut(GL+(M))

VU A
admits s 1lift to a % € Aut(GL (M)) such that n o ¢ = ¢ o n,
AN Y . . .
where s = (GL (M),n) € Z(M), then we say that s dis ¢-invariant.
Let Diff(M,s) = {¢ € Diff(M): s 1is ¢-invariant}.
n

Note that Diffo(M) £ Diff(M,s) for any s € I(M), but in
general there may be diffeomorphisms which are not isotopic to idM,
but which do not change s.

n,
Now let sg z (S0(M,g), ng) = % (s) € Z(M,g) (and similarly for

g
* A_A
= ¢

¢ g) as in section 1.1. Then ¢ !%8(M,¢“g) is an isomorphism

of principal Spin(n)-bundles:

A %
6 : S0(M,0 g) — SO(M,g) 1.6.4,
such that
dA> ¢ 1.6.5
n ° = o % c0.J,
g n¢> g

(Cf: equation 1.5.4).
Let us now introduce spinor fields. Let 3 € Hom(Spin(n),GL(V))
be any representative of Spin(n) on the vector space V. We note

that % in equation 1.6.4 induces an isomorphism %(3) of the

vector bundle B(¢Ag) = §8<M, ¢Ag) onto the corresponding

XSpin(n)V
bundle B(g), defined by:



-71-

30y BoT®) — B(e); [(5,6)] — [(B(),6)] 1.6.6,

[V %
for all [(u,E)] € B(¢ g).
n
A spinor field of type (sg,p,V) may be regarded either as a
section P of B(g) or as an equivariant map V¥ :EB(M,g) - V
Y]

- ~
(such that ¥(JA) = oA D). ¥(@®), for all u e §8(M,g), A € Spin(n)).

The group Diff(M,s) transforms the latter by:
(4,0) —> ¥ o 5 6C S, 0 ), V) 1.6.7
9¢ q) Spin(n) 5 ( ,(;b g)9 «De/y

for all ¢ € Diff(M,s), whilst the corresponding transformation on

Y € T'(B(g)) 1is easily seen to be:

1. Yoo ¢ 6 P(B(qb*g)) 1.6.8.

(b,6) — §(0)~

To summarize; for fixed s € %(M), we have an action of
Diff(M,s) by automorphisms on the vector bundle E(M,s,g) for any
representation 3 of Spin(n) on the vector space V. This action
transforms a spinor field ¢ in the fibre above g (i.e. B(g))
into an element of the fibre above ¢*g (i.e. B(¢*g)) according
to equation 1.6.8, or, equivalently, equation 1.6.7. We see that
this action on E(M,s,g) covers the action of Diff(M,s) on the
base Met(M).

Suppose now that we are interested in diffeomorphisms which
change the spin structure. One may construct (Dabrowski and
Percaceci [D 4 ]), for each ¢ € Diff(M), s, s' € %(M), a
cohomology class «x(¢;s,s') € Hl(M;Zz) which is the obstruction
to the lifting of $ to an isomorphism % of principal af+(n,R)—

bundles:
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A o+ At
¢+ G, 00 — 8LS(M) 1.6.9,
such that
A ~
ng ° o = ¢ o Ny 1.6.10,
N WA
where s = (GLS(M), ns) and s' = (GLS,(M), ns,) are the two spin

structures on M.
In other words, given any orientation preserving diffeomorphism
¢ and spin structures s, s' on M, % 1lifts to an isomorphism g
satisfying equations 1.6.9 and 1.6.10 if and only if «k(¢;s,s') = O.
In fact, given ¢ € Diff(M) and s € %(M), there exists a unique
—

(up to equivalence, of course) s' = s'(¢,s) € %(M) such that

A
k(¢3s,8") = 0. s' 1dis just the pullback by ¢ of the prolonga-
L

AN VS

tion s = (G S(M), ns); GLS,(M) is the pullback by ¢ of the
At Ay

principal GL (n,R) -bundle %S: GL:(M) —> M, and Ngr =

v

o * noR U+ %o
) 1 on o (ns $), where m ¢: ELS,(M) ) (GLS(M)) ~+-Ei:(M) is

n
the canonical isomorphism of principal Gﬁ+(n,EO -bundles arising
. AV ’\:’\:+
in the comnstruction of the pullback by ¢ of ™t GLS(M) —r M,
. ' v YVATER
The required s' € (M) is given by s' = (GLS,(M), ns,).

We may now define a map:

Bt DIiff(M) x ¥(M) — F(M); (4,8) = s'(¢,s) 1.6.11,

for all ¢ € Diff(M), s € ¥(M). It can be shown that p is a righ

action of Diff(M) on %(M), i.e.:
n n o
P(¢;°9,,8) = p(¢z, p(¢i,s)) 1.6.12,

for all ¢l,¢2 € Diff(M), s € %(M). It can further be shown that

n
the value of p at (¢,s8) depends only on the isotopy class [¢]
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v
of ¢, and if S1 ™ Sy then p(¢,sl)fh;(¢,sz). In other words,
A
we may project p to a well defined action p of QM) = Diff(M)/
Diffo(M) (the group of connected components of Diff(M) on the

set L{M) of equivalence classes of spin structures on M:
v
p: Q) x(M) — (M) ([¢],[s]) — [p(9,s)] 1.6.13,

for all 1[¢4] € (M), [s] € £(M). It is shown in Dambrowski and
Percacci [D 4 ] that equation 1.6.13 defines an affine action of
QM) on I(M).
The transformation rule for spinor fields under arbitrary
diffeomorphisms may now be given. Let g € Met(M) and s € %(M),
n nny
so that sg = rg(s) = (SOS(M,g),ng) is a g-spin structure on M.

e . . n
et ¥V € C )(SOS(M,g),V) be a spinor field of type (sg,p,V).

Spin(n
Given any ¢ € Diff(M), we have that s' = g(¢,s) € %(M) is the

~

unique spin structure on M such that ¢ 1ifts to an isomorphism
A f\_,/\_,+ rbr\,_’_ A ~
b GLS,(M) —ﬁ~GLS(M) satisfying ng® b = ¢°ns, (see equations
1.6.9, 1.6.10). Using s' and g' = ¢ g, we construct the

av Uy
g'-spin structure rg.(s') = (SOS,(M,g'),ng,), and then it is

A
easily seen that ¢ restricts to an isomorphism of principal

Spin(n)-bundles:

A A
¢ = ¢!f§88v(Mag'): %/C\)Jsv(M,g') —_ %S(M,g) 1.6.14.

The transformation of the spinor field V¥ of type (sg,g,V)

is now given by:

A Ny
——— ! = o t
(¥,9) ¥ Voo § € Cspin(n)(sos,(M,g ), V) 1.6.15,

"]
so that Y' 1is a spinor field of type (sé,,p,V). The corresponding
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transformation for sections may Be also written down. The action
described by equation 1.6.15 effectively gives us an action by
Diff(M) by automorphisms on the bundle E(M,g) given in section
1.4, and so now we have a symmetry group for the metric-spin struc-
ture-spinor field configuration space, which relates fibres over
different metrics (and over different spin structures on M).
Actually, there is a slight problem which we now describe:

Suppose we are given ¢ 6 Diff(M) and s € %(M). Then, from

the above, we know that there exists a unique (up to equivalence)

~

v A
spin structure s' = p(¢,s) such that ¢ 1ifts to an isomorphism
N+ "
% of gf:,(M) onto GLS(M) satisfying ng ° % = ¢ o Ngr
A

However, the particular 1lift ¢ 1is not unique. In fact, there are
precisely two l1lifts of & satisfying equations 1.6.9, 1.6.10, and

. . . - .
these two lifts differ by the automorphism of GLS(M) corresponding

[AVaV)
. . +
to multiplication by the generator of ZZ < GL (n,R). In general,
A

there does not exist a consistent 1ift ¢ for all ¢ € Diff(M) -

the composition rule for 1ifts of diffeomorphisms will hold only up

to Z so that the induced action on spinor fields, given by

2’
equation 1.6.15, is only a projective action. In order to obtain a
true group action on the space of spinor fields, we must remove the

Z ambiguity in composition by lifting to a double cover. For

2
example, consider a fixed s € %(M) and, as above, let Diff(M,s)
denote the group of diffeomorphisms leaving the spin structure s
invariant. According to the remarks just made, Diff(M,s) acts

only projectively on spinor fields associated with the spin struc-

ture s. Now let:

~

AAVAVAV]

v _ ’V’\.a_*_ . . _
Diff(M,s) = {f € Aut(GLS(M)). Ng f = M ° ns} 1.6.16,
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(where fM € Diff (M) 1is the diffeomorphism covered by f), so

that

f fM 1.6.17,

defines a double cover of Diff(M.s) by the group B}%%(M,s). We
. . . . WA
now have a true (i.e. not projective) representation of le%(M,s)
on spinor fields associated with the spin structure s on M, given
by
(¥,f) b VY o f 1.6.18,

[AVAVAVaV

for all spinor fields V¥, and f € Diff(M,s).

As an example, consider (yet again) the two sphere, s2. As
we indicated in section 1.2, $2  admits a unique can-spin struc-
ture, given by the Hopf fibration, S! & 83 — §2, together with
the usual double cover, S3 — SO(3). Let us denote this spin
structure by sCan € %(SZ,Can)- It turns out that Diff(Sz,Scan)
= Diff(S%), i.e. the spin structure on S? is invariant under all
orientation preserving diffeomorphisms of S2. The inclusion of
S0(3) 2 Isom(S2,can) into Diff(S?) is a homotopy equivalence
(see Smale [S 30 ]) and hence any double cover of Diff(S?) must
be homotopy equivalent ta S3 ¥ Spin(3), so that the required
double cover of Diff(S?) 1is the unique non-trivial one.

We conclude this section with a remark of a more speculative
nature. It can be argued that the diffeomorphism group arises
naturally as the symmetry group of general relativity, regarded
as a theory of pure gravity (see, for example, Isham and Kuchar
[IM]). For instance, Diff(M) 1is the largest group leaving

invariant the Einstein-Hilbert action:
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S : Met(M) — R; g hﬁ-J Scal(g)vol(g) 1.6.19,
M

and so Diff(M) is important at least as far as the gravitational
action is concerned. A further motivation for the fundamental
nature of spinors in gravity theory would come about if a double
A
cover Diff(M) arose in a natural way as symmetry group of some
important object in the theory - perhaps of an action. The ques-
tion as to whether or not such an action exists is a matter for
further investigation.

Having now, in sections 1.1 to 1.6, described the theory of

spinors in general, we turn to the question of spacetime.

1.7 Spacetime Spinors

We now consider the structures we have introduced above in the
context of spacetimes in general relativity. We shall see that
spinor structure gels especially well with Lorentzian structures
on four-manifolds, and for this reason, spinors are very useful
in general relativity. Indeed, as we shall discuss in section
1.8, spinors may be taken as the foundation of global space-
time geometry.

In this section we adapt the theory given in previous
sections to the special case of a four-manifold equipped with
a Lorentzian metric, 1.e. a metric of signature minus two, so that
the local diagonal form is (+ ---). We begin with some remarks
of an algebraic nature (see Penrose and Rindler [P 11 ] for a

different approach to spinor algebra).
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Let € be the symplectic form on T2 with components
(
0 1
(e,5) = 1.7.1,
-1

with respect to the standard basis of €2. Now consider €2 as a
four dimensional real vector space (i.e. restrict the action of

£ (scalar multiplication) to an action of R) equipped with the
almost complex structure J obtained by multiplication by i
considered as an R- linear mapping. J extends in a {-linear
fashion to the space @2 @I{E (in this section, since we are
dealing with both real and complex vector spaces, we make explicit
fhe field over which tensor products of vector spaces are taken),

and we have a direct sum decomposition:
28 C = S&8 1.7.2,

where S(§5 is the +4i (-i)-eigenspace of J. We identify S
with €2 in a C-linear way, and S with €2 in a C-linear
way. S 1s just the representation space for the defining re~

presentation p € Hom(SL(2,C), GL(2C)) of SL(2,C) on B2, given

by
p,(2) = Az 1.7.3,

for all A € SL(2,T), =z € EZ, and S 1is the representation space

for the conjugate representation p given by:
pp(2) = Az 1.7.4.

The symplectic form ¢ induces symplectic forms (also denoted
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€) on S and on S. These forms are invariant under the SL(2,T)-

actions given in equations 1.7.3, 1.7.4.

We now identify (using the standard bases) S ®E S with

M(2,C) = {complex 2x 2 matrices}, and then we have the repre-

sentation p 8 E-G Hom(SL(2,C), GL(M(2,T))) given by

T
(p 8 p)A(M) = AMA 1.7.5,

for all A € SL(2,C) and M € M(2,C). Here T means Hermitian
adjoint of elements of M(2,C) (din particular, of SL(2,T)).
Let H(2) denote the space of 2x 2 Hermitian matrices. Then

H(2) may be regarded as a real four dimensional subspace of

M(2,T) = S @E S. The representation p 8

real representation of SL(2,C) on H(2), which we denote by

T 5— reduces to a

o 8 E.
The original symplectic form e dinduces on M(2,C) a complex
inner product, which restricts to a real Lorentzian
inner product ¢ & ¢ on H(2). SL(2,C) acts upon (H(2), £ 8 E)
by isometries, since e 1is SL(2,C)-invariant. In fact, the norm
associated to e 8 ¢ is just (twice) the determinant.
We may regard (H(2),e ® €) as a copy of (real) Minkowski
space embedded in the space of complex 2x2 matrices, M(2,T):
Let 0 € R @E{H(Z) be defined by its components Ga,

a=0,1,2,3, with respect to the standard basis of RF, as

follows:
= Lo Lol Ozz_ltf()—l,
V2 0 1 V2 (1 0 V2 i o
3
o3 = Lo 1.7.6,

Sl
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a . , , .
G.e. the o are the Pauli-~matrices), and define the linear map

o of RY onto H(2) by:

o @ RY— H(2); X %(§n 8 ) (o) 1.7.7,

R 195¢2)

[

n %
for all x € RY, where X nN(x,*) € (R%", and n =
= diag(l, -1, =1, -~1) 1is the Minkowski inner product on R*. We

may abuse notation slightly, and rewrite equation 1.7.7 as:

a(x) = n(x, o) 1.7.8,

for all x € R* The inverse linear map « ! is given by:

o (M) = trace(MO) 1.7.9,

for all M € H(2), as is easily verified, using elementary pro-
perties of the Pauli matrices, o®. Another important property
of o dis that it is an isometry of (R%, n) onto (H(2), ¢ 8 ¢e),

i.e.

det a(x) = In(x, x) 1.7.10,

for all x € R , and so @& isometrically embeds Minkowski space
in M(2,0).

We now define A € Hom(SL(2,T), GL(4,R)) by:

_ . _10 Py o
A, = OAMA) = o« (b 8p0), 0 1.7.11,

L@ = o N(Aa(pA) 1.7.12,

for all x € R Since a, (p & E)A are isometries ( for each

A 6 SL(2,L)), we have that AA is a Lorentz transformation for each
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A € SL(2,T). In fact A 1is a homomorphism of SL(2,T) onto
SO+(1,3), the subgroup of the Lorentz group comsisting of all
elements which preserve the standard spacetime orientation of
Minkowski space (see below for a definition of spacetime
orientability and orientation) and Kerh 2 Zz, as can be seen
from equations 1.7.5 and 1.7.11. Therefore, A 1is a non-
trivial double cover of SO+(1,3), and, identifying Spin(1,3)
with SL(2,C), A coincides with the map introduced in section
1.1, in the special case of signature minus two metrics in dimension
four.

Having now established the particular algebraic inter-
relationship between SL(2,T) and SO¢(1,3), we turn now to
bundles over spacetime. First, let M be any oriented four-

manifold, and let:

SL(2,L) & B —— M 1.7.13,

be any principal SL(2,T)-bundle over M. Note that P ois
necessarily trivializable if M is non-compact (see, for example,
Isham [I & ]).

Given %, we may construct associated bundles in the usual
way. In particular we have the vector bundles constructed using
representations of SL(2,C) given above.

Definition (1.7)1: Let £ be a principal SL(2,T)-bundle over

, a,

- i M. t P) = b constructed usin

the 4-manifold M Le W(P) P XSL(Z,E)R' {const e sing
the representation of SL(2,T) on R given by A F—-%.AA),

B(®) = B H(2) (using p 60), S =P xg o 8

“sL(2,T)
, - Ay — I
using p), S(P) =P XSL(Z E)S (using p)-
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Since n, & are SL(2,C)-invariant under the action used in
definition (1.7)1, the vector bundles have extra structure:
n n . "y
W(P), H(P) are (real) Lorentzian vector bundles, and S(B),

e
w

—_ % n, —
S(%) (and S (B), S (%)) are (complex) symplectic vector bundles
(we use the symbol e for the symplectic structure in these
bundles).

With respect to these structures, we have an isometry of

Lorentzian vector bundles:
oy + WP — H(F) — s(%) o, 3(P) 1.7.14,

given by:

oy(ld, 1 = [(W#,a(@)] 1.7.15,

for all [(3[5)]6 W(%). 0% induces an isomorphism of F(W(%))
onto P(H(%)) in the usual way.

We now restrict our attention to the case of spacetimes in
general relativity. We assume that the 4-manifold M 1is either
non-compact or compact with vanishing Euler invariant, so that
M admits a Lorentzian metric g. The principal SL(2,T)-bundle
% will now arise from a g-spin structure on M.

The model for spacetime used in general relativity is that
of a connected Lorentzian 4-manifold (M,g) which is spacetime
orientable (and spacetime oriented). Spacetime orientable means
that the bundle of g-orthonormal frames O(M,g) has precisely
four components (corresponding, in some unspecified way, to the
four components of the (unrestricted) Lorentz group 0(1,3)).

We may choose one component 8 of O(M,g), i.e. we may give

(M,g) a particular spacetime orientation, and call this component
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8 the bundle of (spacetime) oriented g-orthonormal frames SO(M,g).

SO(M,g) is then a principal SOT(1,3)—bundle over M:

i
sot(1,3) @ som,g) —L M 1.7.16.

Note that if (M,g) 1is not spacetime orientable, we may always
construct a Lorentzian covering manifold which is spacetime orien-
table, and which is equivalent, so far as general relativity is
concerned, to the original Lorentzian manifold (M,g) (see Geroch
[630.

We often assume, in addition, that M is non-compact. A
physical reason for this is that it is easy to show that compact
Lorentzian four-manifolds (M,g) admit the existence of closed
timelike curves, and so most notions of causality would forbid
such spacetimes. (See Beem and Ehrlich [B 5 ]). A mathematical
reason for assuming M non-compact is that any principal
SI{2,C)-bundle is necessarily trivializable over a non-compact
four-manifold, as we have mentioned above, and so any g-spin
structure on M would have simpler structure than in the general
case. Recall (1.2.3) that a non-compact spacetime is spin if
and only if M is parallelizable.

In any case, suppose we are given a spacetime (M,g) (the
orientation & 1is not usually mentioned) which is spin, i.e.
WZ(TM) € HZ(M:ZZ) vanishes. Let sg = (EB(M,g),ng) € %(M,g)
be a g-spin structure on M, so that gB(M,g) is a principal
SL(2,C)-bundle over M, and ng: EB(M,g) - S0(Mg) 1is a homo-
morphism of principal bundles, such that ng(%A) = ng(g)A(A),
for all u € SO(M,g), A € SL(2,L).

Uy
Given SO(m,g), we may define, as above, the associated
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vector bundles of particular interest (see definition (1.7)1). We
change notation slightly, and write W(EB(M,g)) = W(sg), etc.

Since sg is a spin structure, we now have the additional vector
bundle isomorphisms, which we defined in section 1.3. For example,

using equation 1.3.3, we have the vector bundle isomorphism ng

of W(sg) onto TM:

ﬁg: Ws) — T [(4,x)] Hng&),ﬁ)] 1.7.17,

~

for all [(u,X)] € W(sg). In fact, it is easily seen that ng
is an isometry of (real) Lorentzian vector bundles (by virtue of
the fact that n is a homomorphism of principal bundles and also
because of the action of SL(2,T) omn R* which we are using).

We may combine equations 1.7.14 and 1.7.17 to give another isometry

o(sg) of Lorentzian vector bundles:

Definition (1.7)2: Let Sg be a g-spin structure on the space-

time (M,g). Then the Infeld-Van der Waerden isomorphism (for sg)
a(s is defined by o(s )= owy o n-1, so that o(s is
(sg) 08 O, g) g (sg)

an isometry of Lorentzian vector bundles:
o(s ): TM — H(s ) &> S(s ) 8_ S(s 1.7.18.
(s,) (s (sp) 8 S(s)

Note that a g-spin structure equivalent to Sg would give rise
to an equivalent isomorphism. We obtain an isomorphism of the spaces
of sections Vect(M) = T(TM) <« F(H(sg)) in the usual way. There
is also the obvious extension of O(Sg) to an isomorphism of tensor
products of TM and H(sg) (and thence to temsor fields). Any
tensor equation, in, say, general relativity, may be translated,

using c(sg), into an equivalent equation involving sections of
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S(sg) @E-g(sg) (and tensor products thereof). As in section 1.3,
we call sections of H(sg), S(Sg) ®E g(sg) etc., spinor fields and
equation 1.7.18 means that we may translate any tensor equation
into a spinor equation. The latter is often much easier to deal
with, so the Infeld-Van der Waerden isomorphism O(Sg) is of
much use in general rvelativity (see Penrose and Rindler [P 1117,
[P12 ] and references therein).

Note that by restricting our attention to the representations
P, P (and tensor products thereof) we ensure that all the spinors
we use are based on two component or Weyl spinors. These are
mathematically simpler than, say, Dirac spinors, and the (complex)
two dimensionality of the basic representation space S ensures

the validity of many useful identities and results: for example

(using the Penrose [P#] abstract index notation):

Ay = A, +le 2 C 1.7.19,

for any spinor (spinor field) A in S*(sg) @E S*(Sg)
(F(S*(sg) @E S*(sg))). Here A, B, C € {0,1} to conform with
the standard conventions. Equation 1.7.19 means that we may
restrict our attention to completely symmetrized tensor product
representations (see the remark below on representations of
SL(2,T)). Dirac spinors arise from the representation p & E*
of SL(2,T) on €%, and are very important in particle physics.
Note, however, that the effect of the spacetime orientation is to

%
reduce p & p

to its two constituent irreducible "Weyl" re~
presentations (see, for example, Wald [W 131).

We now make some concluding remarks concerning the results
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of this section: (i) We may extend the isometry O(Sg) by T-
linearity to give an isomorphism of complex Lorentzian vector

bundles (which we denote by the same letter c(sg)):
E —
o(s : T™M — S(s B _ S(s 1.7.20,
(s) (s,) 8 S(s)

where TEM is the complexified tangent bundle of M, so that

TiM = TM @BRE, and carries the metric g extended by T-
X
linearity. (ii) Via c(sg) (or its complexification, as in (1)),

we have (using abstract indices):

1.7.21.

€ab ©AB €A'B’

Note that it is customary to assign to spinors in §(sg), E*(sg)
(and tensor products thereof) primed abstract indices A', B' ...
€{0',1'}.

(iii) For completeness, we discuss the irreducible represen-

tations of the group SL(2,T). We have already mentioned the Weyl

ate

-

— * —%
representations o, p, P 5, P and the Dirac representation o & p

(which is, of course, reducible). The irreducible representations

of SL(2,C) are, in fact, parameterized by the set (%Z)Z,‘where
3
Ea

representation by D°(u,v). The representations we have so far

31Z = {0, 3%, 1, .}, and we denote a general irreducible complex
discussed include p = D°(3,0), E“ = D°(0,1). In general, D°(u,Vv)

. . 2V 0 /1 2V_ o 1 .

is the representation (07 "D°(4$,0))8(0"'D°(0,3)) defined such

that its representation space is S(u,v) - the space of spinors
symmetric in the first 2u (unprimed, contravariant) slots and also
symmetric in the last 2v (primed, covariant) slots. The dimension

of D°(u,v) is then seen to be (2u+1)(2v+l). The spin of the
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representation Do(u,v) is defined to be v - u € 1Z. See Penrose
and Rindler [P 44 ] for more details concerning the representation
theory of SL(2,CT).

This section has been very much concerned with the implementa-
tion of spinor theory in a spacetime setting, noting in particular
the way in which two component spinors (i.e. the representation
0 6 Hom(SL(2,T), GL(2,T))) and four dimensional Lorentzian structure
fit together in a natural way. Once implemented, the spinor theory
greatly facilitates (via the Infeld-Van der Waerden isomorphism)
many calculations in general relativity: Every tensor equation may
be translated into a, usually simpler, spinor equation. The spinor
theory, based on S(sg), g(sg) etc. is, a priori, much richer than
the tensor theory which is based (via O(sg)) on S(sg)@(gfsg) ete.
i.e. we can write down many operations and equations involving
spinors which don't have an obvious tensor analogue, e.g. operations
involving one spinor abstract index A rather than a pair AA',

as would occur in a (translated) tensor equation. In fact,
as Penrose and Rindler [P 41 ] show, any equation or operation in-
volving Weyl spinors may be translated back to an equation or
operation involving tensors, but with a possible ZZ-ambiguity
(the correspondence being given formally by i/gTE;S). The beauty
of the spinor formalism, therefore, is not so much the extra struc-
ture available (although there does exist some extra structure,
especially in terms of complex geometry), but rather the simplicity
of spinor equations compared to the corresponding tensor equations.
Indeed certain important operations, of geometrical and, more
importantly for us, physical significance, are suggested by the

spinor formalism. The corresponding operations, when written in
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terms of tensors, are often very complicated and uninspiring.
Examples of such operations are those involving dualization (with
respect to the Hodge *-operator associated with g € Met(M)),
trace reversals (with respect to g) and spinor symmetrization.
See Ruse [R 4 ] for an early exposition of the simplicity of
Dirac spinors as compared to tensors, and Penrose and Rindler
[R11] for the corresponding situation for Weyl spinors. We
shall introduce operations with Weyl spinors when we need to
make use of them (see Chapter Three).

The discussion of this section has been very much in the
spirit of category !. of section 1.0. To make tentative steps
towards category 2., we now turn to the idea of spinors as a
basis for global spacetime geometry. The next section will show
how spinors are, at least, equivalent to Lorentzian metrics as
a foundation for spacetime geometry. Further indications of the
fundamental nature of spinors in general relativity will emerge

in Chapter Three.

1.8 Spacetime from Spin

In this section, we remark on the rble of spinors in general
relativity, thereby expanding the discussion of section 1.0 (see
also Chapters Two and Three). The viewpoint so far taken, and
indeed the one which we will adopt generally, is that the basic
model of spacetime is a Lorentzian spin manifold (M,g) (connected,
spacetime oriented). Of course, we shall need to impose additional
requirements on (M,g), such as various geometrical and topo-

logical assumptions reflecting physical properties like causality,
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and we will also add extra structure such as mattef fields satis-
fying both physically reasonable local energy conditions and appro-
priate field equations. For the moment, however, our basic object
will be the global geometry defined by (M,g,e,sg) (we add the
spacetime orientation 6 to the description of spacetime, because
it will play a slightly more important rble in this section), where
we have assumed that a particular g-spin structure sg = (gﬁ(M,g),ng)
has been chosen (perhaps picked out for or by physical requirements)
on the spin manifold M, with Lorentzian metric g.

The g-spin structure gives rise to the vector bundles W(sg),
S(sg), etc. and also the Infeld-Van der Waerden isomorphism
c(sg): ™ —> H(sg)c—+ S(Sg) @m §(sg), described in section 1.7.

As we remarked above, c(sg) is, in fact, an isometry of Lorentzian
vector bundles: the metric in TM being just the metric g on M,
and the metric in H(sg) being the one induced from the symplectic
form e, as in the first part of section 1.7.

Note that ¢ defines a unique symplectic conformal class {e]
of symplectic forms on T2, where different representatives are
non—-zero complex multiples of one another. Because of the two
dimensionality of t2, any symplectic form on T2 is contained
in [e]. Suppose, instead of picking a particular representative
e € [e], we are just given the conformal class [e]. Then the
vector bundle H(sg) will be equipped with only a Lorentzian con-
formal structure [e @‘E] in its fibres, and O(Sg) will map this
conformal structure into the conformal structure in TM arising
from the conformal class Cg defined by the metric g on M.

Recall that the symbol e 1is also used to denote the sym-

plectic structures in the vector bundles S(sg) etc. Suppose a
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particular complex rescaling of the original symplectic form ¢
(see equation 1.7.1) leads to the symplectic structure fe in
S(sg), where f & C(M,m*). The image of fe wunder the Infeld-
Van der Waerden isomorphism G(Sg) is just |f|2g, a particular
representative of the conformal class Cg' Note that if we res-
trict our conformal rescalings to have modulus unity, so that

f € ¢C(M,S!), then the image of fe under c(sg) is still g.

In section 1.0, we remarked that spinors are not only useful,
as we indicated in section 1.7, but essential to general rela-
tivity. The second possibility has led various workers to
speculate that the whole of general relativity theory, perhaps
even the spacetime manifold M itself, should be derived from
spinor data (see, for example, Penrose [P § ]). We now give a
brief outline of how the global spacetime geometry (M,g,e,sg)
may be derived from a basic spinor structure on the manifold M,
rather than a derivation from an a priori choice of Lorentzian
metric g € Met(M):

Our starting point will be a manifold M (we make no attempt
to derive the spacetime manifold or to replace it with an alter-
native structure) equipped with the following data: A rank two

complex vector bundle:

L2 < S M 1.8.1,

in which there is a (complex) conformal symplectic structure [g ],
o
* ES
so that each representative £, € F(SO @m SO) gives rise to a
1

symplectic form on each fibre of So’ with e, v €] if and only if

%
there exists f € C(M,T ) such that

e! = fe 1.8.2.



-90~

Given So’ we may construct the conjugate rank two vector
bundle go (by first constructing the principal GL(2,T)-bundle
to which SO is associated, and considering the conjugate re-

presentation), and we consider the map:

x@my}————>y9mx 1.8.3,

where x, y € So' We extend 1.8.3 by complex bilinearity in
fibres to give an isomorphism of complex vector bundles:

ho: So @E Somm-> So @E SG 1.8.4,

and let WO be the fixed point set of h. Then Wo is a rank
four real vector bundle over M.

So far we have just assumed (SO, [eo]) as given. We now
choose two more pieces of data: (i) A particular representative
symplectic form €, € [eo], and (dii) a (real) vector bundle

isomorphism:

g TM —> WO 1.8.5.

(Assuming that such an isomorphism exists, i.e. that TM and WO
are members of the same vector bundle isomorphism class, is tanta-
mount to requiring M to be spin.)

From the data (M,SO,EO,GO) we may now derive the geometry of
spacetime (see also Plymen and Westbury [P 181).

Let %o be the bundle of symplectic frames to which (SO,EO)

is associated. Then %o is a principal SL(2,T)~bundle over M:

SL(2,T) &~ %0 M 1.8.6,
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ny
and given Po’ we may perform the vector bundle constructions

we gave at the beginning of section 1.7 (see definition (1.7)1).

ny
P RY which is isometric

- A%
In particular we have W(PO) o XSL(Z,E)

B H(2) (equation 1.7.14) with respect to

f\/ —
to H(Po) = Po ><SL(Z,(E)
the natural Lorentzian structures.

It may easily be shown that there exists a natural iso-
morphism: Wo — W(%O), and hence, given O, We have
W(%O) z TM (qua vector bundles). We now define g to be the
unique Lorentzian metric in TM (i.e. on M) such that the iso-
morphism W(%O) z TM 1is an isometry of Lorentzian vector bundles.

The symplectic form € also plays the r6le of a volume
element in So’ énd hence defines an orientation. This orienta-
tion induces an orientation in WO, and hence in W(%o) which
is compatible with the Lorentzian metric in w(%o) (i.e. a
"spacetime'" orientation). We now induce a spacetime orientation
8 on (M,g) via the isometry W(%O) 2 ™.

To summarize the above: Our basic data is (M,SO,EO,GO),
and from this we derive (M,g,8). To complete the description of
global spacetime geometry as described above we require a g-
spin structure s on M. This is easily constructed from
(M,So,eo,co) in a unique way: we just take the principal
SL(2,C)-bundle to be %o’ and the bundle homomorphism n
%o — S0(M,g) (£ ©) 1is constructed using the isomorphism g,
and a reverse procedure to the one which lead to equation
1.7.18. This leads to a unique g-spin structure sg = (%O,n)
on M.

Thus we may derive an entire description of global geometry

(M,g,e,sg) starting from the spinor data (M,So,eo,co). The
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conver se construction is also well defined: Given (M,g,@,sg),
we let So = S(sg), and €, is just the symplectic structure
in S(sg) constructed in sectiom 1.7. WO is taken to be W(sg)
and O = o(sg), the Infeld-Van der Waerden isomorphism associa-
ted with the spin structure Sg' From (M,g,e,sg), we construct
(M,SO,EO,GO), and the two constructions we have just described
are mutually inverse. 1In other words, the two foundations for
global spacetime geometry are equivalent. We shall usually work
from and with (M,g,e,sg), and translate to spinor formalism as
required, but there is a case for starting from the spinor foun-
dation (M,SO,EO,OO), especially if this can be derived from a
more basic spinor structure.

Note that, from (M,SO,[EO]), we made two independent choices
- that of €, € [so], and also the vector bundle isomorphism o4
Making different choices of £, and 9 leads to a different
spacetime geometry, as has been demonstrated in the literature:

Choosing a symplectic form feo (f € C(M,E*)) leads to the
metric ]flzg on M; 1in other words to a conformally related
Lorentzian manifold. Plymen and Westbury [P415] have shown, in
the case f € C(M,S!) (i.e. when the same metric g 1is obtained),
that €50 feo determine equivalent g-spin structures if and only
if f admits a global square root. In fact, Plymen and Westbury's
argument is mainly homotopy theory based, and may thus be
generalized to the case where f € C(M,E*) in the sense that
£, fso will determine equivalent spin structures on M (corres-
ponding, via %, to the respective g -, !flzg—spin structures)

if and only if f admits a global square root.

A different vector bundle isomorphism 9 corresponds to
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a different principal bundle homomorphism n in the g-spin struc-
ture, and the effect this choice has on spin connections and
spinor field Lagrangians has been discussed by Isham [I § ].

In the next section we introduce a natural SZ-bundle over
any spacetime, which will turn out to have both geometrical and

physical significance, and will be used in later work.

1.9 The Projective Null Bundle

The aim of this section is to discuss a natural $2-bundle
over a spacetime (M,g), and thereby bring together ideas of
earlier sections concerning spinors, conformal structures, the
2-sphere and four dimensional Lorentzian geometry. The bundle
we introduce arises in at least two possible ways from structures
on a 4-manifold M. One way is from a Lorentzian conformal
structure in which case we have the bundle of future null direc-
tions, and another way is from a g-spin structure, where g 1is
a Lorentzian metric, in which case we have a projective spin
bundle. The Infeld-Van der Waerden isomorphism of section 1.7
gives a natural isomorphism between the two bundles, and we refer
to both S2 bundles as the projective null bundle over a space-
time (M,g). We might also discuss this bundle as arising from
a Lorentzian spin conformal structure (as in section 1.5), but
here we make an explicit choice of representative metric.

The projective null bundle is obviously a very natural
object from both geometric and physical viewpoints. Indeed, the

fibres of the projective null bundle are just the anti-celestial
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spheres at the points of spacetime. We regard this bundle as a
natural six-dimensional arena on which to consider physically
interesting spacetime equations. The case of lifting up Yang-

Mills (in particular Maxwell) theory on Minkowski space to

R* x $2 is being investigated by Newman and coworkers (see (K31,

[K 127, [K4+], but our discussion describes the situation for

a general spacetime, and so geometrizes earlier work relating
Lorentzian geometry and the 2-sphere (see, for example, [H# ], [H3 ],
(L7 D.

The section is organized as follows: We construct the bundle
of future null directions for a Lorentzian conformal manifold (M,C)
and also the projective spin bundle for a Lorentzian spin mani-
fold (M,g,sg). In the case where C = Cg’ we use the Infeld-
Van der Waerden isomorphism to relate the two constructions. We
also indicate the geometric inter-relations between the various
bundles over spacetime M on the one hand and over the typical
fibre S2 of the projective null bundle on the other.

The basic idea behind the use of the projective null bundle
as a space on which to consider spacetime theories is that we have
available the spin and conformally weighted functions on each
2~-sphere fibre, together with the associated J-operators des-
cribed in example (1.5)1. Spinor equations on M may then be
lifted to the total space of the projective null bundle and the
fields on M satisfying those equations may be represented as
sections of appropriate complex line bundles over the total space.
Complicated partial differential equations on M often turn out
to be much simpler, and their geometric and physical significance

illuminated, when considered in this way. For example, a Maxwell
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field on Minkowski space may be lifted to a complex valued function
satisfying a couple of linear equations on R* x S2, These equa-
tions lead to a deeper understanding of the structure of Maxwell
theory - in particular the duality properties of the electromagnetic
field (see Kent et al. [K3 ] for more details). Another example
is the case of spinor differential equations on embedded submanifolds
of spacetime, and we may consider lifting up such equations to the
pullback of the projective null bundle in order to elucidate their
structure.

We commence our discussion with some generalities on vector

bundles. First let w_,: E — M be any real vector bundle of

E
rank r > 1 over the manifold M. Let *E =F - {OE} where OE
is the zero section of E, and consider the natural free right
action of I{+ on *E by (positive) dilatations: (v,t) r— tv,
¥(v,t) € *E XB{F (This action is generated by the Liouville

%
vector field A_ € Vect( E) given by AE(V) = v modulo the usual

E

identification of (Ker DWE)V with W%l(ﬂE(V))). We now have a

"B/RT s

i

principal R ~-bundle R'e> 'E —» SE, where SE

the total space of the so called sphere bundle associated to E

given by Sr‘l'aﬁ-SE — M, with obvious projection onto M.

In the case when Mo is a rank r complex vector bundle

over M, the required bundles will be C*‘—+ *E-+ PE and
tP " les PE — M, where PE = "E/T. We call the TP ' ‘-
bundle the projective bundle of E.

Now let M be a manifold of dimension n with ecotangent
bundle ot T*M — M. We use T*M, rather than the tangent
bundle TM, as a starting point for our constructions for various

reasons. One reason is convention (see, for instance, Penrose and

Rindler [P 11 ], where the covariant, rather than contravariant,
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projective spin bundle is considered), and a second reason is that
there exists a naturally much richer structure on T M. For ex-
ample we have the canonical 1-form Ny € Ql(T”M) given by

o a o DTM(a), Yo € T"M, and also the associated canonical

symplectic form Wyt —an.

A A + -+ B3 *
We have the principal R -bundle, R & T M — ST M,
n-1 n-1 ® .

and also the S -bundle, S < ST M — M, as described above
for a general vector bundle. In fact, the Ig:-bundle over ST&M
is trivial since it admits a global section - for instance,
given any positive definite metric g on M, we may define the

] % x % -1 *
section pg: ST M— T M; [a] F+llu“g o, for all [a] & ST M.
This section just identifies ST M as the unit cosphere bundle
of (M,g). Using ug (or indeed any other section) we may pull

o o
back the canonical 1~-form on T M (which is just the restriction

of n and which we also denote by nM) to a contact form

M,
u"nM 6 Ql(ST"M) on ST M. Note that a metric of Lorentzian

signature will not give rise to a global section of

KA
w

iR+C—> *T M — ST*M in the same way as a positive definite metric.
Indeed, for a Lorentzian metric g, ug, as defined above, is
singular precisely on the subspace of all null covector equivalence
classes. However, we shall see below that it is possible to use

a Lorentzian metric g to realise, at least pointwise on M, the
null sub-bundle of ST*M as a sub-bundle (rather than as a quotient)

T
* %

of T M.

To proceed towards our definition of the projective null bundle,
we assume M to have additional structure. First we assume that M
admits a Lorentzian metric (so that M must be either non-compact

or compact but with vanishing Euler invariant). Let Con(M) denote
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the space of all Lorentzian conformal structures on M:

Definition (1.9)1: Let C € Con(M). We say o € T M is C-null

if “aflg = 0 for some (and hence every) g € C. Let N(M,C)
z {a & TM: o is C-null} denote the bundle of all C-null covectors
over M. Let SN(M,C) = {[a] € ST*M: o 1is C-null} (note that this
definition makes sense).

In general, assuming spacetime orientability of (M,C) (the
definition of spacetime orientability obviously extends to n-
dimensions), SN(M,C) will be a sub-bundle of §" 1w sT'M — M

with typical fibre the disjoint union of two copies of Sn~2. We

obtain a bundle Sn—2 c--->-SN_*-(1*4,C) —r M by choosing a spacetime
orientation for (M,C). Given a particular Lorentzian metric
g € Met(M), we write N(M,g) = N(M,Cg) etc., where, as usual Cg
is the conformal class containing g.

Now let (M,g) be a spacetime so that M 1is a four-dimensional
connected manifold, and (M,g) 1is spacetime oriented. We shoose a
particular orientation so that we have a well defined, consistent

notion of future pointing vectors at each point in M. We have the

following fibratioms:
§3C&—> STM —> M 1.9.1,
s2c 5 SNT(M,g) — M 1.9.2,

corresponding to those for the general situation discussed above.
+ & % %

We also have the principal bundle R &— T M — ST M, but we

shall be interested mainly in the corresponding construction for

the bundle of future null directions:

R "NT(M,g) — SNT(M, ) 1.9.3,
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where 7'cNﬂ’_(M,g) is the bundle of future pointing (non-zero) null
covectors over M. Note that we adopt the convention of refer-
ring to a covector as being future pointing if the corresponding
vector in TM is future pointing (using the usual identification
of TM with T*M via g). The fibration 1.9.2 may thus be re-
garded as the bundle of future null directions of (M,g), so that
the fibres are just the anti-celestial spheres at points of
spacetime. We may obtain a more concrete picture of the future
null directions at a particular point in spacetime in the usual
way (see Held et al. [H'+ ], Penrose and Rindler [P41 ]):

let x €M and u € ﬂ_l(x), where 7= Tyt SO(M,g)—M is
the principal SOT(1,3)—bundle of oriented g~orthonormal frames
over M (1.1.2). We write u = {uo,ul,uz,uB} with ug € TXM
a timelike future pointing unit vector. Define the hyperplane
n C T*M by T. = {a & T*M: g(x)(a#, u) =1}, so that

— X u X o]

Si = Huf\ *N;(M,g), topologically a 2-sphere, 1is a cut of the
space of future null directions at x. Note that [a] r\Hu

. -+
consists of a unique element, say o, for each [a] € SNX(M,g),

so we may define:

+ * 4
c, ¢ SNX(M,g) R NX(M,g); [a] b—> o, 1.9.4,

for all [a] € SN;(M,g)- The image of SN;(M,g) under <, is
precisely the cut Si and so Cu realizes the space of future null
directions at x as a concrete 2-sphere sitting inside TiM. The
map ¢y is, to some extent, analogous to the section ug defined
above for the case of a positive definite metric g, but note that

in order to define c,> we have chosen a frame u at a particular
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x € M. In any case, . is a diffeomorphism of the space of
future null directions at x onto Si. Choosing a different
frame ua € w—l(x), a 6 SO+(1,3), leads to the cut Sia which
is a supertranslation (see appendix 6.3) of the cut Si, and

-1

the map CLa o cu € Diff(S2) is the conformal transformation

of (82, Can) corresponding to a € SO+(1,3) (see 1.5.33). This
construction thus gives an alternative realization of the Lorentz
group as the conformal group of the 2-sphere (Cf. Example (1.5)1).

If M 1is parallelizable, then there exists a global section
of S0(M,g) and we perform the above construction at each point
of M to obtain an S2-subbundle of *T*M which is bundle
isomorphic to SN+(M,g) (equivalently, we obtain a section of
the fibration 1.9.3). 1In general, however, no such section exists,
and we only have a local "unit sphere'" (local sections, of course,
always exist), and even if SO(M,g) is trivializable, the iso-
morphism between the unit sphere bundle and SN+(M,g) obtained
depends on the choice of trivialization. Since we wish to avoid
any such choices, we prefer to regard SN+(M,g) as a quotient,
rather than as a sub-bundle, of N+(M,g).

The six-dimensional total space of the projective null bundle
provides a natural arena on which to consider physically interesting
fields lifted from spacetime. Before discussing such 1lifts, let us
first discuss another construction of this space, this time using
spinors:

Assume now that M is spin and let sg = (EB(M,g),ng) €
%(M,g) be a g-spin structure on M, so that EB(M,g) is a
principal SL(2,C)-bundle over M. Obviously we do not need to

assume the existence of such a g-spin structure in order to construct
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SN+(M,g), but this construction gives rise to a useful represen-
tation of the space. A natural isomorphism between the two con-
structions arises from the Infeld-Van der Waerden isomorphism
c(sg) (see definition (1.7)2)-

Using the notation defined in section 1.7, let S*(Sg) denote

ny
the rank two complex vector bundle over M associated to SB(M,g)

ota
~

by the representation o of SL(2,T) on 2. Elements of
S“(sg) are unprimed spinors AA (in abstract index notatiom).
We then have the bundles:
% * % %
T &—— 8 (sg) —> P§ (sg) 1.9.5,
CPle—vs Ps"(sg)——» M 1.9.6,

as above. Note that 1.9.6 may be regarded as the bundle associated
to ga(M,g) via the action ¢ of SL(2,T) on CF 2 52 given by
equation 1.5.20. We now show that ﬁPS*(sg) is bundle isomorphic
to the S2-bundle SN+kM,g): Recall (1.7.18) the Infeld-Van der
Waerden isomorphism (for sg), o(sg): ™ — H(sg) < S(sg) 8 §ksg).
Now define ck(sg): T*M — H*(sg)<—+ S*(sg) ®'§*(sg) in the obvious
manner using the identification of T*M with TM (via g) and the
identification of S*(sg) with S(Sg) (via the natural symplectic
structure e in S(sg)). The map G*(sg) is an isomorphism of
vector bundles which, when restricted to the space of all null co-

+
vectors, projects down to a well defined map on SN (M,g): We

define

v(s,): SNT(M,g) ——r Ps*(sg); [o] —> [ ] 1.9.7,

for all J[a] € SN+(M,g), where Au is any element of S“(sg)
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satisfying (G*(sg))(a) = xa 8 K& (Note that any null covector o
corresponds, under the Infeld-Van der Waerden isomorphism, to a
decomposable element of S*(sg) 3] g*(sg) of the form Xu 8 X&,
where ka is unique up to multiplication by an element of Sl).
Replacing the representative o of the ]fF—orbit [a] by any
other representative ta, t € B§+, changes any xa by a scaling
(t%) and hence does not change [ka]. This demonstrates that
equation 1.9.7 defines a map from SN+(M,g) into ]PS*(sg). The
map v(sg) is easily seen to be a bijection and, moreover, an
isomorphism of S2%-bundles. Hence, given the g-spin structure
Sg’ we may identify the bundle of future null directions SN+(M,g)
with the projective spin bundle PS*(sg):

Definition (1.9)2: Let (M,g) be a spacetime which is spin, and

let Sg be a g—-spin structure on M. The projective null bundle
of (M,g) is defined to be SNT(M,g) X Es*(sg).

The SN+(M,g) description is physically more tangible, whilst
the PS*(sg) description is more useful from a geometric view-
point. A more concrete realization of the projective null bundle
may be obtained by using the maps Cy’ v(sg) given by 1.9.4,

1.9.7 respectively. We regard the bundle 'PS*( sg) -— M (1.9.5)
as the S?-bundle associated to EB(M,g) by the action given in

3]
1.5.20. We then have, for each spin frame 3 € %O(M,g) at x, the

diffeomorphism Kg: $2 — Psg(sg); [z] ¥— [(g,[gj)]; for each
[z] € S2, Let v, = v(sg)[SN:(M,g) (see 1.9.7) and define the
diffeomorphism:
g = c oy tok i §2-—s352 C N'(M,g) 1.9.8
u u x N u - x ’

where u = ng(%) € SO(m,g). TFor each spin frame E at x, we



-102-

thus have a field of null vectors defined on S2; as [z] wvaries
over S2, Qﬁ([é}) sweeps out the entire space of (normalized)
future null directions at x. Choosing a different frame EA at
x, A € SL(2,T), gives rise to z&A = KAZE’ where KA is the
conformal factor associated with the conformal action of SL(2,T)
(or rather SOT(l,B)) on S2 (see equation 1.5.36). An explicit
diffeomorphism of S2 onto Sﬁ may also be constructed without
using spinors by projecting the cut Si into the 3-space orthogonal
to ug and reducing SO¢(1,3) to SO(3) which then acts on S2
(Held et al. [HE "#]), but the construction follows more directly
from gB(M,g), once a g—-spin structure has been chosen.

Before returning to our discussion of the projective null
bundle, we remark on the analogous construction for a Riemannian
4-manifold (M,g), which is that of the Penrose twistor space
(see Atiyah et al. [A30]). This is the six-dimensional space
obtained either as the unit sphere bundle of the bundle of anti-
self-dual 2-forms A—(M,g) or, again, as a projective spin bundle.
The Penrose twistor space admits a natural almost complex structure
which is integrable if and only if (M,g) is half-conformally flat,
and this construction yields a very important link between self-
duality and algebraic geometry. There is also a twistor construc-—
tion for Lorentzian 4-manifolds {(Wells [W 4 ], Woodhouse [W16 ])
but this involves a more indirect correspondence with the manifold
M - rather than a fibration over M ditself, one has a real
5-manifold fibred only over each spacelike hypersurface in M.

The projective null bundle approach is to exploit the fact that
we have a fibration over spacetime itself, and a comparison with

the twistor methods would be a subject for further study.
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The structure of the projective null bundle will now be con-
sidered in more detail. We use the IPS*(sg) description since
we may regard ]PS*(Sg) as the S2%-bundle associated to %%(M,g)
via the action ¢ given by equation 1.5.20. Having given the theory
of the complex line bundles E(s,w) over S2 in section 1.5, we
will now apply this fibrewise to S2 & ]Ps*(sg) — M to obtain
a copy of E(s,w) above each point of spacetime.

We have the following diagram of fibrations:

€ S T4-{0} — §2 SL(2,T)
x * % 7':.
t &<— § (sg) > PS (sg) %JB(M,g)
\ " / 1.9.9,

where {E*Q—> T2-{0} -~ S is the unique (up to equivalence of
prolongations) spin conformal structure of (S%,Can) of 1.5.13,
T < *S*(sg) — ]PS*(sg) is the principal T -fibre bundle of
1.9.5, and SL(2,C) & %(M,g) —> M 1is the principal SL(2,T)-
bundle given by the g-spin structure Sg' The diagram 1.9.9
indicates that the spin conformal structure of S2 is attached
fibrewise to the projective null bundle S$2 % ]PS*(sg)——-——> M
(1.9.6).

Now recall the complex line bundle T < E(s,w) — S2 defined
in section 1.5 for each w € T, 2s € Z. We attach such a line
bundle to each point x € M in a natural way:

Definition (1.9)3: Let (M,g) be a spacetime which is spin, and

let sg be a g-spin structure. Let w & L, 2s € Z and define the
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complex line bundle Cﬁ»E(s,w;sg) *9-]PSK(sg), where

% % *
E(s,w3s ) = S (sg) ¥ C 1is associated to the principal T -

Lo oL

% % A
bundle S (sg) by the representation P w defined in equation

1.5.14.

Consider the diagram associated to diagram 1.9.9:

L “~——— E(s,w) —> s?

1T 1

. * nuny
L C—— E(s,w,sg)————+ PS (s ) SO(M’g>XSL(2,E)V
M 1.9.10,

N,
where SO(M,g) x is the vector bundle associated to the

sL(2,m)"
spin bundle SL(2,T) & gB(M,g) — M wvia some given representation
of SL(2,C) on the vector space V. For example, this associated
vector bundle could be a bundle of spinors obtained from the irre-
ducible representation D°(u,v), which we defined in section 1.7.

vy
Sections of SO(M,g) X V will be physical fields on space-

SL(2,T)
time, and we wish to associate to each such field on M a section
of the complex line bundle E(s,w;sg) over PS*(sg) (for some s,w),
i.e. we wish to 1lift fields on spacetime to sections of line bundles
on the total space of the projective null bundle. The particular
E(s,w;sg) which arises will obviously depend on the representation
under which the spacetime field transforms. Before discussing the
geometry underlying this realization of fields on spacetime as
sections of line bundles over the projective null bundle, we discuss

briefly the relationship between representations of SL(2,T) on

the one hand and spin and conformally weighted functions on the
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two sphere on the other. For more details concerning the represen-
tation theory involved, see Goldberg et al. [G "2 ], Held et al.
[H#+], and Lind et al. [L % 1.

Recall the irreducible representation Do(u,v) (2u,2v 6 Z)

of SL(2,T) discussed at the end of section 1.7. This representa-

©%¥s) 8 (02" 3)

tion is defined on the vector space S(u,v)
) . . .
of all tensors on S(= C%) which are totally symmetric in both
their 2u unprimed slots and in their 2v primed slots. The
dimension of the representation is (2p+1)(2v+l). The existence
of the symplectic form & means that we only need consider co-
variant tensors ¢ (= @A A AL LAY in abstract index
1 2u 11 2v

notation or with respect to the standard basis of €2). Let us

write

® (__Z__) = ¢ ' '
AL A y Al"'AZv
for the image in T of an element 2z of T2 under the tensor &.

Then the representation Do(u,v) is given by:

D° = D°(u,v): SL(2,T) x S(u,v) — S(u,v); (A,0) DZ@,

where  (D30)(z) = o(A'z) 1.9.12,

for all z € €%, ¢ € S(u,v), A € SL(2,L).

We now consider another irreducible representation of SL(2,T),
this time on a space of spin and conformally weighted functions on
S2., let 2s € Z, w €& T, and consider T (E(s,w)) as the space
cm*(mz—fg}, ) of equivariant maps of EZ—{Q} into T, so that

A —-
n € I'(E(s,w)) implies n(Az) = o W(X l)n(g), for all z € C?-{0},

Ja

A€ T . We define a representation A(s,w) of SL(2,T) on I'(E(s,w))
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by:
A = A(s,w): SL(2,T) xI'(E(s,w)) —T (E(s,w));(A,n) AAU,
where (AAH)(E) = n(A?g) 1.9.13,

for all z € C?-{0}, n € T'(E(s,w)), A € SL(2,T).
A is not an irreduciblﬁrepresentation, but an irreducible repre-

sentation A° is obtained by considering an invariant subspace.

We now assume that 2w €6 Z with w 2 ]sl. Let FO(E(S,W))

= span {sYﬁm: |s| € ¢ < w}, where {sYlm: m < [2], 22 |s|} are

the spin s—-spherical harmonics, so that span{Sng: m < [2!} is the

eigenspace of the operator Fz) corresponding to the eigenvalue

(s-2)(s+2+1). Then FO(E(S,W)) is a subspace of T(E(s,w)) with

dimension (w-s+1) (w+s+l) which is invariant under the SL(2,T)-

action defined by A. Using the behaviour of the spin s-spherical

harmonics under ¥, it may be shown that A° = AISL(z,E) XFO(E(s,w))

is an irreducible representation of SL(2,T). We now show that

Do(u,v) and Ao(s,w) are equivalent if 2y = w-s and 2v = wts,

by defining an isomorphism & which intertwines the two actions

0%, 2% of SL(2,D):

We define the linear map 6: S(u,v) — TO(E(S,W)) by:

6(2) = o|C2-{0} 1.9.14,

for all & € S(u,v), where we are regarding any & € S(u,v) as a
map on €2 as in 1.9.11. Suppose A € SL(2,T), & € S(u,v) and
z € T°~{0}, then we have ((A;°0)(2))(2) = (4,(8(2)))(2)

- 8(0)(472) = e(az) = (D50)(2) = (8(D®))(2) = ((8°DY)(#))(2),
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i.e. AA °© g =909 ° DZ so that the linear map 6 dintertwines the
representations DO, A°. By inspection, 6 1is injective, and
hence, since dimmS(u,v) = (2u+1) (2v+1) = (w-s+1) (wt+s+l)

= dimmFD(E(S,w)), ® 1is an isomorphism of vector spaces. We have
demonstrated that the two representations are equivalent, and from
now on we identify Do(u,v) with Ao(v—u, p+v) unless the iden-
tifying map © 1is explicitly required.

Let us now return to spacetime:

Definition (9.1)4: Let (M,g) be a spacetime which is spin and

let sg be a g-spin structure on M. Let 2u, 2v 6§ Z and define
Do(u,v;sg) to be the vector bundle associated to gB(M,g) via
the irreducible representation Do(u,v) of SL(2,C) on

S(u,v) = TP(E(v=u, uhv)).

In general, a field on spacetime will transform under a repre-
sentation of the spin group SL(2,T) and also under an additional
group G (e.g. the structure group of a Yang-Mills theory). Such
a field is a section of (& D(u,v;sg))@ F, where F is some G-
vector bundle over M, bﬁévfor simplicity we focus our attention
on a particular finite dimensional irreducible representation of
SL(2,L), and hence on Do(u,v;sg) for some choice of u,v.

We now define a linear isomorphism of F(Do(u,v;sg)) onto
T(E(v-u, u+v;sg)), so that to each field on spacetime we may
associate a section of the complex line bundle E(v-u, u+v;sg)

over the projective null bundle. We regard a section of

[AVaV)
Do(u,v;sg) as an equivariant map V¥: SO(M,g) — S(u,v)

e

FO(E(v~u, u+v)), and a section of E(v-u, u+v:sg) as an equi-
L * %
variant map H: S (sg) —> L, where, in turn, S (sg) is con-

Ay
sidered as the Ez—fg}—bundle associated to SO(M,g) wvia the
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e

restriction of the representation o of SL(2,T).

Definition (1.9)5: Define the null 1ift L: F(Do(u,v;sg))

—> T(E(v-u, u+v;sg)); ¥ o ‘PL, where ‘PL([(E, z)]) = ‘P(E)(g),
for all [<E"E)] € *S*(sg).

We show that definition (1.9)5 makes sense: Let V¥ € F(Do(u,v;sg)),

z € T2-{0}, 4 € ¥9(M,g). Suppose A 6 SL(2,T), then w(§A>((p*>;iL§)
- (Dz_l<w(ﬁ)))(A?5) v @™t = v (@), so thar ¥F is
well defined. Now let X € E*, then WL([(aXE)]K)= W(t)(&g)

B év—u,m\)()‘—l)‘y(g) (z) = Sv_u’uﬂ(k-l)wL([(ﬁ,_z_)]), so that v is
equivariant and is indeed a section of E(v-u, utv; Sg)'

Since the null 1lift L is, by inspection, linear and bijective,
we have a one-to-one correspondence between fields on spacetime trans-
forming under Do(u,v) on the one hand and spin and conformally
weighted functions on the projective null bundle on the other. The
philosophy which may be adopted is to use L to 1lift up equations
satisfied by physical fields on spacetime to equations on the pro-
jective null bundle. The lifted equations are often simpler (see
Kent et al. [K 2 ] for a discussion of the lifted Maxwell equations
when M = R%), and also more natural, especially when spinors and
null structures are involved, as in Chapter Three below. Hansen et
al, [H % ] have demonstratéd, using the concrete realization Sﬁ
(u € n_l(x)) of the space of future null directions at x € M, how proper—-
ties of spacetime fields evaluated at x may have a simple ex-
pression in terms of the spin and conformally weighted function on
Si obtained by null lifting the spacetime field at z. For example,

the norm of a vector at x turns out to be just the product of the

two critical values of the corresponding function on Si.
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This concludes our present discussion of the projective null
bundle. In this section we have demonstrated how several important
ideas from earlier sections interact and we have set up a geometrical
framework which will form the basis for future work. These further

investigations will appear elsewhere.
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2.0 Introduction — Why Embed?

This chapter concerns itself with various aspects of the theory
of embeddings. The reasons for including such a chapter are three-
fold:

Firstly, embeddings have found many interesting applications
in the theory of general relativity (and in other areas of gravity
theory), both at the finite dimensional and infinite dimensional
levels. Each of the following three sections contains a review
of some of these applications; finite dimensional aspects in
section 2.1, infinite dimensional aspects in section 2.2, and
spinorial aspects in section 2.3.

Secondly, the theory of embeddings makes contact with and
interrelates several parts of this thesis. In particular,
Chapters One, Three, Four and sections 6.2, 6.3. The spinor
ideas of sections 1.7, 1.8 and 1.9 come together with embeddings
in the very useful GHP formalism in general relativity, and we
use this formalism in Chapter Three (see also the conformal
aspects in sections 1.5 and 6.2). In the theory of asymptotically
flat spacetimes (see section 6.3), null infinity is an embedded
submanifold of the compactified spacetime and it is this submani-
fold which provides a framework for the study of gravitational
radiation. Embeddings also interact with the two levels of
everywhere invariance discussed in Chapter Four: On the one hand,
the natural flavour of everywhere invariance is present when we
study spaces of embedding (see section 2.2), and on the other

hand, many of the families of metrics considered in Chapter Four
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are embedded submanifolds of Met(M).

The third reason for discussing embeddings is that we make
explicit use of (null) embeddings in Chapter Three in our treat-
ment of spinor propagation equations and quasi-local momentum
in general relativity. Several parts of this chapter (and of
Chapter One) will be utilized in Chapter Three.

The main purpose of this chapter is to review, and much of
the material is standard. However, we hope that we have clarified
certain interrelationships between the theory of embeddings on
the one hand and aspects of general relativity on the other. We
also remark that several of the suggestions made in section 2.2
are novel and deserve further study.

As usual, we make no attempt to discuss analytical details.
For a thorough treatment of the infinite dimensional manifolds
involved (especially in section 2.2), we refer the reader to
Binz and Fischer [B 142 ] and to Hamilton [H 2 ]. All concepts

are appropriately smooth.

2.1 Embeddings

The object of this section is to give a brief survey of the
basic ideas relating to the theory of embeddings. We first give the
differential topological framework and then introduce related
differential geometrical concepts. Since much of the discussion
in this thesis is conducted within the language of principal
fibre bundles, we express the ideas of the latter part of this
section in this language also. In this section, we also review

certain applications of embeddings to topics in general relativity.

éﬁ’ﬁk (*ﬁ%
NG A

e § 5
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Let M, N be smooth manifolds, possibly infinite dimensional.
Typically, M and N will be each modelled on some nice topoclogical
vector space. Recall that if E 1is a topological vector space, and
F ¢ E a closed subspace of E, then we say that F splits if
there exists a closed subspace G of E such that E=F & G
(topological direct sum). For example, if E is a Hilbert space,
then any closed subspace F splits; we just take G = FL. In
general, however, a closed subspace of even a Banach space need not
possess a closed complement. If E 1is finite dimensional, then
every subspace of E splits.

Definition (2.1)1: A smooth map f: M - N 1is said to be an

immersion if, for all x € M, the map Df(x) 1is injective and
Df(x).TXM splits (as a closed subspace of Tf(x)N)‘ The smooth
map f: M — N is said to be an embedding if f is an immersion
and, in addition, f 1is a homeomorphism of M onto f(M)

(£(M) with the topology inherited from N). If f is an embed-
ding, we write f: M & N.

The importance of embeddings lies in their relation to sub-
manifolds; a subset A of a manifold N is a (closed) submani-
fold of N 1if and only if A is the image of a (closed)
embedding. We may also use an embedding to pullback covariant
tensor fields in the usual way:~ Suppose f: M <= N, and

w e T T'N). Then fuwer(8 T'M) is defined by:
(f“w)(x)(vl,...,vk) = w(EGE)@EE) v ,..., DE(x).vy) 2.1.1,

for all wv € TxM and x € M. An important case is when

1000V

w 1s a (weak) Riemannian or symplectic structure on N.

For more details concerning the above definitions, see Lang [L 2 ].
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For the rest of this section, we assume that all embeddings are
between finite dimensional manifolds. Note that the infinite dimen-
sional case arises in Chapter Four where we consider embeddings into
the space of metrics.

The manifolds we use in geometry and in physics are usually
regarded as abstract objects, and not as being embedded in a
manifold of higher dimension. ©Nevertheless, it is occasionally
useful to consider such embeddings, since the degrees of freedom
inherent in the additional dimensions may be of help in gaining
extra geometrical insight. In general relativity, this insight
may lead to new links between geometry and physics. For this
reason, and others, we present a brief survey of this concretization
of manifolds:

From a "bare" differential topological viewpoint, the most

important result is the Whitney embedding theorem (see Hirsch [H45]1

For n » 1, given any(paracompact) Hausdorff) n-manifold M,

2n

there exists an embedding f: M &~ R (and an immersion

2n- .
h: M 9> R" l, if n 2 2). The Whitney theorem demonstrates
that we may regard any finite dimensional (paracompact, Hausdorff)
manifold as a submanifold of Euclidean space of twice the dimension.
Of course, in spacific instances, we may be able to find an embed-
. . m
ding in R, where m < 2n.
We now consider the geometrical aspects of embedding, From
now on in this section, the term Riemannian will refer to a metric

of any (non-degenerate) signature.

Definition (2.1)2: Given Riemannian manifolds (M,g), (N,k), an

embedding f: M <> N is said to be isometric if £k = g.

We are often given f and (N,k) and we define the metric g
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on M by g-= f*k, so that f 1is an isometric embedding. If k
is definite, then g 1is necessarily definite, but if k is in-
definite (e.g. Lorentzian), then there are various possibilities
for g; g could be indefinite, degenerate (null) or definite,
depending on f.

Suppose now we are given (M,g) and wish to iscmetrically
embed (M,g) 1in some Riemannian manifold (N,k). We may ask

what obstructions, if any, prevent the existence of such an em-

+
bedding. (N,k) 1is often taken to be CRP q’ can(p,q)), where
can(p,q) has components diag(l,..., 1, -1,...,-1) (p positive
eigenvalues and q mnegative eigenvalues; signature = p - q)

with respect to the standard coordinates on Rp+q, but other
embedding spaces (N,k) may also be considered; for example,
Riemannian manifolds which are of constant curvature, conformally
flat or Ricci flat. We restrict our attention to the Euclidean

(RP+Q

case where the obstruction to embedding in , can(p,a))

depends only on p,q.

Three important (overlapping) theorems on isometric embedding
in Euclidean space are the following:

First, we have the celebrated theorem of Nash:

Theorem (2.1)3 (Nash [N g 1): Let M be a smooth n-manifold and

g a Ck(k > 3) positive definite metric (i.e. signature = n).
Then there exists a Ck isometric embedding of (M,g) in
(RP, can(p,0)), where p = in(3n+ll) (M compact) or
P = %n(Bn2 + 1l4n + 11) (M non-compact).
A generalization, and improvement, of Nash's theorem is the

following:

Theorem (2.1)4 (Clarke [C101]): Let M be a smooth n-manifold
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k
and g a C (k 2 3) metric of signature s. Then there exists a

C isometric embedding of (M,g) in (Rp+q,can(p,q)), where
p=2mn+s+2) and q = in(3n + 11) (M compact),
g = %(2n3 + 15n2 + 37n + 6) (M non-compact) .

Note that for non-compact definite metrics, Clarke's result
improves on that of Nash (Nash's result may obviously be rewritten
for negative definite metrics). If we take (M,g) to be a space-
time, so that n = 4 and s = -2, then we see that Clarke's result
implies that (M,g) may be isometrically embedded in (RAS,
can(2,46)) (M compact) or (ng, can(2,87)) (M non-compact).

Only two timelike directions are necessary for embedding any space-
time and this result is the best possible; Clarke [C410 ] demon-
strates that there exist spacetimes that cannot be isometrically
embedded in (R;+q, can(l,q)). However, if the spacetime is
globally hyperbolic, then it can be isometrically embedded in
(R;+q, can(l,q)) (with gq as above).

The dimensions 48,89 given above are not the best possible
for spacetimes if we require the metric to be smooth, as the
following result of Greene shows:

Theorem (2.1)5 (Greene [G 1% ]): Let M be a smooth n-manifold

and g a smooth metric (of any (non-degenerate) signature). Then
there exists a smooth isometric embedding of (M,g) in
(R?p, can(p,p)), where p = Zn(n + 5) (M compact) or
p=2(2n + 1)(n + 3) (M non-compact).
For example, any smooth spacetime may be isometrically
embedded in CR36, can(18,18)) (compact case) or
252

(R , can(126,126)). The latter result is not as good as that

of Clarke and, indeed, the Greene theorem only gives an improvement
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in the non-compact smooth case for n z 20.

The theorems quoted above enable us to define certain arithmetic
invariants associated with a Riemannian manifold. One such in-
variant is the embedding class. Let Met(M) denote the space of
smooth metrics of signature s (|s| s n) on the smooth n-manifold
M (analogous definitions for the Ck and the analytic cases may
also be given). For g € Met(M), theorem (2.1)4 gives restrictions
on the possible values of the signature of a Euclidean space in
which (M,g) may be isometrically embedded. For each r € Z,
prescribed as the signature of a Euclidean embedding space for
(M,g) within the limits of theorem (2.1)4, we define the embedding
class v(g,r) by v(g,r) = min {u € Z: there exists a smooth
isometric embedding of (M,g) in (Rﬁ+u, can(Z(a + u + 1),

Z(n +u-1)))}. In other words, for given (g,r), the embedding
class v(g,r) 1is the smallest integer u such that (M,g) may
be regarded as a Riemannian submanifold of Euclidean space of
dimension (dim M + u) and signature r. Theorem (2.1)4 gives
an upper bound for v(g,r). More generally embedding classes may
be defined if we consider other classes of embedding spaces: for
example, we could ask for the smallest dimension of a Ricci flat
Riemannian manifold of given signature in which (M,g) may be
smoothly isometrically embedded.

The embedding class is an invariant which may be used in a
classification programme for Riemannian manifolds of a particular
type; for example, solutions of the Einstein equations in gemeral

relativity. Goenner [G 11] gives examples and applications to

general relativity of the local embedding class -~ this is defined

as above except that only local isometric embeddings are considered




-117-

(a local isometric embedding need only be defined on an open set
of the domain). For example, necessary conditions for spacetimes
to be of a given local embedding class may be written down as a
relation involving the curvature tensor or as requirement that the
spacetime admit a certain class of geodesic congruences. In the
latter case, the congruences may be interpreted as the world lines
of particular kinds of matter or radiation, thus giving a more
direct link between embeddings and physics.

Another important invariant of any Riemannian manifold is its
isometry group. In particular, the isometry group is an important
ingredient in the classification programme in general relativity
(Cf. section 4.5). The interaction between isometry groups on
the one hand and embedding classes on the other is therefore
important to understand. It has been known for a long time that
the isometry group does not determine the embedding class (see
Goenner for examples), but amongst the exact solutions of Einstein's
equations known, a large isometry group is accompanied by a low
(local) embedding class. On the other hand, there exist space-
times of class one with trivial isometry group. In fact, it is
the orbit structure of the isometry group action, not just the
isomorphism class of the isometry group, which interacts with the
embedding class.

As well as considering the possibility of embedding a space-
time into a higher dimensional Riemannian manifold, the embedded

submanifolds of a spacetime play an important rdle in general rela-

tivity. One dimensional submanifolds are curves in spacetime and
particularly important are null and timelike curves which are possible

world lines of radiation and matter. Among two dimensional submanifolds,
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spacelike ones have probably received the most attention in general
relativity. For example, an important concept in singularity
theory is that of a closed trapped surface which is a compact
spacelike two dimensional submanifold with a certain extrinsic
curvature condition (see Hawking and Ellis [H § ]). Another area
in which two dimensional submanifolds arise is in the study of
quasi-local kinematical quantities (see Chapter Three); to
obtain, say, the gravitational energy intercepted by some region
in a spacelike hypersurface, we integrate over the compact space-
like surface which is the boundary of the hypersurface region.
Indeed, we may regard the energy calculated in this way as being
surrounded or "linked" by the 2-surface. Three dimensional sub-
manifolds considered in general relativity are null (see Chapter
Three), spacelike (as Cauchy surfaces and in the 3-+1 initial
value problem - see Hawking and Fllis [H & 1) or timelike (in
cosmology) .

It is fair to say that in four dimensional geometry, in
particular in general relativity, all possible codimensions for
submanifolds play an important réle; codimension =zero corres—
ponds to spacetime, codimension one to hypersurfaces, codimension
two to (2-) surfaces (on which curvature has perhaps its most
essential manifestation), codimension three to curves, and co-
dimension four to discrete collections of events.

There are also some connections between submanifolds of
gecmetric significance on the one hand, and embedding class on the
other. For example, any product spacetime has (local) embedding
class less than six, and any spacetime with a non-null totally

geodesic hypersurface has embedding class not greater than five.
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We refer the reader to Goenner [G 4] for more examples of these
connections.
We now move away from embedding class and mention alternative
possible reasons for studying embeddings in general relativity:
The most important global aspects of general relativity are
those related to causal structure, and causal properties of a
spacetime may be related to the possibility of certain kinds
of embedding. For example, if a spacetime (M,g) admits an
isometric embedding in (IJ& can(l,n-1)), then since the em-
bedding space contains no closed non-spacelike curves, neither
does (M,g). i.e. such a spacetime is necessarily causal. More~
over, it can be shown (see Clarke [C 10 ]) that a spacetime

embeddible in (R", can(l,n-1)) is actually stably causal (i.e.

there exists a Co-neighbourhood of g in Met(M) whose elements
are all causal, so that the spacetime metric g remains causal
under small continuous perturbations). Conversely, any stably
causal spacetime is conformeomorphic (see section 6.2) to a
spacetime which does admit an isometric embedding in (Rp,
can(l,n~1)). We have already stated above that any globally
hyperbolic spacetime can be isometrically embedded in some
CR?, can(l,n-1)), and since a spacetime is globally hyperbolic
if and only if it admits a Cauchy surface (see [H% ], pp. 211-212),
we see another connection between submanifolds and embeddibility.
Another area in which an investigation of embeddings may shed
light on global aspects of spacetimes is in the definition of
boundary points (or singularities). There exist various possible
ways of attaching a boundary to a spacetime (see Hawking and Ellis

[H & 1), but another means of doing this is by minimally embedding
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the maximal extension (still incomplete) of the spacetime in the
Euclidean space of dimension equal to the embedding class (for
some signature). The boundary would be obtained by taking the
closure of M regarded as a submanifold of Euclidean space.
Other embedding spaces could also be used. We refer the reader
to Goenner [G 11 ] for more discussion on this and other possible
applications of embeddings to general relativity. Note that, as
Goenner emphasizes, it is important to realize that a mere cata-
loguing of spacetimes according to their embedding properties is
not sufficient; in order that the embedding ideas mentioned above
be useful, it is necessary to investigate further those concepts
that enable physical questions to be answered.

We now give a description of the differential geometric
aspects of embeddings. For a thorough account, see Kobayashi
and Nomizu [K % ]. For ease of exposition, we deal only with
the positive definite case. Analogous results hold for spacelike
or timelike embeddings into a Lorentzian manifold. We deal with
null embeddings in spacetime in Chapter Three.

Let us first consider an embedding f: M <= N. We have the
tangent bundle e TN — N, and hence the pullback bundle (see

oo

definition (6.1)9) fnTN: fﬂ(TN) -+ M. The tangent bundle

T ™ —+ M may be regarded as a subbundle of fn(TN) via the

o
vector bundle monomorphism, Vv Pe‘(TM(v), Df(TM(V)).v)

€ (f*TN)—I(TM(V)) C f*(TN), for all v € TM. We may therefore
take the quotient of f*(TN) by (the image of) TM. This is a
vector bundle over M whose fibre over x € M 1is (naturally iso-

morphic to) Tf(x)N/Df(x).TXM (since (f*TN)—l(X) = {x} x Tf(x)N)'

Let us denote this vector bundle by Vet N(f) — M. Obviously,
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rank (vf) = dim N -~ dim M.

Definition (2.1)6: The vector bundle Vet N(f) — M 1is called

the normal bundle of f.

A canonical example is the following; let d: diag(M) 5 MxM
be the inclusion of the diagonal diag(M) = {(x,x): x 6 M}. Then

the normal bundle V4 is isomorphic to the tangent bundle T

of M.

We now assume that M,N are equipped with metrics g, k res-

%
pectively, and that the embedding f is isometric, i.e. g = £ k.

We may now realize the quotient ve as a subbundle of thN:—
a1
For x € M, let TXM denote the k-orthogonal complement of
L
LI M1 s b = . .
DE (x) TX in Tf(x)N' so that Tf(x)N (Df (%) TXM) B TXM Then
the normal bundle Vet N(f) — M is isomorphic to the vector sub-

bundle of f"TN obtained by taking as fibre over x € M the sub-

L
space TXM. Although this geometric realization of the normal

%
bundle as a subbundle of f 71 depends on k € Met(N), we use the

N

same notation Vel N(f) — M to denote this isomorph, so that

- A *
vfl(x) = TXM and £ (IN) = TM & N(f) (Here, we use the mono-

% —_
Nf (see (6.1)9) to identify (f*rN) l(x)

= {x} x Tf(X)N with Tf(X)N

* 4
bundle of f (TN)). TXM is called the normal space to M at x.

morphism T

and we are regarding TM as a sub-

Let dim M =m and dim N = n. We have the principal bundles

M "N
0(m) < O0(M,g) ——~+*M, O0(n) — O(N,k) —— N and

f°r

0(n) &> £ O(N,k) —> M. Let O(f) = {(x,u) € £ O(N,k):

u = {el,...,em, € 410t en} with eyseerse € Df(x).TXM,
O0(m) 0

L
R € TXM}. Then, regarding O(m) = [O 1

L
0(p) = [ghl 8(p)] < 0(@m) (p=n-m), the group O(m) x 0(p)

< 0(n),

em+l

acts freely on the right on O0(f) in an obvious manner. We then have
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the principal O0(m) x O(p)-bundle, wf: O(f) — M.

Definition (2.1)7: The principal 0(m) x O(p)-bundle Te is called

the bundle of f-adapted frames.

Obviously, O0(f) is a principal subbundle of f*O(N,k) (via
inclusion of the total space and the natural inclusion of 0O(m) x 0(p)
as a subgroup of O0(n)). The natural epimorphism O(m) x 0(p) — O(m)
induces a principal bundle epimorphism, O(f) — O(M,g) given by

-1 -1
(x,{el,...,en}) — {Df (%) IEREED Df (x) em}, for all

(x,u)
(x,u) € 0(f). Therefore, O(M,g) 1is naturally isomorphic to

Similarly, there exists a natural isomorphism of O(N(f))

0 o(py -

onto O(f)/o(m>, where O(N(f)) C GL(N(f)) (see definition (6.1)24)

is the bundle of k-orthonormal frames of the vector bundle vf:

L
N(f) — M. Let w_. : O(N(f)) —™ M denote proijection.

£
WL
Definition (2.1)8: The bundle O0(p) S O(N(f)) —= M is called

the normal frame bundle of f.

Clearly, the vector bundle associated to O(N(f)) wvia the
standard action of O(p) on RP is just the normal bundle Ve of £.

The bundles discussed above may be summarized in the following

diagram:
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0(m)x0(p) > 0 (m+ p) €—————30(mtP)
z(///’ d n 4
0(p) 0(m)
C\\\\\u v . |12 (n;f A4
0(p) 0(m)
™ T “27 £y Ty
O(N(EN) 0(M,g)
A
\f. 4
v A\ 4 N\
Mo € 5 M 0 —Lf 5 W
2.1.2

The group O(m) xO(p) acts on O(mtp) on the left in the

following way: ((b,c),a) > (8 g]a, for all (b,c) € O(m) x0(p).,
{

a € O(mtp). We can therefore form the associated bundle

O(f) x O(mt+p) over M. The following will be used below:

0(m)x0(p)

O(mtp) 1is naturally isomorphic

Proposition (2.1)9: 0(f) Xo(m)xo(p)
to £ O(N,k).

Proof: Define wyu: O(f) x O(m+p) — fAO(N,k) by

0(m) %0 (p)
p([((x,u),a)]) = (x,ua), for all [((x,u),a)] € O(f)xo(m)xo(p)o(m+p)-

We first show that 1 is well defined. Suppose [((x,u),a)]

= [((x',u"),a"')]. Then there exists (b,c) € O(m) x 0(p) such that
1 1

(x,u) (b,ec) = (x',u’) and (b,c) a =a'. This implies that x' = x,
v =
u' = {elb,..., emb, € L 1Cserns em+pc} (where {el,..., em+p} u)
R
and a' = [ _l]a. Hence, (x',u'a') = (x,ua), so that u
0 c
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is well defined.
Given (x,u) € de(N,k), choose any u' € W;l(x) C (f“wN)—l(x),

1

and let a € O(mtp) such that wu'a = u. Then u([({x,u"),a)])
= (x,u), so that yu 1is surjective.

Suppose u([((x,u),a)]) = u([((x',u"),a"')]). Then x = x' and
ua = u'a'. Let b = a'a~l € 0(m) x 0(p), so that u = u'b and
a=1bta'. Hence, [((x,u),a)] = [((x,u)b b Ta')] = [((x',u'),a")],
so that u 1is injective.

By inspection, u 1is fibre preserving, so that u is a
bundle isomorphism E

We now consider differential forms on the various principal
bundles introduced above. First we need to consider the principal
bundle epimorphisms a: O(f) — O0(M,g); (x,u)

1

— (D) Te.,..., DEGx) T e}, B: O(F) — O(N(E)):

700"

= = .o
(x,u) {e e }, for all (x,u) = (X,{el,...,em, e 1 ,e

wtl’ " Cmbp

— P
€ 0(f), referred to above. We regard R" = ﬂ£n+p =R" 4 R s
where R" is the subspace of R" spanned by {el,..., em}, and
P .
R is the subspace spanned by {€m+l""’ €m+p}' Here {sl,..., en}
is the natural basis of R". Then, regarded as subgroups of O@+p),

the groups O(m), O(p) induce the identity transformation on the
subspaces RP, R" respectively. Let 1: O0(f) < fAO(N,k) denote
inclusion.

It is straightforward to see that:

m
Df (x) Ka&’u) = Ku‘R. 2.1.3,

- p
5 (x,u) KulRA 2.1.4,

. ﬂxf
for all (x,u) € O(f) &> £ ON,k) —>— O(N,k) (see 6.1.1. for

the definition of «).

m+p
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m+p)

€ Ql(O(N,k), R denote the

Let 6, € al(oM,g), R™, &

M N

restriction to the orthonormal frame bundles of the canonical 1-forms
of M,N respectively (see definition (6.1)26).

sk * *
Proposition (2.1)10:  ((myf)e1) 8y = a 6, (€ Qloe),’™).

Proof: Let (x,u) € O(f). Then (((ﬁgf)ﬂ)*@N)(x,u)

- eN((n;f><x,u>>oD((n§f) o 1) Gw) = 8 (W) 6 D(ﬂ;f)(x,u)

- K;l ° Dy (u) o D(?T;f)(x,u) - K;l o D(my ® (TT;f)) (x,u)
=t n(Ee (F ) (rou) = ke DE(x) o DCETT) (x,u)

u N ’ u ° X N/ V¥t
= (K;l’ Df (x) . T M) ° DE(x) ° D(my o @) (x,u)

= (Kulﬂyn)—l° Df(x)<>DWM(a(x,u))o Da(x,u)

- K;%x,u)o Dmy(a(x,u)) °Da(x,u) = GM(Q(X,u))° Da (%, 1)
= (Q*SM)(X,u). Hence, ((W;f)o 1)*9N = “*GM O

Let wg z LC(g) € Conn(0(M,g)), W z LC(k) € Conn{(O(M,k))
denote the Levi-Civita connection l-forms of the metrics g,k res-
* *
pectively (see (6.1.4). The map ﬂNf: f O(N,k) — O(N,k)

(together with id is a homomorphism of principal bundles, and

0(m+p))

(n;f)*wk is the connection in f*O(N,k) induced from wy (see
definition (6.1)22). To obtain a connection in O(f), we must
restrict to a particular subspace of the Lie algebra of O(mtp):-

Let L(m,p) denote the orthogonal complement to LO(m) & LO(p)
in LO(mt+p) with respect to the Cartan-Killing form (given by

(&,n) + - trace(ad(g) ° ad(n)), for all £&,n € LO(m+p)). Then

0 A
L(m,p) = { . © A€ Mmp)l. TLet w. €0l (O(f), L(O(m)x O(p)))
L—A 0
£ *
denote the L1O(m) & LO(p)-component of ((WNf)° 1) W with respect
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to the decomposition LO(mt+p) = LO(m) & LO(p) & L(m,p).

Proposition (2.1)11: We € Conn(0(f)).

Proof: Note that Ad|O(m) x O(p) 1leaves L(m,p) invariant, so
by proposition 6.4 on p. 83 of [K # ], the LO(m) & LO(p)-

component of ((ﬂNf) o 1) wk is a connection in

v
o(m) x 0(p) & O(f) —= M. i.e. w, € Conn(O(f)) O

f
We have the principal bundle epimorphism a: O(f) — O(M,g)
with corresponding group epimorphism pry = a: O(m) x 0(p) — O(m).
Hence, Da'(1): LO(m) ® LO(p) —> LO(m) is projection onto the
L.O(m) factor. The image of We € Conn(0(£f)) under o (see

definition (6.1)21) is a connection w in O(M,g) such that

a*w = Da'' (1) Cwe = (wf)LO(m)'

Proposition (2.1)12: The image w of We under a: O(f) — O0(M,g)

is wg, the Levi-Civita connection of g.
Proof: The connection w is in O(M,g). Hence, if we show that
w has zero torsion, then w must be the Levi-Civita connection of

g (by the fundamental theorem of Riemannian geometry - see section

6.1).
The torsion form 0¥ of w is given by the Cartan structure

. w . . . . . .
equation, 0O = deM + w(eM). Since o 1is surijective, it suffices

* W w

% % % % %
to show that o © = 0. We have o 0O = d(a GM) + (a w)(a GM)

= d(Y“eN) + (w (YKGN), where we have used proposition (2.1)10,

£)10(m)
putting vy = (wgf)o 1.
Now note that O = deN + wk(eN), since w, has zero torsion.
Hence, 0 =d(y &) + (v w)(y 6 = dly 8 + (v wk)LO(m)Q)LO(p)(Y &)
* * * * 3 *
+ (v wk)L(m,p)(v 6y = dly o) T usly oy * & wk)L(m’p)(Y GN),

which takes its values in R" = R" & RP. We now project this

equation onto the R™ factor to obtain d(yﬁeN) + (wf)Lo(m)(YﬂeN)= 0,
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where we have used the fact that YKGN takes its values in R
(see proposition (2.1)10). Hence ae¥ = 0, and so 0% = O.
Therefore « 1is the Levi Civita connection of g [

We also have the epimorphism B: O(f) — O(N(£)) (przz
L
O(m) x O(p) — O(p)) and we denote by w the image of W under
| A

8. Hence, W € Conn(O{(N(f))) satisfies 8 we = (wf)LO(p)'

£

L
The connection w £ gives rise to parallel transport (definition

(6.1)15) of TiM onto T;M along any curve ¢ in M from x to y.
To summarize the above exposition, the connection Wy in

O(N,k) gives rise to a connection We in 0(f), which in turn

gives rise to a connection w in O(M,g) (which coincides with wg)

]

and to a connection w in O(N(f)). We may unify the discussion

£
by considering the principal bundle isomorphism o x R:

o(f) — O(M,g)><M O(N(k)) (with group isomorphism just the identity
of O0(m) x0(p). Then, by proposition 6.3 on p. 82 of [K#F ], we
have the following:

% x L
Proposition (2.1)13: we = @ wg + R we

In the above, we have described the wvarious connections
associated with an embedding in terms of principal bundles. For
calculations, we often utilize the formalism of covariant deriva-
tives in vector bundles (see definition (6.1)17 and equations
6.1.7, 6.1.8. The covariant derivative formulae may be obtained
by tramnslating the results involving connections in principal
bundles, but here we just summarize the results (see Klingenberg
[K & D:

Let f: M ©> N be an embedding as usual. and let k € Met(N)
and g = f*k € Met(M). The metric k in TN may be pulled back

ol

* *
to f (TN) using the vector bundle homomorphism TNf. We then
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obtain metrics in the vector subbundles Df.TM, N(f) of f-(TN)

by restricting (T;f)*k. The metric in Df.TM dis just the push
forward of the metric g din TM, and we denote the metric in the
normal bundle N(f) by kl. We then have the orthogonal Whitney
sum of Riemannian vector bundles f*(TN) = DEf.TM & N(f) and cor-
responding direct sum of sections; Vectf(M) < F(f*(TN))
= Df.Vect(M) & T'(N(f)). For X € Vect(M), we define
Df.X € Df.Vect (M) C Vect (N) by (D£.X)(x) = DE(x).X(x) € Te ()
for all x € M.

Let the covariant derivative operators of k, g be Vk, v&
respectively. Hence, for example, V§ = V;ﬁg (X & Vect(M)) acts
on all spaces of tensor fields of M according to equation 6.1.9.
We also denote by Vk the covariant derivative induced in f*(TN)
by T;f from Vk (see definition (6.1)23). Then, for each
X € Vect(M) and V 6 Vectf(N) 2 F(f*(TN)), the covariant derivative
of V along £ in the direction X is denoted V;V e Vectf(N).
In particular, we have V; Df.Y € Vectf(N), for each X,Y € Vect(M).

The first formula concerning covariant derivatives describes

the manner in which Df, vé and Vk interact:

g _ k
Df.VXY = h.VX Df.Y 2.1.5,

for all X,Y € Vect(M). Here, h € I'(f (T N) & Df.TM)

P((f“(TN))A ® TM) 1is the orthogonal projection onto DEf.TM, so

e

. . N
that h(x) is a linear map of Tf(x)N onto Df(x).TXM TXM, for
each x € M.

Let us now consider the decomposition of the covariant derivative
Vk : Vectf(N) —ﬁ-Vectf(N) (X € Vect(M)) with respect to the ortho-

X
gonal splitting, Vectf(M) = Df.Vect(M) & I (N(f)). First, we
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consider the action on a tangential vector field. We have

v§ DE.Y = Df.v§ v + kL x,v) 2.1.6,

for all Y € Vect(M) (di.e. for all Df.Y € Df.Vect(M)). Here,

Kf € F((SZTKM) 8 N(f)) is called the second fundamental form of f.

Equation 2.1.6 is known as the Gauss formula.

For normal vector fields, we have the Weingarten formula:

k 1
VN = - DE.AX + VN 2.1.7,

for all N € T(N(f)) (= {normal vector fields}). Here, ANX &

Vect(M) defines an element of F(N(f)“ 8 T'M 8 TM), and satisfies;
+ £
g(AX,Y) = k (N,K (X,1)) 2.1.8,

for all X,Y € Vect(M), N € T'(N(f)). An important consequence of

2.1.8 is that AN is (pointwise) self-adjoint with respect to g,

i.e.
g(AK,Y) = g(X,AY) 2.1.9,
for all X,Y € Vect(M), N 6 T(N(f)).
i L
The normal compontnt of 2.1.7 is VXN, where V is a
L
covariant derivative in the vector bundle N(f). 1In fact V is
R
just the covariant derivative induced by the comnection V. € Conn
R
(O(N(£))), and is a metric connection, since ¥V k = Q.

We now relate the second fundamental form Kf back to

differential forms in principal bundles. Let us define

f

5 e re2r0(£))80(f) x RP)) by:

). (vaw) = ((w () ) . (8 (w) ) b 2.1.10,
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for all v, wé& T 0(f), (x,u) € O(f). Here the subscript R’

(x,u)
denotes the iRp—component in R"” & Hén and we regard LO(m+p) as

+
a subalgebra of gl(Eﬁlp). It may be shown (see proposition 3.5 on

p. 21 of [K & ]) that:
£ F
K (x)(Dﬂf(x,u).v, Dwf(x,u).w) = Ku(K (x,u).(v,w)) 2.1.11,

for all v,w € T 0(f), (x,u) € 0(f), and this is the equation

(x,u)
relating the second fundamental form to differential forms in the
principal O0(m) x O(p)-bundle et 0(f) — M.

To conclude this section we make several remarks which will be
useful when we.apply the theory of embeddings below. Firstly, the
above discussion goes through in the case when M and N are
oriented (with the embedding f respecting these orientations).

In this case we replace O0(M,g), O(N,k) by the oriented frame
bundles SO(M,g), SO(N,k) and we obtain the principal SO(m) x SO(p)-

bundle w_.: SO(f) — M of f-adapted oriented frames. We may also

£
consider the pullback by £f of a k-spin structure (gb(N,k),nk)
if N is spin (Cf. section 2.3).

The codimension one embeddings are especially interesting since
embedded hypersurfaces often arise in geometry and in general rela-
tivity. Suppose f: (M,g) ¢ (N,k) 1is an isometric embedding, where
dim N =m+ 1 =dim M + 1. For simplicity, we assume that M,N
are oriented with f-compatible orientations. Then there exists a unique
normal vector field N € TI'(N(f)) specified by (i) k%(N,N) = 1; and
(ii) for each frame u = {el,..., em} € S0(M,g), the frame
{DE(m, () ep,nnvs DEGR (W) e, NGO € m (£(m, (1)) € SOMN,K).

Definition (2.1)14: The normal vector field N specified by

properties (i), (ii) is called the unit normal of the (orientation
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compatible) embedding f£.

For a spacelike embedding of an oriented 3-manifold into a
spacetime oriented Lorentzian 4-manifold, the requirement that
the embedding be compatible with the orientations means that

the (timelike) unit normal N is necessarily future directed.

£ = (T& f)hk denote the metric in fK(TN) induced

Let k
from the metriec k in TN. Then, since ka = 0, we have

Vk k., = 0 (where, in the second equality, Vk denotes the

f

*
covariant derivative in f (TN)). Let N be the unit normal

1
k (N,N) = 1. Hence, for each

of £, so that kf(N,N)
X 8 Vect(M), kf(ViN,N) = 0. We now use the Weingarten formula
2.1.7 to obtain kL(V; N,N) = 0. But since V;N 6 T(N(f)) is
given by V¢N= hN for some h €6 C(M), we must have that

L

k
VXN = 0, and hence VXN = - Df.ANX, for all X € Vect(M).

Definition (2.1)15: Let f: (M,g) < (N,k) be a codimension one

orientation compatible isometric embedding of oriented Riemannian

manifolds with unit normal N. The extrinsic curvature of f 1is

f
N

4
k (Kf(X,Y),N), for all X,Y € Vect(M).

*
r(e21'M) defined by Ky (X,Y)

the tensor field K. € SZ(M)

Using the Gauss formula (2.1.6), we obtain K§(X,Y)

kf(N,V§ Df.Y), and hence

£ k
Kg(X,¥) = = ko (V.N, DE.Y) 2.1.11,

for all X,Y € Vect(M). If the embedding f dis an inclusion, then

k. b

we may write 2.1.11 in a more convenient manner as KN = - VN

(where Nb = k(N,*)) = -2 LNk.
We return to hypersurfaces (codimension one embeddings) in

Chapter Three. In particular, in section 3.3, we consider a one

parameter family of spacelike codimension one embeddings associated
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with a given spacelike codimension two embedding. The "null limit"
of this family is used in the Ludvigsen-Vickers definition of
quasi~local momentum in general relativity.

In this section, we have discussed the geometric properties and
applications to general relativity of particular embeddings f of
one manifold into another. In the next section we consider the struc-

ture of the space of all such embeddings.

2.2 The Manifold of Embeddings

Having considered the various geometric notions associated with
a particular embedding f: M&*> N in section 2.1, we now consider
the space of all such embeddings. This space admits a natural mani-
fold structure and is related to other infinite dimensional mani-
folds arising from M and N. A consideration of the manifold of
embeddings leads to a natural framework for bringing together
important geometric ideas and it also provides a useful tool in
applications to physics. We review some.important uses of the
manifold of embeddings in general relativity at the end of this
section.

Many of the constructions considered in this section are
standard (see, for example, Hamilton [H 2 ], but, inspired by the
"everywhere invariance" outlook of Chapter Four (see, in particular,
section 4.1), we also describe some additional natural features of
the manifold of embeddings. Possible uses for such constructions
in general relativity are also suggested.

As usual, we assume that all structures are appropriately

smooth. An especially useful category in which to work is the
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Nash-Moser category of '"tame' Fréchet manifolds and maps, for then
we have the Nash-Moser inverse function theorem at our disposal.
For all analytical details concerning the differentiable structure
of the concepts considered in this section, we refer the reader to
Binz and Fischer [B 12] and to Hamilton [H 2 ].

In this section, M,N denote connected smooth manifolds with-
out boundary and with dim M ¢ dim N < «». For certain constructions,
we also require M and N to be oriented. For technical reasons,
we assume that M 1is compact.

Let C(M,N) denote the manifold of smooth maps from M into
N. The tangent space to C{M,N) at the point f 1is given by
T,COLN) = {X 6 COMTN): 1,°K = £} = Vect (N) = [(£ TN).

The diffeomorphism group Diff(M) is open in C(M,M) (with

respect to the compact-open topology) and is thus a manifold with

tangent bundle TDiff (M) {X € c(M,T™) : TMOX € Diff(M)} and

tangent space T¢Diff(M)

group multiplication (composition) and inversion are both smooth

Vect¢(M), for each ¢ € Diff(M). The

and Diff(M) may be regarded as a Lie group (see section 4.4 for
more details regarding Diff(M)).

Similarly, if Emb(M,N) denotes the space of all embeddings
of M into N, then Emb(M,N) is an open submanifold of C(M,N).
The tangent bundle is given by TEmb(M,N) = {X € C(M,TN):
TN°X € Emb(M,N)} and the tangent space is TfEmb(M,N) = Vectf(N),
for each f € Emb(M,N).

We have the composition map comp: Emb(M,N) x Diff (M)

—> Emb(M,N) given by

comp(f, ¢) = £ o ¢ 2.2.1,
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for all (f,¢) € Emb(M,N) x Diff(M). This map is smooth with

derivative given by:
(Dcomp (£,9).(X,Y)) (x) = DE(¢(x)).Y(x) + X(¢(x)) 2.2.2,

for all x € M, (X,Y) € T y (Emb (M,N) x DAff (M))

(f,9
2 Veet (M) & Vect (M) and (f,¢) € Emb(M,N) x Dif£ (i) (see Irwin

(15 D.
Equation 2.2.1 defines a right action of Diff(M) on Emb(M,N)
and we write R, = comp(°*,9), for all ¢ € Diff(M). We denote the

¢

other partial map by Wet

Diff(M) — Emb(M,N), for each f € Emb(M,N).
Since each embedding is injective, the right action of Diff(M) on
Emb(M,N) dis free, and, for each f € Emb(M,N), we is a diffeo-
morphism of Diff(M) onto the orbit of f. Since f,f' € Emb(M,N)
are Diff (M)~ equivalent if and only if £f(M) = f'(M), we see that
the orbit of f consists precisely of all diffeomorphisms of M
onto f(M) (a closed submanifold of N). 1In order to discuss the
structure of the orbit space, we first consider the space of all
submanifolds of N:

Let Sub(N) denote the space of all (compact) smooth sub-
manifolds of N. Then Sub(N) is a manifold and, for each
S € Sub(N), TéSub(N) = F(N(IS)), where 18: § &> N is in-

clusion, and Vg = Voot N(\S) —* 8§ dis the normal bundle of S
S

(definition (2.1)6). ©Note that all the submanifolds S in a
given connected component of Sub(N) are necessarily diffeo-
morphic, but, on the other hand, diffeomorphic submanifolds

could lie in different components. 1In general, there may be many

components.

Now let SubM(N) = {S € Sub(N): S 1is diffeomorphic to M}.
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SubM(N) is an open submanifold of Sub(N), so that TSSubM(N)

= F(N(IS)), for all S € SubM(N). We define a projection

Y EYM by:
v: Emb(M,N) — SubM(N); f b £(M) 2.2.3,

for all f € Emb(M,N). We then have the principal Diff (M)-~bundle

Diff (M) < Emb(M,N) —-r Sub,, (V) 2.2.4,

where Diff(M) acts on Emb(M,N) by equation 2.2.1.

We may calculate the vertical distribution of <y by considering
the fundamental vector fields (see appendix 6.1). Let
X € LDiff(M) = Vect(M) (see section 4.4) and let XE = XEmb(M,N) be
the fundamental vector field corresponding to X. Then XE(f)
= Dwf(idM).X, for all f € Emb(M,N). From equation 2.2.2, we see
that (Dwf(¢).Y)(x) = Df(¢(x)).Y(x), for all x €6 M and
Y €6 T, Diff(M) = Vect

¢ ¢
= (Df.X)(x), for all x € M. Hence, XE(f) = Df.X € Df.Vect(M)

(M), so that (XE(f))(x) = Df(x).X(x)

C Vect (N) = T Emb(M,N).

Let us denote the vertical subspace at f € Emb(M,N) by Vf,
so that Vf = Tfyﬁl(y(f)) (the tangent space at f of the fibre
y—l(y(f)) through f). From the general theory of principal fibre
bundles (see section 6.1), the map X XE(f) is a linear iso-
morphism of LDiff(M) = Vect(M) onto Vf, for each f € Fmb(M,N).
Noting that the map X > Df.X 1is a linear isomorphism of Vect (M)
onto Df.Vect(M) C Vectf(N), we have demonstrated the following:

Proposition (2.2)1: The vertical distribution V(y) = Ker Dy of

the principal Diff(M)-bundle vy (2.2.4)has total space V(y)

= Ve, where Ve = Df.Vect(M), for all f € Emb(M,N).
£
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Now let k € Met(N). As shown in section 2.1, the normal bundle
g N(f) — M may be realized as a subbundle of f&(TN) using the
metric k. 1In fact, we have the k-orthogonal Whitney sum, fh(TN)

= DE.TM ® N(£), and this induces a splitting of the corresponding

spaces of sections:
Vectf(N) = Df.Vect(M) & T(N(L)) 2.2.5,

where we have, as usual, identified F(f"(TN)) with Vectf(N).
We may rewrite equation 2.2.5 in terms of the bundle

, k k k

Y: Emb(M,N) — SubM(N):= Define H (y) = U Hf, where He
f
= ['(N(f)), for each f € Emb(M,N) (Recall that, regarded as a sub-
%
bundle of f (TIN), N(f) depends on k). Then Hk(y) is the total
space of a vector bundle over SubM(N) and we have TfEmb(M,N)
k

= Vf & Hf, for each f € Emb(M,N). Thus, for each k € Met(M),

we have the following decomposition of the tangent bundle of

Emb (M,N):

TEmb(M,N) = V(v) & ES(Y) 2.2.6.

Proposition (2.2)2: For each k € Met(N), the distribution Hk(y)

defines a connection in the principal Diff (M)-bundle

v: Emb(M,N) — SubM(N).

Proof: Let k € Met(N). We already know that Hk(y) is comple~
mentary to the vertical distribution V(y), so that we must now show
that Hk(y) is equivariant under the action of Diff(M) on the

total space Emb(M,N); di.e. we must demonstrate that H; (£)
¢

DR¢(f).H§, for all £ € Emb(M,N), ¢ € Diff(M).
From equation 2.2.2, we see that DR¢(f).X = Xegp, for all

X € Vectf(N), so in particular DR¢(f).N = Nop, for all

=z

€ T(N(£)) C Vecty(N). Hence DRq)(f).Hlf( = {No¢: N € T(N(£))1}.
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Let Uk denote the k-orthogonal complement of any subspace U

._l _ k.
of Tf(x)N’ X € M. We have Ve (x) = (Df(x).TXM) , so that

V(6

il

(Df(rb(x))-Tqb(X)M)k = (D(fo¢)(x).TXM)k (since D¢(x).T M

-1
T¢(X)M) = vf°¢(x).
k

Let N' € Hy (f) = I'(N(fo9)). Then N'(x) € v (x) = v (¢(x)),

and so (N'o¢ )(x ) € vf (X ), for all x' € M. We conclude that

] "l 1] .k- k.
0 £)). , JHe,
N'o¢~ = € T'(N(f)). Hence, N' € DR¢(f) He, and so Hy (£)

k
C DR¢(f).Hf.

Conversely, suppose N°¢ € DR¢(f).H?. Then (No¢) (x)
= N(o(x)) € v (¢(x)) ¢(x), for all x € M, so that
_ K k k
Nep € T(N(fod)) Hy )" Hence, DR¢(f).Hf.S HR¢(f).
Therefore Hg (£) = DR¢(f).H¥, for all £ € Emb(M,N) and

¢
¢ € Diff(M). Hence, for each k € Met(N), Hk(y) is the horizontal

distribution of a connection in y O

A consequence of proposition (2.2)2 is that there exists a natural
map n: Met(N) — Conn(Emb(M,N)). We now give the corresponding
connection l-forms:

Proposition (2.2)3: For k € Met(N), the connection l-form

n(k) € Ql(Emb(M,N), LDiff(M)) is given by (n(k)(f).X)b

= kf(X,Df.(-)), for all X € T.Emb(M,N), f € Emb(M,N). Here

f

% % X
£ = (TN f) k 1is the metric in the vector bundle fN(TN) induced

from the metric k in TN by the embedding £, and, for each

Y € Vect(M), Yb € QI(M) is the 1l-form corresponding to Y via

k

£ € Met(M).

Proof: Let f € Emb(M,N) and X € TfEmb(M,N) = Vectf(N). Then

there exists unique ver(X) € Vf = Df.Vect(M) and hor(X) € H?
= T(N(f)) such that X = ver(X) + hor(X). Let XM € Vect (M)

= LDiff(M) be the unique vector field such that Df.XM = ver(X)

(so that (XM)E(f) = ver(X) - see proposition (2.2)1). Then
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n(k) (£).X = XM (see section 6.1).

We have <x§, v> = (f*k)(xM, ¥) = k (DE.X,DE.¥) = k (X,DE.¥)

since kf = kof and hor(X) is kf—orthogonal to Df.Y), for all

Y € Vect(M).

Hence, (n(k)(f).X)b = kf(X,Df.(-)), for all X € TfEmb(M,N)
and f € Emb(M,N) as required O

We now investigate the behaviour of the map
n: Met(N) — Conn(Emb(M,N)) under the action of natural groups.
First consider the right action of Diff(M) on Emb(M,N) given
by 2.2.1. Since, for each k € Met(N), n(k) is a connection in

the principal bundle Diff(M) < Emb(M,N) —— Suby (N), we have

Ja
v

R;(n(k)) = Ad _ °on(k), for all ¢ € Diff(M) (see definition
¢

(6.1)11). By equation 4.4.9, we have Ad¢ = ¢, (acting on

LDiff (M) = Vect(M)), and so the behaviour of n under Diff(M)

may be written:

Ry(n(k) = ¢, 0 n(®) 2.2.7,

for all k € Met(N) and ¢ € Diff(M). Equation 2.2.7 may also be
obtained by direct computation by differentiating the right action.
Now consider Diff(N). This group acts on Emb(M,N) by left

composition L: Diff(N) x Emb(M,N) — Emb(M,N) defined by:
Lw(f) = ¢ o f 2.2.8,

for all f € Emb(M,N), ¢ € Diff(N). For each ¢ € Diff(N), the

map L is a partial map of the composition map and is smooth

Y
(Irwin [I £ ]) with derivative given by (Cf. 2.2.2):

(DLw(f).X)(x) = DYP(f(x)).X(x) 2.2.9,
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for all x € M, X &€ TfEmb(M,N) = Vectf(N) and f € Emb(M,N).

We have L oR, =R, oL for all ¢ € Diff(M) and

b9 ¢ Ty’
Y € Diff(N), and therefore L defines a homomorphism of Diff(N)
into Aut(Emb(M,N)). Via this homomorphism, we have an action of
Diff(N) on the space Conn(Emb(M,N)) given by (w,y) sz,
for all (w,y) € Conn(Emb(M,N))x Diff(N).

Proposition (2.2)4: The map n: Met(N) — Conn(Fmb(M,N)) is

equivariant with respect to the actions of Diff(N) on Met(N)
and on Conn(Emb(M,N)) respectively; di.e. L, en = 7o w*,
for all ¢ € Diff(N).
Proof: Let k € Met(N), y € Diff(N), f € Emb(M,N), X € T Emb(M,N)
= Vect (N), Y € Vect(), x € M. Let X, = (Lz o ) (k) (£).X
and X, = (n° ") (&) (£).X.
By proposition (2.2)3, Xl = n(k)(wOf).DLw(f).X satisfies
((pof) k) (Xp.¥) =k, OL ().X, Dye£).V), and X,
= n(¥ k) (£).X satisfies (£ (¥ K))(X,,Y) = (¥ k) (X,DE.Y). Let
£, = ((wof)*k)(xi,Y) € c(M) for i € {1,2}.
Then, £,(x) = k((W°f)(X))((DLw(f)-X)(X), D(yef) (x).Y(x))
= k(WEG)) OYEE)) X(x), DY(E(x)).DE(x).Y(x)) (using 2.2.9)
- WV EE) XE, OF.V) () = £,(x). Hence, f; = f,.
Assuming that (¢of) "k 1is a metric of non-degenerate signature,
we now have Xl = X2, and hence Lw*on = now*, for all ¢ € Diff(N) O
In addition to the natural map n: Met(N) — Conn(Emb(M,N)), we

also have the natural map z: Met(N) — Met(Emb(M,N)) defined, for

each k € Met(N), f € Emb(M,N), X,Y € TfEmb(M,N) by:

c(k)(£) (X,Y) = J kf(x,Y)vol(f*k) 2.2.10,
M

where, as above, kf denotes the metric in fK(TN) induced by £

from k.
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Proposition (2.2)5: The metric ¢(k) is right dinvariant for each

k € Met(N).

O]

Proof: Let k € Met(N), ¢ Diff(M), f € Emb(M,N) and X,Y

€ TfEmb(M,N).

Then (RZ°C)(k)(f)(X,Y) C(k>(f°¢)(DR¢(f)-X,DR¢(f)-Y)

i J pos (K0, To9)v0L(8 £ 1) = [ 6" (k (X, 1) vol(£70))
M M

) J kf(X’Y)VOl(f*k) = (k) (f)(X,Y). Hence RZ oz =g, for all
M

¢ € Diff(M) O

(Note that Diff(M) refers to orientation preserving diffeo-
morphisms in the above proposition.)

Proposition (2.2)6: The map z: Met(N)—Met(Emb(M,N)) is equi-

variant with respect to the actions of Diff(N) on Met(N) and on

Met (Emb(M,N)) respectively; i.e. Lw o L = [ o wh, for all

v € Diff(N).

Proof: Let k € Met(N), ¥ € Diff(N), f € Emb(M,N) and X,Y

€ T Emb(M,N).
Then (Lyot) (1) (£) (X,¥) = £(l) (4°£) (DL (£) ., DL (£).7)
= f k¢ (DL, (5).X, DL, (£).D)vol(WeD) ).  Let
M
h = kwof(DLw(f)'X’ DLw(f).Y) € C(M). Then, for x € M,

h(x)= k@(£(x)))OY(£(x)).X(x), DY(£(x)).Y(x)) (by (2.2.9)

- TV EC)EELYE) = (R KD (). Hence,

%* % %
[ (¥ 'K) (X, V)vol(f ¥ k)
M
(zo ¥ ) (k) (£) (X,Y).

(Lioc)(k)(f)(x,Y>

It

= LK) () (X,Y)

% *
Therefore, Lw o= go1ty , for all Y € Diff(N) O

The above ideas concerning natural metrics may be unified if

we consider the left action § of the group G(M,N) = Diff(M)xDiff(N)
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on the manifold Q(M,N) = Emb(M,N) xMet(N) given by:

- S|
Sto,py (B0 = W oo™, bl 2.2.11,

for all (f,k) € Q(M,N) and (¢,¥) € G(M,N). Note that the pro-
jection of the action § onto Emb(M,N) is given by R *1<)L¢’
for all (¢,¥) € G(M,N), and that the projection onto MZt(N) is
the (lower star) action of Diff(N) discussed at great length in
Chapter Four.

The manifold Q(M,N) admits a natural G(M,N)-invariant (weak)

Riemannian metric as we now demonstrate. Define K € Met(Q(M,N))
by:

K(£,%) ((X),h)), (%55h,)) = () (£) (X),X,) + G, (k) (hy,h,)
2.2.12,
av}
for all (Xl’hl)’ (XZ’hZ) € T(f,k)Q(M,N) = Vectf(N) & SZ<N) and
(f,k) € QM,N). In 2.2.12, ¢ is defined by equation 2.2.10 and
G, € Met (Met(N)) is defined by equation 4.1.2. Note that here we
require that N be compact.

Proposition (2.2)7: G(M,N) acts by isometries on the Riemannian

manifold (Q(M,N),K).
Proof: Let (¢,9) € G(M,N), (f,k) € Q(M,N) and (Xl’hl)’(x2’h2)

€ T(f’k)Q(M,N).

Then, ( K) (£,K) (X} 5hy) 5 (Xy,h,)

% (6.0
= K((RCI)_]—O Lw) (f) sd)*k)(<D(R¢_l c Llp) (f> 'Xls W*hl) >

OR 3= 1) (DX, 1,0,))
S SR L) (DO L) (0.3, DR oL (D)5

+ Go(w*k) (w*hl, w*hz)

“(% 4 oLw>*<ijl<c<k>>><f><xl,x2> + 6, (K) (hy b))
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(using proposition (2.2)6 together with the invariance of GO under

Diff(N) as demonstrated in section 4.1)

oo e

= (R ;oL oL _)(e(R) () (X,X,) + G (&) (h ,h,) (since

R _;°L, = Ly°R _)

= g(k)(f)(Xl,XZ) + Go(k)(hl,hz) (using proposition (2.2)5)
= K(£,1) ((X],h) 5 (X,,0))) .

Thus, = K, for all (¢,¢) € G(M,N) O

%
MCRDR

The manifold Q(M,N) has applications in general relativity
and higher dimensional gravitational physics; we take N to be
the spacetime arena and M a diffeomorph of an extended spacetime
object or "membrane'". For example, for a particle theory, we take
M to be an interval and for a string theory, we take M to be a
two dimensional surface. The manifold Q(M,N), or, more usually,
some open submanifold of Q(M,N), is the configuration space for
the theory. For instance, if Met(N) denotes the space of
Lorentzian metrics on N, then we may restrict to the open sub-
manifold QT(M,N) = {(£,k) € QM,N): £f(M) is a timelike sub~-
manifold of (N,k)}.

In connection with physical applications, there exists a

natural smooth function A on Q(M,N) known in the literature as

the membrane action (see [H“15]1). A 4is defined by:

A(f,k) = (vol(f"k) 2.2.13,
)
M

for all (f,k) € Q(M,N). Note that, for (¢,¥) € G(M,N),

= o o] _l
(f,k) € Q(M,N), we have (A S(¢,W))(f’k) = A(yofoo ,W*k)

= J vol((q;*ofxoq;n °w*)k) = ( vol(f*k) = A(f,k). Hence A 1is
M M

invariant under the action of G(M,N), so that A projects to a
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function on the space (SubM(N)/Diff(N)) x Geom(N), where Geom(N)
= Met(N)/Diff(N) denotes the space of geometries on the manifold N
(see section 4.1).

Let T*Q(M,N) be the L2-cotangent bundle of Q(M,N). Then
T*Q(M,N) is equipped with the canonical (weak) symplectic form w,
and the symplectic manifold (T*Q(M,N),w) is the phase space cor-
responding to the configuration space Q(M,N). The action S of
GM,N) on Q(M,N) (see 2.2.11) 1lifts to a symplectomorphic action
on (T*Q(M,N),w) in the usual way.

The weak) Riemannian metric K defined by equation 2.2.12
gives rise to the smooth map (actually a homomorphism of vector
bundles) b,: TQ(M,N) —> T*Q(M,N); W+ K(W,*). Hence, we have

k

the symplectic form wp = b;w on TQ(M,N). Using proposition
(2.2)7, we see that the action S 1lifts to a symplectomorphic
action of G(M,N) on (TQ(M,N),wK) (see Abraham and Marsden
[A 2] for the general theory of symplectic actiomns).

We remark that it would be interesting to investigate the
spray of the Riemannian manifold (Q(M,N),K) and to study the
geodesic flow. We might also consider more general motion in
the presence of natural potentials such as A € C(Q(M,N)) (see
2.2.13) and functions on Q(M,N) constructed from curvature
quantities.

Before reviewing further applications of the theory of the mani-
fold of embeddings to general relativity, we briefly return to
the principal Diff(M)-bundle +vy: Emb(M,N) — SubM(N) (2.2.3,
2.2.4). Given a manifold F together with p € Hom(Diff(M),

Diff(¥F)), we may comstruct the associated bundle Ep

= Emb(M,N)XpF (see definition (6.1)2).
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Examples of such associated bundles include the following:~-

(i) Take F = Diff(M) and p = conj; ¢ — conj¢; Y = ¢°xp°¢—l.
Then, Ep = Conj(Emb(M,N)), the conjugation bundle. The space of
sections of Conj(Emb(M,N)) 4is isomorphic to Gau(Emb(M,N)), the
group of gauge transformations of y: Emb(M,N) -— SubM(N);

(ii) Take F = Vect(M) and p = Ad; ¢ — ¢, € GL(Vect(})) (see
equation 4.4.9). Then, Ep = Ad(Emb(M,N)), the Lie algebra bundle,
and the space of sections of this bundle may be regarded as the Lie
algebra of Gau(Emb(M,N)). For more details of the bundle con—
structions in (i), (ii), see section 6.1; (iii) Take

F=0M = {(g,u) € Met(M) x GL(M): u € 0(M,g)}, the total space

of the principal O(m)-bundle of M (see 1.4.1, 4.1.16), and

P; & > gy X é; (g,u) Fﬁ-((¢—l)*g, é(u)) (see 1.6.1 and pro-
position (4.1)11). Ep is then a fibre bundle over SubM(N) whose
fibre over the submanifold S of N may be regarded as the total
space of the principal fibration Diff(S) < 0(8) ~j2+ Geomo(S)
(see equation 4.1.32). The manifold GeomO(S) is a resolution of
the singularities of the space of geometries on the submanifold S
(see section 4.1 for a discussion of the resolution of singularities
in the space of geometries); (div) Take F = C(M) and

p = (lower star); ¢ > ¢, = (¢-l)*; h — h°¢—l. Then Ep

is a vector bundle over SubM(N) containing all smooth functions
on all submanifolds (of diffeomorphism type M) of N:

Let CSubM(N) = {h: h is a smooth function on some submani-
fold S of N, with S diffeomorphic to M} and define the
projection p: C SubM(N) —»~SubM(N); h S if and only if
h € C(S). Then p 1is a vector bundle over SubM(N) with fibres

p_l(S) = C(8), for all S € Suby(N). We now define a vector bundle
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isomorphism V¥ of Ep = Emb(M,N)ﬁDifﬂM)C(M) onto C SubM(N):— For

[(E.m)] € B, ¥([(F,1)]) € p"L(£(M) 1is given by:
Y([ (£, ) D)) = h(x) 2.2.14,

for all £(x) € £(M). The map ¥ is easily seen to be a well
defined isomorphism of vector bundles over SubM(N). Using V¥
together with the usual identification of sections with equivariant
maps (see the remarks following definition (6.1)6), we have

I'(Emb (M,N) x

cn) 2 I (CSub,, (W) 2 , (Emb (,) ,C(10))

Diff (M) Diff (M

Each function j on N now gives rise to a section of

Emb (M,N) x C(M); the value of j at S € SubM(N) is just

Diff (M)
"N

ils € p—l(S).g CSuby, (N) = Emb (M,N)x cM) .

Diff (M)

We now consider some important applications of the space of
embeddings to the theory of general relativity:

A major use for the space of embeddings arises in the 3+1
approach to general relativity. 1In this approach, the space
EmbS(M,N) of all spacelike embeddings of the (oriented) 3-manifold
M into the (spacetime oriented) Lorentzian 4-manifold (N,k) is
considered. EmbS(M,N) is an open submanifold of FEmb(M,N) and is
the total space of a principal Diff(M)-bundle over the manifold
Subi(N) of spacelike '"'slices" of type M din N.

The evolution of a given initial spacelike slice S, = fO(M)
is represented by a smooth curve I C R **‘Embs(M,N); t — ft.
For each t € I, the velocity vector is ét g TftEmbS(M,N)
= th.Vect(M) & F(N(ft)) (using the fact that Embs(M,N) is open
in Emb(M,N) together with equation 2.2.6). Since each ft is a
codimension one (orientation compatible) spacelike embedding, we

have the future directed unit timelike normal vector field
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Nt € P(N(ft)). Any element of P(N(ft)) may be written as LtNt,

for some Lt € C(M). Thus, for each t € I, we may write:

ft = th.Xt + LtNt 2.2.15,

where Xt € Vect(M) and Lt € C(M). The time dependent sections

X Lt are called the shift vector field, lapse function res-

£
pectively (see Arnowitt et al. [A € 1).

If L6 ct1), for all t € I, then the map
F: IxM— N; (t,x) F; ft(x) is a diffeomorphism of IxM onto
a tubular neighbourhood of SO in N if I = (-e,e) is sufficiently
small. 1In this case, the curve t > ft is called a slicing of
(N,k). Each slicing gives rise to a foliation of N (at least in
a neighbourhood of SO) into spacelike hypersurfaces, each diffeo-
morphic to M.

For fixed x € M, the map t Fﬁ-Lt(x) gives the proper time
elapsed in moving from fo(x) € So to ft(x) € St' Similarly,
the map t Xt(x) gives the local change of spatial frames after
a time t has elapsed.
For each t € I, let 8. = f:k denote the induced (negative

£
definite) metric on M, and let k_ = KNt (see definition (2.1)15)

t

denote the corresponding extrinsic curvature. The imposition of the
vacuum Einstein equations Ric(k) = 0 on (N,k) leads to a set of
twelve first order evolution equations and four non-linear constraint
equations for (gt, kt)' Conversely, if t ft is a slicing of
(N,k) satisfying the evolution and constraint equations, then k
is necessarily Riceci flat (see [A & 1).

Fischer and Marsden [F é ], 1in a very elegant piece of work,

formulate the evolution equations as a Hamiltonian flow on the phase

space (T“Met(M), w). Here, w dis the canonical (weak) symplectic
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form on thg Lz—cotangent bundle of Met(M) (see section 4.1).

The constraints are maintained by the evolution equations for any
lapse and shift, and, generically, the constraint set is a smooth
submanifold of T*Met(M). The Marsden-Weinstein reduction technique
(see [M 4 ]) may be applied to give a dynamical representation of
the space of true gravitational degrees of freedom.

The Fischer and Marsden approach to the initial value problem
is based on Met(M) or, after the diffeomorphism group has been
factored out, on superspace Geom(M). The problem with superspace
is that it is not a manifold and possesses singularities (see section
4.1). An alternative approach by Kucha? and coworkers (see, for
example, [K74]) utilizes the manifold Subi(N) more directly.
Kuchar refers to Subi(N) as hyperspace. The connection between
the two approaches may be realized by considering the natural map
EmbS(M,N) —> Met(M); £ F»»f*k, which projects to a map
Sub;(N) -~ Geom(M).

A third method for dealing with the 3+1 splitting of Einstein's

equations is due to Binz [811 ] and this method also avoids the
problem of dealing with a non-manifold. Binz formulates the
evolution equations on the manifold Emb(M,RP). Here, p 1is a
sufficiently large integer so that (M,g) may be isometrically
embedded in (EP, can(p,0)) (this can always be done by the theorem
of Nash, (2.1)3). The submersion m: Emb(M,RP)-——+ Met (M) :
f > f* can(p,0) induces a projection: SubM(EJB ~—> Geom(M) which
is, in fact, a resolution of the singularities of Geom(M) (see
definirion (4.1)18).

In fact Binz generalizes the discussion to the manifold

Imm(M,EP) of all immersions of M in EP, with corresponding
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m: Imm(M,RP) ~> Met(M). The important ingredient in the Binz approach
is the fact that the differential of any j € Tmm(M, RP) may be
expressed by Dj(x) = a(x)eDi(x)oF(x), for all x € M, where i
is some fixed immersion of M in ZRP, F € End(TM) is self-adjoint
with respect to m(i), and a € C(M,0(p)) is an "integrating
factor" which converts the RP-valued 1-form DioF into a differen-
tial by left composition.
Having fixed the initial immersion i € Imm(PL]Rp), Binz con-
siders the manifold {(a,F): there exists j € Imm(M,RP) with
Dj = aoDioF}. A Lagrangian is defined on the tangent bundle of
this manifold together with constraint equations. The extremals of
the Lagrangian satisfying the constraint equations then project
down to solutions of the Einstein evolution equation on Met(M).
Note that the lapse is one and the shift zero in the Binz formalism.
Another area of general relativity in which a space of embeddings
arises is the theory of cone space. There are various (equivalent)
ways of defining cone space A. The simplest is A = T'(w), where
m: S2x R — S2 is the trivial affine bundle discussed in section
6.3. A is thus an affine space modelled on the vector space
c(s?). Alternatively, we may regard cone space as the manifold of
smooth cuts of the future null infinity fﬁ' of an asymptotically
flat spacetime (N,k). This space of cuts may be naturally identified
with a submanifold of Emb(Sz, éjﬁ and also with the space of out-
going null embeddings of S2x R into a neighbourhood of ﬁ(+ in
the compactified spacetime.
Since asymptotic moments of the gravitational field are obtained
by integrating certain expressions around a given cut of .4+,

these moments should be regarded as tensor or spinor fields on cone
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space. For example, the Bondi 4-momentum described in section 3.2
may be regarded as a vector field on cone space. For more examples
and for a detailed description of cone space, we refer the reader

to Bramson [B21]. Note that Bramson adopts a philosophy in which
cone space replaces spacetime as the physical arena in many problems.
This is because, by formulating physical laws in cone space rather
than in (curved) spacetime, certain features of special relativistic
theory persist. Cone space is also more intimately connected with
that which an asymptotic observer experiences.

For a study of quasi-local, rather than asymptotic moments,
there is no analogous theory of cone space. One possibility would
be to consider the manifold EmbS(SZ,N) of spacelike embeddings
of S2 in spacetime (N,k). If we wish to allow the possibility
of varying the spacetime metric, then we could utilize QS(SZ,N)
= {(f,k) € Q(S2,N): £(S2) is a spacelike submanifold of (N,k)}
(here, of course, Q(S2,N) = Emb(SZ,N)><Met(N), where Met(N)
denotes the space of Lorentzian metrics on the 4-manifold N). The
analogue of the BMS group would be some subgroup of the isometry
group of (QS(SZ,N),KS), where KS is the metric on QS(Sz,N)
induced from K (defined in equation 2.2.12).

In this section, we have discussed various infinite dimensional
aspects of the theory of embeddings with particular reference to
applications in general relativity. We conclude this chapter with
a section concerned with the spinorial aspects of embeddings.
Applications of the interaction between spinors and embeddings will

appear in Chapter Three.
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2.3 Spinors and Embeddings

In this section, we give an indication of how the spin struc-
tures introduced in Chapter One behave under embeddings as discussed
in section 2.1. 1In particular, we develop certain tools which will
be utilized in Chapter Three of this thesis, and so this section is
especially concerned with embeddings in a spacetime.

The section is organized as follows:- First, we give a brief
discussion of the way spin structures interact with a general iso-
metric embedding f£: (M,g) < (N,k). We then specialize to the
case of spacelike embeddings in a spacetime. To conform with the
notation of Chapter One, we denote a typical spacetime by (M,g),
so that M is a connected, orientable, smooth 4-manifold and g
is a Lorentzian metric (signature = -2) on M such that (M,g)
is spacetime orientasble.

Both codimension one and codimension two spacelike embeddings
are important in general relativity. Moreover, the interplay be-
tween two, three and four dimensional structures is clearly mani-
fested when spinor structures in general relativity are considered.
For this reason, in this section, we describe both codimension one
(hypersurface) spinors and codimension two (2-surface) spinors.

The former are utilized in our treatment of spinor propagation
equations as used in the definition of quasi-local moments (see
sections 3.3 and 3.4) and the latter are the basis of the extremely
useful GHP formalism (see Geroch et al. [GF ]) and also of the
Penrose quasi-local programme (see [P B ]).

Note that we restrict our attention to spacelike embeddings
in this section. In section 3.3, we use a null limit of space~

like embeddings to obtain a useful spinor propagation equation
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related to a codimension one null embedding.

Let us first give a brief description of the general situation.
Suppose M,N are oriented manifolds of dimensions m,n = m+p res-
pectively. Let £ € Emb(M,N) and k € Met(N) (the space of positive
definite metrics on N; the indefinite case follows in a similar
fashion - see below for examples). We define g = f*k so that f 1is
an isometric embedding of codimension p. As in section 2.1, we have
the following principal bundles:-

. m
S0(m) <> SO(M,g) N M; S0(n) & SO(N,k) N N;

- ™
S0(p) S SO(N(E)) ——M; 50(m) x SO(p) S SO(F) —t> M.

Here, SO(N(f)) 1is the bundle of oriented k-orthonormal frames of the
normal bundle Vet N(f) — M. As above we regard SO(m) and SO(p)
(and hence SO(m) x SO(p)) as subgroups of SO0(n) = SO(mtp).

In order to discuss spin structures, it is necessary to consider
the spin groups corresponding to the various special orthogonal groups:-—
Let A: Spin(q) — S0(q) denote the unique, non-trivial double cover-
ing for any q 2z 2. We also use the notation A for the induced
double covering: Spin(m) X Spin(p) — SO(m) x SO(p): [(B,C)]

—— (A(B),A(C)), for all [(B,C)] € Spin(m) % Spin(p) =
Spin(m)xZz Spin(p). The inclusion of 8S0(m) x SO(p) in SO(m+p)
induces an inclusion of Spin(m) X Spin{p) din Spin(mtp) and we

have the following commutative diagram:

Spin(m) % Spin(p) ——— Spin(m+p)

!

SO(m) x SO(p) ———— > SO0(m+p) 2.3.1.

A A

We now make two further assumptions. Firstly, we assume that

M is spin, i.e. WZ(TM) = 0, and we choose a g-spin structure Sg

(%B(M,g),ng) € %(M,g). Secondly, we assume that WZ(N(f)) = 0, and we
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choose a A-prolongation s?f,k) = (EB(N(f)),n%f’k))of EB(N(f)) to Spin(p).
Let us consider the principal bundle Spin(m) x Spin(p)

s EB(M,g)XMga(N(f)) — M together with the double covering u:

Spin{(m)xSpin(p) ~—— Spin(m) % Spin(p). Let B denote the u—extension of

%B(M,g)XMEB(N(f)), so that % is a principal Spin(nO‘QSpin(p) bundle

over M (see definition (6.1)8). Now define n: % — SO(M,g)XMSO(N(f))

by n([((d"),[(B,ODD = (W mtg 1 @HAIE,CD,  for all

[(E,51, 18,0 D] € B = (5501,8) % 8, 6)))x (Spin(m) X Spin(p)). It

is straightforward to verify that n 1is well defined. Moreover, we

have n([((4,8"),[(B,ODIGB,CH1) = n([((u,4"),[(BB",ccHYD)

u 1 Ny 1 [} _ v _ Ny 1 1
(ng(U),n(f,k)(u DA ®BB,CC')]) = (ng(u),n?f’k)(u DACL@B,C) DACB,CH)

N[, [B,ODD LG, for all [(B',c")] 6 Spin(m) X Spin(p)

and [((3,3'>,£(ac)]>} € P. Hence, (%,n) is a A-prolongation of
SO(M,g)XMSO(N(f)) to the group Spin(m)Q;Spin(p).

We now utilize the diffeomorphism ax8: SO(f) — SO(M,g)XMSO(N(f))
(see the remark immediately preceding proposition (2.1)13) to pullback
the principal Zﬁ«-bundle n: % —_ SO(M,g)xMSO(N(f)) to a principal 22—
net $8(6) — so(e). Here, ¥8(5) = (@xe)” B and n = (axB) n.

vy
The pair (SO(f),nf) is now a A-prolongation of the principal

bundle

SO(m) x SO(p)-bundle Tet SO(f) — M to the group Spin(m);fSpin(p).

A" vy
Let et SO(f) — M denote the projection.

We now demonstrate a construction that enables Spin(mt+p)-spinors

to be defined on M. In order to do this, it is necessary to pro-

A

long the principal SO(m+p)-bundle f“ﬂN: foO(N,k) — M to

Spin{(m+p). Let us denote by %(f k): ga(f,k)-—+ M the extension

of %f: §8<f) —» M corresponding to the inclusion homomorphism:
v
Spin{m) x Spin(p) — Spin(mtp) (see definition (6.1)8). Then,

ga(f,k) = SO(f)x Spin(m+p) is a principal Spin(wtp)-

Spin(m)%Spin(p)
bundle over M. Define n': §B(f k) — S0(f)x SO(m+p) by
’ S0(m) xS0 (p)
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n'([(e,0]) = [(ng(t), AA))], for all [(t,A)] 6 SO(£,k). The
map n' 1is easily seen to be well defined. Moreover, we have
n'([(£,A)]A") = n'"([(5AA")]) (by definition of the right actiom of
spin(mtp) on SO(E,k) = [(n:(6),AAA"N] = [(n (£), AGAAA)))]

N, A DAQ'Y, for all [(t,A)] € SO(£,k)

= [(ng(8), A))IAA")
uy
and A' € Spin(m+k). Hence, the pair (SO(f,k),n') is a A-
prolongation of the principal SO(m+p)-bundle SO(f)XSO(m)XSO(p)SO(m+p)
to the group Spin(m+p). Finally, we utilize the principal bundle
, . % _

isomorphism u: SO(f)XSO(m)XSO(p)SO(m+p) —> f SO(N,k) (see pro
position (2.1)9) to yield the A-prolongation (ga(f,k),n(f k)) of

* . - o
f SO(N,k) to Spin(m+p). Here n(f,k) pen

To summarize the above; we have proved:
Proposition (2.3)1: Let M,N,f,k,sg and s%f k) be as above. Then
b

LvaV]
there exists a A-prolongation (SO(f,k),n(f k)) of the principal
3

SO (m+p)-bundle f*ﬂN: f*SO(N,k) — M to the group Spin(m+p).
Note that we have not assumed that the target space N 1is
spin; we require only the vanishing of the two obstructions
WZ(TM) and WZ(N(f)) - these are the obstructions to prolonging
the oriented orthonormal frame bundles of the vector bundles TM and
N(f) respectively. However, since M is orientable, WZ(TM) =0 = wz(N(f))

if and only if both M and N are spin.

Definition (2.3)2: The principal bundle Spin(m+p) &> SO(f,k)
n

m
'——LELKL M 1is called the spin frame bundle corresponding to £, sg

and S%f,k)'

aV]
Given any action p € Hom(Spin(mt+p), Diff(F)), where F is
y
some manifold, we may form the associated bundle SB(f,k)x&F over

M. 1In particular, for F =V, a vector space,



~154—

Y]
and p € Hom(Spin(mt+p), GL(V)), we may form the vector bundle

avav

SO(f,k)XNV over M. Sections of such a vector bundle are spinor
e

fields on M which transform under the group Spin(m+p) rather

than the group Spin(m) (the usual spin group for M). Note that
Yy vy
we have the vector bundle isomorphism  vy: SO(f,k)x V — SO(f)x, V

p pol
n
(where 1: Spin(m) x Spin(p) - Spin(m+p) is inclusion) defined by:

y([([(t,A)]1,8)]) = [(t,OA(E))] 2.3.2,
Ny _ Ny . N
for all [([(t,A)],&)] € SO(f,k)xEV = (So(f)XSpin(m)¥Spin(p)Spln(m+pﬁxgv'

It is straightforward to check that vy 1is a well defined isomorphism
of vector bundles.

Let us now consider connections. Let Wy € Conn(S0{N,k))
denote the Levi-Civita connection l-form of the metric k and let
us denote the induced connection (wN*f)*wk in f*SO(N,k) by w(f,k)
(see definition (6.1)22 and section 2.1). We have the Lie algebra
isomorphism A, = DA(1): LSpin(m+p) — LSO(m+p), and this enables us

to define the induced connection x(f K) € Conn(§6(f,k)) by:

v = —l [} %
Oee )y - A NTE, k) Y(E,K) 2.3.3.

(Cf. equations 1.3.4 and 1.3.5).

Definition (2.3)3: Given M,N,f,k,sg and s%f K) as above, we
*

call € Conn($8((£,k)) (as defined by 2.3.3) the induced

n,
Y(E,k)

spin connection.

A}
Given $(f 1) together with p € Hom(Spin(m+p), GL(V)), we may
s
define the corresponding covariant derivative acting on sections of

E, = ga(f,k)xwv as in equation 6.1.9. Let us denote this covariant
o

. . g v(f,k) . vk
derivative by V s, Or just V for short. Thus, we have:
#ER, ) —— al(Ey 2.3.4.
o} e
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An alternative method of defining a covariant derivative acting
on sections of E ~ may be described as follows: By a proposition
analogous to (2.1?11, we have the connection We in the principal
SO(m) x SO(p)-bundle SO(f). This connection is constructed from
the Levi-Civita connection of g, W, € Conn(SO(M,g)), together
with the normal connection w% € Conn(SO(N(f))) (see proposition
(2.1)13). We have the A-prolongation (Eg(f),nf) of SO(f) to

Y]

v
Spin(m) x Spin(p) and so we may define the induced connection we

Ny
in SO(f). The latter connection is given by:

P 2.3.5.

(Cf. equations 1.3.4, 1.3.5 and 2.3.3, but note that here,

lie

: L(Spin(m) X Spin(p)) ¥ LSpin(m) ® LSpin(p) —> L(SO(m)*SO(p))

Ay
ny
= LSO(m) & LSO(p)).

Definition (2.3)4: Given M,N,f,k,sg and S%f k) as above, we

av
call w,. € Conn(gg(f)) (as defined by equation 2.3.5) the adapted

f

spin connection.

Y
As with the induced spin connection w(f k)’ we may use the
b

"
adapted spin connection we to define the corresponding co-
variant derivative acting on sections of E_ (identified with
r\Jr\J . r} 3 p ]

SO(f)x, V using the isomorphism vy as given by equation 2.3.2).
pol
) . o - v ¥(f,g)
Let us denote the covariant derivative arising from we by V s
. Vg
or just V for short. Thus, we have:

V8 L rg) — l(Ey) 2.3.6,
p p

as in equation 6.1.9.
We may summarize the above discussion as follows:— Given an
(orientation compatible) isometric embedding f: (M,g) < (N,k)

v
and also A-prolongations sg = (SB(M,g),ﬂg),
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LAV "
s+ = (SO(N,f)), n+ of the orthonormal frame bundles SO(M,g),

(£,5) (£,%)
SO(N(f)) respectively. we may define two further A-prolongations.
3
Firstly, we have the A-prolongation (go(f),nf) of the principal
S0 (m) x SO(p)-bundle met SO(f) — M of f-adapted frames to the
V]
group Spin(m) x Spin(p). Secondly, we have the A-prolongation
Ay %
(SO(f,k),n<f k)) of the principal SO(m+p)-bundle f Ty
£ SO(N,k) — M to the group Spin(m+p). For any representation E
of Spin(mtp) on a vector space V, the associated vector bundles
v v
SO(f)x% V and SO(f,k)xDV are naturally isomorphic. We identify
pe1
them and denote this vector bundle by E% (although, of course, E%
P o

depends on f,k,sg and s%f k))' The embedding and spin structure

data lead to two covariant derivatives acting on sections of E%.

0
Ve g(f,g),

Firstly, we have the adapted covariant derivative,
. . . N vy
arising from the adapted spin connection We € Conn(SO(f)), and
secondly, we have the induced covariant derivative, %k = %(f’k),
I3 I3 I3 . ,\J r\j\‘
arising from the induced spin connection w(f 1) € Conn(S0(f,k)).
3

The adapted covariant derivative may be regarded as a Spin(m) X Spin(p)
~operator whereas the induced covariant derivative is a Spin(mtp)-
operator.

Note that if S =p o A for some p € Hom(SO(m+p), GL(V)),

e *
then we have an isomorphism of SO(f,k)XmV onto f SO(N,k)XpV
o
analogous to that defined by equation 1.3.2. Similarly, we have
Y]
an isomorphism of %Jo(f)xm V onto SO(f)Xpolv (where 1 also
pet
denotes inclusion of SO0(m) x SO(p) in SO(m+p)). Note also that
f“SO(N,k)XpV is naturally isomorphic to f“(SO(N,k)XpV). Hence,
Ny Ny %

the five vector bundles SO(f,k)XmV, SO(f)Xm v, f SO(N,k)XpV,
* p po1
f (SO(N,k)XpV) and SO(f)xO°1V are mutually isomorphic for

V]
p € Hom(SO(m+p),GL(V)) and p = poA. We refer to any one of these
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five as E .
P
The connection Wy in SO(N,k) gives rise to a covariant
derivative Vk in SO(N,k)xDV and hence, by pullback, a covariant
derivative in fA(SO(N,k)xQV) = Ep. The same covariant derivative
is given by the connection w(f 1) in fRSO(N,k) and indeed by
3 r\J ] r\"{\‘l . ]
the connection w(f K) in SO(f,k). Thus, the induced covariant
3

(£,

derivative in E coincides with the covariant derivative

induced from Vk in SO(N,k)XpV by f.

The connection we in SO(f) also gives rise to a covariant
derivative in EO’ and this covariant derivative coincides with
the adapted covariant derivative %(f’g) obtained from the con-
nection Bf in Eg(f).

Thus, each of the five isomorphs of Ep is furnished with the
two covariant derivatives %(f’k) and %(f,g).

In particular, suppose p 1is the defining representation of
SO(m+p) on ]£w+p. Then the vector bundle Ep is just f*(TN)
(Cf. equation 1.3.3) = Df.TM & N(f) (see section 2.1). In this

%(f’k) is just the co-

case, the induced covariant derivative
variant derivative Vk given by equations 2.1.6 and 2.1.7. The

adapted covariant derivative is given by the equation:

"'(f,g) — g ATy AN
vy BV DE£.VEV, + VL v 2.3.7,

for all X € Vect(M), V = DE.V, + VL € Df.Vect () & T(N(E))

r(f TN). Here, as usual, v® is the covariant deriva-

13

=z Vectf(N)

tive in TM arising from the Levi-Civita connection of 2,

wg € Conn(SO(M,g)), and WL is the connection in N(f) arising

from the normal connection w% € Conn(SO(N(f))). Note that equa-
v(f,g)

tion 2.3.7 reflects the fact that is obtained from the



~158~

connection Wes W being constructed from wg together with w%

(see proposition (2.1)13).

Returning now to principal bundles, we remark that, in addition
av A%
to the connection 1-forms Wes w(f K)® there exist other natural
N Ny ’

forms on the bundles SO(f), SO(f,k). We have the maps Gon:

vy % v

SO(f) — So(M,g), (ﬂNf) o n(f k): SO(f,k) — SO(N,k). Therefore,

3

we may pullback the canonical l-forms of M,N respectively. Let

f * 1,%Y m f— * *
(aonf) eM € Q:(S0(f),R") and GN = ((TrN ) ”(f,k)) GN

M =
1,¥N m+p . . . .
€ Q4(S0(f,k),R ). As in section 2.1, we denote the inclusion of

8

SO(f) in fKSO(N,k) by 1, and let ? = nzf k)l denote the induced

Y Ny v}
inclusion of SO(f) in SO(f,k), so that we have teng = n(f k)ol

av] Ny vy
Proposition (2.3)5: If 1: SO(f) — SO(f,k) 4dis the principal bundle

monomorphism arising from the isometric embedding £, then
e f _ f 1,%y m
1 GN = GM € QY (So(f),R).
P £ ’\/*ef ’\J:’:(( *f) ):':e (( *f o"\; "‘e
. = o = <]
L S SRR €S Tl TN N e 1Y) By
% % % * & * ok
= ((ﬂNf)°1 onf) 6N = nf((wa)°1) eN = neo eM (by proposition (2.1)10)

x  f
= (oong) By = 0y O

Another form, this time symmetric and related to the second funda-
. Ayf *y f
mental form, may also be defined; we have K™ = an
€ T((O2T 36(£)) 8 (36(HH)xRP))  (see 2.1.10, 2.1.11).

For convenience, we summarize the various bundles and maps used

above in the following diagram:
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n,
1
BH - §5(£,%)
g "(£,k)
A4 v %
1 % wa
SO(£) > £30(N, k) 2 SO(N,k)
B o
SO(N(E)) SO(M,g) *
ﬂf f WN WN
L.
TF ™
\'4 Y A’
< > > N
M < idM M f
2.3.8.

The absence of spin structure on the target space N is re-
flected in the wvacuous nature of the top right hand corner of
diagram 2.3.8. However, the only spinor fields we will need in
applications are defined on the domain M, so that the prolonga-
tions (gg(f),nf) and gg(f,k),n(f’k)) are all that we require.

Let us now consider the general formalism develpped above
in the context of certain useful special cases in general rela-
tivity theory. As indicated in the introductory remarks of this
section, we will denote a typical spacetime by (M,g).

Our first special case is that of a spacelike embedding of
codimension one. Let H be an oriented 3-manifold and (M,g) a
(spacetime oriented) spacetime. Let f: (H,h) <> (M,g) be an
orientation compatible spacelike isometric embedding, so that

g

h = f“g has signature equal to -3. To conform with the notation
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used in the general relativity literature, we denote the unit normal
of f by t, so that t 1is a future directed unit normal vector
field such that u = {el,ez,e3} € ngl(x)_g SO(H,h) implies
{£(x),DE(x) .ep, DE(x)e,, DE(m)e,}€ 1 (F()) C S0(M,8) (see
definition (2.1)14).

f
Kt € SZ(H) denote the extrinsic curvature of f

Let k
(definition (2.1)15). Then, we may write (see 2.1.12) k(X,Y)
= —g(V%t,Df.Y), for all X,Y € Vect(H), where g = 8¢ denotes
the induced metric in the vector bundle f*(TM) = Df.TM & N(f).

Note that the normal bundle Vet N(f) — H is trivializable
with total space N(f) = {rt(x): r € R, x € H}. Similarly, the
bundle SO(N(f)) of oriented gL—orthonormal frames is trivializable with
structure group S0(1) = {1}. Hence, the bundle SO(f) of f-
adapted oriented orthonormal frames is isomorphic to the bundle
SO0(H,h) of oriented h-orthonormal frames. We shall henceforth
identify SO(f) and SO(H,h) and denote both by SO(H,h). The

oriented version of diagram 2.1.2 now collapses to the following:

S0(3) C > sot@,3) >50%(1,3)

N N

V B3 {/

v 1 % mvE

SO(H,h) >f S0(M,g) >S0(M,g)
" oy ™

Y . \\3

H < > u &< : > M

2.3.9.
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Note that, in the case of a codimension one spacelike embedding
in spacetime, proposition (2.1)9 reduces to SO(H,h)xSO(B)SO¢(l,3)
z f*SO(M,g), and proposition (2.1)10 reduces to ((ﬂ;f)01)*6M = GH
€ ol(so(,n),RY).

The connections available are Wy € Conn(SO(H,h)) and wg
€ Conn(SO(M,g)). By propositions (2.1)11 and (2.1)12, the
LSO(3)-component of ((ﬂ;f)01)*wg vith respect to the decomposition
1sot(1,3) = 1LS0(3) & L(1,3) (note the slight change of notation)

is precisely w the Levi—-Civit3 connection of h. The normal

h!
connection w% is trivial, and hence the unit normal wvector field
is parallel along all curves in H =~ this corresponds to the fact,

already noted (see the remarks immediately preceding definition
(2.1)15), that Wt = 0. The relationship between the covariant
h _ _“n ®

derivatives V = V and v® zv ® may be obtained from equations
2.1.5, 2.1.6 and 2.1.7. We shall give more explicit formulae for
those covariant derivatives below.

Let us now consider the question of spin structures. Since
the normal bundle of £ is trivial, the only assumption that we
need to make is that H is spin, i.e. WZ(TH) = 0, For example
(see 1.2.2), if H 1is compact, then the obstruction to the existence
of a spin structure on H vanishes. In any case, suppose H 1is

. . Wy A%

spin and choose an h-spin structure sy = (SO(H,h),nh) € Z(H,h)

(up to equivalence of h-spin structures, this corresponds to choosing

sV V)
an element of HI(H;ZZ) - see 1.1.5). Thus SO(H,h) is a

principal bundle over H with structure group Spin(3) z SuU(2) = s3,
. ’\AJ - 3 . 3 - I\J,\l
The A-prolongation (SO(f),nf) is identified with (SO(H,h),nh)
v av}
since we have identified SO(f) with SO(H,h), and Z, x SU(2) = SU(2)

In order to utilize SL(2,T)-spinors on H, it is necessary
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to consider the A-prolongation (%B(f,g),n(f g)) of thO(M,g)
s

z SO(H,h)xSO(3)so*(1,3) to the group SL(2,T). Here, SO(f,g)
= §8<H’h)XSU(2)SL(2’E) is the spin frame bundle corresponding to
f and sy (see definition (2.3)2).

We may now wheel out our favourite representations of the group
SL(2,C) and construct bundles over H associated with the principal

uy
bundle SL(2,L) & SO(f,g) — H. Using the notation of section 1.7,

— -
we have, in particular, the representations p, p, p » p €

Hom(SL(2,C),GL(2,C)) with corresponding associated vector bundles

—_— KN ot
<

7 — v
Sgr Sg» S S where Sf = SB(f,g)Xpmz, etc. Since the symplectic

form e (see equation 1.7.1) 1is invariant under SL(2,T), the
vector bundles Sf, etc. each have the structure of a (complex)
symplectic vector bundle over the 3-manifold H.

Definition (2.3)6: Given H,M,f and s, @as above, the symplectic

vector bundle T2 & Sf —> H 1is called the bundle of contravariant

unprimed Weyl spinors over H.

Similarly, 5& is called the bundle of contravariant primed

Weyl spinors over H, etc.
Given any p € Hom(SL(2,C),GL(V)), we may form the associated

Ny
bundle SO(H,h)x ~ V, where 1: SU(2) & S81(2,8) is inclusion.
Pot

uny
As in 2.3.2, we have an isomorphism of SO(f,g)XNV onto
p
ava v
SO(H,h)X% V, and we shall identify these two vector bundles,
pet ey V
denoting both by E, . For example, we identify SO(H,h)Xp“(E2 with
P

Sf, so that gB(H’h)Xpo1E2 carries a natural symplectic structure e.
Another way of constructing vector bundles is to use representa-

tions of SO+(1,3). In particular, when composed with the covering

A:SL(2,8) — SO*(l,B), the defining representation of SOT(1,3)

on R yields a representation of SL(2,I) on RY. Let
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vy
- " . s
wf = SO(f,g)XSL(z’E)E. denote the corresponding associated vector
bundle over H (Cf. definition (1.7)1). Since the Minkowski inner
product n = can(l,3) on R" is invariant under SL(2,T), the
vector bundle Wf is equipped with a fibre metric, also denoted

by n. In fact, by the remarks above (arising from equation 1.3.3),

Hi

the Lorentzian vector bundles (Wf,n) and (f*TM,g) (where g gf)
are isometric (Cf. equation 1.7.17).

Now consider the representation p 8 p of SL(2,C) on H(2),
the vector space of 2x2 Hermitian matrices. We denote by Hf
the corresponding vector bundle over H. The Lorentzian inner
product € 8 e on H(2) is SL(2,C)-invariant and therefore fur-

nishes Hf with a Lorentzian fibre metric, also denoted bv ¢ 8 .

Now define Ot Wf — Hf by

o ([(H0D = [(Wa@@)] 2.3.10,

for all [(u,x)] €W Here, o is the isometry of (Rk,n) onto

£
(H(2), € ® E) defined by equation 1.7.7. The map O¢ is an iso-
metry of Lorentzian vector bundles, as is easily demonstrated (Cf.
equations 1.7.14, 1.7.15).

We now compose the isometry of (f*TM,g) onto (Uf,n) with
that of (Wf,n) onto (Hf, €8 ¢e) to give an isometry of (f*TM,g)

onto (Hf,s & E). We denote this isometry by o(f).

Definition (2.3)7: Let H,M,f and Sh be as above. The isometry

o(f): deM — H of Lorentzian vector bundles over H 1is called

f

the Infeld-Van der Waerden isomorphism corresponding to £ and N

(Cf. definition (1.7)2).
Note that H. is naturally embedded (qua vector bundle) in

S, 8 so that the isometry o(f) embeds fATM in Sf ®E Sf

£ ¢ Sg»
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(Cf. equation 1.7.18). The isometry o(f) extends to temsor products
and, as for a spacetime, tensor field equations on H may be trans-
lated into equivalent equations involving SL(2,T)-spinor fields.
As usual, we may restrict our attention to completely symmetric
spinor fields.

In calculations, the Infeld-Van der Waerden isomorphism o(f)
is not usually explicitly mentioned, and we have the usual abstract

ale

index identifications; for example, the metric induced in £ ™

from g by f dis written gab(E (gf)ab) €AB SA'R' (Cf. equa-
tion 1.7.21). TFor further remarks concerning the use of 2-component
Weyl spinors in general relativity theory, we refer the reader to
the comments following definition (1.7)2 in sectdion 1.7.

We now make a few remarks concerning the interaction between
the groups SL(2,C) and SU(2). The inclusion of SU(2) in
SL(2,L) which we are using is induced by the inclusion a h»-[é g}
of S0(3) in S0™(1,3). The latter inclusion may be regarded as
arising from the choice of a timelike direction in (Rﬁ,n) and
corresponds on the manifold level to the (timelike) normal bundle
N(f). In other words, we may regard the embedding £f as a means of
reducing the S07(1,3) symmetry to an S0(3) symmetry, and hence
the SL(2,T) symmetry to an SU(2) symmetry.

Let t € R" denote the unit future directed timelike vector
in  (RY,n) corresponding to the inclusion S0(3) <= SO¢(1,3). We
define a Hermitian inner product on T2 by G = V2 a(t) € H(2)

(the V2 factor ensures that det G = 1; Cf. equation 1.7.10).
The inner product G is invariant under the action of SU(2) on

T2 (but not under the actionm of SL(2,C)), and so the vector

bundle €2 €5 = %’(\)’(f,g)xpm2 — H carries a Hermitian fibre
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metric, which we shall also denote by G.
Upon activating the Infeld-Van der Waerden isomorphism o (f),

]
= /2 ¢ where ¢t = tBB is the

we may write AAT? AA" ERASR A

1-form corresponding to t € T(N(£)).

Thus, the vector bundle Sf is equipped with the Hermitian
fibre metric G 1in addition to the symplectic structure €.

. oy ) L.
Noting that Sf = SO(H,h)xp 1@ ,» we regard the principal SU(2)-
. Ny
bundle SO(H,h) as the Hermitian frame bundle of (Sf,G) just as
vy

the principal SL(2,C)-bundle SO(f,g) may be regarded as the
symplectic frame bundle of (Sf,e).

The Hermitian metric G 1is positive definite and possesses
AA' A

k] 1
the inverse GAA = V2 tAA which satisfies G GBA' = €p
1
A

(using the fact that tAA tBA' = %EB ). Hence, we have an iso-
_ * Al Al
morphism of wvector bundles: Sf —A-Sf; A = A GAA" and by
hermiticity, 5? — Sf; Myt b GAA'UA,. The existence of G
enables us to work entirely in terms of unprimed spinors -~ we
just "convert'" all primed indices to unprimed ones using the
isomorphisms induced by G. For more details concerning the use
of the unprimed SU(2) spinors, we refer the reader to Sen [S13].
We shall allow ourselves the freedom of using SL(2,T) spinors.
We now consider the spin connections arising from our embed-
ding and spin structure data. The Levi-Civita connection

wg € Conn(SO0(M,g)) induces the connection w(f 2) € Conn(f“SO(M,g))

and the latter connection gives rise to the induced spin connection

4"
Y(£,2)

then leads to the induced covariant derivative

V]
in Ea(f,g) (see definition (2.3)3). The connection w(f )
&

%(f’g) acting on

o [AVER AV W ny
sections of E, SO(f,g)xNV = SO(H,h)X% V, where p € Hom(SL(2,L),
P P Dol
GL(V)).
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We also have the connection Wy € Conn(SO(H,h)) and this
. . ; av] Y] . Uy
induces the adapted spin connection we = w  in SO(H,h) (see

definition (2.3)4). We then have the adapted covariant derivative

%(f’h) acting on sections of E -

p
As usual, we have two covariant derivative operators acting on

the sections of any associated vector bundle E%. Therefore, in
p
constructing spinor differential equations on the 3-manifold H,

we may utilize either the SL(2,T) derivative %(f,g) or, alter-

natively, the 8U(2) derivative %(f,h).

The most important associated vector bundle for us is
o > y 2 . . .
Sg = SO(f,g)XpE = SO(H’h)Xpo1m equipped with the symplectic
structure € together with the Hermitian fibre metric G. We also

— -

*
utilize st Sf, Sf and tensor products thereof; each of these
vector bundles is also equipped with a symplectic structure and a

Hermitian structure induced from € and G respectively.

v(f,g) v(f,h)

The two covariant derivatices V and V act on

F(Sf). The symplectic form e 1is parallel with respect to the
induced covariant derivative %(f’g), but not with respect to the
v(f,h)

adapted covariant derivative On the other hand, the

Hermitian fibre metric G 1is parallel with respect to the adapted
covariant derivative, but not with respect to the induced covariant
g(f,g)

derivative. These results follow from the fact that is

obtained from a connection in the bundle gg(f,g) of symplectic
¥(£,h)

frames of (Sf,a), whilst is obtained from a connection

uy
in the bundle SO(H,h) of Hermitian G~orthonormal frames.
We now present explicit formulae for the covariant derivatives
whichwill be utilized in Chapter Three. We use abstract indices

corresponding to the vector bundle f“TM, its complexification,
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its dual and tensor products thereof. We refer to tensors as spatial
if they arise from tensor products of the subbundle Df.TH of £7M.
Spatial tensors are characterized by the property that their con-
tracted tensor products with t?  and ta all vanish. For convenience,
we will suppress any explicit mention of the embedding f din our
.abstract index formulae.

The metric in f*TM is given by .1 and the induced metric
on H is hab =8 " tatb' All indices are raised and lowered
with the metric gab (and its inverse), although for spatial tensors,
raising and lowering with hab (and hab = gab - tatb) also gives
the same result. The orthogonal projection onto Df.TH is given

by hb = 6b - tatb. Thus, hz projects out the spatial part of

a a
any tensor arising from £ TM. TFor example, the abstract index

version of the extrinsic curvature is k , = - h® hd 78 ¢ (see
ab a b ¢ °f

equation 2.1.12).
In our formulae, we express all covariant derivatives in

Y

y(f.8)

terms of the covariant derivative In the special case of

vector bundles constructed from f*(TM), this derivative reduces
to the derivative Vg = (T;f)*vg as we remarked above (see the
discussion immediately preceding equation 2.3.7).

For example, on suppression of explicit mention of £, equation

2.1.5 gives us V;Y = h.V%Y, for all X,Y € Vect(H). Thus, we have

CvyP = 1Px%v8vd, 5o that hCxPvYP = nPRCx®wEvyY  for all
c d c a c d’'a c
X € Vect(H). Therefore, hCVhYb = hcthng, and hence VhYb
ac adece a
c. b d h

= hahdviY , for all Y € Vect(H) (using the fact that V is
spatial). The extension to a general spatial tensor field

T " is given by:

d...e
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i = WP, ... TS P 2.3.11.
a .. an pd em q...T

Equation 2.3.11 gives the spatial component of the adapted co-

Y(£,h)

variant derivative (see equation 2.3.7). The normal com-—

ponent is given by Vt(at) = da 8 t, for any at € T(N(f)).
v(f,g)

We may deal with the induced covariant derivative V in

a similar manner:- Let V € F(fKTM) and X € Vect(H). Then,

FEe)yb _ g8yb _ xCuByP _ 1ox%0ByP | oo thar ¥(E YD o pouByb)

X X c a c a ac
and hence %(i’g) = hzvg. For convenience, let us write Df = %(f’g),
so that Di = hzvf acting on P(fATM) and, by extension qua deriva-

tion, on tensor fields. The induced covariant derivative D also
acts on T(fNTEM) (as a real operator) and hence, on using the
complexification of the Infeld-Van der Waerden isomorphism o(f):

ate

£TM-—S.8.S,. (cf. equation 1.7.20) together with the fact that

f Tt
. v(f,g) . BB' .
o(f) dis V 28 -parallel, we may write DAA' = hAA' VgB, acting on
— k%
sections of Sf, Sf, Sf, Sf and tensor products thereof.

The induced covariant derivative D' was used by Witten [W § ]
in his famous proof of the positive energy theorem (in Witten's
paper, Df acts on Dirac spinor fields, i.e. on sections of

Se @A§;=) and by Sen [S12] who regardéd the kernel of the map:
I (Se) —»-P(E%f); XA'FA-DiA,AA

corresponding to the "initial" hypersurface £(H).

as the space of neutrino zero modes

Definition (2.3)8: Let H,M,f,g and sh be as above. The induced
£ y(E,8)

covariant derivative D acting on F(Sf) {and on

conjugate-dual-tensor products) is called the Sen-Witten operator.

The equation

ot % - o 2.3.12,
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is called the Sen—-Witten equation.

The existence of solutions to this equation satisfying the
spatially asymptotically constant boundary condition X - X(O)
= O(r—l) for some constant spinor A(O)’ has been established by
Choquet-Bruhat and Christodoulou [C 16 ] and (in the Dirac case)
by Parker and Taubes [P 4 ]. See also Reula [R 3 ].

Note that the Sen-Witten equation (2.3.12) is defiped for a
spacelike embedding f wusing the non-degenerate projection h
onto Df.TH. In the case of a null embedding, such a projection
does not exist and so we cannot define a corresponding Sen-Witten
operator in such a simple fashion. However, it is useful to be
able to define a null version of equation 2.3.12, for example in
relation to the propagation of spinor fields on null hypersurfaces
as is needed in a consideration of the quasi-local version of the
Bondi-Sachs 4-momentum, and in Chapter Three we obtain such a null
Sen-Witten equation by taking a certain null limit of the space-
like equation.

Note that the extrinsic curvature may be expressed using the

oo . - _ ncdog _ _ 1.¢48
Sen-Witten operator; we have kab hahbvctd = havctb

c d_g - _ f . d _ . .
+ hatbt Vctd = Datb (since tt = 1). Using this formula,

it is straightforward to derive the following expression for the

commutator of the Sen-Witten operator:

f £ d .¢ .8 .8 d_f .
- - 2.3.13,
D[ D1 280 8517751 £k Da 3.13
_ = -1
where S, Pap' TBa' 7 fafp T 28ape
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Before leaving codimension one spacelike embeddings and associated
spin concepts, we make a remark concerning an important recent use of
hypersurface spinors. This is the work of Ashtekar [A15] on a
spinor reformulation of the Hamiltonian formalism in general rela-
tivity. Ashtekar considers a 3-manifold H equipped with complex
Riemannian metric gq. H 1is assumed to be spin and a g-spin struc-
ture is chosen. Since the complexification of the group Spin(3)

Z SU(2) 4is SL(2,T), the spinors under consideration are SL(2,T)
-spinors, although it is important to note that here, the group
SL(2,T) does not originate as the four dimensional (real) Lorentzian
spin group. The dynamical variables are deemed to be the Infeld-
Van der Waerden isomorphism o© corresponding to the g-spin structure
chosen, together with an SL(2,L) connection D (not the connection
arising from q) which is the conjugate of o. The traditional
dynamical variables (q,k) are regarded as derived from the
variables (o,D), and a major advantage of utilizing the new
variables is that the Einstein constraints (see section 2.2) are at
wopskt quadratic rather than non-polynomial as is the case when the
variables <(g,k) are used. A further advantage is the fact that
every constrained initial data set (o¢,D) for (complex) general
relativity provides an initial data set for SL(2,C)-Yang-Mills
theory. Conversely, any initial data set for Yang-Mills theory

that satisfies certain additional algebraic constraints yields an
initial data set for general relativity. Thus, techniques from
Yang-Mills and general relativity theory may be interchanged.

The spacetime interpretation of the new 3+1 variables is also
very satisfying. Indeed, suppose (M,g) is a solution of Einstein's

equations obtained from a constrained initial data set (o,D). Then
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D 1is just the Sen-Witten operator arising from the embedding

(H,q9) <> (M,g) and the corresponding connection form is a potential
for the anti-self-dual part of the Weyl tensor field. The use of the
new variables should also shed light on the relationship between
SL(2,C)-spinors on the one hand and gravitational energy on the other
(see Chapter Three for further discussion on spinors and kinematical
quantities in general relativity).

We now return to spinors and embeddings. Having discussed co-
dimension one spacelike embeddings in spacetime, we turn now to co-
dimension two spacelike embeddings. As mentioned above, spacelike
2-surfaces have found various applications in general relativity
theory; as closed trapped surfaces, they are an important tool in
the analysis of spacetime singularities, and they also form the basic
framework for defining quasi-local kinematical quantities. In par-
ticular, the codimension two spinor theory is an essential component
of both the Ludvigsen-Vickers and of the Penrose approach to quasi-
local momentum. A careful study of spinor structures on 2-surfaces
also sheds light on the geometry of the GHP formalism, a formalism
which has found applications in many areas of the theory of general
relativity.

Let S be an oriented 2-manifold and (M,g) a (spacetime

oriented) spacetime. Let f: (S,h) &+ (M,g) be an orientation

compatible spacelike isometric embedding, so that h = f"g has
signature equal to -2.
m
S
We have the following principal bundles:- sl <> s0(s,h) —— S;

|
i T=
£

Yo, rY < som(e)) —5 s;

sot(1,3) < so,g)
m

% v
€ < 50(f) ~—£+ S. Here, we have used the isomorphisms S0(2) = Sl,

sot(1,1) = ]{F (using the isomorphism
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o
w

cosh¢ sinh¢
{ P~é~e¢) and SIX‘R+2 T

sinh¢ cosh¢

We now demonstrate that the normal bundle of such a codimension
two spacelike embedding is necessarily trivializable (Cf. the co-
dimension one case described above, and also Newman [N 4 ]):

Proposition (2.3)9: Suppose S.,M,f,g are as just described. Then

the normal bundle Vel N(f) — S 1is trivializable.
Proof: First note that, since f*TM = Df.TS® N(f), the fact that
both S and M are orientable implies that the vector bundle N(f)
is orientable.

Now we use the fact that (M,g) 1is spacetime oriented, so that
there exists a globally defined timelike vector field on M. We
can choose this vector field t such that t 1is orthogonal to
£(S), i.e. such that tof € T'(N(f)).

The section tof 1is necessarily nowhere vanishing (since ¢t
is timelike) and hence we may define the line bundle N

t

= {r(tof)X):r € R, x € S} over 8. N is a line subbundle of
N(f), and we denote by N% the gl"orthogonal complement of Nt
in N(f). Hence, N(f) = Nt & Né .

We now utilize the fact that a line bundle is orientable if
and only if it is trivializable. The trivial line bundle Nt is
thus orientable and hence, since N(f) is orientable, we must have
that Nt is orientable and thus trivializable.

Now, N(f) is the Whitney sum of trivializable vector bundles
and therefore N(f) 1is itself trivializable O

In applications, we always choose a global trivialization of
N(f), and it is convenient to use a pair of null normal fields to
achieve this trivialization:-

First note that, for each x € S, the spacetime orientation
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of (M,g) together with the orientation of S uniquely defines an

out in)

ordered pair (LX s LX of future pointing null directions in

& .
Tf(x)M' The spaces Liu and L;n are respectively the outward and

inward pointing future null directions contained in the timelike

subspace Tis of Tf(x)M'

Definition (2.3)10: A trivialization {1,n} of N(f) is said to

be null if (i) 1(x) € LEUt and n(x) € L;n, for all x € S:; and

(i1) gt(1,n) = 1.

E&' on SO(N(f)) gives rise

Note that the action of S0%(1,1)
to the free transitive action of Gau SO(N(f)) = C+(S) on the space
of null trivializations given by (r, {1,n}) Fﬁ'{rl,ruln}, for all
r € C+(S) and for all null trivializations {1l,n}.

Given a null trivialization {1,n}, the induced metric h on

S may be written
h = g-1280° -2aP g 1P 2.3.14,

% %
where b: N(f) — £ T M is the lowering map induced by gl. 1In
equation 2.3.14, we have suppressed mention of f. The orthogonal

projection of £ TM onto Df.TS is given by
hb = 5b -1 nb - n lb 2.3.15,
a a a a
using abstract index notation, and the normal projection onto N(f)
is given by:
b b b
( = . .
(gh) 1n +n]l 2.3.16

A 2-surface tensor 1is one which arises from any tensor product

of Df.TS and its dual. 2-surface tensors may be characterized by the

property that their contracted tensor products with (gL)z all vanish.



~174-

For more details concerning this '"242" orthogonal decomposition, we
refer the reader to d'Inverno and S’C&C}'&(ﬂ, [T 4 ] and to Smallwood
[s21]. These papers give a reformulation of the initial value prob-
lem within a 2+2 framework.

Returning now to the bundles arising from the embedding £, we

have the following version of diagram 2.1.2:

)

> S0t (1.3) —————>301(1,3)

G’;;:C
/ N \ n
R gl
F\\\\\g /7 zf//)? . R Z Wif N’
N SO(f) ¢ > £ SO(M,g) 1 sot,g)
R
\ / \ gl
SO(N(£)) Te S0(S,h) £y "
A
s / k{//éj
Vv £ W
2.3.17,

and SO(f)Xm* sot(1,3) = f*SO(M,g), by proposition (2.1)9.
The theory of connections follows from the general ideas developed
in section 2.1. For instance, the R2%- component of ((ﬂ;f)ol)*mg
with respect to the decomposition LS0%(1,3) = R2 @ L(2,2) defines
a connection we in SO0(f). Proposition (2.1)13 gives us that

W, = 0w € Conn SO(S,h) is the Levi-Civita

£ h

connection of h and ur]l?- € Conn SO(N(f)) 4is the normal connection.

+ B “’?If , Wwhere wy
For covariant derivatives we utilize equations 2.1.5, 2.1.6 and
2.1.7, and we have a direct analogue of equation 2.3.11 for 2 -surface

tensors; simply replace hz in 2.3.11 by the projection given by
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equation 2.3.15.

We now consider spin structures. The spin groups corresponding to

the various special orthogonal groups are as follows:— We have
Spin(2) 2 s! with double cover A: S! — SI; ele Fﬁ‘eZle, and
. voE * + 2
Spin(1,1) = R with double cover A: R — R ; t > t=. Then,
" * *
Spin(1,1) x Spin(2) = R'XZ’ st is isomorphic to T via the iso-
‘2

morphism; [(t,ele)} b tele. The double cover

ot

%

AT 2 Spin(1,1) X Spin(2) — T SO¢(l,l)X S0(2) is now seen to

be just the squaring map; =z b+ z2, for all =z € E*.

The bundle of oriented normal frames ]§+ & SO(N(£f)) — S is
trivializable, therefore there is no obstruction to a A-prolongation.
The question as to whether or not the bundle S! <= S0(S,h) — S
admits a A-prolongation depends of course on the topology of S.

For simplicity, suppose that S dis compact, connected and without
boundary, so that § 1is characterized by its genus g (recall that

all our manifolds are orientable). The second Stiefel-Whitney class

vanishes in this case, so that there is no obstruction to prolonging

SO0(S,h). 1In fact, HI(S,ZZ) = Zgg , therefore there exist 48
inequivalent h-spin structures on S (see 1.2.2). Choosing one of

these equivalence classes and taking a representative

s, = (ga(s,h),nh) € %(S,h), we have the principal circle bundle

h
%8(S,h) over S. We also have the trivializable principal R%-
bundle SO(N(E)).

On performing the constructions given above in this section,
we obtain the bundle of adapted spin frames Spin(1l,1) X Spin(2)
z E* s gg(f) — § together with the spin frame bundle
SL(2,8) < S$O(f,g) — S, where S$O(f,g) = 88(£)xgx SL(2,0).

As with the codimension one case, we may construct the vector bundles



-176-

Sf’ etc., over S (see definition (2.3)6). The vector bundle Sf may
. Wy 2 Wy 2

be thought of as either SO(f,g)XpE or as SO(f)xp 1E , where

1: € <> SL(2,T) is inclusion. As before, the vector bundles Sg,

etc., carry a symplectic structure e. We also have an Infeld-Van

der Waerden isomorphism corresponding to £ and sy (see definition

(2.3)7). Thus, we possess the full power of the 2-component spinor

formalism on the 2-manifold S. 1In order to do calculus, we intro-

€ Conn(ga(f,g)) and % €

3 I f\,
duce the spin connections w(f,g) £

Uy
Conn(SO(f)) as above.

To complete this section, let us consider the relationship be-
tween codimension two embeddings and related spinor structures on
the one hand and certain constructions arising in other parts of
this thesis and in the literature on the other. In particular, we
recall section 1.5 in which we discussed spinors and conformal
structure.

Given the isometric embedding f: (S,h) < (M,g) together with

I r\Jr\' 3
the h-spin structure S, = (SO(S,h),nh), we may construct the prin-
. * Ay . v

cipal € ~bundle SO(f) and also the connection Wee Let us now

. I '\1’\" 3 »
consider vector bundles associated to SO(f) and their corresponding

. . . s . v Y
covariant derivatives arising from We € Conn(SO(L)) :-

o
w

A
For each (s,w) € 3Z xT, we have the representation G of T

on L (defined by equation 1.5.14). We define the complex line
bundle E(f;s,w) by

AV vt
E(f;s,w) = SO(f)xA T 2.3.18,

ps,w

and, by analogy with definition (1.5)3, we have the following:

Definition (2.3)11: Given S,M,f,g,sh and (s,w) as above, we

define a function of spin weight s and boost weight w to be a
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section of E(f;s,w).

The reason for the term boost weight is that

cosh¢ sinh¢ t
sot(1,1) = ( }

|sinhg coshg ¢ € RAT is the group of boosts of

J

(R2, can(1l,1)). Definition (2.3)1l may be regarded as a geometriza-
tion of the definition of a spin- and boost- weighted scalar given
in Geroch et al. [G # ] in the special case of the GHP formalism on
an embedded 2-manifold. We also refer the reader to Ehlers [E# ]
who discusses a modified GHP formalism in which the basic principal
E*—bundle is a reduction of the entire bundle SO%(1,3) & So(M,g)
—> M of oriented g-orthonormal frames over spacetime. We do not
assume that such a reduction of SOT(l,B) to m* exists - all our
constructions arise from the embedding f: S <= M.

v} A" .
The connection We in SO(f) now gives rise to a covariant

derivative acting on spin- and boost- weighted functions. For given

(s,w), we denote this derivative by %(f;s,w), so that
'\l(f;S,W) 1
v : T(E(f;s,w)) — Q(E(f;s,w)) 2.3.19.

We may deal with spin- and boost-weighted spinor fields over
S by taking tensor products. For example, we have the vector bundle
12 < Sf--——> S, and we may construct E(f;s,w)@msf. Sections of the
latter bundle are contravariant unprimed Weyl spinor fields of spin
weight s and boost weight w. Regarding E(f;s,w) as a rank two
real vector bundle over S, we may also form such tensor products
as E(f;s,w)8 TS and E(f;s,w) ® N(f), thereby obtaining spin-
and boost-weighted vector fields. The covariant derivatives in

E(f;s,w) and in the spinor bundles combine to give a covariant
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derivative acting on weighted spinor fields. Given a null trivializa-
tion {1l,n} together with a local section of S0(S,h), we may take
the corresponding four components of the covariant derivative. The

1td f ' S
resulting four operators are the GHP operators 2, 3, 8CHP and gGHP

Let us now consider the special case S = S2. For any metric h
on S2 arising from an embedding f: S2 < (M,g), there exists a
unique h-spin structure (because Hl(SZ:ZZ) = 0). We therefore

.. * Wy 2 Ny

have the principal € -bundle SO(f) over S (and SO(f) depends
only on £f and the spacetime metric g).

Now recall that there exists a canonical principal Ex—bundle
over $2 (see section 1.5). This is given by T mz—{g} I, g2

(1.5.13) and corresponds to the unique spin conformal structure

e

oy "y
(CB(Sz,Can),n) of (S%,Can). Here n: CB(SZ,Can) mz—fg}

X S3X?R+-—ﬁ-CO(SZ,Can) X SO(3)><?]R+ is given by n = A><ide,
where A:S3 = Spin(3) — SO0(3) dis the double covering (Cf. 1.2.4).
The principal E*—bundle 7 leads to the notion of functions
of spin weight s and conformal weight w (definition (1.5)3) and
also to the eth operator 35 (see equations 1.5.51 and 1.5.52, but
note that here we use the notation 80 rather than 7).
Thus, given an isometric (codimension two) spacelike embedding
f: (S?2,h) < (M,g), we have two principal E*-bundles over S2,
namely g%(f) and EB(SZ,Can), and two corresponding eth operators,
namely ECHP (acting on spin- and boost-weighted functions) and
80 (acting on spin- and conformally-weighted functions). In fact,
a third eth operator is also used in the literature (see, for example,
Newman and Tod [N 4—]), and we denote this third eth by gNP' The
third eth may be either regarded as the GHP eth acting on functions

of boost weight zero, or as arising in the same manner as HO in
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section 1.5, but with a general metric h on S2 rather than can
(of course any such h may be obtained from can by a conformorphism
by the uniformization theorem for Riemann surfaces).

In the usual general relativity notation, the relationship be-

tween the three eths may be written as follows:-

QR
3
i

¥ n-tMn 2.3.20,
NP

Qg
=3
]

(
Vgon + \3OV)S(U)H 2.3.21,

where b(n), s(n) are respectively the boost- and spin-weights of
the (local) section n, and Vv is such that h = 4v{1-+;23“2d;d2
in local isothermal coordinates (Cf. 1.5.23, 1.5.34). Equations
2.3.20 and 2.3.21 are verified in a straightforward manner using
the GHP formalism together with equation 1.5.51.

L. Ay Ve o 2

The two principal bundles SO(f) and CO(S4,Can) over S
both possess the same structure group, namely EA, but this group
arises in two different ways. In %8(f), T is an isomorph of

. Y . . AN L0 o, .
Spin(1,1) x Spin(2), whereas in CO(S4,Can), T is an isomorph
Y + ® . .
of CO(2). The TR -factor in T is responsible for boost~weight
in %a(f), and for conformal-weight in EB(SZ,Can).

The notions of boost- and conformal-weight may be united in
two ways. Firstly, we may consider the standard embedding fO of
S2  in Minkowski spacetime (R, can(1,3)); S2 4is embedded as a
round sphere of radius one in R3 and this embedding is composed
with the spacelike embedding of R3 as any hyperplane in

Uy Ny
(R*, can(1,3)). Then, h = can € Met(5?) and SO(f ) = CO(s?,Can),
so that, in this case, there is no distinction between boost- and

conformal~weight.

On the other hand, if we wish to maintain both weights, then a
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second approach is possible; we consider conformal rescalings of
the spacetime metric g. Let COT(1,3) — CO(M,Cg) — M denote
the conformal frame bundle of spacetime (M,g). Then f*CO(M,Cg)
is a principal COT(l,B)—bundle over S, where f is an isometric
embedding of (S,h) (S any oriented 2-manifold) in (M,g). We may

therefore consider the real line bundle Ré = f"CO(M,Cg)xA R over

S (Cf. definition (6.2)4). Sections of Ri, are called ?unctions
of conformal weight w on S. By tensoring ]%i with E(f;s,w')
(and withother vector bundles over §) we may obtain quantities
with spin-weight s, boost-weight w' and conformal-weight w.
This approach is adopted in Penrose and Rindler [P 14 ] (see pp.
352-362), but we hope that our remarks have clarified the geometry
of the situation. We also refer the reader to the formulae

6.2.12 - 6.2.44 which give the conformal transformation properties
of important spin- and boost-~weighted quantities.

We note also the work of Ludwig [L 12 ]. Ludwig considers
complex Lorentz transformations and complex conformal rescalings
within the framework of the group GL(2,T) xGL(2,T). Ludwig also
calculates the generalized transformation properties of useful
geometrical quantities, albeit in a very algebraic fashion. An
interesting avenue for further study would involve a consideration
of the Ludwig ideas within the context of embeddings and principal
bundles. This work will be left for future investigation.

We hope that the remarks of this section have demonstrated the
natural geometric manner in which embeddings and spinor structures
interact with one another. Other ideas, such as conformal structure,
also come into play when we consider the specific case of embeddings

in a spacetime. We have already indicated certain applications of
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the ideas of this section to general relativity theory. In Chapter
Three, in particular in sections 3.3 and 3.4, we consider another
application; this time to spinor field null propagation and the

definition of quasi-local momentum.
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3.0 Introduction

In this chapter, we continue our discussion of spinors and
embeddings in general relativity. The emphasis 1s on spinor pro-
pagation equations on null hypersurfaces and their application to
the definition of quasi-local momenta in spacetimes. The chapter
highlights the natural interaction between null embeddings,
SL(2,&)-spinors, 2-surfaces and kinematical quantities.

The chapter is organized as follows:- Having discussed
spacelike embeddings in section 2.3, we first introduce null
embeddings in spacetime. Null embeddings present problems when
we attempt to push through the ideas developed for spacelike,
and other non-degenerate, embeddings. Nevertheless, null embed-
dings are important in gravity theory (the reasons for this
importance will emerge below), and therefore we outline the
approaches to circumventing these difficulties.

In section 3.2, we describe how concepts arising from space-
like embeddings may be transferred to the null context by taking
a limit of spacelike embeddings. We refer to this as a null
limit. Our approach is straightforward and it is based upon the
normal bundle - a trivial line bundle for a codimension one,
orientation compatible, spacelike embedding. Our main applica-
tion of the null limit technique is to derive a natural spinor
field propagation equation on a null hvpersurface - this is a
limit of the Sen-Witten equation described in section 2.3.

The propagation equation has been used in general relativity
theory in the definition of quasi-local momentum due to Ludvigsen

and Vickers [L 10] and also in the derivation of a fundamental
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inequality between mass and charge (see [L 7/ ]1). 1In section 3.4,
we describe how our propagation equation is used in these applications.
In order to set the scene for the quasi-local momentum discussion
of section 3.4, in section 3.3 we give a brief overview of gravita-
tional momentum in general. We discuss the historical, physical and
geometrical development and we emphasize the importance of kinematical
quantities in general relativity. In recent years, it has become
apparent that spin structure seems to underly mass-momentum—angular
momentum in general relativity theory. The full significance of the
interaction between spinors and momentum is not yet clear, but our
discussion covers the current state of understanding.
The important novel idea in this chapter is that of the null
limit as a means of obtaining null versions of spacelike concepts.
We will indicate further applications of this technique in sections

3.2 and 3.4.

3.1 Null Embeddings

In this section, we give a brief discussion of the theory of
null embeddings in a Lorentzian manifold. We are particularly
interested in the case of codimension one null embeddings in a
spacetime, since null hypersurfaces play an important role in the
theory of general relativity. TFor example, null hypersurfaces
appear as the smooth parts of achronal boundaries such as event
horizons and Cauchy horizons, and they are also an essential
ingredient in the theory of black holes and of singularity theory
in general (see Hawking and Ellis [H & ]). ©Null hypersurfaces also
arise as the future and past null infinities of asymptotically flat

spacetimes (see section 6.3) and as characteristic surfaces in the
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theory of radiation (see Friedrich and Stewart [F1Z ]). Our use for
null embeddings is within the context of quasi-local momentum in
general relativity and we discuss this particular application in
section 3.4.

We now summarize the main facts concerning the structure of
null embeddings. For details, we refer the reader fo Kupeli [K 16 ]
and references therein.

Let (M,g) be a connected, spacetime oriented Lorentzian
n-manifold, so that the signature of g 4is equal to 2 - n. Let
f: H <> M be an embedding of the m~manifold H (m<n) in M
and let h = f*g € SZ(H)'

Definition (3.1)1: The embedding f: (H,h) & (M,g) is said to

be null if h dis degenerate.
Let f: (H,h) <> (M,g) be a null embedding and, as usual
- see section 2.1, let Vet N(f) — H be the normal bundle of f,sa
-1 = mly = .
Hence, for each x € H, Ve (x) = TXH = {v € Tf(x)M' g(£(x)) (v,w)
=0, for all w € Df(x).TXH}, and TiH is a (n-m)-dimensional
subspace of T M. Note, however, that Df(x).T H & TH
f£(x) X X
+ Tf(x)M’ since the inner product induced on Df(x).TXH is
degenerate.
For each x € H, we let L = Df(x).T.HMN TiH, so that L
X X X X
is a one-dimensional degenerate subspace of both Df(x).TXH and
e . A
of TXH. The orthogonal complement of LX in Tf(x)M is given
by Li = Df(x).TXH +VT§H. Let L(f) = | LX and define the pro-

xEM

Af: L(f) — H in the obvious manner. Then L(f) possesses

the structure of a line bundle over H. 1In fact, L(f) dis the

jection

only subbundle of both Df.TH and N(f) with one~dimensional

null fibres.
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Definition (3.1)2: The line bundle Af: L(f) — H is called the

null bundle of the null embedding £.

Proposition (3.1)3: The null bundle L(f) is trivializable.

Proof: Let t be a globally defined future directed timelike vector
field on (M,g) and define 1 € I'(L(f)) by x> 1(x), where 1(x)
is the unique element of A;l(x) satisfying g(f(x))(1(x),t(x)) = 1.
Then, 1 is a smooth (future directed) nowhere vanishing section of
L(f) which provides a trivialization for L(f) &

Note that, since L(f) 4is a line bundle, any future directed
section of L(f) 4is given by 1' = rl for some T € C+(H). More-
over, since L(f) 1s the unique null subbundle of Df.TH, the section
(Df)_ll is a future directed.null vector field on H which is unique
up to an element of C+(H).

We have the following corollary to proposition (3.1)3:

Corollary (3.1)4: Let f: (H,h) < (M,g) be a null embedding of

codimension one or two. Then H is necessarily orientable.
Proof: Let t be any unit future directed timelike vector field
on (M,g) and 1 a future directed section of L(f) such that
gf(l,t) = 1.

Suppose first that codim(£f) = 1, then, since t is nowhere
tangent to f(H), f*(ltvol(g)) is a nowhere vanishing (n-1)-form
on H. Hence, H is orientable.

Now suppose that codim(f) = 2 and let lf € F(TM|f(H)) be
defined by lf(f(x)) = 1(x), for all f(x) € £(H). Then we have

that s = t]f(H) -1 is a spacelike section of Tle(H) which

f

e

is nowhere tangent to f(H). Hence, f (1slt!f(H) (vol(g) |£(®)))
is a nowhere vanishing (n-2)-form on H, so, again, H is

orientable O
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Note that if H 1is given the orientations referred to in the
proof of corollary (3.1)4, then f is an orientation compatible

embedding.

Definition (3.1)5: Let f: (H,h) < (M,g) be a null embedding

and 1 a future directed, nowhere vanishing section of L(f), so
that (Df)ull is a future directed null vector field on H. The
image of an inextendable integral curve o of (Df)_ll is called

a (null) generator of f.

The idea of a null generator is very useful in the analysis of
null embeddings, in particular, the causal structure of null embed-
dings. We do not discuss such matters here, but refer the reader to
Kupeli [K 76 ]. However, for completeness, we state the following
theorem:

Theorem (3.1)6 (Kupeli [K16 ]): Let H be simply connected and

f: (H,h) <> (M,g) a null embedding. Suppose S is a closed,
connected, spacelike hypersurface of (H,h) with the property that
every generator of f 1iIntersects S. Then there exists a diffeo-
morphism ¢: H — S xR such that, for each x € S, w_l({x}x R)
is a generator of £f. 1In particular, since H is diffeomorphic to
SxR, S 1is simply connected.

The major difficulty in the study of null embeddings arises
because of the non~existence of a well defined projection of f*TM
onto Df.TH. Thus, we cannot construct expressions such as those
contained in equations such as 2.1.5 - 2.1.7 and 2.3.11 which
utilize the projection h. In particular, there is no well defined
induced connection on H. However, there do exist certain useful
Riemannian vector bundles over H:-

Let E denote any one of the vector bundles Df.TH, N(f),
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1

L~(f) = DE.TH 4+ N(f) over H. Hence, L(f) CEC £ TM. Define

E = E/L(f) with Riemannian fibre metric ‘g given by §kx)(§}€b

g(x)(v,w), where v,w € ng(x) with p(v) = ;; plw) = w

(where p: E — E is the quotient map), for all v, w € f:kx) and

"

x € H. It is straightforward to verify that the metric g 1is a

well defined Riemannian fibre metric in the vector bundle E

over M. Note that I+(f) = Df.TH # N(f) is an orthogonal Whitney
sum of Riemannian vector bundles over H.

Definition (3.1)7: The Riemannian vector bundle pf: R(E)

= DfE.TH — H dis called the canonical Riemannian vector bundle

associated with the null embedding f£.

Note that R(f) dis a rank (m~1) vector bundle over H.

This bundle may be used in a study of null embeddings utilizing the
techniques of Riemannian geometry. In particular, a null second
fundamental form Kf € F((QZR(f)*) ® L(f)) together with a co-
variant derivative operator (which differentiates sections of R(f)
along the direction of L(f)) may be defined. Kupeli [K48 ] uses
these concepts to investigate the deviation of null congruences in
an embedded null submanifold and also to analyze the structure of
totally geodesic null submanifolds.

Since we shall be especially interested in codimension one
null embeddings, it is worth remarking on particular features of
this case. Suppose f: (H,h) & (M,g) is a codimension one null
embedding. Then the vector bundles Df.TH, N(f) have ranks equal
to (n-1),1 respectively, and L(f) = N(f). Hence, R(f)
= DE.TH/N(f) has rank (n-2), ﬁf?fhg H and LL(f) = R(f).

In particular, if n = 4, then R(f) 4is a rank two Riemannian

vector bundle over the 3-manifold H. In this spacetime case,
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theorem}(3.l)6 gives a relationship between embedded null hyper-
surfaces of spacetime on the one hand and embedded spacelike 2-
surfaces on the other. We return to the interaction between em-
bedded null hypersurfaces and embedded spacelike 2-surfaces in
section 3.2.

To complete this section, we draw the reader's attention to
the paper of Crampin [C 1] ]. 1In this paper, Crampin discusses
degenerate metrics on manifolds using the appropriate frame bundles.
In particular, a vector valued function on the orthonormal frame
bundle is defined, and the vanishing of this function implies that
the manifold admits a torsion free linear connection whose parallel
translation leaves the degenerate metric invariant. This principal
bundle approach to connections associated with degenerate metrics
complements the vector bundle approach of Kupeli [K 46 ]. We do
not provide an analysis of the relationship between the two approaches
here, but such an analysis would shed further light on the structure
of null embeddings.

We turn now to an alternative technique for dealing with null

embeddings, namely the null limit.

3.2 The Null Limit

In section 3.1, we outlined the reasons why an analysis of null
embeddings is more difficult than of the non-degenerate case. In
this section, we present a technique which enables certain concepts
associated with a spacelike embedding to be also associated with a
particular class of null embeddings. This is done by taking a null
limit of spacelike concepts. We shall apply this technique to

obtain a spinor differential equation on a null hypersurface in



-189-

section 3.4, this particular equation being an important part of the
Ludvigsen-Vickers definition of quasi-local momentum in general
relativity theory. We also suggest other possible applications for
the null limit technique.

The class of null embeddings for which our technique is appro-
priate is the class constructed from null geodesic congruences
orthogonal to spacelike 2-surfaces. Note that not every null em—
bedding arises in this way (see Kupeli [K 46 ]) but this class will
be sufficient for our purposes. Indeed, in the application to quasi-
local momentum we take a spacelike 2-surface as the starting point.

In what follows, (M,g) is a connected, (spacetime oriented)
spacetime and S 1is a connected, oriented 2-manifold. As in
section 2.2, we denote by EmbS(S,M) the manifold of spacelike
embeddings of S in (M,g).

Let £ € Emb (S,M). Then we have £°TM = DE.TS & N(£f). In
addition, we have the further decomposition N(f) = LOUt(f) & Lln(f),
since N(f) dis trivializable (see proposition (2.3)9). Here,
LOUt(f) and Lin(f) are the naturally defined null line bundles
over S defined by f, so that Lout(f) = {t 1(x): t € R} and
Lin(f) = {t n(x): t € R}, where {1,n} izezny null trivialization
of N(f) (see definition (2.3)10).

Let expg denote the exponential map of g. Then there exists
an open neighbourhood V of the zero section in TM such that
expg: V — M 1is defined. Let W- = (Tzf)—l(v) ~ N(f), so that
VL is an open neighbourhood of the zero section in N(f), and
define exp—L = (T;f)* expg V- . The map expt is called the

normal exponential map (of £ and g). Now let U = Vi'r\LOUt(f),

t
then U 1is an open neighbourhood of the zero section in Lo (£,
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such that expLxU is an embedding of U into M. Let ﬁ = expL(U)o
N
Then H 1is an embedded null hypersurface of (M,g).
n
The null hypersurface H has the special property that there

AY]
exists a geodesic null vector field on H; this is obtained by taking

the tangent vectors of the null geodesics with initial data 1(x),
x € S, where {1,n} is some trivialization of N(f). A null hyper-
surface with the property that it admits a geodesic null vector field

is called a geodesic null hypersurface. Kupeli [K7§ ] demonstrates

that if a null hypersurface ﬁ in a spacetime (M,g) dis causally
separated by a spacelike 2-surface %, then ﬁ is geodesic. Here,
% cauysally separates ﬁ means that there exists a diffeomorphism
ﬁ: i —9:g><ﬂi such that, for each x 6 E, w—l({x} x R) is a null
generator of 1%:ﬁ —+ M (Cf. theorem (3.1)6)

Thus, theHnull hypersurface ﬁ constructed from our original
f € EmbS(S,M) is a geodesic hypersurface. Let {1l,n} be any null
trivialization of N(f). Then {l1,n} is unique up to an element of
C+(S). Denote by E the extension of 1 to a future directed
null geodesic vector field on the null hypersurface ¥ and denote

by {¢u: u € I C R} the local l-parameter group of (local) diffeo-

morphisms generated by E g T(N(1m>) S D1m.Vect(§) = Vect(ﬁ).
H H

Since f(S) 1is an embedded submanifold of ﬁ, we may define the
embedding fu = ¢u o f: 8§ < ﬁ, for each u € I. The map

u > fu is thus a curve of spacelike embeddings of S in (M,g).
We also have the diffeomorphism F: Sx I —»-ﬁ; (x,u) ké-fu(x)

e ¢u(f(x)), and F dis then an element of EmbN(S><I, M), where
EmbN(Sx I, M) denotes the space of null embeddings of SxI in
(M,g). EmbN(S><I, M) may be regarded as a boundary of

EmbS(SX I, M) din Emb(SxI, M).
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o

Note that H = |/ f (S) and let E_ = |[J] Df .TS. We regard
u f u

u€l u€l "

Ef as a subbundle of Tﬁ by defining the projection gt Ef — Hj

Dfu(x).v — fu(x). Hence, Ef is also a subbundle of 1:(TM), and

H
we may define the g—-orthogonal complement E% of Ef in 1m(TM).
H
Thus, E and EL are rank two vector bundles over ﬁ with space-~

£ £

like and timelike fibres respectively.
T
v
The vector bundle Ef N H may be related to the vector bundle

opt R(F) — SxI. Here, F: SxI — M; (x,u)1—+>fu(x) and R(F)

is defined by (3.1)7. The image of F 1is ﬁ.g M, and, for all
' N
(x,u) € SxI and (v,t) & T(X,u)(S><I) = TXS # R, we have

df

DF(x,u).{(v,t) = Dfu(x).v + 75?-(x).t = Dfu(x).v + t%(fu(x))

A"
C _ .
€ Tfu(X)H<, Tfu(X)M' Here, we have used the fact that fu ¢u £,
where {¢u} is the local l-parameter group of diffeomorphisms generated

n, "N —
by 1 € Vect(H). We also have that vFl(X,u) = {t%(fu(x)): t € R}, so

Il

that the fibre of the vector bundle R(F) = DF.T(SxI)/N(F) at

(x,u) € Sx1I is naturally isomorphic to {Dfu(x).v: v € TXS}

= Dfu(x).TXS. Hence, R(F) = | Dfu(x).TXS = | Df .TS, and
(X,U.) u
pF: R(F) — Sx 1I; Dfu(x).v — (x,u).

JAY] A"
We have Tt Ef — H and F: SxI — H, so0 we may construct

the pullback bundle F t,: F E, — SxI. In fact, F E
- {((X’u)’Dfu(x)'v): (x,u) € SxI and v € TXS} with
(F“Tf>((x’u)’Dfu(X>'v) = (x,u) = DF(Dfu(x).v). Hence, the map

v FKE — R(F); ((x,u),Dfu(x).v) F»~Dfu(x).v is an isomorphism

f

of vector bundles over SxI. We summarize the above in the

following:

Proposition (3.2)1: Let f € Embs(S,M) and {1,n} a null triviali-

zation of N(f). Let F € EmbN(SX I,M) be the codimension one
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geodesic null embedding constructed from (f, {1,n}) as above

Y
and let H = F(Sx1I) denote the corresponding null hypersurface in

Y]
: R(F) > 8xI and 7t_.: E. — H be the rank two

(M,g). Let Pyt £ ¢

vector bundles defined above. Then R(F) is naturally isomorphic

)

KN
to F Ef'

We make the following remarks:-— (i) Tﬁ = Ef & N(lﬁ);

(ii) The Riemannian structure g in the vector bundle R(F) may

ES N
be transferred to F Ef using ¥ and, since F: SxI — H 1is a
diffeomorphism, we also obtain a Riemannian structure in the vector

bundle <t.: E. — ﬁ.

f f
Since Ef is a subbundle of Tﬁ, then N(1m) is a subbundle
H
of E%. Hence, E g F(N(lﬁ)) is a section of E%: We may define
V] oy
another null section n of E% by requiring that (gei,)(1,n) = 1.

H
By definition, g $ T(N(1%)> (since % £ Vect(ﬁ)), and therefore
H

AV
{I,n} provides a trivialization of the vector bundle E%' (we may

regard E% as being obtained by Lie transporting over ﬁ the

v
{l,n}-trivialized vector bundle N(f) using the null vector field I).

We summarize the various Whitney sum decompositions as follows:-

o

N(f) = Lout(f) & Lln(f); Tﬁ =E_. & N(1v ) 1&(TM) =g & rL . and
f ﬁ ﬁ £ £
EL = N(1,) 8 N'(1,), where N'(1) = {tn(f (x)): t € R,
H H i N
(x,u) € SxI} with projection v'w: N'(lm) — H given by
H H
t;(fu(x)) — fu(x). Thus, N(1q) and N'(lﬁ) are obtained by Lie
H

transporting over ﬁ, LOUt(f) and Lln(f) respectively, using

AV] o V)
1e F(N(1m))_g Vect(H). Obviously, n is the extension of n
H
to a future directed null section of E%~ with (g01m)(%,g) = 1.
H
The initial data (f, {1,n}) has yielded in a unique way the

null embedding F: SxI <+ M together with the null vector fields

n A%
{l,g}. By construction, H = F(Sx1I) is foliated by spacelike
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2-gurfaces. We remark that Kupeli [K 16 ] gives necessary and
sufficient conditions for the foliation of a null hypersurface in
a spacetime by spacelike 2-surfaces. These conditions are stated
in terms of the self-adjointness of the Ef—component of the co-
variant derivative of g.

We now consider the problem of defining useful concepts on
the null hypersurface ﬁ (constructed from (f,{1,n})) analogous
to concepts which may be defined on a spacelike hypersurface. The
concepts we have in mind are those which, a priori, require a well
defined projection h; for example, the Sen-Witten operator (see
definition (2.3)8). We perform the null construction by taking a
1imit of the analogous spacelike constructions. In order to do
this, it is first necessary to define a l-parameter family of
spacelike embeddings whose limit is the given null embedding F
in some sense:-

Let 8§ >0 and s € (0,8). Define LS = U {t(sﬁll(x)
_ x € S
+ s n(x)):t € R} and AS: LS — 83 t(s "1(x) + sn(x)) > x.
Then LS is a line subbundle of N(f). Moreover, the fibres of
LS are timelike, since |lt(s-ll + sn)M?2 = 2t2 >0 for t + 0.

Let Lé denote the g-orthogonal complement of L, in £ (T™),

so that Lé is a rank three spacelike vector subbundle of f“(TM)

and define a spacelike line subbundle W of Lé by

W, = Lé AN = U {t(1(x) - s?n(x)):t € R} with obvious pro-
€S
jection onto S.

Now consider the pullback of the exponential map of g,
namely (T;f)xexpg: (T&f)—l(v) -—> M, where V is the open neigh-
bourhood of the zero section in TM referred to above. Let

Ug = Won (T;f)_l(V), so that US is an open neighbourhood of the
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Y
zero section in the line bundle wS over S. Now we define H;
% * n,
= ((TMf) expg)(US). Then H; is an embedded spacelike hypersurface
of (M,g) which contains £f(S) as a codimension one embedded

submanifold.

Ny
Recall that we have the future directed null sections 1, n

Ja
~

Ny
of (TM). We may extend 1, n to future directed null sections,

1
v
H N A n
also denoted 1, n, of TM defined on an open neighbourhood of H
in M such that g(%,g) = 1. 1In particular, the extended vector
\

fields 1, g are defined on a neighbourhood of £(S8) in M, and

o o n,
hence on a neighbourhood Hs of f(S) in Hé. The 3-manifold HS
is also an embedded spacelike hypersurface of (1,g) which con-
tains f£(S) as a codimension one embedded submanifold.

oy

We define the unit tangent vector field ﬁ on Hs by

4 -0y AV} ny
k S (s ll - s n)ols, where 1 = Lt HS‘—+ M is inclusion, and

V2 ®H
denote by {wq: q € JC R} the local l-parameter group of (local)

ny
Vect(HS). Since

diffeomorphisms generated by t £ Dls.Vect(ﬁS)
£(S) is an embedded submanifold of ﬁs’ we may define the embed-
ding £, =y of: S Levﬁs, for each q € J. We then have the
diffeomorphism F_: SxJ — ﬁs; (e,@) = £.GO = Y (£()  and,
by definition, FS € EmbS(Sx J,M).

Since I and J are open with non-empty intersection, we may,
without loss of generality, take J = I. We then have F €
EmbN(Sx I,M) and also the curve fF: (0,8) — EmbS(S><I,M). For
each s € (0,8), the unit normal of FS is given by

t = ;L'(S—l% + Sg)oFs' Note that the component of the normal of

V2
Fs in the n-direction vanishes as s-—>0, so that the normal is

\
entirely in the I1-direction in the limit. For this reason, we regard

{Fs: s € (0,8)} as a l-parameter family of codimension one spacelike
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embeddings with the codimension one null embedding F as null limit.

The idea of null limit provides a technique for obtaining null
versions of spacelike concepts. For example, suppose, for
s€ (0,8), QS is some expression arising from the spacelike embed-
ding FS, and constructed using the (non-degenerate) projection hS.
A corresponding quantity for the null embedding F does not exist
a priori since there is no well defined projection. However, we
may obtain an analogous null version of the QS by taking the limit
of Q, as s —> 0. We say that Q is the null limit of {QS}.

In section 3.4, we use the null limit technique to obtain a
version of the Sen-Witten equation (2.3.12) which may be utilized
on null, rather than spacelike, hypersurfaces. Other possible
applications include the <characteristic initial value problem
(where the limit of the spacelike constraints is taken), null
canonical quantization and also the study of the interaction be-
tween asymptotic structure at spacelike infinity on the one hand
and at null infinity on the other.

Since our main use of the null limit technique is to show how
the null limit of the Sen-Witten equation is an essential ingredient
in the Ludvigsen-Vickers definition of quasi-local momentum, we

first give a brief overview of momentum in general relativity.

3.3 Gravitational Momentum

In this section, we present an overview of momentum in general
relativity. We outline the importance of gravitational momentum,
the problems encountered when attempting to define it and also the

various approaches to solving these problems. In the next section,
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we continue our discussion with a description of quasi-local momentum
in general relativity, emphasizing the importance of spinor and null
embedding ideas.

Let us first consider the general framework of kinematical quan-
tities or moments and the reasons why this is important in the study
of a physical system. The central principle is Noether's theorem
which implies the existence of conservation laws for a Hamiltonian
system with symmetry. It is very useful to be able to characterize
a system using a small number of conserved parameters, for example

"charges'" arising from Yang-

momentum, angular momentum and other
The starting point is a phase space with symmetry. Geometrically,
we have a symplectic manifold (P, w) on which a Lie group G acts
by symplectomorphisms. A moment for the G-action is then a smooth
map j: P — (LG)* such that d(j(£)) = T for all £ € LG.
Here, 3 : LG — C(P) is the map dual to ? and EP € Vect(P) is
the infinitesimal generator corresponding to &, for all ¢ € LG.
In other words, each infinitesimal generator gP has 3(6) as a
Hamiltonian function. Note that a moment, if it exists, is defined
up to an element of (LG)*.
If the Hamiltonian H € C(P) is invariant under the action of
G, then any moment is a constant of the motion for the Hamiltonian
flow. This is a version of Noether's theorem and demonstrates the
sense in which symmetries of a Hamiltonian system lead to conserved
quantities. In physics, the phase space usually consists of an
infinite dimensional manifold of fields, which is equipped with a
weak symplectic form. Moments arising from a symmetry may often be

interpreted as fluxes of physical quantities. For more details
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concerning Hamiltonian systems with symmetry, we refer the reader to
Abraham and Marsden [A 2 ].

It is useful to compare the situation for a special relativistic
field theory on the one hand with general relativity on the other:-
In special relativity we have Minkowski spacetime (®,n) as an
arena in which physics takes place. We also have a group action,
namely that of the Poincaré group 0(1,3) x R* which acts by
isometries on Minkowski spacetime. For simplicity, let us consider
the case of massless scalar field theory. The phase space may be
taken to be the space P of n-~harmonic functions of compact support

equipped with the weak (constant) symplectic form w given by:

= % - x

w(fl,fz) f (fl df2 fz dfl) 3.3.1,
H

for all fl’fZ € P. Here, * is the Hodge dual arising from n and

"y

H is any Cauchy surface in (R%*,n). Since fl and f2 are n-

harmonic, the symplectic form w is independent of the choice of H.
The action of the Poincare group on Minkowski spacetime induces

a symplectomorphic action on (P,w) in the obvious manner. The

corresponding moment may be given in terms of the stress-energy-

momentum tensor for the massless scalar field theory:- For £ € P,

let T, = df 8 df = Ndfl2n g SZ(JR“) denote the corresponding

stress—energy-momentum tensor. Consider £ € L Poincaré (regarded
as a subalgebra of Vect (R*)) and define J = Jf(i) = Tf(g,-)

€ ol (RY). Then, since Tf is divergence free and £ 1is a

Killing vector field of (Rk,n), we have &J = 0. Thus the l-form

J may be regarded as the conserved current describing the particular

momentum or angular momentum component associated with &. In fact,
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it may be shown (see Abraham and Marsden [A 2 ]) that the moment for the
action of the Poincaré group on (P,w) is given (up to a constant)
by:

<G(E),e> = )f*Jf@z) 3.3.2,
H

for all & € L Poincaré and f € P. Thus the moment gives the total
net ''charge'" intercepted by the spacelike hypersurface H. Alter-
natively, we may interpret 3.3.2 as giving the flux through H of
the momentum or angular momentum component associated with the par-
ticular Lie algebra element £ chosen.

We may generalize the above discussion to other Poincaré in-
variant field theories on Minkowski spacetime. For example, we
could take Maxwell theory (or, more generally, a Yang-Mills theory)
or a fluids theory. 1In each case, we have the stress-energy-momentum
tensor T® for each field ¢ in the phase space and the moments
are given by an equation similar to 3.3.2.

It is very useful to rewrite equation 3.3.2 as one involving
a 2-surface integral rather than a hypersurface integral. Suppose

S = 3H', where H' 1is some region of H. Suppose also that there

F@(E) € Q2(R") such that &F =J (= JQ(E)). Then the

Hi

exists F

integral in equation 3.3.2 may be rewritten as [*F (using Stokes'
S

theorem). This 2-surface integral may be regarded as giving the

total charge surrounded, or linked, by the spacelike 2-surface S.

we write:

Qq)(a;S) = )(*FCD(E) 3.3.3.
S

Equation 3.3.3 is regarded as a basic ingredient in the calculation

of conserved kinematical quantities. Conservation of the momentum
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or angular momentum component corresponding to the Lie algebra ele-
ment & shows up in two ways:— Firstly, the value of Q = Q@(g;S)
is independent of the spacelike hypersurface chosen to span S, i.e.
the total charge intercepted by an 'earlier'" such hypersurface is
equal to that intercepted by a '"later" one. Secondly, suppose S

is deformed continuousliy outside the support of T®. Then the value
of (Q does not change.

Ideally, we would like to be able to write down an expression
analogous to 3.3.3 for kinematical quantities in general relativity:
Minkowski spacetime (Rﬁ,ﬂ) is replaced by a general vacuum (or
possibly non-vacuum) spacetime (M,g) and instead of calculating
moments of the special relativistic field ¢, we wish to calculate
gravitational moments. If an equation like 3.3.3 could be written
down for gravity, we would still require that the charge integral
be independent of any particular choice of hypersurface spanning
the 2-surface §S. However, we cannot hope for a conservation law
in the second stronger sense; the gravitational field in empty
space carries energy (and other kinematical quantities) and there-
fore even an empty space continuous deformation of the 2-surface S
will change the value of the charge integral. We consider this
problem of non-localizability of gravitational energy shortly.

Let us now consider the factors inherent in the theory of
general relativity which cause problems when an attempt is made to
write down an expression such as 3.3.3.

A basic problem is the choice of phase space and symmetry
group. For special relativistic field theories, we have Minkowski
spacetime (R“,n) which plays the rdle of an arena in which physics

takes place. The phase space is a space of fields on this arena and
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tﬁe Poincaré group is a group of symmetries of the phase space. The
arena and group are 'universal' in that they do not depend on the
particular solution of the field theory under consideration. What
arena do we use for general relativity? Spacetime (M,g) itself is
no good because, even after fixing the background manifold M, the
metric g 1is a particular solution of the theory and so certainly
cannot be regarded as providing a universal geometry like the
Minkowski metric n does in special relativistic theories. Even if
we do dispense with the idea of universal arena and focus attention
on a particular solution (M,g), we still have no analogue of the
ncaré group =~ a generic metric g possesses trivial isometry
group (see section 4.1). Thus, we have no Killing vector fields &
to plug into equation 3.3.3.

The fact that there exists no universal group analogous to the
Poincaré group means that it is not entirely clear which kinematical
quantities make sense in general relativity. 1In special relativity,
we know that the elements of L Poincaré give rise to specific
kinematical quantities. For example, a translation generator gives
rise to a component of 4-momentum and, once a Lorentz subalgebra has
been picked out by choosing an origin, a rotation generator gives
rise to a component of angular momentum. Without a group with such
a physical interpretation as the Poincaré group in special relativity
(or the Galileo group in Newtonian theory), it is difficult to give

mathematical reasons for the existence of given moments such as

energy, momentum and angular momentum. One way out of this problem
is to restrict the class of spacetimes by imposing physically reason-
able requirements. For instance we could consider isolated systems

only - this leads to a consideration of asymptotically flat spacetimes
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for which well defined and physically meaningful universal.asymptotic
symmetry groups do exist. We return to this point below.

In addition to the problem caused by the absence of a universal
phase space and symmetry group, there also exists another factor in-
herent to gravitational theory which prevents the existence of a
straightforward analogue of equation 3.3.3. ©Note that the construc-
tion of J® (and hence F®) involves the local tensor field TCD -
the stress-—energv-momentum tensor of the field ¢&. No such local
moment density exists in gravitational theory due to the non-

localizability of gravitational momentum:-—

From a foundational viewpoint we have the Principle of Equi-~

valence, a cornerstone of general relativity and of other theories
of gravity. The Principle of Equivalence postulates the existence

of local inertial frames and hence the non-existence of local gravita-

tional fields. The absence of local gravitational fields implies
that gravitational momentum cannot be localized. Thus, the localiza~-
tion of gravitational momentum is forbidden by the Principle of
Equivalence.

In the model cof gravitation provided by the theory of general
relativity, we may give an alternative reason for the non-existence
of a local momentum density:— On dimensional grounds, any such
density should depend only on the (l1-jet of the metric 2)?. However,
on a Lorentzian manifold (M,g), there does not exist any non-zero
field constructed solely from the 1-jet of the metric. Thus, we do
not expect to find a local momentum density in general relativity
theory.

On the other hand, gravitational momentum certainly exists:-

In the Newtonian limit of general relativity theory, we know that the



-202-

empty space gravitational field carries energy. For example, the
gravitational potential energy contributes (negatively) to the total
mass—energy of a system; the total mass—energy of two gravitating
bodies instantaneously at rest with respect to one another is less
than the sum of the mass-energies of the individual bodies by an
amount equal to the gravitational potential energy of interaction.

Another manifestation of the empty space gravitational non-local
contribution to momentum is given by the existence of gravitational
waves — assuming that we believe the observational evidence; for
example, that which seems to imply the speeding up of the binary
pulsar (see Taylor [T & ]).

The conclusion that we draw from the above discussion is that
if charge integrals analogous to the one given by equation 3.3.3
exist in the theory of general relativity, then the integrand can-
not be constructed from a local moment density as is the case in
special relativistic field theory. There exists no local quantity
which describes the gravitational contribution to the total momentum.

We now consider the various approaches that have been made to
solving the problem of momentum in general relativity theory. It
is clear that any good approach should address both the question
of phase space and symmetry group and also the question of non-
localizability. We should be guided by clear physical and geometric
principles.

Historically, the first approaches to the problem were neither
physical nor geometric; in the early days, gravitational momentum
was described by means of a '"pseudo-tensor" LS This was a
coordinate-dependent quantity such that the coordinate-divergence of

Tab + tab vanished. This led to an integral conservation law for
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gravitational and matter field momentum. The non-localizability

of gravitational momentum manifested itself in the fact that, at any
given spacetime event, the quantity measuring gravitational momentum
density could be reduced to zero by a suitable choice of local coor-
dinates. The only physically meaningful quantity was the total
momentum, obtained by integrating the non-tensorial objects out at
infinity. Even when taken to infinity, coordinate dependence
remained, so from a geometric point of view, there was a basic
obstacle to giving a suitable interpretation of these expressions.
For more details concerning these early pseudo-tensorial attempts,
see Einstein [E 9 ], Tolman [T™# ], Landau and Lifshitz [L 1 1

and Mg¢ller [M 7121].

In the late 1950's, new, more geometrical alternmatives were
suggested. These were due to Bel and Robinson (see Bel [B§ ])
and to Komar (see [K 9 ]), and both of these approaches have had an
impact on later work in the area, particularly in quasi-local
definitions (see section 3.4).

The Bel-Robinson approach was an attempt to obtain an energy-
density-like quantity for gravity based on an analogy with Maxwell
electrodynamics. The basic idea was to consider the Bel-Robinson
tensor field BR(g) € SA(M) associated with a spacetime (M,g).

Using abstract indices, BR(g) 1is given by

= m n * % mn
BRabcd B Camcncb d + Camcn Cb d 3.3.4,

Cmn
€abmn cd

[\STE

where is the Weyl tensor of g and hcabcd =

Cabcd
is the dual of the Weyl tensor. For vacuum spacetimes, the Bel-

Robinson tensor is totally symmetric, trace-free, and divergence-free.

Thus, the Bel-Robinson tensor possesses similar properties to the
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stress—~energy-momentum tensor 'I‘F of a Maxwell field.
A further analogy with electrodynamics is obtained if a unit

timelike vector field t 1is chosen. Then the Weyl tensor is

uniquely determined by its electric and magnetic components:

Eab = Cambnt t 3.3.5,

- x m_n
By = *Coppnt € 3.3.6.

E and B are symmetric, trace-free, and spatial with respect to ¢t.

1f we evaluate the Bel-Robinson tensor on t, we obtain:

2 2
BR(g) (t,t,t,t) = IEI +1BI 3.3.7,

where the pointwise norm is the one induced by g. Thus, the time~
like component of BR(g) 1is non-negative and equal to zero if and
only if (M,g) 1is conformally flat. Equation 3.3.7 should be com-
pared with the analogous equation TF(t,t) =l EIZ +1BI2 for
Maxwell theory. Here, E and B are respectively the electric
and magnetic components of the electromagnetic 2-form F with res-
pect to the unit timelike vector field t. The fact that there is
such a strong resemblance between the Bel-Robinson tensor and the
Maxwell stress—energy-momentum tensor leads to the possibility of

"stress—energy-momentum tensor

regarding BR(g) as some kind of
for the spacetime (M,g)"- However, the Bel-Robinson tensor does
not have the correct dimensions; in geometrized units, momentum
density has dimensions (length)_z, whereas BR(g) has dimensions
(length)—4. Hence, there can be no direct interpretation of BR(g)
as a gravitational stress—energy-momentum tensor.

It turns out, however, that the Bel-Robinson tensor is

important in certain aspects of quasi-local energy in general
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relativity (see section 3.4). In particular, BR(g) makes an
appearance in the "small 2-surface" limit of both the Ludvigsen-
Vickers quasi-local energy (see Bergqvist and Ludvigsen [B 9 1)
and also in the Hawking quasi-local energy (see Horowitz and
Schmidt [H I2]). 1In both cases, in the absence of matter, the
leading-order (r®) component of the quasi-local energy is deter-
mined by the Bel-Robinson tensor. These results for the
Ludvigsen-Vickers and Hawking quasi-local energies should be con-
trasted with the result for the Penrose quasi~local energy; in
this case, the energy vanishes at the fifth order in a vacuum
spacetime (see Kelly et al. [K 2 ]).

Thus, in the Ludvigsen-Vickers and Hawking definitions of
quasi-local gravitational energy, the Bel-Robinson tensor may be
viewed as a measure of the gravitational energy per unit
(length)S. It is not an energy density, but it is the dominant
contribution to these quasi-local energy integrals in the absence
of matter.

The second major contribution to gravitational kinematics in the
late fifties came from Komar [K @ ]. Komar constructed covariant
conservation laws Iin general relativity in certain special cases
and his work may be regarded as a prototype quasi-local approach.
The linkage framework of Geroch-Tamburino-Winicour (see Tamburino
and Winicour [T 71 ], Winicour [W % ] and Geroch and Winicour [G & ])
also owes much to the Komar approach.

We now present a brief description of the Komar kinematical
quantities. Let (M,g) be a spacetime and S an embedded space-
like 2-surface in (M,g). Our starting point is the diffeomorphism
group Diff(M) regarded as a symmetry group in the sense that we

shall write down a charge integral such as 3.3.3 which defines an
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element of the dual of LDiff(M) = Vect(M). It turns out, however,
that for physically meaningful quantities to be defined, it is
necessary either to restrict to Killing vector fields for ¢

(of which there may be no non-trivial ones, of course) or to con-
sider asymptotically embedded 2-surfaces S.

Define the linear map J: Vect(M) — Q1 (M) by

Jg)y = 6d£b 3.3.8,

for all & € Vect(M). Now let H be any spacelike hypersurface

in (M,g) with B8H = §, and define the Komar integral

Q(+;S) € Vect(M)* by:

Qgss) = J *J (&) 3.3.9,
H
for all & € Vect(M). Note that Q(+:S) depends only on S and
not on the choice of spanning hypersurface:- Suppose Hl’ H2 are space-

like hypersurfaces spanning the given spacelike 2-surface S. Then

J *J(E) - J *J(g) = [ d*J(£) (where V 1is the four-dimensional
Hl HZ v
region in M with 23V = HlU(—HZ)) = ( d*@dgb = 0, for all

\Y

£ € Vect(M). Hence, Q(-;S) depends only on S and is thus con-
served.

We may write Q(+;S) as an explicit 2-surface integral over
S as follows:- Choose any spanning hypersurface H and let

g € Vect(M). Then, Q(&;S) = J*ddab = Jd*dgb = (*dgb. Hence, the

H H S
Komar integral may be written in the charge integral form as:

Q(g;s) = J *dab 3.3.10,
S
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for all & € Vect(M) (the expression given by Komar in equation
(3.7) of [K Q] differs from 3.3.10 by a factor of (l67rG)_l,
where G is the gravitational constant).

In order to extract physically meaningful information from
the Komar integral, we must assume that g is non-generic, i.e.
g admits a non-trivial Killing vector field £. 1In addition, we
assume that S lies entirely inside the matter-free region of
spacetime. It then follows that Q(£;S) is independent of S:-
Suppose S and S2 are embedded spacelike 2-surfaces in the

1

matter—-free region and suppose H is an embedded 3-manifold with

3H = slU(~Sz). Then, Q(g;sz) - Q(g;sl) = J ='=dgb = [*Gdgb = 0,
b oH H
since V2g  + g(E,R(*,*)(*)) = 0 (R = Riem(g)) and Ric(g) = O.

Hence, Q(&;S) is independent of 8.

The Komar integral now leads to satisfactory moments. For
example, suppose (M,g) 1s stationary with timelike Killing vector
field £ generating time translations. Then 0Q(£;S) is (167G
times) the mass of the spacetime (provided that S 1lies outside
the matter region). If (M,g) 1is axisymmetric with spacelike
Killing vector field & generating rotations, then Q(&;S8) is
(167G times) the component of angular momentum associated with §£.

It is important to note that the Komar integral is performed
over a 2~surface which lies entirely in the matter-free region.

If Ric(g)[S is not identically zero, then the Komar integral
exhibits certain anomalous behaviour as was noted by Tod [T 3 ],
who showed that the Komar integral does not give the correct answer
for the mass of the Reissner-Nordstrom spacetime (by '"correct
answer'', we mean the one which agrees with linearized theorv - the

agreement with linearized theory is a very important constraint
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for definitions of kinematical quantities in general relativity
theory).

The Komar integral cannot be used in a generic spacetime in a
meaningful way. However, for an asymptotically flat spacetime, the
existence of the BMS group at null infinity (see appendix 6.3)
means that the Komar integral at null infinity is physically appro-
priate and it reduces to the Bondi~Sachs momentum (see Tamburino and
Winicour [T 71 ]). We now discuss isolated systems and asymptotic
kinematics in more detail:-

The above remarks concerning the problems encountered when
attempting to define gravitational moments have made it clear that
the absence of a universal arena and symmetry group means that we
should restrict our attention to a restricted class of spacetimes
in order to circumvent some of the problems. One such restricted
class which has strong physical motivation is that consisting of

isolated systems.

Many theories in physics admit a class of solutions which mayv
be regarded as representing isolated systems. For example, in
Newtonian gravitational theory, an isolated system is one whose
mass density possesses spatially compact support and also has
asymptotically vanishing gravitational potential. Although such
isolated systems are not expected to represent the Universe in
every detail, they are very useful in that they are a good approxi-
mation to certain subsystems of the Universe encountered in the
physical world; for example, in Newtonian theory, our solar system.
Indeed, it is only through a useful notion of isolated svstem
that we acquire the ability to describe various subsystems of the

Universe - 1in particular, to characterize these subsystems using
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parameters such as momentum, angular momentum and charge.

In general relativity theory, examples of isolated systems
include stars and black holes, and a study of the solutions of the
Einstein equations representing such systems has made a very im-
portant contribution to our understanding of the structure of the
theory. It turns out that a very useful definition of isolated
system is essentially that of asymptotic flatness. This idea
encapsulates the notion that the spacetime metric "approaches
some flat metric far from the sources of the gravitational field".
The current definition of asymptotic flatness is both geometrical
and physically reasonable and much of the important work in
general relativity done in the 1960's fits neatly into this frame-
work.

There are three distinct regimes in which asymptotic flatness
may be considered. These correspond to passage from the isolated
sources to infinity in spacelike directions, in null directions
and in timelike directions. The timelike case has little interest
for us in a discussion of gravitational momenta, although it may
play a role in cosmology. The spacelike and null cases are both
very important in the definition of moments in general relativity,
although for us, the null case is more important. In fact, it is
fair to say that, from a physical point of view, the null asymp-
totic structure of an isolated system is more important than is
the spacelike asymptotic structure. We summarize the important
properties of (null) asymptotically flat spacetimes in appendix 6.3.

From both a mathematical and physical viewpoint, the null and
spacelike regimes have certain important features in common. For

example, in both cases, the "boundary at infinity' may be detached
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from the original physical spacetime and the boundary becomes a
universal asymptotic arena, i.e. it doesn't depend on the par-
ticular asymptotically flat spacetime. Various spacetime fields
induce corresponding fields on the boundary and these fields are
classified as either universal or physical. The former, together
with the boundary space itself, provide the universal asymptotic
structure. The physical fields provide asymptotic information
about the physical spacetime. This splitting up of fields into
two classes solves a basic problem always present in the theory
of general relativity, namely the fact that the spacetime metric
is both a geometrical and a physical object. Extracting physical
information without a non-dynamical background is difficult, but
the asymptotic splitting up of the fields provides a means of
getting hold of physically meaningful information which was hitherto
unobtainable.

Having obtained the universal arena (i.e. the boundary at
infinity equipped with the geometrical fields), it is then possible
to define a universal symmetry group, namely the group of diffeo-
morphisms of the boundary which leave invariant the universal fields.
The existence of the asymptotic symmetry group leads to the possi-
bility of defining moments. These moments may be interpreted
physically in terms of the knowledge they give us concerning the
original physical spacetime. The physical interpretation of the
moments is arrived at by either evaluating the moments for par—
ticular spacetimes for which we can be '"'sure'" of the meaning of
the moments (e.g. for stationary spacetimeé) or by comparing the
asymptotic symmetry éroup with the Poincaré group. It turns out

that the asymptotic symmetry group is similar in structure to the
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Poincaré group, but with a less recognizable translation subgroup.
Since we know which physically interesting moments correspond to the
various Poincaré Lie algebra elements, we may use the resemblance

of the asymptotic symmetry group to the Poincaré group to give
physical meaning to at least some of the asymptotic moments.

In addition to the similarities between null and spacelike
asymptotics, there exist important differences. In the null case,
the asymptotic boundary is a null submanifold of the compactified
spacetime whereas in the spacelike case, the boundary is timelike.
From a physical viewpoint, information may travel from the physical
spacetime to reach null infinity, but not spatial infinity. Hence,
null infinity may be used to study the dynamics of the isolated
system, whereas at spatial infinity, there is no dynamical infor-
mation. This state of affairs is reflected in the behaviour of
the masses defined in the two cases; the ADM mass (see Arnowitt
et al. [Ab6 1, [A% ], [A8]) defined at spatial infinity is a
fixed number representing the total mass of the spacetime, but the
Bondi mass (see Bondi et al. [B15]) is a dynamical quantity repre-
senting the mass at a particular retarded time. Indeed, in the null
case, we have a formula expressing the retarded time rate of change
of the Bondi mass in terms of the mass lost by radiation to null
infinity.

The asymptotic boundary at spatial infinity, being a timelike
submanifold, is equipped with a non-degenerate metric and the sym-
metry group is just the Lorentz group. On the other hand, the metric
in the null case is degenerate and the asymptotic symmetry group is
the infinite dimensional BMS group (see definition (6.3)3). Thus,

in the spacelike case, the translation subgroup has been reduced
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from four dimensions (for the Poincaré group) to zero, whilst in the
null case, the dimension has increased from four to infinity. The
infinite dimensional translation group does play a physical r6le at
null infinity, whereas tramslations play no rdle at spatial infinity.

Our main interest is in spacetimes asymptotically flat at null
infinity since these are physically more interesting and they also
provide a class of spacetimes for which the Ludvigsen-Vickers quasi-
local momentum may be defined (see section 3.4). For a thorocugh
discussion of spatial infinity, we refer the reader to Geroch [G & ]
and to Shaw [S415]. Note that the relationship between asymptotic
structure at null infinity on the one hand and spatial infinity on
the other may be investigated within the unified framework of
Ashtekar and Hansen [A7% ]. For example, given an isolated system
which is asymptotically empty and flat at both null and spatial in-
finity and which also satisfies a boundedness condition on the Bondi
news tensor, it may be shown that the difference between the ADM
momentum and the Bondi momentum associated with a given retarded
time is equal to the momentum carried away by the gravitational
radiation emitted between the infinite past and the given retarded
instant (see Ashtekar and Magnon-Ashtekar [A19 ]).

Let us now discuss asymptotic null momentum in more detail.
The original definition in the early 1960's (see Bondi et al [B15 ])
was not within the framework of null infinity, but, since it is
natural to consider null momentum within the context of asymp-
totically flat spacetimes, we shall do so here; we indicate how
the universal arena and symmetry group lead directly to a physically
useful concept of asymptotic momentum. For details, we refer the

reader to Ashtekar [A 42 ] and Ashtekar and Streubel [A 2%].
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The basic idea is to utilize the universal kinematical arena
which exists for any asymptotically flat spacetime (M,g). This
arena consists of the manifold {}+ z S2x R equipped with the strong
conformal geometry S (see definition (6.3)2). The automorphism
group of this structure is the Bondi-Metzner-Sachs group,

BMS

T

SO*(l,B) x C(S2) which acts on fﬁk according to equation
6.3.2.

The strong conformal geometry is the first order structure on
§-+. In addition to this structure, we also have second order
structure:— Suppose S =g 8 n ® n and consider the collection
I'' of torsion-free connections w on §—+ such that g and n
are w-parallel. Since q 1is degenerate, each such connection is
defined only up to an element of C(4—+), and we define T to be
the space F'/C(éﬁ}. Each element of T possesses two independent
components per point of é-+, and these represent the two radiative
degrees of freedom of the gravitational field.

The space I has a natural affine structure and is equipped
with a weak symplectic form Q. The BMS group acts symplectomorphically
on the phase space (I',) and, for each £ € LBMS, the moment func-
tion 3(&) € C(I') is precisely the flux through €}+‘ of the con-
served quantity associated with £. For & a translation generator,
the flux obtained is precisely the flux of the Bondi 4-momentum.

In order to obtain a charge integral over a cut oféjl it is
necessary to integrate the flux. Ashtekar and Streubel [AZ3 ]
demonstrate that this integration may be performed for generators of
supermomentum. If a restriction to the four dimensional translation
subalgebra LT 1is made, then the Bondi 4-momentum is obtained.

In order to give a formula for the Bondi 4-momentum, it is

convenient to re—-introduce the physical spacetime and its
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compactification. Let (M,g) be an asymptotically flat spacetime
and (M,g,f,¢) a maximal regular asymptote where, for simplicity,

we assume that the conformal embedding ¢ is inclusion of (M,g)

PN A
in (M,g). Let S be a cut of future null infinity L%+, so that
N

+ ~
S 1is a section of Z; diffeomorphic to S2. TLet ! S <> M
N

~

be the inclusion of S din M, so that Lo is a codimension two
spacelike embedding of S in (M,g). Let {1l,n} be the unique

null trivialization (with respect to g) of N(ls) (see definition

(2.3)10) such that ﬂ is the restriction to S C 4f+ of the null

A
~

+ #
normal to {; , namely (-df) . Exponentiating 1 gives an
outgoing null hypersurface ﬁ of (M,g) 1in a meighbourhood of

+ . . . .
A. for which the images of the integral curves of the extension
X

of 1, also called 1, are generators. Let G denote the shear

of the null geodesic generators of the null hypersurface ﬁ. Then,

N ~

with respect to a local g-null tetrad {i,ﬁ,$,a} (obtained by

extending 1 and 0 to a neighbourhood of 4_+ in M such that
é(i,ﬂ) = 1, and then adjoining the null extensions of m and ;}
where m 1is a local null section of TES, such that é(é,é} = -1,

we have:

= ¥’ v 1 3.3.11.

Note that the corresponding g-null tetrad is {l,n,m,;}, where

~

1=1f21, n=n and m = fm. The formula analogous to 3.3.1l using

the physical tetrad gives ¢ = f25.

~

. . + .,
The restriction of ¢ to S E.%} is a measure of the trace-
+
free part of the extrinsic curvature of the embedding § & é— .

In fact, fo[ gives the magnitude of this curvature and arg o gives

the directions of maximum extrinsic curvature relative to the null

tetrad (see Penrose [P 7 1).
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The other ingredient in the Bondi 4-momentum is conformal curva-
ture information. In fact, we need only the following component of

the Weyl tensor:

_ a 'b-—c’d _ -4 3.3.12.

Given the cut S, it is now possible to define the Bondi 4-
momentum as an element of the dual of the four dimensional subalgebra
LT of LBMS consisting of generators of translations. Using the
isomorphism BMS X SO¢(1,3) KX C(S2) together with the action 6.3.2,
we may regard LT as the four dimensional subalgebra of Vect(4-+)
consisting of vector fields & = an, where n = (—df)% is the null

-

normal and o € C(Sz) is a linear combination of spherical harmonics

with 1 =0 and 1.

It is convenient to introduce standard Bondi-type coordinates

~

in a neighbourhood of S in M and compatible with the tetrad (see

~ 23 55
Penrose and Rindler [P 1). Then the news function N = —%Rabma m

~

(R = Ric(g)) 4is given by:
¥ o= -2 3.3.13,

and satisfies:

~-N =¥ 3.3.14,

where Wa is given by:

22 nP me od -2 3.3.15.

e
|
@]
=]
j=]
=]
3
1l
Hh
=
B~

Note that W& is the part of the Weyl tensor corresponding to

gravitational radiation, so that the presence of gravitational radia-

~

tion is an obstruction to the constancy of the shear o¢ over the

family of cuts given by u = constant.
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The Bondi 4-momentum p € (LT)“ for the cut S (corresponding

to u = 0) 1is now given by:

) - L RSN
p(g;8) = o J o (oN wz)ds 3.3.16,
S

for all & = on € LT, where dS is the volume element corresponding
to the metric induced on S from é. For a derivation of equation
3.3.16 from the point of view of the Geroch-Tamburino-Winicour
linkages, we refer the reader to Walker [W 2 ].

The Bondi 4-momentum is geometrically well motivated (it arises
both from the linkage framework of Geroch-Tamburino-Winicour and from
the purely asymptotic phase space framework of Ashtekar and Streubel -
two very different approaches) and it possesses extremely desirable
properties:-—

As we have mentioned above, the Bondi 4-momentum p dis inter-
preted as the total 4-momentum of the spacetime (M,g) at the re-

tarded time given by the cut S. A very important property of p

is that it satisfies the momentum loss formula on €1+ :— Suppose
Sl and 32 are two cuts of 4+ with 82 entirely to the future
of Sl’ and let & = an € LT with o > O (so that & is a future

pointing vector field on f}+). Then
P(£;8,) < p(&;8)) 3.3.17,

if the weak energy condition (see Hawking and Ellis [H % ]) holds

in a neighbourhood of {% +. Note that there also exists a similar
result for f{ —, but on i;_, the Bondi 4-momentum is non—-decreasing
rather than non-increasing with time.

The momentum loss formula 3.3.17 is important because it shows

that gravitational radiation emitted by an isolated system carries
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positive energy. However, the formula gives no information about the
total energy of the system, and a long-standing conjecture until the
early 1980's was that the total energy of a system satisfying a
reasonable local energy condition is positive. More precisely, the
Bondi 4-momentum was conjectured to correspond to a future-directed
timelike or null vector for an asymptotically flat spacetime satis-
fying the dominant energy condition (i.e. Tabtb is future-directed

and timelike for all future-directed and timelike vector fields ¢t).

This conjecture was referred to as the positive energy conjecture at

null infinity.

There is also a positive energy conjecture at spatial infinity
for the ADM 4-~momentum. For a review of the spatial conjecture, we
refer the reader to Horowitz [H 74 ]. Note that the spatial conjec-
ture 1is weaker than the null version, because the Bondi 4-
momentum is a retarded time (i.e. cut)-dependent quantity, whereas
the ADM 4-momentum is constant.

The positive energy conjecture at null infinity has now been
verified. One method is due to Schoen and Yau [S40 ] and is a
modification of the variational technique which they used to prove
the spatial conjecture (see [§ 2 ], [S 2 ]). The other method, due
to Ludvigsen and Vickers (see [L % ], [L 2], [L 10]) and also to
Horowitz and Perry [see [H12 ]), utilizes spinor techniques in a
fundamental way. The spinorial attack on the null conjecture is
analogous to that used by Witten [W 9 ] in his proof of the spatial
conjecture, but the null version presents different problems due to
the degeneracy of the null hypersurface on which the spinor fields
are required to propagate. In section 3.4, we demonstrate a link
between the two approaches by showing that the Ludvigsen-Vickers

propagation equation is a null limit of the equation used by Witten.
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Another important link between the null and spatial cases is that the
2-surface spinor integrand used in defining the Bondi 4-momentum is
the same as that used in the definition of the ADM ‘4-momentum (see
Israel and Nester [I 9 ]) and this means that a spinorial version

of the Ashtekar-Magnon-Ashtekar result [A 19 ] concerning the rela-
tionship between the two 4-momenta may be obtained (see Horowitz

[H 11 1). A result of Ashtekar and Horowitz [A41% ] also shows that
neither of the two momenta can be null (i.e. the total 4-momentum
must be strictly timelike).

The fact that total energy in the theory of general relativity
is positive is a very important result and indicates a fundamental
difference between general relativity theory and Newtonian gravita-
tional theory:- In Newtonian theory, any bound system possesses
negative total energy and, even if the rest mass of the matter is
included in the total energy, it is still possible to have systems
with negative total energy, because the Newtonian gravitational
potential is unbounded from below. If it were possible for a general
relativistic system to have negative energy, then it would be possible
to extract an unlimited amount of energy from such a system; gravi-
tational radiation carries away positive energy by 3.3.17, thereby
reducing the (already negative) energy of the system. If there were
no lower bound on the energy, then the radiation could continue to
carry away energy from the system indefinitely. The validity of the
positive energy conjecture at null infinity ensures that such a
phenomenon cannot occur within general relativity theory; if a
system is compactified in order to try to make the total energy
negative due to binding energy, then a black hole is necessarily
formed and this black hole possesses positive total energy.

Various further consequences, extensions and generalizations
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of the positive energy theorem have been explored. One such
generalization takes into account the presence of black holes in the
asymptotically flat spacetime (see Ludvigsen and Vickers [L 70],
Gibbons et al. [G §]) and another considers the Einstein-Maxwell
case; it is possible to show that there exists an inequality imply-
ing that the total energy is bounded below by the total electromagnetic
charge (see Ludvigsen and Vickers [L 4 ] for the null case, and
Gibbons and Hull [G % ] for the spacelike case). Another extension
involves a consideration of higher dimensional theories ~ for example,
Moreschi and Sparling [M4% ] formulate the positive energy theorem

in Kaluza-Klein theory, thereby answering questions concerning the
attractiveness of the effective gravitational interactions and also
the classical stability of the theory.

For further remarks concerning the interaction between the
various approaches, we refer the reader to Horowitz [H41 ], Horowitz
and Tod [H44 ] and Shaw [S1%].

Before moving to the topic of quasi-local momentum in general
relativity theory, we make a few remarks concerning angular momentum.
In Newtonian theory and in special relativity theory, angular momentum
arises as the moment corresponding to generators of rotations in the
Galileo group SO0(3) k R3 and in the Poincaré group O0(1,3) x R
respectively. 1In order to define a rotation subgroup of these semi-
direct products, it is necessary to choose an '"origin'' about which
the angular momentum is to be taken. Having chosen an origin, the
stabilizer of this point under the entire semi-direct product group
is isomorphic to a copy of the rotation group. Elements of the Lie
algebra of this rotation group then give rise to corresponding com-

ponents of angular momentum.



-220~

The asymptotic symmetry group of null infinity é}+- also has
the structure of a semi-direct product of a rotation group and a
translation group; we have BMS = SO*(l.B) K C(Sz) (see 6.3.4). 1In
order to define a Lorentz subgroup of BMS, we must first fix an
origin in cone space A. This is tantamount to fixing a cut S
of f}+.

First consider Minkowski spacetime (R%,n). Each point in R
gives rise to a cut of ‘4.+ obtained by taking the intersection with
éi+' of the future null cone of the given point. Such a cut is
called a good cut and is characterized by the shear-free condition
; = 0. Having chosen a particular good cut So’ we obtain a Lorentz
subgroup of BMS by taking the stabilizer of SO. Since the four-
dimensional translation subgroup T 1s uniquely specified (inde-
pendent of choice of cut), we then have a Poincaré group P corres-
ponding to So' Any other Poincaré subgroup of BMS is obtained by
conjugating P with some supertranslation. The Poincaré group P,
being a subgroup of BMS, leaves invariant the strong conformal geo-
metry of éz-+ (see definition (6.3)2), and, in addition, P leaves
invariant the family of good cuts (note that any good cut is obtained
from SO by some translation in T).

For a general. asymptotically flat spacetime (M,g), we may
define a good cut to be one for which ; = 0 (we cannot take the
intersection of {%-+ with future null cones due to the presence,
in general, of caustics). Unfortunately, the presence of gravita-
tional radiation is an obstruction to the existence of a family
of good cuts, as equations 3.3.13 and 3.3.14 indicate. Therefore,
for a general asymptotically flat spacetime, although there exists

a naturally defined translation subgroup T of BMS, there is no
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family of good cuts with which to define Lorentz subgroups. Even if
there exists a good cut at some retarded time ug and also at a
later time Uy the emission of gravitational radiation during a
retarded time interval contained in (ul,uz) generally implies that
the Lorentz subgroups corresponding to uy and u, are conjugates
by a non-trivial supertranslation of one another. Thus, as Penrose
[P # ] remarks, ''the very concept of angular momentum gets ‘'shifted’
with time'".

It seems that an attempt to define angular momentum in the same
way that 4-momentum is defined is doomed to failure in general
relativity theory. Indeed, the Bondi 4-momentum occurs naturally
in that there is a unique canonical translation subgroup T of BMS,
but what right do we have to expect a corresponding definition of
angular momentum given that, in general, the good cuts necessary
for extracting Lorentz subgroups of BMS, do not exist?

The angular momentum problem has been attacked in various ways
over the years, but still has not been fully resolved. An obvious
approach is to define angular momentum in special cases for which
the above problems do not arise. For example in an axisymmetric
spacetime, there exists a rotational isometry and so the Komar
charge 3.3.10 may be used and there exist good physical arguments
for regarding this charge as representing angular momentum (see
Prior [P4% ]). Another special case is that of a radiation-free
spacetime. For such a spacetime, there exists a four dimensional
space of cuts whose shear possesses zero electric part (see
Newman and Penrose [N 2 ]). If the spacetime is stationary, then
this four dimensional space consists of good cuts, so that a

situation analogous to that for Minkowski spacetime exists. The
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subgroup of BMS leaving invariant the four dimensional space of cuts
is precisely T and the stabilizer of any one of them gives rise to
a Lorentz subgroup and thence to a notion of angular momentum - see
Bramson [B 20]. Bramson also discusses the radiation of spin and
shows that the spin vectors of the system, long before and long after
the emission of radiation, are supertranslation invariant (see
Bramson [B22 ]). A third possibility for investigating a special
case of general relativistic angular momentum is to consider past
null infinity f}'-, where a no incoming radiation condition is
usually assumed to hold.

More general definitions of angular momentum arise from the
Geroch-Tamburino-Winicour linkage formalism (see [G 6 ]), from a
twistor framework (Streubel [S24 1), from Yang-Mills theory
(Bramson [B20 ]) and also from quasi-local definitions (Penrose
[P @ 1, Ludvigsen—-Vickers [L10]). The relationship between these
definitions, in particular, the "anomalous factor of two problem’,
is explored in Dray and Streubel [D 73] and in Shaw [S4% ]. For an
approach to angular momentum based on 4-momentum, we refer the
reader to Cresswell and Zimmerman [€ 13 ], and for a review based on
physical considerations, see Winicour [W g€ ].

This section has given an overview of various aspects of total
(or asymptotic) gravitational momentum. In the next section, we
consider the problem of defining quasi-local kinematical quantities

in the theory of general relativity.

3.4 Quasi-local Momentum in General Relativity

This section serves two purposes; firstly to continue our

discussion of gravitational momentum, in particular to discuss
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quasi-local aspects of momentum, and secondly to give an application
of the null limit technique described in sectiom 3.2. The section
is organized as follows:- After a brief discussion of the quasi-
local philosophy, we review the various attempts to define quasi-
local kinematical quantities. We then describe the Ludvigsen-
Vickers definition in more detail and we demonstrate how this
definition is very natural within a spinor-null embedding context.
The null limit technique is then used to give a link between the
Ludvigsen-Vickers framework on the one hand and the Witten proof

of the positive energy conjecture on the other. We also make further
suggestions concerning quasi-local momentum in general relativity
theory.

In the previous section, we reviewed ideas relating, in the
main, to total gravitational momentum, i.e. momentum defined
asymptotically which represents, in the appropriate sense, the total
momentum content of the spacetime. From the problems outlined at the
beginning of section 3.3, we know that there exists no possibility
of defining local gravitational momentum, but do we really need to
go out all the way out to infinity in order to obtain a physically
meaningful concept of momentum? Another possibility is to try to
define quasi-local kinematical quantities; given an arbitrary
embedded, spacelike, closed 2-surface S 1in an arbitraryv spacetime
(M,g), is it possible to assign to S some quantitv representing
the total momentum or angular momentum (gravitational plus that
due to matter fields) surrounded by (or threading through) S?

Such a quantity could also be interpreted as the total momentum or
angular momentum intercepted by any spacelike hypersurface H with

oH = S. To be useful, such a quasi-local quantity should possess
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physically reasonable positivity and semi-additivity properties and
also should give the '"correct'" answer for the special cases for which
we already have a notion of quasi-local kinematical quantities (e.g.
special relativity, linearized limit).

Given the spacetime (M,g), we may regard a quasi-local quan-
tity as a map Q: D><Sub§(M) — R, where D is a space of
"descriptors', each descriptor being responsible for picking out a
particular component of momentum, angular momentum or other kine-
matical quantity, and Subg(M) is the manifold of two~dimensional,
closed, spacelike submanifolds of (M,g) (Cf. section 2.2). A res-
tricted quasi-local quantity would arise if we specified the diffeo-
morphism type SO of the closed 2~surface (for example, we might

require that SO = S2); then we would have Q: D><Sub: M — R,

0
where Subg (M) denotes the manifold of spacelike submanifolds of
0
type SO in (M,g). In the latter case, it may be convenient to
work with embeddings rather than with submanifolds:~ Thus, we would

consider a map 6: D><EmbS(SO,M) — R, where EmbS(SO,M) denotes
the manifold of spacelike embeddings of S, in (M,g). Provided
that a(D,-) is invariant under Diff(SO), we may project to
obtain a quasi-local quantity defined on the manifold Subg M)

0

(Cf. equation 2.2.4).

In practice, the quasi-local quantities considered are of the

form Q: D><Sub§(M) -— R, where:

Q(a3;s) = f *F(a3S) 3.4.1,
S
for all o €D and S € Subg(M). Here *F(+:S):D — 02(S) 1is a

2-form valued map on the descriptor space defined for each S € Subz(M).

(3

7

b

One possibility is that #F(+;8) = 1, o % © FM’ for all S € Subg(M),

w2
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where FM: D — Q2(M) 1is some given 2-form valued map, but ideally
the integrand in 3.4.1 should be completely intrinsic to the 2-surface.

Various possibilities for F have been explored in the literature.
The simplest special case is when the spacetime (M,g) is Minkowski
spacetime (R*,n). Then the momentum-angular momentum is due to the
on-gravitational) fields & and we have equation 3.3.3 giving the
total charge linked by the 2-~surface. In this case, we have
*F(*;S) = 7'<F(I>(';S) = 13 o % o F, where F: L Poincaré — Qz(Rg),
so that the descriptor space is the Lie algebra of the Poincaré
group, or, equivalently, the space of Killing vector fields of
Minkowski spacetime.

Moving on from Minkowski spacetime to a general non-generic
spacetime, we may consider the Komar approach. The paper of Komar
[K O ] may be regarded as a prototype for the study of quasi-local
quantities in general relativity theory. Let (M,g) be a spacetime
admitting a Killing vector field &£ and let S be a closed, space-
like 2-surface in (M,g) lying entirely within the matter-free
region of spacetime. Then the charge Q(£;S) given by equation
3.3.10 gives the momentum component corresponding to §&. In the
Komar case, *F(+;S): L Isom(M,g) — Q2(S): £ +—> 1:(*d£b), so
that the descriptor space is the space of Killing vector fields of
M,g).

The Komar charge is not a good candidate for a measure of quasi-
local kinematical quantities for two obvious reasons:- The first is
that we have to restrict to a subspaceffSubg(M)

(see the remarks following equation 3.3.10 concerning the anomalous
behaviour of the Komar charge for 2-surfaces within the matter

support). Secondly, the Komar descriptor space is zero for a

generic spacetime.
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A third problem with the Komar charge is that the integrand is
not completely intrinsic to the 2-surface. In fact, the integrand
depends on derivatives of the vector field & in non-tangential
directions.

As we have remarked above, a modification of the Komar charge
may be utilized at the (future) null infinity of a generic asymp-
totically flat spacetime. Then the descriptor space is the (super)
translation subalgebra of LBMS, and we get back to asymptotic or
total measures of momentum (see Tamburino and Winicour [T 4 ]).

This development of the Komar approach leads to the linkage
framework of Geroch-Tamburino-Winicour (see also Geroch and Winicour
[G @ ]). The linkage integrand generalizes that of Komar and re-
duces to *dgb when £ 1is a Killing vector field. 1In general,
the linkage descriptor space is LBMS transported to the 2-surface
using a propagation equation on the outgoing null hypersurface
from S to §>+.

Unfortunately, the linkage approach does not lead to a useful
quasi-local momentum. There are ambiguities inherent in the frame-
work (for example in the formulation of conservation laws) and the
integrand is still not intrinsic to S; it contains derivatives of
£ 1in the direction of the outgeing null hypersurface.

We now turn to a definition of quasi-local energy defined by
Hawking in 1968 (see [H 4 ]). Let (M,g) be a spacetime and §

a spacelike, embedded 2-sphere in (M,g). Let A = ( VOl(l;g) be
the area of S and denote by k the second fundamegtal form of S
(see equation 2.1.5). Using abstract indices corresponding to the
vector bundle 1;(TM), we have kabc = - hi hg Vi (gL)i, where h
is the projection onto TS (see equation 2.3.15) and gL is the

projection onto the normal bundle N(IS) (see equation 2.3.16).
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This formula for k 1is the direct analogue of equation 2.1.12 for
a codimension two embedding. The (1;g)—trace of k, denoted N,
is known as the normal mean curvature (see Kobayashi and Nomizu [K £ ]),

so that N € F(N(ls)) is given by N = kbba. Note that the g+ -

(pointwise) norm of N 1is given by INI2 = 8pp', where o and
p' are respectively the convergences of the outgoing and ingoing
null geodesics normal to S (see Horowitz and Schmidt [H 13 ]). The

Hawking quasi-local energy is now given by the following integral:

1
E(S) = %(%)2 (1 + I%?'{ INI2 ds) 3.4.2,

S

where dS = VOl(l; g) 1s the area 2-form of S. Note that the

Hawking quasi-local energy may be written in the form 3.4.1 1if we

put:
-1
XF(S) = —6-12 (At 7Z(167 + A INI2)dS 3.4.3,

but *F(S) is not the pullback of a 2-form on M.

The expression 3.4.2 was investigated by Eardley [E ] and was
shown to possess several desirable properties. In particular, it
vanishes in the limit when the radius of S tends to zero, it coin-
cides with the ADM and Bondi expressions when applied asymptotically
in an asymptotically flat spacetime, and, under certain conditions,
it increases monotonically with the radius of S. The "small
sphere" behaviour of E(S) was discussed by Horowitz and Schmidt
[H13] and they discovered that, in the presence of matter, the
leading-order contribution (r3) is the energy density of the matter,
whilst in the vacuum case, the leading-order contribution (r5) is

proportional to the 'time component' of the Bel-Robinson tensor
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(see equation 3.3.7). Note that the perturbation technique used by
Horowitz and Schmidt is natural in the sense that it is based on the
null cone at a given point in spacetime, although it is not clear
that the Bel-Robinson tensor would occur in alternative perturbation
schemes.

In addition to the desirable properties of the Hawking quasi-
local energy, there also exist not so desirable properties. The
main disadvantage with the energy is that it gives non-zero answers
for certain 2-spheres in Minkowski spacetime:- The Hawking energy
certainly vanishes for 2-spheres S such that 1;g is sufficiently
close to the round metric can, but for "less round" 2-spheres,
the energy can be non-zero. For this reason, we should only apply
the Hawking quasi-local energy to 2-spheres with induced metrics
close to can, although a precise definition of this class of
"sufficiently round" embeddings of S? 1in a general spacetime
(M,g) is difficult to give.

Another problem with E(S) arises if the "large sphere"
behaviour is considered (see Shaw [S49 ]). It turns out that, even
to first order, the Hawking energy gives non-zero contributions to
the energy of Minkowski spacetime. This problem may be avoided by
using shear-free 2-spheres (in any stationary spacetime), but then
unphysical contributions to the energy occur at third order.

We remark that another definition of '"quasi-local'' general
relativistic energy was suggested in the early 1970's by Geroch
(see [G 4-1). The Geroch definition is given for a 2-sphere
embedded in some spacelike hypersurface in a spacetime, so that
two embeddings are specified rather than just one. Thus, the Geroch

energy is not a bona fide quasi-local moment. It may be shown
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(see [H 13]) that the Geroch energy is just the corresponding Hawking
energy modified by a term involving the extrinsic curvature of the
given hypersurface. This extra term modifies the 'small sphere"
behaviour of the energy and the Geroch energy appears to be physically
less appropriate than the Hawking energy. Indeed, the Geroch energy
cannot be regarded as a hopeful candidate for a definition of quasi-
local energy for the reason alluded to above; the energy depends
on two embeddings.
We turn now to a much better definition of quasi-local kine-
matical quantities in the theory of general relativity, namely that
of Penrose [P 8 ], [P42]. The Penrose approach is based on twistor
theory and therefore utilizes spin structure in a fundamental way.
Indeed the successes of this approach, along with the essential use
of spinors in the proofs of the positivity conjectures (see section
3.3) and in the Ludvigsen-~Vickers definition of quasi-local moments
(see below), provides solid evidence supporting the belief that
spinors and gravitational moments are intimately linked (see section 1.0).
The basic Penrose construction may be described as follows:-
Let (M,g) be a spacetime and S an embedded, spacelike, closed

2-surface in (M,g). We assume that M dis spin and that a g-spin

structure sg has been fixed. We may then discuss the twistor equation:

v(i, B = o 3.4.3,

where is the covariant derivative induced in the bundle

VAA'
S(sg) and w € F(S(sg)) (see sections 1,3, 1.7). Equation 3.4.3

is projected onto the 2-surface S and we obtain the superficial

twistor equations for S for w = wsi, € T(l;S(Sg)):

S

w0 = g'w! 3.4.4,

¥ wl = cw 3.4.5,
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with respect to a choice of null trivialization of N(ls) and a
local section of TES, Here, & and &' are the GHP operators
and o and o' describe the shear of the null geodesics normal to
S (or, equivalently, the trace-free part of the extrinsic curvature
of § in (M,g)) (see Geroch et al. [G # ], Penrose and Rindler
(P411).

The equations 3.4.4, 3.4.5 correspond to an elliptic differen-—
tial operator and, using the Atiyah-Singer index theorem, it may be

demonstrated that the kernel of this operator has (complex) dimen-

Lo
w

sion equal to four, at least for S an embedded 2-sphere with lg 8
not too far from can. Let T(S) denote the kernel of the elliptic
operator defined by the superficial twistor equations for S. We
assume that dimm I(S) = 4, but see Jeffryes [J3 ] for a dis-
cussion of the possibility of "extra" solutions to the superficial
twistor equations. In any case, the vector space INS) 1is called

the 2-surface twistor space associated with S.

Given T (S), the kinematical quantities are given by a pre-
ferred element A(S) of @Zﬂf(s). The symmetric 2-surface twistor

A(S) 1is called the kinematic twistor for S and is given by:

1°89) G
S

A(S) (w - - 45~J v 3y ,) 3.4.5,

where the 2-form valued twistor J € (GZD?K(S)) @E{QZ(S) is given by:

1ot 1y !
A'B' (A B)dSCC DD

T
2iR\pcpa'sre'p'® Y1 Y2 .47,

J(wl,wz)

Hi

for all € w(S). Here, R 1; Riem(g) is the restriction

Wys Wy
of the Riemann tensor field to S.

The factor v was taken to be unity in the original Penrose

quasi-local paper [P g ], but a modification with v + 1 was
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proposed by Penrose at a later stage (see [P 12 ]). The modification
takes into account the behaviour of 1IL(S) under complex conformal
rescalings of the symplectic structure (Cf. section 1.8 and see
Shaw [S 19 ] for further discussion on this matter).

Equation 3.4.6 defines a notion of quasi-local kinematical
quantity as follows:- The descriptor space is taken to be
021(S) and, noting that A(S) defines an element of (GZE(S))*
(each element vy of ©21I(S) may be written in the form
vy = I wy 9] wj, for some w, s wj € I(s) and 4i,j € {1,2}), we

i, ]
may utilize our previous notation and write

Qlyss) = A(S)(Y) 3.4.8,

for all vy € ©2Ir(S). Equations 3.4.6 and 3.4.8 should be compared
with equation 3.4.1.

Note that the descriptor space OZE(S) is a ten dimensional
complex vector space. If any correspondence with physical kinematical
quantities in special relativity is required (as it must be!), then
we might expect that the space 021 (S) corresponds in some sense
to LPoincaré. In order to make this correspondence, it is necessary
to reduce the teh complex dimensions to ten real dimensions using
some hermiticity property. In fact, it turns out that, although the
Penrose procedure is perfectly well defined up to and including the
definition of the kinematic twistor A(S), in order to extract
physically useful information, it is necessary to have further struc-
tures. Thus, in order to define the Penrose quasi-local energy, a
pseudo-~Hermitian inner product (see Penrose [P ¥ 1) or, alternatively,
a volume element (see Tod [T4 }) on W(S) is required. To pro-
ceed further, it is necessary to separate out angular momentum com-—

ponents from momentum components, and for this a notion of infinity



-232-

twistor is required. Unfortunately, the general definitions of these
additional structures is not yet clear.

However, in certain special cases, there exist obvious candi-
dates for these extra structures and calculations yielding physically
interesting information may be performed:-

In Tod [T 3 ], various examples of the Penrose quasi-local mass
are given. The 2-surface twistor space W(S) dis calculated for a
number of particular embedded 2-surfaces in particular spacetimes
for which there exists a clear candidate for the pseudo-Hermitian

inner product. The Penrose quasi-local (rest) mass is then given by:
n2(s) = - Ha(s)2 3.4.9,

where I+l is the norm arising from the induced inner product on
®2Hﬁ(8). Note that equation 3.4.9 is the direct analogue of the one

in standard flat space twistor theory (see Penrose and MacCallum [P0 1).
Indeed, the entire Penrose quasi-~local approach is motivated by stan-
dard twistor theory; instead of basing the framework on Minkowski
spacetime, the embedded 2-surface is used.

The Tod calculations give physically reasonable answers:— For S
constrained to lie in a constant t hypersurface in the Schwarzschild
spacetime, the Schwarzschild mass parameter is obtained if S links
the source, and zero is obtained otherwise. For a general vacuum
spacetime containing a hypersurface of time-symmetry, the Penrose
quasi-local mass is invariant under continuous deformations of S
within the hypersurface. If such a spacetime describes a configura-
tion of black holes, momentarily at rest with respect to one another,
then the Penrose mass depends only on the topological relationship

of S with the black holes. As expected, the mass is not additive,
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but includes a negative contribution due to gravitational potential
energy in the case when S 1links two or more black holes.

Other calculations performed by Tod include the case of a
spherically symmetric 2-surface in the Reissner-Nordstrom and
Friedmann-Robertson-Walker spacetimes. It turns out that the
Penrose quasi-local mass for the Reissner-~Nordstrom spacetime in-
cludes the correct negative contribution due to electrostatic field
energy and the mass for the Friedmann-Robertsom Walker spacetime is
equal to the product of the mass density with the volume enclosed
by a surface in flat space with the same surface area as S.

The Penrose construction also works well at the null infinity
of an asymptotically flat spacetime. In particular, the momentum and
angular momentum components may be separated out from the kinematic
twistor. The 4-momentum is precisely the Bondi 4-momentum (see
equation 3.3.16) and the angular momentum defined does not suffer
from the shortcomings of previously defined expressions. We refer
the reader to Penrose [P ¥ ], Dray and Streubel [D413 ], Shaw [S16 ],
[S19 ] and Dray [D14 ] for a discussion of the null asymptotics of
the Penrose quasi-local moments, and to Bizon [B4% ] and Shaw [S15 ],
[S18 ] for the corresponding spacelike structure.

The "small surface' perturbation approach to the Penrose quasi-
local moments has been studied by Kelly et al. [K2 ]. The tech-
nique employed in this paper is the same as that used by Horowitz
and Schmidt [H41%4 ] in their analysis of the Hawking quasi-local
energy and by Bergqvist and Ludvigsen [B @ ] in their analysis of
the Ludvigsen-Vickers quasi-local momentum, namely an expansion in
powers of an affine parameter along the generators of the null cone.

It turns out that for sensible (i.e. non-complex) answers to be
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obtained, the Penrose modification (v # 1) is required. For non-
vacuum spacetimes, the lowest order (r3) contribution to the mass
is from the stress—energy-momentum tensor and it is positive for
spacetimes satisfying the dominant energy condition. For vacuum
spacetimes, the mass vanishes at the next lowest order (r°) - this
result should be compared with the analogous one for the Hawking and
Ludvigsen-Vickers quasi~local masses for which the Bel-Robinson
tensor gives the fifth order contribution. Note that the calcula-
tions in [K 2 ] are performed both for small spheres and for small
surfaces of more general shape.

As a complement to the "small surface'" treatment, Shaw [S19 ]
performs analogous calculations for '"large surfaces'. The idea here
is to comsider a cut of the future null infinity of an asumptotically
flat spacetime. The cut defines a unique outgoing null hypersurface
in a neighbourhood of €¥-+. It is then possible to analyse the
quasi-local moments associated to 2-sphere sections of this null
hypersurface by labelling the sections using a suitable parameter r
and then expanding all quantities in inverse powers of r. Shaw
shows that the Penrose angular momentum contains no unphysical con-
tributions, at least to third order for stationary spacetimes. In
order to give further support to the use of the Penrose definition,
it will be necessary to extend the work of Shaw to higher orders
in the parameter r and also to the case of non-stationary spacetimes.

We now mention further work on the Penrose quasi-local definitionm.
Tod [T4 ] has shown that a static black hole satisfies the inequality
A< l6ﬂm§, where A 1is the area and my the Penrose quasi-local
mass. This result should be compared with that of Ludvigsen and

Vickers [L 12 ] (here, the same inequality is proved relating the
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Bondi mass to the area of a closed trapped surface).

Jeffryes has discussed the Newtonian limit of Penrose's quasi-
local mass (see [J 4~ ]) and also the relationship between the twistor
gspace II(S) on the one hand and the possibility of embedding S in real
and complex conformally flat spaces on the other (see [J § ]). Tod
[T 6 ] has also considered the problem of embedding in conformally
flat spaces. It turns out that a necessary and sufficient condition
for an embedded 2-surface S to be embeddable in a (locally) con-
formally flat spacetime, with the same induced metric and second
fundamental form, is that the standard twistor norm is constant on
S. If the twistor norm be constant, then S dis called a

non-contorted surface; otherwise, S 1is called contorted (these

terms are due to Penrose [P12]).

All of the examples calculated by Tod [T 3 ] were of non-
contorted surfaces, the calculation being possible due to the con-
stancy of the norm. In [T © ], Tod comsiders a calculation involving
a contorted surface:- The twistor space and kinematic twistor may be
obtained, but the non-constancy of the norm prevent further progress.
A further problem is pointed out by Woodhouse [W 76 ], who shows that
new ideas are required even for the calculation of the Penrose
quasi-local mass for small contorted surfaces.

Tod [T 6 ] concludes that, although the idea of the Penrose
quasi-local mass works extremely well for non-contorted surfaces,
the definition for contorted surfaces presents problems which remain
to be solved.

One possible means of clarifying the situation is by using the
fact that certain concepts relating to contorted surfaces may be

obtained from the corresponding concepts for non-contorted surfaces
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via a complex conformal rescaling (see Jeffryes [J § ] and Tod P?Gj).
Whether or not this transformation property will help in the calcula-
tion and interpretation of the Penrose quasi-local mass for con-
torted surfaces remains to be seen. For other considerations re-
lating to the use of complex conformal rescalings, see Penrose [P9 ]
and also section 6.2.

Before leaving the Penrose approach, we remark that a similar
definition of qaasi-local moments has been given for a general Yang-
Mills theory. We refer the reader to Tod [T4 ] for details.

Let us now turn to the Ludvigsen-Vickers definition of quasi-
local kinematical quantities in the theory of general relativity.

We derive the definition from basic principles, but the original
motivation from the proofs of the positive energy conjecture at

null infinity (see section 3.3) may be found in [L & ], [L © ] and

{L 10]. Further applications for the Ludvigsen-Vickers techniques

may be found in [L 44 ] and [L 12 ]. Special cases of the Ludvigsen-—
Vickers definition are given by Bergqvist and Ludvigsen [BS ] (the
"small surface'" limit) and by Shaw [S49 ] (the '"large surface' limit).
For further comments regarding the development of the Ludvigsen-Vickers
framework, we refer the reader to Swift and Vickers [S24].

We now demonstrate that the Ludvigsen-Vickers ideas are ex-
tremely natural and may be derived from clear geometric principles.
Qur starting point is expression 3.4.1 for a general quasi-local
charge integral. We will show that there exists an essentially
unique integrand satisfying certain physically reasonable require-
ments. First we define some basic notions:-

Let (M,g) be an asymptotically flat spacetime and (ﬁ,é,f,¢)

a maximal regular asymptote (see definition (6.3)1) where, for
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simplicity, we take ¢ to be inclusion of M in M. We consider
future null infinity ‘f-F only, but past null infinity mav also be
considered. Note that (M,g) is asymptotically flat implies that
(M,g) dis globally hyperbolic, so that M has topology Ix R, where
£ 1dis a Cauchy surface for (M,g). Therefore M is non-compact and
parallelizable and we deduce that M is spin (see example 1.2.3).
We assume that a g-spin structure sg has been chosen.

We now fix an embedded, spacelike, closed 2-surface S in
(M,g) and denote by H the geodesic null hypersurface constructed
from 1.: S &> M as in section 3.2. Since the inclusion of (M,g)
in (ﬁ,é) is conformal, ﬁ is also a null hypersurface in (ﬁ,é).
Given a null trivialization {1,n} of N(ls), we may follow through
the programme discussed in section 3.2:- We have the embedding
fr: s ¢ N for r € I C R (we use r instead of u to conform
with the notation of Ludvigsen and Vickers [L10 1), and we let
s, = £.(9) C H, for all r € I.

We now assume that ﬁ m4»+ = S,, where S = 1is a cut of 4_+,
and that the range of the affine parameter r may be extended so that
I = [0,») with SO =S and S_ = Lim Sr' In other words, we assume

>

that no caustics occur.

As in section 3.2, we have the null vector fields 1,n on H
such that (golH)(l,n) = 1 (we drop all tildes on 1,n and H for
convenience). TFor each r € I, as explained in section 2.3, we
have the full power of the SL(2,C)-spinor formalism on Sr' In
particular, using the Infeld-Van der Waerden isomorphisms arising

from g S &« M (as r runs over I), the null trivialization
r \i \i
-, A—A
{1l,n} = {l{Sr, n}Sr} of N(1S ) may be written {voA , 11}
r

in the usual way (note that r-independence has been suppressed).
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We now define a notion that will be very important in what follows.
ot
By a spinor field X on H, we mean a section of Ty S(sg) (see
section 1.7 for our spacetime spinor notation):

Definition (3.4)1: A spinor field X on H is said to be

asymptotically constant if Lim (OAXA) and Lim (1AAA) exist and,
T T->o0

in additiom,

. A —A' B, _
Lim (r 1 o OBVAA' AT) = 0 3.4.10,
o0

and
Al
Lim (r oA 1A o, V. ., AB) = 0 3.4.11.
B AA

>

This is the definition given by Ludvigsen and Vickers (see

[L-C]) and implies that the field ) possesses asymptotically two

(complex) degrees of freedom:- Let {XA:-é = 0,1} be an asymptotically

constant spin frame such that Lim (XOA XlA) = 1. Then for any asymp-
>0 = = )

totically constant spinor field A on H, the components {x=}

of A (with respect to {XA}) given by:

%A A
2 = - im0 3.4.12,
>
are constant.

The space of asymptotically constant spinor fields is called the

asymptotic spin space of § (this space depends only on S and not

on the choice of null trivialization) and is denoted §(S). Thus,
$(S) 1is a two-dimensional complex vector space associated with the
embedded 2-surface S. Given any asymptotically constant spin frame

{XA}, we may regard equation 3.4.12 giving the components of an

element of §(S).

%(S) 1is equipped with a natural symplectic structure induced

o
from e. Let us denote the form on §(S) by €, S0 we have:
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e(h,u) = Lim e(A,u) 3.4.13,

)
for all A,u € %(S).

Let Cone(M,g) denote the space of all two-dimensional, closed,
spacelike submanifolds of (M,g) with the property that S € Cone(M,g)
if and only if the null hypersurface H constructed from S (as in
section 3.2) intersects f}+ in a cut. Obviously, Cone(M,g) may
be naturally mapped onto the abstract cone space defined in section
6.2. We now have the symplectic vector bundle 3%(M,g) — Cone(M,g),
where %(M,g) = U $(S) with obvious projection onto Cone(M,g). In
fact, an equivalZnt definition of the asymptotic spin space 3(S)

using the asymptotic twistor equation (see Bramson [B19], [BZ1]

(although it should be noted that our notion of asymptotic constancy is

referred to by Bramson as alinement of frames on <§.+) leads to the
observation that &(M,g) dis a trivializable bundle.

In order to relate the asymptotic spin space to symmetries, it
is convenient to introduce the following definition:

Definition (3.4)2: A vector field & on H is said to be

asymptotically constant if & = A 8 X (via the Infeld-Van der Waerden

isomorphisms) for some X € %(S).

The asymptotic limit of any asymptotically constant vector field
is necessarily (the restriction to S_) of a generator of BMS trans-
lations. Thus, the four real dimensions of §(S) corresponds, in a
very geometric way, to the four real dimensions of LT, the Lie
algebra of the translation subgroup of BMS. For further discussion
of asymptotically constant vector fields, we refer the reader to the
Bramson references cited above and also to Geroch and Winicour [G{ ]

and to Walker [W 2 1. Note, however, that Walker uses the term
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strong asymptotic constancy rather than asymptotic constancy.

Let us now return to the Ludvigsen-Vickers programme, the basic
philosophy of which is to propagate the asymptotic spin space §(S)
down the null hypersurface H to S in order to define quasi-local
moments. For this reason, there is a strong similarity with the
philosophy of the linkage framework of Geroch-Tamburino-Winicour
(see above). This is to be contrasted with the Penrose approach
in which the space 1T(S) is directly associated with S without
any reference to future null infinity. We return to the propagation
below, but first let us consider the "generalized linkage' integrand,
i.e. which choice should we make for the 2-form *F(a;S) for in-
sertion into 3.4.17

We choose *F(a;S) by imposing certain reasonable requirements:-
Firstly, since we wish to define a notion of quasi-local 4-momentum
(see below for a possible definition of quasi-local angular momentum),
the descriptor o should be related to a generator of translations
in some suitable sense. Also, since moments are linear functionals,
*F(a3;8) should depend linearly on the translation generator (once
the relationship between o and the generator has been imposed).
Since the only translation group available is T <« BMS, we formulate
our first requirement as follows:- (I) *F(0;S) should depend
linearly on an asymptotically constant vector field on H.

The second requirement is based on dimensional grounds:-

(I1) *F(o3;8) should involve no derivative of the asymptotically
constant vector field of order treater than one. Note that Horowitz
[H 11] has also discussed requirements (I) and (II).

If we allow ourselves only the use of vector fields, requirements

(I) and (I1I) will give rise to only two possibilities for

*F = ¥F(a38):
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*F. = *dg 3.4.14,
*F, = dg 3.4.15,

where ¢ 1is an asymptotically constant vector field on H (we omit

oo

by

for convenience). Since S possesses no boundary, we have
[ *F, = 0, by Stokes' theorem, so we may discard *FZ. Unfortunately,
*TF is not much use either, since *Fl is just the Komar iﬁtegrand
(see equation 3.3.10) and we have discussed above the reasons preven-
ting this from giving a useful definition of quasi-local momentum.
Since we have a spin structure, we may rescue the situation by
considering 2-forms constructed from an asymptotically constant spinor
field A. The relationship between the descriptor o Z A and trans-
lation generators is obtained by defining the asymptotically constant

vector field & =X 8 A, There are now two further (complex) possi-
bilities:

A 3.4.16,

KF3 = A,V A

A BA'AB' BVAB

*F = F 3.4.17.

Note that Im F3 = Fl and Im F4 = F2 and that the real parts are
non-zero. The real part of *F3 may be eliminated as a candidate on
physical grounds (the asymptotic limit does not give the Bondi 4-
momentum - see Horowitz [H41 ]) or by imposing a third requirement:
(III) *F involves only derivatives tangent to S. Requirements (I),
(II) and (III) lead to the unique integrand Re(*Fa) (up to a
multiplicative constant of course). Thus, Re(*Fa) is the unique
2-form which is linearly dependent on the asymptotically constant
vector field &, dis of first order in the derivative of & and in-

volves only derivatives tangential to S.
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The uniquely defined 2-form Re(*Fa) is the integrand utilized
by Ludvigsen and Vickers [L 10] and it has also appeared in the work

of Nester [N4 ].

Defindition (3.4)3: The 2-form F = Re F4 is called the Ludvigsen-

Vickers—-Nester (LVN) 2-form.

Proposition (3.4)4: The LVN 2-form is given by

F = ¢8e¢ + ¢ 8¢ 3.4.18,

where the spinor field ¢ 1is defined by:

Al o — AV
= 1 - 1
¢AB ZK(AVB) AA' 3 A'V(A kB) 3.4.19.
Proof: Let ¢ be the unique symmetric rank two spinor field deter-
p— — \]
. = — l
mined by F, so that F Y8 e+ B e. Then wAB QFAA'B (see
Penrose and Rindler [P 111]).
= m = * = - 1 A
We have F Re F4 Re( F3), so that FAA'BB' 2(AAVBA,AB,
— — — Al
- - = -l
ABvAB'AA' + AA'VAB'AB AB'VBA'AA)' Hence, WAB ”(AAVBA'A
A'— — _A' —A' . A'— A" —
S AT R AV A = AT a ) = BOLTT R+ AT, R,
. Al —_ Al ; A' — — A
- - = 1 — = 0
MrVa A T AV A T O Tpy A = AV Ay = by
The Ludvigsen-Vickers ''generalized linkage" 1is now given by:
sy = = [ wraus) 3.4.20
r bm | r ’
5

T
for all r € [0,o) and X € 3(S). Here, we have written the LVN
2-form F as F(A;Sr) to emphasize the dependence on the descriptor
A and to conform with the notation of 3.4.1. Once the asymptotically
constant spinor field A has been specified on the whole of H, the
quantity Q(A;Sr) may be evaluated for any of the embedded 2~surfaces
Sr’ in addition to the original 2-surface S = So' Before considering

the use of Q as a quasi-local momentum, we first mention its
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asymptotic properties:-
In appendix (a) of [L“C1], it is demonstrated that Lim Q(X;S_)
>0 r
is precisely the Bondi 4-momentum (see equation 3.3.16) corresponding
(o}

o C
to the translation generator & = A 8 XA given by the asymptotic limit

of £ = A8 A, and the cut S_- In particular, Lim Q(A;Sr) depends

o
o

only on £ and it is not necessary to impose any propagation equation on
g (or, equivalently, on A).

In order to utilize Q(K;Sr) as a measure of quasi-local momentum,
it is necessary to determine the asymptotically constant spinor field
A on the entire null hypersurface H; up until now, A has been
unrestricted apart from the requirement that it satisfy the asymptotic
constancy conditions 3.4.10, 3.4.11. 1In other words, we must propagate
the asymptotic value X of A using some propagation equation on
H. We may think of such a propagation equation as providing a means
of dragging down the asymptotic spin space §(S) to a particular em-
bedded 2-surface Sr in the physical spacetime (M,g).

The question is, which propagation equation should we use? The
choice is important because the value of the quasi-local momentum
given by 3.4.20 will depend crucially upon the propagation equation.
Three physically reasonable conditions to impose on the propagation
equation are:— (i) it reduces to parallel propagation for (M,g)
a flat spacetime; (ii) the corresponding quasi-local momentum satis-

fies the momentum-gain inequality, Q(X;Sr,)a Q(A;Sr) for r' > «r

provided that & = A 8 A 1is future directed and that the dominant
energy condition holds in a neighbourhood of H; (diii) din the case
of linearized gravity, Q(k;Sr) reduces to the usual expression for

the total 4-momentum component linked by Sr

Ludvigsen and Vickers [L40 ] write down the propagation equation:
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— 1
AT A = o0 3.4.21,

and show that any asymptotically constant spinor field on H satis-
fying this equation is determined over the whole of H. Indeed,

equation 3.4.21 may be written as:

3.4.22,

o
L
>
1
]
o

K = 2 Ao + Kkl

3.4.23,

I
@)

1 - - 1
o J'A, = RN =2 7 KO + pAl

where the differential operators K, R are defined respectively by
equations 6.2.24, 6.2.26, and «k,p are GHP spin coefficients (see
Geroch et al. [G'F+]). Equations 3.4.22 simplifies slightly after
noting that the spin frame chosen corresponds to the Hawking gauge
(see Hawking [H 4~ ]), and hence, in particular, « = 0. The

Ludvigsen-Vickers propagation equation now reduces to:

£ = 0 3.4.24,
o
' =
3'h, + oAy 0 3.4.25.
BAO
Note that 2% AO E-S;: » SO0 that equation 3.4.24 determines the value

o

of AO on H, given the asymptotic value AO. Equation 3.4.25 may
then be used to define Al on H. Thus, any asymptotically constant
spinor field is uniquely determined by the Ludvigsen-Vickers propaga-
tion equation 3.4.21 or, equivalently, 3.4.24 and 3.4.25.

We refer the reader to [L10] for a demonstration that equation
3.4.21 satisfies requirements (i), (ii) and (didi).

Given the propagation equation, the quantity Q(A;Sr) now

defines a measure of quasi-local 4-momentum threading through the

embedded 2-surface Sr’ for any r € [0,»). The particular component
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of 4-momentum picked out will depend on the choice of descriptor
X € 2(S).

Given A € 8(S), we have the uniquely defined asymptotically
constant vector field £ = X 8 X; and & 1is determined by its
asymptotic component § E ; 8 i; the restriction to S, of a
generator of BMS translations. ©Note also that Q(A;Sr) depends
linearly on &. Therefore, we may define QLV(-;Sr) € (LT)* by
QLV(an;Sr) = Q(X;Sr), where A € %(S) 1is such that the asymptotically

constant vector field £ corresponding to é = ocnlSoo is given by

£ =18 A, for all an € LT.

Definition (3.4)5: QLV is called the Ludvigsen-Vickers quasi-local

momentum map.

Note that an alternative expression for QLV is given by:

1 '
QylansS ) = - 7= J (p txol2 + plxl|2)dsr 3.4.26.

S
T

This equation is obtained by using equation 3.4.25 and then using
Stokes' theorem in the form [ 8(ngxl)dsr = 0.

J

S

T

Let us now return to the propagation equation 3.4.21 used in the

definition of the Ludvigsen-Vickers quasi-local momentum map. As
mentioned above, this equation satisfies the physically desirable
conditions (i), (ii) and (idii). We now demonstrate that the equation
arises in a natural geometric way, namely as the null limit of the
Sen-Witten equation 2.3.12. Since the Sen-Witten equation is an
essential ingredient in the Witten spinorial proof of the positive
energy conjecture at spatial infinity (see [W 9 ] and section 3.3),

our result gives a connection between the Ludvigsen-Vickers null

framework on the one hand and the spatial framework on the other.
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Another link is provided by the fact that the LVN 2-form may also be
used in the definition of the ADM 4-momentum (see Israel and Nester
[T9D.

In fact, our result is slightly more general in that we allow
the presence of a Maxwell field. There is also the possibility of
introducing a general Yang-Mills field and considering the resulting
propagation equation in the context of the quasi-local charge frame-
work introduced by Tod [T 4 1. Here, we restrict our attention to
the Einstein~Maxwell case.

In what follows, our notation is that of sections 2.3 and 3.2.
The first step is to generalize the Sen-Witten equation 2.3.12 so
as to include an electromagnetic field Q.

Let (M,g,9) be a spacetime satisfying the Einstein~Maxwell

equations:

Ein(g) = - 871 T(g,R) 3.4.27,

where

T(g,p) = —-ﬁ; (Q'g—l-ﬂ +2il2 g) 3.4.28,

is the stress—-energy-momentum tensor field of the Maxwell field
Q€ 0%2M). Let ¢ denote the unique second rank symmetric spinor

field determined by Q. Then the spinorial version of 3.4.28 is:

1
TAA'BB' = E;’WAB wA'B' 3.4.29,

and the Einstein-Maxwell equations reduce to:

®a1pp! = 2Usp EA,B, 3.4.30,

where -2¢ 1is the image of the trace-free part of Ric(g) wunder the

Infeld-Van der Waerden isomorphism (see Penrose and Rindler [P11 1).
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We now consider a generalization of the Sen-Witten equation which
includes the Maxwell field ©¢. This generalization is the Wevl spinor
version of the equation introduced by Gibbons and Hull [G € ]:-

Let f: N <> M be a codimension one spacelike embedding of
N in (M,g) and let S denote the bundle of contravariant unprimed

f

Weyl spinors over N (see definition (2.3)6).

Definition (3.4)6: The Maxwell-Sen-Witten operator

o f — * — % . .

D : F(Sf & Sf) — I'(f A*(M) 8 (Sf & Sf)) is defined by

nE A . f A cc' A £ — c'.c
D ()\ ,UAI) = (DBBV}\ - hBB' LPC UC” DBB'UA' + hBB' CC'wA' A )9

for all (A,u) € I'(S; @'5;).

Y
By taking the e-trace of Df, we obtain the Maxwell-Sen-Witten

eguations:
£ A roA
Dy, A - hAA.BB by Suge = 0 3.4.31,
£ ' ATt
Dy, i+ hAA,BB,mA BB - o 3.4.32,

for (A,u) € T(S $'§:). For convenience, we consider only equation
3.4.31; the second equation 3.4.2 may be treated in an entirely
analogéus fashion.

Now let S be an embedded, spacelike, closed 2-surface in
(M,g) and let o: (0,8) — Embs(S>< I,M) be the corresponding curve
of codimension one spacelike embeddings. For each s € (0,8), we

may construct the Maxwell-Sen-Witten equation 3.4.31 using the cor-

, . . ! B' BB'
responding projection (hS)AA,BB = EAB Egr (ts)AA'(ts) . We
have

a -1
tg = — (s 1 + sn) 3.4.33,
V2

where we have taken the embedding FS to be an inclusion, for all
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s € (0,8). Note that a“ =1 since t is the unit normal, but it
is convenient to maintain a as an additional parameter; until
the null limit is taken, a? must be taken as being equal to unity,

but after the limit has been taken, there exist additional possi-

bilities for the value of a2.

. . a as
For convenience, let us write A = —— and B = —=, so that

sV2 V2
A=g¢g(ty,n) and B = g(t,l). We consider each of the two terms in

equation 3.4.31 separately and, in order to take the strain off the

notation, we suppress mention of the parameter s:-

The first term is DAA,AA = hAA,BB'VBB,AA
= (eABsA,B' IV tBB')vBB, AR
= ((oA1B - IAOB)(SA'I ' - TA,EB') - (AOAEA' + BIATA,>
(AoBgﬁ, + BlBTé,))VBB,AA
= —(OASA,lBTB' - 1A€A,OBTB' - OATA,lBBB' + 1ATA,0BEB'
- A? oAEA,oBEB' - AB 1ATA,OBSB' - ABOASA,lBTB'
- B2 1ATA,1BTB')VBB,XA
= - ((1 - AB)-A,OA 3'A, - EA,lA Iy - TA,OA AP
+ (1 - AB)-A,lA 30, - A26A,0A 32, - B? TA,xA 3'3,)

((AB - 1)T + A%K - iR')EA, - i((AB - 1)T' + B2K' + iR)1.,,

where we have written K = KA, etc. (see equations 6.2.24 - 6.2.27).

Thus, we have proved equation 6.2.43.

. . BB' A
The second term of equation 3.4.31 is —hAA' wB Hy
_ A B B' _ A B— — A B— —
= -t A,t B'wABu = - (A%0"0 OA'OB' + ABi o Lao10pt
A B— — > A B— — B' 2 —
= +
+ ABo 1 INATY + B41 1 lA'lB')wABU (A wouo' AB wlul,)oA,

A B _ A B
wABO o, wl = wABO 1 and

+ (ABYju_y + Bzwzuly)Tg,, where ¢

A B
Yy =Ygt ot
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Hence, equation 3.4.31 may be written:
- 297 _ apt 2 =
(AB T + A“K iR" + A wouo,+ ABwlul, 0 3.4.34,
. _ [] . 2 LI = _ 2 =
i(AB - 1)T' + iB2K R~ ABYju v = B%,uy, = 0 3.4.35.

Substituting for A, B and multiplying 3.4.34 throughout by

2

s gives:
sz(%az—l)T + %aZK - is?R' + %azwouo, + %szazwlul, = 0 3.4.36,
i(1a2-1)T' + lis2a?k' - R - %azwluo, - %szazwzul, = 0 3.4.37.

The null limit is now achieved by taking the limit as s —O.

Substituting for T, etc., we obtain
2 =
ac(® Ao + Kkl + wouo') = 0 3.4.38,

142 ' ' 1.2 -
(Fas=1)(® X, + 1 AO) + (7 AO + pkl) + 3a wluo' 0 3.4.39,

1
and an analogous calculation of the null limit of equation 3.4.32

yields the following:

a2(§uo, + ki, = U ) = 0 3.4.40,

1' o

(3a-1) (& uyy + T ) + (3 us +oouge) - %azaivlo =0

3.4.41.,
To summarize the above, we have proved the following:

Proposition (3.4)7: The null limit of the Maxwell-Sen-Witten equations

is given by equations 3.4.38 - 3.4.41.
Now the null limit has been taken, we are at liberty to choose

the value of the parameter a?. The simplest and most natural choice

2

is to take a? = 2 (and not a? = 1).
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For applications to spinor propagation on the outgoing null
hypersurface arising from an embedded 2-surface, it is appropriate
to use the Hawking gauge (see Hawking [H 4 ] and section 6.2).
Having made these two specializations, the null limit of the

Maxwell-Sen~-Witten equation becomes:

ALt dugr = 0 3.4.42,
'a'xo + p}\l + "’1“0' = 0 3.4.43,
3 - @;,AO = 0 3.4.44,
T Ei,xo =0 3.4.45.

Note that equations 3.4.42 - 3.4.45 are precisely those used
by Ludvigsen and Vickers [L 111 in their proof of the mass—-charge
inequality m 2 ]e] in Einstein-Maxwell spacetimes.

A further specialization is obtained by putting ¢ = 0, i.e.
by taking a vacuum spacetime. Then we need only consider the first

two (or the second two) of the four equations. We get:

2 A = 0 3.4.46,
o

5'A, oAy = O 3.4.47,

so we obtain the original Ludvigsen-Vickers propagation equations
3.4,24 and 3.4.25 (or, equivalently, 3.4.21). Thus, the spinor null
propagation equations used in the Ludvigsen-Vickers treatment of
positivity of the Bondi mass, inequalities relating mass-area and
mass—charge, and also quasi-local 4-momentum, arise from the null
limit of the (Maxwell-)Sen-Witten equation which is a natural spinor

propagation equation on spacelike hypersurfaces.
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Another use for the Ludvigsen~Vickers propagation equation is
in a definition of quasi-local angular momentum (see [L7]0Q]). The

most convenient way to write the charge integral is:

A A
A(AAB) o1 dSr 3.4.48,

. - L
Q(A”Sr) - 4_”

LN

T
for all asymptotically constant spinor fields A on the null hyper-
surface H. The propagation equation used is the same as the one
used for defining quasi-local 4-momentum. Indeed, this propagation

equation is the only one for which Lim Q(A;Sr) exists. In fact,
o

im Q(A;Sr) is equal to the Bramson asymptotic angular momentum

T

[B 20] given by:

~
~ ~

. - L ( VY - 94 ! - _ = S |2
Q38 = 7= | (¥, - 205 o= 5 (s 0))|r|? ds, 3.4.49,
S
r
where @ = 6 ia nP ic ;d = f_SW It may al be demonstrated
1 abed © M = 1 may azso be

that the quasi-local angular momentum expression 3.4.48 gives the
expected value of the total angular momentum linked by the 2-surface
Sr in the case of linearized gravity.

The evidence supporting the claim that the Ludvigsen-Vickers
propagation equation is the natural one to use on a null hypersurface
now seems quite strong:- From a physical viewpoint, this equation is
an essential ingredient in a physically reasonable definition of both
4-momentum and angular momentum at the quasi-local level, and, from
a geometric viewpoint, the equation is obtained by taking a null
limit of the Sen-Witten equation.

To conclude our discussion on the Ludvigsen-Vickers approach to
quasi-local moments, we mention the advantages and disadvantages

compared with other approaches to the problem.



-250-

The major advantage of the Ludvigsen-Vickers approach is that it
makes essential use of null hypersurfaces rather than spacelike/
asymptotically null hypersurfaces. Null hypersurfaces gel especially
well with spinor and conformal ideas and certain simplifications
occur. For example, the propagation equations 3.4.24, 3.4.25 possess
an extremely simple form; there is a decoupling into a radial equa-
tion relating XO to its asymptotic value and a 2-surface equation
giving the value of Al. Moreover, it is easier to prove existence
and uniqueness results for null propagation equations than it is for
the elliptic equations defined on spacelike hypersurfaces.

Another advantage is that it is possible to compare the quasi-
local momenta linking two distinct elements of Cone(M,g):- Suppose
S, s' € Cone(M,g) with H r\ﬂ.+ =S_ and H' fnfy+ = 3', where
H,H' are the outgoing null hypersurfaces corresponding to S,S'
respectively. The asymptotic spin spaces %(S), $(S') may be identi-
fied using Bramson's alinement of frames technique (see Bramson
[B191, [B241]) and the Ludvigsen-Vickers propagation equation is
used to propagate 8(S) = 3(S') to the embedded 2-surfaces S and
S'. Once the spinor fields defining the quasi-local momenta linking
S and S' have been identified in this way, the quasi-local momenta
themselves may be related by flux integrals over H,H' and the sub-
manifold H_ of 47 with 8H_=S! U(-S). For amy of the null

hypersurfaces H, H', H_, the flux integrand is of course given by

1

= 4o *6F, where F is the LVN 2-form (see definition (3.4)3).

*J

Thus, for 4-momentum, we have:

Q(x;8") - Q(xss) = J*J 4—J*J - {*J 3.4.50,
H H
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for the case in which S; lies entirely to the future of S, The
expression Q(A;S') - Q(X;S) is the flux of 4-momentum between §
and S' (see Swift and Vickers [§258]).

Note that in the Penrose quasi-local framework, there is no
analogous method of comparing the quasi-~local moments linking two
distinct embedded 2-surfaces in spacetime. We also remark that a
connection may be made between the Ludvigsen-Vickers approach on
the one hand and the Penrose approach on the other:- It may be demon-
strated that the asymptotic constancy/alinement of frames condition
used by Ludvigsen and Vickers is a special case of the Penrose
superficial twistor equation applied on a cut of :¥:+ (see Penrose
[P & ]). Shaw [S1%] has discussed certain aspects of the relation-
ship between Sen-Witten propagation on spacelike hypersurfaces and
the Penrose superficial boundary conditions. However, the expressions
written down by Shaw suffer from the disadvantage that they depend
on the spacelike hypersurface spanning the embedded 2-surface under
consideration. The use of null hypersurfaces as discussed in this
section should lead to a clearer understanding of the links between
the various quasi-local approaches. Any a priori spacelike equations
may be applied on null hypersurfaces by taking the null limit as was
done for the Maxwell-Sen-~Witten equation above,

Let us now mention a couple og problems encountered with the
Ludvigsen-Vickers approach. The first is the restriction to embedded
2-surfaces in Cone(M,g), i.e. to those 2-surfaces whose corresponding
outgoing null hypersurface may be extended to ‘jz+' without the
occurrence of caustics. For a general embedded 2-surface, caustics
will occur. However, since the structure of the Ludvigsen-Vickers

propagation equation is such that singularities of the spinor field A
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are, in general, integrable, the flux integrals in, for example, equation
3.4.50 may still be calculated provided that the cuts defined by the
outgoing null hypersurfaces are sufficiently undistorted so as to

allow the existence of asymptotically constant spinor fields.

Of course, the main use of the null hypersurface H 1is to allow the
propagation to S of the asymptotic spin space $(S). Although the null
hypersurface H is naturally associated with S, it would be better
if a spin space could be constructed without the need of propagating
in from null infinity. We could then construct quasi-local kinematical
quantities associated with an embedded 2-surface in a general spacetime
and not just in asymptotically flat spacetimes. However, in such an
intrinsic framework, it would still be necessary to find a method of
comparing the quasi-local moments linked by distinct 2-surfaces.

Another problem arising in the Ludvigsen-Vickers definition of
quasi-local momentum has been pointed out by Shaw [S 713 ]. This paper
discusses the application of quasi-local definitions to ''large
surfaces'", i.e. surfaces constructed as cuts of an outgoing null
hypersurface in a neighbourhood of future null infinity. Shaw's
calculations demonstrate that in a stationary spacetime, the
Ludvigsen-Vickers 4-momentum is physically reasonable to first order
in the perturbation parameter, but at third order, unphysical con-
tributions appear. These unphysical terms do not appear in the
Penrose quasi-local 4-momentum, at least not up to third order in
stationary spacetimes.

The discussion in this section has demonstrated that a certain
amount of progress towards a good definition of quasi-local kine-
matical quantities in general relativity theory has been made over

the past few years. The quasi-local framework seems to require
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a fundamental involvement of spinorial ideas and it appears that
spinors will play an important role in any future development of
this area. 1In any case, the theory of general relativity will not
be complete until a good definition of quasi~local moments has been
constructed, for it is only through such a definition that we can
establish a relationship between the motion of the sources on the
one hand and the asymptotic structure of spacetime on the other.
Indeed, when gravitational wave astronomy becomes important, it
will be necessary to utilize such definitions in order to deduce
properties of astrophysical objects from (approximately) asymp-

totically detected gravitational radiation.
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4,0 Introduction

This chapter concerns itself with various questions of in-
variance in geometry and in physics. The everywhere invariance
of the title may be understood on two levels: On the one hand
there is the concept of everywhere invariance arising in a group
action situation which we introduced in our papers [S26],
[S2%]. This particular concept is discussed at length in this
chapter. On the other hand, and on a meta-level, everywhere in-
variance may be regarded as the theme underlying studies in
geometry and physics in which natural groups act on natural
spaces - the useful quantities are then invariant under these
actions. Indeed, when considering the influence and application
of geometry in physics, we should perhaps be guided by the
philosophy of Kobayashi, "All geometric structures are not
created equal; some are creations of gods while others are
products of lesser human minds" (see p. V in [K & ]). Only
structures in the former category should be regarded as candidates
for inclusion in physical theories, since then and only then may
we hope for everywhere invariance.

The aims of this chapter may be divided into three, although
there is overlap between these categories, as follows:

Firstly we discuss the idea of everywhere invariance - this
concept arises when a G-action on a set S 1is given, and we wish
to consider the behaviour of subsets of S wunder the group
action. We expand and generalize the ideas contained in [S26 ],

[S2%#], these papers themselves developing and geometrizing
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earlier work of d'Inverno and Smallwood [I 2 ] concerning functional
form invariance. We present the algebraic framework of everywhere
invariance (and of related concepts) in a unified fashion before
applying the ideas to situations in geometry and general relativity.
Further possible developments and applications are also mentioned.

Secondly we consider the general algebraic set up of every-
where invariance in the specific case of the action of the diffeo-
morphism group on the space of metrics on a given manifold. Every-
where invariance has both practical applications, for example in
finding isometry groups of metrics, and also inter-relationships
with other natural structures on manifolds. We demonstrate both
these aspects of everywhere invariance.

Our third aim relates to the meta-meaning of everywhere in-
variance. We consider natural structures on a manifold M, in
particular natural groups and their action on Met(M), the space
of metrics (of a given signature) on M, and we discuss the use
of these structures in geometry and general relativity. This third
aim also includes the desire to make links between this chapter and
material contained in the rest of the thesis.

Having stated our aims, we now give a more detailed description
of how this chapter is arranged:-

The space Met(M) has made several important appearances in
this thesis, notably in sections 1.4, 1.5, 1.6 and 2.2, and plays
an important r6le in this chapter. We therefore devote secticn
4.1 to a more detailed study of this space. We also consider the
action of natural groups on Met(M) and these will provide us
with some of our examples of the phenomenon of everywhere invariance.

In these examples we consider embedded subspaces of Met(M). These
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subspaces may be regarded as parameterized families of metrics or,
equivalently, as metrics of a given "functional form". In this
context, everywhere invariance may be used as a tool for investi-
gating the relationship between the set of transformations leaving
the given family invariant (i.e., those transformations leaving
invariant the functional form of the metric) on the one hand and
the isometry group of particular metrics in the family on the
other. When considering these parameterized families of metrics
we are re—emphasizing the importance of embeddings:- In Chapters
Two and Three we discussed embeddings into M itself and, in the
case when M was the manifold underlying spacetime, certain kinds
of embeddings turned out to be very useful. Here we look at
embeddings F &> Met(M), where F is the manifold parameterizing
the family of metrics under consideration and we demonstrate the
utility of considering a particular g € Met(M), not as an in-
dividual metric, but as a member of such a parameterized family.
Note that families of metrics often arise as solutions to the
Einstein equations (e.g., the Kerr-Newman solutions are para-
meterized by a subspace of R3 and the pp—wave solutions possess
an infinite dimensional parameter space - we return to pp-waves
in section 4.5). For other contexts in which families of space-
time metrics have been studied, see Szekeres [S2¥] who considers
solutions of the Einstein equations involving arbitrary functions
and Geroch [G 2 ] who looks at limits of spacetimes.

Returning now to the content of section 4.1, we should mention
the analysis, or rather the lack of it, involved in our dealings
with infinite dimensional spaces. We make no attempt to discuss in

detail the differentiable structure on these spaces nor to consider



~257-

other aspects of the global analysis involved. We note, however,
that by working in the appropriate category of smooth manifolds and
maps (inverse limit of Hilbert (ILH), or, better, the tame category
of Nash-Moser-Hamilton), our formal algebro-geometrical results are
valid at the analytical level also. For global analytical details
we refer the reader to Ebin [E 4 ], Ebin and Marsden [E 6 ],

Lang [L 2 1, and Michor [M 19 ], and also to the

excellent reviews of Adams et al. [A 3 ], Hamilton [H 2 ] and
Milnor [M @ ] and references therein). We also refer the reader
to references cited in section 2.2 where we discussed spaces of
embeddings. To summarize our position on analysis - we proceed
formally when working with infinite dimensional spaces, but any
manifolds and maps (and hence group actions) will be smooth in

the ILH (or tame) sense.

The main discussion of section 4.1 will concern Met(M), its
submanifolds and its quotients, Note that in the case of positive
definite metrics (i.e., Riemannian manifolds), the structure of
Met(M) 1is topologically trivial, but in the case of indefinite
metrics (e.g. Lorentzian manifolds) the topology of Met(M) may
be much more complex. Since we are mainly interested in the geo-
metry of Met(M), rather than in its topology, our discussion
will be independent of the particular signature of the metrics,
for example, Met(M) is always open in SZ(M)' However, we do
make some brief remarks concerning the topology of Met(M) in
the pseudo-Riemannian case.

A particularly important r8le is played by quotients of Met(M)
under certain group actions. For example, the main group action in

this chapter, and, indeed, in geometry in general, is that of the
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diffeomorphism group on the space of metrics. The quotient of this
action, denoted Geom(M), may be regarded as the space of all geo-
metries on the manifold M. Indeed, natural "nice" structures in
(pseudo-)Riemannian geometry such as {Einstein manifolds}, {homo-
geneous spaces} and {space forms} are unions of orbits of Diff(M)
acting on Met(M) and these structures may thus be regarded as
subspaces of Geom(M).

In addition to being important in geometry itself, Geom(M)
is also important in physics. 1In general relativity the spacetimes
M,g), (M,¢*g) are regarded as physically equivalent for all
¢ € Diff(M), and so a spacetime is really given by [g]Diff(M)
€ Geom(M). Various studies of Geom(M) have been made both for
Lorentzian signature/4-manifolds (see, for example Isenberg and
Marsden [I # ], Isenberg [I 6 ]) and for Riemannian signature/
3-manifolds (when Met(M) 1is called superspace in general rela-
tivity (see Fischer [F 7 ]). Unfortunately, the space Geom(M)
is not, in general, a manifold, since different metrics have iso-
metry groups with different dimensions or different numbers of
components. Geom(M) is, in fact, stratified by manifolds (see
Fischer [F 4 1, Bourguignon [B 46 ]) tut possesses singularities
corresponding to metrics with symmetries. A natural resolution
of the singularities of Geom(M) may be performed, see Fischer
[F2 ], [F3 ], and in section 4.1 we describe these ideas and
also propose a variant on Fischer's methods which utilizes the
canonical bundle introduced in section 1.4.

A very important result of Ebin-Palais [E 4 ] is the existence
of a slice of the action of Diff(M) on Met(M) (in the positive

definite case). The slice theorem simplifies the study of the
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space Geom(M) considerably and may be generalized to other contexts
such as the Lorentzian case (see Isenberg and Marsden [I # ]), the
action of the conformorphism group (section 6.2) on Met(M) (see
Fischer and Marsden [F4 ]), and also to the action of Gau(P) on
Conn(P) for some principal G-bundle (see Singer [S20]).

Another important action for which there should exist a slice
is that of Aut GL(M) acting on Met(M). This action is investi-
gated and we show how the semi-direct product structure
Aut GL(M) = Diff(M) & Gau GL(M) (see 6.1.13) may be further
decomposed. The action of the various natural subgroups of Aut GL (M)
on Met(M) leads to useful geometrical structures, one of which is
the generalized conformal structure which we first introduced in
[S26]. These geometrical structures all turn out to be everywhere
invariant -~ 1in both senses of the phrase!

Having discussed Met(M) and related spaces, we turn to the
algebraic theory of everywhere invariance. We present definitions
and results in the full generality of a group G acting on a set
S and define the concepts of everywhere invariance, inessential
invariance and total invariance for subsets of S, The reason for
introducing these concepts is that they provide a framework for
discussing the interaction between stabilizers of particular ele-
ments of S on the one hand and the behaviour of subsets of S
on the other. Although our eventual use of everywhere invariance
is in geometry and general relativity, in this purely algebraic
section we link everywhere invariance with other important ideas
in algebra such as imprimitivity. Results given in this section
lead to a partial characterization of invariant subsets of a

G-set S.



-260-

Section 4.3 provides various examples of the ideas introduced in
section 4.2, These are mainly related to Met(M) wunder the action
of Diff(M). An example from general relativity is analyzed in
section 4.5.

Finding diffeomorphisms leaving a given geometrical structure
invariant is very difficult, and we often have to resort to cal-
culating infinitesimal symmetries, i.e. vector fields which generate
l-parameter groups of symmetries. In the case of a single metric
g, any infinitesimal symmetry must satisfy the Killing equation,
and conversely, any vector field satisfying the Killing equation is
an infinitesimal symmetry of g. Similarly for a conformal structure
C, we have the conformal Killing equation whose solution space is
precisely the Lie algebra of infinitesimal conformeomorphisms (i.e.
conformal Killing vector fields). In the context of everywhere
invariance, we have a corresponding equation called the invariance
equation. We introduce this equation in section 4.4 and demonstrate
how it may be used to find symmetries in section 4.5. The in-
variance equation may be regarded as a generalization of the Killing
equation where, instead of a single metric, we are considering an
entire family of metrics. Because of the extra degrees of freedom
involved, the invariance equation may be decoupled and is thus
easier to solve than the corresponding Killing equation.

The philosophy underlying the use of the invariance equation
in finding the symmetries of a given metric g € Met(M) dis to
first construct an everywhere invariant embedded submanifold of
Met(M) of which g is a member. We then solve the corresponding
invariance equation, thus finding all infinitesimal symmetries of

the submanifold. The Killing vector fields of g are among these
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infinitesimal symmetries and may be integrated to give the corres-
ponding isometries.

Since the frame bundle GL(M) often plays an important rdle
in the study of natural structures on M, we also give a frame
version of the invariance equation.

In section 4.5 we consider a specific parameterized family of
solutions to the Einstein equations, namely the pp-wave solutions.
We solve explicitly the invariance equation and integrate to give
the full set of symmetries for the pp-wave solutions. This kind
of calculation illustrates the practical use to which the ideas of
everywhere invariance may be applied. Indeed, since the isometry
group is a basic piece of information about a particular solution
to Einstein's equations, we may regard everywhere invariance as a
tool in the classification programme. Unlike other means of
classification, such as the Petrov classification, there is no
simple algorithm for finding the isometry group of a given solution.
Indeed, solving the Killing equation for a complicated metric is
very difficult. The simplifications introduced when we generalize
to the invariance equation should therefore make the classification
using isometry groups a much more tractable proposition.

The final section of this chapter contains suggestions for
further investigations. These topics arise from both everywhere
invariance and from the study of natural structures on manifolds.
The latter include various maps and group actions related to
Diff(M) and Met(M) and some of these have already been used in
applications to physics.

The original ideas contained in this chapter consist of the
development of the ideas of everywhere invariance in sections 4.2,

4.3, 4.4 and 4.5 and also the remarks concerning the use of the
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canonical bundle in the resolution of the singularities of
Geom(M) which we discuss in section 4.1. We have not seen a
consideration of the action of Aut GL(M) on Met(M) in the
literature, nor a reference to the suggestions made in section
4.6 regarding natural maps. The suggestions for further investi-

gations in everywhere invariance will be taken up elsewhere.
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4.1 Metrics

This section is arranged as follows:- First, for convenience,
we review the basic structure of the space of metrics on a manifold
M. We then consider the structure of Aut GL{(M), the group of
automorphisms of the frame bundle of M andwe describe the action
of Aut GL(M) on Met(M), the space of metrics. This action leads
to natural geometrical structures on M. The most important subgroup
of Aut GL(M) 1is Diff(M), the group of diffeomorphisms of M, and
we study the quotient Geom(M) of Met(M) by Diff(M). Geom(M) is
not a manifold but we show how its singularities may be resolved
using natural techniques. Finally, we consider certain other aspects
of the space of metrics in relation to material contained elsewhere
in this thesis. The ideas presented in this section will be used in
the remainder of this chapter and some have already been utilized
above, We refer the reader to Francaviglia [F © ] (and references
therein) for details concerning the differentiable structure of the
spaces considered in this section. Francaviglia also reviews
various techniques of infinite dimensional differential geometry
applied to general relativity.

Let M be a connected, oriented, smooth n-manifold without
boundary. Let Diff(M) be the group of orientation preserving
diffeomorphisms of M and SZ(M) = F(@ZT*M) the vector space of
symmetric second rank covariant tensor fields on M. For a given
fixed (non-degenerate) signature, let Met(M) denote the space
of metrics of the given signature on M. The spaces SZ(M), Diff (M)
and Met(M) are all manifolds and Diff(M) is a Lie group (see the

remarks in section 4.0). Note that below we sometimes use the spaces
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SZ(I)’ Diff(I) and Met(I), where I 1is an infinite dimensional
manifold, but we make no claims concerning the differentiable struc~
ture in this case.

The topology of Met(M) depends on the signature chosen. In
the positive (or negative) definite case, Met(M) is an open convex
cone n SZ(M)' Thus, in this case Met(M) 1is connected and, indeed,
contractible., If the signature is indefinite (e.g. Lorentzian), the
topology of Met(M) is, in general, non-trivial. For example, the
set of components of Met(M) 1is parameterized by certain homology
groups and can certainly have more than one element. Also, each
connected component may have non-trivial topology. For more detalls
concerning the topology of Met(M) din the four dimensional Lorentzian
case, see Shastri et al., [S44 ] and references therein.

Since the signature (definite or indefinite) is non-degenerate,
Met (M) 1is an open submanifold of SZ(M), s0 we have natural identi-
fications TMet(M) = Met(M) x SZ(M)’ and Tg Met (M) = SZ(M)’ for
all g € Met(M). The appropriate (for applications) cotangent bundle
to use is the L2—cotangent bundle and this is constructed as follows;
Fix g € Met(M) and consider the embedding h = h~ 8 vol(g) of
SZ(M) into its topological dual (SZ(M))*' Here h# ® vol(g) acts
on SZ(M) by k IM g(h,k)vol(g), for all k 6 SZ(M)' We now
define TZMet(M) = {h* 8 vol(g): h € SZ(PD} x {p 8 vol(g):p € S2(M)},
where SZ(M) is the space of symmetric second rank contravariant
tensor fields on M. We take the L2—cotangent bundle of Met(M)
to be T*Met(M) = g T; Met (M) = Met(M) x Si(M), where Sé(M) =
F((OZTM) @*AHM). Note that for this cotangent bundle to be defined,
we must either take M compact or restrict attention to L2-

sections. The L2—cotangent bundle T%Met(M) is a sub-bundle of
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the true cotangent bundle and it carries a natural (weak) symplectic
form w. In the case of positive definite metrics in dimension three,
Fischer and Marsden [F 6 ] use a reduction of the phase space
(T*Met(M), w) in their formulation of the 3+1 initial value
problem in general relativity.

The most important group action on Met(M) dis that by the
diffeomorphism group Diff(M) by pullback. We prefer to have a

left action and so we define (lower star) € Hom(Diff(M),Diff(Met(M)))

oo
w

by ¢ — ¢, = (¢‘l) , for all ¢ € Diff(M). Thus
(6,8) () (vy) = g T Mo ()., Do w41,

for all wv,w € TxM’ x €M, g € Met(M), ¢ € Diff(M). We often
identify Diff(M) with its image Diff*(M) in Diff(Met(M)). The
diffeomorphism group of M acts, via the action (lower star), on
tensor bundles, e.g. the Lz—cotangent bundle, of Met(M). Indeed,
Diff (M) leaves invariant natural structures on these bundles. For
example, Diff(M) acts symplectomorphically on (T*Met(M), w) .
Another natural structure associated with Met(M) (M compact)

is the map G: ]R*=+SZ(Met(M)); t b Gt’ where :

Gt(g)(h,k) = [ {g(h,k) - t(tracegh)(tracegk)}vol(g) 4.1.2,
M

for all h,k € TgMet(M) = SZ(M)’ g € Met(M).

Suppose we take positive (or negative) definite metrics in
Met (M) and let us assume nt + 1. Then the symmetric rank two co-
variant tensor field Gt on Met(M) is (weakly) non-degenerate;
Suppose g € Met(M) and Gt(h,k) = 0, for all k & SZ(M). Then,

in particular, Gt(h,h+s(tracegh)g) = 0, vwhere s = t/l-nt, so
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we have O = { {g(h,h) + s(tracegh)g(h,g) - t(tracegh)2
M

- nst(tracegh)z}vol(g) = JM{g(h,h) + (s(l—nt)—t)(tracegh)z}vol(g)
= Hhﬂg , where ”'“g is the LZ-norm on SZ(M) induced by g.
Hence, Gt(g)(h,k) =0 for all k € Sz(M) implies h = 0O, and
thus Gt is (weakly) non-degenerate. So for nt %+ 1 and definite
signature, Gt defines a (weak) metric on the manifold Met(lM).
The signature of Gt depends on the value of t.

Note that g(h,k) = trace(g_lhg_lk) and tracegh = g(g,h) for
all h,k € SZ(M)’ g € Met(M). Now let ¢ 6 Diff(M). Then
((6,8)(8h, 9,0)(x) = (trace((6,8) T(9,h) (6,8) T(o,k))) (x)

Lakcot)ah

trace((Ag(s T(x))AT) Tan(e ™ (x))aT (ag(67 (x))AT)
(where A = Do 1(x))

trace(g(6” () Th(s T () g (6T (x)) Tk (o T (x)))

(trace(g—lhg—lk))(¢—1(X))

g(h,k) (67 7(x)). Hence (4,8)($,h,8,k) = 0,(g(h,k)), where

e
w

0, = (6 g = £ 097t forall £ecan. Also, trace, (4,h)

= (¢,28) (¢.8,9,h) = ¢,(g(g,h)) = ¢*(tracegh). Using these ;ormulae,
we may now calculate the action of Diff(M) on Gt € Sz(Met(M));

We have ((6,) G,)(8)(h,k) = C_(0,8) (Do, (g).h, Do, (g).K)

= Gt(¢*g)(¢*h,¢*k) (since ¢4: Met(M) — Met(M) is the restriction
of the linear map ¢, on SZ(M))

= {(¢,.2) (¢,h,¢ k) - t(trace, (¢, h))(trace, (¢,k))l}Ivol(9,g)
M Fiy ~ ~ (b*g b Cb*g i Py

= ¢,{g(h,k) - t(trace_h)(trace k)}¢, vol(g)
M g g "

= {g(h,k) - t(tracegh)(tracegk)}vol(g) = Gt(g)(h,k), for all

M
h,k € SZ(M), g € Met(M). Hence, the action of Diff(M) leaves the

tensor field Gt invariant, for all t € R. In particular, in the
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case when Gt is actually a metric (i.e. nt + 1, definite signature
metrics in Met(M)), Diff(M) < Isom(Met(M), Gt).

The metrics Gt on Met(M) have various useful applications.
For example if we take t = 0O, we obtain a positive definite metric
on Met(M) (if the metrics in Met(M) are positive definite). The
Riemannian metric G_  has been used by Ebin [E & ] in his construc—
tion of a slice of the action of Diff(M) on Met(M). Ebin also
calculates the Levi-Civita connection of GO € Met(Met(M)). The
metric obtained by putting t =1 (n + 1) 1is called the De Witt
metric and was introduced by De Witt [D4 ] in connection with
canonical quantum gravity. The metric Gl may also be used in the
initial value problem in general relétivity (see Fischer and Marsden
[F 4], who also calculate the geodesic spray of the De Witt metric).
Note that Gl is not positive definite. We refer the reader to
Francaviglia [F 9 ] for a review of applications of the de Witt
metric Gl to topics such as the theory of superspace, the reduc-
tion of the Einstein-Hilbert action and the chronos principle.

We now make some further brief remarks concerning the structure
of Met(M). We consider various group actions on this space below
but, for the moment, let us restrict our attention to the action of
Diff (M) on Met(M), where M 1is compact and the signature is definite.
The most important result concerning the action 4.1.1 is that there
exists a slice (see Ebin [E 4 ]|) =~ this is a very powerful result,
since the existence of a slice means that various structure theorems
for Met(M) may be proved.

Let us recall the basic facts concerning slices (see Palais

[P 4 ] for a survey of the ideas). Let A € Hom(G,Diff(X)) be a

smooth action of the Lie group G on the manifold X. TFor x € X



-268-

denote by Gx the orbit of x wunder G and by st(x) the iso-
tropy subgroup of x under G. A slice at x for the action A

is a submanifold SX'E X containing x such that (i) if a € st(x),
then aS =S (i1) if a€G and (aS) S _+ #, then

a € st(x); and (iii) there is a local cross—section s: G/st(x) — G
defined in a neighbourhood U of the identity coset such that the

map F: U x SX — X3 (u,y)  A(s(u),y) 1is a diffeomorphism onto a
neighbourhood V of x.

If a slice exists for the action A, 1t may be regarded as an
equivariant retraction of a neighbourhood of Gx (in ¥X) onto Gx,
and the action locally is completely determined. We may consider
a slice SX at x to be a submanifold transverse to the orbit
Gx through x, which, together with a neighbourhood of the orbit,
fills out an open neighbourhood of x in X. The action A is thus
factored into a transitive action on Gx together with an action by
the isotropy group st(x) on the slice. If a slice exists, we may
choose it to be an open ball in some topological vector space on
which the isotropy group is represented as a group of bounded linear
operators. If we regard the G-space X as a generalization of a
principal G-bundle (see section 6.1), we should think of a slice as
the analogue of a local section of the projection: X — X/G. A
slice is the best we can hope for because the action A 1is not,
in general, free.

When G 1is compact, slices always exist, but this is not
necessarily the case for non-compact G. On the other hand , if
the existence of a slice can be proved for a non-compact action A,
then many further results, analogous to those in the theory of com-

pact transformation groups, may be derived.
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The Ebin-Palais result for the existence of a slice of the
(lower star) action of Diff(M) (not even locally compact) on
Met(M) 1is thus a very important result and may be stated as follows:
Let Met(M) denote the space of positive definite metrics on
the compact manifold M. Then, for each g € Met(M), there exists
a submanifold Sg of Met(M) containing g, which is diffeomorphic
to a ball in (separable) Hilbert space, such that (i) if
¢ € Isom(M,g), then ¢*Sg = Sg; (ii) 4if ¢ € Diff(M) and

(¢*Sg)F\S + #, then ¢ € Isom(M,g); and (iii) there exists a

. lef(M)/Isom(M ——> Diff (M) defined on

local cross—-section s: ,8)
a neighbourhood U of the identity coset such that if
F: U x Sg — Met(M) 1is defined by F(u,g') = s(u),g', then F is
a diffeomorphism onto a neighbourhcod of g in Met(M).

The proof of this theorem is constructive and, as we have re-
marked above, uses the Diff (M)-invariant metric GO on Met(M);
the slice S is constructed by exponentiating a small disc in
the Go—orthogonal complement of the tangent space Tg(Diff*(M).g)
of the Diff(M) orbit through g. Hence, locally the slice S
and the orbit Diff,(M).g are orthogonal with respect to the metric
GO. As in the general case, the slice theorem implies that the
slice Sg and the orbit Diff, (M).g fill out a neighbourhood of g
in Met(M), and the (lower star) action is factored into an action
of Isom(M,g) on the slice and a transitive action on the orbit.

We now give some important consequences of the Ebin-Palais
slice theorem. Let G be any Lie group and let MetG(M)
= {g € Met(M): Isom(M,g) 2 G}. Then, MetG(M) is an open dense

subspace of {g € Met(M): G is isomorphic to some subgroup of

Isom(M,g)}. This gives us the local decreasing property of the
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isometry group. In particular, Metl(M) (the space of metrics with
trivial isometry group) 1s an open dense subspace of Met(M) itself.
We say that metrics in Metl(M) are generic. Another application of
the slice theorem is the stratification of Geom(M) = Met(M)/Diff(M) -
this stratification is into manifolds of geometries of particular
symmetry, the geometries of high symmetry being contained in the
boundary of manifolds containing geometries of lower symmetry. We
refer the reader to Bourguignon [B 7§ ], Ebin [E 4 ] and Fischer [F1 ]
for further details concerning the consequences of the slice theorem.
We return to Geom(M) below in this section.

Fischer [F 4 ] has made interesting remarks concerning the
interaction between the coupled actions (lower star) of Diff(M) on
Met(M) on the one hand and Isom(M,g) on M (some g € Met(M)) on
the other. By exploiting this interaction it is possible to deter-
mine the topological implications (for M) of M admitting a
Riemannian structure with particular symmetry. The general idea is
that a non-generic metric cannot be supported by an arbitrary
manifold - the global rigidity inherent in the symmetry of the geo-
metry must be reflected in the underlying topology. Fischer investi-
gates the questions (i) which Lie groups can occur as isometry groups
for Riemannian metrics on a given manifold M?; and (ii) Which
topologies are compatible with a Riemannian metric whose isometry
group is isomorphic to a given Lie group? Fischer restricts his
attention to the case dim M = 3 (since he is interested in applica-
tions to the Wheeler superspace in general relativity) and he proves
a classification theorem for isometry groups arising from metrics
on closed 3-manifolds.

We use the following terminology (see [F 4 ]):- The manifold M
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is said to be symmetric if there exists g 6 Met(M) with
dim Isom(M,g) > O, random if dim Isom(M,g) = 0, for ail
g € Met(M), and wild if Metl(M) = Met(M)., If M is random, then
all metrics on M possess discrete isometry groups and the action
(lower star) is almost free (i.e., it has discrete isotropy). If
M were wild, then (lower star) would be free and Geom(M) would be
a manifold. M wild is equivalent to Diff(M) having no finite
subgroups, but no such manifold is known in any dimension. Thus,
the set of wild manifolds is possibly empty. Fischer's classifica-
tion theorem demonstrates that '"most' manifolds are random (in
dimension three at least) and that the only symmetric closed
3-manifolds are 83, RP3, slxslxsl, s2xsl 1L(p,q) (Lens
spaces) and polyhedral manifolds (and various connected sums of
these 3-manifolds). A classification theorem of this kind for
dimension 2z 4 would be difficult to achieve since there does not
even exist a classification theoreﬁ for closed n-manifolds for n 2 4.

We now turn our attention to other group actions on Met(M).
In particular we study the group Aut GL(M) of automorphisms of
the frame bundle GL(M) of M (see section 6.1 for the definition
of Aut GL(M)). In what follows we do not assume M orientable
unless explicitly stated and so Diff(M) denotes the group of all
(not just orientation preserving) diffeomorphisms.

In section 6.1, we demonstrate that Aut GL(M) % Diff(M)
X Gau GL{M), the latter with group structure given by

l), for all

~

(¢1,W1), (¢2,W2) € Diff(M) x Gau GL(M), and where ¢ = 2(¢) is

(¢l’wl)(¢2’w2) = (¢l o ¢29 \yl o (bl o ‘YZ o ¢l

the 1lift of ¢ 6 Diff(M) to an automorphism of GL(M) (see

definition (6.1)27 and 6.1.13). The explicit isomorphism q of
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Aut GL(M) onto Diff(M) x GauGL(M) is given by q(¥) = (¥, V¥ o‘q‘lh

for all V¥ € AutGL(M), and its inverse is given by q_l(¢,W) =Y o é,
for all (¢,¥) € Diff(M) & GauGL(M). Recall that the two groups
I'(ConjGL(M)) and Cconj(GL(M), GL(n,R)) are natural isomorphs of
GauGL(M). There is also another group to which GauGL(M) is
naturally isomorphic. This is the automorphism group of the tangent
bundle, Aut(TM) = {F € Diff(TM): ﬂTMOF = Ty and

F[TXM € GL(T M), for all x € M} S{FEeT(TM® TM): det F + O}.

Let us define a: Aut(TM) — GauGL(M) by:

u(K;1° F(r(w) ° ) 4.1.3,

(a(F)) (u)

for all u € GL(M), F € Aut(TM). Note that o does indeed take
its values in GauGL(M) (since a(F)oRa = Raoa(F), ™ o o(F) = m,

for all a € GL(n,R), T &€ Aut(TM)). The inverse is

I = ey 0 K 4.1.4,

for any u € W-l(x), for all x € M, V¥ € Gau GL(M). The definition

of (a_l(W))(x) does not depend on the choice of u 8 ﬂ-l(X>, since

K« o K—l = x ° K-l = (x ° g)o(x © a)_1 = K o K_l
Y (ua) ua Y(wa ua Y (u) u Y(u) u’
for all a € GL(n,R). The maps &, o are mutually inverse homo-

morphisms as is easily checked, so that o is an isomorphism of

Aut (TM) onto GauGL(M).

There exists a natural action A (push forward) of Diff(M) on

Aut(TM). This is given by:
-1 -1 -1
(A¢(F))(x) = D¢(¢ (%)) o F(¢ "(x)) ° D¢ ~(x) 4.1.5,

for all x €M, F € Aut(TM) and ¢ € Diff(M). It is straightforward

to show (see similar calculations below) that A € Hom(Diff (M),
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Aut (Aut(TM))). Hence we may form DIiff(M) x Aut(TM).

Proposition (4.1)1: The isomorphism o 1s equivariant with respect

to the actions A, conj o £ of Diff(M) on Aut(TM), GauGL(M)

respectively.

Proof: We must demonstrate that 0L°Aqb = (conjoz)¢ oa, for all

¢ € DIff(M). Let ¢ & Diff(M), F € Aut(TM) and u € GL(M). We

have  ((aed,) (F)) () = u(x] e (4, (F) (1)) ok )

w(eheps (7 n())) oF (T (@)D 0Ds T (m(w)) ok )

= a0 (n @) TR (s T ) e (m(w)) ke )
- uTh L FrG T @ e )
¢ " (u) ¢ ()

(using «7

5 () Dw(n(u))OKu, Woi = yYorm, for all vy € DIiff(M))

b7 W ey PG T @N ek ) = 4 (@(E) (67 HwW))
¢ " (u) ¢ " (u)

($°@(F)°$—l)(u) = ((conj°2)¢(a(F)))(u). Hence achy = (conjo£)¢oa,

for all ¢ € DIff(M)DO

Corollary (4.1)2: AutGL(M) 1is naturally isomorphic with

Diff (M) & Aut(TM).

Proof: Define a': Diff(M) Kk Aut(TM) — AutGL(M) = Diff(M) % GauGL(M)
by (¢,F) b (¢,a(F)). Then o' 1is obviously a bijection. We now
show that o' is a homomorphism; Let (¢l,Fl), (¢2§F2)

6 Diff(M) x Aut(TM). Then

a'((¢laFl)(¢2aF2)) = a'(¢l°¢23 F1A¢1(F2)) =(¢1°¢25 @(F1A¢1(F2)))

(810892 4F)) (08 ) (F))) = (81065, a(Fy((congob) o0 (F)))

= (¢1°¢29 Q(Fl)(conjoz¢)(a(F2))) = (¢lsa(Fl))(¢29a(F2))

a'(¢l,Fl)a'(¢2,F2).

Thus o' dis an isomorphism of Diff(M) x Aut(TM) onto AutGL(M) O



-274-

We now wish to define an action of AutGL(M) on Met(M). To
do this, we first define an action of Aut(TM) on Met(M), thence
an action of Diff(M) & Aut(TM), and finally, using the isomorphism

o' an action of AutGL(M).

3

Definition (4.1)3: Define C € Hom(Aut{(TM), Diff (Met(M))) by

Cp(8) () (v,w) = g(x)(F'l(x).v, F—l(x).w), for all v,w € T},
X €M, g € Met(M) and F € Aut(TM). C 1is called the generalized

cenformal action.

The reason for the term generalized conformal action is that
the (pointwise) conformal action of C+(M) on Met(M) (see section
6.2) is the restriction of C to C+(M) regarded as a subgroup of
Aut (TM) via the monomorphism: £ b— f_% B'TM’ where HTM is the

identity automorphism of TM,

Definition (4.1)4: A generalized conformal structure on M 1is an

orbit of the group Aut(TM).

In other words, a generalized conformal structure is an equi=-
valence class of the relation ", where 81 "V 89 if and only if
there exists F 6 Aut(TM) such that g8 = C?(gz). We return to

generalized conformal structures below,

Proposition (4.1)5: The actions (lower star) and C are compatible

with the action A in that together they define an action B of
Diff (M) X Aut(TM) on Met(M).

Proof: Let ¢ € Diff(M), F € Aut(TM). Then

(6,4°C) (8) (x) (v,1) = Cp(g) (07 () (06 (x) v, Do~ (x) o)

=26 ) (F e ) Do hx) v, F LT x)) D8 (x) cw)

g<¢“l<x>><D¢<¢'1<x>>‘1<A¢<F'l>><x>.v, D¢<¢'l<x>>‘l<A¢<F‘l>><x>.w>

g(¢‘l(x>><D¢”l<x><A¢<F>‘l><x>.v, D¢’l<x><A¢<F>‘l><x>.w>
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= (0,8) () (A (N TG0, A D T W) = Ca, () 48 () (1)
= (CA¢(F)O¢*)(g)(x)(v,w), for all wv,w & TXM, X €M, g & Met(M).

Hence ¢*OCF = CA¢(F)°¢*'

Now define, for each (¢,F) € Diff(M) X Aut(TM), the map

B(¢,F) = CF°¢*: Met (M) —> Met(M). We have

B = B, = C o (¢,°0,),

°© b1 Py, =Co° g0 Coed, = B ° B ’

for all (¢1,Fl), (¢2,F2) € Diff (M) x Aut(TM). Obviously

B(idM, HTM) = ldMet(M)’ defines a map

B € Hom(Diff(M) X Aut(TM), Diff(Met(M))). B 1is the required action

0 (BB By m)

of Diff(M) X Aut(TM) on Met(M). O
Now, using the isomorphism a': Diff(M) x Aut(TM) — AutGL(M)
(see (4.1)2), we obtain the action B' =B o (oc')—l of AutGL(M) on

Met(M). Thus, B' dis given by:

= C ° ¢, 4.1.6,

Bo,a™ ey 1 2

o,
for all (¢,¥) € Diff(M) x GauGL(M) X Aut GL(M) (From now on,
we identify Aut GL(M) with Diff(M) % GauGL(M) wusing the iso-
morphism ¢, but we maintain a distinction between Aut GL(M) and
Diff (M) x Aut(TM)).
Note that it is occasionally convenient to regard metrics on
M, not as tensor fields on M, but as equivariant maps on the

v CL(n,R),

frame bundle. Let S(p,q;R) denote the space

0(p,9q)

of real symmetric nXn matrices of signature (p,q) (where (p,q)

is the signature of the metrics in Met(M)). Define an action o



~276~

of GL(n,R) on S(p,q;R) by Ga(s) = (a-l)Tsa—l, for all
s € S(p,q;R), a €& GL(n,R), and denote, as usual, the space of equi-
variant maps from GL(M) dinto S(p,q;R) by Cg(GL(M), S(p,q;R)).

Now define f: Met(M) — CG(GL(M), S(p,q;R)) by:=-

B(g) (W) (x,y) = g(m(u))(x (x), < (¥)) 4.1.7,

for all x, y € ]Rn, u 86 GL(M), g € Met(M). ©Note that Ky R™ — Tw(u)M

is the linear isomorphism defined for each u € GL(M) (see 6.1.1),
and we regard elements of S(p,q;R) as bilinear forms on IRn. The
map B does take its values in CO(GL(M), S(p,q;R)) as we now demon-

strate:— Let g € Met(M), u € GL(M), a € GL(n,R) and x,y € B,

then B(g)(ua)(x,y) = g(ﬂ(ua))(Kua(§),Kua(z)) = g(m(u)) (v (ax),x (ay))

8(g) (w) (ax, ay) = (ax) (B(g) (W) (ay) = x a (8(g) (u))ay

0 -1(8(g) (WXx,y). Hence, B(g)(ua) Ga_l(B(g)(u)), s0

B(g) € CG(GL(M), S(p,q;R)), for all g € Met(M).

The map B is actually a diffeomorphism of smooth manifolds

with inverse given by:-
T W = s, T, kT G0) 4.1.8,

for all v,w € T.M, any u € W_l(x), for all x € M and s 6 C_(GL(M),
S(p,q:R)). We may use B to transfer the actions of Diff(M) and
Aut(TM) on Met(M) to actions on Cg(GL(M), S(p,g;R)). Define, for

each ¢ € Diff(M) and F 6 Aut(TM) the diffeomorphisms

v ° ° -1 v ° ° -1 .
o' =B ° ¢, B 7, CF— B CF R of CG(GL(M), S(p,q;R)).

It is straightforward to verify that ¢' = ¢, and Cl; = a(F),
(so that ¢'(s) = s o qb—l, C}.«'*(S) =35 o oc(F—l), for all

s 6 CO(GL(M), S(p,q;R))). Also, by definition, ¢' o Cl; = CA¢(F) o ',

so that the actions of Diff(M), Aut(TM) together give an action
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D(¢,F) = C% ° ¢' of Diff(M) X Aut(TM) (thence Aut GL(M)) on
CO(GL(M), S(p,q;R)) (Cf. the proof of proposition (4.1)5). We
use these results below (see proposition (4.1)11).

We now consider the structure of Aut GL(M) in more detail.
In particular, we discuss decompositions of the group
Aut (TM) z GauGL(M). Let us first consider the group GL(n,R).

We have the epimorphism det: GL(n,RJ-**ﬁR* and the inverse
images under det of subgroups of R% constitute important sub-

L

+ %
groups of GL(n,R); Consider 1, Z and R £ R , then

2
det—l(l) = SL(n,R), det-l(Zz) = OL(n,R) (our notation) and
det T (R = cLT(n,m).

We also have the epimorphism det: Aut(TM) —ﬁ‘Cd(M) (we use

the same notation for the two determinant maps) and corresponding

{F € Aut(TM): detF = 1},

subgroups of Aut(TM). Thus, SAut(TM)

OAut(TM) = {F & Aut(TM): det F € Z, < c“} and  Aut’(TM)
+ *

= {F € Aut(TM): det FE€ R < C (M)}.

Proposition (4.1)6: The subgroups SAut(TM), OAut(TM) and

Aut+(TM) are each invariant under the action A of Diff(M) on
Aut (TM).

Proof: First note that det: Aut(TM) — C*(M) is equivariant
with respect to the actions A, (lower star) on Aut(TM), C*(M)
respectively; For ¢ 6 Diff(M), F € Aut(TM) and x € M, we have
(detody) (F) (x) = det (A, (F)(x)) = det (Do (37T (x))oF (67  (x)) oD ()

1 -1

(see 4.1.5) = det(F(¢ T(x)) (since Do(s 1(x)) = Do L(x)™ 1)

= (det F)(¢—l(x)) = (¢* det F)(x). Hence detoA¢ = ¢, odet, for
all ¢ € Diff(M).

Now note that ¢,G = G for any subgroup G of R regarded

as a subgroup of C“(M), and hence T € det—l(G) <== det F € G
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<=> ¢,det F € ¢,6 = G < det(A¢(F)) 6 G <= A¢(F) € det_l(G).
i.e., det—l(G) is invariant under the action A for all subgroups
¢ of R < ct(D. In particular, SAut(TM), OAut(TM) and Aut® (TM)
are each invariant under Diff(M). O

We have defined a generalized conformal structure on M to be
an orbit of Aut(TM) acting on Met(M) (see definition (4.1)4).

This definition may be generalized slightly in the following way:

Definition (4.1)7: Let K be any subgroup of Aut(TM). Then K

acts on Met(M) by restricting the generalized conformal action C

(see definition (4.1)3) to K. We define a K-conformal structure

on M to be an orbit of the group K acting on Met(M).

In particular a C+(M)—conformal structure is just a conformal
structure in the usual sense (see section 6.2) and an Aut{(TM)-
conformal structure is a generalized conformal structure (as defined
by (4.1)4). The subgroups SAut(TM), OAut(TM) and Aut+(TM) also
give rise to K-conformal structures on M. The Diff(M) invariance
of all these subgroups implies that the corresponding K-conformal
structures are each everywhere invariant (see section 4.3).

Let us now discuss a decomposition of Aut(TM). First we con-
sider the subgroup OL(n,R) of GL(n,R). Let 1 be the in-
clusion of OL(n,R) in GL(n,R) and, for fixed s GfR*, let
KS = [det[s: GL(n,EJ-*iR+; a - |det als, for each a € GL(n,R).
The map AS is an epimorphism with Ker AS = {a € CL(n,R):
|det a]® = 1} = {a € GL(a,R): |det a| =1} = {a € GL(n,R):
det a 6 ZZ } = OL(n,R). We thus have the short exact sequence:

1 A
1 — OL(n,R) “—> GL(n,R) —=> R —> 1 4.1.9.

* +
For each s € R, this sequence splits; define Yt R — GL(n,R)
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by

v () = n 4.1.10,

for all r € IR+. The map Yo is a homomorphism and )\So Yg = id]R+ s
so yg defines a splitting of 4.1.9. The splitting Yq gives
rise to an action 6S of ]R+ on OL(n,R) by automorphisms (see
the discussion of semi-direct products in section 6.3) given by
es(t,a) = ys(t)ays(t_l) = a, for all (t,a) € ]R+>< OL(n,R). Thus,
the action is trivial and so the corresponding semi-direct pro-
duct ]R+I><eS OL(n,R) 1is, in fact, direct. We thus have an iso-
morphism ES of ]R+>< OL{n,R) (direct product) onto GL(n,R)

given by:
Es(r,a) = ays(r) = r a 4.1.11,

+
for all (t,a) € R x OL{(n,R), with inverse given by:
- s -—l/n
£ (a) = (|det al”, |det a a) 4.1.12,

for all a € GL(n,R). The parameter s may be chosen for con-
venience with s = l/n perhaps a natural choice.

This decomposition for GL(n,R) may be used to obtain a
corresponding decomposition of Aut(TM){‘—\'J Cconj (GL(M), GL(n,R)).
The decomposition of Aut(TM) relies on the behaviouf of the con-
jugation action under the isomorphism g;l: GL(n,R) — ]R+>< OL(n,R).
Define, for each s € ]R*, conjS € Hom(GL(n,R), Aut(IR,+>< 0L(n,R)))
by conjs(a) = g;lo conj(a) o Es’ for all a € GL(n,R). Then,
under the action of a € GL(n,R), (r,b) € IR+ x OL{(n,R) is mapped
to E;l(a Es(r,b) a_l) = E;l(a(rl/ns b)a_l) = E;l(rl/ns abanl)

= (r, aba_l). Thus, GL(n,R) acts trivially on the ]R+ factor
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and by conjugation on the OL(n,R) factor. ©Note that this action
is independent of s, and so we write conj' rather than conjs

% -
(all s € R ). The map ¢ Esl° ¢ is an isomorphism of

+
nj,(GL(M), R x OL{(n,R)) and,

Cconj(GL(M)’ GL(n,R)) onto CCO

+
because of the triviality of conj' on the R factor, we have
+
an isomorphism of Cconj,(GL(M), R x OL(n,R)) onto

+
C (M) x Cconj(GL(M)’ OL(n,R)). Finally, using the isomorphisms

e

nj((;L(M), GL(n,R)) = Aut(TM) and Cconj(GL(M), OL(n,R))

co

C
v . -1
= QAut(TM) (given by ¢ k-~ F@; X Ky ° o(u) ° K, » any

u € n—l(x)), we obtain an isomorphism 65 of Aut(TM) onto

C+(M) x QAut(TM), and 68 is given by:

1
§,(F) = (|det F|®, |det F|” /gy 4.1.13,

for all F € Aut(TM). The inverse is given by:

-1 l/ns
5, (£,F) = f F 4.1.14,
for all (£,F) € C+(M) x OAut (TM). Note that the choice s = - 2/n
.
leads to the monomorphism: C (M) & Aut(TM); f > f "1, referred

to above,
We have proved the following:

Proposition (4.1)8: There exists a natural l-parameter family

{SS: s € Ré} of isomorphisms of Aut(TM) onto C+(M)X OAut (TM) ,
where 68 is given by 4.1.13.

We have the actions (lower star) and A of Diff(M) by
automorphisms on the groups C+(M) and OAut(TM) respectively
(see proposition (4.1)§ for the latter) and hence the action

A' = (lower star) xA of Diff(M) by automorphisms on the group
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+

C (M) *x QAut(TM). Thus, we may comstruct the semi-direct product
+

Aut(M) = Diff(M) x (C (M) x QAut(TM)).

Proposition (4.1)9: There exists a natural l-parameter family

ﬂué: s € R} of isomorphisms of Aut GL(M) onto Aut(M).

Proof: First define 6;: Diff (M) X% Aut(TM) — Aut(M) by

6é(¢,F) = (¢,68(F)), for all (¢,F) € Diff(M) x Aut(TM). By an
argument similar to that given in the proof of corollary (4.1)2,

6é is an isomorphism if ds is equivariant with respect to the
actions A, A" of Diff(M) on Aut(TM), C+(M)><0Aut(TM) res-—
pectively. We now demonstrate this equivariance; Let F 6 Aut(TM),
¢ € Diff(M). Then (6S‘°A¢)(F) = (|det A¢(F)!S,|det A¢(Fﬂ_l/nA¢(F))

1
= (|¢*(det F)[S, ]¢*(det F)l— /n A¢(F)) (using the equivariance of

det shown in the proof of proposition (4.1)6)

-1 -
|, det F|®, |0, det F| /n Ay (F)) = (¢, |det F!S,A¢(ldetF| 1/n F))
1
1 S -7 /n . [N ° — A'o
A¢<Idet F|°, |det F| F) = (A¢ §.)(F). Thus, & Ay = AyoSs

for all ¢ € Diff(M), and so 6; is an isomorphism.

A

We now define w;: Aut GL(M) — Aut(M) by wl = 6é° (a')-l,

and this gives us the required l-parameter family of isomorphisms O

The action B' of Aut GL(M) on Met(M) (see equation 4.1.6)

+
may be transferred to an action of Aut(M) = Diff(M) X (C (M) x QAut(TM))

on Met(M) wusing the isomorphisms w;. We define, for each s € R ,

s . s - '
E- € Hom(Aut (M), Diff(Met (M))) by E(¢,f,F) = Bw;l(¢,f,F)

= Cy-lgg gy © Ox Let %6 Hom(CT (M) x OAut (TM), Diff(Met(M)))
s 3

, S _ s
be defined by Cip py = Cd;l(f,F)’ Then (C(f,F)(g))(x)(v,w)

1/ns -1 l/ns

(8)) () (vyw) = g(x) (£ Py L) ov, (£ /7))

fl/nSF

l/ns

1 _
OF L) .v, £ /M (0w

_2/

g(x) (£

2
£ /M8 (e (k) F R (x) v, Fi(x).w) = (£ "S¢.(2)) () (v,w), for all
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2

s - /ns
v,w € TXM, x €M and g € Met(M). Hence c(f,F) = f ° CF’

2
/ns: Met (M) — Met(M) 1is the (pointwise) conformal

where the map £
+
action of C (M) on Met (M) (see section 6.2). The action ES

of Aut(M) on Met(M) 1is therefore given by:

~2/ns

s
= f ° Cp o 9, 4.1.15,

Eo,£,T)

for all (¢,(£,F)) € Aut(M).

Equation 4.1.15 demonstrates that the action of the natural
group Aut(M) factors into a product (in Diff(Met(M))) of the
three important geometric actions, namely pointwise conformal,
OAut (TM)~-conformal and the (lower star) action by diffeomorphisms.
By "turning off" one or more of these actions, we obtain the

usual actions on Met(M), e.g. putting F = qui gives us the

Diff (M) & ')

Hi

action of the conformorphism group Conf(M)
on Met(M) (see section 6.2) (to conform with convention we
should use the parameter value s = = 2/n in this case).

The relation with the conformorphism group is made more explicit
by the following:

Proposition (4.1)10: Define J € Hom(Conf(M), Aut(OAut(TM))) by

J(¢’f)(F) = A¢(F), for all F € OCAut(TM), (¢,f) € Conf(M). Then
the corresponding semi-~direct product Conf(M) & OAut(TM) is iso-
morphic with Aut(M).

Proof: Define u: Conf(M) k OAut(TM) — Aut(M)

z Diff (M) x (C+(M)><0Aut(TM)) by w((¢$,£),F) = (¢,(£f,F)), for all

((¢,£),F) € Conf(M) x OAut(TM). Then u(((¢l,f1),Fl)(cbz,fz),Fz))

MO @, E)s BTy gy (Fp))

T R0y E (0),F))s Fray (F)) = (912050 (£,(0),550 Ty 4y (F))
1
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= Oy FLED (O &y (F)) = (07, (£1,50) (g, (.73

(since ¢l maps (fz,FZ), via A', to (<¢l)*f2’ A (FZ)))

o
= (8155, FDu(9,5E)),F,),  for all <<¢1,fl>,Fl§,<<¢2,f2>, )
€ Conf(M) x OAut(TM). Hence uy 1is a homomorphism, obviously a
bijection, and hence Conf(M) % OAut(TM = Aut (M) O

We summarize the above discussion. The group Aut(M)
= Diff(M) X (C+(M) x QAut(TM)) 1is a natural isomorph of the group
Aut GL(M) of automorphisms of the frame bundle. Aut(M) acts on
Met(M) in a manner which unifies the action by the conformorphism
group Conf(M) with the group of OAut(TM)-conformal transformations.
In fact we have a family of actions on Met(M), this familv para-
meterized by Ré,

We now consider how Aut(M) dinteracts with other natural
structures on M., First consider the canonical bundle introduced
in section 1.4 (see definition (1.4)1). For ease of exposition,
we restrict out attention to positive definite signature metrics,
but the discussion goes through for arbitrary signature. In

section 1.4, we dealt with oriented manifolds, but here we do not

assume that M 1is orientable. We define the canonical principal

O(n)-bundle of M to be the following fibration (Cf. 1.4.1):

0(n) &—s O(M) —Z Met (M) x M 4.1.16,

where O(M) = {(g,u) € Met(M) x GL(M): u € 0(M,g)}, and

o(g,u) = (g,r(u)), for all (g,u) 6 O(M). As din 1l.4.1, we have,
the free right action of 0(n) on O(M) given by

((gyu),a) +>(g,ua), for all (g,u) € O(M), a € O(n), and then
¢ 1is the corresponding quotient map making 4.1.16 a principal

0(n)~-bundle.
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Note that if we identify Met(M) with the space CO(GL(M),S(n;R))

(see 4.,1.7), we may define the evaluation map:
ev: Met (M) x GL(M) — S(n;R); (g,u) > B(g)(u) 4.1.17,

for all (g,u) € Met(M) x GL{M). The total space O(M) of the
canonical bundle is then just ev_l(can), where can 6 S(n;R)
is the standard Euclidean inner-product on Rp.

Proposition (4.1)11: The group Aut(M) may be naturally identified

with a subgroup of Aut O(M), i.e. we may realize Aut(M) as a
group of automorphisms of the canonical O(n)-bundle of M.

Proof: Let s €6 R . It is convenient to utilize the isomorph

Diff (M) K Aut(TM) of Aut(M). We first construct an action of
Diff(M) % Aut(TM) on O(M), and then use the isomorphism 5;
((4.1)9) to transfer this to an action of Aut(M).

Define, for each (¢,F) 6 Diff(M) x Aut(TM), the map
Q(¢,F) = B(¢,F)X (a(F) o%): 0(M) ~ Met(M) x GL(M), where the action
B € Hom(Diff(M) X Aut(TM), Diff(Met(M))) 1is defined in proposition
(4.1)5, and a: Aut (TM)— Gau GL(M) 1is the isomorphism given by
equation 4.1.3.

We first show that Q(¢,F) maps O(M) dinto itself. Equi-
valently, we demonstrate that evo Q(¢,F) = constant (can):

-1

= o] = o ' =] ! o
O(M) — S(n,R). Note that B(¢,F) = CF b B CF ) B

= B—l o a(F), o ¢, o B = B_l o (a(F) ° $), ° B, where B 1is the
diffeomorphism of Met(M) onto CO(GL(M), S(n;R)) defined by

4,1.7. Let (g,u) € O(M). Then, (evo Q(¢ F))(g,u)

V(B y (&), (@(F) o 0) (W) = (8B, 1)) ()(a(F) o 9(w))

(6,F
((@(F) o 6,) ° B) (8) ((a(F) o ¢) (w)) = 8(g) ((a(F) ° ) Lo (a(F)os)) (u)

B(g)(u) = can. Hence Q(¢ py Maps O(M) dinto itself.
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We next show that Q(¢ F) is an automorphism of the canonical
I
principal O(n)-bundle, o: O(M) — Met(M) xM, By inspection,

is a diffeomorphism of O(M) onto itself, so we must

Us,F)
demonstrate that Rao Q(¢,F) = Q(¢,F)° Ra’ where Ra & Diff(OoO(M))

is the right action of O(n) on OM), for all a € 0(n). We
have (R °Q, 1) (8,w) = R (B, o (8), (a(B) < 6)(w)

= By gy (@), @) e 9)(Wa) = By 1y (8), (@(F) o ¢)(ua) (since

Bo,F
a(F) o ¢ € Aut GL(M)) = Q(¢’F)(g,ua) = (Q(¢,F)° Ra)(g,u), for all

(g,u) € O(M), a € 0(n). Hence, Q(¢ ) € Aut O(M).

Note that (o Y(g,u) = O(B(d),F)(g), (a(F) o d:)(u))

%6,m

= B,

a(F) 6 Gau GL(M) and 7m°¢ = ¢pom) = ("of(¢ py ° 9)(g,0), for all

(8), (1o a(F) 2 6) (W)= (B, 1y (&), (6°m) (w) (since

(g,u) € 0(M). Here, € Diff(Met(M) xM) is the projection

%(o,1)
of the automorphism Q(¢ F) and is given by O(¢ F)(g,x)

= (B(¢ F)(g), ¢(x)), for all (g,x) € Met(M) x M.
Now let (¢,,F.), (¢,,F.) € Diff(M) x Aut(TM). Then O

T Bl E oy, F < O Frhe (F))e (812050 )

= ( (a(F))o (aehy I (Fy) o6y ¢ 6)

B o B ) %
(d)l’Fl) (¢2’F2)

(B o B ) % (a(F.)o((conj ®2), oa)(F,) o b, od,)
(85F) ° T (0,5Fy) 1 o, @ (F2) 201 %

. AU
= ( p ) X (ED g0 aE)e 070 b0y

B o B
(0,.F) P,

= ( ) X ((a(F ) 0 6100 (a(F,) 2 6,))

B °B

T B,y CED 0By gy X (@) e 82)) =0y ry 2 Qo,,F)

Thus, (¢,F) — Q(¢ ) defines a homomorphism of Diff(M) x Aut(TM)
2’
into Aut O(M). This homomorphism is, by inspection, injective so

that Diff(M) % Aut(TM) 1is isomorphic to the subgroup
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Q(Diff (M) X Aut(TM)) < Aut O(M).

For each (¢,F), the automorphism Q(¢,F) projects to the
diffeomorphism 6k¢,F) given above. Note that 5k¢,F) = idMet(M)><M
if and only if (¢,F) = (idM, nTM), so that the image of Q has
trivial intersection with Gau O(M).

We now define P° 6 Hom(Aut (M), Aut O(M)) by p° = Qo (6;)-1,
and this is the required monomorphism of Aut(M) into Aut O(M) O

The explicit form of P° is given by P?¢ £ F)(g,u)
3 3

/ns

= 1 = " -
= Q(¢,f /nSF)(g,u) = (Cfl (¢,.8),(a(f F))(ep(u))) = E(¢,f,F)(g)’

/nsF

l/ns - _ _ .
f (p(m(w))) (@(F))(¢(u))). Let us put u = {ea}, x = w(u), then:

_2 1,
PP e = (M G, (FG TG e)DeG)e,))
4.1.18.
Now put s = —-% and fix g. Then equation 4.1.18 may be re-

garded as a unification of equations 1.5.1 and 1.6.2 with the

OAut (TM) action; We obtain an isomorphism of the principal O(n)-
bundle O(M,g) onto the principal O(n)-bundle O(M,f CF(¢*g))
given by u = {eg > {f(¢(x))—% F(¢(x))D¢(x).ea}. The bundles
0o(M,g), O(M,f Cp(¢,8)) are the fibres of the fibration, pr;°o:
o(M) — Met(M) above g, fCF(¢*g) respectively and the first is
mapped onto the second under the action of (¢,f,F) € Aut(M).

We return to the canonical bundle O(M) below, but first let us
consider the action of Aut(M) on other natural structures. From
now on, we assume that M is oriented and we denote by Diff(M)
the group of orientation preserving diffeomorphisms.

Let us first consider the symplectic manifold (T*Met(M),w)

where w® 1is the canonical (weak) symplectic form on the Lz—cotangent
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bundle T*Met(M). Recall (see above) that T;Met(M) = {p 8 vol(g):
p € S2(M)}, with L2-pairing <py> h> = J peh vol(g), for all

h € TgMet(M) = SZ(M)’ P4 = p B vol(g) GT%;MMet(M). Since T*Met(M)
is open in 82(M) X Sé(M), the tangent space to T*Met(M) at any
point may be naturally identified with SZ(M)'@ Sé(M), and we

write T (TxMet(M)) = S (M) ®sS2(M). The symplectic structure
(85py) 2 d

w 1is given by:

w(g,py) ((hyq,)5(h",q})) = J (q¢'*h - g*h")vol(g) 4.1.19,
M

for all (h,qy),(h',q)) € T, (T"Met (1)), (g,py) € T Met (M)

,py)

(see Fischer and Marsden [F &6 ]).
Before considering the action of Aut(M) on (T*Met(M),w),

let us recall the general situation in which a group action

I € Hom(G, Diff(X)) on a manifold X 1lifts up to a symplectic

A

action I on (T*X,w), where w is the canonical symplectic
form on T*X:

| Let 71 : T*X —> X denote projection, then w = -dn, where n
is the canonical 1-form on T*X given by n(a) = o o Dr(a) for
all o € T*X. The lifted action is given by ia(u) = (DIa(T(d))—l)*,
for all o € T*X, a 6 G, This action leaves n, and hence w,
invariant and the corresponding moment mapping, j : T*X —> LG*
is given by <j(a), &> = <a, EX(T(a))>, for all £ € LG, o € T*X.

Here & is the infinitesimal generator of I corresponding to the

X
Lie algebra element &, so that gX(X) = DLX(l).E, where
LX: G — X; albt> La(x), for all x € X. The map & F—*-EX defines

a Lie algebra homomorphism of LG dinto Vect(X). We refer the

reader to Abraham and Marsden [A 2 ] for more details.
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We now apply this general framework to the action ES of
Aut(M) on Met(M) given by equation 4.1.15. Tt will be convenient
to define an action CK of Aut(TM) on S2(M) which is dual to
the action C (see definition (4.1)3) extended to an action on
SZ(M):

Definition (4.1)12: Define C € Hom(Aut(TM), GL(S2(M))) by

(C;q)(x)(u,s) = q(x)(F(x)?u, F(X)?B), for all a,R € TiM, X € M,
q € S2(M) and F 6 Aut(TM). Here F(x)*: TiM - TiM is the dual
of the automorphism F(x) of TXM, for each x € M.

Note that q-(Cp_;h) = (Coa)+h for all h € S,(M), q € S2()
and F € Aut(TM). There exists a similar formula for the (lower
star) actions of Diff(M) on SZ(M), S2(M), namely q'((¢”l)*h)
= (¢—l)*((¢*q)-h), for all h € S,(M), q € S2(M) and ¢ € Diff(M),

as is easily verified.

Proposition (4.1)13: Consider the action ES of Aut(M) on

A

Met(M). The lifted action £S of Aut (M) on TAMEt(M) is given by:

2

- *
Ef¢,f’F)(p@vol(g)) . ¢ /ns Cp(6,0)8 vOL(d,8) 4.1.20,

for all p 8 vol(g) € T;Met(M), g € Met(M) and (¢,f,F) € Aut(M)
= Diff(M) K (CT(M) x OAut(TM)).

Proof: First note that for (¢,f,F) € Aut(M), h € TgMet(M) = SZ(M),

2
/ns Cpo¢,) (h), since € Diff (Met(M))

s
£, £,7)

is the restriction to Met(M) of a linear map on SZ(M). The lifted

s
DE(¢’f’F)(g).h = (f

_ s -1.*
action is given by E(¢ ¢ F)(p@vol(g)) = (DE(¢ ¢ F)(g) ) (p8vol(g)),

—l.h>

so that < )<p@vol<g>> h> = <p8vol(g), DE(, ¢ py(8)

o,
= <pBvol(e), (70,0 Cpmta £ 1S ()

2/ _ 2
pe((o™h, (e cp(mMvol(e) = j (0™, () (£ ™C__y (1)vol(e)
M

(¢,p) (£ CF_l(h)»¢*vol(g) (by change of variables formula)

g
‘L 2/ns
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2/ns

2/ns ( *
- | ) (G ()vel (0, = | e ™ 5p) b vol(o,0)

M M
2 E
= <f /ns CF(¢*p) 8 vol(¢*g),h>, for all h € TgMet(M).

- z/ns

s _ *
Hence E(¢,f,F)(p 8 vol(g)) = £ CF(¢*p) 8 vol(¢,g), for all

p © vol(g) € T;Met(M) and (¢,f,F) € Aut(M) O

By the general results for lifted actions, we have

Lo

s )hw = w, for all (¢,f,F) € Aut(M), so Aut(M) is naturally

(¢,£,F)

isomorphic to a subgroup of the symplectomorphism group of (ThMet(M),w).

(&

We now calculate the moment mapping (or momentum) for the Aut(M)-action.
Note that the Lie algebra of Aut(M) is given by LAut(M)

= Vect(M) &(C(M) & LOAut(TM)), where LOAut (TM)

= LSAut(TM) = {H & T(T*M 8 TM): trace H = 0}. Another description of
LAut (M) 1is obtained if we regard Aut(M) as an isomorph of

Aut GL(M) (by proposition (4.1)9); The Lie algebra of

Aut GL(M) {¥Y € Diff GL(M): VYo Ra = Rao ¥, for all a € GL(n,R)!}

is given by LAut GL(M) = {X € Vect GL(M): (Ra)*X = X, for all

a €6 GL(n,R) 1}, the Lie algebra of GL(n,R)-invariant vector fields
on GL(M). In what follows we use the former description of LAut(M).
The dual of LAut(M) is given by LAut(M)*

- alan & (2D & Loaut (TM), where 2l(0) = T(A10D 8 “AR(D)

and LOAutd(T“M) = {Hd = H8vol € T(TM 8 T M 8 A™(M)): trace H = O}.

Proposition (4.1)14: The moment for the action by symplectomorphisms

of Aut(M) on (T“Met(M),w) is given by:

jr T Met (M) — 0l(D e Cotan e LOAutd(T’:M)),
where

. . b
j(p 8 vol(g)) = —2((d1vgp) , ﬁé-tracegp, po) 8 vol(g) 4,1.21,
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for all p 8 vol(g) € T;Met(M). Here divg = ~trace ovg
S2(M) - Vect(M) 1is the divergence operator associated with the
o

metric g, and (=) S2(M) — T(TM 8 TNM) is given by taking the

trace-free part of the (1,1)-form of an element of $2(M) (note that
(-)O is a g~dependent map).
Proof: We must first calculate the infinitesimal generators of the

action E° of Aut(M) on Met(M). Let g 6 Met(M) and define

2
_ S _ ,e=%/ns _
e : Aut(M) — Met() by e(9,£,F) = Ery o () = (£ Cpe9d,)(8),
for all (¢,£,F) € Aut(M). Then, De(ldM, 1, H_TM):
LAut (M) — TgMet(M) is given by (X,h,H) Del(idM)'X + Dez(l).h
+ De3(HTM).}L where e : Diff(M) — Met(M); ¢ +> ¢,g,

1
2/ns

et CTQM) — Met(M); £ > £ /DS, ey: OAut (TM) — Met(M);

5"
F b CF(g) are the partial maps of e at the identity.
. d
We have Del(ldM).X--dt exp (tX) g £=0° where
exp: Vect(M) — Diff(M) is the Lie group exponential, given by

tX > ¢t, where {¢t} is the local l-parameter group of local

diffeomorphisms generated by X € Vect(M). Hence

il
2l
(n
-
t

d
De.(id, ).X = —(¢ ).,g
1 L £=0 £=0

(see equation 1.6.1).

. . . 2 ~?/ns-1
The derivative of e, 1s given by Dez(f).h = -3 f hg,
2
for all h € C(M), £6€C (M, sothat De,(1).h = - = hg.

-1.T -1
In matrix notation we may write CF(g) = (F ") g(F 7), so that

e, = el oinv, where eé: OAut (TM) —> Met(M); F FTgF, and

3 3
inv: OAut (TM) — OAut(TM); F - F—l. We have Deé(F).H
T T , -1 -1
= H gF + FgH, and D inv(F).H = -F "HF , for all H € TFOAut(TM),
= 1 s :
F 6 OAut(TM). Thus DEB(HTM)'H = De3(1nv(ETM)).D1nv(ETM).H

- (HTg + gH), for all H € LOAut(TM).
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The infinitesimal generator of E° is now given by

- Lye - hg - Hg + gm) 4.1.22,

gMet(M)(g) ns

for all g € Met(M), where & = (X,h,H) € LAut(M).
Using the general formula for the moment j, we obtain
. 2 T
<j(p 8 vol(g)), &> = <p 8 vol(g), -L,g -~ —hg - (H'g + gH)>.

We consider each of the three terms in turn:

Firstly, <p 8 vol(g), LXg> = J p-LXg vol(g)
M
b 17 I's 4 7 b'\
= 2 p=VX~ vol(g) ({using LXg = 2 symm(VX ))

=2 ( (=div (P(Xb,')) + <Xb, div p>)vol(g)
M 8 g

= 2 J <(divgp)b, X>vol(g) (since the first term vanishes by the
M

divergence theorem) = 2<(divgp)b 8 vol(g), X>.

Secondly, <p 8 vol(g), hg> = J P«(hg)vol(g)
M

J (tracegp)h vol(g) = <(tracegp)vol(g), h>.
M
Finally, we have <p 8 vol(g), HTg + gh>

T
= [ p*(H'g + gH)vol(g) = 2 J pe(gh)vol(g) = 2 [ pP+H vol(g)
M M M
(since trace H = 0) = 2<pO ® vol(g), H>.

Putting these results together, we obtain <j(p 8 vol(g)), &>
= <—2(divgp)b 8 vol(g), X> + <= i%(tracegp)vol(g), h>

+ <=2 p° @ vol(g), H> = <—2<<divgp>b, = trace p, p°) 8 vol(g), £,

for all & € LAut(M). Hence j(p8vol(g)) = —2((divgp)b, é%-tracegp,po)

8 vol(g), for all p 8 vol(g) € T Met(M), g € Met(M), as required O
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By restricting Jj(p 8 vol(g)) to subalgebras of LAut(M), we
obtain particular conserved quantities. For example, if we consider
LConf(M) < LAut(M), we obtain the moment calculated by Fischer and
Marsden [F &£ ]. This moment leads to a reduced phase space

=

(Cdiv(\ Ctrace)/Conf(M) which parameterizes the space of the true
gravitational degrees of freedom (in the case of positive definite
metrics in dimension three). Here Cdiv = {p 8 vol(g): divgp = 0}

and Ctrace = {p 8 vol(g): trace gp = 0}. Note that Cdiv is one
of the constraint spaces in the 3+1 formalism of the dynamics of
general relativity (see Fischer and Marsden [F 6 ).

By a general theorem on actions on cotangent bundles, the moment
3 1s equivariant with respect to the co-adjoint action of Aut(M)
on LAaut(M), i.e. j°ES - ad” o j, for all

(¢,£,F) Wl et Fh
(6,£,F) € Aut(M). A more detailed investigation into the symplectic
action of Aut(M) on (T*Met(M), w) would be interesting and pro-
vides an avenue for future work, but now we return to the interaction
of Aut(M) with other natural structures on M.

Having discussed the cotangent bundle of Met(M) together with
its natural symplectic structure, we turn now to the tangent bundle
of Met(M). As remarked above, there exists a l-parameter family
{Gt: t € R} of symmetric, rank two, covariant tensor fields on Met(M)
(see equation 4.1.2). For definite signature metrics in Met(M)
and nt ¥ 1, Gt defines a (weak) metric in the vector bundle
TMet(M). In order to consider the behaviour of Gt under the action

of Aut(M), we require the following lemma:

Lemma (4.1)15: The map wvol: Met(M) — xQn(M) is invariant under

the action of OQAut(TM) on Met(M).

Proof: Let F € OAut(TM). Using the diffeomorphism B (equation
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4.1.7), we may consider metrics as matrix valued functions on the frame

bundle. We then have wvol(g) = v|detB(g) when considered as an
equivariant function on GL(M). It is straightforward to check that

B(CF(g)) = (rl\*’J—l)T B(g)%_l (where % € C. nj(GL(M), OL{(n,R)) cor-

o}

responds to F € OAut(TM)), so that vol(CF(g))

= V/(det %)zldets(g)l = V|detB(g)| = wvol(g), since det % & Z2 ]

Proposition (4.1)16: For each t € R, the temsor field Gt € Sz(Met(M))

is invariant under the action of Diff(M) x OAug(TM)s Aut (M).
Proof: Let (¢,F) € Diff(M) x OAut(TM), g € Met(M) and

h,k € TgMet(M). We have (CF o¢*)ﬂGt = (¢*)"CF“Gt. Consider

o
N

Cp G.s we have (CLC)(g)(h,k) = G, (CL(g))(DCL(g).h, DCp(g).k)

= Gt(CF(g))(CF(h), CF(k)) (since CF € Diff(Met(M)) 1is the res-

triction of a linear automorphism of SZ(M))

- J (C(8) (Cp(n), CL(k)) - t(trace Co () (trace (0)))vol(Cp(e)).
M

Now recall that g(h,k) = trace (g—l hg—lk) and tracegh = g(g,h).

Cp(g) Cp () F

Thus CF(g)(CF(h), CF(k))

-1,-1

erace(((F HTg 1y <F“1>ThF‘1<<(F"l>§F“1 1 1

y T hherh

= trace (g—lhg—lk) = g(h,k). Similarly, trace C.(h) = trace h.
CF(g> F g
Hence, (CF“Gt)(g)(h,k) = J (g(h,k) - t(tracegh)(tracegk))vol(g)
M

(using lemma (4.1)15) = G_(g)(h,k), so that CFAGt =G_.

Now we have (CFo qb*)"Gt = (cp*)“Gt = Gt’ by the result above

regarding the Diff(M)-invariance of Gt' Thus, Gt is invariant

under the action of Diff(M) x QAut(TM) O

Corollary (4.1)17: TFor nt + 1 and definite signature metrics in

Met (M), Diff(M) K OAut(TM) 1is isomorphic to a subgroup of

Isom(Met (M), Gt)'
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As we have mentioned above in this section, the (weak) (pseudo-)
Riemannian manifold (Met(M), Gt) is used in various applications.
It is obviously useful to consider the isometry group of (Met(M),Gt)
and corollary (4.1)17 gives a subgroup of the isometry group which
properly contains (an isomorphic image of) Diff(M). Note that
C+(M) does not act by isometries so we can't obtain an inclusion
of the whole of Aut(M) in Isom(Met(M),Gt).

Although we do not prove it here, it seems likely that a slice
theorem may be proved for the action E° of Aut(M) on Met(M).
Fischer and Marsden [F 4’ ] have proved such a theorem for the
action of Conf(M) < Aut(M) on Met(M). Also, using the metric
Gt on which Diff(M) x OAut(TM) < Aut(M) acts by isometries, it
should be possible to proceed as in Ebin [E 4-] to construct a slice
of the action of Diff(M) x QAut(TM) on Met(M). Consequences
of such a slice theorem would be locally decreasing generalized

conformal groups, and generically trivial generalized conformal

groups. (Here, the generalized conformal group of g € Met(M)

is just {(¢,f,F) € Aut(M): E (g) = g} = {¢ € Diff(M):

s
(¢,8,I)
there exists (f,F) € C+(M) x OAut(TM) with ¢"g = fCF(g)}.

We could also consider the generalized conformal superspace,

Met (M) /Aut(M)., A slice theorem would imply that this was
stratified into manifolds, and the singularities could be resolved
in the standard manner (see below).

We now turn to another structure with which the groups dis-
cussed above interact., This is the space of volume elements on
the manifold M. Recall that M is an oriented n-~manifold which,
for ease of exposition, we assume compact (without boundary).

Let VM) = {w € 7':Qn(M): w 1is positively oriented} be the space

of volume elements on the oriented manifold M, Note that, under
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the (lower star) action of the group of orientation preserving
diffeomorphisms Diff(M), .the stabilizer, Diffw(M), of any
element w 6 V(M) is a closed subgroup of Diff(M) with Lie
algebra given by LDiffw(M) = {X € Vect(M)): divwX = 0} (see
Ebin and Marsden [E 6 ] for technical details). We have the
natural map I 6 C+(V(M)) given by I(w) = J w and a theorem

M
of Moser (see [E 6 1) implies that Diff(M) acts transitively

on I_l(r) for each r 6 Iﬁ_, i.e. I(w) = I(w') 4if and only

if there exists ¢ € Diff(M) with ¢,w = w'. Using Moser's
result, Ebin and Marsden [E & ] demonstrate that Diff(M) is
diffeomorphic to Diffw(M) X I_l(I(w)), for any w € V(M).
In particular, since I—l(w) is convex, and hence contractible,
Diffw(M) is a deformation retract of Diff(M). The importance
of the group Diffw(M) for physics emerges fron the fact that
it is the appropriate configuration space for the hydrodynamics
of a homogeneous incompressible fluid (see Adams ekal [A R ]). In
fact, given g € Met(M), there exists a right invariant metric
on Diffw(M) whose spray may be used to obtain existence and
uniqueness of solutions of the classical Euler equations for a
perfect fluid (see [E 6 ]). (Note that in section 4.5 below, we
discuss various natural maps, one of which gives rise to the
metric on Diffw(M)).

If a discussion of compressible hydrodynamics is required,
then the appropriate configuration space may be obtained from
a reduction of the semi-direct product Diff(M) X C(M) (see
Marsden et al. [M1%1).

Let us now consider the interaction of V(M) with Met(M).

We have the volume fibration, given by the surjection:
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vol: Met(M) — V(M) 4,1.23,

which associates with each metric its (oriented) volume element.
Note that Dvol(g).h = %(tracegh)vol(g), for all h € TgMet(M),
so that the vertical subspace at g 1is given by +{h & TgMet(M):
tracegh = 0}.

+
We alsa have the total volume map, Vol = Iovol € C (Met(M))

which associates to each metric g, the volume of the corresponding
Riemannian manifold (M,g). By Moser's theorem, we see that two
metrics g, g' have the same total volume if and only if there
exists a diffeomorphism ¢ such that ¢,g, g' 1lie in the same
fibre of vol.

Each fibre of 4.1.23 is an embedded submanifold of Met(M).
Suppose that we equip Met(M) with the (weak) Riemannian metric
GO (see equation 4.1.2). Then, for each w € V(M), we let
Gg € Met(vol_l(w)) be the Riemannian metric induced by the em-
bedding of the fibre vol—l(w) into Met(M). Ebin [E A ] has
demonstrated that (vol_l(w),Gg) is a symmetric space and he
calculates the corresponding flip map and also the geodesics.

The groups Diffw(M), Diff(M) act isometrically on the Riemannian
manifolds vol_l(w), Vol—l(I(w)) respectively and Ebin shows
that the corresponding quotients are homeomorphic topological
spaces., Ebin remarks that a study of the geometrically attrac-
tive vol—l(w) should shed light on the structure of
VOl_l(I(w))/Diff(M), and therefore also on that of Geom(M) if

w 1is allowed to run over V(M). Another method of examining the
structure of Geom(M) 1is by resolving its singularities and we

discuss this shortly. First let us say a few words concerning
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the action of Aut(M) on the volume fibration:

We may regard Conf(M) = Diff (M) KX C+(M) as a subgroup of

Diff(V(M)) wvia the monomorphism; (¢,f)k—+'E?¢’f), where

E?¢ f)(w) = f_l/s¢*w, for all w 6 V(M) (here, we are fixing
3

s € Rﬁ). Since VoloES o

= E
(¢,£,F) (¢,£)
(6,£,F) € Aut(M), we may regard Aut(M) as a subgroup of the

°ovol, for all

group of (weak) automorphisms of the fibration vol. The group
OAut (TM) acts by "gauge transformations" whilst C+(M) acts
transitively and freely on the orbit space. The group Diff(M)
intertwines the OAut(TM) and C+(M) actions and its orbits
project to the spaces I_l(r) for r € Eﬁl by Moser’s theorem.

We now consider the important geometrical action of

A

Diff (M) < Aut(M) on Met(M), in particular the orbit space

Geom (M) Met(M)/Diff (M), the space of geometries on the manifold
M.

We have noted above that the space Geom(M) 1s very important
in geometry and in classical and quantum gravity theory. Unfor-
tunately, Geom(M) does not have a manifold structure due to the
presence of singularities corresponding to metrics with symmetries.
We first give a brief description of the structure of Geom(M)

(for more details, see Fischer [F 7 ] and Bourguignon [B 16]) and
then show how the singularities may be resolved or unfolded. As

elsewhere in this section, M 1is a connected smooth n-manifold.

For certain technical results, the details of which we do not go

into, compactness of M 1is also required. We do not assume that
M 1is orientable, so that Diff(M) denotes the group of all

diffeomorphisms of M and GL(M) is the bundle of all frames on M.

For ease of exposition, we deal only with positive definite metrics
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on M, but the results may be extended to include the indefinite
case as well.

The basic topological result concerning Geom(M) is the
following (see Fischer [F 1 ]); Geom(M) (with the quotient
topology) is a connected, second countable,metrizeable space. This
result shows that Geom(M) possesses the strongest separation and
countability properties that a space can exhibit, and corollaries
include the following; Geom(M) 1is Hausdorff, separable and para-
compact.

Topologically, therefore, Geom(M) possesses nice structure.
We turn now to a review of the natural differential properties of
this space. Unless M is wild, some metrics on M possess non-
trivial isometry groups and then the associated symmetric geometries
do not have neighbourhoods homeomorphic to neighbourhoods of geo-
metries with trivial isometry group (i.e., those geometries in the
projection of Metl(M)). Thus, Geom(M) cannot admit a manifold
structure based on the quotient topology; the differences in
dimension (and number of components) of isometry groups cause the
orbit space Geom(M) to have singularities. It can be shown,
however, that Geom(M) is partitioned into manifolds of geometries
such that the geometries of high symmetry are contained in the
boundary of manifolds made up of geometries of lower symmetry. The
manifolds constituting Geom(M) are called strata, and the decom-

position into manifolds of geometries is called a stratification.

The basic idea behind this decomposition is to collect together all
geometries which have the same symmetry type. Then it must be shown
that these strata, the set of which is indexed by the conjugacy

classes in Diff(M) of the isometry groups of metrics, fit together
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in a regular fashion so as to give a bona fide stratification (it is
possible that the strata might wind around one another in a complex
way with transversal or self intersections, but it may be shown that
these phenomena do not occur). For details of the stratification
theorem, see Bourguignon [B176 ], Fischer [F 1 ].

The stratification provides the framework for passing smoothly
from one stratum to another, thereby allowing a generalized dynamics
to take place on the stratified topological space Geom(M). We
refer the reader to Francaviglia [F 3 ] for applications of this
concept of generalized dynamics to general relativity.

Since it is the singularities themselves which complicate the
structure of Geom(M), it is important to have ways of resolving
or unfolding them:

Definition (4.1)18: A resolution of Geom(M) is a continuous, open,

surjective map p: X — Geom(M), where X 1is a manifold, and such

that for each [g] € Geom(M), the space p ~([g]) is a finite
dimensional closed submanifold of X.
Since p 1is not, in general, a covering map, we refer to each

p—l([g}), [g] € Geom(M), as a pseudo-fibre (see Fischer [F 2 ]).

The simplest approach to resolution is to remove the non-free
aspect of the action (lower star) of Diff(M) on Met(M); We res-
trict our attention to Metl(M) and then (the restriction of) (lower

star) is free. The Ebin-Palais slice theorem discussed above implies

that the resulting quotient space Geoml(M) Metl(M)/Diff(M) is a
smooth manifold. This approach is not very useful since the singular
points have just been thrown out. Indeed, in general relativity, the

symmetric metrics which give rise to the singularities are the ones

in which we are often interested. Note, however, that this method
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does give a manifold structure to a very large subspace of Geom(M).

A second approach which actually resolves the singularities in
Geom(M) itself, albeit in an unnatural manner, is the following;
Let x € M and consider the group of diffeomorphisms fixing a
frame at x. This is:

Diffx(M) = {¢ € DIff(M): ¢(x) = x and D¢(x) = idTXM}

4.1.24,
The action of Diff(M) on Met(M) restricts to an action of DiffX(M).
Since we wish to consider principal bundles, we use the pullback
action of diffeomorphisms, rather than (lower star) which is a left
action. Diffx(M) is a closed subgroup of Diff(M) and its action
on Met(M) is free; for suppose ¢*g = g for ¢ € DiffX(M).
Then ¢ 1is an isometry of the connected Riemannian manifold (M,g)
that fixes a point and whose derivative at that point is the identity.
Therefore, by a classical theorem (see Helgason [H @ ], lemma 11.2),
¢ d1is the identity diffeomorphism. Hence the action is free.

Again using the slice theorem, it can be demonstrated that the
quotient space GeomX(M) = Met(M)/DiffX(M) is a manifold, and the
projection ﬂX: Met (M) — GeomX(M) is a principal DiffX(M)—bundle
over Geomx(M). We have the surjective map I Geomx(M) — Geom(M);
{g]x t— [g], mapping the DiffX(M)—orbits to the Diff(M)-orbits, and
Oy is a resolution of Geom(M). Fischer [F 3 ] shows that the
pseudo-fibre p;l([g]) is the finite dimensional closed submanifold
Diff*(M).g/DiffX(M) of GeomX(M). This pseudo-fibre is naturally
diffeomorphic to the double coset manifold Isom(M,g)\Diff(M)/DiffX(M)
= {Isom(M,g)odeDiff(M): ¢ € Diff(M)}.

This second approach does give a resolution of the singularities
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of Geom(M) itself, but a point x € M must be chosen. Also we have
to restrict our attention to a proper subgroup of Diff(M). A more natural
resolution due to Fischer is the following:

Let S be the right action of Diff(M) on Met(M) x GL(M) given
by:
L |
S¢(g,u) = (¢ g, ¢ (u) 4.1.25,

for all (g,u) € Met(M) x GL(M), ¢ € Diff(M). Recall that ¢ = (¢*)‘l,

so that the orbit spaces of Met(M) under the action of Diff(M) by
upper star (i.e., pullback) and lower star (i.e., push forward) are

equivalent qua stratified topological spaces. We shall denote both

orbit spaces by Geom(M) = Met(M)/Diff(M).

The action S 1is free; for suppose S¢(g,u) = (g,u). Then
¢*g = g and &(u) = u. By the theorem quoted above concerning
fixed points of isometries, we see that ¢ = idM. We therefore have
a free action without restricting either the diffeomorphism group or

the space of metrics. Fischer proves the following result:

Theorem (4.1)18 (Fischer, [F 3 ]): The action S of Diff(M) on

Met(M) x GL(M) 1is smooth, free and proper, and the orbit space
GeomF(M)==(Met(M) x GL(M))/Diff(M) is a smooth manifold. Moreover,
the projection map mat Met (M) x GL(M) — GeomF(M) is a submersion,
and has the structure of a principal Diff(M)-bundle over the manifold
GeomF(M).

This result is proved by considering local equivariant cross

sections of the action S. These local sections are constructed au

Palais using the S-invariant metric A €(Met(M) x GL(M)) given by:

A(g,u) = G (g) & é(u) 4,1.26,
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where, for each g € Met(M), é € Met(GL(M)) 1is given by:

g = ﬂxg & can(LC(g) 8 LC(g)) 4.1.27,

where LC(g): TGL(M) — gl(n,R) is the Levi-Civita connection of
g, and can is the standard Euclidean inner-product on gl(n,R) = RrR™.
The relationship of GeomF(M) to Geom(M) may be described

as follows: Let us regard the orbit map:

o Met (M) — Geom(M) 4,1.28,

as a '"pseudo" principal Diff(M)-bundle (pseudo because Geom(M)
is not a manifold and because the Diff(M) (right) action is not
free - only if M were wild, would 4.1.28 be a bona fide principal

fibration). We have the map P GeomF(M)-—+ Geom(M) given by:

il

pp(l(g,u) 1) (g] 4.1.29,

for all [(g,u)] € GeomF(M). The map Py gives the pseudo fibre
bundle with standard fibre GL(M) associated with the pseudo principal

Diff (M)-bundle e via the action "hat" of Diff(M) on GL(M).

For g € Met(M), we have the usual diffeomorphism

Kg: GL(M) — p;l(we(g)) = p;l([g]); u b [(g,u)], and Kg

coincides with the map WF(g,-).

The map is a resolution of the singularities of Geom(M).

°p
The pseudo-fibre l({g]) is easily shown to be diffeomorphic to

Pp
GL(M)/Isom(M,g). Since, in Met(M) x GL(M), all metrics are initially
crossed with GL(M), the deviation Isom(M,g) of the pseudo-fibre
from GL(M) mneasures the degree of unfolding of Geom(M) at the

geometry [g] necessary to give a manifold structure to

GeomF(M). As expected, the symmetry group of g parameterizes the
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degree of unfolding at [g].

The canonical Fischer resolution Pp is, in fact, a natural
unification of the point dependent resolutions o introduced above;
First note that for fixed x € M, and for each frame u 6 Trml(x),
we have the map du: GeomX(M) — GeomF(M); {g]x > [(g,u)]. Assuming
either that M is non-orientable (so that Diff(M) acts transitively
on the connected manifold GL(M)), or that M is oriented and
possesses an orientation reversing diffeomorphism (so that Diff(M)
acts transitively on the two component manifold GL(M)), the map
du is a diffeomorphism. Moreover, du maps the pseudo-fibres of
the resolution p, to those of the resolution Pp (i.e. op© d =
px), so that the two resolutions Pys Py are equivalent. The
resolution Py is not canonical, and to pass to the canonical resolu-
tion Ppo it is necessary to utilize the frame dependent diffeo-
morphism du'

We have a family Py of non-canonical resolutions parameterized
by the manifold M. These can be collected together in a natural way
as we now demonstrate. For more details, see Fischer [F 3 ]:

The group GL(n,R) acts on the manifold Met(M) x GL(M) by
((g,u),a) += (g,ua), for all (g,u) € Met(M) x GL(M) and a € GL(n,R).
Since &(ua) = &(u)a, for all ¢ € Diff(M) and a € GL(n,R), this
action passes to an action of GL(n,R) on (Met(M) x GL(M)/Diff(M)
= GeomF(M), given by ([(g,u)},a) +— [(g,ua)]. ©Note that this is a
right action on GeomF(M), but we can still form the bundle associated
to the frame bundle GL(n,R) < GL(M) — M with standard fibre

E

GeomF(M). We denote this associated bundle by m_: E — M, so that

E = GL(M) x GeomF(M), and WE([(u,[(g,u')])])= m(u), for all

GL(n,R)
[(u,[(g,u"™)])] € E. As usual (see 6.1.1), we have the diffeomorphisms
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K ot GeomF(M) — wgl(w(u)) (u € GL(M)) given by:

k, ([(gsu")] [(u, [(u,[(g,u") ] 4.1.30,

for all [(g,u')] € GeomF(M).
Now, for fixed x € M, choose a frame u € ﬂ_l(x), and

define ku =K, ° du: Geomx(M) — wEl(x), so that ku([g]X)

= [(u, [(g,w])], for all [g] € Geom (M). Note that

[(ua, [G,ua) )] = [(ua,[(g,u)]a)] = [(u,[(g,u)])], for all

a € GL(n,R), so that Au is independent of the choice of frame

u at x. Therefore, for each x € M, we may define the diffeo-
-1 -1,

morphism AX(E Au, any u € ™ (x)): Geomx(M) — Ty (x) given by:

A (el = [, [(g,u) D] 4.1.31,

for all [g]X € GeomX(M). We may regard the bundle E as the

grand resolution space of Geom(M); the standard fibre is the

canonical resolution space GeomF(M), whilst, via the diffeo-
morphism AX, the fibre above x can be identified with the par-
ticular resolution space Geomx(M) in a frame independent manner.
With the identifications {AX: x 6 M}, we may write
E= U Geom (M), showing explicitly the fact that E ties to-
xEM %

gether the canonical resolution space with the family (parameterized
by M) of particular resolution spaces.

The Fischer approach to the resolution of the singularities
of Geom(M) just described is very natural and elegant. The un-
folding of GeomF(M) at each geometry [g] € Geom(M) 1is para-
meterized by the isometry group of g, so the Fischer construction

gives complete knowledge of the unfolding at each geometry necessary

to make GeomF(M) a manifold. The grand resolution space E
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provides a bundle theoretic framework for studying the relationships
between the canonical resolution on the one hand and the particular
x dependent resolutions on the other. The Fischer approach may
also be used to resolve the singularities in other infinite dimen-
sional stratified spaces of interest in geometry and physics. For
example, given any principal G~bundle P, the orbit space

C(P) = Conn(P)/Aut(P), is the moduli space of connections (khe
action of Aut(P) on Conn(P) is discussed in appendix 6.1). The
space C(P) 1is a stratified topological space with singularities
due to the existence of non-isomorphic isotropy groups at different
connections in P, To obtain a free action, we consider the space
Conn(P) xP with Aut(P) acting (on the right) in an obvious
fashion. It can be shown that this action is free, smooth and
proper and it then follows that the orbit space CF(P)

= (Conn(P) x P)/Aut(P) 1is a smooth manifold and that the natural
projection Conn(P) xP —*—CF(P) has the structure of a principal
Aut(P)-bundle over CF(P). We also have the projection gt

CF(P) — C(P); [(w,u)] +> [w], and this is a resolution of the
singularities of C(P). The projection pp may be regarded as
the bundle associated with the pseudo principal Aut(P)-bundle,
Conn(P) — C(P), wvia the natural left action (evaluation) of
Aut(P) on P. A grand resolution space may also be constructed
(see Fischer [F 3 ]).

We now propose a slight variant of the Fischer resolution of
Geom(M). This approach again uses a bundle framework; in particular,
we utilize the canonical bundle introduced in section 1.4. As usual,
we proceed in a formal geometrical manner. More details will appear

elsewhere.
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Consider the canonical principal O(n)-bundle
o: O(M) — Met(M) xM (see 1.4.1, 4.1.16). We have shown above
(proposition (4.1)11) that Aut(M) acts on O(M) by principal
bundle automorphisms. In particular, the subgroup Diff(M) of
Aut{M) acts on O(M). We now restrict our attention to the action
of the diffeomorphism group on the canonical O(n)-bundle. Con-
sider the action given by ¢ Q(¢_&J1TM) ;o (g,w) Fﬁ.(¢*g, 5-1(u)),
for all (g,u) € O(M) and ¢ € Diff(M). We will denote this action
by S since it is the restriction of the action S (4.1.25) to the
submanifold O(M) of Met(M) x GL(M). Again, by the classical
theorem on isometries, the action S: O(M) x Diff(M) — O(M) 1is
free.

The methods used in proving theorem (4.1)18 may now be applied
to the submanifold O(M). In particular, the metric A (4.1.26)
induces an S-invariant Riemannian structure on O(M), and this may
be used to construct local equivariant cross sections for the action
of S on O(M). The existence of such sections implies the
following:

The orbit space Geomo(M) = O(M)/Diff (M) admits the structure
of a smooth manifold and we have the following principal Diff(M)-

bundle over GeomO(M):

il
Diff(4) & O(M) —= Geom_(M) 4.1.32,
where T is the orbit projection map; (g,u) H— [(g,u)], for all

(go,u) €8 O(M). We also have the resolution g of the singularities

of Geom(M) given by:

o, Geomo(M) — Geom(M); [(g,u)] = [g] 4.1.33,
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for all [(g,u)] € GeomO(M). The pseudo bundle o, may be regarded
as a sub-bundle of the pseudo bundle op (see 4.1.29).

Although the results contained in the previous paragraph have
not been rigorously proved, we now derive some simple consequences
of the formal results 4.1.32, 4.1.33:

Proposition (4.1)19: The pseudo fibre p;l({g]) is naturally

diffeomorphic to O(M,g)/Isom(M,g), for each geometry [g] € Geom(M).

_l(

Proof: o "([g]) = {[(ghu)] € Geom (M): [g'] = [g]}

{[(g",u)] € Geom (M): there exists ¢ € Diff(M) with o g' = g}

{[(g,u)] € GeomO(M)}. Now define k: O(M,g)/Isom(M,g) — p;l([g])

by k([u]lsom(M,g)) = [(g,u)] for all [u]Isom(M,g) € 0(M,g)/Isom(M,g).

Then k is well defined, since [u]I = [u']I (I = Isom(M,g))

implies that there exists ¢ € Isom(M,g) with ¢(u) = u'. Then

~ *
[(g,u")] = [(g,0(u))] = [(¢ g,u)] = [(g,u)]. The map k 1is also a
bijection; Surjectivity is obvious, and to prove injectivity, sup-

pose k([u]I] = k([u'] Then [(g,u)] = [(g,u")], so that there

I)'

exists ¢ € Diff(M) with ¢xg =g and o¢(u") u. Since ¢Ag =g

implies ¢ € Isom(M,g), then [u]I = [é(u')]l
1

[u']I. Since

k, Kk (;[(g,u)] t— [u]I) are smooth, k 1s the required diffeo-

morphism of the pseudo-fibre p;l(

[g]) onto 0O(M,g)/Isom(M,g) O
Since, in O(M), each metric g 1is extended by its ortho-
normal frame bundle O(M,g) (via the map pry o ¢ - see section 1.4),

the deviation of the pseudo-fibre p;l([g]) from O(M,g) 1is a
measure of the degree of unfolding of Geom(G) at [g] necessary
to give a manifold structure to Geomo(M). Hence, as expected,

the unfolding at the geometry [g] 1s parameterized by the isometry

group of g, as in the Fischer resolution using the entire space

Met (M) x GL(M), rather than the submanifold O(M).
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The space O(M) 1is the total space of two natural principal
bundles. By definition, we have the principal O(n)-fibration,
g: O(M) — Met(M) M, and we also have the principal Diff(M)-
fibration, ™ oM — Geomo(M), the base space of the latter
bundle being a resolution space for Geom(M). Note that the
O(nj and Diff(M) actions on O(M) commute. We summarize the

various bundles and resolutions in the following diagram:

Diff (M)
n 0(m) Diff (M) GL(n,R)
e s
\' 4
o)
/ \
v T, v
Met (M) xM m Met (M) xGL (M) ————3> GL((M)

v

pry Geomg (M) o T

Geom (M) C—>E L BN

Met (M) o
TTG /
v
G M
eom (M) 4.1.34.

A construction analogous to the Fischer grand resolution space
does not appear so naturally in the O(n)-approach, but we do have
the following metric dependent construction:

Recall that the O0(n), Diff(M)-actions on O(M) commute, so

that the O(n)-action passes to the quotient O(M)/Diff(M) = Geomo(M).
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The (right) action on GeomO(M) is given by ([(g,u)],a) = [(g,ual],
for all [(g,u)] & Geomo(M) and a € 0(n). Now fix g € Met(M)
and consider the principal O(n)-bundle of g-orthonormal frames,

0(n) < 0(M,g) — M. Let Eg = 0(M,g) x Geomo(M) be the bundle

0(n)
associated to O(M,g) wvia the action of 0(n) on Geomo(M). Thus,
Eg has standard fibre GeomO(M) and projection ﬂg: Eg —> M
[(u, [(g,u)])] > m(u). We have the usual diffeomorphism Ky
GeomO(M) —> W;l(ﬂ(u)), but here there is no analogue of the map
du for u € GL(M). Thus, there is no direct analogue of the grand
resolution space E. We may, however, regard the bundle
Geomo(PD c-%-Eg —> M as a sub-bundle of the Fischer bundle
GeomF(M)<;+ E — M,

Before leaving the topic of the resolution of the singularities
in Geom(M), we make a further remark concerning the manifold O(M)
as the total space of the two natural principal fibrations
0(n) & O(M) jl Met(M)*M and Diff (M) & O(M) ig GeomO(M). Just as
the action of O0(n) on O0O(M) passes to an action on Geomo(M), the
action of Diff(M) passes to an action on Met (M) x M. Let
GeomH(M) = Geomo(M)/O(n). Note that the space GeomH(M) is not

a manifold (the O(n)=-action is not free). We have the homeomorphism

P GeomH(M) — (Met(M) x M)/Diff(M) given by:

v([[(g,w)]]) = [(g,ﬂ(u))]Diff(m 4,1.35,

for all [[(g,u)]] € GeomH(M). We also have the continuous pro-~

Py : GeomH(M)-—+ Geom(M); [[(g,u)]] + [g], with pseudo

fibres pgl([g]) homeomorphic to M/Isom(M,g), for each g € Met(M)

jection,

(Cf. proposition (4.1)19, but here is not a resolution of

°H
Geom(M)).
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The above discussion indicates the usefulness of O(M) and its
quotients in the study of the space of geometries on a manifold M.
Since GeomO(M) is a manifold, and, moreover, a resolution space for
Geom(M), it is an obvious candidate for the configuration space for
a dynamical theory of classical or quantum geometry (for applica-
tions in gravity theory or other areas of physics). 1In particular,
it should be the domain of natural functionals. In this context,
we mention the natural tensors of Epstein (see [E741). 1In our
language, these may be described as follows:

Let B be a natural bundle over M, i.e. there exists a pull-
back action of Diff(M) on B, and hence on the space T(B) of
sections of B. Let us denote this action by (s,9) > ¢*s, for
all (s,¢) € I'(B) xDiff(M). A typical example of a natural bundle
is a bundle associated to a G-structure (see section 6.1). A natural

tensor 1s an equivariant map n: Met(M) — I'(B), i.e. 1n o ¢%*

=¢ ©°n, for all ¢ € Diff(M). To be more explicit, let F be

a manifold and p € Hom(GL(n,R), Diff(F)) a left action of
GL(n,R) on F. Let B = GL(M)Xb F be a bundle associated to the
frame bundle via the action p, so that there exists a natural
diffeomorphism B8 : I'(B) — Cp(GL(M),F) (Cf, 4.1.7, and see section
6.1). The natural action of Diff(M) on Cp(GL(M),F) is given by

-1

¢'=B o ¢ o B T3 SIS o ¢, for all secp(GL(M),F),

¢ € Diff (M) (see the remarks following 4.1.7).

Now suppose n 1s a natural tensor. Define n: O(M) — F by:

n(g,w) = B(n(g)) () 4.1.36,

for all (g,u) € O(M). Let ¢ € Diff(M). Then (n o ) (2:w)
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for all (g,u) € O(M). Hence n°S¢ =n, and so =n projects to a
map n: GeomO(M) — F. Moreover, n([(g,u)]a) = %([(g,ua)])

-1 -
= B(n(2) (ua) = pla n8m(e) (W = p(a HA(g,w)]), for all

[(g,u)] € Geomo(M), a € 0(n) £ GL(n,R), so g Cp(Geomo(M),F)

(p = p\O(n)). Thus, each natural tensor induces an O{(n)-equivariant
map on the resolution space GeomO(M). Similarly, any natural tenscr
induces a GL(n,R)-equivariant map on GeomF(M). A reverse con-
struction yields natural maps on Met(M) starting from equivariant
maps on Geomo(M) and GeomF(M) in an obvious manner. We make
further comments on natural maps in section 4.6.

We conclude this section by referring to another aspect of the
structure of the space of metrics which relates to ideas of every-
where invariance discussed below. This is the so called YATS
decomposition (see Isenberg [I & ]) and is another idea which has
found recent application in general relativity:

A natural question to ask is that of whether a given metric
g € Met(M) 1is necessarily pointwise conformal to a metric of
constant scalar curvature. This problem is known as the Yamabe
problem because it was first formulated by Yamabe in 1960.

Subsequent work by Trudinger, Aubin and Schoen lead to a complete
solution of this problem in the case of positive definite metrics
on a compact manifold. We refer to Schoen [S # ] and references
therein for details, but here we just state the result:

Theorem (4.1)20 (Yamabe-Aubin-Trudinger-Schoen): Let M be a

compact manifold of dimension not less than three. For each

g € Met(M) (positive definite metrics), there exists f € C+(M)



-313-

such that Scal(fg) is either -1, O or +1. The function f 1is
unique in the *1 case and defined up to Rf-s C+(M) in the O
case.

Following Isenberg, we refer to theorem (4.1)20 as the

YATS theorem. The proof of the theqrem involves showing the exis-

tence of a positive solution u of the non~linear partial differen-
n+2

tial equation Y u + Aln=2) un—2 = 0, where Y is the Yamabe
g 4(n-1) g

operator associated with g 6 Met(M) referred to in appendix 6.2,
and A = -1,0 or +1.

An important consequence of the YATS theorem is that the space
Met(M) dis naturally partitioned into three subspaces YA(M)’
X 6 {-1,0,+1}, where YX(M) = {g € Met(M): there exists f € C+(M)
with Scal(fg) = A}. Note that YA(M> could be empty for some M
and A. Given a metric g, the sign of the lowest eigenvalue
Xl(g) of the Yamabe operator Yg determines which of the three
classes g 1is in; g is pointwise conformal to a metric with scalar
curvature A, the sign of ) being the same as that of Al(g).

Since ¢, ° Scal = Scal ° ¢, and Scal(fg) = Scal(f;lf(fog)),
for all (¢,f) € Conf(M), g € Met(M), we see that each of the
three classes YA(M) is a union (possibly empty) of orbits of the con-—
formorphism group, Conf(M) < Aut(M). Thus the partition given by
the YATS theorem is natural in the sense of everywhere invariance
(see section 4.2).

The YATS theorem has played a key rdle in a parameterization
of the space of solutions of Einstein's equations due to Isenberg
[T 6 1. Isenberg considers globally hyperbolic spacetimes admit~
ting a compact embedded spacelike hypersurface of constant mean

curvature and obtains a parameterization of such spacetimes which
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are solutions of the (vacuum) Einstein equations, The parameteriza-
tion is based on the conforﬁal treatment of the constraint equations
of the 3 + 1 formalism developed by Lichnerowicz, Choquet-Bruhat,
York and O'Murchadha. Since this treatment is conformally invariant,
it is possible to simplify it by choosing the hypersurface metric to
have constant scalar curvature -1, 0 or +1 according to the YATS
theorem. Once such spatial metrics have been chosen, an analysis of
the constraint equations (in the form of the scale equation) may be
made using the method of sub and super solutions. Isenberg thus
completes the Lichnerowicz-Choquet-Bruhat-York-0'Murchadha pro-
gramme and obtains a natural parameterization of the class of space-
times under consideration. We refer to [I 6 ] for details of the
parameterization, although we note here that the conformorphism
group of the spatial hypersurface plays an important role. The
Isenberg parameterization is a useful framework for studying issues
like the stability and genericity of certain properties of space-
times, such as the existence of Cauchy horizons.

This completes our remarks on the structure of the space of
metrics on a manifold M. The space Met(M) has rich structure
and many applications in geometry and gravity, some of which we
have mentioned above. We return to some of our ideas concerning
the action of Aut(M) and natural maps below, but first we intro-

duce the concept of everywhere invariance.

4.2 Algebraic Framework

This section ispurely algebraic and in it we set up the basic

definitions of everywhere invariance and related ideas in the general
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setting of a group G acting on a set X. The ideas will be applied
to geometrical and physical situations in the remaining sections of
this chapter. 1In particular, we will consider everywhere invariance
in the context of the action of the diffeomorphism group on the

space of metrics on a manifold.

In the usual study of group actions, particular emphasis is put
on individual elements in the G-set X. For example, the stabilizer
(isotropy subgroup) of a particular element is often considered.

In this section, we wish to generalize the discussion to a study of
the behaviour of subsets under the group action. The interaction
of the stabilizer of a subset U of X with the stabilizers of
the elements of U 1is of particular interest in applicatioms to
geometry and general relativity.

In this section, we give only the basic definitions and some
simple results which will be used below in this chapter. We do
not give a thorough algebraic discussion of everywhere invariance.

Let X be any set and denote by B(X) the group of bijec-
tions (permutations) of X. Let G be a group and A € Hom(G,B(X))
a (left) action of G on X. The action A induces an action K

on the power set of X; X € Hom(G,B(Power(X))) 1is given by

Ka(U) {Aa(x): x € U} = Aa(U), for all non-empty U C X, and
Ka(¢) = @, for all a€G. For UCX, HCG, U, H non-empty,
let AH(U)= {Aa(x): a € H, x € U} denote the h-orbit of U.
If U= {x} for some x € X, we write AH(U) = Hx if A 1is
understood.

We now introduce the stabilizers under the actions A and X.
For U C X, let st(U) ={a € G: Aa(U) C U} denote the set of

elements stabilizing U wunder the action A. If U = {x} for

some x € X, then st(x) = st(U) is a subgroup of G. In general,
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however, st(U) possesses only the structure of a semigroup (A
semigroup is a non-—empty set equipped with a unital associative
binary operation. ©Note that some authors refer to such a struc-

ture as a monoid). The total stabilizer, tst(U), of U is

defined to be |J st(x). The set tst(U) contains the unit
x€U
element of G, but, in general, possesses no algebraic structure.
We also have the bona fide stabilizer of U under the action X.
V] V]
We denote this by st(U), so that st(U) = {a € G: Aa(U) = U},

Y]
and st(U) 1is the largest subgroup of G leaving U invariant

", N
under the action A. Note that [} st(x) g st(U) C st(U).
x€EU

In this chapter, we are particularly interested in the inter-
action between stabilizers of elements of a subset U on the one
hand and the stabilizer (under A) of the subset U 1itself on the
other. We will therefore be mainly concerned with the relation-
ship between st(U) and tst(U). 1In what follows, we always
assume sets are non-empty unless stated otherwise.

Definition (4.2)1: Let X,G,A be as above and let U be a

proper subset of X containing at least two elements. U is

said to be everywhere A-invariant if tst(U) C st(U),

inessentially A-invariant if st(U) C tst(U), and totally

A-invariant if st(U) = tst(U). If A is understood, we use
the abbreviation EI to denote both the adjective everywhere
invariant and also the concept of everywhere invariance. Similarly
for II and TI.

Obviously, there exist actions for which there are subsets
U which are neither EI nor II (so certainly not TI). The
examples we shall give in section 4.3 demonstrate that the two

concepts EI and II are non-coincidental.
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Our main interest is in EI, and we shall indicate usesAof
this idea in general relativity and in geometry. Note that U is
EI 1if and only if st(x) C st(U), for all x € U, so that an EI
subset 1is ''everywhere invariant" in the sense that no element of
U leaves U wunder the action of the point stabilizers.

We remark that proving a subseﬁ U dis II often involves
the use of some kind of fixed point theorem, and thus is generally
more difficult than proving EI. Some geometrical examples of II
are given in section 4.3.

Before deriving some consequences of definition (4.2)1, let
us briefly consider another concept in algebra which involves the
idea of a group acting on subsets; this is the concept of primi-
tivity:

Consider the action X of G on Power(X) induced by the
action A of G on X. A partition p of X is said to be
stable under A if Xa(p) Cp, for all a € G. Any action
admits two stable partitions, namely P, = {{x}: x € X} and
P, = {X}. The action A is called primitive if the set of stable
partitions is precisely {po,pl}. Consider the partition Py of
X 1dinto G-orbits; this partition is stabilized by G since
Aa(Gx) = Gx for any G-orbit Gx. If Py = P> then each
orbit is a single point, so the action A is trivial. If Py = Pqs
then there i1s just one orbit, so the action A 1is transitive. Hence
a non-trivial intransitive action cannot be primitive, so that the
interesting case is that of a tramsitive action on a set X con-
taining at least two elements. 1In the latter case, the following
criterion may be proved (see Jacobson [J 4 ]): If A is a tran-

sitive action on a set X containing at least two elements, then
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A 1is privitive if and only if st(x) 1is a maximal subgroup of
G, for all x € X.

In the non-primitive case, we have the following simple result
indicating a link with EI:

Proposition (4.2)2: Suppose A € Hom(G,B(X)) is a non-primitive

action on the set X, and suppose X contains at least three
elements. Then X contains an EI subset.
Proof: A 1is non-primitive, therefore there exists a stable par-
tition p of X with p + P,2Py- Any such partition contains
an element U which is a proper subset of X and which con-
tains at least two elements. The partition p 1is stable, so,
for any a € G, either Aa(U) =U or Aa(U) NU = ¢. Now,
let x € U. and a € st(x). Then Aa(U)F\U + ¢, so we must have
Aa(U) = U. This implies that a & QE(U)_E st (U), so
st(x) C st(U), for all x € U. The subset U is a proper subset
of X containing at least two elements and, moreover, tst(U) Svst(U).
Hence U is EI. O

We now give a result which gives a method of constructing EI
subsets. In section 4.3, we will use this result to tie together
EI with the group actions introduced in section 4.1. First
recall that, given any subset S of a group L, the normalizer
of S din L, denoted NormL(S), is defined to be {a € L
aSa_l = S}. If S 4is a subgroup of L, then NormL(S) is the
largest subgroup of L having S as a normal subgroup.

Proposition (4.2)3: Suppose A 6 Hom(G,B(X)), C € Hom(X,B(X))

are actions on the set X by the groups G, K respectively.
Assume that C 1is intransitive and that A(G) < NormB(X)(C(K)).

Then any C-orbit (with at least two elements) is everywhere
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A-invariant.

Proof: Let U =Kx C X be any C-orbit and let x € U. Hence,
there exists k € K with x = Ck(xo). Suppose a € st(x) (all
stabilizers are with respect to A). Then Aa(Ck(xo)) = Ck(xo)'

(C(K)), there exists k, € K such that

Since A(G) g Norm 1

B(X)
A o C =2¢C lo Aa' Hence Ckl(Aa(xo)) = Ck(xo)’ so Aa(xo)
-1

= Ckz(xo)’ where k2 = kl k.

Now, let vy € U, so that there exists k3 € K with

y = Ck (xo). Then Aa(y) = Aa(ck3(xo)) = Ck (Aa(xo)) for some

3 4
k4 € K. Hence Aa(y) = Ck4(ck2(XO>> = CkS(XO) € U, where k5 = k4k2'
We have shown that, for all x € U, a € st(x) dimplies
a € st(U), so tst(U) Cst(U). Also U is a proper subset of X

(since C 1is intransitive), so, assuming U contains at least

two elements, U 1is everywhere A-invariant O

Corollary (4.2)4: Suppose A € Hom(G,B(X)), € € Hom(K,B(X))

(with C intransitive) with C(K) < A(G) £ B(x). Then, any
C-orbit (containing at least two elements) 1s everywhere A-

invariant.

Proof: C(K) < A(G) dimplies that A(G) < NormB(X)(C(K)) ]

A useful situation in which proposition (4.2)3 may be used
is when we have a semi-direct product structure. Suppose
8 € Hom(G,Aut(K)), A € Hom(G,B(X)) and C € Hom(K,B(X)). The

actions 6,A,C are said to be compatible if:

-1
o (=4 = -2-
Aa Ck Aa Cea(k) 4 1,

for all a € G and k € K (Cf. proposition (4.1)5). TIf 6,A,C

are compatible, then the map (a,k) — Ck o Aa defines an action
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of the semi-direct product G Ne K (see appendix 6.3) on X.
Obviously, if ©6,A,C are compatible, then C(K) < A(G). We may

now use corollary (4.2)4 to deduce the following:

Corollary (4.2)5: Suppose 6 € Hom(G,Aut(X)), A € Hom(G,B(X)),

C 6 Hom(K,B(X)) are compatible and that C is intransitive. Then
any C~orbit (containing at least two elements) is everywhere A-
invariant.

When we deal with families of metrics (see below), we often
consider an embedding v : F <> Met(M), where F is some manifold.
In the purely algebraic setting, we may consider an injection
vy : F— X, where F 1is a get. Questions of A-invariance
(A € Hom(G,B(X))) may be transferred to F wusing the pullback
of A; Let U = v(F) E’X. Then we may define AY: st(U) — B(F);

a b y_l

° Aa ° Y. We return to maps such as Yy in section 4.4
when we consider the invariance equation.
Having introduced the relevant definitions, we turn now to

some examples. Some applications of everywhere invariance will

be given below in sections 4.4 and 4.5.

4.3 Examples

In this section, we give various geometrical examples illus-
trating the concepts introduced in the previous section. Since we
are interested in the space of metrics and isometries, we take
X =Met(M), G = Diff(M) and A = (lower star). Here, as usual,
M 1is a connected, smooth manifold, not necessarily orientable.

We also assume that M is not wild (see section 4.1), so that

Metl(M) + Met(M); 4di.e. there exist non-generic metrics on M.
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The signature of the metrics in Met(M) will be unimportant unless
specified otherwise. To conform with the notation introduced in
section 4.2, we let st(g) = Isom(M,g) denote the stabilizer of ¢
under the action (lower star).

The first four examples are fairly trivial, but they do
illustrate the three ideas given by definition (4.2)1.

4.3.1: Let U= {g,g'} where g 1is generic and g' 4is non-

generic. Then, tst(U) = {idM} ust(g') = st(g") £ {idM}.
Since g, g' do not lie in the same Diff(M)-orbit, we see that

st(U) = {idM} C tst(U). Hence, U is 1II but not TI.

4,3.2: Let U = Metl(M). Then tst(U) = {id and st(U) = Diff(M).

M}

Hence, tst C st(U), so that U is EI but not TI.

4.3.3: Let & € Met(M), and let U = Sgo be a slice of the
(lower star) action through &6 (see section 4.1 for a discussion
of slices). The two properties of a slice we require are
(i) ¢ € st(go) implies ¢ € st(U) and (ii) If ¢ € Diff(M)
and ¢,(U) N U + @, then ¢ & st(go). We now demonstrate that U
is TI. Let g €U and ¢ € st(g). Then ¢,(U) NU %+ @4, so
o € st(go), by (ii). Property (i) now implies that ¢ € st(U).
Hence st(g) C st(U), for all g €U, so U is EI. Now suppose
¢ € st(U). Then ¢, ()N U=0, so ¢ € st(go) C tst(U). Hence
st(U) C tst(U). Hence st(U) C tst(U), so U is also II. We
conclude that U is TI.

Another example of a TI subset of Met(M) dis the following:
Let g € Met(M) and A € Eﬁ-— {1} and put U = {g, Ag}. Then,
since st(ig) = st(g), tst(U) = st(g). Also, as is easily checked,
¢ € st(U) if and only if ¢ € st(g). Hence, st(U) = tst(U), and

so U is TI.
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4.3.4: Let g € Met(M) be non-generic and ¢ € Diff(M)

_l _
- NormDiff(m)(st(g)) such that (¥st(g))n st(g)y = .
Let U = {g,w*g} and, for convenience, denote st(g) by I.

Then tst(U) =1 kJ(wIw—l) 21D {idM}. Suppose ¢ € st(U).

Then, either (a) ¢,g8 =g and o¢,¥,g = ¥,g, or (b) 6,8 = V.8
and ¢,¥,8 = g. Case (a) implies that ¢ € I M (wIw_l) and
case (b) implies that ¢ € (YI) N (Iw_l). Thus,
st(W) = (In (WI¥ ) o (WD N (I ).

Now consider the interaction between tst(U) = I p}(wlwul)
and st(U) = (IN (I ) u(@I)N (1v™h)).  We will show that

tst (U) $ st(U) and st(U) g tst(U).

Suppose ¢ € tst(U) - (wlw_l)‘g tst(U) (Note that tst(U)

-1 .
- (Iy 7) 1is non-empty because U € NormDiff(M)(I))' Then

¢ €I and ¢ € wlw‘l. In particular, ¢ & I N (wlw“l). Now
suppose ¢ € (YI) N (Iw—l). Then there exist ¢l,¢2 € 1 with
wo¢l = ¢ = ¢20w_l. But ¢ €I and ¢ € I, so this leads to a
contradiction. Hence ¢ é W n (Iwml). We have shown that
there exists ¢ € tst(U) with ¢ ¢ st(U). Hence tst(U) $ st (U).
Conversely, let ¢ € (YI) N (Iw—l) C st(U). Then there
exist ¢l,¢2 € I with w0¢l = ¢ = ¢20w_l. Since ¢ € I, we must
have ¢ € T and ¢ & wlw—l. Hence, ¢ & tst(U), so that
st(U)_$ tst (U).

The subset U 1is therefore neither EI nor II.

4.3.5: Let us now discuss how the group actions introduced in
section 4.1 interact with the concept of EI. Recall that

Aut(M) = Aut GL(M) = Diff(M) x Aut(TM) (see proposition (4.1)9 and
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corollary (4.1)2). It will be convenient to work with the isomorph
Diff(ﬁ) X Aut(TM) in this section. The group Aut(TM) acts on
Met(M) via the generalized conformal action C (see definition
(4.1)3) and any subgroup K of Aut(TM) acts on Met(M) by
restricting C to K. We also have the push forward action A
of Diff(M) on Aut(TM) by automorphisms (4.1.5), and A leaves
invariant certain natural subgroups of Aut(TM).

Recall that a K-conformal structure on M, K g Aut(TM),

is an orbit of K acting on Met(M).

Proposition (4.3)1: Suppose K 1s an A-invariant subgroup of
Aut (TM) . Then a K-conformal structure is EI.
Proof: K is A-invariant, so we have the action (also denoted

by A) A € Hom(Diff (M), Aut(K)). Let us denote the action C
restricted to K also by the letter C. Then, by a trivial
modification of proposition (4.1)5, the actions A, (lower star), C
are compatible. We may now use corollary (4.2)5 to deduce that any
C-orbit (i.e. any K-conformal structure) is EI (recall that EI
means everywhere (lower star)-invariant in this section) U

Corollary (4.3)2: Conformal structures (section 6.2), generalized

conformal structures (definition (4.1)4), SAut(TM) -, CAut(TM) -

and Aut+(TM)—conformal structures are each EI.

Proof: Put K = C (M), Aut(TM), SAut(TM), OAut(TM) and Aut (TM).
Each of these subgroups is invariant under the A action of Diff(M)
(see proposition (4.1)6 for the last three. The invariance of the
first two is trivial) [

We may also consider orbits of subgroups of Diff(M):

Proposition (4.3)3: Let K < Diff(M). Then any K-orbit is EI.
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Proof: K 1s a normal subgroup of Diff(M), so that the con-
jugation action of Diff(M) on itself restricts to an action
conj € Hom(Diff (M), Aut(K)). Trivially, the actions conj,
(lower star), (lower Star)‘K are compatible, so, by corollary
(4.2)5, we deduce that any K-orbit is EI O

In connection with the above proposition, we should make a
remark concerning the normal subgroup structure of Diff(M).
In fact, if we restrict our attention to Diffo(M), the con-
nected component containing idM, then there don't exist any
(non-trivial, proper) normal subgroups at all; Mather [M & ]
has demonstrated that Diffo(M) is simple. This is proved by
first showing that the commutator subgroup of DiffO(M) is
simple, and then showing that DiffO(M) is perfect (i.e. equal
to its own commutator subgroup). Typically, therefore, we do
not expect proposition (4.3)3 to generate many EI subspaces
of Met(M).
4.3.6: Let us now consider conformal structures in more detail.
Let g € Met(M) and Cg = {fg: f € C+(M)}, the conformal struc-—
ture on M containing g. As usual (see section 6.2),
Conf(M,g) = Conf(M,Cg) denotes the conformal group (group of
conformeomorphisms of (M,Cg)).

Let U = Cg' Then st(U) = Conf(M,g), and tst(U) =

= U st(fg). We have already demonstrated (see corollary
£ecT (M)
(4.3)2) that U dis EI. We now consider the II of U. For

this, we use some results from the theory of essential conformeo-
morphisms. We use the definition of Obata [0 4 1.

Definition (4.3)4: The subgroup G of Conf(M,g) 1is said to be
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inessential if there exists £ € C+(M) such that G g st(fg).
Otherwise G 1is said to be essential.

It can be shown that any compact subgroup of Conf(M,g) 1is
inessential (see Ishihara [I/10]). In particular, if M is
compact, then st(g) 1is compact, so that a (closed) subgroup G
of Conf(M,g) 1is inessential if and only if G is compact.

Another sufficient condition for inessentiality involves the
Weyl tensor Weyl(g). Consider the pointwise norm | Weyl(gﬂlg.
Under a conformal rescaling, g — fg, this norm changes by a
factor f_l, so that IIWeyl(gﬂlgg is invariant under conformal
rescalings. Suppose Weyl(g) %+ 0. Then I’Weyl(g)”gg is a metric
in the conformal class of g which is invariant under Conf(M,g).
Hence, the non-vanishing of the Weyl tensor of g implies the
inessentiality of Conf(M,g). Note that here we assume dim M 2 4.
For dim M = 3, the Weyl-Schouten tensor may be used to obtain a
similar result.

Suppose Conf(M,g) = st(U) 1is inessential. Then there exists
f e C+(M) suﬁh that st(U) = st(fg) g_tst(U), so that U is 1II,
and hence TI. Therefore, the above results may be utilized to
deduce the following:

For dim M 2 4 (dim M = 3), the non-vanishing of Weyl(g)
(Weyl-Schouten(g)) for any (and hence all) g € U implies that
U dis TI. For M compact, if st(U) 4is compact, then U is
TI.

For completeness, we mention the following result concerning
inessentiality (see Obata [0 2 ]); Confo(M,g) is essential if
and only if (M,g) 1is conformally equivalent to (Sn,can)

(M compact) or (Rp, can) (M non~compact). Here, ConfO(M,g)
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denotes the identity component of Conf(M,g).

4.3.7: In general relativity, we are often interested in a family

of metrics parameterized by some manifold F. Often, F is some
function space, since, for example, solutions of the Einstein
field equations sometimes depend on arbitrary functions. We ex-
hibit the parameterization by an embedding vy: F &— Met(M).

The metrics in U = y(F) are then of a given ""functional form'.
The diffeomorphisms in st(U) are those which preserve the
functional form of the family of metrics, i.e. ¢ 8 st(U) if

and only if, for all f € F, there exists f' € F such that
¢*y(f) = y(f£'). The total stabilizer of U is just the amal-
gamation of the isometry groups of all the metrics in U.
Elements of st(U) were originally called FFI (functionally
form invariant) transformations by d'Inverno and Smallwood ([I 2 ],
[I7%]). The examples given in these two papers, for instance,
the generalized Schwarzschild (given by vy: C+(M) & Met(M)
fr— £dt? - £ 7dr? - r2 can, M=Nx5S2 with N C R?) and the
type {3,1} wvacuum solutions with twist, illustrate the idea of
a functionally parameterized family of metrics. Another example
is analyzed in section 4.5 where we calculate st(U) for

U = {pp-waves} wusing the invariance equation introduced in
section 4.4.

Other interesting families of spacetimes have been discussed
in the literature. Moncrief [M43 ] considers the space of
(generalized) Taub-NUT metrics on R xS3, This space is infinite
dimensional and contains as a two dimensional subspace the space
of Taub-NUT solutions. In a more recent paper [M 14 ], Moncrief

discusses vacuum metrics on the manifold R x Bn (Bn the total
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space of an arbitrary sl-bundle over Sz) which admit a spacelike
isometry group isomorphic to st, Again, an infinite dimensional
family of metrics is obtained. We should also mention the work of
Szekeres [S 28] in which he discusses solutions of Einstein's
equations involving arbitrary functions, and he derives necessary
and sufficient conditions for a solution of the vacuum Einstein
equations to depend on an "arbitrary" functional on C(M).

Having given several examples exhibiting EI and related
properties, we turn now to a consideration of infinitesimal sym-
metries of a family of metrics. 1In particular, we discuss the
so called invariance equation, which is a generalization of the

Killing equation.

4.4 The Invariance Equation

In this section, we shall study certain infinitesimal aspects
of the action of the diffeomorphism group on the space of metrics.
In order to find symmetries of a family of metrics, in particular
the isometries of a single metric, we often have to resort to finding
infinitesimal symmetries (i.e. vector fields which generate local
symmetries), and then integrating to find the corresponding global
symmetries. In the particular case of a single metric, the pro-
cedure involves solving the Killing equation to find infinitesimal
isometries or Killing vector fields. In this section, we generalize
the Killing equation in order to deal with an entire family of
metrics. In the following section, we use this "invariance equa-
tion" to find the symmetries of a particular family of metrics,

namely the pp-wave solutions of Einstein's equations.
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Before considering the invariance equation, we give a brief dis-
cussion of the infinitesimal structure of the diffeomorphism group.
For a thorough discussion, we refer the reader to Adams et al.

[A 2], Hamilton [H2 ], Milnor [M & ] and Ratiu and Schmid [R 2 ].
As is explained in these references, for technical reasons, we
should assume that M 1s compact. 1In the non~compact case, there
exist incomplete vector fields, so that the space of vector fields
is too large tc be the Lie algebra of the diffeomorphism group -
incomplete vector fields cannot be globally integrated. On the
other hand, the set of complete vector fields isn't even closed
under addition, and so it certainly can't be regarded as the Lie
algebra of Diff(M). One solution is to utilize DiffC(M), the
group of diffeomorphisms of compact support, with corresponding
Lie algebra VectC(M), although this appears to be rather a res-
triction.

Let M be a smooth, commnected, (compact), n-manifold without
boundary. Diff(M) 1is an open subspace of C(M,M) and thus possesses

tangent space:

T¢Diff(M) = Vect¢(M) = (X € C(M,TM): moX = ¢} 4.4.1,

for all ¢ € Diff(M). Here, w: TM — M dis the tangent bundle of
M. 1In particular, the tangent space at idM is just Vect(M),

and this is the vector space underlying the Lie algebra, L Diff(M).
To calculate the Lie algebra product, we need to consider the space
of left invariant vector fields, VectL(Diff(M)), on Diff(M):

First let us consider the composition map given by

comp: Diff(M) x Diff(M) — Diff(M): (¢,¥) +—> oy 4.4,2,
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for all ¢,y € Diff(M). This map is differentiable (see Irwin

[T 4 ]) with derivative given by:
(Deomp (¢,¥) . (V,W)) (%) = Do(¥(x)).W(x) + V(P(x)) 4.4.3,

for all x e M, (V,W) €T (Diff(M) x Diff(M)) = Vect¢(M) 1) Vectw(M)

(6,9)
and (¢,¥) € Diff(M) x Diff(M). The partial maps of comp are just
left and right multiplication in the Lie group Diff(M):

L¢ = comp(¢,*) and Rw = comp(*,¥), for all ¢,y € Diff(M). Ex-

tracting the partial derivatives from equation 4.4.3, we obtain
(DL¢(W).W)(X) = Do (v(x)).W(x) b.b.b,
for all x €M, WE TW Diff(M) = Vectw(M) and y,¢ € Diff(M), and

4.4.5,

[
<

DRw(¢>).V = V

for all V ¢ T¢Diff(M) = Vect¢(M) and ¢,P € DIff(M).
The usual isomorphism of the tangent space at the identity onto

the space of left invariant vector fields is given by

At Vect(M) — Vect, (DAFE(M)); X b> X 2 A(X): ¢ b— DL, (1d,) . X.

Using equation 4.4.4, we see that (XL(¢))(X) = D¢ (x).X(x)

= (¢,X)(¢(x)). Hence, we obtain:
L
X(o) = (9,X) o ¢ 4.4.6,

for all ¢ € Diff(M), X € Vect(M).

The Lie algebra of Diff(M) 1is the vector space TidMDiff(M)
= Vect (M) equipped with the Lie algebra product obtained by pulling
back the Lie bracket on VectL(Diff(M)) < Vect(Diff(M)) wusing the

(vector space) isomorphism XA. This product may be calculated as

follows:
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Fix X € Vect(M) and let o 6 Hom(R, Diff(M)) be the

. , . . do(t) L
unique l-parameter subgroup of Diff(M) satisfying 4 X (o(t)).
Then, by analogy with the theory of finite dimensional Lie groups,

we put exp(X) = o(l), so that exp(tX) = o(t).

We may write the differential equation for o as
o(t) = (o(t), X) ° o(t) 4.4.7,

where we have used equation 4.4.6. The ordinary differential equa-
tion 4.4.7 possesses a unique solution satisfying o(0) = idM (just
evaluate 4.4.7 at an arbitrary point in M and use the standard
existence and uniqueness theorem of Picard). Now let {¢t} be the
l-parameter group of diffeomorphisms generated by X, 1i.e.

6 =X o ¢, and ¢_ = idy. Since [X,X] =0, we have

¢t¢ X = X, so that ¢t = (¢t*X) o ¢t. Hence, we must have

=

o(t) = ¢t. We have demonstrated that the l-parameter subgroup
corresponding to X (qua element of LDiff(M)) ecoincides with the
l-parameter subgroup of diffeomorphisms generated by X (qua

vector field on M). We deduce that:

exp (tX) ¢t 4.4.8.

Now consider the adjoint representation of Diff(M) on Vect(M).
This is given by Ad¢ = Dconj¢(idM) = D(L¢ ° R¢_l)(idM) € GL(Vect(M)).
. _l 3
Hence, (Ad¢(X))(x) = (DL¢(¢ ).DR _l(ldM).X)(x)
= (DL, (871 (Xep™ D)) (x) = D§(o7 (). X(¢7 (%)) (using equations
4.4.4, 4.4.5) = (¢*X)(x), for all x € M, X 6 Vect(M). Thus, we

have:

Ad, = b, 4.4.9,

for all ¢ € Diff(M).
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The mapping Ad: Diff(M) — GL(Vect(M)) 1is a homomorphism of
Lie groups, and its derivative at the identity is therefore
a homomorphism of Lie algebras. Regarding Ad as an action, this
homomorphism is just the infinitesimal generator, and is denoted by
ad = DAd(idM) 6 Hom(Vect(M), gl(Vect(M))). We have adX(Y)

-4 Ad (Y) = ii‘¢ .Y (where {¢t} is the

dt exp (tX) =0 =0

l-parameter group of diffeomorphisms generated by X, and we have
used equation 4.4.9)= - LY (see equation 1.6.1) = - [X,Y], for
all X,Y € Vect(M). Here [,] denotes the usual Lie bracket of
vector fields. However, the Lie algebra product on Vect(M) in-
duced by the isomorphism X ; X F——*XL (4.4.6) dis given by
[X,Y] ... = A_l([XL,YL]) = ad_(Y), where the last equality
Diff (M) X
follows from a calculation identical to the one in finite-dimensional
theory. Thus, we have demonstrated that [X’Y]Diff(M) = - [X,Y],
for all X,Y € LDiff(M) = Vect(M), di.e. the Lie algebra of
Diff (M) 1is Vect(M) -equipped with the Lie algebra product given
by the negative of the usual Lie bracket of vector fields. Note
that we have followed convention by using left-invariant vector
fields on the Lie group. Had we utilized right-invariant vector
fields, there would have been no sign difference between the Lie
bracket coming from the Lie group structure of Diff(M) and the
Lie bracket of vector fields in Vect(M).
We remark that the structure of Diff(M) dis much more complex
than that of other infinite dimensional Lie groups such as C(M,G)
(G a finite dimensional Lie group) or Gau(P) (P a principal

bundle over M). For example, in the former case, the exponential

map is given by exp: L(C(M,G)) = C(M,LG) — C(M,G); & F*—expGog,
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for all & € C(M,LG). BHere, exp denotes the exponential map of the
Lie group G. The map exp possesses a local inverse (constructed
using the inverse of expG) and is a local homeomorphism near the
identity of C(M,G). Using this natural local coordinate system,

the group C(M,G) can be given an analytic structure. This struc-
ture comes entirely from G and therefore exists even if M 1is only
smooth.

In contrast, Diff(M) possesses no canonical chart about the
identity and is certainly not analytic. We have the exponential
map, exp: Vect(M) — Diff(M), given by equation 4.4.8, but this
is far from being a local homeomorphism. Indeed, there exists no
neighbourhood of idM onto which exp maps surjectively, so that
there are diffeomorphisms arbitrarily close to the identity which
are not on any l-parameter subgroup. There are also diffeomorphisms
which are on many l-parameter subgroups. A demonstration that
exp: Vect(Sl) - Diff(S!) is neither locally injective nor locally
surjective is given on p. 28 of Pressley and Segal [PA%]. A
consequence of the fact that exp is not locally surijective is that
it is not ! (by the inverse function theorem); it is only con-
tinuous.

Having discussed certain aspects of the Lie group structure
of the diffeomorphism group, we return now to its action on Met(M)
by (lower star). For fixed g € Met(M), the stabilizer of ¢
under the action is st(g) = Isom(M,g), the isometry group of g,
and this is a Lie subgroup of Diff(M) of dimension at most
in(n+l). A diffeomorphism ¢ 1is an isometry of g 1f and only
if % = %(O(M,g) 6 Aut O(M,g). Indeed, any automorphism of

O0(M,g) which leaves invariant (the restriction of) the canonical
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l1-form 6 (and hence the Levi-Civit3 connection 1-form LC(g))
is the 1lift of an isometry of g. For each u € O(M,g) we have the
embedding lu: Isom(M,g) —>O0(M,g); ¢ F-—>&(u), 80 we may re-—
gard Isom(M,g) as a (closed) submanifold of O(M,g).

At the infinitesimal level, we have the concept of a Killing

vector field or infinitesimal isometry. A Killing vector field X

is a vector field whose corresponding local l-parameter group {¢t}
of local diffeomorphisms consists of local isometries. If M is
compact, then every vector field is complete and generates a

global l-parameter group of diffeomorphisms. If M dis non-compact,
then there exist incomplete vector fields whose local l-parameter
group cannot be extended to a (global) l-parameter group of diffeo~
morphisms. However, if (M,g) 1is a complete Riemannian manifold,
then every Killing vector field is complete.

In any case, the Lie algebra of TIsom(M,g) is naturally iso-
morphic with the Lie algebra of all complete Killing vector fields.
In particular, if (M,g) is complete, then LIsom(M,g) can be
identified with the Lie algebra of all Killing vector fields.

The differential equation characterizing Killing vector fields
is Lyg = 0 (obtained by differentiating 9,48 = g, where {d>t}
is the l-parameter group of diffeomorphisms generated by X).

Using the relatiomn -ﬁ% ¢t* + ¢t*° LX = 0 (on any space of tensor
fields), we see that LXg = 0 implies that X 1is a Killing vector
field.

Another characterization of Killing vector fields is obtained
if we consider the lifted vector fields on the frame bundle;

Let X € Vect(M) with (local l-parameter group of (local) diffeo-

morphisms {¢t}. We define X € Vect GL(M) by:
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;((u) = ic;t(u) 4.4.10,

dt £=0

for all u € GL(M). Using the fact that ¢t € 2(Diff(M)) = stab(0)

< Aut GL(M) (see appendix 6.1), it is straightforward to show that

<

~

(1) (RaL:X = X, for all a € GL(n,R); (ii) L%@ = 0; and

(iii) Dﬂ(u).%(u) = X(w(u)), for all u € GL(M) (Note that we are
using 7 to denote both the tangent bundle and the frame bundle in
this section). Conversely, given % € Vect GL(M) satisfying (i),
(ii), there exists a unique X € Vect(M) satisfying (iii). The

~

vector field X dis called the natural 1lift of X to the frame

~

bundle. Let us also denote by i the restriction of X to any
submanifold, in particular any sub-bundle, of .GL(M).

It can be easily seen that X € Vect(}M) 1is a Killing vector
field of (M,g) 1if and only if i is tangent to O(M,g) at
every point of O(M,g), i.e. the restriction of % actually defines
an element of Vect O(M,g). These, and other, results concerning
isometries and Killing vector fields are given in Kobayashi and
Nomizu [K 2 ]. Similar results may be shown for a conformal structure;
here, we have conformal Killing vector fields generating (local)
conformeomorphisms which satisfy the conformal Killing equation,
LXg + hg = 0 (h 6 C(M)), and whose lifts are tangent to the con-
formal frame bundle (see section 6.2 and Poor [P 716]).

We now consider families of metrics more general than {g!

+ .
and Cg = {fg: £f 6 C (M)}. First, we introduce some notation:

Definition (4.4)1: Let U be a submanifold of Met(M), and, as

usual, let st(U) = {¢ € DIff(M): ¢,g € U, for all g € U}. Let
K(U) = {X 6 Vect(M): {¢>t<} C st(U)} and

L(U) = {X € Vect(M): LXg € TgU’ for all g € U}. We refer to
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K(U) as the space of generalized Killing vector fields.

Proposition (4.4)2: K(U) C L(U).

Proof: Let X € K(U), and fix g € U. We define the curve:

ICR—U; ¢ P-*gt = (¢§)*g. Then

d , X de,
LXg = - _E-E (q)t)_kg £=0 = - “az— £=0 e TgU, so that X € L(U).

Hence, K(U) C L(U) O

Particularly important submanifolds U of Met(M) arise when
we consider parameterized families of metrics. Let F be a mani-
fold, and Yy € Emb(F,Met(M)), so that U = Y(F) is a family of metrics
parameterized by F. As in section 4.2, we have the map
(lower star)Y: st(U) — Diff(F) defined by ¢ +> y¢ = y_l°¢*°y
(where y_l denotes the inverse of vy, mapping U onto F). In
this case, we have L(U) = {X € Vect(¥): LX(Y(f)) € Ty(f)U’ for all

f € F} = {X € Vect(M): for all f € F, there exists u € T.F such

that LX(y(f)) = Dy(f).u}, wusing the fact that Ty(f)U = Dy(f)(TfF).

Definition (4.4)3: Let vy be as above. We say that X € Vect(M)

satisfies the invariance equation for y 1f, for all f € F, there

exists u € TfF such that

LX(Y(f)) = Dy(f).u 4.4.11.

We see that L(y) = L(y(F)) is the solution space for the
invariance equation for y. In particular, since K(U) C L(U)
(proposition (4.4)2), any vector field X in K(U) must satisfy
the invariance equation 4.4.11. 1In fact, suppose X € K(U). Then

{¢§} g_st(U), so we have Y =y % € Diff(F). Let f € F and

b

d d |
===y () € T.F. Then, L (y(£)) = - == ¢ ., (y(£)) =
dt 't =0 £ X dt "t £=0
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d d
= - — y(y_(£)) = = Dy(f).( v (D) ) = Dy(f).u, showing
ac "M oo ac et

explicitly that K(U) C L(U) in this case.

Note that, in the case of F being an open subspace of a
(topological) vector space, the invariance equation reduces to the
FFI equation of d'Inverno and Smallwood [I 2 ].

In general, K(U) i L(U), 4di.e. there will exist vector fields
on M satisfying the invariance equation which do not generate sym-
metries of U. The two cases mentioned above, namely, U = {g} (so
F=1{*}) and U= Cg = {fg: f &€ C+(M)} (an orbit of the group
C+(M) = F), do satisfy the condition K(U) = L(U). 1In fact, these
two cases are particular instances of a more general class of em-
beddings vy for which K(U) = L(U) (U = v(F)):

Proposition (4.4)4: Let F be an abelian Lie group and

C € Hom(F,Diff (Met(M))) a free action of F on Met(M). Suppose

6 € Hom(Diff (M), Aut(F)) dis such that 6, (lower star), C are com-
patible (see 4.2.1). Then, any C-orbit U dis such that K(U) = L{U).
Proof: Fix g € Met(M) and let U = Fg be the C-orbit containing
g. Define vy: F<> Met(M) by v(f) = Cf(g), so that

v € Emb(F,Met(M)) and vy(F) = U.

We have K(U) E L(U) by proposition (4.4)2, so we must prove
that L(U) C K(U). Suppose X € L(U). Then X satisfies the in-
variance equation for vy (4.4.11), so that, for all f € F, there
exists u € TfF such that LX(y(f)) = Dy(f).y. We must now inte-
grate this equation.

Let {¢t} be the l-parameter group of diffeomorphisms generated
by X and fix f € F. Now we apply D¢t*(y(f)):

Met(M) — T Met(M) to the invariance equation. We obtain

T
Pta (y(£))

v (£)
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D¢t*(y(f)).(LX(y(f))) = D¢t*(y(f)).Dy(f).u. Now use the fact that

¢t* : Met(M) — Met(M) 1is the restriction of a linear map on SZ(M)’

so that D¢t¢(g') = ¢t¢’ for all g' € Met(M), to obtain;

¢t*(LX(Y(f))) = D(q‘at*oy)(f).u, so that ?f—t((cbt*oy)(f))
+ D(¢t*°Y)(f)-u = 0. Now note that, for all f' g F, (¢tA°Y)(f')
= 0,,(Cer(8)) = (6, °Cor =1 (Co(@)) = (5, " Fy(e'e™)  (unere

1

& : F— Met(M); f£' - Cqi(g'), for all g' € Metr(¥)
= (o, ,oc" P r (e, wn R is right multiplication b
¢t* £-1 » where g-1 1s right multiplication by
£ (in F).
The compatibility of 6, (lower star),C means that

¢, °C.y o9, =C 1vs for all f' € F and ¢ € Diff(M). Let
% f % 6¢(f )
1
g' € Met(M). Then ¢,(C.,(g")) = Cg (£1)(¢48)5 so that 9,.(C® (£)
_ (b,v;g' ' ' ¢ g' — %:8'
= C (6¢(f )), for all f' € F. Hence, $,°C = C °6¢, for
all ¢ € Diff(M), g' € Met(M).

Returning now to our calculation, we see that (¢@&°Y)(f')

o (Y(£)) o (1)
- (c 8, R _(E), so b ey=C 8 R .,
£t f * %t
where Of; t —9~(¢t¢oy)(f) € Met(M). Therefore the application of
D¢t*(y(f)) to the invariance equation results in é%—cf(t)
o .(t)
+ D(C £ o § o R Y(£).u = 0, which we write as:
o -1
t £
o.(t)
d f d
ng(t) - DC (1)(‘5{ O(.f(t)) = 0 4.4.12,
where
t
0.3 £ > — D(B o R )(f).u ds € LF 4.4.13,
£ ¢S f—l
o

where LF denotes the Lie algebra of F.
To summarize our proof so far; X € K(U) dimplies that, for all

f € F, there exists u € TfF such that the curve O¢ in Met(M)

given by:



-338-

o (6) = (b4 o1)(E) b.b.14,

satisfies the ordinary differential equation 4.4.12. The usual
existence and uniqueness theorem for solutions of ordinary dif-
ferential equations (Picard's theorem) shows that 4.4.12 possesses
a unique solution op satisfying cf(O) = v(£).

We now obtain a solution of 4.4.12:; Let the curve Te in

Met(M) be defined by Te =Y ° Rf ° exp o G, where exp: LF — F

is the exponential map of the Lie group F. ©Note that Tf(O) = y(£f).

We now demonstrate that Te satisfies equation 4.4.12:

T () 4 a Te(£) .
We have DC (l).(az»af(t)) = it C (exp(saf(t)))
s=0

d d

T ds Cexp(sdf(t))(Tf(t» <=0 - EE(CeXp(s&f(t))OY °

d .
= ds(Y oLexp(saf(t)) (,Rf o exp o af)(t)§5=o (using the fact that

Rfo exp<>af)(t)§s

Cf,o Y = Yo Lf,, for all f' € F, where L is left multiplication

. d
in F) = Eg(y ° Rf o L exp o af)(t)i

exp(sa (£))” ls=0
d
= D(yeRg) (exp(ag(£))) . EE'Lexp(s&f(t))(eXp(“f(t)))}S=o
- D(voR,) (exp(a (£)). é%-Rexp(af(t))(exp(séf(t))) )
S=

= D(yeR,) (exp(a (t))) .DR (1). &f(t).

exp (o (1))

Now, recall that for any Lie group F, the derivative of the

exponential map, exp: LF — F, is given by D exp(%)

= DLexp(i) (1) o e(ad(&)): LF — Texp(g)F’ for all £ € LF. Here
-1 B <] (__X)r
e(x) =x (1 - e x) denotes the power series ¥ -——%— (see
-0 (r+1)!

Helgason [H & ], p. 105). 1In our case, F is abelian, so that

L =R and ad = 0. Therefore, D exp(§) = DRexp(E)(l)’ for all

0
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£ € LF. 1In particular, D )(l) = D exp(af(t)), so that

Rexp (e (1)
Tf(t) . .
DC (L. uf(t) = D(YORf)(exp(af(t))).D exp(af(t)). af(t)

d .
= dt(Y°Rf°exp ocf)(t) = Tf(t)-

We have shown that satisfies the equation

T.(t)
. £ .
rf(t) - DC (1). af(t) = 0. But this is precisely the equation

Te

4.4.12. Therefore, since Tf(O) = y(f) = of(O), we must have

o Tgs i.e. ¢t¢(Y(f)) = y(f exp(af(t))), for all t € I C R,

f
f €6 F. Hence, {¢t} E_st(U) (U = v(F)), so that X € K(U).
This concludes the proof that L(U)<E K(U), and so we have
that K(U) = L(U) O
The infinitesimal aspects of EI and II (section 4.2) may be

stated as follows:

Proposition (4.4)5: Let U be a submanifold of Met(M). If U

is EI, then K(U) contains all Killing vector fields of all metrics
in U. If U 1is 1II, then for each vector field in K(U), there

exists a metric in U for which the given vector field is Killing.

Proof: Suppose that U 1is EI, and let X be a Killing vector
field for some metric g € U. Then {¢§} < st(g) C tst(U) C st(U),
so that X € K(U).

Now suppose that U 1is II, and let X & K(U). Then,
{¢§}_§ st(U) C tst(U), so that there exists g € U with {¢§}
< st(g). 1i.e. there exists a metric in U for which X is a
Killing vector field O

The EI part of the above proposition is especially useful,
for, since K(U) E L(U), it means that by completely solving the

invariance equation (4.4.11) for an EI submanifold U = v(F),
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we can find all Killing vector fields of all individual elements of
U. These vector fields may then be exponentiated to give the iden~-
tity components of the isometry group of all metrics in U. Since
the invariance equation is often easier to solve than an individual
Killing equation (due to the extra degrees of freedom available),
the idea of embedding a particular metric in an EI submanifold of
Met (M) provides a practical method for finding symmetries of par-
ticular metrics on M. An example illustrating the use of the in-
variance equation for finding the isometries of a particular family
of metrics is given in the following section.

To conclude this section we consider the frame aspects of the
invariance equation since, in applications, it is often more con-
venient to consider frame components of a metric rather than com-
ponents with respect to local coordinates.

Note that, for U a submanifold of Met(M), we may define

a submanifold O(M,U) of O(M) by:
oM, 0) = {(g,u) € O(M) : g € U} 4.4.15,

so that O(M,U) may be regarded as the restriction of the canonical
O(n)-bundle to the submanifold UxM of Met(M) xM. Regarded in
this way, O(M,U) = O(M)l(U><M) is a principal O(n)-bundle over

U x M.

The semigroup st(U) C Diff(M) g Aut(M) acts on O(M,U) by res-
tricting the action given by proposition (4.1)11 (this action is
just the left version of the restriction of S (4.1.25) regarded
as a semigroup action, and is given by (¢,(g,u)) > (¢,8, é(u)>,
for all (¢, (g,u)) € st(U) x O(M,U)).

If U= {g}l, then O(M,U) = {g} x 0O(M,g) = O(M,g) and is
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+
acted upon by st(U) = Isom(M,g). If U = Cg = {fg: f € C (M},

n
then O(M,U) = 0(M,fg), and is acted upon by st(U)
£ e chon
= Conf(M,g) (Cf. 4.1.18 with F = B.TM). By collapsing the
disjoint union O(M,Cg) to the set union, we obtain the conformal
frame bundle of (M,Cg) (see definition (6.2)2), which has the
structure of a CO(n)-bundle over M.

By generalizing Cg to an arbitrary submanifold U of Met(})

we may obtain an analogue of the conformal frame bundle: Let

Q) = U oM,g) C GL(M) and define a surjection by
g€lU
pr, ! oM, U0) — Q(U); (g,u) —u 4.4.16,

for all (g,u) € O(M,U). Note that pr;l(u) z {g 6 U: ue 0M,g)}
and that the action of the semigroup st(U) projects to an action

on Q(U).

Returning now to infinitesimal symmetries, we have the following

result:

Proposition (4.4)6: Let U be any submanifold of Met(M). Then

the 1ift of K(U) 1is a space of vector fields contained in Vect 0(U).
Suppose U dis EI, then % € Vect O(M,g) for some g € U implies
that X € K(U). Now suppose U dis II, then X 6 K(U) dimplies
that there exists g € U such that X € Vect O(M,g).

Proof: Let X € K(U). Then {¢§} E_st(U). Fix u € Q(U) and let

~ X
g € U such that u € 0(M,g). Then, putting u, = ¢§(u),gt = ¢t*g,

X

N € st(U), so that

we have u € O(M,gt) for all t € I. But ¢

g, € U. Hence, ¢t + u, defines a curve in Q(U). Now,

~ ~ du
X(u) = ii'¢ (u) (see equation 4.4.10) = ] € T QU).
dt "t dt 1t=0 u

t=0
Hence X € VectQ(U).
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Now suppose U 1is EI, so that tst(U) E_st(U). Let g €U
and i € Vect O(M,g). This implies that X 1is a Killing vector
field for g and hence X € K(U) (by proposition (4.4)5).

Finally, suppose U 1is II, so st(U) C tst(U). Let
X € K(U). Then, by proposition (4.4)5, there exists g € U such
that {¢§} C st(g). Hence X € Vect O(M,g) O

We now obtain a frame version of the invariance equation for
y: F&~—Met(M). For U = y(F), let gq : Q(U) — M be the res-
triction of 7: GL(M) — M. ©Note that g, 1in general, is not a
bundle, but, nevertheless, we shall refer to maps s: W — Q(U)

(W open in M) such that gqe°s = id as local sections of q,

M’
and denote the space of such maps by T(Q(U)|W).

Definition (4.4)7: Let v € Emb(F,Met(M)) and U = v(F). We

say that vy 1s frame friendly if, for each W open in M, vy

induces a differentiable map v : F— T(Q(U)|W) such that
(v(£), ~v(£)(x)) € O(M,U), for all x €W, f € F. We call Y

a frame map associated with Y.

We remark that there may exist more than one such §. for a
frame friendly <vy. Embeddings <y which arise as orbit maps of
natural groups are frame friendly, and admit a unique natural
frame map. For example, for <y an orbit embedding of Aut(M),
'? is essentially given by equation 4.1.18.

Note that, if vy dis frame friendly, then we may transfer all

F-dependence to the local n-bein and write:
a b
Y(E) W = n 0 (£) 8 67 (£) 4.4.17,

where = diag(l,...,1, -1,...,-1) € S(p,q; R) and {Ga(f)}

nab
is the n-bein dual to {e_(f)} = v(E) € T(OM,v(£))|W), for all
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f € F.
Now, suppose Yy is frame friendly, and fix a frame map

7: F — F(Q(U)]W) for some open W in M. Let X ¢ L(U), so
that X satisfies the invariance equation (4.4.11). Putting
y(f) = y(f)’w, the invariance equation implies that
Lo(n . 08%(E) 8 8°(£)) = D(E' > n_ 82(£') 8 8°(£')) (£).u, so that
X" 'ab ab T

a, . b a b _ a b
nab(LXB (£)) 8 67°(f) + Nap° (£) ® (LXG (£)) Ny, (D8 (£).u) 8 87 ()
+ nabea(f) & (D6°(£).1). Now define q2 = LXea(f) - pe%(f).u, and
then the invariance equation implies that:

Pee® + 1 o826 = o 4418,

nab ab

where we have suppressed the f-dependence. If we now define

Q? = <«%,e

b >, equation 4.4.18 becomes

b

n o + % n = 0 4.4.19,

so that (Qa ) takes its values in LO(p,q).

b
Conversely, if, for all £ € F, there exists 1 € TfF and

X € Vect(M), such that Qab = <Lxea(f) - Dea(f).u, eb> satisfies

equation 4.4.19, then X satisfies the invariance equation for vy

and therefore is an element of L(U).

We refer to equation 4.4.19 as the frame equation for vy (and

W E M), and this equation is equivalent to the invariance equation
for y. Note that the frame equation is satisfied if Lxea(f)

= Dea(f).p for some uy € T.F, f € F.

f
Having considered various aspects of the invariance equation in

this section, we now use this equation to derive the isometries of a

family of solutions of the Einstein equations.
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4.5 The Invariance Equation and Isometries

In this section, we consider a specific example of a para-
meterized family of metrics arising in general relativity, namely
the pp-wave solutions of Einstein's equations. After a brief dis-
cussion of this family, we utilize the invariance equation of
section 4.4 to derive its symmetries. The calculation we perform
is a good illustration of how the invariance equation provides a
simple method of finding the Killing vector fields of a family of
metrics, and also of how such vector fields may be exponentiated
to give isometries.

The class of metrics that we wish to investigate is the

plane-fronted gravitational waves with parallel rays, or pp-waves

for short. The example has been chosen both for its important
physical significance and for its geometrical simplicity. The class
also fits into a more general framework of pure radiation fields

in general relativity. For more details concerning the relationships
between pp-waves and other exact solutions, and for generalizations
(for example the charged case and the Siklos~Lobachevsky plane
waves), see Ehlers and Kundt [EY# ] and Kramer et al. [K13 ].

Definition (4.5)1: A pp-wave is a vacuum solution of the Einstein

equations admitting a covariantly constant null vector field. i.e.

0 and there

I

A pp-wave is a spacetime (M,g) such that Ric(g)

exists k €6 Vect(M) such that llkﬂé = 0 and ng 0.

The null congruence generated by the vector field k is normal,
non-shearing and non-expanding; the reason for the term plane-
fronted. Furthermore, this congruence is also rotation free (since

V k = 0) and this is the reason for the term parallel rays. We

refer to Ehlers and Kundt [Ef# ] for several other characterizations
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of pp-waves.

We remark that the work of Brinkman [B23 ] on conformal trans-

formations of Einstein spaces also leads to a characterization of
pp-waves. This may be stated as follows: Suppose (M,g), (M,fg)
(f € C+(M)) are nonflat, vacuum spacetimes. Then, either f € E%
< C+(M), or g, fg are both pp-waves. In other words, nonflat,
non-homothetically related vacuum spacetimes in the same conformal
class are necessarily each pp-waves. A similar result is given by
Eardley et al. [E 21. A generalization of the Brinkman theorem
to the non-vacuum case is given by Hall and Rendall [H7? ].

It can be shown (see Ehlers and Kundt [E 7% ]) that any pp-

wave metric must be (locally) of the form
g = 2(dzd§ - dudv - Hdu?) 4.5.1,

where H 1is a v-independent function such that, for each u,
H(z,u) 1s the real part of an arbitrary holomorphic function of z.
Let F denote the manifold of such functions H, and define
v: F —> Met(M) such that the image of H wunder vy is the metric
4.5.1. Let U = y(F) denote the space of pp-wave solutions -
U 1is a space harameterized by the arbitrary functions H.

We now solve the invariance equation for vy (see equation
4.4.11). An equivalent approach would be to solve the corresponding

frame equation (4.4.19) wusing the frame map H F+‘;kH)

] ] 3 ] ) ]
—, =, = _C 2 = —), h hall
3z 32, 3 v’ 3 ) (note that k 5 ) but here we sha

= (

utilize the '"coordinate" wversion.
Suppose X € L(U), so that for all H € ¥, there exists
u € THF such that LX(y(H)) = Dy(H).u. We label the coordinates

(x1,x2,x3,x") = (%x,y,u,v), where z = (x+iy), so that

1
/2
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2 2
v = (dx)T + (@x?)° - 2dx3dx* - 2H(dx3)®. Recall that, for all

C

- C c
g € Met(M), X € Vect(M), (LXg)ab = X gab,c + e X s T 80 X’b ,

where comma denotes partial coordinate derivative. Letting L = LXg,

we obtain:

Ly = 2x1,l = 0 4.5.2,
Ly, = X2’1 + xl,2 = 0 4.5.3,
Ly = —2HX3,l - X“,l + x1,3 = 0 4.5.4,
Ly, = —x3,l+x1,4 = 0 4.5.5,
Ly, = 2X2,2 = 0 4.5.6,
Lyy —2HX3,2 - X“,Z + X2,3 = 0 4.5.7,
Ly, = - x3,2 + X2,4 = 0 4.5.8,
Lyg = = 2XH - 4HX3,3 - 2X”,3 = -2y 4.5.9,
Ly, = - x3,3 - 2Hx3,4 - x“,4 = 0 4.5.10,
L, = - 2X3,4 = 0 4.5.11.

We require that 4.5.2 - 4.5.11 hold for all H € F, so in

order to solve these equations, we use the decoupling method;

AH + B =0, for all H € F, dimplies A = B = 0. Now, letting
X = (x5,x%,%3,%%) = (a,8,v,8), we find:
4.5.2 implies o = o(y,u,v); 4.5.6 implies B = B(x,u,v);

4.5.11 implies vy = y(x,y,w); 4.5.4 implies vy = y(y,u) and

38 _ 2 . _ 28 _38 s
Bx a 4.5.7 implies vy = y(u) and 3y " Bu S 4.5.10 implies
%g‘ +-§£ = 0; 4.5.5 implies o = a(y,u); 4.5.8 implies B = B(x,u);
Ciie. 38 _ _ 30
and 4.5.3 implies . 3y
The above may be summarized as follows: a = a(y,u), B = B(x,u),

38 _ da 38 _ 3B

6(X9Y:usV) Satisfy E{" = —a—l—l— 5}7 = " s

i

y Z y(u) and ¢

38, dy _ o 8 _ _ - -
pwn + a 0, Py 3y These equations lead directly to the
solutions a(y,u) = - by + c(u), B(x,u) = bx + d(u), &(x,y,u,v)

= - y'(u)v + c'"(u)x + d'(u)y + a(u), where b6 R and a,c,d
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are R-valued. The function vy is, as yet, undetermined.
We now transform back to (z,zgu,v)—coordinates and define
e(u) = 1 (c(u) + id(u)), so e 1is GC-valued. The equation

2
4.5.9 for u becomes u = XH + 2y'(WH + e (w)z + e"(u)z

- y"(u)v + a'(u), and noting that %% = 0, and so %% = 0, we
have vy(u) = cu +d for some c¢,d € R.

The solution of the invariance equation is then:

X = (ibz + e(u))é%~ + (-ibz + e(u))ié
9z
I o = ¢
+ (cu + d)au + (e'(u)z + e'(u)z - cv + a(u))gg- 4.5.12,
and
XH + 2cH + e (wWz + e"(u)z + a'(u) 4.5.13.

=
I

We now exponentiate the vector field X given by equation 4.5.12.
Fix x_ € M with local coordinates (z ,z ,u ,v ), and let
0 0“0’ 0’ o
t ¢t(xo) be the integral curve of X with ¢O(xo) = X_- We
d _ . B
need to solve It ¢t(xo) = X(¢t(xo)) with ¢O(xo) = x . Let
x(t) = ¢t(xo) with local coordinates (z(t), z(t), u(t), v(t)), and

then we have:

z = ibz + e(u) 4.5.14,
7 = —ibz + e(u) 4.5.15,
U = cu+d 4.5.16,
v = -cvHelu) z+e()z +a) 4.5.17,

where z(0) = zs 42(0) =z , u(0) = u and v{(0) = v .

o o o
, . . d, ct d .
Equation 4.5.16 implies wu(t) = (uo +-E)e - < SO that, using
d , -ibt_, _ _-ibt dy ct d
4.5.14, we have dt(e z) = e e((uO + C)e c), and so
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t
e g
2(t) = e " (2, + J e e((u, +He®® - Das).  Equation 4.5.17

0

. d t
now gives HE-(eC v) = eCt(e'((uO +-£Ci—)eCt —-%)z(t) + e’ ((ug +'%)ECt

- 2 + alluy + DHet - D), and so

t
v(e) = e v+ j e (e (tuy + DeT - D) + e ((u, + e
0

—-%)z(r) + a((u +-§)ecr —-%))dr).

Let us now make a change of notation; let a = e ;

t .
_d,.. -cty, _ -ibs d, es _d . _ .
w = C(l e ) h(uo) = J e e((uo + C)e C)ds, o = bt; and

o)
£ T
_ (e+ib)r , d, cr d -ibs dy cs d
g(uo) = J (e e ((UO + C)e - C) e e((uO + C)e ~»C)ds
0 )
(c-ib)r _, d, er d (r ibs d. cs _d
+ e e ((uO + C)e - C) ) e e((uO + C)e - C)ds
)
+ et a((uO + %)eCr —-%))dr. Note that we have suppressed the
t-dependence of a,w,h,a and g. We now obtain:
_ io
z = e (zO + h(uo)) 4.5.18,
— - ...iu — JE——
z e (zo -+ h(uo)) 4.5.19,
-1
u = a (uo + w) 4.5.20,
- ' = T
v a(vO + h (uo)zO + h (uo)zO + g(uo)) 4.5.21.

Allowing the point X, = (zo, Eg, us vo) € M to vary, equations
4.5.18 - 4.5.21 give the diffeomorphism ¢§ generated by the vector

field X € L(U), i.e., for x = (z, z, u, v) € M, we have

0¥ = (M athw), @R @), a l(uhw), a(vih' Wz + B (W2

+ g(u)).

Let us now calculate the change in the metric <vy(H') (some
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H' € F) under the action of the diffeomorphism ¢f (fixed t)
generated by X € L(U). The easiest way to do this is to re-
interpret 4.5.18 - 4.5.21 as giving a passive coordinate trans-

formation (z, z, u, v) > (z', z', u', v') (where we have written

z for =z and z' for =z, etc.). We have dz' = elu(dz + h'(u)du),

o
dz' = e “%(dz + h'(u) du), du' = a-ldu, and

dv' a(dv + h"(u)zdu + h'(u)dz + h'"(u) zdu + h'(u)dz + g' (u)du).

2dz'dz' = 2du'dv' - 2H'(du')? = 2dzdz - 2dudv

Hence, vy(H'")
- 2(—fh'(u)|2 + h”(uf; + h'"(u)z + g'(u) + a_ZH')duz, since the
terms involving dzdu and dzdu cancel. We now re—adopt an active

viewpoint, and we see that (¢§)ﬁy(H') = y(H), where
H' = a2(H - h"(uwz - h"(Wz + [h'" (W2 - g'(w) 4.5.22,

To summarize the above; Any vector field X € L(U) (i.e. any
vector field X satisfying the invariance equation for
y: F — {pp-waves}) generates a l-parameter group of diffeomorphisms
{¢§} given by equations 4.5.18 - 4.5.21. Moreover, each ¢§ is
actually a symmetry of the space of pp-waves, 1.e. an element of
st(U), mapping v(H) to y(B'), where H' € F is given by equation
4.5.22. 1In other words, we have shown that L(U) E.K(U), and, since
by proposition (4.4)2, K(U) C L(U), we have proved the following:

Proposition (4.5)1: Let U denote the space of pp-waves (since we

are essentially working locally, the underlying manifold may be

taken to be an open submanifold of RY). Then K(U) = L(U), i.e.

a vector field X generates a local l-parameter group of local diffeo-
morphisms mapping any pp-wave to another pp-wave if and only if X
satisfies the invariance equation for y: F = {H} — U.

We now make several remarks concerning the above result:
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(i) In solving the invariance equation for X € L(U), we have made
essential use of the decoupling method. This method works only be-
cause we are considering an entire parameterized family of metrics.
Solving the Killing equation for a given particular pp-wave is much
more difficult than solving the invariance equation for the entire
space of pp-waves; (ii) The symmetries 4.5.18 - 4.5.22 have been
derived by alternative methods elsewhere in the literature. For
example, see Ehlers and Kundt [E 44 ] and Kramer et al. [K4% ]
(our notation is essentially that of Kramer et al.); (iii) For
given H % 0, the equation H' = H may be solved to give the iso-
metry group of y(M). This group always contains the diffeomor-
phisms with a =1, w=o0o =h =0 and g = constant. Thus, the
generic pp-wave admits a one dimensional isometry group (generated
by k = é% ); (iv) In order to investigate the symmetries of the
pp-wave solutions in more detail, it is useful to restrict vy to
various subspaces of F by considering functions H of a par-
ticular form. These various specializations are listed in table
21.1 on p. 235 of Kramer et al. [K493 ], and show that for H + 0,
all isometries of +vy(H) are contained in the semigroup of sym-
metries given by 4.5.18 - 4.5.21, i.e. the space of nonflat pp-
waves is EI. The maximal dimension of isometry group for vy(M)
(H + 0) is six, and there exists a three parameter family of pp-waves,
each of whose elements admits a six dimensional isometry group. Of
course, the isometry group of +v(0) has dimension ten.

The main point of this section is to demonstrate the usefulness
of considering a space of metrics, rather than just a particular
metric, when finding isometry groups. The advantage of this approach

is reflected in the fact that the corresponding invariance equation
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may be decoupled and therefore may be solved more easily. We also
obtain the semigroup of diffeomorphisms leaving an entire family of
metriecs invariant. We have solved this problem for pp-waves, but
obviously any other parameterized space of solutions of the Einstein
equations may be treated in the same manner. This technique of
using the invariance equation for finding isometries should there-
fore be a tool in the classification programme; if we ensure that
the space of metrics U into which we embed the particular metric
(or family of metrics) under consideration is EI, then proposition
(4.4)5 implies that the space of solutions L(U) of the invariance
equation contains all Killing vector fields of all metrics in U.
In particular, by exponentiating L(U), we obtain the (identity
component of) the isometry group of our original metric (or of the
elements in a family of metrics).

Having given a practical application of the invariance equation
and of EI, we end this chapter with some suggestions for further
investigations into these topics, and more generally into other

natural aspects of the space of metrics on a manifold M.

4.6 Further Investigations and Conclusions

In this chapter, we have made various remarks concerning the
structure of the space of metrics on a manifold M. Our under-
lying theme has been the idea of everywhere invariance, both in
the sense of natural group actions leaving certain canonical struc-
tures invariant, and also in the sense of the specific concept

introduced in section 4.2. We have given examples of how everywhere
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invariance arises, and also how it may be applied to find the sym-
metries of a given family of metrics in general relativity. The
topics discussed are therefore of interest not only from an abstract
viewpoint, but also from a computational one.

In this final section, we introduce several more ideas re-
lating to natural aspects of the structure of Met(M) and to
everywhere invariance. These ideas are not yet fully developed,
and they provide avenues for further investigation:

4.6.1: In this chapter, when applying the ideas of EI and II

(definition (4.2)1) to Met(M), we refer always to the action of
Diff(M) on Met(M), 1i.e. to everywhere (lower star)-invariance.
This is because we are particularly interested in StDiff(M)(g)

z Isom(M,g), g € Met(M), and also in the manner in which the
action of Diff(M) Interacts with that of other groups acting
on Met(M). Another possibility would be to consider every-
where A~invariance, etc., where A 1is another action on Met(M).
For example, we have the natural action of Aut(M) (4.1.15) on
Met(M), and also the restriction of this tc subgroups of Aut(M)
(one of which is, of course, (lower star)). Given A, we could
ask whether or not parameterized families of metrics arising in
geometry and general relativity are EI. Using an equation
analogous to the invariance equation (4.4.11), we could then find
stabilizers under the A-action as we did for the (lower star)-
action in section 4.5.

4.6.2: Rather than considering a group other than Diff(M), as in

4.6.1, we could consider an alternative Diff(M)-space. For
example, we could consider the everywhere A-invariance, etc., of

(parameterized) submanifolds of T(B), where B is a bundle over
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M on which Diff(M) acts naturally, e.g. a tensor bundle. An
embedding y: F < TI'(B) gives us a parameterized space of sections
cof B and a corresponding invariance equation. Particular cases

to consider would be families of maps from M dinto some other mani-
fold, families of vector fields and families of k-forms; in par-
ticular families of non-degenerate closed 2-forms in relation to
symplectic geometry, and hence families of Hamiltonian systems.
4.6.3: Returning now to the case studied in this chapter, namely
the (lower star)-—action of Diff(M) on Met(M), a complete
characterization of EI and II submanifolds of Met(M) would be
useful for practical calculations such as that given in section 4.5.
Such a characterization might involve a detailed study of how EI
and II interact with the structure of Geom(M) (or one of its
resolutions).

Further examples of invariant submanifolds may be found by
considering interesting differential geometric ideas such as G-
structures. A Riemannian structure and a conformal structure are
both EI, and these are both examples of G-structures. Do there
exist other EI spaces of metrics arising from G-structures?

4L.6.4: Parameterized families of metrics arise in areas of

physics other than classical general relativity theory, and the
ideas of EI may also be applied here. For example, such spaces
of metrics arise naturally in the Kaluza-Klein models: Let

m: P — M be a principal G-bundle, and fix an Ad~invariant inner

product k on LG. We then have the Kaluza-Klein map,

KK: Met(M) x Conn(P) — Met(P); (g,w) P»—ﬁ&g & wk (of course,
we could also allow k to vary). We may regard the image of KK

as a parameterized family of metrics on P.
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For fixed (g,w) € Met(M) x Comn(P), the geometrical properties
of the Riemannian submersion m: (P,KK(g,w)) — (M,g) have been
given by Wood [W1 ]. From a physical viewpoint, the Euler-Lagrange
equation for the functional EHoKK (EH = Einstein-Hilbert; see
1.6.19) constitutes the Einstein-Yang-Mills system on M, and the
geodesics of (P,KK(g,w)) project down to paths of (Yang-Mills)
charged particles on M,

4.6.5: Given y: F <> Met(M), the invariance equation 4.4.11

may be regarded as a generalized Killing equation. It would be

useful to be able to write this equation as the Killing equation
for some Riemannian manifold (E,G) related in some natural way
to (M,F,y). One procedure is to take E to be the total space
of a bundle over M with typical fibre F, and G a metric on
E related to vy. The simplest case is to take E = M X F with

G € Met(E) defined by:
G(x,f) = (wl‘(v(f)> o nzﬁk)(x,f) 4.6.1,

for all (x,f) € E. Here, k € Met(F) 1is to be specified subject

to the requirement that Y¢*k = k (y¢ = yclo¢*oy) for all
¢ € st(U) (U = v(F)).

For ¢ €6 st(U), let us define 5-6 Diff(E) by ¢ = (@,y¢).
Then it is easily seen that ¢ € Isom(E,G). The infinitesimal

version of this is as follows: Let X € K(U) generate

€ Vect(F) by Yy = 4 and

{¢t} C st(U), and define g Y¢t o

x

X € Vect(E) by X(x,f)(h) >«mamuﬂ)+yxuuh@¢)%
for all h € C(E), (x,f) € E. Then LXG = 0. In particular, if

L(U) = K(U), then every solution X of the invariance equation

for vy induces a Killing vector field of (E,G).
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To illustrate this idea, let us consider the conformal case:
Fix g € Met(M), and define v: C+(M) — U = Cg EVMEt(M) by
. . -1, + , . -1, .,
vy(f) = £fg. Note that vy ~:+ U— C (M) is given by v ~(g")

=-% tracegg', for all g' € U, so that:
(£) = L trace (¢.8)0.f 4.6.2
Y¢ n g *g % . . 3

for all f € C+(M), ¢ € st(U) = Conf(M,g). Let us write t(¢)
=-% traceg(¢*g), and note that ¢_1*g = ¢_l*(t(¢)_l)g
Let us define k € Met(C'(M)) by:

n-4

K(E) (hy,hy) = J £ 2 hyh, vol(g) 4.6.3,
M

for all h ,h, € ch+(M) o, f£ecton.

Lemma (4.6)1: 4] Isom(C+(M),k), for all ¢ € Conf(M,g).

o
Proof: Let ¢ € Conf(M,g); f € C+(M); hl,h2 € TfC+(M). Then,

(ry R (E) (hy,hy) = K(E()0,6) (£(§)o,hy, £(9)o,h,)  (since

n-4

J ((8)6,6) ° <c<¢>¢*hl><t<¢>¢*h2>vo1<g>

M
n n-4 —4

- J ()7 6,(5 2 hyhyvol(e) = J MCOBE: E hyhy vol(s T, (£(p)
M M

Dy, () = £(8)6,)

~ H

n n-4 n-
= J ¢_l*(t(¢)2)f 2 h,h, o (t(¢> )VOl(g) = J £ h h, vol(g)
M M

.

ate

= k(f)(hl,hz). Hence, k= k, for all ¢ € Conf(M,g) O

"o
The above remarks now lead us to consider the Riemannian
manifold (M x C'(M),G), with G defined by 4.6.1 and k given
by 4.6.3. Since L(U) = K(U) (the conformal Killing equation can

be integrated - see proposition (4.4)4) we deduce that every con-

formal Killing vector field of (M,g) dinduces a Killing vector

...1)

g)
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field of (M x C (M),G).

More generally, suppose F 1is a Lie group and we have the
following data:- (i) 6 & Hom(Diff(M), Aut(F)); (ii) For each
g € Met(M), an inmer product Kg on LF such that D6¢(l)*K

g

= K, oo forall ¢ € DIff(), and (iii) v € Emb(F,Met()),

such that LY¢(f)_l‘3Y¢ = Le¢(f)_1(>6¢, for all £ € F and

¢ € st(y(F)). We then define k & Met(F) by:

K(E) (hpohy) = Ky (DL ()b, DL (b)) 4.6.4,
for all hy,h, € T.F, £ & F. Then y¢*k =k, for all ¢ € st(U)
(U = v(F)):~ We have (Y(i)“k) (£) (hl,hz) = k(Yq)(f))(DY¢)(f)-hl’DY¢(f)'h2)

T Koo Py (59717 1) (b DUy (gy-1 2 7g) (D)1

= Ky(f)(DZ~l(l)'D(Le¢(f)-l° 8,) (£).hy, DB
) Kv(f)(D(e¢—1 "o, ()7L 890 (£)-hy, D8

1Dy (gyo1 08, (E).hy)
¢ ¢

_OL _loe)(f)'h)'

¢ 1 6¢(f) oy 2

Note that L6¢(f)‘l °6¢ = 6¢ o L _1> S° that (y¢ k)(f)(hl,hz)

£
= Ky(f)(DLf_l(f).hl, DLf_l(f).hz) = k(£) (h,,hy), for all
hy, h, € T.F, £ 6F. Hence ygk =k, for all ¢ € st(U).

Again, we conclude that if L(U) = K(U), then any vector field
satisfying the invariance equation for vy induces a Killing vector
field of (MxF, G) with G defined by 4.6.1 and k by 4.6.4.

We obtain the conformal case by setting F = C+(M), 8 = push forward,
Kg'(hl’hz) = [ hth vol(g'), for all hl,h2 € LF, g' € Met(M),
and v (f) = fgbifor all f € C+(M), and g some fixed element of

Met (M).

Given a Riemannian manifold (E,G) such that X € L(U) gives
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rise to a Killing vector field of (E,G), we may also ask the
converse question; do Killing vector fields of (E,G) project
to elements of L(U) (or even of K(U))?

More generally, we would like to relate the isometries of some
Riemannian manifold (E,G) (into which M 1is embedded) to the
diffeomorphisms preserving the parameterized family U = v(F). A
knowledge of the symmetries of (E,G) would enable us to investi-
gate st(U), and vice-versa.

4.6.6: We remark that there exist various natural maps relating

Met and Diff. We have already used some of these in this chapter
and others have been applied in various situations in the literature.
For convenience, we give a brief discussion of these maps here.

We have already utilized (lower star) € Hom(Diff(M),Diff (Met(M)))
and conj € Hom(Diff(M),Aut(Diff(M))). We also have the map

u: Met(M) — Met(Diff(M)) given by:

u(g)(¢)(Xl, X2) = [ (go ¢)(X1,X2) vol(g) 4.6.5,
M

for all X.,X, € T ,Diff(M) = Vect¢(M), ® € Diff(M) and g € Met(M),

1’72 )
and the map v: Met(M) — Met(Met(M)) given by:

_ 1( -1, -1 -1, -1
v(g)(k)(hl,hz) 2| trace(g "h; k "h, +k "h, g h,)vol(k)

M 4.6.6,

for all h € T, Met(M), k,g € Met(M). ©Note that v{(g)(g) = Go(g),

1By € Ty
for all g € Met(M) (see 4.1.2), so that the restriction of v to
the diagonal is the metric used by Ebin in the proof of the slice
theorem (see section 4.1).

For fixed g € Met(M), the metric u(g) on Diff(M) restricts

to the closed subgroup Diff (M), and the Riemannian manifold

vol(g)
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(Diff (M), u(g)) is the configuration space for the hydro-

vol(g)
dynamics of an incompressible fluid. The motion of a perfect in-
compressible fluid is a geodesic of u(g) (see Adamsetd [A 3 ]

and Ebin and Marsden [E 6 ].

The maps u,v are each equivariant with respect to the action

of the diffeomorphism group:

Proposition (4.6)2: (i) u o ¢, = (conj¢)*o u, and

(i1) ved, = (p,),°v, for all ¢ € Diff(M).

Proof: (i) Let ¢ € Diff(M), g € Met(M). Then

(uo ¢*)(g)(w)(X1,X2) = J((¢*g) o ¥) (Xy,X,)vol (¢, 8)
M
= f f vol(g), wheré f = (¢_l)*(((¢*g)o ¢)(X1,X2)). We have
M
f(x) = (¢*g)(w(¢(x)))(Xl(¢(X)),X2(¢(X)))

= 2067 oyo8) () (g W (()) X (86, D6 (B(6 (). Ky ().

Now note that (D conj _l(W).X)(x) = (D(L _l<>R¢)(w).X)(X)
¢ ¢

d)(ll))-X)(X) = (DL _; (¥o9). (Xe$)) (x) (using 4.4.5)
¢

(DL _; (¥°¢).DR
9

D¢_l(¢(¢(x)))-x(¢(x)) (using 4.4.4). Hence,

£(x) = g(conj _; (¥) GN((Deoni _j (¥).X,) (x), Deond _, (1).Xy) (x)),
: : ¢

for all x € M. Therefore, (ue¢,)(g)(¥)(X,X,)

J (goconj _l(w))(Dconj _l(w).Xl, Dconj _l(w).XZ) vol(g)
M ¢ o) o)

u(g)(conj;l(W))(Dconj;l(w)-Xl, Dconj;l(¢)-X2)vol(g)

]

((conj¢)*° W (8) (¥) (X,X,), for all X|,X, € TwDiff(M)

and ¥ € Diff(M). Hence, wuc9, = (conj¢)*o u, for all ¢ € Diff(M).

(ii) Let ¢ € Diff(M), g € Met(M). Then



-359-

(vog0) () (1) (hy,hy) = %J trace ((9,8) 'k Thy + K Th (6,8) hy)vol(k)

M

-1 - S -
=%[ b, trace(s 67 X8 0 T (67 b))

" 1,,-1, -1

+ @ e e T 0T ) vel (i)

=%j trace(g—l(¢_l*h1)(¢—lfck)‘l(‘b—lf:hz)

M
+ 6T e e e ) ve1 (6T k)

~1

v(g) (0 T (067h (1) by, DTN, (0 .hy)  (since DoTN, () = 071,

i

((¢*)*ov)(g)(k)(hl,h2), for all hl’hZ 6 TkMet(M) and k € Met(M).

Hence, vo¢, = (¢*)* oV, for all ¢ € Diff(M) [T

The following result is important in the application of u
to the study of the motion of incompressible fluids:

Proposition (4.6)3: Let g € Met(M) and let the restriction of u(g)

to lefvol(g)(M) also be denoted by u(g). Then u(g) is a right

invariant metric on lefvol(g)(M)'

Proof: Let ¢ € Diff(M). Then R;‘(u(gmw)(xl,xZ)
= 1(8) (bo¢) (DR, (4) . X1 ,DR, (1) .X) = u(g) (o4) (X109, X,°9)

(using 4.4.5) = J (gow°¢)(X1°¢, X2°¢)vol(g)
M

- ¢ ((gow) (X{,X,))vol(g) = ( (g0¥) (X[ ,X,)vol(g)

J J

M M
(since ¢ vol(g) = vol(g)) = u(g) (W (X,X,), for all
Xl’X2 6 Tleffvol(g)(M)’ Y € lefvol(g)(M>' Hence, R¢(u(g)) = u(g),
so u(g) is right invariant O

Note that the maps u,v have only found applications under the

restrictions referred to above. It would be interesting to consider

further uses for the full maps, especially since u,v, together with

conj and (lower star), essentially exhaust the possibilities for
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canonical maps : Met — MetoDiff, MetoMet and Diff - DiffeoDiff,
DiffoMet.

4.6.7: Our final remark concerns the interaction between Chapters
Four and One. We have already discussed certain aspects of how
conformal structures and spinors come together in section 1.5, and
similarly for diffeomorphisms and spinors in section 1.6. 1In other
words, we have considered the interaction of spinors and the con-
formorphism group, Conf(M) = Diff(M) K C+(M). To include the
effect of generalized conformal transformations on spin structure,
we should consider the entire group Aut(M) =

Diff (M) x (C+(M)><0Aut(TM)). In section 4.1, we discussed how
Aut(M) acts on the base space Met(M) of the metric-spinor

field configuration bundle (see 1.4.4); the next step is to 1lift
this action to the total space, thereby introducing a notion of

generalized conformal spin structure.
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CHAPTER 5 CONCLUSIONS AND FUTURE DIRECTIONS

The main purpose of this chapter is to present general con-
clusions and possibilities for future avenues of research. More
specific conclusions and suggestions for further work may be found
in particular chapters.

Our main conclusion is that a geometric approach to problems in
the theory of general relativity is very useful for clarifying the
situation and for indicating possibilities for new investigations.
Especially useful is the study of naturally arising group actions
and infinite dimensional manifolds - a study of the symmetries of
the space of all geometric objects of a particular type often sheds
light on problems involving a single geometric object. We have
applied this "everywhere invariance' approach to all the main themes
of the thesis; to spinors in sections 1.4 and 1.6, to embeddings in
section 2.2, and to metrics in Chapter Four. Further examples may
be found in sections 6.1 and 6.2. The infinite-dimensional approach
also leads to very useful applications in physics and we have in-
dicated examples of such applications to general relativity theory
in the sections mentioned above. A particularly interesting applica-
tion is to the study of the space of metrics on a given manifold -
this has an impact on both classical and quantum gravity theory,
as we indicated in section 4.1.

We hope that this thesis has also demonstrated how the basic
geometric notions of spin structures and embeddings play an important,
if not essential, rdle in the theory of general relativity. The

important uses for spinors were outlined in sections 1.0, 1.5, 1.7,
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1.8, 1.9, 2.3, 3.3 and 3.4 whilst applications of the theory of
embeddings was given in each of the sections of Chapter Two and in
sections 3.1 and 3.4. The seemingly fundamental nature of thsse
ideas is manifested in their essential appearance in the formula-
tion of a notion of general relativistic moment - a basic
ingredient in any physical theory.

Two new practical techniques which we have discussed are the
null limit approach to obtaining useful null equations (see sections
3.2, 3.4) and also the method of finding isometries of a metric
using the invariance equation (see sections 4.4, 4.5). We anticipate
that these techniques will prove useful in future investigations in
general relativity theory and in other areas of geometry and physics.

The geometrization of certain earlier ideas concerning the
interaction between the Lorentz group and the 2-sphere has resulted
in the projective null bundle framework of section 1.9. This frame-
work ties together spinor, conformal and null ideas in a four-
dimensional Lorentzian context and should prove to be a useful tool
in the study of the structure of field theories on spacetime.
Another application would be to the spinor null propagation used
in investigations of gravitational momentum.

Let us now give a few possibilities for further work based on
the ideas discussed in this thesis:-

There is obviously more scope for further study and applications
of the manifold of embeddings described in section 2.2. 1In par-
ticular, after bringing in the spinorial ideas of section 2.3, it
should be possible to construct a spinor-metric—embedding configura-
tion space for application in, for example, the study of quasi-local

momentum. In this context, it is worth mentioning a remark of
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Richard Newman [N 5 ], namely that the Einstein temnsor field,
fundamental to the theory of general relativity, does not arise
naturally from many purely geometric considerations:- One case
is the natural appearance of the Einstein tensor field in the
proofs of the positivity of mass conjectures (both null and
spatial) using spinor techniques (see section 3.3), and a second
case is provided by the study of variations of codimension two
spacelike embeddings in a spacetime (see [N&' ]1). Thus, the
Einstein tensor field provides a link between spinors/gravitational
energy and embedded 2-surfaces. Perhaps a more direct link would
shed light on the fundamental importance of spinors in the
definition of quasi-local gravitational energy.

There is certainly much work to be done in the area of quasi-
local momentum, as we indicated in section 3.4. A better defini-
tion would be a good start, and then it will be necessary to apply
this definition; to physically interesting spacetimes, to the
proof of isoperimetric inequalities, to the cosmic censorship
conjecture and, most importantly (for physics), to obtain a better
understanding of the relationship between the motion of the sources
of the gravitational field on the one hand and the asymptotic
structure of spacetime on the other. Only when this latter problem
has been resolved, will it be possible to consider equations of
motion in general relativity theory and to relate observational
data to the structure of the spacetime fields.

Hopefully, the null techniques introduced in Chapter Three,
based as they are on natural structures arising in four-dimensional
Lorentzian geometry, will be useful in any future work on gravitational

momentum.
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The work of Chapter Four is also open ended. The theory of
everywhere invariance is certainly useful, and a further develop-
ment of the ideas is desirable. In particular, we should search
for a more complete characterization of everywhere invariant spaces
of metrics and for alternative applications to geometry and physics.
Rigorous proofs of our statements involving the space of metrics
also need to be given; in particular, the use of the canonical
0(n)~bundle in resolving thé singularities of superspace. We
anticipate that these proofs will follow from the global analytical
techniques developed in the papers cited in section 4.1. We refer

the reader to section 4.6 for further suggestions for future research.
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6.1 Bundles

Many of the ideas within the main body of this thesis are ex-
pressed within the framework of fibre bundles. For completeness,
therefore, this section gives a brief exposition of the main
definitions and results concerning bundles, connections in bundles
and infinite dimensional groups associated with bundles. As well
as establishing our notation, this section also serves to present
the main properties of the frame bundle of a manifold, the frame
bundle being used extensively in Chapters One and Four. For more
details we refer the reader to Kobayashi and Nomizu [K%¥ ] and
Poor [P7§], and for information concerning analysis on infinite
dimensional manifolds, to the references cited in sections 4.0,
4.1. As usual, all manifolds and maps are smooth (in the appro-
priate category).

The central idea is that of a principal fibre bundle:

Definition (6.1)1: Let M be a manifold and G a Lie group. A

principal fibre bundle over M with group G <consists of a mani-

fold P together with a free right action of G on P such that
M= P/G and P is locally trivial, i.e. ¥x €M, a neighbour-
hood U of =x and ¥: ﬂ_l(U) > UxG such that v = (r(u), ¢())

¢(uw)a, Wu € W-l(U), a €G. (Here we denote by

where ¢ (ua)
the orbit map, =: P > M, and by (u,a) t— Ra(u) Z ua, the right
action of G on P).

We call P the total space, M the base space, m the projec-

tion and G the structure group of the principal bundle

GC—->PJ'+ M.
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For each x € M, l(x) is a closed submanifold of P, called

the fibre over x. If u € P, then w~l(x) = {ua: a € G} is called

the fibre through u. Every fibre is diffeomorphic (though not

canonically) to G. Local triviality of P implies that w_l(w)

is also a principal bundle over M for any submanifold W of M.

We call ﬂ_l(W) the restriction of P to W and denote it P{W

The action of G on P induces a Lie algebra homomorphism:
LG = Vect(P); £ bﬂ'gP, where EP(u) = DRu(l).E, for all u € P,
£ € LG. Here Ru: G— P; at~ Ra(u) = ua. EP is called
the fundamental vector field corresponding to & € LG. Since G
maps each fibre of P onto itself, gP(u) is tangent to the fibre
through u € P. Also, G acts freely, so, for & # 0, EP never
vanishes on P. We have dim(vwl(x)) = dim LG, ¥x € M, so
£ Fé-gP(u) is a linear isomorphism of LG onto the tangent space
at u of the fibre w_l(w(u)) through u. It is easily shown
that (Ra)*E;P = (Ad(a'l).g)P, V¢ € LG, a € G, where
Ad € Hom(G, GL(LG)) 1is the adjoint representation of G on LG.
Given a principal G-bundle w: P — M, we may construct
associated bundles over M. These arise from actions of G on

other manifolds. Note that all actions (apart from the right

actions defining principal bundles) are left actions:

Definition (6.1)2: Let F be a manifold and p € Hom(G,Diff(F))

a left action of G on F. We define a right action on PXF by
((u,£),a) — (ua, p(a—l).f), ¥(u,f) € PxF, a € G. Let us denote
the quotient space by E = P XQF (or, sometimes by P XGF if the
particular action p 1is understood), and define e E — M;

[(u,£)] P w(u). Wdl(x) is called the fibre of E above x and E

E

is called the fibre bundle associated with P via the action p. F

is
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called the standard fibre of E. A differentiable structure may be

defined on E in a natural way so that e is smooth, E is local-

ly trivial and ﬂ%l(x) is diffeomorphic to F for each x € M. In

fact, for each u &€ P, we have the diffeomorphism

 : Fﬂﬂgl(n(u)); £ [(u,f)] 6.1.1,

which satisfies Kua = Ky © p(a), Yu € P, a & G. If the manifold
F carries a particular algebraic structure [e.g. F 1is a vector
space] and if p(G) 1is a group of automorphisms of this algebraic
structure, then 6.1.1 may be used to endow each fibre of E with a
similar structure by requiring that Ky be an isomorphism for each
u € P. In the case that F 1is a vector space and each K, is a
linear isomorphism of F onto ﬂ;l(ﬂ(u)), we say ﬂE: E>M is

a vector bundle over M,

Given any principal G-bundle P, there exist various natural
associated bundles:

Firstly, take F = G with G acting on itself by left trans-
lation, so that p(a)b = ab, ¥a, b & G. The resulting associated
bundle is bundle isomorphic (see below) to P itself.

Secondly, bake F =G and G acting on itself by conjugation
(inner automorphisms), so that p(a)b = aba—l, ¥a, b € G. The

associated bundle in this case is called the conjugation bundle,

denoted Conj(P).
Finally, take F = LG and p = Ad € Hom(G,GL(LG)) the adjoint
representation of G on its Lie algebra LG. The associated

bundle is called the Lie algebra bundle and denoted Ad(P).

Note that Conj(P) and Ad(P) have algebraic structure defined
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on their fibres: Conjugation is an automorphism of G and hence
Conj(P) 1is a bundle of groups, and, similarly, G acts by Lie
algebra automorphisms via Ad and so Ad(P) is a bundle of Lie
algebras.

Another useful example of associated bundle arises as follows:
Let H be a subgroup of G and G<» P oM a principal G-bundle.

G acts on G/H in a natural way, namely (a,bH) — abH,

Y¥a € G, bHE& G/H. Let PH denote the corresponding associated
bundle with standard fibre G/H. We also have the right action of
H on P arising because H < G. Let P/H be the quotient of P

by this H-action. Then PH may be identified with P/H in a

natural way.

We now consider maps between bundles. Let Ty Pi — Mi be

principal Gi—bundles (L = 1,2).

Definition (6.1)3: A homomorphism ¥ of Pl into P2 consists

of a pair (¥', ¥") where VY': Pl — PZ and V" € Hom(Gl,GZ) such
that ?'(ulal) = W'(ul)W"(al) Vul € Pl’ a; S Gl' We often denote
¥', ¥" by the same letter V.

Every homomorphism V¥ of Pl into P2 maps each fibre of Pl
into a fibre of P2 and hence induces a map of Ml into M2 which
we shall denote by V. The homomorphism V¥ of Pl into P2 is
called an embedding 1if V' € Emb(Pl,Pz) and if VYY" & Hom(Gl’G2>
is a monomorphism. Note that V¥' & Emb(Pl,Pz) implies
¥ e Emb(M;,M,), and by identifying P; with ¥'(P), G with
W”(Gl) and M, with @KMl), we say that Pl is a subbundle of PZ'

1

If, moreover, Ml = M2 and the induced map ¥ is the identity on M,

then the embedding V¥ is called a reduction of the structure group

G2 of P2 to Gl' The subbundle Pl is called a reduced bundle.
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Given H £ G, we say that the G-bundle P 1is reducible to H if

there exists such a reduced bundle with structure group H.

The homomorphism V¥ of Pl into P2 is said to be an
isomorphism if Y¥' is a diffeomorphism of Pl onto P, and ¥"
is an isomorphism of Gl onto G2. If such an isomorphism exists,
then we say the principal bundles Gl<—+ Pl — Ml’ G, Ce'Pz — M2
are bundle isomorphic.

An important case for us is that of bundle maps from a given

principal G-bundle P into itself:

Definition (6.1)4: Let m: P — M be a principal G-bundle. An

automorphism Y of P is an isomorphism of P onto itself (with

Y o= idG). Let Aut(P) denote the set of all automorphisms of P.
Hence Aut(P) = {¥ € Diff(P): V¥ ° R, = R, ° ¥, ¥ag G}l.

Aut(P) has the structure of an infinite dimensional Lie group, and

we have the projection b € Hom(Aut(P), Diff(M)); VY @; so that

@(x) = 7(¥(u)) for any u € ﬂ_l(x), and for all x 6 M. Let

Gau(P) = Ker b = {¥ € Aut(P): 7 o ¥ = 1} denote the normal subgroup

of Aut(P) consisting of all automorphisms of P which project to

the identity diffeomorphism of M. Aut (P) 1is called the

automorphism group of P and Gau(P) is called the gauge group of P

(sometimes the vertical automorphism group or the group of gauge

transformations).

We have the following exact sequence of groups:

b
1 —> Gau(P) —> Aut(P) — Diff (M) 6.1.2,
together with the corresponding sequence of Lie algebras. [As usual,

LDiff (M) dis just Vect(M), whilst LGau(P), LAut(P) are res-

pectively the spaces of vector fields on P generating local
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l-parameter groups of (local) diffeomorphisms in Gau(P), Aut(P).]
If we fix a connection (see below) in P, then vector fields

on M may be lifted to vector fields on P. Hence b(Aut(P))

;Diffo(M) (the identity component of Diff(M)), so we have the

exact sequence
1 — Gau(P) — Auto(P) — Diffo(M) — 1 6.1.3,

where Auto(P) = b_l(Diffo(M)). A natural question to ask is whether
or not the exact sequence 6.1.2 (or 6.1.3) splits, i.e. does there
exist £ € Hom(Diff(M), Aut(P)) such that b o ¢ = idM? If such
an £ exists we call & a lift of Diff(M) to Aut(P). An impor-

tant case for which a 1ift does exist is that of the frame bundle

of a manifold. This is discussed below and in section 4.1. Lifts
also exist for other canonical bundles and obviously for any
principal G-bundle P isomorphic to MxG (such a bundle is called

trivializable, and in this case the structure group G 1is reducible

to the trivial group 1). The existence of 1lifts for general non-
trivial principal bundles is not known, although a necessary condition
may be given (see Lecomte [L14']).

We now introduce the notion of section of a bundle and thence
to an alternative description of the gauge group of a principal

bundle:

Definition (6.1)5: Let “E: E— M be a bundle associated to the

principal G-bundle P. A section of E 1is amap s: M — E such

that M. ° S = idM. The space of sections of E is denoted T(E).

A useful result relating sections and reduction is the following:

The structure group G of the principal G-bundle P ,Kis reducible
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to a subgroup H 1f and only if the associated bundle PH admits

a section. In particular, for P itself, a section exists if and

only if P dis trivializable (i.e. P is isomorphic to MxG),

so that G 1is reducible to 1. 1In general, the correspondence be-
tween F(PH) and reductions of G to H 1is one-to-one.

Definition (6.1)6: Let p € Hom(G,Diff(F)) and let WEl E+M

be the bundle associated to the principal G-bundle P wvia the

action p. A map S: P—F 1is said to be equivariant if

S ° Ra=p(a"l)°s, Ya € G. Let Cp(P,F) (or C,(P,F) if p is

understood) denote the space of equivariant maps of P into F.
Note that there is a one-to—one correspondence between TI'(E)

and Cp(P,F); for s € T(E), define S € C(P,F) by

S(u) = K;l(s(ﬂ(u))), Yu € P. Then S(ua) = K;i(s(w(ua)))

= (p(a—l)°K;l)(S(ﬂ(u))) = p(a~l).S(u), so that S 1is indeed an

element of Cp(P,F). Conversely, given S &€ CD(P’F)’ define

s € C(MyE) by s((x) = Ku(S(u)) for any u € W—l(x). Note that

Kua(s(ua)) = (Kuo p(a))(p(a_l).s(u)), so that s is well defined.

Also (nEos)(x) = wE(Ku(S(u))) = 7(u) = x, so that s € I'(E). It

is easily seen that the two maps just defined are inverses, and

these provide the desired bijection between T (E) and Cp(P,F).

This bijection is, in fact, a diffeomorphism of smooth manifolds.
If E 1is a vector bundle over M, then T(E) has the struc-

ture of both a vector space over K and of a C(M,XK)-module

[Hexre, X = R, T for real, complex vector bundles respectively].

We may also consider maps of vector bundles:

Definition (6.1)7: Let m Ei — Mi (i = 1,2) be vector

bundles (over the same field). A map V: El - EZ is said to be

a vector bundle homomorphism of El into E2 if the restriction
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of Y to any fibre of El is a linear map into a fibre of E2.
Obviously a vector bundle homomorphism ¥ induces a map
Q'e C(Ml,MZ) such that W2°W = Qﬁwl, and we say that the

homomorphism Y dis along the map v, If Ml = M2 = M and the

projected map v = idm, we say that V¥ 1is a strong bundle homo-

morphism of El into EZ‘ When dealing with a pair of vector
bundles El’EZ over the same base manifold M we will consider
only strong bundle homomorphisms of El into E2 and usually
omit the word strong in this case. If V¥: El — E2 is a strong
bundle homomorphism such that the restriction of Y to any fibre
of El is a linear isomorphism onto the corresponding fibre of

EZ’ then VY 1is said to be a vector bundle isomorphism and we

say that El and E2 are isomorphic vector bundles. Note that

a strong vector bundle homomorphism from El to E2 is a vector
bundle isomorphism if and only if it is a diffeomorphism.

Similarly we have the idea of vector bundle isomorphism along the

map Y.

Let 7®: E — M be a vector bundle over M. An isomorphism
of E onto itself is called an automorphism of E. TLet Aut(E)
denote the group of all automorphisms of E, so that we have
Aut(E) = {¥ € Diff(E): me¥ = 7 and V¥|n T(x) € GL(1 1(x)),
¥x € M}.

Definition (6.1)7 refers to vector bundles but there is an
obvious analogue for bundles whose fibres are endowed with algebraic
structures other than that of a vector space - we just require
that homomorphisms, etc. preserve the algebraic structure fibrewise.

We now return to the natural groups associated with a given

principal G-~bundle w: P — M, in particular to the gauge group
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Gau(P) = {¥ € Diff(P): wo¥ = 7 and ‘{’oRa = RaOW, Ya € G} (see
definition (6.1)4). We now demonstrate that Gau(P) is isomorphic
to TI'(Conj(P)) (and hence to Cconj(P’G) by the remarks

following definition (6.1)6). TFor V¥ & Gau(P), define

s: M — Conj(P) by s((x) = Ku(au) for any u € w—l(x). Here a
is the unique element of G defined by uau = ¥Y(u), and

Kk : G — ﬁ_l ,(m(u)) 1is the isomorphism defined by 6.1.1. Note
u conj

that s 1s well defined since choosing ub & W~1(X) leads to

_ -1 _ _ _
) = Ku(bau b ™), but (ub)aub = ¥Y(ub) = ¥(u)b = uaub, so

<ub up b

-1
a. =b ab and hence « ,(a =k (a ). We have .(s(x))
u u"u conj

ub ub< ub)

= q{u) = x, so that s &€ I'(Conj(P)). Conversely, given

s € I'(Conj(P)), define ¥: P — P by V¥(u) =u K;l(s(ﬂ(u))),

Yu € P. Then w(¥(u))
-1
a

m(u) and Y(ua) = uaK;i(s(ﬂ(ua)))

- wa a T Ns(m(w))a = uc,(s(r(w))a = ¥(wa. Hence

¥ € Gau(P). The two maps just defined are obviously inverse to each
other and are both homomorphisms of groups (the group multiplication
in Gau(P) is composition of diffeomorphisms and in T{(Conj(P))

K3 . 3 . . - I\J 3
it is defined pointwise in the fibres). Hence Gau(P) = (Conj(P))

e

Cconj(P,G)). These isomorphisms are useful in our discussion of

(

the frame bundle and everywhere invariance in Chapter Four.
In section 1.1 use was made of principal bundle extensions and
prolongations. We now define these related concepts:

Definition (6.1)8: Let m: P — M be a principal G-bundle. Let

A € Hom(K,G) where K 1is a Lie group. A A-prolongation of P to

the group K dis a pair (%,n) where % is a principal K~bundle
over M and n: % —> P 1is a principal bundle homomorphism over
id, such that n(ik) = n(WAk), ¥i€ ¥, k€ K.

Two A-prolongations of P, (%l’“l) and (%Z,QZ), are said to
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be equivalent if there exists a principal K-bundle isomorphism
: B — B ( id, ) h =
R: 1 2 over 1 M such that nZoB = nl.
Now let p € Hom(G,K) so that we have a left action of G on
K given by (a,k) > u(a)k, ¥a € G, k € K. Let Pu = PXC?K
denote the associated bundle with standard fibre K. There is a
free right action of K on Pu given by ([(u, k)1,k")— [(u,kk")],
¥l (u,k)] € Pu, k' € K (this is obviously well defined), under
which KC—+Pu —>M 1is a principal K-bundle over M. PA is called
the u-extension of P.
Suppose F 1is a manifold and p € Hom(K,Diff(F)). Then
pol &€ Hom(G, Diff(F)) and we have an isomorphism of the corresponding

K G
[([@0],0] = [0, ¥ [((wK],DH]EP xg F. Tt is

associated bundles: Pu X F— P x_ F given by

straightforward to verify that this map is a well defined bundle iso-
morphism.

The relationship between extensions and reductions may be des-
cribed as follows. Suppose we are given a principal K-bundle P'
over M. Then u € Hom(G,K) defines a class of reductions of P'
to the group G; We define a u-reduction of P' to be a principal
G-bundle P over M together with an embedding ¥: P<» P' over
idM satisfying ¥(ua) = ¥(uwula), Yu &P, a € G. A py-reduction of
P' is certainly a reduction of the structure group K of P' to
the group G in the sense of definition (6.1)3, so long as u 1is
a monomorphism (otherwise we have a slightly more general concept).
Such a reduction induces an obvious isomorphism from the u-extension
of P onto P'. Conversely, if w: P — M is any principal G-
bundle with u-extension Pu, then the homomorphism Wu: P—P XG K;

u b [(u,1)] (1 is the unit of K) 4is a p-reduction of the structure

group
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of Pu from XK to G.

When considering embeddings we often need the idea of an in-
duced or pullback bundle. The general situation is as follows (Here
we use the word bundle to mean any locally trivial submersion and,
although it is not necessary, we may regard this as associated to
some principal G~-bundle).

Definition (6.1)9: ILet f € C(M,N) and w: E — N a bundle with

% -
standard fibre F. Define f E = (fxm) l(N x N)
= {(x,e) € MXE : f(x) = w(e)} and fhﬂ: fKE — M; (x,e) +— x.
% %
Then f7w: f E— M 1is a bundle over M with standard fibre F

called the pullback of E by the map f.

Given E and £, there is a natural bundle homomorphism,
ﬂ*f: f*E — E; (x,e) +> e, along £, i.e. w°(n*f) = f°(fkw).

Suppose E 1is a vector bundle over N. Then f*E is a vector
bundle over M which is isomorphic to E along the map £. Also,
f*E is unique up to isomorphism in the sense that a vector bundle
E' over M is isomorphic to f*E if and only if it is isomorphic
to E along f£.

Differential forms are, of course, extremely useful in geometry
and physics. The special structure of a principal G-bundle enables

certain spaces of differential forms to be specified:

Defipition (6.1)10: Let m: P—M be a principal G-bundle and

p € Hom(G,GL(V)) a representation of G on the vector space V.
Let Qk(P,V) denote the space of all V-valued k-forms on P (so
that Qk(P,V) = F(AkP 8 (PxV))). The form o € Qk(P,V) is said to

be p—equivariant if R;u = p(a_l)u, ¥Ya € G, and o is said to be

horizontal if a(u)(vl,..., Vk) = 0 if v, & Vu for some

Tuﬂ_l(ﬂ(u))

ie{l,..., k}, Wue€?P (Vu={v € T P: Dr(u).v = 0}

is the vertical subspace at u &€ P). If o € Qk(P,V) is both
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p—equivariant and horizontal, then « 1is said to be p-tensorial.
Let QS(P,V) denote the space of all p-tensorial k-forms on P.
Forms in Q?(P,V) project to forms on the base space M 1in
the following sense: there is a linear isomorphism between Q?(P,V)
k k kM
on the one hand and O (E) on the other. Here Q (E) =T(A M® E)
is the space of k-forms on M taking their values in the vector

bundle E = P Xp V. Define Tt QE(P,V) — Qk(E) by

T(a)(X)(Wl,..., wk) = Ku(a(u)(vl,..., Vk)) 6.1.4,
. s, Ww, €T M, XxEM, o & Qk(P,V). Here u & ﬁ_l(x) and
1 k X 0
A € TuP such that Dﬂ(u).vi =W ie{l,..., k}. The right-hand

side of 6.1.4 is independent of the choice of u & W—l(X) and

2 € TuP (projecting onto Wi) and so 1 1is well defined and does
indeed map Q?(P,V) linearly into Qk(E), since

Ku: vV — nél(n(u)) from equation 6.1.1. Moreover, T possesses an

inverse given by

r“l(E)(u)(vl,..., v) = Kal(amu))(m(u).vl,..., D7 (1) .v,))
6.1.5,

— ok 1.
Vvl,..., Vi & TuP, u€e?P, o€ Q(E) (1 is just pullback to P).

The map 1 provides the required linear isomorphism of Q?(P,V) onto

Q5 (E).

For example, if p(a) = id ¥a € G, then a p-tensorial form

V’

¢ on P is basic in the sense that o = 7 o for some V-valued form

MxV if o 1is trivial). Another important example is

o on M (E

the case k =0 - then Q?(P,V) = Cp(P,V), Qk(E) = T(E) and

reduces to the isomorphism of the space of (p~) equivariant maps of P
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into V onto the space of sections of the associated bundle E
(see the remarks following definition (6.1)6).

We remark that the automorphism group Aut(P) (and, a fortiori,
the gauge group Gau(P)) acts on Qk(P,V) by pullback.

In order to make full use of principal bundles in physics and
geometry we must consider the notion of connection. In a principal
G-bundle w: P — M, each fibre n~l(x) is diffeomorphic to the
standard fibre G. However, the identification is not canonical;
it depends on the covering {Uu} of M and on the choice of local
trivializations Wa: w_l(Ua)—ﬁ- Ua x G. Thus there is no natural
way to identify different fibres of P. A connection on P is an
extra piece of structure introduced in order to be able to give a
correspondence between any two fibres ﬂ_l(X), w_l(y) of P
(assuming M 1is connected) =~ this is parallel transport along
a curve in M from x to y. We define a connection as a particular
kind of l-form on the total space of the principal bundle:

Definition (6.1)11: A connection in the principal G-bundle

T;: P~ M 1is an Ad-equivariant l-form w on P such that
w(iP) = g, ¥£ € LG. Let Conn(P) denote the space of all con-
nections in P,
i.e. Conn(P) = {w € Ql(P,LG): R:w = Ad(a_l)w, ¥a € G, and
w(E,) = &, ¥ € LG},

It is straightforward to show that w - W, = Qéd(P,LG)
z Ql(Ad(P)), Vm,wo &€ Conn(P), so that Conn(P) 1is the affine space
associated with the vector space Qid(P,LG). In particular TwConn(P)
may be identified with Qid(P,LG) for each connection w in P.

The groups Aut(P) and Gau(P) act on Conn(P) by pullback.
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Given a connection w in P, we may define a dimM~dimensional
distribution H® on P by Hﬁ = Ker(w(u) C TuP' Then H® 1is com-
plementary to the vertical distribution V, i.e. TuP = Vu B Hﬁ,
¥u € P, and Hﬁa = DRa(u).Hﬁ, Yu € P, a € G. Conversely, given
a distribution H on P which is complementary to V and equi-
variant with respect to the G-action on P we may define a unique
connection w in P by w(u).v = &, where & 1is the unique
element of LG satisfying EP(u) = ver(v) (where v = ver(v)+hor(v)
is the unique decomposition of v &€ TuP given by the distribution H).

Definition (6.1)12: Let w g Conn(P) with associated projections

ver, hor : TP— V, . v € TUP is said to be horizontal (vertical)
if ver v =0 (hor v =0). o € Qk(P,V) is said to be vertical
(horizontal) if o vanishes when one or more of its arguments is

horizontal (vertical).

Note that the concept of a horizontal vector (and thence of a
vertical form) depends on the choice of a connection in P, whereas
that of a vertical vector (horizontal form) is associated naturally
with the principal bundle P. By definition any connection w 1is
vertical. Given w € Conn(P) we have the linear isomorphism

w w . W
h = Dn(u)]H of the horizontal subspace H onto T M and
u u u (1)

hence a means of lifting vector fields on M up to P:

Definition (6.1)13: Let w € Conn(P). The (horizontal)-1lift of

X € Vect(M) is the unigue vector field X* € Vect(P) which is
both horizontal (i.e. Xw(u) is horizontal, %4 & P) and which pro-
jects onto X (i.e. Dn(u).x’(u) = X(n(w)), ¥Fu € P).

It can be shown that the 1ift X° of any vector field X on

M is G-invariant, and conversely, every G-invariant horizontal
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vector field on P is the lift of some vector field on M. The 1lift

map: Vect(M) — Vect(P); Xt X* is a homomorphism of Lie algebras

oo

and satisfies (fX)* = (7 £)x¥, ¥fE€CM), XE€ Vect(M).
Definition (6.1)14: Let ¢: I — M be a curve on M. A (horizontal)
1ift of ¢ is a horizontal curve 1 —p such that moc” = c

w
(c® horizontal means %%—(t) is horizontal, ¥te€ I).
If X° is the lift of Xe€Vect(M), then the integral curve of

x” through ug € P dis a lift of the integral curve of ¥ through

ﬂ(uo).
Using the local triviality of P it may also be shown that for
each curve c: I — M and for each u, € n_l(c(O)) there exists a

unique 1lift cﬁ of P with cﬁ (0) = - This result now enables
o )

us to define parallel transport of fibres:

Definition (6.1)15): Let w €Conn(P), u, € P and cﬁ : I - P
o

the unique 1ift of c¢: I — M through the point u - Then the end-

point of ¢, is uy = cﬁ (1€ 1 (c(1)). The map
0 o}

cw: W_l(C(O))'-+ﬂ~l(C(l)); u, — cﬁ (1) 1is called parallel transport
o

along the curve c.

Parallel transport is equivariant with respect to the G-action
on P, i.e. cw° Ra = Ra ° Co ¥a€ G, and hence is a diffeomorphism
of w_l(c(O)) onto w~l(c(l)). Parallel transport is also para-
meterization invariant and (¢ ) = ¢ if c_l denotes the
(curve) inverse of c.

A connection in a principal bundle also induces notions of
horizontality in associated bundles and also the very important
idea of covariant derivative acting on sections of vector bundles.

The covariant derivative may also be introduced directly (au Koszul)

but we prefer to start with a connection in a principal bundle, and
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we prefer to start out with a connection in a principal bundle, and

the two approaches are indeed squivalent.

Definition (6.1)16: Let E = PXDF be the bundle with standard
fibre F associated with the principal G-bundle P via the action
0. Let Ve = Ker DWE(e) denote the vertical subspace at e € E,
so that Ve is the tangent space to the fibre of E through e.
let e = [(uo,f)] for some (uo,f) € PxF and define m P - E;
ur [u,f)], ¥Yu€&P. Then we define the horizontal subspace at e
to be Hi = Dmf(uo).Hﬁ .

(o}

w
Note that Dmp(a‘l).f(uoa)'Hu a

w w
. = Dmf(u).Hu, so that He

is defined independently of the choice of representative (uo,f)

of e. We also have that TE =V & .
e e e

, , . w .
Given a curve c¢: I — M, a (horizontal) lift c of ¢ 1is

a horizontal curve in E such that ﬂEocw = ¢. Given
-1 . , . .
eoéinE (c(0)), there exists a unique lift cg starting from
o

e, - this is constructed using the existence and uniqueness

result for lifts to P. Parallel transport Cw: n%l(c(O))

— wgl(c(l)); e, > C:O(l) may now be defined in E. Let U be
an open subset of M and s GF(E[U) a local section of E. Then
s 1s said to be parallel if the parallel transport of s(c(0))
along any curve c¢: I — U is equal to s(c(l)), i.e. s 1is
parallel if and only if Ds(x).T M EHL;)(X), ¥x € U.

An important case is when E = PXG(G/H), where H 1is a
closed subgroup of G. Let s€T(E) and HS Q, — M the re-
duced principal H-bundle corresponding to s (see the remarks
following definition (6.1)5). Then € Conn(P) 1is reducible

(see below) to a connection in QS if and only if s 1is parallel

with respect to w.
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We now focus our attention on any vector bundle E associated

to P.
Definition (6.1)17: Let w€Conn(P), c: I — M and s€T(c E)
a section of E along the curve c. The covariant derivative

w %
Vé s of the section s in the direction ¢& (= %%~6 T'(c TM)) is

defined by

(7y () = o0t feb P s(ern) - s(6)} 6.1.6,
where c:’h: wgl(c(t+h)) — wgl(c(t)) denotes parallel transport
along c.

The covariant derivative in the direction ¢ maps T(C*E)
into itself. We may define a covariant derivative of sections of
E itself as follows: Let v € TXM and s a section of E

defined in a neighbourhood of x. Then the covariant derivative

of s 1in the direction v is defined by:

Vs = (7, (sec)) (o) 6.1.7,

where c¢: I — M 1is a curve with ¢(0) = x, ¢&(0) = v. Using
6.1.6 it can be easily shown that V@s depends only on v € TXM
and not on the choice of c¢. A section s€ F(EiU), U an open
subset of M, is parallel if V$ s =0 ¥ve€ TXM, %€ U.

If X € Vect(M) we define covariant differentiation along X,

v‘;{: r(E) — T(E), by

w w
(VX s) (x) = VX(X) s 6.1.8,

¥x€M, s€T(E). It is the 6.1.8 version of covariant derivative
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that we usually consider. The covariant derivative has the following

four properties ¥X,Y € Vect(M), f € C(M,K), s € (E): v§ is
, w _ w W " w w
K- linear, VX(fs) = <df,X>s + fVXs, VX+YS VXs + VYs and Vsz

= fv§s. These properties enable us to define a linear map

v T(E) = e%(E) — I(T'M 8 E) = al(E) by

(" ) (x) 7 s 6.1.9,

¥X € Vect(M), s € I'(E). A derivative mapping Qk(E) to Qk+l(E)

for k > 0 will be given below when we introduce the covariant

exterior derivative. The covariant derivative V§ corresponds to
. . s . . w .

Lie differentiation in the following sense: Let X  be the lift

of X and let s € T(E). Then
-1 _ -1, w
LXw(T (s)) = T (VX s) 6.1.10,

where Tt 1s the canonical isomorphism of QE(P,V) onto Qk(E)
(for k = 0 din this case) - see 6.1.4, 6.1.5.
We now turn to a discussion of covariant exterior derivative:

Definition (6.1)18: Let w € Conn(P) and p € Hom(G, GL(V)).

Denote by ngr(P,V), QE(P,V) the space of all horizontal,
p—equivariant V-valued k-forms on P respectively (see definition
(6.1)10), so that QS(P,V) =o' _@,vn Qg(P,V). Let Q(P,V)

= 4§ Qk(P,V) denote the graded left Q(P)-module of V-valued
k>0

differential forms on P. Similarly we have Qhor(P,V), QG(P,V)

and QD(P,V). Define a horizontal projection h*: Q(P,V) — Q(P,V)

by

(hwa)(u)(vl,..., v) = a(w(hor(v,),..., hor(v)) 6.1.11,
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k
Vvl,..., Vi € TuP, u€P, a€Q(®,V, k =z 0.
w oo . . e w W oo, w
The operator h is linear and satisfies h (a.B) = h a.h B,
Va € Q(P), B € Q(P,V). The image of h" is Q. (P,V) and
hH2 =n*, ¥ R, =R o hY, ¥a € G. Hence h” 1is an equi-
variant projection onto the space of horizontal forms, so we may
restrict to obtain the map Y = thQE(P,V): ng(]?,V)w> QE(P,V),
for each k > 0. Note also that w € kerh® (for V = LG, p = Ad).
. 3 . k k+1
We also have the exterior derivative d: Q (P,V) — Q (?,V)

and hence:

Definition (6.1)19: TLet w € Conn(P) and V a vector space. The

covariant exterior derivative associated with w 1is the linear map

d® = n¥ o d: o8, v) — 5T, vy, k 3 0.

Using the properties of n” listed above together with results

for d (e.g. d ° R; = Ra o d, ¥ a € G), we have the following satis-

fied by d°: d%a.8) = d%w.h’8 + (-1)X 1% d¥%s, v e (),

w w
°qr = g7 °d

w

%* *
B€QE,v), d °R =R ° a, waeaqg, d and

1 o dY¥ = 0, ¥ € 1G. We therefore have the restrictions

&p

w. wt » —
d™: Qhor(P’v) - Qhor(P’V>’ d-: QG(P,V) — QQ(P,V) and, in par
ticular, QQ(P,V) is invariant under d”. A useful formula for

av acting on tensorial forms is given by:

e = do + w(®) 6.1.12,
Yo €9 (2,V). Here w(-): e, v) — @, v), k 3 0, is defined
in the following manner: We have p: G-—GL(V), so that
Dp(l): LG—gf(V) (= L(GL(V))) and we may define a bilinear map:
LGxV —V; (E£,v) > (Dp(1l).8)v. This bilinear map induces a

k k1

1 ko +k
C(P,K)- module homomorphism: Q (P,LG) x @ (P,V)—> Q 2(P,V)
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in the standard way. Since anKﬂ(P,LG), we may define the linear

k k+1 .
map w: § (P,V) — Q (P,V) written o+ w(a), ¥o € Q(P,V).
An important case of 6.1.12 is when V = LG and p = Ad. Then,
since DAd(l): LG — g&(LG) is just the adjoint action of LG on
itself; & > Ad(&); nbk=> [E,n], we write w(a) = [w,a],
w k
da= da+ [w,a], ¥Ya€ (P,LG).

The covariant exterior derivative may be applied to any V-

valued k-form on P, in particular to the connection form w
itself. Indeed, since w 1is Ad-equivariant, dww is Ad-tensorial.

Definition (6.1)20: The curvature form 0% of the connection w

is the Ad-temsorial 2-form 0% = d“w. The curvature mapping on P

is the map Q: Conn(P) — Qid(P,LG); w b ¥ = a%. The curvature

tensor of ® 1is R® = ZT(Qw) € 02(Ad(P)).

The important results concerning the curvature of a connection

. w
are the Cartan structural equation, € = dw + 3[w,w], and the

1
Bianchi identity, d“e® = 0. We remark that since w ¢ QAd(P,LG),

the result 6.1.12 cannot be used to prove the Cartan structural
equation. However, ¥ ¢ de(P,LG), so 6.1.12 may be used to

. W, W w w , . . ,
give d° @ = d2 + [w,2 ] and the right-hand side of this vanishes
. . k W W w
identically. For any o € Qp(P,V), we have d da = Q (a) (where
Qw(a) is defined in an analogous fashion to w(a)), so, in par-
ticular, a“q” $+ 0 in general.

We relate the covariant exterior derivative acting on QE(P,V)

(definition (6.1)19) to the covariant derivative (definition 6.1)17)
using the isomorphism 1. We have a“: QS(P,V) —> Q§+1(P,V) and

1

Mlogy by d§ = tod¥or . For k = 0,

we define dQ: Qk(E) — Q

we obtain d§: T(E) — F(TKM 8 E) and this coincides with ¥

defined by 6.1.9.
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The behaviour of connections under principal bundle homo-
morphisms is very important especially in discussions of embed-
dings, etc. Suppose Gic—+ P, — Mi (1 = 1,2) are principal
bundles and ¥ a homomorphism of Pl into P2 with corresponding
LM Hom(Gl,Gz) and such that ¥ is a diffeomorphism. Let

w, € Conn(Pl) with curvature Q. € de(Pl,LGl)- Then it can be

1 1 A

shown that there exists a unique w € Conn(Pz) such that Wy~

horizontal subspaces are mapped by DY¥ idinto w,~horizontal sub-

N

spaces. In addition, WKQZ = D‘P"(l)OQl and V¥ wy = DW"(1)°Ql,

where DV¥'"(1): LGl — LG2 in the Lie algebra homomorphism induced

by w'".

Definition (6.1)21: Let Ple,W,wl,wz be as just described. We

say that Wy is the image of Wy under Y. In particular, in the

case when H% > Q — M 1is a reduction of G& P — M (so we are
taking H a closed subgroup of G, V¥'" dinclusion of H in G
and V = idM), we say that the connection w, in P 1is reducible
to the connection Wy in Q.

We have noted above that Aut(P) acts on Conn(P) by pull-
back (this action arises as a special case of the result given pre-
ceding definition (6.1)21). An automorphism ¥ dis called an

wle
automorphism of the connection w 1if ¥ w = w, and in this case,

w 1is said to be Y¥-invariant.

The notion dual to that of definition (6.1)21 is that of
induced or pullback connection. We make use of this in Chapters
Two and Three. Let Gic—+ P, — M, (i = 1,2) be principal bundles
and Y a homomorphism of Pl into P2 such that VYY" € Hom(Gl,Gz)

induces an isomorphism DV¥"(1) of LGl onto LG2. Let

. 2 .
W, € Conn(Pz) with curvature QZ € QAd(PZ,LGz). Then it can be shown
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that there exists a unique w, € Conn(Pl) such that w,-horizontal

1 1

subspaces are mapped by D into w2~horizontal subspaces. In

s - " -1 _ " -1 *
addition, wy DY'" (1) Y Wy and Ql = Dy¥'"(1) o ¥ Qz.

Definition (6.1)22: let Pl’PZ’ v, Wiy Wy be as just described.

We say that w is the connection induced by ¥ from Wy

1
If Gl = G2 G and V" = idG, then the induced connection

is simply w; = ¥ Wy - In particular, given G& P — N together

with f € C(M,N), we have a map £ : Conn (P) — Conn(f“P), SO

%

that we may pullback connections to pullback bundles.

It is convenient to translate (6.1)21, (6.1)22 into definitions
concerning covariant derivatives and vector bundles, siqce co-
variant derivatives are used in calculations in Chapters Two and
Three. Suppose G, Cﬁ-Pi — Mi (i = 1,2) are principal bundles,

¥ dis a homomorphism of Pl into P2, oy € Hom(Gi,GL(Vi)) (i=1,2)

are representations and VY. € L(Vl’VZ) such that WV o pl(a)

\

= pz(w”(a)) J WV, Va € Gl' Then in an obvious manner, we have

1%, V1 T R Y, Vo

[(uyov) ] = [(¥(u)),s ¥y(v) )], ¥(u),v))] € By %p V). Using

the vector bundle homomorphism V¥ P

Bt
this construction together with the definition of covariant deriva-
tives (6.1.7), we have analogues of definitions (6.1)21 and (6.1)22.
We discuss here only the analogue of (6.1)22.

let w.: E, — Mi (i = 1,2) be vector bundles (over the same

i i
field) and VY: El ate E2 a vector bundle homomorphism. Let V2 be
a connection in E2 (i.e. V2 is the covariant derivative operator
associated with a connection in the principal bundle to which E2

is associated). Then it can be shown that there exists a unique

connection V! 1in El such that, for any x € Ml’ v € Tle’
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s € F(Ei) (i = 1,2) satisfying 8y © Yo=Y o 51, we have

1 = gl_
W(vv Sl) vD‘P(x).v Sy-

Definition (6.1)23: Let E,, E,, Y, vl, v2 be as above. V! is

said to be the connection induced in El by the homomorphism V¥
from V2.

In particular, given a vector bundle =: E — N together with
f € C(M,N), any connection V in E gives rise to an induced con-
nection Vf in the pullback vector bundle f*ﬂtf*E — M (see
definition (6.1)9). Note that F(f*E) is C(M)-module isomorphic
to Ff(E) = {s ECM,E): m o s =f}. An element of Ff(E) is

called a section of E along £,

To conclude this appendix we turn from principal bundles in
general to the frame bundle of a manifold M. 1In fact any principal
G-bundle may be regarded as a reduction of a bundle of frames in the
following sense: Let L E — M be a vector bundle and let
GL(E) = {u: u 1is a basis of ﬂ;l(x) for some x € M}. Let
the rank (= fibre dimension) of E be p. Then there is a free
right action of GL(p, F) on GL(E) defined by (u,a) > ua where

ua = {eialj}, ¥ u={e]) €CLE), a= (alj) € GL(p, F). Under this

action GL(E) 1is the total space of a principal GL(p, F )-bundle

over M.

Definition (6.1)24: Let E be a vector bundle. The principal

bundle GL(E) is called the frame bundle of E.

Suppose E 1is associated to the principal G-bundle P over M.
Then, since E 1is a vector bundle, G < GL(p, F), and in fact,
P 1is a reduction of GL(E) to the group G.

An example of the frame bundle is the bundle of (g, sg)—spin

frames Spin(n) <> EB(M,g) - M for some g-spin structure
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sg € %(M,g), g € Met(M) (see section 1.1). The most important case,
however, is when E = TM, the tangent bundle of the manifold M. We
may also consider the complexified tangent bundle TEM, but we deal

only with the real case here:

Definition (6.1)25: The frame bundle of M, denoted GL(M), is the

frame bundle of TM.

Obviously GL(M) is a principal GL(n, R) -bundle naturally
arising from the n~dimensional manifold M. The tensor bundles over
M are vector bundles associated to GL(M) via tensor products of

(1,0 (and its dual o@Dy of

the defining representation p
GL(n, R) on Bf% The defining representation itself gives rise to
the tangent bundle of M and vector bundle automorphisms (see
(6.1)7)) of TM on the one hand and principal bundle automorphisms
(see (6.1)4) of GL(M) on the other are tied together in a
satisfying algebraic fashion as we saw in section 4.1.

The two important phenomena which occur by virtue of the fact
that GL(M) 1is canonical are firstly the existence of a natural
1-form on GL(M), and secondly the splitting of the exact sequences

6.1.2 and 6.1.3. These two phenomena are related as we now discuss.

Definition (6.1)26: Let my: GL(M)>M be the frame bundle of the

n-manifold M. The canonical l-form (or soldering form) GM (or

just © if M is understood) is defined by BM(u) = K—lo DWM(U),

¥u € GL(M) (Here, « : R® — T M; x> [(u,x)] = x°e ,
u m_ (1) = =

¥x = (xa) € RF; u = {ea} € GL(M), 1is the linear isomorphism defined

by 6.1.1).

It is straightforward to demonstrate that GM is p(l’o)—tensorial

and that T(6y) € (T = I'(T'M 8 TM) = End(Vect(M)) is the identity

endomorphism. The canonical 1-form GM "solders" GL(M) to M, so
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that the frame bundle has more intimate interaction with M than do
other principal GL(n,R)bundles over M. In fact it may be shown
that a principal GL(n,R)- bundle over M is isomorphic to GL(M)
if and only if there exists a p(l’o)—tensorial l-form © on the
total space such that Ker® 1is equal to the vertical distribution.
Thus, the pair (GL(M),GM) is unique.

Now consider the natural groups associated with the frame bundle
(see definition (6.1)4). We have Aut GL(M), the group of auto-
morphisms of the frame bundle, and also its normal subgroup
Gau GL(M), the group of gauge transformations of the frame bundle.
The latter may be identified with T (Conj GL(M)), the space of
sections of the conjugation bundle, and also with Cconj(GL(m),GL(n,R),
the space of equivariant maps of the frame bundle into the general
linear group, as described above. We also have a splitting of the

exact sequences 6.1.2 and 6.1.3:

Definition (6.1)27: Define & € Hom(Diff(M), Aut GL(M)) by

() = <; where ;)(u) = {qu(nm(u))ea}, Yu = {ea} € GL(M), ¢ € Diff(M).

The automorphism ¢ is called the (natural) 1ift of the diffeomorphism

¢.
~ B by
(We have (¢ o Ra)(u) = {D¢(wm(ua)).ebaa} = {D¢(ﬂm(u)).ea}a
= (Ra° ¢)(u), so ¢ 1is indeed an automorphism of GL(M). Similarly,

£(¢lo ¢2) = z(¢l) 9ﬂ¢2), so & 1is a homomorphism (smooth) of (Lie)
groups). Moreover, £ 1is a section of the projection

b: Aut GL(M) — Diff(M), i.e. b ol = idM, and hence a splitting

of the sequences 6.1.2 and 6.1.3. We therefore have a semi-direct
product structure for Aut GL(M). Indeed, let Diff(M) act on

Gau GL(M) wvia the homomorphism conj o £: Diff(M) — Aut(Gau GL()),

so- that ¥Yb> ¢ © ¥ o ¢ under the action of ¢ € Diff(M),
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¥¥ € Gau GL(M). Then Aut GL(M) = Diff(M) X Gau GL(M) with group

structure given by:

- . ) -1
(¢1,W1)(¢2,WZ) = (¢1 9ps ¥pobpo¥,o N ) 6.1.13,

V(¢l,wl), (¢2,w2) € Diff (M) x Gau GL(M), in the standard way. The
explicit isomorphism q: Aut GL(M) - Diff(M) « Gau GL(M) is given
by q(¥) = (b(¥), ¥o(Lob)(¥ "), ¥¥ € Aut GLQD), and q “(¢,¥)
= Yoo(¢), ¥(¢,¥) € Diff(M) x Gau GL(M). The structure of Aut GL(M)
is explored further in Chapter Four.

We now show that the stabilizer of the canonical l-form is
precisely the 1lift of the diffeomorphism group of M. Suppose
6 € DIEFQN. Then (67 8)(w) = By (6(w) ° Do) = k3¢ s @ Dmyy(6(w))eDb(u).
But K$(u) = D¢(WM (U)OKu and Ty © & = ¢owM, therefore
(78, () =« oDb (my () THeDo (my (W)Y oDmy(w) = K FoDm () = By, (u)
¥u € GL(M). Hence L(Diff(M)) < stab(eM). Conversely, suppose

Y GM = SM for some V¥ € Aut GL(M). Then %¥u € GL(M),

0, (¥(W) ° D¥(w) = o (u), i.e. K;%U) > Dy (¥(u)) ° D¥(u)

= K;l o DWM(U). However, Ty ° Y = b(¥) o g and, letting
= o —l o =

WO = (& b)Yy ) ¥, we have Kw(u) K((ROb)(WD(WO(u))

= -1 !
= DW(“M(H»OKWO(u)' Hence KWO(u)ODWM(u) = <, DDWM(U). Now

Dm (u) 1is surjective and so K—l = K_l as linear isomorphisms
M Wo(u) u

of onto R'. Hence Wo(u) = u, ¥u € GL(M), and hence

T M
WM(U)
¥ = 2(b(¥)) € L(Diff(M)). This concludes the proof that a frame
bundle automorphism V¥ leaves the canonical i-form invariant if
and only if V¥ is the 1ift of some diffeomorphism of M. 1In par-

ticular, there exists no non-trivial gauge transformation fixing eM.

The canonical 1-form GM restricts to any sub-bundle of GL(M).
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Certain subbundles play an important rdéle in geometry and physics
and we have used these in the main body of the thesis. An important
idea is the following:

Definition (6.1)28: Let M be an n-manifold and G a subgroup

of GL(n,R). A G-structure on M is a reduction of the frame bundle

GL(n, R) & GL(M) I§ M to the group G, i.e. a G-structure is a
principle subbundle P — M of GL(M) with structure group G.

The result stated after definition (5.1)5 may be used to
determine whether or not a G-structure exists for given G g GL(n,R):
G-structures on M are in bijective correspondence with F(GL(M)G),

where GL(M)G = GL(M) x GL(n,R)/G is the bundle associated

GL(n,R)
with the frame bundle via the action of GL(n,R) on the quotient
space GL(n,R) / G. Obstruction theory then gives necessary topo-
logical conditions on M for the existence of sections of GL(M)G
and hence of G-structures on M.

G-structures are important in geometry because many structures
on a manifold M are examples of G-structures. We give examples of
subgroups G of GL(n,R) which lead to structures used above:

For G = GL+(n,R) we have an orientation structure on M. Such a
structure exists if and only if M 1is orientable and then a choice
of section of the Z,-bundle GL(M)

2

orientation on M. For an oriented manifold M, we will use the

GL+(n,H§ gives a particular
oriented frame bundle GL+(n,R)C—+ GL+(M)-+ M as in Chapter One
(Here, GL+(M) is the sub-~bundle of GL(M) corresponding to the
particular GL+(n,R)-structure, i.e. orientation, chosen -
obviously there are only two possible GL+(n,IU ~ gtructures on a
given orientable manifold M). If M is oriented, then we often

. +
refer to reductions of GL (M) to the subgroup G < GL+(n,RJ



also as G-structures on M (see, for example, section 1.1).

A second important example arises when G = SL(n,R). Then
the set of G-structures 1s parameterized by P(GL(M)SL(H’R))
which is in bijective correspondence with “Qn(M), the space of

nowhere vanishing n-forms on M. Thus an SL(n,R) -structure on
a (orientable) manifold M 1is nothing but a choice of volume
element.

Further examples arise in the case G = CO(p,q) = SO(p,q)Xin
(or G = 0(p,q) XB{+) when we have a conformal structure on M
(see sections 1.5 and 6.2) and in the case G = S0(p,q) (or 0(p,q))
when we have a (pseudo-)Riemannian structure (i.e. a metric) on M.
When p (or q) = 0 such structures always exist, but for p,q + 0
there are topological obstructions to the existence of sections of

and GL(M) ~ for example a

the bundles GL(M)CO(p,q) 50(p,q)
Lorentzian (conformal) structure (p = 1, ¢ = n-1) exists if and only
if M has vanishing Euler-invariant or is non-compact. Other impor-
tant examples are given by G = Sp(n) (symplectic structure) and,
for n = 2m, G = GL(m,T) (almost complex structure). We refer the
reader to Kobayashi [K 6 ] for more details on these and other
examples of G-structures.

The automorphism group of a G-structure G&+P—M 1is the
stabilizer of P in Aut GL(M) and is given by
Aut(P) = stab(k) ix Gau(P), where stab(k) ¢ Diff(M) is the sym-
metry group of the tensor k on M corresponding to the G-structure
P (e.g. for G = 0(p,q), k = g, a metric on M, P = 0(M,g), the
bundle of g-orthonormal frames and stab(k) is the isometry group
of g = k).

We now turn to connections in the frame bundle:
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Definition (6.1)29: A connection in the frame bundle GL(M) is

called a linear connection on M. Let Conn(M) = Conn GL(M) denote

the affine space of linear connections on M. For w € Conn(M),

the torsion form ©% of w 1is the p(l’o)—tensorial 2-form given
w w . .
by ©° =4d 0y- The torsion map is the map

0 : Conn(M) — Q2 (GL(M),RP); w k0%  The torsion tensor

(1,0)
w P w
of w is T =271( 0" ) € Q2(TM).

Using the formula 6.1.12, we obtain the structural equation
© = db, + w(8,) together with the Bianchi identity d° o
= Qw(eM). As we have remarked, the vector bundles associated to
GL(M) wvia tensor products of p(l’o), p(o’l) are the natural tensor
bundles over M. Any connection « in GL(M) defines a covariant
derivative operator acting on sections of these tensor bundles
(i.e. on tensor fields) as in 6.1.8 and 6.1.9. Using T we may
pullback the structural equations and the Bianchi identities (for
both curvature and torsion) to give the standard covariant differen-
tial relations between tensor fields on M.

For completeness, we conclude this appendix with a remark on
the interaction between the space of metrics on the one hand and

the space of linear connections on the other. The fundamental

theorem of Riemannian geometry may be stated as follows: Given

any g € Met(M) (metrics of a given signature), there exists a
unique linear connection w = wg which is metric (i.e. 4d é = 0,

where g : GL(M) — S(n,R) is the equivariant map corresponding

to g) and torsion free (i.e. d“eM = 0). This unique connection,

naturally associated with each metric g 1is, of course, the Levi-

Civita connection of g. We therefore have a natural map

LC: Met(M) — Conn(M); g+ wg 6.1.4,



-394—

¥g € Met(M). Since the Levi-Civitd connection wg is, in particular,
metric, i.e. dwé = 0, 1t restricts to a connection (also called wg)
in the bundle of g-orthonormal frames; in other words, the Levi-
Civita connection is the image (see (6.1)21) of a connection under
the embedding of O0O(M,g) (as a sub-bundle) into GL(M).

It is well known that LC 1is equivariant with respect to the
actions of Diff(M) on Met(M) (by pullback) and on Conn(M) (by
natural 1ift to Aut GL(M) and then by pullback as‘described above),
i.e.

* AR
LCo¢ = 4 oLC 6.1.15,

¥¢ € Diff(M).

The natural geometric maps may be constructed using the Levi-
Civitd map 6.1.14 together with the curvature map defined in (6.1)20.
For example, we have Riem = T10QocLC: Met(M) — End(QZ(M))‘E 02 (AAGL (M))
2 End(QZ(M)) which associates with each metric its Riemann curva-
ture tensor field. Traces of Riem(g) give the standard Ricci map
Ric: Met(M) — SZ(M)’ and the scalar curvature map
Scal: Met(M) — C(M). Using 6.1.15 together with the behaviour of
the maps {,T and trace under the action of the diffeomorphism
group, it follows that Riem, Ric and Scal are equivariant with
respect to the actions of Diff(M) on Met(M) and on Q2 (AAGL(M)),
SZ<M) and C(M) respectively, i.e. we have Fo¢* = ¢*0F for
F = Riem, Ric, Scal, and ¥¢ € DIiff(M).

When considering metrics, an important subspace of Conn(M)
is obviously Metric(M) = {w € Conn(M): g g € Met(M) with
dwé = 0}, the space of metric connections on M (so w 6 Metric(M)

if and only if the holonomy group of w is a subgroup of 0O(p,q)).

Then Metric(M) ¥ LC(M) x 2(TM), where LC(M) = LC(Met(M)) 1is the
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space of all Levi-Civita connections on M (note that the torsion
map T = T[Metric(M):Metric ™M) — Qz(TM) is surjective). For more
details concerning the map LC (for example, the question of the
injectivity of its projection 1C: Met(M)/}g- — Conn(M), see
Schmidt [S5 ] and Hall [H1].

This concludes our trip through the definitions and main results
in the theory of bundles and connections. As we have already remarked,
the inter-relationship between metrics, frames and natural groups is

explored further in Chapter Four.
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6.2 Conformal Structure

The aim of this appendix is to present the main definitions and
results in the thecry of conformal structures on manifolds. Con-
formal structures are important in physics, especially in general
relativity, and in geometry, and they appear in several sections of
this thesis, particularly in section 1.5 and in Chapters Three and
Four.

Conformal ideas arise in many areas of physics, for example in
quantum field theory, but here we limit ourselves to some remarks
concerning gravity and geometry. In differential geometry, a con-
formal structure may be regarded as a naturally defined subspace
of the space of metrics (or geometries) on a given manifold, and
a conformal change of metric may be regarded as the simplest non-
homothetic deformation of the metric. Conformal structure also
has deep interaction with complex geometry, especially in Riemann
surface theory and in algebraic geometry.

In general relativity (and in Lorentzian geometry in general),
conformal ideas are intimately linked with causal and null struc-
tures and thence with the theory of radiation. Appendix 6.3 gives
the relevant definitions of conformally compactified spacetime and
of null infinity which are necessary for discussions in Chapter
Three. The interplay between null and conformal ideas is very
physical since a conformal strucure is determined by its null
vectors. Indeed, the signature of the metrics in the conformal
equivalence class is determined by the topology of the space of
null vectors at any event in spacetime. Also, conformal transfor-

mations are the most general ones preserving causality. Another
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area in which conformal ideas enter into general relativity is in the
spin-boost-conformal formalism of Geroch, Held and Penrose [G ?Z]

which we discuss in Chapters Two and Three and below in this section.
Indeed, much of Penrose's spinorial and twistorial work has a con-
formal framework (see both volumes of Penrose and Rindler [P 11], [P 13 ]
and references therein).

In the first part of this section notation and ideas are

established by giving the relevant definitions and results. For ease
of exposition we state definitions for positive definite metrics on
oriented manifolds, but the extension to non-positive definite metrics
and to non-oriented and non-orientable manifolds is clear. Most
results are true for all manifolds of finite dimension, but we
emphasize when a compactness or signature condition is required.
The second part of this section lists useful formulae concerning
conformal deformation. Some of these are standard and these are
listed for convenience, but the others give the transformation of
GHP and other spinor quantities under a general complex conformal
rescaling — the latter have not appeared in the literature in this
form before (but see Penrose and Rindler [P 44 ] and Ludwig [L13 ]
for related results). For standard definitions and results see
Kobayashi [K & ] and Obata [0 7 ].

Our first definition will cover the standard concepts:

Definition (6.2)1: Let M be a manifold. Metrics 8189 € Met (M)

+
are said to be (pointwise) conformal if there exists f € C (M)

such that g8, = fgz. A conformal structure C on M 1is an eqdi—

valence class of pointwise conformal metrics. Let Con(M)
+
= Met(M)/C (M) denote the space of all conformal structures on M.

Given g € Met(M), denote by Cg the conformal structure containing
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g. A conformal manifold is a pair (M,C) where C & Con(M).

Metrics 81:89 € Met(M) are said to be conformally equivalent if

oL

there exists f € C' (M), ¢ € Diff(M) such that g, = 0 g,
Given conformal manifolds (M,C), (M',C'), a map ¢ € C(M,M") is
said to be conformal if ¢gC'~E C. Conformal manifolds (M,C),

(M',C') are said to be (conformally) equivalent if there exists

a diffeomorphism ¢ of M onto M' which is conformal. Riemannian

manifolds (M,g), (M',g') are said to be conformally equivalent

if the corresponding conformal manifolds (M,Cg), (M',Cg,) are
equivalent. A diffeomorphism ¢ € Diff(M) is said to be a con-

formeomorphism of the conformal manifold (M,C) 1if ¢ 1is conformal.

The conformal group Conf(M,C) of the conformal manifold (M,C)

is the group of all conformeomorphisms of (M,C). The Riemannian

manifold (M,g) 1is said to be conformally flat if, for each

X € M, there exists a neighbourhood U of x and £ € C+(U)
such that (U, fglU) is flat.
Some of the above concepts are brought together if we consider

+
the action of the conformorphism group Conf(M) = Diff(M)x C (M)

(semi~direct product of Diff(M) and C+(M) where Diff(M) acts
on C+(M) by pullback - see Chapter Four and Fischer and Marsden
[F 4] for more details). Conf(M) acts on Met(M) in the usual
manner; ((¢,£f),g) Fﬁ-f¢*g, ¥($,f) 6 Conf(M), g € Met(M), where

~1 %
bge = (9 l) . Let g € Met(M), then the stabilizer of g wunder

Conf(M) 1is just the conformal group Conf(M,g) = Conf(M,Cg) of g.
The orbit of g wunder Conf(M) 1s the space of metrics conformally
equivalent to g. Note that the orbit of g under C+(M) is just
the space of metrics pointwise conformal to g, i.e. it is the

conformal structure Cg containing g (and, of course, the orbit
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of g wunder Diff(M) is the geometry on M containing g, i.e. the
gpace of metrics isometric to g). In low dimensions we have special
results. For example, C+(Sl) acts transitively on Met(Sl)

(since dim S! = 1) and Conf(S2) acts transitively on Met (S?) (by
the uniformization theorem for Riemann surfaces - see Wolf [W101]).
In other words, Met(S!) and Met(S2) can be realized as homogeneous

spaces; Met(Sl) ¥ C+(Sl) (since stabc+(sl)(can)= 1) and

e

Met (S2) Diff(Sz)kC+(Sz)/SOf(l,3) (since StabConf(Sz)(Can>
= Conf (S2,Can) L SO¢(1,3) - see section 1.5).

For dim M 2 3 and M compact, Fischer and Marsden prove a
slice theorem for the action of Conf(M) on Met(M). This is
analogous to the Ebin-Palais slice theorem for the action of Diff(M)
on Met(M) (see Ebin [E 4 ]).

Let T*Met(M) denote the LZ-cotangent bundle of Met(M). This
is equipped with the canonical (weak) symplectic form w = =dn,
where n 1is the canonical l-form. Fischer and Marsden show that
the induced action of Conf(M) on (T*Met(M),w) is symplectic and
may be reduced using the Marsden-Weinstein technique (see [M 4 1).
For dimM = 3 the reduced phase space for the action of Conf (M)
on T*Met(M) is a representation of the space of true gravita-
tional degrees of freedom in the initial value problem of general
relativity - another indication of the importance of conformal
structure in gravity theory.

Given g € Met(M), dimM 2 3, the conformal group, Conf(M,g)
of g 1is a finite dimensional Lie group with Lie algebra given by
LConf(M,g) = {X & Vect(M): LX g = hg for some h € C(M)}. A vector
field X on M is an element of LConf(M,g) if and only if X

generates local l-parameter groups of conformeomorphisms of (M,g),
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and such an element is called a conformal Killing vector field of

(M,g). The Lie algebra of the conformorphism group of any manifold
M dis given by LConf(M) = Vect(M){}—C(M) (where Q}—denotes semi-
direct sum of Lie algebras). For positive definite metrics on
compact n-manifolds, Conf(M,g) is generically compact - indeed,
the only compact manifold M for which Conf(M,g) can be non-
compact is the sphere s"  with g in any of the conformal classes
defined by a metric of constant (sectional) curvature. For example,
(see section 1.5), Conf(S2,can) = SO¢(1,3), which is non-compact.
We now briefly consider other geometrical ways of studying
conformal structures. In definition (6.2)1, a conformal structure
C 1is a subspace of Met(M) and Con(M), the space of conformal
structures, is a quotient of Met(M) by the group C+(M). We may
also regard a conformal structure C as a reduction of the frame
bundle GL+(M) to the conformal group CO(n) = {a € GL+(n,E) :
aTa = Aﬂ.n, some A € E{F}g S0(n) x Rﬁl i.e. C may be regarded as

a CO(n)-structure on M (see definition (6.1)28) with corresponding

sub-bundle
™
co(n) &—— CcO(M,C) — > M 6.2.1,
of GL+(M).
Definition (6.2)2: Let € € Con(M) correspond to the principal

CO(n)-bundle CO(M,C). Then CO(M,C) 1is called the conformal frame

bundle of the conformal manifold (M,C).
The conformal frame bundle consists of all frames comprising
pairwise orthogonal tangent vectors of equal length (relative to

any g € C), i.e. COM,C) = {u € GLT(M: mg € C with
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u € soM,g)} = U SO(M,g). The canonical l1-form 6y om GL+(M)
g&C
restricts to a l1-form (also called SM) on CO(M,C), i.e.

1
SM € Q p(l,O)

connections and torsion in the conformal frame bundle.

(CO(M,C),RP). See section 1.5 for a discussion of

We know that reductions of GL+(M) to the group CO(n) are
in bijective correspondence with the sections of the bundle

. + . .
associated to GL (M) wvia the action of GL+(n,EU on the homo-

geneous space GL+(n,HU /C0(n), i.e. Con(M) z F(GL+(M) ),

Co(n)

where Lt () - et o (L B L (n,R)/ co(n))

Co(n) L+( (see
section 6.1 - note that since we are developing the ideas for
oriented manifolds we use the oriented frame bundle GL+(M). The
theory for non-oriented manifolds is identical, but with GL+(M)
replaced by GL(M) and 8S0(n) replaced by 0(n)).

There is also a principal I{F—bundle associated with every
conformal structure: Let C € Con(M) and let ZR+(M,C)
= {g(x): g € C, x 6 M}. We have the free R -action given by
(g(x),r) ¥ rg(x) and the projection W+: Rf(M,C)—»' M;
g(x) +— x, The space R&(M,C) is then the total space of a
principal R -bundle over M, Note that this bundle is tri-
vializable since each metric in the conformal structure gives a
global section. 'Rf(M,C) may be regarded as a line sub-bundle of

*
02T M, the bundle of symmetric covariant tensors of rank two.

Definition (6.2)3: Let C € Con(M)., The conformal line bundle of

the conformal manifold (M,C) 1is the principal ﬂfk—fibration:

+ + ﬂ+
R &——— R (M,C) —> M 6.2.2.

+ .
In fact the bundle 7 characterizes the conformal structure

+ . ..
C since C = I'(m ). Note that there exists a natural principal
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bundle homomorphism fC: CoO(M,C) — R%(M,C) given by u —* g(ﬂM(u)),

where g € C is the unique metric such that u € SO(M,g). Conformal
connections then give rise to connections in B{+(M,C) (see
definition (6.1)21).

Given any action of CO(n) on a manifold F, we may form the

bundle CO(M,C) x associated with the conformal frame bundle.

CO(n)F
For example, see the discussion in section 1.5 where the action is a
representation of CO(n) on a vector space. A natural family of
line bundles associated with CO(M,C) may be defined as follows:
w/n

- + -
for w € R, define w € Hom(CO(n),R ) by w(a,r) = (det(ar))

= rw, ¥(a,r) € CO(n). This defines a representation of CO(n) on

i

R and we let Iﬂv BﬂJ(M,C) denote the associated line bundle.

Definition (6.2)4: Sections of EW' are called functions of

conformal weight w.(Cf. definition (1.5)3).

Each metric g € C induces a trivialization jg W R, — R,
b

-1
= MxR; [(u,0)] = (m(w), T 2¥¢), where u € SO(Myrg),¥[(u,t)] € R .
Deforming the metric g within C gives rise to trivializations

-1
where jfg wl(m.) = £(x) 2Wj . We have corresponding
b

Ieg,w’ WX 8w

linear maps kg W P(EW)~——*P(EC) = C(M) and these may be used

3

to construct conformally invariant differential operators. For

example, we may define the conformal Laplacian AZ associated

with each w € R and C € Con(M). This is given by AZ
-1 (n-2)
= o o = R Yool SN .
kg,w+2 Yg kg,w’ where Yg Ag 4 (o1 Scal(g)
W
Cc(M) —C(M), for any g € C, so that AC : F(]RW) ——H-F(I§F+2).

Note that the definition of AZ does not depend on the choice of

representative metric g € C because of the transformation properties

§ ©° d under conformal deformation of

1

of kg,w’ Scal(g) and Ag

g (see equations 6.2.7 and 6.2.11 for the latter two). See Parker
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and Rosenberg [P 3 ], Branson [B2k ] andlérsted [6;4—] for more
details on conformally invariant differential operafors.

For convenience we now list useful formulae concerning the con-
formal transformation properties of quantities of interest in geo-
metry and in general relativity. The first list is standard and
concerns geometric maps F on the space of metrics Met(M). Our

~

notation is as follows: g € Met (M), £ & C+(M), g = fg, F = F(g)

Hi

and F F(g) for any map F with domain Met(M). We also make use
of the symmetrized tensor product © and the Kulkarni-Nomizu

%
product , @ : Sz(M)x SZ(M) — T(8"T M) defined by

(h ® k) (U,V,W,X) = h(U,Wk(V,X) + h(V,X)k(U,W) - h(U,X)k(V,W)

- h(V,W)k(U,X), ¥U,V,W,X & Vect(M), h,k € SZ(M). We also let

¢ = 1d log £ e Ql(M) as this considerably simplifies the formulae:
For LC: Met(M) — Conn(M), we express the transformation

in terms of the associated covariant derivative acting on Vect(M).

Let X,Y € Vect(M), then:

. T+ 6(0Y + 9(DX - 2(X,7)6" 6.2.3.

<]
oy
[}

Instead of using Riem: Met(M) — Q2(AdGL(M)) C r((83T M) 8 TM),
we use the totally covariant form Riem: Met(M) — F(@”TBM), and

we have

Riem = f(Riem - g 8(Vo - d0d + 1|¢]2%g)) 6.2.4,

The conformally invariant part of the Riemann curvature tensor
is the Weyl tensor, so that Weyl: Met(M) — F((@3T“M) 8 TM) 1is

. . . +
invariant under the action of C (M):

Weyl = Weyl 6.2.5.
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Curvature information not contained in the conformally invariant
Weyl tensor is stored in the Ricci tensor and, for Ric: Met(M) — SZ(M),

we have:

~

Ric = Ric - (n - 2)(V¢ - ¢0¢) + (8¢ - (n - 2)|¢|%)g 6.2.6.

Next, we have the scalar curvature function, Scal: Met(M) —CM),

and, by taking the g-trace of equation 6.2.6, we obtain:
Scal = f£ (Scal + 2(n - 1)é6 - (n - 2)(n - 1)|6]2)  6.2.7.

%
The canonical measure, vol: Met(M) — QH(M), transforms as
follows:
h

f2 vol 6.2.8,

vol

and the associated Hodge star operator: Met(M) — End(Q(M)) res-

tricted to Qk(M) is:
% = £ * 6.2.9.

Using 6.2.9 we obtain the codifferential restricted to Qk(M)

o233
|

£ - (@ - 2K)1 2 6.2.10,
0

and thence the Laplace-Beltrami operator, A =d o § +§ o d, res-

tricted to Qk(M):

~

A = £ - (n - 2K)d e 1 o- (=2 =21 o d
¢ ¢

+ 2(n - 2k)¢A1 a 2¢A6) 6.2.11.
¢

In conformal geometry the important metric dependent quantities
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are those which only depend on the conformal class of the metric,
the most important of which is the Weyl tensor (6.2.5). Indeed,
for n 2 4, the Weyl tensor is the sole obstruction to conformal
flatness (see definition (6.2)1) and we have that the Riemannian
manifold (M,g) 1is conformally flat if and only if Weyl(g) = O
(see Eisenhart [E1% ]). For n = 3, the Weyl tensor vanishes
identically (so the curvature is determined by the Ricci temsor
alone) and the obstruction to conformal flatness is known as the

Weyl=-Schouten tensor field - this is an O0O(p,q)-invariant com-

ponent of the covariant derivative of the Riemann tensor field
(see Schouten [S29]). Again in dimension two, the Weyl tensor
vanishes identically (and the curvature is determined by the
scalar curvature alone), and in this case there is no obstruction
to conformal flatness:- Any two dimensional Riemannian manifold
(M, g) 1is conformally flat (See Kobayashi and Nomizu [K/# ]).
Other conformal invariants (i.e. functions on Met(M) which
project to Con(M) = Met(M)/C+(M)) may be obtained from equations

6.2.3 - 6.2.11. We have already mentioned the Yamabe operator

(n=2)
4(n-1)

is the Hodge star operator acting on Qk(M) where M is of dimen-

Y; g-—+Ag + Scal(g): C(M) — C(M) above and another example
sion 2k. The latter example is of great importance in the study
of self-duality (see Atiyah et al. [A30]).

In general relativity, the interaction between conformal and
null structures is very useful. For instance, let (M,g) be a
pseudo-Riemannian manifold (i.e. g is not definite) and let
c: T — M be a null geodesic on M. Then the curve a*c is a

null geodesic for the conformally related pseudo-Riemannian mani-

fold (M, fg) so long as G: R— R satisfies
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a' + (Vé log(c*f))u' = 0. In other words, the null geodesics of
(M,g) are precisely the null geodesics of (M,fg) (up to a change
of parameterization). See Friedrich and Schmidt [F41 ] for a
discussion of geodesics, conformal structures and general relativity.

We may also study the change in quantities associated with
embeddings under a conformal deformation of metric. For example.
suppose k € Emb(M,N) and g € Met(N). Let K, % be the second
fundamental forms (see section 2.1) of the Riemannian embeddings
k: (M,k*g) — (N,g), k: (M,(k*f)k*g) — (N,fg) respectively.
Then, using the definition of second fundamental form, it is
straightforward to show that K, % are related as follows:

IE(X,Y) = K(X,Y) - (k*g)(X,Y)(df)—L, ¥X,Y € Vect(M), where (df)+
denotes the normal component of the gradient of f,’ (df)#.

We refer the reader to Besse [B40 ], Kobayashi [K & ] and
Weber and Goldberg [W 3 ] for more general details concerning
conformal structures, but now we turn to the specific question of
four dimensional Lorentzian geometry. In particular we now dis-
cuss the conformal transformation of sgpinor quantities in the
GHP formalism which we considered in section 2.3. The GHP for-
malism provides a framework for performing calculations involving
the components of a g-spin conmnection on a spacetime (M,g). If
the metric g 1is deformed conformally then the corresponding spin
connection (see section 1.3) also changes which in turn induces a
transformation of the GHP spin coefficients. A knowledge of how
these quantities transform is obviously essential when performing
GHP calculations in a conformally rescaled spacetime. We present
here a list of the transformation properties of the basic GHP spin

connection coefficients and of various other useful spinor quantities.
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We consider a general complex rescaling so that our formulae are

more general than those in Penrose and Rindler [P 14 ]. For a treat-
ment of conformal transformation of the (less geometrical) NP
quantities, see Ludwig [L 1% ]. Note, however, that Ludwig discusses
complex conformal rescalings within the context of general
GL(2,T) x GL(2,T) transformations (see also section 2.3).

We use the standard GHP notation (see [G F ]) as introduced
in section 2.3 and we consider a general complex rescaling of ¢
given by some fixed f & C(M, E*). We refer the reader tc section
1.8 for details on how such a rescaling influences the geometry of
spacetime. The possible importance of allowing complex rescalings
of the symplectic form & rather than just real rescalings has
been noted by Penrose [P © ]. Penrose remarks that if we wish to
maintain the conformal invariance of the massless free field
equations and of the twistor equation, then any complex conformal
deformation must be accompanied by a change in the torsion of the
connection. In particular, if the connection is initially torsion-
free, then torsion must appear. For speculation on the possible
physical significance of the introduction of torsion in this manner,
see the Penrose paper cited.

Our formulae are considerably simplified if we introduce the
map a: B2 x C(M,T) — CM,T); ((p,q),f) > £° FY. This map
has the following useful properties:- a((p,q),*): C(M,E*)—ﬁ-C(M,E*)
is a homomorphism, indeed an automorphism for p? % g2 (C(M,E*)
with pointwise multiplication as group structure) and oa(-,f):
R? -f*C(M,E*) is also a homomorphism. In addition, for any deriva-
tion D on C(M,E*), we have D(a({(p, q),£))

= (pDlogf + qDlogf)a((p, q),f). Finally, we have
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a((p,q),f) = a((q,p),f}. For convenience we write f(p,q) = a((p,q),f),
¥(p,q) € R?, f € C(M,T ). Note that |f|2 = £(1,1) and

2i arg £ = log £(1,-1), ¥f € C(M,T ).

A

let £ € C(M,T ) and €AB = f(l,o)eAB = f xR Then,
. ” ~AB AB
necessarily, we must have EArpt = f(O,l)sA,B,, € = £(-1,0)e ,

b

“A'B' A'B' ~ _ > ~ab _ ab
€ g, = £(1L, Vg, = | £] gy and g = f(-1,-Dg .

= £(0,-1)e . ab
Note that in the current notation the (real) pointwise conformal re~
scaling of the spacetime metric is given by If‘z rather than by

f(e C+(M)) as elsewhere in this section.

We now consider a general complex rescaling of the spin frame

J = {oA,IA} given by 6A = f(p,q)oA for some fixed (p,q) & RZ2.

Then, since EAB = oA 1B - oB 1A and O 1A = 1, we must have

A A A

17 = f(-1-p, -qQ)1, 0p = f(p+l,q)oA and ty = f(—p,—q)lA (together
A —A"

with the complex conjugate transformations o = f(q,p)o , etc.).

We have the GHP prime operation given by (OA)' = iIA, (1A)' = ioA

and this induces the map (p,q)  (-1-p,-q) of TR? onto itself.
Suppose w 1s a quantity of well defined GHP type, then
w = f(ap+bq+c, bptaq+d)w where {a,b} is the type of w.

AV v
The spin frame wu projects to the null tetrad u = n(u)

= {l,n,m;a } in the usual manner and this transforms as follows:

1% = £(pra,p+a)1®, 1 = £(pratl, pra+l)l,, n° = £(-1-p-q, -l-p-@)n%,
n, = £(-p=q, -p-®)n_, @ = £(p-q, -l-pt)m®, m_ = £(p-q+l, -p+a)m,,
éa = f(-1-p+q, p-q)m" and éé - (-p+q, p-q+l)ﬁé, using the usual
null tetrad inner products:- 1-n =1 =- mem with all other inner

products vanishing.

A

#
We also use formula 6.2.3, VXY = VXY + ¢ (XY + (V)X - g(X, V)¢ ,

where ¢ = 1d log|f|?, and VXf(p,q) = f(p,q)(pVXlogf + qulog?),

¥X,Y € Vect(M). Note that, as usual, we use the notation 1,n,m;5
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to mean locél sections of the frame bundle as well as for a null
tetrad at a particular point. Let us first present a couple of examples
of how the calculations are performed, and then we give the full list
of transformation formulae.
First consider the spin coefficient « = <mb,vll>. Under the
~ Ay A A

rescalings introduced, we have « = <m ,V.1> since both the metric

1

and the spin frame undergo rescaling. Hence «k = <m ,Vil + 2¢(1)1>

[

b
<f(p-q+l, -p+q)m , f(p+q,p+q)vl(f(p+q,p+q>l)>

]

£(20+1,20) <n®, 7, (£(pa, p+a)) 1> + £(2p+1,20) £ (pha, pka) <m’, 7, 1>

f(3p+q+l,p+3q)K. Similarly, 1 = <mb, V,1> and so we have

A ~ A 7 I\h ~ ~ ~ "~ A ~ ~ #
T = <mb, Val> = <m, Vil +0(n)l + ¢(1)n - g(1,n)¢ >
n n

b #
<f(p~q+l,-p+q)m", f(—l—p—q,-l—p—q)vn(f(p+q,p+q)1) - £(-1,-1)¢ >

i

A A A

(since g(1l,n) = £(-1,-1)g(1,n) = £(~1,-1))

[

b b . #
f(-2q,-2p-1)<m", Vn(f(p+q,P+q)1> - £(p-q,-ptq-L)<m ,¢ >

[

£(p=a,-pra-1) (<n”,7_1> — <m”,6">).

#
Now <mb,¢ > = <¢,m> = <ldlog|f|2,m> = m(log|f|) = 7logl|fl, and hence
T = £(p-q,-p+q-1) (1~ dlog|f]).

The full list is as follows:

; = f(3p+q+l, p+3q)x 6.2.12,
6 = f£(3p-q+l, -p+3q-1)0 6.2.13,
5 = f(p+q,p+q) (p - ® logl|f|) 6.2.14,
; = f(p-q,-p+q-1L)(T - & log]fl) 6.2.15,
8 = f(p-q,-ptq-1)(8 + (p+3)¥ logf + (q+i) ¥ logf) 6.2.16,

e = f(p+q,ptq) (e + (p+2) B logf + (q+i) % logf) 6.2.17,
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k' = f(-3p-q-2, -p-3g~1)x' 6.2.i8,
o' = f£(-3p+q-2, p-3q)c’ 6.2.19,
o' = f£(-p=a-1, ~p-a-1) (o' - 2'log|f]) 6.2.20,
T = f(-p+a-1, p-q)(z' - 7'log|f]) 6.2.21,
8' = f£(-pta-1,p-a) (8' + (-p-1) 7 'logf + (-q+1) #'log )  6.2.22,
;' = f(-p-q-1,-p-q~-1)(e'+(~p-%)%'logf + (-q+L) %'logf) 6.2.23.
Note that (&)' = (;') and similarly Z-= ﬁ; so that the transfor-
mation properties of 42,..., ?‘,... may also be written down (using

[

the fact that £(p,q) = £(q,p)).

The spin structure s which we have chosen gives us the principal
SL(2,C)-bundle EB(M,g) over spacetime as in section 1.7. This
bundle may be regarded as the complex symplectic frame bundle cor-
responding to the symplectic vector bundle (S(sg),e). When we
consider complex conformal rescalings € > fe of the symplectic
form €, it is appropriate to consider the corresponding complex
conformal symplectic structure with structure group SL(2,T) x E*
(see section 1.8 for more discussion of this matter and Kobayashi
[K § ] for general remarks concerning conformal symplectic structures).
Corresponding to the representations (A,z) z' Z° of
SL(2,T) x E* on €, (r,s) € R?, we have the two parameter family
m(r,s) of complex line bundles over M. These are analogous to
the bundles € & E(s,w) — S2 of section 1.5 and also to the real

line bundles E.C—>'Rw —> M introduced above in this section. Now

consider a spinor field A € F(S(sg) @E T ) which, when re-

(—r,—s)

garded as an equivariant map on the total space, transforms as
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~

AA f(r,s)xA with components AO = f(r+p+1, s+q)Ao,

I

~

A= f(r-p, s-q)A; with respect to the spin frame {oA,lA}. We
now introduce some differential operators which generalize the spin
coefficients of GHP. These operators arise from quantities defined

by J. Vickers (unpublished).

Definition (6.2)5: Let A be as above and define differential

operators K, S, R and T by:

A )
KA o= 0% E A, = B+ 6.2.24,
Sh o= ot aaA = T+ o 6.2.25
A - o 1 »2.25,
RA = ot a'nA. = 3'A + oA 6.2.26
A 7 fo) PAY tEeeYe
T™n = o 3'a. = B'A 4+ 1A 6.2.27
A 7 0 1 ceemle

Since these operators depend on the spin frame, we may regard
them as operators on the space of equivariant functions on the
total space of the conformal symplectic bundle. The combinations
6.2.24 - 6.2.27 arise naturally in many calculations, for example
in Chapter Three of this thesis. We now consider the conformal
transformation properties of these operators. For fixed A, let
us write K = KA, etc. The calculations are analogous to those
for the GHP spin coefficients and the latter are obtained as a

special case when we put XA = oA and (r,s) = (p,q):

>

f(r+2p+q+l,s+p+2q) (K+((r+3) 2 logf + (s-%) 2 logf)ko) 6.2.28,

K =
S = f(r+2p-q+l,s-p+2q-1) (S+((r+L) ¥ logf +(s-1) & 1ogf)xo> 6.2.29,
R = f(r+q,s+p) (R + ((r+2) &'logf + (s+1) 3'1og?5xo - (2 1oglfl)xl)

6.2.30,
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T = f(r-q,s-p-1)(T+ ((r+2) 3'logf + (s+) z'logf>xo-(3logff])xl)

6.2.31.

Note that the types of K, S, R, T are {2,1}, {2,-1}, {0,1},
{0,-1} respectively. Useful quantities of type {0,0} may be

defined as follows:

lae]
i

X;,(T - iR") 6.2.32,

O
Il

Ao(f - iR") 6.2.33,

with transformation properties given by:

>

P = f(r+s.r+s)(P + ((r+i) 3'logf + (s-1) i'logflkolz
+ ((r+1)3logf + (s—&)alogE)X;, Ap) 6.2.34,
Q = f(r+s,r+s)(Q + ((s+3) %'logf + (r+%) ?'logf)lkolz

- ((s+3)3'logf + (4+§)3'1og§)xo ) 6.2.35,

Certain physical quantities may be written down in terms of

P, Q. For example, the Ludvigsen-Vickers quasi-local momentum

integrand is given by

I o= 4oy, AB o o 6.2.36,

where

Cl___ Cl
= - .2.37.
2¢AB X(AVB) XC' AC,V (AAB) 6 37
A long but straightforward calculation now shows that J may
be expressed as J = AO(T - iR") - X;,(T - iR'") + Al(ﬁ - 4iT")

+Tl,(R—iT') = (Q+P') - (P+Q") = A - A", where A=Q + P'.
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The change in the Ludvigsen-Vickers integrand induced by a complex
conformal deformation may be calculated using 6.2.34 and 6.2.35,

and we obtain:
J = f(x+s,r+s)(J + (~(r-s-1) B'logf + (r—s+%) 3' loég)lko‘z
+ ((r-s-3%) ® logf - (r—s+%) 3 logf)lkllz

+ (-(r-s-1)3logf + (r—s+%)8log§yxd Kl

+ ((r-s-3)¥'logf - (r—s+%)8'logf)Ao Xi,) 6.2.38.

To actually calculate quasi-local momentum, we only need the

real part of J and this transforms as follows:

ReEJ) = f(r+s,r+s)(Re(J)+-2(}Xolz 3' - ]Allz E )log]fl

+ 1(2r-2s+1) A Xy, ¥ - Xg,xl ¥ Yargf) 6.2.39.

Differential operators of physical importance may also be ex-
pressed in terms of the quantities defined above and their conformal

transformation properties deduced. For example, let SA'AB =

VA'(AXB) and AA'AB = VA'[AKB]' Then:

= - iK' — T 1QT N o
SA'AB iK 0)041%g KlAlA'IB + i8S OAlA,OB + SlAOA,IB

+1,1,,0.)

—%(T-iR')(oAE 1.+1,0,,0.) + %(R—iT')(OATA,lB AlarOp

A''B AA'B

6.2.40,

and
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= 1 iR! —O—O
A s(T + RN (1,005 = 0,9

+ IR+ AT, 1, 1y - ‘A?A'OB) 6.2.41.

Using 6.2.28 - 6.2.31, we may show, for instance, that

~

S + (terms which vanish for r = s = 0 and f

A'AB f(r+l,s)SA,AB

R-valued) which is just the usual conformal invariance of the

twistor equation SA'AB = 0, By contracting 6.2.41, we obtain the

operator appearing in the neutrino equation, namely

1 1 At 1
U G VNG T Ut Y LD 6.2.42.
An equation used in Chapter Three in the Ludvigsen-Vickers
quasi-local momentum definition is the null limit of the Sen-Witten
eguation. The corresponding Sen-Witten operator is given by
= A
W, = VA v A

- tAA' A where t 1is the timelike future
directed normal to the spacelike hypersurface T ¢ M. It is

easily shown that

'WA, = ((3t?2 = )T + (t*n)?K - iR')GA,
- 1((3t2 - DT" + (£1)%K' + iRyIA. 6.2.43,
and,assuming t = f(-1,-1)t, so that t? = t2, we find
wAv = f(r,s)(WA, + XA' + (XA')‘)
where
- = 2
x," = (((x+3) B'logf + (s+}) 2'logD))_ - (3loglfl)xl)(%t - 1)

+ ((r+}) 2 logf + (s—}) 2 logf)Ao(t-n)z

+ ((r+2)¥logf + (s+%)3log§)kl - ( i'log[fl)ko 6.2.44.
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We remark that if we are interested in a small number of quan-
tities, it is often possible to choose the parameters p,q,r,s in a
particular manner so as to simplify as many transformation formulae as

possible. For example, the Hawking gauge (Hawking [H 4 ]) is often

utilized. This is given by Kk = e =p -p' =p' - p' =0, T = -1

= R - B'. Suppose we let p+q+l = 0 and let £ be R-valued.

Then, using 6.2.12 - 6.2.23, we see «k = f—3s, e=f e, (p=-0p)

A ~

20 =), ' -8 =o' -3', (r+T) = fi(r+ T

1 . . oA
f (tr~-B8+8"), (' +8-28")

- 2¥logf), (t - B + EW)A

f-l((;w + B8 - B'") - 2¥logf). Thus, the choice p+q+l = O,

f R-valued makes the trasnformation of the Hawking gauge par-
ticularly simple. If we actually wish to leave invariant this
gauge, then we must also have I = O.

A particular application of the conformal transformation for-
mula presented in this section is in the study of asymptotically
simple spacetimes when a conformal compactification is made. For
example, we could study quasi-local quantities in the compactified
spacetime. In the next section, we briefly discuss asymptotic
simplicity, which may be regarded as an asymptotic boundary

condition on spacetime in a conformal setting.
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6.3 Asymptotic Simplicity

For a physical theory to be useful, we must be able to discuss
a certain class of solutions which represent isolated systems. In
general relativity, these are bounded systems such as stars and
black holes whose corresponding spacetime is asymptotically flat,
i.e. the metric approaches that of Minkowski spacetime at large
distances from the source. Examples are the Schwarzschild,
Reissner-Nordstrdm and Kerr—Newman spacetimes and these solutions
have asymptotically flat regions whose conformal structure is
similar to that of Minkowski spacetime. A useful definition of
asymptotic flatness may be abstracted from these examples (Penrose
[ P#]) and we discuss such a definition in this section. For
physical reasons indicated in Chapter Three, we restrict our atten-
tion to spacetimes whose metric approaches flatness along null
directions. For more details, see Beem and Ehrlich [B 47 ], Geroch
[G § ], Hawking and Ellis [HS | and Penrose and Rindler [P12 1.
These references also discuss the case of asymptotic flatness at
spacelike infinity.

Reasons for studying isolated systems, in particular asymp-
totically flat spacetimes in general relativity, include the
following:- physical attributes such as mass, momentum, angular
momentum and other "charges'" may often be assigned to such systems
so as to describe the system using only a small number of parameters.
Other ideas fitting into the conceptual framework of isolated
systems are multipoles and radiation, both of which have important
physical significance.

From a mathematical viewpoint, the imposition of boundary
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conditions such as asymptotic flatness leads to a simpler structure
at Infinity. This structure is universal in that it does not
depend on the particular spacetime and it provides an arena in
which to study the true degrees of freedom of the gravitational
fidld. 1Indeed a well defined symmetry group, the BMS group,
naturally occurs and this may be used as the basis of definitions
of asymptotic kinematical quantities. 1In particular, spinor
methods have proved very useful when combined with the imposition
of the conformal boundary condition of asymptotic flatness. In-
deed, it is fair to say that many of the remaining problems in
general relativity would stand a better chance of being solved

if the combination of spinor, embedding and conformal techniques
at infinity could be propagated into the interior of spacetime

in a consistent way. This idea of propagation from infinity

lies at the heart of the Ludvigsen-Vickers definition of quasi-
local momentum discussed in Chapter Three of this thesis. Whether
or not more of the structure available asymptotically may be
extended into spacetime itself remains to be seen. A major problem,
besides practical details such as obstructions to propagation by
caustics, etc., is the desire for some notion of universality when
defining symmetry groups and kinematical quantities.

We turn now to the definition of the useful notions of
asymptotic flatness. We use the term spacetime as introduced in
section 1.7, and the following definition is essentially that
given in the references cited above.

Definition (6.3)1: An asymptote of a spacetime (M,g) is a

A

quadruple (M,g,f,¢) where (M,g) 1is a spacetime with boundary

~

oM, f € C(M) and ¢ € Emb(M,M) such that ¢ 1is a diffeomorphism
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~ ~ * % a ~ ~
of M onto M- 3M, (¢ f)2g=¢ g, f|3M=0 and df|oM + 0.

A spacetime (M,g) 1is said to be asymptotically simple and empty

if it admits an asymptote (M,g,f,$) such that oM C M - support

(¢*(Ric(g))), (M,g) 1is strongly causal (i.e., for all x € M

and for all neighbourhoods U of x, there exists a neighbour-
hood V of x, VC U, such that every non-spacelike curve in
(&,é) intersects V at most once), and every inextendible null
geodesic y of (M,g) 1is such that ¢ o y admits both future
and past endpoints on 8&.

Asymptotically simple and empty spacetimes include Minkowski
spacetime (RY,n) together with isolated systems which do not under-
go gravitational collapse. However they do not include important
solutions such as Schwarzschild, Reissner-Nordstrdm or Kerr-Newman,
because there exist null geodesics in these spacetimes which do
not get out to infinity. We modify the definition slightly to

include such spaces:

A spacetime (M,g) is said to be weakly asymptotically simple

and empty if there exists an asymptotically simple and empty space-
time (M',g') (with asymptote (ﬁ'.é',f',¢')) and a neighbourhood
U' of aﬁ' in ﬁ' such that ((¢')_1(U'),g') is isometric to
(U,g) for some open set of M.

Examples of weakly asymptotically simple and empty spacetimes
include those mentioned above and, in general, such spacetimes possess
a whole family of asymptotically flat regions. When discussing
weakly asymptotically simple and empty spacetimes we consider only
one of these regions.

If a (weakly) asymptotically simple and empty spacetime (M,g)

is a solution of Einstein's equations with vanishing cosmological
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constant, we say that (M,g) is asymptotically flat. The basic

underlying philosophy in the study of asymptotically flat spacetimes
is that, as far as physics and geometry are concerned, the boundary
8& is to be treated as being at finite distance from the sources
of the conformally compactified spacetime (ﬁ,é). In particular,
the conformal factor, the rescaled metric, curvature tensor, matter
fields are amooth on 8&. The powerful local techniques of spinor
geometry may be utilized on (ﬁ,é) with implications for the asymp-
totic structure of the physical spacetime M,g).

Now let (M,g) be an asymptotically flat spacetime with

asymptote (M,g,f,¢). The major consequences of the definition are

as follows:-

The boundary oM has two components, denoted é— (past null

+
infinity) and 4 (future null infinity), each of which is a non-
shearing null hypersurface in (M,g). Null geodesics have paét

- +
endpoints on 4 and future endpoints on 4 . The spacetime

(M,g) 1is necessarily globally hyperbolic (so, in particular, M

is topologically % x R where &> M 1is a Cauchy surface for

+
(M,g)), and each of ~ are topologicall s2 x R. The field
y

#* ~ +
n = (-df) € Vect(M), when restricted toé, , 1is a null normal

*
and its integral curves are the null generators of 4. . Any two
-+
cross sections of &’ ¥ 32 x R—> 82 are mapped conformally to

A

one another by the flow of n. The Weyl tensor of g wvanishes

identically on 4» * and this leads to the peeling off theorem -
along a null geodesic in a neighbourhood of 4,t, the various
spinor components of the Weyl tensor vary as different powers of
an affine parameter. The peeling off theorem relates the out-

going (for €~+) null direction given by the geodesic to the
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algebraic type and asymptotic behaviour of the conformally in~
variant part of the gravitational field.

We now make some brief remarks concerning asymptotes. Suppose
(M,g) 1is asymptotically flat. A natural question to ask is how
many asymptotes does (M,g) admit? To answer this it is necessary
to consider equivalence and extension of asymptotes: Two asymptotes
(&l,él,fl,¢l), (&Z’QZ’f2’¢2> of (M,g) are said to be equivalent

if there exists h € C+(M), Y & Diff(Ml,Mz) such that
81
said to be an extension of (M - W, gI(M - W, fi(M - W),¢) for

~

any closed subset W of ©&M. We then say an asymptote is maximal

= hz(w“gz) and fl = h(whfz). The asymptote (M,g,f,¢) is

if it admits no non-trivial extension. It may then be shown that
for any asymptotically flat spacetime (M,g), there exists a
maximal asymptote, unique up to equivalence (Actually, we must

restrict to regular asymptotes - see Geroch [G & ] for more details).

Thus, given any asymptotically flat spacetime we may use the maxi-
mal regular asymptote, This will be defined only up to a conformeo-
morphism and we should ensure that all physically meaningful quan-
tities are invariant under such transformations.

Let us now focus on, say, {¥+ E_Bﬁ where (ﬁ,é,f,¢) is, up
to equivalence, the maximal regular asymptote of the asymptotically
flat spacetime (M,g). We regard <}+ as the space S?2 x R
equipped with various fields induced by the embedding ¢ of space-

~

time into M. The two most important fields are the degenerate

. O . + ° ;. . ,
metric q = j g (where j: f} — M dis inclusion) of signature

~

(o = =) and the vector field n = (—df)# which, when restricted toO

+ +
é} , 1s a null normal to f‘ . Suppcse we choose an asymptote

(M,hzg,hf,¢) equivalent to the original one (where, without loss
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~

of generality, we have taken the compactified spacetime to be M,
rather than some other differomorph). Then gq becomes hzq and
n becomes h—ln (since d(hf) = hdf on 4.+ and é— becomes
121, Thus the field S=q8n8n6 r(@>r 4 Moot é{“))
is independent of the choice of representative of the equivalence
class of asymptotes. Given a signature (0 - =) conformal struc-
ture C on 4.+ = S2 x R, it is easily shown (see Schmidt et
al. [S 6 1) that a type (3} tensor field, symmetric in both
pairs of slots, is characterized by the two properties

(i) ¥a € Ql¢ éﬁv, S(+y, *, a,a) € C {0} and (ii) any contraction
of S ditself wvanishes.

Definition (6.2)2: Let ( +,C) be as just described. The tensor

%
field S € I'((®%T 4ﬂ3 8 (Ozréﬁﬁ) uniquely defined by properties

. . . +
(i), (1i) 1is called the strong conformal geometry on (4. ,C0)
(Penrose and Rindler [P 42,1).

. + . . . .
The triple (4. 4»CyS) 1is unique up to diffeomorphism and we

regard the strong conformal geometry as representing the universal

. + . s
first order structure on 4_ . The asymptotic symmetry group is

the automorphism group of this first order structure:-

Definition (6.3)3: Let (4+,C,S) be as above. The Bondi-

Metzner-Sachs (BMS) group 1is defined by BMS = {¢ € Diff(é»_*_)
:¢*S = S},

The BMS group is unique up to isomorphism, i.e. it does not
depend on the choice of degenerate conformal structure C. This
group arose originally (Bondi et al. [B15 ], Sachs [S 2 ]) as the
group of coordinate transformations preserving Bondi et al's form
of a future asymptotically flat metric, but it is more geometrical

to view the BMS group as the automorphism group of the universal
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structure (4+,C, S).

Using definition (6.3)3, the isomorphism class of BMS may be
deduced. Here we just state the relevant results. TFor a compre-
hensive treatment of representation theoretical and topological
aspects of the BMS group, see McCarthy [M 4 ].

The BMS group, like the Poincaré group, possesses a semi-
direct product structure, so we first recall the important facts
concerning such structures, See, for example, Jacobson, p. 79,
for the basic definition. Suppose that we are given groups H and
K together with an action 6 of H on K by automorphisms,

i.e. 6 € Hom(H,Aut(X)). Consider the set HxK. Then, using 6,
there are two natural group structures on HXxK. The first is
given by (hl’kf(hZ’kz) = (hlhz,klehl(kz)) and the second is given
bY(hl’kl)(hZ’kZ) = (hth’ ehgl(kl)kZ)’ V(hl,kl),(hz,kz) € Hx K.

It is straightforward to check that these are indeed group struc-—
tures on HxK. Let G, G' denote HxK equipped with the first,
second group structure respectively. Then the map ¥: G — G';
(h,k) Fﬁ-(h,eh_l(k)) is easily seen to be an isomorphism of groups.
The isomorphism class containing G (and hence G') 1is called

the semi-direct product of H and K with respect to 6 and we

denote it HKX_. K (or H&X K if 8 is understood). Depending on

0

the situation, we pick the concrete representative G (or G')
and write H KoK = G (or G'").

The semi-direct product often arises as the splitting of a
short exact sequence of groups 1 — K<L+ G 2, H— 1 where 1
is inclusion of K £ G and X 1is an epimorphism. Given a split-
ting B € Hom(H,G) (so that A ° B = idH) we may define

6 € Hom(H,Aut(K)) by 6, (k) = g(h)ke(h‘l), ¥h € H, k 6 K. Then
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G 1is ({somorphic to) the semi-direct product H NGK - define
£: HD%K — G by &(h,k) = kB(h), then £ is an isomorphism of
groups with inverse given by g—l(g) = (Mg, g((BOX)(g_l))).
An example of this phenomenon is the splitting of sequence 6.1.2
(or 6.1.3) in the case of the frame bundle GL(M). This gives
rise to the semi-direct product structure Diff(M) x GauGL(M)
for Aut GL(M) (see definition (6.1)27 and equation 6.1.13).

We now return to the BMS group. Recall (see sections 1.5
and 1.7) that the restricted Lorentz group SO¢(1,3) is isomorphic
to Conf(S%, Can), the conformal group of the two sphere equipped
with its standard conformal structure (1.5.33). In equation
1.5.20, we gave the conformal action of SL(2,T), the double
cover of SO¢(1,3), on S2 - as we remarked, this actiom projects
to SO0%(1,3) and is the action realizing the isomorphism
SOf(l,B) z Conf(S%, Can). Let us therefore write

*

o € Hom(SO+(l,3), Diff(S2)) for this action, so that ¢a can =
Kg can, ¥a € SOf(l,B), where Ka = KA (any A &€ A_l(a)) (see
equation 1.5.36). Note that the conformal factor Ki € C+(Sz)

%
is given by Kg = %trace(¢a can) (trace with respect to

can € Met(S2)) so that, ¥a,,a., € SO+(1,3), K2 = %trace(qb'< can)
1’72 ala2 a,a,
x & * % *
= ltrace(¢. ¢_ can) = Ltrace(¢ (K2 can)) = 2(¢* K2 dtrace(¢  can)
2 2 2
g 21 2 % ] 22
= (¢. K2 )KZ .
881 %

Now consider the action & of SO¢(1,3) on C(S2) given by:-

0 () = K _ o _ f 6.3.1,

4 R .
¥f 6 C(Sz), a € SO0 (1,3). From a representation theoretical view-

point ® 1is the closest relative representation associated with the
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representation DO(-;—,-’Z—) (see Gel'fand et al. [G1%] and section 1.7
for a brief discussion of the DO representations). We regard C(52)
as an abelian group and then the action ¢ is by automorphisms.

Let B = SO¢(1,3) “q)C(SZ) denote the corresponding semi-direct pro-
duct, where, to conform with standard practice, we use the "G'-
representation'", so that the group structure in B 1is given by

o

(al’fl>(32’f2> = (alaza Qail(fl) + fz) = (alaz’Kaz ¢a2fl + fz)!

¥(a;,f;),(ay,E,) € B,

Now define V¥: B — Diff(Szx R) by:-
Yo gy D) = (0,00, K G TH(E + £GO)) 6.3.2,

¥(x,t) € S2 x R, (a,f) € B. Note that \i’(a £) is indeed a diffeo-
b

morphism. We now show that ¥ 1is a moncmorphism. We have

v (x,£) =¥ * (x,t)
(2558, ) (ay aZ’Ka2¢a2 £1+Ey)

-1
(¢ala2(x), Kalaz(x> (t + Kaz(x)fl(¢a2(x)) + £,(x)))

-1 -1
(¢al(¢a2(X)), Kal(¢aZ(X)) Kaz(X) (t + Kaz(X)fl(¢az(X)) + fz(X)))

-1 -1
(0 (0 (0)> &, (8, GNTE, 07+ £00) + £0, (D)

-1
(x) (£ + £,(x))) =V
2 2 (@,

=Y, (¢ (%), K (¥ (x,t))
(dl,fl) 82 a fl) (az9f2)

Y ))(x,t), ¥(x,t) € S2xR. Hence VY is a

(W(al’fl) o (2,55,
homomorphism. By inspection, Y 1is injective, and so ¥ is an
isomorphism of SOf(l,3) X(DC(SZ) onto ¥(B) < Diff(S2x R).

It is straightforward to show (see Schmidt et al. [S & 1) that
¥Y(B) coincides with BMS, as defined by (6.3)3, so that the BMS
group is isomorphic to SO+(1,3)X®C(SZ) with action on g>+ z 2 x R

given by 6.3.2. From now on we identify BMS with B = SO+(1,3)“®C(52).
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A more geometrical interpretation may be given as follows:-
Let m: 4j-—+ S2 be the trivial bundle given by projection onto
the first factor. We regard the fibre of 17 as an affine space
modelled on the vector space R, Let A = I( 4f) denote the
space of sections of this bundle, so that A is the cone space
of Bramson (see [B2] ] and section 2.2) and is an affine space
modelled on the vector space C(S?) where the action is given
by u;j;(f,e) b= (£ + ¢); x> £(x) + c(x), ¥(f,c) € C(S?) x A.
Note that we identify a section ¢ with the corresponding function
given by x > (x, c(x)) € éﬁl ¥x € S2, The vector space
C(S2), when regarded as a normal subgroup of BMS, is the space of

supertranslations of <;+. Using ¢ (6.3.1), SO+(1,3) may be

regarded as a subgroup of GL(C(S2)) (= {Bounded invertible
linear operators on C(S%)}).

Note that the action V¥ given by €.3.2 is by bundle auto-
morphisms of : 4ﬁ-—é-82, and, for each (a,f) € BMS,
ly(a,f): 4+ —+4+ covers the diffeomorphism ¢a: S2 - S2. We

may therefore define an action ¥ of BMS on A = F(éﬁ} by

Ya,0( = ¥a,n°

we see that

c°d -1, ¥c € A, (a,f) € BMS. Using 6.3.2,
a

W(a,f) = @a ° U 6.3.3,

where et A — A 1is the affine action given above, and

¢ A —A is given by the formula 6.3.1, i.e.

*
W(a’f)(c) = Ka_l ¢a_l (f + ¢).

Now recall that given any affine space A modelled on a vector

space V via the action yu, we may project any bijection
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q: A— A to a bijection q: V — V given (uniquely) by

¥v 6 V. The affine space, Aff(A), of A

UE(V) =99 M, e q_l,
is given by Aff(A) = {q € Bij(A): q € GL(V)} and we have the
short exact sequence 1 — velt Aff(A) — GL(V) — 1. Any sub-
group H of GL(V) gives rise to a corresponding sequence
1 — V& AFF (8) —> H — 1,

Consider, for fixed (a,f) € BMS, the bijectioz @(a,f) (6.3.3)

of the affine space A (modelled on C(s2)). Let W(a £) denote
bl

the corresponding bijection of C(S2) so that, ¥f' € C(S2),

=t gy o o A—l = o o c
”@ £ = Ya,n M C Y, n %0 % Mg ° Mpr ° Mg q’a—l
(a,f)
A
= @a ° Uy © o) 1= M ‘ S0 W(a,f) = @a (since, as we have
a e_(f')

remarked above, ¢ acts on both C(Sz) and on A according to the
same formula 6.3.1). In other words, the BMS group, regarded as a
subgroup of Bij(A) wvia the action @, projects to the group
SO+(1,3), regarded as a subgroup of GL(C(S2)) wvia the action O.
We have thus demonstrated that the BMS group is the group of

affine transformations of A (cone space) characterized by the short

exact sequence

1 — C(S2) <—> BMS sof(1,3) — 1 6.3.4,

The isomorphism BMS = SO+(1,3) x C(S2) may now be regarded
as arising from a splitting of 6.3.4. Of course such a splitting
is not unique - one must choose an origin <, € A (i.e. some cut
of 4,+) and then a splitting 8_ € Hom(s0' (1,3),BMS) 1is defined

-1

by Bo(a) = ug e @a °u, A — A, This origin dependence of

SO¢(1,3) as a subgroup of BMS is the root of the problems involved
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in attempting to define angular momentum in general relativity.

The origin dependence also exists in non-relativistic and special

relativistic mechanics (where we deal with the Galileo group

S0(3) x B3 and Poincaréd group SO¢(1,3) x R* respectively) but

in general relativity there is an additional obstruction to
defining angular momentum. Indeed, a choice of origin cannot
even be made if gravitational radiation is present since such
radiation will supertranslate any initial choice of origin. We
discuss this problem further in section 3.2.

The relationship between the BMS group and the Poincaré
group may be seen if we consider the translation subgroup of
BMS. It can be shown (see, for example, Sachs [S Q,Jj that there
is a unique four dimensional normal subgroup T z R* of BMS
(T 1is the unique non-trivial subspace of C(S2) invariant under
the SO¢(1,3) action ¢ (6.3.1)). T 1is called the translation
subgroup of BMS. The action u of C(S?) on A is free
and transitive, so restricting u to T < C(S2) partitions
A into an uncountable number of subspaces each of which may be
identified with R"Y. Thus there are many possible choices of
Minkowski subspace of cone space A. A choice of origin s € A
picks out a particular copy of Minkowski space in A - we just
take the orbit of . under T, We may now define an origin
dependent Poincaré subgroup of BMS by restricting the action
® of SO+(1,3) on C(Sz) to the subspace T.

This completes our discussion of the abstract BMS group.
The importance of BMS in physics is that it is the asymptotic
symmetry group for a wide class of spacetimes, namely those which
are asymptotically flat. It turns out that, in addition to the

strong conformal geometry discussed above, future (or past) null
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infinity is universally equipped with a phase space T consisting
of equivalence classes of connections (the second order structure).
This phase space [I' 1is an affine space modelled on a Fréchet space
and possesses a naturally defined (weak) symplectic structure w.
The BMS group acts symplectomorphically on (T',w) and the corres-
ponding moment maps : T — LBMS = (1807(1,3) &  ¢(s2))" may
be identified with fluxes of supermomentum and of angular momentum.
We refer the reader to Ashtekar and Streubel [A2% ] for a treat-

ment of the symplectic geometry of the BMS action of (T,w).
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