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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF MATH0IATICAL STUDIES 

MATHEMATICS 

Doctor of Philosophy 

SPINORS, EMBEDDINGS AND 

by Simon Timothy Swift 

This thesis is concerned with the theory of spinors, embeddings and 

everywhere invariance with applications to general relativity. The 

approach is entirely geometric with particular emphasis on the use 

of natural structures. A clear indication of the interaction between 

the above topics is given; this Interaction then sheds light on 

various aspects of general relativity theory. 

The main ideas discussed are:- (i) Spinors, conformal structure 

and the spacetime projective null bundle framework. (ii) Spaces of 

embeddings. (ill) Embeddings and spin structure. (iv) Null em-

beddings and the null limit (a technique for obtaining differential 

equations on null hypersurfaces). (v) Quasi-local momentum. 

(vi) The space of metrics, natural group actions and generalized 

conformal structure. (vii) Everywhere invariance and the invariance 

equation as a method for obtaining spacetime symmetries. 

Three appendices are also provided:- These give comprehensive 

summaries of the theories of principal bundles, conformal structure 

and asymptotic simplicity. 
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CHAPTER 0 INTRODUCTION 

Since we have provided each of the four principal chapters 

of this thesis with an individual introduction, this general in-

troduction serves only to indicate the underlying themes and 

philosophy, to point out the novel ideas and to define notions 

and notation relevant to the thesis as a whole. The thesis 

comprises two main parts:- The first consists of Chapters One, 

Two and Three and discusses spinors and embeddings, whilst 

Chapter Four constitutes the second part and is concerned with 

a study of everywhere invariance and spaces of metrics. Although 

here we have distinguished between the two parts, there exist 

certain connections between them; firstly because each of the 

parts is concerned with the application of geometric frameworks 

to certain aspects of general relativity theory, secondly through 

our use of infinite dimensional manifolds wherever appropriate 

throughout the thesis, and finally because of more specific links 

(indicated at the appropriate points within the text). 

The main themes of this thesis are spinors, embeddings, null 

and conformal structures, metrics and symmetry (manifested in the 

form of natural and physically important group actions). We show 

how all of these themes are important, if not essential, to the 

theory of general relativity. We also indicate the way in which 

these concepts interact with one another, thereby illuminating 

certain aspects of general relativity theory. Indeed, all of these 

themes (and many more!) have been an important ingredient in much 

of twentieth century theoretical physics, and, if we go by recent 
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trends in the interaction between geometry and physics, it seems that 

the relationship will become ever more intimate. 

Our philosophy, based on the underlying themes mentioned above, 

is to organize and to geometrize:- On the one hand, we collect to-

gether, in a coherent unified fashion, appropriate geometric notions 

and we demonstrate how these have an impact on gravity theory. On 

the other hand, we consider various developments within the theory 

of general relativity in a geometric light. Our aim is to show how 

these two interacting approaches clarify certain links between 

geometry and physics, unify ideas within general relativity theory 

and also lead to new frameworks within which to study physical ideas. 

Let us now describe the novel aspects of the thesis in more detail 

Chapter One is concerned with the theory of spinors on mani-

folds. We develop the theory carefully, emphasizing the necessary 

geometric structures within a framework of principal fibre bundles. 

After developing the required background, we show how spinor ideas 

fit neatly within the theory of general relativity. Much of this 

material is standard, although our exposition tends to highlight 

the real differential geometric aspects rather than complex aspects 

based on algebraic geometry. Certain novel suggestions appear in 

section 1.4 where we discuss the possibilities for a spinor-metric 

configuration space. The ideas of this section are based upon the 

canonical principal (S)0(n)-bundle associated with any (oriented) 

n-manifold, and this bundle makes several appearances throughout 

the thesis. Section 1.5 features a self-contained treatment of 

the relationship between the 2-sphere and the Lorentz group, a 

relationship which underpins several important ideas in the theory 

of general relativity. The 2-sphere-Lorentz group interaction is. 
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of course, well known, but, since the 2-sphere (and the Lorentz 

group!) play several roles in the thesis and since the interaction 

is an excellent illustration of the way in which spin and conformal 

structures come together, we thought it appropriate to include a 

discussion based upon our own approach (but, at the same time, 

utilizing standard notation!). The framework considered in section 

1.9 is our geometrization of an idea which has appeared in several 

places in the general relativity literature. This is the idea of 

constructing a natural 2-sphere bundle over spacetime so as to make 

use of the 2-sphere-Lorentz group interaction at each spacetime 

point. This projective null bundle may be regarded as a Lorentzian 

version of the Penrose twistor space in Riemannian geometry. In 

addition to pointing out applications of this framework, we show 

how the idea brings together many of the notions discussed in 

sections 1.1 to 1.8. 

Chapter Two consists of a thorough treatment of embeddings 

and their use in general relativity theory. In particular, we 

emphasize infinite-dimensional applications and, in section 2.2, 

we consider geometric aspects of the structure of spaces of em-

beddings. In particular, we examine the natural group actions, 

metrics and connections associated with these spaces. In section 

2.3, we describe the interaction of spinors and embeddings. 

Although this interaction underlies various topics in general 

relativity theory, we have not seen a general discussion in the 

literature and therefore we considered it appropriate to include 

this section. At the end of section 2.3, we show how the general 

theory is applied to the important cases in four-dimensional 

Lorentzian geometry. This section also indicates links between 
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other sections of the thesis and places in context various formalisms 

(for example, GHP) used in general relativity theory. 

In Chapter Three, we move on from the non-degenerate embeddings 

of Chapter Two and we describe various aspects of null embeddings. 

The main new idea is that of the null limit (see section 3.2) which 

is a method for obtaining null versions of spacelike equations. In 

section 3.4, we apply this technique to obtain a very useful spinor 

null propagation equation which has been used in important work in 

the area of general relativistic kinematics. The propagation 

equation turns out to be the null limit of the (Maxwell-)Sen-Witten 

equation. In order to put the kinematical application in context, 

we present a thorough and unified review of gravitational momentum 

- at the asymptotic level in section 3.3 and at the quasi-local 

level in section 3.4. We indicate several links between the various 

approaches to this fundamental problem. Another reason for in-

cluding a discussion of momentum is to provide an important example 

of the essential use of spinorial concepts within the theory of 

general relativity. 

The subject of Chapter Four is everywhere invariance, and this 

constitutes the second part of the thesis. The term everywhere 

invariance is to be understood on two levels:- Firstly, the term 

refers to a general philosophy of considering natural (usually 

infinite-dimensional) structures associated with manifolds and related 

group actions. This is essentially the study of section 4.1 and, to 

some extent, section 4.6. The second use of the term everywhere 

invariance refers to a specific concept - a geometrization of the 

earlier idea of functional form invariance. In sections 4.2 - 4.6 

we develop the theory of everywhere invariance and related concepts. 
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This theory is interesting for two reasons:- Firstly, from a 

practical viewpoint, it gives a technique for finding the symmetries 

of a spacetime metric (we illustrate this technique in section 4.5), 

and secondly on a more abstract level, everywhere invariance involves 

the study of group actions for which we consider the stabilizers of 

subsets under the action, rather than of just one element. In section 

4.1, we present a survey of the space of metrics on a manifold. Most 

of the material is standard, but spread out over the literature and 

therefore we found it useful to bring it together. Two novel aspects 

of section 4.1 are the suggested use of the canonical 0(n)-bundle 

as a means for resolving the singularities in the space of geometries, 

and also the consideration of the action of subgroups of the auto-

morphism group of the frame bundle on the space of metrics. 

In addition to the principal Chapters One, Two, Three and Four, 

we have also included three appendices, collected together in 

Chapter Six. The purpose of these appendices is to collect together 

basic definitions and results of which we have made use throughout 

the thesis:- Appendix 6.1 consists of a comprehensive summary of 

the necessary facts from the theory of principal bundles and associated 

concepts. The second appendix reviews conformal structures - an 

important ingredient in several of the notions discussed in the main 

body of the thesis. Note that section 5.2 also includes a list of 

formulae giving the transformation properties of various useful 

spinor quantities under a complex conformal deformation of spacetime 

metric. The third appendix, section 6.3, gives the basic definitions 

relevant to a study of asymptotically flat spacetimes. We also 

include a description of semidirect product groups since examples 

of these arise in several places within the thesis. 

Our basic notation is more-or-less standard:- M, N, ... denote 
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(finite-dimensional) manifolds and C(M,N) denotes the manifold of 

smooth maps from M into N (the superscript ™ is always omitted 

since, for us, everything is smooth). The symbol D is almost always 

used to mean the (Frechet) derivative of a map between manifolds, 

whilst V is used for covariant derivatives. The symbols d and 6 

refer to the exterior derivative and (on a Riemannian manifold) the 

exterior coderivative respectively. The signature of a spacetime is 

taken to be -2 (so that the local diagonal form of a spacetime 

metric is ( + - - - ) ) . If G is a Lie group, then the Lie algebra 

of G, denoted LG, is the space of left-invariant vector fields 

on G and is naturally isomorphic with T^G. 

Note that we make no attempt to discuss the global analysis 

underlying the infinite-dimensional spaces which appear in this 

thesis. Appropriate analytical references are given where appropriate. 

For physics, we use geometrized units in which the Newtonian 

gravitational constant G and the speed of light c are both 

unity. In these units, any physical quantity with dimension 

L^'t̂ M^ in nongeometrized units possesses dimension , and 

the corresponding numerical conversion factor required for trans-

Y S"~ 2 Y 

forming from nongeometrized to geometrized units is G c . For 

example; energy, mass and electric charge all have geometrized 

dimension L, whilst angular momentum has geometrized dimension L^. 
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1.0 Introduction - Why Spin? 

In this chapter, we Introduce and develop the theory of spinors 

as geometrical objects on a differential manifold. Our aim is to 

present the material in a real geometric setting as a precursor to 

using spinor ideas in general relativity, especially in Chapter 

Three. In this brief introduction, we present an outline of the 

reasons why spin structure is so important in physics in general, 

and in general relativity in particular. Many of the points we 

make in this section will be expanded and clarified in the main 

body of this chapter. 

From a historical point of view, spinors have been associated 

with much of the theoretical physics developed this century. There 

has also been an increasing relevance of spinors to "pure mathe-

matics", especially in differential geometry, both real and complex, 

and in topology during recent years. We indicate some of these 

more mathematical developments below. 

For ease of discussion we (artificially) partition the various 

interactions between spinor theory and physics into three loose 

categories, hopefully demonstrating the widespread appearance of 

spinor ideas in twentieth century physics. 

Category 1 may be called 'general relativity - spinors as a 

tool', category 2 is 'spinors and general relativity - a deeper 

relationship?', and, finally, category 3 is 'the rest of physics -

spinors as matter'. 

We begin by considering category 3. This refers to the seminal 

influence of Dirac [D 6 ] and followers such as Infeld and Van der 



Waerden [I 1 ], Laporte and Uhlenbeck [L 3 ] , Proca [P<9], 

Ruse [R 4" ]» Veblen [V 3 ]> and many post-1930 theoretical physicists. 

These workers successfully developed the idea of spinors, in par-

ticular four component or Dirac spinors, as a representation of 

spin-| fields. The study of spinors as representing matter fields 

and of the fundamental equations of physics which they satisfy has 

3 

continued to the present day. In recent years fermions of spin--^ 

appearing in supertheories have been added to the list of particles 

having such a spinorial representation. The interaction between 

spinors and physics, represented by category 3, may be regarded as 

fundamental in that fermions arising in nature have a natural in-

terpretation as spinor fields, or rather quantized spinor fields, 

on spacetime. 

Category 3 is concerned with spinor fields propagating on 

the arena that is spacetime. We now turn to the arena itself and 

how spinors shape its geometry. Category I refers to the use, 

especially over the past thirty years, of spinors as a tool in 

general relativity. In particular, we point out the simplifica-

tions introduced when structures intrinsic to general relativity 

are translated into spinor form. For instance conformal and null 

structures, curvature quantities and Einstein's equations have 

all enjoyed greater analysis in the spinor setting (see, for 

example, Penrose and Rindler [P<M], and Geroch et al. [G 9-]). 

The spinors used here are the two component or Weyl spinors, and 

are introduced initially as a tool, although the physical and 

geometrical insights aroused by the transition to spinor form 

already suggests that there is, perhaps, a deeper underlying 

structure in gravity theory which is related to spinors. 



The tensor h- spinor translation used in general relativity 

rests heavily on the original work of Infeld and Van der Waerden 

([I 1 ], [V i ]), which was developed by other workers such as 

Bade and Jehle [B i ], Bergmann [B % ], Buchdahl and 

Payne [P S* ]. Even Einstein himself realized that spinor-

techniques were of use in discussing his theory - see, for example, 

[E ]. The geometrical version of the tensor H- spinor transla-

tion is introduced in section 1.7. 

The 1960's saw a huge unsurge in the popularity of spinor 

methods in general relativity - inspired by the earlier workers 

of the 30's, 40's and 50's, and spurred on by the insights of 

people such as Roger Penrose - see most of the Penrose literature 

referenced in Chapter 7, but in particular fP 6 ] and [P40] for 

the earliest work by him. The spinor tool was, by now, being 

applied to basic questions in gravitational theory such as radia-

tion and asymptotic structure. We review some of these develop-

ments in Chapter 3 and references to literature may be found there. 

Through the work of the 60's and 70's, it became clearer and 

clearer that spinors were a very powerful technical tool in 

analyzing the structure of general relativity. The theory of 

twistors, again initiated by Penrose [P40], was partly inspired 

by the obvious importance of two component spinor methods. 

Twistor theory has lead to further mathematical developments (see, 

for example, Wells [ W ] as well as being of use in modelling 

physical phenomena. Whether or not twistors have anything of 

importance to say about the underlying structure of quantum gravity 

(as is hoped by certain workers) remains to be seen, but the theory 

is certainly an important contribution to complex geometry in its 
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own right, as well as shedding light on real geometry and real physics, 

We now consider category 1 wherein spinors and spacetime seem 

to be much more closely linked. Many properties of topology and the 

geometry defined by Lorentzian metrics in dimension four already 

contribute to the possibility of spinors in analyzing specetime 

structure, but since around 1980, these properties, along with cer-

tain other observations, have lead to the suspicion that spinors 

in classical general relativity are not only very useful, but 

fundamental. In fact, it may be that we shouldn't talk about 

spinors in general relativity, but about general relativity in 

spinors. 

The main contributions to the suspicion just mentioned are 

the following four instances: (i) The use of hypersurface Weyl 

equations in proving the positivity of gravitational mass. This 

was due to Witten [W 9 ] for the mass at spacelike infinity, and 

to Ludvigsen and Vickers, also see Horowitz and Tod for 

the mass at null infinity. Ludvigsen and Vickers have also proved 

other important physical inequalities using similar methods [LiX]. 

(ii) The use of spinors in formulating quasi-local definitions 

of kinematical quantities in general relativity. We refer mainly 

to the work of Ludwigjen and Vickers [L'10]. These definitions 

of mass, momentum and, (unfortunately) to a lesser extent, angular 

momentum - are apparently fundamentally non-tensorial, and 

depend upon the use of spinors. Case (iii), which we wish to 

cite, is along similar lines as (ii) , but using a twistorial 

definition of quasi-local quantities, again in a fundamentally 

intrinsic way. The spinorial link between (ii) and (iii) is not 

fully understood, but see Shaw [S 7^^], and remarks in Chapter 3 
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of this thesis. (iv)concerns very interesting suggestions of 

Ashtekar in relation to a spinorial formulation of the 

canonical or 3+1 formalism in general relativity. A possible 

corollary of Ashtekar's work is the seemingly inseparability 

of spinors and gravitational energy - SL(2,(C) (two component) 

spinors arise, not because of the Lorentzian signature of space-

time, but rather because of a complexification of the group SU(2) 

associated with a splitting of space and time, as would occur in 

considerations of energy in a four dimensional setting. 

The four cases discussed above are all, a priori, in the 

context of classical general relativity. It seems possible, 

however, that the real (or complex!) significance of spinor struc-

ture might emerge when the supposed quantum nature of physical 

reality is taken into account. Ashtekar, in particular, resolves 

some of the problems encountered previously with a 'quantization' 

of gravity in his spinorial version of the canonical set-up. In 

fact his methods lead to a new Hamiltonian in terms of a non-

local variable. We have already hinted at the fact that twistor 

theory is motivated, in part, by a desire for a quantum theory 

of spacetime, so if this desire is realised, there should be some 

important rSle for the Penrose, or other, quasi-local quantities 

to play - perhaps as generators of non-local symmetries in some 

sense. 

Recent developments, such as string theory, which extend or 

encompass general relativity, also use spin structure in a funda-

mental way (see, for example, Seiberg and Witten [Sif ]), but we 

do not discuss such matters here. Indeed, our main eventual 

concern will be the use of spinors (fundamental or otherwise) in 
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classical general relativity, in particular in relation to kine-

matical quantities. See Chapter Three. 

We complete this introduction with a few words concerning the 

influence of spinors on topology and geometry over recent years. 

Some of these influences are motivated by physical ideas and some 

have been of great use in developing physical models of our universe, 

giving another demonstration of the fruitful interplay between 

physics and mathematics. 

Work of a mathematical nature interacted with the physical use 

of spinors even in the early days; perhaps especially in the 

early days, of spin history. The work of Cartan [C JL ] was essen-

tially the first treatise on the subject, and influenced other 

expositions such as those of Brauer and Weyl [B 25 ] , Taub and 

Veblen [T 2, ] and Whittacker [W f ]. As differential geometry 

began to influence mathematics more, so spinors began to reach 

a wider audience, especially in the 50's and 60's, when the work 

of Chevalley [C ̂  ] , Crumeyrolle [C and Lichnerowicz [L lo ] 

were published. 

We mention a few diverse areas of contemporary mathematics 

where spinor ideas have had an impact. In differential geometry, 

spinor techniques have been useful in the study of curvature 

(Lawson and Yau [L ] , elliptic operators (Hitchin [H-/O ]) and 

geometric quantization (Blattner and Rawnsley [B^^]). In 

topology and related areas, there have been applications to 

K-theory (Atiyah et al. [A 25 ]), index theory (Baum and Douglas 

[B ^ ]) and the spectral theory of Toplitz operators (Boutet de 

Monvel and Guillemin ]). 

We hope that this brief introduction has served to indicate 
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the widespread use of spinors in mathematics and physics, and the 

bridging role they play between these disciplines. Spinors will 

obviously continue to constitute an important part of general 

relativity, and the current tantalizing glimpses of the funda-

mental nature of spinors will hopefully lead to a fuller under-

standing of the structure of spacetime in the near future. 

In the meantime, as we have indicated above, the main aim of 

this chapter is to explain the theory of spinors necessary for 

Chapters Two and Three. We also point out several constructions 

not emphasized in existing literature, in particular in sections 

1.4 and 1.9, wherein certain important notions are geometrized. 

We will be concerned with Weyl spinors rather than with 

Dirac spinors, since the former are more important in gravity 

theory and are also mathematically more basic. Since Dirac or 

Majorana spinors do not make an appearance in this particular 

work, we do not give any treatment of Clifford algebras in this 

chapter. We also avoid the use of complex geometry if real 

methods suffice, and we make no attempt to discuss the algebraic 

topological constructions involved in spin structures. Results 

concerning obstructions and so on will be quoted without proof. 

In fact, since many of the proofs of results quoted in this 

chapter are standard, we omit them here. 

Chapter One is arranged as follows: In section 1.1, we 

define spinor structures in both a metric dependent and metric 

independent manner. Examples of concepts Introduced in section 

1.1 are given in section 1.2, as well as some extensions of these 

ideas. For physics (and geometry!), we need covariant deriva-

tives of spinor fields, and these are discussed in section 1.3. 
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We always regard principal bundles as central and vector bundles 

as derived, so that covariant derivatives are introduced via 

connections in principal bundles, though their use will, of course, 

rely on the Koszul interpretation as a derivation on sections of 

algebra bundles. The basic results concerning principal bundles 

which we use in this chapter (and others) are summarized in 

section 6.1, and we assume that these are known. 

Any physical theory requires a configuration space (or at 

least a phase space), and in section 1.4, we define certain 

possibilities for such a space for the case of spinor fields. 

We show the intimate connection with the metrics defining the 

geometry of the underlying manifold and then, in section 1.6, 

we demonstrate the inherent difficulties of introducing an 

appropriate symmetry or invariance group for the configuration 

space. 

Conformal geometry is another important constituent of the 

theory of general relativity, since the null and causal structure 

of spacetime are associated with a conformal class of Lorentzian 

metrics, rather than with just a fixed metric. We develop some 

relationships between spin and conformal structure in section 1.5. 

Incidentally, sections 1.5 and 1.6 are both concerned with the 

relationships between the structure of the space of metrics on a 

manifold on the one hand and the structure of the spinor con-

figuration space on the other. The ideas of everywhere invariance 

in the context of the space of metrics (see Chapter Four) may 

lead to further insight into the structure of the space of spinor 

fields, and this presents an important avenue for future work. 

Since spinors are so useful in physics in general, and in 



general relativity in particular, it seems natural to assume that 

the spacetime manifold admits a spin structure, and hence spinors 

and spinor fields. In section 1.7 we show that spin structures 

and four dimensional spacetimes fit especially neatly together, 

and that the requirement of spin structure is a very weak one. 

Indeed, spin structures will automatically be admitted if other 

basic physical desires, such as causality, are to be encompassed. 

Section 1.8 turns around the ideas of section 1.7, and gives a 

construction of global spacetime geometry starting from a basic 

assumption of spinors on a four dimensional manifold. The idea 

that one should regard geometry as derived from a more basic 

spinor structure is not unattractive, and indicates links with 

a discrete spacetime structure (see Penrose and MacCallum [P40]). 

We conclude Chapter One by bringing together ideas of earlier 

sections and demonstrating, in section 1.9, how the very concrete 

concept of the space or null directions may be analyzed in terms 

of spinors and conformal structure. The space of null directions 

may even be used as an arena in which the equations of physics 

may be formulated. This material is a geometric unification of 

ideas of earlier workers and may be regarded as a framework for 

future work. 

Chapter One provides a basic account of the spinor ideas we 

use in the rest of the thesis; it attempts to unify natural notions 

such as metrics, conformal structures, symmetries, null structure 

and, of course, spinors and we hope that it goes at least a part 

of the way towards answering the question 'Why Spin?'. 
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1.1 Spin Structures and Metrics 

Let M be a differential manifold of dimension n. M is 

usually assumed to be connected, and for simplicity we deal only 

with the case of orientable manifolds (with a given orientation) 

in this section. Extensions to the non-orientable case will be 

briefly discussed in section 1.2. We will be considering metrics 

on the manifold M, and for definiteness we restrict our atten-

tion to Riemannian metrics, i.e. signature zero metrics, in this 

section. Section 1.2 will give examples of the pseudo-Riemannian 

case, and all the definitions and results of this section will 

apply to these metrics. Eventually, of course, we will be mainly 

concerned with Lorentzian metrics (of signature minus two) on four 

dimensional manifolds - see sections 1.7, 1.8, 1.9 and Chapters 

Two and Three. In the Lorentzian case we assume that (M,g) 

(g the Lorentzian metric under consideration) is not only oriented 

(a concept which depends only on topology), but also time oriented 

(a g-dependent concept in general), i.e. we assume that any 

Lorentzian manifold is spacetime oriented. Whichever signature we 

use, we will denote the space of metrics of that signature on the 

manifold M by Met(M). See Chapter Four for more details on the 

structure of the infinite dimensional manifold Met(M). 

Let GL (M) be the principal GL (n, E.) - bundle of oriented 

frames of the oriented manifold M, so that we may write 

+ + 

GL (n, 10 GL M 1.1.1 

where GL^(n, R) = {A 6 GL(n,]R) : det A > 0} is the identity 

component of the group of linear automorphisms of ]R̂ . To be 
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strict we should use the symbol to represent the principal 

bundle, but it will be convenient to abuse notation and refer to 

any bundle using its total space. If we wish to be explicit we 

use an expression of the form 1.1.1. Properties of principal 

bundles and associated concepts are summarized in section 6.1. 

+ 

We should note that the frame bundle GL (M) is a very dis-

tinguished member of the class of principal GL (n, H) - bundles 

over the manifold M. In fact GL (M) is much more intimately 

connected with the base M due to the existence of the canonical 

or soldering l-form on GL^(M). The frame bundle may be charac-

terized as the unique principal GL"'"(n, B.) - bundle over a manifold, 

which possesses a l-form enjoying the properties of the soldering 

form (see Appendix 6.1). For this reason, bundles associated with 

the frame bundle have special properties, for instance the tensor 

bundles over a manifold are acted upon by the diffeomorphism 

group in a natural way. The spin bundles we shall define shortly 

are prolongations of the frame bundle, and they too are more rigidly 

fixed to the base than other principal Spin(n)-bundles. So, although 

spinors are not as natural a concept as tensors on a 'bare' mani-

fold M are, they are, at least, bound to the structure of M in 

an important way. We introduce the spin soldering in section 1.3. 

The idea of soldering leads, via a connection, to torsion, and 

although torsion vanishes in classical general relativity, it still 

plays an important role (see Trautman [T 5 ] and, for an interesting 

account of spin-torsion interplay, see Rapoport and Sternberg [R i ]). 

Now we recall that an SO(n)-structure on M is a reduction of 

-f . 

GL (M) to a principal SO(n)-subbundle, and that SO(n)-structures 

are in bijective correspondence with Riemannian metrics on M: For 
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any g 6 Met(M), the bundle 

SO(n)<-+ SO(M,g) M 1.1.2, 

of oriented g-orthonormal frames is an SO(n)-structure. Conversely, 

given any SO(n)-structure P, there exists a unique g 6 Met(M) 

for which SO(M,g) = P. 

+ 

Let r: GL (n,]R) —^ GL (n,]R) , A: Spin(n) —>• SO(n) be the 

unique, nontrivial (n $ 2) double covers of GL"^(n,]R), SO(n) 

respectively (see, for example, Crumeyrolle [C •/4-]) . These covers 

are both universal for n $ 3, and have the following properties: 

Ker r = ZZg 3 Cent(GL (n,]R)) , Ker A = Cent (Spin(n)) , and 

r|Spin(n) = A, so that T ^(SO(n)) = Spin(n) $ GL*(n,E)' 

We now introduce the notion of spin structure on the manifold 

M. This is just a prolongation of a frame bundle that agrees with 

the double covering on each fibre, so that the local group acting 

at each point in M becomes a double cover of the frame group. 

In fact we define two notions of spin structure. The first is more 

universal in that it is metric independent whilst the second is 

associated with Riemannian structures on M. We demonstrate that 

the two concepts are closely related and, in fact, that there is 

essentially a unique notion of spin structure on a manifold. An 

account of spin structures may be found in many places in the 

literature, for example Hitchin [H^O], Crumeyrolle [ C , 

Dabrowski and Percacci [D ̂  ] and Milnor [M ̂  ]. 

Definition (1.1)1: A spin structure s on M is a r-prolongation 

(GL (M) , n) of GL (M) to GL (n,E.). i.e. GL (M) is a principal 
—I— 

GL (n, E.) - bundle over M, and n: GL (M) — G L (M) is a principal 



-19-

bundle homomorphlsm over the identity, id̂ ., of M, such that 

n(uA) = n(u)r(A), for all u G GL (M), A 6 GL (n.lQ. 

Two spin structures s^, S2 on M are said to be equivalent, 

s^ ~ Sg, if the respective prolongations (GL^ (M) , n^) , (GL2(M),ri2) 

+ 
are equivalent F-prolongations of GL (M), i.e. if there exists a 

"Wrt- "Vlrt- '\j'\j+ 
principal GL (n, ]R) - bundle isomorphism f: GL (M) —> GL^ (M) over 

•x, 
id^ such that r]̂  ° f = 

a, 
Let E(M) denote the set of all spin structures on M, and 

% 

let Z(M) 5 Z(M)/^, denote the set of equivalence classes of spin 

structures on M. Note that Z(M) could be empty since, in 

general, the fibrewise double coverings will not glue together con-

tinuously to form a bundle (i.e. a topological obstruction will 

exist). If Z(M) f (p, we say M is spin. 

Definition (1.1)2: Let g € Met(M). A g-spin structure s on 
S 

M is a A-prolongation (SO(M,g), n ) of SO(M,g) to Spin(n). 
S 

Two g-spin structures, s , s on M are said to be 
Si 82 

equivalent s^ s^^, if the respective prolongations 

(SCL(M,g), n ), (SO„(M,g), n ) are equivalent A-prolongations 
§1 ^ §2 

of SO(M,g). 

Let E(M,g) denote the set of g-spin structures on M, and 

let E(M,g) 5 E(M,g)/a. denote the set of equivalence classes of 
'\j'\j O/ 

g-spin structures on M. For s = (SO(M,g),n ) 6 Z(M,g), 
§ S 

SO(M,g) is called the bundle of (g,s )-spin frames. 

Given any g 6 Met(M), define a map 

r : Z(M) Z(M,g); (P,n) (P ,n ) 1.1.3, 

(where, for convenience, we write P rather than GL (M)) 

where P n ^(SO(M,g)) and n = n|P . 
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% 
(P , n ) is clearly a g-spln structure on M for each spin 
S S 

_ /U rXi 
structure s = (P,n) on M, so r does indeed map into E(M,g). 

§ 

In fact it is not hard to show that r^ is a bijection of Z(M) 

'\t—X 

onto E(M,g), for each g 6 Met(M). The inverse map, r : 

'\̂  0/ 
E(M,g) —^ Z(M), may be constructed as follows: Suppose 

s = (SO(M,g),n ) 6 E(M,g). Spin(n) g GL (n,E.), so there exists 

the natural left action by group multiplication of Spin(n) on 

'V\,+ 
GL (n,E.). Hence we may form the associated bundle 

n j OA/I 

P = SO(M,g) X GL (n, ]R). Note that SO(M,g) is a reduc-
Dp in. \ riy 

+ _u 

tion of GL (M), and so the extension SO(M,g) GL (n,dR) 

may be canonically identified with GL (M). Now we may define 

n: % -+ GL*(M) = SO(M,g) GL+(n,lO by n([(2,A)]) 

= [(n (u), r(A))], for all [(u,A)] 6 P. The map n is well 
ny\, (A, 

defined, and it is clear that the map; (SO(M,g),n ) >• (P,n) 

just constructed is precisely r : Z(M,g) —>- Z(M). 

In fact if s ~ s_, then r (s ) ~ r (s„) (similarly if 
-L ^ g J_ g Z 

"̂ -1 '̂ -1 
fs \ ~(s \ then r (s ) % r (s )), and so r projects to 

g g j g g t ' g " ^ - ^ 

a well defined bijection of the quotients by : 

r : Z(M) » Z(M,g); [(P\n)] ' » 1.1.4. 
8 6 6 

We summarize the above result: Given any g 6 Met(M); 

E(M,g), the set of equivalence classes of g-spin structures on M, 

is in bijective correspondence with E(M), the set of equivalence 

classes of spin structures on M. In particular, card (E(M,g')) 

= card(E(M,g)) for all metrics g, g', and M is spin, i.e. 

E(M) =1= ̂ , if and only if E(M,g) =j= <j) (any g 6 Met(M)). 

Therefore, the topological obstruction to the prolongation of 

GL (M) to GL (n,]R) is precisely the same as the obstruction to 
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prolonging SO(M,g) to Spin(n) (for any g 6 Met(M)). It is 

well known that this obstruction is the second Stiefel-Whitney 

class, w^CTM) 6 H^(M; » of the tangent bundle, TM, of M 

(See, for example, Milnor [M ̂  ]). If ^^(TM) vanishes, then, 

for any g 6 Met(M), there will exist at least one g-spin struc-

ture on M, and hence at least one spin structure on M. In 

general there will exist inequivalent (g-) spin structures if 

M is spin. 

It is known that (M; 22^) has a natural free transitive 

action on Z(M,g) (for any g 6 Met(M)), and hence on E(M) , 

so that Z(M) is an affine space for (M; . The action: 

(M; Zg) X E(M) — E ( M ) may be constructed using a Steenrodesque 

argument using transition functions and a representation of co-

V 

homology classes as Cech-cocycles. Fixing an arbitrary 

[(Pg,n )] 6 Z(M), we obtain a bijection: 

1.1.5, 

and so the different equivalence classes of spin structures are 

parameterized (after choosing an arbitrary origin) by the elements 

of yiCMiZg)' 

Note that, a priori, given two inequivalent spin structures 

Oi /b 
^̂ l''̂ l 2**̂ 2̂  ' inequivalence could be due to the fact that 

OjOr)- Tj Oi 

the principal GL (n, B.) - bundles, P , belong to different iso-

morphism classes, or, given = P^, and n2 might still be 

inequivalent maps. We will remark on the possible physical signi-

ficance of such inequivalences in section 1.3. 

We have shown that, for any g 6 Met(M), g-spin structures 

are in bijective correspondence with spin structures. In other 
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words, there is only one notion of spin structure on a manifold M. 

The inter-relationship between spin structures and metrics will be 

explored in greater depth in sections 1.4, 1.5 and 1.6, but we make 

one remark now concerning this inter-relationship: 

Let ZMet(M) = {(g,s ): s is a g-spin structure, g 6 Met(M)}. 
S S 

EMet(M) is a bundle over Met(M) with projection; 

(&s ) —^ g, and the fibre over the metric g is precisely E(M,g). 

Now define r: Met(M) x E(M) —^ EMet(M); (g,s) t—> (g,r (s)), 
S 

a. 
where r is defined as in equation 1.1.3. Then we have, for each 

8 

spin structure s on M, a section r^ of ZMet(M), given by: 

r^ : Met(M) —^ EMet(M); g r(g,s) 1.1. 

for each metric g on M. 

This trivial construction will simplify some of this discussion 

in section 1.4. 

In this section, we have introduced the notion of a spin struc-

ture on a manifold M and the equivalent notion of a g-spin structure. 

These two ideas will form the basis of our constructions of spin 

objects for use in physics and geometry, namely spinors, spinor 

fields and spin connections. Recall that a spin structure contains 

two pieces of data; a principal bundle and also a bundle map. The 

former will be used to construct associated bundles, in particular 

vector bundles of spinors and thence spinor fields by taking 

sections. The bundle map part of a spin structure will be used 

to prolong linear connections on the manifold M, the resulting 

connections in the bundle of spin frames being the so-called spin 

connections, essential for constructing spinor differential equa-

tions. We will discuss fields and connections in section 1.3, 
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but first, we give some examples illustrating the ideas of this 

section. We also extend the definitions to show how non-orientable 

manifolds may be treated, and we introduce the case of Lorentzian 

metrics. 

1.2 Examples and Extensions 

1.2.1: If the manifold M is parallelizable (i.e. if GL"^(M) 

is trivializable, so that it admits a global section), then M 

is spin. Obviously, in this case, there is no obstruction to pro-

longing the frame bundle to a principal GL (n, K)-bundle. The 

converse to this is not true in general, as examples given below 

will illustrate, so spinor fields, for instance, may exist without 

the need for a global frame field. 

1.2.2 : If M is a compact, oriented manifold of dimension $ 3, 

then M is spin. Indeed, in the cases dimM =1,3, M is 

parallelizable and hence spin by 1.2.1. In dimension two, the 

Stiefel-Whitney class is just the Euler class modulo two, but the 

Euler class % = 2(l-g), where g is the genus of M, so again 

the obstruction to spin vanishes. In fact, there are 4® inequi-

valent spin structures on a two dimensional oriented compact 

manifold, so for the two sphere S^, for example, there is a 

unique (up to equivalence) spin structure. 

In dimension four, the above result is not valid, e.g. iElP̂  

(two dimensional complex projective space) does not admit a spin 

structure, since w^(T([]P^) =j= 0. (C]P̂  is of interest to gravity 

theory since it represents a gravitational instanton. 
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1.2.3: We now consider an example which will be of utmost impor-

tance to Chapters Two and Three, and indeed, to general relativity 

in general; the case of non-compact Lorentzian four-manifolds. 

Suppose (M,g) is a non-compact, spacetime oriented (see section 

1.7), four dimensional Lorentzian manifold, i.e. a possible model 

for spacetime. Then M admits a g-spin structure if and only if 

M is parallelizable. This result is proved in Geroch [G 2. ], and 

in a more general setting in Parker [F 2, ]• For example, any 

globally hyperbolic Lorentzian manifold of dimension four will 

always admit a spin structure and, since asymptotically simple 

and empty spacetimes (see section 6.3 and Chapter 3) are globally 

hyperbolic, spinors will exist in important physical situations. 

Another important feature of non-compact Lorentzian four-

manifolds is that any principal SL(2,(C) (= spin(l,3); see 

section 1.7)-bundle is necessarily trivial (see Isham, [iis ]) and 

so the information concerning inequivalent spin structures is 

carried by the bundle map part of the spin structure. 

We note that there do exist non-compact Lorentzian four-

manifolds which are not spin. Of course, such manifolds must 

necessarily be non-parallelizable. For example, (see Flymen 

let M = !CTP̂  - {*} so that M is a non-compact (real) four-

manifold. Since M is non-compact it admits a Lorentzian metric 

g, and, since M is simply connected, (M,g) is spacetime 

orientable. It can be shown that ^^(TM) =j= 0 so M is not spin. 

C 
In fact, M does admit countably many inequivalent spin '-structures 

Q 
(see 1.2.6 for a definition of a spin -structure), so a certain 

kind of spinor structure does exist on M. 

We shall usually assume that spacetime is non-compact (see 
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section 1.7), but compact spacetimes sometimes provide interesting 

examples. For completeness, we mention briefly the case of spin 

structures on compact spacetimes. We refer the reader to Whiston 

[W 5" ] for more (topological) details: 

Let (M,g) be a spacetime oriented Lorentzian four-manifold 

which is spin. If M is non-compact, then we have noted above that 

M is parallelizable, but this is not necessarily the case if M 

is compact. Indeed, by a theorem of Hirzebruch and Hopf, a compact 

spin spacetime is parallelizable if and only if its Pontrjagin 

number is zero. An example of a compact, non-parallelizable, spin 

spacetime (M,g) may be constructed as follows: Let 7L̂  act con-

tinuously on the four-torus = (S^)^ by conjugation in each 

S^-factor. The sixteen singularities in the resulting quotient 

space may be smoothed out to form the Rummer surface K. In order 

to introduce a Lorentzian metric, the Euler number, e(K) = 24, 

must be killed off, and this may be achieved by performing twelve 

spherical modifications. The resulting manifold M then admits 

a Lorentzian metric g. (M,g) now provides an example of a 

compact spacetime which is spin but not parallelizable (since the 

Pontrjagin number of M is non-zero). 

1.2.4: Let M = S^, the n-sphere, and let can 6 Met(S^) be 

the standard Riemannian metric on S^, induced by the round embed-

ding of in . Then the bundle of oriented can-orthonormal 

frames is given by 

SO(n)<-+ SO(S^\can) S* 1.2.1, 
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where SO(S^,can) = S0(n+1), and is obtained as the 

(Riemannian)homogeneous space S 0 ( n + 1 ) . 

Now we consider spin structures on spheres. For details of 

constructions, see, for example, Dambrowski and Trautman [D 2 ]). 

The case n = 1 is exceptional in that S^ admits two inequiva-

lent spin structures, whereas for n $ 2, there is a unique spin 

structure. The case n = 1 is as follows: S^ ^ S0(2) - U(l) - Spin(2) 

and Spin(l) = . The two spin structures are given by 

prn Pfn 
^1= ^2^^ ^ U ( l ) , U ( l ) x z ^ — ^ u ( l ) 1.2.2, 

s_: Z C » u(l) square, U(l) 1.2.3. 
f] 2 

For n $ 2, the unique can-spin structure on is: 

Spin(n) —»Spln(n+l) — S ^ , Spin(n+1) — - — ^ S0(n+1) 1,2,4, 
n 

using obvious notation. 

1.2.5: For completeness, we shall now make several remarks con-

cerning non-orientable manifolds, although below we shall only 

consider orientable (or rather spacetime orientable in the case of 

general relativity) manifolds. Recall that in the case of a non-

orientable manifold equipped with a metric, a reduction of the 

bundle of orthonormal frames to the group 0(n) is possible, 

but not to SO(n) in general. For a notion of spin structure, 

therefore, we must consider coverings of 0(n). Note that 0(n) 

(or its Indefinite analogue 0(p,q)) must be used if we wish 
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consider reflections (or space reflections and time reversals) , 

even in the case of an orientable (or spacetime orientable) 

manifold. 

We recall that SO(n) admits a unique, non-trivial (for 

n 5 2), double cover (universal for n % 3) by Spin(n). However, 

the full orthogonal group 0(n) has, in general several equiva-

lent double coverings (see, for example, Whiston [W 4 ' ] ) . A simple 

example is the case n = 1; 0(1) - , S0(1) - 1 , Spin(l) - TL̂ , 

and we have the unique (trivial) double cover: Spin(l) —^SO(l) . 

The orthogonal group has two inequivalent coverings given by 
-f- — 

A : Zg X ^ 2 — ^ ^ 2 ' ^ " ̂ 4 — ^ ^ 2 ' fact, for any n, 

there exist two such inequivalent double coverings of 0(n). The 

corresponding covering groups are known as Pin^^n), Pin (n), so 

that we have A^: Pin^\n) —»0(n), A : Pin (n) —>- 0(n) as the 

two double coverings of 0(n) (see Atiyah et al. [A 25' ]). Spin(n) 

may be obtained from either of Pin (n) by taking the identity 

component. The covering A: Spin(n) —> SO(n) is then just 

k"ISpin(n). 

+ 

A Pin -structure on M is then defined in a way analogous 

to that of a Spin structure in section 1.1, i.e. as a prolongation 

of the bundle of g-orthogonal frames, 0(M,g), (g 6 Met(M)) to 
i 

the group Pin (n). 

i 

The topological obstructions to the existence of Pin -structures 

are different from each other. In some cases one exists whereas 

the other doesn't (see, for example, Dabrowski and Trautman [D 2. ] ) . 

The number of distinct notions of (s)pin-structures (corres-

ponding to the number of inequivalent double coverings of the 

corresponding orthogonal group) increases if we consider the case 
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of indefinite metrics. For example, in the Lorentzian case, there 

are eight inequivalent double coverings of 0(1,3). These 

coverings correspond to the various combinations of signs for 

P^, T^, (PT)^ where P(T) is a choice of one of the two spin 

transformations in the fibre above space reflection (time 

reversal) in 0(1,3). Each covering will give rise to a dif-

ferent notion of "(s)pin" structure on a spacetime manifold, 

and hence, if such a structure exists, to different notions of 

spinors, spinor fields and spin connections. An example of 

such a construction, where the manifold is taken to be 

M = Mob X ]R̂  ("space" = Mob x ]R , Mob is the Mobius band), 

may be found on p. 421 in Choquet-Bruhat et al. [C 5" ]. See 

also Whiston [W 4- ] . 

1.2.6: Returning now to the case of orientable manifolds, we 

mention certain generalizations of the notion of spin structure. 

A generalization of the definition given in section 1.1 may be 

required for various reasons; perhaps because the underlying 

manifold is not spin, although 1.2.3 indicates that in cases 

of interest in general relativity, there will be a spin structure. 

Recall, however, that one considers occasionally compact four-

manifolds (often in particle physics) rather than imposing 

boundary conditions on fields propagating on non-compact space-

time, or in a Euclideanization procedure. In the compact case, 

a spin structure need not exist (Cf. 1.2,2). Another reason for 

generalizing spin structures is in order to incorporate extra 

structure into the theory - perhaps additional physical fields 
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whose spin transformation group is different from Spin(n). 

A generalization which has appeared in the literature (see 

Isham [I 8 ]s Isham and Avis [ AZ'5] » Hawking and Pope [H S ]) 

is that of enlarging the group Spin(n) to a group of the form 

G = Spin(n) x H, where H is a group whose centre contains 

Zg. An important example is the so called spin structure 

where H is taken to be S ̂  - this may be taken as the appro-

priate structure in electromagnetism where one has charged spinor 

fields coupling to a connection in a principal S^-bundle. 

Extending the spin group in the way just described can 

ensure that a particular manifold M admits a generalized struc-

ture, even though M is not spin in the sense of 1.1. For ex-

ample, an analogue of the result stated in 1.2.2 is that any 

Q 
compact, oriented manifold of dimension $ 4 admits a spin 

structure (Whitney's theorem). This result is not true for 

dimension >4, e.g.: ^^^^^/S0(3), x S ̂  do not admit 
C ^ 

spin structures (see, for example, Killingback and Rees [K ̂  ]), 

so a further enlargement of the spin group may be necessary to 

remove the obstruction. 

More details concerning the above examples may be found in 

the references cited. From now on we deal only with the spin 

structures as defined in 1.1, although the conformal spin structure 

which we discuss in section 1.5 may be regarded as a slight 

generalization. We will be concerned with orientable manifolds 

and, when we discuss spacetimes, Lorentzian metrics. Embeddings 

into a spacetime may induce on their domain a metric of positive 

(or negative)-definite signature, so the Riemannian case is not 

unimportant in general relativity, especially when induced spin 
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structures and so on, are considered (see Chapters 2, 3). 

Armed with a supply of examples convincing us that the con-

cepts introduced in section 1.1 are not empty, we move onto the 

notion of spinor fields and spin connections. 

1. 3 Connections and Fields 

Let M be an oriented n-dimensional spin manifold and let g 

be a metric on M. We choose an equivalence class [(SO(M,g),n )] 

of g-spin structures on M and, for ease of exposition, we work 

with an arbitrary representative g-spin structure 

s^ E (SOfM,g) ,rig) 6 Z(M,g). s^ corresponds, via r , to a unique 

spin structure on M. The purpose of this section is to consider 

bundles associated with the principal Spin(n) bundle SO(M,g), and 

to construct connections in SO(M,g) using n . Choosing a 

different representative of [(SO(M,g),ri )] will lead to isomorphic 

associated bundles and equivalent connections. On the other hand, 

different elements of E(M,g) will give rise to inequivalent bundles 

and connections, and this may have repercussions on any physical 

situation being described (See Avis and Isham Isham [I & ]). 

We remark on the use of elements of E(M,g) rather than ele-

ments of Z(M). Since E(M,g) is in bijective correspondence with 

E(M), we could start with a representative spin structure 

s = (GL (M),n) of an element of Z(M), and then consider the 

bundles associated with GL (M) and connections in GL (M) . How-

ever, to define spinor fields representing useful geometrical and 

physical quantities, we require that the fields transform under 

representations of Spin(n) (the double cover of the physically 
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significant rotation group SO(n)) rather than of GL^(n,]R) . 

In other words, a given metric g 6 Met(M) is needed to act qua 

Higgs field, and to break the symmetry by reducing the structure 

group down from GL^(n,M) to SO(n). 

Given any metric g, then we must just consider the g-spin 

'h 
structure r (s), corresponding to any spin structure s on M, 

S 

so, from a mathematical point of view, considering g-spin struc-

tures only involves no loss of generality. We may also wish to 

consider the coupled configuration space of metrics and spinor 

fields (see section 1.4), and then we must take into account the 

fact that each metric gives rise to a distinct space of spinor 

fields. These distinct spaces fit together as fibres of an 

infinite dimensional vector bundle over Met(M) (or algebra 

bundle if we consider sums over all representations). There is 

also the possibility of taking into account the fact that there 

may exist inequivalent spin structures, and then the metric-spinor 

field configuration space should be extended to a metric-spin 

structure space. We investigate these configuration spaces in 

more detail in section 1.4, but, for the moment, let us return 

to a fixed metric g and a fixed g-spin structure s . 

'Xj'XI 

We have at our disposal a principal Spin(n)-bundle SO(M,g) 

together with a principal bundle homomorphism : SO(M,g) SO(M,g), 

such that ng(uA) = n^/u)A(A), for all u 6 SO(M,g), A 6 Spin(n). 

Suppose, now, that p € Hom(Spin(n), Diff(V)) is a left action of 

Spin(n) on a manifold V. We may form the associated bundle 
SO(M,g) X . V with typical fibre V. In particular, given 

op m (.11/ 

any p 6 Hom(SO(n), Diff(V)), we have the lifted left action 

p = p°A e Hom(Spin(n), Diff(V)), and the corresponding bundle 
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tfomorphism (over i^^)' 

n^(p) : SS(M,g) "spinfo)? - *SO(n)V 

defined by ng(p)([(u^C)]) = [(n (u^,E)] 1.3.1, 

for all [(u,G)] 6 SO(M,g) Of course, in general, there 

will exist actions of Spin(n) which do not arise as lifts of 

SO(n)-actions. Indeed, those actions, in particular representations, 

of Spin(n) which are not equivalent to lifts of SO(n)-actions, are 

one of the reasons for the introduction of spin structures in the 

first place. e.g. : the classification, using spin, of particles 

transforming under irreducible representations of the Poincare 

group in particle physics (See Wigner [W 49]). 

We now restrict to the case where V is a vector space (often 

finite dimensional) and p G Hom(Spin(n), GL(V)) is a representa-

tion of Spin(n) on V. In this case, the associated bundle 

SO(M,g) X . V is a vector bundle over the manifold M. 
bp m \ n y 

OAj 

Definition (1.3)1: Let s = (SO(M,g) ,rig) be a g-spin structure 

on the manifold M, and let p be a representation of Spin(n) on 

the vector space V. Then a spinor of type (s ,p, V) is any 
S 

Wj 
element of the associated vector bundle SO(M,g) x . V, and 

^ Spin(n) 
a spinor field of type (s ,p,V) is any element of 
'VU 

Typical examples of representations p of Spin(n) arise 

as representations of the Clifford algebra of (]R^, can) or, as 

described above, lifts of representations of SO(n). In the latter 

case, suppose p 6 Hom(SO(n), GL(V)), then we have an isomorphism 

of vector bundles: 
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n^(p) = SO(M,g) » SO(M.S) Xso(n)V 1.3.2, 

where n (p) is defined as in equation 1.3.1. This isomorphism 

will be important in section 1.7. For example, let p be the 

defining representation of SO(n) on ]R̂  . Then we have the 

vector bundle isomorphism: 

n^(p) : S S ( M , g ) IM 1.3,3, 

since, in this instance, the vector bundle associated, via p, to 

the bundle of g-orthnormal frames SO(M,g) is precisely the tangent 

bundle, TM. An analogue of equation 1.3.3 will form part of the 

Infeld-Van der Waerden isomorphism in section 1.7. 

Before defining spin connections and associated covariant 

derivatives, we make two remarks; Firstly, using the fact (see 

section 6.1) that there is a bijective correspondence between 

r(SO(M,g) regard 

a spinor field as an equivariant map from the bundle of (g,s )-
8 

spin frames into the vector space V (this map just associates 

with each spinor field the components of the field at a point 

with respect to a particular spin frame at that point). Secondly, 

once we have spinor bundles, we may consider k-forms on the 

manifold M which take their values in such bundles, i.e. spinor 

valued differential forms on M. Such vector bundle valued forms 

may be used in the formulation of definitions of quasi-local 

momenta in general relativity (see Chapter 3). 

In order to write down spinor differential equations as are 

used in particle physics (for example the Dirac and Weyl equations, 

and also the wave equations of supertheories) and in general 
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relativlty (the spinor versions of Einstein's equations, for in-

stance, as well as the spinor propagation/initial value equations 

used in positivity proofs and in quasi-local kinematics - see 

Chapter 3), we need the notion of covariant derivatives of spinor 

fields. These arise from a connection in the bundle of spin 

frames, as we now indicate. 

w, 
Consider the principal bundle homomorphism n : SO(M,g) ̂  SO(M,g), 

'xj 

arising from s 6 E(M,g). This homomorphism is two-to-one on each 

fibre but Dq : TSO(M,g) —^ TSO(M,g) restricts to an isomorphism 
'W, 

of each tangent space of SO(M,g) onto the corresponding tangent 

space of SO(M,g). The Levi-Civit^ connection, w g Conn(SO(M,g)), 

of g gives rise to a distribution on SO(M,g) which may be 

pulled back using Dn to a distribution on SO(M,g). Since n 
8 § 

is a homomorphism of principal bundles, the induced distribution 

on SO(M,g) will define a connection in SO(M,g). A more useful 

construction of this induced connection is in terms of the con-

nection forms (see section 6.1 for more details concerning induced 

connections): 

Let = DA(e): L(Spin(n)) —^ L(SO(n)) be the Lie algebra 

isomorphism induced by the covering A: Spin(n) — S O ( n ) . Then 

the connection form w = w(s ) corresponding to the distribution 

constructed above may be written 
Oj -1 A 
w = A, o n w 1.3.4, 

g g 

i.e. for all u € SO(M,g) and v 6 T^SO(M,g), we have 

a. 1/ —1, . ,1^ ."xj 'x, 
w(u).v = h. (w (n ( u ) ) . D t i ( u ) . v ) 1 . 3 . 5 . 
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Definltlon (1.3)2: Let w € Conn(SO(M,g)) be as just constructed. 

'\j 
Then w is called the spin connection associated to the g-spin 

structure s on M. 
g 

'Xi '\j 

Given w, and a representation p of Spin(n) on a vector 

space V, we may define various derivations as in section 6.1: 

Let E be any vector bundle over the manifold M, and let 

n^(E) = r(A^TM 0 E) be the space of k-forms on M taking their 

values in the vector bundle E. Here we take 

E - SO(M,g)Xgp.^(^)V, 

and, using w, we obtain the exterior covariant derivatives: 

1.3.5, 

for k $ 0, and, in the case k = 0: 

: r(E) » nl(E) 1.3.6, 

O-

so that is just the covariant derivative on spinor fields of 

% 
type (s , p, V). 

Using again the results summarized in section 6.1, we have 
to 

an analogue of equation 1.3.4 relating the curvature forms 0 = d , 

a. 0) 'V 'x, 

n = d w of the connections w , to respectively (Note that the 

d appearing here is not the same as those in equation 1.3.5, 

although there does exist a relation between the two - see section 6.1) 

- 1 A 
n = A j , ° r i J ^ 1 . 3 . 7 . 

We now have enough machinery to construct spinor differential 

equations, but we conclude this section by remarking on the notion 

of spin soldering, referred to earlier in this chapter. 

There exists on SO(M,g) another vector valued form, Independent 
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of connections in SO(M,g). Recall that on the frame bundle of 

any manifold is defined the canonical ]R̂ - valued 1-form or 

soldering form 9 (see section 6.1). The form 9 restricts to 

and thence to SO(M,g), for any g g Met(M). We denote 

the restricted soldering form by the same letter 9, so that 

6 6 n^(SO(M,g), ]R^) is a tensorial 1-form of type ,]R̂ ) , 

where is the defining representation of SO(n) on E.̂ . 

8 is defined by: 

8(u).v = K ^(Dn^^u).v) 1.3.8, 

for'all V 6 T SO(M,g), u 6 SO(M,g), and where 

K : ]R.^—^ T̂ - , is the usual isomorphism of vector spaces 
U ^^(u) 

corresponding to the g-orthonormal frame u. 

Given the g-spin structure s = (SO(M,g),n ), we may lift 

n % 'Xj , * 'h'Xj 
9 to an B. -valued 1-form 9 = 9(s ) = n 0 on SO(M,g). Since 

§ S 

9 vanishes on vertical vectors in TSO(M,g), and since is 

a principal bundle homomorphism whose derivative restricts to an 

'Xi'XJ 
isomorphism on fibres of TSO(M,g), we see that 9 also 

'xj'xi 'xi 

vanishes on vertical vectors (in TSO(M,g)), and also that 9 

is equivariant: 

% % -1 % 
8 = p(A ).8 1.3.9, 

for all A 6 Spin(n) , and where p = P o A 6 Hom(Spin(n) , GL(n,E.)) , 

and R is the right action of Spin(n) on SO(M,g), i.e. 

^ . n. n 
8 € (SO(M, g) , E. ) is a tensorial 1-form of type (p ,]R ) . 
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Definition (1.3)3: 0, as just constructed, is called the spin 

soldering form associated to the g-spin structure s on M. 

As with any Censorial 1-form on a principal bundle, 8 may 

be regarded as 1-form on M taking its values in the appropriate 

associated vector bundle. In this case, the vector bundle is 

SO(M,g) X . , H = TM by equation 1.3.3, so that 
opxri 

9 € r(T M 0 TM) - r(End(TM)). In fact, since 6 corresponds to 

the identity endomorphism of TM under this identification, so 

Oi 
does 6, but note that there is an additional step in the 

identification of 0, namely that which uses equation 1.3.3, 

and hence n (p) which depends on the spin structure 
S 

O/Oi O/ 

s^ = (SO(M,g),n ). In other words, 6 may be regarded as the 

identity endomorphism of TM, but only after a spin structure-

dependent identification. 

Soldering and connections give rise to torsion forms. We 
W CO 

have that the torsion, 0 = d 9, vanishes identically because 
'X/Xj'X, 

0) is the Levi-Civit& connection of g. Let hor, her be the g 

horizontal projections on TSO(M,g), TSO(M,g) corresponding to the 

connections w , w respectively. Then it is easily shown that: 

* * 
hor o n = n ° hor 1.3.10, 

, Vb :V fXAj * " , O) " 
so that 0 = d 6 = (hor ° d)(n 8) = hor(n d0) = n (d 8) = n 9 = 0, 

s s s s 

so that w has vanishing "torsion" also. So the "spin torsion" 

associated with a spin connection as given by definition (1.3)2 

vanishes identically, but the fact that it exists is important, just 

as the Levi-Civit& torsion is important - fluctuations within 

Conn(SO(M,g)) about w will introduce torsion =j= 0. 
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We complete this section with some remarks on the use of spinor 

differential equations. In Chapter Three, we examine certain spinor 

differential equations, in particular on embedded submanifolds of a 

spacetime, and we shall introduce the required explicit formulae 

involving spin connections when we need them. Spinor differential 

equations, in addition, are used extensively in geometry (see 

the references cited in section 1.0). Of particular importance is 

the Dirac operator (associated with the Dirac representation of 

the Clifford algebra (B^, can) and with the Levi-Civit& con-

nection of a metric), and corresponding Weitzenbock type formulae 

for the "Dirac Laplacian". The use of one such formula is an 

essential ingredient in the Witten proof of the positivity of the 

ADM mass in general relativity. See Chapter Three and also 

Witten [W 9 ], Parker and Taubes [P A- ]. The Dirac operator is 

also very important in string theory, see for example, Mikkelson 

The spin connections defined in this section depend both on the 

metric and the particular spin structure used (The fact that we have 

used a particular representative of the equivalence class of spin 

structures [s ] 6 Z(M,g) is unimportant because, as we have 

remarked above, equivalent spin structures give rise to equivalent 

connections). In the next section, we examine more closely the 

inter-relationship between metrics and spinor fields, an inter-

relationship that is important in any dynamical theory of metrics 

and fields. 
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1.4 Configurations 

In this section we attempt to examine more closely the coupled 

configuration space of metrics and spinors. We commence with a 

definition of the canonical principal SO(n)-bundle of a manifold. 

Definition (1.4)1: Let M be an oriented manifold of dimension 

n. Then the canonical principal SO(n)-bundle of M is given by: 

SO(n) c » SO(M) » MeC(M) x M 1.4.1, 

where SO(M) = {(g,u) 6 Met(M) x GL*(M): u 6 SO(M,g)}, and 

c^Xg,u) = for all (g,u) G SO(M). 

There exists a natural free right action of SO(n) on SO(M) 

defined by ((g,u),a) i—»• (g,ua) for all (g,u) € SO(M) , a g SO(n) , 

and it is easy to see that a^, as just defined, is the corres-

ponding quotient map making equation 1.4.1 a principal SO(n)-

fibration. 

Let pr^: Met(M) x M —^ Met(M) be projection onto the first 

,-1. \ ̂  

M. i.e. the fibre above g in pr^°a^^: SO(M)—Met(M) is pre-

cisely the bundle of oriented g-orthonormal frames. 

Now let us assume M is spin and let s 6 E(M) be a spin 

+ 

structure on M. s is a F-prolongation (GL (M) ,n) of GL (M) 

to the group GL (n,]R), and we may now define a A-prolongation 

factor. Then (pr^ ° a^) (g) = SO(M,g), for each metric g on 

of SO(M) to Spin(n) as follows: 

Let SO(M,s) = {(g,u)6 Met(M) x GL (M): u 6 n (SO(M,g))}, 

and define n(s): SO(M,s) —^ SO(M); (g,u) (g,n(u)), for each 

(g,u) 6 SO(M,s). Now let a^Xs); SO(M,s) —> Met(M) x M; 

(g,u) > (g,n^^u)), where GL (M) —> M is projection. 
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It is clear that 

Spin(n) c » SO(M,s) » Met(m)x M 1.4.2, 

is a principal Spin(n)-bundle, and that (SO(M,s),n(s)) is a 

A-prolongation of SO(M) to Spin(n). 

Choosing an equivalent spin structure s' on M leads to a 

prolongation (SO(M,s'),n(s')) which is equivalent, qua prolonga-

tion, to (SO(M,s),n(s)). Therefore, each a 6 E(M) gives rise 

to an equivalence class F(ci) = [ (SO(M,s) ,ri(s)) ] (any s 6 a) of 

A-prolongations of SO(M) to Spin(n). 

Now fix the spin structure s (representing a 6 E(M) - any 

other choice of representative leads to equivalent structures in 

what follows, so that all the constructions are natural). We now 

define the projection: 

p(s) = pr^ ° o (s): SO(M,s) —^ Met(M) 1.4.3, 

-1 

so that, for each metric g, p(s) (g) is just the bundle of 

(g, r^(s))-spin frames (see the remark following definition (1.1)2 

regarding the notion of (g, s )-spin frames for a g-spin struc-
S ture s ). The principal Spln(n)-bundle SO(M,s) may be thus § 

regarded as a kind of universal s-spin bundle in the sense that 

it contains all the spin frames (coming from s) for all the 

metrics on M. 
% 

Now suppose p g Hom(Spin(n), GL(V)) is a representation of 

Spin(n) on the vector space V. We may define the associated 

'Xi'Xi 
vector bundle SO(M,s) x . V, so that, for each g 6 Met(M), 

op in. (̂11/ 
the bundle of spinors of type (r (s), p, V) is precisely the 



-41-

— 2 . ^ 
fibre (pr% ° p ) (g) , where p : SO(M,s) x . V—>Met(M)xM 

X s s bpin^ri^ 

is projection. 

A similar construction using the sum over representations of 

Spin(n) will lead to an algebra bundle over Met(M) x M which, when 

pr^-projected onto Met(M), has, as fibre over g 6 Met(M), the 

spinor algebra bundle associated to g and s. 

For a fixed representation p of Spin(n) on V, the 

associated vector bundle may be therefore regarded as a coupled 

configuration space of metrics and type-(s, p, V) spinors. To 

obtain a configuration space of metrics and spinor fields, we 

consider the (infinite dimensional) vector bundle 

E(M, s, p) » Met(M) 1.4.4, 

where E(M, s, p) = {(g,^): g 6 Met(M) and ^ 6 r((pr op^) *Xg))}, 

and projection is just projection onto the first factor. The fibre 

of E(M, s, p) over a particular metric g is then the C(M)-

module of spinor fields of type (r (s), p, V). 

Choosing another representative spin structure s' will yield 

an isomorphic vector bundle E(M,s', p) and hence an equivalent 

metric-spinor field configuration space. We write E(M, a, p) for 

the vector bundle isomorphism class of metric-spinor field configura-

tion spaces E(M,s, p), where s is a representative of a 6 E(M). 

% 1 
There are as many E(M, a, p) as there are elements in H , 

as was discussed in section 1.1. Obviously, an analogous construc-

tion gives rise to an isomorphism class of algebra bundles A(M,a) 

- the fibre of a particular representative A(M,s) in this case 

being the algebras of spinor fields for the metrics on M arising 

from the spin structure s. 
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•x, 
Returning now to, say, E(M,s ,p) , we remark that, in general, 

% 

there is no natural way of identifying the fibres of E(M,s ,p) , i.e. 

we can't identify the spaces of spinor fields arising from different 

metrics. In certain cases, however, an identification of these 

spaces may be made, and we discuss two such possibilities in sections 

1.5 and 1.6, In section 1.5 we restrict our attention to a sub-

space of Met(M) consisting of a conformal class C of metrics, 

and then there is an association of the spinor fields arising from 

different metrics in the conformal class C. Indeed, we may con-

struct a spin conformal structure which depends on C only, and 

not on a particular choice of representative metric. In section 

1.6, we discuss the action of the diffeomorphism group on spinor 

fields. The diffeomorphism group action may be interpreted as an 

identification of the spaces of spinor fields arising from the 

subspace of metrics corresponding to an orbit of a particular 

metric on M, in other words, to a geometry on M. 

A further enlargement of, say E(M,a,p) may be made in order 

to take into account the possible existence of inequivalent spin 

structures on M (depending, of course, on the cohomology group 

H ). We may introduce the metric-spin structure-spinor 

field configuration space E(M,p) = {(g,s,^): g 6 Met(M), 

s 6 E(M) and ij; is a spinor field of type (r (s) , p , V ) } . 

Quotienting E(M,p) by the equivalence relation 'v on spin struc-

tures s on M yields a space E(M ,p) equipped with obvious 

projections onto Met(M) and onto E(M). Since we shall always 

be concerned with a particular representative spin structure s 

of a fixed a 6 E(M), we shall pursue the study of E(M,p) no 

further here. Obviously, the metric-spin structure-spinor field 
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"u 

space E(M,p) would be important in a dynamical theory in which a 

transition between inequivalent spin structures could take place. 

In such a theory, an integration over E(M,p) would be performed 

in any path integral approach, and such an integration would in-

volve a summation over inequivalent spin structures, as well as 

over spinor fields and metrics. 

This section has introduced possibilities for a configuration 

space in the theory of spinors and we have indicated some of the 

complications inherent in building up a space of coupled metrics 

and spinor fields. In sections 1.5, 1.6 we investigate two ways 

in which structures on the space of metrics influence the coupled 

configuration space. There is obvious scope for further explora-

tion of the way in which the structure of Met(M), some aspects 

of which are discussed in Chapter Four, interacts with that of 

such spaces as E (M,a ,p ) . 

The diffeomorphism group action of section 1.6 is actually 

an action on E(M,p) (some p ) , or on E(M,a,p) if our attention 

is restricted to diffeomorphisms leaving invariant the spin 

structure. Before considering the diffeomorphism group, we turn 

to a study of spinors and conformal structure - an interaction 

which makes several appearances in this thesis. 

1.5 Spinors and Conformal Structure 

The reasons for this section are two-fold. Firstly, as we 

remarked in section 1.4, in general there is no way of identifying 

the spinor fields associated with different metrics, but if the 

metrics are members of some parameterized subspace of Met(M), as 
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in Chapter Four, an identification may sometimes be made. A simple 

example of such a parameterized subspace is provided by a conformal 

class. 

A second reason for being interested in spinors and conformal 

structure is that the interaction between the two is important in 

various aspects of general relativity. One important area of general 

relativity where spinors and conformal structure come together is 

that of null structure. Null structure is very closely linked with 

conformal structure (see section 6.2), and, as we shall see in 

Chapter Three, there exist very natural and important spinor propa-

gation equations on null hypersurfaces. 

A particular example we shall give in this section, namely 

the spin conformal structure on S^, is precisely the source of 

the notion of spin and conformally weighted functions, used in 

general relativity. Another example of how spin structure and 

conformal structure come together in a very physical situation 

is given in section 1.9. 

We use the notation of section 6.2 throughout this section. 

Alternative approaches to this topic may be found in Huggett and 

Tod [e 1£ ], Penrose [P g ], Penrose and Rindler [P<M ], and 

Flymen and Westbury [PiS]. More geometrical interactions are 

discussed in Hijazi [H 9 ] and Branson [B25]. 

The natural setting for spinors and conformal structure is 

a spin conformal structure and we discuss this idea shortly. 

Firstly though, following the spirit of section 1.4, we may con-

o, 

sider a more naive identification of fibres in E(M,s,p) over 

metrics belonging to a given C 6 Con(M) (see, for example, 

Hijazi [H 9 ] for an application of these ideas to the Dirac 
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operator, and section 6.2 for computations showing how the spin con-

nections corresponding to metrics in the conformal class are related) 

Suppose M is a spin manifold, g is a metric on M and 

s = (SO(M,g), n ) is a g-spin structure on M. Let f € C*(M) 

and fg the corresponding conformally related metric. The func-

tion f gives rise to an isomorphism c^ of principal SO(n)-

bundles, given by: 

c^: SO(M,g) SO(M,fg); u 1.5.1, 

for all u = {e } 6 SO(M,g). We recall (equation 1.3.2) that, for 

any p € Hom(SO(n), GL(V)), V any vector space, there exists an 

isomorphism n (p): SO(M,g) x . . V SO(M,g) x V of vecto 
§ opin\rî  DUV.̂ 1/ 

bundles. Here, Spin(n) acts on V via p E p ° A, as before. 

We therefore have an isomorphism (in fact an isometry) of (SO(n)-) 

vector bundles 

Cj(p) SO(M.g) SO'M-fs) "sO(n)' 

using equations 1.3.2 and 1.5.1. 

We now let SO(M,fg) be the unique principal Spin(n)-bundle 

over M, such that SO(M,fg) is the vector bundle 

O/O. a. 

associated with SO(M,fg) via the representation p of Spin(n) 

on V. In other words, SO(M,fg) is defined to be the bundle of 

Spin(n)-frames for the vector bundle SO(M,fg) *gQ(n)V. The 
n/b 

identification of SO(M,fg) x . , .V with SO(M,fg) x ,V 
bpitl \ Hy bUv̂ ri/ 

used to define SO(M,fg) gives rise to a homomorphism: 

rij: : SO(M,fs) » SO(M,g) 1.5.3, 

of principal bundles over id^, and then we may define a unique lift 



-46-

of the principal SO(n)-bundle isomorphism , so that c^ 

is an isomorphism of principal Spin(n)-bundles 

O/ Oi'Tj , 
Cg : SO(M,g) » SO(M,fg) 1.5.4, 

such that c„ ° n = ° c^. 
f g fg f 

Using the fact that c^ gives rise to isometries of vector 

bundles associated with SO(M,g), it is easily seen that 

ny\j 
(SO(M,fg), Hgg) is a fg-spin structure on M. 

We summarize the above construction: Given any g-spin 

structure s = (SO(M,g), n ) for some metric g on the spin § § 

manifold M, there is a natural fg-spin structure s 

= (SO(M,fg), n r ) for any metric fg in the conformal class C 
^ S g 

defined by g. Moreover, there is a corresponding identification 

of spinors (and hence spinor fields) of type (s ,p,V) with 

spinors (spinor fields) of type (s^ ,p,V), for any 

p € Hom(Spin(n), GL(V)). This identification is such that any 

spinor (field) associated with fg has the same components (in 

V) with respect to any (s^ , fg)-spin frame as the corresponding 

spinor (field) associated with g has with respect to the corres-

ponding (s ,g)-spin frame. Corresponding identifications of 

connections and so on may similarly be made, but it is more natural 

to consider such questions within the framework of spin conformal 

structures as we now indicate : 

Suppose C € Con (M) is a conformal structure on the oriented 

manifold M. Then C is equivalent to a reduction CO(M,C) of 

the bundle GL (M) of oriented frames of M to the subgroup 

CO(n) - SO(n) x of GL^(n, E.) . We recall that any representation 

P of CO(n) on a vector space V is of the form p(a,r) = r^p (a), 
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for all (a,r) g CO(n) , where w g g] (or ]R if V is real) is 

called the conformal weight of the representation p , and p is 

some representation of the group SO(n) on V. 

There exists a trivial extension of the double covering 

A; Spin(n) —^ SO(n) to a non-trivial (n%2), double covering 

(universal for n$3) A of CO(n) given by: 

A : CO(n) —» CO(n); (A,r) )-» (A(A),r) 1.5.5, 

O/O. , + 
for all (A,r) 6 CO(n) = Spin(n) x ]R . 

We may now define a C-spin structure on M in an obvious 

manner: 

Definition (1.5)1: Let M be an oriented manifold of dimension n 

and let C € Con(M). Then a C-spin structure s is a A-prolonga-

tion (CO(M,C),n^) of CO(M,C) to the group CO(n). 

We denote the set of C-spin structures on M by E(M,C) and 

the set of equivalence classes by Z(M,C), as in section 1,1, The 

obstruction to defining a C-spin structure on M is identical to 

that for a spin structure or a g-spin structure, namely the second 

Stiefel-Whitney class (TM). We have analogous maps to those in 

section 1.1: Z(M,C) Z(M), Z(M,C)^+ Z(M), for any C 6 Con(M) 

and we may perform similar constructions to those in sections 1.3 

and 1.4 for g-spin structures. 

Any representation of CO(n) is of the form: 

p(A,r) = r^ p(A) 1.5.6, 

for all (A,r) 6 CO(n), where w 6 E (or ]R if the representation 

is real) is called the conformal weight of the representation p, 
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o, 

and p is some representation of Spin(n). A differential form on 

M with values in the vector bundle CO(M,C) associated 

to CO(M,C) via the representation p 6 Hom(CO(n), GL(V)), is said 

to have conformal weight w. In particular for the case of 0-forms 

on M with values in CO(M,C) ^Qo(n)^' have the notion of a 

spinor field of type (s^, p, V); we say such a splnor field has 

conformal weight w and spin (representation) P . 

Definition (1.5)2: Let Sq = (CO(M,C),Hq) be a C-spin structure 

on the oriented manifold M where C is some conformal structure 

A 
on M. Let p 6 Hom(CO(n) , GL(V)) have conformal weight w 6 (C 

'A, 

and spin (representation) p g Hom(Spin(n), GL(V)). A spinor of 

A 

type (Sg, p, V), i.e. an element of CO(M,C) '^Qo(n)^' said to 

have conformal weight w and spin (representation) p. Similarly 

for spinor fields, ip g r(CO(M,C) 

If the spin transformation properties of a particular spinor 

field are known, then the conformal weight w may often be assigned 

using geometrical or physical considerations: For example, a Dirac 
-3/2 

spinor field has dimension (Length) , and so such a field is 

assigned conformal weight w = -3/2 (see Penrose and Rindler [P ] 

and Audretsch et al. [A 29- ] for more discussion of such matters). 

The definition of spin conformal connection follows that of a 

spin connection in section 1.3. We have A E DA(e,l): L(CO(n)) » L(CO(n)) 1.5.7, 

is"an isomorphism of the Lie algebra L(CO(n)) = L(Spin(n))® IR 

onto the Lie algebra L(CO(n)) = L(SO(n)) ® H , so given any con-

nection in CO(M,C), we may define a connection w = u(s^,C) 

in CO(M,C) by 



—49" 

^ "_1 * V 
w = A* o w 1.5, 

a, 
w is uniquely defined by the requirement that Dn^ maps 

Oi 

uj-horizontal subspaces onto w horizontal subspaces (see sections 

1.3 and 6.1). w is called a spin conformal connection. 
4-

The bundle of oriented C-frames is a subbundle of GL (M) 

and so has induced on it a soldering form 6, and hence the notion 

of (conformal) torsion 0 = d 0, associated with any con-
Wc 

nection in CO(M,C). If 0 vanishes, we say that w is a 
Weyl connection. Similarly, we have a spin conformal soldering on 

'h 'h 
co co 'av 

CO(M,C) with associated spin conformal torsion 0 = d o). 

Since L(CO(n)) = L(SO(n)) # H, we may write any connection 

Wg in CO(M,C) in the form: 

(j)̂ .l 1.5.9, 

V 

where w is a 1-form on CO(M,C) taking its values in L(SO(n)), 

and ((i is an E.-valued 1-form on CO(M,C) . We have a similar 
"A, 

splitting for the form : 

v 
a. 'v a. 
0) = cô #(j)̂ .l 1.5.10. 

v 
% ry 

where is L(Spin(n))-valued, and (|) is valued. 

Equations 1.5.9, 1.5.10 enable a splitting of curvature, 

covariant derivatives, etc., into a "spin"/"rotation" part and a 

"conformal" part. The following example will illustrate the 

above ideas: 

Example (1.5)1: (The two-sphere; S^). To demonstrate the ideas 

just discussed, and to introduce the very useful spin and conformally 

weighted functions, we give the example of the standard two-sphere. 
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There is also the concept of spin and boost weighted functions 

(related to an embedding of into a Lorentzian four-manifold, 

or, more generally to a (C reduction of the bundle of spacetime 

oriented Lorentzian-orthonormal frames) which we discuss in 

section 2.3, See also Geroch et al. [G '7 ], Penrose and Rindler 

[p 11 ], Curtis and Lerner [C 15 ], Dray [ b i z ] . 

Let can be the standard (round) Riemannian metric on S^, 

and denote by Can = C the standard CQnformal structure on 
can 

S^. The standard conformal two sphere turns out to play an 

important role in general relativity. Indeed, we show below that 

Conf(S^, Can) is isomorphic to the restricted Lorentz group. We 

have already discussed spin structures on n-spheres (see 1.2.4), 

and for the case n = 2, we have the bundle of oriented can-

orthonormal frames: 

sliC » S0(3) » S2 1.5.11, 

and the unique can-spin structure; 

;!<: » s3 » s2, s3 S0(3) 1.5.12, 

where S^ S^ is a Hopf fibration and n = A is the 

usual double covering. 

We also have a unique prolongation (CO (S^ , Can) ,ti ) of the 

bundle CO(S^,Can) to the group C0(2) ^ Spin(2) x ]R^ = (E . 

The total space of the prolongation is CO(S^,Can) = - {O} 

= s ^ x hr"*", and the projection is the standard projection; 

- W ) HE 5^ - S^. Thus the unique (up to equivalence 

of prolongations) spin conformal structure of (S^,Can) may be 
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written: 

c"*: » _ ^0} — g Z 1.5.13. 

Given any representation of (E on a vector space, we may 

form the associated vector bundle as above. In particular, we 

* 1 + 

may consider representations of (E = x ]R on 1. Let 

A * 
Pg ^ 6 Hom(iE , GL(1,(C)) be given by: 

A , 18. -2w 2is8 ^ . 
Pg ^(re ); z t — r e z 1.5.14, 

i8 * 

for all re € (C , z G (E, where w € (C and 2s 6 ZZ. The 

splitting I = X ]R̂  corresponds to the usual splitting of 
'VX, + 
CO(n) = Spin(n) x ]R , and we refer to w as the conformal 
weight of p , and to s as the spin weight of p We 

s,w —= s,w 

have changed our usual definition of conformal weight by a factor 

of -2 in order to conform with standard conventions in the litera-

ture of general relativity (for example. Held et al. [H '̂  ]). 

Let E(s,w) = (E^ - {O}) x * (C be the complex line bundle 
— (L 

o A. " 

over associated with the representation Pg ^ of (E on (E. 

Definition (1.5)3: A function of spin weight s and conformal 

weight w is a section of E(s,w). 

It can be shown that the Chern class (which completely 

characterizes line bundles) of E(s,w) is -2s G hZ(s2;Z) = 2l, 

so that, although the bundles E(s,w) arise from different re-
/V 

presentations of (E , they are not all topologically distinct 

(E(s,w) is topologically bundle isomorphic to E(s,w'), for 

all s,w,w'). We also note the natural identifications (reflec-ting the various representations), E(s,w) = E(-s,w) and 

E(s,w) ® E(s',w') = E(s+s',w+w'). 
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Spin and conformally weighted functions on have been 

used in geometry (see, for example, Parker and Rosenberg [P 3 ] 

for an application of the natural conformal Laplacian acting 

on such sections), but for us their relationship with structures 

in general relativity will be most important. We will investi-

gate some of these relationships in section 1.9 and in Chapters 

Two and Three, and as preparation for this we now interpret spin 

and conformally weighted functions in a more suitable way. We 

show, in particular, how the group SL(2,E) relates to conformal 

structures on S^, and since SL(2,{C) is the "spin group" of 

four dimensional Lorentzian geometry (see section 1.7), this 

provides a basis for the use of spin and conformally weighted 

functions in general relativity. Similar, but less geometrical, 

approaches to the link between Lorentzian geometry in four 

dimensions on the one hand and the two sphere on the other have 

been made by Penrose [P 6 ], Newman and Penrose [N 2 ], Held et al. 

[H 7- ], Lind et al. [L ̂  ] and Hansen et al. [H 3 ] • 

The standard conformal structure Can on stems in a 

natural way from a group action when is regarded as being 

one-dimensional complex projective space , and we demon-

strate this fact below (see 1.5.48). We construct the required 

actions as follows: 

Suppose first that we are given an action 

G X Y » Y 1.5.15, 

of a group G on a set Y. Suppose also that H is a normal 

subgroup of G, and then the induced action of G on Y passes 

to a quotient action 
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G/H X Y/H Y/H ; (gH, [y]y) [gy]y 1.5.16, 

for all gH G G/H [y] 6 Y/H. Let us now use 1.5.16 in the case 

where we take G = GL(2,Z), H = (C ( = and Y = - {0} 
z — 

with action given by 

GL(2,C) % (C2 - {0}) -+ - {0} ; (A,z) Aa 1.5.17, 

for all A 6 GL(2,(E), ^ G . The quotient group G/H is, 

in this case, SL(2,(C) (we have the short exact sequence of groups 

1 » GL(2,C) SL(2,C) » 1 1.5.18, 

where i is inclusion and 

a(A) = (det k) ^ k 1.5.19, 

for all A 6 GL(2,iC), where we take the principal value of the 

square root). The induced quotient action on 

is given by ^ € Hom(SL(2,E), Diff(S^)) where 

= [A^], 1.5.20, 

for all A € SL(2,(C) and [_z] 6 (Here [_Z] 5 IT(_Z) € 

* o r , 

denotes the (C -orbit of ^ 6 Ir -

It is straightforward to show that Ker (j) = , and so 

Im (j) = {(f) : A 6 SL(2,(C)} $ Diff(S^) is isomorphic to /7L̂ . 

However, we demonstrate below in section 1.7 that there exists a 

double covering by SL(2,iC) of the restricted Lorentz group 

S0^(l,3), and hence Im* = iTL̂  = 80^(1,3). We now show 
that Conf(s2,Can) = Im$: 
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Firstly we exhibit more explicitly the SL(2 ,iC)-action given 

by 4>. We introduce a family of coordinate charts on in the 

following way: for each A G SL(2,(C), let 

U = {[z] 6 S^: (Az)l + 0} 1.5.21, 

where, for each w G iC^-{0}, we write w 
rwoi 

w 
with respect to 

the standard basis { 
'l' 'o' 

' llj 
} of 1^. Note that - U, con-

sists of a single point for each A 6 SL(2,(C). Now define the 

coordinate mappings: 

: ^A " C ; [zj H (Az)0/(Az)l 1.5.22, 

and also, for future reference, the real valued functions P^, 

K(A.B) \A,B) defined by 

' ' a - ! a ) 1.5.23, 

K 
(A,B) (1 +Cg Cg)(|aCg + b|2 + |cGg + dj^) ^ 1.5.24, 

exp(iX^^^g)) = (cCg + d)(cCg + d) 
- 1 

1.5.25, 

for all A, B 6 SL(2,iD) satisfying BAB 
-1 a b 

c d 
e SL(2,C) 

We shall see shortly that may be interpreted as the local 

conformal factor associated with a transformation from Cg- to 

coordinates (regarded as an active local diffeomorphism) whilst 

^(A B) the local angle of rotation between the corresponding 

- 1 - 1 
5^ (constant) and Cg (constant) curves in U . 

C = C-,-, corresponds to the usual coordinate on the complement 
2 
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of the north pole in the Riemann. sphere. For each A € SL(2,iC), 

Â̂  ^ chart of with an (analytic) diffeomorphism 

of onto iE with 

[A-i (%) 1.5.26, 

for all w 6 E. 

From equation 1.5.25, it follows that 

cCg + d 

on Ug if AB 
a b 
c d In particular 

1.5.27, 

'A 

so that 

a; + b 

cc + d 

(c; + d) dc 

1.5.28, 

1.5.29, 

for all A 
a b 
c d 6 SL(2,(C). Another useful formula, again 

straightforward to verify, is 

™ "aB 1.5.30, 

and hence 

^A ° 
AB ™ "aB " (°A' 1.5.31, 

SO that the C-coordinate representation of the SL(2,1)-action 

is given by 

- 1 

"A w I )-
aw + b 
cw + d 1.5.32, 
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for all w 6 (5 o ^ ^)(U) and A = 
a b 
c d 

6 SL(2,C) 

Equation 1.5.32 (and corresponding equations for other ^ -

coordinate systems) provides the most general holomorphic trans-

formation of (CIP̂ , i.e. the most general ronformal and orienta-

tion preserving transformation of (S^,Can). Note that A and 

-A(A 6 SL(2(C)) both give rise to the same conformal transforma-

tion of , reflecting the fact demonstrated above that 

'2' 
Im<|) = SL(2,(C)/Z„. Since any element of Imcj) induces a con-

formal transformation on as in equation 1.5.32, and con-

versely since any conformal transformation arises in this way, 

we have shown that 

Conf(S^,Can) = Imij) = S0*(l,3) 1.5.33, 

since this bisection is, by inspection, a homomorphism of Lie 

groups. We give an alternative demonstration of the isomorphism 

Conf(S^,Can) - 80^(1,3) below in section 1.9. 

We now calculate explicitly the effect of the SL(2,(E)-action 

on the standard conformal structure Can, in particular on the 

round representative can. In this complex geometric setting, 

the metric can is identified with the Fubini-Study metric on 

and so 

I - 2 -
canlu = P dg d^ 1.5.34, 

where P - P = g(1 + U —^ H. In what follows, we 
2 

write can rather than can|v, where V is any open dense 

subset of S^. Now we have (j)̂ (can) = ^ (P ^ d^d^) 

— 2 — — 2 — 

(P ° (j)̂ ) d(5 ° 'P^)d(C ° ip̂ ) = d?^ dg^ (by equations 1.5.30 
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and 1.5.31) = can, where 

^ ^ - (1 + GC)(|aG + b|2 + |cC + d|2) ^ 1.5.35, 

for all A = 

To summarize, 

a b 
c d 

S SL(2,iC), where we have used equation 1.5.29. 

4^(can) = can 1.5.36, 

showing directly the conformal action of 50^(1,3) on (s2,Can). 

The (U^, ^ ) charts may be used to locally trivialize the 

spin conformal bundle iC ^ S^, and hence show that 

definition (1.5)3 coincides with the usual definition of spin and 

conformally weighted function (see the references cited above). We 

also refer the reader to Curtis and Lerner [C 1S ]. 

Corresponding to each A G SL(2,(E), we define a local cross 

section e.: U. —>- CO(S^,Can) = iE^-{0} by 
A A — 

= [ /2 (Az)l p2 ([zj)] 1.5.37, 

for all [_z] 6 U^. Then, for any A,B 6 SL(2,{E) , we have 

= ((Azjlp^CfzJ)) ^((Bz)lp2([zJ))eg([z^) 1.5.38, 

for all [^] 6 Pi Ug. We may now define (au Steenrod) the principal 

C -bundle CO(S^,Can) by the transition functions 

®(A,B)' "A ^ given by: 

8 ( A . B ) < W - ((Bz)lpl(Ul))-l((Az)lp=([d)) 

for all [_z] 6 p, U^. We obtain the corresponding transition 
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functions for any associated vector bundle by applying the appro-

priate representation, so for the complex line bundle E(s,w), the 

transition functions are n Ug ^ GL((C) = (C , 

given by 

iSCA.B) ' "̂ (A.B) (A,B)' 

Using equations 1.5.24, 1.5.25, 1.5.27, 1.5.39 and 1.5.40, we 

obtain 

®(A!B"' = K(A.B) 1.5.41, 

with K, ,, A, , defined as in equations 1.5.24, 1.5.25 res-

pectively. Now recall that the corresponding local transformation 

law for a section n of E(s,w) (i.e. for a spin and conformally 

weighted function on S^) is given, in terms of local represents-

tives {n^}, by = ^(A b"^ have, on n Ug, 

"a " K^A.B) »(A,B)' "B 1-5.42. 

Conversely, any family {n^} of local complex-valued functions on 

satisfying the transformation law given by equation 1.5.42 

defines a section n of E(w,s). Note that equation 1.5.42 is 

precisely the usual definition of a spin and conformally weighted 

function given by Newman and Penrose [N 5, ], Held et al. [H ?• ], 

so we have shown that definition (1.5)3 is consistent with the 

usual one. From a geometrical viewpoint the definition in terms 

of r(E(s,w)) is more illuminating, whilst equation 1.5.42 is often 

more useful for calculational purposes. 
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In order to make use of spin and conformally weighted func-

tions, we must introduce a connection and hence covariant deriva-

tives. There is, in fact, a natural connection co in 'fĉ (Ŝ ,Can) 

which is just the lift of the standard Weyl connection in 

CO(S^,Can) as in equation 1.5.8, but it is more convenient to 

rx, * 
introduce oj directly as a connection in the principal C -bundle 

"VX, TT 

CO(S^,Can) = W } — ^ S^. In fact, starting from the "bare" 

fibration it, we may construct not only the spin conformal con-

nection w, but also rederive Can as the Fubini-Study conformal 

structure arising in a natural way as the projection of the canonical 

Hermitian structure on the total space: 

Let h be the Hermitian metric on C^-iO} defined by 

h(z)((^,u), (_z,v)) = <u,v> = u°v° + u^v^ 1.5.43, 

for all (^,u) , (^,v) e T (c2_^o}) = { (_z ,w) : w 6 iĈ }, z_ G iE^-{0}. 

Note that C acts homothetically on (E -{0},h): 

R^h = IAI^ h 1.5.44, 

for all A 6 iC , where R is the right action of (C on W). 

Let V = Ker Dtt be the vertical distribution arising from tt, 

so that 

V = DR—(l).iC = {(z, wz) ; w € C} 1.5.45, 
z — — 

where, for each _z 6 iĈ -{_0}, R—: (C —^ {Oj; A I—s- A_z so that DR~(1) 

O. o 

is an isomorphism of L(iC ) = C onto -{^}) . Now let H 

be the h-orthogonal complement of V, so that H is a differentiable 
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distribution on iE -{O} with 

H = {(z,u) G T (c2-{0}): <z,u> = 0} 1.5.46, 

and T (E^-fo)) = H # V , for each z G !C^-{0}. The distri-^ — ?L It. — — 
bution H is equivariant under the C -action, i.e. H = 

= DR^(z).H , and hence we may define a connection in it by re-

quiring that H is the corresponding horizontal distribution. 
% 

Using 1.5.45 and 1.5.46 it follows that the connection form w 

is given by 

' b i i — 1 
aj(z).(z,u) = I z <z,u> 1.5.47, 

for all (z,u) 6 T (iC^-{0}) , z € (C^-{0}. We have called this 

"o 

connection o) since it may be shown that it coincides with the 

lift of the Weyl connection in CO(S^,Can) mentioned above. We 

shall return to cj below, but first let us give a description 

of how Can falls out of the fibration tt. 

Each horizontal subspace H carries a Hermitian inner 

product induced by the Hermitian structure h in T(C^-{^}), 

and we define a unique conformal structure on by requiring 
that D t t ( z ) | H : H — T . -.S^ be a homothetic isomorphism for 

— ' _Z _z [_z J 

each _z € i.e. we define the cos(angle) of u, v, 6 

to be: 

1 h(z)((z^U2), 1.5.48, 

where u^, v^ are the unique horizontal vectors in projecting 

onto u,v respectively. The conformal structure given by 1.5.48 

is well defined because C acts on (iC^-{^},h) homothetically 



- 6 1 -

(see equation 1.5.44). 

The above construction is a straightforward generalization 

of the construction of the Fubini-Study metric from the Hopf 

fibratlon ^ ^ IP ̂  (see, for example, Kobayashi 

and Nomizu [K # ]) - here we just product with n"*" to get the 

fibration iC ^ ^ (n = 1 in our case) , 

and hence the Fubini-Study conformal structure, rather than a 

specific representative metric. Thus, the conformal structure 

defined by 1.5.48 is precisely Can and contains the standard 

round metric can (which is, of course, just the Fubini-Study 

metric on given by equation 1.5.34). We have thus demon-

strated that the standard conformal structure on S^ may be 

reconstructed from the spin conformal bundle CO(S^,Can) 

t t 
= iC^-{0} S^ in a natural way. 

We now return to the connection w which also arises in a 

natural way from the fibration tt, but may equivalently be re-

garded as coming from a conformal connection on S^. This con-

nection w induces covariant derivatives on sections of the 

associated vector bundles E(s,w) in the usual way, so that we 

may write down differential equations involving spin and confor-

mally weighted functions on S^. Note that E is abelian, and 

so the curvature in E(s,w) may be regarded as a global 

L((E ) = I - valued 2-form on S^. In fact it may be shown (see, 

for example, Dray [D VZ ]) that the curvature in E(s,w) is just 

is vol (can) corresponding to the fact that the Chern n*»ter of 

1 
E(s,w) is -~ (curvature) = ^ is vol(can) = -2s. 

Dray [D also gives local expressions for the connection 

1-forms and these may be used to derive an explicit formula for the 
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covariant derivatives acting on spin and conformally weighted func-

tions. These covariant derivatives are essentially the oT (eth)-

operators introduced by Newman and Penrose [N 2. ], and we now 

give the usual local expressions for 3" using the notation given 

above: 

Recall that we have introduced a family of charts 

on parameterized by SL(2,(E) (see 1.5.21, 1.5.22), and also 

a family of functions {P^^. It is straightforward to show that 

the functions P defined in 1.5.23 give rise to a global section 

P of the complex line bundle E(0,1). The section P is just the 

Hermitian norm arising from <,> (see equation 1.5.43) under the 

usual correspondence between sections of associated bundles on the 

one hand and equivariant mappings on the total space of a principal 

bundle on the other. For each A G SL(2,[C), let us define the 

quantity 

which can be regarded as either an element of r(T^S^ 8 E(l,-l ) | u^ ) , 

or equivalently as a complex vector field on C S^. In fact, 

is a null vector field since it has zero norm in the inner pro-

duct in T^S^ obtained by extending can. 

Now let r(E(s,w)) »0(E(s,w)) be the covariant 

'Xj 

derivative operator in E(s,w) induced by the connection w. The 

eth operator on is just the directional covariant derivative 

in the m^-direction. Namely, let T(E(s,w)|U^) 

—»r(E(s+l,w-l)|u^) be defined by 

%(s,w) = I , v(s,w) 
A m 

A 
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where i denotes interior multiplication by a vector field X. 

To be more explicit, we restrict our attention to the open set 

r— 3 
U = U„ and use the vector field m = m,, s /2 P . The cor-

-U-' 2 ^2 "5 
responding eth then reduces to the usual definition: 

2 

gts.w) ^ ^ 2 pW-s JL (pS-w^) 1.5.51, 
O C 

for all spin and conformally weighted functions n on U. Note 

that 3" E lowers the conformal weight by one as well as 

increasing the spin weight by one. 

The operators defined in equation 1.5.50 give rise 

to a globally defined operator 3": r(E(s,w)) —^ T (E(s+1 ,w-l)) , 

since cT̂ n̂  and 9" rig are related according to equation 1.5.42 

(with s replaced by s+1, w replaced by w-1). Regarding 

n 6 r(E(s,w)) as an equivarknt map from into I, we have 

an explicit formula: 

9n = 2P 1 

I 

—1' 3n —o' 9n 
z — — - z 

azi az° 
1.5.52. 

According to equations 1.5.17 - 1.5.36, a conformal trans-

formation of arises from a GL(2,(E) transformation of 

Under this GL(2,iE)-action, P will not be invariant, 

and so 3" will not be conformally invariant in general. For 

special choices of (s,w) however, we do have conformal invariance. 

In particular, for w - s + 1 6 7L , the operator 

(gXs,w)yw s+l_ r(E(s,w))^r(E(w+l,s-l)) is conformally Invariant 

(see Eastwood and Tod [E 3 ])• 

The relationship between and 80^(1,3) given by 1.5.33 

leads to the use of the ^-operators in general relativity, and we 
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shall take up this below. Further geometrical properties of 3" 

have been discussed by various authors: 

Further insights into 3r may be gleaned by regarding as 

, and associating y with the 9-(or 3-) operator of complex 

analysis. We refer the reader to Eastwood and Tod [E 3 ] for a 

treatment along these lines. The Laplacian cT̂  acting on sections 

of E(s,w) may also be introduced. This leads to the notion of spin 

and conformally weighted spherical harmonics (i.e. eigensections of 

&9). See Dray [D ^2 ] , Goldberg et al. [G 1S ], Kuwabara [Kf?-] 

Penrose and Rindler ]. 

Note that there exist various slightly different conventions 

regarding oT. The differences arise both because of overall multi-

plications by normalizing factors, and also because of the possi-

bility of associating ) with 9 rather than with 3 in the 

complex geometric interpretation. Our conventions are essentially 

those of Eastwood and Tod [E 2 ], and the reader may refer to 

pp. 307-8 of Penrose and Rindler [P ] for details of the relation-

ship between the different conventions in use. 

The importance to us of the various structures related to 

(S^jCan) comes about because = (Ê -{̂ }/(C is the typical fibre 

of the bundle of future null directions of a (conformal) Lorentzian 

4-manifold (the total space of this bundle being a Lorentzian version 

of the Penrose twistor space) and because the conformal group of 

(S^jCan) is isomorphic to the restricted Lorentz group. These 

links will be taken up in section 1.9 and in Chapters Two and Three. 

This concludes, for the moment, our discussion of the spin con-

formal structure on the 2-sphere. 

In this section, we have considered notions of spin associated 
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with conformal structures. In the next section, we continue with our 

theme concerning the relationship between metrics and spin structures. 

We may regard a conformal structure as an orbit under the action of 

-f 

the (abelian) group C (M) on Met(M). In section 1.6, we consider 

the action of the group Diff(M) on Met(M), and we discuss how 

this action interacts with spin structures. 

1.6 Diffeomorphisms and Spinors 

In this section, we give a brief survey of the inter-relationship 

between diffeomorphisms of a manifold M and spin structures on M. 

We consider in particular the transformation of spinor fields, in 

connection with the ideas of section 1.4. 

Let M be an oriented manifold of dimension n, and let 

Diff(M) denote the group of orientation preserving diffeomorphisms 

of M. Let Diff^(M) c Diff(M) be the group consisting of all 

orientation preserving diffeomorphisms of M which are isotopic to 

the identity. Note that Diff (M) is generally a simple group. 

See Chapter Four for more discussion of diffeomorphism groups. 

The reasons for studying the action of diffeomorphisms on 

spinors are manifold. Spinor fields arise as important geometrical 

and physical objects, and so it is important to consider group 

actions on the space of spinor fields. In particular it is impor-

tant to investigate the rSle of symmetry groups. In geometry and 

general relativity, one such symmetry group is the diffeomorphism 

group - a universal group in many respects, so any natural action 

of Diff(M) (or some subgroup thereof) on spinor fields is of 

interest. 
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One class of subgroups of Diff(M) of particular importance 

is the class of one parameter subgroups. These arise as the local 

one parameter families of (in general, local) diffeomorphisms 

generated by a vector field on the manifold M. The action of one 

parameter subgroups on geometrical objects leads to the very useful 

concept of Lie derivatives. The typical situation is as follows: 

Let 4) 6 r(B) where B is some bundle over M on whose sections 

there exists a right action by pullback of Diff(M) (denoted by 

(4',<l>) 0 4')- Let X be a vector field on M generating the 

local one-parameter group of dif feomorphisms Then the Lie 

derivative of ip with respect to X is defined by: 

= ZF *t * 1.6.1, 

t=0 

if this exists, so that L̂tJ; 6 T r(B). 

Thus, in order to define the notion of Lie derivative of spinor 

fields, a starting point is the action of Diff(M) on the space 

of spinor fields (if such an action is meaningful). Alternative 

approaches to Lie derivatives of spinor fields have been investigated 

by Lichnerowicz [L ] (for the case of Killing vectors with res-

pect to the metric giving rise to the spinor fields), by Huggett 

and Tod (for conformal Killing vectors), and by Kosmann 

[Kip] (a more general and extensive treatment). 

The problem here is that the relationship of spinors to the 

diffeomorphism group is very different to that of other geometrical 

objects. For Instance, given any natural vector bundle B over 

the manifold M, there exists a pullback action of Diff(M) on 

B, which induces a pullback action on sections of B. Typically, 

such bundles B are tensor bundles associated with some reduction 
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of the frame bundle of M, or perhaps sub-bundles of such bundles. 

For example, the bundle of metrics (of a given signature) on 

n "k 
M is a sub-bundle of 0 T M, which, in turn, is a sub-bundle of 

9 " 

S M. These bundles admit an action of Diff(M) which induces 

an action on sections, so, for instance, we have the important 

action of the diffeomorphism group on the space of metrics (see 

Chapter Four). Another example which has been analyzed in the 

literature is the action of Diff(M) on conformal structures -

see Fischer and Marsden [F 5' ]• 

The action of a group on a space becomes much more impor-

tant if the action leaves invariant the structures of geometrical 

or physical importance. The diffeomorphism group itself does 

play the role of such a symmetry group in geometry and in general 

relativity, particularly when we consider the space of metrics: 

The important geometrical maps on Met(M) are all equivariant 

with respect to pullback action of Diff(M) on sections of tensor 

bundles. For instance, F o (p = <J) c F, for all cj) G Diff(M), 

where F = Riem, Ric, Seal, Vol mapping Met(M) into the space 

of sections of the bundles End(A^TM) , @^T M, Mx ]R, A^T M 

respectively. In this sense, it is only the Diff(M)-orbit of a 

metric which is important in geometry and general relativity 

(since Ein(g) = Ric(g) - ^Scal(g)g), and hence the space of 

interest is the space of geometries of M, Geom(M) = Met(M)/Diff(M), 

sometimes called the superspace of M. See Chapter Four and 

references therein. 

The situation with spinor fields is complicated by the structure 

of the spinor field configuration space. The space of all 

Riemannian metrics, for example, forms an open cone in the vector 
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space S2(M) = r(@2^ M), and the action of Diff(M) arises by 

restriction of the action on SgCM). On the other hand, the splnor 

fields we use in geometry and physics arise from an a priori 

specification of a spin structure on M and of a metric (or 

possibly conformal structure - see section 1.5) on M. For each 

metric, there is a distinct space of spinor fields, and the 

configuration space of all spinor fields turns out to be the 

(infinite dimensional) vector bundle E(M,a,p) (or E(M,p)) 

described in section 1.4. This bundle has base space Met(M), 

and the fibre over the metric g on M is just the space of 

spinor fields of type (s ,p,V) (s = r (s), some s G a, 

§ § S 
p 6 Hom(Spin(n), GL(V))). Since a diffeomorphism (p transforms 

A 
a metric g into the metric (p g, the space of spinor fields • 

over g should be transformed into the space of spinor fields 

over $ g. 

If we assume that an action of Diff(M) does not change 

the spin structure equivalence class a (for instance, any 

element of Diff (M) could not change a), then this action 

would be by automorphisms of E(M,a,p) which covers the action 

of Diff(M) on Met(M). The situation is even more complicated 

if (M;Z ) =(= 0, so that there exist inequivalent spin structures 

on M. Elements of Diff(M) could permute the elements of 

E^(M;Z^) and hence transform a spin structure into an inequivalent 

spin structure. This would constitute an action of Diff(M) on 

We see therefore that the diffeomorphism group might act on 

spaces of spinor fields at various different levels. A particular 

spin structure s € E(M) (representing a 6 E (M)) might be fixed. 
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and we would wish to consider the action of all those diffeomorphisms 

which leave s invariant on spinors and spinor fields arising from 

s, and perhaps a choice of g 6 Met(M). Another level of action 

would be to consider transformations under arbitrary subgroups of 

Diff(M) - possibly even the entire group. This second level of 

Diff(M)-action would be important in any considerations of the 

symmetries of a theory in which changes in spin structure are 

necessary. 

We now give a brief discussion of how those actions may be 

realised. The basic constructions may be found in Dabrowski and 

Percacci [D 4 ]. Let us initially consider the case of diffeo-

morphisms which do not change the spin structure: 

Let (j) 6 Diff(M), where M is an oriented spin manifold . 

+ 
Let (p be the automorphism of GL (M) induced by (j), so that: 

#(u) = {D^(n^^u)).e^} 1.6.1, 

for all u = {e^^ G GL^(M) (see definition (6.1)27). 

Let g € Met(M) and consider the transformed metric (|) g. 

Any oriented (|) g-orthonormal frame is mapped by cj) into an oriented 

g-orthonormal frame, so that $ = $|SO(M,^ g) is an isomorphism 

of principal SO(n)-bundles: 

4 : SO(M,**g) » SO(M,g) 1.6.2, 

(Cf: equation 1.5.1 for the analogous isomorphism induced by an 

element f of the group c"'"(M) . See also section 4.1 for a 

unification of 1.5.1, 1.6.2). 
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'\i 
Now let s = (GL (M ) ,n) € E (M) be a spin structure on M. 

A 

We assume that (p lifts to a GL (n, E.) - automorphism $ of 

GL*(M) such that 

n ° 9 = * ° n 1.6.3. 

For example, (p will certainly admit such a lift if ({) 6 Diff^(M) . 

Definition (1.6)1: If (p G Diff(M) is such that $ G AuC(GL*(M)) 

A 0,0̂4- A 
admits s lift to a $ 6 Aut(GL (M)) such that n ° (f> = ^ ° n, 

/Wf 'V 
where s = (GL (M),n) 6 Z(M), then we say that s is ^-invariant. 

Let Diff(M,s) = {(|) 6 Diff(M): s is $-Invariant}. 

'\j 

Note that Diff (M) $ Diff(M,s) for any s 6 Z(M), but in 

general there may be diffeomorphisms which are not isotopic to Id^, 

but which do not change s. 

Now let s 5 (SO(M,g), n ) = r (s) G E(M,g) (and similarly for 
s s s 

" A A. * 
(j) g) as in section 1.1. Then cj) = #|SO(M,^ g) is an isomorphism 
of principal Spin(n)-bundles: 

A i/v,, * h'Xj 
* : SO(M,* g) » SO(M,g) 1.6.4, 

such that 

A 
n ° (f) = cf) o n,* 1.6.5, 

(Cf: equation 1.5.4). 

Let us now introduce spinor fields. Let ^ 6 Hom(Spin(n),GL(V)) 

be any representative of Spin(n) on the vector space V. We note 

A ^ 
that 9 in equation 1.6.4 induces an isomorphism $(p) of the 

/c t j o j -t 
vector bundle B(cj) g) = SO(M, (j) g) ^Spin(n)^ onto the corresponding 

bundle B(g), defined by: 
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*(P): B(* g) —+ B(g); [(u,g)] I—+ [(*(u),G)] 1.6.6, 

for all [(u,g)] 6 B(cj) g) . 

A spinor field of type (s ,p\v) may be regarded either as a 

section ijj of B(g) or as an equivariant map 9 :SO(M,g) —> V 

^ ^ —1 oy\j 
(such that Y(uA) = p(A ).Y(WO, for all u 6 SO(M,g), A 6 Spln(n)) 

The group Diff(M,s) transforms the latter by: 

, ^ ^ 'xj'xj * 
(Y,*) I > Y o * G g),V) 1.6.7, 

for all 0 6 Diff(M,s), whilst the corresponding transformation on 

ip G r(B(g)) is easily seen to be: 

(^,40 ; — » ^ ° ̂  ° 4 e r(B(**g)) 1.6.8. 

To summarize; for fixed s 6 Z(M), we have an action of 

Diff(M,s) by automorphisms on the vector bundle E(M,s,p) for any 

representation p of Spin(n) on the vector space V. This action 

transforms a spinor field ip in the fibre above g (i.e. B(g)) 

into an element of the fibre above cji g (i.e. B((j) g)) according 

to equation 1.6.8, or, equivalently, equation 1.6.7. We see that 

this action on E(M,s,p) covers the action of Diff(M,s) on the 

base Met(M). 

Suppose now that we are interested in diffeomorphisms which 

change the spin structure. One may construct (Dabrowski and 

Percacci [D '1 ]), for each (f) 6 Diff(M), s, s' 6 Z(M), a 

cohomology class K(^;s,s') G ( M ; w h i c h is the obstruction 

to the lifting of cj) to an isomorphism (p of principal GL^(n, R) -

bundles: 
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* : GLg,(M) » GLg(M) 1.6.9, 

such that 

Hg ° * = * o n , 1.6.10, 

O/'Vf fX/Vt. 

where s = (GL^(M), n^) and s = (GL ,(M), n ,) are the two spin 

structures on M. 

In other words, given any orientation preserving diffeomorphism 
A 

(J) and spin structures s, s on M, cj) lifts to an isomorphism cf) 

satisfying equations 1.6.9 and 1.6.10 if and only if K(#;s,s') = 0. 

In fact, given <j) 6 Diff(M) and s 6 E(M) , there exists a unique 

(up to equivalence, of course) s' 5 s'(*,s) € Z(M) such that 
A 

K((j);s,s ) = 0. s is just the pullback by cj) of the prolongs-
oyv-f- lyL-j-

tion s = (GLg(M), n^); GL , (M) is the pullback by (j) of the 

principal GL (n, E.)-bundle ir : GL (M) —^ M, and n , = 
nu s s s 

^-1 A ^ 0/0.+ 
(j) o T) o (iT^ (p), where ir̂  cf): GLg,(M) = (p (GL (M)) —^ GL (M) is 

the canonical isomorphism of principal GL (n, M)-bundles arising 

h 0,0, 
in the construction of the pullback by $ of : GL^(M) —> M. 

0/ 0,0,+ 
The required s 6 E(M) is given by s' = (GLg,(M), n^,). 

We may now define a map: 

p : Diff(M)x%(M) Z(M); (4,s) s'(*,s) 1.6.11, 

for all ^ 6 Diff(M), s 6 Z(M). It can be shown that p is a 

action of Diff(M) on E(M), i.e.: 

P(*1°*2'S) = ,s)) 1.6.12, 

for all 4*2)̂ 2 ^ Diff(M), s 6 Z(M). It can further be shown that 

the value of p at ((j),s) depends only on the isotopy class 
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of (p, and if ~ , then p($ ,s^) p(cj),S2) . In other words, 

we may project p to a well defined action p of fi(M) = Diff(M)/ 

Diff (M) (the group of connected components of Diff(M)) on the 

set E(M) of equivalence classes of spin structures on M: 

p: n(M)xz(M) Z(M); ([*],[s]) 1.6.13, 

for all [(()] G Q(M) , [s] G E(M). It is shown in Dambrowski and 

Percacci [D 4 ] that equation 1.6.13 defines an affine action of 

n(M) on E(M). 

The transformation rule for spinor fields under arbitrary 

diffeomorphisms may now be given. Let g 6 Met(M) and s 6 Z(M), 

so that Sg = r^(s) = (SOg(M,g),n ) is a g-spin structure on M. 

Let Y 6 Cgp^^^Qj(SOg(M,g),V) be a spinor field of type (s^,p,V). 

Given any (f) 6 Diff(M), we have that s' = p(6,s) 6 Z(M) is the 

unique spin structure on M such that (p lifts to an isomorphism 

<(i: GLg,(M) —^ GLg(M) satisfying , (see equations 

1.6.9, 1.6.10). Using s' and g' = (j) g, we construct the 

g'-spin structure r ,(s') = (SOg,(M,g'),n ,), and then it is 

A 
easily seen that (}) restricts to an isomorphism of principal 

Spin(n)-bundles: 

A A w , 'Vb 
* 5 4|S0^,(M,g'): SO^,(M,g') » SO_(M,g) 1.6.14. 

s s 

"o 
The transformation of the spinor field Y of type (s ,p,V) 

is now given by; 

(Y,*) I » Y' = Y ° * e Cg in(^)(SOg,(M,g'),V) 1.6.15, 

so that Y' is a spinor field of type (s',,p,V). The corresponding 
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transformation for sections may be also written down. The action 

described by equation 1.6.15 effectively gives us an action by 

'Xj 'Xi 

Diff(M) by automorphisms on the bundle E(M,p) given in section 

1.4, and so now we have a symmetry group for the metric-spin struc-

ture-spinor field configuration space, which relates fibres over 

different metrics (and over different spin structures on M). 

Actually, there is a slight problem which we now describe: 

Suppose we are given ij) G Diff(M) and s 6 Z(M). Then, from 

the above, we know that there exists a unique (up to equivalence) 

Spin structure s = p(cj),s) such that ^ lifts to an isomorphism 
A oyV"!" A /\ 
$ of GLg, (M) onto GL (M) satisfying ° ~ ^ ° • 

A 

However, the particular lift (p is not unique. In fact, there are 

precisely two lifts of (j> satisfying equations 1.6.9, 1.6.10, and 

these two lifts differ by the automorphism of GL (M) corresponding 
'VV, 

to multiplication by the generator of $ GL (n,TR) . In general, 
A 

there does not exist a consistent lift cj) for all ^ 6 Diff(M) -

the composition rule for lifts of diffeomorphisms will hold only up 

to so that the induced action on spinor fields, given by 

equation 1.6.15, is only a projective action. In order to obtain a 

true group action on the space of spinor fields, we must remove the 

^2 ambiguity in composition by lifting to a double cover. For 

example, consider a fixed s € E(M) and, as above, let Diff(M,s) 

denote the group of diffeomorphisms leaving the spin structure s 

invariant. According to the remarks just made, Diff(M,s) acts 

only projectively on spinor fields associated with the spin struc-

ture s. Now let: 

Diff(M,s) = {f 6 Aut(GL (M)) : ry o f = f^ o rig) 1.6.16, 
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(where 6 Diff(M) is the diffeomorphism covered by f), so 

that 

f I » 1.6.17, 

defines a double cover of Diff(M.s) by the group Diff(M,s). We 

now have a true (i.e. not projective) representation of Difl'(M,s) 

on spinor fields associated with the spin structure s on M, given 

by 

(?,f) I » V °f 1.6.18, 

for all spinor fields ¥, and f 6 Diff(M,s). 

As an example, consider (yet again) the two sphere, . As 

we indicated in section 1.2, admits a unique can-spin struc-

ture, given by the Hopf fibration, ^ ^ S^, together with 

the usual double cover, ^ S0(3). Let us denote this spin 

structure by s G E(S^,can). It turns out that Diff(S^,s ) 
can can 

= Diff(S^), i.e. the spin structure on is invariant under all 

orientation preserving diffeomorphisms of S^. The inclusion of 

S0(3) = Isom(S^,can) into Diff(S^) is a homotopy equivalence 

(see Smale [SSO]) and hence any double cover of Diff(S^) must 

be homotopy equivalent to - Spin(3), so that the required 

double cover of Diff(S^) is the unique non-trivial one. 

We conclude this section with a remark of a more speculative 

nature. It can be argued that the diffeomorphism group arises 

naturally as the symmetry group of general relativity, regarded 

as a theory of pure gravity (see, for example, Isham and Kuchar 

[114]). For instance, Diff(M) is the largest group leaving 

invariant the Einstein-Hilbert action: 
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S : Met(M) —^ ]R ; g f—> Scal(g)vol(g) 1.6.19, 

M 

and so Diff(M) is important at least as far as the gravitational 

action is concerned. A further motivation for the fundamental 

nature of spinors in gravity theory would come about if a double 

cover Diff(M) arose in a natural way as symmetry group of some 

important object in the theory - perhaps of an action. The ques-

tion as to whether or not such an action exists is a matter for 

further investigation. 

Having now, in sections 1,1 to 1.6, described the theory of 

spinors in general, we turn to the question of spacetime. 

1.7 Spacetime Spinors 

We now consider the structures we have introduced above in the 

context of spacetimes in general relativity. We shall see that 

spinor structure gels especially well with Lorentzian structures 

on four-manifolds, and for this reason, spinors are very useful 

in general relativity. Indeed, as we shall discuss in section 

1.8, spinors may be taken as the foundation of global space-

time geometry. 

In this section we adapt the theory given in previous 

sections to the special case of a four-manifold equipped with 

a Lorentzian metric, i.e. a metric of signature minus two, so that 

the local diagonal form is (+ ). We begin with some remarks 

of an algebraic nature (see Penrose and Rindler [P H ] for a 

different approach to spinor algebra). 
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Let e be the symplectic form on (Ĉ  with components 

0 1 

- 1 0 

1.7.1, 

with respect to the standard basis of (Ĉ . Now consider (Ê  as a 

four dimensional real vector space (i.e. restrict the action of 

C (scalar multiplication) to an action of IR) equipped with the 

almost complex structure J obtained by multiplication by i 

considered as an H- linear mapping. J extends in a (E-linear 

fashion to the space 8 ^ ![ (in this section, since we are 

dealing with both real and complex vector spaces, we make explicit 

the field over which tensor products of vector spaces are taken), 

and we have a direct sum decomposition; 

QZ 8 C = S e S 1.7.2, 

where S(S) is the +i (-i)-eigenspace of J. We identify S 

with (Ê  in a IE-linear way, and S with (Ê  in a E-linear 

way. S is just the representation space for the defining re-

presentation p 6 Hom(SL(2,IE) , GL(2(E)) of SL(2,iE) on given 

by 

p^(z) = Az 1.7.3, 

for all A 6 SL(2,(E) , _z € 1^, and S is the representation space 

for the conjugate representation p given by; 

p^(z_) = A _z 1.7.4. 

The symplectic form e induces symplectic forms (also denoted 
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e) on S and on S. These forms are invariant under the SL(2,iC)-

actions given in equations 1.7.3, 1.7.4. 

We now identify (using the standard bases) S 8 S with 

M(2,C) {complex 2 x 2 matrices}, and then we have the repre-

sentation p 8 p 6 Hom(SL(2,(D) 5 GL(M(2,I))) given by 

(P Gg p)A(M) 1.7.5, 

for all A 6 SL(2,iC) and M 6 M(2,iC). Here t means Hermitian 

adjoint of elements of M(2,(E) (in particular, of SL(2,iC)). 

Let H(2) denote the space of 2 x 2 Hermitian matrices. Then 

H(2) may be regarded as a real four dimensional subspace of 

M(2,(E) = S 0J, S. The representation p 9 p reduces to a 

real representation of SL(2,(C) on H(2) , which we denote by 

P 8 p. 

The original symplectic form e induces on M(2,iC) a complex 

inner product, which restricts to a real Lorentzian 

inner product E 8 e on H(2) . SL(2,(C) acts upon (H(2), e 0 e) 

by isometries, since e is SL(2,I)-invariant. In fact, the norm 

associated to e 0 e is just (twice) the determinant. 

We may regard (H(2),e 0 e) as a copy of (real) Minkowski 

space embedded in the space of complex 2 x 2 matrices, M(2,iC): 

Let A_ G 8 H(2) be defined by its components a^. 

a = 0,1,2,3, with respect to the standard basis of ]R\ as 

follows: 

0 

/2 

1 0 

0 1 

1 _ 1 

/Y 

0 1 

1 0 /2 

0 -i 

i 0 

/2 

1 0 

0 -1 

1.7.6, 
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(L.e. the are the Pauli-matrices), and define the linear map 

a of ]R̂  onto H(2) by: 

a : 3^ » H(2); x '—» idy(2))(o) 1.7.7, 

for all X 6 , where = n(x,«) 6 (E.^) , and n = 

= diag(l, -1, -1, -1) is the Minkowski inner product on ]R̂ . We 

may abuse notation slightly, and rewrite equation 1.7.7 as: 

a(x) = in(2£j o) 1.7.8, 

, - 1 
for all X 6 B. . The inverse linear map a is given by: 

a 1(M) = trace(M0j 1.7.9, 

for all M £ H(2), as is easily verified, using elementary pro-

perties of the Pauli matrices, . Another important property 

of a is that it is an isometry of (]R\ n) onto (H(2), e 0 e), 

i.e. 

det a(x) = in(x, x) 1.7.10, 

for all X 6 , and so ct isometrlcally embeds Minkowski space 

in M(2,C). 

We now define A S Hom(SL(2,&), GL(4,]R)) by: 

= A(A) = ° (p 8 p)^ ° a 1.7.11, 

I.e. 

A (x) = a ^(Aa(x)A^) 1.7.12, 

for all X 6 ]R.\ Since a, (p 0 p) are isometries ( for each 

A 6 SL(2,iC)), we have that A^ is a Lorentz transformation for each 
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A 6 SL(2,{C). In fact A is a homomorphism of SL(2,(C) onto 

SO (1,3), the subgroup of the Lorentz group consisting of all 

elements which preserve the standard spacetime orientation of 

Minkowski space (see below for a definition of spacetime 

orientability and orientation) and KerA = as can be seen 

from equations 1.7.5 and 1.7.11. Therefore, A is a non-

'I' 

trivial double cover of SO (1,3), and, identifying Spln(l,3) 

with SL(2,iE), A coincides with the map introduced in section 

1.1, in the special case of signature minus two metrics in dimension 

four. 

Having now established the particular algebraic inter-

relationship between SL(2,!E) and SO (1,3), we turn now to 

bundles over spacetime. First, let M be any oriented four-

manifold, and let: 

SL(2,C) » & 1.7.13, 

be any principal SL(2,C)-bundle over M. Note that P is 

necessarily trivializable if M is non-compact (see, for example, 

Isham [I % ]). 

Given P, we may construct associated bundles in the usual 

way. In particular we have the vector bundles constructed using 

representations of SL(2,(C) given above. 

Definition (1.7)1: Let P be a principal SL(2, iC)-bundle over 

the 4-manifold M. Let W(P) = P (constructed using 

the representation of SL(2,C) on ]R̂  given by A I——>A^), 

= P *SL(2,C)H(2) ("Sing p 8 p), S(P) = P 

using p), S(P) = P XgL(2 (using p) 
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Since n, e are SL(2,I)-Invariant under the action used in 

definition (1.7)1, the vector bundles have extra structure: 

W(P), H(P) are (real) Lorentzian vector bundles, and S(B), 

it '\/ — 

S(B) (and S (B), S (B)) are (complex) symplectic vector bundles 

(we use the symbol e for the symplectic structure in these 

bundles). 

With respect to these structures, we have an isometry of 

Lorentzian vector bundles: 

: W(^) ^ H(̂ )̂ C ^ s(P) Bg, S(P) 1.7.14, 

given by: 

x}]) = [(%,a(x))] 1.7.15, 

for all [(u,x)]6 W(P). induces an isomorphism of r(W(P)) 

a, 

onto r(H(P)) in the usual way. 

We now restrict our attention to the case of spacetimes in 

general relativity. We assume that the 4-manifold M is either 

non-compact or compact with vanishing Euler invariant, so that 

M admits a Lorentzian metric g. The principal SL(2,(C)-bundle 
a. 

P will now arise from a g-spin structure on M. 

The model for spacetime used in general relativity is that 

of a connected Lorentzian 4-manifold (M,g) which is spacetime 

orientable (and spacetime oriented). Spacetime orientable means 

that the bundle of g-orthonormal frames 0(M,g) has precisely 

four components (corresponding, in some unspecified way, to the 

four components of the (unrestricted) Lorentz group 0(1,3)). 

We may choose one component 6 of 0(M,g), i.e. we may give 

(M,g) a particular spacetime orientation, and call this component 
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8 the bundle of (spacetlme) oriented g-orthonormal frames SO(M,g) 

SO(M,g) is then a principal SO (l,3)-bundle over M: 

S0*(l,3) C » SO(M,g) — M 1.7.16. 

Note that if (M,g) is not spacetime orientable, we may always 

construct a Lorentzian covering manifold which is spacetime orien-

table, and which is equivalent, so far as general relativity is 

concerned, to the original Lorentzian manifold (M,g) (see Geroch 

[G 3 ]). 

We often assume, in addition, that M is non-compact. A 

physical reason for this is that it is easy to show that compact 

Lorentzian four-manifolds (M,g) admit the existence of closed 

timelike curves, and so most notions of causality would forbid 

such spacetimes. (See Beem and Ehrlich [B 5' ])• A mathematical 

reason for assuming M non-compact is that any principal 

SIX2,1)-bundle is necessarily trivializable over a non-compact 

four-manifold, as we have mentioned above, and so any g-spin 

structure on M would have simpler structure than in the general 

case. Recall (1.2.3) that a non-compact spacetime is spin if 

and only if M is parallelizable. 

In any case, suppose we are given a spacetime (M,g) (the 

orientation 9 is not usually mentioned) which is spin, i.e. 

w„(TM) 6 H^(M:Z ) vanishes. Let s = (SO(M,g),n ) 6 Z(M,g) 
^ I § B 

'W, 

be a g-spin structure on M, so that SO(M,g) is a principal 

SL(2,1)-bundle over M, and n : SO(M,g) — S O ( M g ) is a homo-

morphism of principal bundles, such that rig(uA) = n (u)A(A), 

for all u € SO(M,g), A 6 SL(2,C). 

Given SO(m,g), we may define, as above, the associated 
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vector bundles of particular interest (see definition (1.7)1), We 

change notation slightly, and write W(SO(M,g)) = W(s ), etc. 

Since s is a spin structure, we now have the additional vector 

bundle isomorphisms, which we defined in section 1.3. For example, 

using equation 1.3.3, we have the vector bundle isomorphism 

of W(s ) onto TM: 

W(s_) » TM; »[(n (%),3D] 1.7.17, 

for all [(u,x.)] 6 W(s^) . In fact, it is easily seen that n 

is an isometry of (real) Lorentzian vector bundles (by virtue of 

the fact that n is a homomorphism of principal bundles and also 

because of the action of SL(2,fl]) on ]R̂  which we are using). 

We may combine equations 1.7.14 and 1.7.17 to give another isometry 

a(s ) of Lorentzian vector bundles: 

Definition (1.7)2: Let s be a g-spin structure on the space-

time (M,g). Then the Infeld-Van der Waerden isomorphism (for s ) 

a(s ) is defined by o(s )= OQA/w \ ° n-1, so that a(s ) is § S V. , g J g g 

an isometry of Lorentzian vector bundles: 

G(s ): TM » H(s )(= » S(s ) 8_ S(s ) 1.7.18. 
g g g E g 

Note that a g-spin structure equivalent to s would give rise 

to an equivalent isomorphism. We obtain an isomorphism of the spaces 

of sections Vect(M) 5 r(TM) ^ r(H(s )) in the usual way. There 

is also the obvious extension of o(Sg) to an isomorphism of tensor 

products of TM and H(s^) (and thence to tensor fields). Any 

tensor equation, in, say, general relativity, may be translated, 

using a(s ), into an equivalent equation involving sections of 
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S(s ) Bg, S(s ) (and tensor products thereof). As in section 1.3, 

we call sections of H(Sg), S(s ) 0̂ , S(s ) etc., spinor fields and 

equation 1.7.18 means that we may translate any tensor equation 

into a spinor equation. The latter is often much easier to deal 

with, so the Infeld-Van der Waerden isomorphism o(s ) is of 
8 

much use in general relativity (see Penrose and Rindler [P11 ], 

[P 12 ] and references therein). 

Note that by restricting our attention to the representations 

P, P (and tensor products thereof) we ensure that all the spinors 

we use are based on two component or Weyl spinors. These are 

mathematically simpler than, say, Dirac spinors, and the (complex) 

two dimensionality of the basic representation space S ensures 

the validity of many useful identities and results: for example 

(using the Penrose [P'ft ] abstract index notation): 

" ^XAB) * zEAB 1.7.19, 

* * 

for any spinor (spinor field) A in S (s ) 0̂ , S (s ) 

(r(S (Sg) 0J, S (Sg))). Here A, B, C 6 {0,1} to conform with 

the standard conventions. Equation 1.7.19 means that we may 

restrict our attention to completely symmetrized tensor product 

representations (see the remark below on representations of 

SL(2,iC)). Dirac spinors arise from the representation p # p 

of SL(2,C) on (Ĉ , and are very important in particle physics. 
Note, however, that the effect of the spacetime orientation is to 

— 

reduce p # p to its two constituent irreducible "Weyl" re-

presentations (see, for example, Wald [W 'f3 ]) . 

We now make some concluding remarks concerning the results 
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of this section: (i) We may extend the isometry o(s ) by (E-

linearity to give an isomorphism of complex Lorentzian vector 

bundles (which we denote by the same letter a(s )): 

o(s ) : » S(s ) 8^ S(s ) 1.7.20, 

iC 

where T M is the complexified tangent bundle of M, so that 

(C 
T M = T M 8^ E, and carries the metric g extended by C-

x x jk-
linearity. (ii) Via a(s ) (or its complexification, as in (i)), 

8 
we have (using abstract indices): 

=ab "AB "A'"' 1.7.21. 

Note that it is customary to assign to spinors in S(s ), S (s ) 
S S 

(and tensor products thereof) primed abstract indices A', B' ... 

(iii) For completeness, we discuss the irreducible represen-

tations of the group SL(2,iD). We have already mentioned the Weyl 

—' * ^ —A 

representations p , p, p , p and the Dirac representation p # p 

(which is, of course, reducible). The irreducible representations 

of SL(2,iC) are, in fact, parameterized by the set (gZ)^, where 
3 

gZ = {0, g, 1, •••}» and we denote a general irreducible complex 

representation by D°(iJ,v). The representations we have so far 

discussed Include p = D°(g,0), p = D ° ( 0 , 5 ) . In general, D° (p ,v ) 

is the representation (0^^D°(i,0))0(0^^D°(0,|)) defined such 

that its representation space is S(p,v) - the space of spinors 

symmetric in the first 2y (unprimed, contravariant) slots and also 

symmetric in the last 2v (primed, covariant) slots. The dimension 

of D°(y,v) is then seen to be (2y+l)(2v+l). The spin of the 
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representation D°(p,v) is defined to be v - y 6 \TL. See Penrose 

and Rindler [P -7̂  ] for more details concerning the representation 

theory of SL(2,iC). 

This section has been very much concerned with the implementa-

tion of spinor theory in a spacetime setting, noting in particular 

the way in which two component spinors (i.e. the representation 

p 6 Hom(SL(2,(C), GL(2,iC))) and four dimensional Lorentzian structure 

fit together in a natural way. Once implemented, the spinor theory 

greatly facilitates (via the Infeld-Van der Waerden isomorphism) 

many calculations in general relativity: Every tensor equation may 

be translated into a, usually simpler, spinor equation. The spinor 

theory, based on S(s ), S(s ) etc. is, a priori, much richer than 

the tensor theory which is based (via a(s )) on S(s )0(S(s ) etc.; 
S § § 

i.e. we can write doxm many operations and equations involving 

spinors which don't have an obvious tensor analogue, e.g. operations 

involving one spinor abstract index A rather than a pair AA', 

as would occur in a (translated) tensor equation. In fact, 

as Penrose and Rindler [P A^ ] show, any equation or operation in-

volving Weyl spinors may be translated back to an equation or 

operation involving tensors, but with a possible - ambiguity 

(the correspondence being given formally by ±/o(s )). The beauty 

of the spinor formalism, therefore, is not so much the extra struc-

ture available (although there does exist some extra structure, 

especially in terms of complex geometry), but rather the simplicity 

of spinor equations compared to the corresponding tensor equations. 

Indeed certain important operations, of geometrical and, more 

importantly for us, physical significance, are suggested by the 

spinor formalism. The corresponding operations, when written in 
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terms of tensors, are often very complicated and uninspiring. 

Examples of such operations are those involving dualization (with 

respect to the Hodge ^-operator associated with g 6 Met(M)), 

trace reversals (with respect to g) and spinor symmetrization. 

See Ruse [R 4- ] for an early exposition of the simplicity of 

Dirac spinors as compared to tensors, and Penrose and Rindler 

[R-ff ] for the corresponding situation for Weyl spinors. We 

shall introduce operations with Weyl spinors when we need to 

make use of them (see Chapter Three). 

The discussion of this section has been very much in the 

spirit of category 1 . of section 1.0. To make tentative steps 

towards category , we now turn to the idea of spinors as a 

basis for global spacetime geometry. The next section will show 

how spinors are, at least, equivalent to Lorentzian metrics as 

a foundation for spacetime geometry. Further indications of the 

fundamental nature of spinors in general relativity will emerge 

in Chapter Three. 

1.8 Spacetime from Spin 

In this section, we remark on the role of spinors in general 

relativity, thereby expanding the discussion of section 1.0 (see 

also Chapters Two and Three). The viewpoint so far taken, and 

indeed the one which we will adopt generally, is that the basic 

model of spacetime is a Lorentzian spin manifold (M,g) (connected, 

spacetime oriented). Of course, we shall need to impose additional 

requirements on (M,g), such as various geometrical and topo-

logical assumptions reflecting physical properties like causality, 
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fying both physically reasonable local energy conditions and appro-

priate field equations. For the moment, however, our basic object 

will be the global geometry defined by (M,g,8,s ) (we add the 

spacetime orientation 0 to the description of spacetime, because 

it will play a slightly more important role in this section), where 

we have assumed that a particular g-spin structure s^ = (&0(M,g),ng) 

has been chosen (perhaps picked out for or by physical requirements) 

on the spin manifold M, with Lorentzian metric g. 

The g-spin structure gives rise to the vector bundles W(s ), 
§ 

S(s ), etc. and also the Infeld-Van der Waerden isomorphism 

a(s ): TM —^ H(s ) S(s ) ® S(s ), described in section 1.7. 

As we remarked above, a(s ) is, in fact, an isometry of Lorentzian 
S 

vector bundles: the metric in TM being just the metric g on M, 

and the metric in H(s ) being the one induced from the symplectic 

form E, as in the first part of section 1.7. 

Note that e defines a unique symplectic conformal class [e] 

of symplectic forms on (Ê , where different representatives are 

non-zero complex multiples of one another. Because of the two 

dimensionality of (Ĉ , any symplectic form on (Ê  is contained 

in [E]. Suppose, instead of picking a particular representative 

£ 6 [e], we are just given the conformal class [e]. Then the 

vector bundle H(s ) will be equipped with only a Lorentzian con-

formal structure [e 0 e] in its fibres, and o(s ) will map this 
§ 

conformal structure into the conformal structure in TM arising 

from the conformal class C defined by the metric g on M. 

Recall that the symbol e is also used to denote the sym-

plectic structures in the vector bundles S(s ) etc. Suppose a 
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particular complex rescaling of the original symplectic form e 

(see equation 1.7.1) leads to the symplectic structure fe in 

S(s ), where f G C(M,{C ). The image of fe under the Infeld-

Van der Waerden isomorphism a(s ) is just [fpg, a particular 

representative of the conformal class C . Note that if we res-
g 

trict our conformal rescalings to have modulus unity, so that 

f 6 C(M,S^), then the image of fE under G(s ) is still g. 

In section 1.0, we remarked that spinors are not only useful, 

as we indicated in section 1.7, but essential to general rela-

tivity. The second possibility has led various workers to 

speculate that the whole of general relativity theory, perhaps 

even the spacetime manifold M itself, should be derived from 

spinor data (see, for example, Penrose [P 6 ]). We now give a 

brief outline of how the global spacetime geometry (M,g,9,s ) 
S 

may be derived from a basic spinor structure on the manifold M, 

rather than a derivation from an a priori choice of Lorentzian 

metric g 6 Met(M): 

Our starting point will be a manifold M (we make no attempt 

to derive the spacetime manifold or to replace it with an alter-

native structure) equipped with the following data: A rank two 

complex vector bundle: 

» S » M 1.8.1, 
o 

in which there is a (complex) conformal symplectic structure [e ], 

SO that each representative G 8̂ , S^) gives rise to a 

symplectic form on each fibre of S , with e e' if and only if 
o o o 

"k 
there exists f € C(M,iC ) such that 

E' = fE^ 1.8.2. 
o o 
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Glven S , we may construct the conjugate rank two vector 

bundle S (by first constructing the principal GL(2,(0-bundle 

to which S is associated, and considering the conjugate re-

presentation), and we consider the map: 

X 8% y ' » y 8^ X 1 . 8 . 3 , 

where x, y 6 S . We extend 1.8.3 by complex bilinearity in 

fibres to give an isomorphism of complex vector bundles: 

h : S S S 8 . S ^ , 
1 . 8 . 4 , 

and let W be the fixed point set of h. Then W is a rank 
o o 

four real vector bundle over M. 

So far we have just assumed (S , [E^]) as given. We now 

choose two more pieces of data: (i) A particular representative 

symplectic form e € and (ii) a (real) vector bundle 

isomorphism: 

G : TM » W 1 . 8 . 5 , 
o o 

(Assuming that such an isomorphism exists, i.e. that TM and W 

are members of the same vector bundle isomorphism class, is tanta-

mount to requiring M to be spin.) 

From the data (M,S ,E ,O ) we may now derive the geometry of 

spacetime (see also Flymen and Westbury [P -fS ])• 

Let P be the bundle of symplectic frames to which (S ,e ) 
O 0 0 

is associated. Then P is a principal SL(2,C)-bundle over M: 

S L ( 2 , C ) < : » » M 1 . 8 . 6 , 
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o. 

and given P , we may perform the vector bundle constructions 

we gave at the beginning of section 1.7 (see definition (1.7)1). 

In particular we have W(P^) E ^SL(2 I) which is isometric 

to H(Pg) E P^ ^SL(2 (C) H(2) (equation 1.7.14) with respect to 
the natural Lorentzian structures. 

It may easily be shown that there exists a natural iso-

morphism: ^ W(Pg), and hence, given a^, we have 

W(P ) = TM (qua vector bundles). We now define g to be the 

unique Lorentzian metric in TM (i.e. on M) such that the iso-

morphism W(P ) = TM is an isometry of Lorentzian vector bundles. 

The symplectic form E also plays the role of a volume 

element in S^, and hence defines an orientation. This orienta-

tion induces an orientation in W , and hence in W(P^) which 

is compatible with the Lorentzian metric in W(P^) (i.e. a 

"spacetime" orientation). We now induce a spacetime orientation 

9 on (M,g) via the isometry W(P ) = TM. 

To summarize the above: Our basic data is ( M , , a ^ ) , 

and from this we derive (M,g ,e). To complete the description of 

global spacetime geometry as described above we require a g-

spin structure s on M. This is easily constructed from g 

(M,S^,e^,a^) in a unique way: we just take the principal 

SL(2,1)-bundle to be P , and the bundle homomorphism n : 

"u 

P —SO(M,g) (s 9) is constructed using the isomorphism a 

and a reverse procedure to the one which lead to equation 

1.7.18. This leads to a unique g-spin structure s^ E (P^,n) 

on M. 

Thus we may derive an entire description of global geometry 

(M,g,9,s ) starting from the spinor data ( M , , a ^ ) . The 
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converse construction is also well defined: Given (M,g,8,s ), 

we let = S(s ), and is just the symplectic structure 

in S(s ) constructed in section 1.7. W is taken to be W(s ) 
5 o g 

and a = a(s ), the Infeld-Van der Waerden isomorphism associa-o g 

ted with the spin structure s^. From (M,g,8,s^), we construct 

(M,S , and the two constructions we have just described 

are mutually inverse. In other words, the two foundations for 

global spacetime geometry are equivalent. We shall usually work 

from and with (M,g,8,s ), and translate to spinor formalism as 

required, but there is a case for starting from the spinor foun-

dation (M,SQ,E ,0 ), especially if this can be derived from a 

more basic spinor structure. 

Note that, from (M,S^,[e^]), we made two Independent choices 

- that of E 6 [e ], and also the vector bundle isomorphism a • 
o o o 

Making different choices of and o leads to a different 

spacetime geometry, as has been demonstrated in the literature: 

Choosing a symplectic form fE (f € C(M, ([*)) leads to the 

metric |fpg on M; in other words to a conformally related 

Lorentzian manifold. Flymen and Westbury [P^S] have shown, in 

the case f 6 C(M,S^) (i.e. when the same metric g is obtained), 

that G , fE determine equivalent g-spin structures if and only 

if f admits a global square root. In fact. Flymen and Westbury's 

argument is mainly homotopy theory based, and may thus be 

•k 

generalized to the case where f 6 C(M,C ) in the sense that 

E^, fE will determine equivalent spin structures on M (corres-
119 

ponding, via r, to the respective g -, |f|^g-spin structures) 

if and only if f admits a global square root. 

A different vector bundle isomorphism o corresponds to 
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a different principal bundle homomorphism n in the g-spin struc-

ture, and the effect this choice has on spin connections and 

spinor field Lagrangians has been discussed by Isham [ I S ] . 

In the next section we introduce a natural S^-bundle over 

any spacetime, which will turn out to have both geometrical and 

physical significance, and will be used in later work. 

1.9 The Projective Null Bundle 

The aim of this section is to discuss a natural -bundle 

over a spacetime (M,g), and thereby bring together ideas of 

earlier sections concerning spinors, conformal structures, the 

2-sphere and four dimensional Lorentzian geometry. The bundle 

we introduce arises in at least two possible ways from structures 

on a 4-manlfold M. One way is from a Lorentzian conformal 

structure in which case we have the bundle of future null direc-

tions, and another way is from a g-spin structure, where g is 

a Lorentzian metric, in which case we have a projective spin 

bundle. The Infeld-Van der Waerden isomorphism of section 1.7 

gives a natural isomorphism between the two bundles, and we refer 

to both bundles as the projective null bundle over a space-

time (M,g). We might also discuss this bundle as arising from 

a Lorentzian spin conformal structure (as in section 1.5), but 

here we make an explicit choice of representative metric. 

The projective null bundle is obviously a very natural 

object from both geometric and physical viewpoints. Indeed, the 

fibres of the projective null bundle are just the anti-celestial 
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spheres at the points of spacetime. We regard this bundle as a 

natural six-dimensional arena on which to consider physically 

interesting spacetime equations. The case of lifting up Yang-

Mills (in particular Maxwell) theory on Minkowski space to 

X is being investigated by Newman and coworkers (see ]» 

[K 42,], [K-f?-], but our discussion describes the situation for 

a general spacetime, and so geometrizes earlier work relating 

Lorentzian geometry and the 2-sphere (see, for example, [H 7- ], [H 3 ] , 

[L Y ]). 

The section is organized as follows: We construct the bundle 

of future null directions for a Lorentzian conformal manifold (M,C) 

and also the projective spin bundle for a Lorentzian spin mani-

fold (M,g,Sg). In the case where C = C^, we use the Infeld-

Van der Waerden isomorphism to relate the two constructions. We 

also indicate the geometric inter-relations between the various 

bundles over spacetime M on the one hand and over the typical 

fibre of the projective null bundle on the other. 

The basic idea behind the use of the projective null bundle 

as a space on which to consider spacetime theories is that we have 

available the spin and conformally weighted functions on each 

2-sphere fibre, together with the associated ^-operators des-

cribed in example (1.5)1. Spinor equations on M may then be 

lifted to the total space of the projective null bundle and the 

fields on M satisfying those equations may be represented as 

sections of appropriate complex line bundles over the total space. 

Complicated partial differential equations on M often turn out 

to be much simpler, and their geometric and physical significance 

illuminated, when considered in this way. For example, a Maxwell 
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field on Minkowski space may be lifted to a complex valued function 

satisfying a couple of linear equations on x s^. These equa-

tions lead to a deeper understanding of the structure of Maxwell 

theory - in particular the duality properties of the electromagnetic 

field (see Kent et al. [K 3 ] for more details). Another example 

is the case of spinor differential equations on embedded submanifolds 

of spacetime, and we may consider lifting up such equations to the 

pullback of the projective null bundle in order to elucidate their 

structure. 

We commence our discussion with some generalities on vector 

bundles. First let TTg: E —^ M be any real vector bundle of 

* 
rank r s 1 over the manifold M. Let E = E - {0„} where 0 

is the zero section of E, and consider the natural free right 
+ " 

action of ]R on E by (positive) dilatations: (v,t) tv, 

* + 
V(v,t) 6 E X ]R (This action is generated by the Llouville 

A 

vector field G Vect( E) given by Ag(v) = v modulo the usual 

identification of (Ker with TTg^(Trg(v))) . We now have a 

principal n"*"-bundle ^ E — S E , where SE = E/n"^ is 

the total space of the so called sphere bundle associated to E 

ir~ X 
given by S SE —>- M, with obvious projection onto M. 

In the case when is a rank r complex vector bundle 

"k "k 
over M, the required bundles will be £ > E —^ 3PE and 

p E M, where IP E = "E/ic". We call the 

bundle the projective bundle of E. 

Now let M be a manifold of dimension n with cotangent 

* A 

bundle T^: T M — M . We use T M, rather than the tangent 

bundle TM, as a starting point for our constructions for various 

reasons. One reason is convention (see, for instance, Penrose and 

Rindler [7^1 ], where the covariant, rather than contravariant, 
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projective spin bundle is considered), and a second reason is that 

there exists a naturally much richer structure on T M. For ex-

1 * 
ample we have the canonical 1-form 6 M) given by 

* 

a f—̂  a o DT (a), Va € T M, and also the associated canonical 

symplectic form = -dn^. 

We have the principal ]R -bundle, ]R c—»- T M —> ST M, 
n—1 n—1 * 

and also the S -bundle, S ST M —»- M, as described above 
+ " 

for a general vector bundle. In fact, the ]R -bundle over ST M 

is trivial since it admits a global section - for instance, 

given any positive definite metric g on M, we may define the 
section y : ST M — T M; [a] II all t̂, for all [a] 6 ST M. 

S S 

This section just identifies ST M as the unit cosphere bundle 

of (M,g). Using (or indeed any other section) we may pull 

back the canonical 1-form on T M (which is just the restriction 

of and which we also denote by n^) to a contact form 

" , * A 
p 6 ^ (ST M) on ST M. Note that a metric of Lorentzian 
g iXL 

signature will not give rise to a global section of 

T M —^ ST M in the same way as a positive definite metric. 

Indeed,for a Lorentzian metric g, p as defined above, is 

singular precisely on the subspace of all null covector equivalence 

classes. However, we shall see below that it is possible to use 

a Lorentzian metric g to realise, at least pointwise on M, the 
* 

null sub-bundle of ST M as a sub-bundle (rather than as a quotient) 
* * 

of T M. 

To proceed towards our definition of the projective null bundle, 

we assume M to have additional structure. First we assume that M 

admits a Lorentzian metric (so that M must be either non-compact 

or compact but with vanishing Euler invariant) • Let Con(M) denote 
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the space of all Lorentzian conformal structures on M: 

Definition (1.9)1: Let C € Con(M). We say a 6 T M is C-null 

if II a II ^ = 0 for some (and hence every) g 6 C. Let N(M,C) 

= {a € T M: a is C-null) denote the bundle of all C-null covectors 

over M. Let SN(M,C) = {[a] 6 ST M: a is C-null} (note that this 

definition makes sense). 

In general, assuming spacetime orientability of (M,C) (the 

definition of spacetime orientability obviously extends to n-

dimensions), SN(M,C) will be a sub-bundle of ^ ST M — M 

n~"2 

with typical fibre the disjoint union of two copies of S We 

obtain a bundle ^ SN^(M,C) — M by choosing a spacetime 

orientation for (M,C). Given a particular Lorentzian metric 

g 6 Met(M), we write N(M,g) = N(M,C ) etc., where, as usual C 

S S 
is the conformal class containing g. 

Now let (M,g) be a spacetime so that M is a four-dimensional 

connected manifold, and (M,g) is spacetime oriented. We shoose a 

particular orientation so that we have a well defined, consistent 

notion of future pointing vectors at each point in M. We have the 

following fibrations: 
» ST^M » M 1.9.1, 

gZc » SN*(M,g) » M 1.9.2, 

corresponding to those for the general situation discussed above. 

-f- * * * 

We also have the principal bundle H ^ T M —>• ST M, but we 

shall be interested mainly in the corresponding construction for 

the bundle of future null directions: 

21^: » *N*(M,g) » SN+(M,g) 1.9.3, 
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+ 

where N (M,g) is the bundle of future pointing (non-zero) null 

covectors over M. Note that we adopt the convention of refer-

ring to a covector as being future pointing if the corresponding 

vector in TM is future pointing (using the usual identification 

•k 

of TM with T M via g). The fibration 1.9.2 may thus be re-

garded as the bundle of future null directions of (M,g), so that 

the fibres are just the anti-celestial spheres at points of 

spacetime. We may obtain a more concrete picture of the future 

null directions at a particular point in spacetime in the usual 
way (see Held et al. [ H ] , Penrose and Rindler ['P ]): 

-1 
Let X 6 M and u 6 tr (x) , where tt = SO(M,g)—>• M is 

the principal SO (1,3)-bundle of oriented g-orthonormal frames 

over M (1.1.2). We write u = {u ,u^,u„,u„} with u G T M 
o j_ ^ o x 

a timelike future pointing unit vector. Define the hyperplane 

n C T M by IT = {a 6 T M: g(x)(a*, u ) = l}, so that 
U — X U X o 

S^ = n N (M,g), topologically a 2-sphere, is a cut of the 

space of future null directions at x. Note that [a] n 

consists of a unique element, say a , for each [a] 6 SN^(M,g), 

so we may define: 

Cy : SN^^M,g) » [a] i—» 1.9.4, 

for all [a] 6 SN^(M,g). The image of SN^(M,g) under c^ is 

precisely the cut and so c realizes the space of future null 

directions at x as a concrete 2-sphere sitting inside T^M. The 

map c is, to some extent, analogous to the section y defined 
u § 

above for the case of a positive definite metric g, but note that 

in order to define c^, we have chosen a frame u at a particular 
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X 6 M. In any case, c^ is a diffeomorphism of the space of 

future null directions at x onto S^. Choosing a different 

1 'f' O 
frame ua G it (x) , a 6 SO (1,3), leads to the cut which 

ua 

is a supertranslation (see appendix 6.3) of the cut S^, and 

-1 9 
the map c ° c 6 Diff(S^) is the conformal transformation 

ua u 

of (S^, Can) corresponding to a S 20^(1,3) (see 1.5.33). This 

construction thus gives an alternative realization of the Lorentz 

group as the conformal group of the 2-sphere (Cf. Example (1.5)1). 

If M is parallelizable, then there exists a global section 

of SO(M,g) and we perform the above construction at each point 

of M to obtain an S^-subbundle of T M which is bundle 

isomorphic to SN (M,g) (equivalently, we obtain a section of 

the fibration 1.9.3). In general, however, no such section exists, 

and we only have a local "unit sphere" (local sections, of course, 

always exist), and even if SO(M,g) is trivializable, the iso-

morphism between the unit sphere bundle and SN^(M,g) obtained 

depends on the choice of trivialization. Since we wish to avoid 

any such choices, we prefer to regard SN^(M,g) as a quotient, 

rather than as a sub-bundle, of N (M,g). 

The six-dimensional total space of the projective null bundle 

provides a natural arena on which to consider physically interesting 

fields lifted from spacetime. Before discussing such lifts, let us 

first discuss another construction of this space, this time using 

spinors: 

/vx. 
Assume now that M is spin and let s = (SO(M,g),n ) 6 

1. '\Aj 

Z(M,g) be a g-spin structure on M, so that SO(M,g) is a 

principal SL(2,iC)-bundle over M. Obviously we do not need to 

assume the existence of such a g-spin structure in order to construct 
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SN (M,g), but this construction gives rise to a useful represen-

tation of the space. A natural isomorphism between the two con-

structions arises from the Infeld-Van der Waerden isomorphism 

o(s ) (see definition (1.7)2)-

Using the notation defined in section 1.7, let S (s ) denote 

the rank two complex vector bundle over M associated to SO(M,g) 

by the representation p of SL(2,(C) on (Ĉ . Elements of 

S (s ) are unprimed spinors (in abstract index notation). 

We then have the bundles: 

S (s ) » ]PS (s ) 1.9.5, 

» ]ps"(s ) 1.9.6, 

as above. Note that 1.9.6 may be regarded as the bundle associated 

to SO(M,g) via the action (p of SL(2,J]) on !C3r = given by 

equation 1.5.20. We now show that IPS (s ) is bundle isomorphic 
§ 

to the S^-bundle SN (M,g): Recall (1.7.18) the Infeld-Van der 

Waerden isomorphism (for s ), a(s ): TM —^ H(s ) S(s ) 0 S(s ). 
8 8 8 8 8 

A * *, ^ , —* 
Now define a (s ): T M — H (s ) S (s ) @ S (s ) in the obvious 

8 8 8 8 
* 

manner using the identification of T M with TM (via g) and the 

identification of S (s ) with S(s ) (via the natural symplectic 
S S 

structure e in S(s )). The map a (s ) is an isomorphism of 

vector bundles which, when restricted to the space of all null co-

vectors, projects down to a well defined map on SN'^(M,g): We 

define 

v(s ): SN'^(M,g) ^ ); [a] I ^ 1.9.7, 

I gig 
for all [a] 6 SN (M,g), where is any element of S (s ) 
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satisfying (a (s^))(a) = 8 (Note that any null covector a 

corresponds, under the Infeld-Van der Waerden isomorphism, to a 

* * 
decomposable element of S ( s ) @ S ( s ) of the form X 8 X , 

g g a a 

where X is unique up to multiplication by an element of S^). 

+ 

Replacing the representative a of the H -orbit [a] by any 

other representative ta, t 6 IR"*", changes any X by a scaling 

(t^) and hence does not change [X ]. This demonstrates that 

equation 1.9.7 defines a map from SN (M,g) into PS (s ). The 

map v(s ) is easily seen to be a bisection and, moreover, an 

isomorphism of S^-bundles. Hence, given the g-spin structure 

Sg, we may identify the bundle of future null directions SN (M,g) 

with the projective spin bundle IPS (s ): 

Definition (1.9)2: Let (M,g) be a spacetime which is spin, and 

let s be a g-spin structure on M. The projective null bundle 

of (M,g) is defined to be SN^(M,g) - IPS (s ). 
+ 

The SN (M,g) description is physically more tangible, whilst 
* 

the IPS (s ) description is more useful from a geometric view-

point. A more concrete realization of the projective null bundle 

may be obtained by using the maps c , v(s ) given by 1.9.4, 
u g 

* 
1.9.7 respectively. We regard the bundle IPS (s ) —>- M (1.9.5) 

8 

as the S^-bundle associated to SO(M,g) by the action given in 

1.5.20. We then have, for each spin frame u G SO(M,g) at x, the 

diffeomorphism S^ —^ ]PS^(s ) ; [_z] [(u,[z_])], for each 

[^] € S^. Let V = v(s )|SN"^(M,g) (see 1.9.7) and define the 
X g X 

diffeomorphism: 

= c ° ° : 5% » gZ (: "N*(M,g) 1.9.8, 
U U X U X 

where u = n (u) 6 SO(m,g). For each spin frame u at x, we 
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thus have a field of null vectors defined on ; as [^] varies 

over S^, sweeps out the entire space of (normalized) 
u 

future null directions at x. Choosing a different frame uA at 

X, A G SL(2,{E), gives rise to = K.2^, where K. is the 
U-ti A u A. 

conformal factor associated with the conformal action of SL(2,I) 

(or rather S0^(l,3)) on (see equation 1.5.36). An explicit 

diffeomorphism of onto may also be constructed without 

using spinors by projecting the cut into the 3-space orthogonal 

to u^ and reducing S0^(l,3) to S0(3) which then acts on 

(Held et al. [H T ]), but the construction follows more directly 

OA, 

from SO(M,g), once a g-spin structure has been chosen. 

Before returning to our discussion of the projective null 

bundle, we remark on the analogous construction for a Riemannian 

4-manifold (M,g), which is that of the Penrose twistor space 

(see Atiyah et al. [A 30]), This is the six-dimensional space 

obtained either as the unit sphere bundle of the bundle of anti-

self-dual 2-forms A (M,g) or, again, as a projective spin bundle. 

The Penrose twistor space admits a natural almost complex structure 

which is integrable if and only if (M,g) is half-conformally flat, 

and this construction yields a very important link between self-

duality and algebraic geometry. There is also a twistor construc-

tion for Lorentzian 4-manifolds (Wells [Wf4^, Woodhouse [VIIf ]) 

but this involves a more indirect correspondence with the manifold 

M - rather than a fibration over M itself, one has a real 

5-manifold fibred only over each spacelike hypersurface in M. 

The projective null bundle approach is to exploit the fact that 

we have a fibration over spacetime itself, and a comparison with 

the twistor methods would be a subject for further study. 
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The structure of the projective null bundle will now be con-

* 

sidered in more detail. We use the IPS (s ) description since 

we may regard IPS (s ) as the S^-bundle associated to SO(M,g) 

via the action tj) given by equation 1.5.20. Having given the theory 

of the complex line bundles E(s,w) over S^ in section 1.5, we 

will now apply this fibrewise to S^ IPS (s ) —> M to obtain 

a copy of E(s,w) above each point of spacetime. 

We have the following diagram of fibrations: 

c' C » c2-{q} 

r 
* * * G c » S (s ) 

1 

rs (s ) 

M 

SL(2,C) 
% 

SO(M,g) 

1.9.9, 

where C ^ ([^-{0} —>- S is the unique (up to equivalence of 

prolongations) spin conformal structure of (S^,Can) of 1.5.13, 

iC S (s ) —> P S (s ) is the principal iC -fibre bundle of 
§ § 

1.9.5, and SL(2,(E) SOfM,g) —^ M is the principal SL(2,fl])-

bundle given by the g-spin structure s . The diagram 1.9.9 
S 

indicates that the spin conformal structure of S^ is attached 

fibrewise to the projective null bundle IPS (s ) M 

(1.9.6). 

Now recall the complex line bundle E E ( s , w ) —^ defined 

in section 1.5 for each w 6 iC, 2s 6 Z. We attach such a line 

bundle to each point x G M in a natural way: 

Definition (1.9)3: Let (M,g) be a spacetime which is spin, and 

let s be a g-spin structure. Let w 6 (C, 2s 6 Z and define the 
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complex line bundle I ̂  E(s,w;s ) —^ PS (s ) , where 

* * * 
E(s,w;Sg) = S (s ) x^* (E is associated to the principal K -

" " A 
bundle S (s ) by the representation ^ defined in equation 

1.5.14. 

Consider the diagram associated to diagram 1.9.9: 

C C ^ E(s,w) 
o 

S 

(C E(s,w;s ) » PS (s ) 

M 

V 
O 

\k 
OjO. , 
S0(M,g)xg^^2,c)V 

1.9.10, 

where SO(M,g) V is the vector bundle associated to the 

spin bundle SL(2,{E) SO(M,g) —>• M via some given representation 

of SL(2,(E) on the vector space V. For example, this associated 

vector bundle could be a bundle of spinors obtained from the irre-

ducible representation D°(y,v), which we defined in section 1.7. 

Sections of SO(M,g) will be physical fields on space-

time, and we wish to associate to each such field on M a section 

of the complex line bundle E(s,w;-s ) over IPS (s ) (for some s,w), 
§ S 

i.e. we wish to lift fields on spacetime to sections of line bundles 

on the total space of the projective null bundle. The particular 

E(s,w;sg) which arises will obviously depend on the representation 

under which the spacetime field transforms. Before discussing the 

geometry underlying this realization of fields on spacetime as 

sections of line bundles over the projective null bundle, we discuss 

briefly the relationship between representations of SL(2,iC) on 

the one hand and spin and conformally weighted functions on the 
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two sphere on the other. For more details concerning the represen-

tation theory involved, see Goldberg et al. [G '3 ], Held et al. 

[H ], and Lind et al. [L ̂  . 

Recall the irreducible representation D°(y,v) (2y,2v 6 71) 

of SL(2,I) discussed at the end of section 1.7. This representa-

21J ? \) — 

tion is defined on the vector space S(ii,v) = (0 S) 0 (0 S) 

of all tensors on S(= 0^) which are totally symmetric in both 

their 2\i unprimed slots and in their 2v primed slots. The 

dimension of the representation is (2)i+l) (2v+l) . The existence 

of the symplectic form e means that we only need consider co-

variant tensors $ (= $, . ., in abstract index 
...A„ A'...A' 

1 2u 1 2v 

notation or with respect to the standard basis of fĈ ) . Let us 

write 
*(Z) = A A' A' Z ^ ^ 1.9.11, 
— A ...A- A,...A' ' 

1 2y 1 2v 

for the image in C of an element z_ of (Ê  under the tensor 

Then the representation D°(y,v) is given by: 

D° E D°(w,v): SL(2,C)xS(w,v) S(M,v); (A,$) 

where (D°$)(z) = $(A^z) 1.9.12 
A — — ' 

for all z 6 C*, $ G S(y,v), A 6 SL(2,C). 

We now consider another irreducible representation of SL(2,(E), 

this time on a space of spin and conformally weighted functions on 

S^. Let 2s 6 Z, w € iC, and consider r(E(s,w)) as the space 

C {[) of equivariant maps of into JC, so that 

n 6 r(E(s,w)) implies n(A.z) = p (A ^)n(z), for all z G iC^-{0}, 
~ s, w — — — 

A 6 (C . We define a representation A(s,w) of SL(2,iE) on r(E(s,w)) 
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by: 

A 5 A(s,w): SL(2,C)xr(E(s,w)) —»r(E(s,w));(A,n) n, 

where (A n)(z) = n(A^z) 1.9.13, 
A — — 

for all ^ 6 c2-{0}, n 6 r(E(s,w)), A 6 SL(2,C). 

A is not an irreducibl^representation, but an irreducible repre-

sentation A° is obtained by considering an invariant subspace. 

We now assume that 2w G Z with w 5 |s|. Let r°(E(s,w)) 

= span Î I & & $ w}, where m $ |&|, I ^ |s|} are 

the spin s-spherical harmonics, so that spanfgY^ : m $ |&|} is the 

eigenspace of the operator 'Sd corresponding to the eigenvalue 

(s-£)(s+£+l). Then r°(E(s,w)) is a subspace of r(E(s,w)) with 

dimension (w-s+1) (w+s+1) which is invariant under the S L ( 2 , ! E ) -

action defined by A. Using the behaviour of the spin s-spherical 

harmonics under S", it may be shown that A° E a | S L ( 2 , ( E ) xr°(E(s,w)) 

is an irreducible representation of S L ( 2 , ( C ) . We now show that 

D ° ( i J , v ) and A°(s,w) are equivalent if 2p = w-s and 2v = w+s, 

by defining an isomorphism 6 which intertwines the two actions 

D°, A° of SL(2,C): 

We define the linear map 6: S(u,v) — r°(E(s,w)) by: 

8($) = $|c2-{0} 1.9.14, 

for all $ 6 S(iJ,v), where we are regarding any $ € S(y,v) as a 

map on (Ê  as in 1.9.11. Suppose A 6 SL(2,iC) , $ G S(p,v) and 

z G (C^-{0}, then we have ((A°°0) (f)) (z) = (A° (0 ($) )) (z) 
— — A — A — 

= 8($)(A^z) = 0(A^) = (D°$)(z) = (9(D°$))(_z) = ((9 °D°) ($)) (_z) , 
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l.e. ° 8 = 0 ° D° so that the linear map 6 intertwines the 

representations D°, A°. By inspection, 9 is infective, and 

hence, since dim S(p,v) = (2)i+l) (2v+l) = (w-s+1) (w+s+1) 

= dimr°(E(s,w)), 9 is an isomorphism of vector spaces. We have 

demonstrated that the two representations are equivalent, and from 

now on we identify D°(ii,v) with A°(v-p, y+v) unless the iden-

tifying map 0 is explicitly required. 

Let us now return to spacetime: 

Definition (9.1)4: Let (M,g) be a spacetime which is spin and 

let Sg be a g-spin structure on M. Let Zy, 2v 6 Z and define 

D°(#,v;s ) to be the vector bundle associated to SO(M,g) via 

the irreducible representation D°(y,v) of SL(2,iC) on 

S(p,v) = r°(E(v-p, p+v)). 

In general, a field on spacetime will transform under a repre-

sentation of the spin group SL(2,C) and also under an additional 

group G (e.g. the structure group of a Yang-Mills theory). Such 

a field is a section of (# D(p,v;s )) 8 F, where F is some G-

vector bundle over M, but for simplicity we focus our attention 

on a particular finite dimensional irreducible representation of 

SL(2,(E), and hence on D°(p,v;s ) for some choice of p,v. 
S 

We now define a linear isomorphism of T(D°(p,v;s^)) onto 

r(E(v-u» y+v;s^)), so that to each field on spacetime we may 

associate a section of the complex line bundle E(v-p, p+v;s ) 

over the projective null bundle. We regard a section of 

o 
D (p,v;s ) as an equlvariant map V: SO(M,g) —^ S(p,v) 

§ o 
= r (E(v-p, p+v)), and a section of E(v-p, p+v:s^) as an equi-

•k "k * A 
variant map H: S (s ) —>- (E, where, in turn, S (s ) is con-

§ 8 

sidered as the &2-{0}-bundle associated to SO(M,g) via the 
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restriction of the representation p" ' of SL(2,£C). 

Definition (1.9)5: Define the null lift L: r(D°(y,v;s )) 
8 

—> r(E(v-w, ]J+v;s )); ¥ where ¥^([(u, z)]) = Y(u)(z), 
g _ _ 

for all [(u, z)] 6 S (s ). 
— g 

We show that definition (1.9)5 makes sense: Let ¥ 6 T(D°(y,v;s^)), 

z 6 l2-{0}, u 6 %b(M,g). Suppose A 6 SL(2,(C), then ¥(uA)((p") .^,z) 
— A"1— 

= (D°_.(V(u)))(A^z) = W(u)((A ^)^A^^) = Y(u)(z^, so that is 
A i 

well defined. Now let A 6 !E' , then W^([(u,_z)]A)= ¥(u)(X^) 

= that 

equivariant and is indeed a section of E(v-y, y+v; s ). 

Since the null lift L is, by inspection, linear and bijective, 

we have a one-to-one correspondence between fields on spacetime trans-

forming under D°(y,v) on the one hand and spin and conformally 

weighted functions on the projective null bundle on the other. The 

philosophy which may be adopted is to use L to lift up equations 

satisfied by physical fields on spacetime to equations on the pro-

jective null bundle. The lifted equations are often simpler (see 

Kent et al. [K 3 1 for a discussion of the lifted Maxwell equations 

when M = ]R^), and also more natural, especially when spinors and 

null structures are involved, as in Chapter Three below. Hansen et 

al. [H '3> ] have demonstrated, using the concrete realization S 

(u 6 ir ̂ (x)) of the space of future null directions at x G M, how proper-

ties of spacetime fields evaluated at x may have a simple ex-

pression in terms of the spin and conformally weighted function on 

S^ obtained by null lifting the spacetime field at z. For example, 

the norm of a vector at x turns out to be just the product of the 

two critical values of the corresponding function on S^. 
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This concludes our present discussion of the projective null 

bundle. In this section we have demonstrated how several important 

ideas from earlier sections interact and we have set up a geometrical 

framework which will form the basis for future work. These further 

investigations will appear elsewhere. 
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2.0 Introduction - Why Embed? 

This chapter concerns itself with various aspects of the theory 

of embeddings. The reasons for including such a chapter are three-

fold: 

Firstly, embeddings have found many interesting applications 

in the theory of general relativity (and in other areas of gravity 

theory), both at the finite dimensional and infinite dimensional 

levels. Each of the following three sections contains a review 

of some of these applications; finite dimensional aspects in 

section 2.1, infinite dimensional aspects in section 2.2, and 

spinorial aspects in section 2.3. 

Secondly, the theory of embeddings makes contact with and 

interrelates several parts of this thesis. In particular. 

Chapters One, Three, Four and sections 6.2, 6,3. The spinor 

ideas of sections 1.7, 1.8 and 1.9 come together with embeddings 

in the very useful GHP formalism in general relativity, and we 

use this formalism in Chapter Three (see also the conformal 

aspects in sections 1.5 and 6.2). In the theory of asymptotically 

flat spacetimes (see section 6.3), null infinity is an embedded 

submanifold of the compactified spacetime and it is this submani-

fold which provides a framework for the study of gravitational 

radiation. Embeddings also interact with the two levels of 

everywhere invariance discussed in Chapter Four: On the one hand, 

the natural flavour of everywhere invariance is present when we 

study spaces of embedding;(see section 2.2), and on the other 

hand, many of the families of metrics considered in Chapter Four 
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are embedded submanifolds of Met(M). 

The third reason for discussing embeddings is that we make 

explicit use of (null) embeddings in Chapter Three in our treat-

ment of spinor propagation equations and quasi-local momentum 

in general relativity. Several parts of this chapter (and of 

Chapter One) will be utilized in Chapter Three. 

The main purpose of this chapter is to review, and much of 

the material is standard. However, we hope that we have clarified 

certain interrelationships between the theory of embeddings on 

the one hand and aspects of general relativity on the other. We 

also remark that several of the suggestions made in section 2.2 

are novel and deserve further study. 

As usual, we make no attempt to discuss analytical details. 

For a thorough treatment of the infinite dimensional manifolds 

involved (especially in section 2.2), we refer the reader to 

Binz and Fischer [B 1^] and to Hamilton [H 2 ]• All concepts 

are appropriately smooth. 

2.1 Embeddings 

The object of this section is to give a brief survey of the 

basic ideas relating to the theory of embeddings. We first give the 

differential topological framework and then introduce related 

differential geometrical concepts. Since much of the discussion 

in this thesis is conducted within the language of principal 

fibre bundles, we express the ideas of the latter part of this 

section in this language also. In this section, we also review 

certain applications of embeddings to topics In general relativity. 
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Let M, N be smooth manifolds, possibly infinite dimensional. 

Typically, M and N will be each modelled on some nice topological 

vector space. Recall that if E is a topological vector space, and 

F $ E a closed subspace of E, then we say that F splits if 

there exists a closed subspace G of E such that E = F # G 

(topological direct sum). For example, if E is a Hilbert space, 

then any closed subspace F splits; we just take G = F . In 

general, however, a closed subspace of even a Banach space need not 

possess a closed complement. If E is finite dimensional, then 

every subspace of E splits. 

Definition (2.1)1: A smooth map f: M —^ N is said to be an 

immersion if, for all x 6 M, the map Df(x) is infective and 

Df(x).T^M splits (as a closed subspace of T^^^^N). The smooth 

map f: M — N is said to be an embedding if f is an immersion 

and, in addition, f is a homeomorphism of M onto f(M) 

(f(M) with the topology inherited from N). If f is an embed-

ding, we write f: M N. 

The importance of embeddings lies in their relation to sub-

manifolds; a subset A of a manifold N is a (closed) submani-

fold of N if and only if A is the image of a (closed) 

embedding. We may also use an embedding to pullback covariant 

tensor fields in the usual way:- Suppose f: M N, and 

u e r(8^ T^N). Then 6 r(8^ T^M) is defined by: 

(f w)(x)(v^,...,v^) = w(f(x))(Df(x).v^,..., Df(x).v^) 2.1.1, 

for all v^,...,v^ 6 T^M and x 6 M. An important case is when 

0) is a (weak) Riemannian or symplectic structure on N. 

For more details concerning the above definitions, see Lang [L 2-
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For the rest of this section, we assume that all embeddings are 

between finite dimensional manifolds. Note that the infinite dimen-

sional case arises in Chapter Four where we consider embeddings into 

the space of metrics. 

The manifolds we use in geometry and in physics are usually 

regarded as abstract objects, and not as being embedded in a 

manifold of higher dimension. Nevertheless, it is occasionally 

useful to consider such embeddings, since the degrees of freedom 

inherent in the additional dimensions may be of help in gaining 

extra geometrical insight. In general relativity, this insight 

may lead to new links between geometry and physics. For this 

reason, and others, we present a brief survey of Ihn concretization 

of manifolds: 

From a "bare" differential topological viewpoint, the most 

important result is the Whitney embedding theorem (see Hirsch [H48 ]). 

For n ) 1, given any(paracompact^ Hausdorff) n-manifold M, 

there exists an embedding f: M (and an immersion 

2n-l 

h: M ]R , if n 5 2). The Whitney theorem demonstrates 

that we may regard any finite dimensional (paracompact, Hausdorff) 

manifold as a submanifold of Euclidean space of twice the dimension. 

Of course, in spacific instances, we may be able to find an embed-

ding in ]R™, where m < 2n. 

We now consider the geometrical aspects of embedding. From 

now on in this section, the term Riemannian will refer to a metric 

of any (non-degenerate) signature. 

Definition (2.1)2: Given Riemannian manifolds (M,g), (N,k), an 

embedding f: M N is said to be isometric if f k = g. 

We are often given f and (N,k) and we define the metric g 
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•k 

on M by g = f k, so that f Is an Isometric embedding. If k 

is definite, then g is necessarily definite, but if k is in-

definite (e.g. Lorentzian)i then there are various possibilities 

for g; g could be Indefinite, degenerate (null) or definite, 

depending on f. 

Suppose now we are given (M,g) and wish to isometrically 

embed (M,g) in some Riemannian manifold (N,k). We may ask 

what obstructions, if any, prevent the existence of such an em-

bedding. (N,k) is often taken to be can(p,q)), where 

can(p,q) has components diag(l 1, -1,...,-1) (p positive 

eigenvalues and q negative eigenvalues: signature = p - q) 

with respect to the standard coordinates on but other 

embedding spaces (N,k) may also be considered; for example, 

Riemannian manifolds which are of constant curvature, conformally 

flat or Ricci flat. We restrict our attention to the Euclidean 

case where the obstruction to embedding in , can(p,q)) 

depends only on p,q. 

Three important (overlapping) theorems on isometric embedding 

in Euclidean space are the following: 

First, we have the celebrated theorem of Nash: 

Theorem (2.1)3 (Nash [N 0 ]): Let M be a smooth n-manifold and 

Ic 

g a C (k 5 3) positive definite metric (i.e. signature = n). 

Then there exists a isometric embedding of (M,g) in 

(P?, can(p,0)), where p = Jn(3n+ll) (M compact) or 

p = 2n(3n^ + 14n + 11) (M non-compact). 

A generalization, and improvement, of Nash's theorem is the 

following: 

Theorem (2.1)4 (Clarke [C^O]): Let M be a smooth n-manifold 



-115-

and g a (k ) 3) metric of signature s. Then there exists a 

isometric embedding of (M,g) in (]R^^, can(p,q)), where 

p = 2(n + s + 2) and q = ^n(3n + 11) (M compact), 

q = "^(2n^ + 15n^ + 37n + 6) (M non-compact). 

Note that for non-compact definite metrics, Clarke's result 

improves on that of Nash (Nash's result may obviously be rewritten 

for negative definite metrics). If we take (M,g) to be a space-

time, so that n = 4 and s = -2, then we see that Clarke's result 

implies that (M,g) may be isometrically embedded in 

89 

can(2,46)) (M compact) or (E. , can(2,87)) (M non-compact). 

Only two timelike directions are necessary for embedding any space-

time and this result is the best possible; Clarke [C40] demon-

strates that there exist spacetimes that cannot be isometrically 

embedded in (E. , can(l,q)). However, if the spacetime is 

globally hyperbolic, then it can be isometrically embedded in 

can(l,q)) (with q as above). 

The dimensions 48,89 given above are not the best possible 

for spacetimes if we require the metric to be smooth, as the 

following result of Greene shows; 

Theorem (2.1)5 (Greene [G ]): Let M be a smooth n-mahifold 

and g a smooth metric (of any (non-degenerate) signature). Then 

there exists a smooth isometric embedding of (M,g) in 

(]R^^, can(p,p)), where p = ^nCn + 5) (M compact) or 

p = 2(2n + 1)(n + 3) (M non-compact). 

For example, any smooth spacetime may be isometrically 

embedded in (E^^, can(18,18)) (compact case) or 

252 

(E , can(126,126)). The latter result is not as good as that 

of Clarke and, indeed, the Greene theorem only gives an improvement 
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in the non-compact smooth case for n 5 20. 

The theorems quoted above enable us to define certain arithmetic 

invariants associated with a Riemannian manifold. One such in-

variant Is the embedding class. Let Met(M) denote the space of 

smooth metrics of signature s (|s| $ n) on the smooth n-manifold 

M (analogous definitions for the and the analytic cases may 

also be given). For g 6 Met(M), theorem (2.1)4 gives restrictions 

on the possible values of the signature of a Euclidean space in 

which (M,g) may be isometrically embedded. For each r G Z. 

prescribed as the signature of a Euclidean embedding space for 

(M,g) within the limits of theorem (2.1)4, we define the embedding 

class v(g,r) by v(g,r) = min {u G Z : there exists a smooth 

Isometric embedding of (M,g) in ( , can(^(n + u + r) , 

^ (n + u - r)))}. In other words, for given (g,r), the embedding 

class v(g,r) is the smallest integer u such that (M,g) may 

be regarded as a Riemannian submanifold of Euclidean space of 

dimension (dim M + u) and signature r. Theorem (2.1)4 gives 

an upper bound for v(g,r). More generally embedding classes may 

be defined if we consider other classes of embedding spaces; for 

example, we could ask for the smallest dimension of a Ricci flat 

Riemannian manifold of given signature in which (M,g) may be 

smoothly Isometrically embedded. 

The embedding class is an invariant which may be used in a 

classification programme for Riemannian manifolds of a particular 

type; for example, solutions of the Einstein equations in general 

relativity. Goenner [G ] gives examples and applications to 

general relativity of the local embedding class - this is defined 

as above except that only local Isometric embeddings are considered 
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(a local isometric embedding need only be defined on an open set 

of the domain). For example, necessary conditions for spacetimes 

to be of a given local embedding class may be written down as a 

relation involving the curvature tensor or as requirement that the 

spacetime admit a certain class of geodesic congruences. In the 

latter case, the congruences may be interpreted as the world lines 

of particular kinds of matter or radiation, thus giving a more 

direct link between embeddings and physics. 

Another important invariant of any Riemannian manifold is its 

isometry group. In particular, the isometry group is an important 

ingredient in the classification programme in general relativity 

(Cf. section 4.5). The interaction between isometry groups on 

the one hand and embedding classes on the other is therefore 

important to understand. It has been known for a long time that 

the isometry group does not determine the embedding class (see 

Goenner for examples), but amongst the exact solutions of Einstein's 

equations known, a large isometry group is accompanied by a low 

(local) embedding class. On the other hand, there exist space-

times of class one with trivial isometry group. In fact, it is 

the orbit structure of the isometry group action, not just the 

isomorphism class of the isometry group, which interacts with the 

embedding class. 

As well as considering the possibility of embedding a space-

time into a higher dimensional Riemannian manifold, the embedded 

submanifolds of a spacetime play an important role in general rela-

tivity. One dimensional submanifolds are curves in spacetime and 

particularly important are null and timelike curves which are possible 

world lines of radiation and matter. Among two dimensional submanifolds, 
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spacelike ones have probably received the most attention in general 

relativity. For example, an important concept in singularity 

theory is that of a closed trapped surface which is a compact 

spacelike two dimensional submanifold with a certain extrinsic 

curvature condition (see Hawking and Ellis [H S' ]). Another area 

in which two dimensional submanifolds arise is in the study of 

quasi-local kinematical quantities (see Chapter Three); to 

obtain, say, the gravitational energy intercepted by some region 

in a spacelike hypersurface, we integrate over the compact space-

like surface which is the boundary of the hypersurface region. 

Indeed, we may regard the energy calculated in this way as being 

surrounded or "linked" by the 2-surface. Three dimensional sub-

manifolds considered in general relativity are null (see Chapter 

Three), spacelike (as Cauchy surfaces and in the 3+1 initial 

value problem - see Hawking and Ellis [H ̂  ]) or timelike (in 

cosmology). 

It is fair to say that in four dimensional geometry, in 

particular in general relativity, all possible codimensions for 

submanifolds play an important role; codimension zero corres-

ponds to spacetime, codimension one to hypersurfaces, codimension 

two to (2-) surfaces (on which curvature has perhaps its most 

essential manifestation), codimension three to curves, and co-

dimension four to discrete collections of events. 

There are also some connections between submanifolds of 

geometric significance on the one hand, and embedding class on the 

other. For example, any product spacetime has (local) embedding 

class less than six, and any spacetime with a non-null totally 

geodesic hypersurface has embedding class not greater than five. 
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We refer the reader to Goenner [G if ] for more examples of these 

connections. 

We now move away from embedding class and mention alternative 

possible reasons for studying embeddings in general relativity: 

The most important global aspects of general relativity are 

those related to causal structure, and causal properties of a 

spacetime may be related to the possibility of certain kinds 

of embedding. For example, if a spacetime (M,g) admits an 

isometric embedding in (E^, can(l,n-l)), then since the em-

bedding space contains no closed non-spacelike curves, neither 

does (M,g). i.e. such a spacetime is necessarily causal. More-

over, it can be shown (see Clarke [C 1Q ]) that a spacetime 

embeddible in can(l,n-l)) is actually stably causal (i.e. 

there exists a C°-neighbourhood of g in Met(M) whose elements 

are all causal, so that the spacetime metric g remains causal 

under small continuous perturbations). Conversely, any stably 

causal spacetime is conformeomorphic (see section 6.2) to a 

spacetime which does admit an isometric embedding in (5^, 

can(l,n-l)). We have already stated above that any globally 

hyperbolic spacetime can be isometrically embedded in some 

(E.'̂ , can(l,n-l)), and since a spacetime is globally hyperbolic 

if and only if it admits a Cauchy surface (see [H 5^ ], pp. 211-212), 

we see another connection between submanifolds and embeddibility. 

Another area in which an investigation of embeddings may shed 

light on global aspects of spacetimes is in the definition of 

boundary points (or singularities). There exist various possible 

ways of attaching a boundary to a spacetime (see Hawking and Ellis 

[H 5* ]), but another means of doing this is by minimally embedding 
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the maximal extension (still incomplete) of the spacetime in the 

Euclidean space of dimension equal to the embedding class (for 

some signature). The boundary would be obtained by taking the 

closure of M regarded as a submanifold of Euclidean space. 

Other embedding spaces could also be used. We refer the reader 

to Goenner [G ] for more discussion on this and other possible 

applications of embeddings to general relativity. Note that, as 

Goenner emphasizes, it is important to realize that a mere cata-

loguing of spacetimes according to their embedding properties is 

not sufficient; in order that the embedding ideas mentioned above 

be useful, it is necessary to investigate further those concepts 

that enable physical questions to be answered. 

We now give a description of the differential geometric 

aspects of embeddings. For a thorough account, see Kobayashi 

and Nomizu [K S ]• For ease of exposition, we deal only with 

the positive definite case. Analogous results hold for spacelike 

or timelike embeddings into a Lorentzian manifold. We deal with 

null embeddings in spacetime in Chapter Three. 

Let us first consider an embedding f: M > N. We have the 

tangent bundle TN — N , and hence the pullback bundle (see 

* * 
definition (6.1)9) f T : f (TN) — M . The tangent bundle 

* 

T^: TM — M may be regarded as a subbundle of f (TN) via the 

vector bundle monomorphism, v »—> (T^(V), Df(T^(v)).v) 

6 (f T^) ^(T^(V)) C f (TN), for all v 6 TM. We may therefore 

take the quotient of f (TN) by (the image of) TM. This is a 

vector bundle over M whose fibre over x G M is (naturally iso-

morphic to) ^f(x)^/Df(x).T^M (since (f T^) ^(x) = {x} x T^^^^N). 

Let us denote this vector bundle by N(f) —> M. Obviously, 
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rank (v ) = dim N - dim M. 

Definition (2.1)6: The vector bundle v^: N(f) —> M is called 

the normal bundle of f. 

A canonical example is the following; let d: diag(M) MxM 

be the inclusion of the diagonal diag(M) 5 {(x,x): x 6 M}. Then 

the normal bundle is isomorphic to the tangent bundle 

of M. 

We now assume that M,N are equipped with metrics g, k res-

•k 
pectively, and that the embedding f is isometric, i.e. g = f k. 

* 
We may now realize the quotient vj as a subbundle of f T^:-

j-
For X 6 M, let T M denote the k-orthogonal complement of 

Df(x).T M in .N, so that = (Df(x).T M) @ T^M. Then 
X tlx; rCx) x x 

the normal bundle v^: N(f) —^ M is isomorphic to the vector sub-

bundle of f T obtained by taking as fibre over x 6 M the sub-

J-
space T^M. Although this geometric realization of the normal 

•k 
bundle as a subbundle of f depends on k 6 Met(N), we use the 

same notation N(f) —^ M to denote this isomorph, so that 

-1 _L A 
(x) = T M and f (TN) = TM # N(f) (Here, we use the mono-

* A _ 1 
morphism T^f (see (6.1)9) to identify (f T ) (x) 

= {x} X Tg^^^N with T^^^^N and we are regarding TM as a sub-

•k J_ 

bundle of f (TN)). T^M is called the normal space to M at x. 

Let dim M = m and dim N = n. We have the principal bundles 
0(m) 0(M,g) — ^ M, 0(n) — 0 ( N , k ) — ^ N and 

* * 
0(n) f 0(N,k) >- M. Let 0(f) = {(x,u) 6 f 0(N,k) : 

u = {e,,...,e , e ,T,..., e } with e^j-.-.e G Df(x).T M, 
1 m m+l n 1 m , x 

J_ 0, 
^m+l''''®n ^ T^M}, Then, regarding 0(m) = 

0(p) = 

3 0(n), 
0(m) 0 
0 IL 

I PJ 

$ 0(n) (p = n - m), the group 0(m) x 0(p) 

acts freely on the right on 0(f) in an obvious manner. We then have 
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the principal 0(m) x 0(p)-bundle, 0(f) —^ M. 

Definition (2.1)7: The principal 0(m) x 0(p)-bundle is called 

the bundle of f-adapted frames. 

Obviously, 0(f) is a principal subbundle of f 'o(N,k) (via 

inclusion of the total space and the natural inclusion of 0(m) x 0(p) 

as a subgroup of 0(n)). The natural epimorphism 0(m) x 0(p) —> 0(m) 

induces a principal bundle epimorphism, 0(f) — 0 ( M , g ) given by 

(x,u) = (x, {e^, . . . ,e^}) I—{Df(x) ^e^,..., Df (x) }, for all 

(x,u) 6 0(f). Therefore, 0(M,g) is naturally isomorphic to 

0(f)/Q^p^. Similarly, there exists a natural isomorphism of 0(N(f)) 

onto 0(f)/Q^^^, where 0(N(f)) C GL(N(f)) (see definition (6.1)24) 

is the bundle of k-orthonormal frames of the vector bundle 

_L 
N(f) —^ M. Let TTg : 0(N(f)) denote projection. 

Definition (2.1)8: The bundle 0(p) —»0(N(f)) — i s called 

the normal frame bundle of f. 

Clearly, the vector bundle associated to 0(N(f)) via the 

standard action of 0(p) on IR̂  is just the normal bundle of f. 

The bundles discussed above may be summarized in the following 

diagram: 
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0(m)xO(p)(2-

0(N(f)) 

0(m) 

0(m) 

0(M,g) 

M f. 

->0(m+ p) ̂  

A 

->f 0(N,k)-

V 

f TT, 
N 

M 

^0(m+P) 

r\ 

V 

->0(N,k) 

2.1.2. 

The group 0(m) x 0(p) acts on 0(m+p) on the left in the 

fb Ol 
following way: ((b,c),a) t—> for all (b,c) G 0(m) x0(p), 

10 ^ 

a 6 0(m+p). We can therefore form the associated bundle 

0(f) ̂ QX0(p)^(m+P) over M. The following will be used below; 

Proposition (2.1)9: 0(f) x ,0(m+p) is naturally isomorphic 

to f 0(N,k). 

Proof: Define y: 0(f) ^ 0(N,k) by 

w([((x,u),a)]) = (x,ua), for all [((x,u),a)] G 0(f)*o(m)xO(p)°(™*P) 

We first show that y is well defined. Suppose [((x,u),a)] 

= [((x*,u'),a')]. Then there exists (b,c) 6 0(m) x 0(p) such that 

(x,u)(b,c) = (x',u') and (b,c) ^a = a'. This implies that x' = x, 

= (=1% e^b, e^+pC} (where = u) 

and a' 
- 1 

b 0 a. Hence, (x',u'a') = (x,ua), so that y 



-124-

is well defined. 

Given (x,u) 6 f 0(N,k), choose any u' 6 C (f w ) ^(x), 

and let a € 0(m+p) such that u'a = u. Then y([((x,u'),a)]) 

= (x,u), so that y is surjective. 

Suppose y ( [ ((x,u), a)]) = yC [((x',u') ,a') ]) . Then x = x' and 

ua = u'a'. Let b = a'a 6 0(m) x 0(p), so that u = u'b and 

a = b ^a'. Hence, [((x,u),a)] = [((x,u')b, b ^a')] = [((x',u'),a')], 

so that y is injective. 

By inspection, y is fibre preserving, so that y is a 

bundle isomorphism • 

We now consider differential forms on the various principal 

bundles introduced above. First we need to consider the principal 

bundle epimorphisms a: 0(f) —> 0(M,g); (x,u) 

I ^ {Df(x) ^e^,..., Df(x) ^ e^}, g: 0(f) —^ 0(N(f)): 

(x,u) e^+p}, for all (x,u) E (x,{ei,...,eQ^ 

6 0(f), referred to above. We regard = IR™ # IR^, 

where R™ is the subspace of spanned by {e^,..., and 

is the subspace spanned by }. Here {e^,..., 

is the natural basis of Then, regarded as subgroups of 0(m,+p) , 

the groups 0(m), 0(p) induce the identity transformation on the 

subspaces E.̂ , E.™ respectively. Let i: 0(f) f 0(N,k) denote 

inclusion. 

It is straightforward to see that: 

" ".k.u) - •'ul®" 2.1.3. 

2.1.4, 

* IT f 

for all (x,u) 6 0 ( f ) > f 0(N,k) ^ 0(N,k) (see 6.1.1. for 

the definition of k). 
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Let 8^ G nl(0(M,g), , 8^ 6 nl(0(N,k), denote the 

restriction to the orthonormal frame bundles of the canonical 1-forms 

of M,N respectively (see definition (6.1)26). 

* * * 1 m 
Proposition (2.1)10: ((Tr^f)oi) 8 = a 8^ (6 Q^(0(f),]R )). 

Proof: Let (x,u) 6 0(f). Then (((Tr^f)oi) 8 )(x,u) 

= 8Q((nQf)Cx,u))oD((mQf) oi)(x,u) = G^Cu) o D(nQf)(x,u) 

= oD(nQf)(x,u) = K^^oDCn^o (nQf))(x,u) 

= °D(fo (f 1T̂ ) ) (X,u) = o Df (x) o D(f TT ) (x,u) 

Df(x).T^M) o Df(x) ° D(n o a)(x,u) 

]R™) Df(x) ° Dm^^a(x,u)) o Da(x,u) 

^ ^a(x,u) °DnM(o(x,u)) °Da(x,u) = 8^(a(x,u)) ° Da(x,u) 

= (a 8y)(x,u). Hence, ((^^2)0 %) 8^ = a o 

Let w = LC(g) G Conn(0(M,g)), = LC(k) 6 Conn(0(M,k)) 

denote the Levi-Civit& connection 1-forms of the metrics g,k res-

pectively (see (6.1.4). The map f 0(N,k) —»- 0(N,k) 

(together with id^^^^^^^) is a homomorphism of principal bundles, and 

•k i< -k 
(iTĵ f) is the connection in f 0(N,k) induced from oĵ  (see 

definition (6.1)22). To obtain a connection in 0(f), we must 

restrict to a particular subspace of the Lie algebra of 0(m+p):-

Let L(m,p) denote the orthogonal complement to L0(m) # LO(p) 

in LO(m+p) with respect to the Cartan-Killing form (given by 

(C,n) 1—^ - trace(ad(g) ° ad(n)), for all g,n 6 LO(m+p)). Then 

L(m,p) = { 
T 

- A 0 

: A e M(mxp)}. Let Wg € (0(f), L(0(m)x 0(p))) 

* * 

denote the LO(m) @ LO(p)-component of ((? f) ° i) with respect 
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to the decomposition LO(m+p) = LO(m) # LO(p) # L(m,p). 

Proposition (2.1)11: 6 Conn(0(f)). 

Proof: Note that Ad|o(m)xO(p) leaves L(m,p) invariant, so 

by proposition 6.4 on p. 83 of [K ^ ], the LO(m) # LO(p)-

component of ((ir̂ f) o i) is a connection in 

0(m) X 0(p) 0(f) M. i.e. 6 Conn(0(f)) • 

We have the principal bundle epimorphism a: 0(f) —^ 0(M,g) 

with corresponding group epimorphism pr^ = a": 0(m) xO(p) — 0 ( m ) . 

Hence, Da"(1): LO(m) # LO(p) —^ LO(m) is projection onto the 

LO(m) factor. The image of 6 Conn(0(f)) under a (see 

definition (6.1)21) is a connection co in 0(M,g) such that 

= Do"(l) °Wf = (Wf)Lo(m)' 

Proposition (2.1)12: The image w of under a: 0(f) —> 0(M,g) 

is w , the Levi-Civit& connection of g. 

Proof: The connection w is in 0(M,g). Hence, if we show that 

w has zero torsion, then w must be the Levi-Civit& connection of 

g (by the fundamental theorem of Riemannian geometry - see section 

6.1). 

The torsion form of w is given by the Cartan structure 

equation, q'^ = d8 + w(8 ). Since a is suriective, it suffices 

* w * w * * * 

to show that a 9 = 0. We have a 9 = d(a 8 ) + (a to) (a 8^) 

= d(Y 8^) + (y 8^), where we have used proposition (2.1)10, 

putting Y = (w f) ° 1 . 

Now note that 0 = d8^ + w, (EL.) , since w, has zero torsion. 
N k N k 

Hence, 0 = 4^7*8^^ + = d(Y"8^^ + 

+ (Y*Wk)L(m,p)(Y"8N) = 

which takes its values in ]r'̂  = E™ # 3R̂ . We now project this 

equation onto the 3R.™ factor to obtain d(Y 8^) + (w^)^^^^^(Y = 0, 
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where we have used the fact that y 6 takes its values in IR™ 

(see proposition (2.1)10). Hence a 8^ = 0, and so = 0. 

Therefore co is the Levi Civit& connection of g • 

We also have the epimorphism g: 0(f) —> 0(N(f)) (prg: 

_L 
0(m) X 0(p) —^ 0(p)) and we denote by oj ̂  the image of co under 

± * J_ 
g. Hence, 6 Conn(0(N(f))) satisfies g = ^'^f^LO(p) ' 

The connection co ̂  gives rise to parallel transport (definition 

_L ± 

(6.1)15) of T^M onto T M along any curve c in M from x to y. 

To summarize the above exposition, the connection in 

0(N,k) gives rise to a connection in 0(f), which in turn 

gives rise to a connection w in 0(M,g) (which coincides with oj ) 

and to a connection in 0(N(f)). We may unify the discussion 

by considering the principal bundle isomorphism a x g: 

0(f) —^ 0(M,g) X 0(N(k)) (with group isomorphism lust the identity 

of 0(m) X 0(p) . Then, by proposition 6.3 on p. 82 of [K"? ], we 

have the following: 
:k A -L 

Proposition (2.1)13: = a w + $ . 

I g r 

In the above, we have described the various connections 

associated with an embedding in terms of principal bundles. For 

calculations, we often utilize the formalism of covariant deriva-

tives in vector bundles (see definition (6.1)17 and equations 

6.1.7, 6.1.8. The covariant derivative formulae may be obtained 

by translating the results involving connections in principal 

bundles, but here we just summarize the results (see Klingenberg 

[K fT ]): 

Let f: M N be an embedding as usual, and let k 6 Met(N) 

and g = f k 6 Met(M). The metric k in TN may be pulled back 
•k * 

to f (TN) using the vector bundle homomorphism We then 
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obtain metrics in the vector subbundles Df.TM, N(f) of f (TN) 

by restricting (% f) k. The metric in Df.TM is just the push 

forward of the metric g in TM, and we denote the metric in the 

_L 

normal bundle N(f) by k . We then have the orthogonal Whitney 

sum of Riemannian vector bundles f (TN) = Df.TM # N(f) and cor-

responding direct sum of sections; Vect^(M) = r(f (TN)) 

= Df.VecC(M) @ r(N(f)). For X 6 Vect(M), we define 

Df.X 6 Df.Vect(M) C VecCg(N) by (Df.X)(x) = Df(x).X(x) 6 Tf(x)N, 

for all X 6 M. 
Ic ? 

Let the covariant derivative operators of k, g be V , V 

respectively. Hence, for example, vf = V ( X 6 Vect(M)) acts 

on all spaces of tensor fields of M according to equation 6.1.9. 
k " 

We also denote by V the covariant derivative induced in f (TN) 
* k 

by T^f from V (see definition (6.1)23). Then, for each 

X € Vect(M) and V G Vectg(N) = F(f (TN)), the covariant derivative 

of V along f in the direction X is denoted G Vect^(N). 

In particular, we have Df.Y G Vect^(N), for each X,Y G Vect(M). 

The first formula concerning covariant derivatives describes 
2 Ic 

the manner in which Df, V and V interact: 

Df.V&Y = h.V^ Df.Y 2.1.5, 
X X 

for all X,Y 6 Vect(M). Here, h 6 r(f"(T"N) 8 Df.T%0 
* * 

= r((f (TN)) 0 TM) is the orthogonal projection onto Df.TM, so 

that h(x) is a linear map of T^, .N onto Df(x).T M = T M, for 
f(x) X X 

each X € M. 

Let us now consider the decomposition of the covariant derivative 

^ . Vect^(N) —^ Vectg(N) (X 6 Vect(M)) with respect to the ortho-

gonal splitting, Vectj(M) = Df.Vect(M) #r(N(f)). First, we 
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consider the action on a tangential vector field. We have 

Df.Y = Y + K^(X,Y) 2.1.6, 

for all Y £ Vect(M) (i.e. for all Df.Y 6 Df.Vect(M)). Here, 

6 r((0^T M) 0 N(f)) is called the second fundamental form of f. 

Equation 2.1.6 is known as the Gauss formula. 

For normal vector fields, we have the Welngarten formula: 

_L 
V^N = - Df.A^X + 7 N 2.1.7, 

for all N 6 r(N(f)) (= {normal vector fields}). Here, A^X 6 

Vect(M) defines an element of r(N(f) 0 T M @ TM), and satisfies; 

g(A^X,Y) = k^^N.K^fX.Y)) 2.1.8, 

for all X,Y € Vect(M), N 6 r(N(f)). An important consequence of 

2.1.8 is that is (pointwise) self-adjoint with respect to g, 

i.e. : 

gCA^X/Y) = g(X,A^Y) 2.1.9, 

for all X,Y 6 Vect(M), N 6 r(N(f)). 
j_ ± 

The normal compontnt of 2.1.7 is V N, where V is a 
_L 

covariant derivative in the vector bundle N(f). In fact V is 

just the covariant derivative induced by the connection € Conn 

_L _L 
(0(N(f))), and is a metric connection, since V k = 0 . 

f 

We now relate the second fundamental form K back to 

differential forms in principal bundles. Let us define 

e r((82T*0(f))8(0(f)x o f ) ) by: 

K^(x,u).(v.w) = ((w^Xu).v).(8Q(u).w))g^ 2.1.10, 
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for all v , w 6 T, ,0(f), (x,u) £ 0(f). Here the subscript ]R̂  
(,X, u; 

denotes the - component in ]R® # IR^, and we regard LO(m+p) as 

a subalgebra of gl(3R™"'"̂ ) . It may be shown (see proposition 3.5 on 

p. 21 of [K 8 ]) that: 

K^(x)(Dn^(x,u).v, Dng(x,u).w) = c (K^(x,u).(v,w)) 2.1.11, 

for all v,w € T, .0(f), (x,u) € 0(f), and this is the equation 
vx, u; 

relating the second fundamental form to differential forms in the 

principal 0(m) x 0(p)-bundle ir ̂ : 0(f) —> M. 

To conclude this section we make several remarks which will be 

useful when we apply the theory of embeddings below. Firstly, the 

above discussion goes through in the case when M and N are 

oriented (with the embedding f respecting these orientations). 

In this case we replace 0(M,g), 0(N,k) by the oriented frame 

bundles SO(M,g), S0(N,k) and we obtain the principal SO(m) x SO(p)-

bundle ir̂ : SO(f) — M of f-adapted oriented frames. We may also 

consider the pullback by f of a k-spin structure (SO(N,k),n^) 

if N is spin (Cf. section 2.3). 

The codimension one embeddings are especially interesting since 

embedded hypersurfaces often arise in geometry and in general rela-

tivity. Suppose f: (M,g) (N,k) is an isometric embedding, where 

dim N = m + 1 = dim M + 1. For simplicity, we assume that M,N 

are oriented with f-compatible orientations. Then there exists a unique 

normal vector field N G r(N(f)) specified by (i) k (N,N) = 1: and 

(ii) for each frame u E {e^,..., e^} £ SO(M,g), the frame 

N(x)} 6 C SO(N,k). 

Definition (2.1)14: The normal vector field N specified by 

properties (i), (ii) is called the unit normal of the (orientation 
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compatible) embedding f. 

For a spacelike embedding of an oriented 3-manifold into a 

spacetime oriented Lorentzian 4-manifold, the requirement that 

the embedding be compatible with the orientations means that 

the (timelike) unit normal N is necessarily future directed. 

Let kg = (T f) k denote the metric in f (TN) induced 

from the metric k in TN. Then, since = 0, we have 

kg = 0 (where, in the second equality, denotes the 

covariant derivative in f (TN)), Let N be the unit normal 

_L 
of f, so that kg(N,N) = k (N,N) = 1. Hence, for each 

X 6 Vect(M), kg(V^N,N) = 0. We now use the Weingarten formula 

-L -L X 
2.1.7 to obtain k (V N,N) = 0. But since V N 6 r(N(f)) is 

X X. 
J_ 

given by V N= hN for some h G C(M), we must have that 

J- k 
V N = 0, and hence V^N = - Df.A^X, for all X 6 Vect(M). 

Definition (2.1)15: Let f: (M,g) (N,k) be a codimension one 

orientation compatible isometric embedding of oriented Riemannian 

manifolds with unit normal N. The extrinsic curvature of f is 

Che tensor field 6 S2(M) = r(82T*M) defined by K^(X,Y) 

= k^\Kf(X,Y),N), for all X,Y 6 Vect(M). 

Using the Gauss formula (2.1.6), we obtain K^(X,Y) 

= kg(N, Df.Y), and hence 

Df.Y) 2.1.11, 

for all X,Y G Vect(M). If the embedding f is an inclusion, then 

we may write 2.1.11 in a more convenient manner as k£ = - V^N^ 
N 

(where N^ = k(N,')) = - J L^. 

We return to hypersurfaces (codimension one embeddings) in 

Chapter Three. In particular, in section 3.3, we consider a one 

parameter family of spacelike codimension one embeddings associated 
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with a given spacelike codimension two embedding. The "null limit" 

of this family is used in the Ludvigsen-Vickers definition of 

quasi-local momentum in general relativity. 

In this section, we have discussed the geometric properties and 

applications to general relativity of particular embeddings f of 

one manifold into another. In the next section we consider the struc-

ture of the space of all such embeddings. 

2.2 The Manifold of Embeddings 

Having considered the various geometric notions associated with 

a particular embedding f: M N in section 2.1, we now consider 

the space of all such embeddings. This space admits a natural mani-

fold structure and is related to other infinite dimensional mani-

folds arising from M and N. A consideration of the manifold of 

embeddings leads to a natural framework for bringing together 

important geometric ideas and it also provides a useful tool in 

applications to physics. We review some .important uses of the 

manifold of embeddings in general relativity at the end of this 

section. 

Many of the constructions considered in this section are 

standard (see, for example, Hamilton [H 5^ ], but, inspired by the 

"everywhere invariance" outlook of Chapter Four (see, in particular, 

section 4.1), we also describe some additional natural features of 

the manifold of embeddings. Possible uses for such constructions 

in general relativity are also suggested. 

As usual, we assume that all structures are appropriately 

smooth. An especially useful category in which to work is the 
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Nash-Moser category of "tame" Frechet manifolds and maps, for then 

we have the Nash-Moser inverse function theorem at our disposal. 

For all analytical details concerning the differentiable structure 

of the concepts considered in this section, we refer the reader to 

Binz and Fischer [B and to Hamilton [H 2 ] . 

In this section, M,N denote connected smooth manifolds with-

out boundary and with dim M ^ dim N < For certain constructions, 

we also require M and N to be oriented. For technical reasons, 

we assume that M is compact. 

Let C(M,N) denote the manifold of smooth maps from M into 

N. The tangent space to C(M,N) at the point f is given by 

T^C(M,N) = {X G C(M,TN): T °X = f} = Vectg(N) E r(f*TN). 

The diffeomorphism group Diff(M) is open in C(M,M) (with 

respect to the compact-open topology) and is thus a manifold with 

tangent bundle TDiff(M) = {X € C(M,TM): T oX G Diff(M)} and 
M 

tangent space T^Diff(M) = Vect^(M), for each 6 Diff(M). The 

group multiplication (composition) and inversion are both smooth 

and Diff(M) may be regarded as a Lie group (see section 4.4 for 

more details regarding Diff(M)). 

Similarly, if Emb(M,N) denotes the space of all embeddings 

of M into N, then Emb(M,N) is an open submanifold of C(M,N). 

The tangent bundle is given by TEmb(M,N) = {X G C(M,TN): 

T^°X e Emb(M,N)} and the tangent space is T^Emb(M,N) = Vectj(N), 

for each f 6 Emb(M,N). 

We have the composition map comp: Emb(M,N) xDiff(M) 

^ Emb(M,N) given by 

comp(f, 4>) = f o (j) 2.2.1, 
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for all (f,cj)) € Emb(M,N) xDiff(M). This map is smooth with 

derivative given by: 

(Dcomp(f,4)XX,Y))(x) = Df(*(x)).Y(x) + X(*(x)) 2.2.2, 

for all X 6 M, (X,Y) 6 )(Emb(M,N)xDiff(M)) 

= VectjCN) # Vect (M) and (f,(j)) 6 Emb(M,N) x Dif f (M) (see Irwin 

[I f ]). 

Equation 2.2.1 defines a right action of Diff(M) on Emb(M,N) 

and we write R = comp(*,<j)), for all (j) 6 Diff(M). We denote the 

other partial map by : Diff(M) —Emb(M,N) > for each f 6 Emb(M,N) 

Since each embedding is infective, the right action of Diff(M) on 

Emb(M,N) is free, and, for each f 6 Emb(M,N), is a diffeo-

morphism of Diff(M) onto the orbit of f. Since f,f' 6 Emb(M,N) 

are Diff(M)- equivalent if and only if f(M) = f'(M), we see that 

the orbit of f consists precisely of all diffeomorphisms of M 

onto f(M) (a closed submanifold of N). In order to discuss the 

structure of the orbit space, we first consider the space of all 

submanifolds of N: 

Let Sub(N) denote the space of all (compact) smooth sub-

manifolds of N. Then Sub(N) is a manifold and, for each 

S 6 Sub(N), TgSub(N) = r(N(ig)), where : S > N is in-

clusion, and v„ = V : N(i ) —*- S is the normal bundle of S 
ig 

(definition (2.1)6). Note that all the submanifolds S in a 

given connected component of Sub(N) are necessarily diffeo-

morphic, but, on the other hand, diffeomorphic submanifolds 

could lie in different components. In general, there may be many 

components. 

Now let Subj^(N) = {S 6 Sub(N): S is dif feomorphic to M}. 
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Sub^(N) is an open submanifold of Sub(N), so that TgSub^(N) 

= r(N(ig)), for all S G Sub^(N). We define a projection 

N 
Y = 7% by: 

y: Emb(M,N) Sub (N); f f(M) 2.2.3, 

for all f 6 Emb(M,N). We then have the principal Diff(M)-bundle 

Diff(M) C-+ Emb(M,N) Sub (N) 2.2.4, 

where Diff(M) acts on Emb(M,N) by equation 2.2.1. 

We may calculate the vertical distribution of y by considering 

the fundamental vector fields (see appendix 6.1). Let 

X 6 LDiff(M) 5 Vect(M) (see section 4.4) and let X_ = X , . be 
Jj ililHu Di ) JN y 

the fundamental vector field corresponding to X. Then Xg(f) 

= Da)j(id^).X, for all f € Emb(M,N). From equation 2.2.2, we see 

that (Do)̂  ((j)) .Y) (x) = Df ((j) (x) ) .Y(x) , for all x 6 M and 

Y G = Vect,(M), so that (X_(f))(x) = Df(x).X(x) 

(p (p L 

= (Df.X)(x), for all x 6 M. Hence, Xg(f) = Df.X 6 Df.Vect(M) 
C VectgCN) E T^EmbCM.N). 

Let us denote the vertical subspace at f 6 Emb(M,N) by V^, 

-1 

so that Vg = T jY (y(f)) (the tangent space at f of the fibre 

Y (yCf)) through f). From the general theory of principal fibre 

bundles (see section 6.1), the map X I—Xg(f) is a linear iso-

morphism of LDiff(M) = Vect(M) onto V^, for each f € Emb(M,N). 

Noting that the map Xf—Df.X is a linear isomorphism of Vect(M) 

onto Df.Vect(M) C Vect^(N), we have demonstrated the following: 

Proposition (2.2)1: The vertical distribution V(y) 5 Ker Dy of 

the principal Diff(M)-bundle y (2.2.4)has total space V(y) 

= U V,, where = Df.Vect(M), for all f G Emb(M,N). 
f 
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Now let k 6 Met(N). As shown in section 2.1, the normal bundle 

v^: N(f) —>- M may be realized as a subbundle of f (TN) using the 

A 

metric k. In fact, we have the k-orthogonal Whitney sum, f (TN) 

= Df.TM # N(f), and this Induces a splitting of the corresponding 

spaces of sections: 

Vectg(N) = Df.Vect(M) @ r (N( f ) ) 2.2.5, 

where we have, as usual, identified r(f (TN)) with Vect^(N). 

We may rewrite equation 2.2.5 in terms of the bundle 

Y: Emb(M,N) —^ Sub^(N):^ Define H^(y) = U H^, where 

= r(N(f)), for each f € Emb(M,N) (Recall that, regarded as a sub-

bundle of f (TN), N(f) depends on k). Then H^(y) is the total 

space of a vector bundle over Subj^(N) and we have T^Emb(M,N) 

= Vg # H^, for each f 6 Emb(M,N). Thus, for each k 6 Met(M), 

we have the following decomposition of the tangent bundle of 

Emb(M,N): 

TEmb(M,N) = V(Y) @ 2.2.6. 

Proposition (2.2)2: For each k G Met(N), the distribution H^Xy) 

defines a connection in the principal Diff(M)-bundle 

y: Emb(M,N) Sub^CN). 

Proof: Let k £ Met(N). We already know that H^(y) is comple-

mentary to the vertical distribution V(y), so that we must now show 

that H^(y) is equivariant under the action of Diff(M) on the 

total space Emb(M,N); i.e. we must demonstrate that 

k * 
= DR for all f 6 Emb(M,N), * G Diff(M). 

From equation 2.2.2, we see that DR (f).X = X°(j), for all 

X 6 Vectg(N), so in particular DR^(f).N = No<j), for all 

N € r(N ( f ) ) C Vect^CN). Hence DR = {N=*: N 6 r(N ( f ) ) } . 
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Let denote the k-orthogonal complement of any subspace U 

of X € M. We have v^^(x) = ( D f ( x ) s o that 

=(Df(*(x)).T,, = (D(f°*)(x).T (since D4(x).T]M 

Let N' G = r(N(fo*)). Then N'(x) G (x) = v^l(*(x)), 

- 1 - 1 
and so (N'o^ )(x') 6 (x'), for all x' 6 M. We conclude that 

G r(N(f)). Hence, N' € DR (f).H2, and so 

C DR^(f).Hf\ 

Conversely, suppose N°(j) € DR^(f).H^. Then (No#)(x) 

= N(#(x)) € v^^((p(x)) = (x) , for all x 6 M, so that 
Z Z o (p 

N°* G r(N(fo*)) = (2). Hence, DR^(f).Hk|C H^ 

Therefore = DR (f).H^\ for all f G Emb(M,N) and 

<j) 6 Diff(M). Hence, for each k € Met(N) , H^(y) is the horizontal 

distribution of a connection in y O 

A consequence of proposition (2.2)2 is that there exists a natural 

map n: Met(N) —^ Conn(Emb(M,N)). We now give the corresponding 

connection 1-forms: 

Proposition (2.2)3: For k G Met(N), the connection 1-form 

n(k) € fi^(Emb(M,N), LDiff(M)) is given by (n(k)(f).X)^ 

= kgCX.Df.C')), for all X G TgEmb(M,N), f G Emb(M,N). Here 

* * * 
kg = (T^ f) k is the metric in the vector bundle f (TN) induced 

from the metric k in TN by the embedding f, and, for each 

Y 6 Vect(M), 6 n^(M) is the 1-form corresponding to Y via 

f"k G MeC(M). 

Proof: Let f 6 Emb(M,N) and X G = Vect2(N). Then 

there exists unique ver(X) € = Df.Vect(M) and hor(X) G H^ 

= r(N(f)) such that X = ver(X) + hor(X). Let X^ G Vect(M) 

= LDlff(M) be the unique vector field such that Df.X^ = ver(X) 

(so that (X^)g(f) = ver(X) - see proposition (2.2)1). Then 
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ri(k)(f).X = (see section 6.1). 

We have Y> = (f"k)(X^, Y) = k^(Df.X^,Df.Y) = k^(X,Df.Y) 

since k^ = kof and hor(X) is k^-orthogonal to Df.Y), for all 

Y € VecC(M). 

Hence, (n(k)(f).X)^ = k^(X,Df.(')), for all X 6 T^Emb(M,N) 

and f € Emb(M,N) as required • 

We now investigate the behaviour of the map 

n: Met(N) —^ Conn(Emb(M,N)) under the action of natural groups. 

First consider the right action of Diff(M) on Emb(M,N) given 

by 2.2.1. Since, for each k 6 Met(N), n(k) is a connection in 

the principal bundle Diff(M) Emb(M,N) — ^ Sub^XN), we have 

R (n(k)) = Ad ° n(k) , for all tj) € Diff(M) (see definition 
* 

(6.1)11). By equation 4.4.9, we have Ad = (j)̂  (acting on 

LDiff(M) = Vect(M)), and so the behaviour of n under Diff(M) 

may be written: 

R^(n(k)) = * ° n(k) 2.2.7, 

for all k 6 Met(N) and (ji 6 Diff(M). Equation 2.2.7 may also be 

obtained by direct computation by differentiating the right action. 

Now consider Diff(N). This group acts on Emb(M,N) by left 

composition L: Diff(N) x Emb(M,N) —^ Emb(M,N) defined by: 

L (f) = ^ o f 2.2.8, 

for all f 6 Emb(M,N), ijj € Diff(N). For each € Diff(N), the 

map is a partial map of the composition map and is smooth 

(Irwin [I 5̂  ]) with derivative given by (Cf. 2.2.2); 

(DL (f).X)(x) = D^(f(x)).X(x) 2.2.9, 
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for all X € M, X € T2Emb(M,N) = Vect^(N) and f G Emb(M,N). 

We have L, o R = R = L., for all 6 € Diff(M) and 

\p 6 Diff(N), and therefore L defines a homomorphism of Diff(N) 

into Aut(Emb(M,N)). Via this homomorphism, we have an action of 

Diff(N) on the space Conn(Emb(M5N)) given by (w,^) > L^w, 

for all (ojjip) 6 Conn (Emb (M,N))x Diff (N) . 

Proposition (2.2)4: The map n: Met(N) —^ Conn(Emb(M,N)) is 

equivariant with respect to the actions of Diff(N) on Met(N) 

* * 

and on Conn(Emb(M,N)) respectively; i.e. L o ^ = n ° ^ , 

for all ip 6 Diff(N). 

Proof: Let k € Met(N), ^ € Diff(N), f 6 Emb(M,N), X G T2Emb(M,N) 

= Vectg(N), Y G Vect(M), x G M. Let X^ = (L*°n)(k)(f).X 

and Xg = )(k)(f).X. 

By proposition (2.2)3, = n(k)(^of).nL (f).X satisfies 

((*of)"k)(Xi,Y) = k^^^CDL (f).X, D(^of).Y), and Xg 
= n(4' k) (f) .X satisfies (f (\jj k))(X2,Y) = ($ k)^(X,Df.Y). Let 

f^ = ((^of)*k)(X^,Y) G C(M) for 1 G {1,2}. 

Then, f^(x) = k((^°f)(x))((DL^(f).X)(x), D(ijj°f) (x) ,Y(x)) 

= k(^(f(x)))(D^(f(x)).X(x), D^(f(x)).Df(x).Y(x)) (using 2.2.9) 

= (ijj k) (f (x)) (X(x) , (Df.Y)(x)) = fgCx)' Hence, f ̂  

* 
Assuming that k is a metric of non-degenerate signature, 

* * 

we now have X^ = X^, and hence L^ on = n°^ , for all jp G Diff(N) • 

In addition to the natural map n: Met(N) —^ Conn(Emb(M,N)), we 

also have the natural map Met(N) —>• Met(Emb (M,N)) defined, for 

each k G Met(N), f G Emb(M,N), X,Y G T^EmbCM.N) by: 

C(k)(f)(X,Y) kj(X,Y)vol(f k) 2.2.10, 

M 

where, as above, k^ denotes the metric in f (TN) induced by f 

from k. 
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Proposltlon (2.2)5: The metric C(k) Is right invariant for each 

k € Met(N). 

Proof: Let k € Met(N), ^ 6 Dlff(M), f € Emb(M,N) and X,Y 

€ TgEmb(M,N). 

Then (R%°;)(k)(f)(X,Y) = ;(k)(fo*)(DR.(f).X,DR,(f).Y) 

9 ip (p 

(Xo(j) vol(c() f k) = i cp (k^(X,Y)vol(f k) ) 

M M 
A * 

k (X,Y)vol(f k) = 5(k)(f)(X,Y). Hence R o C = G, for all 
r 9 

M 

* € Diff(M) O 

(Note that Diff(M) refers to orientation preserving diffeo-

morphlsms in the above proposition.) 

Proposition (2.2)6: The map Met(N)—^Met(Emb(M,N)) is equl-

varlant with respect to the actions of Diff(N) on Met(N) and on 

Met(Emb(M,N)) respectively; i.e. L o G = i; o ip , for all 

4 G Diff(N). 

Proof: Let k 6 Met(N), ^ € Diff(N), f G Emb(M,N) and X,Y 

6 T^EmbCM.N). 

Then (L^\c)(k)(f)(X,Y) = ;(k)(^°f)(DL^(f).X, DL^(f).Y) 

k Dl^(f).Y)vol((^of)"k). Let 

M 

h = k, _(DL,(f).X, DL,(f).Y) G C(M). Then, for x G M, 

h(x)= k(^(f(x)))(D^(f(x)).X(x), D^(f(x)).Y(x)) (by (2.2.9) 

= (^ k)(f(x))(X(x),Y(x)) = ((^ k)2(X,Y))(x). Hence, 

(L*°;)(k)(f)(X,Y) (tp k)^(X,Y)vol(f ip k) 

M 

= ;(^*k)(f)(x,Y) = (c= 4*)(k)(f)(X,Y). 

Therefore, L^ ° C = Q o jp , for all ip G Dlff(N) • 

The above ideas concerning natural metrics may be unified if 

we consider the left action S of the group G(M,N) = Dlff(M)xDiff(N) 
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on the manifold Q(M,N) = Emb(M,N) xMet(N) given by: 

° ^ ° * 2.2.11, 

for all (f,k) € Q(M,N) and (^,$) 6 G(M,N). Note that the pro-

jection of the action S onto Emb(M,N) is given by R L^, 

for all (^,^0 6 G(M,N), and that the projection onto Met(N) is 

the (lower star) action of Diff(N) discussed at great length in 

Chapter Four. 

The manifold Q(M,N) admits a natural G(M,N)-invariant (weak) 

Riemannian metric as we now demonstrate. Define K € Met(Q(M,N)) 

by: 

K(f,k)((Xi,hi),(X2,h2)) = ;(k)(f)(Xi,X2) + GQfkjChi.hg) 

2.2.12, 

for all (Xi,hi), (Xg.hg) 6 ^yQ(M,N) = Vectg(N) @ SgCN) and 

(f,k) € Q(M,N). In 2.2.12, g is defined by equation 2.2.10 and 

G € Met(Met(N)) is defined by equation 4.1.2. Note that here we 

require that N be compact. 

Proposition (2.2)7: G(M,N) acts by isometries on the Riemannian 

manifold (Q(M,N),K). 

Proof: Let G G(M,N), (f,k) G Q(M,N) and (Xi,h^),(X2,h2) 

Then, (S( yK)(f,k)((Xi,hi),(X2,h2)) 

= K((R L^)(f),^*k)((D(R _^o L )(f).Xi, 

(D(R _i° L^)(f).X2,**h2)) 

* 

= S(^*k)((R _^o L )(f))(D(R L )(f).Xi, D(R _iO L )(f).X2) 
(ji * 4i 

+ GQ(^*k)(^*h^, 

= (R °L )*(L *i(C(k)))(f)(Xi,X2) + G^CkjChi.hg) 
4) ij; 
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(using proposition (2.2)6 together with the invariance of G under 

Diff(N) as demonstrated in section 4.1) 

= (R *^° L"° L 2i)(;(k))(f)(Xi,X2) + GQfkJCh^.hg) (since 
(j) V; 

= ^(k)(f)(X^,X2) + GgCkjCh^.hg) (using proposition (2.2)5) 

= K(f,k)((X^,h^),(X2,h2))-

Thus, = K, for all ((f),<|j) € G(M,N) • 

The manifold Q(M,N) has applications in general relativity 

and higher dimensional gravitational physics; we take N to be 

the spacetime arena and M a diffeomorph of an extended spacetime 

object or "membrane". For example, for a particle theory, we take 

M to be an interval and for a string theory, we take M to be a 

two dimensional surface. The manifold Q(M,N), or, more usually, 

some open submanifold of Q(M,N), is the configuration space for 

the theory. For instance, if Met(N) denotes the space of 

Lorentzian metrics on N, then we may restrict to the open sub-

manifold Q (M,N) = {(f,k) 6 Q(M,N): f (M) is a timelike sub-

manifold of (N,k)}. 

In connection with physical applications, there exists a 

natural smooth function A on Q(M,N) known in the literature as 

the membrane action (see [HlS]). A is defined by: 

r * 

A(f,k) = vol(f k) 2.2.13, 

M 

for all (f,k) € Q(M,N). Note that, for ((j),4>) G G(M,N) , 

(f,k) € Q(M,N), we have (A°S^^ ) (f ,k) = A(^ofo# ,̂'P̂ k̂) 
(4,40 

* 
vol((^^of otp °^^)k) = vol(f k) = A(f,k). Hence A is 

M M 

invariant under the action of G(M,N), so that A projects to a 
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function on the space (Sub (N)/Dlff(N)) x Geom(N), where Geom(N) 

= Met(N)/Diff(N) denotes the space of geometries on the manifold N 

(see section 4.1). 

Let T Q(M,N) be the L^-cotangent bundle of Q(M,N). Then 

T Q(M,N) is equipped with the canonical (weak) symplectic form to, 

* 

and the symplectic manifold (T Q(M,N),w) is the phase space cor-

responding to the configuration space Q(M,N). The action S of 

G(M,N) on Q(M,N) (see 2.2.11) lifts to a symplectomorphic action 

on (T Q(M,N),w) in the usual way. 

The W a k ) Riemannian metric K defined by equation 2.2.12 

gives rise to the smooth map (actually a homomorphism of vector 

bundles) b^: TQ(M,N) —^ T Q(M,N); W K(W,*)- Hence, we have 
•k 

the symplectic form w = b^w on TQ(M,N). Using proposition 

(2.2)7, we see that the action S lifts to a symplectomorphic 

action of G(M,N) on (TQ(M,N) ,03 ) (see Abraham and Marsden 

[A 3,] for the general theory of symplectic actions). 

We remark that it would be interesting to investigate the 

spray of the Riemannian manifold (Q(M,N),K) and to study the 

geodesic flow. We might also consider more general motion in 

the presence of natural potentials such as A € C(0(M,N)) (see 

2.2.13) and functions on Q(M,N) constructed from curvature 

quantities. 

Before reviewing further applications of the theory of the mani-

fold of embeddings to general relativity, we briefly return to 

the principal Dlff(M)-bundle y: Emb(M,N) —^ Sub (N) (2.2.3, 

2.2.4). Given a manifold F together with p € Hom(Diff(M), 

Diff(F)), we may construct the associated bundle E 

= Emb(M,N)X F (see definition (6.1)2). 
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Examples of such associated bundles include the following 

- 1 

(i) Take F = Diff (M) and p = conj ; c() ^ conj ; ip I—> (j) o 4* o <j) 

Then, E = Conj(Emb(M,N)), the conjugation bundle. The space of 

sections of Conj(Emb(M,N)) is isomorphic to Gau(Emb(M,N)), the 

group of gauge transformations of y: Emb(M,N) —^ Subj^(N); 

(ii) Take F = Vect(M) and p = Ad; (j) i — € GL(Vect(M)) (see 

equation 4.4.9). Then, E = Ad(Emb(M,N)), the Lie algebra bundle, 

and the space of sections of this bundle may be regarded as the Lie 

algebra of Gau(Emb(M,N)). For more details of the bundle con-

structions in (i), (ii), see section 6.1; (iii) Take 

F = 0(M) = {(g,u) G Met(M) x GL(M): u 6 0(M,g)}, the total space 

of the principal 0(m)-bundle of M (see 1,4.1, 4.1.16), and 
- 1 * 

p; <j) I — ( g , u ) (—> (((j) ) g, (j)(u)) (see 1.6.1 and pro-

position (4.1)11). E is then a fibre bundle over Subj^(N) whose 

fibre over the submanifold S of N may be regarded as the total 

space of the principal fibration Diff(S) 0(S) ^ Geom (S) 

(see equation 4.1.32). The manifold Geom (S) is a resolution of 

the singularities of the space of geometries on the submanifold S 

(see section 4.1 for a discussion of the resolution of singularities 

in the space of geometries); (iv) Take F = C(M) and 

p = (lower star); ^ = (*"^)"; h f—̂  h"* Then E 

is a vector bundle over Sub^XN) containing all smooth functions 

on all submanifolds (of diffeomorphism type M) of N: 

Let CSub^(N) = {h: h is a smooth function on some submani-

fold S of N, with S diffeomorphic to M} and define the 

projection p: C Sub^XN) —^ Sub^XN); h I — S if and only if 

h € C(S). Then p is a vector bundle over Sub^(N) with fibres 

p ^(S) = C(S), for all S € Sub^(N). We now define a vector bundle 
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Isomorphlsm V of = Emb ( M , N ) x ^ C ( M ) onto C Subj^(N) For 

[(f,h)] 6 E , Y([(f,h)]) € p ^(f(M)) is given by: 

Y([(f,h)])(f(x)) = h(x) 2.2.14, 

for all f(x) € f(M). The map Y is easily seen to be a well 

defined isomorphism of vector bundles over Sub^(N) . Using W 

together with the usual identification of sections with equivariant 

maps (see the remarks following definition (6.1)6), we have 

r(Emb(M,N)xQ.^^^^^C(M)) = r(CSub%{N)) = 

Each function j on N now gives rise to a section of 

Emb(M,N)Xjj^^^^^^C(M) ; the value of j at S 6 Sub^(N) is just 

j|S € p"l(S) C CSub^CN) = Emb(M,N)xQ^^^^^)C(M). 

We now consider some important applications of the space of 

embeddings to the theory of general relativity: 

A major use for the space of embeddings arises in the 3+1 

approach to general relativity. In this approach, the space 

Embg(M,N) of all spacelike embeddings of the (oriented) 3-manifold 

M into the (spacetime oriented) Lorentzian 4-manifold (N,k) is 

considered. Embg(M,N) is an open submanifold of Emb(M,N) and is 

the total space of a principal Diff(M)-bundle over the manifold 
g 

Sub^(N) of spacelike "slices" of type M in N. 

The evolution of a given initial spacelike slice S = f^CM) 

is represented by a smooth curve I ̂  H —^ Emb^ (M,N) ; t f ̂ . 

For each t 6 I, the velocity vector is f^ 6 T^ Embg(M,N) 

= Dfj_.Vect(M) # r(N(f )) (using the fact that Embg(M,N) is open 

in Emb(M,N) together with equation 2.2.6). Since each f is a 

codimension one (orientation compatible) spacelike embedding, we 

have the future directed unit timelike normal vector field 
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€ r(N(f^)). Any element of r(N(f^)) may be written as L N , 

for some L 6 C(M). Thus, for each t 6 I, we may write; 

2 . 2 . 1 5 , 

where € Vect(M) and € C(M). The time dependent sections 

X , are called the shift vector field, lapse function res-

pectively (see Arnowitt et al. [A % ]). 

If L € c'^(M) , for all t 6 I, then the map 

F: I X M —> N; (t,x) t—> f (x) is a diffeomorphism of I x M onto 

a tubular neighbourhood of in N if I = ( - E , & ) is sufficiently 

small. In this case, the curve t I—̂  f^ is called a slicIng of 

(N,k). Each slicing gives rise to a foliation of N (at least in 

a neighbourhood of S ) into spacelike hypersurfaces, each diffeo-

morphic to M. 

For fixed x 6 M, the map t (—> L (x) gives the proper time 

elapsed in moving from f^Cx) € to f (x) € . Similarly, 

the map t 1—̂  X^(x) gives the local change of spatial frames after 

a time t has elapsed. 

* 
For each t € I, let g = f k denote the induced (negative 

definite) metric on M, and let k = K (see definition (2.1)15) 
t 

denote the corresponding extrinsic curvature. The imposition of the 

vacuum Einstein equations Ric(k) = 0 on (N,k) leads to a set of 

twelve first order evolution equations and four non-linear constraint 

equations for (g^, k^). Conversely, if t ^ f^ is a slicing of 

(N,k) satisfying the evolution and constraint equations, then k 

is necessarily Ricci flat (see [A ^ ]). 

Fischer and Marsden [F ^ ], in a very elegant piece of work, 

formulate the evolution equations as a Hamiltonian flow on the phase 

space (T Met(M), w). Here, w is the canonical (weak) symplectic 
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form on the L^-cotangent bundle of Met(M) (see section 4.1). 

The constraints are maintained by the evolution equations for any 

lapse and shift, and, generically, the constraint set is a smooth 

submanifold of T Met(M). The Marsden-Weinstein reduction technique 

(see [M 4- ]) may be applied to give a dynamical representation of 

the space of true gravitational degrees of freedom. 

The Fischer and Marsden approach to the initial value problem 

is based on Met(M) or, after the diffeomorphism group has been 

factored out, on superspace Geom(M). The problem with superspace 

is that it is not a manifold and possesses singularities (see section 

4.1). An alternative approach by Kuchar and coworkers (see, for 

g 
example, [K^/p]) utilizes the manifold Sub^(N) more directly. 

g 

Kuchar refers to Sub^(N) as hyperspace. The connection between 

the two approaches may be realized by considering the natural map 

Embg(M,N) —^ Met(M); f f—> f k, which projects to a map 

Sub^^N) -+ Geom(M). 

A third method for dealing with the 3+1 splitting of Einstein's 

equations is due to Binz [B 'Jf ] and this method also avoids the 

problem of dealing with a non-manifold. Binz formulates the 

evolution equations on the manifold Emb(M,]R^). Here, p is a 

sufficiently large integer so that (M,g) may be isometrically 

embedded in (]R^, can(p,0)) (this can always be done by the theorem 

of Nash, (2.1)3). The submersion m: Emb(M,]R^) ^ Met(M) : 
A p 

f 1—̂  f can(p,0) induces a projection: Sub^(]R ) — ^ Geom(M) which 

is, in fact, a resolution of the singularities of Geom(M) (see 

definition (4.1)18). 

In fact Binz generalizes the discussion to the manifold 

Imm(M,]R^) of all immersions of M in B.̂ , with corresponding 



—148— 

la: Inim(M,E.^) —Met(M). The Important ingredient in the Binz approach 

is the fact that the differential of any j £ Imm(M,E.^) may be 

expressed by Dj(x) = a(x)oDi(x)oF(x), for all x € M, where i 

is some fixed immersion of M in ]R^, F € End(TM) is self-adjoint 

with respect to m(i), and a € C(M,0(p)) is an "integrating 

factor" which converts the E.̂ - valued 1-form Di°F into a differen-

tial by left composition. 

Having fixed the initial immersion i € Imm(M,]R^), Binz con-

siders the manifold {(a,F): there exists j 6 Imm(M,E.^) with 

Dj = ao DioF}. A Lagrangian is defined on the tangent bundle of 

this manifold together with constraint equations. The extremals of 

the Lagrangian satisfying the constraint equations then project 

down to solutions of the Einstein evolution equation on Met(M). 

Note that the lapse is one and the shift zero in the Binz formalism. 

Another area of general relativity in which a space of embeddings 

arises is the theory of cone space. There are various (equivalent) 

ways of defining cone space A. The simplest is A = F C t t), where 

ir: X ]R —V is the trivial affine bundle discussed in section 

6.3. A is thus an affine space modelled on the vector space 

C(S^). Alternatively, we may regard cone space as the manifold of 

smooth cuts of the future null infinity of an asymptotically 

flat spacetime (N,k). This space of cuts may be naturally Identified 

with a submanifold of Emb(S^, and also with the space of out-

going null embeddings of x B. into a neighbourhood of ^ in 

the compactified spacetime. 

Since asymptotic moments of the gravitational field are obtained 

by integrating certain expressions around a given cut of 

these moments should be regarded as tensor or spinor fields on cone 
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space. For example, the Bondl 4-momentum described in section 3.2 

may be regarded as a vector field on cone space. For more examples 

and for a detailed description of cone space, we refer the reader 

to Bramson [B 21 ]. Note that Bramson adopts a philosophy in which 

cone space replaces spacetime as the physical arena in many problems, 

This is because, by formulating physical laws in cone space rather 

than in (curved) spacetime, certain features of special relativistic 

theory persist. Cone space is also more intimately connected with 

that which an asymptotic observer experiences. 

For a study of quasi-local, rather than asymptotic moments, 

there is no analogous theory of cone space. One possibility would 

be to consider the manifold Embg(S^,N) of spacelike embeddings 

of in spacetime (N,k). If we wish to allow the possibility 

of varying the spacetime metric, then we could utilize Qg(S^,N) 

= {(f,k) € Q(S^,N): f(S^) is a spacelike submanifold of (N,k)} 

(here, of course, Q(s2,N) = Emb(S^,N) xMet(N), where Met(N) 

denotes the space of Lorentzian metrics on the 4-manifold N). The 

analogue of the BMS group would be some subgroup of the isometry 

group of (Q (s2,N),Kg), where Kg is the metric on Q (s2,N) 

induced from K (defined in equation 2.2.12). 

In this section, we have discussed various infinite dimensional 

aspects of the theory of embeddings with particular reference to 

applications in general relativity. We conclude this chapter with 

a section concerned with the spinorial aspects of embeddings. 

Applications of the interaction between spinors and embeddings will 

appear in Chapter Three. 
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2.3 Splnors and Embeddings 

In this section, we give an indication of how the spin struc-

tures introduced in Chapter One behave under embeddings as discussed 

in section 2.1. In particular, we develop certain tools which will 

be utilized in Chapter Three of this thesis, and so this section is 

especially concerned with embeddings in a spacetime. 

The section is organized as follows:- First, we give a brief 

discussion of the way spin structures interact with a general iso-

metric embedding f: (M,g) (N,k). We then specialize to the 

case of spacelike embeddings in a spacetime. To conform with the 

notation of Chapter One, we denote a typical spacetime by (M,g), 

so that M is a connected, orientable, smooth 4-manifold and g 

is a Lorentzian metric (signature = -2) on M such that (M,g) 

is spacetime orl.ent*t&&. 

Both codimension one and codimension two spacelike embeddings 

are important in general relativity. Moreover, the interplay be-

tween two, three and four dimensional structures is clearly mani-

fested when spinor structures in general relativity are considered. 

For this reason, in this section, we describe both codimension one 

(hypersurface) spinors and codimension two (2-surface) spinors. 

The former are utilized in our treatment of spinor propagation 

equations as used in the definition of quasi-local moments (see 

sections 3.3 and 3.4) and the latter are the basis of the extremely 

useful GHP formalism (see Geroch et al. [G Y" ]) and also of the 

Penrose quasi-local programme (see [P g ] ) . 

Note that we restrict our attention to spacelike embeddings 

in this section. In section 3.3, we use a null limit of space-

like embeddings to obtain a useful spinor propagation equation 
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related to a codimension one null embedding. 

Let us first give a brief description of the general situation. 

Suppose M,N are oriented manifolds of dimensions m,n = m+p res-

pectively. Let f 6 Emb(M,N) and k 6 Met(N) (the space of positive 

definite metrics on N; the indefinite case follows in a similar 

fashion - see below for examples). We define g = f k so that f is 

an Isometric embedding of codimension p. As in section 2.1, we have 

the following principal bundles 
TT„ TT 

SO(m) SO(M,g) » M; SO(n) SO(N,k) » N; 

f '̂f 
SO(p) C-+ SO(N(f)) »M; SO(m)xSO(p) SO(f) » M. 

Here, SO(N(f)) is the bundle of oriented k-orthonormal frames of the 

normal bundle v^: N(f) —^ M. As above we regard SO(m) and SO(p) 

(and hence SO(m) x SO(p)) as subgroups of SO(n) 5 SO(m+p). 

In order to discuss spin structures, it is necessary to consider 

the spin groups corresponding to the various special orthogonal groups: 

Let A: Spin(q) — S O ( q ) denote the unique, non-trivial double cover-

ing for any q ^ 2. We also use the notation A for the induced 

double covering: Spin(m) x Spin(p) — S O ( m ) xSO(p): [(B,C)] 

I >- (A(B),A(C)), for all [(B,C)] £ Spin(m) x Spin(p) = 

Spin(m)x Spin(p). The inclusion of SO(m)x SO(p) in SO(m+p) 
2 

induces an inclusion of Spin(m) x Spin(p) in Spin(m+p) and we 

have the following commutative diagram: 

Spin(m) X Spin(p) ^ Spin(m+p) 

A 

SO(m) X SO(p) » SO(m+p) 2.3.1. 

We now make two further assumptions. Firstly, we assume that 

is spin, i.e. Wg(TM) = 0, and we choose a g-spin structure s = M 

(SO(M,g),n ) € Z(M,g). Secondly, we assume that (N(f)) = 0, and we 
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choose a A-prolongation = (SO^M(f)),n^^ k))°^ SO^N(f)) Co Spin(p). 

Let us consider the principal bundle Spin(m) x Spin(p) 

SO(M,g)x SO(N(f)) —^ M together with the double covering y: 

Spin(m)xSpin(p) —> Spin(m) x Spin(p). Let P denote the ^-extension of 

SO(M, g) x^^SO(N(f)) , so that P is a principal Spin(m) x Spin(p) bundle 

over M (see definition (6.1)8). Now define n: P —^ SO(M,g)x^SO(N(f)) 

by n([((u,u'),[(B,C)])]) = (n (u),n^^ kj(u'))A([(B,C)]), for all 

[((u,u'),[(B,C)])] 6 P E (S0(M,g)x^3&(N,f)))x (Spin(m)%Spln(p)). It 

is straightforward to verify that n is well defined. Moreover, we 

n([((%,%'),KB,C)])][(B',C')]) = n([((%,%'),[(BB',cc')])]) 

= (ng(%),njf k)(%'))A([a#%cc')]) = (ng(2),njg^k)("^))A([(B,C)])A([(B',c')]) 

= n([((u,u'),[(B,C)])])A([(B',C')]), for all [(B',C')] 6 Spln(m)xSpin(p) 

and [ ((u,u'), [ (B,C) ]) ] € P. Hence, (P,ri) is a A-prolongation of 

SO(M,g)x SO(N(f)) to the group Spin(m) xspin(p) . 

We now utilize the diffeomorphism axg; SO(f) —^ SO(M,g)x SO(N(f)) 

(see the remark immediately preceding proposition (2.1)13) to pullback 

the principal bundle n: P —^ SO(M,g) x^SO(N(f)) to a principal TL^ 

'W, " O/ " 

bundle SO(f) — S O ( f ) . Here, SO(f) = (axg) P and = (ctxg) n. 

The pair (SO(f),n^) is now a A-prolongation of the principal 

SO(m) X SO(p)-bundle n^: SO(f) —^ M to the group Spin(m) xSpin(p). 

Let TT̂ : SO(f) — M denote the projection. 

We now demonstrate a construction that enables Spin(m+p)-spinors 

to be defined on M. In order to do this, it is necessary to pro-

long the principal SO(m+p)-bundle f tr : f SO(N,k) —> M to 
0.0/ Spin(m+p) . Let us denote by : SO(f,k) —^ M the extension 

O 0/\j 

of TT̂ : SO(f) — M corresponding to the inclusion homomorphism: 

Spin(m) X Spin(p) —^ Spin(m+p) (see definition (6.1)8). Then, 

SO(f,k) E Is * principal Spin(m+p)_ 

bundle over M. Define n': SO(f,k) —> SO(f)XgQ^^^^gQ^ ^SO(m+p) by 
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n'([(t,A)]) = [(n^(t), A(A))], for [(t,A)] G S%(f,k). TRie 

map n' is easily seen to be well defined. Moreover, we have 

n' ( [ (t,A) ]A') = n' ([ (t,AA') ]) (by definition of the right action of 

Spin(m+p) on SO(f,k^ = [(n2(t),A(AA'XW = [(ng(c), A(A)A(A')))] 

= [(n^(t), A(A)) ]A(A') = n'([(t,A)])A(A'), for all [(t,A)] € SO(f,k) 

and A' € Spin(m+k). Hence, the pair (SO(f,k),n') is a A-

prolongation of the principal SO(m+p)-bundle ^SO(m+p) 

to the group Spin(m+p). Finally, we utilize the principal bundle 

isomorphism y: ^ SO(m+p) —» f SO(N,k) (see pro-

position (2.1)9) to yield the A-prolongation (SO(f ,k) ,rî £ ) of 

f SO(N,k) to Spin(m+p). Here n = p°n'' 

To summarize the above; we have proved: 

Proposition (2.3)1: Let M,N,f,k,s^ and s-̂ ^ be as above. Then 

there exists a A-prolongation (SO(f,k),n^^ ) of the principal 

SO(m+p)-bundle f f SO(N,k) —> M to the group Spin(m+p). 

Note that we have not assumed that the target space N is 

spin; we require only the vanishing of the two obstructions 

Wg(TM) and WgCNff)) - these are the obstructions to prolonging 

the oriented orthonormal frame bundles of the vector bundles TM and 

N(f) respectively. However, since M is orientable, w^(TlI) = 0 = WgCNff)) 

if and only if both M and N are spin. 

Definition (2.3)2: The principal bundle Spin(m+p) S0(f,k) 

M is called the spin frame bundle corresponding to f, s^ 

Given any action p € Hom(Spin(m+p), Diff(F)), where F is 

0j'\j 

some manifold, we may form the associated bundle SO(f,k)x F over 

M. In particular, for F = V, a vector space. 
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and p € Hom(Spin(m+p), GL(V)), we may form the vector bundle 

'h'h 
SO(f,k.)x^V over M. Sections of such a vector bundle are spinor 

P 

fields on M which transform under the group Spin(m+p) rather 

than the group Spin(m) (the usual spin group for M). Note that 

we have the vector bundle isomorphism y: SO(f,k)x V —s- SO(f)x^ V 
p p.I 

(where i: Spin(m) x Spin(p) Spin(m+p) is inclusion) defined by: 

2.3.2, 

for all [([(t,A)].g)] G SO(f,k)x^V 5 (%&(f)x . . Spin(m+p)x V. 
p bpxn (,m; xspin(p; ^ 

It is straightforward to check that y is a well defined isomorphism 

of vector bundles. 

Let us now consider connections. Let € Conn(SO(N,k)) 

denote the Levi-Civit& connection 1-form of the metric k and let 
* * 

us denote the induced connection (w^ f) in f SO(N,k) by 

(see definition (6.1)22 and section 2.1). We have the Lie algebra 

isomorphism 5 DA(1): LSpin(m+p) —^ LSO(m+p), and this enables us 

to define the induced connection 6 Conn(SO(f ,k)) by: 

W(f,k) A* ° ^(f,k) "Yf,k) 2.3.3. 

(Cf. equations 1.3.4 and 1.3.5). 

Definition (2.3)3: Given M,N,f,k,s and s-̂ ^ as above, we 

call 6 Conn(SO((f,k)) (as defined by 2.3.3) the induced 

spin connection. 

Given together with p € Hom(Spin(m+p), GL(V)), we may 

define the corresponding covariant derivative acting on sections of 

= SO(f,k)x V as in equation 6.1.9. Let us denote this covariant 
P P . 

derivative by V or just for short. Thus, we have: 

r(E ) » 2.3.4. 
^ P 
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An alternative method of defining a covariant derivative acting 

on sections of E may be described as follows: By a proposition 
P 

analogous to (2.1)11, we have the connection in the principal 

SO(m) X SO(p)-bundle SO(f). This connection is constructed from 

the Levi-Civit& connection of g, € Conn(SO(M, g)) , together 

with the normal connection € Conn(SO(N(f))) (see proposition 

(2,1)13). We have the A-prolongation (SO(f),ri^) of SO(f) to 

Spin(m) X Spin(p) and so we may define the induced connection oĵ  
Oilj 

in SO(f). The latter connection is given by: 

Wg = ° Hg Wg 2.3.5. 

(Cf. equations 1.3.4, 1.3.5 and 2.3.3, but note that here, 

Aj.: L(Spin(m) xSpin(p)) = LSpin(m) # LSpin(p) —^ L(SO(m) ><SO(p)) 

= LSO(m) @ LSO(p)). 

Definition (2.3)4: Given M,N,f,k,s and s4^ , , , as above, we 

call 0)̂  £ Conn(SO(f)) (as defined by equation 2.3.5) the adapted 

spin connection. 

As with the induced spin connection , we may use the 

% 
adapted spin connection to define the corresponding co-

variant derivative acting on sections of E (identified with 
P 

SO(f)x^ V using the isomorphism y as given by equation 2.3.2). 
pol ^ 

% ^(f g) 

Let us denote the covariant derivative arising from by V 

or just V® for short. Thus, we have: 

: r(E^) » nl(E^) 2.3.6, 

P P 

as in equation 6.1.9. 

We may summarize the above discussion as follows:- Given an 

(orientation compatible) isometric embedding f: (M,g) (N,k) 

and also A-prolongations s = (SO(M,g),ri ), 
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= (SO(N,f)), ) of the orthonormal frame bundles SO(M,g) , 

SO(N(f)) respectively, we may define two further A-prolongations. 

Firstly, we have the A-prolongation (SO(f ) ,T i^ ) of the principal 

SO(m) X SO(p)-bundle SO(f) — M of f-adapted frames to the 

group Spin(m) x Spin(p). Secondly, we have the A-prolongation 

'XjOI -k 
(SO(f,k),n^£ ) of the principal SO (m+p)-bundle f ir̂  : 

* f\j 
f SO(N,k) — M to the group Spin (m+p) . For any representation p 

of Spln(m+p) on a vector space V, the associated vector bundles 

SO(f)x V and SO(f,k)x V are naturally isomorphic. We identify 
p°i 

them and denote this vector bundle by (although, of course, 

P P 
depends on f,k,s and s-̂ ^ k) ̂ e m b e d d i n g and spin structure 

data lead to two covariant derivatives acting on sections of E . 

ijg ^ (f, s) ̂  

Firstly, we have the adapted covariant derivative, V = V , 

arising from the adapted spin connection Wg 6 Conn(SO(f)), and 

secondly, we have the induced covariant derivative, E 

arising from the induced spin connection £ Conn(SO(f,k)). 

The adapted covariant derivative may be regarded as a Spin(m) x Spin(p) 

-operator whereas the induced covariant derivative is a 5pin(m+p)-

operator. 

Note that if p = p ° A for some p € Horn (SO(m+p), GL(V)), 
'Xj'X, * 

then we have an isomorphism of SO(f,k)x V onto f SO(N,k)x V 
P ^ 

analogous to that defined by equation 1.3.2. Similarly, we have 

an Isomorphism of SO(f)x V onto SO(f)x V (where \ also 
poi 

denotes inclusion of SO(m) xSO(p) in SO(m+p)). Note also that 

f SO(N;k)XpV is naturally isomorphic to f (SO(N,k)x V). Hence, 
OiOi OjOI A 

the five vector bundles SO(f,k)x^v, SO(f)x^ V, f SO(N,k)x V, 
* P ^ 

f (SO(N,k)x^V) and SO(f)x are mutually isomorphic for 

p £ Hom(SO(m+p),GL(V)) and p = p°A. We refer to any one of these 
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five as E . 
P 

The connection in SO(N,k) gives rise to a covariant 

derivative in SO(N,k)x V and hence, by pullback, a covariant 

A 
derivative in f (SO(N,k)x V) = E . The same covariant derivative 

P P 

is given by the connection in f SO(N,k) and indeed by 

1. "W, 
the connection in SO(f,k). Thus, the Induced covariant 

derivative in E coincides with the covariant derivative 
P 

induced from in SO(N,k)x V by f. 

The connection in SO(f) also gives rise to a covariant 

derivative in E^, and this covariant derivative coincides with 

the adapted covariant derivative obtained from the con-

Oi 'Xi'XJ 

nection in SO(f). 

Thus, each of the five Isomorphs of E^ is furnished with the 

two covariant derivatives and 

In particular, suppose p is the defining representation of 

SO(m+p) on . Then the vector bundle E is just f (TN) 

(Cf. equation 1.3.3) = Df.TM # N(f) (see section 2.1). In this 
( f 1̂ ) 

case, the induced covariant derivative V is just the co-

variant derivative given by equations 2.1.6 and 2.1.7. The 

adapted covariant derivative is given by the equation: 
^(f,g)v = Df.vSVu, + vL 2.3.7, 
X X M X 

for all X G Vect(M), V = Df.V + vL g Df.Vect(M) @ r(N(f)) 

= Vect^(N) = r(f TN). Here, as usual, V® is the covariant deriva-

tive in TM arising from the Levi-Civita connection of g, 

w € Conn(SO(M,g)) , and V-L is the connection in N(f) arising 
6 

from the normal connection 6 Conn(SO(N(f))). Note that equa-

O) ff g") 
tlon 2.3.7 reflects the fact that V is obtained from the 
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connection oĵ  ; being constructed from w together with 

(see proposition (2.1)13). 

Returning now to principal bundles, we remark that, in addition 

a. a, 
to the connection 1-forms , there exist other natural 

OAj "VY, 
forms on the bundles SO(f) , SO(f ,k) . lie have the maps aorî : 

rXAj >'c O/'Tj 
SO(f) —^ SO(M,g), ° : SO(f,k) — S O ( N , k ) . Therefore, 

we may pullback the canonical 1-forms of M,N respectively. Let 

f * 1 m f * * 
8^ = (oon^) 8% G 0l(S0(f),a ) and 8^ = ((w^ 8^ 

1 '\/\j ni~f~i3 \ 
£ (SO(f ,k) ,]R ). As in section 2.1, we denote the inclusion of 

* Tj * 
SO(f) in f SO(N,k) by i, and let i = i denote the induced 

O.'Xj 'Xi'X, % 
inclusion of SO(f) in SO(f,k), so that we have k) ° ̂  " 

Oi 'Xi'X, , %% 

Proposition (2.3)5: If i: SO(f) —> SO(f,k) is the principal bundle 

monomorphism arising from the isometric embedding f, then 

- e ĵ 6 ai(so(f),i i° ') . 

Proof: "•"4 -

= ((nQf)o I °ng) 8^ = n2((mQf)°i) 8^ = n^o 8^ (by proposition (2.1)10) 

= (a°nf)8% = 8^ O 

Another form, this time symmetric and related to the second funda-

mental form, may also be defined; we have K = n^K 

6 r((8ZT"%%(f)) 8 (&&(f)xaf)) (see 2.1.10, 2.1.11). 

For convenience, we summarize the various bundles and maps used 

above in the following diagram: 
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SO(f) 

I 

SO(N(f)) SO(M,g) 

id 
M 
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-» SO(f,k) 

-^f"sO(N,k) > SO(N,k) 

f IT, 

V 

M 

N 

V 

-> N 

2.3.8. 

The absence of spin structure on the target space N is re-

flected in the vacuous nature of the top right hand corner of 

diagram 2.3.8. However, the only spinor fields we will need in 

applications are defined on the domain M, so that the prolonga-

tions (SO(f),ng) and SO(f,k),n^^ ) are all that we require. 

Let us now consider the general formalism develpped above 

in the context of certain useful special cases in general rela-

tivity theory. As indicated in the introductory remarks of this 

section, we will denote a typical spacetime by (M,g). 

Our first special case is that of a spacelike embedding of 

codimension one. Let H be an oriented 3-manifold and (M,g) a 

(spacetime oriented) spacetime. Let f: (H,h) "=—s- (M,g) be an 

orientation compatible spacelike isometric embedding, so that 

h = f g has signature equal to -3. To conform with the notation 



-160-

used in the general relativity literature, we denote the unit normal 

of f by t, so that t is a future directed unit normal vector 

field such that u = {e^,e2,e^} 6 m C SO(H,h) implies 

{t(x) ,Df (x) .e^, Df(x).e2, Df(x%eg}G w^^(f(x)) C SO(M,g) (see 

definition (2.1)14). 

Let k = 6 SgCH) denote the extrinsic curvature of f 

(definition (2.1)15). Then, we may write (see 2.1.12) k(X,Y) 

= -g(V®t,Df.Y), for all X,Y G Vect(H), where g E g^ denotes 

the induced metric in the vector bundle f (TM) = Df.TM # N(f) . 

Note that the normal bundle : N(f) —*- H is trivializdkLe. 

with total space N(f) = {rt(x): r € H, x € H}. Similarly, the 

bundle SO(N(f)) of oriented g-^-orthonormal frames is trivialitoWtwuLK 

structure group S0(1) = {1}. Hence, the bundle SO(f) of f-

adapted oriented orthonormal frames is isomorphic to the bundle 

SO(H,h) of oriented h-orthonormal frames. We shall henceforth 

identify SO(f) and SO(H,h) and denote both by SO(H,h). The 

oriented version of diagram 2.1.2 now collapses to the following: 

S0(3) C 

n 

\k 

SO(H,h) 

H 

V 

H 

_* S0+(l,3) 

1 

V 

-*f SO(M,g) 

f 
M 

v 

H 

_>aO+(l,3) 

n 

V 

^>SO(M,g) 

M 

M 

2.3.9. 
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Note that, in the case of a codimension one spacelike embedding 

in spacetime, proposition (2.1)9 reduces to SO(H,h)XgQ^g^80^(1,3) 

= f SO(M,g), and proposition (2.1)10 reduces to ((n f)oi) 8^ = 8 

€ ni(so(H,h),a3). 

The connections available are € Conn(SO(H,h)) and w 

€ Conn(SO(M,g)). By propositions (2.1)11 and (2.1)12, the 

LS0(3)-component of ((w f)oi) o) vath respect to the decomposition 
iN g 

1 8 0 ^ ( 1 , 3 ) = LS0(3) # L(l,3) (note the slight change of notation) 

is precisely w^, the Levi-Civit& connection of h. The normal 

connection is trivial, and hence the unit normal vector field 

is parallel along all curves in H - this corresponds to the fact, 

already noted (see the remarks immediately preceding definition 

(2.1)15), that V-'-t = 0. The relationship between the covariant 
h % 2 _ 

derivatives V = V and V = V may be obtained from equations 

2.1.5, 2.1.6 and 2.1.7. We shall give more explicit formulae for 

those covariant derivatives below. 

Let us now consider the question of spin structures. Since 

the normal bundle of f is trivial, the only assumption that we 

need to make is that H is spin, i.e. w^CTH) = 0. For example 

(see 1.2.2), if H is compact, then the obstruction to the existence 

of a spin structure on H vanishes. In any case, suppose H is 

spin and choose an h-spin structure s^ = (SO(H,h),n^) 6 E(H,h) 

(up to equivalence of h-spin structures, this corresponds to choosing 
1 a.'\j 

an element of H ( H ; - see 1.1.5). Thus SO(H,h) is a 

principal bundle over H with structure group Spin(3) = SU(2) = S^. 

The A-prolongation (SO(f ) ,nr) is identified with (SO(H,h),n, ) 

2 

In order to utilize SL(2 ,iC)-spinors on H, it is necessary 

since we have identified SO(f) with SO(H,h), and x SU(2) - SU(2) 
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O/Oi A 

to consider the A-prolongatlon (SO(f ,g) ) of f SO(M,g) 

= S0(H,h)XgQ^2^S0^(l,3) to the group 51(2,1). Here, SO(f,g) 

= SO(H,h)Xg^ 2)SL(2,Z) Is the spin frame bundle corresponding to 

f and s^ (see definition (2.3)2). 

We may now wheel out our favourite representations of the group 

SL(2,{E) and construct bundles over H associated with the principal 

bundle SL(2,(E) C—^ SO(f,g) —> H. Using the notation of section 1.7, 
^ —* 

we have, In particular, the representations p , p , p , p € 
Hom(SL(2 ,fl]) ,GL(2, (C) ) with corresponding associated vector bundles 

X '\j^ g 

S^, Sg, Sg, Sj, where = SO(f,g)x etc. Since the symplectlc 

form E (see equation 1.7.1) Is Invariant under SL(2,(C), the 

vector bundles S^, etc. each have the structure of a (complex) 

symplectlc vector bundle over the 3-manlfold H. 
Definition (2.3)6: Given H,M,f and s^ as above, the symplectlc 

vector bundle (Ĉ  ^ H Is called the bundle of contravarlant 

unprlmed Weyl splnors over H. 

Similarly, S^ Is called the bundle of contravarlant primed 

Weyl splnors over H, etc. 

Given any p £ Hom(SL(2,I),GL(V)), we may form the associated 

bundle SO(H,h)x^ V, where i: SU(2) SL(2,!E) is inclusion. 

As in 2.3.2, we have an isomorphism of SO(f,g)x V onto 

SO(H,h)x V, and we shall identify these two vector bundles, % pot 

'X/Xj P 

denoting both by E^. For example, we identify SO(H,h)x with 

Sg, so that SO(H,h)x ^ carries a natural symplectlc structure e. 

Another way of constructing vector bundles is to use representa-

tions of 80^(1,3). In particular, when composed with the covering 

A:SL(2,I) —^ 80^(1,3), the defining representation of S0*(l,3) 

on ]R̂  yields a representation of SL(2,(E) on ]R^. Let 
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= S0(f,g)Xg^^2 jc)®- denote the corresponding associated vector 

bundle over H (Cf. definition (1.7)1). Since the Minkowski inner 

product n = can(l,3) on is invariant under SL(2,iC), the 

vector bundle is equipped with a fibre metric, also denoted 

by n. In fact, by the remarks above (arising from equation 1.3.3), 

the Lorentzian vector bundles (W^,n) and (f TM,g) (where g E g^) 

are isometric (Cf. equation 1.7.17). 

Now consider the representation p 0 p of SL(2,!E) on H(2) , 

the vector space of 2 x 2 Hermitian matrices. We denote by 

the corresponding vector bundle over H. The Lorentzian inner 

product e 0 e on H(2) is SL(2,CE)-invariant and therefore fur-

nishes Hg with a Lorentzian fibre metric, also denoted by e 0 e. 

Now define —s- by 

Og([(u,x)]) = [(u,a(x))] 2.3.10, 

for all [(u,}£)] 6 . Here, a is the isometry of (E.'*,n) onto 

(H(2), e S e) defined by equation 1.7.7. The map is an iso-

metry of Lorentzian vector bundles, as is easily demonstrated (Cf. 

equations 1.7.14, 1.7.15). 

We now compose the isometry of (f TM,g) onto (U^,n) with 

— A 
that of (W^,n) onto (H^, e 0 e) to give an isometry of (f TM,g) 

onto (Hg,E 0 e). We denote this isometry by o(f). 

Definition (2.3)7: Let H,M,f and ŝ ^ be as above. The isometry 

cf(f): f TM —> Hg of Lorentzian vector bundles over H is called 

the Infeld-Van der Waerden isomorphism corresponding to f and 

(Cf. definition (1.7)2). 

Note that is naturally embedded (qua vector bundle) in 

Sj 8g, S^, so that the isometry o(f) embeds f TM in 0̂ , 
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(Cf. equation 1.7.18). The isometry cr(f) extends to tensor products 

and, as for a spacetime, tensor field equations on H may be trans-

lated into equivalent equations involving SL(2,(C)-spinor fields. 

As usual, we may restrict our attention to completely symmetric 

spinor fields. 

In calculations, the Infeld-Van der Waerden isomorphism o(f) 

is not usually explicitly mentioned, and we have the usual abstract 

index identifications; for example, the metric induced in f TM 

from g by f is written (8f)ab) = (Cf. equa-

tion 1.7.21). For further remarks concerning the use of 2-component 

Weyl spinors in general relativity theory, we refer the reader to 

the comments following definition (1.7)2 in section 1.7. 

We now make a few remarks concerning the interaction between 

the groups SL(2,!C) and SU(2) . The inclusion of SU(2) in 

SL(2,!E) which we are using is induced by the inclusion a (—>-

of S0(3) in 80^(1,3). The latter inclusion may be regarded as 

arising from the choice of a timelike direction in (]R^,n) and 

corresponds on the manifold level to the (timelike) normal bundle 

N(f). In other words, we may regard the embedding f as a means of 

reducing the 50^(1,3) symmetry to an S0(3) symmetry, and hence 

the SL(2,iC) symmetry to an SU(2) symmetry. 

Let _t € denote the unit future directed timelike vector 

in (IR'̂ ,n) corresponding to the inclusion S0(3) » 50^(1,3). We 

define a Hermitian inner product on by G = /2 a(_t) 6 H(2) 

(the /2 factor ensures that det G = 1; Cf. equation 1.7.10). 

The inner product G is invariant under the action of SU(2) on 

iĈ  (but not under the action of SL(2,{E)), and so the vector 

bundle (Ê  = S O ( f , g ) x ^ g carries a Hermitian fibre 

1 0 
0 a 
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metric, which we shall also denote by G. 

Upon activating the Infeld-Van der Waerden isomorphism a (f) , 

sre iMLy vnriCe = /2 where t^^, E tBB is the 

1-form corresponding to t € r(N(f)), 

Thus, the vector bundle is equipped with the Hermitian 

fibre metric G in addition to the symplectic structure e. 

Noting that = SO(H,h)Xp we regard the principal SU(2)-

bundle SO(H,h) as the Hermitian frame bundle of (S^,G) just as 

the principal SL(2,(E)-bundle SO(f,g) may be regarded as the 

symplectic frame bundle of (S^,£). 

The Hermitian metric G is positive definite and possesses 

A A ' ! — A A ' A A ' A 
the Inverse G = /2 t which satisfies G G , = 

BA B 

(using the fact that ^BA' ^ Hence, we have an iso-

/C ^ ^ ' 
morphism of vector bundles: ^ S^; A 1—̂  A G ^ , , and by 

—" AA' 

hermiticity, —> S^; i—̂  G The existence of G 

enables us to work entirely in terms of unprimed spinors - we 

just "convert" all primed indices to unprimed ones using the 

isomorphisms induced by G. For more details concerning the use 

of the unprimed SU(2) spinors, we refer the reader to Sen [S43 ]. 

We shall allow ourselves the freedom of using SL(2,(E) spinors. 

We now consider the spin connections arising from our embed-

ding and spin structure data. The Levi-Civith connection 
0) € Conn(SO(M,g)) induces the connection wx, . € Conn(f SO(M,g)) 
S \ ̂  5 S / 

and the latter connection gives rise to the induced spin connection 

i\/\j 
^ in SO(f,g) (see definition (2.3)3). The connection ^ ̂  

Oj (f, e) 
then leads to the induced covariant derivative V acting on 

OiOi Ij 'Tj'Tj , 
sections of = SO(f,g)%^V = SO(H,h)x^ V, where p 6 Hom(SL(2,(C) , 

P P P O L 

GL(V)). 
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We also have the connection 6 Conn(SO(H,h)) and this 

'\j _ % %% 

induces the adapted spin connection in SO(H,h) (see 

definition (2.3)4). We then have the adapted covariant derivative 

^(fjh) acting on sections of E . 
P 

As usual, we have two covariant derivative operators acting on 

the sections of any associated vector bundle E . Therefore, in 

P 

constructing spinor differential equations on the 3-manifold H, 

we may utilize either the SL(2,iC) derivative or, alter-

natively, the SU(2) derivative 

The most important associated vector bundle for us is 

Sp = SO(f,g)x = SO(H,h)x equipped with the symplectic 
I P P o 1 

structure e together with the Hermitian fibre metric G. We also 

utilize Sg, Sg, and tensor products thereof; each of these 

vector bundles is also equipped with a symplectic structure and a 

Hermitian structure induced from e and G respectively. 

The two covariant derivatices and act on 

r(Sg). The symplectic form e is parallel with respect to the 

Induced covariant derivative but not with respect to the 

adapted covariant derivative On the other hand, the 

Hermitian fibre metric G is parallel with respect to the adapted 

covariant derivative, but not with respect to the induced covariant 

Oiff o) 

derivative. These results follow from the fact that V '^ is 

obtained from a connection in the bundle SO(f,g) of symplectic 

frames of (Sj,e), whilst is obtained from a connection 

in the bundle SO(H,h) of Hermitian G-orthonormal frames. 

We now present explicit formulae for the covariant derivatives 

which will be utilized in Chapter Three. We use abstract indices 

corresponding to the vector bundle f TM, its complexification. 



-167-

Its dual and tensor products thereof. We refer to tensors as spatial 

if they arise from tensor products of the subbundle Df.TH of f M. 

Spatial tensors are characterized by the property that their con-

tracted tensor products with t^ and t all vanish. For convenience, 

we will suppress any explicit mention of the embedding f in our 

abstract index formulae. 

•k 
The metric in f TM is given by g^^ and the induced metric 

on H is h , = g , - t t, . All indices are raised and lowered 
ab °ab a b 

with the metric g (and its inverse), although for spatial tensors, 

raising and lowering with (and h^^ = g^^ - t^t^) also gives 

the same result. The orthogonal projection onto Df.TH is given 

by h^ = 6^ - t t^. Thus, h^ projects out the snatial part of 
a a a a 

any tensor arising from f TM. For example, the abstract index 

version of the extrinsic curvature is k , = - h'' hf t^ (see 
ab a b c f 

equation 2.1.12). 

In our formulae, we express all covariant derivatives in 

C f 2 } 
terms of the covariant derivative 9 . In the special case of 

vector bundles constructed from f (TM), this derivative reduces 

g * * g 

to the derivative V - (r^f) V as we remarked above (see the 

discussion immediately preceding equation 2.3.7). 

For example, on suppression of explicit mention of f, equation 

2.1.5 gives us = h.V^Y, for all X,Y 6 Vect(H). Thus, we have 
xCyhyb ^ gQ = hjhCx*V&Y^ for all 

c d c a c d a c 
X 6 Vect(H). Therefore, h^V^Y^ = h^h^V^Y^, and hence 

a c a d c a 

= h^hjV^Y^, for all Y 6 Vect(H) (using the fact that is 

spatial). The extension to a general spatial tensor field 

_b. . .c . . , 
T J xs given by: 

d. . .e ^ •' 



-168-

= h ° h ' ' . . . h V . . . h V T " - " ' ' 2 . 3 . 1 1 . 
a d...e a n p d e m q...r 

Equation 2.3.11 gives the spatial component of the adapted co-

variant derivative (see equation 2.3.7). The normal com-

ponent is given by V-^(at) = da 0 t, for any at G r(N(f)). 

We may deal with the induced covariant derivative in 

a similar manner:- Let V 6 r ( f TM) and X G Vect(H). Then, 

^ ygyb ^ yCygyb ^ ~(f,g)yb ^ hC^gyb 
X X c a c a a c 

b s f 2̂  
and hence V ^ = h^V^. For convenience, let us write D = V , 

so that = h^V® acting on r(f TM) and, by extension qua deriva-

tion, on tensor fields. The induced covariant derivative also 

* iC 

acts on r(f T M) (as a real operator) and hence, on using the 

complexification of the Infeld-Van der Waerden isomorphism o(f): 
* (T — 
f T M —^ 0J, Sg (cf. equation 1.7.20) together with the fact that 

a(f) is V^^'®^-parallel, we may write D ^ , = h ^ , acting on 

— A — -k 

sections of S^, S^, S^, and tensor products thereof. 

The induced covariant derivative was used by Witten [W Q ] 

in his famous proof of the positive energy theorem (in Witten's 
f 

paper, D acts on Dirac spinor fields, i.e. on sections of 
• — ̂  

® ) and by Sen [S42] who regarded the kernel of the map: 

— * ^ f A 
r(S^) —^ r(S^ ); A > D ,X as the space of neutrino zero modes 

corresponding to the "initial" hypersurface f(H). 

Definition (2.3)8: Let H,M,f,g and s^ be as above. The induced 

covariant derivative acting on r(S^) (and on 

conjugate-dual-tensor products) is called the Sen-Witten operator. 

The equation 

= 0 2.3.12, 
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is called the Sen-Witten equation. 

The existence of solutions to this equation satisfying the 

spatially asymptotically constant boundary condition A -

= 0(r ) for some constant spinor been established by 

Choquet-Bruhat and Christodoulou [C ] and (in the Dirac case) 

by Parker and Taubes [P ̂  ]. See also Reula [R "3 ] . 

Note that the Sen-Witten equation (2.3.12) is defined for a 

spacelike embedding f using the non-degenerate projection h 

onto Df.TH. In the case of a null embedding, such a projection 

does not exist and so we cannot define a corresponding Sen-Witten 

operator in such a simple fashion. However, it is useful to be 

able to define a null version of equation 2.3.12, for example in 

relation to the propagation of spinor fields on null hypersurfaces 

as is needed in a consideration of the quasi-local version of the 

Bondi-Sachs 4-momentum, and in Chapter Three we obtain such a null 

Sen-Witten equation by taking a certain null limit of the space-

like equation. 

Note that the extrinsic curvature may be expressed using the 

Sen-Witten operator; we have k , = - h^hfv^t, = - h^V^t 
^ ab a b e d a c b 

+ = - D^t, (since t.t^ = 1). Using this formula, 
a b e d a b d 

it is straightforward to derive the following expression for the 

commutator of the Sen-Witten operator: 

2.3.13, 

where E 
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Before leaving codimension one spacelike embeddings and associated 

spin concepts, we make a remark concerning an important recent use of 

hypersurface spinors. This is the work of Ashtekar [A'lJ ] on a 

spinor reformulation of the Hamiltonian formalism in general rela-

tivity. Ashtekar considers a 3-manlfold H equipped with complex 

Riemannian metric q. H is assumed to be spin and a q-spin struc-

ture is chosen. Since the complexification of the group Spin(3) 

5 SU(2) is SL(2,(C), the spinors under consideration are SL(2,(C) 

-spinors, although it is important to note that here, the group 

SL(2,{C) does not originate as the four dimensional (real) Lorentzian 

spin group. The dynamical variables are deemed to be the Infeld-

Van der Waerden isomorphism a corresponding to the q-spin structure 

chosen, together with an SL(2,!C) connection D (not the connection 

arising from q) which is the conjugate of a. The traditional 

dynamical variables (q,k) are regarded as derived from the 

variables (a,D), and a major advantage of utilizing the new 

variables is that the Einstein constraints (see section 2.2) are at 

Wcnstquadratic rather than non-polynomial as is the case when the 

variables (q,k) are used. A further advantage is the fact that 

every constrained initial data set (a,D) for (complex) general 

relativity provides an initial data set for SL(2,(C)-Yang-Mills 

theory. Conversely, any initial data set for Yang-Mills theory 

that satisfies certain additional algebraic constraints yields an 

initial data set for general relativity. Thus, techniques from 

Yang-Mills and general relativity theory may be interchanged. 

The spacetime interpretation of the new 3+1 variables is also 

very satisfying. Indeed, suppose (M,g) is a solution of Einstein's 

equations obtained from a constrained initial data set (a,D). Then 



-171-

D is just the Sen-Witten operator arising from the embedding 

(H,q) (M,g) and the corresponding connection form is a potential 

for the anti-self-dual part of the Weyl tensor field. The use of the 

new variables should also shed light on the relationship between 

SL(2,iC)-spinors on the one hand and gravitational energy on the other 

(see Chapter Three for further discussion on spinors and kinematical 

quantities in general relativity). 

We now return to spinors and embeddings. Having discussed co-

dimension one spacelike embeddings in spacetime, we turn now to co-

dimension two spacelike embeddings. As mentioned above, spacelike 

2-surfaces have found various applications in general relativity 

theory; as closed trapped surfaces, they are an important tool in 

the analysis of spacetime singularities, and they also form the basic 

framework for defining quasi-local kinematical quantities. In par-

ticular, the codimension two spinor theory is an essential component 

of both the Ludvigsen-Vickers and of the Penrose approach to quasi-

local momentum. A careful study of spinor structures on 2-surfaces 

also sheds light on the geometry of the GHP formalism, a formalism 

which has found applications in many areas of the theory of general 

relativity. 

Let S be an oriented 2-manifold and (M,g) a (spacetime 

oriented) spacetime. Let f: (S,h) (M,g) be an orientation 

compatible spacelike isometric embedding, so that h = f g has 

signature equal to -2. 

We have the following principal bundles;- S^ SO(S,k) ^ S; 

S0+(l,3) SO(M,g) M; % SO(N(f)) » S; 

(E SO(f) S. Here, we have used the isomorphisms S0(2) = S , 

1 -j-
80^(1,1) = ]R (using the isomorphism 
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1 —+~ 

We now demonstrate that the normal bundle of such a codlmenslon 

two spacelike embedding is necessarily trivializable (Cf. the co-

dimension one case described above, and also Newman [N '$']): 

Proposition (2.3)9: Suppose S,M,f,g are as just described. Then 

the normal bundle : N(f) —^ S is trivializable. 

Proof: First note that, since f TM = Df.TSB N(f) , the fact that 

both S and M are orientable implies that the vector bundle N(f) 

is orientable. 

Now we use the fact that (M,g) is spacetime oriented, so that 

there exists a globally defined timelike vector field on M. We 

can choose this vector field t such that t is orthogonal to 

f(S), i.e. such that tof £ r(N(f)). 

The section tof is necessarily nowhere vanishing (since t 

is timelike) and hence we may define the line bundle N^ 

= {r(tof)(x):r 6 H, x € S} over S. N^ is a line subbundle of 

N(f) , and we denote by N^ the -orthogonal complement of 

in N(f). Hence, N(f) = N^ # N^ . 

We now utilize the fact that a line bundle is orientable if 

and only if it is trivializable. The trivial line bundle N is 

thus orientable and hence, since N(f) is orientable, we must have 

that N^ is orientable and thus trivializable. 

Now, N(f) is the Whitney sum of trivializable vector bundles 

and therefore N(f) is itself trivializable • 

In applications, we always choose a global trivialization of 

N(f), and it is convenient to use a pair of null normal fields to 

achieve this trivialization 

First note that, for each x € S, the spacetime orientation 
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of (M,g) together with the orientation of S uniquely defines an 

ordered pair of future pointing null directions in 

Tr/ sM. The spaces and are respectively the outward and 
f(x) ^ X X ^ ^ 

inward pointing future null directions contained in the timelike 

subspace T-'-S of T., .M. 
X f(x) 

Definition (2.3)10: A trivialization {l,n} of N(f) is said to 

be null if (!) l(x) 6 and n(x) 6 for all x € S; and 

(ii) g^<l,n) = 1. 

Note that the action of 80^(1,1) = n"'" on SO(N(f)) gives rise 

to the free transitive action of Gau SO(N(f)) = C*(S) on the space 

of null trivializations given by (r, {l,n}) I—> {rl,r ^n}, for all 

r 6 C (S) and for all null trivializations {l,n}. 

Given a null trivialization {l,n}, the induced metric h on 

S may be written 

h = g - 1^ 8 8 1^ 2.3.14, 

where b: N(f) —> f T M is the lowering map induced by In 

equation 2.3.14, we have suppressed mention of f. The orthogonal 

projection of f TM onto Df.TS is given by 

hf = 5^ - 1 - n 1^ 2.3.15, 
a a a a 

using abstract index notation, and the normal projection onto N(f) 

is given by: 

(g-̂ )̂  = 1 + n 1^ 2.3.16. 

A 2-surface tensor is one which arises from any tensor product 

of Df.TS and its dual. 2-surface tensors may be characterized by the 

property that their contracted tensor products with all vanish. 
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For more details concerning this "2+2" orthogonal decomposition, we 

refer the reader to d'inverno and StocKeA, [I 4" ] and to Smallwood 

[S 21 ]. These papers give a reformulation of the initial value prob-

lem within a 2+2 framework. 

Returning now to the bundles arising from the embedding f, we 

have the following version of diagram 2.1.2: 

S0(f)c 

SO(N(f)) SO(S,h) 

s < -

^»S0+(1.3). 

SO(M,R) 

f IT. 
M 

V 

S C T 

-»S0+(1,3) 

n 

^»SO(M,g) 

M 

M 

2.3.17, 

and S O ( f ) x ^ , . . S0^(l,3) = f SO(M,g) , by proposition (2.1)9. 

The theory of connections follows from the general ideas developed 

in section 2.1. For instance, the component of ((w^f)oi) cu 

with respect to the decomposition 180^(1,3) = # L(2,2) defines 

a connection in SO(f). Proposition (2.1)13 gives us that 

tOj = a 0)̂  + 6 , where € Conn SO(S,h) is the Levi-Civit& 

connection of h and € Conn SO(N(f)) is the normal connection. 

For covariant derivatives we utilize equations 2.1.5, 2.1.6 and 

2.1.7, and we have a direct analogue of equation 2.3.11 for 2-surface 

tensors; simply replace h^ in 2.3.11 by the projection given by 
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equation 2.3.15. 

We now consider spin structures. The spin groups corresponding to 

the various special orthogonal groups are as follows:- We have 

Spin(2) = with double cover A: S^ ^ S^: I—> e^^®, and 

Spin(l,l) = ]R with double cover A: E. ^ ]R^ ; t i—> t^. Then, 

"u * 1 * 

Spin(l,l) X Spin(2) = H S-*- is isomorphic to (C via the iso-

morphism; [(t,e^®)] I—^ te^®. The double cover 

A:iC = Spin(l,l) x Spin(2) —>- C = S0^(1,1) x S0(2) is now seen to 
9 5'C 

be just the squaring map; z I ^ z^, for all z € iE . 
4 -

The bundle of oriented normal frames ]R ^ >• SO(N(f)) —^ S is 

trivializable, therefore there is no obstruction to a A-prolongation. 

The question as to whether or not the bundle —̂»- SO(S,h) — S 

admits a A-prolongation depends of course on the topology of S. 

For simplicity, suppose that S is compact, connected and without 

boundary, so that S is characterized by its genus g (recall that 

all our manifolds are orientable). The second Stiefel-Whitney class 

vanishes in this case, so that there is no obstruction to prolonging 

SO(S,h). In fact, H^(S,Z^) = Tz}^ , therefore there exist 4^ 

inequivalent h-spin structures on S (see 1.2.2). Choosing one of 

these equivalence classes and taking a representative 

Sĵ  = (SO(S,h) ,n^) 6 E(S,h), we have the principal circle bundle 
OAi A 
SO(S,h) over S. We also have the trivializable principal ]R -

'\/\j. 

bundle SO(N(f)). 

On performing the constructions given above in this section, 

we obtain the bundle of adapted spin frames Spin(l,l) x Spin(2) 

= IE ^ §0(f) —s- S together with the spin frame bundle 

SL(2,C) SO(f,g) - + S, tdMure S%(f,8) = 3%(f)xQ* SL(2,K). 

As with the codimension one case, we may construct the vector bundles 
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Sj, etc., over S (see definition (2.3)6). The vector bundle may 

be thought of as either SO(f,g)x or as SO(f)x , where 
P p o I 

\: ffi SL(2,(E) is inclusion. As before, the vector bundles S^, 

etc., carry a symplectic structure e. We also have an Infeld-Van 

der Waerden isomorphism corresponding to f and s^ (see definition 

(2.3)7). Thus, we possess the full power of the 2-component spinor 

formalism on the 2-manifold S. In order to do calculus, we intro-
•Xi l/U Oj 

duce the spin connections £ Conn(SO(f,g)) and 6 

/hlf 

Conn(SO(f)) as above. 

To complete this section, let us consider the relationship be-

tween codimension two embeddings and related spinor structures on 

the one hand and certain constructions arising in other parts of 

this thesis and in the literature on the other. In particular, we 

recall section 1,5 in which we discussed spinors and conformal 

structure. 

Given the isometric embedding f: (S,h) (M,g) together with 

t h e h - s p i n s t r u c t u r e s ^ = ( S O ( S , h ) , n ^ ) , w e m a y c o n s t r u c t t h e p r i n -
A 1,1, 1 

cipal E -bundle SO(f) and also the connection . Let us now 
consider vector bundles associated to SO(f) and their corresponding 

covariant derivatives arising from € Conn(SO(f)) 

A * 

For each (s,w) € gZZ x C, we have the representation ^ of !E 

on iC (defined by equation 1.5.14). We define the complex line 

bundle E(f;s,w) by 
11 

E(f;s,w) = SO(f)x c 2.3.18, 
p 

s ,w 

and, by analogy with definition (1.5)3, we have the following; 

Definition (2.3)11: Given S,M,f,g,s^ and (s,w) as above, we 

define a function of spin weight s and boost weight w to be a 
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section of E(f;s,w). 

The reason for the term boost weight is that 

50^(1,1) 

rcoshij) sinh(j) 

sinh# cosh^ 
: $ 6 ]R |- is the group of boosts of 

J 

(K.̂ , can(l,l)). Definition (2.3)11 may be regarded as a geometriza-

tion of the definition of a spin- and boost- weighted scalar given 

in Geroch et al, [G ̂ ] in the special case of the GHP formalism on 

an embedded 2-manifold. We also refer the reader to Ehlers [ E ] 

who discusses a modified GHP formalism in which the basic principal 

(E -bundle is a reduction of the entire bundle S0*(l,3) SO(M,g) 

>- M of oriented g-orthonormal frames over spacetime. We do not 

assume that such a reduction of SO (1,3) to (C exists - all our 

constructions arise from the embedding f: S M. 

Ii OA. 

The connection in SO(f) now gives rise to a covariant 

derivative acting on spin- and boost- weighted functions. For given 

(s,w), we denote this derivative by go that 

— » nl(E(f;s,w)) 2.3.19. 

We may deal with spin- and boost-weighted spinor fields over 

S by taking tensor products. For example, we have the vector bundle 

c_^ Sg —^ S, and we may construct E(f;s,w)8^S^. Sections of the 

latter bundle are contravariant unprimed Weyl spinor fields of spin 

weight s and boost weight w. Regarding E(f;s,w) as a rank two 

real vector bundle over S, we may also form such tensor products 

as E(f;s,w)0 TS and E(f;s,w) 8 N(f), thereby obtaining spin-

and boost-weighted vector fields. The covariant derivatives in 

E(f;s,w) and in the spinor bundles combine to give a covariant 
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derivatlve acting on weighted spinor fields. Given a null trivializa-

tion {l,n} together with a local section of SO(S,h), we may take 

the corresponding four components of the covariant derivative. The 

resulting four operators are the GHP operators 1, #' , f and ?' . 
GHF GHP 

Let us now consider the special case S = S^. For any metric h 

on arising from an embedding f: (M,g), there exists a 

unique h-spin structure (because = 0). We therefore 

have the principal (C -bundle SO(f) over (and SO(f) depends 

only on f and the spacetime metric g). 

Now recall that there exists a canonical principal C -bundle 

over (see section 1.5). This is given by I ^ 

(1.5.13) and corresponds to the unique spin conformal structure 

(CO(S^, Can) , n) of (S^,Can). Here n : CO(S^,Can) = (Ĉ - W ) 

= S^x ]R"*" ^ CO(S^,Can) = S0(3) x ]r"̂  is given by n = A x id^+ , 

where A:S^ = Spin(3) —^ S0(3) is the double covering (Cf. 1.2.4). 
•k 

The principal C -bundle it leads to the notion of functions 

of spin weight s and conformal weight w (definition (1.5)3) and 

also to the eth operator cT (see equations 1.5.51 and 1.5.52, but 

note that here we use the notation cT rather than ?) . 

Thus, given an isometric (codimension two) spacelike embedding 

f: (S^,h) (M,g), we have two principal iE -bundles over S^, 

namely SO(f) and CO(S^,Can), and two corresponding eth operators, 

namely cT p (acting on spin- and boost-weighted functions) and 

? (acting on spin- and conformally-weighted functions). In fact, 

a third eth operator is also used in the literature (see, for example, 

Newman and Tod [N ]), and we denote this third eth by 3^p. The 

third eth may be either regarded as the GHP eth acting on functions 

of boost weight zero, or as arising in the same manner as 3"̂  in 
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section 1.5, but with a general metric h on rather than can 

(of course any such h may be obtained from can by a conformorphism 

by the unlformization theorem for Riemann surfaces). 

In the usual general relativity notation, the relationship be-

tween the three eths may be written as follows:-

3 n = & n - Tb(n)n 2.3.20, 

^NP ^ * (3Qv)s(n)n 2.3.21, 

where b(n), s(n) are respectively the boost- and spin-weights of 

the (local) section n, and v is such that h = 4v(l + zO ^d?dc 

in local isothermal coordinates (Cf. 1.5.23, 1.5.34). Equations 

2.3.20 and 2.3.21 are verified in a straightforward manner using 

the GHP formalism together with equation 1.5.51. 

The two principal bundles SO(f) and CO(S^,Can) over 

•k 
both possess the same structure group, namely C , but this group 

'iy\, * 

arises in two different ways. In SO(f), C is an isomorph of 

Spin(l,l) X Spin(2) , whereas in C0(s2,Can), iE is an isomorph 
OAj + " 

of C0(2). The H -factor in iC is responsible for boost-weight 
^\/\j r\ 

in S0(f), and for conformal-weight in C0(S^,Can). 

The notions of boost- and conformal-weight may be united in 

two ways. Firstly, we may consider the standard embedding f of 

in Minkowski spacetime (H^, can(1,3)) ; is embedded as a 

round sphere of radius one in ]R̂  and this embedding is composed 

with the spacelike embedding of as any hyperplane in 

(IR^, can(l,3)). Then, h = can 6 Met(S^) and SO(f^) = CO(S^,Can), 

so that, in this case, there is no distinction between boost- and 

conformal—weight. 

On the other hand, if we wish to maintain both weights, then a 
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second approach is possible; we consider conformal rescalings of 

the spacetime metric g. Let C0*(l,3) CO(M,C ) —» M denote 

the conformal frame bundle of spacetime (M,g). Then f CO(M,C ) 

is a principal C0*(l,3)-bundle over S, where f is an isometric 

embedding of (S,h) (S any oriented 2-manifold) in (M,g). We may 

f " 
therefore consider the real line bundle ]R = f CO(M,C )x„ B. over 

J ® w 
S (Cf. definition (6.2)4). Sections of IT are called functions 

w 
f 

of conformal weight w on S. By tensoring with E(f;s,w') 

(and with other vector bundles over S) we may obtain quantities 

with spin-weight s, boost-weight w' and conformal-weight w. 

This approach is adopted in Penrose and Rindler [Pii ] (see pp. 

352-362), but we hope that our remarks have clarified the geometry 

of the situation. We also refer the reader to the formulae 

6.2.12 - 6.2.44 which give the conformal transformation properties 

of important spin- and boost-weighted quantities. 

We note also the work of Ludwig [L 13 ]. Ludwig considers 

complex Lorentz transformations and complex conformal rescalings 

within the framework of the group GL(2 ,iC) x GL(2 ,iC) . Ludwig also 

calculates the generalized transformation properties of useful 

geometrical quantities, albeit in a very algebraic fashion. An 

interesting avenue for further study would involve a consideration 

of the Ludwig ideas within the context of embeddings and principal 

bundles. This work will be left for future investigation. 

We hope that the remarks of this section have demonstrated the 

natural geometric manner in which embeddings and spinor structures 

interact with one another. Other ideas, such as conformal structure, 

also come into play when we consider the specific case of embeddings 

in a spacetime. We have already indicated certain applications of 
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the ideas of this section to general relativity theory. In Chapter 

Three, in particular in sections 3.3 and 3.4, we consider another 

application; this time to spinor field null propagation and the 

definition of quasi-local momentum. 
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3.0 Introduction 

In this chapter, we continue our discussion of spinors and 

embeddings in general relativity. The emphasis is on spinor pro-

pagation equations on null hypersurfaces and their application to 

the definition of quasi-local momenta in spacetimes. The chapter 

highlights the natural interaction between null embeddings, 

SL(2,(C)-spinors, 2-surfaces and kinematical quantities. 

The chapter is organized as follows:- Having discussed 

spacelike embeddings in section 2.3, we first introduce null 

embeddings in spacetime. Null embeddings present problems when 

we attempt to push through the ideas developed for spacelike, 

and other non-degenerate, embeddings. Nevertheless, null embed-

dings are important in gravity theory (the reasons for this 

importance will emerge below), and therefore we outline the 

approaches to circumventing these difficulties. 

In section 3.2, we describe how concepts arising from space-

like embeddings may be transferred to the null context by taking 

a limit of spacelike embeddings. We refer to this as a null 

limit. Our approach is straightforward and it is based upon the 

normal bundle - a trivial line bundle for a codimension one, 

orientation compatible, spacelike embedding. Our main applica-

tion of the null limit technique is to derive a natural spinor 

field propagation equation on a null hypersurface - this is a 

limit of the Sen-Witten equation described in section 2.3. 

The propagation equation has been used in general relativity 

theory in the definition of quasi-local momentum due to Ludvigsen 

and Vickers [LfO] and also in the derivation of a fundamental 
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inequality between mass and charge (see [L 1j ] ) . In section 3.4, 

we describe how our propagation equation is used in these applications. 

In order to set the scene for the quasi-local momentum discussion 

of section 3.4, in section 3.3 we give a brief overview of gravita-

tional momentum in general. We discuss the historical, physical and 

geometrical development and we emphasize the importance of kinematical 

quantities in general relativity. In recent years, it has become 

apparent that spin structure seems to underly mass-momentum-angular 

momentum in general relativity theory. The full significance of the 

interaction between spinors and momentum is not yet clear, but our 

discussion covers the current state of understanding. 

The important novel idea in this chapter is that of the null 

limit as a means of obtaining null versions of spacelike concepts. 

We will indicate further applications of this technique in sections 

3.2 and 3.4. 

3.1 Null Embeddings 

In this section, we give a brief discussion of the theory of 

null embeddings in a Lorentzian manifold. We are particularly 

interested in the case of codimension one null embeddings in a 

spacetime, since null hypersurfaces play an important role in the 

theory of general relativity. For example, null hypersurfaces 

appear as the smooth parts of achronal boundaries such as event 

horizons and Cauchy horizons, and they are also an essential 

ingredient in the theory of black holes and of singularity theory 

in general (see Hawking and Ellis [H ]). Null hypersurfaces also 

arise as the future and past null infinities of asymptotically flat 

spacetimes (see section 6.3) and as characteristic surfaces in the 
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theory of radiation (see Friedrich and Stewart [F 11 ]). Our use for 

null embeddings is within the context of quasi-local momentum in 

general relativity and we discuss this particular application in 

section 3.4. 

We now summarize the main facts concerning the structure of 

null embeddings. For details, we refer the reader fo Kupeli [KiS ] 

and references therein. 

Let (M,g) be a connected, spacetime oriented Lorentzian 

n-manifold, so that the signature of g is equal to 2 - n. Let 

f: H M be an embedding of the m-manifold H (m < n) in M 

and let h = f g 6 S^CH). 

Definition (3.1)1: The embedding f: (H,h) (M,g) is said to 

be null if h is degenerate. 

Let f: (H,h) (M,g) be a null embedding and, as usual 

- see section 2.1, let v^: N(f) — H be the normal bundle of 

- 1 I 
Hence, for each x 6 H, (x) = TgH = {v 6 g(f(x))(v,w) 

= 0, for all w 6 Df(x).T H}, and T-̂ H is a (n-m)-dimensional 

subspace of T̂ ., .M. Note, however, that Df(x).T H # T-̂ H 
f(x) X X 

=1= since the inner product induced on Df(x).T^H is 

degenerate. 

For each x 6 H, we let L = Df(x).T H T - ^ H , so that L 
X X X X 

is a one-dimensional degenerate subspace of both Df(x).TH and 

of T^H. The orthogonal complement of L^ in is given 

by L-̂  = Df(x).T H 4- T-'-H. Let L(f) = |j L and define the pro-
* * * x6M * 

jection A^: L(f) —^ H in the obvious manner. Then L(f) possesses 

the structure of a line bundle over H. In fact, L(f) is the 

only subbundle of both Df.TH and N(f) with one-dimensional 

null fibres. 
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Deflnltlon (3.1)2: The line bundle L(f) —> H is called the 

null bundle of the null embedding f. 

Proposition (3.1)3: The null bundle L(f) is trivializable. 

Proof: Let t be a globally defined future directed timelike vector 

field on (M,g) and define 1 6 r(L(f)) by x i—> l(x), where l(x) 

- 1 

is the unique element of (x) satisfying g(f(x))(l(x),t(x)) = 1. 

Then, 1 is a smooth (future directed) nowhere vanishing section of 

L(f) which provides a trivialization for L(f) • 

Note that, since L(f) is a line bundle, any future directed 

section of L(f) is given by 1' = rl for some r 6 C^^H). More-

over, since L(f) is the unique null subbundle of Df.TH, the section 

- 1 

(Df) 1 is a future directed null vector field on H which is unique 

up to an element of C^\H). 

We have the following corollary to proposition (3.1)3: 

Corollary (3.1)4: Let f: (H,h) (M,g) be a null embedding of 

codimension one or two. Then H is necessarily orientable. 

Proof: Let t be any unit future directed timelike vector field 

on (M,g) and 1 a future directed section of L(f) such that 

gg(l,C) = 1 . 

Suppose first that codim(f) = 1, then, since t is nowhere 

tangent to f(H), f (i vol(g)) is a nowhere vanishing (n-l)-form 

on H. Hence, H is orientable. 

Now suppose that codim(f) = 2 and let 1^ 6 r(TM|f(H)) be 

defined by l^(f(x)) = l(x), for all f(x) 6 f(H). Then we have 

that s = t|f(H) - 1^ is a spacelike section of Tll|f(H) which 

is nowhere tangent to f(H). Hence, f (vol(g)|f(H))) 

is a nowhere vanishing (n-2)-form on H, so, again, H is 

orientable • 



- 1 8 6 -

Note that if H is given the orientations referred to in the 

proof of corollary (3.1)4, then f is an orientation compatible 

embedding. 

Definition (3.1)5: Let f: (H,h) (M,g) be a null embedding 

and 1 a future directed, nowhere vanishing section of L(f), so 

that (Df) 1 is a future directed null vector field on H. The 

image of an inextendable integral curve a of (Df) 1 is called 

a (null) generator of f. 

The idea of a null generator is very useful in the analysis of 

null embeddings, in particular, the causal structure of null embed-

dings. We do not discuss such matters here, but refer the reader to 

Kupeli However, for completeness, we state the following 

theorem: 

Theorem (3.1)6 (Kupeli [K15 ]): Let H be simply connected and 

f: (H,h) (M,g) a null embedding. Suppose S is a closed, 

connected, spacelike hypersurface of (H,h) with the property that 

every generator of f intersects S. Then there exists a diffeo-

morphism ip: H —> S x ]R such that, for each x G S, Jp ̂ ({x} x E.) 

is a generator of f. In particular, since H is diffeomorphic to 

S X E., S is simply connected. 

The major difficulty in the study of null embeddings arises 

because of the non-existence of a well defined projection of f TM 

onto Df.TH. Thus, we cannot construct expressions such as those 

contained in equations such as 2.1.5 - 2.1.7 and 2.3.11 which 

utilize the projection h. In particular, there is no well defined 

induced connection on H. However, there do exist certain useful 

Riemannian vector bundles over H:-

Let E denote any one of the vector bundles Df.TH, N(f), 
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L-'-(f) 5 Df.TH 4" N(f) over H. Hence, L(f) ̂  E f TM. Define 

E = E/L(f) with Riemannian fibre metric g given by g(x)(v,w) 

= g(x)(v,w), where v,w 6 with p(v) = v, p(w) = w 

(where p: E —»- E is the quotient map), for all v, w G and 
_E 

X € H. It is straightforward to verify that the metric g is a 

well defined Riemannian fibre metric in the vector bundle E 

over M. Note that L-L(f) = Df.TH # N(f) is an orthogonal Whitney 

sum of Riemannian vector bundles over H. 

Definition (3.1)7: The Riemannian vector bundle p^: R(f) 

5 Df.TH —^ H is called the canonical Riemannian vector bundle 

associated with the null embedding f. 

Note that R(f) is a rank (m-1) vector bundle over H. 

This bundle may be used in a study of null embeddings utilizing the 

techniques of Riemannian geometry. In particular, a null second 

fundamental form 6 r((0^R(f) ) 0 L(f)) together with a co-

variant derivative operator (which differentiates sections of R(f) 

along the direction of L(f)) may be defined. Kupell [K-ffi ] uses 

these concepts to investigate the deviation of null congruences in 

an embedded null submanifold and also to analyze the structure of 

totally geodesic null submanifolds. 

Since we shall be especially interested in codimension one 

null embeddings, it is worth remarking on particular features of 

this case. Suppose f: (H,h) (M,g) is a codimension one null 

embedding. Then the vector bundles Df.TH, N(f) have ranks equal 

to (n-l),l respectively, and L(f) = N(f). Hence, R(f) 

= Df.TH/N(f) has rank (n-2) , N(f) = H and L-'-(f) = R(f). 

In particular, if n = 4, then R(f) is a rank two Riemannian 

vector bundle over the 3-manifold H. In this spacetime case, 
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theorem (3.1)6 gives a relationship between embedded null hyper-

surfaces of spacetime on the one hand and embedded spacelike 2-

surfaces on the other. We return to the interaction between em-

bedded null hypersurfaces and embedded spacelike 2-surfaces in 

section 3.2. 

To complete this section, we draw the reader's attention to 

the paper of Cramp in [C ']f ] . In this paper. Cramp in discusses 

degenerate metrics on manifolds using the appropriate frame bundles. 

In particular, a vector valued function on the orthonormal frame 

bundle is defined, and the vanishing of this function implies that 

the manifold admits a torsion free linear connection whose parallel 

translation leaves the degenerate metric invariant. This principal 

bundle approach to connections associated with degenerate metrics 

complements the vector bundle approach of Kupeli [Kf6]. We do 

not provide an analysis of the relationship between the two approaches 

here, but such an analysis would shed further light on the structure 

of null embeddings. 

We turn now to an alternative technique for dealing with null 

embeddings, namely the null limit. 

3.2 The Null Limit 

In section 3.1, we outlined the reasons why an analysis of null 

embeddings is more difficult than of the non-degenerate case. In 

this section, we present a technique which enables certain concepts 

associated with a spacelike embedding to be also associated with a 

particular class of null embeddings. This is done by taking a null 

limit of spacelike concepts. We shall apply this technique to 

obtain a spinor differential equation on a null hypersurface in 
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sectlon 3.4, this particular equation being an important part of the 

Ludvigsen-Vickers definition of quasi-local momentum in general 

relativity theory. We also suggest other possible applications for 

the null limit technique. 

The class of null embeddings for which our technique is appro-

priate is the class constructed from null geodesic congruences 

orthogonal to spacelike 2-surfaces. Note that not every null em-

bedding arises in this way (see Kupeli [K'IS ]) but this class will 

be sufficient for our purposes. Indeed, in the application to quasi-

local momentum we take a spacelike 2-surface as the starting point. 

In what follows, (M,g) is a connected, (spacetime oriented) 

spacetime and S is a connected, oriented 2-manifold. As in 

section 2.2, we denote by Embg(S,M) the manifold of spacelike 

embeddings of S in (M,g). 

Let f 6 Embg(S,M). Then we have f TM = Df.TS # N(f). In 

addition, we have the further decomposition N(f) = L°^^(f) # L^^(f), 

since N(f) is trivializable (see proposition (2.3)9). Here, 

and l/^(f) are the naturally defined null line bundles 

over S defined by f, so that L°^^(f) = (J {t l(x): t € E} and 
x6S 

L (f) = {t n(x): t € ]R}, where {l,n} is any null trivialization 

of N(f) (see definition (2.3)10). 

Let exp denote the exponential map of g. Then there exists 

an open neighbourhood V of the zero section in TM such that 

exp : V —^ M is defined. Let V-*- = (T^^) ^(V) n N(f) , so that 

V"̂  is an open neighbourhood of the zero section in N(f) , and 

define exp-^ = (t f) V-*- . The map exp-L is called the 

normal exponential map (of f and g) . Now let U = V-̂  p, L°^^(f) , 

then U is an open neighbourhood of the zero section in L°^^(f), 
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such that exp-^|u is an embedding of U into M. Let H = exp-^(U) . 

Then H is an embedded null hypersurface of (M,g) . 

% 

The null hypersurface H has the special property that there 

exists a geodesic null vector field on H; this is obtained by taking 

the tangent vectors of the null geodesies with initial data l(x) , 

x € S, where {l,n} is some trivialization of N(f). A null hyper-

surface with the property that it admits a geodesic null vector field 

is called a geodesic null hypersurface. Kupeli ] demonstrates 

that if a null hypersurface H in a spacetime (M,g) is causally 

separated by a spacelike 2-surface S, then H is geodesic. Here, 
Oi % 

S causally separates H means that there exists a diffeomorphism 

'ijj: H —^ S X E. such that, for each x 6 S, i); ̂ ({x} x ]R) is a null 

generator of i :H —>• M (Cf. theorem (3.1)6) 
H 

Thus, the null hypersurface H constructed from our original 

f 6 Embg(S,M) is a geodesic hypersurface. Let {l,n} be any null 

trivialization of N(f). Then {l,n} is unique up to an element of 

+ ""v 

C (S). Denote by I the extension of 1 to a future directed 

null geodesic vector field on the null hypersurface H and denote 

by {# : u € I C ]R} the local l-parameter group of (local) diffeo-

morphisms generated by 1 6 r(N(i )) C Di .Vect(H) 5 Vect(H). 
H H 

% 

Since f(S) is an embedded submanifold of H, we may define the 

embedding f^ o f: S H, for each u 6 I. The map 

u i—̂  f^ is thus a curve of spacelike embeddings of S in (M,g). 

We also have the dif feomorphism F: S x I — H ; (x,u) t—̂  f (x) 

E ^^(f(x)), and F is then an element of Emb^(S x i, M) , where 

Emb^(S X I, M) denotes the space of null embeddings of S x I in 

(M,g). Emb^(S X I, M) may be regarded as a boundary of 

Emb (S X I, M) in Emb(S x I, M) . 
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Mote that H = [J f (S) and let E, = (J Df .TS. We regard 
u€I " t uGi u 

Eg as a subbundle of TH by defining the projection x^: E^ —> H; 

Df^(x).V 1—̂  fy(x). Hence, is also a subbundle of i^(TM), and 

we may define the g-orthogonal complement E-̂  of E, in i (TM). 
% H 

Thus, Eg and E-̂  are rank two vector bundles over H with space-

like and timelike fibres respectively. 
^f 'A. 

The vector bundle E^ ^ H may be related to the vector bundle 
f p : R(F) —^ S X I. Here, F: S x I —^ M; (x,u) '—^ f (x) and R(F) 

r u 

is defined by (3.1)7. The image of F is H C M, and, for all 

(x,u) 6 S X I and (v,t) € (SxI) = T^S # ]R, we have 

df ^ 
DF(x,u).(v,t) = Df^(x).V + (x).t = Df^(x).v + tl(f^(x)) 

^ / -
€ Tr , L T M. Here, we have used the fact that f = <p °f» 

f (x) - fylx) u u 

where } is the local 1-parameter group of diffeomorphisms generated 

~ ~ -1 r ^ 

by 1 € Vect(H) . We also have that v̂ , (x,u) = {tl(f (x)): t 6 3R}, so 

that the fibre of the vector bundle R(F) H DF.T(Sxl)/N(F) at 

(x,u) € S X I Is naturally isomorphic to {Df (x).v: v € T^S} 

= Df (x).T S. Hence, R(F) = U Df (x).T S = U Df .TS, and 
U X . " . U X u 

(x,u) u 
PpZ R(F) —^ S X I; Df^(x) ,V t—̂  (x,u) . 

Oi h 

We have x^: E^ —^ H and F: S x i —»- H, so we may construct 

the pullback bundle F F ^ Sx i. In fact, F E^ 

= {((x,u),Df (x).v): (x,u) € S X I and v 6 T S} with 

(F Xg)((x,u),Df^(x).v) = (x,u) = pp(Df^(x).v). Hence, the map 

Y: F Eg —> R(F) ; ((x,u),Df (x).v) i — D f (x).v is an isomorphism 

of vector bundles over Sx i. We summarize the above in the 

following: 

Proposition (3.2)1: Let f £ Emh (S,M) and {l,n} a null triviali-

zation of N(f). Let F £ Emb^(Sx I,M) be the codimension one 
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geodesic null embedding constructed from (f, {l,n}) as above 
% 

and let H = F(S x I) denote the corresponding null hypersurface in 

(M,g). Let PpZ R(F) —^ Sx I and ^ H be the rank two 

vector bundles defined above. Then R(F) is naturally isomorphic 
* 

to F Eg. 

We make the following remarks:- (i) TH = E^ # N(i ); 

(ii) The Riemannian structure g in the vector bundle R(F) may 

be transferred to F using Y and, since F: S x I —>• H is a 

diffeomorphism, we also obtain a Riemannian structure in the vector 

bundle x E r —^ H. 
f f 

Since E, is a subbundle of TH, then N(i ) is a subbundle 
^ H 

of E-t. Hence, 1 € r(N(i )) is a section of We may define 
H 

I % ^ 

another null section n of E-̂  by requiring that (goi^)(l,n) = 1. 

By definition, n $ r(N(i^)) (since 1 6 Vect(H)), and therefore 

{l,n} provides a trivialization of the vector bundle E-̂  (we may 
I 

regard E^ as being obtained by Lie transporting over H the 

{l,n}-trivialized vector bundle N(f) using the null vector field 1) 

We summarize the various Whitney sum decompositions as follows 

N(f) = @ TH = E # N(i ); = E. @ ; and 
H^ H 

= N(i ) # N'(i ); where N'(i ) = {tn(f (x)) : t € ]R, 
H H % ^ ry, 

(x,u) € Sxl} with projection v' : N'(i ) —> H given by 
% H H 
tn(f^(x)) —^ f (x). Thus, N(i^) and N'(i ) are obtained by Lie 

^ o t ^ 
transporting over H, L (f) and L (f) respectively, using 

1 € r(N(i^)) C Vect(H). Obviously, n is the extension of n 
H ^ ^ 

to a future directed null section of E-t with (goi )(l,n) = 1. 
H 

The initial data (f, {l,n}) has yielded in a unique way the 

null embedding F: S x l M together with the null vector fields 

a. a. 
{l,n}. By construction, H = F(Sx I) is foliated by spacelike 
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2-surfaces. We remark that Kupeli [K iff ] gives necessary and 

sufficient conditions for the foliation of a null hypersurface In 

a spacetlme by spacelike 2-surfaces. These conditions are stated 

in terms of the self-adjolntness of the E^-component of the co-

variant derivative of n. 

We now consider the problem of defining useful concepts on 

the null hypersurface H (constructed from (f,{l,n})) analogous 

to concepts which may be defined on a spacelike hypersurface. The 

concepts we have in mind are those which, a priori, require a well 

defined projection h; for example, the Sen-Witten operator (see 

definition (2.3)8). We perform the null construction by taking a 

limit of the analogous spacelike constructions. In order to do 

this, it is first necessary to define a 1-parameter family of 

spacelike embeddings whose limit is the given null embedding F 

in some sense 

Let 6 > 0 and s € (0,6). Define L = U {t(s ^l(x) 
X 6 S 

+ s n(x)):t € E.} and X : L — S ; t(s l(x) + sn(x)) X. 

Then is a line subbundle of N(f). Moreover, the fibres of 

L are timelike, since II t(s ^1 + sn)ll^ = 2t^ > 0 for t =(= 0. 
A 

Let L-*- denote the g-orthogonal complement of L in f (TM) , 

so that L^ is a rank three spacelike vector subbundle of f (TM) 

and define a spacelike line subbundle W of L-̂  by 

W = L-̂  n N(f) = U {t(l(x) - s^n(x)):t 6 E.} with obvious pro-
x€S 

jection onto S. 

Now consider the pullback of the exponential map of g, 

!'< * " -1 

namely exp : (T̂ f̂) (V) —^ M, where V is the open neigh-

bourhood of the zero section in TM referred to above. Let 

* -1 

Ug = Wg n (T^f) (V), SO that is an open neighbourhood of the 
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zero section in the line bundle W over S. Now we define H 
s s 

* A ix, 

= ((xj^f) exp )(Ug). Then is an embedded spacelike hypersurface 

of (M,g) which contains f(S) as a codimension one embedded 

submanifold. 
Aj iX, 

Recall that we have the future directed null sections 1, n 

of I (TM). We may extend 1, n to future directed null sections, 
H 

also denoted 1, n, of TM defined on an open neighbourhood of H 

/X, Oi 
in M such that g(l,n) = 1 . In particular, the extended vector 

a. 'xj 
fields 1, n are defined on a neighbourhood of f(S) in M, and 

'x, a. 

hence on a neighbourhood H of f(S) in . The 3-manifold 

is also an embedded spacelike hypersurface of (M,g) which con-

tains f(S) as a codimension one embedded submanifold. 
'\j a. 

We define the unit tangent vector field k on H by 
"u 1 — I'll 'XJ % 
k = — (s 1 - s n)oi , where i = i : H M is inclusion, and 

/2 s s s 

denote by q 6 J C ]R} the local 1-parameter group of (local) 

diffeomorphisms generated by k € Di .Vect(Hg) = VectCH^). Since 

f(S) is an embedded submanifold of H , we may define the embed-

ding f = \p °f: S H , for each q € J. We then have the 

q q s 

dif feomorphism F^: Sx j — ; (x,q) i—> f^fx) E (f(x)) and, 

by definition, € Embg(S x J,M). 

Since I and J are open with non-empty intersection, we may, 

without loss of generality, take J = I. We then have F 6 

Embj^(S X I,M) and also the curve p: (0,6) —>- Embg (S x I ,M) . For 

each s € (0,6), the unit normal of F^ is given by 

1 — I'̂j 
t = — (s 1 + sn) oF . Note that the component of the normal of 
s /2 ^ 

F^ in the n-direction vanishes as s—>-0, so that the normal is 

entirely in the 1-direction in the limit. For this reason, we regard 

{F^: s € (0,6)} as a 1-parameter family of codimension one spacelike 
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embeddings with the codimension one null embedding F as null limit, 

The idea of null limit provides a technique for obtaining null 

versions of spacelike concepts. For example, suppose, for 

s€ (0,6), Q is some expression arising from the spacelike embed-

ding Fg, and constructed using the (non-degenerate) projection h^. 

A corresponding quantity for the null embedding F does not exist 

a priori since there is no well defined projection. However, we 

may obtain an analogous null version of the Q by taking the limit 

of Qg as s —^ 0. We say that Q is the null limit of {Q }. 

In section 3.4, we use the null limit technique to obtain a 

version of the Sen-Witten equation (2.3.12) which may be utilized 

on null, rather than spacelike, hypersurfaces. Other possible 

applications include the characteristic initial value problem 

(where the limit of the spacelike constraints is taken), null 

canonical quantization and also the study of the interaction be-

tween asymptotic structure at spacelike infinity on the one hand 

and at null infinity on the other. 

Since our main use of the null limit technique is to show how 

the null limit of the Sen-Witten equation is an essential ingredient 

in the Ludvigsen-Vickers definition of quasi-local momentum, we 

first give a brief overview of momentum in general relativity. 

3.3 Gravitational Momentum 

In this section, we present an overview of momentum in general 

relativity. We outline the importance of gravitational momentum, 

the problems encountered when attempting to define it and also the 

various approaches to solving these problems. In the next section. 
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we continue our discussion with a description of quasi-local momentum 

in general relativity, emphasizing the importance of spinor and null 

embedding ideas. 

Let us first consider the general framework of kinematical quan-

tities or moments and the reasons why this is important in the study 

of a physical system. The central principle is Noether's theorem 

which implies the existence of conservation laws for a Hamiltonian 

system with symmetry. It is very useful to be able to characterize 

a system using a small number of conserved parameters, for example 

momentum, angular momentum and other "charges" arising from Yang-

Mills theories. 

The starting point is a phase space with symmetry. Geometrically, 

we have a symplectic manifold (P, w) on which a Lie group G acts 

by symplectomorphisms. A moment for the G-action is then a smooth 
* 

map j: P —^ (LG) such that d(j(g)) = i.w , for all g 6 LG. 

Here, j : LG —> C(P) is the map dual to j and g 6 Vect(P) is 

the infinitesimal generator corresponding to g, for all g € LG. 

In other words, each infinitesimal generator g has j(g) as a 

Hamiltonian function. Note that a moment, if it exists, is defined 
A 

up to an element of (LG) . 

If the Hamiltonian H € C(P) is invariant under the action of 

G, then any moment is a constant of the motion for the Hamiltonian 

flow. This is a version of Noether's theorem and demonstrates the 

sense in which symmetries of a Hamiltonian system lead to conserved 

quantities. In physics, the phase space usually consists of an 

infinite dimensional manifold of fields, which is equipped with a 

weak symplectic form. Moments arising from a symmetry may often be 

interpreted as fluxes of physical quantities. For more details 
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concernlng Hamiltonian systems with symmetry, we refer the reader to 

Abraham and Marsden [A 2 ]. 

It is useful to compare the situation for a special relativistic 

field theory on the one hand with general relativity on the other:-

In special relativity we have Minkowski spacetime (#, n) as an 

arena in which physics takes place. We also have a group action, 

namely that of the Poincare group 0(1,3) K which acts by 

isometries on Minkowski spacetime. For simplicity, let us consider 

the case of massless scalar field theory. The phase space may be 

taken to be the space P of n-harmonic functions of compact support 

equipped with the weak (constant) symplectic form o) given by: 

(f^Adfg - 3.3.1, 

H 

for all ^ ^' Here, * is the Hodge dual arising from n and 

H is any Cauchy surface in (B.̂ ,ri). Since f^ and f^ are in-

harmonic, the symplectic form co is independent of the choice of H. 

The action of the Poincare group on Minkowski spacetime induces 

a symplectomorphic action on (P,w) in the obvious manner. The 

corresponding moment may be given in terms of the stress-energy-

momentum tensor for the massless scalar field theory:- For f 6 P, 

let Tg 5 df 0 df -: Jldfll^n 6 82(3^^) denote the corresponding 

stress-energy-momentum tensor. Consider g 6 L Poincare (regarded 

as a subalgebra of Vect(E.^)) and define J = J^(g) = Tg(g,') 

£ 0^ (H'*). Then, since T^ is divergence free and g is a 

Killing vector field of (11*+,n), we have 6J = 0. Thus the 1-form 

J may be regarded as the conserved current describing the particular 

momentum or angular momentum component associated with g. In fact, 
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it may be shown (see Abraham and Marsden [A 1 ]) that the moment for the 

action of the Polncare group on (P,w) is given (up to a constant) 

by: 

= |*Jf(5) 3.3.2, 

H 

for all g 6 L Poincare and f 6 P. Thus the moment gives the total 

net "charge" intercepted by the spacelike hypersurface H. Alter-

natively, we may interpret 3.3.2 as giving the flux through H of 

the momentum or angular momentum component associated with the par-

ticular Lie algebra element g chosen. 

We may generalize the above discussion to other Poincare in-

variant field theories on Minkowski spacetime. For example, we 

could take Maxwell theory (or, more generally, a Yang-Mills theory) 

or a fluids theory. In each case, we have the stress-energy-momentum 

tensor T for each field $ in the phase space and the moments 

are given by an equation similar to 3.3.2. 

It is very useful to rewrite equation 3.3.2 as one involving 

a 2-surface integral rather than a hypersurface integral. Suppose 

S = 3H', where H' is some region of H. Suppose also that there 

exists F E F (5) G such that 5F = J (E J@(C)). Then Che 

integral in equation 3.3.2 may be rewritten as *F (using Stokes' 

S 

theorem)• This 2-surface integral may be regarded as giving the 

total charge surrounded, or linked, by the spacelike 2-surface S. 

we write: 

Q.(5;s) *F*(C) 3.3.3. 

S 

Equation 3.3.3 is regarded as a basic ingredient in the calculation 

of conserved kinematical quantities. Conservation of the momentum 
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or angular momentum component corresponding to the Lie algebra ele-

ment g shows up in two ways:- Firstly, the value of Q E Q (G;S) 

is independent of the spacelike hypersurface chosen to span S, i.e. 

the total charge intercepted by an "earlier" such hypersurface is 

equal to that intercepted by a "later" one. Secondly, suppose S 

is deformed continuously outside the support of T^. Then the value 

of Q does not change. 

Ideally, we would like to be able to write down an expression 

analogous to 3.3.3 for kinematical quantities in general relativity: 

Minkowski spacetime (E.^,n) is replaced by a general vacuum (or 

possibly non-vacuum) spacetime (M,g) and instead of calculating 

moments of the special relativistic field we wish to calculate 

gravitational moments. If an equation like 3.3.3 could be written 

down for gravity, we would still require that the charge integral 

be independent of any particular choice of hypersurface spanning 

the 2-surface S. However, we cannot hope for a conservation law 

in the second stronger sense; the gravitational field in empty 

space carries energy (and other kinematical quantities) and there-

fore even an empty space continuous deformation of the 2-surface S 

will change the value of the charge integral. We consider this 

problem of non-localizability of gravitational energy shortly. 

Let us now consider the factors inherent in the theory of 

general relativity which cause problems when an attempt is made to 

write down an expression such as 3.3.3. 

A basic problem is the choice of phase space and symmetry 

group. For special relativistic field theories, we have Minkowski 

spacetime (]R^,n) which plays the role of an arena in which physics 

takes place. The phase space is a space of fields on this arena and 
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the Poincare group is a group of symmetries of the phase space. The 

arena and group are "universal" in that they do not depend on the 

particular solution of the field theory under consideration. What 

arena do we use for general relativity? Spacetime (M,g) itself Is 

no good because, even after fixing the background manifold M, the 

metric g is a particular solution of the theory and so certainly 

cannot be regarded as providing a universal geometry like the 

Minkowski metric n does in special relativistic theories. Even if 

we do dispense with the idea of universal arena and focus attention 

on a particular solution (M,g), we still have no analogue of the 

Poincare group - a generic metric g possesses trivial isometry 

group (see section 4.1). Thus, we have no Killing vector fields g 

to plug into equation 3.3.3. 

The fact that there exists no universal group analogous to the 

Poincare group means that it is not entirely clear which kinematical 

quantities make sense in general relativity. In special relativity, 

we know that the elements of L Poincare give rise to specific 

kinematical quantities. For example, a translation generator gives 

rise to a component of 4-momentum and, once a Lorentz subalgebra has 

been picked out by choosing an origin, a rotation generator gives 

rise to a component of angular momentum. Without a group with such 

a physical interpretation as the Poincard group in special relativity 

(or the Galileo group in Newtonian theory), it is difficult to give 

mathematical reasons for the existence of given moments such as 

energy, momentum and angular momentum. One way out of this problem 

is to restrict the class of spacetimes by imposing physically reason-

able requirements. For instance we could consider isolated systems 

only - this leads to a consideration of asymptotically flat spacetimes 
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for which well defined and physically meaningful universal asymptotic 

symmetry groups do exist. We return to this point below. 

In addition to the problem caused by the absence of a universal 

phase space and symmetry group, there also exists another factor in-

herent to gravitational theory which prevents the existence of a 

straightforward analogue of equation 3.3.3. Note that the construc-

tion of (and hence F^) involves the local tensor field T 

the stress-energy-momentum tensor of the field $. No such local 

moment density exists in gravitational theory due to the non-

localizabllity of gravitational momentum:-

From a foundational viewpoint we have the Principle of Equi-

valence, a cornerstone of general relativity and of other theories 

of gravity. The Principle of Equivalence postulates the existence 

of local inertlal frames and hence the non-existence of local gravita-

tional fields. The absence of local gravitational fields implies 

that gravitational momentum cannot be localized. Thus, the localiza-

tion of gravitational momentum is forbidden by the Principle of 

Equivalence. 

In the model of gravitation provided by the theory of general 

relativity, we may give an alternative reason for the non-existence 

of a local momentum density:- On dimensional grounds, any such 

density should depend only on the(l-jet of the metric g)^- However, 

on a Lorentzian manifold (M,g), there does not exist any non-zero 

field constructed solely from the 1-jet of the metric. Thus, we do 

not expect to find a local momentum density in general relativity 

theory. 

On the other hand, gravitational momentum certainly exists:-

In the Newtonian limit of general relativity theory, we know that the 
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empty space gravitational field carries energy. For example, the 

gravitational potential energy contributes (negatively) to the total 

mass-energy of a system; the total mass-energy of two gravitating 

bodies instantaneously at rest with respect to one another is less 

than the sum of the mass-energies of the individual bodies by an 

amount equal to the gravitational potential energy of interaction. 

Another manifestation of the empty space gravitational non-local 

contribution to momentum is given by the existence of gravitational 

waves - assuming that we believe the observational evidence; for 

example, that which seems to imply the speeding up of the binary 

pulsar (see Taylor [T % ]). 

The conclusion that we draw from the above discussion is that 

if charge integrals analogous to the one given by equation 3.3.3 

exist in the theory of general relativity, then the integrand can-

not be constructed from a local moment density as is the case in 

special relativistic field theory. There exists no local quantity 

which describes the gravitational contribution to the total momentum. 

We now consider the various approaches that have been made to 

solving the problem of momentum in general relativity theory. It 

is clear that any good approach should address both the question 

of phase space and symmetry group and also the question of non-

localizability. We should be guided by clear physical and geometric 

principles. 

Historically, the first approaches to the problem were neither 

physical nor geometric; in the early days, gravitational momentum 

was described by means of a "pseudo-tensor" t^^. This was a 

coordinate-dependent quantity such that the coordinate-divergence of 

T , + t , vanished. This led to an integral conservation law for 
ab ab 
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gravitational and matter field momentum. The non-localizability 

of gravitational momentum manifested itself in the fact that, at any 

given spacetime event, the quantity measuring gravitational momentum 

density could be reduced to zero by a suitable choice of local coor-

dinates. The only physically meaningful quantity was the total 

momentum, obtained by integrating the non-tensorial objects out at 

infinity. Even when taken to infinity, coordinate dependence 

remained, so from a geometric point of view, there was a basic 

obstacle to giving a suitable interpretation of these expressions. 

For more details concerning these early pseudo-tensorial attempts, 

see Einstein [E 5 ] , Tolman [T^^ ], Landau and Lifshitz [L 1 ] 

and Miller [M 71]. 

In the late 1950's, new, more geometrical alternatives were 

suggested. These were due to Bel and Robinson (see Bel [B 6" ]) 

and to Komar (see [K S ]), and both of these approaches have had an 

impact on later work in the area, particularly in quasi-local 

definitions (see section 3.4). 

The Bel-Robinson approach was an attempt to obtain an energy-

density-like quantity for gravity based on an analogy with Maxwell 

electrodynamics. The basic idea was to consider the Bel-Robinson 

tensor field BR(g) € S^(M) associated with a spacetime (M,g). 

Using abstract indices, BR(g) is given by 

BR = C C,™," + *C 3.3.4, 
abed amen b d amen b d 

where C , , is the Weyl tensor of g and "C , , = ie C ™ , 
abed abed ^ abmn cd 

is the dual of the Weyl tensor. For vacuum spacetimes, the Bel-

Robinson tensor is totally symmetric, trace-free, and divergence-free. 

Thus, the Bel-Robinson tensor possesses similar properties to the 
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stress-energy-momentum tensor of a Maxwell field. 

A further analogy with electrodynamics is obtained if a unit 

timelike vector field t is chosen. Then the Weyl tensor is 

uniquely determined by its electric and magnetic components: 

E , = C , 3.3.5, 
ab ambn 

B , = *C , 3.3.6. 
ab ambn 

E and B are symmetric, trace-free, and spatial with respect to t. 

If we evaluate the Bel-Robinson tensor on t, we obtain: 

2 2 
BR(g)(C,t,t,t) = U E" + Ms II 3.3.7, 

where the pointwise norm is the one induced by g. Thus, the time-

like component of BR(g) is non-negative and equal to zero if and 

only if (M,g) is conformally flat. Equation 3.3.7 should be com-

pared with the analogous equation T^(t,t) = II E + II B IÎ  for 

Maxwell theory. Here, E and B are respectively the electric 

and magnetic components of the electromagnetic 2-form F with res-

pect to the unit timelike vector field t. The fact that there is 

such a strong resemblance between the Bel-Robinson tensor and the 

Maxwell stress-energy-momentum tensor leads to the possibility of 

regarding BR(g) as some kind of "stress-energy-momentum tensor 

for the spacetime (M,g)"- However, the Bel-Robinson tensor does 

not have the correct dimensions; in geometrized, units, momentum 

_2 

density has dimensions (length) , whereas BR(g) has dimensions 

(length) '. Hence, there can be no direct interpretation of BR(g) 

as a gravitational stress-energy-momentum tensor. 

It turns out, however, that the Bel-Robinson tensor is 

important in certain aspects of quasi-local energy in general 
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relativlty (see section 3.4). In particular, BR(g) makes an 

appearance in the "small 2-surface" limit of both the Ludvigsen-

Vickers quasi-local energy (see Bergqvist and Ludvigsen [B 9 ]) 

and also in the Hawking quasi-local energy (see Horowitz and 

Schmidt [H 13]). In both cases, in the absence of matter, the 

leading-order (r^) component of the quasi-local energy is deter-

mined by the Bel-Robinson tensor. These results for the 

Ludvigsen-Vickers and Hawking quasi-local energies should be con-

trasted with the result for the Penrose quasi-local energy; in 

this case, the energy vanishes at the fifth order in a vacuum 

spacetime (see Kelly et al. [K % ]). 

Thus, in the Ludvigsen-Vickers and Hawking definitions of 

quasi-local gravitational energy, the Bel-Robinson tensor may be 

viewed as a measure of the gravitational energy per unit 

(length)5. It is not an energy density, but it is the dominant 

contribution to these quasi-local energy integrals in the absence 

of matter. 

The second major contribution to gravitational kinematics in the 

late fifties came from Komar [K ̂  ]. Komar constructed covariant 

conservation laws in general relativity in certain special cases 

and his work may be regarded as a prototype quasi-local approach. 

The linkage framework of Geroch-Tamburino-Winicour (see Tamburino 

and Winicour [T 1 ], Winicour [W 9- ] and Geroch and Winicour [G 6 ]) 

also owes much to the Komar approach. 

We now present a brief description of the Komar kinematical 

quantities. Let (M,g) be a spacetime and S an embedded space-

like 2-surface in (M,g). Our starting point is the diffeomorphism 

group Diff(M) regarded as a symmetry group in the sense that we 

shall write down a charge integral such as 3.3.3 which defines an 
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element of the dual of LDiff(M) = Vect(M), It turns out, however, 

that for physically meaningful quantities to be defined, it is 

necessary either to restrict to Killing vector fields for g 

(of which there may be no non-trivial ones, of course) or to con-

sider asymptotically embedded 2-surfaces S. 

Define the linear map J: Vect(M) —> &^(M) by 

J(S) 5dC 3.3.8, 

for all 5 6 Vect(M). Now let H be any spacelike hypersurface 

in (M,g) with 8H = S, and define the Komar integral 

Q(';S) € Vect(M) by: 

q(G;S) 
J 

*J(S) 3.3.9, 

for all g € Vect(M). Note that Q(';S) depends only on S and 

not on the choice of spanning hypersurface:- Suppose are space-

like hypersurfaces spanning the given spacelike 2-surface S. Then 

*J(G) kJ(E) = d*J(g) (where V is the four-dimensional 

V 

region in M with 3V = H^UC-Hg)) d*5dE 0, for all 

V 
g € Vect(M). Hence, Q(';S) depends only on S and is thus con-

served. 

We may write Q(';S) as an explicit 2-surface integral over 

S as follows:- Choose any spanning hypersurface H and let 

G G VecC(M). Then, Q(S;S) t6d5 d*dS *dg . Hence, the 

H H S 
Komar integral may be written in the charge integral form as: 

q(S;s) tds 3.3.10, 
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for all g € Vect(M) (the expression given by Komar in equation 

( 3 . 7 ) of [K 9 ] differs from 3 . 3 . 1 0 by a factor of ( 1 6 T TG ) 

where G is the gravitational constant). 

In order to extract physically meaningful information from 

the Komar integral, we must assume that g is non-generic, i.e. 

g admits a non-trivial Killing vector field g. In addition, we 

assume that S lies entirely inside the matter-free region of 

spacetime. It then follows that Q(S;S) is independent of S:-

Suppose and are embedded spacelike 2-surfaces in the 

matter-free region and suppose H is an embedded 3-manifold with 

= S^UC-Sg). Then, QCCiSg) - Q(5;S^) = 0, 

9H H 
since + g(5,R(•,•)(')) = 0 (R = Riem(g)) and Ric(g) = 0. 

Hence, Q(g;S) is independent of S. 

The Komar integral now leads to satisfactory moments. For 

example, suppose (M,g) is stationary with timelike Killing vector 

field C generating time translations. Then 0(g;S) is (16mG 

times) the mass of the spacetime (provided that S lies outside 

the matter region). If (M,g) is axisymmetric with spacelike 

Killing vector field g generating rotations, then Q(g;S) is 

(16?G times) the component of angular momentum associated with g. 

It is important to note that the Komar Integral is performed 

over a 2-surface which lies entirely in the matter-free region. 

If Ric(g)|s is not identically zero, then the Komar integral 

exhibits certain anomalous behaviour as was noted by Tod [T 3 ], 

who showed that the Komar integral does not give the correct answer 

for the mass of the Reissner-Nordstrom spacetime (by "correct 

answer", we mean the one which agrees with linearized theory - the 

agreement with linearized theory is a very important constraint 
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for definitions of kinematical quantities in general relativity 

theory). 

The Komar integral cannot be used in a generic spacetime in a 

meaningful way. However, for an asymptotically flat spacetime, the 

existence of the BMS group at null infinity (see appendix 6.3) 

means that the Komar integral at null infinity is physically appro-

priate and it reduces to the Bondi-Sachs momentum (see Tamburino and 

Winicour [T ^ ]). We now discuss isolated systems and asymptotic 

kinematics in more detail 

The above remarks concerning the problems encountered when 

attempting to define gravitational moments have made it clear that 

the absence of a universal arena and symmetry group means that we 

should restrict our attention to a restricted class of spacetimes 

in order to circumvent some of the problems. One such restricted 

class which has strong physical motivation is that consisting of 

isolated systems. 

Many theories in physics admit a class of solutions which may 

be regarded as representing isolated systems. For example, in 

Newtonian gravitational theory, an isolated system is one whose 

mass density possesses spatially compact support and also has 

asymptotically vanishing gravitational potential. Although such 

isolated systems are not expected to represent the Universe in 

every detail, they are very useful in that they are a good approxi-

mation to certain subsystems of the Universe encountered in the 

physical world; for example, in Newtonian theory, our solar system. 

Indeed, it is only through a useful notion of isolated system 

that we acquire the ability to describe various subsystems of the 

Universe - in particular, to characterize these subsystems using 
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parameters such as momentum, angular momentum and charge. 

In general relativity theory, examples of isolated systems 

include stars and black holes, and a study of the solutions of the 

Einstein equations representing such systems has made a very im-

portant contribution to our understanding of the structure of the 

theory. It turns out that a very useful definition of isolated 

system is essentially that of asymptotic flatness. This idea 

encapsulates the notion that the spacetime metric "approaches 

some flat metric far from the sources of the gravitational field". 

The current definition of asymptotic flatness is both geometrical 

and physically reasonable and much of the important work in 

general relativity done in the 1960's fits neatly into this frame-

work. 

There are three distinct regimes in which asymptotic flatness 

may be considered. These correspond to passage from the isolated 

sources to infinity in spacelike directions, in null directions 

and in timelike directions. The timelike case has little interest 

for us in a discussion of gravitational momenta, although it may 

play a role in cosmology. The spacelike and null cases are both 

very important in the definition of moments in general relativity, 

although for us, the null case is more important. In fact, it is 

fair to say that, from a physical point of view, the null asymp-

totic structure of an isolated system is more important than is 

the spacelike asymptotic structure. We summarize the important 

properties of (null) asymptotically flat spacetimes in appendix 6.3. 

From both a mathematical and physical viewpoint, the null and 

spacelike regimes have certain important features in common. For 

example, in both cases, the "boundary at infinity" may be detached 
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from the original physical spacetime and the boundary becomes a 

universal asymptotic arena, i.e. it doesn't depend on the par-

ticular asymptotically flat spacetime. Various spacetime fields 

induce corresponding fields on the boundary and these fields are 

classified as either universal or physical. The former, together 

with the boundary space itself, provide the universal asymptotic 

structure. The physical fields provide asymptotic information 

about the physical spacetime. This splitting up of fields into 

two classes solves a basic problem always present in the theory 

of general relativity, namely the fact that the spacetime metric 

is both a geometrical and a physical object. Extracting physical 

information without a non-dynamical background is difficult, but 

the asymptotic splitting up of the fields provides a means of 

getting hold of physically meaningful information which was hitherto 

unobtainable. 

Having obtained the universal arena (i.e. the boundary at 

infinity equipped with the geometrical fields), it is then possible 

to define a universal symmetry group, namely the group of diffeo-

morphisms of the boundary which leave invariant the universal fields. 

The existence of the asymptotic symmetry group leads to the possi-

bility of defining moments. These moments may be interpreted 

physically in terms of the knowledge they give us concerning the 

original physical spacetime. The physical interpretation of the 

moments is arrived at by either evaluating the moments for par-

ticular spacetimes for which we can be "sure" of the meaning of 

the moments (e.g. for stationary spacetimes) or by comparing the 

asymptotic symmetry group with the Poincare group. It turns out 

that the asymptotic symmetry group is similar in structure to the 
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Poincare group, but with a less recognizable translation subgroup. 

Since we know which physically interesting moments correspond to the 

various Poincard Lie algebra elements, we may use the resemblance 

of the asymptotic symmetry group to the Poincare group to give 

physical meaning to at least some of the asymptotic moments. 

In addition to the similarities between null and spacelike 

asymptotics, there exist important differences. In the null case, 

the asymptotic boundary is a null submanifold of the compactified 

spacetime whereas in the spacelike case, the boundary is timelike. 

From a physical viewpoint, information may travel from the physical 

spacetime to reach null infinity, but not spatial infinity. Hence, 

null infinity may be used to study the dynamics of the isolated 

system, whereas at spatial infinity, there is no dynamical infor-

mation. This state of affairs is reflected in the behaviour of 

the masses defined in the two cases; the ADM mass (see Arnowitt 

et al. [A 6 ], [A ̂  ], [ A S ] ) defined at spatial infinity is a 

fixed number representing the total mass of the spacetime, but the 

Bondi mass (see Bondi et al. [B 15 ]) is a dynamical quantity repre-

senting the mass at a particular retarded time. Indeed, in the null 

case, we have a formula expressing the retarded time rate of change 

of the Bondi mass in terms of the mass lost by radiation to null 

infinity. 

The asymptotic boundary at spatial infinity, being a timelike 

submanifold, is equipped with a non-degenerate metric and the sym-

metry group is just the Lorentz group. On the other hand, the metric 

in the null case is degenerate and the asymptotic symmetry group is 

the infinite dimensional BMS group (see definition (6.3)3). Thus, 

in the spacelike case, the translation subgroup has been reduced 



-212-

from four dimensions (for the Poincare group) to zero, whilst in the 

null case, the dimension has increased from four to infinity. The 

infinite dimensional translation group does play a physical role at 

null infinity, whereas translations play no role at spatial infinity. 

Our main interest is in spacetimes asymptotically flat at null 

infinity since these are physically more interesting and they also 

provide a class of spacetimes for which the Ludvigsen-Vickers quasi-

local momentum may be defined (see section 3.4). For a thorough 

discussion of spatial infinity, we refer the reader to Geroch [G 5 ] 

and to Shaw [S ]• Note that the relationship between asymptotic 

structure at null infinity on the one hand and spatial infinity on 

the other may be investigated within the unified framework of 

Ashtekar and Hansen [A'̂ T']. For example, given an isolated system 

which is asymptotically empty and flat at both null and spatial in-

finity and which also satisfies a boundedness condition on the Bondi 

news tensor, it may be shown that the difference between the ADM 

momentum and the Bondi momentum associated with a given retarded 

time is equal to the momentum carried away by the gravitational 

radiation emitted between the infinite past and the given retarded 

instant (see Ashtekar and Magnon-Ashtekar [A 49 ]). 

Let us now discuss asymptotic null momentum in more detail. 

The original definition in the early 1960's (see Bondi et al [B 15 ]) 

was not within the framework of null infinity, but, since it is 

natural to consider null momentum within the context of asymp-

totically flat spacetimes, we shall do so here; we indicate how 

the universal arena and symmetry group lead directly to a physically 

useful concept of asymptotic momentum. For details, we refer the 

reader to Ashtekar [A ̂ 7̂  ] and Ashtekar and Streubel [A 23 ] -



-213-

The basic idea is to utilize the universal kinematical arena 

which exists for any asymptotically flat spacetime (M,g). This 

arena consists of the manifold 4"^ = x ]R equipped with the strong 

conformal geometry S (see definition (6.3)2). The automorphism 

group of this structure is the Bondi-Metzner-Sachs group, 

BMS = 50^(1,3) X C(S^) which acts on according to equation 

6.3.2. 

The strong conformal geometry is the first order structure on 

J -f-

^ . In addition to this structure, we also have second order 

structure:- Suppose S = q 8 n 0 n and consider the collection 

r' of torsion-free connections w on such that q and n 

are w-parallel. Since q is degenerate, each such connection is 

defined only up to an element of C(^"^), and we define F to be 

the space rWC(^^). Each element of F possesses two independent 

components per point of ^ and these represent the two radiative 

degrees of freedom of the gravitational field. 

The space F has a natural affine structure and is equipped 

with a weak symplectic form Q. The BMS group acts symplectomorphically 

on the phase space (r,n) and, for each g G LBMS, the moment func-

tion j(C) € C ( r ) is precisely the flux through of the con-

served quantity associated with g. For g a translation generator, 

the flux obtained is precisely the flux of the Bondi 4-momentum. 

In order to obtain a charge integral over a cut of ̂  , it is 

necessary to integrate the flux. Ashtekar and Streubel [A23 ] 

demonstrate that this integration may be performed for generators of 

supermomentum. If a restriction to the four dimensional translation 

subalgebra LT is made, then the Bondi 4-momentum is obtained. 

In order to give a formula for the Bondi 4-momentum, it is 

convenient to re-introduce the physical spacetime and its 
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compactification. Let (M,g) be an asymptotically flat spacetime 

and a maximal regular asymptote where, for simplicity, 

we assume that the conformal embedding (fi is inclusion of (M,g) 

* ^ / ! + 

in (M,g). Let S be a cut of future null infinity ^ , so that 

S is a section of 4" diffeomorphic to S^. Let i : S M 
\ s 

be the inclusion of S in M, so that is a codimension two 

spacelike embedding of S in (M,g). Let {l,n} be the unique 

null trivialization (with respect to g) of N(i ) (see definition 

(2.3)10) such that n is the restriction to S C of the null 
A + # 

normal to , namely (-df) . Exponentiating 1 gives an 

outgoing null hypersurface H of (M,g) in a neighbourhood of 

4-'̂  for which the images of the integral curves of the extension 

of 1, also called 1, are generators. Let a denote the shear 

of the null geodesic generators of the null hypersurface H. Then, 

with respect to a local g-null tetrad {l,n,m,m} (obtained by 

extending 1 and n to a neighbourhood of ZL in M such that 
g(l,n) = 1, and then adjoining the null extensions of m and m, 

(E " " -1 
where m is a local null section of T S, such that g(m,m) = -1, 

we have: 

a = m^ m^ V 1, 3.3.11. 
a b 

Note that the corresponding g-null tetrad is {l,n,m,m}, where 

1 = f^l, n = n and m = fm. The formula analogous to 3.3.11 using 

the physical tetrad gives a = f^a. 

is a measure of the trace-The restriction of a to S C 

free part of the extrinsic curvature of the embedding S —̂4- ̂  . 

In fact, I a| gives the magnitude of this curvature and arg a gives 

the directions of maximum extrinsic curvature relative to the null 

tetrad (see Penrose [P f ]). 
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The other Ingredient in the Bondi 4-momentum is conformal curva-

ture information. In fact, we need only the following component of 

the Weyl tensor: 

Y = C 1* E 3.3.12. 
2 abed 2 

Given the cut S, it is now possible to define the Bondi 4-

momentum as an element of the dual of the four dimensional subalgebra 

LT of LBMS consisting of generators of translations. Using the 

isomorphism BMS = S0*(l,3) K C(S^) together with the action 6.3.2, 

k + 
we may regard LT as the four dimensional subalgebra of Vect(t- ) 

\ 

consisting of vector fields g = an, where n 5 (-df) is the null 

normal and a € C(S^) is a linear combination of spherical harmonics 

with 1 = 0 and 1. 

It is convenient to introduce standard Bondi-type coordinates 

in a neighbourhood of S in M and compatible with the tetrad (see 

—a —b 

Penrose and Rindler [P ]). Then the news function N = -^R^^m m 

(R = Ric(g)) is given by: 

N = - a 3.3.13, 
dU 

and satisfies: 

where is given by: 

Y. = C , , n^ m^ n^ = f ^ Y, 3.3.15. 
4 abed 4 

Note that is the part of the Weyl tensor corresponding to 

gravitational radiation, so that the presence of gravitational radia-

tion is an obstruction to the constancy of the shear a over the 

family of cuts given by u = constant. 
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The Bond! 4-momentum p 6 (LT) for the cut S (corresponding 

to u = 0) is now given by: 

p(s;s) = a (oN - ^2)68 3.3.16, 

S 

for all 5 = ctn € LT, where dS is the volume element corresponding 

to the metric induced on S from g. For a derivation of equation 

3.3.16 from the point of view of the Geroch-Tamburino-Winicour 

linkages, we refer the reader to Walker [W 2 ]. 

The Bondi 4-momentum is geometrically well motivated (it arises 

both from the linkage framework of Geroch-Tamburino-Winicour and from 

the purely asymptotic phase space framework of Ashtekar and Streubel -

two very different approaches) and it possesses extremely desirable 

properties:-

As we have mentioned above, the Bondi 4-momentum p is inter-

preted as the total 4-momentum of the spacetime (M,g) at the re-

tarded time given by the cut S. A very important property of p 

is that it satisfies the momentum loss formula on :- Suppose 

S^ and Sg are two cuts of ^ ^ with entirely to the future 

of S^, and let C = an € LT with a > 0 (so that g is a future 

pointing vector field on ^ ^ ) . Then 

p(S;S2) 2 p(S;Si) 3.3.17, 

if the weak energy condition (see Hawking and Ellis [H S' ]) holds 

in a neighbourhood of ^ Note that there also exists a similar 

result for ^ , but on ^ , the Bondi 4-momentum is non-decreasing 

rather than non-increasing with time. 

The momentum loss formula 3.3.17 is important because it shows 

that gravitational radiation emitted by an isolated system carries 



-217-

posltive energy. However, the formula gives no Information about the 

total energy of the system, and a long-standing conjecture until the 

early 1980's was that the total energy of a system satisfying a 

reasonable local energy condition is positive. More precisely, the 

Bondl 4-momentum was conjectured to correspond to a future-directed 

timelike or null vector for an asymptotically flat spacetlme satis-

fying the dominant energy condition (i.e. T^^t^ is future-directed 

and timelike for all future-directed and timelike vector fields t). 

This conjecture was referred to as the positive energy conjecture at 

null infinity. 

There is also a positive energy conjecture at spatial infinity 

for the ADM 4-momentum. For a review of the spatial conjecture, we 

refer the reader to Horowitz [H "/̂  ] . Note that the spatial conjec-

ture is weaker than the null version, because the Bondl 4-

momentum is a retarded time (i.e. cut)-dependent quantity, whereas 

the ADM 4-momentum is constant. 

The positive energy conjecture at null infinity has now been 

verified. One method is due to Schoen and Yau [S-10 ] and is a 

modification of the variational technique which they used to prove 

the spatial conjecture (see [S 8 ], [S ̂  ]). The other method, due 

to Ludvlgsen and Vickers (see [L 8 ] , [L 9 ] , [L -fO ]) and also to 

Horowitz and Perry [see [H42 ]), utilizes spinor techniques in a 

fundamental way. The spinorial attack on the null conjecture is 

analogous to that used by Witten [W 9 1 in his proof of the spatial 

conjecture, but the null version presents different problems due to 

the degeneracy of the null hypersurface on which the spinor fields 

are required to propagate. In section 3.4, we demonstrate a link 

between the two approaches by showing that the Ludvigsen-Vickers 

propagation equation is a null limit of the equation used by Witten. 
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Another Important link between the null and spatial cases is that the 

2-surface spinor integrand used in defining the Bondi 4-momentum is 

the same as that used in the definition of the ADM 4-momentum (see 

Israel and Nester [I 9 ]) and this means that a spinorial version 

of the Ashtekar-Magnon-Ashtekar result [A 4$] concerning the rela-

tionship between the two 4-momenta may be obtained (see Horowitz 

[H ]). A result of Ashtekar and Horowitz [A 4% ] also shows that 

neither of the two momenta can be null (i.e. the total 4-momentum 

must be strictly timelike). 

The fact that total energy in the theory of general relativity 

is positive is a very important result and indicates a fundamental 

difference between general relativity theory and Newtonian gravita-

tional theory:- In Newtonian theory, any bound system possesses 

negative total energy and, even if the rest mass of the matter is 

included in the total energy, it is still possible to have systems 

with negative total energy, because the Newtonian gravitational 

potential is unbounded from below. If it were possible for a general 

relativistic system to have negative energy, then it would be possible 

to extract an unlimited amount of energy from such a system; gravi-

tational radiation carries away positive energy by 3.3.17, thereby 

reducing the (already negative) energy of the system. If there were 

no lower bound on the energy, then the radiation could continue to 

carry away energy from the system indefinitely. The validity of the 

positive energy conjecture at null infinity ensures that such a 

phenomenon cannot occur within general relativity theory; if a 

system is compactified in order to try to make the total energy 

negative due to binding energy, then a black hole is necessarily 

formed and this black hole possesses positive total energy. 

Various further consequences, extensions and generalizations 
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of Che positive energy theorem have been explored. such 

generalization takes into account the presence of black holes in the 

asymptotically flat spacetime (see Ludvigsen and Vickers [L'10], 

Gibbons et al. [G S ]) and another considers the Einstein-Maxwell 

case; it is possible to show that there exists an inequality imply-

ing that the total energy is bounded below by the total electromagnetic 

charge (see Ludvigsen and Vickers [L Ml ] for the null case, and 

Gibbons and Hull [G % ] for the spacelike case). Another extension 

involves a consideration of higher dimensional theories - for example, 

Moreschi and Sparling [M'?9-] formulate the positive energy theorem 

in Kalaza-Klein theory, thereby answering questions concerning the 

attractiveness of the effective gravitational interactions and also 

the classical stability of the theory. 

For further remarks concerning the interaction between the 

various approaches, we refer the reader to Horowitz ], Horowitz 

and Tod [H -lip ] and Shaw [S ] . 

Before moving to the topic of quasi-local momentum in general 

relativity theory, we make a few remarks concerning angular momentum. 

In Newtonian theory and in special relativity theory, angular momentum 

arises as the moment corresponding to generators of rotations in the 

Galileo group S0(3) K and in the Poincare group 0(1,3) x 

respectively. In order to define a rotation subgroup of these semi-

direct products, it is necessary to choose an "origin" about which 

the angular momentum is to be taken. Having chosen an origin, the 

stabilizer of this point under the entire semi-direct product group 

is isomorphic to a copy of the rotation group. Elements of the Lie 

algebra of this rotation group then give rise to corresponding com-

ponents of angular momentum. 
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The asymptotic symmetry group of null infinity Z. also has 

the structure of a semi-direct product of a rotation group and a 

translation group; we have BMS = SO''"(1.3) K 0(5^) (see 6.3.4). In 

order to define a Lorentz subgroup of BMS, we must first fix an 

origin in cone space A. This is tantamount to fixing a cut S 
+ 

of 

First consider Minkowski spacetime ( , n ) . Each point in 

ives rise to a cut of ^ ^ obtained by taking the intersection with 

of the future null cone of the given point. Such a cut is 
V 

called a good cut and is characterized by the shear-free condition 

0 = 0 . Having chosen a particular good cut S , we obtain a Lorentz 

subgroup of BMS by taking the stabilizer of S^. Since the four-

dimensional translation subgroup T is uniquely specified (inde-

pendent of choice of cut), we then have a Poincare group P corres-

ponding to S . Any other Poincard subgroup of BMS is obtained by 

conjugating P with some supertranslation. The Poincarg group P, 

being a subgroup of BMS, leaves invariant the strong conformal geo-

metry of ^ + (see definition (6.3)2), and, in addition, P leaves 

invariant the family of good cuts (note that any good cut is obtained 

from S by some translation in T). 

For a general. asymptotically flat spacetime (M,g), we may 

define a good cut to be one for which a = 0 (we cannot take the 

intersection of ^ ^ with future null cones due to the presence, 

in general, of caustics). Unfortunately, the presence of gravita-

tional radiation is an obstruction to the existence of a family 

of good cuts, as equations 3.3.13 and 3.3.14 Indicate. Therefore, 

for a general asymptotically flat spacetime, although there exists 

a naturally defined translation subgroup T of BMS, there is no 
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famlly of good cuts with which to define Lorentz subgroups. Even if 

there exists a good cut at some retarded time u^ and also at a 

later time u^, the emission of gravitational radiation during a 

retarded time interval contained in (u^.ug) generally implies that 

the Lorentz subgroups corresponding to u^ and u^ are conjugates 

by a non-trivial supertranslation of one another. Thus, as Penrose 

[P ̂  ] remarks, "the very concept of angular momentum gets 'shifted' 

with time". 

It seems that an attempt to define angular momentum in the same 

way that 4-momentum is defined is doomed to failure in general 

relativity theory. Indeed, the Bondi 4-momentum occurs naturally 

in that there is a unique canonical translation subgroup T of BMS, 

but what right do we have to expect a corresponding definition of 

angular momentum given that, in general, the good cuts necessary 

for extracting Lorentz subgroups of BMS, do not exist? 

The angular momentum problem has been attacked in various ways 

over the years, but still has not been fully resolved. An obvious 

approach is to define angular momentum in special cases for which 

the above problems do not arise. For example in an axisymmetric 

spacetime, there exists a rotational isometry and so the Komar 

charge 3.3.10 may be used and there exist good physical arguments 

for regarding this charge as representing angular momentum (see 

Prior [P<l% ]). Another special case is that of a radiation-free 

spacetime. For such a spacetime, there exists a four dimensional 

space of cuts whose shear possesses zero electric part (see 

Newman and Penrose [N 2 ]). If the spacetime is stationary, then 

this four dimensional space consists of good cuts, so that a 

situation analogous to that for Minkowski spacetime exists. The 
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subgroup of BMS leaving invariant the four dimensional space of cuts 

is precisely T and the stabilizer of any one of them gives rise to 

a Lorentz subgroup and thence to a notion of angular momentum - see 

Bramson [B iO] • Bramson also discusses the radiation of spin and 

shows that the spin vectors of the system, long before and long after 

the emission of radiation, are supertranslation invariant (see 

Bramson [62%]). A third possibility for investigating a special 

case of general relativistic angular momentum is to consider past 

null infinity ^ , where a no incoming radiation condition is 

usually assumed to hold. 

More general definitions of angular momentum arise from the 

Geroch-Tamburino-Winicour linkage formalism (see [G € ]), from a 

twistor framework (Streubel from Yang-Mills theory 

(Bramson [ B 2 o ] ) and also from quasi-local definitions (Penrose 

[P % ], Ludvigsen-Vickers [L^O ]). The relationship between these 

definitions, in particular, the "anomalous factor of two problem", 

is explored in Dray and Streubel [D IS ] and in Shaw [Si? ]. For an 

approach to angular momentum based on 4-momentum, we refer the 

reader to Cresswell and Zimmerman [C '13 ] , and for a review based on 

physical considerations, see Winicour [W 2 ]. 

This section has given an overview of various aspects of total 

(or asymptotic) gravitational momentum. In the next section, we 

consider the problem of defining quasi-local kinematical quantities 

in the theory of general relativity. 

3.4 Quasi-local Momentum in General Relativity 

This section serves two purposes; firstly to continue our 

discussion of gravitational momentum, in particular to discuss 
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quasl-local aspects of momentum, and secondly to give an application 

of the null limit technique described in section 3.2. The section 

is organized as follows:- After a brief discussion of the quasi-

local philosophy, we review the various attempts to define quasi-

local kinematical quantities. We then describe the Ludvigsen-

Vickers definition in more detail and we demonstrate how this 

definition is very natural within a spinor-null embedding context. 

The null limit technique is then used to give a link between the 

Ludvigsen-Vickers framework on the one hand and the Witten proof 

of the positive energy conjecture on the other. We also make further 

suggestions concerning quasi-local momentum in general relativity 

theory. 

In the previous section, we reviewed ideas relating, in the 

main, to total gravitational momentum, i.e. momentum defined 

asymptotically which represents, in the appropriate sense, the total 

momentum content of the spacetime. From the problems outlined at the 

beginning of section 3.3, we know that there exists no possibility 

of defining local gravitational momentum, but do we really need to 

go out all the way out to infinity in order to obtain a physically 

meaningful concept of momentum? Another possibility is to try to 

define quasi-local kinematical quantities; given an arbitrary 

embedded, spacelike, closed 2-surface S in an arbitrary spacetime 

(M,g), is it possible to assign to S some quantity representing 

the total momentum or angular momentum (gravitational plus that 

due to matter fields) surrounded by (or threading through) S? 

Such a quantity could also be interpreted as the total momentum or 

angular momentum intercepted by any spacelike hypersurface H with 

3H = S. To be useful, such a quasi-local quantity should possess 
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physically reasonable positivity and semi-additivity properties and 

also should give the "correct" answer for the special cases for which 

we already have a notion of quasi-local kinematical quantities (e.g. 

special relativity, linearized limit). 

Given the spacetime (M,g), we may regard a quasi-local quan-

S 

City as a map Q: D xSubgCM) —^ H, where D is a space of 

"descriptors", each descriptor being responsible for picking out a 

particular component of momentum, angular momentum or other kine-
g 

matical quantity, and SubgCM) is the manifold of two-dimensional, 

closed, spacelike submanifolds of (M,g) (Cf. section 2.2). A res-

tricted quasi-local quantity would arise if we specified the diffeo-

morphism type of the closed 2-surface (for example, we might 

require that S = S^) ; then we would have Q: D x Sub^ (M) —^ B., 
s ° 

where Subg (M) denotes the manifold of spacelike submanifolds of 
o 

type in (M,g). In the latter case, it may be convenient to 

work with embeddings rather than with submanifolds:- Thus, we would 

consider a map Q: D x Embg(S^,M) —> ]R, where Embg(S^,M) denotes 

the manifold of spacelike embeddings of S in (M,g). Provided 

that Q(D,') is invariant under Diff(S^), we may project to 
g 

obtain a quasi-local quantity defined on the manifold Subg (M) 
o 

(Cf. equation 2.2.4). 
In practice, the quasi-local quantities considered are of the 

g 
form Q: Dx SubgCM) —^ ]R, where: 

q(a;s) t F ( a ; S ) 3 . 4 . 1 , 

for all a 6 D and S 6 SubgCM). Here * F ( ' ; S ) : D —fi^(S) is a 

g 

2-form valued map on the descriptor space defined for each S € SubgCM) 

One possibility is that * F ( ' ; S ) = ig o * ° F^, for all S G Sub^CM), 
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where F^: D —^ 5 (M) is some given 2-form valued map, but ideally 

the integrand in 3.4.1 should be completely intrinsic to the 2-surface. 

Various possibilities for F have been explored in the literature. 

The simplest special case is when the spacetime (M,g) is Minkowski 

spacetime ( ] R ^ , n ) . Then the momentum-angular momentum is due to the 

Ipon-gravitational) fields $ and we have equation 3.3.3 giving the 

total charge linked by the 2-surface. In this case, we have 

*F(';S) = *F (";S) = ig ° ° F, where F: L Poincare —^ (]R^), 

so that the descriptor space is the Lie algebra of the Poincare 

group, or, equivalently, the space of Killing vector fields of 

Minkowski spacetime. 

Moving on from Minkowski spacetime to a general non-generic 

spacetime, we may consider the Komar approach. The paper of Komar 

[K 9 ] may be regarded as a prototype for the study of quasi-local 

quantities in general relativity theory. Let (M,g) be a spacetime 

admitting a Killing vector field g and let S be a closed, space-

like 2-surface in (M,g) lying entirely within the matter-free 

region of spacetime. Then the charge Q(g;S) given by equation 

3.3.10 gives the momentum component corresponding to g. In the 

Komar case, "F(*;S): L Isom(M,g) —> Q^(S): ^ i (*dg ), so 

that the descriptor space is the space of Killing vector fields of 

(M,g). 

The Komar charge is not a good candidate for a measure of quasi-

local kinematical quantities for two obvious reasons:- The first is 

g 

that we have to restrict to a subspace^SubgCM) 

(see the remarks following equation 3.3.10 concerning the anomalous 

behaviour of the Komar charge for 2-surfaces within the matter 

support). Secondly, the Komar descriptor space is zero for a 

generic spacetime. 
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A third problem with the Komar charge is that the integrand is 

not completely intrinsic to the 2-surface. In fact, the integrand 

depends on derivatives of the vector field g in non-tangential 

directions. 

As we have remarked above, a modification of the Komar charge 

may be utilized at the (future) null Infinity of a generic asymp-

totically flat spacetime. Then the descriptor space is the (super) 

translation subalgebra of LBMS, and we get back to asymptotic or 

total measures of momentum (see Tamburino and Winicour [T 4 ]). 

This development of the Komar approach leads to the linkage 

framework of Geroch-Tamburino-Winicour (see also Geroch and Winicour 

[G <0 ]). The linkage integrand generalizes that of Komar and re-

duces to when g is a Killing vector field. In general, 

the linkage descriptor space is LBMS transported to the 2-surface 

using a propagation equation on the outgoing null hypersurface 

from S to 

Unfortunately, the linkage approach does not lead to a useful 

quasi-local momentum. There are ambiguities inherent in the frame-

work (for example in the formulation of conservation laws) and the 

Integrand is still not intrinsic to S; it contains derivatives of 

g in the direction of the outgoing null hypersurface. 

We now turn to a definition of quasi-local energy defined by 

Hawking in 1968 (see [H ̂  ]). Let (M,g) be a spacetime and S 

a spacelike, embedded 2-sphere in (M,g). Let A vol(igg) be 

g 
the area of S and denote by k the second fundamental form of S 

(see equation 2.1.6). Using abstract indices corresponding to the 

vector bundle i-(TM), we have k , ̂  = - h™ h? V® (^)^, where h 
S ab a b m ^ n 

is the projection onto TS (see equation 2.3.15) and g-̂  is the 

projection onto the normal bundle N(ig) (see equation 2.3.16). 
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This formula for k is the direct analogue of equation 2.1.12 for 

•k 

a codimension two embedding. The (i g)-trace of k, denoted N, 

is known as the normal mean curvature (see Kobayashi and Nomizu [K S ]), 

so that N 6 r(N(ig)) is given by = k^^^. Note that the -

(pointwise) norm of N is given by II NII ̂  = 8pp' , where p and 

p' are respectively the convergences of the outgoing and ingoing 

null geodesies normal to S (see Horowitz and Schmidt [HIS]). The 

Hawking quasi-local energy is now given by the following integral: 

E(S) = (1 + ^ WNMZdg) 3.4.2, 

where dS = vol(i g) is the area 2-form of S. Note that the 

Hawking quasi-local energy may be written in the form 3.4.1 if we 

put: 

*F(S) = (An3)"2(16w + ANN"2)dS 3.4.3, 

but *F(S) is not the pullback of a 2-form on M. 

The expression 3.4.2 was investigated by Eardley [E 1 ] and was 

shown to possess several desirable properties. In particular, it 

vanishes in the limit when the radius of S tends to zero, it coin-

cides with the ADM and Bondi expressions when applied asymptotically 

in an asymptotically flat spacetime, and, under certain conditions, 

it increases monotonically with the radius of S. The "small 

sphere" behaviour of E(S) was discussed by Horowitz and Schmidt 

[H 13] and they discovered that, in the presence of matter, the 

leading-order contribution (r^) is the energy density of the matter, 

whilst in the vacuum case, the leading-order contribution (r^) is 

proportional to the "time component" of the Bel-Robinson tensor 
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(see equation 3.3.7). Note that the perturbation technique used by 

Horowitz and Schmidt is natural in the sense that it is based on the 

null cone at a given point in spacetime, although it is not clear 

that the Bel-Robinson tensor would occur in alternative perturbation 

schemes. 

In addition to the desirable properties of the Hawking quasi-

local energy, there also exist not so desirable properties. The 

main disadvantage with the energy is that it gives non-zero answers 

for certain 2-spheres in Minkowski spacetime:- The Hawking energy 

certainly vanishes for 2-spheres S such that igg is sufficiently 

close to the round metric can, but for "less round" 2-spheres, 

the energy can be non-zero. For this reason, we should only apply 

the Hawking quasi-local energy to 2-spheres with induced metrics 

close to can, although a precise definition of this class of 

"sufficiently round" embeddings of in a general spacetime 

(M,g) is difficult to give. 

Another problem with E(S) arises if the "large sphere" 

behaviour is considered (see Shaw [S49]). It turns out that, even 

to first order, the Hawking energy gives non-zero contributions to 

the energy of Minkowski spacetime. This problem may be avoided by 

using shear-free 2-spheres (in any stationary spacetime), but then 

unphysical contributions to the energy occur at third order. 

We remark that another definition of "quasi-local" general 

relativistic energy was suggested in the early 1970's by Geroch 

(see [G ]). The Geroch definition is given for a 2-sphere 

embedded in some spacelike hypersurface in a spacetime, so that 

two embeddings are specified rather than just one. Thus, the Geroch 

energy is not a bona fide quasi-local moment. It may be shown 
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(see [H 4)]) that the Geroch energy is just the corresponding Hawking 

energy modified by a term involving the extrinsic curvature of the 

given hypersurface. This extra term modifies the "small sphere" 

behaviour of the energy and the Geroch energy appears to be physically 

less appropriate than the Hawking energy. Indeed, the Geroch energy 

cannot be regarded as a hopeful candidate for a definition of quasi-

local energy for the reason alluded to above; the energy depends 

on two embeddings. 

We turn now to a much better definition of quasi-local kine-

matical quantities in the theory of general relativity, namely that 

of Penrose [P ̂  ], The Penrose approach is based on twistor 

theory and therefore utilizes spin structure in a fundamental way. 

Indeed the successes of this approach, along with the essential use 

of splnors in the proofs of the positivlty conjectures (see section 

3.3) and in the Ludvigsen-Vickers definition of quasi-local moments 

(see below), provides solid evidence supporting the belief that 

spinors and gravitational moments are intimately linked (see section 1.0) 

The basic Penrose construction may be described as follows 

Let (M,g) be a spacetime and S an embedded, spacelike, closed 

2-surface in (M,g). We assume that M is spin and that a g-spln 

structure s has been fixed. We may then discuss the twistor equation: 

= 0 3.4.3, 

where V , is the covarlant derivative Induced in the bundle 

S(Sg) and w € r(S(s )) (see sections 1,3, 1.7). Equation 3.4.3 

is projected onto the 2-surface S and we obtain the superficial 

twistor equations for S for w 5 6 r(igS(s )): 

3r' 0)° = a' 03̂  3.4.4, 

ar = a 01° 3.4.5, 
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with respect to a choice of null trivialization of N(i ) and a 

(E 

local section of T S. Here, gr and 3"' are the GHP operators 

and a and a' describe the shear of the null geodesies normal to 

S (or, equivalently, the trace-free part of the extrinsic curvature 

of S in (M,g)) (see Geroch et al. [G r ], Penrose and Rindler 

[P 14]). 

The equations 3.4.4, 3.4.5 correspond to an elliptic differen-

tial operator and, using the Atlyah-Slnger index theorem, it may be 

demonstrated that the kernel of this operator has (complex) dimen-

sion equal to four, at least for S an embedded 2-sphere with ig g 

not too far from can. Let 1(3) denote the kernel of the elliptic 

operator defined by the superficial twistor equations for S. We 

assume that dim K S ) = 4, but see Jeffryes [J 3 ] for a dis-

cussion of the possibility of "extra" solutions to the superficial 

twistor equations. In any case, the vector space HXS) is called 

the 2-surface twistor space associated with S. 

Given IT (S), the kinematical quantities are given by a pre-

ferred element A(S) of 0^11 (S) . The symmetric 2-surface twistor 

A(S) is called the kinematic twistor for S and is given by: 

A(S)(W^,W2) " V 3.4.5, 

where the 2-form valued twistor J € (0^11 (S)) 8 0^(5) is given by; 

T/ \ ^ A'B' (A B),_CC'DD' _ . ^ 
z^^ABCDA'B'C'D"^ ^2 ' ' ' 

A 

for all 0)̂ , Wg G ]T(S) . Here, R E i Riem(g) is the restriction 

of the Riemann tensor field to S. 

The factor v was taken to be unity in the original Penrose 

quasi-local paper [P ̂  ], but a modification with v ^ 1 was 
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proposed by Penrose at a later stage (see [P IX]). The modification 

takes into account the behaviour of E(S) under complex conformal 

rescalings of the symplectic structure (Cf. section 1.8 and see 

Shaw [S ̂ 9 ] for further discussion on this matter) . 

Equation 3.4.6 defines a notion of quasi-local kinematical 

quantity as follows:- The descriptor space is taken to be 

0^ir(S) and, noting that A(S) defines an element of (©^ir(S)) 

(each element y of 0^ir(S) may be written in the form 

Y = Z 0). 00)., for some w., co. 6 IC(S) and i,j 6 {1,2}), we 
i,j ^ J ^ J 

may utilize our previous notation and write 

Q(Y;S) = A(S)(y) 3.4.8, 

for all Y 6 0^ir(S) . Equations 3.4.6 and 3.4.8 should be compared 

with equation 3.4.1. 

Note that the descriptor space 0^ir(S) is a ten dimensional 

complex vector space. If any correspondence with physical kinematical 

quantities in special relativity is required (as it must be!), then 

we might expect that the space 0^1(8) corresponds in some sense 

to LPoincare. In order to make this correspondence, it is necessary 

to reduce the ten complex dimensions to ten real dimensions using 

some hermiticity property. In fact, it turns out that, although the 

Penrose procedure is perfectly well defined up to and including the 

definition of the kinematic twistor A(S), in order to extract 

physically useful information, it is necessary to have further struc-

tures. Thus, in order to define the Penrose quasi-local energy, a 

pseudo-Hermitian inner product (see Penrose [P *? ]) or, alternatively, 

a volume element (see Tod [ T ] ) on E(S) is required. To pro-

ceed further, it is necessary to separate out angular momentum com-

ponents from momentum components, and for this a notion of infinity 
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twistor is required. Unfortunately, the general definitions of these 

additional structures is not yet clear. 

However, in certain special cases, there exist obvious candi-

dates for these extra structures and calculations yielding physically 

interesting information may be performed:-

In Tod [T 3 ]5 various examples of the Penrose quasi-local mass 

are given. The 2-surface twistor space i r ( S ) is calculated for a 

number of particular embedded 2-surfaces in particular spacetimes 

for which there exists a clear candidate for the pseudo-Hermitian 

inner product. The Penrose quasi-local (rest) mass is then given by: 

3.4.9, 

where II • II is the norm arising from the induced inner product on 

e^H (S) . Note that equation 3.4,9 is the direct analogue of the one 

in standard flat space twistor theory (see Penrose and MacCallum [P'lO]) 

Indeed, the entire Penrose quasi-local approach is motivated by stan-

dard twistor theory; instead of basing the framework on Minkowski 

spacetime, the embedded 2-surface is used. 

The Tod calculations give physically reasonable answers:- For S 

constrained to lie in a constant t hypersurface in the Schwarzschild 

spacetime, the Schwarzschild mass parameter is obtained if S links 

the source, and zero is obtained otherwise. For a general vacuum 

spacetime containing a hypersurface of time-symmetry, the Penrose 

quasi-local mass is invariant under continuous deformations of S 

within the hypersurface. If such a spacetime describes a configura-

tion of black holes, momentarily at rest with respect to one another, 

then the Penrose mass depends only on the topological relationship 

of S with the black holes. As expected, the mass is not additive. 
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but includes a negative contribution due to gravitational potential 

energy in the case when S links two or more black holes. 

Other calculations performed by Tod include the case of a 

spherically symmetric 2-surface in the Reissner-Nordstrom and 

Friedmann-Robertson-Walker spacetimes. It turns out that the 

Penrose quasi-local mass for the Reissner-Nordstrom spacetime in-

cludes the correct negative contribution due to electrostatic field 

energy and the mass for the Friedmann-Robertson-Walker spacetime is 

equal to the product of the mass density with the volume enclosed 

by a surface in flat space with the same surface area as S. 

The Penrose construction also works well at the null infinity 

of an asymptotically flat spacetime. In particular, the momentum and 

angular momentum components may be separated out from the kinematic 

twistor. The 4-momentum is precisely the Bondi 4-momentum (see 

equation 3.3.16) and the angular momentum defined does not suffer 

from the shortcomings of previously defined expressions. We refer 

the reader to Penrose [P # ], Dray and Streubel [D 13 ] , Shaw 

[S'19 ] and Dray [Df^ ] for a discussion of the null asymptotics of 

the Penrose quasi-local moments, and to Bizon [B'I'J ] and Shaw [Si5], 

[sis ] for the corresponding spacelike structure. 

The "small surface" perturbation approach to the Penrose quasi-

local moments has been studied by Kelly et al. [K 2 ]. The tech-

nique employed in this paper is the same as that used by Horowitz 

and Schmidt [H^S ] in their analysis of the Hawking quasi-local 

energy and by Bergqvist and Ludvigsen [B 9 ] in their analysis of 

the Ludvigsen-Vickers quasi-local momentum, namely an expansion in 

powers of an affine parameter along the generators of the null cone. 

It turns out that for sensible (i.e. non-complex) answers to be 
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obtained, the Penrose modification (v ^ 1) is required. For non-

vacuum spacetimes, the lowest order (r^) contribution to the mass 

is from the stress-energy-momentum tensor and it is positive for 

spacetimes satisfying the dominant energy condition. For vacuum 

spacetimes, the mass vanishes at the next lowest order (r^) - this 

result should be compared with the analogous one for the Hawking and 

Ludvigsen-Vickers quasi-local masses for which the Bel-Robinson 

tensor gives the fifth order contribution. Note that the calcula-

tions in [K 2. ] are performed both for small spheres and for small 

surfaces of more general shape. 

As a complement to the "small surface" treatment, Shaw [ S i 3 ] 

performs analogous calculations for "large surfaces". The idea here 

is to consider a cut of the future null infinity of an asumptotically 

flat spacetime. The cut defines a unique outgoing null hypersurface 

in a neighbourhood of ^ . It is then possible to analyse the 

quasi-local moments associated to 2-sphere sections of this null 

hypersurface by labelling the sections using a suitable parameter r 

and then expanding all quantities in inverse powers of r. Shaw 

shows that the Penrose angular momentum contains no unphysical con-

tributions, at least to third order for stationary spacetimes. In 

order to give further support to the use of the Penrose definition, 

it will be necessary to extend the work of Shaw to higher orders 

in the parameter r and also to the case of non-stationary spacetimes. 

We now mention further work on the Penrose quasi-local definition. 

Tod [T 5 ] has shown that a static black hole satisfies the inequality 

A g 16TTm^, where A is the area and m^ the Penrose quasi-local 

mass. This result should be compared with that of Ludvigsen and 

Vickers [L 1Z] (here, the same inequality is proved relating the 
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Bondl mass to the area of a closed trapped surface) . 

Jeffryes has discussed the Newtonian limit of Penrose's quasi-

local mass (see [J 4^]) and also the relationship between the twister 

space 1(3) on the one hand and the possibility of embedding S in real 

and complex conformally flat spaces on the other (see [J S* ])• Tod 

[T ^ ] has also considered the problem of embedding in conformally 

flat spaces. It turns out that a necessary and sufficient condition 

for an embedded 2-surface S to be embeddable in a (locally) con-

formally flat spacetime, with the same induced metric and second 

fundamental form, is that the standard twistor norm is constant on 

S. If the twistor norm be constant, then S is called a 

non-contorted surface; otherwise, S is called contorted (these 

terms are due to Penrose [P12.]). 

All of the examples calculated by Tod [T 3 ] were of non-

contorted surfaces, the calculation being possible due to the con-

stancy of the norm. In [T G ], Tod considers a calculation involving 

a contorted surface:- The twistor space and kinematic twistor may be 

obtained, but the non-constancy of the norm prevent further progress. 

A further problem is pointed out by Woodhouse who shows that 

new ideas are required even for the calculation of the Penrose 

quasi-local mass for small contorted surfaces. 

Tod [T S ] concludes that, although the idea of the Penrose 

quasi-local mass works extremely well for non-contorted surfaces, 

the definition for contorted surfaces presents problems which remain 

to be solved. 

One possible means of clarifying the situation is by using the 

fact that certain concepts relating to contorted surfaces may be 

obtained from the corresponding concepts for non-contorted surfaces 
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via a complex conformal rescaling (see Jeffryes [J ^ ] and Tod hrG]). 

Whether or not this transformation property will help in the calcula-

tion and interpretation of the Penrose quasi-local mass for con-

torted surfaces remains to be seen. For other considerations re-

lating to the use of complex conformal rescalings, see Penrose [P 9 ] 

and also section 6.2. 

Before leaving the Penrose approach, we remark that a similar 

definition of qaasi-local moments has been given for a general Yang-

Mills theory. We refer the reader to Tod [T/p ] for details. 

Let us now turn to the Ludvigsen-Vickers definition of quasi-

local kinematical quantities in the theory of general relativity. 

We derive the definition from basic principles, but the original 

motivation from the proofs of the positive energy conjecture at 

null infinity (see section 3.3) may be found in [L 8 ], [L 9 ] and 

[L-fOl- Further applications for the Ludvigsen-Vickers techniques 

may be found in [L •f'f ] and [L 12 ] • Special cases of the Ludvigsen-

Vickers definition are given by Bergqvist and Ludvigsen [B S ] (the 

"small surface" limit) and by Shaw [ S 0 ] (the "large surface" limit). 

For further comments regarding the development of the Ludvigsen-Vickers 

framework, we refer the reader to Swift and Vickers [S^S*]. 

We now demonstrate that the Ludvigsen-Vickers ideas are ex-

tremely natural and may be derived from clear geometric principles. 

Our starting point is expression 3.4.1 for a general quasi-local 

charge integral. We will show that there exists an essentially 

unique integrand satisfying certain physically reasonable require-

ments. First we define some basic notions:-

Let (M,g) be an asymptotically flat spacetime and (M,g,f,(f)) 

a maximal regular asymptote (see definition (6.3)1) where, for 
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simpllcity, we take to be inclusion of M in M. We consider 

future null infinity ^ ^ only, but past null infinity may also be 

considered. Note that (M,g) is asymptotically flat implies that 

(M,g) is globally hyperbolic, so that M has topology Ex H, where 

E is a Cauchy surface for (M,g). Therefore M is non-compact and 

parallelizable and we deduce that M is spin (see example 1.2.3). 

We assume that a g-spin structure s has been chosen. 

We now fix an embedded, spacelike, closed 2-surface S in 

(M,g) and denote by H the geodesic null hypersurface constructed 

from ig: S ^ M as in section 3.2. Since the inclusion of (M,g) 

in (M,g) is conformal, H is also a null hypersurface in (M,g). 

Given a null trivialization {l,n} of N(ig), we may follow through 

the programme discussed in section 3.2:- We have the embedding 

f^: S H for r 6 I C ]R (we use r instead of u to conform 

with the notation of Ludvigsen and Vickers [LIO]), and we let 

= f (S) C H, for all r 6 I. 

We now assume that H n = S^, where is a cut of ^ 

and that the range of the affine parameter r may be extended so that 

I = [0,™) with S = S and S = Lim S . In other words, we assume ' o CO r 
r-x» 

that no caustics occur. 

As in section 3.2, we have the null vector fields l,n on H 

such that (goi )(l,n) = 1 (we drop all tildes on l,n and H for 

convenience). For each r 6 I, as explained in section 2.3, we 

have the full power of the SL(2,fl])-spinor formalism on S^. In 

particular, using the Infeld-Van der Waerden isomorphisms arising 

from Ig : S M (as r runs over I), the null trivialization 
^ A—A' A—A' 

{l,n} = {l|S , n|S } of N(i ) may be written {o o , i i } 
r r 

in the usual way (note that r-independence has been suppressed). 

+ 
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We now define a notion that will be very important in what follows. 

By a spinor field A. on H, we mean a section of i ^ S(Sg) (see 

section 1.7 for our spacetime spinor notation): 

Definition (3.4)1: A spinor field X on H is said to be 

asymptotically constant if Lim (o^A^l and Lim (i exist and, 

in addition, 

Lim (r °b^AA' = 0 3.4.10, 
r-H» 

and 

Lim (r ô ' V.., = g 3.4.11. 
r-^ 

This is the definition given by Ludvigsen and Vickers (see 

[L-^0]) and implies that the field X possesses asymptotically two 

(complex) degrees of freedom:- Let {X^: A = 0,1} be an asymptotically 

constant spin frame such that Lim ( X ^ = 1. Then for any asymp-
r-x» — — 

totically constant spinor field A on H, the components {A—) 

of A (with respect to {X^}) given by: 

A- = - Lim (X^^ A^l 3.4.12, 

r-x» 

are constant. 

The space of asymptotically constant spinor fields is called the 

asymptotic spin space of S (this space depends only on S and not 

on the choice of null trivialization) and is denoted S(S). Thus, 

£(S) is a two-dimensional complex vector space associated with the 

embedded 2-surface S. Given any asymptotically constant spin frame 

{X }, we may regard equation 3.4.12 giving the components of an 

element of S(S). 

S(S) is equipped with a natural symplectic structure induced 
o 

from E. Let us denote the form on S(S) by E, so we have: 
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E(X,p) = Lim E(X,M) 3.4.13, 

r-K» 

for all A,y € S(S) . 

Let Cone(M,g) denote the space of all two-dimensional, closed, 

spacelike submanifolds of (M,g) with the property that S € Cone(M,g) 

if and only if the null hypersurface H constructed from S (as in 

section 3.2) Intersects in a cut. Obviously, Cone(M,g) may 

be naturally mapped onto the abstract cone space defined in section 

6.2. We now have the symplectic vector bundle S(M,g) —> Cone(M,g), 

where S(M,g) = U S(S) with obvious projection onto Cone(M,g). In 
S 

fact, an equivalent definition of the asymptotic spin space S(S) 

using the asymptotic twister equation (see Bramson [B ] , [B̂ .'f ] 

although it should be noted that our notion of asymptotic constancy is 

referred to by Bramson as alinement of frames on ^ "*") leads to the 

observation that $(M,g) is a trivializable bundle. 

In order to relate the asymptotic spin space to symmetries, it 

is convenient to introduce the following definition: 

Definition (3.4)2: A vector field g on H is said to be 

asymptotically constant if g = A 8 A (via the Infeld-Van der Waerden 

isomorphisms) for some A € S(S). 

The asymptotic limit of any asymptotically constant vector field 

is necessarily (the restriction to S ) of a generator of BMS trans-

lations. Thus, the four real dimensions of S(S) corresponds, in a 

very geometric way, to the four real dimensions of LT, the Lie 

algebra of the translation subgroup of BMS. For further discussion 

of asymptotically constant vector fields, we refer the reader to the 

Bramson references cited above and also to Geroch and Winicour [G ̂  ] 

and to Walker [W ̂ ] . Note, however, that Walker uses the term 
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strong asymptotic constancy rather than asymptotic constancy. 

Let us now return to the Ludvlgsen-Vlckers programme, the basic 

philosophy of which Is to propagate the asymptotic spin space S(S) 

down the null hypersurface H to S in order to define quasi-local 

moments. For this reason, there is a strong similarity with the 

philosophy of the linkage framework of Geroch-Tamburino-Winicour 

(see above). This is to be contrasted with the Penrose approach 

in which the space E(S) is directly associated with S without 

any reference to future null infinity. We return to the propagation 

below, but first let us consider the "generalized linkage" integrand, 

i.e. which choice should we make for the 2-form *F(a;S) for in-

sertion into 3.4.1? 

We choose "F(a;S) by imposing certain reasonable requirements:-

Firstly, since we wish to define a notion of quasi-local 4-momentum 

(see below for a possible definition of quasi-local angular momentum), 

the descriptor a should be related to a generator of translations 

in some suitable sense. Also, since moments are linear functionals, 

*F(a;S) should depend linearly on the translation generator (once 

the relationship between a and the generator has been imposed). 

Since the only translation group available is T <J BMS, we formulate 

our first requirement as follows:- (I) *F(a;S) should depend 

linearly on an asymptotically constant vector field on H. 

The second requirement is based on dimensional grounds 

(II) "F(a;S) should involve no derivative of the asymptotically 

constant vector field of order treater than one. Note that Horowitz 

[H ] has also discussed requirements (I) and (II). 

If we allow ourselves only the use of vector fields, requirements 

(I) and (II) will give rise to only two possibilities for 

*F E *F(a;S): 
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*F^ = 3.4.14, 

*F2 = 3.4.15, 

where ^ Is an asymptotically constant vector field on H (we omit 
* 

ig for convenience). Since S possesses no boundary, we have 

"F = 0, by Stokes' theorem, so we may discard *F«. Unfortunately. 

;vF̂  is not much use either, since *F^ is just the Komar integrand 

(see equation 3.3.10) and we have discussed above the reasons preven-

ting this from giving a useful definition of quasi-local momentum. 

Since we have a spin structure, we may rescue the situation by 

considering 2-forms constructed from an asymptotically constant spinor 

field X. The relationship between the descriptor a = \ and trans-

lation generators is obtained by defining the asymptotically constant 

vector field g = A @ A. There are now two further (complex) possi-

bilities : 

"^3 = V B A - S ' - 3-4.16, 

*F, - F, 3.4.17. 
4 3 

Note that Im F^ = F^ and Im F^ = Fg and that the real parts are 

non-zero. The real part of *F^ may be eliminated as a candidate on 

physical grounds (the asymptotic limit does not give the Bondi 4-

momentum - see Horowitz [H<M ]) or by imposing a third requirement: 

(III) *F involves only derivatives tangent to S. Requirements (I), 

(II) and (III) lead to the unique integrand Re(*F^) (up to a 

multiplicative constant of course). Thus, Re(*F^) is the unique 

2-form which is linearly dependent on the asymptotically constant 

vector field g, is of first order in the derivative of g and in-

volves only derivatives tangential to S. 
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The uniquely defined 2-form Re(*F^) is the integrand utilized 

by Ludvigsen and Vickers [L iO ] and it has also appeared in the work 

of Nester [N ̂  ]. 

Definition (3.4)3: The 2-form F = Re is called the Ludvigsen-

Vickers-Nester (LVN) 2-form. 

Proposition (3.4)4: The LVN 2-form is given by 

F = (f)0e + (|)ge 3.4.18, 

where the spinor field cj) is defined by: 

•AB • 3.4.19. 

Proof: Let ip be the unique symmetric rank two spinor field deter-

— — A' 
mined by F, so that F = ip8e + ip9£. Then , (see 

AJJ JJ 

Penrose and Rindler [P 'I'/ ]) . 

We have F = Re F^ = - ReCAF^), so that FaA'BB' = " 5(^4764/^8' 

^B^AB'^A' ^A'^AB'^B ~ ^B'^BA'^A^' ^ence, = "G^^A^BA'^ 

- + V-'A^^'^B - ^''ba'*A> = ''VB^'^A' + V A " ' 

- ^ A ' V ^B - "A'^B"' V = J'^A'B)^' - ^ A ' ^ A ^ ' W •ab ° 

The Ludvigsen-Vickers "generalized linkage" is now given by: 

1 
Q(A;Sr) 4, *F(X;S^) 3.4.20, 

S 
r 

for all r 6 [0,°°) and A G S(S) . Here, we have written the LVN 

2-form F as F(X;S ) to emphasize the dependence on the descriptor 

X and to conform with the notation of 3.4.1. Once the asymptotically 

constant spinor field X has been specified on the whole of H, the 

quantity Q(X;S ) may be evaluated for any of the embedded 2-surfaces 

S^, in addition to the original 2-surface S 5 S^. Before considering 

the use of Q as a quasi-local momentum, we first mention its 
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asymptotic properties 

In appendix (a) of [LdO], it is demonstrated that Lira Q (A; S ) 

is precisely the Bondi 4-momentum (see equation 3.3.16) corresponding 

O O — 
to the translation generator C = A 0 A given by the asymptotic limit 

of g = A 0 A, and the cut S . In particular, Lim Q(A;S ) depends 
^ r->o° 

only on g and it is not necessary to impose any propagation equation on 

g (or, equivalently, on A). 

In order to utilize Q(X;S ) as a measure of quasi-local momentum, 

it is necessary to determine the asymptotically constant spinor field 

X on the entire null hypersurface H; up until now, A has been 

unrestricted apart from the requirement that it satisfy the asymptotic 

constancy conditions 3.4.10, 3.4.11. In other words, we must propagate 

the asymptotic value A of A using some propagation equation on 

H. We may think of such a propagation equation as providing a means 

of dragging down the asymptotic spin space S(S) to a particular em-

bedded 2-surface S in the physical spacetime (M,g). 

The question is, which propagation equation should we use? The 

choice is important because the value of the quasi-local momentum 

given by 3.4.20 will depend crucially upon the propagation equation. 

Three physically reasonable conditions to impose on the propagation 

equation are:- (i) it reduces to parallel propagation for (M,g) 

a flat spacetime; (ii) the corresponding quasi-local momentum satis-

fies the momentum-gain inequality, Q(A;S^,)5 Q(A;S^) for r' > r 

provided that ^ = A 0 A is future directed and that the dominant 

energy condition holds in a neighbourhood of H; (iii) in the case 

of linearized gravity, Q(X;S ) reduces to the usual expression for 

the total 4-momentum component linked by S^. 

Ludvigsen and Vickers [L10] write down the propagation equation: 
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= 0 3.4.21, 

and show that any asymptotically constant spinor field on H satis-

fying this equation is determined over the whole of H. Indeed, 

equation 3.4.21 may be written as: 

0^ # X 5 KX E S + cX = 0 3.4.22, 

0^ %'X. 5 RX E &'X + pXi = 0 3.4.23, 
A o 1 

where the differential operators K, R are defined respectively by 

equations 6.2.24, 6.2.26, and K,p are GHP spin coefficients (see 

Geroch et al. [G ̂ ] ) . Equations 3.4.22 simplifies slightly after 

noting that the spin frame chosen corresponds to the Hawking gauge 

(see Hawking [H ^ ]), and hence, in particular, K = 0. The 

Ludvigsen-Vickers propagation equation now reduces to: 

* X = 0 3.4.24, 

a'X^ + pX = 0 3.4.25. 

3X 
Note that i- X E , so that equation 3.4.24 determines the value 

o a r 

of X^ on H, given the asymptotic value X^. Equation 3.4.25 may 

then be used to define X^ on H. Thus, any asymptotically constant 

spinor field is uniquely determined by the Ludvigsen-Vickers propaga-

tion equation 3.4.21 or, equivalently, 3.4.24 and 3.4.25. 

We refer the reader to [L'/O] for a demonstration that equation 

3.4.21 satisfies requirements (1), (ii) and (iii) . 

Given the propagation equation, the quantity Q(X;S ) now 

defines a measure of quasi-local 4-momentum threading through the 

embedded 2-surface S^, for any r G [0,™). The particular component 
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of 4-momentum picked out will depend on the choice of descriptor 

X € S(S). 

Given X £ S(S), we have the uniquely defined asymptotically 

constant vector field ^ = A 0 X, and £ is determined by its 

o o 

asymptotic component g E X 8 A, the restriction to S of a 

generator of BMS translations. Note also that Q(X;S ) depends 

linearly on g. Therefore, we may define Q^^(-;S^) £ (LT) by 

Q^^(an;S^) = Q(A;S^), where A £ S(S) is such that the asymptotically 

constant vector field G corresponding to | E an|s is given by 

5 = A 0 X, for all an 6 LT. 

Definition (3.4)5: is called the Ludvigsen-Vickers quasi-local 

momentum map. 

Note that an alternative expression for Q Is given by: 

- - S 
( p ' | x + p | x ^ | 2 ) d S 3.4.26. 

S 
r 

This equation is obtained by using equation 3.4.25 and then using 

Stokes' theorem in the form axx^, x^)ds^ = 0. 

s 
r 

Let us now return to the propagation equation 3.4.21 used in the 

definition of the Ludvigsen-Vickers quasi-local momentum map. As 

mentioned above, this equation satisfies the physically desirable 

conditions (1), (11) and (ill). We now demonstrate that the equation 

arises in a natural geometric way, namely as the null limit of the 

Sen-Witten equation 2.3.12. Since the Sen-Wltten equation is an 

essential Ingredient in the Witten spinorial proof of the positive 

energy conjecture at spatial infinity (see [W ] and section 3.3), 

our result gives a connection between the Ludvigsen-Vickers null 

framework on the one hand and the spatial framework on the other. 



-246-

Another link is provided by the fact that the LVN 2-form may also be 

used in the definition of the ADM 4-momentum (see Israel and Nester 

[I 9 ] ) . 

In fact, our result is slightly more general in that we allow 

the presence of a Maxwell field. There is also the possibility of 

introducing a general Yang-Mills field and considering the resulting 

propagation equation in the context of the quasi-local charge frame-

work introduced by Tod [T /p ]. Here, we restrict our attention to 

the Einstein-Maxwell case. 

In what follows, our notation is that of sections 2.3 and 3.2. 

The first step is to generalize the Sen-Witten equation 2.3.12 so 

as to include an electromagnetic field 

Let (M,g,0) be a spacetime satisfying the Einstein-Maxwell 

equations: 

Ein(g) = - 8TT T(g,n) 3.4.27, 

where 

T(g,n) = - 3.4.28, 

is the stress-energy-momentum tensor field of the Maxwell field 

n £ 0^(M). Let ijj denote the unique second rank symmetric spinor 

field determined by Q. Then the spinorial version of 3.4.28 is: 

and the Einstein-Maxwell equations reduce to: 

*AA'BB' = 3.4.30, 

where -2$ is the image of the trace-free part of Ric(g) under the 

Infeld-Van der Waerden isomorphism (see Penrose and Rindler [P i i ])• 
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We now consider a generalization of the Sen-Witten equation which 

includes the Maxwell field ip. This generalization is the Weyl spinor 

version of the equation introduced by Gibbons and Hull [G ̂  ]:-

Let f: N ^ M be a codimension one spacelike embedding of 

N in (M,g) and let denote the bundle of contravariant unprimed 

Weyl spinors over N (see definition (2.3)6). 

Definition (3.4)6: The Maxwell-Sen-Witten operator 

D^: @ S*) » r(f"Al(M) 8 (S^ Olfg)) defined by 

. CC', A ^ - C'.C, 
D (X .W^,) = (DGG.X - HGG, ^C'' DGG.WA, + HBB'CC'^A' ^ )' 

for all (A,u) G r(S^ # 

By taking the e-trace of D , we obtain the Maxwe11-Sen-Witten 

equations: 

" " B ' - " 

= 0 3.4.32. 

— A 

for (X,u) € r(S $ S^J. For convenience, we consider only equation 

3.4.31; the second equation 3.4.2 may be treated in an entirely 

analogous fashion. 

Now let S be an embedded, spacelike, closed 2-surface in 

(M,g) and let a: (0,6) —^ Embg(SxI,M) be the corresponding curve 

of codimension one spacelike embeddings. For each s € (0,6), we 

may construct the Maxwell-Sen-Witten equation 3.4.31 using the cor-
\ BB' B B' \BB' ^ 

responding projection E^, - (tg)AA'( ^ 

have 

t = (s ^ 1 + sn) 3.4.33. 

where we have taken the embedding F to be an inclusion, for all 
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s € (0,6). Note that a^ = 1 since t is the unit normal, but it 

is convenient to maintain a as an additional parameter; until 

the null limit is taken, must be taken as being equal to unity, 

but after the limit has been taken, there exist additional possi-

bilities for the value of a^. 

For convenience, let us write A = —5— and B = — , so that 

s / 2 / 2 

A = g(t,n) and B = g(t,l). We consider each of the two terms in 

equation 3.4.31 separately and, in order to take the strain off the 

notation, we suppress mention of the parameter s 

The first term is D , = h V , 
AA AA BB 

= ("A ^A' - tAA' t )^^B' A 

,, B B. .— —B' — — B \ /, — — \ 

= ( ( V - 'A° > - < ^ V A ' + ='A'A'' 

W V B - + 

A- B-3' A- B-a' A- B-^' A— B-B' 
= - ( o I - I o ^ y O I - 0 1 ^ , 1 0 + I O 

A 2 A— B—B' A— B-^' , _ A— B—B' 
- A ^ 0 o , , o o - A B i I , , 0 0 - ABo o . , i i 

A' A A 

= - ((1 - AB)3^,oA %' 

+ (1 - AB)T^yiA i - AZy^^o^ S 

= ((AB - 1)T + A^K - " 1((AB - 1)T' + B^K' + iR/i^y, 

where we have written K = KA, etc. (see equations 6.2.24 - 6.2.27) 

Thus, we have proved equation 6.2.43. 

The second term of equation 3.4.31 is ^B^^B' 

A B B' /a2 a B— —: A B— — 
- - t A ' t B ' ^ B " ° - ( A ° ° ° A ; ° B ' + ° ' A ' ° B ' 

+ ABo'^i^o^, tg, + = (A^i^^u^, + AB 

+ where 

, , A B 
= *ABi I -
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Hence, equation 3.4.31 may be written: 

(AB - 1)T + A^K - IR' + WQ,+ AB^ u , = 0 3.4.34, 

1(AB - 1)T' + IB^K' - R - - B^^ ; , = 0 3.4.35. 

Substituting for A, B and multiplying 3.4.34 throughout by 

gives: 

s^CJa^-l)! + ga^K - is^R' + + Js^a^tp^y^, = 0 3.4.36, 

iCJa^-l)!' + Jis^a^K' - R - = 0 3.4.37. 

The null limit is now achieved by taking the limit as s -»0. 

Substituting for T, etc., we obtain 

a^($ X + KA, + ij; y ,) = 0 3.4.38, 
o 1 o o'' 

(Ja^-l)(i + T'Xg) + ()'Xg + pA^) + y^, = 0 3.4.39, 

and an analogous calculation of the null limit of equation 3.4.32 

yields the following; 

a^(5y^, + Ky^, - ) = 0 3.4.40, 

(&a2-l)(# y^, + + (y Wg, + PWi,) - = 0 

3.4.41. 

To summarize the above, we have proved the following: 

Proposition (3.4)7: The null limit of the Maxwell-Sen-Witten equations 

is given by equations 3.4.38 - 3.4.41. 

Now the null limit has been taken, we are at liberty to choose 

the value of the parameter a^. The simplest and most natural choice 

is to take a^ = 2 (and not a^ = 1). 
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For applications to spinor propagation on the outgoing null 

hypersurface arising from an embedded 2-surface, it is appropriate 

to use the Hawking gauge (see Hawking [H 4-] and section 6.2). 

Having made these two specializations, the null limit of the 

Maxwell-Sen-Witten equation becomes: 

i A + t | ; p , = 0 3.4.42, 
o o o 

+ pA^ + = 0 3.4.43, 

5 Wg, - = 0 3.4.44, 

3" + py^i ~ = 0 3.4.45. 

Note that equations 3.4.42 - 3.4.45 are precisely those used 

by Ludvigsen and Vickers [L ] in their proof of the mass-charge 

inequality m $ |e| in Einstein-Maxwell spacetimes. 

A further specialization is obtained by putting ip = 0, i.e. 

by taking a vacuum spacetime. Then we need only consider the first 

two (or the second two) of the four equations. We get: 

5 A = 0 3.4.46, 
o 

= 0 3.4.47, 

so we obtain the original Ludvigsen-Vickers propagation equations 

3.4.24 and 3.4.25 (or, equivalently, 3.4.21). Thus, the spinor null 

propagation equations used in the Ludvigsen-Vickers treatment of 

positivity of the Bondi mass, inequalities relating mass-area and 

mass-charge, and also quasi-local 4-momentum, arise from the null 

limit of the (Maxwell-)Sen-Witten equation which is a natural spinor 

propagation equation on spacelike hypersurfaces. 
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Another use for the Ludvigsen-Vickers propagation equation is 

in a definition of quasi-local angular momentum (see [L 'fO ]) • The 

most convenient way to write the charge integral is: 

Q(X;S^) - i I .A,A dS^ 3.4,48. 

for all asymptotically constant spinor fields A on the null hyper-

surface H. The propagation equation used is the same as the one 

used for defining quasi-local 4-momentum. Indeed, this propagation 

equation is the only one for which Lim Q(X;S ) exists. In fact, 

Lim Q(X;S ) is equal to the Bramson asymptotic angular momentum 

[B 2.0 ] given by: 

j (^1 - 2c c - 3.4.49, 

S 
r 

"a "b "c "d -5 
where V, = C , , 1 m 1 n = f . It may also be demonstrated 

1 abed 1 

that the quasi-local angular momentum expression 3.4.48 gives the 

expected value of the total angular momentum linked by the 2-surface 

S in the case of linearized gravity. 

The evidence supporting the claim that the Ludvigsen-Vickers 

propagation equation is the natural one to use on a null hypersurface 

now seems quite strong:- From a physical viewpoint, this equation is 

an essential ingredient in a physically reasonable definition of both 

4-momentum and angular momentum at the quasi-local level, and, from 

a geometric viewpoint, the equation is obtained by taking a null 

limit of the Sen-Witten equation. 

To conclude our discussion on the Ludvigsen-Vickers approach to 

quasi-local moments, we mention the advantages and disadvantages 

compared with other approaches to the problem. 
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The major advantage of the Ludvigsen-Vickers approach is that it 

makes essential use of null hypersurfaces rather than spacelike/ 

asymptotically null hypersurfaces. Null hypersurfaces gel especially 

well with spinor and conformal ideas and certain simplifications 

occur. For example, the propagation equations 3.4.24, 3.4.25 possess 

an extremely simple form; there is a decoupling into a radial equa-

tion relating X to its asymptotic value and a 2-surface equation 

giving the value of A^. Moreover, it is easier to prove existence 

and uniqueness results for null propagation equations than it is for 

the elliptic equations defined on spacelike hypersurfaces. 

Another advantage is that it is possible to compare the quasi-

local momenta linking two distinct elements of Cone(M,g):- Suppose 

S, S' € Cone(M,g) with H n ^ and H' n = S \ where 

H,H' are the outgoing null hypersurfaces corresponding to S,S' 

respectively. The asymptotic spin spaces S(S) , S(S') may be identi-

fied using Bramson's alinement of frames technique (see Bramson 

[B19]> [Bl-f]) and the Ludvigsen-Vickers propagation equation is 

used to propagate S(S) 5 S(S') to the embedded 2-surfaces S and 

S'. Once the spinor fields defining the quasi-local momenta linking 

S and S' have been identified in this way, the quasi-local momenta 

themselves may be related by flux integrals over H,H' and the sub-

manifold H of 4- ̂  with 3H = S' u (-S ) . For any of the null 
00 W 00 00 00 

hypersurfaces H, H', H , the flux integrand is of course given by 

*J = *6F, where F is the LVN 2-form (see definition (3.4)3). 

Thus, for 4-momentum, we have: 

Q(X;S') - Q(X;S) = *J + *J - J 3.4.50, 

H H H' 
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for the case in which lies entirely to the future of S . The 

expression Q(A;S') - Q(A.;S) is the flux of 4-momentum between S 

and S' (see Swift and Vickers [S2$]). 

Note that in the Penrose quasi-local framework, there is no 

analogous method of comparing the quasi-local moments linking two 

distinct embedded 2-surfaces in spacetime. We also remark that a 

connection may be made between the Ludvigsen-Vickers approach on 

the one hand and the Penrose approach on the other:- It may be demon-

strated that the asymptotic constancy/alinement of frames condition 

used by Ludvigsen and Vickers is a special case of the Penrose 

superficial twistor equation applied on a cut of ^ ^ (see Penrose 

[P S ]). Shaw [ S ] has discussed certain aspects of the relation-

ship between Sen-Witten propagation on spacelike hypersurfaces and 

the Penrose superficial boundary conditions. However, the expressions 

written down by Shaw suffer from the disadvantage that they depend 

on the spacelike hypersurface spanning the embedded 2-surface under 

consideration. The use of null hypersurfaces as discussed in this 

section should lead to a clearer understanding of the links between 

the various quasi-local approaches. Any a priori spacelike equations 

may be applied on null hypersurfaces by taking the null limit as was 

done for the Maxwell-Sen-Witten equation above, 

Let us now mention a couple of problems encountered with the 

Ludvigsen-Vickers approach. The first is the restriction to embedded 

2-surfaces in Cone(M,g), i.e. to those 2-surfaces whose corresponding 

outgoing null hypersurface may be extended to ^ w i t h o u t the 

occurrence of caustics. For a general embedded 2-surface, caustics 

will occur. However, since the structure of the Ludvigsen-Vickers 

propagation equation is such that singularities of the spinor field X 
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are, in general, integrable, the flux integrals in, for example, equation 

3.4.50 may still be calculated provided that the cuts defined by the 

outgoing null hypersurfaces are sufficiently undistorted so as to 

allow the existence of asymptotically constant spinor fields. 

Of course, the main use of the null hypersurface H is to allow the 

propagation to S of the asymptotic spin space S(S) . Although the null 

hypersurface H is naturally associated with S, it would be better 

if a spin space could be constructed without the need of propagating 

in from null infinity. We could then construct quasi-local kinematical 

quantities associated with an embedded 2-surface in a general spacetime 

and not just in asymptotically flat spacetimes. However, in such an 

intrinsic framework, it would still be necessary to find a method of 

comparing the quasi-local moments linked by distinct 2-surfaces. 

Another problem arising in the Ludvigsen-Vickers definition of 

quasi-local momentum has been pointed out by Shaw [5-19 ] . This paper 

discusses the application of quasi-local definitions to "large 

surfaces", i.e. surfaces constructed as cuts of an outgoing null 

hypersurface in a neighbourhood of future null infinity. Shaw's 

calculations demonstrate that in a stationary spacetime, the 

Ludvigsen-Vickers 4-momentum is physically reasonable to first order 

in the perturbation parameter, but at third order, unphysical con-

tributions appear. These unphysical terms do not appear in the 

Penrose quasi-local 4-momentum, at least not up to third order in 

stationary spacetimes. 

The discussion in this section has demonstrated that a certain 

amount of progress towards a good definition of quasi-local kine-

matical quantities in general relativity theory has been made over 

the past few years. The quasi-local framework seems to require 
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a fundamental Involvement of splnorial ideas and it appears that 

spinors will play an important role in any future development of 

this area. In any case, the theory of general relativity will not 

be complete until a good definition of quasi-local moments has been 

constructed, for it is only through such a definition that we can 

establish a relationship between the motion of the sources on the 

one hand and the asymptotic structure of spacetime on the other. 

Indeed, when gravitational wave astronomy becomes important, it 

will be necessary to utilize such definitions in order to deduce 

properties of astrophysical objects from (approximately) asymp-

totically detected gravitational radiation. 
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4.0 Introduction 

This chapter concerns itself with various questions of in-

variance in geometry and in physics. The everywhere invariance 

of the title may be understood on two levels: On the one hand 

there is the concept of everywhere invariance arising in a group 

action situation which we Introduced in our papers [82^], 

[Si'^]. This particular concept is discussed at length in this 

chapter. On the other hand, and on a meta-level, everywhere In-

variance may be regarded as the theme underlying studies in 

geometry and physics in which natural groups act on natural 

spaces - the useful quantities are then invariant under these 

actions. Indeed, when considering the Influence and application 

of geometry in physics, we should perhaps be guided by the 

philosophy of Kobayashi, "All geometric structures are not 

created equal; some are creations of gods while others are 

products of lesser human minds" (see p. V in [K 6 ])• Only 

structures in the former category should be regarded as candidates 

for inclusion in physical theories, since then and only then may 

we hope for everywhere Invariance. 

The alms of this chapter may be divided Into three, although 

there is overlap between these categories, as follows: 

Firstly we discuss the idea of everywhere invariance - this 

concept arises when a G-actlon on a set S Is given, and we wish 

to consider the behaviour of subsets of S under the group 

action. We expand and generalize the ideas contained in [SilG], 

these papers themselves developing and geometrlzlng 
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earlier work of d'Inverno and Smallwood [I 2. ] concerning functional 

form invariance. We present the algebraic framework of everywhere 

invariance (and of related concepts) in a unified fashion before 

applying the ideas to situations in geometry and general relativity. 

Further possible developments and applications are also mentioned. 

Secondly we consider the general algebraic set up of every-

where invariance in the specific case of the action of the diffeo-

morphism group on the space of metrics on a given manifold. Every-

where invariance has both practical applications, for example in 

finding isometry groups of metrics, and also inter-relationships 

with other natural structures on manifolds. We demonstrate both 

these aspects of everywhere invariance. 

Our third aim relates to the meta-meaning of everywhere in-

variance. We consider natural structures on a manifold M, in 

particular natural groups and their action on Met(M), the space 

of metrics (of a given signature) on M, and we discuss the use 

of these structures in geometry and general relativity. This third 

aim also includes the desire to make links between this chapter and 

material contained in the rest of the thesis. 

Having stated our alms, we now give a more detailed description 

of how this chapter is arranged:-

The space Met(M) has made several important appearances in 

this thesis, notably in sections 1.4, 1.5, 1.6 and 2.2, and plays 

an important r61e in this chapter. We therefore devote section 

4.1 to a more detailed study of this space. We also consider the 

action of natural groups on Met(M) and these will provide us 

with some of our examples of the phenomenon of everywhere invariance. 

In these examples we consider embedded subspaces of Met(M). These 
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subspaces may be regarded as parameterized families of metrics or, 

equivalently, as metrics of a given "functional form". In this 

context, everywhere Invarlance may be used as a tool for investi-

gating the relationship between the set of transformations leaving 

the given family invariant (I.e., those transformations leaving 

invariant the functional form of the metric) on the one hand and 

the Isometry group of particular metrics in the family on the 

other. When considering these parameterized families of metrics 

we are re-emphasizing the importance of embeddings:- In Chapters 

Two and Three we discussed embeddings into M itself and, in the 

case when M was the manifold underlying spacetime, certain kinds 

of embeddings turned out to be very useful. Here we look at 

embeddings F Met(M), where F is the manifold parameterizing 

the family of metrics under consideration and we demonstrate the 

utility of considering a particular g 6 Met(M), not as an in-

dividual metric, but as a member of such a parameterized family. 

Note that families of metrics often arise as solutions to the 

Einstein equations (e.g., the Kerr-Newman solutions are para-

meterized by a subspace of E.̂  and the pp-wave solutions possess 

an Infinite dimensional parameter space - we return to pp-waves 

in section 4.5). For other contexts in which families of space-

time metrics have been studied, see Szekeres [S2J^] who considers 

solutions of the Einstein equations involving arbitrary functions 

and Geroch [G 2. ] who looks at limits of spacetimes. 

Returning now to the content of section 4.1, we should mention 

the analysis, or rather the lack of it, involved in our dealings 

with infinite dimensional spaces. We make no attempt to discuss in 

detail the differentiable structure on these spaces nor to consider 
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other aspects of the global analysis involved. We note, however, 

that by working in the appropriate category of smooth manifolds and 

maps (inverse limit of Hilbert (ILH), or, better, the tame category 

of Nash-Moser-Hamilton), our formal algebro-geometrical results are 

valid at the analytical level also. For global analytical details 

we refer the reader to Ebin [E ̂  ], Ebin and Marsden [E 6 ], 

Lang [L 2 ] , and Michor [M ] , and also to the 

excellent reviews of Adams et al. [A 3 ]> Hamilton [H 2. ] and 

Milnor [M % ] and references therein). We also refer the reader 

to references cited in section 2.2 where we discussed spaces of 

embeddings. To summarize our position on analysis - we proceed 

formally when working with infinite dimensional spaces, but any 

manifolds and maps (and hence group actions) will be smooth in 

the ILH (or tame) sense. 

The main discussion of section 4.1 will concern Met(M), its 

submanifolds and its quotients. Note that in the case of positive 

definite metrics (i.e., Riemannian manifolds), the structure of 

Met(M) is topologically trivial, but in the case of indefinite 

metrics (e.g. Lorentzian manifolds) the topology of Met(M) may 

be much more complex. Since we are mainly interested in the geo-

metry of Met(M), rather than in its topology, our discussion 

will be independent of the particular signature of the metrics, 

for example, Met(M) is always open in SgCM). However, we do 

make some brief remarks concerning the topology of Met(M) in 

the pseudo-Riemannian case. 

A particularly important r61e is played by quotients of Met(M) 

under certain group actions. For example, the main group action in 

this chapter, and, indeed, in geometry in general, is that of the 
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diffeomorphlsm group on the space of metrics. The quotient of this 

action, denoted Geom(M), may be regarded as the space of all geo-

metries on the manifold M. Indeed, natural "nice" structures in 

(pseudo-)Riemannian geometry such as {Einstein manifolds}, {homo-

geneous spaces} and {space forms} are unions of orbits of Diff(M) 

acting on Met(M) and these structures may thus be regarded as 

subspaces of Geom(M). 

In addition to being important in geometry itself, Geom(M) 

is also important in physics. In general relativity the spacetimes 

(M,g), (M,(|) g) are regarded as physically equivalent for all 

(|) € Diff(M), and so a spacetime is really given by I^S^niff(M) 

6 Geom(M). Various studies of Geom(M) have been made both for 

Lorentzian signature/4-manifolds (see, for example Isenberg and 

Marsden [I Isenberg [I G ]) and for Riemannian signature/ 

3-manifolds (when Met(M) is called superspace in general rela-

tivity (see Fischer [F i ]). Unfortunately, the space Geom(M) 

is not, in general, a manifold, since different metrics have iso-

metry groups with different dimensions or different numbers of 

components. Geom(M) is, in fact, stratified by manifolds (see 

Fischer [F ̂  ], Bourguignon [B46]) but possesses singularities 

corresponding to metrics with symmetries. A natural resolution 

of the singularities of Geom(M) may be performed, see Fischer 

[F X ], [F 3 ], and in section 4.1 we describe these ideas and 

also propose a variant on Fischer's methods which utilizes the 

canonical bundle introduced in section 1.4. 

A very important result of Ebin-Palais [E ̂  ] is the existence 

of a slice of the action of Diff(M) on Met(M) (in the positive 

definite case). The slice theorem simplifies the study of the 
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space Geom(M) considerably and may be generalized to other contexts 

such as the Lorentzian case (see Isenberg and Marsden [I 9- ]), the 

action of the conformorphism group (section 6.2) on Met(M) (see 

Fischer and Marsden [ F ] ) , and also to the action of Gau(P) on 

Conn(P) for some principal G-bundle (see Singer [S20]). 

Another important action for which there should exist a slice 

is that of Aut GL(M) acting on Met(M). This action is investi-

gated and we show how the semi-direct product structure 

Aut GL(M) = Diff(M) Gau GL(M) (see 6.1.13) may be further 

decomposed. The action of the various natural subgroups of Aut GL(M) 

On Met(M) leads to useful geometrical structures, one of which is 

the generalized conformal structure which we first introduced in 

[S 3.6]' These geometrical structures all turn out to be everywhere 

invariant - in both senses of the phrase! 

Having discussed Met(M) and related spaces, we turn to the 

algebraic theory of everywhere invariance. We present definitions 

and results in the full generality of a group G acting on a set 

S and define the concepts of everywhere invariance, inessential 

invariance and total invariance for subsets of S. The reason for 

introducing these concepts is that they provide a framework for 

discussing the interaction between stabilizers of particular ele-

ments of S on the one hand and the behaviour of subsets of S 

on the other. Although our eventual use of everywhere invariance 

is in geometry and general relativity, in this purely algebraic 

section we link everywhere invariance with other important ideas 

in algebra such as imprimitivity. Results given in this section 

lead to a partial characterization of invariant subsets of a 

G-set S. 
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Section 4.3 provides various examples of the ideas introduced in 

section 4.2. These are mainly related to Met(M) under the action 

of Diff(M). An example from general relativity is analyzed in 

section 4.5. 

Finding diffeomorphisms leaving a given geometrical structure 

invariant is very difficult, and we often have to resort to cal-

culating infinitesimal symmetries, i.e. vector fields which generate 

1-parameter groups of symmetries. In the case of a single metric 

g, any infinitesimal symmetry must satisfy the Killing equation, 

and conversely, any vector field satisfying the Killing equation is 

an infinitesimal symmetry of g. Similarly for a conformal structure 

C, we have the conformal Killing equation whose solution space is 

precisely the Lie algebra of infinitesimal conformeomorphisms (i.e. 

conformal Killing vector fields). In the context of everywhere 

invariance, we have a corresponding equation called the invariance 

equation. We introduce this equation in section 4.4 and demonstrate 

how it may be used to find symmetries in section 4.5. The in-

variance equation may be regarded as a generalization of the Killing 

equation where, instead of a single metric, we are considering an 

entire family of metrics. Because of the extra degrees of freedom 

involved, the invariance equation may be decoupled and is thus 

easier to solve than the corresponding Killing equation. 

The philosophy underlying the use of the invariance equation 

in finding the symmetries of a given metric g 6 Met(M) is to 

first construct an everywhere invariant embedded submanifold of 

Met(M) of which g is a member. We then solve the corresponding 

invariance equation, thus finding all infinitesimal symmetries of 

the submanifold. The Killing vector fields of g are among these 
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infinitesimal symmetries and may be integrated to give the corres-

ponding isometries. 

Since the frame bundle GL(M) often plays an important role 

in the study of natural structures on M, we also give a frame 

version of the invariance equation. 

In section 4.5 we consider a specific parameterized family of 

solutions to the Einstein equations, namely the pp-wave solutions. 

We solve explicitly the invariance equation and integrate to give 

the full set of symmetries for the pp-wave solutions. This kind 

of calculation illustrates the practical use to which the ideas of 

everywhere invariance may be applied. Indeed, since the isometry 

group is a basic piece of information about a particular solution 

to Einstein's equations, we may regard everywhere invariance as a 

tool in the classification programme. Unlike other means of 

classification, such as the Petrov classification, there is no 

simple algorithm for finding the isometry group of a given solution. 

Indeed, solving the Killing equation for a complicated metric is 

very difficult. The simplifications introduced when we generalize 

to the invariance equation should therefore make the classification 

using isometry groups a much more tractable proposition. 

The final section of this chapter contains suggestions for 

further investigations. These topics arise from both everywhere 

invariance and from the study of natural structures on manifolds. 

The latter include various maps and group actions related to 

Diff(M) and Met(M) and some of these have already been used in 

applications to physics. 

The original ideas contained in this chapter consist of the 

development of the ideas of everywhere invariance in sections 4.2, 

4.3, 4.4 and 4.5 and also the remarks concerning the use of the 
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canonical bundle in the resolution of the singularities of 

Geom(M) which we discuss in section 4.1. We have not seen a 

consideration of the action of Aut GL(M) on Met(M) in the 

literature, nor a reference to the suggestions made in section 

4.6 regarding natural maps. The suggestions for further investi-

gations in everywhere invariance will be taken up elsewhere. 
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4.1 Metrics 

This section is arranged as follows:- First, for convenience, 

we review the basic structure of the space of metrics on a manifold 

M. We then consider the structure of Aut GL(M), the group of 

automorphisms of the frame bundle of M and we describe the action 

of Aut GL(M) on Met(M), the space of metrics. This action leads 

to natural geometrical structures on M. The most important subgroup 

of Aut GL(M) is Diff(M), the group of diffeomorphisms of M, and 

we study the quotient Geom(M) of Met(M) by Diff(M). Geom(M) is 

not a manifold but we show how its singularities may be resolved 

using natural techniques. Finally, we consider certain other aspects 

of the space of metrics in relation to material contained elsewhere 

in this thesis. The ideas presented in this section will be used in 

the remainder of this chapter and some have already been utilized 

above. We refer the reader to Francaviglia [F 9 ] (and references 

therein) for details concerning the differentiable structure of the 

spaces considered in this section. Francaviglia also reviews 

various techniques of infinite dimensional differential geometry 

applied to general relativity. 

Let M be a connected, oriented, smooth n-manifold without 

boundary. Let Diff(M) be the group of orientation preserving 

diffeomorphisms of M and S^CM) = r(®^T M) the vector space of 

symmetric second rank covariant tensor fields on M. For a given 

fixed (non-degenerate) signature, let Met(M) denote the space 

of metrics of the given signature on M. The spaces SgCM), Diff(M) 

and Met(M) are all manifolds and Diff(M) is a Lie group (see the 

remarks in section 4.0). Note that below we sometimes use the spaces 
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SgCt), Diff(I) and Met(I), where I is an infinite dimensional 

manifold, but we make no claims concerning the differentiable struc-

ture in this case. 

The topology of Met(M) depends on the signature chosen. In 

the positive (or negative) definite case, Met(M) is an open convex 

cone in SgCM). Thus, in this case Met(M) is connected and, indeed, 

contractible. If the signature is indefinite (e.g. Lorentzian), the 

topology of Met(M) is, in general, non-trivial. For example, the 

set of components of Met(M) is parameterized by certain homology 

groups and can certainly have more than one element. Also, each 

connected component may have non-trivial topology. For more details 

concerning the topology of Met(M) in the four dimensional Lorentzian 

case, see Shastri et al. and references therein. 

Since the signature (definite or indefinite) is non-degenerate, 

Met (M) is an open submanifold of S2(M), so we have natural identi-

fications TMet(M) = Met(M) x g (M), and T Met(M) = S„(M), for 
^ ^ 

all g G Met(M). The appropriate (for applications) cotangent bundle 

to use is the L^-cotangent bundle and this is constructed as follows; 

Fix g 6 Met(M) and consider the embedding h h—^ h* 0 vol(g) of 

SgCM) into its topological dual (SgCM)) . Here h 0 vol(g) acts 

on SgCM) by k g(h,k)vol(g), for all k € S„(M). We now 
M 

define T Met(M) = {h* @ vol(g) : h 6 S„(M)} ={p 8 vol(g) :d 6 S^(M)}, g 

where S^(M) is the space of symmetric second rank contravariant 

tensor fields on M. We take the L^-cotangent bundle of Met(M) 

to be T Met(M) = U T Met(M) = Met(M) x S^(M), where S^(M) = 
g g d d 

r((@^TM) 8 A^M). Note that for this cotangent bundle to be defined, 

we must either take M compact or restrict attention to L^-

sections. The L^-cotangent bundle T Met(M) is a sub-bundle of 
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the true cotangent bundle and it carries a natural (weak) symplectic 

form w. In the case of positive definite metrics in dimension three, 

Fischer and Marsden [F 6" ] use a reduction of the phase space 

(T Met(M), w) in their formulation of the 3+1 initial value 

problem in general relativity. 

The most important group action on Met(M) is that by the 

diffeomorphism group Diff(M) by pullback. We prefer to have a 

left action and so we define (lower star) G Hom(Diff(M) ,Diff(Met(M))) 

by (p — ^ c(),_ E (^ ^) , for all cf) 6 Diff(M). Thus 

(*^g)(x)(v,w) = g(* ^Xx))(D* ^(x).v, ^(x).w) 4.1.1, 

for all v,w G T M, x G M, g 6 Met(M), (j) G Diff(M). We often 

identify Diff(M) with its image Diff^(M) in Diff(Met(M)). The 

diffeomorphism group of M acts, via the action (lower star), on 

tensor bundles, e.g. the L^-cotangent bundle, of Met(M). Indeed, 

Diff(M) leaves invariant natural structures on these bundles. For 

* 

example, Diff(M) acts symplectomorphically on (T Met(M), w). 

Another natural structure associated with Met(M) (M compact) 

is the map G: ]R—^S^CMetCM)); t |—̂  G^, where; 

G^(g)(h,k) = {g(h,k) - t(trace^h)(trace^k)}vol(g) 4.1.2, 

M 

for all h,k 6 T MeC(M) = S_(M), g G Met(M). 

Suppose we take positive (or negative) definite metrics in 

Met(M) and let us assume nt =)= 1. Then the symmetric rank two co-

variant tensor field G on Met(M) is (weakly) non-degenerate; 

Suppose g 6 Met(M) and G (h,k) = 0, for all k 6 SgCM). Then, 

in particular, G^(h,h+s(trace h)g) = 0, where s = '"/l-nt, so 
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we have 0 = {g(h,h) + s(trace h)g(h,g) - t(trace h)^ 

- nst(trace h)2}vol(g) = {g(h,h) + (s(1-nt)-t)(trace h)2}vol(g) 
8 g 

= llhll̂  , where II • II is the L^-norm on S„(M) induced by g. 
S 8 ^ 

Hence, G^(g)(h,k) = 0 for all k G SgfM) implies h = 0, and 

thus is (weakly) non-degenerate. So for nt =f 1 and definite 

signature, G defines a (weak) metric on the manifold Met(M). 

The signature of G depends on the value of t. 

- 1 - 1 

Note that g(h,k) = trace(g hg k) and trace h = g(g,h) for 

all h,k 6 SgCM), g 6 Met(M). Now let ej) 6 Diff(M). Then 

((**g)0^h, **k))(x) = (Crace((4*g) ^(^*k)))(x) 

= trace((Ag(* ^(x))A^) ^Ah(0 ^(x))A^(Ag(^ ^(x))A^) ^(x))A^) 

(where A = D(j) (x)) 

= trace(g(* ^(x)) ^(x))g(* ^(x)) ^k(* ^(x))) 

= (trace(g ^k))(* ^Xx)) 

= g(h,k)(0 (x)). Hence (0*g)(^*h,#*k) = 4*(g(h,k)), where 
(j)̂f = (^ ^) f E f o (j) for all f G C(M). Also, trace^ 

= (f*g)(**g,0*h) = #*(g(g,h)) = ^*(trace h). Using these formulae, 

we may now calculate the action of Diff(M) on G 6 SgfMetCM)); 

We have ((**) G^)(g)(h,k) = G^(**g)(D**(g).h, D**(g).k) 

= G (#*g)(#*h,#*k) (since (j)*: Met(M) —> Met(M) is the restriction 

of the linear map on SgCM)) 

{(*^g)(4^h,*^k) - tCtrace (*^h))(trace (*^k))}vol(0^g) 
M " " " 9*g " 9*g " 

^*{g(h,k) - t(trace h)(trace k)}*^ vol(g) 
M g g " 

{g(h,k) - t(trace h)(trace k)}vol(g) = G (g)(h,k), for all 
'M G 8 t 

h,k 6 S2(M), g 6 Met(M). Hence, the action of Diff(M) leaves the 

tensor field G invariant, for all t G H. In particular, in the 
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case when G is actually a metric (i.e. nt =j= 1, definite signature 

metrics in Met(M)), Diff(M) <: Isom(Met(M), G ). 

The metrics G on Met(M) have various useful applications. 

For example if we take t = 0, we obtain a positive definite metric 

on Met(M) (if the metrics in Met(M) are positive definite). The 

Riemannian metric G has been used by Ebin [E ̂  ] in his construc-

tion of a slice of the action of Diff(M) on Met(M). Ebin also 

calculates the Levi-Civit^ connection of G 6 Met(Met(M)). The 

metric obtained by putting t = 1 (n ^ 1) is called the De Witt 

metric and was introduced by De Witt [D ̂  ] in connection with 

canonical quantum gravity. The metric may also be used in the 

initial value problem in general relativity (see Fischer and Marsden 

[F ^ ] , who also calculate the geodesic spray of the De Witt metric). 

Note that G^ is not positive definite. We refer the reader to 

Francaviglia [F 9 ] for a review of applications of the de Witt 

metric G^ to topics such as the theory of superspace, the reduc-

tion of the Einstein-Hilbert action and the chronos principle. 

We now make some further brief remarks concerning the structure 

of Met(M). We consider various group actions on this space below 

but, for the moment, let us restrict our attention to the action of 

Diff(M) on Met(M), where M is compact and the signature is definite. 

The most important result concerning the action 4.1.1 is that there 

exists a slice (see Ebin [E ]) - this is a very powerful result, 

since the existence of a slice means that various structure theorems 

for Met(M) may be proved. 

Let us recall the basic facts concerning slices (see Palais 

[P -f ] for a survey of the ideas). Let A € Hom(G,Dif f (X)) be a 

smooth action of the Lie group G on the manifold X. For x € X 
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denote by Gx the orbit of x under G and by st(x) the iso-

tropy subgroup of x under G. A slice at x for the action A 

is a submanifold S C X containing x such that (i) if a 6 st(x), 

then aS^ = S^; (ii) if a 6 G and (aŜ .) n S ^ 0, then 

a 6 st(x); and (iii) there is a local cross-section s: ^Vst(x) -+ G 

defined in a neighbourhood U of the identity coset such that the 

map F: U % S —^ X; (u,y) i—̂  A(s(u),y) is a diffeomorphism onto a 

neighbourhood V of x. 

If a slice exists for the action A, it may be regarded as an 

equivariant retraction of a neighbourhood of Gx (in X) onto Gx, 

and the action locally is completely determined. We may consider 

a slice S at x to be a submanifold transverse to the orbit 
X 

Gx through x, which, together with a neighbourhood of the orbit, 

fills out an open neighbourhood of x in X. The action A is thus 

factored into a transitive action on Gx together with an action by 

the isotropy group st(x) on the slice. If a slice exists, we may 

choose it to be an open ball in some topological vector space on 

which the isotropy group is represented as a group of bounded linear 

operators. If we regard the G-space X as a generalization of a 

principal G-bundle (see section 6.1), we should think of a slice as 

the analogue of a local section of the projection: X —^ /g. A 

slice is the best we can hope for because the action A is not, 

in general, free. 

When G is compact, slices always exist, but this is not 

necessarily the case for non-compact G. On the other hand , if 

the existence of a slice can be proved for a non-compact action A, 

then many further results, analogous to those in the theory of com-

pact transformation groups, may be derived. 
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The Ebin-Palais result for the existence of a slice of the 

(lower star) action of Diff(M) (not even locally compact) on 

Met(M) is thus a very important result and may be stated as follows: 

Let Met(M) denote the space of positive definite metrics on 

the compact manifold M, Then, for each g 6 Met(M), there exists 

a submanifold S of Met(M) containing g, which is diffeomorphic 
8 

to a ball in (separable) Hilbert space, such that (i) if 

cp e Isom(M,g), then = S ; (ii) if (p G Diff(M) and 

(<}),uSg)n S =}= 0, then (p 6 Isom(M,g); and (iii) there exists a 

T Diff(M) , , . ^ Diff(M) defined on 

local cross-section s: /Isom(M,g) 

a neighbourhood U of the identity coset such that if 

F: U X S —^ Met(M) is defined by F(u,g') = s(u)^g', then F is 

a diffeomorphism onto a neighbourhood of g in Met(M). 

The proof of this theorem is constructive and, as we have re-

marked above, uses the Diff(M)-invariant metric G on Met(M); 

the slice S is constructed by exponentiating a small disc in 

the G^-orthogonal complement of the tangent space T (Diff*(M).R) 

of the Diff(M) orbit through g. Hence, locally the slice S 

and the orbit Diff^(M).g are orthogonal with respect to the metric 

G . As in the general case, the slice theorem implies that the 

slice S and the orbit Diff.^(M).g fill out a neighbourhood of g 

in Met(M), and the (lower star) action is factored into an action 

of Isom(M,g) on the slice and a transitive action on the orbit. 

We now give some important consequences of the Ebin-Palais 

slice theorem. Let G be any Lie group and let Metg(M) 

= {g 6 Met(M): Isom(M,g) = G}. Then, Metg(M) is an open dense 

subspace of {g € Met(M): G is isomorphic to some subgroup of 

Isom(M,g)}. This gives us the local decreasing property of the 
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isometry group. In particular, Met^(M) (the space of metrics with 

trivial Isometry group) is an open dense subspace of Met(M) itself. 

We say that metrics in Met^(M) are generic. Another application of 

the slice theorem is the stratification of Geom(M) = Met(M)/Diff(M) -

this stratification is into manifolds of geometries of particular 

symmetry, the geometries of high symmetry being contained in the 

boundary of manifolds containing geometries of lower symmetry. We 

refer the reader to Bourguignon [B ], Ebin [E ] and Fischer [F i ] 

for further details concerning the consequences of the slice theorem. 

We return to Geom(M) below in this section. 

Fischer [F ^ ] has made interesting remarks concerning the 

interaction between the coupled actions (lower star) of Diff(M) on 

Met(M) on the one hand and Isom(M,g) on M (some g 6 Met(M)) on 

the other. By exploiting this interaction it is possible to deter-

mine the topological implications (for M) of M admitting a 

Riemannian structure with particular symmetry. The general idea is 

that a non-generic metric cannot be supported by an arbitrary 

manifold - the global rigidity inherent in the symmetry of the geo-

metry must be reflected in the underlying topology. Fischer investi-

gates the questions (i) which Lie groups can occur as isometry groups 

for Riemannian metrics on a given manifold M?; and (11) Which 

topologies are compatible with a Riemannian metric whose isometry 

group is isomorphic to a given Lie group? Fischer restricts his 

attention to the case dim M = 3 (since he is interested in applica-

tions to the Wheeler superspace in general relativity) and he proves 

a classification theorem for isometry groups arising from metrics 

on closed 3-manifolds. 

We use the following terminology (see [F ]):- The manifold M 
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is said to be symmetric if there exists g 6 Met(M) with 

dim Isom(M,g) > 0, random if dim Isom(M,g) = 0, for all 

g G Met(M), and wild if Met^(M) = Met(M). If M is random, then 

all metrics on M possess discrete isometry groups and the action 

(lower star) is almost free (i.e., it has discrete isotropy). If 

M were wild, then (lower star) would be free and Geom(M) would be 

a manifold. M wild is equivalent to Diff(M) having no finite 

subgroups, but no such manifold is known in any dimension. Thus, 

the set of wild manifolds is possibly empty. Fischer's classifica-

tion theorem demonstrates that "most" manifolds are random (in 

dimension three at least) and that the only symmetric closed 

3-manifolds are S^, E ]P̂  , S^xS^xS^, S^xgl, L(p,q) (Lens 

spaces) and polyhedral manifolds (and various connected sums of 

these 3-manifolds). A classification theorem of this kind for 

dimension 5 4 would be difficult to achieve since there does not 

even exist a classification theorem for closed n-manifolds for n 5 4. 

We now turn our attention to other group actions on Met(M). 

In particular we study the group Aut GL(M) of automorphisms of 

the frame bundle GL(M) of M (see section 6.1 for the definition 

of Aut GL(M)). In what follows we do not assume M orientable 

unless explicitly stated and so Dlff(M) denotes the group of all 

(not just orientation preserving) diffeomorphisms. 

In section 6.1, we demonstrate that Aut GL(M) - Diff(M) 

x Gau GL(M), the latter with group structure given by 

" (*1 ° *2' ^1 ° *1 ° ^2 ° 

((})̂ ,¥̂ ), (#2»^^) 6 Diff(M) X Gau GL(M) , and where (p 5 &(^) is 

the lift of (j) G Diff(M) to an automorphism of GL(M) (see 

definition (6.1)27 and 6.1.13). The explicit isomorphism q of 
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Aut GL(M) onto Diff(M) K GauGL(M) is given by q(Y) = (Y, Y o Y 

for all Y € AutGL(M), and its inverse is given by q (̂c(),¥) = Y = 

for all (^,Y) 6 Diff(M) k GauGL(M). Recall that the two groups 

r(ConjGL(M)) and C^^^j(GL(M), GL(n,]R)) are natural isomorphs of 

GauGL(M). There is also another group to which GauGL(M) is 

naturally isomorphic. This is the automorphism group of the tangent 

bundle, Aut(TM) = {F 6 Diff(TM): = ir and 

F|T M 6 GL(T M), for all x G M} = {F 6 r(T"M 8 TM): det F + O}. 

Let us define a: Aut(TM) ^ GauGL(M) by: 

(a(F))(u) = u ( k ^ ^ ° F ( t t ( u ) ) =< ) 4.1.3, 

for all u 6 GL(M), F 6 Aut(TM). Note that a does indeed take 

its values in GauGL(M) (since a(F)oR = R °a(F), tt o a(F) = it, 

for all a 6 GL(n,]R), F 6 Aut(TM)). The inverse is 

(a ^(Y))(x) = KY(u) ° 4.1.4, 

-1 
for any u 6 ir (x) , for all x 6 M, Y G Gau GL(M). The definition 

- 1 - 1 
of (a (Y))(x) does not depend on the choice of u 6 tt (x) , since 

° " <S(u) ° ° ° 

for all a € GL(n,]R). The maps a, a are mutually inverse homo-

morphisms as is easily checked, so that a is an isomorphism of 

Aut(T/(\) onto GauGL(M). 

There exists a natural action A (push forward) of Diff(M) on 

Aut(TM). This is given by: 

(A (F))(x) = D#(# ° F(4 ^^x)) o ^Xx) 4.1.5, 

for all X € M, F G Aut(TM) and cj) 6 Diff(M). It is straightforward 

to show (see similar calculations below) that A € Hom(Diff(M), 
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Aut(Aut(TM))). Hence we may form Diff(M) « Aut(TM). 

Proposition (4.1)1: The isomorphism a is equlvariant with respect 

to the actions A, conj o £ of Diff(M) on Aut(TM), GauGL(M) 

respectively. 

Proof: We must demonstrate that a°A^ = (conjo^) o a, for all 

4 6 Diff(M). Let * 6 Dlff(M), F 6 Aut(TM) and u 6 GL(M). We 

have ((aoA )(F))(u) = u(Ky^°(A^(F))(m(u))oKy^ 

= u(K̂ ôDcj) ((j) ̂ (w(u)))°F(^ ^(tt(U) ) ) oD^ ^(Tr(u))°K^) 

= u(K^^°D^ ^(tt(U)) °̂F((j) ̂ (irCu))) °D<j) ̂ (irCu)) °K^) 

= u(K oF(n(^ ^(u)))oK._ ) 
* (u) * ^(u) 

(using ~ Dijj(7r(u)) oK^, iroij; = for all ijj 6 Diff(M)) 

= *(# ^(u)(K._ oF(w(* ^(u)))oK._ )) = *((a(F))(0 ^Xu))) 
* (u) * ^(u) 

= ((})°a(F) °(j) (u) = ( (conj °£) ̂ (a(F)) ) (u) . Hence a°A^ = (conjoA) oa, 

for all * G Diff(M)a 

Corollary (4.1)2: AutGL(M) is naturally isomorphic with 

Diff(M) % Aut(TM). 

Proof: Define a': Diff(M) K Aut(TM) —>- AutGL(M) = Diff(M) K GauGL(M) 

by (0,F) (cj),a(F)). Then a' is obviously a bisection. We now 

show that a' is a homomorphism; Let ((()̂ ,F̂ ), (<1)̂ ,̂ 2̂  

G Diff(M) X AuC(TM). Then 

a'((*l,Fl)(*2'F2)) = a'(42°02' F^A^^CFg)) o(F^A^ (Fg))) 

= )(F2)) = a(F^0Xconjo&)^oa)(F2)) 

= a(F2)(conjo&^)(a(F2))) = (4^,a(F^))(#2,a(F2)) 

= a'(#^,F^)a'(^2,F2). 

Thus a' is an Isomorphism of Dlff(M) tx Aut (TM) onto AutGL(M) • 
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We now wish to define an action of AutGL(M) on Met(M), To 

do this, we first define an action of Aut(TM) on Met(M), thence 

an action of Diff(M) ix Aut(TM), and finally, using the isomorphism 

a', an action of AutGL(M). 

Definition (4.1)3: Define C 6 Hom(Aut(TM), Diff(Met(M))) by 

Cp(g)(x)(v,w) = g(x)(F ^(x).v, F ^(x).w), for all v,w G T^M, 

X 6 M, g € Met(M) and F 6 Aut(TM). C is called the generalized 

conformal action. 

The reason for the term generalized conformal action is that 

+ 
the (pointwise) conformal action of C (M) on Met(M) (see section 

+ 

6.2) is the restriction of C to C (M) regarded as a subgroup of 

Aut(TM) via the monomorphism: f I—^ f ^ IL , where is the 

identity automorphism of TM. 

Definition (4.1)4: A generalized conformal structure on M is an 

orbit of the group Aut(TM). 

In other words, a generalized conformal structure is an equi-

valence class of the relation where g^ ^ gg if and only if 

there exists F 6 Aut(TM) such that g^ = C^Xgg). We return to 

generalized conformal structures below. 

Proposition (4.1)5: The actions (lower star) and C are compatible 

with the action A in that together they define an action B of 

Diff(M) K Aut(TM) on Met(M). 

Proof: Let 4 G Diff(M), F 6 Aut(TM). Then 

(**°Cp)(g)(x)(v,w) = Cp(g)(0 ^(x))(D* ^(x).v, ^(x).w) 

=g(* ^(x))(F ^(x)) ^(x).v, F ^(x))D# ^(x).w) 

= g(* ^(x))(D*(# ^Xx)) ^(A^(F ^l)(x).v, D4(0 ^(x)) ^(A^(F ^))(x).w) 

= g(# ^^x))(D4 ^(x)(A (F) ^)(x).v, ^(x)(A (F) ^)(x).w) 
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= (**g)(x)(A^(F) ^(x).v, A^(F) ^(x).w) = (p)(0*g)(x)(v,w) 

= (C^ (p)0**)(g)(x)(v,w), for all v,w 6 T^M, x 6 M, g G Met(M), 

Hence 

Now define, for each (*,F) 6 Diff(M) tx Aut (TM) , the map 

Mec(M) » We have 

B 
(*1,F^)(*2,F2) B(*i°*2,Fi(A (Fg))) ° 

^ ^ 2' 

" ° *1*° *2* = Cp^° *2* = °B(*2,F2)' 

for all ((j)̂ ,F̂ ), (^2,2^) 6 Diff(M) x Aut(TM). Obviously 

®(ld„, 1^^) • "Met(M)' B(*,F) defines a map 

B 6 Hom(Diff(M) X Aut(TM), Diff(Met(M))). B is the required action 

of Diff(M) X Aut(TM) on Met(M). O 

Now, using the isomorphism a': Diff(M) K Aut(TM) —^ AutGL(M) 

(see (4.1)2), we obtain the action B' = B o (a') ^ of AutGL(M) on 

Met(M). Thus, B' is given by: 

B(*,a 1(f)) - Ca-l(Y) ° ** 

for all (^,W) 6 Diff(M) (x GauGL(M) = Aut GL(M) (From now on, 

we identify Aut GL(M) with Diff(M) t< GauGL(M) using the iso-

morphism q, but we maintain a distinction between Aut GL(M) and 

Diff(M) K Aut(TM)). 

Note that it is occasionally convenient to regard metrics on 

M, not as tensor fields on M, but as equivariant maps on the 

frame bundle. Let S(p,q;]R) = GL(n,iR)y ̂  ^^ denote the space 

of real symmetric n x n matrices of signature (p,q) (where (p,q) 

is the signature of the metrics in Met(M)). Define an action a 
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of GL(n,E.) on S(p,q;E.) by o (s) = (a ^)^sa for all 

s G S(p,q;Il), a G GL(n,E.), and denote, as usual, the space of equi-

variant maps from GL(M) into S(p,q;E.) by C (GL(M), S(p,q;]R)). 

Now define g: Met(M) —> C (GL(M), S(p,q;]R)) by:-

B(g)(u)(x,y) = g(n(u))(K (x), c (y)) 4.1.7, 
— — u — u — 

for all X, y 6 u 6 GL(M), g 6 Met(M). Note that < : , .M 
— — u Tr(u) 

is the linear isomorphism defined for each u G GL(M) (see 6.1.1), 

and we regard elements of S(p,q;]R) as bilinear forms on The 

map 3 does take its values in C (GL(M), S(p,q;]R)) as we now demon-

strate:- Let g 6 Met(M), u G GL(M), a G GL(n,E.) and x,y_ G 

then g(g)(ua)(x^%) = g(w(ua))(K (x),K (%)) = g(n(u))(K (ax),K (&^)) 
l l a l l o u l_l 

= B(g)(u)(ax^ agO = (ax)^(g(g)(u))(a2) = x^a^(g(g)(u))a2 

so = C -l(B(g)(u%^x^%). Hence, g(g)(ua) = a _i(6(g)(u)) 
d ^ -L 

g(g) 6 Cp(GL(M), S(p,q;EO), for all g G Met(M). 

The map g is actually a diffeomorphism of smooth manifolds 

with inverse given by:-

(g ^(s)(x)(v,w) = s(u)(K^ ^(v), K^^(w)) 4.1.8, 

for all v,w G T M, any u 6 w ^(x), for all x 6 M and s G C (GL(M), 

S(p,q;]R)). We may use g to transfer the actions of Diff(M) and 

Aut(TM) on Met(N) to actions on C^(GL(M), S(p,q;]R)). Define, for 

each ^ G Diff(M) and F 6 Aut(TM) the diffeomorphisms 

= g ° 4^ ° g"^, C: = g ° ° g"l of C^(GL(M), S(p,q;aO). 
f f u 

It is straightforward to verify that cp' = ()).,. and = a(F)* 

(so that ())'(s) = s ° (p Cp(s) = s o a(F ^) , for all 

s G C^(GL(M), S(p,q;]R))). Also, by definition, ({)' o o (p', 
<t> 

so that the actions of Diff(M), Aut(TM) together give an action 
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= C' ° of Diff(M) K Aut(TM) (thence Aut GL(M)) on 

C (GL(M), S(p,q;]R)) (Cf. the proof of proposition (4.1)5). We 

use these results below (see proposition (4.1)11). 

We now consider the structure of Aut GL(M) in more detail. 

In particular, we discuss decompositions of the group 

Aut(TM) = GauGL(M). Let us first consider the group GL(n,]R). 

A 
We have the epimorphism det: GL(n,E.) — H and the inverse 

* 
images under det of subgroups of E constitute important sub-

+ " 

groups of GL(n,]R); Consider 1, 7L^ and E. g: E. , then 

det ^(1) = SL(n,E), det = OL(n,E) (our notation) and 

= GL*(n,EO. 

We also have the epimorphism det: Aut(TM) —> C (M) (we use 

the same notation for the two determinant maps) and corresponding 

subgroups of Aut(TM). Thus, SAut(TM) = {F € Aut(TM): detF = 1}, 

OAut(TM) = {F 6 Aut(TM): deC F 6 Zg ^ c"(M)} and Aut*(TM) 

= {F 6 Aut(TM): det F € 3 c"(M)}. 
Proposition (4.1)6: The subgroups SAut(TM), OAut(TM) and 

+ 

Aut (TM) are each invariant under the action A of Diff(M) on 

Aut(TM). 

Proof: First note that det: Aut (TM) — C (M) is equivariant 

with respect to the actions A, (lower star) on Aut(TM), C (M) 

respectively; For cj) G Dlff(M), F 6 Aut (TM) and x G M, we have 

(detoA^)(F)(x) = det(A^(F)(x)) = det(D4(* ^(x))oF(0 ^(x))oD*"^(x)) 

(see 4.1.5) = det(F((j) ̂ (x)) (since D^(^ ^(x)) = D(f) ̂ (x) ^) 

= (det F)(<p ^(x)) = det F) (x). Hence detoA = (}).,,odet, for 

all (|) G Diff(M). 
•k 

Now note that cp̂ G = G for any subgroup G of E regarded 

" - 1 

as a subgroup of G (M) , and hence F 6 det (G) <=> det F 6 G 
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<==> 4*det F 6 = G <==> det(A^(F)) G G <=> A (F) 6 det ^(G). 

- 1 

i.e., det (G) is invariant under the action A for all subgroups 

G of II $ C (M). In particular, SAut(TM), OAut(TM) and Aut (TM) 

are each invariant under Diff(M). • 

We have defined a generalized conformal structure on !I to be 

an orbit of Aut(TM) acting on Met(M) (see definition (4.1)6). 

This definition may be generalized slightly in the following way: 

Definition (4.1)7: Let K be any subgroup of Aut(TM). Then K 

acts on Met(M) by restricting the generalized conformal action C 

(see definition (4.1)3) to K. We define a K-conformal structure 

on M to be an orbit of the group K acting on Met(M). 
+ 

In particular a C (M)-conformal structure is just a conformal 

structure in the usual sense (see section 6.2) and an Aut(TM)-

conformal structure is a generalized conformal structure (as defined 

by (4.1)4). The subgroups SAut(TM), OAut(TM) and Aut"^(TM) also 

give rise to K-conformal structures on M. The Diff(M) invariance 

of all these subgroups implies that the corresponding K-conformal 

structures are each everywhere invariant (see section 4.3). 

Let us now discuss a decomposition of Aut(TM) . First we con-

sider the subgroup OL(n,]R) of GL(n,]R). Let i be the in-

clusion of OL(n,E.) in GL(n,]R) and, for fixed s G H , let 

X = I det I GL(n,lR) —IR"^ ; a i—̂  j det a|^, for each a 6 GL(n,E.). 

The map is an epimorphism with Ker X = {a 6 GL(n,]R): 

I det a|^ = l} = {aeGL(n,E.): | det a | = 1 } = {a G GL (n, E.) : 

det a G 7L^ } = OL(n,]R). We thus have the short exact sequence: 

I X 
1 OLCn.E): » GL(n,EO El » 1 4.1.9. 

* + 
For each s G H , this sequence splits; define y^: E —GL(n,]R) 
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by 

YgCr) = 2̂ ^ 4.1.10, 

for all r G ]R . The map is a homomorphism and Â o y = id^+ , 

so y defines a splitting of 4.1.9. The splitting Yg gives 

rise to an action 8 of IR"*" on OL(n,]R) by automorphisms (see 

the discussion of semi-direct products in section 6.3) given by 

8 (t,a) = Yg(c)ay (t = a, for all (t,a) 6 x 0L(n,3R). Thus, 

the action is trivial and so the corresponding semi-direct pro-
+ 

duct E. K OL(n,]R) is, in fact, direct. We thus have an Iso-
°s 

4 -

morphism g of R x OL(n,]R) (direct product) onto GL(n,]R) 

given by: 

1/ 
5g(r,a) = a y^Cr) = r a 4.1.11, 

+ 
for all (t,a) € ]R x OL(n,]R), with inverse given by: 

- 1 _ 1 / 
(a) = (|det a|®, |det a| ^ a) 4.1.12, 

for all a 6 GL(n,E.). The parameter s may be chosen for con-

venience with s = ^/n perhaps a natural choice. 

This decomposition for GL(n, R) may be used to obtain a 

corresponding decomposition of Aut(TM)= (GL(M) , GL(n,]R)). 

The decomposition of Aut(TM) relies on the behaviour of the con-

jugation action under the isomorphism GL(n, t) — ] R ^ x OL(n,]R). 

j-

Define, for each s 6 E. , conj^ 6 Hom(GL(n,]R) , Aut(E x OL(n,E))) 

- 1 

by conj (a) ~ ° conj(a) o for all a 6 GL(n,]R). Then, 

under the action of a € GL(n,]R), (r,b) 6 ]R̂  x OL(n,E) is mapped 

to Cg(r,b) a ^) = gg^(a(r b)a ^) = gg^(r aba ^) 
- 1 + 

= (r, aba ). Thus, GL(n,E.) acts trivially on the E factor 
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and by conjugation on the OL(n,]R) factor. Note that this action 

is independent of s, and so we write conj' rather than conj 

(all s 6 e" ) . The map $ I — ° $ is an isomorphism of 

C .(GL(M), GL(n,]R)) onto C .,(GL(M), ]R'̂ x OL(n,]R)) and, 

because of the triviality of conj' on the E."*" factor, we have 

an isomorphism of , (GL(M) , IR"*" x OL(n,E.)) onto 

c"'"(M) X (GL(M) , OL(n,Il)). Finally, using the isomorphisms 

(GL(M), GL(n,30) = Aut(TM) and (GL(M), OL(n,B)) 

'\i — ̂ 

= OAut(TM) (given by $ I—̂  F^; x f—̂  K ° $(u) « , any 

u 6 IT (x)), we obtain an isomorphism 6 of Aut(TM) onto 

C^(M) X OAut(TM), and 5 is given by: 

_1 , 
6 (F) = (|dec F|G, |det F| F) 4.1.13, 

for all F G Aut(TM). The inverse is given by: 

6gl(f,F) = f F 4.1.14, 

for all (f,F) 6 C*(M) xOAut(TM). Note that the choice s = - ^/n 

-f. _ 1 
leads to the monomorphism: C (M) Aut(TM); f I—^ f referred 

to above. 

We have proved the following: 

Proposition (4.1)8: There exists a natural 1-parameter family 

{6 : s G ]R } of isomorphisms of Aut(TM) onto C (M) xOAut(TM), 

where 6 is given by 4.1.13. 

We have the actions (lower star) and A of Diff(M) by 

automorphisms on the groups c"'"(M) and OAut(TM) respectively 

(see proposition (4.1)C for the latter) and hence the action 

A' = (lower star) x A of Diff(M) by automorphisms on the group 
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+ 

C (M) X OAut(TM). Thus, we may construct the semi-direct product 

Aut(M) E Diff(M) K (C*(M)xOAut(TM)). 

Proposition (4.1)9: There exists a natural 1-parameter family 

s 6 ]R } of isomorphisms of Aut GL(M) onto Aut(M). 

Proof: First define 6^: Diff(M) k Aut(TM) —^ Aut(M) by 

6̂ ((f),F) = (#,6g(F)), for all ((p,F) G Dif f (M) tx Aut(TM). By an 

argument similar to that given in the proof of corollary (4.1)2, 

is an isomorphism if 5 is equivariant with respect to the 

actions A, A' of Diff(M) on Aut(TM), C*(M) x OAut(TM) res-

pectively. We now demonstrate this equivariance; Let F 6 Aut(TM), 
_1 , 

4 G Diff(M). Then (5 °A_)(F) = (|det A,(F)|S,|det A,(F)| ^ A,(F)) 
s (|) (p q) q) 

= ( I (().,.(det F)|^, I^^Xdet F) | A (F)) (using the equivariance of 

det shown in the proof of proposition (4.1)6) 

= |**det F|S,|** det A^(F)) = (*a|det Fj^.A (|deCF|"^/" F)) 

= A!(Idet F|G, Idet Fl" F) = (A' ° 6 )(F). Thu^ 5 °A_ = A!°6 , 
(|)' 1 * 1 I ({)S S(|) (|)S 

for all (j) € Diff(M), and so 6^ is an isomorphism. 

We now define : Aut GL(M) —>• Aut(M) by = 6^ ° (a') , 

and this gives us the required 1-parameter family of isomorphisms • 

The action B' of Aut GL(M) on Met(M) (see equation 4.1.6) 

may be transferred to an action of Aut(M) = Diff(M) k (c"^(M) xOAut(TM)) 

on Met(M) using the isomorphisms . We define, for each s € M , 

G Hom(Aut(M), Diff(Met (M))) by E^, ^ ^ 

= o 4^. Let 6 Hom(C*(M)xOAut(TM), Diff(Met(M))) 
5g (f,F) 

be defined by Then p^(g))(x)(v,w) 

= (C 1/ (g))(x)(v,w) = g(x)((f ^(x).v, (f /"^F) ^(x).w) 
f-L/nsp 

= g(x)(f /^^(x)F ^(x).v, f /^^(x)F ^ (x).w) 

_2, _ _2, 
= f "^(x)g(x)(F (x).v, F (x).w) = (f "^&p(g))(x)(v,w), for all 
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_2 
v,w 6 T M, x 6 M and g € Met(M). Hence , = f ° C , 

where the map f Met(M) —^ Met(M) is the (pointwise) conformal 

-j- g 

action of C (M) on Met (M) (see section 6.2). The action E 

of Aut(M) on Met(M) is therefore given by: 

for all ((j),(f,F)) 6 Aut(M). 

Equation 4.1.15 demonstrates that the action of the natural 

group Aut(M) factors into a product (in Diff(Met(M))) of the 

three important geometric actions, namely pointwise conformal, 

OAut(TM)-conformal and the (lower star) action by diffeomorphisms. 

By "turning off" one or more of these actions, we obtain the 

usual actions on Met(M), e.g. putting F = H gives us the 

action of the conformorphism group Conf(M) = Diff(M) lx C (M) 

on Met(M) (see section 6.2) (to conform with convention we 

2 

should use the parameter value s = - /n in this case). 

The relation with the conformorphism group is made more explicit 

by the following: 

Proposition (4.1)10: Define J G Hom(Conf(M), Aut(OAut(TM))) by 

^ for all F 6 OAut(TM), (0,f) 6 Conf(M). Then 

the corresponding semi-direct product Conf(M) K OAut(TM) is iso-

morphic with Aut(M). 

Proof: Define y: Conf(M) k OAut(TM) —^ Aut(M) 

5Diff(M)k(c'''(M)xOAu(:(TM)) by w(((|,,f),F) = for all 

((4,f),F) 6 Conf(M) X OAut(TM). Then ;(((4^,f^),F^^(*2,f2)'F2)) 
(F2)) 

= ^1^4(^2)) = (*i°*2'(fl(*l)*f2' Fl A* (Fg))) 
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(since maps (fg.F^), via A', Co ((*^)*f2, A 

= w((*2,f2),F2)w((02'f2)'^2)' ((4i,fi),F2),((*2'f2)' ^2^ 

6 Conf(M) X OAut(TM). Hence y is a homomorphism, obviously a 

bijection, and hence Conf(M) « OAut(TM)= Aut(M) • 

We summarize the above discussion. The group Aut(M) 

= Diff(M) ^ (C^^M) X OAut(TM)) is a natural isomorph of the group 

Aut GL(M) of automorphisms of the frame bundle. Aut(M) acts on 

Met(M) in a manner which unifies the action by the conformorphism 

group Conf(M) with the group of OAut(TM)-conformal transformations. 

In fact we have a family of actions on Met(M), this family para-

meterized by H . 

We now consider how Aut(M) interacts with other natural 

structures on M. First consider the canonical bundle introduced 

in section 1.4 (see definition (1.4)1). For ease of exposition, 

we restrict out attention to positive definite signature metrics, 

but the discussion goes through for arbitrary signature. In 

section 1.4, we dealt with oriented manifolds, but here we do not 

assume that M is orientable. We define the canonical principal 

0(n)-bundle of M to be the following fibration (Cf. 1.4.1): 

0(n)<: » 0(M) Met(M) x M 4.1.16, 

where 0(M) = {(g,u) G Met(M) x GL(M): u 6 0(M,g)}, and 

a(g,u) = (g,Tr(u)), for all (g,u) 6 0(M). As in 1.4.1, we have 

the free right action of 0(n) on 0(M) given by 

((g,u),a) H»(g,ua), for all (g,u) € 0(M), a € 0(n), and then 

0 is the corresponding quotient map making 4.1.16 a principal 

0(n)-bundle. 
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Note that if we identify Met(M) with the space C (GL(M),S(n;B)) 

(see 4.1.7), we may define the evaluation map: 

ev: Met(M)xGL(M) S(n;lO; (g,u) g(g)(u) 4.1.17, 

for all (g,u) 6 Met(M) xGL(M). The total space 0(M) of the 

_x 

canonical bundle is then just ev (can), where can 6 S(n;]R) 

is the standard Euclidean inner-product on 

Proposition (4.1)11: The group Aut(M) may be naturally identified 

with a subgroup of Aut 0(M), i.e. we may realize Aut(M) as a 

group of automorphisms of the canonical 0(n)-bundle of M. 

Proof: Let s 6 M . It is convenient to utilize the isomorph 

Diff(M) K Aut(TM) of Aut(M), We first construct an action of 

Diff(M) !x Aut(TM) on 0(M), and then use the isomorphism <5̂  

((4.1)9) to transfer this to an action of Aut(M). 

Define, for each (tf),F) 6 Diff(M) x Aut(TM), the map 

X (a(F) o 0): 0(M) —^ Met (M) x GL(M) , where the action 

B G Hom(Diff(M) K Aut(TM), Diff(Met(M))) is defined in proposition 

(4.1)5, and a: Aut(TM)—Gau GL(M) is the isomorphism given by 

equation 4.1.3. 

We first show that maps 0(M) into itself. Equi-

valently, we demonstrate that evo Q, - = constant (can): 

0(M) —^ S(n,E.). Note that B^^ = CpO^* = 6 « (j)' ° 3 
- 1 " - 1 

= 3 ° c(F),.- ° (fij, o 3 = 3 ° (a(F) ° (j))̂  ° 3, where 3 is the 

diffeomorphism of Met(M) onto C (GL(M), S(n;]R)) defined by 

4.1.7. Let (g,u) e 0(M). Then, (ev <= 0^^ p^)(g,u) 

= ev(B^^ °4)(u)) = 2^)(g)((a(F)o4'(u)) 
= ((a(F)o#^) og)(g)((a(F) o *)(u)) = B(g)((a(F) o*) ^o(a(F)o^))(u) 

= 3(g)(u) = can. Hence maps 0(M) into itself. 
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We next show that is an automorphism of the canonical 

principal 0(n)-bundle, a: 0(M) —> Met(M) xM. By inspection, 

is a diffeomorphism of 0(M) onto itself, so we must 

demonstrate that o °R^, where G Diff(0(M)) 

is the right action of 0(n) on 0(M), for all a 6 0(n). We 

have («(?) ° *)(u)) 

= p)(g), (a(F) oO)(u)a) = p)(g), (a(F) o ̂ )(ua)) (since 

a(F) o^ G Aut GL(M)) = p^(g,ua) = (Q^ o R^)(g,u), for all 

(g,u) e 0(M), a G 0(n). Hence, G Aut 0(M). 

Note that (o«Q ^ p^)(g,u) = F)(g), (a(F) o*)(u)) 

= (B^^ p^(g),(noa(F) o*)(u))= (B^ F)(g), (*°n)(u)) (since 

a(F) 6 Gau GL(M) and TT°(j) = (|)°TT) = (0^^ o a) (g,u), for all 

(g,u) 6 0(M). Here, G Diff(Met(M) x M) is the projection 

of the automorphism and is given by 0^^ (g,x) 

= (B^ F)(g), 0(x)), for all (g,x) 6 Met(M) xM. 

Now let (^^,F^), (^2,^2) G Diff(M) x Aut(TM). Then 0^ ^ ^ ^ 

= ° " (a(Fj).((conj ' a ) (F^) • » * ; ) 

' 'N+i.Fi) •°(*2'^2'' " "•2'> 

Thus, ( 9 , F) —>• defines a homomorphism of Diff(M) k Aut (TM) 

into Aut 0(M). This homomorphism is, by inspection, injective so 

that Diff(M) ^ Aut(TM) is isomorphic to the subgroup 
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q(Diff(M) K Aut(TM)) 2 Aut 0(M). 

For each (^,F), the automorphism projects to the 

diffeomorphism Q, , given above. Note that Q., = id„ „ 
° (*,F) Met(M)xM 

if and only if (^,F) = (id̂ ., E so that the image of Q has 

trivial intersection with Gau 0(M). 

We now define G Hom(Aut(M), Aut 0(M)) by = Qo (6^) ^, 

and this is the required monomorphism of Aut(M) into Aut 0(M) • 

The explicit form of P^ is given by P® , ( g , u ) 

= Q(4,fl/nsF)(8,u) = (C^l/nsF(4*8)'(G(f (*("))) = 

f ^^^(#(?(u)))(a(F))(#(u))). Let us put u = {e }, x = Tr(u), then: 

f F)(8»u) = (f Cp(4*g), {f(*(x)) 

4.1.18. 

2 

Now put s = - — and fix g. Then equation 4.1.18 may be re-

garded as a unification of equations 1.5.1 and 1.6.2 with the 

OAut(TM) action; We obtain an isomorphism of the principal 0(n)-

bundle 0(M,g) onto the principal 0(n)-bundle 0(M,f C (**g)) 

given by u = {e} I—^ {f(^(x)) ^ F(^(x))D^(x).e }. The bundles 

0(M,g), 0(M,f Cp((j)j,g)) are the fibres of the fibration, pr^ ° a: 

0(M) —^ Met(M) above g, fCp(#*g) respectively and the first is 

mapped onto the second under the action of (#,f,F) G Aut(M). 

We return to the canonical bundle 0(M) below, but first let us 

consider the action of Aut(M) on other natural structures. From 

now on, we assume that M is oriented and we denote by Diff(M) 

the group of orientation preserving diffeomorphisms. 

Let us first consider the symplectic manifold (T Met(M),a)) 

where w is the canonical (weak) symplectic form on the L^-cotangent 
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bundle T Met(M). Recall (see above) that T Met(M) = {p 0 vol(g) 

p € S^CM)}, with L^-palring <p^, h> = p-h vol(g), for all 

is open in S^CM) x S^(M), the tangent space to T Met(M) at any 

h 6 T Met(M) = S„(M), p = p 8 vol(g) €1" Met(M). Since T Met(M) 

point may be naturally identified with SgCM) S^(M), and we 

write ^ ^ (T Met (M)) = SgCMjAS^CM). The symplectic structure 

CO is given by: 

w(g,Pd)((h,qd),(h',qd)) = (q'-h - q'h')vol(g) 4.1.19, 

M 

for all (h,qj),(h',q^) 6 ^ ^(T^MetCM)), (g,Pj) 6 T^MetfM) 

(see Fischer and Marsden [F 6 ]). 

Before considering the action of Aut(M) on (T Met(M),ca), 

let us recall the general situation in which a group action 

I 6 Hom(G, Diff(X)) on a manifold X lifts up to a symplectic 

... 

action I on (T X,w), where to is the canonical symplectic 

ii 

form on T X: 

Let T : T X —^ X denote projection, then w = -dn, where n 

is the canonical 1-form on T X given by T i ( c t ) = a ° D T ( a ) for 

all a € T X. The lifted action is given by I (a) = (Dl (%(«)) , 
:k 

for all a 6 T X, a G G. This action leaves n, and hence w, 

invariant and the corresponding moment mapping, j : T X —^ LG 
* 

is given by <j(a), = <a, 5^(T(a))>, for all g 6 LG, a 6 T X. 

Here g is the infinitesimal generator of I corresponding to the 

Lie algebra element g, so that = DL^(l).g, where 

L : G —^ X; a 1—> L^(x), for all x 6 X. The map g I ^ defines 

a Lie algebra homomorphism of LG into Vect(X). We refer the 

reader to Abraham and Marsden [A ] for more details. 
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We now apply this general framework to the action E® of 

Aut(M) on Met(M) given by equation 4.1.15. It will be convenient 

to define an action C of Aut(TM) on S^fM) which is dual to 

the action C (see definition (4.1)3) extended to an action on 

SgfM): 

Definition (4.1)12: Define C 6 Hom(Aut(TM), 01(3^ (M))) by 

(Cpq)(x)(a,g) = q(x)(F(x).a, F(x).6), for all 6 T^M, x 6 M, 

q G S^(M) and F 6 Aut(TM). Here F(x) : T^M —>• T^M is the dual 

of the automorphism F(x) of T M, for each x G M. 

Note that q'(Cp_j_h) = (C^q)'h for all h G SgCM), q 6 S^(M) 

and F 6 Aut(TM). There exists a similar formula for the (lower 

star) actions of Diff(M) on S„(M), S^(M), namely q'(((f) ̂ ).,.h) 

= (* ^)*((**q)'h), for all h 6 SgCM), q G s2(M) and * G Diff(M), 

as is easily verified. 

Proposition (4.1)13: Consider the action of Aut(M) on 

^s * 
Met(M). The lifted action E of Aut(M) on T Met(M) is given by: 

2 
f F)(p8vol(g)) = f Cp(*^p)8 vol(**g) 4.1.20, 

for all p 8 vol(g) G T Met(M), g G Met(M) and ((j),f,F) G Aut(M) 

= Diff(M) K (C^^M)xOAut(TM)). 

Proof: First note that for ((j),f,F) G Aut(M), h G T Met(M) = S„(M), 

2 R 
g pj(g).h = (f ^^^oCpO**)(h), since ^ G Dlff(Met(M)) 

is the restriction to Met(M) of a linear map on SgCM). The lifted 

action is given by E^^ ^ p)(p8vol(g)) = (DE^^ ^ p^(g)"l)"(p8vol(g)), 

so Chat <E^^^g^p)(p8vol(g)),h> = <p8vol(g), DE^ ^ F)^^) 

—1 2/mc 
= <p8vol(g), ((* )*oCp_iof )(h)> 

1\ /fZ/ns ^ . f /,-l^ \ ,.2/ns 
(0 )*((**p)'(f Cp_i(h))vol(g) P'((* )*(f Cp_i(hXOvol(g) = 

M M 

2 j -Qg 

(#*p ) ' ( f c _2(hX##*vol(g) (by change of variables formula) 

M 
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2 
(f ^"^**p)'(Cp_2(h))vol(**g) = 

M M 

2 /ns 
Cpff **P)'h vol(**g) 

2/nc 5v 
= <f C„((j)j,p) 8 vol(#*g),h>, for all h G T Met(M). 

2 

Hence ^ ^^Cp 8 vol(g)) = f Cp(**p) @ vol(4*g), for all 

p 8 vol(g) G TgMet(M) and (*,f,F) 6 Aut(M) O 

By the general results for lifted actions, we have 

s " 

(Ej.̂  f F)) w = w, for all ((j},f,F) G Aut(M), so Aut(M) is naturally 

isomorphic to a subgroup of the symplectomorphlsm group of (T Met(M),tu). 

We now calculate the moment mapping (or momentum) for the Aut(M)-action. 

Note that the Lie algebra of Aut(M) is given by LAut(M) 

= Vect(M) e(C(M) @ LOAut(TM)), where LOAut(TM0 

= LSAut(TM) = {H 6 r(T M 0 TM): trace H = 0}. Another description of 

LAut(M) is obtained if we regard Aut(M) as an isomorph of 

Aut GL(M) (by proposition (4.1)9); The Lie algebra of 

AuC GL(M) E {Y G Diff GL(M): ^ o R = 8^°^, for all a 6 GL(n,E)} 

is given by LAut GL(M) = {X G Vect GL(M): (R ) = X, for all 

a 6 GL(n,lR.)}, the Lie algebra of GL(n,]R) - invariant vector fields 

on GL(M). In what follows we use the former description of LAut(M). 
A 

The dual of LAut(M) is given by LAut(M) 

= nl(M) & ("o^(M) e LOAutj(T"M)), where nl(M) = r(Al(M) 8 

and LOAutjCT^M) = {H^SHBvol 6 r(TM 8 8 trace H = 0}. 

Proposition (4.1)14: The moment for the action by symplectomorphisms 

of Aut(M) on (T Met(M),w) is given by: 

j: T Met CM) nl(M) * ( 0 (M) @ LOAut (T M)), 

where 

j(p 0 vol(g)) = -2((div p)^, ^ trace p, p°) 8 vol(g) 4.1.21, 
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* 
for all p 0 vol(g) 6 T Met(M). Here div E -trace oV : 

§ § S 

S^(M) — V e c t ( M ) is the divergence operator associated with the 

metric g, and (•)°: S^CM) — r ( T M 0 T M) is given by taking the 

trace-free part of the (1,1)-form of an element of S^(M) (note that 

(•)° is a g-dependent map). 

Proof: We must first calculate the infinitesimal generators of the 

action of Aut(M) on Met(M). Let g 6 Met(M) and define 

e : Aut(M) Met(M) by e(0,f,F) = ^ ^ **)(g), 

for all (<f),f,F) 6 Aut(M). Then, De(id^^, 1, IL : 

LAut(M) —^ T Met(M) is given by (X,h,H) i—> De^(id^J.X + De2(l).h 

+ De^(H^^) . H, where e : Diff(M) —^ Met(M); cj) ^ (J)̂ g, 

e^: C*(M) —^ Met(M); f > f ^^^g, e^: OAut(TM) —^ Met(M); 

F > Cp(g) are the partial maps of e at the identity. 

We have exp(tX)* t=o' *here 

exp: Vect(M) —^ Diff(M) is the Lie group exponential, given by 

tX f—> where is the local 1-parameter group of local 

diffeomorphisms generated by X 6 Vect(M). Hence 

(see equation 1.6.1). 

d A* = ^ 

t=0 ^ 
= -L 

t=0 

2 ~^/ns~l 
The derivative of e^ is given by De2(f).h = - — f hg, 

+ 2 
for all h 6 C(M), f 6 C (M), so that 062(1).h = - — hg. 

-1 T -1 
In matrix notation we may write C (g) = (F ) g(F ), so that 

T 

e^ = e^o inv, where e^: OAut(TM) —> Met(M) ; F f—> F gF, and 

Inv: OAuC(TM) OAuC(TM); F We have De^(F).H 

= + F^gH, and D inv(F).H = for all H 6 T OAut(TM), 

F 6 OAutCTM). Thus De^(]l ).H = De^(inv(]L^)). Dinv(]L^) .H 

= - (H^g + gH), for all H 6 LOAut(TM). 
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The infinitesimal generator of is now given by 

ns (H 8 + 8%) 4.1.22, 

for all g G Met(M), where g = (X,h,H) G LAut(M). 

Using the general formula for the moment j , we obtain 

<j(p 8 vol(g)), g> = <p 8 vol(g), -L^g - - (H^g + gH)>. 

We consider each of the three terms in turn: 

Firstly, <p 8 vol(g), L g> = P'L^g vol(g) 

M 

p'VX^ vol(g) (using L g = 2 symm(VX^)) 

2 [ (-div (p(X^,')) + <X^, div p>)vol(g) 

2 
' M 

<(div p)^, X>vol(g) (since the first term vanishes by the 

divergence theorem) = 2<(div p)^ 8 vol(g), X>, 

P'(hg)vol(g) 
M 

Secondly, <p 8 vol(g), hg> = 

(trace p)h vol(g) = <(trace p)vol(g), h>. 

p°'H vol(g) 

M 
T 

Finally, we have <p 8 vol(g), H g + gH> 

p'(H^g + gH)vol(g) = 2 p'(gH)vol(g) = 2 

M M M 

(since trace H = 0) = 2<p° 8 vol(g), H>. 

Putting these results together, we obtain <j (p 8 vol(g)), g> 

= <-2(div p)^ 8 vol(g), X> + <- ^(tracegP)vol(g) , h> 

+ <-2 p° 8 vol(g), H> = <-2((divp)^, ~ trace^p, p°) 8 vol(g), g>, 

for all g e LAut(M). Hence j(p8vol(g)) = -2((div p)^, ^ trace^p,p°) 

8 vol(g), for all p 8 vol(g) € T Met(M), g G Met(M) , as required • 
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By restricting j(p 8 vol(g)) to subalgebras of LAut(M), we 

obtain particular conserved quantities. For example, if we consider 

LConf(M) $ LAut(M), we obtain the moment calculated by Fischer and 

Marsden [F £7 ]. This moment leads to a reduced phase space 

^^div ^^race^^^°^^(^^ which parameterizes the space of the true 

gravitational degrees of freedom (in the case of positive definite 

metrics in dimension three). Here = {p 0 vol(g): divp = 0} 

and C = {p 0 vol(g): trace p = 0}. Note that C,. is one 
wl-S-CS § QXA7 

of the constraint spaces in the 3+1 formalism of the dynamics of 

general relativity (see Fischer and Marsden [F G ]). 

By a general theorem on actions on cotangent bundles, the moment 

j is equivariant with respect to the co-adjoint action of Aut(M) 
'k g * 

on LAut(M) , i.e. j °E/, ^ = Ad ^ ^ oj for all 

((j),f,F) G Aut(M). A more detailed investigation into the symplectic 

action of Aut(M) on (T Met(M), lo) would be interesting and pro-

vides an avenue for future work, but now we return to the interaction 

of Aut(M) with other natural structures on M. 

Having discussed the cotangent bundle of Met(M) together with 

its natural symplectic structure, we turn now to the tangent bundle 

of Met(M). As remarked above, there exists a 1-parameter family 

{G^; t € E.} of symmetric, rank two, covariant tensor fields on Met(M) 

(see equation 4.1.2). For definite signature metrics in Met(M) 

and nt =j= 1, G defines a (weak) metric in the vector bundle 

TMet(M). In order to consider the behaviour of under the action 

of Aut(M), we require the following lemma: 

Lemma (4.1)15: The map vol: Met(M) —^ 0 (M) is invariant under 

the action of OAut(TM) on Met(M). 

Proof: Let F 6 OAut(TM). Using the diffeomorphism 3 (equation 
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4.1.7), we may consider metrics as matrix valued functions on the frame 

bundle. We then have vol(g) = /|detg(g)| when considered as an 

equivariant function on GL(M). It is straightforward to check that 

6(Cp(g)) = (where F 6 (GL(M), OL(n,a)) (X)i-

responds to F 6 OAut(TM)), so that vol(Cp(g)) 

= /(det A') 2 I detg(g) | = /| detg(g) | = vol(g) , since det F 6 O 

Proposition (4.1)16: For each t 6 ]R, the tensor field G S2(Met(M)) 

is invariant under the action of Diff(M) k OAut(TM)< Aut(M). 

Proof: Let ((J),F) € Diff(M) K OAut(TM), g 6 Met (M) and 

h,k 6 T Met(M). We have (CpO^^) = (cp̂ J G^. Consider 

Cp we have (CpG^)(g)(h,k) = G^(Cp(g))(DCp(g).h, DCp(g).k) 

= G^(Cp(g))(Cp(h), Cp(k)) (since G Diff(Met(M)) is the res-

triction of a linear automorphism of S2(M)) 

(Cp(g)(Cp(h), Cp(k)) - t(trace2 ^ ^ Cp(h))(trace^ ^ ̂ Cp(k)))vol(Cp(g)), 

M F F 

- 1 - 1 

Now recall that g(h,k) = trace (g hg k) and trace h = g(g,h). 

Thus Cp(g)(Cp(h), Cp(k)) 
= trace(((F"l)Tg F"l)"l(F"l)ThF-l(((F"l)TF'l)"l(F"llTkF"l) 

- 1 - 1 
= trace (g hg k) = g(h,k). Similarly, trace , . C (h) = trace h. 

F 
Hence, (C^ G^)(g)(h,k) = (g(h,k) - t(trace^h)(trace^k))vol(g) 

M 

(using lemma (4.1)15) = G^(g)(h,k), so that G = G^. 

A 

Now we have (CpO cp̂ ) G = G = G^, by the result above 

regarding the Diff(M)-invariance of G^. Thus, G is invariant 

under the action of Diff(M) x OAut(TM) • 

Corollary (4.1)17: For nt =)= 1 and definite signature metrics in 

Met(M), Diff(M) OAut(TM) is isomorphic to a subgroup of 

Isom(Met(M), G ). 
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As we have mentioned above in this section, the (weak) (pseudo-) 

Riemannian manifold (Met(M), G ) is used in various applications. 

It is obviously useful to consider the isometry group of (Met(M),G ) 

and corollary (4.1)17 gives a subgroup of the isometry group which 

properly contains (an isomorphic image of) Diff(M). Note that 

C^^M) does not act by isometries so we can't obtain an inclusion 

of the whole of Aut(M) in Isom(Met(M),G^). 

Although we do not prove it here, it seems likely that a slice 

theorem may be proved for the action of Aut(M) on Met(M). 

Fischer and Marsden [F 5' ] have proved such a theorem for the 

action of Conf(M) $ Aut(M) on Met(M). Also, using the metric 

G on which Diff(M) x OAut(TM) g: Aut(M) acts by isometries, it 

should be possible to proceed as in Ebin [E ̂  ] to construct a slice 

of the action of Diff(M) x OAut(TM) on Met(M). Consequences 

of such a slice theorem would be locally decreasing generalized 

conformal groups, and generically trivial generalized conformal 

groups. (Here, the generalized conformal group of g 6 Met(M) 

is just G Aut(M): ^ ^ ^ Diff(M): 

there exists (f,F) 6 C*^M) % OAut(TM) with tf) g = fC (g)}. 

We could also consider the generalized conformal superspace, 

Met(M)/Aut(M). A slice theorem would imply that this was 

stratified into manifolds, and the singularities could be resolved 

in the standard manner (see below). 

We now turn to another structure with which the groups dis-

cussed above interact. This is the space of volume elements on 

the manifold M. Recall that M is an oriented n-manifold which, 

for ease of exposition, we assume compact (without boundary). 

5'f XI 

Let V(M) = {oj 6 Q (M) : w is positively oriented} be the space 

of volume elements on the oriented manifold M. Note that, under 
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the (lower star) action of the group of orientation preserving 

diffeomorphisms Diff(M), the stabilizer, Diff (M), of any 

element w 6 V(M) is a closed subgroup of Diff(M) with Lie 

algebra given by LDiff (M) = {X 6 Vect(M)): div X = 0} (see 

to OJ 

Ebin and Marsden [E 6 ] for technical details). We have the 

- I -

natural map I € C (V(M)) given by I(co) = w and a theorem 

of Moser (see [ E" ̂  ]) implies that Diff(M) acts transitively 

on I ^(r) for each r 6 , i.e. I(w) = I(w') if and only 

if there exists (j) 6 Diff(M) with = w' . Using Moser' s 

result, Ebin and Marsden [E G ] demonstrate that Diff(M) is 

diffeomorphic to Diff (M) x I ^(I(aj)), for any w 6 V(M). 

In particular, since I (w) is convex, and hence contractible, 

Diff (M) is a deformation retract of Diff(M). The importance 

of the group Diff (M) for physics emerges fron the fact that 

it is the appropriate configuration space for the hydrodynamics 

of a homogeneous incompressible fluid (see AAâ is etal [A 3 ])• In 

fact, given g 6 Met(M), there exists a right invariant metric 

on Diff (M) whose spray may be used to obtain existence and 

uniqueness of solutions of the classical Euler equations for a 

perfect fluid (see [E 6 ]). (Note that in section 4.5 below, we 

discuss various natural maps, one of which gives rise to the 

metric on Diff (M)). 
OJ 

If a discussion of compressible hydrodynamics is required, 

then the appropriate configuration space may be obtained from 

a reduction of the semi-direct product Diff(M) K C(M) (see 

Marsden et al. [M^%]). 

Let us now consider the interaction of V(M) with Met(M). 

We have the volume fibration, given by the surjection: 
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vol: Met(MO V(M) 4.1.23, 

which associates with each metric its (oriented) volume element. 

Note that Dvol(g),h = |(tracegh)vol(g), for all h 6 T^Met(M), 

so that the vertical subspace at g is given by {h G TMeC(M): 

trace h = 0}. 
g 

4-
We also have the total volume map, Vol = lovol 6 C (Met(M)) 

which associates to each metric g, the volume of the corresponding 

Riemannian manifold (M,g). By Moser's theorem, we see that two 

metrics g, g' have the same total volume if and only if there 

exists a diffeomorphism cf) such that ^^g, g' lie in the same 

fibre of vol. 

Each fibre of 4.1.23 is an embedded submanifold of Met(M). 

Suppose that we equip Met(M) with the (weak) Riemannian metric 

G (see equation 4.1.2). Then, for each to € V(M) , we let 

6 Met (vol (̂oj)) be the Riemannian metric induced by the em-

bedding of the fibre vol (̂oj) into Met(M). Ebin [E ̂  ] has 

demonstrated that (vol ^(a)),G^) is a symmetric space and he 

calculates the corresponding flip map and also the geodesies. 

The groups Diff^(M), Diff(M) act isometrlcally on the Riemannian 

1 ™ 1 

manifolds vol (w). Vol (I(w)) respectively and Ebin shows 

that the corresponding quotients are homeomorphic topological 

spaces. Ebin remarks that a study of the geometrically attrac-

tive vol (̂co) should shed light on the structure of 

vol ^(I(a)))/Dif f (M) , and therefore also on that of Geom(M) if 

w is allowed to run over V(M). Another method of examining the 

structure of Geom(M) is by resolving its singularities and we 

discuss this shortly. First let us say a few words concerning 
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the action of Aut(M) on the volume fibration: 

We may regard Conf(M) = Diff(M) t< C (M) as a subgroup of 

Diff(V(M)) via the monomorphlsm; ((j),f)l—̂  , where 

= f for all ui 6 V(M) (here, we are fixing 

8 G ]R ) . Since voloE^ . = , "vol, for all 

( ( f ) ,f,F) G Aut(M), we may regard Aut(M) as a subgroup of the 

group of (weak) automorphisms of the fibration vol. The group 

OAut(TM) acts by "gauge transformations" whilst C^^M) acts 

transitively and freely on the orbit space. The group Diff(M) 

- I -

intertwines the OAut(TM) and C (M) actions and its orbits 

-1 + 

project to the spaces I (r) for r 6 ]R , by Moser's theorem. 

We now consider the important geometrical action of 

Diff(M) < Aut(M) on Met(M), in particular the orbit space 

Geom(M) = Met(M)/Diff(M), the space of geometries on the manifold 

M. 

We have noted above that the space Geom(M) is very important 

in geometry and in classical and quantum gravity theory. Unfor-

tunately, Geom(M) does not have a manifold structure due to the 

presence of singularities corresponding to metrics with symmetries. 

We first give a brief description of the structure of Geom(M) 

(for more details, see Fischer [F i ] and Bourguignon [B i&J) and 

then show how the singularities may be resolved or unfolded. As 

elsewhere in this section, M is a connected smooth n-manifold. 

For certain technical results, the details of which we do not go 

into, compactness of M is also required. We do not assume that 

M is orientable, so that Diff(M) denotes the group of all 

diffeomorphisms of M and GL(M) is the bundle of all frames on M. 

For ease of exposition, we deal only with positive definite metrics 
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on M, but the results may be extended to include the indefinite 

case as well. 

The basic topological result concerning Geom(M) is the 

following (see Fischer [F i ]); Geom(M) (with the quotient 

topology) is a connected, second countable,metrizeable space. This 

result shows that Geom(M) possesses the strongest separation and 

countability properties that a space can exhibit, and corollaries 

include the following; Geom(M) is Hausdorff, separable and para-

compact . 

Topologically, therefore, Geom(M) possesses nice structure. 

We turn now to a review of the natural differential properties of 

this space. Unless M is wild, some metrics on M possess non-

trivial isometry groups and then the associated symmetric geometries 

do not have neighbourhoods homeomorphic to neighbourhoods of geo-

metries with trivial isometry group (i.e., those geometries in the 

projection of Met^(M)). Thus, Geom(M) cannot admit a manifold 

structure based on the quotient topology; the differences in 

dimension (and number of components) of isometry groups cause the 

orbit space Geom(M) to have singularities. It can be shown, 

however, that Geom(M) is partitioned into manifolds of geometries 

such that the geometries of high symmetry are contained in the 

boundary of manifolds made up of geometries of lower symmetry. The 

manifolds constituting Geom(M) are called strata, and the decom-

position into manifolds of geometries is called a stratification. 

The basic idea behind this decomposition is to collect together all 

geometries which have the same symmetry type. Then it must be shown 

that these strata, the set of which is indexed by the conjugacy 

classes in Diff(M) of the isometry groups of metrics, fit together 
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in a regular fashion so as to give a bona fide stratification (it is 

possible that the strata might wind around one another in a complex 

way with transversal or self intersections, but it may be shown that 

these phenomena do not occur). For details of the stratification 

theorem, see Bourguignon [B ] , Fischer [F 4 ] . 

The stratification provides the framework for passing smoothly 

from one stratum to another, thereby allowing a generalized dynamics 

to take place on the stratified topological space Geom(M). We 

refer the reader to Francaviglia [F 9 ] for applications of this 

concept of generalized dynamics to general relativity. 

Since it is the singularities themselves which complicate the 

structure of Geom(M), it is Important to have ways of resolving 

or unfolding them: 

Definition (4.1)18: A resolution of Geom(M) is a continuous, open, 

surjective map p : X —^ Geom(M), where X is a manifold, and such 

that for each [g] 6 Geom(M), the space p ([g]) is a finite 

dimensional closed submanifold of X. 

Since p is not, in general, a covering map, we refer to each 

P ^([gDj [g] 6 Geom(M) , as a pseudo-fibre (see Fischer [F 2- ]). 

The simplest approach to resolution is to remove the non-free 

aspect of the action (lower star) of Diff(M) on Met(M); We res-

trict our attention to Met^(M) and then (the restriction of) (lower 

star) is free. The Ebin-Palais slice theorem discussed above implies 

that the resulting quotient space Geom^(M) E Met^(M)/Diff(M) is a 

smooth manifold. This approach is not very useful since the singular 

points have just been thrown out. Indeed, in general relativity, the 

symmetric metrics which give rise to the singularities are the ones 

in which we are often interested. Note, however, that this method 
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does give a manifold structure to a very large subspace of Geom(M). 

A second approach which actually resolves the singularities in 

Geom(M) itself, albeit in an unnatural manner, is the following; 

Let X G M and consider the group of diffeomorphisms fixing a 

frame at x. This is: 

Diff^(M) = G Diff(M): *(x) = x and D*(x) = id 
X 

4.1.24. 

The action of Diff(M) on Met(M) restricts to an action of Diff (M) 

Since we wish to consider principal bundles, we use the pullback 

action of diffeomorphisms, rather than (lower star) which is a left 

action. Diff (M) is a closed subgroup of Diff(M) and its action 

on Met(M) is free; for suppose <t> g = g for <j) G Diff (M). 

Then (f) is an isometry of the connected Riemannian manifold (M,g) 

that fixes a point and whose derivative at that point is the identity. 

Therefore, by a classical theorem (see Helgason [H g ], lemma 11.2), 

^ is the identity diffeomorphism. Hence the action is free. 

Again using the slice theorem, it can be demonstrated that the 

quotient space Geom^(M) = Met(M)/Diff^(M) is a manifold, and the 

projection tr : Met(M) —>• Geom (M) is a principal Diff^(M)-bundle 

over Geom^(M). We have the surjective map p^: Geom^(M) —^ Geom(M); 

[g] I—[g], mapping the Diff (M)-orbits to the Diff(M)-orbits, and 

p is a resolution of Geom(M). Fischer [F 3 ] shows that the 

pseudo-fibre p^^([g]) is the finite dimensional closed submanifold 

Diff (M).g/Diff^(M) of Geom^(M). This pseudo-fibre is naturally 

diffeomorphic to the double coset manifold Isom(M,g)\Diff(M)/Diff^(M) 

= {lsom(M,g) o^oDiff (M) : c() 6 Diff(M)}. 

This second approach does give a resolution of the singularities 
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of Geom(M) itself, but a point x 6 M must be chosen. Also we have 

to restrict our attention to a proper subgroup of Diff(M). A more natural 

resolution due to Fischer is the following: 

Let S be the right action of Diff(M) on Met(M) x GL(M) given 

by: 

S^(g,u) = (4 g, * 4.1.25, 

for all (g,u) G Met(M) x GL(M), ^ 6 Dlff(M). Recall that (j>" = (0̂ .) 

so that the orbit spaces of Met(M) under the action of Diff(M) by 

upper star (i.e., pullback) and lower star (i.e., push forward) are 

equivalent qua stratified topological spaces. We shall denote both 

orbit spaces by Geom(M) = Met(M)/Diff(M). 

The action S is free; for suppose S^(g,u) = (g,u). Then 

(j} g = g and <j)(u) = u. By the theorem quoted above concerning 

fixed points of isometries, we see that (j) = id^. We therefore have 

a free action without restricting either the diffeomorphism group or 

the space of metrics. Fischer proves the following result: 

Theorem (4.1)18 (Fischer, [F 3 3): The action S of Diff(M) on 

Met(M) X GL(M) is smooth, free and proper, and the orbit space 

Geomp(M) = (Met(M) x GL(M))/Diff(M) is a smooth manifold. Moreover, 

the projection map tr : Met (M) x GL(M) —^ Geom^(M) is a submersion, 

and has the structure of a principal Diff(M)-bundle over the manifold 

Geomp(M). 

This result is proved by considering local equivariant cross 

sections of the action S. These local sections are constructed au 

Palais using the S-lnvariant metric A 6(Met(M) x GL(M)) given by: 

A(g,u) = Gg(g) # g(u) 4.1.26, 
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where, for each g 6 Met(M), g G Met(GL(M)) is given by: 

g = TT g can(LC(g) 8 LC(g)) 4.1.27, 

ft/here LC(g) : TGL(M) —gl(n,]R) is the Levi-Civit& connection of 

% n^ 

g, and can is the standard Euclidean inner-product on gl(n,]R) = H . 

The relationship of Geom^(M) to Geom(M) may be described 

as follows: Let us regard the orbit map: 

TTgi Met(M) — G e o m ( M ) 4.1.28, 

as a "pseudo" principal Diff(M)-bundle (pseudo because Geom(M) 

is not a manifold and because the Diff(M) (right) action is not 

free - only if M were wild, would 4.1.28 be a bona fide principal 

fibration). We have the map p : Geom (M) — G e o m ( M ) given by: 

Pp([(g,u)]) = [g] 4.1.29, 

for all [(g,u)] 6 Geom^CM). The map gives the pseudo fibre 

bundle with standard fibre GL(M) associated with the pseudo principal 

Diff(M)-bundle 7r via the action "hat" of Diff(M) on GL(M). 

For g 6 Met(M), we have the usual diffeomorphism 

KgZ GL(M) Pp^(ng(g)) = Pp/X[g]); u [(g,u)], and c 

coincides with the map n (g,-). 

The map is a resolution of the singularities of Geom(M). 

— 1 

The pseudo-fibre p ([g]) is easily shown to be diffeomorphic to 

GL(M)/Isom(M,g). Since, in Met(M) x GL(M), all metrics are initially 

crossed with GL(M), the deviation Isom(M,g) of the pseudo-fibre 

from GL(M) measures the degree of unfolding of Geom(M) at the 

geometry [g] necessary to give a manifold structure to 

Geomp(M). As expected, the symmetry group of g parameterizes the 
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degree of unfolding at [g]. 

The canonical Fischer resolution p is, in fact, a natural 

unification of the point dependent resolutions p introduced above; 

— 1 

First note that for fixed x € M, and for each frame u € (x) , 

we have the map d^: Geom^(M) —> Geomp(M); [g]^l—^ [(g,u)]. Assuming 

either that M is non-orientable (so that Diff(M) acts transitively 

on the connected manifold GL(M)), or that M is oriented and 

possesses an orientation reversing diffeomorphism (so that Diff(M) 

acts transitively on the two component manifold GL(M)), the map 

d is a diffeomorphism. Moreover, d maps the pseudo-fibres of 

the resolution to those of the resolution p (i.e. ° d^ = 

p^), so that the two resolutions p^, p are equivalent. The 

resolution p^ is not canonical, and to pass to the canonical resolu-

tion Pp, it is necessary to utilize the frame dependent diffeo-

morphism d . 
u 

We have a family p of non-canonical resolutions parameterized 

by the manifold M. These can be collected together in a natural way 

as we now demonstrate. For more details, see Fischer [F 3 ] : 

The group GL(n,]R) acts on the manifold Met(M) x GL(M) by 

((g,u),a) (—> (g,ua), for all (g,u) 6 Met(M) x GL(M) and a 6 GL(n,]R) . 

Since 'P (ua) = ^(u)a, for all (p 6 Diff(M) and a 6 GL(n,E.), this 

action passes to an action of GL(n,Il) on (Met(M) x GL(M))/Diff(M) 

= Geomp(M), given by ([(g,u)],a) 1—> [(g,ua)]. Note that this is a 

right action on Geom^CM), but we can still form the bundle associated 

to the frame bundle GL(n,]R) GL(M) —^ M with standard fibre 

Geomp(M). We denote this associated bundle by E —»- M, so that 

E = GL(M) ]^Geomp(M), and ng([(u,[(g,u')])D= n(u), for all 

[(u,[(g,u')])] 6 E. As usual (see 6.1.1), we have the diffeomorphisms 
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-X 

GeoiiipCM) —^ (n(u)) (u 6 GL(M)) given by: 

Ky([(g,u')] = [(u,[(u,[(g,u')])] 4.1.30, 

for all [(g,u')] 6 Geom^(M). 
-1 

Now, for fixed x 6 M, choose a frame u 6 it (x) , and 
define X = k o d : Geom (M) —^ Tr„ (x) , so that X ([g] ) 

u u u X E u x 

= [(u, [(g,u)])], for all [g] e Geom (M). Note that 

[(u^[%,ua)])] = [(ua,[(g,u)]a)] = [(u,[(g,u)])], for all 

a 6 GL(n,E.), so that X is independent of the choice of frame 

u at x . Therefore, for each x G M, we may define the diffeo-

- 1 - 1 
morphism (= X^, any u 6 it "(x)): Geom^(M) —> ir (x) given by: 

^^([gJx) = [(u,[(g,u)])] 4.1.31, 

for all [g]^ G Geom (M). We may regard the bundle E as the 

grand resolution space of Geom(M); the standard fibre is the 

canonical resolution space Geom^(M), whilst, via the diffeo-

morphism X , the fibre above x can be identified with the par-

ticular resolution space Geom (M) in a frame independent manner. 

With the identifications {A : x G M}, we may write 

E = U Geom (M), showing explicitly the fact that E ties to-
x6M ^ 

gether the canonical resolution space with the family (parameterized 

by M) of particular resolution spaces. 

The Fischer approach to the resolution of the singularities 

of Geom(M) just described is very natural and elegant. The un-

folding of Geomp(M) at each geometry [g] 6 Geom(M) is para-

meterized by the isometry group of g, so the Fischer construction 

gives complete knowledge of the unfolding at each geometry necessary 

to make Geomp(M) a manifold. The grand resolution space E 
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provides a bundle theoretic framework for studying the relationships 

between the canonical resolution on the one hand and the particular 

X dependent resolutions on the other. The Fischer approach may 

also be used to resolve the singularities In other infinite dimen-

sional stratified spaces of interest in geometry and physics. For 

example, given any principal G-bundle P, the orbit space 

C(P) = Conn(P)/Aut(P), is the moduli space of connections (the 

action of Aut(P) on Conn(P) Is discussed in appendix 6.1). The 

space C(P) is a stratified topological space with singularities 

due to the existence of non-lsomorphic isotropy groups at different 

connections in P. To obtain a free action, we consider the space 

Conn(P) xP with Aut(P) acting (on the right) in an obvious 

fashion. It can be shown that this action is free, smooth and 

proper and it then follows that the orbit space Cp(P) 

= (Conn(P) xP)/Aut(P) is a smooth manifold and that the natural 

projection Conn(P) x p — C p ( P ) has the structure of a principal 

Aut(P)-bundle over Cp(P). We also have the projection p^: 

Cp(P) — C ( P ) ; [(ojju)] I—^ [o)], and this is a resolution of the 

singularities of C(P). The projection p may be regarded as 

the bundle associated with the pseudo principal Aut(P)-bundle, 

Conn(P) —^ C(P), via the natural left action (evaluation) of 

Aut(P) on P. A grand resolution space may also be constructed 

(see Fischer [F 3 ] ) . 

We now propose a slight variant of the Fischer resolution of 

Geom(M). This approach again uses a bundle framework; in particular, 

we utilize the canonical bundle Introduced in section 1.4. As usual, 

we proceed in a formal geometrical manner. More details will appear 

elsewhere. 
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Consider the canonical principal 0(n)-bundle 

a: 0(M) —^ Met(M) x M (see 1.4.1, 4.1.16). We have shown above 

(proposition (4.1)11) that Aut(M) acts on 0(M) by principal 

bundle automorphisms. In particular, the subgroup Diff(M) of 

Aut(M) acts on 0(M). We now restrict our attention to the action 

of the diffeomorphism group on the canonical 0(n)-bundle. Con-

sider the action given by * ) ; (g,u) (* g, 0 

for all (g,u) 6 0(M) and cp 6 Diff(M). We will denote this action 

by S since it is the restriction of the action S (4.1.25) to the 

submanifold 0(M) of Met(M) x GL(M). Again, by the classical 

theorem on isometries, the action S: 0(M) x Diff(M) — 0 ( M ) is 

free. 

The methods used in proving theorem (4.1)18 may now be applied 

to the submanifold 0(M). In particular, the metric A (4.1.26) 

induces an S-invariant Riemannian structure on 0(M), and this may 

be used to construct local equivariant cross sections for the action 

of S on 0(M). The existence of such sections implies the 

following: 

The orbit space Geom (M) = 0(M)/Diff(M) admits the structure 

of a smooth manifold and we have the following principal Diff(M)-

bundle over Geom^(M): 

TT 
Diff(M)(: » o(M) — G e o m (M) 4.1.32, 

where w is the orbit projection map; (g,u) I—[(g,u)], for all 

(g,u) 6 0(M). We also have the resolution p of the singularities 

of Geom(M) given by: 

p : Geom (M) —^ Geom(M); [(g,u)] [g] 4.1.33, 
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for all [(g,u)] € Geom^(M). The pseudo bundle p may be regarded 

as a sub-bundle of the pseudo bundle (see 4.1.29). 

Although the results contained in the previous paragraph have 

not been rigorously proved, we now derive some simple consequences 

of the formal results 4.1.32, 4.1.33: 

- 1 
Proposition (4.1)19: The pseudo fibre p ([g]) is naturally 

diffeomorphic to 0(M,g)/Isom(M,g), for each geometry [g] € Geom(M). 

Proof: Po^([g]) = {[(g\u)] 6 Geomg(M): [g'] = [g]} 

= {[(g',u)] 6 Geom^(M): there exists (j) 6 Diff(M) with <j) g' = g) 

= {[(g,u)] G Geom (M)}. Now define k: 0(M,g)/lsom(M,g) —> p^^([g]) 

by = [(g,u)] for all [u]isom(M,g) ^ 0(M,g)/Isom(M,g) 

Then k is well defined, since [u]^ = [u'] (I 5 Isom(M,g)) 

implies that there exists <p G Isom(M,g) with (j)(u) = u'. Then 

[(g,u')] = [(g,0(u))] = [((j)'g,u)] = [(g,u)]. The map k is also a 

bijection; Surjectivity is obvious, and to prove injectivity, sup-

pose k([u]^] = k([u']^). Then [(g,u)] = [(g,u')], so that there 

>'c ^ * 

exists (p 6 Diff(M) with ^ g = g and (})(u') = u. Since cf) g = g 

implies (p G Isom(M,g), then = [(j)(u')]j = [u']^. Since 

k, k ^(;[(g,u)] [u]^) are smooth, k is the required diffeo-

morphism of the pseudo-fibre p ([g]) onto 0(M,g)/Isom(M,g) • 

Since, in 0(M), each metric g is extended by its ortho-

normal frame bundle 0(M,g) (via the map pr^ o a - see section 1.4), 
-I 

the deviation of the pseudo-fibre p ([g]) from 0(M,g) is a 

measure of the degree of unfolding of Geom(G) at [g] necessary 

to give a manifold structure to Geom^(M). Hence, as expected, 

the unfolding at the geometry [g] is parameterized by the isometry 

group of g, as in the Fischer resolution using the entire space 

Met(M) X GL(M), rather than the submanifold 0(M). 
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The space 0(M) is the total space of two natural principal 

bundles. By definition, we have the principal O(n)--fibration, 

a: 0(M) —> Met(M) x M, and we also have the principal Diff(M)-

fibration, 0(M) —> Geom (M), the base space of the latter 

bundle being a resolution space for Geom(M). Note that the 

0(n) and Diff(M) actions on 0(M) commute. We summarize the 

various bundles and resolutions in the following diagram: 

P^i 

Met(M) 

Dlff(M) 

n 

0(M) 

V 

Geomo(M) 

G^om(M) 

0(n) 

A 

Met(M)xGL(M) 

V 

GL(n,]R) 
A 

pr-

V 

Geomp(M) C > E M 

4.1.34. 

A construction analogous to the Fischer grand resolution space 

does not appear so naturally in the 0(n)-approach, but we do have 

the following metric dependent construction: 

Recall that the 0(n), Diff(M)-actions on 0(M) commute, so 

that the 0(n)-action passes to the quotient 0(M)/Diff(M) = Geom^(M). 
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The (right) action on Geom (M) is given by ([(g,u)],a) >—> [(g,ua)], 

for all [(g,u)] G Geom (M) and a 6 0(n). Now fix g 6 Met(M) 

and consider the principal 0(n)-bundle of g-orthonormal frames, 

0(n) > 0(M,g) —^ M. Let E = 0(M,g) Geom^(M) be the bundle 

associated to 0(M,g) via the action of 0(n) on Geom (M). Thus, 

E has standard fibre Geom (M) and projection it : E —^ M; 
g o g g 

[(u, [(g,u')])] I—> 7r(u). We have the usual diffeomorphism K : 

Geom^(M) — ( t t ( u ) ) , but here there is no analogue of the map 

d for u 6 GL(M). Thus, there is no direct analogue of the grand 

resolution space E. We may, however, regard the bundle 

Geom (M) E —^ M as a sub-bundle of the Fischer bundle 
o g 

Geomp(M) E —^ M. 

Before leaving the topic of the resolution of the singularities 

in Geom(M), we make a further remark concerning the manifold 0(M) 

as the total space of the two natural principal fibrations 
o 'tr 

0(n) 0(M) —^ Met(M)"M and Diff(M) 0(M) — G e o m (M). Just as 

the action of 0(n) on 0(M) passes to an action on Geom (M), the 

action of Diff(M) passes to an action on Met(M) x M. Let 

Geom^(M) = Geom^(M)/0(n). Note that the space Geom^(M) is not 

a manifold (the O(n)-action is not free). We have the homeomorphism 

ijj: Geomg(M) — ( M e t (M) x M)/Diff (M) given by: 

4.1.35, 

for all [[(g,u)]] 6 Geomg(M). We also have the continuous pro-

jection, Pg : Geomg(M) —> Geom(M); [[(g,u)]] l—> [g], with pseudo 

fibres P^^([g]) homeomorphic to ^/lsom(M,g), for each g € Met(M) 

(Cf. proposition (4.1)19, but here p is not a resolution of 

Geom(M)). 
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The above discussion indicates the usefulness of 0(M) and its 

quotients in the study of the space of geometries on a manifold M, 

Since Geom (M) is a manifold, and, moreover, a resolution space for 

Geom(M), it is an obvious candidate for the configuration space for 

a dynamical theory of classical or quantum geometry (for applica-

tions in gravity theory or other areas of physics). In particular, 

it should be the domain of natural functionals. In this context, 

we mention the natural tensors of Epstein (see In our 

language, these may be described as follows: 

Let B be a natural bundle over M, i.e. there exists a pull-

back action of Diff(M) on B, and hence on the space r(B) of 

sections of B. Let us denote this action by (s,^) 1—̂  tj) s, for 

all (s,(p) 6 r(B) xDiff(M). A typical example of a natural bundle 

is a bundle associated to a G-structure (see section 6.1). A natural 

tensor is an equivariant map n: Met(M) — r ( B ) , i.e. n o 
* 

= (j) ° n, for all (}> 6 Diff(M). To be more explicit, let F be 

a manifold and p € Hom(GL(n, H) , Diff(F)) a left action of 

GL(n,E.) on F. Let B = GL(M) F be a bundle associated to the 

frame bundle via the action p , so that there exists a natural 

diffeomorphism g : r(B) —> C (GL(M),F) (Cf. 4.1.7, and see section 

6.1). The natural action of Diff(M) on C (GL(M),F) is given by 

*'=B o o g'l; S S ° for all S 6 C (GL(M),F), 

cj) 6 Diff(M) (see the remarks following 4.1.7). 

Now suppose n is a natural tensor. Define n: 0(M) —> F by: 

n(g,u) = B(n(g))(u) 4.1.36, 

for all (g,u) 6 0(M). Let cj) 6 Diff(M). Then (n o S )(g,u) 
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= n(0 g, * ^^u)) = 6(n(* g))(* ^(u)) = 6(* (n(g)))(* ^Xu)) 

= *'(g(n(g)))(0 ^Xu)) = g(n(g))(4(^ ^Xu))) = g(n(g))(u) = n(g,u), 

for all (g,u) 6 0(M). Hence noS = n, and so n projects to a 

map n: Geom (M) —^ F. Moreover, n([(g,u)]a) = n([(g,ua)]) 

= g(n(g))(ua) = p(a ^L6(n(g))(u) = p(a ^)n([(g,u)]), for all 

[(g,u)] 6 Geom^(M), a G 0(n) g GL(n,]R), so n 6 (Geom^(M),F) 

(p = p|o(n)). Thus, each natural tensor induces an 0(n)-equivariant 

map on the resolution space Geom (M). Similarly, any natural tensor 

induces a GL(n, H) - equivariant map on Geom^(M) . A reverse con-

struction yields natural maps on Met(M) starting from equivariant 

maps on Geom (M) and Geom^(M) in an obvious manner. We make 

further comments on natural maps in section 4.6. 

We conclude this section by referring to another aspect of the 

structure of the space of metrics which relates to ideas of every-

where invariance discussed below. This is the so called YATS 

decomposition (see Isenberg [I 6"]) and is another idea which has 

found recent application in general relativity: 

A natural question to ask is that of whether a given metric 

g G Met(M) is necessarily pointwise conformal to a metric of 

constant scalar curvature. This problem is known as the Yamabe 

problem because it was first formulated by Yamabe in 1960. 

Subsequent work by Trudinger, Aubin and Schoen lead to a complete 

solution of this problem in the case of positive definite metrics 

on a compact manifold. We refer to Schoen [S ] and references 

therein for details, but here we just state the result: 

Theorem (4.1)20 (Yamabe-Aubin-Trudlnger-Schoen): Let M be a 

compact manifold of dimension not less than three. For each 

g G Met(M) (positive definite metrics), there exists f 6 C*(M) 
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such that Scal(fg) is either -1, 0 or +1. The function f is 

unique in the ±1 case and defined up to E."*" $ c"̂ (M) in the 0 

case • 

Following Isenberg, we refer to theorem (4.1)20 as the 

YATS theorem. The proof of the theorem involves showing the exis-

tence of a positive solution u of the non-linear partial differen-

n+2 
2 

tial equation Y u + 7-7 u = 0 , where Y is the Yamabe 
g 4(n-l) g 

operator associated with g 6 Met(M) referred to in appendix 6.2, 

and A = -1,0 or +1. 

An important consequence of the YATS theorem is that the space 

Met(M) is naturally partitioned into three subspaces Y^(M), 

X 6 {-1,0,+1}, where Y^(M) = {g 6 Met(M); there exists f 6 C*(M) 

with Scal(fg) = A}. Note that Y^(M) could be empty for some M 

and A. Given a metric g, the sign of the lowest eigenvalue 

A-. (g) of the Yamabe operator Y determines which of the three 
§ 

classes g is in; g is pointwise conformal to a metric with scalar 

curvature A, the sign of A being the same as that of A^(g). 

Since 0.,, ° Seal = Seal ° cf)̂  and Scal(fg) = Scal(f g)), 

for all (#,f) 6 Conf(M), g G Met(M), we see that each of the 

three classes Y (M) is a union (possibly empty) of orbits of the con-

formorphism group, Conf(M) $ Aut(M). Thus the partition given by 

the YATS theorem is natural in the sense of everywhere invariance 

(see section 4.2). 

The YATS theorem has played a key role in a parameterization 

of the space of solutions of Einstein's equations due to Isenberg 

[I G ]• Isenberg considers globally hyperbolic spacetimes admit-

ting a compact embedded spacelike hypersurface of constant mean 

curvature and obtains a parameterization of such spacetimes which 
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are solutions of the (vacuum) Einstein equations. The parameteriza-

tion is based on the conformal treatment of the constraint equations 

of the 3 + 1 formalism developed by Lichnerowicz, Choquet-Bruhat, 

York and O'Murchadha. Since this treatment is conformally invariant, 

it is possible to simplify it by choosing the hypersurface metric to 

have constant scalar curvature -1, 0 or +1 according to the YATS 

theorem. Once such spatial metrics have been chosen, an analysis of 

the constraint equations (in the form of the scale equation) may be 

made using the method of sub and super solutions. Isenberg thus 

completes the Lichnerowicz-Choquet-Bruhat-York-O'Murchadha pro-

gramme and obtains a natural parameterization of the class of space-

times under consideration. We refer to [16*] for details of the 

parameterization, although we note here that the conformorphism 

group of the spatial hypersurface plays an important role. The 

Isenberg parameterization is a useful framework for studying issues 

like the stability and genericity of certain properties of space-

times, such as the existence of Cauchy horizons. 

This completes our remarks on the structure of the space of 

metrics on a manifold M. The space Met(M) has rich structure 

and many applications in geometry and gravity, some of which we 

have mentioned above. We return to some of our ideas concerning 

the action of Aut(M) and natural maps below, but first we intro-

duce the concept of everywhere invariance. 

4.2 Algebraic Framework 

This section is purely algebraic and in it we set up the basic 

definitions of everywhere invariance and related ideas in the general 
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setting of a group G acting on a set X. The ideas will be applied 

to geometrical and physical situations in the remaining sections of 

this chapter. In particular, we will consider everywhere invariance 

in the context of the action of the diffeomorphism group on the 

space of metrics on a manifold. 

In the usual study of group actions, particular emphasis is put 

on individual elements in the G-set X. For example, the stabilizer 

(isotropy subgroup) of a particular element is often considered. 

In this section, we wish to generalize the discussion to a study of 

the behaviour of subsets under the group action. The interaction 

of the stabilizer of a subset U of X with the stabilizers of 

the elements of U is of particular interest in applications to 

geometry and general relativity. 

In this section, we give only the basic definitions and some 

simple results which will be used below in this chapter. We do 

not give a thorough algebraic discussion of everywhere invariance. 

Let X be any set and denote by B(X) the group of bijec-

tions (permutations) of X. Let G be a group and A 6 Hom(G,B(X)) 

a. 

a (left) action of G on X. The action A induces an action A 

on the power set of X; A G Hom(G,B(Power(X))) is given by 

A^(U) = {A^(x): X 6 U} s A^(U), for all non-empty U C X, and 

A^(0) = 0, for all a 6 G. For U C X, H C G, U, H non-empty, 

let Ag(U) = {A (x): a 6 H, x 6 U} denote the h-orbit of U. 

If U = {x} for some x 6 X, we write A^(U) = Hx if A is 

understood. 

We now introduce the stabilizers under the actions A and A . 
For U C X, let st(U) ={a 6 G: A (U) C U} denote the set of 

— a — 

elements stabilizing U under the action A. If U = {x} for 

some X 6 X, then st(x) H st(U) is a subgroup of G. In general. 
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however, st(U) possesses only the structure of a semigroup (A 

semigroup is a non-empty set equipped with a unital associative 

binary operation. Note that some authors refer to such a struc-

ture as a monoid). The total stabilizer, tst(U), of U is 

defined to be jj st(x). The set tst(U) contains the unit 
x6U 

element of G, but, in general, possesses no algebraic structure. 

We also have the bona fide stabilizer of U under the action A. 

We denote this by st(U), so that st(U) = {a € G: A (U) = U}, 

'\j 
and st(U) is the largest subgroup of G leaving U invariant 
under the action A. Note that f) st(x) $ st(U) G st(U). 

xGU 

In this chapter, we are particularly interested in the inter-

action between stabilizers of elements of a subset U on the one 

hand and the stabilizer (under A) of the subset U itself on the 

other. We will therefore be mainly concerned with the relation-

ship between st(U) and tst(U). In what follows, we always 

assume sets are non-empty unless stated otherwise. 

Definition (4.2)1: Let X,G,A be as above and let U be a 

proper subset of X containing at least two elements. U is 

said to be everywhere A-lnvariant if tst(U) C st(U), 

inessentlally A-invariant if st(U) C tst(U), and totally 

A-invarlant if st(U) = tst(U). If A is understood, we use 

the abbreviation EI to denote both the adjective everywhere 

invariant and also the concept of everywhere invariance. Similarly 

for II and TI. 

Obviously, there exist actions for which there are subsets 

U which are neither EI nor II (so certainly not TI). The 

examples we shall give in section 4.3 demonstrate that the two 

concepts EI and II are non-coincidental. 
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Our main interest is in EI, and we shall indicate uses of 

this idea in general relativity and in geometry. Note that U is 

EI if and only if st(x) C st(U), for all x 6 U, so that an EI 

subset "everywhere invariant" in the sense that no element of 

U leaves U under the action of the point stabilizers. 

We remark that proving a subset U is II often involves 

the use of some kind of fixed point theorem, and thus is generally 

more difficult than proving EI. Some geometrical examples of II 

are given in section 4.3. 

Before deriving some consequences of definition (4.2)1, let 

us briefly consider another concept in algebra which involves the 

idea of a group acting on subsets; this is the concept of primi-

tivity: 

Consider the action A of G on Power(X) induced by the 

action A of G on X. A partition p of X is said to be 

stable under A if A^(p) C p, for all a 6 G. Any action 

admits two stable partitions, namely p = {{%}: x 6 X} and 

p^ = {X}. The action A is called primitive if the set of stable 

partitions is precisely {p^,p^}. Consider the partition p^ of 

X into G-orbits; this partition is stabilized by G since 

A (Gx) = Gx for any G-orbit Gx. If p^ = p , then each 

orbit is a single point, so the action A is trivial. If p^ = p^, 

then there is just one orbit, so the action A is transitive. Hence 

a non-trivial intransitive action cannot be primitive, so that the 

interesting case is that of a transitive action on a set X con-

taining at least two elements. In the latter case, the following 

criterion may be proved (see Jacobson [J '| ]): If A is a tran-

sitive action on a set X containing at least two elements, then 
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A is privitive if and only if st(x) is a maximal subgroup of 

G, for all X 6 X. 

In the non-primitive case, we have the following simple result 

indicating a link with EI: 

Proposition (4.2)2: Suppose A 6 Hom(G,B(X)) is a non-primitive 

action on the set X, and suppose X contains at least three 

elements. Then X contains an EI subset. 

Proof: A is non-primitive, therefore there exists a stable par-

tition p of X with p =j= p^,p^. Any such partition contains 

an element U which is a proper subset of X and which con-

tains at least two elements. The partition p is stable, so, 

for any a € G, either A^(U) = U or A (U) n U = 0. Now, 

let X 6 U. and a G st(x). Then A (U)ri U =f 0 > so we must have 

A (U) = U. This implies that a € ^t(U) C st(U), so 

st(x) C st(U), for all x 6 U. The subset U is a proper subset 

of X containing at least two elements and, moreover, tst(U) C st(U) 

Hence U is EI. • 

We now give a result which gives a method of constructing EI 

subsets. In section 4.3, we will use this result to tie together 

EI with the group actions introduced in section 4.1. First 

recall that, given any subset S of a group L, the normalizer 

of S in L, denoted Norm^(S), is defined to be {a G L : 

aSa ^ = S}. If S is a subgroup of L, then Norm^(S) is the 

largest subgroup of L having S as a normal subgroup. 

Proposition (4.2)3: Suppose A 6 Hom(G,B(X)), C 6 Hom(K,B(X)) 

are actions on the set X by the groups G, K respectively. 

Assume that C is intransitive and that A(G) g Norm^^^^(C(K)). 

Then any C-orbit (with at least two elements) is everywhere 
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A-invariant. 

Proof: Let U = Kx C X be any C-orbit and let x 6 U. Hence, 

there exists k 6 K with x = C^(x^). Suppose a G st(x) (all 

stabilizers are with respect to A). Then A (C, (x )) = C, (x ). 
S iC O K O 

Since A(G) g Nornig (C(K)) , there exists 6 K such that 

Aa ° Ck = A^. Hence = C^Cx^), so A^Cx^) 

= (Xg), where k^ = k^^k. 

Now, let y 6 U, so that there exists kg 6 K with 

y = C, (x ). Then A (y) = A (C, (x )) = C, (A (x )) for some 
kf) O & 3. K. O K, 8 O 

j 3 4 
6 K. Hence A^(y) = (C^ (Xg)) = (x^) € U, where = k^kg. 

We have shown that, for all x 6 U, a 6 st(x) implies 

a 6 st(U), so tst(U) Cst(U). Also U is a proper subset of X 

(since C is intransitive), so, assuming U contains at least 

two elements, U is everywhere A-invariant • 

Corollary (4.2)4: Suppose A € Hom(G,B(X)), C 6 Hom(K,B(X)) 

(with C intransitive) with C(K) <3 A(G) ^ B(x). Then, any 

C-orbit (containing at least two elements) is everywhere A-

invariant. 

Proof: C(K) <i A(G) implies that A(G) g: Noriiiĝ ^̂  (C(K)) • 

A useful situation in which proposition (4.2)3 may be used 

is when we have a semi-direct product structure. Suppose 

8 e Hom(G,Aut(K)), A G Hom(G,B(X)) and C 6 Hom(K,B(X)). The 

actions 9,A,C are said to be compatible if: 

A. ° Ck ° - Ce.Ck) 4.2.1. 

for all a 6 G and k 6 K (Cf. proposition (4.1)5). If 6,A,C 

are compatible, then the map (a,k) — C ^ o A^ defines an action 
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of the semi-direct product G K (see appendix 6,3) on X. 

Obviously, if 8,A,C are compatible, then C(K) <i A(G). We may 

now use corollary (4.2)4 to deduce the following: 

Corollary (4.2)5: Suppose 9 6 Hom(G,Aut(K)), A 6 Hom(G,B(X)), 

C 6 Hom(K,B(X)) are compatible and that C is intransitive. Then 

any C-orbit (containing at least two elements) is everywhere A-

invariant. 

When we deal with families of metrics (see below), we often 

consider an embedding y • F Met(M), where F is some manifold. 

In the purely algebraic setting, we may consider an injection 

Y : F — X , where F is a set. Questions of A-invariance 

(A 6 Hom(G,B(X))) may be transferred to F using the pullback 

of A; Let U = y(F) C X. Then we may define A^: st(U) — B ( F ) ; 

a I — Y o A o y. We return to maps such as y in section 4.4 

when we consider the invariance equation. 

Having introduced the relevant definitions, we turn now to 

some examples. Some applications of everywhere invariance will 

be given below in sections 4.4 and 4.5. 

4.3 Examples 

In this section, we give various geometrical examples illus-

trating the concepts introduced in the previous section. Since we 

are interested in the space of metrics and isometries, we take 

X = Met(M), G = Diff(M) and A = (lower star). Here, as usual, 

M is a connected, smooth manifold, not necessarily orientable. 

We also assume that M is not wild (see section 4.1), so that 

Met^(M) 4 Met(M); i.e. there exist non-generic metrics on M. 
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The signature of the metrics in Met(M) will be unimportant unless 

specified otherwise. To conform with the notation introduced in 

section 4.2, we let st(g) = Isom(M,g) denote the stabilizer of g 

under the action (lower star). 

The first four examples are fairly trivial, but they do 

illustrate the three ideas given by definition (4.2)1. 

4.3.1: Let U = {g,g'} where g is generic and g' is non-

generic. Then, tst(U) = {id^} ust(g') = st(g') =j= {Id^}. 

Since g, g' do not lie in the same Diff(M)-orbit, we see that 

st(U) = {id^} C tst(U). Hence, U is II but not TI. 

4.3.2: Let U = Met^(M). Then tst(U) = {id^} and st(U) = Diff(M) 

Hence, tst C st(U), so that U is EI but not TI. 

+ 

4.3.3: Let g 6 Met(M), and let U = S be a slice of the 

(lower star) action through g^ (see section 4.1 for a discussion 

of slices). The two properties of a slice we require are 

(i) cj) 6 st(g^) implies ()) 6 st(U) and (ii) If cp G Diff(M) 

and 4^(U) U ^ 0, then tj) 6 st(g ). We now demonstrate that U 

is TI. Let g € U and (p G st(g). Then (j)̂ (U) ^ 0, so 

(|) e st(g ), by (ii). Property (1) now implies that <j) 6 st(U). 

Hence st(g) C st(U), for all g 6 U, so U is EI. Now suppose 

(p 6 st(U). Then (|)*(U) U = 0, so cj) 6 st(g ) C tst(U). Hence 

st(U) C tst(U). Hence st(U) C tst(U), so U is also II. We 

conclude that U is TI. 

Another example of a TI subset of Met(M) is the following: 

Let g 6 Met(M) and A 6 E."*" - {1} and put U = {g, Ag}. Then, 

since st(Ag) = st(g), tst(U) = st(g). Also, as is easily checked, 

<j) 6 st(U) if and only if ^ 6 st(g). Hence, st(U) = tst(U), and 

so U is 
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4.3.4: Let g 6 Met(M) be non-generic and i|j 6 Diff(M) 

- NormQ^^g^Q^(st(g)) such that (4ist(g))ri st(g)^ ^ = 0. 

Let U = {g,^^g} and, for convenience, denote st(g) by I. 

Then tst(U) = I 3 I 3 {Id^}. Suppose c() 6 st(U) . 

+ + 

Then, either (a) 4*g = g and **^*g = ^*g, or (b) **g = ^*g 

-1 
and = g. Case (a) Implies that cf) S I ̂  ) and 

-1 
case (b) implies that 0 € (4il) (Iip ). Thus, 

St(u) = (Iri u (14^^)). 

-1 

Now consider the interaction between tst(U) = I u ) 

and st(U) = (in (̂ lip ^)) ,̂ ((i()l)n (jip ^)). We will show that 
tst (U) ̂  st(U) and st(U) ̂  tst(U). 

Suppose (p € tst(U) - (iplip C tst(U) (Note that tst(U) 

-1 L 
- ) is non-empty because ^ Then 

0 6 1 and (j) $ ipl̂  In particular, (j) ^ I n (ipl̂  ^). Now 

suppose (j) 6 (ipl) ri (lij, ̂ ). Then there exist 6 I with 

- 1 

ipo(j)̂  = (j) = . But (f) 6 I and ip € I, so this leads to a 

contradiction. Hence cj) ^ (^I) (I4> ^) . We have shown that 

there exists (p 6 tst(U) with cj) ^ st(U). Hence tst(U) ̂  st(U). 

Conversely, let <j) € (^I) (î ; C st(U) . Then there 

exist 4']_ŝ 2 ® ^ with = (j) = ^. Since ^ 6 I, we must 

have (f) ^ I and (j) ^ Hence, 9 ^ tst(U) , so that 

st(U) ̂  tst(U). 
The subset U is therefore neither EI nor II, 

4.3.5: Let us now discuss how the group actions introduced in 

section 4.1 interact with the concept of EI. Recall that 

Aut(M) = Aut GL(M) = Diff(M) x Aut(TM) (see proposition (4.1)9 and 
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corollary (4.1)2). It will be convenient to work with the isomorph 

Diff(M) X Aut(TM) in this section. The group Aut(TM) acts on 

Met(M) via the generalized conformal action C (see definition 

(4.1)3) and any subgroup K of Aut(TM) acts on Met(M) by 

restricting C to K. We also have the push forward action A 

of Diff(M) on Aut(TM) by automorphisms (4.1.5), and A leaves 

invariant certain natural subgroups of Aut(TM). 

Recall that a K-conformal structure on M, K $ Aut(TM), 

is an orbit of K acting on Met(M). 

Proposition (4.3)1: Suppose K is an A-invariant subgroup of 

Aut(TM). Then a K-conformal structure is EI. 

Proof: K is A-invariant, so we have the action (also denoted 

by A) A 6 Hom(Diff(M), Aut(K)). Let us denote the action C 

restricted to K also by the letter C. Then, by a trivial 

modification of proposition (4.1)5, the actions A, (lower star), C 

are compatible. We may now use corollary (4.2)5 to deduce that any 

C-orbit (i.e. any K-conformal structure) is EI (recall that EI 

means everywhere (lower star)-invariant in this section) • 

Corollary (4.3)2: Conformal structures (section 6.2), generalized 

conformal structures (definition (4.1)4), SAut(TM) -, OAut(TM) -

4 -

and Aut (TM)-conformal structures are each EI. 

Proof: Put K = Aut(TM), SAut(TM), OAut(T%0 and Aut*(TM). 

Each of these subgroups is invariant under the A action of Diff(M) 

(see proposition (4.1)6 for the last three. The invariance of the 

first two is trivial) • 

We may also consider orbits of subgroups of Diff(M): 

Proposition (4.3)3: Let K c Diff(M). Then any K-orbit is EI. 
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Proof: K is a normal subgroup of Diff(M), so that the con-

jugation action of Diff(M) on itself restricts to an action 

conj 6 HomCDiff(M), Aut(K)). Trivially, the actions conj, 

(lower star), (lower Star)|K are compatible, so, by corollary 

(4.2)5, we deduce that any K-orbit is EI • 

In connection with the above proposition, we should make a 

remark concerning the normal subgroup structure of Diff(M). 

In fact, if we restrict our attention to Diff (M), the con-

nected component containing id^, then there don't exist any 

(non-trivial, proper) normal subgroups at all; Mather [M g ] 

has demonstrated that Diff (M) is simple. This is proved by 

first showing that the commutator subgroup of Diff (M) is 

simple, and then showing that Diff (M) is perfect (I.e. equal 

to its own commutator subgroup). Typically, therefore, we do 

not expect proposition (4.3)3 to generate many EI subspaces 

of Met(M). 

4.3.6: Let us now consider conformal structures in more detail. 

Let g 6 Met(M) and = {fg: f 6 C*(M)}, the conformal struc-

ture on M containing g. As usual (see section 6.2), 

Conf(M,g) 5 Conf(M,C ) denotes the conformal group (group of 
S 

conformeomorphisms of (M,Cg)). 

Let U = C . Then st(U) = Conf(M,g), and tst(U) = 

U st(fg). We have already demonstrated (see corollary 

fec*(M) 

(4.3)2) that U is EI. We now consider the II of U. For 

this, we use some results from the theory of essential conformeo-

morphisms. We use the definition of Obata [0 ^ ]. 

Definition (4.3)4: The subgroup G of Conf(M,g) is said to be 
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Inessential if there exists f 6 C (M) such that G $ st(fg). 

Otherwise G is said to be essential. 

It can be shown that any compact subgroup of Conf(M,g) is 

inessential (see Ishihara [1 AO ]). In particular, if M is 

compact, then st(g) is compact, so that a (closed) subgroup G 

of Conf(M,g) is inessential if and only if G is compact. 

Another sufficient condition for inessentiality Involves the 

Weyl tensor Weyl(g). Consider the pointwise norm H Weyl(g)l' ̂ . 

Under a conformal rescaling, g —^ fg, this norm changes by a 

factor f ^, so that II Weyl(g)ll g is invariant under conformal 

rescalings. Suppose Weyl(g) =f 0. Then II Weyl(g)ll g is a metric 

in the conformal class of g which is invariant under Conf(M,g). 

Hence, the non-vanishing of the Weyl tensor of g implies the 

inessentiality of Conf(M,g). Note that here we assume dim M 3 4. 

For dim M = 3, the Weyl-Schouten tensor may be used to obtain a 

similar result. 

Suppose Conf(M,g) = st(U) is inessential. Then there exists 

f 6 C*(M) such that st(U) = st(fg) C tst(U), so that U is II, 

and hence TI. Therefore, the above results may be utilized to 

deduce the following: 

For dim M 3 4 (dim M = 3), the non-vanishing of Weyl(g) 

(Weyl-Schouten(g)) for any (and hence all) g 6 U implies that 

U is TI. For M compact, if st(U) is compact, then U is 

TI. 

For completeness, we mention the following result concerning 

inessentiality (see Obata [O 2. ]); Conf (M,g) is essential if 

and only if (M,g) is conformally equivalent to (S^\can) 

(M compact) or (E^, can) (M non-compact). Here, Conf (M,g) 
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denotes the identity component of Conf(M,g). 

4.3.7: In general relativity, we are often interested in a family 

of metrics parameterized by some manifold F. Often, F is some 

function space, since, for example, solutions of the Einstein 

field equations sometimes depend on arbitrary functions. We ex-

hibit the parameterization by an embedding y: F ̂ M e t ( M ) . 

The metrics in U E y(F) are then of a given "functional form". 

The diffeomorphisms in st(U) are those which preserve the 

functional form of the family of metrics, i.e. (p 6 st(U) if 

and only if, for all f G F, there exists f 6 F such that 

(p^yCf) = y(f'). The total stabilizer of U is just the amal-

gamation of the isometry groups of all the metrics in U. 

Elements of st(U) were originally called FFI (functionally 

form invariant) transformations by d'Inverno and Smallwood ([12. ], 

[I"3 ]). The examples given in these two papers, for instance, 

the generalized Schwarzschild (given by y: c'^(M) > Met(M); 

f I fdt^ - f ^dr^ - r^ can, M = NxgZ with N C ]R̂  ) and the 

type {3,1} vacuum solutions with twist, illustrate the idea of 

a functionally parameterized family of metrics. Another example 

is analyzed in section 4.5 where we calculate st(U) for 

U = {pp-waves} using the invariance equation introduced in 

section 4.4. 

Other interesting families of spacetimes have been discussed 

in the literature. Moncrief [M13 ] considers the space of 

(generalized) Taub-NUT metrics on ]R x ŝ . This space is infinite 

dimensional and contains as a two dimensional subspace the space 

of Taub-NUT solutions. In a more recent paper [M 14-], Moncrief 

discusses vacuum metrics on the manifold ]R x B (B the total 
n n 
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space of an arbitrary S^-bundle over S^) which admit a spacelike 

isometry group isomorphic to S^. Again, an infinite dimensional 

family of metrics is obtained. We should also mention the work of 

Szekeres [SZS] in which he discusses solutions of Einstein's 

equations involving arbitrary functions, and he derives necessary 

and sufficient conditions for a solution of the vacuum Einstein 

equations to depend on an "arbitrary" functional on C(M). 

Having given several examples exhibiting EI and related 

properties, we turn now to a consideration of infinitesimal sym-

metries of a family of metrics. In particular, we discuss the 

so called invariance equation, which is a generalization of the 

Killing equation. 

4.4 The Invariance Equation 

In this section, we shall study certain infinitesimal aspects 

of the action of the diffeomorphism group on the space of metrics. 

In order to find symmetries of a family of metrics, in particular 

the isometries of a single metric, we often have to resort to finding 

infinitesimal symmetries (i.e. vector fields which generate local 

symmetries), and then integrating to find the corresponding global 

symmetries. In the particular case of a single metric, the pro-

cedure involves solving the Killing equation to find infinitesimal 

isometries or Killing vector fields. In this section, we generalize 

the Killing equation in order to deal with an entire family of 

metrics. In the following section, we use this "invariance equa-

tion" to find the symmetries of a particular family of metrics, 

namely the pp-wave solutions of Einstein's equations. 
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Before considering the invariance equation, we give a brief dis-

cussion of the infinitesimal structure of the diffeomorphism group. 

For a thorough discussion, we refer the reader to Adams et al. 

[A 3 ]5 Hamilton [H 2, ], Milnor [M g ] and Ratiu and Schmid [R2^] . 

As is explained in these references, for technical reasons, we 

should assume that M is compact. In the non-compact case, there 

exist incomplete vector fields, so that the space of vector fields 

is too large to be the Lie algebra of the diffeomorphism group -

incomplete vector fields cannot be globally integrated. On the 

other hand, the set of complete vector fields isn't even closed 

under addition, and so it certainly can't be regarded as the Lie 

algebra of Diff(M). One solution is to utilize Dlff (M), the 

group of diffeomorphisms of compact support, with corresponding 

Lie algebra Vect (M), although this appears to be rather a res-

triction. 

Let M be a smooth, connected, (compact), n-manifold without 

boundary. Diff(M) is an open subspace of C(M,M) and thus possesses 

tangent space: 

T^Diff(M) = Vect (M) 5 {X 6 C(M,TM): noX = *} 4.4.1, 

for all (f) 6 Diff (M) . Here, it: TM — M is the tangent bundle of 

M. In particular, the tangent space at id^ is just Vect(M), 

and this is the vector space underlying the Lie algebra, L Diff(M). 

To calculate the Lie algebra product, we need to consider the space 

of left invariant vector fields, Vect^(Diff(M)), on Diff(M): 

First let us consider the composition map given by 

comp: Diff(M) x Diff(M) —s- Diff(M); ^ (pojp 4.4.2, 
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for all (l),<p e Diff(M). This map is differentiable (see Irwin 

[15 ]) with derivative given by: 

(Dcomp(#,^).(V,W))(x) = D*(^(x)).W(x) + V(^(x)) 4.4.3, 

for all X e M, (V,W) 6 ^)(Diff(M) x Diff(%0) = Vect (M) @ Vect^(M) 

and (4>,ip) G Diff(M) x Diff(M). The partial maps of comp are just 

left and right multiplication in the Lie group Diff(M): 

L^ = comp(*,') and R = comp(',^), for all 6 Diff(M). Ex-

tracting the partial derivatives from equation 4.4.3, we obtain 

(DL (^).W)(x) = D#(^(x)).W(x) 4.4.4, 

for all X 6 M, W 6 T^ Diff(M) 5 Vect^(M) and ip,(j) 6 Diff(M), and 

DR. (*).V = V o ^ 4.4.5, 

for all V 6 T,Diff(M) = Vect,(M) and 6 Diff(M). 
9 9 

The usual isomorphism of the tangent space at the identity onto 

the space of left invariant vector fields is given by 

X: Vect(M) Vect^(Diff(M)); X E A(X); 4 I » DL (Id^).X. 

Using equation 4.4.4, we see that (X̂ (<j)))(x) = D#(x).X(x) 

= (0*X)($(x)). Hence, we obtain: 

X^(*) = (**X) o * 4.4.6, 

for all cj) e Diff(M), X 6 Vect(M). 

The Lie algebra of Diff(M) is the vector space T Diff(M) 
^ M 

= Vect(M) equipped with the Lie algebra product obtained by pulling 

back the Lie bracket on Vect^(Diff(M)) $ Vect(Diff(M)) using the 

(vector space) isomorphism A. This product may be calculated as 

follows: 



-330-

Fix X G Vect(M) and let a 6 Horn(]R, Diff(M)) be the 

unique 1-parameter subgroup of Diff(M) satisfying = X^(a(t)) 

Then, by analogy with the theory of finite dimensional Lie groups, 

we put exp(X) = a(l), so that exp(tX) = o(t). 

We may write the differential equation for a as 

o(t) = (G(t)*x) o o(t) 4.4.7, 

where we have used equation 4.4.6. The ordinary differential equa-

tion 4.4.7 possesses a unique solution satisfying cf(0) = id^ (just 

evaluate 4.4.7 at an arbitrary point in M and use the standard 

existence and uniqueness theorem of Picard) . Now let be the 

1-parameter group of diffeomorphisms generated by X, i.e. 

t()̂  = X o and (j)̂  = idĵ . Since [X,X] = 0 , we have 

(p X = X, so that (p = ((f).J.X) o (j) Hence, we must have 
t* t U* t 

o(t) ~ 't>J.- have demonstrated that the 1-parameter subgroup 

corresponding to X (qua element of LDiff(M)) coincides with the 

1-parameter subgroup of diffeomorphisms generated by X (qua 

vector field on M). We deduce that: 

exp(tX) = (|) 4.4.8. 

Now consider the adjoint representation of Diff(M) on Vect(M). 

This is given by Ad, = Dconj,(id ) = D(L, ° R )(id^) 6 GL(Vect(M)). 
9 9 M 9 ^-1 M. 

Hence, (Ad,(X))(x) = (DL,(*"1).DR T(id_p.X)(x) 
9 (p ^ - 1 JM 

= (DL̂ (<j) ̂ ) . (Xo(j) ̂ ))(x) = D(j)((p (̂x)).X((j) ̂ (x)) (using equations 

4.4.4, 4.4.5) = (0*X)(x), for all x 6 M, X 6 Vect(M). Thus, we 

have: 

Ad = 4>,v 4.4.9, 

for all (j) € Diff(M). 
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The mapping Ad: Dlff(M) —>- GL(Vect(M)) is a homomorphism of 

Lie groups, and its derivative at the identity is therefore 

a homomorphism of Lie algebras. Regarding Ad as an action, this 

homomorphism is just the infinitesimal generator, and is denoted by 

ad = DAd(id^) 6 Hom(Vect(M), gl(Vect(M))). We have ad (Y) 

dt ^^exp(tX)(Y) t-o ' 
(where {# } is the 

t=o t 

1-parameter group of diffeomorphisms generated by X, and we have 

used equation 4.4.9)= - L^Y (see equation 1.6.1) = - [X,Y], for 

all X,Y € Vect(M). Here [,] denotes the usual Lie bracket of 

vector fields. However, the Lie algebra product on Vect(M) in-

duced by the isomorphism X ; X (—»- (4.4.6) is given by 

= A ^([X^,Y^]) = ady(Y), where the last equality 

follows from a calculation identical to the one in finite-dimensional 

theory. Thus, we have demonstrated that ~ ~ 

for all X,Y 6 LDiff(M) E Vect(M), i.e. the Lie algebra of 

Diff(M) is Vect(M) equipped with the Lie algebra product given 

by the negative of the usual Lie bracket of vector fields. Note 

that we have followed convention by using left-invariant vector 

fields on the Lie group. Had we utilized right-invariant vector 

fields, there would have been no sign difference between the Lie 

bracket coming from the Lie group structure of Diff(M) and the 

Lie bracket of vector fields in Vect(M). 

We remark that the structure of Diff(M) is much more complex 

than that of other infinite dimensional Lie groups such as C(M,G) 

(G a finite dimensional Lie group) or Gau(P) (P a principal 

bundle over M). For example, in the former case, the exponential 

map is given by exp: L(C(M,G)) 5 C(M,LG) —> C(M,G); g t—exp^og, 



-332-

for all g 6 C(M,LG). Here, exp^ denotes the exponential map of the 

Lie group G. The map exp possesses a local inverse (constructed 

using the inverse of exp^) and is a local homeomorphism near the 

identity of C(M,G). Using this natural local coordinate system, 

the group C(M,G) can be given an analytic structure. This struc-

ture comes entirely from G and therefore exists even if M is only 

smooth. 

In contrast, Diff(M) possesses no canonical chart about the 

identity and is certainly not analytic. We have the exponential 

map, exp: Vect(M) —^ Diff(M), given by equation 4.4.8, but this 

is far from being a local homeomorphism. Indeed, there exists no 

neighbourhood of id^ onto which exp maps surjectively, so that 

there are diffeomorphisms arbitrarily close to the identity which 

are not on any 1-parameter subgroup. There are also diffeomorphisms 

which are on many 1-parameter subgroups. A demonstration that 

exp: Vect(S^) —>• Diff(S^) is neither locally injective nor locally 

surjective is given on p. 28 of Pressley and Segal [P'lf ]. A 

consequence of the fact that exp is not locally surjective is that 

it is not (by the inverse function theorem); it is only con-

tinuous . 

Having discussed certain aspects of the Lie group structure 

of the diffeomorphism group, we return now to its action on Met(M) 

by (lower star). For fixed g 6 Met(M), the stabilizer of g 

under the action is st(g) = Isom(M,g), the isometry group of g, 

and this is a Lie subgroup of Diff(M) of dimension at most 

2n(n+l) . A dif feomorphism (j) is an isometry of g if and only 

if (j) = ^|o(M,g) 6 Aut 0(M,g). Indeed, any automorphism of 

0(M,g) which leaves invariant (the restriction of) the canonical 
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1-form 0 (and hence the Levl-Civit^ connection 1-form LC(g)) 

is the lift of an isometry of g. For each u 6 0(M,g) we have the 

embedding 1^: Isom(M,g) »0(M,g); cj) I (̂j)(u), so we may re-

gard Isom(M,g) as a (closed) submanifold of 0(M,g). 

At the infinitesimal level, we have the concept of a Killing 

vector field or infinitesimal isometry. A Killing vector field X 

is a vector field whose corresponding local 1-parameter group {# } 

of local diffeomorphisms consists of local isometries. If M is 

compact, then every vector field is complete and generates a 

global 1-parameter group of diffeomorphisms. If M is non-compact, 

then there exist incomplete vector fields whose local 1-parameter 

group cannot be extended to a (global) 1-parameter group of diffeo-

morphisms. However, if (M,g) is a complete Riemannian manifold, 

then every Killing vector field is complete. 

In any case, the Lie algebra of Isom(M,g) is naturally iso-

morphic with the Lie algebra of all complete Killing vector fields. 

In particular, if (M,g) is complete, then LIsom(M,g) can be 

identified with the Lie algebra of all Killing vector fields. 

The differential equation characterizing Killing vector fields 

is L^g = 0 (obtained by differentiating = g, where {cj) } 

is the 1-parameter group of diffeomorphisms generated by X). 

Using the relation L^ 5 0 (on any space of tensor 

fields), we see that L g = 0 implies that X is a Killing vector 

field. 

Another characterization of Killing vector fields is obtained 

if we consider the lifted vector fields on the frame bundle; 

Let X 6 Vect(M) with (local) 1-parameter group of (local) diffeo-

morphisms We define X G Vect GL(M) by: 
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4.4.10, 
t=0 

for all u 6 GL(M). Using the fact that ij) 6 £(Diff(M)) = stab(9) 

$ Aut GL(M) (see appendix 6.1), it is straightforward to show that 

(i) (R^)^ X = X, for all a 6 GL(n,E.); (ii) L^0 = 0; and 

(iii) Dit(u).X(u) = X(tt(u)), for all u 6 GL(M) (Note that we are 

using TT to denote both the tangent bundle and the frame bundle in 

this section). Conversely, given X 6 Vect GL(M) satisfying (i) , 

(ii), there exists a unique X 6 Vect(M) satisfying (iii). The 

vector field X is called the natural lift of X to the frame 

bundle. Let us also denote by X the restriction of X to any 

submanifold, in particular any sub-bundle, of GL(M). 

It can be easily seen that X € Vect(11) is a Killing vector 

field of (M,g) if and only if X is tangent to 0(M,g) at 

every point of 0(M,g), i.e. the restriction of X actually defines 

an element of Vect 0(M,g). These, and other, results concerning 

isometries and Killing vector fields are given in Kobayashi and 

Nomizu [K ̂  ]. Similar results may be shown for a conformal structure; 

here, we have conformal Killing vector fields generating (local) 

conformeomorphisms which satisfy the conformal Killing equation, 

L„g + hg = 0 (h € C(M)), and whose lifts are tangent to the con-

formal frame bundle (see section 6.2 and Poor [P 1<a]). 

We now consider families of metrics more general than {g} 

and C = {fg: f 6 C (M)}. First, we introduce some notation; 

Definition (4.4)1: Let U be a submanifold of Met(M), and, as 

usual, let st(U) = {cj) 6 Diff(M): d).,.g 6 U, for all g 6 U}. Let 

K(U) = {X 6 Vect(M): C st(U)} and 

L(U) = {X G Vect(M): L^g S T U, for all g G U}. We refer to 
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K(U) as the space of generalized Killing vector fields-

Proposition (4.4)2: K(U) C L(U), 

Proof: Let X 6 K(U), and fix g 6 U. We define the curve: 

I m -^-U; t Then 

6 T U, so that X 6 L(U). t=0 dt 11=0 

Hence, K(U) C L(u) O 

Particularly important submanifolds U of Met(M) arise when 

we consider parameterized families of metrics. Let F be a mani-

fold, and YS Erab(F,Met(M)), so that U = Y(F) is a family of metrics 

parameterized by F. As in section 4.2, we have the map 

(lower star)^: st(U) —^ Diff(F) defined by cj) i—̂  y = y 

-1 

(where y denotes the inverse of y, mapping U onto F). In 

this case, we have L(U) = {X 6 Vect(M); L^(y(f)) 6 for all 

f € F} = {X e Vect(M): for all f 6 F, there exists \i 6 T^F such 

that L^Xy(f)) = Dy(f).|j}, using the fact that T = Dy(f)(T^F). 

Definition (4.4)3: Let y be as above. We say that X G Vect(M) 

satisfies the invariance equation for y if, for all f 6 F, there 

exists y 6 T^F such that 

L^(y(f)) = Dy(f).u 4.4.11. 

We see that L(y) = L(y(F)) is the solution space for the 

invariance equation for y. In particular, since K(U) C L(U) 

(proposition (4.4)2), any vector field X in K(U) must satisfy 

the invariance equation 4.4.11. In fact, suppose X G K(U). Then 

{cj)̂ } C st(U), so we have y^ E y 6 Diff(F). Let f 6 F and 

U Yc(f) 6 TfF. Then, Ly(y(f)) = - jiaCyCf)) 
t=0 t X dt t t=0 
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= - DY(f).(^^ Yr(f) 
t=0 

) = DY(f).M, showing 
t=0 

explicitly that K(U) C L(U) in this case. 

Note that, in the case of F being an open subspace of a 

(topological) vector space, the invariance equation reduces to the 

FFI equation of d'inverno and Smallwood [1 2^ ]. 

In general, K(U) ^ L(U), i.e. there will exist vector fields 

on M satisfying the invariance equation which do not generate sym-

metries of U. The two cases mentioned above, namely, U = {g} (so 

F = {*}) and U = C 5 {fg: f G (an orbit of the group 

C^^M) = F), ^ satisfy the condition K(U) = L(U). In fact, these 

two cases are particular instances of a more general class of em-

beddings Y for which K(U) = L(U) (U = Y ( F ) ) : 

Proposition (4.4)4: Let F be an abelian Lie group and 

C 6 Hom(F,Diff(Met(M))) a free action of F on Met(M). Suppose 

9 6 Hom(Diff(M), Aut(F)) is such that 9, (lower star), C are com-

patible (see 4.2.1). Then, any C-orbit U is such that K(U) = L(U) . 

Proof: Fix g € Met(M) and let U = Fg be the C-orbit containing 

g. Define y: F Met(M) by Y(f) = C^(g), so that 

Y 6 Emb(F,Met(M)) and y(F) - U. 

We have K(U) C L(U) by proposition (4.4)2, so we must prove 

that L(U) C K(U). Suppose X 6 L(U). Then X satisfies the in-

variance equation for y (4.4.11), so that, for all f 6 F, there 

exists y 6 T^F such that L^(Y(f)) = DY(f).y. We must now inte-

grate this equation. 

Let {(})̂ } be the 1-parameter group of diffeomorphisms generated 

by X and fix f G F. Now we apply D(j)̂ .,.(Y(f)) : 

T xr\Met(M) —^ T Met(M) to the invariance equation. We obtain 
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D#^^(Y(f)).(L^XY(f))) = D^^^(Y(f)).DY(f).U. Now use the fact tlbat 

(|) : Met(M) —> Met(M) is the restriction of a linear map on S^CM), 

s o C h a t , f o r a l l g' 6 M e c ( M ) , t o o b t a i n ; 

^ D(* oY)(f).p, so that °Y)(f)) 
L* A Z-k at t* 

+ D((f)̂ _̂ °Y) (f)-y = 0. Now note that, for all f G F, ((j)̂  °Y)(f') 

= = (*r °Cr,r-l)(C_(g)) = (* ocY(^))(f'f (where 
c* 1 c* z r r L* 

C® : F —> Met(M); f I—+ C^,(g'), for all g' 6 Met(M)) 

= R£_]_)(f'), where R^_i is right multiplication by 

(in F). 

The compatibility of 0,(lower star),C means that 

4)* °Cg, o**' = Cg (f)' for all f 6 F and c|) 6 Diff(M). Let 

* e' 
g' € Met(M). Then 0*(Cg,(g')) = Chat 0*(C (f')) 

= (8^(f')), for all f' 6 F. Hence, *.°cG = C**B'o8^, for 

all 4 € Dlff(M), g' 6 Met(M). 

Returning now to our calculation, we see that (4i&°Y)(f') 
4f*(Y(f)) 0_(t) 

= (C o 8 o R )(f'), so * o Y = C °8 o R 
f-1 C* 9^ g-1 

where a^; t —>• ((f)̂ _°Y)(f) 6 Met(M). Therefore the application of 

D<f) (Y(f)) to the invariance equation results in o^(t) 
t* a (t) dt t 

+ D(C ° 0 o R )(f).y = 0, which we write as: 
f-1 

. oY(t) 
Cf(t) - DC = 0 4.4.12, 

where 

a^; t - f D(8^ o R T)(f).v ds G LF 4.4.13, 
f J f-1 

o 

where LF denotes the Lie algebra of F. 

To summarize our proof so far; X 6 K(U) implies that, for all 

f 6 F, there exists y € T^F such that the curve in Met(M) 

given by: 
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o^(t) = oY)(f) 4.4.14, 

satisfies the ordinary differential equation 4.4.12. The usual 

existence and uniqueness theorem for solutions of ordinary dif-

ferential equations (Picard's theorem) shows that 4.4.12 possesses 

a unique solution satisfying o (0) = y(f). 

We now obtain a solution of 4.4.12; Let the curve in 

Met(M) be defined by x^ = y o ° exp o a , where exp: LF —» F 

is the exponential map of the Lie group F. Note that x^(0) = y(f). 

We now demonstrate that x^ satisfies equation 4.4.12: 

Tf(t) j X^Xt) 
We have DC ^ (exp(sa^(t))) 

d 

s=0 

° ""-expCsijCt)) -"t ° ° ° £ " " L . 0 

C^T o Y = Yo L , , for all f G F, where L is left multiplication 

s=0 

in F) = . Rj . 

= D(Y.Rj,)(exp(aj,(t))). A ) (''"P (»f < t > > > 

8 = 0 

s=0 

s=0 
= D(Y°Rf)(exp(af(t))). 

= D(y.Rf)(exp(af(t))).DR2xp(o^(t)) (1). 

Now, recall that for any Lie group F, the derivative of the 

exponential map, exp: LF —^ F, is given by D exp(5) 

= DL (1) ° e(ad(C)): LF T for all g 6 LF. Here 
exp(C) exp(g) 

— — 1 —x ( • " ' x ) 
e(x) = X (1 - e ) denotes the power series E T^TTiTT (see 

r=0 ir+lJ. 

Helgason [H & ], p. 105). In our case, F is abelian, so that 

L = R and ad = 0. Therefore, D exp(g) = DR^^p^g^Cl), for all 
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G G LF. In particular, DR , = D exp(a_(c)), so that 
expia^Ct)) ^ f 

Tf(t) 
DC (1). o^Ct) = D(YoR^)(exp(ag(t))).D exp(a^(t)). o^ft) 

= ^(y°Rg ° exp ° a^)(t) = T (t). 

We have shown that satisfies the equation 

?f(C) 
Tg(t) - DC (1). a (t) = 0. But this is precisely the equation 

4.4.12. Therefore, since t^(0) = yff) = o (0), we must have 

= x_p, i.e. (j) (yCf)) = y(f exp(a^(t))), for all t 6 I C ]R, 
r r c* I — 

f 6 F, Hence, {<}).} C st(U) (U 5 y(F)), so that X 6 K(U). 
L — 

This concludes the proof that L(U) C K(U), and so we have 

that K(U) = L(U) O 

The infinitesimal aspects of EI and II (section 4.2) may be 

stated as follows: 

Proposition (4.4)5: Let U be a submanifold of Met(M). If U 

is EI, then K(U) contains all Killing vector fields of all metrics 

in U. If U is II, then for each vector field in K(U), there 

exists a metric in U for which the given vector field is Killing. 

Proof: Suppose that U is EI, and let X be a Killing vector 

field for some metric g 6 U. Then } $ st(g) C tst(U) C st(U), 

so that X 6 K(U). 

Now suppose that U is II, and let X 6 K(U). Then, 

{4/,} C st(U) C tst(U), so that there exists g G U with 

g st(g). i.e. there exists a metric in U for which X is a 

Killing vector field • 

The EI part of the above proposition is especially useful, 

for, since K(U) C L(U), it means that by completely solving the 

invariance equation (4.4.11) for an EI submanifold U = y(F), 
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we can find all Killing vector fields of all individual elements of 

U. These vector fields may then be exponentiated to give the iden-

tity components of the isometry group of all metrics in U. Since 

the invariance equation is often easier to solve than an individual 

Killing equation (due to the extra degrees of freedom available), 

the idea of embedding a particular metric in an EI submanifold of 

Met(M) provides a practical method for finding symmetries of par-

ticular metrics on M. An example illustrating the use of the in-

variance equation for finding the isometries of a particular family 

of metrics is given in the following section. 

To conclude this section we consider the frame aspects of the 

invariance equation since, in applications, it is often more con-

venient to consider frame components of a metric rather than com-

ponents with respect to local coordinates. 

Note that, for U a submanifold of Met(M), we may define 

a submanifold 0(M,U) of 0(M) by: 

0(M,U) = {(g,u) 6 0(M) : g 6 U} 4.4.15, 

so that 0(M,U) may be regarded as the restriction of the canonical 

0(n)-bundle to the submanifold Ux M of Met(M) x M. Regarded in 

this way, 0(M,U) 5 0(M) |(U x M) is a principal 0(n)-bundle over 

U X M. 

The semigroup st(U) C Diff(M) ̂ Aut(M) acts on 0(M,U) by res-

tricting the action given by proposition (4.1)11 (this action is 

just the left version of the restriction of S (4.1.25) regarded 

as a semigroup action, and is given by (4^(g,u)) I ^ (#*g, 

for all (cj), (g,u)) 6 st(U) x 0(M,U)). 

If U = {g}, then 0(M,U) = {g} x 0(M,g) = 0(M,g) and is 
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acted upon by st(U) = Isom(M,g). If U = C = {fg: f G c"'"(M)}, 

^ I I 

then 0(M,U) = | | 0(M,fg), and is acted upon by st(U) 

f 6 C*(M) 

= Conf(M,g) (Cf. 4.1.18 with F = E ). By collapsing the 

disjoint union 0(M,C ) to the set union, we obtain the conformal 

frame bundle of (M,C ) (see definition (6.2)2), which has the 

structure of a CO(n)-bundle over M. 

By generalizing C to an arbitrary submanifold U of Met(M) 

we may obtain an analogue of the conformal frame bundle: Let 

Q(U) = U 0(M,g) C GL(M) and define a surjection by 
gGU 

prg : 0(M,U) -+ Q(U); (g,u) u 4.4.16, 

for all (g,u) 6 0(M,U). Note that prg^Cu) = {g € U: u 6 0(M,g)} 

and that the action of the semigroup st(U) projects to an action 

on Q(U). 

Returning now to infinitesimal symmetries, we have the following 

result: 

Proposition (4.4)6: Let U be any submanifold of Met(M). Then 

the lift of K(U) is a space of vector fields contained in Vect 0(U) 

Suppose U is EI, then X 6 Vect 0(M,g) for some g G U implies 

that X € K(U). Now suppose U is II, then X G K(U) implies 

that there exists g 6 U such that X 6 Vect 0(M,g). 

Proof: Let X G K(U). Then C st(U). Fix u 6 Q(U) and let 

^ X X 
g G U such that u 6 0(M,g). Then, putting u = (|)̂ (u),gj. = 4 

y 

we have u^ G 0(M,g^) for all t G I. But tj)̂  G st(U), so that 

g^ 6 U. Hence, t t—> u defines a curve in Q(U) . Now, 

X(u) = 
du^j 

(see equation 4.4.10) = — — 6 T Q(U). 
t=0 c=o " 

Hence X G VectQ(U). 
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Now suppose U is EI, so that tst(U) C st(U). Let g 6 u 

and X 6 Vect 0(M,g). This implies that X is a Killing vector 

field for g and hence X G K(U) (by proposition (4.4)5). 

Finally, suppose U is II, so st(U) C tst(U). Let 

X G K(U). Then, by proposition (4.4)5, there exists g G U such 

that £, st(g). Hence X € Vect 0(M,g) • 

We now obtain a frame version of the invariance equation for 

Y: F Met (M) . For U = Y(F), let q : Q(U) — M be the res-

triction of tt: G L ( M ) — M . Note that q, in general, is not a 

bundle, but, nevertheless, we shall refer to maps s: W —^ Q(U) 

(W open in M) such that q ° s = id^, as local sections of q, 

and denote the space of such maps by r(Q(U)|w). 

Definition (4.4)7: Let y 6 Emb(F,Met(M)) and U = y ( F ) . We 

say that y is frame friendly if, for each W open in M, y 

induces a differentiable map y ; F— ^ r ( Q ( U ) | w ) such that 

(y(f), y(f)(x)) 6 0(M,U), for all x G W, f 6 F . We call y 

a frame map associated with y. 

We remark that there may exist more than one such y for a 

frame friendly y- Embeddings y which arise as orbit maps of 

natural groups are frame friendly, and admit a unique natural 

frame map. For example, for y an orbit embedding of Aut(M), 

Y is essentially given by equation 4.1.18. 

Note that, if y is frame friendly, then we may transfer all 

F-dependence to the local n-bein and write: 

Y(f)|W = n^^8^(f) 0 6^(f) 4.4.17, 

where = diag(l,...,1, -1,...,-1) G S(p,q; ]R) and {9^(f)} 

is the n-bein dual to {e (f)} = Y ( f ) 6 r ( 0 ( M , Y ( f ) ) | w ) , for all 
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f 6 F. 

Now, suppose Y is frame friendly, and fix a frame map 

y: F —^ r(Q(U ) |w) for some open W in M. Let X 6 L(U), so 

that X satisfies the invariance equation (4.4.11). Putting 

y(f) = y(f ) | w , the invariance equation implies that 

Lx(nab8*(f) 8 = D(f' 8 so that 

nay(l%8*(f)) 8 e^^f) + nab8*(f) 8 (lx8^(f)) = 8 e^^f) 

+ ^ay8^Xf) 8 (D8^(f).p). Now define = Ly^^(f) - D8^(f).%, and 

then the invariance equation implies that: 

n 1 8 8^ + n ,8^ 8 0^ = O 4.4.18, 
&u &b 

where we have suppressed the f-dependence. If we now define 

>, equation 4.4.18 becomes 

n, + 0^, n = 0 4.4.19, 
be a b ca 

so that (0^^) takes its values in LO(p,q). 

Conversely, if, for all f G F, there exists y € T^F and 

X 6 Vect(M), such that 9,̂ ^ = <L^^^(f) - D8^(f).y, e^> satisfies 

equation 4.4.19, then X satisfies the invariance equation for y 

and therefore is an element of L(U). 

We refer to equation 4.4.19 as the frame equation for y (and 

W C M), and this equation is equivalent to the invariance equation 

for y. Note that the frame equation is satisfied if L^8^(f) 

= De^(f).p for some y 6 T^F, f S F. 

Having considered various aspects of the invariance equation in 

this section, we now use this equation to derive the isometries of a 

family of solutions of the Einstein equations. 
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4.5 The Invarlance Equation and Isometrles 

In this section, we consider a specific example of a para-

meterized family of metrics arising in general relativity, namely 

the pp-wave solutions of Einstein's equations. After a brief dis-

cussion of this family, we utilize the invariance equation of 

section 4.4 to derive its symmetries. The calculation we perform 

is a good illustration of how the invariance equation provides a 

simple method of finding the Killing vector fields of a family of 

metrics, and also of how such vector fields may be exponentiated 

to give isometries. 

The class of metrics that we wish to investigate is the 

plane-fronted gravitational waves with parallel rays, or pp-waves 

for short. The example has been chosen both for its important 

physical significance and for its geometrical simplicity. The class 

also fits into a more general framework of pure radiation fields 

in general relativity. For more details concerning the relationships 

between pp-waves and other exact solutions, and for generalizations 

(for example the charged case and the Siklos-Lobachevsky plane 

waves), see Ehlers and Kundt [£1*7"] and Kramer et al. [KiS ]. 

Definition (4.5)1: A pp-wave is a vacuum solution of the Einstein 

equations admitting a covariantly constant null vector field. i.e. 

A pp-wave is a spacetime (M,g) such that Ric(g) = 0 and there 

exists k 6 Vect(M) such that II kll̂  = 0 and V k = 0. 
g g 

The null congruence generated by the vector field k is normal, 

non-shearing and non-expanding; the reason for the term plane-

fronted. Furthermore, this congruence is also rotation free (since 

V k = 0) and this is the reason for the term parallel rays. We 

refer to Ehlers and Kundt [E •/'?- ] for several other characterizations 
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of pp-waves. 

We remark that the work of Brinkman [B 90 ] on conformal trans-

formations of Einstein spaces also leads to a characterization of 

pp-waves. This may be stated as follows: Suppose (M,g), (M,fg) 

+ + 
( f e e (M)) are nonflat, vacuum spacetimes. Then, either f 6 ]R 

+ 

$ C (M), or g, fg are both pp-waves. In other words, nonflat, 

non-homothetically related vacuum spacetimes in the same conformal 

class are necessarily each pp-waves. A similar result is given by 

Eardley et al. [E Q, ]• A generalization of the Brinkman theorem 

to the non-vacuum case is given by Hall and Kendall ]. 

It can be shown (see Ehlers and Kundt [E j) that any pp-

wave metric must be (locally) of the form 

g = 2(dzdz - dudv - Hdu^) 4.5.1, 

where H is a v-independent function such that, for each u, 

H(z,u) is the real part of an arbitrary holomorphic function of z. 

Let F denote the manifold of such functions H, and define 

y: F —>• Met (M) such that the image of H under y is the metric 

4.5.1. Let U = y(F) denote the space of pp-wave solutions -

U is a space harameterized by the arbitrary functions H. 

We now solve the invariance equation for y (see equation 

4.4.11). An equivalent approach would be to solve the corresponding 

frame equation (4.4.19) using the frame map H i—̂  y(H) 

3 9 3 3 3 3 
= ( — , — , H — » %—) (note that k = — ) , but here we shall 

3Z — dU dV dV dV 
dZ 

utilize the "coordinate" version. 

Suppose X 6 L(U), so that for all H 6 F, there exists 

y e T^F such that L^(y(H)) = Dy(H).p. We label the coordinates 
fi A 

(x^,x^,x^,x^) = (x,y,u,v), where z = — (x+iy), so that 

/2 
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y ( H ) = (dx*) + (dx^) - Zdx^dx^ - 2H(dx^)^. Recall that, for all 

S 6 Met(M), X e Vect(M), (Lxg)*^ ^ xCgat,; + Sbc %"'a + Sac %'b ' 

where comma denotes partial coordinate derivative. Letting L = L g, 

we obtain: 

^11 ^ ,1 = 0 4.5.2, 

^12 = + X^'2 " ° 4.5.3, 

5 -2HX3,^ - X4,^ + xl, = 0 4.5.4, 

E - X3,^ + = 0 4.5.5, 

1^2 = 2X^,2 = 0 4.5.6, 

L g ] E -2HX3,2 - X4,2 + X * , ] = 0 4.5.7, 

5 - x3,2 + X2, = 0 4.5.8, 

^33 
2XH - 4HX3,2 - 2x4,^ = -2% 4.5.9, 

E - x3,2 - 2HX3,^ - X^,^ = 0 4.5.10, 

5 - 2X3,^ = 0 4.5.11. 

We require that 4.5.2 - 4.5.11 hold for all H 6 F, so in 

order to solve these equations, we use the decoupling method; 

AH + B = 0, for all H 6 F, implies A = B = 0. Now, letting 

X s (X1,X2,X3,X4) = (a,6,Y,6), w e find: 

4.5.2 implies a 5 a(y,u,v); 4.5.6 implies 6 = 6(x,u,v); 

4.5.11 implies y = y(x,y,u); 4.5.4 implies y E Y(y,u) and 

9<S 9CT . , _ . . . / X J 36 33 , _ . _ . . . 
-r— = — ; 4.5.7 implies y = y(u) and — = T" I 4.5.10 implies 
9x 3u 3y 3u 

= 0; 4.5.5 implies a = a(y,u); 4.5.8 implies 6 E 6(x,u); 

and 4.5.3 implies . 
3x 3y 

The above may be summarized as follows: a = a(y,u), B = 6(x,u), 

/ \ , P _ R, \ . R 36 3A 35 33 
y = y(u) and 6 = 5(x,y,u,v) satisfy , 

"iv ^ ~ "fx ~ ~ "ly' These equations lead directly to the 

solutions a(y,u) = - by + c(u), g(x,u) = bx + d(u), 6(x,y,u,v) 

= - y'(u)v + c'(u)x 4- d'(u)y + a(u) , where b G H and a,c,d 
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are ]R-valued. The function y is, as yet, undetermined. 

We now transform back to (z,z,u,v)-coordinates and define 

e(u) = — (c(u) + id(u)), so e is (E-valued. The equation 
/2 

4.5.9 for y becomes ji = XH + 2y'(u)H + e"(u)z + e"(u)z 

- y"(u)v + a'(u), and noting that = 0, and so -|^ = 0, we 

have y(u) - cu + d for some c,d 6 H. 

The solution of the invariance equation is then: 

X = (ibz + e(u))~ + (-ibz + e(u))— 

+ (cu + d)—— + (e'(u)z + e'(u)z - cv + a(u) )-;r- 4.5.12, 
du dv 

and 

p = XH + 2cH + e"(u)z + e"(u)z + a'(u) 4.5.13. 

We now exponentiate the vector field X given by equation 4.5.12. 

Fix x 6 M with local coordinates (z ,z ,u ,v ), and let 
o o o o o 

t 1—> (|) (x ) be the integral curve of X with * (x ) = x . We 
c o 

need to solve 4r(x ) = X(^ (x )) with (p (x ) = x . Let 
d t c o t o o o o 

x(t) 5 with local coordinates (z(t), z(t), u(t), v(t)), and 

then we have: 

z = ibz + e(u) 4.5.14, 

z = -ibz + e(u) 4.5.15, 

u = cu + d 4.5.16, 

v = -cv + e'(u) z + e'(u)z + a(u) 4.5.17, 

where z(0) = z^, z(0) = z^, u(0) = u^ and v(0) = v . 

Equation 4.5.16 implies u(t) = (u^ + so that, using 

/ C I / , d , -ibt . -ibt ,X , d. ct d. , 
4.5.14, we have -^(e z ) = e e((u^+—)e - —) , and so 
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z(c) = e (z^ + e e((u + — - —)ds). Equation 4.5.17 
o c c ^ 

d , ct , ct. , d. ct d. , , , ,,, , d\ ct 
now gives (e v) = e (e ((u + ~ ) s - — ) z (t) + e ( (u^ + t)® 

o c 

d. ct ds 
—)z(t) + a((Ug + —)e - —)), and so 

v(t) = e ^^(v + (e'((ug + _ ^oz(r) + e'ccu^ + 

—)z(r) + a((u + — - —) ) dr) . 
c o c c 

Let us now make a change of notation; let a = e 

t 

-ct 

w = -^(l-e h(u^) = 
-lbs ,, , dL cs d- , , , 

e e((u 4 )e - —)ds; a = bt; and 
o c c 

g(u„) -
^jc+lb)r -lbs ,, , ds, cs d, , 

e e ((u 4 )e - —)ds 
o c c 

+ e'((u + i ) e " - i ) 
o c c 

lbs ,, , d. cs d. , 
e e((u 4 )e - —)ds 

o c c 

cit d c it d 

4- e a((u 4- —)e - —))dr. Note that we have suppressed the 

t-dependence of a,w,h,a and g. We now obtain: 

+ hcu^)) 

-la, 
e (z^ + hCu^)) 

a (u 4- w) 

aCv^ + h'(uQ)z^ + h'(uQ)zQ + g(u^)) 

4.5.18, 

4.5.19, 

4.5.20, 

4.5.21, 

Allowing the point = (z , z^, u^, v^) G M to vary, equations 

4.5.18 - 4.5.21 give the diffeomorphism (j) generated by the vector 

field X 6 L(U), i.e., for x = (z, z, u, v) 6 M, we have 

,X 
(x) = (e^°'(z4-h(u)) , e ^^(z+h(u)), a '̂ (u4-w) , a(v4-h'(u)z 4- h'(u)z -la 1, 

+ g(u)). 

Let us now calculate the change in the metric y(H') (some 
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y 

H' € F) under the action of the diffeomorphism c()̂  (fixed t) 

generated by X € L(U). The easiest way to do this is to re-

interpret 4.5.18 - 4.5.21 as giving a passive coordinate trans-

formation (z, z, u, v) ^ ( z ' , z ' , u', v') (where we have written 
xcx 

z for z and z' for z, etc.). We have dz' = e (dz + h'(u)du), 

dz' = e " (dz + h'(u) du), du' = a ^du, and 
dv' = a(dv + h"(u)zdu + h'(u)dz + h"(u) zdu + h'(u)dz + g'(u)du) 

Hence, y ( H ' ) = 2dz'dz' = 2du'dv' - 2H'(du')^ = 2dzdz - 2dudv 

2„, - 2(-|h'(u)p + h"(u)z + h"(u)z + g'(u) + a H')du2, since the 

terms involving dzdu and dzdu cancel. We now re-adopt an active 

X " 
viewpoint, and we see that (# ) y ( H ' ) = y ( H ) , where 

H' = a/(H - h"(u)z - h"(u)z + |h'(u)|2 - g'(u)) 4.5.22. 

To summarize the above; Any vector field X 6 L(U) (i.e. any 

vector field X satisfying the invariance equation for 

y: F —^ {pp-waves}) generates a 1-parameter group of diffeomorphisms 

X X 

given by equations 4.5.18 - 4.5.21. Moreover, each is 

actually a symmetry of the space of pp-waves, i.e. an element of 

st(U), mapping y ( H ) to y ( H ' ) , where H ' 6 F is given by equation 

4.5.22. In other words, we have shown that L(U) C K(U), and, since 

by proposition (4.4)2, K(U) C L(U), we have proved the following: 

Proposition (4.5)1: Let U denote the space of pp-waves (since we 

are essentially working locally, the underlying manifold may be 

taken to be an open submanifold of ]R^). Then K(U) = L(U), i.e. 

a vector field X generates a local 1-parameter group of local diffeo-

morphisms mapping any pp-wave to another pp-wave if and only if X 

satisfies the invariance equation for y: F = {h} —^ U. 

We now make several remarks concerning the above result: 
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(i) In solving the invariance equation for X € L(U), we have made 

essential use of the decoupling method. This method works only be-

cause we are considering an entire parameterized family of metrics. 

Solving the Killing equation for a given particular pp-wave is much 

more difficult than solving the invariance equation for the entire 

space of pp-waves; (ii) The symmetries 4.5.18 - 4.5.22 have been 

derived by alternative methods elsewhere in the literature. For 

example, see Ehlers and Kundt and Kramer et al. [K4% ] 

(our notation is essentially that of Kramer et al.); (iii) For 

given H ^ 0, the equation H' = H may be solved to give the iso-

metry group of y(M). This group always contains the diffeomor-

phisms with a = l , w = a = h = 0 and g = constant. Thus, the 

generic pp-wave admits a one dimensional isometry group (generated 

by k = — ); (iv) In order to investigate the symmetries of the 

pp-wave solutions in more detail, it is useful to restrict y t o 

various subspaces of F by considering functions H of a par-

ticular form. These various specializations are listed in table 

21.1 on p. 235 of Kramer et al. [K^g ], and show that for H =|= 0, 

all isometries of y(H) are contained in the semigroup of sym-

metries given by 4.5.18 - 4.5.21, i.e. the space of nonflat pp-

waves is EI. The maximal dimension of isometry group for y(M) 

(H 4 0) is six, and there exists a three parameter family of pp-waves, 

each of whose elements admits a six dimensional isometry group. Of 

course, the isometry group of Y(0) has dimension ten. 

The main point of this section is to demonstrate the usefulness 

of considering a space of metrics, rather than just a particular 

metric, when finding isometry groups. The advantage of this approach 

is reflected in the fact that the corresponding invariance equation 
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may be decoupled and therefore may be solved more easily. We also 

obtain the semigroup of diffeomorphisms leaving an entire family of 

metrics invariant. We have solved this problem for pp-waves, but 

obviously any other parameterized space of solutions of the Einstein 

equations may be treated in the same manner. This technique of 

using the invariance equation for finding isometries should there-

fore be a tool in the classification programme; if we ensure that 

the space of metrics U into which we embed the particular metric 

(or family of metrics) under consideration is EI, then proposition 

(4.4)5 implies that the space of solutions L(U) of the invariance 

equation contains all Killing vector fields of all metrics in U. 

In particular, by exponentiating L(U), we obtain the (identity 

component of) the isometry group of our original metric (or of the 

elements in a family of metrics). 

Having given a practical application of the invariance equation 

and of EI, we end this chapter with some suggestions for further 

investigations into these topics, and more generally into other 

natural aspects of the space of metrics on a manifold M. 

4.6 Further Investigations and Conclusions 

In this chapter, we have made various remarks concerning the 

structure of the space of metrics on a manifold M. Our under-

lying theme has been the idea of everywhere invariance, both in 

the sense of natural group actions leaving certain canonical struc-

tures invariant, and also in the sense of the specific concept 

introduced in section 4.2. We have given examples of how everywhere 
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invariance arises, and also how it may be applied to find the sym-

metries of a given family of metrics in general relativity. The 

topics discussed are therefore of interest not only from an abstract 

viewpoint, but also from a computational one. 

In this final section, we introduce several more ideas re-

lating to natural aspects of the structure of Met(M) and to 

everywhere invariance. These ideas are not yet fully developed, 

and they provide avenues for further investigation: 

4.6.1: In this chapter, when applying the ideas of EI and II 

(definition (4.2)1) to Met(M), we refer always to the action of 

Diff(M) on Met(M), i.e. to everywhere (lower star)-invariance. 

This is because we are particularly interested in 

= Isom(M,g), g e Met(M), and also in the manner in which the 

action of Diff(M) interacts with that of other groups acting 

on Met(M). Another possibility would be to consider every-

where A-invariance, etc., where A is another action on Met(M). 

For example, we have the natural action of Aut(M) (4.1.15) on 

Met(M), and also the restriction of this to subgroups of Aut(M) 

(one of which is, of course, (lower star)). Given A, we could 

ask whether or not parameterized families of metrics arising in 

geometry and general relativity are EI. Using an equation 

analogous to the invariance equation (4.4.11), we could then find 

stabilizers under the A-actlon as we did for the (lower star)-

action in section 4.5. 

4.6.2: Rather than considering a group other than Diff(M), as i n 

4.6.1, we could consider an alternative Diff(M)-space. For 

example, we could consider the everywhere A-invariance, etc., of 

(parameterized) submanifolds of r(B) , where B is a bundle over 
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M on which Diff(M) acts naturally, e.g. a tensor bundle. An 

embedding y - F r(B) gives us a parameterized space of sections 

of B and a corresponding invariance equation. Particular cases 

to consider would be families of maps from M into some other mani-

fold, families of vector fields and families of k-forms; in par-

ticular families of non-degenerate closed 2-forms in relation to 

symplectic geometry, and hence families of Hamiltonian systems. 

4.6.3: Returning now to the case studied in this chapter, namely 

the (lower star)-action of Diff(M) on Met(M), a complete 

characterization of EI and II submanifolds of Met(M) would be 

useful for practical calculations such as that given in section 4.5. 

Such a characterization might involve a detailed study of how EI 

and II interact with the structure of Geom(M) (or one of its 

resolutions). 

Further examples of invariant submanifolds may be found by 

considering interesting differential geometric ideas such as G-

structures. A Riemannian structure and a conformal structure are 

both EI, and these are both examples of G-structures. Do there 

exist other EI spaces of metrics arising from G-structures? 

4.6.4: Parameterized families of metrics arise in areas of 

physics other than classical general relativity theory, and the 

ideas of EI may also be applied here. For example, such spaces 

of metrics arise naturally in the Kaluza-Klein models: Let 

it: P —^ M be a principal G-bundle, and fix an Ad-invariant inner 

product k on LG. We then have the Kaluza-Klein map, 

KK: Met(M) x Conn(P) —>• Met(P); (g,w) I—> tt g # oj k (of course, 

we could also allow k to vary). We may regard the image of KK 

as a parameterized family of metrics on P. 
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For fixed (g,w) 6 Met(M) x Conn(P), the geometrical properties 

of the Riemannian submersion tt; (P,KK(g,w)) —^ (M,g) have been 

given by Wood [Wl1 ]. From a physical viewpoint, the Euler-Lagrange 

equation for the functional EHoKK (EH = Einstein-Hilbert; see 

1.6.19) constitutes the Einstein-Yang-Mills system on M, and the 

geodesies of (P,KK(g,w)) project down to paths of (Yang-Mills) 

charged particles on M, 

4.6.5: Given y: F Met(M), the invariance equation 4.4.11 

may be regarded as a generalized Killing equation. It would be 

useful to be able to write this equation as the Killing equation 

for some Riemannian manifold (E,G) related in some natural way 

to (M,F,y). One procedure is to take E to be the total space 

of a bundle over M with typical fibre F , and G a metric on 

E related to y. The simplest case is to take E = M x F with 

G G Met(E) defined by: 

G(x,f) = (y(f)) @ ^2 k)(x,f) 4.6.1, 

for all (x,f) 6 E. Here, k 6 Met(F) is to be specified subject 

* - 1 
to the requirement that k = k (y = y for all 

4 e st(U) (u E y(F)). 

For (p 6 st(U), let us define (() 6 Diff(E) by (j) = (4^y^). 

Then it is easily seen that cj) 6 Isom(E,G) . The infinitesimal 

version of this is as follows; Let X 6 K(U) generate 

and {(}) } C st(U), and define y 6 Vect(F) by y = y 
c — a a ac 

t=0 

X 6 Vect(E) by X(x,f)(h) = X(x)(h(.,f)) + yv(f)(h(x,.)), 

for all h £ C(E), (x,f) 6 E. Then = 0. In particular, if 

L(U) = K(U)5 then every solution X of the invariance equation 

for y induces a Killing vector field of (E,G) . 



-355-

To illustrate this idea, let us consider the conformal case: 

Fix g 6 Met(M), and define y: C^(M) — U = C ^ Met(M) by 

Y(f) = fg. Note that y U — C ^ ^ M ) is given by y ^(g') 

= ^ trace g', for all g' 6 U, so that: 

Y^/f) = ^ traceg(**g)4*f 4.6.2, 

for all f 6 c"^(M) , cp 6 st(U) s Conf(M,g). Let us write t((f)) 

1 -1 - 1 -1 
= - trace (**g), and note that * *g = ^ *(t(40 )g. 

Let us define k 6 Met(c"'"(M)) by: 

k(f)(h^,h2) 

n-4 

: ^ ^2^2 vol(g) 4.6.3, 

M 

for all h ,h 6 T C*(M) = C(M), f 6 C*(M). 

Lemma (4.6)1: y € Isom(C*(M),k), for all (j) 6 Conf(M,g). 

Proof: Let * 6 Conf(M,g); f 6 C*(M); h ,h2 6 T^C*(M). Then, 

(y^ k)(f)(h2,h2) = k(t(*)0*f)(t(^)0*h2, t(#)#*h2) (since 

n-4 

Dy,(f) = t(#)*^) = (t(0)**f) ^ (t(*)^*h2)(t(*)**h2)vol(g) 

'm 
n n-4 n n—4 

t(*)^ 0*(f ^ h.h_)vol(g) = 

m " 
n n-4 n n - 4 

f ^ hnh. vol(* ^)g) 
1 z 

* ^*(c(*)^)f ^ ^*(t(4) ^)vol(g) = 

m m 

f ^ h^hg vol(g) 

= k(f)(h^,h2). Hence, y k = k, for all (() 6 Conf(M,g) • 

The above remarks now lead us to consider the Riemannian 

manifold (M x C^\M),G), with G defined by 4.6.1 and k given 

by 4.6.3. Since L(U) = K(U) (the conformal Killing equation can 

be integrated - see proposition (4.4)4) we deduce that every con-

formal Killing vector field of (M,g) induces a Killing vector 
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field of (M X C*(M),G). 

More generally, suppose F is a Lie group and we have the 

following data;- (i) 9 6 Hoin(Dif f (M) , Aut(F)); (ii) For each 

g € Met(M), an inner product K on LF such that D8,(1)^K 
§ r " S 

= K , for all (j) 6 Diff (M) , and (iii) y 6 Emb(F,Met(M)) , 
V 

such that Ly (f)-l = Lg (f)-l ^ ^ F and 
(p cj) 

(j) 6 stCyCF)). We then define k 6 Met(F) by; 

kffich^.hg) = k^(2)(dl^_i(f).h^, dl _^(f).h2) 4.6.4, 

for all h^.hg 6 T^F, f 6 F. Then y k = k, for all (|) G st(U) 

(U = Y(F)):- We have (y^ k)(f)(h^,h2) = k(y (f))(Dy^^f).h^,Dy^(f).h2) 

- K^( f,ff8_i(l ) -D(Lg e^)(f).hj, D e _ j ( l ) . D ( L g o 9 ,) (f) .h^) 

(j) (fl (|) if) 

" *y(f)(D(8 °Lg (^)-lo 8^)(f).h^, D(8 ^,Lg o8^)(f).h2). 

Note that L 8^(f)-l = 8̂ , so that (y^"k)(f)(hi,h2) 

= Ky(^)(DL _^(f).h^, DL _^(f).h2) = k(f)(h^,h2), for all 

h^, hg 6 TgF, f 6 F, Hence y^k = k, for all (p 6 st(U). 

Again, we conclude that if L(U) = K(U), then any vector field 

satisfying the invariance equation for y induces a Killing vector 

field of (M X F, G) with G defined by 4.6.1 and k by 4.6.4. 

+ 
We obtain the conformal case by setting F = C (M), 8 = push forward, 

kg'fhi'hg) h^hg vol(g'), for all h^,h2 € LF, g' 6 Met(M), 

and y(f) = fg for all f € C (M), and g some fixed element of 

Met(M). 

Given a Riemannian manifold (E,G) such that X 6 L(U) gives 
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rise to a Killing vector field of (E,G), we may also ask the 

converse question; do Killing vector fields of (E,G) proiect 

to elements of L(U) (or even of K(U))? 

More generally, we would like to relate the isometries of some 

Riemannian manifold (E,G) (into which M is embedded) to the 

diffeomorphisms preserving the parameterized family U = y(F). A 

knowledge of the symmetries of (E,G) would enable us to investi-

gate st(U), and vice-versa. 

4.6.6: We remark that there exist various natural maps relating 

Met and Diff. We have already used some of these in this chapter 

and others have been applied in various situations in the literature. 

For convenience, we give a brief discussion of these maps here. 

We have already utilized (lower star) 6 Hom(Diff(M),Diff(Met(M))) 

and conj 6 Hom(Diff(M),Aut(Diff(M))). We also have the map 

y: Met(M) —^ Met(Diff(M)) given by: 

;(g)(*)(%!, Xg) (goO)(X2»X2) vol(B) 4.6.5, 
M 

for all G T Diff(M) E Vect^(M), * 6 Diff(MO and g 6 Met(M), 

and the map v: Met(M) —^ Met(Met(M)) given by: 

v(g)(k)(h^,h2) = 5 trace(g ^h^ k ^h^ + k ^h^ g ^^^)vol(k) 

M 4.6.6, 

for all h^,h2 6 T^Met(M), k,g € Met(M). Note that v(g)(g) = G^(g), 

for all g 6 Met(M) (see 4.1.2), so that the restriction of v to 

the diagonal is the metric used by Ebln in the proof of the slice 

theorem (see section 4.1). 

For fixed g € Met(M), the metric p(g) on Diff(M) restricts 

to the closed subgroup Diff ^ , (M) , and the Riemannian manifold 
vol(g) 
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(Diffyg^^ ^(M), y(g)) is the configuration space for the hydro-

dynamics of an incompressible fluid. The motion of a perfect in-

compressible fluid is a geodesic of y(g) (see Adams etd, [A 3 ] 

and Ebin and Marsden [E 5 J • 

The maps y,v are each equivariant with respect to the action 

of the diffeomorphism group: 

Proposition (4.6)2: (i) u o = (conj^)^ = y, and 

(ii) v o = (0*)* ov, for all (j) € Diff(M). 

Proof: (i) Let * 6 Diff(M), g 6 Met(M). Then 

(w° **)(g)(^)(xi,x2) ((**g) o ^ ) ( X i , X 2 ) v o l ( * * g ) 

M 

f vol(g), where f = (* ^)*(((#*g) We have 

m 

f(x) = (0*g)(^(*(x)))(X^(4(x)),X2(*(x))) 

= g((* ^o^°*)(x))(D^ ^(^(0(x))).X^(*(x)), D* ^(^(*(x))).X2(*(x))). 

Now note that (D conj _(^).X)(x) = (D(L ^ o R , )(^^.)0(x) 

4" * 

= (DL T(^o^).DR (^).X)(x) = (DL i(^o^).(Xo#))(x) (using 4.4.5) 

= D(|) ̂  (x))) .X(4>(x)) (using 4.4.4). Hence, 

f(x) = g(conj ^(^)(xXK(Dconj _^(^).X^)(x), Dconj ^(^).X2)(x)), 

* ij) 4) 

for all X 6 M. Therefore, (%=#*)(g)(^)(X^,X2) 

(goconj _^(^))(Dconj _^(^).X^, Dconj _^(^).X2) vol(g) 

m * * * 

= M(g)(conj ^(^))(Dconj^^(^).X^, Dconj^^(^).X2)vol(8) 

= ((conj ) * ° w ) ( g ) ( ^ ) ( X ^ , X 2 ) , for all X^,X2 6 T^Diff(M) 

and ^ 6 Diff (M) . Hence, y°^^ = (conj^)^o y, for all <j) G Diff(M) 

(ii) Let (f) 6 Diff(M), g 6 Met(M). Then 
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trace((**g) ^^^)vol(k) 

=j 

M 

trace(g ^(0 *k) 

m 

+ (4 ^*k) ^(4 ^*h2)g ^(4 ^*h2))vol(k) 

trace(g ^*k) 

m 

+ (* ^*k) ^*h^)g ^(0 ^*h2))vol(0 ^*,k) 

= v(g)(*"l*k)(D*"l*(k).h^, D*"l*(k).h2) (since D*"l*(k) = f'^*) 

= ((**)*oV)(g)(k)(h^,h2), for all h.^,h^ 6 T^Met(M) and k 6 Met(M) 

Hence, = (#*)* ov, for all 0 6 Diff(M) • 

The following result is important in the application of y 

to the study of the motion of incompressible fluids: 

Proposition (4.6)3: Let g 6 Met(M) and let the restriction of y(g) 

to ^(M) also be denoted by u(g). Then y(g) is a right 

invariant metric on Diff ^ , .(M). 

vol(g) 

Proof: Let # 6 Diff(M). Then R^(w(g))(^)(X^,X2) 

= y(g)(^°*)(DR (^).X^,DR (^).X^ = y(g)(^o#)(X^o*, X^o*) 
(using 4.4.5) (g°^°*)(x^o*, x2°0)vol(g) 

M 

* ((go^)(x^,x2))vol(g) = i (go^)(x^,x2)vol(g) 

m m 

(since # vol(g) = vol(g)) = p(g)(^)(X ,X2), for a l l 

%1'%2 G T^Diffvol(g)(*), ^ 6 Diffy^i(g)(M). Hence, R*(w(g)) = w(g), 

so y(g) is right invariant • 

Note that the maps y,v have only found applications under the 

restrictions referred to above. It would be interesting to consider 

further uses for the full maps, especially since y,v, together with 

conj and (lower star), essentially exhaust the possibilities for 
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canonical maps : Met —^ MetoDlff, MetoMet and Diff —Diff°Diff, 

Diff oMet. 

4.6.7: Our final remark concerns the interaction between Chapters 

Four and One. We have already discussed certain aspects of how 

conformal structures and splnors come together in section 1.5, and 

similarly for diffeomorphlsms and splnors in section 1.6. In other 

words, we have considered the interaction of splnors and the con-

formorphlsm group, Conf(M) = Dlff(M) X C^(M). To Include the 

effect of generalized conformal transformations on spin structure, 

we should consider the entire group Aut(M) 5 

Diff(M) K (C*(M) xOAut(TM)). In section 4.1, we discussed how 

Aut(M) acts on the base space Met(M) of the metric-splnor 

field configuration bundle (see 1.4.4); the next step is to lift 

this action to the total space, thereby Introducing a notion of 

generalized conformal spin structure. 
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CHAPTER 5 CONCLUSIONS AND FUTURE DIRECTIONS 

The main purpose of this chapter is to present general con-

clusions and possibilities for future avenues of research. More 

specific conclusions and suggestions for further work may be found 

in particular chapters. 

Our main conclusion is that a geometric approach to problems in 

the theory of general relativity is very useful for clarifying the 

situation and for indicating possibilities for new investigations. 

Especially useful is the study of naturally arising group actions 

and infinite dimensional manifolds - a study of the symmetries of 

the space of all geometric objects of a particular type often sheds 

light on problems involving a single geometric object. We have 

applied this "everywhere invariance" approach to all the main themes 

of the thesis; to spinors in sections 1.4 and 1.6, to embeddings in 

section 2.2, and to metrics in Chapter Four. Further examples may 

be found in sections 6.1 and 6.2. The infinite-dimensional approach 

also leads to very useful applications in physics and we have in-

dicated examples of such applications to general relativity theory 

in the sections mentioned above. A particularly interesting applica-

tion is to the study of the space of metrics on a given manifold -

this has an impact on both classical and quantum gravity theory, 

as we indicated in section 4.1. 

We hope that this thesis has also demonstrated how the basic 

geometric notions of spin structures and embeddings play an important, 

if not essential, role in the theory of general relativity. The 

important uses for spinors were outlined in sections 1.0, 1.5, 1.7, 
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1.8, 1.9s 2.3, 3.3 and 3.4 whilst applications of the theory of 

embeddings was given in each of the sections of Chapter Two and in 

sections 3.1 and 3.4. The seemingly fundamental nature of thsse 

ideas is manifested in their essential appearance in the formula-

tion of a notion of general relativistic moment - a basic 

ingredient in any physical theory. 

Two new practical techniques which we have discussed are the 

null limit approach to obtaining useful null equations (see sections 

3.2, 3.4) and also the method of finding isometries of a metric 

using the invariance equation (see sections 4.4, 4.5). We anticipate 

that these techniques will prove useful in future investigations in 

general relativity theory and in other areas of geometry and physics. 

The geometrization of certain earlier ideas concerning the 

interaction between the Lorentz group and the 2-sphere has resulted 

in the projective null bundle framework of section 1.9. This frame-

work ties together spinor, conformal and null ideas in a four-

dimensional Lorentzian context and should prove to be a useful tool 

in the study of the structure of field theories on spacetime. 

Another application would be to the spinor null propagation used 

in investigations of gravitational momentum. 

Let us now give a few possibilities for further work based on 

the ideas discussed in this thesis:-

There is obviously more scope for further study and applications 

of the manifold of embeddings described in section 2.2. In par-

ticular, after bringing in the spinorial ideas of section 2.3, it 

should be possible to construct a spinor-metric-embedding configura-

tion space for application in, for example, the study of quasi-local 

momentum. In this context, it is worth mentioning a remark of 
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Richard Newman [N 5" ]? namely that the Einstein tensor field, 

fundamental to the theory of general relativity, does not arise 

naturally from many purely geometric considerations:- One case 

is the natural appearance of the Einstein tensor field in the 

proofs of the positivity of mass conjectures (both null and 

spatial) using spinor techniques (see section 3.3), and a second 

case is provided by the study of variations of codimension two 

spacelike embeddings in a spacetime (see [N 5* ])• Thus, the 

Einstein tensor field provides a link between spinors/gravitational 

energy and embedded 2-surfaces. Perhaps a more direct link would 

shed light on the fundamental importance of spinors in the 

definition of quasi-local gravitational energy. 

There is certainly much work to be done in the area of quasi-

local momentum, as we indicated in section 3.4. A better defini-

tion would be a good start, and then it will be necessary to apply 

this definition; to physically interesting spacetimes, to the 

proof of isoperimetric inequalities, to the cosmic censorship 

conjecture and, most importantly (for physics), to obtain a better 

understanding of the relationship between the motion of the sources 

of the gravitational field on the one hand and the asymptotic 

structure of spacetime on the other. Only when this latter problem 

has been resolved, will it be possible to consider equations of 

motion in general relativity theory and to relate observational 

data to the structure of the spacetime fields. 

Hopefully, the null techniques introduced in Chapter Three, 

based as they are on natural structures arising in four-dimensional 

Lorentzian geometry, will be useful in any future work on gravitational 

momentum. 
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The work of Chapter Four is also open ended. The theory of 

everywhere invarlance is certainly useful, and a further develop-

ment of the ideas is desirable. In particular, we should search 

for a more complete characterization of everywhere invariant spaces 

of metrics and for alternative applications to geometry and physics. 

Rigorous proofs of our statements involving the space of metrics 

also need to be given; in particular, the use of the canonical 

0(n)-bundle in resolving the singularities of superspace. We 

anticipate that these proofs will follow from the global analytical 

techniques developed in the papers cited in section 4.1. We refer 

the reader to section 4.6 for further suggestions for future research. 
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6.1 Bundles 

Many of the ideas within the main body of this thesis are ex-

pressed within the framework of fibre bundles. For completeness, 

therefore, this section gives a brief exposition of the main 

definitions and results concerning bundles, connections in bundles 

and infinite dimensional groups associated with bundles. As well 

as establishing our notation, this section also serves to present 

the main properties of the frame bundle of a manifold, the frame 

bundle being used extensively in Chapters One and Four. For more 

details we refer the reader to Kobayashi and Nomizu [K^] and 

Poor [718], and for information concerning analysis on infinite 

dimensional manifolds, to the references cited in sections 4.0, 

4.1. As usual, all manifolds and maps are smooth (in the appro-

priate category). 

The central idea is that of a principal fibre bundle: 

Definition (6.1)1: Let M be a manifold and G a Lie group. A 

principal fibre bundle over M with group G consists of a mani-

fold P together with a free right action of G on P such that 

p 

M = /G and P is locally trivial, i.e. Vx GEM, a neighbour-

hood U of x and ip: it ^(U) U x G such that tp(u) = (t t ( u ) , <j)(u)) 
-I 

where cj) (ua) = ^(u)a, ¥u ^ it ( U ) , a E G. (Here we denote by it 

the orbit map, tt: P ^ M , and by (u,a) R (u) = ua, the right 

action of G on P ) . 

We call P the total space, M the base space, it the projec-

tion and G the structure group of the principal bundle 

G C—y p - — M . 
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-1 
For each x € M, ir (x) is a closed submanifold of P, called 

-1 
the fibre over x. If u 6 P, then TT (X) = {ua: a 6 G} is called 

the fibre through u. Every fibre is diffeomorphic (though not 

_i 

canonically) to G. Local triviality of P implies that ir ( W ) 

is also a principal bundle over M for any submanifold W of M. 
- 1 I 

We call TT (W) the restriction of P to W and denote it P|W 

The action of G on P induces a Lie algebra homomorphism: 

LG -»Vect(P); g where Gp(u) = DR (1).S, for all u 6 P, 

g € LG. Here R^: G — P ; a R^(u) = ua. ^ is called 

the fundamental vector field corresponding to g 6 LG. Since G 

maps each fibre of P onto itself, Cp(u) is tangent to the fibre 

through u € P. Also, G acts freely, so, for g ^ 0, 5p never 
-1 

vanishes on P. We have dim(n (x)) = dim LG, Vx 6 M, so 

S I — ^ gp(u) is a linear isomorphism of LG onto the tangent space 

- 1 

at u of the fibre tt (w(u)) through u. It is easily shown 

that (R ) g = (Ad(a , Vg 6 LG, a 6 G, where 
a * r r 

Ad 6 Hom(G, GL(LG)) is the adjoint representation of G on LG. 

Given a principal G-bundle IT: P — M , we may construct 

associated bundles over M. These arise from actions of G on 

other manifolds. Note that all actions (apart from the right 

actions defining principal bundles) are left actions: 

Definition (6.1)2: Let F be a manifold and p S Hom(G,Diff(F)) 

a left action of G on F. We define a right action on P x F by 

((u,f),a) —^ (ua, p(a ^).f), ¥(u,f) 6 P x F , a 6 G, Let us denote 

the quotient space by E = P x p (or, sometimes by P x^F if the 

particular action p is understood), and define tt̂ : E — M ; 
- 1 

[(u,f)] F—>• IT(U). TT (x) is called the fibre of E above x and E 

is called the fibre bundle associated with P via the action p. F is 
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called the standard fibre of E. A differentiable structure may be 

defined on E in a natural way so that t; is smooth, E is local-

ly trivial and (X) is difFeomorphic to F for each X E M. In 

fact, for each u E P, we have the diffeomorphism 

F f 6.1.1, 

which satisfies K = K o p(a), Vu E P, a E G. If the manifold 

F carries a particular algebraic structure [e.g. F is a vector 

space] and if p(G) is a group of automorphisms of this algebraic 

structure, then 6.1.1 may be used to endow each fibre of E with a 

similar structure by requiring that K be an isomorphism for each 

u E P. In the case that F is a vector space and each K is a 

-x 

linear isomorphism of F onto itg (n(u)), we say tr : E M is 

a vector bundle over M. 

Given any principal G-bundle P, there exist various natural 

associated bundles: 

Firstly, take F = G with G acting on itself by left trans-

lation, so that p(a)b = ab, ¥a, b E G. The resulting associated 

bundle is bundle isomorphic (see below) to P itself. 

Secondly, take F = G and G acting on itself by conjugation 

(inner automorphisms), so that p(a)b = aba , Va, b E G . The 

associated bundle in this case is called the conjugation bundle, 

denoted Conj(P). 

Finally, take F = LG and p = Ad 6 Hom(G,GL(LG)) the adjoint 

representation of G on its Lie algebra LG. The associated 

bundle is called the Lie algebra bundle and denoted Ad(P). 

Note that Conj(P) and Ad(P) have algebraic structure defined 
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on their fibres: Conjugation is an automorphism of G and hence 

Conj(P) is a bundle of groups, and, similarly, G acts by Lie 

algebra automorphisms via Ad and so Ad(P) is a bundle of Lie 

algebras. 

Another useful example of associated bundle arises as follows: 

Let H be a subgroup of G and G P M a principal G-bundle. 

G acts on /H in a natural way, namely (a,bH) ) > abH, 

Va E G , bH G Let P^ denote the corresponding associated 

bundle with standard fibre ^/H. We also have the right action of 

p 
H on P arising because H $ G. Let /H be the quotient of P 

p 

by this H-action. Then P may be identified with /H in a 

natural way. 

We now consider maps between bundles. Let tt . : P. —^ M. be 
1 1 1 

principal G^-bundles (i = 1,2). 

Definition (6.1)3: A homomorphism ^ of P into P^ consists 

of a pair (Y', Y") where V': Pg and 6 Hom(G .Gg) such 

that T'(u^a^) = y'(u^)Y"(a^) Vu^ G P , a^ E G^. We often denote 

Y', Y" by the same letter Y. 

Every homomorphism Y of P into P^ maps each fibre of P^ 

into a fibre of P^ and hence induces a map of into which 

we shall denote by Y. The homomorphism Y of P^ into P^ is 

called an embedding if Y' E EmbCP^.Pg) and if Y" E HomCG^.Gg) 

is a monomorphism. Note that Y' E Emb(P^,P2) implies 

Y E and by identifying P^ with Y'(P^), G^ with 

Y"(G^) and with Y(M^), we say that P^ is a subbundle of P^. 

If, moreover, M = and the induced map Y is the identity on M, 

then the embedding Y is called a reduction of the structure group 

G2 of Pg to G^. The subbundle P^ is called a reduced bundle. 
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Given H $ G, we say that the G-bundle P is reducible to H if 

there exists such a reduced bundle with structure group H. 

The homomorphism Y of into is said to be an 

isomorphism if Y' is a diffeomorphism of P onto Pg and Y" 

is an isomorphism of G^ onto G^. If such an isomorphism exists, 

then we say the principal bundles G^ P^ —» G^ P^ —^ 

are bundle isomorphic. 

An important case for us is that of bundle maps from a given 

principal G-bundle P into itself: 

Definition (6.1)4: Let ir: P —> M be a principal G-bundle. An 

automorphism V of P is an isomorphism of P onto itself (with 

Y" = idg). Let Aut(P) denote the set of all automorphisms of P. 

Eence Aut(P) = {Y 6 Diff(P): Y ° = R ° Y, Va E G}. 

Aut(P) has the structure of an infinite dimensional Lie group, and 

we have the projection b E Hom(Aut(P), Diff(M)); Y f—̂  Y, so that 

Y(x) = 7r(Y(u)) for any u G TT ̂ (X), and for all x 6 M. Let 

Gau(P) = Ker b = {Y G Aut(P): IT O Y = IT} denote the normal subgroup 

of Aut(P) consisting of all automorphisms of P which project to 

the identity diffeomorphism of M. Aut(P) is called the 

automorphism group of P and Gau(P) is called the gauge group of P 

(sometimes the vertical automorphism group or the group of gauge 

transformations). 

We have the following exact sequence of groups: 

b 
1 » Gau(P) » Aut(P) »Diff(M) 6.1.2, 

together with the corresponding sequence of Lie algebras. [As usual, 

LDiff(M) is just Vect(M), whilst LGau(P), LAut(P) are res-

pectively the spaces of vector fields on P generating local 
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1-parameter groups of (local) dlffeomorphisms in Gau(P), Aut(P).] 

If we fix a connection (see below) in P, then vector fields 

on M may be lifted to vector fields on P. Hence b(Aut(P)) 

>y Diff (M) (the identity component of Diff(M)), so we have the 

exact sequence 

1 Gau(P) Aut^CP) Diff (M) - + 1 6.1.3, 

-1 

where Aut^(P) = b (Diff^(M)). A natural question to ask is whether 

or not the exact sequence 6.1.2 (or 6.1.3) splits, i.e. does there 

exist £ 6 Hom(Diff(M), Aut(P)) such that b ° £ = id^? If such 

an £ exists we call £ a lift of Diff(M) to Aut(P). An impor-

tant case for which a lift does exist is that of the frame bundle 

of a manifold. This is discussed below and in section 4.1. Lifts 

also exist for other canonical bundles and obviously for any 

principal G-bundle P isomorphic to M x G (such a bundle is called 

trivializable, and in this case the structure group G is reducible 

to the trivial group 1). The existence of lifts for general non-

trivial principal bundles is not known, although a necessary condition 

may be given (see Lecomte [LIS']). 

We now introduce the notion of section of a bundle and thence 

to an alternative description of the gauge group of a principal 

bundle: 

Definition (6.1)5: Let : E — M be a bundle associated to the 

principal G-bundle P. A section of E is a map s: M —> E such 

that TT̂  o s = idĵ . The space of sections of E is denoted r(E). 

A useful result relating sections and reduction is the following: 

The structure group G of the principal G-bundle P , is reducible 
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to a subgroup H if and only if the associated bundle P admits 

a section. In particular, for P itself, a section exists if and 

only if P is trivializable (i.e. P is isomorphic to Mx G) , 

so that G is reducible to 1. In general, the correspondence be-

tween r(P^) and reductions of G to H is one-to-one. 

Definition ( 6 . 1 ) 6 : Let p E Hom(G,Diff (F)) and let Tr : E-> M 

be the bundle associated to the principal G-bundle P via the 

action p. A map S: P—=»F is said to be equivariant if 

S ° B. = p(arl)°S, Va E G. Let C (P,F) (or C^XP,?) if P is 
a p G 

understood) denote the space of equivariant maps of P into F. 

Note that there is a one-to-one correspondence between r(E) 

and C (P,F); for s E r(E), define S E C(P,F) by 

S(u) = K ^(s(Tr(u))), Vu E P. Then S(ua) = k ^(s(Tr(ua))) 
u ua 
1 "1 1 

= (p(a )ok )(s(it(u))) = p (a ).S(u), so that S is indeed an 

element of C (P,F). Conversely, given S E Cp(P,F), define 

s G C(M,E) by s (x) = k^(S(u)) for any u G tt ̂ (x). Note that 

k g(S(ua)) = (k^o p(a ) ) (p(a ).S(u)), so that s is well defined. 

Also (tt os)(x) = tt„(k (S(u))) = it(u) = x, so that s E r(E). It 
l l u 

is easily seen that the two maps just defined are inverses, and 

these provide the desired bisection between r(E) and C (P,F). 

This bijection is, in fact, a diffeomorphism of smooth manifolds. 

If E is a vector bundle over M, then r(E) has the struc-

ture of both a vector space over K and of a C(M, K)-module 

[Here, IC = E. , !E for real, complex vector bundles respectively]. 

We may also consider maps of vector bundles: 

Definition ( 6 . 1 ) 7 : Let E^ — ( i = 1 , 2 ) be vector 

bundles (over the same field). A map ¥; ^ is said to be 

a vector bundle homomorphism of into E^ if the restriction 
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of f to any fibre of is a linear map into a fibre of Eg. 

Obviously a vector bundle homomorphism ¥ induces a map 

f E such that ~ and we say that the 

homomorphism W is along the map ¥. If = M and the 

projected map Y = id̂ ,̂ we say that Y is a strong bundle homo-

morphism of E^ into . When dealing with a pair of vector 

bundles over the same base manifold M we will consider 

only strong bundle homomorphisms of into Eg and usually 

omit the word strong in this case. If Y: E^ —^ E^ is a strong 

bundle homomorphism such that the restriction of Y to any fibre 

of E^ is a linear isomorphism onto the corresponding fibre of 

Eg, then Y is said to be a vector bundle isomorphism and we 

say that E^ and Eg are isomorphic vector bundles. Note that 

a strong vector bundle homomorphism from E^ to Eg is a vector 

bundle isomorphism if and only if it is a diffeomorphism. 

Similarly we have the idea of vector bundle isomorphism along the 

map Y. 

Let tt: E — M be a vector bundle over M. An isomorphism 

of E onto itself is called an automorphism of E . Let Aut(E) 

denote the group of all automorphisms of E , so that we have 

Aut(E) = { Y E Diff(E): t t o Y = i t and Y | i t ^ ( x ) 6 G L ( t t ^ ( x ) ) , 

¥x E M}. 

Definition (6.1)7 refers to vector bundles but there is an 

obvious analogue for bundles whose fibres are endowed with algebraic 

structures other than that of a vector space - we just require 

that homomorphisms, etc. preserve the algebraic structure fibrewise. 

We now return to the natural groups associated with a given 

principal G-bundle tt: P —^ M, in particular to the gauge group 
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Gau(P) = {Y E Diff(P): woT = tt and WoR^ = R^oW, Va G G} (see 

definition (6.1)4). We now demonstrate that Gau(P) is isomorphic 

to r(Conj(P)) (and hence to by the remarks 

following definition (6.1)6). For f E Gau(P) , define 

s; M —> Conj (P) by s(x) = K (a^) for any u G tt ^ ( x ) . Here a^ 

is the unique element of G defined by ua = ^(u), and 

-X 
K : G — t t .(tt(u)) is the isomorphism defined by 6.1.1. Note 
u con] 

that s is well defined since choosing ub G it ( x ) leads to 

K , (a ) = ic (ba b ^), but (ub)a = ¥(ub) = Y(u)b = ua b, so 
ub ub u ub ub u 

- 1 
a , = b a b and hence k , (a , ) = k (a ). We have tt . ( s ( x ) ) 
ub u ub ub u u con] 

= Tr(u) = X, so that s G r(Conj(P)). Conversely, given 

s G r(Conj(P)), define Y: P —» P by Y(u) = u < ^(s(n(u))), 

Vu E P. Then w(Y(u)) = tt(u) and Y(ua) = uaic^^(s(tt(ua))) 

-1 _i -1 

= ua a (s(tr(u)))a = UK (s(w(u)))a = ¥(u)a. Hence 

Y E Gau(P). The two maps just defined are obviously inverse to each 

other and are both homomorphisms of groups (the group multiplication 

in Gau(P) is composition of diffeomorphisms and in r(Conj(P)) 

it is defined pointwise in the fibres). Hence Gau(P) = (Conj(P)) 
(= C .(P,G)). These isomorphisms are useful in our discussion of 

con] 

the frame bundle and everywhere invariance in Chapter Four. 

In section 1.1 use was made of principal bundle extensions and 

prolongations. We now define these related concepts: 

Definition (6.1)8: Let tt: P —»- M be a principal G-bundle. Let 

A E Hom(K,G) where K is a Lie group. A A-prolongation of P to 

the group K is a pair (P,n) where P is a principal K-bundle 

a. 

over M and n: P —^ P is a principal bundle homomorphism over 

id^ such that n(uk) = ri(u)A(k), Vu G P, k E K. 

Two A-prolongations of P, (P̂ ,riĵ ) and are said to 
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be equivalent if there exists a principal K-bundle isomorphism 

g: —* Pg (over id^) such that ngoB = -

Now let y E Hom(G,K) so that we have a left action of G on 

K given by (a,k) w(a)k, Va E G, k E K. Let P = P>( K 
)j b 

denote the associated bundle with standard fibre K. There is a 

free right action of K on P given by ([(u, k ) ] ,k') )—> [(u,kk')], 

¥[(u,k)] E P , k' E K (this is obviously well defined), under 

which K P — M is a principal K-bundle over M. P is called 
y a 

the y-extension of P. 

Suppose F is a manifold and p E Hom(K,Diff(F)). Then 

poy E Hom(G, Diff(F)) and we have an isomorphism of the corresponding 

associated bundles: P x p — P x F given by 
w k lr 

[([(u,k)],f)] [(u,p(k).f)], V [((u,k)],f)] <5 P^ F. It is 

straightforward to verify that this map is a well defined bundle iso-

morphism. 

The relationship between extensions and reductions may be des-

cribed as follows. Suppose we are given a principal K-bundle P' 

over M. Then y E Hom(G,K) defines a class of reductions of P' 

to the group G; We define a y-reductlon of P' to be a principal 

G-bundle P over M together with an embedding Y: P ^ P' over 

id^ satisfying ¥(ua) = W(u)y(a), Vu E P, a E G. A y-reduction of 

P' is certainly a reduction of the structure group K of P' to 

the group G in the sense of definition (6.1)3, so long as y is 

a monomorphism (otherwise we have a slightly more general concept). 

Such a reduction induces an obvious isomorphism from the y-extension 

of P onto P' . Conversely, if it: P — M is any principal G-

bundle with y-extension P , then the homomorphism Y : P—^ P x K; 
y y (j 

u f—̂  [(u,l)] (1 is the unit of K) is a y-reduction of the structure group 
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of P from K to G. 
y 

When considering embeddings we often need the idea of an in-

duced or pullback bundle. The general situation is as follows (Here 

we use the word bundle to mean any locally trivial submersion and, 

although it is not necessary, we may regard this as associated to 

some principal G-bundle). 

Definition (6.1)9: Let f 6 C(M,N) and tt: E —>• N a bundle with 

" — 1 
standard fibre F. Define f E = (fxw) (N x N) 

= {(x,e) 6 M X E : f(x) = w(e)} and f tt: f E — M ; (x,e) I—> x. 
* * 

Then f tt: f E —^ M is a bundle over M with standard fibre F 

called the pullback of E by the map f. 

Given E and f, there is a natural bundle homomorphism, 

tt f: f E —>- E; (x,e) t—̂  e, along f, i.e. •it°(it f) = f°(f ir). 

Suppose E is a vector bundle over N. Then f E is a vector 

bundle over M which is isomorphic to E along the map f. Also, 

f E is unique up to isomorphism in the sense that a vector bundle 
•k 

E over M is isomorphic to f E if and only if it is isomorphic 

to E along f. 

Differential forms are, of course, extremely useful in geometry 

and physics. The special structure of a principal G-bundle enables 

certain spaces of differential forms to be specified: 

Definition (6.1)10: Let ir: P — M be a principal G-bundle and 

p € Hom(G,GL(V)) a representation of G on the vector space V. 

Let O^XP,V) denote the space of all V-valued k-forms on P (so 

that n^XP.V) 5 r(A^P 8 (P XV))). The form a € O^XP.V) is said to 
" - 1 

be p-equivarlant if R^a = p ( a )a, V a 6 G , and a is said to be 

horizontal if a(u)(v , v ^ ) = 0 if v^ 6 for some 

i € {1 k}, Vu € P (V ={v 6 T^P: Dn(u).v = 0} 5 T^n'^C^Cu)) 

is the vertical subspace at u 6 P). If a 6 ^^(P,V) is both 
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p-equivariant and horizontal, then a is said to be p-tensorial. 

Let Qp(P,V) denote the space of all p-tensorial k-forms on P. 

Forms in Q^(P,V) project to forms on the base space M in 

the following sense; there is a linear isomorphism between &!^%P,V) 

on the one hand and 0^(E) on the other. Here Q^(E) = F(A^ 0 E) 

is the space of k-forms on M taking their values in the vector 

bundle E = P v. Define x: ^ n^(E) by 

T(a)(x)(w^,..., w^) = K^Xa(u)(v , v ^ ) ) 6.1.4, 

Vw^,..., w^ G T^M, X G M, a G fi^(P,V). Here u G ir ̂ (x) and 

v^ E T^P such that Dn(u).v^ = w^, i G {1,..., k}. The right-hand 

side of 6.1.4 is independent of the choice of u G n ^(x) and 

v^ G T^P (projecting onto w^) and so x is well defined and does 

indeed map J^^(P,V) linearly into 0^(E), since 

- 1 

k : v — t t g (tt(u)) from equation 6.1.1. Moreover, x possesses an 

inverse given by 

X ^(a) (u) (v^,. . . , v^) = K:̂ (̂a(iT(u)) (DttCu) .v^,. . . , Dn(u).v^)) 

6.1.5, 

¥v^,..., G T^P, u G P, a G n^(E) (x ^ is just pullback to P). 

The map x provides the required linear isomorphism of J^^CPjV) onto 

nfxe). 

For example, if p(a) = id^, Va G G, then a p-tensorial form 

a on P is basic in the sense that a = it a for some V-valued form 

a on M (E = M x V if p is trivial). Another important example is 

the case k = 0 - then ^^(P.V) = C (P,V), n^(E) = r(E) and x 

reduces to the isomorphism of the space of (p-) equivariant maps of P 
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into V onto the space of sections of the associated bundle E 

(see the remarks following definition (6.1)6). 

We remark that the automorphism group Aut(P) (and, a fortiori, 

k 

the gauge group Gau(P)) acts on Q (P,]/) by pullback. 

In order to make full use of principal bundles in physics and 

geometry we must consider the notion of connection. In a principal 
-1 

G-bundle tt : P —^ M, each fibre it (x) is diffeomorphic to the 

standard fibre G. However, the identification is not canonical; 

it depends on the covering {U } of M and on the choice of local 

trivializations Y : tr (U ) — U x G. Thus there is no natural 
a a a 

way to identify different fibres of P. A connection on P is an 
extra piece of structure introduced in order to be able to give a 

- 1 - 1 

correspondence between any two fibres it (x) , tt (y) of P 

(assuming M is connected) - this is parallel transport along 

a curve in M from x to y. We define a connection as a particular 

kind of 1-form on the total space of the principal bundle: 

Definition (6.1)11: A connection in the principal G-bundle 

p ^ ̂  is an Ad-equivariant 1-form w on P such that 

w(gp) = Vg 6 LG. Let Conn(P) denote the space of all con-

nections in P, 

i.e. Conn(P) = {w E 0^(P,LG): R ui = Ad(a ^)w, ¥a E G, and 

w(Sp) = E, 9G e LG}. 

It is straightforward to show that w - E &lj^(P,LG) 

= n^(Ad(P)), E Conn(P), so that Conn(P) is the affine space 

associated with the vector space 0^^(P,LG). In particular T^Conn(P) 

may be identified with Q^^(P,LG) for each connection lo in P. 

The groups Aut(P) and Gau(P) act on Conn(P) by pullback. 
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Given a connection w in P, we may define a dimM-dimensional 

distribution h'̂  on P by = Ker(w(u) C T P. Then is com-
u — u 

plementary to the vertical distribution V, i.e. T P = V # 
u u u 

¥u E P, and H = DR^(u).H^, Vu E p, a G G. Conversely, given 

a distribution H on P which is complementary to V and equi-

variant with respect to the G-action on P we may define a unique 

connection cu in P by w(u).v = g, where g is the unique 

element of LG satisfying gp(u) = ver(v) (where v = ver(v)+hor(v) 

is the unique decomposition of v E T P given by the distribution H). 

Definition (6.1)12: Let w g Conn(P) with associated projections 

ver, hor : TP—>- V, v E T^P is said to be horizontal (vertical) 

if ver V = 0 (hor v = 0). a E Q^(P,V) is said to be vertical 

(horizontal) if a vanishes when one or more of its arguments is 

horizontal (vertical). 

Note that the concept of a horizontal vector (and thence of a 

vertical form) depends on the choice of a connection in P, whereas 

that of a vertical vector (horizontal form) is associated naturally 

with the principal bundle P. By definition any connection w is 

vertical. Given w E Conn(P) we have the linear isomorphism 

H ^ = DIT(U)|H'^ of the horizontal subspace onto T . .M and 
u ' u ^ u TR(u) 

hence a means of lifting vector fields on M up to P: 

Definition (6.1)13: Let w E Conn(P). The (horizontal)-lift of 

X E Vect(M) is the unique vector field E Vect(P) which is 

both horizontal (i.e. X^(u) is horizontal, ifu E P) and which pro-

jects onto X (i.e. D?(u).X^(u) = X(TT(U)), ifu E P) . 

It can be shown that the lift x'̂  of any vector field X on 

M is G-invariant, and conversely, every G-invariant horizontal 
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vector field on P is the lift of some vector field on M. The lift 

map: Vect(M) —^ Vect(P); X i—> x" is a homomorphism of Lie algebras 

and satisfies (fX)^ = (IT f)X^, Vf 6 C(M) , X€Vect(M). 

Definition (6.1)14: Let c: I —^ M be a curve on M. A (horizontal) 

lift of c is a horizontal curve c^: I — P such that it°c'̂  = c 

j co 

(c^ horizontal means •j^(t) is horizontal, ¥t6 I). 

If is the lift of X6Vect(M), then the integral curve of 

X^ through u € P is a lift of the integral curve of X through 

Using the local triviality of P it may also be shown that for 

- 1 
each curve c: I —^ M and for each u 6 n (c(0)) there exists a 

unique lift c^ of P with c^ (0) = u . This result now enables 
o o ° 

us to define parallel transport of fibres: 

Definition (6.1)15): Let co eConn(P), u 6 P and : I -» P 
O U Q 

the unique lift of c: I —^ M through the point u^. Then the end-

point of c^ is u, = (1)6 TT ̂ (c(l)). The map 
"o -l ^o 

c^: TT (c (0)) —IT ^(c(l)); u^ —> (1) is called parallel transport 

along the curve c. 

Parallel transport is equivariant with respect to the G-action 

on P, i.e. c ° R = R ° c , ¥a6G, and hence is a diffeomorphism 
0) a a 03 

- 1 - 1 
of TT (c(0)) onto IT (c(l)). Parallel transport is also para-

~~1\ "1 —1 
meterization invariant and (c ) = c if c denotes the 

00 0) 

(curve) inverse of c. 

A connection in a principal bundle also induces notions of 

horizontality in associated bundles and also the very important 

idea of covariant derivative acting on sections of vector bundles. 

The covariant derivative may also be introduced directly (au Koszul) 

but we prefer to start with a connection in a principal bundle, and 
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we prefer to start out with a connection in a principal bundle, and 

the two approaches are indeed equivalent. 

Definition (6.1)16: Let E = Px F be the bundle with standard 

fibre F associated with the principal G-bundle P via the action 

p. Let = Ker Dw (e) denote the vertical subspace at e 6 E, 

so that is the tangent space to the fibre of E through e. 

Let e = [(u^,f)] for some (u^,f) 6 P x F and define P E; 

u [u,f)], Vu 6 P. Then we define the horizontal subspace at e 

to be = Dm_(u ).H^ . 
e f o Uq 

Note that Dm , _i. (u a).H^ = Dm.(u)., so that 
p (a -L). f o u„a f u' e 

is defined independently of the choice of representative (u ,f) 

of e. We also have that T E = V # 
e e e 

Given a curve c: I —^ M, a (horizontal) lift of c is 

a horizontal curve in E such that n^oc^ = c. Given 

e ^Xc(O)), there exists a unique lift starting from 
o Ji G g 

e - this is constructed using the existence and uniqueness 

- I 
result for lifts to P. Parallel transport c : it_ (c(0)) 

co l 

—^ n ^(c(l)); e f—̂  c^ (1) may now be defined in E. Let U be 
iL o eQ 

an open subset of M and s6r(E | u ) a local section of E. Then 

s is said to be parallel if the parallel transport of s(c(0)) 

along any curve c: I —^ U is equal to s(c(l)), i.e. s is 

parallel if and only if Ds(x).T M C . , Vx 6 U. 
^ ^ X — s(x) 

An important case is when E = Px ('̂ /H) , where H is a 

closed subgroup of G. Let s 6r(E) and H ^ M the re-

duced principal H-bundle corresponding to s (see the remarks 

following definition (6.1)5). Then w6Conn(P) is reducible 

(see below) to a connection in Q if and only if s is parallel 

with respect to to. 
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We now focus our attention on any vector bundle E associated 

to P. 

Definition (6.1)17: Let w 6 Conn(P) , c: I —s- M and s € r(c E) 

a section of E along the curve c. The covariant derivative 

s of the section s in the direction 6 ( = 6 r ( c TM)) is 

defined by 

s ) ( t ) = ^ { c t ' h ( s ( t + h ) ) - s ( t ) } 6 . 1 . ( 
c h w 

t ti ~ X ™ X 
where c^' : ir̂  (c(t+h)) —^ ir (c(t)) denotes parallel transport 

along c. 

• * 

The covariant derivative in the direction c maps r(c E) 

into itself. We may define a covariant derivative of sections of 

E itself as follows: Let v 6 T M and s a section of E 
X 

defined in a neighbourhood of x. Then the covariant derivative 

of s in the direction v is defined by: 

s = (V^ (soc))(o) 6.1.7, 

where c: I —^ M is a curve with c(0) = x, c(0) = v. Using 

6.1.6 it can be easily shown that V^s depends only on v 6 T^M 

and not on the choice of c. A section s6 r(E | u ) , U an open 

subset of M, is parallel if s = 0 ¥v€ T M, x6 U. 
' F V X 

If X 6 Vect(M) we define covariant differentiation along X, 

r(E) r(E), by 

(v" s)(x) = s 

¥x € M, s€r(E). It is the 6.1.8 version of covariant derivative 
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that we usually consider. The covariant derivative has the following 

four properties VX,Y 6 Vect(M), f 6 C(M,E), s 6 (E): is 

K-linear, V^^fs) = <df,X>s + fV^s, = V^s + V^s and V^^s 

= fV^a. These properties enable us to define a linear map 

V^: r(E) = n°(E) r(T"M 8 E) = nl(E) by 

(V^ s)(X) = s 6.1.9, 

¥X € Vect(M), s 6 r(E). A derivative mapping 0^(E) to 

for k > 0 will be given below when we introduce the covariant 

exterior derivative. The covariant derivative corresponds to 

Lie differentiation in the following sense: Let be the lift 

of X and let s € r ( E ) . Then 

L (T l(s)) = T 1(7^ s) 6.1.10, 
XW X 

k k 

where t is the canonical isomorphism of 0 (P,V) onto 0 (E) 

(for k = 0 in this case) - see 6.1.4, 6.1.5. 

We now turn to a discussion of covariant exterior derivative: 

Definition (6.1)18: Let w 6 Conn(P) and p 6 Hom(G, GL(V)). 

k k 

Denote by f2ĵ ^̂ (P,V), fig(P,V) the space of all horizontal, 

p-equivariant V-valued k-forms on P respectively (see definition 

(6.1)10), so that n^(P,V) = (P,V)fl n^(P,V). Let n(P,V) 
p nor u 

= @ n'^(P,V) denote the graded left 0(P)-module of V-valued 
k%0 

differential forms on P. Similarly we have fi^^^(P,V), fig(P,V) 

and n (P,V). Define a horizontal projection h'̂ : Q(P,V) —^ 0(P,V) by 

(h^a)(u)(v^,..., v^) = a(u)(hor(v^),..., hor(v^)) 6.1.11, 
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¥v^, . . . , € T^P, u € P, a 6 f2^(P,V) , k 3 0. 

The operator h^ is linear and satisfies h^(a.6) = h^a.h^g, 

Va € n(P), 3 € n(P,V). The image of h^ is and 

(h^)2 = h^, o R = R o h^, Va 6 G. Hence is an equi-

variant projection onto the space of horizontal forms, so we may-

restrict to obtain the map h'̂  = h^lo^(P,V): Q^(P,V) —> Q^(P,V), 
b Cj p 

for each k 3 0. Note also that w 6 kerh^ (for V = LG, p = Ad). 

We also have the exterior derivative d: n^(P,V) —^ n^^^(P,V) 

and hence: 

Definition (6.1)19: Let w 6 Conn(P) and V a vector space. The 

covariant exterior derivative associated with w is the linear map 

° d: n^XP.V) n^^^(P,V), k 3 0. 

Using the properties of h^ listed above together with results 
* * 

for d (e.g. d ° ° d, V a 6 G), we have the following satis-

fied by d^: d"^a.g) = d^a.h^G + (-1)^ h^a.d^G, V 6 W^XP), 

g G 0(P,V), d^ ° R^ = R^ ° d^, Va G G, d^ ° n" = n" ° d^ and 

Ir ° d ̂  = 0, ¥5 6 LG. We therefore have the restrictions ^-p 

d^: Ohor(P,V) O^^^CP.V), d^: OgCP.V) 0 (P,\0 and, in par-

ticular, 0 (P,V) is invariant under d'̂ . A useful formula for 

d'̂  acting on tensorial forms is given by: 

d'̂ a = dot + w(a) 6.1.12, 

Va 6 0 (P,V). Here w(-): O^^P.V) -» n^^^(P,V), k $ 0, is defined 

in the following manner: We have p: G—>-GL(V), so that 

Dp(l): LG—>g£(V) (= L(GL(V))) and we may define a bilinear map; 

LG X V —>- V; (g,v) I—> (Dp(l).C)v. This bilinear map induces a 

kl k2 ki +k 
C(P, K)-module homomorphism: Q (P,LG) x Q, (P,V)—^ 0 ^(P,V) 
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in the standard way. Since w€n^(P,LG), we may define the linear 

map w: O^XP,V) —^ n^^^(P,V) written a f—> w(a), Va 6 f](P,V). 

An important case of 6.1.12 is when V = LG and p = Ad. Then, 

since DAd(l): LG —^ gi(LG) is just the adjoint action of LG on 

itself; 5 t—> Ad(C); n t—^ [C,n], we write w(a) = [w,a], 

= da + [w,a], Va6n^(P,LG). 

The covariant exterior derivative may be applied to any V-

valued k-form on P, in particular to the connection form to 

itself. Indeed, since w is Ad-equivariant, d^w is Ad-tensorial. 

Definition (6.1)20: The curvature form of the connection o) 

is the Ad-tensorial 2-form = d'̂ w. The curvature mapping on P 

is the map 0: Conn(P) —9- n^^(P,LG); w E The curvature 

tensor of w is = 2t(q'^) 6 Q ^ ( A d ( P ) ) . 

The important results concerning the curvature of a connection 

are the Cartan structural equation, = dw + J[a),a)], and the 

Bianchi identity, d^O^ = 0. We remark that since to ^ n^^(P,LG), 

the result 6.1.12 cannot be used to prove the Cartan structural 

equation. However, 6 n^^(P,LG), so 6.1.12 may be used to 

give = dO^ + and the right-hand side of this vanishes 

identically. For any a 6 f2^(P,V), we have d^d^a = n'^(a) (where 

n^(a) is defined in an analogous fashion to t o ( a ) ) , so, in par-

ticular, d'̂ d'̂  4 0 in general. 

We relate the covariant exterior derivative acting on ^^(PjV) 

(definition (6.1)19) to the covariant derivative (definition (6.1)17) 

using the isomorphism t. We have d^: fi^(P,V) —^ ^̂ '̂'"̂ (PjV) and 

we define d^: ^^(E) —^ by d^ = Tod^°T ^. For k = 0, 

we obtain d^: r(E) r(T M 0 E) and this coincides with 

defined by 6.1.9. 
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The behaviour of connections under principal bundle homo-

morphisms is very Important especially in discussions of embed-

dings, etc. Suppose (i = 1,2) are principal 

bundles and V a homomorphism of into with corresponding 

Y" 6 HomCG^.Gg) and such that Y is a diffeomorphism. Let 

0)̂  6 Conn(P^) with curvature 6 f2^^(P^,LG^). Then it can be 

shown that there exists a unique w 6 ConnCPg) such that 

horizontal subspaces are mapped by DY into Wg-horizontal sub-

spaces. In addition, Y = DY"(l)°n^ and Y Wg = DY"(1)°0^, 

where DY"(1): LG^ —> LGg in the Lie algebra homomorphism induced 

by Y". 

Definition (6.1)21: Let P̂ P̂̂ jYjtô jtô  be as just described. We 

say that oj^ is the image of under Y. In particular, in the 

case when H Q —^ M is a reduction of G P —^ M (so we are 

taking H a closed subgroup of G, Y" inclusion of H in G 

and Y = id̂ .), we say that the connection in P is reducible 

to the connection in Q. 

We have noted above that Aut(P) acts on Conn(P) by pull-

back (this action arises as a special case of the result given pre-

ceding definition (6.1)21). An automorphism Y is called an 

a 

automorphism of the connection to if Y to = to, and in this case, 

w is said to be Y-lnvariant. 

The notion dual to that of definition (6.1)21 is that of 

induced or pullback connection. We make use of this in Chapters 
Two and Three. Let Ĝ ^ P^ —^ (i = 1,2) be principal bundles 

and Y a homomorphism of P into P^ such that Y" G HomCC^.Gg) 

induces an isomorphism DY"(1) of LG^ onto LG^. Let 

2 
(02 6 ConnfPg) with curvature 6 ^Ad^^2'^^2^' Then it can be shown 
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that there exists a unique 6 Conn(P^) such that co^-horizontal 

subspaces are mapped by D into oi^-horizontal subspaces. In 

addition, = DY"(1) ^ ° Y Ug and 0 = DW"(1) ^ o f 2^. 

Definition (6.1)22: Let P^jP^j Y, Wg be as just described. 

We say that is the connection induced by W from 

If G = Gg = G and T" = id^, then the induced connection 
* 

is simply o)̂  = f tô  • In particular, given G C — p —4- N together 

ii 

with f € C(M,N), we have a map f : Conn (P) —^ Conn(f P), so 

that we may pullback connections to pullback bundles. 

It is convenient to translate (6.1)21, (6.1)22 into definitions 

concerning covariant derivatives and vector bundles, since co-

variant derivatives are used in calculations in Chapters Two and 

Three. Suppose ^ ^ (i = 1,2) are principal bundles, 

T is a homomorphism of P^ into P^, 6 Hom(G ,GL(V^)) (i = 1,2) 

are representations and 6 such that ° p^^a) 

= PgCV^Ca)) ° Yy, Va 6 G^. Then in an obvious manner, we have 

the vector bundle homomorphism Y : P, x V —>- P x v„; 
h 1 1 6 p2 ^ 

[(u^,v^)] [(Y(u^), Yy(v^))], V[(Ui,v^)] e Xp v^. Using 

this construction together with the definition of covariant deriva-

tives (6.1.7), we have analogues of definitions (6.1)21 and (6.1)22. 

We discuss here only the analogue of (6.1)22. 

Let iT̂ : (i = 1,2) be vector bundles (over the same 

field) and W: Eg a vector bundle homomorphism. Let be 

a connection in Eg (i.e. is the covariant derivative operator 

associated with a connection in the principal bundle to which Eg 

is associated). Then it can be shown that there exists a unique 

connection in such that, for any x 6 M^, v 6 T^M^, 
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e r(EL) (i = 1 , 2 ) satisfying o T = V o s , we have 

•"'i =1> = 'ot(x).v =2-

Definition (6.1)23: Let E^, E^, W, V^, be as above. is 

said to be the connection induced in by the homomorphisin f 

from V^. 

In particular, given a vector bundle it: E —»- N together with 

f € C ( M , N ) , any connection V in E gives rise to an induced con-

nection in the pullback vector bundle f Tr:f E — ^ M (see 

definition (6.1)9). Note that r(f E ) is C(M)-module isomorphic 

to r ^ ( E ) = {s e C ( M , E ) : it ° s = f}. An element of r ^ ( E ) is 

called a section of E along f. 

To conclude this appendix we turn from principal bundles in 

general to the frame bundle of a manifold M. In fact any principal 

G-bundle may be regarded as a reduction of a bundle of frames in the 

following sense: Let tr : E — M be a vector bundle and let 

GL(E) = {u: u is a basis of w ^(x) for some x 6 M}. Let 

the rank (e fibre dimension) of E be p. Then there is a free 

right action of GL(p, F ) on GL(E) defined by (u,a) f—> ua where 

ua = {e.a^.}, V u = {e.} 6 GL(E), a = (a^.) 6 GL(p, IF). Under this 
^ 3 3 3 

action GL(E) is the total space of a principal GL(p, IF )-bundle 

over M. 

Definition (6.1)24: Let E be a vector bundle. The principal 

bundle GL(E) is called the frame bundle of E. 

Suppose E is associated to the principal G-bundle P over M. 

Then, since E is a vector bundle, G $ GL(p, IF) , and in fact, 

P is a reduction of GL(E) to the group G. 

An example of the frame bundle is the bundle of (g, s )-spin 

frames Spin(n) SO(M,g) — M for some g-spin structure 
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s e E(M,g), g e Met(M) (see section 1.1). The most important case, 

however, is when E = TM, the tangent bundle of the manifold M. We 

(E 

may also consider the complexified tangent bundle T M, but we deal 

only with the real case here: 

Definition (6.1)25: The frame bundle of M, denoted GL(M), is the 

frame bundle of TM. 

Obviously GL(M) is a principal GL(n, 3R.) -bundle naturally 

arising from the n-dimensional manifold M. The tensor bundles over 

M are vector bundles associated to GL(M) via tensor products of 

the defining representation (and its dual of 

GL(n, H) on IR'̂ . The defining representation itself gives rise to 

the tangent bundle of M and vector bundle automorphisms (see 

(6.1)7)) of TM on the one hand and principal bundle automorphisms 

(see (6.1)4) of GL(M) on the other are tied together in a 

satisfying algebraic fashion as we saw in section 4.1. 

The two important phenomena which occur by virtue of the fact 

that GL(M) is canonical are firstly the existence of a natural 

1-form on GL(M), and secondly the splitting of the exact sequences 

6.1.2 and 6.1.3. These two phenomena are related as we now discuss. 

Definition (6.1)26: Let GL(M)->M be the frame bundle of the 

n-manifold M. The canonical 1-form (or soldering form) 8 (or 

just 9 if M is understood) is defined by 8^(u) = K o Dtr^Cu), 

Vu e GL(M) (Here, < : -» T , ,M; [(u,x)] = x*e , 

u tt̂  (uy — — a 

¥x = (x^) e E.'̂ , u = {e } 6 GL(M), is the linear isomorphism defined 

by 6.1.1). 

It is straightforward to demonstrate that 8^ is p'^^-tensorial 

and that T(8^^) 6 (TM) = r(T M 0 TM) = End(Vect(M)) is the identity 

endomorphism. The canonical 1-form 8^ "solders" GL(M) to M, so 
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that the frame bundle has more intimate interaction with M than do 

other principal GL(n, ]R)-bundles over M. In fact it may be shown 

that a principal GL(n, ]R)-bundle over M is isomorphic to GL(M) 

if and only if there exists a p ̂ ^''^^-tensorial 1-form 6 on the 

total space such that Ker6 is equal to the vertical distribution. 

Thus, the pair (GL(M),8 ) is unique. 

Now consider the natural groups associated with the frame bundle 

(see definition (6.1)4). We have Aut GL(M), the group of auto-

morphisms of the frame bundle, and also its normal subgroup 

Gau GL(M), the group of gauge transformations of the frame bundle. 

The latter may be identified with r(Conj GL(M)), the space of 

sections of the conjugation bundle, and also with (GL(m),GL(n,]R) , 

the space of equivariant maps of the frame bundle into the general 

linear group, as described above. We also have a splitting of the 

exact sequences 6.1.2 and 6.1.3: 

Definition (6.1)27: Define £ 6 Hom(Diff(M), Aut GL(M)) by 

£((j)) = (j), where (j)(u) = {D#(n (u))e }, Vu = S GL(M) , (j) 6 Diff(M). 

The automorphism (t> is called the (natural) lift of the diffeomorphism 

(We have (#oR ) (u) = {D#(n (ua)).e,a^} = {D#(n (u)).e }a 
3- M D 3. TTL S 

= (R^° 6)(u), so (j) is indeed an automorphism of GL(M) . Similarly, 

2(^2° "̂ 2̂  ~ so £ is a homomorphism (smooth) of (Lie) 

groups). Moreover, £ is a section of the projection 

b: Aut GL(M) —Diff(M), i.e. b o£ = id^, and hence a splitting 

of the sequences 6.1.2 and 6.1.3. We therefore have a semi-direct 

product structure for Aut GL(M). Indeed, let Diff(M) act on 

Gau GL(M) via the homomorphism conj o £: Diff(M) — A u t (Gau GL(M)), 

" - 1 

so that Y I—> (j) ° o ̂  under the action of ^ 6 Diff(M), 



-390-

W 6 Gau GL(M). Then Aut GL(M) = Diff(M) x Gau GL(M) with group 

structure given by: 

(4^,Y^)(*2,V2) = ^2° 6.1.13, 

V(# ^ Diff(M) KGau GL(M), in the standard way. The 

explicit isomorphism q: Aut GL(M) —>• Diff(M) <= Gau GL(M) is given 

by q(Y) = (b(W), W°(&°b)(Y"^). VY 6 Aut GL(M), and q"^(*,W) 

= Yo&(#), V((j),W) 6 Diff(M) X Gau GL(M) . The structure of Aut GL(M) 

is explored further in Chapter Four. 

We now show that the stabilizer of the canonical 1-form is 

precisely the lift of the diffeomorphism group of M. Suppose 

(j) 6 Diff(M). Then (cj) 0̂ )̂ (u) = 6^((p(u)) °D0(u) = °Dn^^^(u))oD^(u) 

But K2/ s = (u))oK and TT.. ° (j) = Ao w , therefore 
(p(u) M u M M 

(4 &%)(") = k^^od*(n^(u)) ^od*(n^(u))odw^(u) = k^^odm^(u) = 

¥u 6 GL(M). Hence £(Diff(M)) $ stab(8 ). Conversely, suppose 

= 8^ for some Y G Aut GL(M). Then G GL(M), 

G^CyCu)) ° Dy(u) = 8M(u), i.e. ° ° DY(u) 

- 1 

= o DtTĵ Cu) . However, * V = b(Y) ° and, letting 

M . b)(T-l) . T, we have " " ((£.b) (u)) 
= Hence Now 

- 1 - 1 
DTT (u) is surjective and so < / . = < as linear isomorphisms 

m j ^o(") " 

of T , . M onto Hence Y (u) = u, Vu G GL(M) , and hence 
ir̂ l.u; o 

Y = A(b(Y)) 6 £(Diff(M)). This concludes the proof that a frame 

bundle automorphism ¥ leaves the canonical 1-form invariant if 

and only if ¥ is the lift of some diffeomorphism of M. In par-

ticular, there exists no non-trivial gauge transformation fixing 8̂ .̂ 

The canonical 1-form 8^ restricts to any sub-bundle of GL(M). 
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Certain subbundles play an important r61e in geometry and physics 

and we have used these in the main body of the thesis. An important 

idea is the following: 

Definition (6.1)28: Let M be an n-manifold and G a subgroup 

of GL(n,E.). A G-structure on M is a reduction of the frame bundle 

GL(n,]R) —»GL(M) —^ M to the group G, i.e. a G-structure is a 

principle subbundle P —> M of GL(M) with structure group G. 

The result stated after definition (5.1)5 may be used to 

determine whether or not a G-structure exists for given G $ GL(n,E.) 

G-structures on M are in bijective correspondence with r(GL(M) ), 
u 

where GL(M)g = GL(M) GL(n,]R)/G is the bundle associated 

with the frame bundle via the action of GL(n,]R) on the quotient 

space GL(n,]R) / G. Obstruction theory then gives necessary topo-

logical conditions on M for the existence of sections of GL(M) 

and hence of G-structures on M. 

G-structures are important in geometry because many structures 

on a manifold M are examples of G-structures. We give examples of 

subgroups G of GL(n,]R) which lead to structures used above: 

+ 

For G = GL (n,]R) we have an orientation structure on M. Such a 

structure exists if and only if M is orientable and then a choice 

of section of the -bundle GL(M) +, s gives a particular 

orientation on M. For an oriented manifold M, we will use the 

oriented frame bundle GL^(n,K.)(—»- GL"^(M) —> M as in Chapter One 
4-

(Here, GL (M) is the sub-bundle of GL(M) corresponding to the 

particular GL"*"(n,]R.)- structure, i.e. orientation, chosen -

obviously there are only two possible GL (n,M) - structures on a 

given orientable manifold M). If M is oriented, then we often 
4- 4-

refer to reductions of GL (M) to the subgroup G $ GL (n,]R) 
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also as G-structures on M (see, for example, section 1.1). 

A second important example arises when G = SL(n,E-). Then 

the set of G-structures is parameterized by r(GL(M) , ,) 
SXj (. n 5 -lt\) 

which is in bijective correspondence with Q (M), the space of 

nowhere vanishing n-forms on M. Thus an SL(n, ]R) - structure on 

a (orientable) manifold M is nothing but a choice of volume 

element. 

Further examples arise in the case G = CO(p,q) = SO(p,q) x E."'" 
-j-

(or G = 0(p,q) x 3R ) when we have a conformal structure on M 

(see sections 1.5 and 6.2) and in the case G = SO(p,q) (or 0(p,q)) 

when we have a (pseudo-)Riemannian structure (i.e. a metric) on M. 

When p (or q) = 0 such structures always exist, but for p,q =f 0 

there are topological obstructions to the existence of sections of 

the bundles GL(M)^Q^ ^ and GL(M)gQ^p ^ - for example a 

Lorentzian (conformal) structure (p = 1, q = n-1) exists if and only 

if M has vanishing Euler-invariant or is non-compact. Other impor-

tant examples are given by G = Sp(n) (symplectic structure) and, 

for n = 2m, G = GL(m,iC) (almost complex structure). We refer the 

reader to Kobayashi [K 6' ] for more details on these and other 

examples of G-structures. 

The automorphism group of a G-structure G®~*-P—>- M is the 

stabilizer of P in Aut GL(M) and is given by 

Aut(P) = stab(k) ^Gau(P), where stab(k) $ Diff(M) is the sym-

metry group of the tensor k on M corresponding to the G-structure 

P (e.g. for G = 0(p,q), k = g, a metric on M, P = 0(M,g), the 

bundle of g-orthonormal frames and stab(k) is the isometry group 

of g = k). 

We now turn to connections in the frame bundle: 
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Definltlon (6.1)29: A connection in the frame bundle GL(M) is 

called a linear connection on M. Let Conn(M) = Conn GL(M) denote 

the affine space of linear connections on M. For w G Conn(M), 

the torsion form 0*̂  of to is the p ̂ ^'"^^-tensorial 2-form given 

by = d'̂ 6 . The torsion map is the map 
m 

w 
8 : Conn(M) Qj(GL(M),Il 1; wl-»G 

of w is = 2T( G^) G n2(TM). 

The torsion tensor 

Using the formula 6.1.12, we obtain the structural equation 

0 = d8 + w(8^) together with the Bianchi identity d'̂  0^ 

= q'̂ (9ĵ ). As we have remarked, the vector bundles associated to 

GL(M) via tensor products of are the natural tensor 

bundles over M. Any connection w in GL(M) defines a covariant 

derivative operator acting on sections of these tensor bundles 

(i.e. on tensor fields) as in 6.1.8 and 6.1.9. Using x we may 

pullback the structural equations and the Bianchi identities (for 

both curvature and torsion) to give the standard covariant differen-

tial relations between tensor fields on M. 

For completeness, we conclude this appendix with a remark on 

the interaction between the space of metrics on the one hand and 

the space of linear connections on the other. The fundamental 

theorem of Riemannian geometry may be stated as follows: Given 

any g 6 Met(M) (metrics of a given signature), there exists a 

unique linear connection w 5 w which is metric (i.e. d^g = 0, 

where g : GL(M) —^ S(n,]R) is the equivariant map corresponding 

to g) and torsion free (i.e. d^8^ = 0). This unique connection, 

naturally associated with each metric g is, of course, the Levi-

Civitk connection of g. We therefore have a natural map 

LC: Met(M) —>- Conn(M) ; g i—> w 6.1.4, 
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Vg G Met(M). Since the Levi-Civit& connection w is, in particular, 

metric, i.e. d^g = 0, it restricts to a connection (also called w ) 

in the bundle of g-orthonormal frames; in other words, the Levi-

Civitk connection is the image (see (6.1)21) of a connection under 

the embedding of 0(M,g) (as a sub-bundle) into GL(M). 

It is well known that LC is equivariant with respect to the 

actions of Diff(M) on Met(M) (by pullback) and on Conn(M) (by 

natural lift to Aut GL(M) and then by pullback as described above), 

I.e. 

LC o = 4* o LC 6.1.15, 

V* € Diff(M). 

The natural geometric maps may be constructed using the Levi-

Civitk map 6.1.14 together with the curvature map defined in (6.1)20. 

For example, we have Riem = T°f]oLC: Met(M) —^ E n d ( f ^ ^ ( m ) ) c q 2 ( A d G L ( m ) ) 

= End(^^(M)) which associates with each metric its Riemann curva-

ture tensor field. Traces of Riem(g) give the standard Ricci map 

Ric: Met (M) —>- S2(M), and the scalar curvature map 

Seal: Met(M) — C ( M ) . Using 6.1.15 together with the behaviour of 

the maps n,T and trace under the action of the diffeomorphism 

group, it follows that Riem, Ric and Seal are equivariant with 

respect to the actions of Diff(M) on Met(M) and on Q^(AdGL(M)), 

•k * 

SgCM) and C(M) respectively, i.e. we have Fo<f} = (p °F for 

F = Riem, Ric, Seal, and V(p G Diff(M). 

When considering metrics, an important subspace of Conn(M) 

is obviously Metric(M) = {o) 6 Conn(M) : a g 6 Met(M) with 

d'̂ g = O}, the space of metric connections on M (so w G Metric(M) 

if and only if the holonomy group of w is a subgroup of 0(p,q)). 

Then Metric(M) ^ LC(M)xn2(TM), where LC(M) = LC(Met(M)) is the 
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space of all Levi-Clvit^ connections on M (note that the torsion 

map T = TI Metric(M):Metric (M) —^ Q^(TM) is surjective) . For more 

details concerning the map LC (for example, the question of the 

injectivity of its projection LC: Met(M)^^+ —>• Conn(M) , see 

Schmidt [Sg] and Hall [H1 ]. 

This concludes our trip through the definitions and main results 

in the theory of bundles and connections. As we have already remarked, 

the inter-relationship between metrics, frames and natural groups is 

explored further in Chapter Four. 
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6.2 Conformal Structure 

The aim of this appendix is to present the main definitions and 

results in the theory of conformal structures on manifolds. Con-

formal structures are important in physics, especially in general 

relativity, and in geometry, and they appear in several sections of 

this thesis, particularly in section 1.5 and in Chapters Three and 

Four. 

Conformal ideas arise in many areas of physics, for example in 

quantum field theory, but here we limit ourselves to some remarks 

concerning gravity and geometry. In differential geometry, a con-

formal structure may be regarded as a naturally defined subspace 

of the space of metrics (or geometries) on a given manifold, and 

a conformal change of metric may be regarded as the simplest non-

homothetic deformation of the metric. Conformal structure also 

has deep interaction with complex geometry, especially in Riemann 

surface theory and in algebraic geometry. 

In general relativity (and in Lorentzian geometry in general), 

conformal ideas are intimately linked with causal and null struc-

tures and thence with the theory of radiation. Appendix 6.3 gives 

the relevant definitions of conformally compactified spacetime and 

of null infinity which are necessary for discussions in Chapter 

Three. The interplay between null and conformal ideas is very 

physical since a conformal strucure is determined by its null 

vectors. Indeed, the signature of the metrics in the conformal 

equivalence class is determined by the topology of the space of 

null vectors at any event in spacetime. Also, conformal transfor-

mations are the most general ones preserving causality. Another 
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area in which conformal ideas enter into general relativity is in the 

spin-boost-conformal formalism of Geroch, Held and Penrose [G ] 

which we discuss in Chapters Two and Three and below in this section. 

Indeed, much of Penrose's spinorial and twistorial work has a con-

formal framework_(see both volumes of Penrose and Rindler [P 1 1 ] , [P 1^ 

and references therein). 

In the first part of this section notation and ideas are 

established by giving the relevant definitions and results. For ease 

of exposition we state definitions for positive definite metrics on 

oriented manifolds, but the extension to non-positive definite metrics 

and to non-oriented and non-orientable manifolds is clear. Most 

results are true for all manifolds of finite dimension, but we 

emphasize when a compactness or signature condition is required. 

The second part of this section lists useful formulae concerning 

conformal deformation. Some of these are standard and these are 

listed for convenience, but the others give the transformation of 

GHP and other spinor quantities under a general complex conformal 

rescaling - the latter have not appeared in the literature in this 

form before (but see Penrose and Rindler [P ] and Ludwig [L-13 ] 

for related results). For standard definitions and results see 

Kobayashi [K G ] and Obata [0 -f ]. 

Our first definition will cover the standard concepts: 

Definition (6.2)1: Let M be a manifold. Metrics g]_'§2 ^ Met(M) 

are said to be (pointwise) conformal if there exists f 6 C (M) 

such that g^ = fg^. A conformal structure C on M is an equi-

valence class of pointwise conformal metrics. Let Con(M) 

+ 

= Met(M)/G (M) denote the space of all conformal structures on M. 

Given g € Met(M), denote by C the conformal structure containing 
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g. A conformal manifold is a pair (M,C) where C 6 Con(M). 

Metrics G Met(M) are said to be conformally equivalent if 

there exists f 6 C*(M), (j) G Diff(M) such that g = fcj) g^-

Given conformal manifolds (M,C) , (M',C'), a map (j) 6 C(M,M') is 

said to be conformal if ^ C C C. Conformal manifolds (M,C), 

(M',C') are said to be (conformally) equivalent if there exists 

a diffeomorphism ^ of M onto M' which is conformal. Riemannian 

manifolds (M,g), (M',g') are said to be conformally equivalent 

if the corresponding conformal manifolds (M,C ), (M',C ,) are 
§ 8 

equivalent. A dif feomorphism cf) 6 Diff(M) is said to be a con-

formeomorphlsm of the conformal manifold (M,C) if <f> is conformal. 

The conformal group Conf(M,C) of the conformal manifold (M,C) 

is the group of all conformeomorphisms of (M,C). The Riemannian 

manifold (M,g) is said to be conformally flat if, for each 

X G M, there exists a neighbourhood U of x and f G C^(U) 

such that (U, fgju) is flat. 

Some of the above concepts are brought together if we consider 
+ 

the action of the conformorphism group Conf(M) = Diff(M) x C (M) 

(semi-direct product of Diff(M) and C"̂ (M) where Diff(M) acts 
-f-

on C (M) by pullback - see Chapter Four and Fischer and Marsden 

[F 5" ] for more details). Conf(M) acts on Met(M) in the usual 

manner; (((p,f),g) I — g , ¥(<p,f) G Conf(M), g G Met(M), where 

- 1 * 

(j)̂  = (tj) ) . Let g 6 Met(M), then the stabilizer of g under 

Conf(M) is just the conformal group Conf(M,g) E Conf(M,C ) of g. 
The orbit of g under Conf(M) is the space of metrics conformally 

+ 

equivalent to g. Note that the orbit of g under C (M) is just 

the space of metrics pointwise conformal to g, i.e. it is the 

conformal structure C containing g (and, of course, the orbit 
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of g under Diff(M) is the geometry on M containing g, i.e. the 

space of metrics isometric to g). In low dimensions we have special 

results. For example, acts transitively on Met(S^) 

(since dim = 1) and Conf(S^) acts transitively on Met(S^) (by 

the uniformization theorem for Riemann surfaces - see Wolf [W 10 ]). 

In other words, Met(S^) and Met(S^) can be realized as homogeneous 

c+(si) 

T "k _ 
conf(s2) 

spaces; Met(S^) ^ C*(sl) (since stab^+^^^ (can)= 1) and 

Met(s2) ^ Diff(s2)kc+(S2)/S0*(l,3) (since sCabr^_f/-2\(can) 

= Conf(S^,Can) = SO (1,3) - see section 1.5). 

For dim M ) 3 and M compact, Fischer and Marsden prove a 

slice theorem for the action of Conf(M) on Met(M) . This is 

analogous to the Ebin-Palais slice theorem for the action of Diff(M) 

on Met(M) (see Ebin [E Lj- ]). 

Let T Met(M) denote the L^-cotangent bundle of Met(M). This 

is equipped with the canonical (weak) symplectic form w = -dn, 

where n is the canonical 1-form. Fischer and Marsden show that 

the induced action of Conf (M) on (T Met(M) ,a)) is symplectic and 

may be reduced using the Marsden-Weinstein technique (see [M 4^]). 

For dimM = 3 the reduced phase space for the action of Conf(M) 

•k 

on T Met(M) is a representation of the space of true gravita-

tional degrees of freedom in the initial value problem of general 

relativity - another indication of the importance of conformal 

structure in gravity theory. 

Given g € Met(M), dimM 5 3, the conformal group, Conf(M,g) 

of g is a finite dimensional Lie group with Lie algebra given by 

LConf(M,g) = {X 6 Vect(M); L^ g = hg for some h € C(M)}. A vector 

field X on M is an element of LConf(M,g) if and only if X 

generates local 1-parameter groups of conformeomorphisms of (M,g), 
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and such an element is called a conformal Killing vector field of 

(M,g). The Lie algebra of the conformorphism group of any manifold 

M is given by LConf(M) = V e c t ( M ) C ( M ) (where ^ denotes semi-

direct sum of Lie algebras). For positive definite metrics on 

compact n-manifolds, Conf(M,g) is generically compact - indeed, 

the only compact manifold M for which Conf(M,g) can be non-

compact is the sphere with g in any of the conformal classes 

defined by a metric of constant (sectional) curvature. For example, 

(see section 1.5), Conf(S^,can) = S0^(l,3), which is non-compact. 

We now briefly consider other geometrical ways of studying 

conformal structures. In definition (6.2)1, a conformal structure 

C is a subspace of Met(M) and Con(M), the space of conformal 

structures, is a quotient of Met(M) by the group C^(M). We may 

also regard a conformal structure C as a reduction of the frame 

+ r + 

bundle GL (M) to the conformal group CO(n) = ta € GL (n,E,) : 

a^a = All some X G ]R^} = SO(n) x ]R"̂ , i.e. C may be regarded as 

a CO(n)-structure on M (see definition (6.1)28) with corresponding 

sub-bundle 

CO(n)C: » CO(M,C) » M 6.2.1, 

of GL*(M). 

Definition (6.2)2: Let C 6 Con(M) correspond to the principal 

CO(n)-bundle CO(M,C). Then CO(M,C) is called the conformal frame 

bundle of the conformal,manifold (M,C). 

The conformal frame bundle consists of all frames comprising 

pairwise orthogonal tangent vectors of equal length (relative to 

any g 6 C), i.e. CO(M,C) = {u 6 GL*(M): a g G C with 
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u G SO(M,g)} = u SO(M,g). The canonical l-form 6 on GL^(M) 
ggc 

restricts to a l-form (also called 8 ) on CO(M,C), i.e. 

6^ 6 0^ ^ (CO(M,C) . See section 1.5 for a discussion of 

connections and torsion in the conformal frame bundle. 

We know that reductions of GL"'"(M) to the group CO(n) are 

in bijective correspondence with the sections of the bundle 

- I -

associated to GL (M) via the action of GL (n,]R) on the homo-

geneous space GL^(n,]R) /CO(n) , i.e. Con(M) = r(GL*(M)^Q^^^), 

where G 1 + ( M ) = GL+{M) XGL+(n,m) (G1+(..«)/ C O W ) 

section 6.1 - note that since we are developing the ideas for 

-f. 
oriented manifolds we use the oriented frame bundle GL (M). The 

+ 

theory for non-oriented manifolds is identical, but with GL (M) 

replaced by GL(M) and SO(n) replaced by 0(n)). 

There is also a principal H - bundle associated with every 
+ 

conformal structure: Let C G Con(M) and let E. (M,C) 

= {g(x) : g € G, X 6 M}. We have the free ]R -action given by 

-j-
(g(x),r) rg(x) and the projection it : E. (M,C)—> M; 

+ 

g(x) »—> X. The space E. (M,C) is then the total space of a 

principal e"^-bundle over M. Note that this bundle is tri-

vializable since each metric in the conformal structure gives a 
+ 

global section. E (M,C) may be regarded as a line sub-bundle of 

9 * 

8 T M, the bundle of symmetric covariant tensors of rank two. 

Definition (6.2)3: Let C G Con(M). The conformal line bundle of 

the conformal manifold (M,C) is the principal e"^-fibration: 

]r*c » m 6.2.2. 

+ 
In fact the bundle characterizes the conformal structure 

+ 
C since C = r(w ). Note that there exists a natural principal 
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+ 
bundle homomorphism f : CO(M,C) —> ]R (M,C) given by u g(w^Xu)), 

where g € C is the unique metric such that u 6 SO(M,g). Conformal 

4. 
connections then give rise to connections in ]R (M,C) (see 

definition (6.1)21). 

Given any action of CO(n) on a manifold F, we may form the 

bundle CO(M,C) associated with the conformal frame bundle. 

For example, see the discussion in section 1.5 where the action is a 

representation of CO(n) on a vector space. A natural family of 

line bundles associated with CO(M,C) may be defined as follows: 

for w 6 M, define w € Hom(CO(n),n"'") by w(a,r) = (det(ar))^^^ 

= r^, V(a,r) G CO(n). This defines a representation of CO(n) on 

E and we let ]R = R (M,C) denote the associated line bundle, 
w w 

Definition (6.2)4: Sections of E. are called functions of 
• W 

conformal weight w.(Cf. definition (1.5)3). 

Each metric g € C induces a trivialization i : E. — ^ ]R 
^g,w w o 

= M X E.; [(u,t)] I—)- (iTĵ (u) , r where u € SO(M,rg),¥[(u,t) ] G 

Deforming the metric g within C gives rise to trivializations 

jj- , where j^ 1 ( E ) = f(x) . We have corresponding 
fg,w fg,w w X g,w ^ 

linear maps k : r ( E ) — — r ( E ) = C(M) and these may be used 
g 5 w w o 

to construct conformally invariant differential operators. For 

example, we may define the conformal Laplacian associated 

with each w G E and C G Con(M). This is given by 

- C " + 2 ° \ ° ""g."' " " " " 

C(*0 &or g 6 C, so that A % : r ( a ) » r ( E 
C W W+Z 

Note that the definition of A^ does not depend on the choice of 

representative metric g G C because of the transformation properties 

of k , Scal(g) and A = 6 ° d under conformal deformation of 
g,w * g g 

g (see equations 6.2.7 and 6.2.11 for the latter two). See Parker 



- 4 0 3 -

and Rosenberg [P 3 ], Branson [B2^] and prsted [0 V ] for more 

details on conformally invariant differential operators. 

For convenience we now list useful formulae concerning the con-

formal transformation properties of quantities of interest in geo-

metry and in general relativity. The first list is standard and 

concerns geometric maps F on the space of metrics Met(M). Our 

notation is as follows: g 6 Met(M), f 6 C^(M) , g = fg, F E F(g) 

and F 5 F(g) for any map F with domain Met(M). We also make use 

of the symmetrized tensor product 0 and the Kulkarni-Nomizu 

product , 0 : S g C M j x S g C M ) - + defined by 

(h @ k)(U,V,W,X) = h(U,W)k(V,X) + h(V,X)k(U,W) - h(U,X)k(V,W) 

- h(V,W)k(U,X), VU,V,W,X G Vect(M), h,k 6 SgCMQ. We also let 

^ = gd log f 6 as this considerably simplifies the formulae: 

For LC: Met(M) —^ Conn(M), we express the transformation 

in terms of the associated covariant derivative acting on Vect(M). 

Let X,Y 6 Vect(M), then: 

VyY = - g ( X , Y ) * * 6 . 2 . 3 . 

Instead of using Riem: Met(M) —> fi^CAdGLCM)) C r((0^T M) 0 TM), 

, * 

we use the totally covariant form Riem: Met (M) — r ( 8 T M) , and 

we have 

Riem = f(Riem - g @(V$ - (j)®(j) + 6.2.4. 

The conformally invariant part of the Riemann curvature tensor 

is the Weyl tensor, so that Weyl: Met(M) —^ r((@^T M) 8 TM) is 

invariant under the action of C^(M): 

Weyl = Weyl 6.2.5. 
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Curvature information not contained in the conformally invariant 

Weyl tensor is stored in the Ricci tensor and, for Ric: Met(M) —> S^CM) 

we have: 

Ric - Ric - (n - 2)(V^ - <j)Q4>) + (6c() - (n - 2)|(f)|̂ )g 6.2.6. 

Next, we have the scalar curvature function. Seal: Met(M) —^ C(M), 

and, by taking the g-trace of equation 6.2.6, we obtain: 

Seal = f"l(Scal + 2(n - 1)6* - (n - 2)(n - l)|o|2) 6.2.7. 

The canonical measure, vol: Met(M) —^ transforms as 

follows: 

n 

vol = f^ vol 6.2.8, 

and the associated Hodge star operator: Met(M) —> End(Q(M)) res-

tricted to Q^(M) is: 

* = f * 6.2.9. 

Using 6.2.9 we obtain the codifferential restricted to 

6 = - (n - 2k)I 6.2.10, 

* 

and thence the Laplace-Beltraml operator, A = d ° 6 + 6 ° d , res-

tricted to q'^(M) : 

f ^(A - (n - 2k)d o i ^ - (n - 2k - 2)i ^ o d 

+ 2(n — 2k)*^i ^ - 2(j)̂ 6) 6.2.11. 

In conformal geometry the important metric dependent quantities 
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are those which only depend on the conformal class of the metric, 

the most important of which is the Weyl tensor (6.2.5). Indeed, 

for n ) 4, the Weyl tensor is the sole obstruction to conformal 

flatness (see definition (6.2)1) and we have that the Riemannian 

manifold (M,g) is conformally flat if and only if Weyl(g) = 0 

(see Eisenhart [EiS ]). For n = 3, the Weyl tensor vanishes 

identically (so the curvature is determined by the Ricci tensor 

alone) and the obstruction to conformal flatness is known as the 

Weyl-Schouten tensor field - this is an 0(p,q)-invariant com-

ponent of the covariant derivative of the Riemann tensor field 

(see Schouten [S29]). Again in dimension two, the Weyl tensor 

vanishes identically (and the curvature is determined by the 

scalar curvature alone), and in this case there is no obstruction 

to conformal flatness:- Any two dimensional Riemannian manifold 

(M, g) is conformally flat (See Kobayashi and Nomizu [K'7 ])• 

Other conformal invariants (i.e. functions on Met(M) which 

project to Con(M) = Met (M)/c"^(M)) may be obtained from equations 

6.2.3 - 6.2.11. We have already mentioned the Yamabe operator 

Y; g —»- A + Scal(g) : C(M) —^ C(M) above and another example 

k 

is the Hodge star operator acting on 0 (M) where M is of dimen-

sion 2k. The latter example is of great importance in the study 

of self-duality (see Atiyah et al. [A 30 ]). 

In general relativity, the interaction between conformal and 

null structures is very useful. For instance, let (M,g) be a 

pseudo-Riemannian manifold (i.e. g is not definite) and let 
* 

c: I —>• M be a null geodesic on M. Then the curve ct c is a 

null geodesic for the conformally related pseudo-Riemannian mani-

fold (M, fg) so long as ct: ]R—^ IR satisfies 
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a" + (V log(c f))a' = 0. In other words, the null geodesies of 
c 

(M,g) are precisely the null geodesies of (M,fg) (up to a change 

of parameterization). See Friedrich and Schmidt [F4i ] for a 

discussion of geodesies, conformal structures and general relativity. 

We may also study the change in quantities associated with 

embeddings under a conformal deformation of metric. For example, 

suppose k 6 Emb(M,N) and g 6 Met(N). Let K, K be the second 

fundamental forms (see section 2.1) of the Riemannian embeddings 

k: (M,k g) —> (N,g), k: (M,(k f)k g) —> (N,fg) respectively. 

Then, using the definition of second fundamental form, it is 

straightforward to show that K, K are related as follows: 

K(X,Y) = K(X,Y) - (k^g)(x,y)(df>L, vx,Y G V e c t ( M j , where (df^L 

denotes the normal component of the gradient of f,' (df)*. 

We refer the reader to Besse [B 'fO ] , Kobayashi [K S ] and 

Weber and Goldberg [W "3 ] for more general details concerning 

conformal structures, but now we turn to the specific question of 

four dimensional Lorentzian geometry. In particular we now dis-

cuss the conformal transformation of spinor quantities in the 

GHP formalism which we considered in section 2.3. The GHP for-

malism provides a framework for performing calculations involving 

the components of a g-spin connection on a spacetime (M,g). If 

the metric g is deformed conformally then the corresponding spin 

connection (see section 1.3) also changes which in turn induces a 

transformation of the GHP spin coefficients. A knowledge of how 

these quantities transform is obviously essential when performing 

GHP calculations in a conformally rescaled spacetime. We present 

here a list of the transformation properties of the basic GHP spin 

connection coefficients and of various other useful spinor quantities. 
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We consider a general complex rescallng so that our formulae are 

more general than those in Penrose and Rindler [Pif ]. For a treat-

ment of conformal transformation of the (less geometrical) NP 

quantities, see Ludwig [L 13 ]. Note, however, that Ludwig discusses 

complex conformal rescalings within the context of general 

GL(2,C) X GL(2,(C) transformations (see also section 2.3). 

We use the standard GHP notation (see [G T- ]) as introduced 

in section 2.3 and we consider a general complex rescaling of e 

* 

given by some fixed f 6 C(M, I ). We refer the reader to section 

1.8 for details on how such a rescaling influences the geometry of 

spacetime. The possible importance of allowing complex rescalings 

of the symplectic form e rather than just real rescalings has 

been noted by Penrose [P 9 ]. Penrose remarks that if we wish to 

maintain the conformal invariance of the massless free field 

equations and of the twistor equation, then any complex conformal 

deformation must be accompanied by a change in the torsion of the 

connection. In particular, if the connection is initially torsion-

free, then torsion must appear. For speculation on the possible 

physical significance of the introduction of torsion in this manner, 

see the Penrose paper cited. 

Our formulae are considerably simplified if we introduce the 

map a: x ) —> C(M,iE ); ((p,q),f) 1—̂  f^ This map 

has the following useful properties:- a((p,q),'): C(M,l )—»C(M,Z ) 

is a homomorphism, indeed an automorphism for p^ =}= q^ (C(M,iC ) 

with pointwise multiplication as group structure) and a(',f): 
9 * 

]R -^C(M,iE ) is also a homomorphism. In addition, for any deriva-

tion D on C(M,iC ), we have D(a((p, q),f)) (pDlogf + qDlogf)a((p, q),f). Finally, we have 
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a ( ( p , q ) , f ) = a ( ( q , p ) , f ) . For conyenience we w r i t e f ( p , q ) = a ( ( p , q ) , f ) , 

V(p,q) 6 E.2 , f 6 C(M,(C ). Note that |fp E f(l,l) and 

21 arg f = log f(l,-l), Vf 6 C(M,I ). 

Let f 6 C(M,iC ) and = f(l,0)e^^ 5 f e . Then, 

'̂ AB AB 

necessarily, we must have = f(0,l)E^y ,, e = f(-l,0)E , 

;a'b' = ^ f(l,l)8ab = and 

Note that in the current notation the (real) pointwise conformal re-

scaling of the spacetime metric is given by |f|^ rather than by 
4-

f(G C (M)) as elsewhere in this section. 
We now consider a general complex rescaling of the spin frame 

A ' \ ' 

^ . A B A B B A , 
Then, since e = o i - o i and o. i = 1 , we must have 

A 
-̂ a a 
X = f(-l-p, -q)I , 0 = f(p+l,q)o and i = f(-p,-q)i (together 

u = {o ,i } given by o = f(p,q)o for some fixed (p,q) 6 

"A ;A ^ A 

with the complex conjugate transformations = f(q,p)o^, etc.). 

We have the GHP prime operation given by (o^) ' = ii^, (i'̂ )' = io^ 

and this induces the map (p,q) I—> (-l-p,-q) of ]R̂  onto itself. 

Suppose 00 is a quantity of well defined GHP type, then 

to = f(ap+bq+c, bp+aq+d)w where {a,b} is the type of w. 

The spin frame u projects to the null tetrad u = n(u) 

= {l,n,m,m } in the usual manner and this transforms as follows: 

1^ = f(p+q,p+q)1^, 1 = f(p+q+l, p+q+l)l , n^ = f(-l-p-q, -l-p-q)n^, 

n = f(-p-q, -p-q)n , m^ = f(p-q, -l-p+q)m^, m = f(p-q+l, -p+q)m^, 

m = f(-l-p+q, p-q)m and m = (-p+q, p-q+l)m^, using the usual 

null tetrad inner products:- %'n = 1 = - m«m with all other inner 

products vanishing. 

We also use formula 6.2.3, V Y = V Y + (f)(X)Y + ^(Y)X - g(X,Y)(j)', 
a a 

where # = gd log|f|2, and Vyf(p,q) = f(p,q)(pVylogf + qV^logf), 

¥X,Y 6 Vect(M). Note that, as usual, we use the notation l,n,m,m 
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to mean local sections of the frame bundle as well as for a null 

tetrad at a particular point. Let us first present a couple of examples 

of how the calculations are performed, and then we give the full list 

of transformation formulae. 

First consider the spin coefficient k = 1>. Under the 

rescalings introduced, we have k = <m^,Vjl> since both the metric 

A A /s 

and the spin frame undergo rescaling. Hence ic = <m ,V^X + 

= <f(p-q+l, -p+q)m^, f(p+q,p+q)(f(p+q,p+q)l)> 

= f(2p+l,2q)<m^,V^(f(p+q,p+q))l> + f(2p+l,2q)f(p+q,p+q)<m^,V^l> 

= f(3p+q+l,p+3q)K. Similarly, x = <m^, V^l> and so we have 
^ ^ A yv ^ ^ A A. ^ /\ A ^ 
T = <m , V-l> = <m", V^l + (p(n)l + (p(l)n - g(l,n)(j) > 

n n 

= <f (p-q+l,-p+q)m^, f (-1-p-q,-1-p-q) (f (p+q ,p+q) l) - f (-1,-1)(j)*> 

(since g(l,n) = f(-l,-l)g(l,n) = f(-l,-l)) 

= f(-2q,-2p-l)<m^, V^^f(p+q,p+q)l> - f(p-q,-p+q-l)<m^,**> 

= f(p-q,-p+q-l)(<m^,V^l> -

Now <m̂ ,(j) > = <(j),m> = <^dlog|f|2,m> = m(log|f|) = 9log|f|, and hence 

T = f (p-q ,-p+q-l) (t- crlog|f|). 

The full list is as follows: 

K = f(3p+q+l, p+3q)K 6.2.12, 

a = f(3p-q+l, -p+3q-l)o 6.2.13, 

p = f(p+q,p+q)(p - i log|f|) 6.2.14, 

T = f (p-q,-p+q-l) (T - 3" log|f|) 6.2.15, 

3 = f (p-q,-p+q-l) (g + (p+|)or logf + (q+q) cT logf) 6.2.16, 

E = f(p+q,p+q)(e + (p+§) # logf + (q+J) # logf) 6.2.17, 
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c' = f(-3p-q-2, -p-3q-l)K' 6.2.18, 

o' = f(-3p+q-2, p-3q)o' 6.2.19, 

P' = f(-p-q-l, -p-q-l)(p' - i'loglfj) 6.2.20, 

T' = f(-p+q-l, p-q)(T' - &'log|f|) 6.2.21, 

3' = f(-p+q-l,p-q)(B' + (-p-q) >'logf + (-q+i) y'log f) 6.2.22, 

E' = f(-p-q-l,-p-q-l)(e'+(-p-^)f'logf + (-q+1) I'logf) 6.2.23. 

Note that (w)' = (oj') and similarly w = w, so that the transfor-

mation properties of k,..., may also be written down (using 

the fact that f(p,q) = f(q,p)). 

The spin structure s which we have chosen gives us the principal 

SL(2,iC)-bundle SO(M,g) over spacetime as in section 1.7. This 

bundle may be regarded as the complex symplectic frame bundle cor-

responding to the symplectic vector bundle (S(s ),e). When we 
S 

consider complex conformal rescalings e I—> fe of the symplectic 

form E, it is appropriate to consider the corresponding complex 

conformal symplectic structure with structure group SL(2,(E) x I 

(see section 1.8 for more discussion of this matter and Kobayashi 

[K f ] for general remarks concerning conformal symplectic structures). 

Corresponding to the representations (A,z) I—*- ^ of 

SL(2,iC) X iC on I, (r,s) 6 ]R^, we have the two parameter family 

(C / . of complex line bundles over M. These are analogous to 

the bundles iC E(s,w) —>- of section 1.5 and also to the real 

line bundles H ]R —^ M introduced above in this section. Now 
w 

consider a spinor field A G r(S(s ) @_ E, ,) which, when re-
g' I (-r,-s) 

garded as an equivariant map on the total space, transforms as 
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A 

A = f(r,s)A with components = f(r+p+l, s+q)A^, 

A^ = f(r-p, s-q)A^ with respect to the spin frame 

now introduce some differential operators which generalize the spin 

coefficients of GHP. These operators arise from quantities defined 

by J. Vickers (unpublished). 

Definition (6.2)5: Let A be as above and define differential 

operators K, S, R and T by: 

KA = 0^ 4 A. = i A + KA, 6.2.24, 
A o 1 

SA = 0^ g A. = cT A + aA, 6.2.25, 
A o 1 . 

RA = 0^ 9'A = r'A + pA 6.2.26, 

TA = 0 ^ 5'A, E 2'A + TA, 6.2.27. 
A o 1 

Since these operators depend on the spin frame, we may regard 

them as operators on the space of equivariant functions on the 

total space of the conformal symplectic bundle. The combinations 

6.2.24 - 6.2.27 arise naturally in many calculations, for example 

in Chapter Three of this thesis. We now consider the conformal 

transformation properties of these operators. For fixed A, let 

us write K = KA, etc. The calculations are analogous to those 

for the GHP spin coefficients and the latter are obtained as a 

A A 

special case when we put A = o and (r,s) = (p,q): 

K = f(r+2p+q+l,s+p+2q)(K+((r+q) i logf + (s-q) i logf)A ) 6.2.28, 

S = f(r+2p-q+l,s-p+2q-l)(S+((r+q) ? logf +(s-q) 2r logf)A^) 6.2.29, 

R = f(r+q,s+p)(R + ((r+§) 3"'logf + (s+q) 3^'logf)A^ - ( i log|f|)A^) 
6.2.30, 
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T = f ( r - q , s - p - l ) ( T + ( ( r + § ) ai'logf+(s+&) 5'logf)X^^-(31og|f|)X ) 

i . 2 . 3 1 . 

Note that the types of K, S, R, T are {2,1}, {2,-1}, {0,1}, 

{0,-1} respectively. Useful quantities of type {0,0} may be 

defined as follows: 

P = " i*') 6.2.32, 

Q = X (T - IR') 6.2.33, 

with transformation properties given by: 

P = f(r+s.r+s)(P + ((r+q) S'logf + (s-%) l'logf|x^p 

+ ((r+^)aiogf + (s-^)&logf)Ag, X^) 6.2.34, 

Q = f(r+s,r+s)(Q + ((s+f) 5'logf + (r+^) #'logf)|X |2 

- ((s+g)3'logf + (4+^0&'logfjXQX^,) 6.2.35. 

Certain physical quantities may be written down in terms of 

P, Q. For example, the Ludvigsen-Vickers quasi-local momentum 

integrand is given by 

J = 4(|)^ 0^ = - J' 6.2.36, 

where 

- \ A ' B ) G-2-37' 

A long but straightforward calculation now shows that J may 

be expressed as J = X (T - iR') - Xg.CT - IR') + X^(R - IT') 

+ Y , (R - iT') = (Q + P') - (P + Q') = A - A', w h e r e A = Q + P'. 
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The change in the Ludvigsen-Vickers integrand induced by a complex 

conformal deformation may be calculated using 6.2.34 and 6.2,35, 

and we obtain: 

J = f(r+s,r+s)(J + (-(r-s-J) i'logf + (r-s+|-) logf)|x^|2 

+ ((r-s-g) i logf - (r-s+j) $ logf)|A^p 

+ (-(r-s-J) ?logf + (r-s-f—) grlogf) A , X 1 

+ ( (r-s-5) S'* logf - (r-s+j) cT'logf) A^,) 6.2.38. 

To actually calculate quasi-local momentum, we only need the 

real part of J and this transforms as follows: 

Re(J) = f(r+s,r+s)(Re(J) + 2(|a^|^ 5' - $ )log|f| 

+ i(2r-2s+l)(XQA , f ) a r g f ) 6.2.39. 

Differential operators of physical importance may also be ex-

pressed in terms of the quantities defined above and their conformal 

transformation properties deduced. For example, let S = 

^a'ab = - 1k'°a°a'°b ' ^aia'^b + 

6.2.40, 

and 
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V a b = &(t + 

+ i ( r + i t ' x o ^ v ' b - v a ' ° b > g'2.41. 

Using 6.2.28 - 6.2.31, we may show, for instance, that 

^A'AB ~ f(r+l,s)S^,^g + (terms which vanish for r = s = 0 and f 

R-valued) which is just the usual conformal Invariance of the 

twistor equation = 0. By contracting 6.2.41, we obtain the 

operator appearing in the neutrino equation, namely 

5 = ( T + iR')o^' - ( R + 6.2.42. 

An equation used in Chapter Three in the Ludvigsen-Vickers 

quasi-local momentum definition is the null limit of the Sen-Witten 

equation. The corresponding Sen-Witten operator is given by 
— ^ ^ 

W , = V..,A - t ,V A , where t is the timelike future 
A. AA. AA t 

directed normal to the spacelike hypersurface E M. It is 

easily shown that 

+ (t'n)2k - ir')oa' 

- i((it2 - 1)T' + (t'l)2K' + iRjiA' 6.2.43, 

and,assuming t = f(-j,-g)t, so that t^ = t^, we find 

= f(r,s)(W^y + 

where 

" (((r+^) 5'logf + (s+&) &'logf)XQ - (yiog|f|)X^)(^t2 - 1) 

+ ((r+i) $ logf + (s-^) $ logf)A^(fn)^ 

+ ((r+g)&logf + (s+i) oTlogf) - ( 5'log|f|)A^ 6.2.44. 
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We remark that if we are interested in a small number of quan-

tities, it is often possible to choose the parameters p,q,r,s in a 

particular manner so as to simplify as many transformation formulae as 

possible. For example, the Hawking gauge (Hawking [H ^ ] ) is often 

utilized. This is given by K = e = p - p ' = p ' - p ' = 0 , T = - T ' 

= g - g'. Suppose we let p+q+1 = 0 and let f be K-valued. 

Then, using 6.2.12 - 6.2.23, we see ic = f e = f ^ e , (p - p) 

= f ^ ( p - p ) , ( p ' - p ' ) = p ' - p ' , ( x + t ' ) = f ^((t + T') 

- 23"logf), (T - g + g') = f (T - g + g'), (T ' + g - g') 

= f ^((t' + g - g') - 291ogf). Thus, the choice p+q+1 = 0, 

f H-valued makes the trasnformation of the Hawking gauge par-

ticularly simple. If we actually wish to leave invariant this 

gauge, then we must also have = 0. 

A particular application of the conformal transformation for-

mula presented in this section is in the study of asymptotically 

simple spacetimes when a conformal compactification is made. For 

example, we could study quasi-local quantities in the compactified 

spacetime. In the next section, we briefly discuss asymptotic 

simplicity, which may be regarded as an asymptotic boundary 

condition on spacetime in a conformal setting. 
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6.3 Asymptotic Simplicity 

For a physical theory to be useful, we must be able to discuss 

a certain class of solutions which represent isolated systems. In 

general relativity, these are bounded systems such as stars and 

black holes whose corresponding spacetime is asymptotically flat, 

i.e. the metric approaches that of Minkowski spacetime at large 

distances from the source. Examples are the Schwarzschild, 

Reissner-NordstrSm and Kerr-Newman spacetimes and these solutions 

have asymptotically flat regions whose conformal structure is 

similar to that of Minkowski spacetime. A useful definition of 

asymptotic flatness may be abstracted from these examples (Penrose 

[P7]) and we discuss such a definition in this section. For 

physical reasons indicated in Chapter Three, we restrict our atten-

tion to spacetimes whose metric approaches flatness along null 

directions. For more details, see Beem and Ehrlich [B 5^ ], Geroch 

[G ̂  ], Hawking and Ellis [H 5 ] and Penrose and Rindler [Pl2.]. 

These references also discuss the case of asymptotic flatness at 

spacelike infinity. 

Reasons for studying isolated systems, in particular asymp-

totically flat spacetimes in general relativity, include the 

following:- physical attributes such as mass, momentum, angular 

momentum and other "charges" may often be assigned to such systems 

so as to describe the system using only a small number of parameters. 

Other ideas fitting into the conceptual framework of isolated 

systems are multipoles and radiation, both of which have important 

physical significance. 

From a mathematical viewpoint, the imposition of boundary 
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conditions such as asymptotic flatness leads to a simpler structure 

at infinity. This structure is universal in that it does not 

depend on the particular spacetime and it provides an arena in 

which to study the true degrees of freedom of the gravitational 

fidld. Indeed a well defined symmetry group, the BMS group, 

naturally occurs and this may be used as the basis of definitions 

of asymptotic kinematical quantities. In particular, spinor 

methods have proved very useful when combined with the imposition 

of the conformal boundary condition of asymptotic flatness. In-

deed, it is fair to say that many of the remaining problems in 

general relativity would stand a better chance of being solved 

if the combination of spinor, embedding and conformal techniques 

at infinity could be propagated into the interior of spacetime 

in a consistent way. This idea of propagation from infinity 

lies at the heart of the Ludvigsen-Vlckers definition of quasi-

local momentum discussed in Chapter Three of this thesis. Whether 

or not more of the structure available asymptotically may be 

extended into spacetime itself remains to be seen. A major problem, 

besides practical details such as obstructions to propagation by 

caustics, etc., is the desire for some notion of universality when 

defining symmetry groups and kinematical quantities. 

We turn now to the definition of the useful notions of 

asymptotic flatness. We use the term spacetime as introduced in 

section 1.7, and the following definition is essentially that 

given in the references cited above. 

Definition (6.3)1: An asymptote of a spacetime (M,g) is a 

quadruple (M,g,f,^) where (M,g) is a spacetime with boundary 

9M, f £ C(M) and (f) G Emb(M,M) such that (ji is a diffeomorphism 
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of M onto M - 3M, (# f)2g = ^ g, f | 8M = 0 and df 13M =(= 0. 

A spacetime (M,g) is said to be asymptotically simple and empty 

if it admits an asymptote (M,g,f,^) such that S M C M - support 

(4^(Ric(g))), (M,g) is strongly causal (i.e., for all x 6 M 

and for all neighbourhoods U of x, there exists a neighbour-

hood V of x, V C U, such that every non-spacelike curve in 

(M,g) intersects V at most once), and every inextendible null 

geodesic y of (M,g) is such that (j) ° y admits both future 

and past endpoints on 3M. 

Asymptotically simple and empty spacetimes include Minkowski 

spacetime (E.'̂ ,n) together with isolated systems which do not under-

go gravitational collapse. However they do not include important 

solutions such as Schwarzschild, Reissner-NordstrSm or Kerr-Newman, 

because there exist null geodesies in these spacetimes which do 

not get out to infinity. We modify the definition slightly to 

include such spaces: 

A spacetime (M,g) is said to be weakly asymptotically simple 

and empty if there exists an asymptotically simple and empty space-

time (M'jg') (with asymptote ',$')) and a neighbourhood 

U' of 9M' in M' such that ((^') ^(U'),g') is isometric to 

(U,g) for some open set of M. 

Examples of weakly asymptotically simple and empty spacetimes 

include those mentioned above and, in general, such spacetimes possess 

a whole family of asymptotically flat regions. When discussing 

weakly asymptotically simple and empty spacetimes we consider only 

one of these regions. 

If a (weakly) asymptotically simple and empty spacetime (M,g) 

is a solution of Einstein's equations with vanishing cosmological 
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constant, we say that (M,g) is asymptotically flat. The basic 

underlying philosophy in the study of asymptotically flat spacetimes 

is that, as far as physics and geometry are concerned, the boundary 

3M is to be treated as being at finite distance from the sources 

of the conformally compactified spacetime (M,g). In particular, 

the conformal factor, the rescaled metric, curvature tensor, matter 

fields are amooth on 9M. The powerful local techniques of spinor 

geometry may be utilized on (M,g) with implications for the asymp-

totic structure of the physical spacetime (M,g). 

Now let (M,g) be an asymptotically flat spacetime with 

asymptote (M,g,f,^). The major consequences of the definition are 

as follows 

The boundary 8M has two components, denoted ^ (past null 

infinity) and (future null infinity), each of which is a non-

shearing null hypersurface in (M,g). Null geodesies have past 

endpoints on ^ and future endpoints on The spacetime 

(M,g) is necessarily globally hyperbolic (so, in particular, M 

is topologically Z x ]R where E M is a Cauchy surface for 

(M,g)), and each of ^ " are topologically x E.. The field 

n = (-df) € Vect(M), when restricted to A , is a null normal 

and its integral curves are the null generators of . Any two 

cross sections of % E. are mapped conformally to 

one another by the flow of n. The Weyl tensor of g vanishes 

identically on and this leads to the peeling off theorem -

along a null geodesic in a neighbourhood of ^ the various 

spinor components of the Weyl tensor vary as different powers of 

an affine parameter. The peeling off theorem relates the out-

going (for 4 ^ ) null direction given by the geodesic to the 
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algebraic type and asymptotic behaviour of the conformally in-

variant part of the gravitational field. 

We now make some brief remarks concerning asymptotes. Suppose 

(M,g) is asymptotically flat. A natural question to ask is how 

many asymptotes does (M,g) admit? To answer this it is necessary 

to consider equivalence and extension of asymptotes: Two asymptotes 

, (M2,g2,f2'*2^ of (M,g) are said to be equivalent 

if there exists h € C*(M), ip 6 D i f f s u c h that 

g^ = gg) and f^ = h(4i f^). The asymptote (M,g,f,(j)) is 

said to be an extension of (M - W, g| (M - W) , f | (M - W) ,<})) for 

any closed subset W of 3M. We then say an asymptote is maximal 

if it admits no non-trivial extension. It may then be shown that 

for any asymptotically flat spacetime (M,g), there exists a 

maximal asymptote, unique up to equivalence (Actually, we must 

restrict to regular asymptotes - see Geroch [G 5' ] for more details). 

Thus, given any asymptotically flat spacetime we may use the maxi-

mal regular asymptote. This will be defined only up to a conformeo-

morphism and we should ensure that all physically meaningful quan-

tities are invariant under such transformations. 

A -h ^ ^ ^ 

Let us now focus on, say, C 3M where (M,g,f,^) is, up 

to equivalence, the maximal regular asymptote of the asymptotically 

flat spacetime (M,g). We regard as the space x ]R 

equipped with various fields induced by the embedding (p of space-

time into M. The two most important fields are the degenerate 

4-1-

metric q = j g (where j: 4 > M is inclusion) of signature 

(o - -) and the vector field n = (-df)* which, when restricted to 

is a null normal to ^ . Suppose we choose an asymptote 

(M,h^g,hf,<()) equivalent to the original one (where, without loss 
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of generality, we have taken the compactifled spacetime to be M, 

rather than some other differomorph). Then q becomes h^q and 

~1 J + ^-1 

n becomes h n (since d(hf) = hdf on it and g becomes 

Thus the field S = q 8 n 8 n G r((@2T*^^+)8(@2T{^*)) 

is independent of the choice of representative of the equivalence 

class of asymptotes. Given a signature (0 - -) conformal struc-

4 "f* '\i g 
ture C on 4L % II, it is easily shown (see Schmidt et 

al. [S 6^ ]) that a type tensor field, symmetric in both 

pairs of slots, is characterized by the two properties 

(i) Va 6 fi^ , S(', •, a,a) 6 C ^ ^0} and (ii) any contraction 

of S Itself vanishes. 

Definition (6.2)2: Let (2-'^,C) be as just described. The tensor 

field S € r((0^T 8 (0^T^"^)) uniquely defined by properties 

(i) , (ii) is called the strong conformal geometry on (^^,C) 

(Penrose and Rindler [P 1%,]). 

The triple (^"^,C,S) is unique up to diffeomorphism and we 

regard the strong conformal geometry as representing the universal 

first order structure on ^ The asymptotic symmetry group is 

the automorphism group of this first order structure 

Definition (6.3)3: Let (^"^,C,S) be as above. The Bondi-

Metzner-Sachs (BMS) group is defined by BMS = {<}) 6 Dlff(J."^) 

:(j)" S = S}. 

The BMS group is unique up to isomorphism, i.e. it does not 

depend on the choice of degenerate conformal structure C. This 

group arose originally (Bondi et al. [ B ] , Sachs [S 2-]) as the 

group of coordinate transformations preserving Bondi et al's form 

of a future asymptotically flat metric, but it is more geometrical 

to view the BMS group as the automorphism group of the universal 
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structure ,C,S) . 

Using definition (6.3)3, the isomorphism class of BMS may be 

deduced. Here we just state the relevant results. For a compre-

hensive treatment of representation theoretical and topological 

aspects of the BMS group, see McCarthy [M ^ ]. 

The BMS group, like the Poincarg group, possesses a semi-

direct product structure, so we first recall the important facts 

concerning such structures. See, for example, Jacobson, p. 79, 

for the basic definition. Suppose that we are given groups H and 

K together with an action 6 of H on K by automorphisms, 

i.e. 0 G Hom(H,Aut(K)). Consider the set H x K. Then, using 6, 

there are two natural group structures on H x K. The first is 

given by (h^,k^(h2,k2) = (h^h^jk^S^ (k^)) and the second is given 

by(h^,k^)(h^gk^) = (h^h^, ¥(h^,k^),(h2,k2) 6 Hx K. 

It is straightforward to check that these are indeed group struc-

tures on H x K. Let G, G' denote H x k equipped with the first, 

second group structure respectively. Then the map G —G'; 

(h,k) M" (h,e _i(k)) is easily seen to be an isomorphism of groups, 
h 

The isomorphism class containing G (and hence G') is called 

the semi-direct product of H and K with respect to 6 and we 

denote it Ht^gK (or HK K if 9 is understood). Depending on 

the situation, we pick the concrete representative G (or G') 

and write H K = G (or G'). 

The semi-direct product often arises as the splitting of a 

short exact sequence of groups 1 —>- K > G H —> 1 where i 

is inclusion of K < G and X is an epimorphism. Given a split-

ting g 6 Hom(H,G) (so that A, ° 6 = id^) we may define 

8 6 Hom(H,Aut(K)) by 8 (k) = g(h)k6(h"l), V h G H , k G K. Then 
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G is (isomorphic to) the semi-direct product H « K - define 

C: H KQK —^ G by g(h,k) = k3(h), then g is an isomorphism of 

groups with inverse given by g ^(g) = (A^g), g((goX)(g ^))). 

An example of this phenomenon is the splitting of sequence 6.1.2 

(or 6.1.3) in the case of the frame bundle GL(M). This gives 

rise to the semi-direct product structure Diff(M) x GauGL(M) 

for Aut GL(M) (see definition (6.1)27 and equation 6.1.13). 

We now return to the BMS group. Recall (see sections 1.5 

and 1.7) that the restricted Lorentz group SO (1,3) is isomorphic 

to Conf(S^, Can), the conformal group of the two sphere equipped 

with its standard conformal structure (1.5.33). In equation 

1.5.20, we gave the conformal action of SL(2,(C), the double 

cover of SO (1,3), on S^ - as we remarked, this action projects 

to S0f(l,3) and is the action realizing the isomorphism 

S0^(l,3) = Conf(S^, Can). Let us therefore write 

f o * 

(j) 6 Hom(S0 (1,3), Diff(S^)) for this action, so that (|) can = 

can, Va G S0^(l,3), where 5 (any A £ A ^(a)) (see 
equation 1.5.36). Note that the conformal factor € C (S^) 

* 

a 

is given by = gtrace(^^ can) (trace with respect to 

A . can 6 Met(S^)) so that, ¥a^,a„ 6 SO (1,3), = 2trace(^ can) 

* * ^ ^ ^ -

= itrace(d) 6 can) = itrace(d) (K^ can)) = i (cj)" ) trace ({}) can) 
*2 ^2 *2 

Now consider the action f of SO (1,3) on C(S ) given by:-

<5 (f) = K ^ d) ^ f 6.3.1, 
* a-1 a-1 

Vf 6 C(S^) , a 6 S0^(l,3). From a representation theoretical view-

point $ is the closest relative representation associated with the 
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representation D°(2,J) (see Gel'fand et al. [G19-] and section 1.7 

for a brief discussion of the D° representations). We regard C(S^) 

as an abelian group and then the action $ is by automorphisms. 

-f* 2 

Let B = SO (1,3) ̂ C(S ) denote the corresponding semi-direct pro-

duct, where, to conform with standard practice, we use the "C-

representation", so that the group structure in B is given by 

v(a^,f^),(a2,f2) g b. 

Now define Y: B —>• Diff(S^x H) by:-

^(a = (^^(x), Kg^x) ^(t + f(x))) 6.3.2, 

¥(x,t) 6 S^ X ]R, (a,f) 6 B. Note that f, . is indeed a diffeo-
(a, t; 

morphism. We now show that Y is a monomorphism. We have 

£i+£2''"'" 

= a (x)' K (X) ^ (t + K (x)f (* (x)) + f_(x))) 
*1*2 *ia2 a2 1 82 2 

= (0_ (#_ (x)), K (* (x)) (x) ^(C + K (x)f.(4 (x)) + f (x))) 
*1 *2 *1 *2 *2 ^2 1 a? 2 

= (0 (x)), K (4 (x)) ^(K (x) ^(t + f - ( x ) ) + f.CO (x)))) 
*1 *2 *1 *2 ^2 2 1 32 

= (f, . ° V. ,)(x,t), V(x,c) 6 S^x 31. Hence Y is a 

homomorphism. By inspection, W is injective, and so V is an 

isomorphism of S0^(l,3) )^C(S^) onto Y(B) $ Diff(S^x]R). 

It is straightforward to show (see Schmidt et al. [S 6 ]) that 

Y(B) coincides with BMS, as defined by (6.3)3, so that the BMS 

group is isomorphic to S0'^(l,3) ̂ ^C(S^) with action on = S^x ]R 

given by 6.3.2. From now on we identify BMS with B = 80^(1,3)* CCS^), 
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A more geometrical interpretation may be given as follows:-

Let it: 4-^ —^ be the trivial bundle given by projection onto 

the first factor. We regard the fibre of tt as an affine space 

modelled on the vector space E. Let A = r ( denote the 

space of sections of this bundle, so that A is the cone space 

of Bramson (see [B^f ] and section 2.2) and is an affine space 

modelled on the vector space C(S^) where the action is given 

by )j;(f,c) M- (f + c) ; x i—̂  f(x) + c(x), V(f,c) € C(S^) x A. 

Note that we identify a section c with the corresponding function 

given by x (x, c(x)) 6 Vx 6 S^. The vector space 
x 

C(S^) , when regarded as a normal subgroup of EMS, is the space of 

supertranslations of ^ . Using $ (6.3.1), S0^(l,3) may be 

regarded as a subgroup of GL(C(S^)) (= {Bounded invertible 

linear operators on C(S^)}). 

Note that the action Y given by 5.3.2 is by bundle auto-

morphisms of tt: —> S^, and, for each (a,f) 6 BMS, 

"̂ (a f) ' ̂  ^ ^ ̂  ^ covers the diffeomorphism (p̂ : ^ S^. We 

may therefore define an action W of BMS on A = F ( b y 

Y, fx(c) = r. ° c ° * ^ Vc 6 A, (a,f) 6 BMB. Using 6.3.2, 
(.a,r; a~^' 

we see that 

\a,£) ° *a ° "f G.3.3, 

where A —s- A is the affine action given above, and 

A —»A is given by the formula 6.3.1, i.e. 

= K^-l **-! + c)' 

Now recall that given any affine space A modelled on a vector 

space V via the action y, we may project any bijaction 
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q: A —»- A to a bijaction q: V —^ V given (uniquely) by 

- 1 

= q ° ° q 5 Vv 6 V. The affine space, Aff(A), of A 

is given by Aff(A) = {q 6 Bij(A): q 6 GL(V)} and we have the 

short exact sequence 1 —^ V Aff(A) — > GL(V) —> 1. Any sub-

group H of GL(V) gives rise to a corresponding sequence 

1 V A f f (A) H 1 . 

Consider, for fixed (a,f) 6 BMS, the bijection V, (6.3.3) 
A 

of the affine space A (modelled on C(S^)). Let denote 
v 3 j t / 

the corresponding bijection of C(S^) so that, ¥f' € C(S^), 

° ° ° uf' ° %-f ° 

A 
= $ o p o $ = y SO V, = $ (since, as we have 

a f a-1 $a(f') *' * 

remarked above, $ acts on both C(S^) and on A according to the 

same formula 6.3.1). In other words, the BMS group, regarded as a 

subgroup of Bij(A) via the action Y, projects to the group 

S0^(l,3), regarded as a subgroup of GL(C(S^)) via the action $. 

We have thus demonstrated that the BMS group is the group of 

affine transformations of A (cone space) characterized by the short 

exact sequence 

1 c(s2)<: »]%# » s0^^1,3) 1 6.3.^ 

The isomorphism BMS = 80^(1,3) x C(S^) may now be regarded 

as arising from a splitting of 6.3.4. Of course such a splitting 

is not unique - one must choose an origin c^ G A (i.e. some cut 

of ^ ^ ) and then a splitting G Hom(S0^(l,3),BMS) is defined 

_X 

by gg(a) = ° ° : A —>- A. This origin dependence of 

SO (1,3) as a subgroup of BMS is the root of the problems involved 
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in attempting to define angular momentum In general relativity. 

The origin dependence also exists in non-relativistic and special 

relativistic mechanics (where we deal with the Galileo group 

g 'h I 

S0(3) x ]R and Poincare group SO (1,3) ix H respectively) but 

in general relativity there is an additional obstruction to 

defining angular momentum. Indeed, a choice of origin cannot 

even be made if gravitational radiation is present since such 

radiation will supertranslate any initial choice of origin. We 

discuss this problem further in section 3.2. 

The relationship between the BMS group and the Poincare 

group may be seen if we consider the translation subgroup of 

BMS. It can be shown (see, for example, Sachs [S 2 ]) that there 
is a unique four dimensional normal subgroup T = of BMS 

(T is the unique non-trivial subspace of C(S^) invariant under 

•f 

the SO (1,3) action $ (6.3.1)). T is called the translation 

subgroup of BMS. The action y of C(S^) on A is free 

and transitive, so restricting y to T <i 0(3^) partitions 

A into an uncountable number of subspaces each of which may be 

identified with IR'̂ . Thus there are many possible choices of 

Minkowski subspace of cone space A. A choice of origin c 6 A 

picks out a particular copy of Minkowski space in A - we just 

take the orbit of c under T. We may now define an origin 
dependent Poincare subgroup of BMS by restricting the action 

$ of S0^(l,3) on C(S^) to the subspace T. 

This completes our discussion of the abstract BMS group. 

The importance of BMS in physics is that it is the asymptotic 

symmetry group for a wide class of spacetimes, namely those which 

are asymptotically flat. It turns out that, in addition to the 

strong conformal geometry discussed above, future (or past) null 
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infinity is universally equipped with a phase space r consisting 

of equivalence classes of connections (the second order structure). 

This phase space T is an affine space modelled on a Frechet space 

and possesses a naturally defined (weak) symplectic structure oj. 

The BMS group acts symplectomorphically on ( r,w) and the corres-

ponding moment maps : T — L B M S = (LS0^(1,3) G- C(S^)) may 

be identified with fluxes of supermomentum and of angular momentum. 

We refer the reader to Ashtekar and Streubel [A 2 3 ] for a treat-

ment of the symplectic geometry of the BMS action of (r ,w). 
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