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ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

AERONAUTICS AND ASTRONAUTICS 

Doctor of Philosophy 

A THEORETICAL STUDY OF THE PERFORMANCE OF RESISTOJET NOZZLES 

Ian Edwards 

The theoretical development of four computer models of resistojet nozzle 

performance is reported. Five main energy loss processes are accounted 

for; these are (i) frozen chemical rate processes, (ii) finite rate 

vibrational relaxation, (iii) incomplete expansion, (iv) viscous flow 

and (v) radial flow. 

The nozzle flow is assumed to be composed of an inviscid core and 

a viscous boundary layer, where the boundary layer is represented by 

the patching together of similar solutions of the laminar boundary 

layer equations. General similar boundary layer equations have been 

developed which include the radial dependences accounting for trans-

verse curvature. Four simplified classes of similar equations are 

identified, and extensive solutions have been obtained for the Falkner-

Skan equation and a modified Falkner-Skan equation which includes the 

effects of transverse curvature, over the range of pressure gradient 

parameter, g, from 0. to 10. Vibrational relaxation is modelled by 

using an approximate sudden freezing criterion. 

Performance predictions are presented for , CH^, CO^ and NH^ for 

plenum temperatures extending from 300 to 3000°K and plenum pressures 
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from 200 to 10 kNm . A wide variety of nozzle geometries is also 

considered. The results are compared with the predictions of the 

slender channel model of Rae and with experimental measurements. 
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NOTATION 

A Area 

A and B Constants in the Landau-Teller equation, eq. (4.29) 

A^ Polynomial coefficients used in eq. (4.15) 
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f 

Specific impulse, eq. (2.48) 
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Factor defined by eq. (5.22) 
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N Momentum parameter 
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Pr Prandtl number, Pr = pc^/k 

P to Pg. Boundary layer integrals of similar solutions, eqs. (3.68) 
to (3.72) 

R Nozzle radius 

R Radius of curvature at nozzle throat 
c 

• "~X o "1 
R Universal gas constant, R = 1.987 cal mole K 
u u 

R^ Nozzle inlet radius 

Rg Nozzle exit radius 
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S. Specific gas constant, R = R^/M 

* * * 
Re^^ Reynolds number based on throat diameter, Re^* = 2p u R /y^ 

A * , 

Re^ Reynolds number based on wall length, Re^ = p u L/y^ 
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Vj Jet velocity 
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c Molar heat, c = / c . 
P P iti P,i 

c Specific heat, c = c /M 
P P P 

e^ Vibrational energy per unit mass 

f Dimensionless stream function, eq. (3.26) 
also, mole fraction of undissociated NH^ not included in 
equilibrium calculation 

g Dimensionless total enthalpy function, g = H/H^ 

—2 

g^ Acceleration due to gravity, g^ = 9.80665 ms 

h Static enthalpy per unit mass 

k Thermal conductivity 
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m Mass flow rate 

n Correlation parameter 
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Chapter One Introduction 

1.1 General Background 

The work presented in this thesis originates from an interest in the 

use of resistojets for various propulsion duties on spacecraft. A subject 

of some importance in the design of resistojet systems is the performance 

of the resistojet motor. It is this topic which is examined here, and 

in particular theoretical models are reported of the energy loss processes 

found in the nozzle flow. 

A resistojet motor is a low-thrust rocket, consisting of a heater 

and a convergent-divergent nozzle. It is essentially an energy conversion 

device in which the heater converts electric power to thermal energy by 

resistance heating, the heat subsequently being transferred to the gas 

stream, adding to the energy inherent in the propellant. Upon expansion 

through the nozzle the internal energy of the propellant is converted to 

kinetic energy. In a conventional chemical rocket, the heat release 

accompanying the chemical reaction between the fuel and oxidant provides 

an energy source, whereas in the resistojet motor the main source of 

energy comes from an external electric power supply. Thus of the forms 

of electric propulsion - electrothermal, electrostatic and electromagnetic 

- the resistojet provides the simplest example of electrothermal 

p r o p u l s i o n . O n account of its low thrust (less than 10 N) the resistojet, 

like all other forms of electrothermal propulsion, is suitable only for 

operation in a space environment. 

The most important property of rocket performance is the exhaust 

velocity, which in an ideal situation is limited by the enthalpy per unit 

mass, or specific enthalpy, of the propellant. This in turn is limited 

by the heater stagnation temperature and therefore by the maximum temper-

ature which can be tolerated by the resistojet structure. Propellants 

with the highest specific enthalpy are the gases with low molecular weight. 
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The gases suitable for use in resistojets which are considered here are 

hydrogen, methane, ammonia and carbon dioxide. While not a complete list 

of the possible propellants, these gases cover a wide range of performance 

- 1 

capabilities, from an ideal exhaust velocity of 11.2 kms for at a 

stagnation temperature of 3000°K (an upper temperature limit), down to 

0.67 kms ^ for CO^ at 300°K. In reality these theoretical values are 

never achieved, since the conversion of thermal energy to kinetic energy 

(2) 
in the resistojet motor is not an ideal process. Thus Page et al 

-1 . 
measured a jet velocity of 8.22 kms 3 with a hydrogen resistojet at a 

O 

temperature of 2400 K, compared to an ideal jet velocity of 9.36 kms , 

in other words an energy conversion efficiency of 0.77. In this study 

it is intended, by taking into account the various energy loss processes 

occurring in the nozzle flow, to make more realistic predictions of 

resistojet nozzle performance. 

The rest of this chapter is divided into four parts. In the next 

section the development of the resistojet motor and of the resistojet 

system are discussed, and useful applications to space missions are 

considered. The physics of the gas flow through the heater and nozzle is 

examined in section 1.3, and particular emphasis is given to the losses 

incurred in the nozzle flow. This is followed in section 1.4 by a review 

of the literature on theoretical performance of resistojets. In the final 

section the aims of this research are described, the features included 

in the model of nozzle performance are defined and the contents of this 

thesis are outlined. 

1.2 Resistojet Engineering and Applications 

The first published reference to the concept of a resistojet motor 

d t 

/4) 

(3) 
was due to Jack in 1961, and it was a relatively straightforward task 

to demonstrate the concepts feasibility in the laboratory. Howard 

reported in 1962 on the performance of a hydrogen resistojet, where, for 
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an input power of 30 kW, a thrust of 6.04 N was measured, giving a specific 

impulse of 846 seconds. Additional complication is encountered when con-

sidering a resistojet for use in space, since the motor is then part of 

an independent system. The hardware of this system consists basically 

of four parts; propellant tankage, power source, control equipment, i.e. 

electronics, valves and feed lines, and the motor itself. Two consumable 

quantities, the propellant flow and electric power provide the primary 

inputs to the resistojet motor. A schematic of the resistojet system is 

shown below. 

jet of 
directed 

Mozzle 
{thermal energy ______ 
^ k l n e U c energy) Wnetk 

Heater 
(thermal energy of 
gas increased) 

propellant Propellant 
Storage 

Power Source 

Resistojet System 

In designing a system to operate in space, constraints are imposed which 

are not present in the laboratory. These constraints, affecting not only 

the resistojet system but the whole spacecraft, arise from: 

(1) the limited mass which can be raised to a given orbit, and 

(2) the limited amount of electric power available. 

A major factor in the system design must be the mission for which it is 

required and a brief discussion of resistojet applications is in order. 

Uses of resistojets fall into two broad categories, auxiliary propulsion 

and prime propulsion. Most spacecraft require some form of auxiliary 

propulsion for such functions as manoeuvring, station keeping and attitude 

control. Nearly all low-thrust (less than ION) systems used to date have 

been based on cold flow gas jets, e.g. the cold nitrogen jets on the Mariner 

space v e h i c l e s H o w e v e r by using a small amount of power, i.e. converting 

_3_ 



a cold jet into a resistojet, weight savings and improved performance 

resulto In this case the design involves trading-off the decreased 

propellant mass requirements against the increased mass of the power 

supply. Low-thrust resistojets, of the order of 50 mil, with power con-

sumptions of the order of 10 - 200 W have been used, or are proposed for, 

the various satellite control duties. 

Lord,^^^ and studies for the Manned Orbital Research Laboratory^^^, 

have shown that the payload in final orbit can be increased significantly 

by injecting a satellite or spacecraft into a low parking orbit using a 

conventional chemical booster, and using large resistojets (thrust of order 

1 N) to increase the orbital altitude by means of a spiral transfer 

trajectory, rather than by boosting the payload to altitude directly. 

The penalty is an increased transfer time. In a subsequent study Lord 

and Parkinson^^^^ have widened the scope of their work by demonstrating 

the advantages of combining resistojets with ion motors to produce mixed 

thruster systems of versatile performance. Recent calculations 

using a two-stage transfer for large communications satellites, indicate 

that not only is a good trade-off between payload and transfer time 

possible, but also that the system offers substantial economic savings. 

The importance of a mission analysis to the design of a resistojet 

system is that it specifies (i) the total impulse requirement and 

(ii) the power and mass allocations. In general the power and mass 

allocations are not independent of one another, and it is convenient to 

think of the electric power supply in terms of an equivalent mass. Solar 

arrays provide the usual power source for long duration space missions, 

so that the mass per unit power of the array is an important quantity. 

One approach to the design of resistojet systems is to minimise the system 

(12) 

mass . This involves an optimisation of several conflicting factors. 

The factors involved are;-

(1) Mass per unit power of the solar array. 

(2) Mass of system hardware, i.e. propellant tankage, control 
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equipment, resistojet motor and thermal shielding. 

(3) Mass of propellant, which depends on the propellant 

properties and on the performance of the resistojet motor. 

It is the final factor which is investigated in this thesis. 

The type of mission has obvious implications for the choice of 

propellant. Thus for missions of restricted lifetime, such as the 

orbital transfer of large space vehicles, hydrogen, with its large specific 

enthalpy and consequent high exhaust velocity, is the best choice of 

p r o p e l l a n t . F o r missions, such as satellite attitude control, in 

which resistojets would be operated in a pulsed mode over a period of 

several years, then the use of hydrogen, which has to be stored 

cryogenically and therefore has a restricted storage lifetime, is not 

feasible. For such duties other gases, such as ammonia and hydrazine, 

stored indefinitely as saturated liquids in a simple, thin-walled, 

(13) 

pressure tank, are attractive propellants. In manned space 

operations, the biowaste products of the environmental control/life 

support system such as carbon dioxide, methane and water can be used 

as resistojet p r o p e l l a n t s . I t follows that propellant supply and 

storage problems are then minimised, although intrinsically they are not 

such good propellants. 

To sum up, however good the other components of the system, it is 

the performance of the resistojet motor which ultimately determines the 

usefulness of the system, so that prediction of the motor performance is 

very important. As already indicated the conversion of thermal energy 

to kinetic energy suffers from various losses, and in the next section 

the processes causing a reduction from the ideal performance are 

examined. 
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1.3 Gasdynamics of the Resistojet Motor 

In order to simplify matters, attention is restricted in the present 

work to steady state operation, i.e. the resistojet motor receives a 

continuous supply of electric power and propellant. The models which are 

subsequently developed are therefore only strictly applicable to con-

tinuous operation, but it will be shown that as far as the nozzle 

performance is concerned these models can also be applied to pulsed 

operation. 

1.3.1 Ideal Situation 

In the ideal situation all the electric power transferred to the 

heater is used in increasing the thermal energy content of the propellant, 

in other words increasing the total enthalpy. Further, during expansion 

through the nozzle the propellant internal energy is converted into 

kinetic energy directed along the nozzle axis. Thus the energy put into 

the resistojet motor, by the propellant and that added as electrical 

energy, is converted entirely to jet energy at the nozzle exit. 

There are several implications in this definition which are useful 

when considering the real situation. The assumption that all the 

electric power is converted into the internal energy of the propellant 

implies that no heat transfer losses occur through radiation or conduction 

from the resistojet body. It further implies that the gas flow through 

the heater and nozzle is non heat-conducting and inviscid. From a 

macroscopic viewpoint the gas is regarded simply as a thermal energy sink 

in the heater and as a kinetic energy source in the nozzle. At the 

microscopic level this definition demands that the internal energy processes 

react to changes in the equilibrium conditions with an infinitely fast rate. 

Since all the internal energy is assumed to be converted to kinetic energy, 

it is further implied that at exit from the nozzle the gas temperature is 

zero, so that all molecular and atomic excitation has ceased. 
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The ideal situation in terms of energy flow, i.e. power, is 

presented schematically below. 

Ppr 

Electric Power 

Jet Power Gas Power 

Inherent Powe^ 

Heater Nozzle 

Ideal Resistojet Flow 

A power balance for this ideal case gives 

(a) Heater 

(b) Nozzle 

P , + P = P 
el pr g 

P = P. g ] 

(c) Overall P + P = P. 
el pr J 

An overall resistojet efficiency is then 

'Res 

P. 
J 

Pel + Ppr 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

and in this case 
^ 

1.3.2 Real Situation 

Some hint has already been given of the non-idealities occurring in 

the real flow. Thus, there are losses due to tadiation from the heater 

directly to space, and due to conduction to the spacecraft body and 

nozzle, where it is subsequently lost by radiation. These heat transfer 

losses mean that not all of the electric energy is transferred to the 

propellant. Within the propellant flow there are various non-ideal gas-

dynamic processes, not all necessarily causing a reduction in performance 

but complicating the picture. The gasdynamic problem is conveniently 

considered in two parts, (a) heater flow and (b) nozzle flow. 
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(a) Heater flow 

There are a variety of heater designs (see, for instance Ref. 1, 

pages 104 - 105) and of the most recent configurations the most promising 

(2) 

appear to be the concentric tubes scheme of Page et al and the vortex 

heater of Murch and Krieve^^^\ Two factors which may influence the 

performance of a resistojet heater are thermodynamic nonequilibrium and 

viscous flow. Considerations of these two phenomena are restricted to 

tubular heaters where it is easier to assess semi-quantitatively what 

is happening. 

Thermodynamic nonequilibrium and rate processes 

The establishment of thermodynamic equilibrium between the various 

internal energy modes - translation, rotation and vibration - and chemical 

equilibrium do not occur instantaneously but require finite times. Since 

the time taken for the gas to flow through the heater may be short, some 

of the processes occurring in the flow may not have time to equilibrate. 

Suppose that the time required to approach equilibrium can be represented 

by a time T , which is a "relaxation" time for the energy mode or a 

chemical time for the chemical reaction, then an initial prediction of the 

occurrence of nonequilibrium can be made by comparing the various 

characteristic times, T , with the transit time through the heater, 

(16) ratio T/T has two limiting cases; if T/T -> 0 
trans. trans trans 

the process is very fast in comparison to the transit time, and equilibrium 

conditions exist at exit. At the other extreme, with the transit time 

very fast in comparison with the characteristic time, i.e. T/T , 
trans 

the process effectively does not take place. Nonequilibrium can occur in 

an excitation environment, as in the heater flow, or in a de-excitation 

environment, as in the nozzle flow. The characteristic time describing 

a process in these situations is different, with the de-excitation time 

being considerably shorter than the excitation time (see Ref. 16, p. 151). 

However for the order of magnitude arguments used in this chapter it is 



assumed that the "relaxation" time is identical in both situations. 

The transit time for the heater of Page^^^^ is calculated to be 

of the order of 100 msec; as this is a large device, typical transit 

times can be taken to be in the range 10 to 100 msec. Relaxation and 

chemical times are functions of temperature and pressure, and in general 

they are inversely proportional to pressure and increase exponentially 

with decreasing temperature. Translational and rotational energy modes 

~9 (18) 
relax very quickly, with times typically of 10 sec. for most gases , 

so these modes may be considered to be in equilibrium. Vibrational 

relaxation is somewhat slower. Rate data gathered from the literature is 

presented in Appendix B, and it can be seen from Fig. B1 that, for the 

polyatomics CO^, CH^ and the vibrational relaxation time, is 

""5 

less than 10 sec. at a pressure of 1 atm. for temperatures above 

300 °K. The vibrational mode of is not significantly excited until 

temperatures greater than lOOO^K, where pT^ < 10 ^ sec. For the above 

gases vibration can be taken to be in equilibrium through the heater. 

However which is a product of the dissociation of NH^, relaxes very 
o —^ ^ 

slowly and even at 2000 K, px^ 1 10 atm.sec. A decision regarding 

vibrational noneq.uilibrium in nitrogen is delayed until after an 

examination of the chemical times. 
(19) 

The equilibrium constants of formation taken from the JANAF tables 

indicate that under equilibrium conditions NH^ would begin to dissociate 

into and at temperatures above SOO^K, but in practice kinetic 

considerations suggest that significant decomposition does not occur until 

a much higher temperature. Reaction rate data for NH^ is sparse. 

S a w y e r n o t e s that temperatures in excess of 1500°K were required to 

produce measurable ammonia decomposition from the homogeneous reaction. 
(23 ) 

Calculations based on the rate data of Michel and Wagner ' for NH^ in 
- 2 o 

Ar diluent, indicate a dissociation time, = 0(10 )sec. at 2000 K. 
The decomposition rate is increased by heterogeneous catalysis on the 
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metallic heater surfaces and shorter dissociation times axe suggested 

( 2 2 ) 
by the data of Logan and Kemball . Approximate calculations give 

T^(NH ) = 0(10~^) sec. at 1500°K and T^(NH ) = 0(10~^) sec. at 2000°K. 

(23) 

Miles in a study of the catalytic dissociation of NH^ by various 

surfaces for temperatures up to 800°K, found substantial decomposition 

at comparable mass flows to those of present interest, but with space 

velocities (mass flow rate/area) about two orders lower. Finally 

(24) 

Perroud has investigated NH^ decomposition in tungsten tubes over the 

temperature range from 1000 to 3000°K. The findings of Refs. 20 to 24 

indicate that dissociates in two phases, as a gas phase reaction and 

as a wall catalysed reaction. A ''threshold" temperature for significant 

homogeneous dissociation to commence exists at about 1500 to 1600°K. 

Heterogeneous reaction occurs at lower temperatures with "threshold" 

temperatures reported to vary from 1200°K^^^^ down to 400°K^^^\ The 

concept of a threshold temperature is misleading, since the heterogeneous 

catalysis requires collision of the propellant molecules with the heater 

wall, while the homogeneous reaction is slow at typical resistojet 

temperatures (less than 2000°K). Under these conditions the chemical 

rate can be diffusion limited and even though the temperature is high 

enough to cause dissociation, the bulk of the gas may be convected through 

the heater before more than a fraction of the total number of molecules 

has a chance to react on the wall. It is difficult to infer much from 

the references about resistojet operations since the experimental 

geometries and residence times are so different from those of resistojet 

heaters. However, it is to be expected that at low temperatures (300°K) 

NH^ will remain undissociated, and by 2000°K, say, a considerable amount of 

decomposition will occur. Experimental work is under way in this 

laboratory to measure ammonia dissociation in typical resistojet heater 

c o n f i g u r a t i o n s . 

Now re-examining the vibrational relaxation of N^, it is apparent 

that will be present in an ammonia resistojet heater as part of a 
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mixture of and NHg. It is well knovm that mixtures in which 

there is a fast relaxing component, such as NH^, relax at a rate compar-

able to that of the fastest component (see section 4.4). Thus it is 

reasonable to assume that for the gases considered here vibrational 

energy is in equilibrium at exit from the heater. 

Of the other propellants, and can also dissociate under 

resistojet heater conditions. It is observed in resistojet experiments 

employing CH^ (26,15) deposition of solid carbon occurs at high 

temperatures. Halbach^^^^ using a large concentric tube heater determined 

an upper operating temperature of 1000°K, whereas Murch and Krieve^^^^ 

using a small vortex heater note that no measurable carbon deposition 

occurs below 1900°K, The difference between these observations is almost 

certainly caused by the different heater transit times. Equilibrium 

calculations for indicate that only a small amount of dissociation 

occurs at temperatures below 2000°K. This fact allied to = 0(1) 

sec, based on calculations of the rate data from Refs. 27 and 28, suggests 

that the presence of atomic hydrogen is unlikely at temperatures below 

2000°K, and even at higher temperatures it will be present only in very 

small quantities. 

The effect of nonequilibrium in the chemical rate processes is a 

reduction in the power put in to the nozzle, P^. In the case of CH^ a 

reduction in is preferred to the deposition of solid carbon. 

Viscosity and heat conduction 

Further nonequilibrium processes which must be considered in a real 

gas are viscosity and heat conduction. In resistojet heaters with the 

stagnation pressure typically of order of 1 atm, the flow is a continuum, 

so the condition of no slip at the heater surface applies. Thus the gas 

layer adjacent to the heater wall has zero velocity and its temperature 

is identical to that of the wall. Gradients in velocity and temperature 

are set up in a direction normal to the flow since momentum and energy 
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are being transported througft. the heater by the propellant molecules. 

These gradients give rise to the phenomena of viscosity and heat 

conduction. 

The effects of viscosity and heat conduction extend throughout the 

heater flow, and for the low speeds and small dimensions typical of 

resistojet heaters the flow should be laminar. From the aspect of con-

verting electrical energy to thermal energy this is not advantageous 

since the heat transfer is less efficient than in a turbulent flo\7. 

Viscous flow causes a loss in momentum due to skin friction which is 

reflected in a drop in the total pressure. The overall effect of 

viscosity and heat conduction is dissipative in that it causes a 

reduction in the gas power, P^. Unlike the thermodynamic rate processes, 

no general conclusions can be made regarding the magnitude of the viscous 

losses without a thorough analysis based on particular geometries. 

Although the rate processes and the phenomena of viscosity and heat 

conduction have been considered separately, in fact they occur sirultan-

eously and interact. In particular the chemical rate processes will 

couple with the viscous flow. Thus the heterogeneous decomposition of 

ammonia, occurring at the heater surface, does so in a region of reduced 

velocity and therefore increased residence time. It follows that at a 

given position there will be a gradient in the gas composition, as well 

as in the velocity and temperature. This gives rise to an additional 

nonequilibrium process, mass diffusion,which has already been briefly 

mentioned. 

(b) Nozzle Flow 

In the expansion process the non-idealities are again examined 

individually, while it is recognised that they are not independent. The 

non-idealities are considered to be : 

(1) Chemical rate processes 
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(2) Vibrational rate processes 

(3) Incomplete expansion, i.e. a finite area ratio nozzle 

(4) Viscous flow 

(5) Condensation of the efflux gas 

(6) Radial flow at exit from the nozzle. 

Chemical rate processes 

As discussed earlier, ammonia, hydrogen and methane are gases whose 

chemical composition can change during passage through the heater. 

Dissociation of methane is not desirable and in practice resistojets 

would not be operated in a regime "iyhere this occurs. Therefore the 

following remarks regarding chemical rate processes in the nozzle are 

confined to ammonia and hydrogen. 

Resistojet performance can be considerably influenced by variation 

of the chemical composition in the nozzle*, as the pronellant expands it 

experiences large drops in temperature and pressure, which, if equilibrium 

is to be maintained, must be accompanied by a decrease in the degree of 

dissociation. The recombination process is an exothermic reaction so 

that it acts as an apparent heat source and this sensible energy should 

be converted by the nozzle into useful kinetic energy. Unfortunately, 

the chemistry may not have time to come to equilibrium so that the 

contribution from chemical energy to the jet energy will lag behind its 

equilibrium value. Recombination times (of the same magnitude as the 

dissociation times) are large in comparison with the nozzle transit time, 

# • ~~5 ~"6 • 

which is typically 10 to 10 seconds. Thus it is to be expected that 

in most of the nozzle flow, certainly in the supersonic section, recom-

bination will not occur and the chemical composition will remain constant. 

The effect on performance of freezing the chemical rate processes is to 

cause a reduction in the jet power, P^. 

Vibrational rate processes 

A further significant factor is the rate of vibrational deactivation. 
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As the propellant expands the temperature and pressure decrease, 

increasing the vibrational relaxation time, so that this time can 

become comparable to, or larger than, the nozzle transit time, T 
^ ' trans 

Thus, it is also possible for vibrational energy to lag behind its 

equilibrium value and ultimately to become constant. For diatomic gases, 

such as and with only a small amount of energy invested in vibration 

at resistojet operating temperatures, the possible loss in jet energy due 

to vibrational freezing is small. However, vibrational energy constitutes 

a considerable proportion of the total internal energy of the polyatomic 

molecules, NH^, CH^ and GO^, so that the potential losses are much higher. 

Examination of the rate data in Fig. B1 indicates the vibrational 

relaxation times of and are comparable to, or longer than, the 

nozzle transit time. Therefore it is likely that the vibrational rate 

processes of these propellants will freeze during expansion through the 

nozzle. In the case of the polyatomics, T ^ T , so that vibrational 
V trans 

energy may remain in equilibrium longer. The establishment of a reason-

able freezing criterion is then very important. 

Incomplete expansion 

To expand the propellant fully, so that the jet temperature at the 

nozzle exit reaches absolute zero, would require an infinitely long 

nozzle. A more realistic nozzle with a finite area ratio (i.e. ratio 

of exit area to throat area) leads to the flow being underexpanded; in 

which case energy remains in the active internal modes of the propellant 

and is not converted to jet energy. Hence, there is a further reduction 

in the effective jet power. 

Viscous flow 

In conventional rocket motors the chamber pressure is of the order 

of 100 atm. and Reynolds numbers, characterising the nozzle flow, of 10^ 

are typical. As a consequence, the dissipative effects of viscosity and 
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heat conduction are confined to a thin boundary layer on the nozzle 

surface. This affects performance in several ways. First, the free-

stream properties such as density and velocity are altered from those 

values obtained when the flow is inviscid throughout the nozzle. 

The viscous layer effectively displaces the inviscid core, so 

that in the nozzle divergent section (see Fig. 1) the core density is 

higher and the velocity is lower than in the ideal case. Thus there is 

a reduction in the exhaust velocity. At the nozzle throat, viscosity 

causes a decrease in the effective throat area and therefore in the mass 

Secondly, 

flow rate.^ die boundary layer,being a region of reduced velocity and 

mass flow, has a momentum defecit which is manifest as a 

reduction in thrust. At these Reynolds numbers the losses in perform-

ance are only small. 

As Reynolds numbers decrease so the viscous flow occupies an 

increasing proportion of the nozzle flow field, and in resistojet nozzles, 

which operate at relatively small Reynolds numbers,, the viscous effects 

can be pronounced. Examination of the literature on resistojets reveals 

that they have been operated over a range of Reynolds numbers (based on 

throat diameter, Re_^) from about 500 to 5000. In this regime the 

viscous flow is laminar. At Re * of order 10^ the effects of viscosity 

and heat conduction are still confined to a boundary layer, but as 

Reynolds numbers decrease (for instance, through a reduction in 

stagnation pressure) the boundary layer thickens rapidly and by Re^^ = 
2 

0(10 ) the viscous effects can extend across the whole of the nozzle 

cross-section. In electron beam measurements on low density nitrogen 

(29) 

nozzle flows at a nozzle area ratio of 66:1, Rothe found that the 

whole of the nozzle flow at exit was viscous at Re„. less than 250. 

However at higher Reynolds numbers, Re^^ = 0(550), his measurements 

indicate the existence of an effectively inviscid core throughout the 

nozzle. The viscous loss and the occurrence of fully viscous flow are 
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dependent not only on Re^*, but also on the nozzle area ratio, e . Thus, 

at Re ^ = 200 and, say, e = 4 a resistoiet nozzle flow field consists 

essentially of an inviscid core and a viscous boundary layer, whereas 

with a large area ratio, say e = 200, apart from a inviscid core in the 

vicinity of the throat, virtually the whole of the supersonic portion 

of the nozzle is viscous. 

It is well knovm that the thermal condition of the nozzle wall 

has a considerable influence on the viscous flow. Thus in the design 

of wind-tunnels for hypersonic, low density flow the nozzle walls are 

often cooled to reduce the boundary layer thickness (e.g. see Ref. 30). 

In resistojets the nozzle wall temperature is high, tending to the 

(2) 

heater stagnation conditions , and it follows that viscous losses are 

severe. 

A further boundary condition which must be examined in connection 
non-

with the viscous phenomena arises from^continuum flow considerations. 

The condition of no slip at the nozzle wall becomes questionable in low 

(31) 
thrust engines and a more appropriate boundary condition is one in 

which the layer of gas immediately adjacent to the nozzle surface has a 

^(32) 

finite tangential velocity. According to Schaaf and Charabre ' , for 

Reynolds numbers greater than unity the slip flow regime can be 

defined by the limits 

0.01 < — < 0.1 
•̂ Re 

where M and Re are the flow Mach number and Reynolds number respectively. 

In the divergent section of a resistojet nozzle the Mach number will 

increase from unity at the throat to a value of four or five, say, at 

the nozzle exit. The corresponding Reynolds number based on the nozzle 

diameter is inversely proportional to the local radius, so that it 

decreases as Mach number increases. Thus even at the nozzle throat for 

the range of from 10^ to lo'̂  slip flow is tbe correct boundary 
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condition, and with increasing distance along the axis the effect becomes 

more pronounced. 

There are two principal effects associated with slip flow, one is 

the previously mentioned slip velocity and the other a temperature jump 

between the gas and nozzle wall. Unlike the other gasdynamic processes 

considered here, the effect on performance is not in itself detrimental. 

The fact that there is a finite velocity at the nozzle wall means that 

the viscous flow produces a smaller velocity defect than in the continuum 

flow case, which in turn reduces the skin friction. Further, there is 

a decrease in the beat transfer between the gas and nozzle surface since 

there is an effective thermal contact resistance associated with the 

(32) 
temperature jump . In connection with rarefied nozzle flows it is 

(33) 
also worth mentioning the work of Milligan , who has examined nozzle 

- 2 2 

characteristics over a range of Reynolds numbers from 10 to 10 . 

It is appropriate at this point, to note that some difficulty is 

experienced in measuring experimentally that performance of a resistojet 

which is truly representative of its space operation. This results from 

the low stagnation pressures with which resistojets are operated. It 

follows that at exit from the nozzle the pressure is very low and is 

comparable to the ambient pressure which is maintained in the space 

simulation facility. Yoshida et al^^^ in experiments on hydrogen and 

ammonia resistojets observed that the ambient pressure of the vacuum 

chamber has a significant effect on performance. At a cell pressure of 

300 microns a specific impulse of 539 seconds was measured with hydrogen. 

As cell pressure was decreased, keeping all other factors constant, large 

improvements in performance were observed; by 10 microns the specific 

impulse had increased to 520 seconds and continued to do so until ambient 

pressures below one micron were achieved, where the specific impulse 

leveled off at 65? seconds. This change in performance was not caused 

by windage effects and was attributed mainly to the viscous interaction 
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of the vacuum chamber pressure with the low \eynolds number flow in the 

nozzle. Obviously this is of some importance in relating theoretical 

and experimental resistojet performance. 

Condensation of the efflux gas 

Under certain conditions condensation of the propellant can occur 

during the expansion process. (#ien an ideal gas expands isentropically 

through a nozzle, the temperature and pressure decrease such that 

p/T = constantc This isentrope will cross the saturated vapour 

pressure p^^^ = f(T); on a p-T plane,and the gas will tend to condense 

in liquid or solid droplets. Examination of entropy-enthalpy charts 

(34) 

for NH^ and CO^ reveals that in an isentropic expansion from 

stagnation conditions of 300°K and 1 atm., ammonia achieves the saturation 

vapour pressure of 0.23 atm. at a temperature of 210°K: the equivalent 

figures for CO^ are 0.1 atm. at 170°%. The actual onset of condensation 
(35) 

is dependent on the particular gas and the nozzle conditions. Wegener 

notes that high temperature gradients lead to high supercooling, or 

supersaturation. Thus in the expansion of water vapour he observed 

supercooling up to 100°K in a nozzle with a temperature gradient of 
O ~1 • • 

100 K cm . In resistojet nozzles temperature gradients several times 

this are typical so that supersaturation is likely to be high, and in 

turn the appearance of condensate in the efflux will be delayed. It is 

not immediately apparent what the effect on nozzle performance is, since 

condensation although returning energy to the flow through the latent 

heat is also likely to cause a shock which reduces the Mach number. More 

specific evidence could not be found in the literature. 

Radial flow 

The final non-ideality arises from the fact that the exhaust velocity 

possesses a component in the radial direction which does not contribute to 

thrust, so causing a reduction in jet power. In the inviscid situation, or 

the effectively inviscid, i.e. high Reynolds number flow with a thin 
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boundai}/ layer, the radial flow loss is dependent only on the geometry of 

the nozzle divergent section. To minimise this loss nozzles are usually 

bell-shaped so that at the nozzle exit the wall angle tends to zero. 

This produces a flow which is directed entirely along the nozzle axis. 

In resistojet nozzles, boundary layers are thick and the largest compon-

rftdial 

ents of^velocity occur in a region of reduced momentum flux. Thus the 

radial flow loss is reduced and with it the need for contoured nozzles. 

In fact most nozzles used in resistojet motors have been of a conical 

divergent section. 

The six processes which have been considered to occur in the 

resistojet nozzle are not independent of one another, and some couplings 

caused by the presence of viscosity are considered below. It has just 

been indicated that there is a coupling between the radial flow and 

viscous flow so that, for a given geometry, as the boundary layer thickens 

the radial flow loss decreases, and vice versa. 

In an inviscid nozzle flow it has been assessed that little or no 

chemistry will occur, but with the presence of viscosity a region of 

reduced velocity and therefore increased residence time is found adjacent 

to the nozzle wall. To illustrate the possible effect on resistojet 

performance let us assume that the flow consists of an inviscid core and 

a laminar boundary layer. In the inviscid core, recombination processes 

will be essentially frozen, but in the boundary layer because of the 

increased residence time it would appear that recombination is more likely. 

The resistojet nozzle wall is hot, so that in the boundary layer the 

temperature will be increased in comparison to the freestream values, and 

the effect will be to reduce the recombination rate, therefore offsetting 

the increased residence time. Further factors influencing atomic recom-

bination in the boundary layer are velocity slio and temperature jumn at 

the nozzle surface. These will have conflicting trends on the chemical 

rate. Finally, and probably most important, are the catalytic pronerties 
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of the nozzle material. It is difficult to predict with so many con-

tributing factors what the real situation will be, but it is likely 

that the amounts of atomic recombination will be less than in the more 

conventional cold wall case (for instance, see Ref. 36). 

Vibrational processes will be affected by viscosity in a similar 

manner to chemistry. Since vibrational rates are considerably faster 

than chemical rates it is to be expected that, for the case where 

vibrational energy is frozen in an assumed inviscid core, some vibrational 

relaxation will occur in the boundary layer. Obviously when vibrational 

energy is in equilibrium in the core it will also be in equilibrium in 

the boundary layer. The effects on performance of recombination or 

vibrational relaxation is beneficial since energy is returned to the 

active degrees of freedom. 

It wa-s convenient to consider the gasdynamics of the heater and the 

nozzle separately. Eowever the performance of a resistojet motor is 

dependent, not only on the individual performances of the heater and 

nozzle, but also on how they behave as a unit. This is most apparent in 

the losses resulting from viscous flow and frozen chemistry. Thus the 

viscous loss in the nozzle flow is dependent on the throat diameter 

Reynolds number, which is determined by the plenum pressure and by the 

pressure drop caused by the viscous flow in the heater. Further, the 

flow emanating from the heater is fully viscous, so that in the convergent 

section of the nozzle where one would intuitively expect viscous effects 

to be small, conceptual division of the flow into an inviscid core and a 

boundary layer is incorrect. Another example of the interaction between 

the heater and nozzle is to be found in the losses due to frozen chemical 

rate processes. The possibility that dissociation of NII^, say, does not 

occur in the heater, although causing a reduction in the ideal gas power, 

P^5 is not necessarily a loss in overall efficiency, since recombination 
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losses will not be incurred. Thus the ratio of the jet power to the 

power input to the resistojet may actually be larger when dissociation 

(37) 

does not occur. There are other points, obvious in retrospect, which 

could be mentioned at this stage, but they are best dealt with in the 

discussion of results in Chapter Six. 

In a similar manner to the ideal case a power balance for the real 

case gives; 

(a) Heater P + P = F + P (1.5) 
el pr g hi 

(b) Nozzle P = P. + P - (1.6) 
g J nl 

(c) Overall P , + P = P. + P _ + P , (1.7) 
el pr ] hi nl 

A heater efficiency can be defined as 

P 
8 (1.8) 

and a nozzle efficiency as 

P. 
\ (1.9) 

so that the overall efficiency (eq. 1.4) is 

\es • "h % 

In equations (1.5) and (1.6) the power losses due to gasdynamic non-

idealities in the heater, P^^, and in the nozzle, P^^, are introduced. 

The most significant point to emerge from this examination of the 

resistojet motor is that the physics of the flow through the heater and 

nozzle is extremely complex. It is apparent that to make any advance in 

the modelling of resistojet performance some simplification is necessary. 

However before considering this further, the literature on the theoretical 

performance of resistojets is reviewed. 
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1.4 Literature on the Theoretical Performance of Resistojets 

As the resistojet concept is comparatively new the literature dealing 

specifically with the theoretical performance of resistojet motors is 

meagre. The approach adopted in all the references given here is to 

consider the performance of the heater and nozzle separately. 

Two references should be mentioned in connection with heater per-

formance. The first by Page and S h o r t d e s c r i b e s a heat transfer 

analysis, based on the electrical analogy with heat transfer, which t̂ as 

carried out in the design of a large concentric-tube heater. Further, 

calculations using the conventional Hagen-Poiseuille formula, predicted 

values for the stagnation pressure drop through the heater which were 

several times smaller than those measured experimentally. In a later 

/ O Q \ 

work, Gaubatz, James and Page have computed the compositions of 

various biowaste propellants using both equilibrium and nonequilibrium 

chemistry programs for the heater flow. An empirical correlation of 

nozzle efficiency then enabled the prediction of the overall motor 

performance. 

The approach adopted in other works has been to specify the nlenum 

conditions produced by the heater, i.e. the stagnation pressure and 

temperature, and propellant composition, and to evaluate the nozzle 

performance taking into account some of the processes which were discussed 

in section 1.3. The first theoretical analysis of nozzle performance, 

reported in Ref. 39, was used in the design of a high temperature hydrogen 

resistojet. This model was based on an inviscid expansion in the nozzle 

modified by the growth of a viscous boundary layer, where the main 

assumptions were a one-dimensional, frozen flow with an adiabatic nozzle 

wall. An empirical displacement thickness - Reynolds number relation was 

used to characterise the boundary layer growth. Calculations at the design 

plenum conditions of 2500°K and 2.0 atm* were carried out for a range of 

conical nozzles, but no comparison between experimental and predicted 
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performance is given. 

Jeffer;.es and Cumbers ̂  describe a computer program, capable of 

calculating the laminar boundary layer in an axisyiametric nozzle, which 

has been applied to the design of nozzles for electrothermal thrusters. 

The most notable feature of this work is that vibrational energy was 

assumed to be in equilibrium in the inviscid core. Although calculations 

for a specific gas are not reported it is to be expected that such a 

formulation would be useful in determining the oerformance of the poly-

atomic propellants, 

In an experimental and analytical investigation of low-thrust 

nozzle performance Murch et al^'^^ have examined the dependence of 

thruster performance on nozzle geometry. Using the assumptions of quasi 

one-dimensional flow with vibrational energy frozen at the heater stag-

nation conditions, the losses accounted for were due to incomplete 

expansion, viscous flow and radial flow. It was realised that the 

inviscid core-boundary layer interaction was important, and iteration 

between solutions of the two regimes was carried out until the change 

in the effective area ratio at the nozzle exit had converged to an 

acceptable value. The boundary layer calculation was based on the 

approximate method for laminar boundary layers of Cohen and Reshotko^'^\ 

where the nozzle wall was assumed to be adiabatic. The propellants 

examined were hyirogen and nitrogen. Comparisons between the experi-

mental measurements and theoretical predictions are not good, with 

calculated nozzle efficiencies from 5 to 20% higher than experiment. 

Murch remarks that for the Reynolds number range in which they were 

interested, i.e. a Reynolds number based on throat diameter from 600 to 

3000, the boundary layer thickness at the nozzle throat was only a few 

percent of the throat radius. By assuming that the boundary layer 

thickness at the throat was zero, computations were made only for the 

supersonic section of the nozzle. However, in this range of Reynolds 

numbers the discharge coefficient, a measure of the boundary layer 
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thickness at the throat, is noticeably less than unity, so that this 

assumption is in error. This accounts partly for the large discrepancy 

between experiment and theory, but a more likely cause can be attributed 

to the vacuum chamber pressure effects on viscous flow, a phenomenon not 

widely recognised at that time. 

Of some importance to the present study is the work carried out by 

Rae^^^^ on viscous low-density nozzle flows. The starting point in Rae's 

analysis was the Kavier-Stokes equations. These were simplified by using 

the slender channel assumptions of Williams^ which are that the ratio 

of radial to axial velocity components, and the ratio of axial to radial 

gradients are each of the order of the slenderness ratio of the nozzle, 

i.e. of order (R/L). The result \"as the slender channel equations; 

equations which are formally identical with the boundary layer equations, 

including the radial dependences that account for transverse curvature, 

but which are valid throughout the channel. At the nozzle wall, slip 

boundary conditions are alloued. After non-dimensionalising the variables, 

Rae represented the governing set of non-linear partial differential 

equations by an implicit finite difference scheme, which was then 

programmed to solve the direct problem of low-density flow from given 

reservoir conditions through a nozzle of given shape. Computations have 

been executed for a gas with Y = 1.4, Pr = 0.75 and w = 0.9, for several 

conical nozzles at Reynolds numbers, Re^*, below 560.^ 

There are a number of interesting points in Rae's results, of which 

three are mentioned at this juncture: 

1. For a nozzle of area ratio 37:1 there was effectively an 

inviscid core throughout the nozzle for Re^^ = 650, but by 

Re^^ = 200 the flow was completely viscous. These findings 

(29) 
were later confirmed experimentally by Rothe 
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2. Rae remarks that, where the flow was essentially divided 

into an inviscid core and a boundary layer, the conditions 

on the nozzle axis could be calculated within a few percent 

of the values predicted with the slender channel approach, 

by using the isentropic one-dimensional flow of an effective 

area ratio found by subtracting the displacement thickness 

from the geometric radius. 

3. Heat transfer from the wall to the gas was examined by 

making the wall temperature identical to the stagnation 

temperature. It was observed that the velocity and temper-

ature profiles were practically the same as those obtained 

with an adiabatic wall. 

The final reference is by Kallis, Goodman and Halbach^^^'', who 

have used Rae's program, assuming an adiabatic wall, to study the viscous 

effects on biowaste resistojet performance. Comparison with experimental 

measurements of the performance of CH^, CO^ and R^O over a range of 

Reynolds numbers, Reg*, from 800 to 4500 is good. 

1,5 Present Approach 

1.5.1 Aims of This Work 

So far in this Introduction the resistojet system has been 

examined, the processes occurring in the motor identified and the 

literature on theoretical performance of resistojets reviewed. At this 

stage it is pertinent to ask, what are che aims of the present research? 

In the U.K. work on resistojets is concentrated mainly in two 

places. At the Rocket Propulsion Establishment, IJestcott, hydrogen 

resistojets with a design thrust of 0.65N are being investigated for 

use as the primary propulsion of communications satellites. At the 

Royal Aircraft Establishment, Farnborough^ ammonia resistojets of 
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approximately 50 mN thrust are being developed for use in satellite 

attitude control. To complement the experimental and theoretical research 

being carried out in these two areas and to provide oerformance predictions 

for other propellants, such as CH^ and CO^j it was decided to develop 

computer models of resistojet nozzle performance which could be applied 

relatively quickly over a wide range of operating conditions. Before 

this can be done, it is necessary to quantify the processes causing a 

reduction in the ideal nozzle performance. Thus, modelling of the energy 

loss processes occurring in the nozzle is the prime concern of the nresent 

work. With a better understanding of the gasdynamic situation in the 

nozzle it is then possible to make realistic performance predictions. 

1.5.2 Model Situation 

In order to examine resistojet nozzle performance over a wide 

range of conditions some compromise has to be made regarding the number 

of processes included in the model and the degree of sophistication 

with which they are accounted. An immediate simplification comes from 

neglecting to model the heater performance. While not physically 

realistic it is a necessary step, since the heater losses are greatly 

dependent on the particular configuration. It is therefore not appropriate 

in what is essentially a design study to devote a considerable amount of 

effort to modelling t'-.a heater performance. Some loss of accuracy must 

result from this fundamental approximation but it is incurred with the 

substantial advantage that the performance model can be applied to a wide 

range of resistojet designs. Since the heater flow is not represented, 

the thermodynamic quantities - stagnation temperature, stagnation 

pressure and propellant composition - must be specified as input variables 

to the nozzle calculation. Provided that these quantities are kno\m, or 

can be estimated, comparison between theory and experiment is possible. 

The basic principle used in defining the model nozzle flow, is that 

where circumstances dictate, for instance through a lack of kinetic data. 



the approximations made to the real situation are such that the energy 

loss is overestimated, therefore resulting in a lower bound on nozzle 

performance. Tito of the non-idealities considered to occur in the 

nozzle flow, i.e. incomplete expansion and radial flow, can be accounted 

for in a straightforward manner, as will be sho^m in Chapter 2. The 

others require further consideration to obtain reasonable approximation. 

1. Chemical rate processes 

Losses arising from frozen composition are important in resistojets 

employing They are also possible in hydrogen resistojets operating 

at temperatures of the order of 2500°K. In view of the previous dis-

cussion it is thought that only a small amount of recombination is 

possible in resistojet nozzles. A reasonable approximation which is 

consistent with an overestimate of the frozen composition loss is to 

assume that the chemical rate processes are frozen throughout the nozzle. 

This also produces some simplification of the viscous flow problem. 

2. Vibrational rate processes 

An upper bound on energy losses caused by vibrational nonequilibrium 

can be found by assuming that the vibrational rate processes are also 

frozen at entrance to the nozzle. Since vibrational energy relaxes very 

quickly, losses obtained with this aporoximation may be considerably 

overestimated. A lower bound results from assuming that vibration remains 

in equilibrium with translation throughout the nozzle. A third, more 

realistic, alternative is to adopt a model in which the rate processes 

remain in equilibrium up to a calculated freezing point and are frozen 

downstream of this position. All three approximations are examined. 

3. Viscous flow 

It was seen in the literature review, section 1.4, that the effects 

of viscosity and heat conduction on the performance of resistojet nozzles 

can be taken into account by considering that dissipation either, 
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(i) extends over the entire nozzle flow field, so that the 

governing equations are the complete Navier-Stokes 

equations, 

or (ii) is confined to a region at the nozzle wall which is 

governed by the boundary layer equations. 

The first approach, or the slender channel version used by is 

most suitable for application to resistojet nozzles at Reynolds numbers, 

Re^^) below about 500. At higher Reynolds numbers Rae's approach 

although producing useful resistojet performance predictions, as sho^m 

in Ref. 45, is extremely time consuming in comparison with more conven-

tional methods. The boundary layer equations used in the second approach 

are a simplification of the Navier-Stokes equations, obtained by assuming 

that the boundary layer thickness is very small in comparison to a 

typical dimension of the body, such as the nozzle wall length. It follows 

that boundary layer theory is an asymptotic theory where the assumntions 

used are satisfied with an increasing degree of accuracy as Reynolds 

number increases. In the present work the assumption is made that the 

dissipative effects of viscosity and heat conduction are confined to a 

boundary layer which is not necessarily thin. It is assumed that the 

nozzle flow is composed of two parts - an inviscid core, and a boundary 

layer which is governed by the boundary layer equations. 

Further assumptions are necessary regarding the boundary conditions. 

An adiabatic nozzle wall, shown to be a good approximation to the thermal 

boundary condition in resistojet nozzles is adopted in this 

work. As regards to the slip condition, the earlier considerations and 

the results of Refs. 43 and 45 confirm that velocity slip and heat transfer 

do occur at the nozzle wall. The approximation used here is that the flow 

is a continuum, so that the no slip condition is applicable. This 

approximation will result in some overestimate of the viscous loss, but 

with the benefit of a decrease in computer time. 
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A point worth noting, is that in the usual thin boundary layer 

theory the pressure along the wall can be regarded as being "impressed" 

by the external flow so that it becomes a given function. However in 

the case of lower Reynolds numbers and consequent thick boundary layers, 

interaction occurs between the boundary layer and the inviscid core, so 

that the pressure distribution along the nozzle wall is not known 

a priori. 

4. Condensation of the efflux gas 

Condensation is a phenomenon which could occur in the expansion 

of such gases as NHg, CO^ and CR^, when a resistojet is operated under 

cold or nearly cold heater conditions. Since resistojet design operating 

temperatures are typically 1000°K or larger, condensation is possible 

only under extreme off-design conditions which are rarely encountered, 

(12) 

e.g. during initial attitude acquisition , and it is therefore not 

modelled in this work. 

The model situation is summarised schematically 

Heater 
(Tr,Pr,Xi specified) Nozzle 

Model Resistojet Flow 

where P^, P^, P^, P^ and P^ represent the possible losses in jet power, 

Pj, due to frozen chemical rate processes, frozen vibrational rate 

processes, incomplete expansion, viscous flow and radial flow, respectively. 
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Thus from equation (1.6) 

P. = P - P 1 
] 8 ml 

,Aere 

By calculating the individual losses it is then possible to obtain the 

jet power and other performance variables, such as thrust and specific 

impulse. 

At the beginning of section 1.3 it was stated that the models which 

are developed in this study are strictly applicable only to steady state 

operation. It is worth considering for a moment a resistojet operating 

in the transient mode, in which small impulses are used for, say, 

satellite attitude control. The pulse lengths (typically 10 to 100 ms) 

are several orders of magnitude larger than the nozzle transit time (of 

order 10 ys) so that the nozzle is operating under quasi steady-state 

conditions. The transit time through the heater (typically 1 ms) is 

more comparable to the pulse length, so that the plenum conditions are 

a function of time. But, again provided that these conditions can be 

estimated, some useful estimates of transient performance can be made 

from the predictions of a steady-state model (for instance, see Ref. 12). 

The contents of the remainder of this thesis are arranged as 

follows. In the next chapter a framework for accounting for the five 

separate losses is presented. The nozzle performance is analysed by 

starting from the ideal situation and successively adding the various 

non-idealities to produce a realistic performance model. Parameters 

characterising the overall nozzle performance are also defined. In 

Chapter Three the laminar boundary layer problem is examined. The 

approach used in this work is based on similar solutions of the laminar 

boundary layer equations. The general similar equations are derived, 

the implications of similarity are studied and solutions are presented 
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for four classes of simplified similar equations. Modelling of 

vibrational relaxation is considered in Chapter Four. Potential flow 

relations are developed corresponding to the cases where the vibrational 

rate processes are (i) frozen, (ii) in equilibrium, (iii) initially in 

equilibrium but frozen downstream of a realistic freezing position. 

A sudden freezing criterion is outlined and an approximate model is 

described of the vibrational relaxation in fixtures. In 

Chapter Five the details of four computer models of resistojet nozzle 

performance are given. After describing the general calculation 

procedure the four models are outlined. This is followed in Chapter 

Six by a presentation and discussion of the results of these models. 

Finally, the thesis is summarised and the major conclusions which are 

drawn from this study are listed in Chapter Seven. 
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Chapter Two Analysis of Nozzle Performance 

2.1 Introduction 

A performance analysis is necessary in order to quantify the loss 

processes which are considered to occur in the resistojet nozzle. We 

start by considering the idealised flow discussed in Chapter 1, where the 

available propellant enthalpy is converted entirely into jet energy; by 

introducing the various loss mechanisms a mathematical model of the nozzle 

performance is obtained. The loss processes considered in the present 

study arise from : 

1. frozen chemical rate processes, 

2. freezing of the propellant vibrational energy modes, 

3. incomplete expansion, 

4. viscous flow, 

5. radial component of exhaust velocity, 

and are introduced to the model in this order. In the real situation the 

loss processes cannot strictly be divorced from each other, so that the 

following analysis must be regarded only as a convenient form of 

accountancy. 

2.2 Performance Analysis of Individual Losses 

2.2.1 Ideal Performance 

As an ideal performance case the following situation is defined: 

the flow is considered to be one-dimensional, to be in complete equilibrium 

through a nozzle of infinite area ratio, and to suffer no losses through 

viscous and radial flow. The ambient pressure at exit is taken to be zero. 

From the energy equation for steady non heat-conducting flow, the specific 

enthalpy available for conversion to kinetic energy is 

1 V.2 = h - h. (2.1) 
2 J T J 
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The flow presented to the nozzle can consist of a single species or a 

mixture of species resulting from the decomposition of the propellant 

in the heater. In the case of a dissociated mixture of n species, the 

specific enthalpy at temperature T is 

fT 
o i=n 

M i=l 
c dT + 
P,i 

A (2.2) 

1 

where AH^(T^) is the standard heat of formation of the i^^ species 

at temperature , taken in this work as 298°K. Thus eq. (2.1) becomes 

i=n 
c . dT + 
P,i 

M. 
J 

i=n 
c . dT + 
P.i 

AHf(To) (2.3) 

o ] 

In the ideal situation the chemical rate processes remain in equilibrium 

through the nozzle and the jet temperature, T^ = 0 t. The available 

specific enthalpy is then 

i=n 

I X, 
i=l 

c . dT + 
P,i 

AH^^T,) 

1_ 

& 

o 
c dT + 
P 

ABf(To) 

R 

(2.4) 

where R denotes the recombined state. T'Jhen only one species is 

present, eq. (2.4) simplifies to 

,T_ 

l v . 2 = i 
2 J 

M 

o 
c dT 

P 
(2.5) 

It is convenient to express exhaust properties such as velocity 

and temperature in terms of their effective jet values, so that 

the available enthalpy and jet velocity can be simply related 

through expressions equivalent to eq. (2.1). Only when the nozzle 

is infinite are exhaust and effective jet conditions identical. 
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The jet power is defined as 

P. = 4 m V.2 (2.6) 

and in the ideal situation all the available enthalpy is regained at the 

nozzle exit, i.e. P. = P . Under equilibrium conditions the mass flow 
2 g 

is choked at the nozzle throat, and mass continuity gives 

* * m = n p u (2.7) 

The thfuS-t is simply 

F = m V. 
J 

(2 .8) 

2.2.2 Frozen Chemical Rate Processes 

Introducing the first assumption that the propellant composition, 

produced by the heater, remains constant during expansion through the 

nozzle means that there is a reduction in jet power. The available 

specific enthalpy is 

- % ? 2 Hj, i-1 
X. 

o 
c . dx 
P,i 

(2.9) 

where the jet temperature T. = 0, and subscript C denotes frozen 

chemical rate processes. With chemistry frozen, choking again occurs at 

the throat and relations equivalent to eqs. (2.6) to (2.8) become 

PjC - 2 4c *iC 
(2.10) 

*2 * * 

" * Pc "c 
(2.11) 

fc - Ac VjC 
(2.12) 

It follows that the jet power loss due to frozen chemistry is 

(2.13) 

A measure of the jet power loss when chemistry is frozen is given by the 

efficiency 
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n - ^ 
" V. (2.14) 

J 

For the case where only one chemical species is present, energy is 

not invested in chemistry and by definition = 1. 

2.2.3 Frozen Vibrational Relaxation Processes 

In Chapter 4 three models of the relaxation of the propellant 

vibrational energy modes are examined. They correspond to the cases 

where the vibrational energy modes : 

(1) remain in equilibrium with the translational energy modes 

throughout the nozzle; 

(2) are in equilibrium dovm to a realistic freezing position, 

but make no further contribution to the jet energy beyond 

this point, i.e. vibrational relaxation is frozen; 

(3) are frozen throughout the nozzle. 

The nozzle performance analysis of the previous section corresponds to 

case (1), where by definition there is no loss in the available specific 

enthalpy due to freezing of the vibrational energy modes. Examining 

the case where freezing can occur in the nozzle, i.e. case 2, it is implied 

that there is a further loss in jet power. The available specific enthalpy 

is 

2 1 
=P.i " * <=p.i>r ^£p (2.15) 

where T^^ is the static temperature corresponding to the freezing position. 

Subscript F denotes frozen vibrational rate processes, so that (c^ ^)p is 

the molar heat capacity due to the translational and rotational energy 

modes only. Again the jet temperature = 0. 

In the vibrational nonequilibrium model (case 2), an approximation 

to the freezing position is used when freezing occurs in the convergent 

section or in the immediate vicinity of the nozzle throat. Under these 
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circumstances freezing is arbitrarily delayed to a position downstream of the 

nozzle throat, with little loss in accuracy. This is done in order to 

avoid difficulties in satisfying mass continuity, and a further discussion 

can be found in section 4.2.3. Then with vibrational equilibrium in the 

convergent section the mass flow rate is m^, as in eq. (2.11). The 

expressions for jet power and thrust are 

V - " - 1 " 

^CF = VjCF 

and an efficiency accounting for the frozen vibrational energy loss is 

defined as 

n 
F 

*jc 

(2,18) 

When vibrational rate processes are assumed to be frozen throughout 

the nozzle, as in case (3), the available specific enthalpy becomes 

i ^ 

Choking still occurs at the throat and the mass flow rate is now 

* 2 * * , 
"CF • ' ® "CF "CF (2-2°) 

The expressions for P and F are modified by substituting m for m . 
jCF Ct Lt L 

2.2.4 Incomplete Expansion 

The next step in the analysis is the introduction of a finite nozzle, 

which implies that the jet temperature is no longer zero at exit from the 

nozzle. In other words the process of converting the theoretically available 

enthalpy to directed jet energy is not complete, as energy remains in the 

propellant translational, rotational, vibrational and chemical modes. 

Since chemical and vibrational energy can be unavailable from previous 
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considerations, the incomplete expansion loss is dependent upon the 

propellant rate processes as well as the nozzle area ratio. 

Allowing for incomplete expansion, the expressions corresponding 

to eqs. (2.9), (2.15) and (2.19) are 

1 2 1 
equilibrium: V. = — Z X. 

^ i=l ^ 

c° . dT 

TjCE 

(2.21) 

equilibrium 1̂  ^2 

frozen: 

i=n 

- frozen; 2 jCFE c . , i 
1=1 

•fP 

(2.22) 

1 v' 
2 jCFE 

(T^ - T,„„^) i=n 
(2.23) 

where subscript E denotes incomplete expansion. Relations (2.21) to 

(2.23), obtained from an energy equation equivalent to eq. (2.1), cannot 

be evaluated at this stage since the effective jet temperature 

T. , or T. , is undefined. To avoid unnecessary repetition in the 
jLfh JLb 

remainder of this analysis, only the case where vibrational energy is 

frozen throughout the nozzle is examined. 

The mass flow rate remains unchanged at and as before the 

jet power and thrust are defined 

3 = — m 
•jCFE 2 CF jCFE 

(2.24) 

F = m V 
CFE CF jCFE 

(2.25) 

An efficiency accounting for the energy loss due to incomplete expansion 

is defined as 

^jCFE 

*jCF 

(2.26) 

Examination of the momentum equation applied at the exit plane 

gives 
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"̂ CFE ° PeCPE V F E + PeCFE 

in which a pressure term, not apparent in eq. (2.25), appears explicitly. 

The notation eCFE refers to isentropic flow conditions at the nozzle 

exit. Using continuity of mass and an equation of state 

p = PRT (2.28) 

eq. (2.27) can be written as 

^CFE ™CF "eCFE ~ 73 ^ (2.29) 

'CF eCFE 

Comparing eqs. (2.25) and (2.29) the effective jet velocity is defined 

in terms of the exit conditions as 

• V f e 

*CF eCFE 

The exhaust velocity and Mach number are related to exhaust temperature 

A 
e 
[W 

L which in turn is a function of the nozzle area ratio, £ = ex . 

Expressions relating T^ and &/A* are developed in section 4.2, so that by 

equating (2.23) and (2.30) a jet temperature may be defined. However, 

this step is unnecessary since the important performance variable, the 

effective jet velocity, , can be obtained from the momentum equation 

without resorting to eq. (2.23). 

2.2.5 Viscous Flow 

The presence of viscous flow complicates the analysis. The approach 

adopted in this work, presented in the next chapter, considers the flow to 

consist of two parts - an inviscid core and a viscous boundary layer. 

A major assumption made is that the chemical and vibrational relaxation 

processes are constant across the radial plane of the nozzle. Thus no 

recombination is considered to occur in the boundary layer or on the hot 

nozzle surface. Similarly the vibrational temperature across the boundary 

layer is assumed to be identical to the freestream vibrational temperature, 
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whereas vibrational temperature in the boundary layer should follow 

the static temperature if vibrational processes are in equilibrium in 

the inviscid core, and should tend to this behaviour if the core is 

vibrationally frozen. The reasons for the assumption of frozen chemistry 

have been previously discussed in Chapter One, where it was shoim to be 

a fair approximation for the situation considered here. However, the 

assumption regarding vibrational relaxation in the boundary layer is not 

realistic, but, as demonstrated in the next chapter, is unavoidable with 

similar solutions of the laminar boundary layer equations. 

A momentum balance at the exit plane gives the following relation 

for thrust: 
R 

^CFEV ~ "^eCFEV ^eCFEV ^ pu^rdr + PgCFEV 

R-6j 
a 

where 6^ = 6 cos a, is the boundary layer thickness in the radial plane 

(see Figure 2), and subscript V denotes viscous flow. The usual boundary 

layer approximation that there is no pressure gradient across the boundary 

layer is employed. 

Applying continuity at any station in the nozzle gives 
R 

\ F V " "eCFV "eCFV ^ 
Purdr (2.32) 

R-6^ 

The notation eCFV refers to inviscid core conditions within the nozzle, and 

eCFEV to conditions in the core at the nozzle exit plane. Mass continuity 

may also be expressed in terms of the boundary layer displacement thickness, 

so that 

®CFV ^ ^eCFV "eCFV ^ (2,33) 

To simplify the nomenclature the subscripts CFEV are dropped in eqs. (2.34) 

and (2.35). Using eq. (2.32) in (2.31) the thrust becomes 

rR 

F = mu - 2it 
e 

Pu(u^ - u)rdr + p^ ttR (2.34) 

d 
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Rearranging eq. (2.34) with the aid of eq. (2.33), the thrust can be 

expressed as 

F = mu 41 -
r2 

(R-6 c o s a ) ^ R' 
l l - i 

u 
rdr -

e^ Y Mg 

(2.35) 

R-6 

It should be noted that, with the addition of viscous flow to the 

analysis, no assumption has been made regarding the position at which 

choking occurs in the nozzle. 

In a similar manner to eq. (2.25) thrust can be expressed in terms 

of sn effective jet velocity, so 

^CFEV ~ "CFV ^jCFEV 

and comparing eqs. (2.35) and (2.36) 

(2.36) 

^jCFEV 
u 1 -

R-̂  

(R-6 cosa)^ 

2 
r2 

R 

Pu 

"e^'e 

1 -
u 

u 
rdr ~ 

R-6 

(2.37) 

CFRV 

The effective jet power is now 

^jCFEV 2 ^ ^jCFEV 
(2.38) 

and an efficiency accounting for the velocity defect due to viscous flow 

is defined as 

V 

^jCFEV 

^jCFE 

(2.39) 

The efficiency accountingfor the mass defect due to viscous flow, i.e. the 

discharge coefficient, is simply 

m. 
CFV 

D 
(2.40) 

m. 
CF 

2.2.6 Radial Flow 

So far in the analysis no consideration has been given to the fact 

that the exhaust velocity may have components in the axial and radial 
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directions. Only the axial component contributes to the jet velocity 

and to account for the loss due to radial flow requires an integration of 

the velocity components across the exit plane. In general this loss is 

small, particularly so in the case of flows with thick boundary layers as 

found in resistojet nozzles. It is therefore not thought worthwhile to 

account fully for the radial flow loss; although the following analysis 

has some theoretical justification it cannot be regarded as completely 

rigorous. 

Reverting to an ideal case with no viscous flow, eq. (2.27) can be 

written, using mass continuity, as 

^CFE ™CF "eCFE ^eCFE 
(2.41) 

The flow at the nozzle exit can be regarded as a segment of a spherical 

source flow, and it can be sho^m for such a flow^^^^ that the thrust can 

be expressed as 

^CFED ~ "CF "eCFE 
1 + cos a 

* PeCFE 
(2.42) 

where a is the nozzle wall angle at the exit plane. 

The effect of a viscous boundary layer is to reduce the effective 

nozzle radius to one less than geometric. By subtracting the boundary 

layer displacement thickness from the geometric radius an effective radius 

and therefore effective nozzle geometry can be defined, i.e. 

* 

^effective ~ ^ ~ cos a. Considering the flow at the effective nozzle 

exit also to be a segment of a spherical source flow allows a similar 

treatment to the inviscid case. Comparing eqs. (2.35), (2.41) and (2.42) 

an approximate expression for the thrust with allowance for the radial 

flow loss is 

F = m 
CFEVD CFV 

u 
1 + cosa 

(r-6 cosa) 2 . 

Pu 
rdr -

Y M 

R-6 
CFEV 

-41- (2.43) 



where is the effective nozzle angle at exit. 

The relations for effective jet velocity and power are 

R 

1 + cosa 

^jCFEVL 
u 
e' (R-6 cosa)2 

p = i m 
jCFEVD 2 CFV jCFEVD 

Pu 
P u ^ 
e e ̂  

1 -
u 

rdr -

R—6 

YM 

CFEV 

(2.44) 

(2.45) 

Finally, an efficiency accounting for the radial flow loss is 

2 

D 
^iCFEVD 

^jCFEV 
(2.46) 

Thus to summarise, efficiencies n. 
F' 

Hg, and accounting 
D 

for the velocity defect due to the individual loss processes have been 

defined in eqs. (2.14), (2.18), (2.26), (2.39) and (2.46), and a discharge 

coefficient, accounting for the mass defect due to viscous flow in 

eq. (2.40), 

2.3 Overall Nozzle Performance Parameters 

Thrust; F 5 and mass flow rate, m___, are the dimensional 
Lf&VU Lr V 

variables which essentially describe the overall nozzle performance. 

Individually they provide little information regarding the efficiency 

of the nozzle or the properties of the propellant, but the ratio of the 

two, i.e. thrust per unit mass flow rate, or effective jet velocity. 

F CFEVD (2.47) 
jCFEVD 

m. 
CFV 

is a useful characteristic of performance. Jet velocity is more 

usually expressed in terms of a specific impulse 

V 

sp 
jCFEVD 

o 
(2.48) 
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and although reflecting nozzle efficiency it is primarily a function of 

the propellant specific enthalpy. 

More dependent on the nozzle performance is the thrust coefficient; 

a dimensionless factor defined by 

CFEVD 
* 

Pt A 

Noting that the overall nozzle velocity defect is defined by 

12 

n 
N 

CFEVD 

V. 
3 

(2.49) 

(2.50) 

or simply the product of the individual efficiencies 

n = n n n n n 
N C F E V D 

(2.51) 

then using eqs. (2.47), (2.8), (2.50) and (2.40) the thrust coefficient 

can be expressed as 

\ F F 

m 
* 

A 
N D 

(2.52) 

A frequently used parameter characterising the mass defect is the C 

efficiency 

m. 
CFV 

m 

m. 
CF 

m 
D 

(2.53) 

Effects on mass flow rate of freezing the chemical and vibrational rate 

processes are small and m^p/m closely approximates to unity. In comparison, 

the mass defect due to viscous flow, C , can be considerably less than unity 
D 

at the Reynolds numbers typical of resistojet operation. Thus the use of 

Cp is preferred to in eq. (2.52). The second term in eq. (2.52) is 

the ideal thrust coefficient and is dependent on the plenum temperature 

and choice of propellant; for the propellants considered, i.e. NH^, 

CH^ and CO^, over the temperature range from 300 to 2000°K, its value can 

vary between 1.8 and 2.2. The third term in eq. (2.52) represents the 

-43-



nozzle velocity defect. It is apparent that the thrust coefficient 

is a function of several, sometimes conflicting, trends and consideration 

of this factor alone can cloud understanding of the nozzle performance. 

To characterise the overall resistojet nozzle performance attention 

will be confined mainly to : 

(1) nozzle efficiency, a measure of the velocity defect 

(2) discharge coefficient, C^, a measure of the mass defect 

and (3) specific impulse, I , a measure of the propellant performance. 
sp 

Finally, an estimate of the electric power required by the 

resistojet is necessary. The actual performance of the resistojet 

heater is not modelled in this work. It is assumed that = 1 in 

which case the required power per unit mass flow is the difference between 

the ideal jet specific enthalpy (P^ = P^) and the specific enthalpy 

inherent in the propellant at entry to the heater. Thus 

1 
ei 2 ™CFV < v! ] - h 

pr 
(2.54) 

where 

h 
pr 

M 
pr 

i=n 
c . dT + 

p,x 
AH^ (T ) 

_ f o , 

pr 

(2.55) 

where pr denotes propellant conditions at inlet to the heater and 

T^^ = 300°K. is only an approximation to the resistojet power 

requirement, but as far as the nozzle performance is concerned it can be 

thought of as the effective electric power transferred to the propellant. 
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Chapter Turee Laminar Boundary Layer Theory 

3.1 Introduction 

As shoTvn. in Chapter One, primarily for reasons of computational 

efficiency it is convenient to assume that the effects of viscosity and 

heat conduction are confined to a boundary layer in resistojet nozzle 

flows. Additional simplifying assumptions were also noted: (1) that the 

flow is a continuum so that the condition of no slip applies at the 

nozzle surface, and (2) that an adiabatic wall is a good approximation 

to the thermal condition of a resistojet nozzle. 

A number of methods are available in the literature which can be 

used to calculate the formation of a compressible boundary layer (for 

instance, see Ref. 47, ch. 9). At the start of the research the 

(41) 

approach of Murch et al was followed. This was based on Cohen and 

Reshotko's approximate method for the compressible laminar boundary layer 

with heat transfer and arbitrary pressure gradient. For a number of 

reasons (described later) /lurch's approach was found to be unsatisfactory, 

even for an adiabatic wall, and recourse had to be made to Cohen and 

Reshotko's original method. This is an extension to compressible flows 

of Thwaites correlation technique for calculating incompressible laminar 

boundary layers. In an equivalent manner to Thwaites, the two-

dimensional boundary layer equations were expressed in terms of correlation 

parameters which were related to the wall shear, the surface heat transfer 

and the freestream velocity. The evaluation of these quantities was then 

carried out by utilising similar solutions of the laminar boundary layer 

equations previously determined by Cohen and Reshotko^^^\ A modification 

of Cohen and Reshotko's method which has been successfully applied to the 

present resistojet nozzle flow investigation is reported in detail in 

Reference 37, and a summary of the model is presented in section 5.3. 

This preliminary model influenced the way in which later, more 
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rigorous 3 theory was developed and some of the points raised during 

its development are discussed here. A source of some difficulty in the 

application of Cohen and Reshotko's cheory to the resistojet problem 

is that the similar solutions on which the correlation parameters were 

based had been determined only for values of the pressure gradient 

parameter, S , up to 2. The pressure gradients found in resistojet 

nozzle flow fields are highly favourable, in general, with values of (3 

considerably in excess of 2, so that extrapolation of the correlation 

parameters beyond g = 2 was necessary, tmrch et al^^^^ surmounted the 

problem by fitting quadratics to the correlations of Cohen and Reshotko, 

thus securing extrapolations beyond 3 = 2 . Such an extrapolation is 

difficult to justify since it is easily seen that a quadratic does not 

(37) 

give the correct rate of change of curvature. Edwards and Jansson 

used graphical extrapolation (see Fig. 22) to obtain new values of the 

correlation parameters beyond g = 2 which led to performance predictions 

which agreed well with experiment. This agreement was to an extent 

fortuitous since Lhe correlation extensions were not theoretically 

justified. Thus this first model emphasised the need for similar solutions 

of the laminar boundary layer equations over a wider range of conditions 

than was to be found in the literature. Further, since results obtained 

with this model were encouraging it was decided to pursue the similar 

solutions approach, and all boundary layer models reported in this thesis 

are based on similar solutions. 

In the next section a background to the contents of this chapter 

is provided by a review of the more important references on similar 

solutions. The equations relevant to compressible, axisymmetric laminar 

boundary layer flow are examined in section 3.3, and they are manipulated 

into a form in which the similarity concept can be applied. The mathe-

matical conditions imposed by the assumption of similarity and the 

boundary layer parameters required in the performance analysis are 
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derived in section 3.4. In the final section similar solutions for 

some cases of interest in resistojet nozzle flows are presented. 

3.2 A Literature Review of Similar Solutions 

The boundary layer equations for two-dimensional, incompressible 

flow over a flat plate represent the conservation of mass and the 

conservation of momentum. They may be written as 

where the boundary conditions are 

y = 0 ; u = v = 0 , y - ^ ° ° ; u - ^ u ^ (3.3) 

Under certain circumstances, by using a transformation of variables, 

derivatives of the dependent variables become separable and the 

governing equations reduce from partial differential equations to 

ordinary differential equations. This technique was first employed on 

equations (3.1) and (3.2) by Blasius (see Ref. 49, p. 126). Using the 

transformation 

n = y 
u 
e 

I vx J 

and introducing a stream function 

4' = (vxu^)^ f(n) 

where f(n) denotes a dimensionless stream function, Blasius reduced 

equations (3.1) and (3.2) to the ordinary differential equation 

ff" + 2f"' = 0 (3.4) 

where (') denotes differentiation with respect to n. 
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Equation (3.4) is of significance since it leads to the first 

example of a similar solution in laminar boundary layer theory. The 

solution of equation (3.4) is similar in the sense that the velocity 

profiles, u(x,y)j at different stations, x, are identical in the trans-

formed plane and differ only by scaling factors in u and y in the x-y 

plane. No physical or mathematical approximations beyond those already 

used in deriving the boundary layer equations are necessary in the 

derivation of the Blasius equation so that the solution of this equation 

is exact. 

Falkner and Skan^^^^ have considered two-dimensional, incompress-

ible laminar boundary layers where pressure gradients were present in 

the external flow. In this case the momentum equation becomes 

"fe ^ "If - r S ^ " 5 

In a similar manner to Blasius they obtained an ordinary differential 

equation, which can be written 

f"- + ^ (1 - f'2) + ff" = 0 (3.6) 

Provided that the freestream velocity obeys a power law of the form 

m 
u c% X 
e 

where m is a constant, solutions of equation (3.6) are also similar and 

exact. Solutions of the Falkner-Skan equation for a range of values of 

6 = 2m/(m-l) from - 0.1988 up to 2.4 have been obtained by Hartree^^^\ 

Necessary steps in the derivation of similar solutions for com-

pressible flows are the Illingworth-Stewartson transformations. In 

independent examinations of the two-dimensional, laminary boundary layer 

(52) (53) 

on an isothermal surface, Stewartson and Illingworth used trans-

formations of the form C = 5(x) and n = n(x,y) to transform a compressible 

flow in the x-y plane to an equivalent incompressible flow in the ^-n 

plane, subject to the fluid property assumptions of unit Prandtl number 
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and a linear viscosity-temperature relation. Removal of the density, 

p , serves two purposes: (i) it reduces the number of variables and 

(ii) it facilitates solution of the transformed problem by existing 

incompressible solutions. 

Another transformation which is required in the application of 

similar solutions to axisymmetric flows is that due to Mangier. In a 

study of incompressible boundary layers on axisymmetric bodies Mangier 

(see Ref. 49, p. 235) showed that such flows can be reduced to an 

equivalent two-dimensional problem again by transformations of the 

form g = C(x) and n = ri(x,y). It is noted that a combination of the 

Illingworth-Stewartson and Mangier transformations, usually referred to 

as the Lees-Dorodnitsyn transformations (see eqs. 3.22 and 3.23), 

reduces the axisymmetric, compressible boundary layer to an equivalent 

two-dimensional5 incompressible flow. A fuller discussion of these 

transformations can be found in Ref. 54. 

For compressible flows an additional relation representing the 

conservation of total energy is necessary to describe the boundary layer. 

The two-dimensional compressible laminar boundary layer equations now 

become 

(pu) + ~ (pv) = 0 (3.7) 

^ By dx 9y 

^ a* P ay 9y IPr 9y 
1 - 1 _ 

9 f u ^ l 
. Br. ay I 2 j 

(3.8) 

(3.9) 

2 
where the total enthalpy per unit mass, H = h + ^ 

There have been several attempts to derive similar solutions for 

compressible flow and of the earlier work the previously mentioned study 

of Cohen and Reshotko^ ^ is notable. They examined the flow over an 

isothermal surface of a model fluid with Prandtl number of unity and a 

linear viscosity—temperature relation. For the general case with heat 
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transfer occurring between the fluid and surface the total temperature of the 

fluid is no longer uniform, so that solution of the energy equation is 

not trivial and an additional similar variable based on the total 

enthalpy is required. Applying the Stewartson-Illingworth transformations 

to equations (3.7) to (3.9) Cohen and Reshotlco obtained two coupled 

ordinary differential equations, which can be written 

f" + 3(1 + S - f ) + ff" = 0 (3.10) 

S" + fS' = 0 (3.11) 

where f is again a dimensionless stream function such that f = u/u^ 

and S is a dimensionless total enthalpy function, S = H/H^ - 1. Solutions 

were obtained by Cohen and Reshotko for a range of heat transfer conditions, 

with the wall temperature varying from zero to twice the stagnation 

temperature. 

Of the more recent similar solutions for a general gas with Prandtl 

number not unity and various viscosity-temperature laws, those due to 

(55) 

Dewey and Gross are noteworthy. Solutions of the similar boundary 

layer equations for values of Prandtl number, Pr, extending from 0.5 to 

1.0, and w , the exponent in a viscosity-temperature law (of the form 

y = AT^^) equal to 0.5, 0.7 and 1.0, were obtained over a wider range of 

pressure gradients than hitherto. They have also examined fairly 

rigorously the restrictions imposed by similarity. 

A final point which should be noted, is that in most compressible 

flows for which similar solutions have been obtained, the concept of 

similarity is no longer physically exact, as it is in incompressible 

flows, but is a mathematical approximation necessary to reduce the 

partial differential equations to ordinary differential equations. This 

point is examined in more detail later. 
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3.3 The Boundary Layer Equation;: 

In nozzle flows where the boundary layer is thick, as it is in 

resistojet nozzles, the radial dependences accounting for transverse 

curvature have been demonstrated to be an important consideration in 

the growth of the boundary laye/?^^ The governing equations of the laminar 

boundary layer in curvilinear coordinates, which include first-order 

transverse curvature, developed by Probstein and E l l i o t t c a n be 

written :-

Conservation of mass. 

(pur) + (pvr) = 0 (3.12) 

Conservation of momentum. 

in x-direction 

in y-direction 

3u 9u 

ox r 9y 
yr 

9u 
ay 

# - " 

(3.13) 

(3.14) 

Conservation of total energy. 

n BE ^ n 3H _ 1 8 
P" 8^ + Pv 

1 
1 ' u2' ' 

+ u 
IPr 3y ^ 1 " Pr By I 2 J (3.15) 

In the derivation of equation (3.15) it is assumed that Lewis number, 

P c 

Le = ^—2. = 1 , i.e. the magnitudes of the diffusion and conduction 

terms in the thermal energy equations are identical. 

Additional relations come from;-

The equation of state 

p(x,y) = p^(x) = RT^ = PRT (3.16) 

and a viscosity-temperature relation, not explicitly defined at this 

stage, 
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u = y (T) 

The coordinate system used is shot-m in Fig. 2, where 

r(x,y) = R(x) - y cos a 

(3.17) 

(3.18) 

In the original derivation^^^' of the governing equations, the assumption 

that 6/R^ << 1 was made concerning longitudinal wall curvature, i.e. that 

the boundary layer thickness was much less than the nozzle wall radius 

of curvature. In the present study such an assumption can be criticised 

in the vicinity of the nozzle throat, where the local radius of curvature 

is small, in those cases when the boundary layer occupies a substantial 

portion of the throat. However this will only occur at Reynolds numbers 

where the other boundary layer approximations are so severely strained 

that the validity of the whole approach is in question. 

To extend the work to thick boundary layers, a stream function, 

^(x,y), may be introduced which satisfies continuity : 

dip 

9x 
Pvr 

so that equations (3.13) and (3=15) become 

dp 
dijj 9u 
9y 3x 

dip 8u 
9x 9y 

- r 
dx 

pr 
du 
By. 

(3.19) 

(3.20) 

3y 8x 

dip 9H 
9x 3y 8y 

y_ ^ 
Pr 9y + y f1 -1-' 

3 fû l 
/ Pr 3y I 2j 

(3.21) 

Applying now a modification of the Lees-Dorodnitsyn transformations , 

C = p p u dx 
w w e 

n = ^ 

ry 

(2S): 

r dy 

(3.22) 

(3.23) 
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the independent variables may be transformed from x and y to g and n. 

The modifications are, firstly in the y to n transformation, where r is 

kept under the integral, so that r/R is not constrained to be unity and 

a thin boundary layer is not necessarily assumed; secondly the refer-

ence viscosity refers to the wall rather than the freestream conditions. 

The following operators should be noted 

L-
I 9y J 

Pu r 
_ e_ 

' I (2S) 
1_ 
8n 

(3.24) 

p y u 
w w e 

3 3n '3 

I [3n J 
(3.25) 

Further, a non-dimensional stream function is defined by 

f ( E , n ) = n) 

(2E): 

(3.26) 

such that 

u 

u 

3f 

3n 
(3.27) 

and introducing a non-dimensional total enthalpy function, 

g(E, n) = (3.28) 

After the application of equations (3.22) to (3.28) and after some 

manipulation, equations (3.20) and (3.21) become 

PM 
§ri I p y 

w w 

I 

9n' 

25 !!e I" 

u 
e 

3f 
3n 

+ f 
3^f 

3n2 
= 2S _ ill M (3.29) 

3n 

py 

I*; 

u 
+ _ 

Pr 3n H 

1_ 

Pr 
M . ill 

9n2 

+ f 2S 
an 3G 

M. M 
9n 3g 

(3.30) 

Equations (3.29) and (3.30) are now the general non-similar equations. 

(57) 

equivalent forms of which have been used by Jaffe, Lind and Smith for 

external flows, and by Whitfield^^^^ for nozzle flows. The equations con-

stitute a pair of coupled partial differential equations and as such can 
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be solved by finite difference techniques. As in the case of Rae's 

slender channel prograin^'^"' ^ solution on a digital computer of the non-

similar equations is extremely time consuming. A particularly useful 

technique in the reduction of the complexity of the problem is the 

assumption, if it is justified, of local similarity, so that equations 

(3.29) and (3.30) become a pair of coupled ordinary differential 

equations. In this case it is assumed that the derivatives with respect 

to g of the boundary layer dependent variables are small compared to the 

corresponding ^-derivatives, so that the right hand side of equations 

(3.29) and (3.30) can be neglected. Those terms on the left hand sides 

which are functions of g are assumed to take their local values, and 

the boundary layer equations are considered as ordinary differential 

equations in n, with 5 as a parameter. 

The concept of local similarity infers that at every streamwise 

station the boundary layer adjusts to changes in the geometric and 

thermodynamic boundary conditions, and is identical in all essential 

respects to the similar boundary layer whose '1 istory" includes the 

local boundary conditions. A strong case for the use of similar 

(50) 

solutions in some non-similar flows is made by Evans ' . In his work 

on incompressible laminar boundary layers he used a series expansion of 

the non-similar stream function, f(S; n), of the form 

f(?,n) = fg(n) + S f^(n) + f2(n) + 

where f^(n) is the first-order similar stream function and the higher-

order functions f\(n) (i = 1, ..., n) make a decreasing contribution to 

f(S;n). In particular for more favourable pressure gradients it was 

shown that the first-order similar solution is by far the most important 

contribution, so that f(C,n) can be usefully approximated by f^(n). 

Evans results show that, for a pressure gradient parameter, 3, equal to 

unity, the dimensionless shear stress at the ^all, f"(o), resulting from 
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the first-order similar solution contributed over 95% of the full non-

similar value of f"(o). This contribution increased with increasing 

pressure gradient. Local similarity is assumed in this work, and its 

application to resistojet nozzle flows is discussed further in 

section 5.4. 

3.4 The Similar Boundary Layer Equations 

3.4.1 Derivation of Equations 

The ordinary differential equations resulting from the assumption 

of similarity in equations (3.29) and (3.30) are 

1 

PP £ 
R f" 

u d? 
e 

£ _ f.2 + ff" = 0 (3.31) 

py 

p P 
w w 

£ 
R 

u 

Pr H 
1 -

1 
Pr 

f ' f " + fg' = 0 (3.32) 

where (') denotes differentiation with respect to n. 

Remembering that f and g are non-dimensional stream and enthalpy 

functions (defined by eqs. 3.26 and 3.28), the boundary conditions are: 

(1) At the wall (i) Ho mass flux, f(o) = 0 

(ii) No slip condition, f'(o) = 0 

(iii) Dimensionless shear stress, 

f'''(o) = constant 

(iv) Either (a) with heat transfer 

g(o) = H(o)/H^ and g'(o) = constant 

Or (b) for adiabatic wall 

g(o) = constant and g'(o) = 0 

• (3.33) 
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(2) At the outer edge of the boundary layer 

(i) f'(«>) = 1 

(ii) f"(") = 0 

(iii) g (=) = 1 

(iv) g'(°°) = 0 

(3.34) 

The inner boundary conditions f''(o) and either g'(o) or g(o) are 

initially unknown and must be found as part of the solution. 

In order for similar solutions of equations (3.31) and (3.32) to 

exist the following conditions are necessary : 

(1) :t2 = F ( n ) 

(2) 
py 

p u 
w w 

= X(n) 

(3) 2 
R 

= G(n) 

(4) Pr = Pr(n) 

As pointed out by Hayes and Probstein^^^^ similarity is a mathematical 

state. In general, not all of the individual conditions (1) to (4) can 

be physically satisfied simultaneously, and it is necessary to determine 

when the assumption of similarity is correct or reasonable. 

Examining the first condition, which using equation (3.16), can be 

written as 

r _ , r 
,2 2S ^ 

u dC 
£ _ f 2 T_ 

T 
u 

u 
(3.35) 

we need to express T/T^ in terms of the similar variables f and g. For 

an isenthalpic flow the energy equation for the external flow is simply 

(It is appropriate at this point to note that in the Class B 
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similar equation, which is presented in section 3.5.2, in order to 

satisfy some of the restrictions required for similarity it is necessary 

to introduce a distribution of heat sources and heat sinks in the external 

flow. In this case the flow is no longer isenthalpic and the energy 

equation can be written 

+ q = (3.36) 

where q = q(5) represents the rate of heat generation in the external 

flow.) Quite generally, for a thermally and calorically perfect gas 

(c^ = constant), the energy equation can be written 

u 
H = c T + •— 
e D e 2 

(3.37) 

In the boundary layer 
u 

H . c I + 2 

so that T/T^ can be expressed 

1. 
T 

H -
u 

u 

- 2^ 

(3.38) 

Then eq. (3.35) becomes 

u d? 
e 

f" 

H -
® 2 

n ^e,T 

M . 
du 

e 
'H -

u2 

2 - Hi 
u 
e 

dS u 2 
e 

u ' 
e 

2 

2g 
du 

e 
H 
e ' H 

e ^ 

- f'2 (3.39) 

where ^ and are the freestream total and static temperatures 

respectively. Ifhen the flow is isenthalpic (q = 0) T m is identi 
e, i 

to T , but when q = q(?), T becomes a variable. If 
i 6,1 
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li ^ ^e,T 
"e 45 T* 

is constant, the expression becomes 

(3.40) 

li i k 
u dC 
e 

_S. - f'2 
P 

= 6(g - ) = F(n) (3.41) 

giving the required condition. g is referred to as the pressure 

gradient parameter. Thus the first condition is satisfied subject to 

the restrictions that. 

(i) specific heat of fluid, c^ = constant 

(ii) pressure gradient parameter, 6 = constant. 

The second required condition is 

py 
p y 

w w 

= A^n) 

A viscosity-temperature law of the form 

y = AT (3.42) 

is adopted, where A and w are constants, then in a manner similar to 

(55) 
Dewey and Gross one obtains 

oj-l 
py _ ' T 

(0-1 
T 

p y w w T 
I w J 

T 
I w 

T 
e,T 

Now 
u 
2 

u 

e,T 
H 

= g -
2E 

f'2 

so that 

py 
p y 

w w 

e,T 

w 

u 

8 - 2R 
f'2 

(I)—1 

With the restrictions that 

(i) the ratio of freestream stagnation to wall temperature, 

-58-



T /T = constant 
6 5 T w 

(ii) hypersonic parameter, a = = constant 

(iii) exponent in a power law viscosity-temperature relation 

(eq. 3.42)5 w = constant. 

py "e,T 

w 

g - a f'2 

co-l 

= x(n) (3.43) 

The restriction c = constant is also implicit in this relation 
P 

The third condition that 
(rlZ 

= G(n) can be satisfied in two 

ways : 

(a) Restricting consideration to a thin boundary layer the 

approximation r = R can be used, in which case G = 1. 

(b) Using eq. (3.18) and substituting for r in eq. (3.23) 

n = 

(2E)& 

ry 

o 

(R - y cos a)dy 

Differentiating, rearranging and integrating 

(2S)S 

Pe % 
dn = 

y 

(R - y cos a)dy 

Ry 
y cos g 

Substituting for y from eq. (3.18) 

(25)* 

% "e 

11 an . 
P 2 cos a 

So 

2 
R 

= 1 
2(25)" cos g 

P u R^ 
e e 

dn (3.44) 

But from eq (3.39) 

f'2 + e,T 
T 

(g f'2) 
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so eq. (3.44) becomes 

R J 
= 1 -

2(25)= cos g 

P u 
e e 

f'^dn + -lA (g-f'2)dn 

Thus with the restrictions that 

(i) the transverse curvature parameter. 

Q _ 2(25) cos g 

p u R'-
e e 

is constant 

and (ii) the ratio of the freestream stagnation to static 

temperature, ^/T^ is constant,we have 

_r 
a 

= 1 - 8 < 

rn 

f'^dn + 
e,T 

o 

(g-f'2)dn = G(n) 

(3.45) 

(3.46) 

(3.47) 

Again it is necessary for c^ to be constant to obtain this third required 

condition. 

The final condition concerning similarity in Prandtl number is not 

examined in detail since only the case, Pr = constant, (in particular 

Pr = 1.0 and 0.7) is of interest. The case Pr = constant ^ 1 requires 

that in eq. (3.32) is constant, or in other words 

a = constant 

With all these conditions satisfied the similar boundary layer 

equations resulting from eqs. (3.31) and (3.32) are 

XGf" + g(g - f'2) + ff" = 0 (3.48) 

AG X + 2o (1 - i - ) f'f" 
Pr Pr 

+ fg' = 0 (3.49) 

where f and g are the dependent variables, X and G are additional 

variables which can be expressed in terms of f and g, and 6, Pr and a 
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are constants. The boundary conditions are as in eqs. (3.33) and (3.34) 

together with the additional conditions 

A (o) = G(o) = 1 

The solution of the full similar boundary layer equations (eqs. 

3.48 and 3.49) constitutes a complex problem. However, it is not 

physically possible to satisfy all the mathematical restrictions at one 

time, and some simplification results by restricting the analysis to 

physical flows which are approximately similar. Dependent upon the 

assumptions made about the fluid properties, various classes of similar 

boundary layer equations can be defined. Some cases of interest are 

presented in section 3.5. To conclude this section the boundary layer 

parameters required in the performance analysis are derived. 

3.4.2 Boundary Layer Parameters 

The displacement thickness, which is a measure of the mass flow 

defect; is defined for axisymmetric flow as 

fOO 

2tt r u^ dy = 2ir r(p^ u^ - pu)dy (3.50) 

o •' 0 

substituting for r in the left hand side of eq. (3.50) and integrating 

we obtain 

2n r P u dy = 2Tr p u 
e e e e 

Rg* _ cos o 6 2 
(3.51) 

The right hand side of eq (3.50) can be transformed with the aid of 

eq. (3.23) 

2iT r(p^ - pu)dy = 2n(2C) 
' P 

. P 
0 •' o 

where n is taken to be that value of n for which 

- - — 1 dn 
u 
e 

(3.52) 

""5 
$ 10 

Finally by equating the right hand sides of eqs. (3.51) and (3.52) we 

obtain a quadratic in 6 , the appropriate solution of which is 
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5 = R 
cos a 

,1c. 

1 - 1 -
2 cos a (2g) 

p u R 
e e 

- f ' 2 dn (3.53) 

The positive square root term in the quadratic is ignored since this 

represents an equivalent external flow. Introducing the transverse curva-

ture parameter (eq. 3.46) and substituting for P^/P , eq. (3.53) becomes 

A 
6 = R 

cos a 
1 - Jl-0 

e,T 
(g-f'^)dn - f'(l-f')dn (3.54) 

similarly the momentum thickness is a measure of the momentum 

deficit due to the boundary layer and is defined by 

r8 

2n r p u dy = 
e e 

lir r p (u^u - u^) dy (3.55) 

In an analogous manner to the derivation of & we obtain 

9 = R 
cos ot 

1 - i 1 - 0 f'(l - f')dn (3.56) 

The boundary layer overall thickness, 6 , is taken to be that 

value of y for which u/u^ = 0.995, and can be defined from eqs. (3.23) 

and (3.18) as 

r6 

(R - y cos a)dy 
_ (2S) 

Pe "e 
dn (3.57) 

where n is that value of n for which f = — = 0.995. Uoon integration 
e u -

e 
eq. (3.57) becomes 

6 = — i l — 1 -
cos ot 

1 - 0 

0 e 

(g-f'2)dn (3.58) 

Equations (3.54), (3.56) and (3.58) include the effects of trans-

verse curvature and are the appropriate expressions for the case of a 

thick boundary layer. For the thin boundary layer case these equations 

reduce to 
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s - R 9 

2 cos a 
e.T 

(g-f'^)dn - f' (l-f')dn (3.59) 

R 9 

2 cos a 

R 9 
2 cos a 

f'(l - f')dn 

rn. 
e.T 

(g-f'2)dq + f'^dn 

(3.60) 

(3.61) 

Using eqs. (3.18), (3.23) and (3.46),the integral appearing in the 

thrust and jet velocity relations (see eqs. 2.35 and 2.37) can be 

expressed for the general case as 

R 

P u 

R'" 
P u ^ 
e e ^ 

1 - — rdr = 9 f'(l-f')dn (3.62) 

R-5 

Additional parameters which are of interest in the boundary layer 

analysis are the skin friction coefficient and the heat transfer at the 

nozzle wall. The skin friction coefficient is defined by 

8u 

w 9y w 

i ("e 

(3.63) 

and using eqs. (3.24) and (3.27) this can be written 

2 p y R 
w w 

(25)* P„ 
f"(o) (3.64) 

= - k 
w . By J 

w 

Finally, the heat transfer at the wall is given by 

% 

which, using eqs. (3.24), (3.28) and (3.37), becomes 

P P u R H g' (o) 
w w e e 

w 
(2S): Pr 

(3.65) 

(3.66) 
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3.5 Similar Solutions 

Of the various types of laminar viscous flow which are represented 

by the similar boundary layer equations, attention is confined here to 

four classes of similar equations which can be used to model resistojet 

nozzle flow. For convenience these equations, which are special cases 

of the general similar equations, eqs. (3.48) and (3.49), are designated 

Class A,B, C and D. Before proceeding to the similar solutions it is 

necessary to examine the pertinant gasdynaiaic conditions and the 

various approximations which can be made to them. 

The nozzle flow is an extremely rapid expansion of a high temper-

ature gas from a relatively low pressure plenum into a vacuum. As a 

consequence of the low stagnation pressure (order of one atmosphere) 

and the hot nozzle surface, where the wall temperature approximates to 

the plenum temperature, the boundary layer is thick, tending to occupy 

the whole of the divergent section at low Reynolds numbers. As a 

consequence of the high plenum temperature the gas is vibrationally 

excited at entrance to the nozzle, during expansion the static 

temperature in the inviscid core falls and the degree of excitation 

may be reduced through equilibration of the vibrational energy with 

translational energy. In the boundary layer (i.e. in the radial 

direction) the opposite process can occur. At any station in the nozzle 

the static temperature across the boundary layer increases from that of 

the inviscid core to the higher temperature of the nozzle wall. The 

vibrational temperature will tend to follow this behaviour, so that 

propellant specific heat is a function of distance from the nozzle wall. 

However, the similar boundary layer equations as formulated here, are 

valid only for a constant specific heat and one is forced to use the 

approximation that at a given station specific heat is constant across 

the boundary layer, and equal to that of the inviscid core. 
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Ihe situation regarding the thermal condition of the wall is, 

as pointed out in Chapter One. of some importance to the nozzle per-

formance. A realistic, and convenient approximation is to assume that 

the nozzle wall is adiabatic, i.e. no heat transfer occurs. For the 

gases considered (NH^, CH^, and N^) over the temperature range 

from 300° to 3000°K the Prandtl number lies between 0.74 and 0.69. 

Similarly the viscosity-temperature exponent, w , lies between 0.90 

and 0.65 for all the gases except where w decreases from 1.10 

at 300°K to 0.90 at 3000°K. (See Fig. 3 and section 3.5.4). A reason-

able physical approximation, which produces considerable simplification 

of the similar equations, is to take the values of Pr and co to be unity. 

This approximation is used in the Class A, B and C similar equations. 

In Classes A and 3 the wall is assumed to be adiabatic. Similar solutions 

with the thin boundary layer approximation G = r/R = 1 are examined in 

Class A, and in Class B the thin boundary layer constraint is relaxed 

by allowing G = G(n); i.e. transverse curvature effects are included. 

In the third class of equations, C» again with Pr = w , 0 = 1 , the 

intention is to examine the effect of a modest amount of heat transfer 

from the nozzle wall to the propellant flow. Solutions of these 

equations represent the case where the gas recovery temperature is less 

than the wall temperature. Such a situation can occur in pulsed 

resistojet operation when the stagnation temperature attained by the 

propellant during heating can be less than the stagnation temperature. 

Finally, Class D similar equations examine the effects of using more 

realistic approximations to Prandtl number and the exponent of the 

viscosity-temperature relation,in particular some solutions are presented 

for Pr = w = 0.7. The case examined is that of an adiabatic wall, and 

it follows for Prandtl number less than unity that the recovery temper-

ature is less than the stagnation temperature. 
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3.5.1 Class A Solutions (Falkner-Skan equation) 

Making the following approximations regarding fluid properties and 

the flow: 

(i) Prandtl number, Pr = 1 

(ii) Viscosity-temperature exponent, w = 1 

(iii) Thin boundary layer approximation, G = 1 

(iv) Total enthalpy profile, g = 1, which together with 

Pr = 1 implies that the wall is adiabatic, 

produces considerable simplification and a decoupling of the momentum 

and energy equations. The similar equation resulting from these 

approximations in eqs. (3.48) and (3.49) is 

f " + 6(1 - f'2) + ff" = 0 (3.67) 

This is a form of eq. (3.6), the Falkner-Skan equation. The boundary 

conditions are 

f(o) = f'(o) = 0, f"(o) = constant and f'(<=°) = 1. 

Restrictions necessary for similarity are 

(i) c^ = constant 

(ii) B = constant 

For an isenthalpic flow, q = 0 in eq. (3.33), therefore T = T 
e,i X 

and since g = 1, T^ = T^, i.e. the wall temperature is identical to 

the stagnation temperature. The physical situations for which the above 

restrictions hold must now be examined. The implication of the form of 

the pressure gradient parameter in eq. (3.40) is that the external 

velocity gradient is given by 

du Q u T 
e _ _S _e e 

dE " 2 S 

In the original work of Falkner and Skan^^^^ the flow considered was 
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incompressible, so = constant and the potential flow required 

for similarity was 

u = AC 
e 

where A and B are constants. For such a flow similarity between 

different stations is exact. 

In the case of compressible nozzle flow when is a variable, 

the potential velocity cannot be expressed explicitly in terms of g , 

so that in general similarity is not exact. There are two physical 

situations for which similarity is exact, one is that in which there 

is a stagnation point for the inviscid flow, when •> and u^ 0; 

the other occurs when the potential velocity is constant, in which case 

the pressure gradient is zero, corresponding in the present study to 

the hypersonic limit when the freestream Mach number is very large. 

Thus, apart from some limited physical situations, eq. (3.67) and its 

restrictions are not exact, and solutions of this equation together with 

the assumption of local similarity are used only as a means to an end, 

i.e. the approximate modelling of viscous flow in a resistojet nozzle. 

Eq. (3.67) constitutes mathematically a non-linear two-point 

boundary value problem where it is required to obtain profiles for f, 

(51) 

f and f" as a function of n. Hartree ' has obtained solutions to 

this equation for values of pressure gradient parameter, 3 , up to 2.4. 

However, as noted earlier, the velocity gradients found in resistojet 

nozzles are extremely large, with 3 varying typically from 2. to 3. in 
(59) 

the nozzle divergent section. Evans has produced solutions for 

large 3 , but for values of 3 greater than unity he uses a different 

similar variable, which is effectively 1/f, and his similar solutions 

are not compatible with the present formulation. 

Solutions of eq. (3.67) for 0 3 ^ 10, were derived in this 

study using a fourth order Runge-Kutta integration technique. The two 

point boundary value problem was treated as an initial value problem, 
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where the unknoxm boundary condition f''(o) was obtained by satisfying 

_5 

the outer boundary conditions with convergence criteria, (1-f'(<»)) $ 10 

and f"(°°) < 10 It should be mentioned that Dewey and Gross have 

produced a few solutions for values of B between 2. and 5., but values 

of f''(o) are quoted only to three decimal places. Further they note 

that convergence was difficult for cases involving g greater than 2. 
-3 

In most of these cases they relaxed the convergence criteria to 10 

No such difficulties were experienced in this work. Details of the 

mathematical techniques employed in the derivation of the present similar 

solutions are given in Appendix A. 

In section 3.4.2 it was sho^m that five integrals of the velocity 

and total enthalpy profiles are required. They are :-

(g - f'^)dn (3.68) 

0 

0 

0 

n 

f ( 1 - f')dn 

f'^dn 

(g - f'^)dn 

f'(l - f')dn 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

A reduction in the number of integrals to be evaluated and subsequently 

used in the nozzle performance models is achieved by making the assump-

tions that 

The difference between these integrals comes from the arbitrary definition 

of the edge of the boundary layer. In the expressions for the momentum 
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and displacement thickness is taken to be the first value of n for 

which f ) 0.99999, whereas in the definition of the overall thickness 

and in the thrust integral, is that value of n for which f = 0.995. 

The approximation that n equals introduces a maximum error of less 

than one percent in and P^. The overall effect, which is small, is 

to cause an overestimate of the boundary layer thickness, 6 , and an 

underestimate of the thrust. 

Values of f'(o), P^ and P^ for the Class A similar equation 

are given in Table I, and these results are illustrated in Figs. 4 to 6. 

In order to interpret these results it is useful to examine the momentum 

equation, eq. (3.13), which with the approximation that r = R can be 

written 

9u 9u 9u dp 9 
Pu + Pv -5— = - + -5-

ox 3y dx o] ^ ay j 

This equation expresses the balance between the inertia forces on the 

left hand side and the pressure and viscous forces on the right hand 

side. At the wall the inertia forces are zero so the pressure and 

viscous forces must balance. With increasing distance from the wall 

the inertia forces increase and the shear forces must decrease, since 

dp/dx is constant across the boundary layer. Variation of the dimension-

less shear stress, f", in the transformed plane is shoxm in Fig. 4 for 

various values of B from 0 to 10. This figure shows that at the wall, 

i.e. n = 0 in the transformed plane, the gradient of the dimensionless 

shear stress, f" (o), is zero for 3 = 0 , and as the pressure gradient 

becomes more favourable (increasing 3) so f"(o) increases and f" (o) 

becomes more negative. In other words the wall shear stress required 

to balance the pressure gradient becomes correspondingly larger. As a 

consequence of the increased value of f"(o) the shear stress decreases 

more rapidly with favourable pressure gradient, and it follows that the 

inertia forces increase quicker and the boundary layer thickness in the 

transformed plane is diminished. 
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The corresponding velocity profiles are shown in Fig. 5, where it 

is seen that the more uniform shear stress profile for 6 = C is reflected 

in a more linear velocity profile. Variation of the wall shear stress 

and of the boundary layer integrals with the pressure gradient parameter 

is shô 'jn in Fig. 6. The wall shear stress- f"(o) increases monotonically 

xjith B , whereas the integrals P and P^ are decreasing functions of 

g . From eqs. (3,59) to (3.61) it is therefore inferred that the boundary 

layer thicknesses in the physical plane, 6 , 5 and 8 also become smaller 

as g is raised. Following from this last statement, a point of some 

significance in later applications of the Glass A solutions to the 

resistojet problem, is that as the pressure gradient falls in the 

divergent section of the nozzle (see Fig. 23) so the boundary layer thick-

nesses increase. This is particularly noticeable in the behaviour of P^ 

and P^ for values of g below 2. 

3.5.2 Class S Solutions (Modified Falkner-Skan equation including 

transverse curvature) 

Retaining assumptions (i), (ii) and (iv) of the Class A solutions, 

i.e. Pr = w = g = 1, but relaxing the thin boundary layer constraint, 

results in a modified Falkner-Skan equation of the form 

T 

Gf" + 6(1 - f'2) + f f " = 0 (3.73) 

where G comes from eq. (3,47), which, with g = 1, can be written 

G = 1 - 0 
n T 

f'2 dn + 
rn 

'̂ e '0 

(l-f'2)dn (3.74) 

The boundary conditions are 

f(o) = f'(o) = 0, f"(o) = constant, G(o) = 1 and f'(°°) = 1 

Restrictions necessary for similarity are : 

(i) Cp = constant 

du T 
(ii) g = — = constant 

e e 



(iii) e = = constant 

P u 
e e 

(iv) ^ 

e 

Let us consider the situation where the potential flow is 

isenthalpic, i.e. q = 0 in eq. (3.36), which means that ^ " 

constant and It follows from restriction (iv), with = 

constant, that there is only one physical situation in compressible flow 

for which similarity is exact, and that ig at the stagnation point, when 

u^ = 0. In the more general case, restrictions (ii) and (iv) are 

inconsistent since a variable velocity, u^, and a constant static 

temperature, T^, cannot be maintained simultaneously. This difficulty 

is overcome to some extent by the introduction of a distribution of 

heat sources and sinks in the potential flow, i.e. q = q(C). In this 

case the total enthalpy is a variable, so that the freestream total 

temperature is variable and from restriction (iv) becomes a variable. 

Such a situation maintains some consistency in the restrictions, but, 

as in the Falkner-Slcan equation, in the general case it is not possible 

to express u^ explicitly in terms of C for a compressible flow. 

However, by patching together solutions of eq. (3.73) which are appropriate 

to the conditions at different stations in a resistojet nozzle, it should 

be possible to model approximately a viscous flow in which some account 

has been taken of tie effects of transverse curvature. 

Although it is of limited interest in the present work, it is noted 

that for incompressible flows can be equal to ^, which equals 

for q = 0, since is a constant. The conditions for similarity to be 

exact are then that 6 and 0 are constants. 

Solutions of the modified Falkner-Skan equation have been obtained 

over the following range of conditions for 3, 0 and x̂ '̂ e 
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0 f g 3 10. 

0 3 G ^ 0.4 

1. « T /I^ .< 8. 

This is not a complete coverage of the conditions found in resistojet 

nozzlesc In particular values of T^ ^/T^ greater than 8 may be experi-

enced in nozzles with area ratios greater than 100, but these conditions 

are sufficient for an approximate examination of the effects of trans-

verse curvature on the boundary layer growth. Values of f"(o), P^, 

and P^ for the Class B similar solutions are presented in Table II, 

*~5 ""5 
where the convergence criteria used were f(°^) $ 10 and (1-f' (°°)) 10 

It is seen in Table II that, for certain combinations of 6, 0 and 

T^ no solutions of the unknown boundary condition, f"(o) could be 

found which satisfied all the other boundary conditions. The reasons 

for this will be discussed shortly. Before considering the results 

further it is again instructive to examine the momentum equation, 

n u 5u dp 1 9 
PU + PV "V" = - + — TT-

dx dy dx r oy 

The differences between the Class A and B similar solutions arise from 

the way in which the radial dependences accounting for transverse 

curvature are included in the shear stress term. In the thin boundary 

layer approximation for axisymmetric flows r/R = 1, so the shear stress 

9u . 3 
term is 

8y W By J 
which corresponds in the Falkner-Skan equation to f 

3u 1 9 
The equivalent terms for a thick boundary layer are — 

T ' 
Gf" 

3 y J 
and 

Computed profiles of the shear stress, f", velocity, f', and the 

ratio of the local to geometric radius, G, for a typical case ( 3 = 2 , 

0 = 0.2 and T^ ^/T^ = 4 . ) are show, in Fig. 7. Comparison with the shear 

stress and velocity profiles for 3 = 2 in the conventional Falkner-Skan 

equation reveals certain differences. These all originate from the fact 
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that G = r/R is a decreasing function of n in the Class B solutions, 

whereas in the thin boundary layer case G is taken to be unity. The 

first point to note is that including transverse curvature produces a 

decrease in the wall shear stress. The mathematical reason for this 

can be seen by expanding [cf" J , thus 

[ Gf" = G' f^ + G f" 

At the wall, i.e. n = 0, the Class A and B similar equations can be 

written as 

Class A, f " (o) + 6 = 0 

Class B, G'(o) f"(o) + f " (o) + 6 = 0 (with G(o) = 1) 

For the effectively planar flow of the Class A equation, the pressure 

gradient is balanced by the rate of change of the shear stress at the 

wall. In the Class B equation, transverse curvature introduces an 

additional negative term, the effect of which is to make f" (o) less 

negative and by implication to reduce the value of f"(o). The physical 

implication is that for internal flows transverse curvature acts as an 

adverse pressure gradient, since the wall shear stress necessary to 

balance the pressure gradient is reduced. When n is a non-zero the 

bracketed term in the relation for G, eq. (3.74), must be considered. 

This term is composed of two parts; 

•Tl 
(1 - f'2)dn, 

e ^ 0 

where the second part is dominant for small n and the first part is 

dominant for large n . The implication of the fuller shape of the shear 

stress profile over the inner portion of the transformed plane is that 

the inertia forces are reduced in comparison to the case where transverse 

curvature is not included (Class A). This is to be expected with 

greater than unity, since the second term takes account, through 

T^ ^/T^, of the region of reduced density and therefore of smaller inertia 
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forces near the wall. As n tends to so the second term tends to 

zero and the first term increases at a constant rate. Thus G = r/R 

tends to a linear function of n . The effect of transverse curvature 

at large values of n is to cause a reduction in the shear stress and 

therefore the boundary layer thickness in the transformed plane is 

decreased. It follows that the velocity profile for this typical case 

is slightly more linear when transverse curvature is included. 

Some shear stress profiles for 3 = 2 and 10 in the Class B similar 

solutions are illustrated in Fig. 8. An important feature of the results 

is that with increasing pressure gradient parameter the effects of trans-

verse curvature are reduced. It is seen in Fig. 8 for B = 10 that even 

with the largest influence of transverse curvature (0 = 0.3 and T /T 
e, 1 e 

= 8.) the differences in shear stress between Class A and Class B are 

not large, in fact they are much the same as the typical case just 

discussed. The combination of large © and T^ x̂ '̂ e lower pressure 

gradient parameters has a more pronounced effect. Thus for 
= ? 

0 = 0.2 and T „/T. = 8. the reduced density near the wall combined with 
e,i e 

the effects of transverse curvature produces a region of almost uniform 

shear stress. The transverse curvature, acting as an adverse pressure 

gradient; effectively offsets the increased inertia forces, and it is 

only by n = 0.5 when G(= r/R) has decreased to 0.3 that the transverse 

curvature can no longer offset the increasing inertia forces and shear 

stress changes significantly. The corresponding velocity profile in 

Fig. 9 indicates that the rate of change of the inertia forces then 

decreases rapidly to a constant value appropriate to the freestream 

conditions, so that the shear stress drops off dramatically. Convergence 

was difficult to achieve for this particular case (3 = 2, 0 = 0.2 and 

T^ ^/T^), so that it lies very close to the region where solutions for 

f"(o) could not be obtained. 

Variation of the wall shear stress with pressure gradient parameter 

is shown in Fig. 10 for a range of values of transverse curvature para-
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meter and freestream stagnation to static temperature ratio. A 

notable feature is that, for given values of Q and f" (o) 

versus 3 curves are almost linearly displaced from the Class A curve. 

Further, the displacement of these curves is nearly linear with changes 

in 0 or The fact that solutions for f"(o) could not be obtained 

where both 0 and are large is also apparent in Fig. 10. This 

feature is most noticeable for low values of B . In order to examine 

how this comes about let us consider the curve where 0 = 0.2 and 

T /T = 8 . At 3 = 10 the shear stress and velocity profiles do not 
e, 1 e -

differ substantially from the Class A profiles but as the pressure 

gradient parameter falls several factors contribute to change this 

picture. Over the inner portion of the transformed boundary layer the 

shear stress profile becomes fuller as the adverse pressure gradient 

effect of transverse curvature progressively offsets the decreased 

favourable pressure gradient. Also the ratio of the local to geometric 

radii becomes smaller as n tends to n^. In the nearly limiting case 

-3 

with 3 = 2 , which was previously described, r/R is less than 10 at 

At lower values of the pressure gradient parameter r/R is negative 

as n tends to n^. This has a noticeable effect on the velocity profile 

in that it is no longer asymptotic to f = u/u^ = 1, so that the 

behaviour of eq. (3.73) under these conditions is not like that of a 

boundary layer. A thorough examination of this phenomenon showed that 

there was no value of f''(o) which would produce a velocity profile 

that was asymptotic to f = 1, however it was found that the velocity 

profile became asymptotic to a value of the velocity ratio which was 

less than unity. The implication of this behaviour is that for certain 

combinations of pressure gradient parameter, transverse curvature para-

meter and freestream stagnation to static temperature ratio for which no 

solution of f"(o) could be found, eq. (3.73) no longer describes a 

boundary layer flow (see Chapter Six). 
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The boundary layer integrals P^, and P^ are illustrated in 

Figs. 11 to 13. It is seen that the values of all three integrals are 

smaller than the corresponding Class A integrals, and once again the 

reduction in value is almost a linear function of the changes in G or 

T /T . The decrease in n is reflected most noticeably in the P_ 
ejT e 3 

integrals. It must be emphasised that this discussion of the Class B 

similar solutions has been confined to the transformed plane. Con-

sideration of how these solutions transform to the physical plane is 

complicated by the form of the equations for the boundary layer thick-

nesses (eqs. 3.54, 3.56 and 3.58), and by the n to y transformation 

(eq. 3.23). This is examined in Chapter Six. 

3.5.3 Class C Solutions (Coupled momentum and energy equations) 

Using the assumptions that 

(i) Prandtl number, Pr = 1 

(ii) Viscosity-temperature exponent, w = 1 

(iii) The boundary layer is thin, G = 1 

and allowing the total enthalpy function g to be a function of n, 

g = g(n), with the boundary condition that g(o) ^ 1, allows one to 

examine heat transfer between the gas and the wall. Under these con-

ditions eqs. (3.48) and (3.49) become 

f " + (g - f'2) + ff" = 0 (3.75) 

g" + fg' = 0 (3.76) 

The boundary conditions are 

f(o) = f'(o) = 0, f"(o) = constant, f (°°) = 1 

g(o) = H(o)/H^ , g'(o) = constant, g(") = 1 

Similarity restrictions are 

(i) c = constant 
P 

(ii) 6 = constant 
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The implication of these restrictions are identical to those of 

Class A except that T = constant # T . Thus similarity is exact for 
w 1 

the cases of stagnation point flow and zero pressure gradient only; 

for all other cases, even when the above restrictions are obeyed, simil-

arity is only approximately correct. 

Of particular interest here is the case where heat transfer 

occurs from the wall to the gas. Rae^^^^ in his study of low density 

nozzle flows noted that with the wall temperature somewhat higher than 

the recovery temperature the boundary layer profiles hardly differed 

from those obtained with an adiabatic wall. This has important 

implications to the performance of pulsed resistojets and it was hoped 

that solutions of eqs. (3.75) and (3.76) with g(o) greater than unity 

would confirm this finding. However some difficulty was experienced 

in obtaining solutions of sufficient accuracy for the boundary layer 

integrals to be evaluated properly. The reason for this is to be found 

in the fact that eqs. (3.75) and (3.76) are extremely non-linear when 

g(o) is larger than unity, and the problem is complicated by the presence 

of two unknown boundary conditions, f"(o) and g'(o). A considerable 

number of solutions of equations equivalent to eqs. (3.75) and (3.76), 

(52) 

for g(o) less than unity, have been presented by Cohen and Reshotko , 

Li and Nagamatsu^^^^ and Dewey and G r o s s T e s t cases to compare with 

these solutions were carried out in this work and no difficulty was 

experienced in obtaining accurate values of f"(o) and g'(o). To a great 

extent this was due to the linearity of the energy equation for g(o) < 1, 

specifically that g'(o) = F(g(°°)) is linear. The linearity of the energy 

equation has also been noted by Smith and C l u t t e r W h e n g(o) is 

larger than unity this relation is non-linear and becomes more so with 

increasing pressure gradient parameter. 

The case examined here used the somewhat arbitrarily chosen 

boundary condition of g(o) equal to 1.2. At 6 = 0 the momentum and 
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energy equation are uncoupled so that the velocity profile is independent 

of the total enthalpy profile, and solution is straightforward. Values 

_5 

of f"(o) and g'(o) with convergence criteria on f"(°°) and g'(™) of 10 

are presented in Table III. When 6 is larger than zero the two equations 

couple and use must be made of numerical procedures such as a Newton-

Raphson two-variable routine to obtain the values of f"(o) and g'(o). 

However convergence was found to be extremely slow and to reduce com-

puting time a visual search for solutions was adopted. Again this was 

not particularly satisfactory and only solutions for values of S up to 

3.0 are given in Table III. In order to obtain solutions the convergence 

criteria were relaxed considerably. Values of the boundary layer 

integrals were not evaluated. References 52 and 55 present some solu-

tions with g(o) = 2 for values of 3 up to 2. Dewey and G r o s s a l s o 

note difficulty in obtaining convergence but in this respect they 

appear to have been more successful than the present author since 

-4 
convergence to 10 is reported. 

(52) 

As first noted by Cohen and Reshotko a feature of the similar sol-

utions when heat is transferred from the wall to the gas is that there 

is an overshoot in the velocity profile with favourable pressure 

gradients. I'Then the freestream velocity is uniiorm, i.e. 3 = 0, the 

velocity profile is identical to that of the Class A solutions, but as 

3 increases so the velocity at the edge of the boundary layer increases 

to a value greater than the freestream and then slowly returns to the 

freestream velocity as n tends to . For the relatively modest amount 

of wall heating obtained with g(o) = 1.2 the overshoot is small; the 

maximum overshoot found here, occurred at 3 = 3.0, producing a value 

of f approximately equal to 1.005. However, the magnitude of the wall 

shear stress is noticeably larger than the adiabatic wall case (Class A). 

It is shown in Fig. 14 that the difference in f"(o) becomes larger with 

increasing pressure gradient. Also dravm in this figure is the gradient 
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of the total enthalpy function, g'(o). In the case of an adiabatic 

wall with q = 0, by definition g'(o) equals zero for all values of 6 , 
w 

but when the stagnation enthalpy at the wall is greater than the 

recovery temperature there must be a gradient in the total enthalpy 

which transfers thermal energy from the wall to the gas. It is indicated 

by the approximate solutions presented here that g'(o) tends to a 

constant value as the pressure gradient increases, and the implication 

from eq. (3.66) is that with other factors constant the amount of heat 

transferred must also tend to a constant value. 

3.5.4 Class D Solutions (An adiabatic wall with realistic 

values for the Prandtl number and viscosity-temperature 

exponent) 

The final class of similar solutions presented here, considers 

the case where the following assumptions are made: 

(i) Pr = constant f 1 

(ii) w = constant ^ 1 

(iii) G = 1, i.e. the thin boundary layer approximation. 

Under these circumstances the similar equations become 

Xf" + 3(g - f'2) + ff" = 0 

1 
+ 20 1 -

Pr 
f'f 

where 

X = py 
p y 

w w 
-lA (g - O f'2) 
w 

+ fg' = 0 

w-1 

(3.77) 

(3.78) 

For an adiabatic wall the boundary conditions of cqs.(3.77) and (3.78) 

are 

f(o) = f'(o) = 0, f"(o) = constant, f'(™) = 1 

g(o) = constant = g^, g'(o) = 0, g(™) = 1 

X(o) = 1 

where the subscript a denotes an adiabatic wall. 
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The restrictions necessary for similarity are : 

(i) c = constant 
P 

(ii) $ = — = constant 

"e ^e 

^e T 

(iii) = constant 

w 
u 2 

(iv) a = = constant 

e 

Before examining the implications of these restrictions it is 

useful to define the recovery factor. The total enthalpy at the wall 

is given by 
u ^ 

H = h + r (3.79) 
a e Z 

where r is the recovery factor. For the case where the total enthalpy 

remains constant across the boundary layer, i.e. g = 1, with Prandtl 

number equal to unity, the recovery factor is unity. TAen Prandtl 

number is non-unity, the total enthalpy which is recovered by an 

adiabatic wall is different from the freestream total enthalpy, so the 

recovery factor is no longer unity. Rearranging eq. (3.79), with the aid 

of eq. (3.37) 

H — H 

r = 1 + — 

which can be written 

g. - 1 
r = 1 + (3.80) 

In the case of an isenthalpic flow the freestream stagnation 

enthalpy, H^, is identical to the stagnation enthalpy, H^. It is there-

fore implied that T^ ^ equals and from restriction (iii) the wall 

temperature T remains constant. From restriction (iv) it follows that 
w 

u^ must also remain constant, so that once again there are only two cases 

for which similarity is exact, i.e. stagnation point flow (u^ = 0) and 
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constant velocity flow (3 = 0 ) . Addition of an extra degree of 

freedom by allowing q = q(?) does not alleviate this situation, so 

that in general similarity can only be approximately correct. 

Some work is to be found in the literature on similar solutions 

where realistic viscosity-temperature laws and values of Prandtl 

number have been used. The most thorough investigation for Prandtl 

numbers less than unity has been carried out by Dewey and Gross, and 

solutions for Pr = 0.5, 0.7 and 1.0, w = 0.5, 0.7 and 1.0, and a = 0, 

0.5 and 1.0 are presented in Refs. 55 and 63. However Dewey and Gross 

were particularly interested in the cold wall case and gave little 

consideration to the adiabatic wall which is of interest here. It is 

shown in Fig. 3 that taking Prandtl number equal to 0.7 is a reasonable 

approximation for GH^, ^2' exponent in a viscosity-

temperature relation of the form, y = AT^, shows a wider spread but a 

useful approximation for all the gases except is again to take w 

equal to 0.7. Ammonia is best approximated by a linear viscosity-

temperature relation. The source of most of this data is based on a 

Lennard-Jones 6-12 potential m o d e l t h e viscosity data for and 

comes from experimental measurements for temperatures up to 

2200°K. 

In order to assess what differences in the boundary layer result 

from using more realistic values for Prandtl number and viscosity-

temperature exponent, solutions of eqs. (3.77) and (3.78) have been 

obtained with Pr = = 0.7. The differences from, say, the Class A 

solutions should be most marked where the boundary layer is thickest, 

1.e. at exit from the nozzle. A useful approximation to the hypersonic 

parameter in this case, is to take a equal to unity. Solutions of the 

Class D similar equations with Pr=w=0.7, o = 1.0 for values of the 

pressure gradient parameter from 0. to 2. are presented in Table IV. 

At higher values of 3 the non-linearity of eqs. (3.77) and (3.78) 

prevented solutions being obtained for f"(o) and g(o). This is not too 
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serious a drawback since for many resistojet nozzles the pressure 

gradient parameter at exit is about two. 

It is apparent from a comparison of the Class D and A similar 

equations that the balance of the inertia, pressure and viscous forces 

through the boundary layer must be altered. However, the shear stress 

profiles drawn in Fig. 15 indicate that the differences in the transport 

of momentum through the boundary layer are small. The difference in 

shape of the shear stress profiles for the Class D and A solutions is 

most marked at B = 0; with increasing 3 the pressure gradient becomes 

the forcing function in the similar equations so that the profiles 

closely resemble one another. It follows that the velocity profiles 

(Fig. 16) are not markedly different. An effect of the more realistic 

values for Pr and to is to cause an increase in the thickness of the 

velocity boundary layer in the transformed plane. Since there is no 

additional distortion in the n to y transformations, as there is in the 

Class B similar equations when r/R = G(n), it can be inferred that the 

velocity boundary layer thickness in the physical plane will be larger 

than that with Pr = to = 1. 

There is a significant difference, however, in the behaviour of 

the total enthalpy profile (also Fig. 16). Three points are immediately 

obvious; 

(i) the presence of a small overshoot in the total 

enthalpy at the edge of the velocity boundary layer, 

(ii) the thickness of the thermal boundary layer is greater 

than that of the velocity boundary layer, 

(iii) the total enthalpy function at the wall, g^, decreases 

with increasing pressure gradient. 

The first point is the most remarkable. It is inferred from the shape 

of the total enthalpy profile that thermal energy is being transported 

from the hotter regions near the wall (n = 0) to the colder freestream. 
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At the edge of the velocity boundary layer the viscous effects become 

negligible, but thermal conduction has not ceased so that heat is still 

being transported into the cold region at the edge of the freestream. 

In the case when Prandtl number is unity the thicknesses of the thermal 

and velocity boundary layers are identical, when Prandtl number is less 

than unity it is to be expected (see for instance, Ref. 54, p.38) that 

-1 
6 , _/6 - 0(Pr ). Brief calculations of these thicknesses 
thermal velocity 

in the transformed plane confirm that this is a good approximation in 

the hypersonic limit. 

The third point concerning the behaviour of g^, is illustrated 

in Fig. 17. It is seen from eq. (3.80) that with a = 1 the recovery 

factor, r, is identical to g^. Further it is observed that the 

recovery factor is only a weak function of the pressure gradient 

parameter. An additional effect of increased 6 is to cause a 

reduction in the dimensionless wall shear stress, f"(o), from the 

equivalent value of the Falkner-Skan equation. 

The boundary layer integrals P^ and P^ for the Class D solutions 

are included in Table IV, but, even when an overshoot occurs in the 

total enthalpy profile, the differences between P^ and P^, and P^ and 

P^ are still small. The integrals P^, P^ and are shown in Fig. 18, 

where it is seen that the most significant difference from the Class A 

integrals is in the increased value of r^e 
P3 = f'^dn, 

which will be reflected in an increased boundary layer thickness, 6, 
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Chapter Four Vibrational Relaxation 

4 o1 Introduction 

The vibrational heat capacity of the molecules can constitute a 

significant proportion of the stagnation enthalpy for propellants of 

interest in resistojet operation. There are two factors involved in 

determining the amount of energy invested in vibration, one is the number 

of vibrational modes possessed by the molecule, the second is the degree 

to which these are excited at a given temperature. Both factors are 

dependent on the particular gas; the first by the number of atoms in 

the molecule and its geometry, the second by the vibrational frequency 

of each mode. Diatomic gases, with one vibrational mode only, and large 

vibrational frequencies, have small vibrational heat capacities over the 

temperature range of interest, consequently the ratio of vibrational 

energy to stagnation enthalpy, e^ ^/h^ , is small; e.g. at 2000°K 

^v T^^T ooly 0.05 for and 0.10 for . Polyatomic gases, with a 

greater number of vibrational degrees of freedom and much smaller 

vibrational frequencies which are more highly excited in this temperature 

regime, have correspondingly larger heat capacities, so that by 2000°K 

e^ ^/h^ amount to 0.39, 0.42 and 0.50 for CO^ and CH^ respectively. 

Energy stored in the vibrational modes is potentially available for 

conversion to translational energy in the resistojet nozzle and in this 

chapter the conversion process and its effect on performance are 

examined, 

Exchange of energy from vibration to translation is a finite rate 

process requiring a large number of collisions to produce equilibrium, 

the rate of relaxation being proportional to pressure and increasing 

exponentially as temperature rises. Thus for one atmosphere pressure the 

required number of collisons for diatomic gases is O(IO^) at 300°K 

decreasing to less than 10^ at 2 0 0 0 ° K . T h e requirements for 
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polyatomics are considerably less, again due to the smaller vibrational 

3 2 

energy spacing, with the corresponding values of 0(10 ) to 0(10 ) 

collisions. It has already been pointed out that very high accelerations 

are experienced in resistojet nozzles, and rates of cooling of 10^ °K/sec 

are typical. Consequently, if the rate of vibrational relaxation is too 

slow to follow the rate of temperature fall during the expansion, there 

is a departure from local thermodynamic equilibrium resulting in an 

excess of energy in the vibrational modes which is not transferred to the 

active degrees of freedom. In general such nonequilibrium flows exist 

in resistojet nozzles, where at entrance the temperature is high, the 

vibrational relaxation is fast and near-equilibrium is maintained, 

however the relaxation rates decrease rapidly as temperature and density 

fall through the nozzle and a relatively narrow region is found in which 

nonequilibrium effects predominate. Downstream of this the flow consists 

of a region where vibrational relaxation has effectively ceased and the 

vibrational processes are considered to be frozen. The effect of 

vibrational freezing on nozzle performance is to cause a reduction in 

the enthalpy available for conversion to jet energy. 

For diatomic gases such as and air the vibrational nonequilibrium 

region is predicted to occur in the vicinity of the nozzle throat. 

No reference to vibrational relaxation in the expansion of a pure poly-

atomic gas has been found in the literature, however some experiments have 

been conducted with diatomic-polyatomic m i x t u r e s . I t is indicated 

by the vibrational temperature measurements of Sebacher et al that 

nonequilibrium effects in the expansion of a CO^ - mixture are spread 

over a broader region, with eventual vibrational freezing occurring 

further doxvnstream than is the case with alore. 

In the present work vibrational relaxation is considered in three 

ways. In the first an upper bound is set on the effects of vibrational 

freezing by assuming that vibrational rate processes are frozen throughout 

the nozzle. Since any possible chemical rate processes are also considered 
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to be frozen the only contributions to jet energy come from the 

rotational and translational degrees of freedom. In the second, the 

assumption that vibrational energy remains in equilibrium throughout 

the nozzle provides the other limiting case. However difficulties are 

encountered in modelling the viscous boundary layer, since, as discussed 

earlier in section 3.4, a necessary condition of the similar solutions 

is that specific heat remains constant across the boundary layer. With 

vibrational energy in equilibrium the temperature characterising 

vibration is identical to the static temperature throughout the nozzle, 

implying that specific heat is a variable in the radial plane; but in 

order to satisfy similarity the approximation must be used that at a 

given station the vibrational temperature across the boundary layer is 

constant, and equal to that of the inviscid core. The final approach 

attempts to model the more realistic nonequilibrium situation by using 

the sudden freezing a p p r o x i m a t i o n , w h i c h makes use of the fact that 

the nonequilibrium region is narrow and in the limit can be regarded as 

a discontinuity in going from an equilibrium flow to one in which 

vibrational energy is frozen. 

In terms of the overall nozzle performance the vibrational energy model 

has a great bearing on the available enthalpy and so on the actual 

jet velocity. At a more detailed level, it determines the potential 

flow properties such as temperature and velocity which must be known 

before the boundary layer calculation can be carried out. The next 

section derives relations governing the behaviour of the inviscid core 

temperature as a function of nozzle area ratio for the three approaches 

outlined above. Further consideration of the nonequilibrium flow and 

details of an approximate sudden freezing model are presented in section 

4.3. The chapter concludes with a description of an approximate model 

of a ~ ^2 ~ ^2 T^i^Cure. 
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4.2 Potential Flow Parameters 

The nozzle flow is considered in two parts, (i) a potential core 

in which the fluid properties are assumed to vary in the axial direction 

only, and (ii) a boundary layer on the nozzle wall (to which the 

dissipative effects are confined) where the fluid properties are 

functions of both axial and radial position. By assuming that the only 

consequence of the boundary layer is a displacement of the effective 

wall position an effective inviscid flow can be defined. In the quasi 

one-dimensional approximation the fluid variables in the effective flow 

are dependent only on the axial distance doTra the nozzle. Using this 

and the assumption of steady adiabatic flow, equations relating fluid 

properties to nozzle geometry can be derived. 

For a thermally perfect gas the second law of thermodynamics 

can be expressed as 

Tds = c dT - (4.1) 
P P 

Using the equation of state (eq. 3.5), in the form 

R 

p = P R T = P - 2 ^ T (4.2) 

M 

eq. (4.1) becomes 

dT dp . , 
ds = c ^ (4.3) 

p i M P 

Since the effective flow is assumed to be reversible and adiabatic it is 

by definition isentropic, so ds = 0 and eq. (4.3) becomes 

c ° R , 

^ ^ ^ iE (4.4) 

M T H p 

With chemical rate processes assumed to be frozen throughout the nozzle 

the propellant molecular weight, M, remains constant. Eq, (4.4) can 

then be integrated from stagnation conditions to the effective conditions 
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(Pg, T^) at any station in the nozzle to give 

c dT = R 
P C u 

^Pc 

Pc 

P. C -c 

The energy equation for isentropic flow can be expressed as 

(4.5) 

(4.6) 

which, with frozen chemistry, integrates to give 

T„ 

1 

s 

u, 
(4.7) 

Finally mass continuity can be written 

* * * 
= Pc "c A = Pc "c A (4.8) 

Equations (4.5), (4.7) and (4.8), together with a relation linking molar 

heat, Cp°, with temperature completely describe the problem. 

4.2.1 Frozen Vibrational Energy 

With the additional assumption that vibrational rate processes are 

frozen throughout the nozzle, c^° becomes independent of temperature and 

eq. (4.5) gives the usual isentropic flow relation 

CF CF 

^CF^^^CF ~ 

(4.9) 

where the subscripts C and F denote frozen chemical and vibrational rate 

processes, and Yo-d ~ c °/(c° - R ) is the ratio of the frozen specific 
Oif pF pr u 

heats. 

It follows from eq. (4.2) that 

Prp 

CF CF J 

1/(YCF ~ 

(4.10) 
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For the case of c^ = c°p eq. (4.7) is simply 

u 
CF 2 " t - V 

M 

1/2 

(4.11) 

Then using eqs. (4.8), (4.10) and (4.11) an area-temperature relation 

is obtained of the form 

* * * 
A P u T 

A* P u 
CF 

T 

l/(Y(,p-l) 

CF 

T - T 
T CF 

T - T 
T CF 

1/2 

(4.12) 

The throat temperature, T is obtained from the fact that at 
Cr 

the choking position M = 1, therefore 

u. 
CF CF 

Y -H. T* 
CF a CF 

1/2 

(4.13) 

Equating this expression to eq. (4.11) applied at the throat, gives 

2T. 

CF 
^CF ^ 

(4.14) 

Eq. (4.12) is valid for both subsonic and supersonic flow. The 

* 

temperature, T^^, corresponding to a given area ratio, A/A , can be 

found by using a Hewton-Raphson iteration procedure, however an inherent 

difficulty of such procedures is that without extreme care the incorrect 

root can be found. In the present work an alternative procedure is used, 

where an arbitrary temperature distribution is specified and the 

corresponding distribution of area ratio is obtained from eq. (4.12). 

Then by using an interpolation routine the temperature distribution 

corresponding to the actual area ratio distribution is found. 

4.2.2 Equilibrium Vibrational Energy 

Allowing the vibrational processes to have an infinite rate 

necessitates a functional form of molar heat capacity with temperature. 

This is achieved by fitting tenth order polynomial approximations to 
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the JANAF data over the temperature range 100 to 3000°K, The 

polynomial coefficients for , NH^, CH^ and CO^ are given in 

Table V, Using 

i=10 
(4.15) 

eq. (4.5) can be integrated to give 

A /R 
o u 

exp-

. i=10 A. 
(4,16) 

The density ratio is 

exp" 
u 1=1 1 

Tr^) (4.17) 

Similarly eq. (4.7) becomes 

u 
M i=0 

(T - T ^^^) 
(i+1) -c / 

1/2 

(4.18) 

Eqso (4.8)5 (4.17) and (4.18) combine to give 

i=10 . 

T_ 

T 

w „ / V » 
I 
i=0 (i+1) ^"T 
i=10 

I 
i=0 (i+1) ^"T 

(T_"*l - Tr^*l) 

1/2 

1 iflO A. . 

t/) 

e*p( i - Tp^) 
u i=l 

(4.19) 

By analogy with eq. (4.13) 

* R 
"C = *C 

M 

1/2 
(4.20) 

and using eq. (4.18) at the choking position the following identity can 
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be formed 

i=10 A. . l'^ h 

= z (Thy ( V " - ^ c - ) - = 0 ( 4 . m 

i c 

By calculating the value of z. for a series of values of between 
* * , 

and that value of for which C = 0 can be derived using an 

interpolation routine. Then the temperature-area relation of eq. (4.19) 

is solved in exactly the same manner as the frozen flow case. 

4.2.3 Sudden Freezing Approximation to Noneguilibrium 

Vibrational Energy 

Assuming that the region of vibrational nonequilibrium found 

between the near-equilibrium and frozen flow regimes can be approximated 

by a sudden freezing point results in some simplification of the 

potential flow analysis. Since the two regions being patched together 

at the freezing point are both isentropic the resulting flow is also 

isentropic and eqs, (4.5) and (4.7) are still valid. It has already been 

indicated in section 2.2.3 that some difficulty is experienced in 

satisfying mass continuity when the freezing criterion (section 4.3) is 

satisfied before choking has occurred, as can happen when the propellant 

is a single diatomic species or a diatomic mixture. In this situation 

the position at which choking occurs is not known a priori and an 

iterative process is required to calculate the mass flow rate. At the 

lower temperatures where the effect is noticeable the difference in mass 

flow rate, with vibrational rate processes in equilibrium or frozen 

throughout the nozzle, is small. To avoid undue complication arising 

from a relatively minor point, vibrational energy is assumed to remain in 

equilibrium to downstream of the choking position. In fact, the exact 

position at which vibrational freezing is allowed to occur is determined 

by the boundary layer calculation (see section 5.2.3.). 
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The flow is considered in two parts. In the first, corresponding 

to equilibrium flow, the temperature satisfies the inequality 

T:? f: Tc 1 Tfp 

where is the value of at the freezing point. Expressions for 

* A 

Tjn and = T^ (A/A ) are identical to eqs. (4.21) and (4.19). The second 

part corresponds to the frozen flow region, where 

Tfp > fcF 

Eq. (4.5) can now be written as 

o dT o 

T + S ? 

fp 

f = \ 
P 

"fp P 

(4.22) 

which upon integration gives 

11 
P 

(c°„/R ~1)_ _ (A -c°^)/R 

CF 

"pF u 

L "fpJ 

o pF u 

ixp' 

- i=10 A. . 

(4.23) 

The density ratio is 

CF 

(Ao-Cppi/Ku 

exp' 

1 i=10 A. 

T 
(4.24) 

Similarly, eq. (4.7) can be written as 

1 

M 

c° dT + c°_ 
P pF 

fp 

fp 

CF 

dT 
u 
CF 

and using the form of c^ given in eq. (4.15) this becomes 

CF 
M 

i=10 A. 

(T,_-Tr*) + I 
i=0 

(4.25) 

'pF ^CF' 
(T - T i+1) 

(i+1) ^ T ^fp ^ 

1/2 

(4.26) 
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An area-temperature relation results from using eq. (4.8) in the form 

* * 

A = _C L_ (4.27) 

A '̂ CF "CF 

A * 

and substituting for , u^ , and u^^ from eqs. (4.17), (4.18), 

(4.24) and (4.26). Solution is facilitated in the manner previously 

described at the end of section 4.2.1. 

4.3 Sudden Freezing Model 

A considerable amount of effort has been directed towards under-

standing the effects of vibrational nonequilibrium in steady nozzle flows, 

and a number of exact calculations combining the flow equations and 

those for the relaxation process have been made 68,65,70)^ These 

calculations have all been for diatomic gases where the fraction of the 

total flow energy which may be frozen in the molecular vibrations is 

comparatively small. In such cases it has been shown that no great loss 

in accuracy results from assuming that the flow equations and the 

vibrational rate equation are decoupled but in the case of poly-

atomic gases where vibrational energy can amount to over half of the 

total energy such an approach is not valid. The fact that nonequilibrium, 

whether the relaxation process be molecular dissociation or vibration, 

is confined to a relatively narrow region has led to the sudden freezing 

approximation (^9,72)^ in which the flow is considered to be in 

equilibrium down to a freezing point and to remain frozen from them on. 

By suitable choice of an empirical constant the freezing point is found 

to characterise the position of the region where rapid departure from 

equilibrium occurs. 

The present work is primarily a parametric performance study, 

requiring the examination of a number of variables over a wide range of 

conditions, and in this context vibrational nonequilibrium is modelled 
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by the sudden freezing approximation. A more exact analysis would be 

useful for the polyatomic gases where vibrational nonequilibrium in 

nozzle flows occurs over a broader region, but owing to the considerable 

uncertainty in rate data for such gases this complexity is not warranted. 

Isentropic relations governing temperature and nozzle geometry, 

obtained by patching together an upstream region of equilibrium flow and 

a downstream frozen equilibrium region, where the patching point is 

given by a freezing criterion, were deduced in section 4.2.3. It remains 

to derive the sudden freezing criterion. 

(73) 

The classical theory of Landau and Teller gives a linear 

equation for the rate of increase of vibrational energy of a diatomic 

gas due to the transfer of energy from the translational and rotational 

degrees of freedom. With the assumptions that (i) the vibrational 

energy of the molecules can be represented by a simple harmonic oscillator 

and (ii) transfer of energy from translation to vibration is an adiabatic 

process, a vibrational rate equation can be written 

de e (T) - e 
__v_ = V (4 

V 

where e is the vibrational specific energy and e (T) is the value 
V r oy v,eq 

of e^ at equilibrium at temperature T. The vibrational relaxation time, 

is expressed approximately as 

A 
T = — exp 
V p ^ 

B 

T 

1/3 
(4.29) 

where A and B are empirical molecular constants. Eq. (4.29), usually 

referred to as the Landau-Teller equation, relates the relaxation time 

to the local pressure and temperature for a diatomic gas in an excitation 

process. Experimental confirmation of the Landau-Teller equation has been 

given by the large amount of relaxation data obtained from shock wave 

experiments, i.e. measurements of overall vibrational excitation, in which 
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-1/3 

a linear dependence of log (pT^) with T is exhibited by most 

diatomic gases, many diatomic mixtures and several polyatomics (for 

example, see Refs.74, 75). On account of its simplicity the Landau-

Teller treatment is often applied to more complex situations with little, 

or no, further theoretical justification, 

A de-excitation process, such as a nozzle flow, involves an 

overall energy transfer which is different from that of a normal 

shock wave flow. It has been reported by several researchers (for 

example, see Refs. 76, 77, 66) that the vibrational relaxation processes 

in a de-excitation environment are much faster than in an excitation 

environment, and the deduced relaxation times are factors from 5 to 70 

times faster. Various reasons have been put forward for this behaviour, 

such as the effects of polyatomic impurities on the relaxation process 

or the possibility that collisional deactivation of the upper vibrational 

levels involves multi-quanta exchange^^^^ In a study of vibrational 
O \ 

relaxation of anharmonic oscillator molecules , it is shown for Ng 

that the combined effects of anharmonicity and vibration - vibration 

de-excitation can result in a far more rapid relaxation in expansion 

flows where the local conditions are far from equilibrium. The situation 

regarding vibrational de-excitation in polyatomic gases is far from 

clear, but it is to be expected, as in the expansion of mixtures of 

Ng - COg (66,67) ^ - CO^ - that with several competing 

processes available to de-excite the upper vibrational levels vibrational 

relaxation will be extremely rapid. In the present circumstances the 

best approach seems to be to accept the form of the Landau-Teller equation 

for predicting relaxation behaviour, and include a factor (p to account for 

the discrepancy between excitation and de-excitation relaxation times. 

A modified vibrational rate equation is written 

1/3 

A 
px = — exp 
^ V (f) 

B 
T 

(4.30) 

where fp may vary between 1 and 100. 
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The work of Bray , shows that when the flow time characterising 

the local rate of expansion is much larger than the vibrational relaxation 

time, vibrational rate processes can be considered to be in equilibrium 

with translation. Similarly when the local flow time is much shorter than 

the relaxation time vibrational energy remains constant. Nonequilibrium 

exists when the two characteristic times are of the same magnitude. The 

rate equation (4.28) can be written as 

de e (T) - e 
v = v,eq V 

e dz T 
V 

which can be rearranged to give 

I = ^ " *v,eq(T)/Gy (4.31) 

gy dz Ty 

Defining a local flow time as 

"fl 

u de 
e V 

Gy dz 

- 1 

(4.32) 
eq 

which is a maximum in the equilibrium limit. Bray shows, using eqs. (4.31) 

and (4.32), that 

T e (T) 
> 1 -

"fl -

Under conditions of near-equilibrium flow t << T and e ^ e (T); 
V fl V v.eq 

in the frozen flow limit with t >> t^,, e is constant and x 0. 
V fl V fl 

The nonequilibrium region exists between these two limits where » ^fl° 

By considering vibration to be in equilibrium with translation when 

T < X and to be frozen when this relation does not hold, a sudden 
V — f 1 

freezing position can be defined as that point where It is 

more informative physically to express this criterion in terms of the rates 

(79) 

of expansion and of vibrational deactivation, thus Phinney uses a 

freezing criterion which can be expressed as 
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u de e 
e V = P V 

dz T 
eq V 

(4.33) 

eq 

where P is a constant of order unity, matching the approximate criterion 

with more exact solutions. Here, freezing is considered to have occurred 

when the time rate of change of vibrational energy with rate processes in 

equilibrium (left hand side of eq. (4.33)) exceeds the kinetically possible 

vibrational energy gradient (right hand side). Introducing eq. (4.30) into 

(4.33) the freezing criterion can be written as 

de 
V 

dz 
eq 

pe 
V 

A exp 
B 

T 
V3 

(4.34) 

eq 

where $ = P<i). Eq. (4.34) is the form of the sudden freezing criterion 

which is used in this work. 

The constants A and B required to fit the Landau-Teller equation to 

experimental relaxation times are presented in Appendix B for gases 

Ng, NHg, CH^ and CO^. A literature survey of the vibrational rate 

data relevant to these gases and for various mixtures is also presented in 

this place. 

4.4 An Approximate Model of Vibrational Relaxation in 

Mixtures 

At the operating temperatures found in resistojets, is the only 

gas considered here which can disssociate into a mixture containing two or 

more vibrationally excited species. If chemical equilibrium is attained 

in the heater, at temperatures above 1000°K the efflux gas consists 

essentially of a ^2*^2 ^in^ry mixture; however, more realistically, the 

chemical kinetic rate of dissociation is probably never sufficiently high 

for all the to be disssociated during its rapid passage of the heater, 

so even at 2000°K the efflux consists of a mixture, all three 

-97 -



species being vibrationally excited. In order to examine the nozzle 

performance in the case where finite vibrational rate processes are 

assumed to occur, some consideration of vibrational relaxation in mixtures 

is required. 

In a series of shock tube experiments performed on mixtures of 

NO-CO, NO-N^ and COg-N^, Taylor, Camac and Feinberg^^^' found that 

vibrational relaxation in these mixtures was controlled by rapid V-V 

energy exchange processes, as a consequence of which they observed 

dramatic reductions in the relaxation time of the slower component. These 

experiments indicate that the component with the faster T-V energy 

exchange rate initially relaxes rapidly to some fraction of its final 

equilibrium vibrational energy; at this point V-V processes force the 

two components to approach equilibrium with the same rate. Further, the 

vibrational temperature measurements in expanding mixtures of CO^ and , 

performed by Sebacher, Guy and Lee^^^\ show in fact that there are two 

separate relaxation modes. The first, corresponding to T-V energy 

exchange of has a longer relaxation time than the second, which 

corresponds to a V-V coupling between 11̂  and CO^, the energy being 

transferred to translation by the faster T-V process of CO^. Multiple 

relaxation paths are well kaovm for polyatomic gases, where the larger 

number of modes increases the chances of frequency matching and intra-

molecular processes such as Fermi resonance are possible . 

Appendix B presents some information on vibrational relaxation in 

/p O 

mixtures where is present. Moore points out that vibration-

rotation (V-R) energy exchange becomes important in molecules containing 

hydrogen atoms, and the extremely rapid vibrational deactivation of mixtures 

of CH^-H^ and must, in part, be due to this mechanism, which also 

must be present in the ammonia case. 

The ammonia nozzle flow problem may be further complicated by the 

effect of chemistry in the heater on the vibrational population distribution. 
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The heterogeneous dissociation of ammonia on the heater wall should give 

rise to a distribution, characteristic of the wall temperature, since a 

sorption/desorption process is involved, but the homogeneous reaction in 

the gas phase can give rise to non-Boltzmann distributions via atom-atom 

recombinations. However the homogeneous reaction is about an order 

slower than the heterogeneous one for temperatures below 2000°K, thus 

only up to 10% of the and may be affected. Further the transit 

time of the heater is of order 1 ms. during which there will be of order 

10^ - 10^ collisions, which are enough essentially to restore equilibrium, 

particularly if polyatomics are present (section 4,1). While the physics 

of the situation remains intriguingly complex with several possible V-V 

and V-R processes competing to deactivate the higher vibrational levels, 

as far as engineering is concerned the gas at heater exit/nozzle 

entrance may be taken to be in vibrational equilibrium. Of course the 

relaxation through the nozzle is still complex and due to the lack of 

experimental data and theoretical knowledge the model for the relaxation 

of mixtures necessarily is crude. 

The model which is proposed is intended to produce a lower bound on 

performance by making pessimistic approximations to the relaxation rate. 

The first assumption is that is de-excited via rapid vibrational" 

rotation-translation energy transfer processes, so it is not a rate-

limiting step in the overall de-excitation process. In other words the 

vibrational mode of is assumed to act only as an energy store and the 

possibility that it may relax separately is not considered. Thus in the 

equilibrium limit with a mixture, the vibrational relaxation rate 

is identical to that of This is consistent with a worst case 

approximation since experimental evidence in Appendix B suggests that a 

N^-H^ mixture relaxes nearly ten times faster than pure . For the more 

general case of a mixture the rate of de-excitation is assumed 

to be determined by the behaviour of the with making no 

contribution to the rate process. The equivalent mixture is then 
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assumed to follow the "parallel resistance" law for simple mixtures, 

which can be expressed as 

X(H ) X(NE ) 

where the mole fractions have been normalised so that XXHg) + X(NH^) = 1. 

For mixtures such as CO^-Ng with a resonant V-V exchange process eq. (4.35) 

works extremely well, in an excitation environment; however, for mixtures 

in which is present the relaxation rate is always underestimated. 

Apart from some uncertainties in the relaxation rate (reviewed in 

Appendix B), by making the sweeping approximations above, therefore, the 

lowest possible relaxation rates should be predicted and a lower bound 

on performance produced. 
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Chapter Five Computer Models of Nozzle Performance 

5.1 Introduction 

This chapter returns to the problem which was defined in Chapter 

One, that of modelling the performance of resistojet nozzles on a 

digital computer. The requirement of the model can be stated as 

follows. For a given nozzle geometry, given propellant and specified 

nozzle input conditions, i.e. stagnation temperature, pressure and 

composition, it is desired to calculate the performance taking into 

account losses due to frozen chemical rate processes, frozen vibrational 

rate processes, incomplete expansion, viscous flow and radial flow at 

the nozzle exit. The basis of accounting for these losses in terms of 

jet power was presented in Chapter Two. Two sources of loss, i.e. 

viscous flow and the finite vibrational relaxation rate, required 

further consideration, which has occupied the last two chapters. 

Several alternative approaches for modelling both the viscous flow and 

the vibrational rate processes were developed so that a hierarchy of 

models of resistojet nozzle performance may be produced, which describe 

the losses with increasing degrees of complexity. 

In the computation the philosophy was adopted that a common 

program structure would apply to all the performance models. Therefore 

to change from one model where, say, the boundary layer calculation 

is based on the Class A similar solutions, to another model using the 

Class B solutions, in principle requires only substitution of one 

segment for another. The basic calculation procedure is described in 

section 5.2. While a common structure runs throughout the computer 

models which are used here, it is not practical from the viewpoint of 

economy in computer storage and execution time to write programs in 

which the segments are interchangeable. Thus the various models are 

optimised for a specific purpose, so that they are distinct programs. 
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Four models are reported in this chapter, the main features of which 

are summarised below. 

Model Zero is a preliminary model used to examine the magnitude 

of the various losses. In order to set a lower limit on performance, 

"worst case" approximations are made. The vibrational rate processes 

are considered to be frozen throughout the nozzle, and the boundary 

layer calculation is based on the approximate method of Cohen and 

Reshotko, which was introduced in section 3.1 and is described in more 

detail in section 5.3. 

Model One differs from Model Zero only in the boundary layer calcula-

tion. Here the laminar boundary layer is represented by the "patching 

together'' of the Class A similar solutions (section 3.5.1). The 

assumptions of unit Prandtl number, a linear viscosity-temperature 

relationship and an adiabatic wall are still retained, but the 

fundamental boundary layer solutions are rigorous, (section 5.4). 

Model Two examines the effects on performance of allowing 

vibrational energy to relax through the nozzle. There are two 

alternatives. In the first, a freezing criterion is applied, so that 

some loss from frozen vibrational energy may still occur. The second 

alternative results from removing the freezing criterion, in which 

case vibrational energy remains in equilibrium throughout the nozzle. 

The boundary layer calculation is again based on the Class A similar 

solutions. A description of this model is given in section 5.5. 

Model Three reverts to the assumption of frozen vibrational rate 

processes, but differs from Model One in that the Class B similar 

solutions are used in the boundary layer calculation. Therefore it is 

intended for a study of the effects of transverse curvature on resistojet 

nozzle performance. It is presented in section 5.6. 
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5.2 Calculation Procedure 

The basic computer program consists of three main sections (see 

the flow diagram in Fig. 19). Details of the nozzle geometry, and of 

the propellant chemistry and thermodynamics, are evaluated in the first 

section. The second section is an iteration in which for an assumed 

effective geometry, the isentropic core properties and the corresponding 

boundary layer growth are calculated to produce a new effective geometry. 

This process is repeated either, a given number of times, or, until 

satisfactory convergence of the boundary layer-isentropic core calcul-

ation is achieved. In the final section the performance parameters 

are evaluated. The individual sections are now described in more 

detail. 

5.2.1 Nozzle Geometry 

The nozzle is considered in three parts : 

(i) a conical convergent section, where the geometric variables which 

must be specified are the inlet radius, H^, and the convergent 

half angle, 8^, (see accompanying figure), 

(ii) a circular throat section with radius of curvature, R^, and 

throat radius, R , smoothly connecting the convergent section to 

(iii) the divergent section where the wall shape is described by 

R = ^2 ^ az^^ + bZgZ (5.1) 

so that nozzles from horn through conical to bell shapes can be 

generated. 

Obviously a higher-order series could be used, but eq. (5.1) was found 

to be sufficient for the present purposes. An additional variable 

which must be specified is the area ratio, e = (#2/8^)^ 
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1 _ 

Nozzle Geometric Variables 

The geometry calculation simply divides the nozzle axis into 100 equal 

parts, and evaluates the radius, wall position and local wall angle, 

a, at each of the resulting 101 stations. The station immediately 

upstream of the geometric throat is also determined for use later in 

a mass flow rate calculation. 

5.2.2 Propellant Chemistry and Thermodynamics 

There are two alternatives in this subsection corresponding to 

the cases where the propellant either dissociates during passage 

through the heater, or remains a single species. In the first 

alternative, as well as summing the contributions to the thermo-

dynamic variables from two or more species, the program calculates 

the chemical composition. Of the propellants considered here, CO^ 

does not dissociate at resistojet operating temperatures. Methane 

does dissociate, with detrimental effects on the useful resistojet 

life. The temperature at which carbon deposition becomes significant 

/ O O \ 

is a function of the heater geometry and transit time , but in 

the present work it is considered to remain a single species. The 

highest temperature for which results have been obtained for CO^ and 

CH^ is 2000°K. The remaining two propellants, i.e. NH^ and 

dissociate without solid deposition to produce an increase in jet velocity. 
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It has been indicated in Chapter One that decomposition is a finite 

rate process, which requires kinetic data on both the gas phase and 

wall catalysed reactions for complete modelling. In the case of NH^ 

and insufficient kinetic data is available to make good predictions 

and a simplifed approach is used, which considers only the end state 

of the reaction. The performance of NH^ is investigated for temper-

atures up to 2000^K. Examination of the ecmilibrium constants, K , 
P 

in the JANAF t a b l e s s h o w s that at temperatures below 2000°K the 

components finally present can be taken as NH^, and Strictly 

at temperatures above 1200°K monatomic hydrogen is also present in 

the equilibrium composition, but to simplify matters it is assumed 

to be absent at temperatures below 2000°K. The chemical equilibrium 

in the heater can then be written as 

2NH^ ^ + 3Hg (5.2) 

The mole fractions of the three species are given by 

X(NH^) = (l-a^)/(l+o^) 

XCNg) = a^/2(l+a^) 

X(H^) = SXCNg) 

(5.3) 

where , the degree of dissociation of NH^ at the plenum conditions 

T^ and p^ is given by 

4K 
a = / 2 (5.4) 

/ 4K + 2/31 IP-T 

and is the equilibrium constant for eq. (5.2) at T^. 

If the transit time of the heater is less than the characteristic 

time for decomposition, the above equilibrium calculation does not truly 

represent the propellant composition at the heater exit; allowance is 

made for the occurrence of non-equilibrium flow, by introducing a 

variable f in eqs. (5.3). f is taken as the mole fraction of undissociated 
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ammonia not included in the equilibrium calculation. Thus f equals 

zero for an equilibrium composition at exit, and f equals unity when 

NH^ remains undissociated. Eqs. (5.3) become : 

X(NH^) = f + (1-f)(l-a^)/(l+a^) 

XCN^) = (l-f)a^/2(l+a^) 

xCHg) = axCN^) 

(5.5) 

Hydrogen, being a propellent suitable for prime propulsion, is 

likely to be operated at higher temperatures than NH^, CH^ or COg, 

since the available electric power will be greater. A maximum 

temperature is taken to be 3000°K. At temperatures below 2000°K 

the simplifying assumption is made that hydrogen remains a single 

species. Above 2000°K the dissociation reaction 

# 2H (5.6) 

should be considered. Whether any dissociation can occur in the rapid 

passage through the heater is doubtful, and in most of the computation 

is considered to remain a single species. In order to set a limit 

on the possible effects of dissociation, the performance with the 

equilibrium composition is also examined. The degree of dissociation 

in the equilibrium mixture is simply 

and the mole fractions are 

xCHg) = 

X(H) = 

where is the equilibrium constant appropriate to eq. (5.6) at a 

plenum temperature of T^. 

In the remainder of this subsection the available enthalpy is 

evaluated for the ideal state, when no losses are incurred, and for 
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the case when the composition is frozen throughout the nozzle. These 

relations are given by eqs. (2.4) and (2.9). The corresponding mass 

flow rates, eqs. (2.7) and (2.11) are also calculated. The information 

on which these calculations are based is again taken from the JANAF 

tables. As previously mentioned, tenth-order polynomials for the 

molar heats of CH^ and CO^ have been derived, and the 

coefficients are presented in Table V. It is seen in this table that 

there are two sets of coefficients for This is necessary since 

hydrogen is an unusual molecule in that the rotational energy is not 

fully excited until about 360°K. Thus over the temperature range in 

which the function c^° = c^^CT) is required (approximately 50°K to 

3000°K) there are two steps in the molar heat behaviour corresponding 

to the excitation of first rotational energy and then vibrational 

energy. It is difficult to accurately fit a polynomial to such a 

curve so that two polynomials are used, one for temperatures equal to, 

or less than 500°K, and the other for higher temperatures. 

The subsection finishes by calculating the viscosity of the 

propeUant at the plenum conditions. Viscosity data for the gases 

of interest is shovm in Fig. 20. For the mixture of NH^ -

the empirical formula developed by Ulybin^^^^ is used. This can be 

written 

'"mx ^ ''i (^i) 
Ref 

where (u . ) is the viscosity of the mixture at a reference 
Ref 

temperature, (y.) and (y.) are the viscosities of the i^^ component 
^ T ^ Ref 

at temperature T^, and the reference temperature. The reference 

temperature is taken as 283°K. In the equilibrium mixture of and H, 

monatomic hydrogen is assumed to have the same viscosity as 

Smith^^^^ presents theoretical values for the viscosity of monatomic 

hydrogen, indicating that the viscosity of H is approximately 30% less 
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than that of Hg- Since the amount of monatomic hydrogen present is 

small, and the viscosities of and H are similar, the error 

involved in the above assumption is small. 

5.2.3 The Boundary Layer-Isentropic Core Iteration Procedure 

The second section of the program is an iteration and it is 

considered as a whole, rather than in subsections, so as to emphasise 

the fundamental features of the procedure. More complete descriptions 

of the various isentropic core and boundary layer subsections are 

given in 5.3 to 5.6. 

By assuming that the only consequence of the boundary layer is 

a displacement of the effective wall position, an effective inviscid 

flow can be defined. Further assuming that the effective flow is 

quasi one-dimensional means that the fluid variables, such as 

temperature and velocity, are dependent only on the axial distance 

down the nozzle. The iteration starts by calculating the axial 

temperature distribution corresponding to a completely inviscid flow, 

i.e. the initial effective geometry is taken to be the actual nozzle 

geometry. These calculations are carried out at the 101 stations 

previously evaluated in program section 1 (5.2,1). The resulting 

pressure gradient is then calculated, from which the corresponding 

boundary layer growth is found at each station. At this stage all 

that is required in the boundary layer calculation is an estimate of 

the displacement thickness, 5 . In high Reynolds number flow the 

boundary layer has a negligible displacement effect on the potential 

flow, but in resistojets where the boundary layer occupies a consider-

able portion of the nozzle flow field the interaction cannot be 

ignored. Thus a new effective geometry must be defined and the corres-

ponding isentropic core and boundary layer calculation repeated. A new 

effective geometry is found by taking the average value of the old 

effective geometry and that resulting from displacement by the boundary 
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layer. In general, the new effective geometry, given by the n*"̂  

iteration, can be written as 

®ef£) , - 1 {®e££> * ^ 
n+1 n 

A feature of viscous nozzle flows is that the choking position 

is no longer necessarily coincident with the geometric throat, and its 

exact position is determined in the effective geometry subsection. 

This is found by examining the boundary layer in the throat region in 

more detail. In particular the effective radii at the five stations 

immediately upstream and five stations immediately doxirastream of the 

previous choking position (i.e. ten in all) are interpolated by a 

cubic spline subroutine (CSFMIE) to find the axial position for which 

(R-6 ) is a minimum. This gives the new effective throat. Mass 

continuity at each station in the nozzle can now be satisfied so that 

the isentropic core properties corresponding to the new effective 

geometry can be recalculated. 

There are a variety of ways of testing the iteration procedure 

for convergence. The method used here is to examine the ratio of the 

effective area ratio at exit to the initial inviscid area ratio, i.e. 

the geometric area ratio, £. Convergence of this procedure is 

illustrated in Fig. 21 for a hydrogen resistojet nozzle with e = 25 

and plenum temperature of 1500°K over a range of Reynolds numbers, 

Re^^, from 4030 down to 201. At the higher Reynolds numbers, i.e. 

Re^^ greater than 1000, convergence to the final effective area ratio 

is smooth, but at lower Reynolds numbers (in this case lower plenum 

pressures) the process is slower and oscillatory. At the lowest Re^^ 

convergence has not occurred after five boundary layer calculations, 

and increasing the number of iterations causes the process to become 

divergent. The reason for this lies in the fact that with a larger 

number of iterations the numerical errors introduced in computation 

are increased; in particular numerical differentiation becomes 
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troublesome. This is of some importance to the present results and 

it is examined further in the discussion of results in Chapter Six. 

The point which is made at this juncture is that convergence to a 

specified value cannot be achieved over the whole range of Reynolds 

numbers. Thus the approach adopted in this study is that the 

iteration procedure is carried out a fixed number of times rather than 

to a convergence criterion. A reasonable compromise is taken as 

three isentropic core - boundary layer - effective geometry iterations, 

with a fourth and final calculation of the isentropic core parameters 

to give mass continuity. In the final boundary layer calculation 

other boundary layer parameters such as the momentum thickness and 

overall thickness are also evaluated. 

It should be noted that the available specific enthalpy when 

vibrational energy is frozen throughout the nozzle, or freezes in 

the nozzle, given in eqs. (2.19) and (2.15), is calculated at the 

end of the first isentropic core calculation, i.e. when the complete 

flow is inviscid. The jet velocity with the additional loss due to 

incomplete expansion, given by eq. (2.30), is also calculated 

at this point. 

5.2.4 Performance Parameters 

In the final section of the basic program the parameters such 

as thrust, jet power and the various efficiencies are calculated. The 

required relations are all set out in Chapter Two and only a word of 

explanation about the radial flow loss is necessary. Account of the 

loss in thrust due to the radial component of exhaust velocity is 

given by the expression (1 + cos a^)/2., where is the effective 

nozzle angle at exit. An estimate of a,̂  can be obtained from the 

change in the effective radius between the last two stations in the 

nozzle. This can be expressed as 

® ^101 ^100 
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5.3 Model Zero 

This model is described in two parts, (i) the isentropic core 

calculation with vibrational rate processes frozen at entrance at 

the nozzle, and (ii) the approximate method of Cohen and Reshotko for 

compressible laminar boundary layers. 

5.3.1 Isentropic Core Calculation (Vibrational Energy Frozen) 

The theory relevant to this situation is developed in section 

4.2.1 and the order in which the isentropic core properties are 

evaluated in the program is given below. 

* 

(i) The temperature at the choking position, T is 

obtained from eq. (4.14). 

(ii) The area ratios at 100 points through the subsonic 

section of the nozzle are calculated from eq. (4.12), 

which correspond to the temperatures 

T = T^ - ^ (T^ - T*2p) where i = 1,2 ..., 100 

(iii) Using the subroutine CSFMIE (Fig. 19) the resulting 100 

points in the T - A plane are interpolated to give the 

temperatures which correspond to the area ratio of the 

required equi-spaced stations in the subsonic flow. 

(iv) A similar procedure to operations (ii) and (iii) is 

carried out in the supersonic flow. The initial 

temperature - area distribution is evaluated at the 

temperatures given by 

T = T*gp - ~ (T*2F - T^/20.) where i = 1,2...,100 

(v) With the values of T^^ corresponding to the 101 equi-

spaced stations through the nozzle, all other isentropic 

core properties can be evaluated. Thus the velocity, 

density and pressure come from eqs. (4.11), (4.10) and 
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(4.9). The Mach number is given by 

R 

^CF CF 
M 

CF 
(5.11) 

It is noted that the temperature-area (T-A) method of evaluating 

the properties of a constant specific heat isentropic core differs 

from the conventional Mach number-area (M-A) relation which was 

initially used and reported in Ref. 37. The present T-A method is 

preferred for its accuracy and speed of calculation as the original 

M-A relation requires an iteration procedure, which converges very 

slowly as Mach number tends to unity. 

5.3.2 Application of Cohen and Reshotko's Approximate Boundary 

Layer Method to Resistojet Nozzles 

The following description of the Cohen and Reshotko boundary layer 

method is fairly concise. For further details the reader should con-

sult the original paper. 

The fundamental relation of this approximate method is the 

momentum integral equation in the transformed, incompressible plane, 

which Cohen and Reshotko reduce to the form 

- u 
dx 

n 

du /dx 
e 

= N(n, S ) 
w 

(5.12) 

where N(n, S ) = 2 
w 

n(H^^ + 2) + £ (5.13) 

The tilde notation refers to quantities in the transformed plane, thus 

u^ is the freestream velocity in the (x, y) plane. N, known as the 

momentum parameter, is a function of n and which is obtained from 

the earlier similar solutions of Cohen and R e s h o t k o f o r Pr = w = 1. 

is a non-dimensional enthalpy function given by 

\ - V » T -

n is a correlation parameter, related to the pressure gradient and i is 
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a shear parameter. The final quantity is a transformed boundary 

layer form factor which is given by 

»tr • " tr'®tr 

where 5 and 9^^ are the corresponding displacement and momentum 

"ft 
thicknesses. The three quantities , G and 9 are all evaluated 

tr' tr tr 

in Cohen and Reshotko's first paper. 

The problem is to determine the value of the correlation para-

meter, n, at the particular station under consideration; once n is 

known, 9^^ and thus 9 (momentum thickness in the physical plane) can 

be determined leading to values for "S and 5 . An approach suggested 

by Cohen and Reshotko for the case of an isothermal wall, i.e. when 

remains constant, is to assume a linear relationship between the 

momentum parameter, N, and the correlation number, n. This implies 

that 

N = A + Bn (5.14) 

Using eq. (5.14) in eq. (5.12) results in a linear first order equation, 

the solution of which is 

n = - A (u^) 
-B ^ 

dx 

fX 

u dx 
e 

(5.15) 

Transforming to the compressible plane and converting to axisymmetric 

flow by application of the standard Mangier transformation the 

following equation is obtained 

f3,_ 1 

n = 
u* ''<#> 

"e d f ) e J 

5Y- 3 
U(Y-1)J ¥ 

(1-B) 

(R/R*)2 

2 T 
R e 

* T 
I P- J . T 

12(Y-1)J 
M (B-l)d 
e 

(5.16) 

Provided that A and B are known the correlation parameter, n, can be 

determined in terms of the inviscid core conditions at any station in 

the nozzle. The momentum thickness, 9 , is obtained from 
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T T 
e e 

T T_ 
. w. . T, 

w n y L d 
w 

p u-
e 

(5.17) 

When the wall is assumed to be adiabatic, for Pr = 1 it is implied 

that T = T s y = y and S = 0 . 
w T' w T w 

The displacement thickness is given by 

T 
r + 1 ) - 1 
e 

and the boundary layer thickness 

6 = 

(5.18) 

6 r T 
tr T 

H + 1 + — 1 H + 1 
9 T tr 
tr I e j 

(5.19) 

taken at u/u = 0.995. 
e 

The correlations of Cohen and Reshotko for S = 0, of N versus n, 
w ' 

H versus n, and & /0 versus n are presented in Fig. 22. It is 
tr tr tr 

seen that there is a maximum favourable pressure gradient (negative 

correlation parameter) that can be dealt with by this method, which 

corresponds to B = 2. As already discussed the pressure gradients in 

resistojet nozzles are very favourable and correlations for more 

negative values of n are required. This was achieved by extrapolating 

the existing correlations graphically. It is also observed from the 

top graph in Fig. 22 that a linear relation for N = N(n) is a good 

approximation. A suitable relation is 

N = 0.394 + 4.78n (5.20) 

which is the linear approximation at n = - 0,15. However, it was 

found that the choice of the tangent line had little influence on the 

various boundary layer thicknesses. 

At a given station the sequence of operations in the boundary 

layer subsection are i -

(i) The correlation parameter, n, is calculated from 

eq. (5.16). This requires the use of subroutines 
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CSINT and DYDX. 

(ii) Using the interpolation subroutine CSFMIE the 

appropriate values of H and 6 /0^ are obtained. 
tr tr tr 

(iii) The momentum and displacement thicknesses are 

evaluated from eqs. (5.17) and (5.18). In the final 

boundary layer calculation (i.e. third iteration) the 

overall boundary layer thickness, given by eq. (5.19), 

is also calculated. 

(iv) Since these boundary layer thicknesses are all normal 

to the nozzle wall, the interpolation subroutine is 

again used to give the corresponding thicknesses in 

the radial plane (see Fig. 2). 

Finally, the integral in the thrust relation (eq. 2.35) can be 

evaluated upon the assumption of a linear velocity profile. It can 

be shown (see Ref. 37) that an approximate expression for this integral 

is R 

R" 

Pu 
P u 
e e 

u 

u 
e^ 

rdr ^ 

R-d 

(5.21) 

where K = 1 
R 

4> In 
<()+l 

- <t)̂  In 

In 

k2 1 
- 1 

In 
(i>+i 

14-lJ 
+ 2 

(5.22) 

and = 

5.4 Model One 

u 

(5.23) 

In this model the vibrational rate processes are again assumed 

to be frozen, but the boundary layer calculation is based on the Class A 
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similar solutions which were developed in Chapter Three. 

Similar solutions can be applied to a general non-similar flow 

by using the concept of local similarity. To paraphrase Hayes and 

Probstein (Ref. 60, p.313), the applicability of this technique 

relies essentially on the condition that the freestream flow properties 

vary sufficiently slowly with the x-dependent variable ^ (eq. 3.22). 

Provided that this is the case the full non-similar equations (eqs. 

3.29 and 3.30) can justifiably be approximated by ordinary differential 

equations in n, in which S appears only as a parameter (eqs. 3.31 and 

3.32). Thus in the application of local similarity to the present 

problem, the flow is assumed to be similar in the vicinity of a given 

station in the nozzle. For the values of the ^-dependent parameters, 

such as the pressure gradient and transverse curvature parameters, 

appropriate to that station the boundary layer can be predicted by 

using the previously determined similar solutions of section 3.5. By 

assuming that the flow at each station throughout the nozzle is 

locally similar the boundary layer development can then be approximated 

by connecting (or "patching together'') these similar solutions. 

In the Class A similar equation, i.e. the Falkner-Skan equation 

(eq. 3.67), only the pressure gradient parameter, 3 , is ^-dependent. 

Variation of B in a typical resistojet nozzle is shoxra in Fig. 23. It 

is seen that 3 changes appreciably through the nozzle, in which case 

the assumption of local similarity is only a crude approximation. 

Therefore, the modelling of the boundary layer development by successive 

patching of the similar solutions, appropriate to each station, is not 

theoretically valid. In spite of this, justification for the use of 

similar solutions in this study is to be found in the good agreement 

with other experimental and theoretical results, given in Chapter Six. 

The order in which the boundary layer calculation is applied at 

each station is as follows. 
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(i) The x-coordinate is transformed through the use of eq. (3.22), 

g = 

J, 

p u u dx 
w w e 

(ii) The pressure gradient is determined from eq. (3.40), which can 

be written as 

% « 

(iii) Hence, the appropriate values of and (also P^ in the 

third iteration) can be obtained by interpolation of the 

values presented in Table I. 

(iv) The transverse curvature parameter is evaluated from eq. (3.46), 

(v) 

0 = 2(25)2 cos ot 

p u 
e e 

The displacement thickness is calculated from eq. (3.59), 

which can be written as 

T_ 
0 

2 cos a r ? ! - p? 
e 

In the final iteration the momentum and overall boundary layer 

thickness are also determined. Eqs. (3.60) and (3.61) can be 

expressed 

e = — — p 
2 cos a 2 

R 0 

2 cos a T *1 * ^3 
e 

(vi) Finally, the corresponding thicknesses in the radial plane 

are derived by interpolation. 
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5.5 Model T\r70 

In this model the effects on performance of allowing vibrational 

rate processes to relax in the nozzle flow are examined with the 

theory which has been described in sections 4.2.2 and 4.5. The 

boundary layer calculation is exactly as described in Model One. 

First, the calculation procedure for the sudden freezing 

approximation of nonequilibrium flow is outlined. 

* 

(i) The temperature at the choking position, T^ , is determined 

from the identity given in eq. 4.21. 

(ii) The temperature distribution in the subsonic flow is evaluated 

by obtaining an arbitrary temperature-area distribution from 

eq. (4.19), where the temperatures are specified by 

T = ?! " I&O (^T - O (i = 1' 2 100) 

Then the unknown temperatures corresponding to the required 

area ratios at the equi-spaced stations on the nozzle axis 

can be determined by interpolation. 

(iii) For the first five stations in the supersonic flow it is 

assumed that vibrational energy remains in equilibrium. Why 

this is done is explained shortly. The temperature at these 

stations is then determined in a similar manner to step (ii). 

(iv) At each station downstream of this an initial, equi-temperature 

difference, temperature-area distribution is defined with eq. 

(4.19), from which the unknoxm temperature for the required area 

ratio can be obtained. 

(v) The freezing criterion given by eq. (4.34) is applied. When 

this is satisfied5 i.e. when the rate of change of vibrational 

energy with rate processes in equilibrium exceeds the kinetically 

possible rate, vibrational freezing is assumed to have occurred, 

so that the molar heat, becomes a constant. 
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(vi) The required temperature-area distribution in the remainder 

of the nozzle is then derived by interpolating an initial, 

equi-temperature difference, temperature-area distribution 

given by eq.(4.27). 

(vii) Values for velocity, density and the other isentropic core 

variables are derived from the relevant relations given in 

sections 4.2.2 and 4.2.3. 

It is necessary to assume that vibrational rate processes remain in 

equilibrium in the vicinity of the throat, in order that no discontin-

uities are obtained in the displacement thickness in this region. 

Although the flow variables such as velocity and temperature (from 

eqs. 4.26 and 4.27) are continuous functions at the patching ooint, 

i.e. the freezing position, the gradients of these variables must be 

discontinuous. It follows that there is a discontinuity in the rate 

of change of the displacement thickness at the freezing position. If 

this is allowed to occur at any of the 10 stations which are used in 

the determination of the choking position, the subsequent calculation 

of the mass flow rata can be disturbed. This assumption has little 

or no effect on the performance of the polyatomic propellants, where 

the vibrational energy is a significant fraction of the total internal 

energy, since, in general, freezing does not occur until well into 

the supersonic flow (see Chapter Six), In the case of the diatomic 

propellants it can markedly delay freezing. However the vibrational 

energy content is small in this case, and the effect on performance is 

negligible. 

Second, the calculation procedure for the case where vibrational 

energy remains in equilibrium throughout the nozzle is obtained by 

simply removing the freezing criterion. In this case steps (v) and 

(vi) in the above list are not used. 
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5.6 Model Three 

This model makes use of the Class B similar solutions to examine 

the nozzle performance, when some account is taken of the effects of 

transverse curvature in the boundary layer development. It is 

assumed that vibrational energy is frozen at entrance to the nozzle, 

so that the isentropic core calculation is as described in section 

5.3.1. 

In a like manner to Model One the Class B similar solutions are 

patched together to approximate the boundary layer growth through a 

resistojet nozzle. The same reservations must be made regarding the 

applicability of solutions of the modified Falkner-Skan equation, 

as were noted with the straightforward Falkner-Skan equation. It is 

seen from section 3.5.2 that there are three 5-dependent parameters 

in the Class B equation (eq. 3.73) - the pressure gradient parameter, 

transverse curvature parameter and freestream stagnation to static 

temperature ratio. The variations of 6, 8 and T^/T^ in a typical 

resistojet nozzle flow are shown in Fig. 23. It is assumed in the 

patching of the Class B solutions that the freestream stagnation 

temperature, T^ is identical to the plenum stagnation temperature 

T^. This factor combined with the other reservations means that 

the boundary layer model can account only very approximately for the 

effects of transverse curvature. However, it is interesting to see 

what are the differences between this model and Model One, where the 

boundary layer solutions are essentially for planar flow and conversion 

to axisymmetric flow is achieved with the standard Mangier transformation. 

The calculation procedure follows that described in section 5.4. 

For completeness it is outlined below. 

(i) The transformation from x to ^ is carried out with eq. (3.22). 

(ii) The pressure gradient parameter, 3 , and the transverse curvature 

parameter, 0, are calculated from eqs. (3.40) and (3.46). 
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(iii) At each station, for the known values of g, 0 and the 

integrals and (later P^ also) are obtained by interpolation 

of Table II. The fact that these integrals are almost linear 

with changes in 0 and T^/T^, for the region in which solutions 

were obtained, results in some simplification of the inter-

polation procedure. 

(iv) The displacement thickness is obtained from eq. (3.53) which, 

using the definitions for P^ and P^, can be written as 

R 
cos a 

1 - ^ 1 - 0 
T- Pi - ^2 
e 

The momentum and overall boundary layer thicknesses come 

from eqs. (3.56) and (3.58), and can be expressed as 

e = R 
cos a 

1 - 0 P, 

6 = R 
cos a 

1 - 1 - 0 T- ?! + 
e 

(v) These thicknesses are converted to the radial plane. 
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Chapter Six Results and Discussion 

6.1 Introduction 

The models of resistojet nozzle performance which were described 

in the previous chapter have been programmed in FORTRAN IV, and results 

have been obtained, on an ICL 1907 digital computer, for NH^, CH^, CO^ 

and Hg over a wide range of plenum conditions and nozzle geometries. 

The results, and discussion of their significance, fall into three 

parts; (i) an examination of the predictions of the four models for 

one resistxjjet nozzle geometry over a matrix of plenum conditions, 

(ii) an examination of the variation in performance with different 

nozzle geometries, and (iii) a comparison with published results for 

the experimental performance of resistojet motors, and for other 

related nozzle experiments. 

Predictions of Models Zero, One, Two and Three for a nominal 

nozzle geometry are presented in section 6.2. The main purpose of this 

section is to quantify the individual efficiencies, and to gain an 

insight into the gasdynamics of resistojet nozzle flows. Obviously, 

this depends on the approximations used in the various models so that, 

to an extent, the discussion is a comparative one. The results of the 

models are considered in the following order : 

(i) Model Zero, serves as an introduction to the results 

and quantifies the various possible losses. 

(ii) Model One, in which the Class A similar solutions are 

employed, is used almost exclusively for an examination 

of the viscous flow losses. Since vibrational rate 

processes are assumed to be frozen, the discussion 

concentrates mainly on the results for hydrogen, where 

this assumption is reasonable. 
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(iii) Model Two, which allows vibrational relaxation to occur, 

is used to examine the problem of vibrational freezing 

more closely. It is therefore concerned mainly with 

the losses suffered by CH^, CO^ and 

(iv) Model Three, employing the Class B similar solutions, 

is again concerned with the viscous flow losses. 

Comparison is made with the results of Model One in 

order to ascertain what effect first-order transverse 

curvature has on the boundary layer development. 

It is found that the predictions of the different boundary layer 

models differ, although the trends are similar. The results of Model 

One (i.e. boundary layer calculation based on the Class A similar 

solutions) are the most pessimistic, and this model is used to examine 

the variation in performance with different nozzle geometries. These 

results are presented in section 6.3. 

In section 5.4 comparisons of the predictions of Models One and 

Two are made with experimental results which have been reported in the 

literature. It was remarked previously that a number of difficulties 

are encountered in accurately measuring resistojet performance. The 

way in which these factors affect comparisons between experiment and 

theory is also discussed. 

The overall performance parameters such as specific impulse and 

thrust coefficient are not discussed at length, however, extensive 

tabulations of the performance figures obtained with Model Two for 

hydrogen, methane, carbon dioxide and ammonia for the nominal nozzle 

geometry are presented in Table VI. 

6.2 Nominal Nozzle Geometry 

In order to examine the differences between the predictions of 
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the four performance models and to gain an understanding of the physics 

of resistojet nozzle flow, computation was first carried out for a 

fixed nozzle geometry with a conical divergent section of 25 : 1 area 

ratio. The geometric parameters (see figure on page 104) are 

defined :-

— 2.0 mm 

®1 
= 60°. 

R 
c 

= 2.0 mm 

R* = 0.5 mm 

^2 
= 20°. 

e = 25. 

a b = 0 

Calculations were performed at 25 points in the following matrix of 

plenum conditions; 

p^ (kNm~^) 200. 100. 50. 25. 10. 

(°K) 300. 500. 1000. 1500. 2000. 

6.2.1 Predictions of Model Zero 

To recapitulate,the main features of this model are that 

(i) vibrational rate processes are assumed to be frozen throughout the 

nozzle and (ii) the boundary layer calculation is based on the approx-

imate method of Cohen and Reshotko. Although the boundary layer 

calculation is not strictly justified, the results obtained with this 

model are useful since they give the relative magnitudes of the component 

losses, therefore enabling an assessment to be made of the processes 

which should be examined further. To avoid undue repetition, only 

results for NH^ and are presented. The individual losses arising 

from frozen flow, viscous flow and so forth are now examined in turn. 

(i) Frozen chemical rate processes 

At temperatures below 2000°KiNHg is the only propellant which is 
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considered to dissociate during passage through the heater. In order 

to set a limit on the maximum loss which results from the non-recovery 

of dissociation energy in the nozzle flow, the performance with the 

NH^ "equilibrium" composition is studied. Under equilibrium conditions 

NH^ dissociates almost completely between 300 and 500°K to produce a 

diatomic mixture of and . This causes a dramatic decrease in the 

efficiency accounting for the frozen chemistry loss, as is shown 

in Fig. 24a. At higher temperatures the fraction of the electric 

power going into dissociation energy decreases in comparison to the 

power required actually to raise the temperature, so that increases. 

The case illustrated is for a plenum pressure of 50 kNm ^. In the 

equilibrium limit the composition is significantly dependent on pressure 

(pressure range, 10 to 200 kNm only at temperatures between 300 and 

500°K, the effect of lowering the pressure is to favour dissociation, 

and vice versa. Dissociation has two effects on the overall nozzle 

performance, one is to decrease the nozzle efficiency through and 

the other is to increase the exhaust velocity through the reduced 

molecular weight. 

(ii) Frozen vibrational rate processes 

The loss in jet power arising from the assumption of freezing 

vibrational energy at entrance to the nozzle is illustrated in Fig. 24b, 

in terms of the efficiency, . As temperature is raised the fraction 

of the total internal energy which is invested in the vibrational modes 

increases, therefore falls. For undissociated NH^ the potential 

loss is large, with a 22% reduction in the ideal jet power at 1000°K, 

increasing to 39% at 2000°K. However, the frozen vibrational energy 

loss decreases as dissociates, so that in the equilibrium limit, 

when it is essentially a diatomic mixture there is only a 6% reduction 

in jet power at T^ = 2000°K. The vibrational energy loss in pure 

is even smaller than equilibrium NH^, with - 0.95 at 2000°K. 

-125-



It is noted from Fig. 24b that for is greater than unity 

at temperatures below lOOO^K. This is a consequence of the assumption 

made in Model Zero of a constant ratio of specific heats, Y = 1 . 4 
Lr 

(i.e. c°^p = 6.9545)5 which implies that the translational and 

rotational modes are fully excited, and that the vibrational mode is 

not active. At temperatures below 360°K the two rotational degrees 

of freedom of are less than fully excited and with decreasing 

temperature the molar heat decreases, therefore the ratio of the 

specific heats increases. At approximately 50°K only the lowest 

rotational energy level of the molecule is occupied so that it 

behaves effectively as a monatomic molecule with only three trans-

lational energy modes excited. Thus in summing the contributions 

from the internal energy modes from T^ to 0°K, the assumption that 

Y = Ygp = 1.4 causes an overestimate of the available enthalpy and 

therefore of the jet velocity (c.f. eqs. 2.19 and 2.9). 

An inference from the behaviour of the frozen flow losses of 

NH^ according to Model Zero, is that the chemical and vibrational 

energy losses are inversely coupled. In the equilibrium limit the 

frozen vibrational energy loss is small and frozen chemistry losses 

are large, whereas when NH^ remains undissociated the chemistry loss 

is non-existant but the vibrational energy loss is large. 

(iii) Incomplete expansion loss. 

Clearly this is a function of the nozzle geometry, since the 

amount of energy which is retained in the active internal energy modes 

should decrease as the area ratio becomes larger. It is also dependent 

on the number of active degrees of freedom. Thus in Model Zero, with 

the vibrational processes frozen, there are five active degrees of 

freedom (three translational and two rotational) for a diatomic mole-

cule, which for the nominal geometry (e = 25.) gives an efficiency 

accounting for the incomplete expansion loss, = 0.8816. For a non-
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linear polyatomic such as NH^ there are three rotational degrees, 

giving a total of six active degrees of freedom so that the incomplete 

expansion loss is larger, with = 0.8353 for an area ratio of 25 : 1. 

(iv) Viscous flow loss 

The losses arising from the dissipative effects of viscosity 

and heat conduction are manifest in two ways. The first is as a 

velocity defect with a consequent reduction in the jet velocity and 

jet power, and the second is as a mass defect, which although not 

affecting the jet velocity or nozzle efficiency, causes a reduction 

in thrust since the mass flow rate is reduced. 

There are two causes of the velocity defect, (i) displacement 

of the potential core by the viscous boundary layer reduces the 

effective nozzle area ratio and (ii) skin friction on the nozzle 

surface causes a momentum deficit in the boundary layer flow. 

Viscous flow losses are dependent on both the plenum temperature 

and pressure and are usually correlated against Reynolds number. The 

velocity defect, is illustrated in Fig. 25a as a function of the 

A * * 

throat diameter Reynolds number, Re^^ = 2p u R / y ^ . It is seen that 

is strongly dependent on Reynolds number, with the loss increasing 

as Re„. decreases. (Re^. falls when T is raised and/or p^ is lowered.) 
D" 1 i 

As Reynolds number falls the boundary layer thickens; for hydrogen 

at R&Q^ ~ 14000. the boundary layer overall thickness is only 20% of 

the nozzle radius at the exit plane, but by Re^^ - 250, (&/R)^^ - 0.75, 

i.e. 94% of the nozzle exit area is occupied by a viscous "boundary 

layer" and only 6% is a potential core. To a lesser extent is 

dependent on the propellant, in particular on the ratio of the frozen 

specific heats, For clarity the results for equilibrium NH^ have 

not been included in Fig. 25, but for all temperatures in the matrix 

of plenum conditions, except 300°K at which little dissociation occurs, 

the velocity defect coincides with the - Re * line for . At a 
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given H.e_. the velocity defect is greater for NH (y = 4/3) than for 
D'* 3 Lr 

~ 7/5). This difference arises from the predicted pressure 

gradient at the nozzle exit being less favourable for a polyatomic 

molecule such as It follows that for a given Re^^ the boundary 

layer momentum thickness is greater with ammonia and therefore the 

velocity defect is larger. The difference in the velocity defect 

caused by skin friction is offset to a minor extent by the behaviour 

of the displacement thickness, since, for a given Re^^, S is slightly 

smaller (approximately 4%) in the case of ammonia. This information 

suggests that the form factor, equal to 6 /8, is dependent on the 

propellant specific heat ratio. The boundary layer theory used in 

Model Zero predicts, that for the nominal geometry over the range of 

R&Q^ from 10^ down to 300, the form factor at nozzle exit decreases 

from approximately 16. to 10. when the propellant is H^. In the case 

^ 4 
of NH^ the corresponding values are 5 /8 - 12. at Re^* = 10 and 

G*/8 = 8.5 at R&p* = 300. 

The result that the displacement thickness is smaller for NH^ 

at a given Reynolds number is also reflected in the variation of 

the discharge coefficient with Re^^, which is presented in Fig. 25b. 

The difference is small and the two lines for and NH^ are practically 

coincident. At Re^^ = 10^ the discharge coefficient is approximately 

0.96 and by Re^^ = 10^ it falls to ~ 0.72. Values for below 

Re^a - 300 are not presented in Fig. 25a since the flow is predicted 

to be completely viscous at exit from the nozzle. Although, according 

to its definition, there is still an effective inviscid core, the 

results obtained under these conditons are not consistent with those 

obtained at slightly higher Reynolds numbers. 

(v) Radial flow loss 

The final non-ideality to be considered is inversely coupled 

to the viscous flow loss, and in particular it is related to the 
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development of the displacement thickness at the nozzle exit. For 

the nominal geometry, the loss in jet velocity due to radial flow 

is small. Thus at Re^^ = 10^ the efficiency accounting for the radial 

flow loss, is approximately 0.96, and as the boundary layer 

thickens with decreasing Re^^, increases so that at Re^^ = 300, 

equals 0.985. 

The overall nozzle efficiency, is illustrated as a function 

of plenum temperature in Fig. 26a for the case where the plenum 

- 2 

pressure is 50 kNm . It is immediately apparent that the overall 

efficiency of equilibrium MH^ is dominated by the frozen chemistry 

loss. However the equilibrium limit is not a realistic case since 

kinetic considerations (section 1,3.2) indicate that little or no 

dissociation is likely to occur at temperatures below about 1000°K. 

When NHg remains undissociated the dominant loss is caused by the 

assumption of frozen vibrational rate processes. The incomplete 

expansion loss is also substantial (n^ - 0.84), as is the velocity 

defect caused by viscous flow, which is most severe at the highest 

temperatures, and lowest pressures. At 300°K the overall nozzle 

efficiency with undissociated NH^ is - 0.75, but this falls with 

increasing temperature, and by = 2000°K, ~ 0.42. Using hydrogen 

as the propellant results in a far greater efficiency, since the 

potential vibrational energy loss is considerably smaller. Here, the 

dominant loss processes are incomplete expansion and viscous flow. 

Again falls as temperature is raised, from 0.82 at 300°K to 0.68 at 

2000°K. 

In Chapter Two it was pointed out that the thrust coefficient, 

defined by eq. (2.52), does not provide a great deal of information 

about the overall nozzle efficiency. However, it is an important 

design parameter, in that it relates the plenum pressure and throat 

area to the resulting thrust. The variation of thrust coefficient, 
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corresponding to Fig. 26a, is shown in Fig. 26b. It is noted from 

eq. (2.52) that is proportional to C^, so that the thrust coefficient 

exhibits a strong Re^* dependence. 

6.2.2 Predictions of Model One 

In this model the laminar boundary layer calculation is based on 

the Class A similar solutions, i.e. solutions of the Balkner-Skan 

equation. Since these solutions are valid over a wider range of 

favourable pressure gradients than those used in the Cohen and 

Reshotko method of Model Zero and are still computationally economic, 

they are used to examine the viscous flow losses in the nominal 

nozzle more closely. Results have bean obtained for NH^ (both 

the equilibrium and undissociated cases), GH^ and CO^ for the basic 

matrix of plenum conditions. 

Before discussing the boundary layer results, the losses due 

to frozen vibrational energy and incomplete expansion are briefly 

described. The frozen chemistry loss with equilibrium NH^ was out-

lined in section 6.2.1 and is not discussed further. As in the case 

of undissociated the loss arising from the freezing of vibrational energy 

at nozzle entrance can be substantial with CH^ or CO^ as the propellant. 

The behaviour of the frozen flow efficiency, n^, as a function of 

plenum temperature is illustrated in Fig. 27. The - T^ curves for 

and NH^ of Fig. 24b are also included for completeness. It is 

seen from the curves for CO^ and CH^ that even at 1000°K, over 30% 

of the potential jet power is locked up in vibrational energy. This 

value increases with temperature, so that by 2000°K the loss is over 

42% with COg and over 50% with CH^. Fig, 27 demonstrates that the 

vibrational modes of the CO^ molecule are excited at comparatively 

low temperatures, and vibrational freezing could produce a 7% loss 

in jet power even at 300°K. This "worst case" examination of the 

possible losses which could result from the freezing of vibrational 
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energy emphasises that at high temperature a large fraction of the 

total internal energy of polyatomic molecules is invested in vibration. 

Hence the need for a more accurate assessment of this loss, which is 

given in Model Two. The incomplete expansion loss suffered with 

CH^ as the propellant, with vibrational energy frozen, is identical to 

that of NHg, i.e. = 0.8353 for a nozzle area ratio of 25 ; 1. 

Carbon dioxide, unlike CH^ and NH^ which are non-linear polyatomics 

with three rotational degrees of freedom, is a linear molecule with 

only two rotational degrees. Therefore the incomplete expansion loss 

of COg is the same as when there is no vibrational relaxation, 

i.e. Hg = 0.8816 for £ = 25. 

In the remainder of this section the predictions of the boundary 

layer growth and the viscous flow losses, which are produced with the 

calculation procedure outlined in section 5.4, are examined. The 

efficiency accounting for the velocity defect, n^, is shown as a 

function of Re^* in Fig. 28. As in Model Zero, i.e. the modified 

Cohen and Reshotko theory, the results of Model One give two distinct 

curves corresponding to = 1.4 (H^, CO^ and equilibrium NH^) where 

the curve is composed of over 80 points, and = 1.33 (NH^ and CH^) 

where there are over 50 points on the curve. It is observed in the 

case with Y^^ = 1.4 that the velocity defect increases rapidly when 

Re _ falls below 250. The same behaviour is found with y = 1.33 
U* Lf 

for Re^a below 200. Calculations, additional to the basic matrix, were 

- o ""2 
carried out at T^ = 1500 K for p^ between 25. and 10. kNm in order 

to clearly define the drop-off region. At the lowest pressures 

2 

(Re^a - 10 ) it was found that the isentropic core-boundary layer 

iteration procedure produced an unacceptably large value for the dis-

placement thickness in the divergent section so that the effective 

radiua predicted by eq. (5.9) was negative, in which case the comput-

ation was abandoned. The conditions at which this occurs therefore lie 
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outside the range of applicability of the present model. At Reynolds 

numbers above Re^^ - 150 the results were found to lie on consistent 

lines and they are included in Fig. 28. The prediction of a rapid 

drop-off in efficiency is obviously of some importance to resistojet 

nozzle performance and the validity of the prediction will be examined 

shortly. 

The - Re^a curve for = 1.4, of Model Zero, is included in 

Fig. 28 in order to compare the two boundary layer calculations. It 

is seen that down to Re^^ - 400 there is close agreement between the 

two methods. However this is fortuitous, since the boundary layer 

thicknesses at the nozzle exit predicted by the modified Cohen and 

Reshotko theory are some 25 to 30% larger than those given in Model 

One. This factor is offset by the different expressions used for the 

thrust integral, since the approximate relation used in Model Zero 

(eq. 5.21) predicts a considerably larger thrust than the "exact" 

relation of Model One (eq. 3.62). By chance, the two differences 

cancel out to give nearly the same answers. 

Explanation of the differences in (which relates to the 

velocity defect) for different ratios of frozen specific heats can be 

found from an examination of the boundary layer theory of section 3.4. 

The crucial factor in the boundary layer development is the pressure 

gradient parameter, 3, which from eq. (3.40) can be written 

. > 

e e 

It can be deduced from the temperature-area relationship of eq. (4.12) 

that, when the propellant has a lower specific heat ratio, Y^p, a 

given area ratio produces a higher freestream static temperature, T^ 

(T^p in eq. 4.12). In other words, for a given nozzle the conversion 

of internal energy to kinetic energy is less efficient when the 

propellant is NH^ or CH^, than is the case for CO^ or It follows 

for NH^ and CH^ that at any station in the nozzle, the ratio of the 
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stagnation to static temperature, is smaller and, since the 

25 
quantity, — , does not vary significantly with Y , the pressure 

U US. Lr 
e 

gradient parameter is also smaller. Thus for a given Reynolds number 

the boundary layer integrals, to are larger (see Fig. 6), which 

in turn affects the boundary layer thicknesses. The difference is most 

marked in the momentum thickness, defined by eq. (3.60) as 

R G p 
2 cos a 2 

and for a typical case with Re^^ - 2000, the momentum thickness is 

approximately 16% greater with = 4 / 3 than with Y = 7/5. The 
Vf Cr 

boundary layer overall thickness is also larger (typically 2%), but 

as found with Model Zero the displacement thickness is smaller for 

^CF ~ 4/3. At Re^* ~ 2000, & (Y^^ = 7/5) is approximately 6% larger 

than ^ (Y^p = 4/3). Examining eq (3.59), which can be written as 

6 * a 8 
2 cos ct 

^T 
T~ ^1 ~ ^2 
e 

it is inferred that the increase in the value of P^ for Y^^ =4/3, is 

more than compensated by the decrease in T^/T^ and the increase in P^. 

The overall effect of the changes in ^ and 6 for different 1 is to 
Cr 

increase the velocity defect incurred with NH^ and CH^. It is noted 

that there is a pressure term, P^ , in the thrust relation of 

eq. (2.34). The effect of viscous flow on the importance of this term 

is not large, and it will be considered in the discussion of the dis-

placement effect which follows shortly. 

The mass flow defect, in the form of a discharge coefficient, 

is shown in Fig. 29 for the nominal geometry over the range of Re^^ 

from 35,000 to below 200. It has just been noted that the displacement 

thickness at the nozzle exit is larger for a given Re^* when Y^^ = 1.4, 

At the throat this still holds but the differences are small, so that 

C^CY^p = 1.4) is only slightly smaller than ^^(Y^p = 1.33 ). The 
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boundary layer affects the position at which choking occurs, so that 

it is not necessarily conincident with the ge ••metric throat as it is 

defined to be in the inviscid flows which are considered here. 

However the effect is small; at Re^^ = lo'̂  the choking position is 

A 
shifted downstream of the throat by 0.02R , this increases slightly 

as Re^^ falls and by Re^^ = 200 the downstream movement is approximately 
* 

O.IR . 

Displacement of the inviscid core by the boundary layer produces 

a smaller effective flow area. This is particularly noticeable in the 

divergent section (see Fig. 33), and although there is a reduction in 

the effective throat area the overall result is a reduction in the 

equivalent inviscid area ratio. This increases the static temperature 

distribution along the nozzle centre line, which in turn reduces the 

velocity. The distribution of the stagnation to static temperature 

ratio along the nozzle axis is shoira in Fig. 30 for hydrogen at a 

plenum temperature, T = 1500°K. In the ideal inviscid flow the 
T 

static temperature falls fairly uniformly through the divergent section 

to reach 250°K at the nozzle exit. Viscosity and heat conduction in 

the boundary layer modify this picture, so that T^ decreases less 
- 2 

rapidly. At a plenum pressure of 200kNm (Re^^ = 2015), the temper-

ature of the inviscid core at exit has only decreased to 310°K, and 

as Re^a falls with decreasing pressure the static temperature increases, 

so that by Re^^ = 201, T^ at exit has only fallen to 410°K. This 

increase in static temperature means that the static pressure at the 

exit plane is also higher than in an inviscid flow. It follows that 

the pressure term in the thrust relation is somewhat larger, thus 

somewhat offsetting the velocity defects due to the momentum deficit 

and the displacement effect of the boundary layer. 

Radial velocity profiles through the nozzle are shown in Fig. 31 

for a nominal case, i.e. the nominal geometry, T^ = 1500°K and 
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*"2 • 

= 50 kNm , with hydrogen as the propellant. The Reynolds number 

based on throat diamter corresponding to these plenum conditions is 

Re^a = 504. First a few words of explanation are necessary before the 

profiles are discussed. The ordinate of this figure is u/V. , where 
J Cj 

u is the local velocity in the x-direction and V. is an ideal jet 
jLr si 

velocity which takes into account the losses from frozen chemistry, 

frozen vibrational energy and incomplete expansion. The abscissa is 

y cos OL/R, where y is the distance normal to the nozzle wall and a is 

the local wall angle. These velocity profiles were obtained from a 

separate similar solutions program which basically integrated a form 

of eq. (3.61), which can be written 

R 6 

2 cos a 
^e ' 0 

( l - f ' 2 ) d n + 

rn 

o 
f'^dn (6.1) 

It should be noted that the profiles were transformed from the plane 

normal to the wall into the radial plane simply by multiplying by 

cos a, whereas in the nozzle programs the boundary layer thicknesses 

in the radial plane were obtained more correctly by interpolation. 

Finally, the jet velocity V. differs from the exhaust velocity when 
2 ^ 

the flow is inviscid since there is an additional pressure term in the 

definition of V. (eq. 2.30). It is seen from Fig. 31 that in the 

convergent section and in the throat section down to station 30 

(z/z^ = 0.29), the inviscid core occupies over 80% of the nozzle radius 

at each station. In the main divergent section the boundary layer 

develops quite rapidly, giving 5/r = 0.5 at the nozzle exit. In other 

words. Model One predicts that the boundary layer occupies three-

quarters of the cross-sectional area at the nozzle exit for Re^* = 504. 

It is seen from the slope of the velocity profiles at the nozzle 

wall that the wall shear stress increases through the convergent 

section of the nozzle and reaches a maximum just downstream of the 

throat. It is found in Fig. 23 that the maximum pressure gradient 
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parameter, B, and therefore maximum wall shear stress, occurs at 

z/z^ = 0.33. Downstream of this the pressure gradient drops off rapidly 

with a consequent reduction in the slope of the velocity profile. Two 

sources of velocity defect can be deduced from the shape of the exit 

velocity profile (z/z^ =1.). They are 

(i) A defect in the inviscid core velocity due to the 

displacement effect. 

(ii) A velocity defect in the boundary layer, which is 

manifest as the momentum thickness. 

It is apparent that the boundary layer momentum deficit causes the 

largest loss in jet velocity. 

Velocity profiles at the nozzle exit for plenum pressures of 50, 

- 2 

25 and 20 kNm are shown in Fig. 32. The propellant is hydrogen. It 

was pointed out earlier that in the boundary layer calculation of 

Model One the important factor in determining the boundary layer 

development is the pressure gradient parameter, g. Values of g at 

the nozzle exit for the three cases illustrated in Fig. 32 and for 
- 2 

p^ = 200 and 100 kNm are listed below. 

p^(kNm 
^exit ^V 

200 2015 2.65 0.919 

100 1007 2.42 0.888 

50 504 2.19 0.845 

25 252 1.70 0.780 

20 201 1.11 0.713 

It is seen from this table that g . falls almost linearly with log^. 
exit 10 

(R.e^^ for Re^^ down to 504, but decreases rapidly at lower Reynolds 

numbers. It follows that the value of the momentum thickness integral, 
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^2 = 

'L 

f'(l-f')dn, increases rapidly for values of less than 2., 
0 

with a corresponding decrease in It was noted in section 5.2.3 

(also see Fig. 21) that convergence of the boundary layer-inviscid 

core iteration procedure was not achieved at Re^* = 201, so that the 

predictions for this case are not completely satisfactory. Reasonable 

convergence was not achieved after three iterations (i.e. four 

isentropic core and three boundary layer calculations) since the 

changes in effective geometry between iterations are still large. 

Improvement was not forthcoming by increasing the number of iterations 

since numerical errors were introduced which caused the procedure to 

diverge. Whitfield^^^^, in a study of low density wind-tunnel nozzle 

flows which was similar in several respects to the present study, 

also experienced calculation difficulties when the boundary layer was 

very thick. He attributed the source of these errors to the form of 

the Lees-Dorodnitsyn transformations, and in particular to the ?-x 

relation (eq. 3.22). In the present study numerical errors are intro-

duced into the pressure gradient parameter by the differential, du^/dS. 

Numerical differentiation magnifies any round-off errors in the values 

of u^ and 5 between each station, and with an increasing number of 

iterations the errors build up so that the iteration procedure ultimately 

diverges. As Re^^ falls an increasingly large part of the nozzle flow 

field is occupied by the viscous flow, and the importance of the boundary 

layer calculation becomes correspondingly greater. 

Under circumstances where the boundary layer is very thick, 

Whitfield and Lewis have used an initial effective geometry which is 

less than the actual nozzle geometry. This technique has been applied in 

a few cases in the present study. Results obtained here with a modified 

initial geometry were similar to those found with the usual procedure 

for Reynolds numbers down to 250, with the predicted boundary layer 

thicknesses, and therefore velocity defect, being slightly greater. 
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However for Re^* below 250 (specifically R.ê * = 201) it was found that 

the drop-off in was not as rapid as shown in Fig, 28, although once 

again satisfactory convergence was not achieved. It is inferred that, 

for the nominal geometry, the predictions of the boundary layer 

method of Ilodel One are valid dô vn to at least Re^^ = 250. Below 

this Reynolds number, although results are given, they are very 

tentative. Thus, use of the present boundary layer method at the 

lowest Reynolds numbers is not completely satisfactory but the predic-

tions are indicative of the large losses due to viscous flow which 

are expected under these conditions, As has already been said in 

section 1.5.2., at these low Reynolds numbers the validity of assuming 

a boundary layer is doubtful and only calculations based on the Navier-

Stokes equations are strictly correct. However, the present results 

show how far a purely boundary layer approach can be taken. 

The growth of the boundary layer displacement thickness through 

the nozzle, over the range of Re^^ from 2015 down to 201 is illustrated 

by Fig. 33. It is noticed that G*/R reaches a minimum well in front 

of the throat. In the region just doT<nistream of the throat the dis-

placement thickness develops quickly under the influence of the rapid 

decrease in pressure gradient (see Figure 23). The change in 5*/R 

with Reynolds number is most noticeable in the convergent portion of 

the nozzle, and in the divergent section although 6 /R increases as 

Re^a falls the effect is not so marked. Thus at the nozzle exit at 

Re^a = 2015, ^ /R equals 0,24 causing the effective exit area to be 

reduced to 58% of the geometric area. The corresponding figures at 

R&Q* = 201 are ^ /R = 0,4, or an effective exit area of 36% of the 

original. On account of the differential growth of 6 /R the effective 

area ratio does not change so markedly with Reynolds number, although 

the effective value is considerably less than the geometric area ratio 

of 25 : 1. Thus at Re^^ = 2015, the effective area ratio is 15,5 : 1 

and by Re^^ = 201 it decreases to approximately 11 : 1. 
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The coefficient of skin friction along the nozzle surface, c^, 

defined by eq. (3.64), corresponding to the above range of Re^^ is 

shown on a semi-log scale in Fig. 34. In the convergent section c^ 

falls rapidly, levelling off in the region of the throat. T-Jhen the 

pressure gradient falls sharply in the divergent section there is a 

decrease in skin friction, but as B levels off and the changes in 

density and velocity become smaller c^ tends to a constant value. 

Remembering that Fig. 34 is on a semi-log scale it is seen that there 

is a large increase in the skin friction coefficient at the lower 

Reynolds numbers. 

The earlier discussion of the change in the momentum and dis-

placement thickness with suggests, as in Model Zero, that the form 

factor, <5 /8 ̂  ig dependent on the type of propellant. The variation 

in 6/6 at the nozzle exit for the cases of = 7/5 and 4/3 is 

illustrated in Fig, 35a as a function of Re It is seen that for a 

given Reynolds number the form factor is considerably larger for the 

"diatomic" propellants; up to 30% larger at Re^^ = 10^, and about 

20% larger at Re^^ = 200. In Fig. 35b the variation of the form 

factor through the nominal nozzle is shown as a function of the centre-

line Mach number for and NH^ at plenum conditions of T^ = 1500°K 

- 2 * 

and p^ = 50kNm . In the subsonic flow 6 /8 increases only slightly 

from 2.06 at = 0.2 to approximately 2.7 at •= 1. In the supersonic 

flow, however, the form factor changes substantially. Although the 

momentum thickness increases considerably in the supersonic flow 

(typically by a factor of five between the throat and nozzle exit), 

the increase in the displacement thickness is far greater (typically 

a factor of 25). This is a consequence of the hot nozzle wall, which 

causes the gas density near the wall to be significantly lower than 
A 

in the freestream. Thus at the exit 6 /6 reaches a value of 10. in 

the case of and nearly 12. in the case of . Examination of 
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eqs. (3.59) and (3.60) reveals that, for the Class A similar solutions, 

the form factor can be written 

r ' ^ 
e 2 

Strictly, therefore 6 /8 is a function of T^/T^ and 3, however the 

variation of with B is not large, e.g. P^/Pg = 3.58 at 3 = 0. 

and 3.02 at 3 = 10., so that the behaviour of the form factor in the 

nozzle is dominated by the freestream static temperature. Thus if 

the form factor were plotted against the two curves for different 

Ygp in Fig. 35b would collapse to one curve. 

To summarise the viscous flow losses predicted by Model One: 

(i) For a given nozzle, the mass and velocity defects are 

dependent on the throat diameter Reynolds number. These 

losses become severe at low Re^^. 

(ii) The velocity defect is caused by a momentum defect in the 

boundary layer and by a reduction in the inviscid core 

velocity due to the displacement effect. 

A final point concerns the radial flow losses, this is illustrated 

in Fig. 36 as a function of Re^^. Since, for a given Re^*, the displace-

ment thickness obtained at the nozzle exit is larger in the case of 

= 7/5 it follows that the radial flow loss is reduced in comparison 

to = 5/3; therefore is more nearly equal to unity. It is seen 

however that the difference between the two cases is small. 

6.2.3 Predictions of Model Two 

Model Two is used to investigate the effects of vibrational 

relaxation on resistojet nozzle performance, by employing the realistic 

freezing criterion which was described in section 4.3. The results are 

discussed in two parts; firstly for the single species CH^, CO^ and H^, 

and secondly for NH^ where the problem of vibrational relaxation is 
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complicated by dissociation. Before these are examined, two points 

about the model are noted. 

A rate parameter, was introduced in the freezing criterion 

given by eq. (4.34). This parameter is the product of two terms, 

P and <J) 5 where P is a constant of order unity, matching the 

approximate sudden freezing criterion with more exact solutions, and 

# is a factor accounting for the discrepancy between excitation and 

de-excitation rates. It was noted in section 4.3 that <j) varies 

typically between 1 and 100. With $ = 1 it is assumed that vibrational 

processes in the nozzle flow relax at the same rate as those observed 

in shock tube measurements, A reasonable upper bound on the de-

excitation rates is thought to be given by 0 = 100. In Model One, 

vibrational energy was frozen at the nozzle entrance, i.e. it was 

assumed that the equilibrium rate of change of vibrational energy was 

always greater than the kinetically possible rate. The results of 

Model One therefore correspond to $ = 0. Simply removing the freezing 

criterion from the program produces the other limiting state where 

vibrational energy remains in equilibrium throughout the nozzle, in 

which case ^ ". The second point concerns the position in the 

nozzle at which vibrational energy is allowed to freeze. To simplify 

the mass flow calculation it was assumed that freezing was not consid-

ered to occur until five stations downstream of the geometric throat. 

Subsequent computation showed this to be a sensible condition (see 

below). For the nominal geometry where the throat corresponds to 

z/z^ ~ 0.26, this means that vibrational freezing is not allowed to 

occur until z/z^ 0.31. 

Variation in the frozen flow efficiency, rip, for CO^ and CH^ 

is shown in Fig. 37 as a function of the plenum temperature, at a 

- 2 

constant plenum pressure of 50 kNm , for values of $ = 0 , 1 and 100. 

In the case of carbon dioxide, with $ = 1 , it is found that freezing 

occurs at z/z^ = 0.31; below 1500°K it is constrained to occur here, 
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and for higher temperatures it occurs soontaneously at this station. 

A similar behaviour is exhibited by methane for 0 = 1, although for 

temperatures above 1000°K the freezing point moves doimstream and 

at 2000°K freezing occurs at z/z^ = 0.39. The effect of vibrational 

relaxation is to reduce the frozen flow losses, but it is seen from 

Fig. 37 that although there is some improvement between $ = 0 and 1, 

the frozen vibrational losses are still greater than 30% of at 

2000°K. However, the situation in CH^ and CO^ flows changes dramatically 

at ® = 100. At the highest temperatures, where the rates are fastest, 

it is predicted that vibration will remain in equilibrium throughout 

the nominal nozzle, in which case = 1. In the intermediate temper-

ature range, i.e. 500 to 1500°K, some loss from vibrational freezing 

is still incurred, typically giving a 5% reduction in It is noted 

that when $ = n is defined to be unity at all temperatures. 
r 

Using Model One, where $ = 0, it was shown that the maximum 

possible vibrational loss suffered by was small, since the vibrational 

content and the degree of excitation were small. Using Model Two, not 

unexpectedly it is found that the vibrational loss is even smaller, 

and with ^ = 100, ~ 0.98 at 2000°K. At temperatures above 1000°K 

the freezing criterion is satisfied at z/z^ = 0.31 to 0.32, but at 

lower temperatures with $ = 100, and for all temperatures with $ = 1, 

freezing is constrained by the program to occur at z/z^ = 0.31. 

Therefore the results for with $ = 1 and 100 are virtually identical. 

The results of Model One (section 6.2.2) indicated that the 

reduction in static temperature between the plenum and nozzle exit, 

achieved by a given nozzle, is smaller for a propellant which has a 

larger number of active degrees of freedom. This phenomenon is also 

observed in the results of Model Two, and is illustrated in Fig. 38 

with axial temperature profiles in CH^ and CO^ flows, for different 

values of ^, for the nominal case where T^ = 1500°K and p^ = 50kHm ^. 

These profiles were obtained from the final isentropic core calculation, 
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so that they include the influence of the viscous boundary layer. With 

increasing freezing is delayed so that more active degrees of freedom 

are, or have previously been, available to contribute to kinetic energy. 

It follows from the potential flow relations of Chapter Four that the 

freestream static temperature at any station is increased, or in other 

words5 the temperature ratio, T^/T^, is decreased. For a polyatomic 

propellant there is a large difference in the axial static temperature 

distribution between vibrationally frozen ($ = 0) and equilibrium flow 

($ =0°), This is most noticeable at the nozzle exit; e.g. for the 

CH^ case illustrated in Fig. 38, with $ = 0 the static temperature in 

the inviscid core at exit, (T ) , is 405°K; but with $ = °°, (T ) is 
' ^ e'ex' ' ' ' e e* 

doubled to 810°K. 

Figure 38 further emphasises that correct modelling of vibrational 

relaxation is extremely important in predicting the performance of 

resistojets which employ polyatomic propellants. However, due to the 

lack of relaxation data for de-excitation flows, it is only possible 

to present likely limiting cases with $ = 1 and 100; even within 

these limits there is considerable difference in temperature distrib-

utions and in the frozen flow losses. 

Although the vibrational energy loss is smaller when relaxation 

occurs it does not follow that the full benefits are reflected in the 

jet power. As just discussed, (T ) increases when vibrational energy 
® ex 

equilibrates, so that the fraction of the available internal energy 

(rotational and translational), which is not converted to kinetic 

energy, also increases. This means that the incomplete expansion loss 

is increased. The change in the efficiency account for the incomplete 

expansion loss, with the rate parameter, is tabulated below for 

the nominal CO^ and CR^ cases. 
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Variation in the Incomplete Expansion Loss of CR^ and CO^ with 

P-f 
• Q "2 

Vibrational Relaxation (Plenum conditions: = 1500 K, p„ = 50 kNm ) 

$ 

0. 0.8816 0.8353 

1. 0.8784 0.8247 

100. 0.7649 0.6735 

0.7500 0.6735 

It is apparent that the large increase in the frozen flow efficiency, 

1^5 between $ = 1 and 100, is offset to an extent by the decrease in 

Hg. Further, the incomplete expansion loss is dependent on the plenum 

temperature, and increases with An extreme case is obtained with 

CH^ at 2000°K with $ = 100, when equals 0.61. It should be noted 

that all the results so far presented are for an area ratio of 25 : 1, 

so that the variation in the incomplete expansion loss is a result of 

changes in the gasdynamics of the flow and is not due to changes in 

the nozzle geometry. 

The possible improvement in performance due to the equilibration 

of vibrational energy is further offset by an increase in the viscous 

flow loss. Since T^/T^ at a given station is smaller when vibrational 

energy relaxes in the nozzle flow, it follows that the pressure gradient 

parameter, 3, is also smaller. Consequently the velocity defect due to 

viscous flow is increased. The variation in the efficiency accounting 

for the viscous flow velocity defect, n^, is shown in Fig. 39 for both 

CH^ and as a function of Re^* for values of $ = 0, 1, 100 and 

The Reynolds number variation is obtained by plotting the results for 

the temperature range 300 to 2000°K. It is seen that the velocity 

defect is most severe at the highest temperatures, which in the case of 
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a constant plenum pressure (50 kNm ) corresponds to the lowest Reynolds 

numbers. The results for given values of and ^ over a range of p^ 

produce a family of approximately parallel - Re^^ curves. Examination 

of the following table of results for CH^, at plenum conditions of 

o 2 

1500 K and 50 kNm , reveals several changes in the boundary layer 

structure at the nozzle exit when ^ varies between 0 and 100. 

Variation in the Boundary Layer at Nozzle Exit with Vibrational 

Relaxation 

$ ^ (mm) 
ex 

0 (mm) 
ex 

(M ) 
ex 

0 1064. 1.127 0.679 0.067 4.04 

1. 996. 1.202 0.658 0.084 3.90 

100c=) 996. 1.305 0.530 0,126 3.11 

The most striking change is in the momentum thickness, 8^^, which nearly 

doubles in value between the case where vibrational energy is completely 

frozen ($ = 0) and where it remains in equilibrium throughout the nozzle 

($ = 100). Since the loss in jet velocity is dependent on 0^^ it 

follows that there is a substantial decrease in with increasing $ 

(see eqs. 2.44 and 3.62). The opposite effect is seen to occur in the 

displacement thickness, i.e. <5 decreases as vibrational energy 

* 

equilibrates. The mathematical reasons for the changes in 0 and 6 

with T^/Tg have been discussed in section 5.2.2, and the physical 

implications are now described. With vibrational energy in equilibrium 

the freestream static temperature is higher, therefore the temperature 

difference across the boundary layer is smaller and the density at 

the nozzle wall is more comparable to the freestream density. It 

follows that (i) the mass flow in the boundary layer is higher when 

vibrational energy relaxes (particularly when the flow is supersonic), 
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therefore the displacement thickness is smaller; and (ii) the region 

of the greatest velocity defect at the nozzle wall corresponds to an 

increased density, so that the momentum defect is increased. The 

effect of $ on the form factor, 5 /8, is pronounced; with $ = 0 

(6 - 10., but with $ = 100, (6 /8)^^ - 4. Thus the shape of the 

velocity profile is much fuller when vibrational energy is in equilibrium. 

It is emphasised that these predictions are based on similar 

solutions of the laminar boundary layer equations, in which it is 

assumed that the propellant specific heat remains a constant at any 

station. They can therefore only be taken as an indication of the 

effects of vibrational relaxation on the boundary layer development. 

Calculation of the frozen vibrational efficiency, rip, is carried 

out in the first isentropic core calculation, i.e. it corresponds to 

the loss suffered in a completely inviscid flow and is not affected 

by the subsequent boundary layer calculations. However, the boundary 

layer can have a significant effect on the freezing position, since 

it increases the freestream temperature and therefore decreases the 

rate of change of vibrational energy in the expansion. Any change in 

the freezing position is felt in the boundary layer calculation and 

in the estimation of the viscous flow loss. If the freezing criterion 

is satisfied well into the supersonic inviscid flow, then the presence 

of the boundary layer will further delay freezing. Thus for CH^ at 

1000°K with 0 = 100, freezing occurs at z/z^ = 0.77 in the inviscid 

flow, and after the final boundary layer calculation the freezing 

position is shifted downstream to z/z^ = 0.92, However when freezing 

in the inviscid flow occurs in the vicinity of the throat, the sub-

sequent boundary layer calculations have little or no effect on the 

freezing position. 

Vibrational equilibrium has a small effect on the mass defect due 

to viscous flow. It is observed that there is a slight improvement in 

the discharge coefficient, which is consistent with the behaviour noted 
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in section 6.2.2, where C (y„„ = 4/3) was greater than CLfy = 7/5). 
u Lr v Lr 

The maximum increase is less than half of one per cent of C at the 
D 

lowest Reynolds numbers. 

So far we have considered vibrational relaxation for plenum 

conditions where the temperature has been varied, and the pressure held 

constant. However, the rate of vibrational relaxation is directly 

proportional to pressure (see eq. 4.34), so that it is to be expected 

that changes in plenum pressure will also affect vibrational freezing. 

The dependence of the frozen flow efficiency, on the plenum 

pressure is particularly noticeable in the case of CH^ and the effect 

is illustrated in Fig. 40 for temperatures of 1000, 1500 and 2000°K; 

the rate parameter is unity. At lOOO^K, for plenum pressures of 25 

- 2 

and 50 kNm freezing occurs just downstream of the throat at z/z^ = 

0.31, and n therefore remains constant. With further increases in 
F 

p^, the kinetic rate becomes sufficiently fast for a downstream 

movement of the freezing position. The result is an increase in the 

frozen flow efficiency which is essentially linear with log^^ (p^). 

At higher temperatures the doxmstream movement is even more pronounced. 

o -2 
Thus at plenum conditions of 2000 K and 25 kNm freezing is predicted 

to occur at z/z^ = 0.34, which gives = 0.60, but by increasing the 

- 2 

pressure to 200 kNm freezing is delayed to z/z^ = 0.59, giving = 

0.74. This is a substantial change. It follows from the previous 

discussion that the losses from incomplete expansion and viscous flow 

will partly counteract any changes in the frozen flow loss. 

It is apparent that vibrational relaxation produces a considerable 

complication of the flow structure in resistojet nozzles where the 

propellant is a polyatomic, such as methane or carbon dioxide. In 

Model One where vibrational energy was frozen throughout the nominal 

nozzle, for a given propellant. the losses due to frozen flow, incomplete 
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expansion and viscous flow were independent of one another. This is 

not the case in Model Two, where there is a strong coupling between 

n„, n and n„. It has been demonstrated that the losses are dependent 
r E V 

on the amount of energy invested in vibration as well as the rate 

of vibrational relaxation, which in turn is dependent on the plenum 

pressure and temperature. 

The result of these conflicting factors on the overall performance 

of CH^ and CO^ is shown in Fig. 41, which is a graph of specific impulse 

versus plenum temperature for various values of It is seen that the 

closer one gets to fully equilibrium flow the higher the specific 

impulse. The maximum improvement in performance from $ = 0 to $ = ™ 

is found at 2000°K where a 15% increase in I is predicted for both 
sp 

CH^ and COg. At lower temperatures where the vibrational content is 

smaller, the difference in performance is less marked. Vibrational 

relaxation in resistojet nozzles has only been briefly mentioned, 

since the effect on performance is a minor one. This is substantiated 
o —2 

by the following figures. At 2000 K and 50 kNm , with $ = 0, the 

specific impulse is predicted by Model One to be 653 seconds, while 

Model Two predicts I = 660 seconds when $ = 100, which is only a one 
sp 

per cent difference. Thus the results for of Models One and Two 

are very similar. 

Turning now to the predictions of Model Two for ammonia, the 

problem of vibrational relaxation is complicated by dissociation in 

the resistojet heater, so that a mixture of several vibrationally 

excited species is present in the nozzle flow. It was assumed that, 

for temperatures below 2000°K,the dissociated mixture consisted of 

three species - and - and a plausible model of the vibrational 

relaxation in such a mixture was developed in section 4.4. 

The results of Model Two for the equilibrium and undissociated 

- 2 
cases are presented in Fig. 42, for the plenum pressure of 50 kNm 
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Let us first examine the equilibrium limit, i.e. f = 0 in eq. (5.5). 

At temperatures above 500°K the mixture consists essentially of 

and and it was seen for this case in Model One with $ = 0, that 

the vibrational energy loss was small. The results of Model Two 

with the realistic value of $ = 1 indicate. that does not differ 

signficantly from unity (even at 2000°K - 0.98). Next examining 

the undissociated case (f = 1.), it is noted that most of the comput-

ation was carried out with the rate equation which exhibits the 

usual temperature dependence, i.e. 

-17 ^ 
pT^ = 2.46 X 10 exp(152.6/T) atm.sec. Rate eq. 1 

It is seen from Fig. B.2 in Appendix B, that the rates predicted by 

this equation are extremely fast, particularly at high temperatures, 

so it is not surprising to find that substantial equilibration of 

vibrational energy is predicted by Model Two. Figure 42 shows that 

the loss in the frozen flow efficiency, of undissociated ammonia 

is found to be small using rate equation 1 with $ = 1. With $ = 100 

it is predicted that, at plenum temperatures above 1000°K, vibration 

remains in equilibrium with translation throughout the nominal nozzle. 

A curve for undissociated NH^ for $ = 100 is not included in Fig. 42 

since does not vary significantly from unity in any case. The 

alternative rate equation for pure NH^, based on the experimental data 

of Bass and Winter (see Appendix B), is 

pT^ = 1.78 X 10 ^ exp(-28.85/T) atm.sec. Rate eq. 2 

This has a different temperature dependence to the first equation, i.e 

the rate decreases with increasing temperature. Using this equation 

with $ = 1, it is found that at temperatures above 1000°K freezing 

occurs in the range of z/z^ from 0.7 to 0.8. It is seen from Fig. 42 

that the result is a decrease in rip? which is largest at 2000°K where 

rip = 0.88. However, using rate equation 2 with $ = 100 it is found 
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that the flow remains in equilibrium for the whole temperature range. 

Although there are differences in the results obtained with these two, 

very different, rate equations, the results are notable for both show-

ing that the vibrational energy loss suffered in undissociated NK^ 

nozzle flows is small. 

Calculations have also been carried out for partially dissociated 

mixtures for values of f, the mole fraction of NH^ which is not 

included in the equilibrium calculation, equal to 0.2, 0.4, 0.6 and 

0.8. The form of the "parallel resistance" law (eq. 4.35), which was 

used in the approximate model of vibrational relaxation in NHg-N2-H2 

mixtures (section 4.4), is such that the relaxation time of the mixture 

corresponds to that of the fastest component, i.e. NH^. This holds 

for all the ammonia mixtures considered here, except f = 0 at temper-

atures above 500°K when NH^ is only a trace species. The computations 

show that the losses from finite rate vibrational processes are small 

for partially dissociated mixtures; in fact, the - T^ curves are 

intermediate between the equilibrium and undissociated limits. Thus 

it is concluded that the vibrational energy loss in ammonia resistojets 

is small. 

Vibrational relaxation in NH^ has the same effect on incomplete 

expansion and viscous flow losses as was described earlier for CH^ and 

CO^. Since the degree of relaxation in ammonia is substantial it follows 

that the incomplete expansion and viscous flow efficiencies will be 

markedly lower than the predictions of Model One. These differences will 

be most acute when f = 1., i.e. when ammonia remains undissociated. In 

the following table the efficiencies accounting for the losses due to 

frozen vibration, incomplete expansion and viscous flow, and the overall 

nozzle efficiency, which are predicted by Models One ($ = 0) and Two 

($ = 1), are compared. 
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Comparison of Predictions of Models One and Two for NH^ 

(f = 1, = 50 kNm 

T^(°K) T^(°K) 

0 = 0 0 = 1 0 = 0 0 = 1 0 = 0 0 = 1 0 = 0 0 = 1 

300. 0.992 0.997 0.835 0.835 0.954 0.953 0.758 0.766 

500. 0.951 0.980 0.835 0.833 0.931 0.926 0.702 0.733 

1000. 0.815 0.975 0.835 0.803 0.887 0.854 0.564 0.652 

1500. 0.717 1.000 0.835 0.740 0.858 0.799 0.474 0.576 

2000. 0.652 1.000 0.835 0.697 0.830 0.755 0,417 0.513 

It may be seen that there are large differences in the individual 

efficiencies between the two models, which are most prominent at the 

highest temperatures. However, the effect of vibrational relaxation 

on the overall nozzle efficiency is beneficial. This is illustrated in 

terms of specific impulse in Fig. 43, for both the undissociated and 

equilibrium cases. Three points are made about this figure. Firstly, 

differences in specific impulse predicted by Models One and Two are 

small in the equilibrium limit (f =0), and of the order of 10% for 

undissociated NH^ (f = 1) at temperatures above 1500°K. Secondly, 

it is seen that the two rate equations and different values of the rate 

parameter used in Model Two (i.e. $ > 0), produce very similar specific 

impulses for undissociated NH^. Finally, Model Two predicts up to 30% 

difference in specific impulse between the equilibrium and undissociated 

cases. 

Dissociation of NH^ is obviously advantageous for the resulting 

increase in specific impulse. Whether it is achieved in resistojets 

is dependent on the kinetics of the decomposition and cn the heater 

design. As seen in the discussion of Model Zero, dissociation causes 

a considerable decrease in the overall nozzle efficiency, since electric 
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power going into dissociation energy is not subsequently recovered by 

recombination in the nozzle expansion. Results obtained with Model 

Two for the variation in nozzle efficiency with differing degrees of 

dissociation are shown in Fig. 44. At temperatures below 1400°K it 

is seen that a maximum nozzle efficiency is given by the undissociated 

(f = 1.) case. At higher temperatures is maximised with the 

partially dissociated mixtures, and by 2000°K the most efficient use 

of the nozzle is with the equilibrium mixture. It is apparent from 

Figs. 43 and 44 that the performance of ammonia resistojets is dominated 

by the chemical kinetics occurring in the heater flow. 

To summarise the main performance implications of Model Two for 

the nominal nozzle ; 

(i) Frozen vibrational energy loss in the cases of NE^ and is 

small. For CH^ and COg, an upper limit on vibrational rates 

= 100) indicates that substantial vibrational equilibration 

occurs, but with a lower limit ($ = 1) the losses are still large. 

(ii) Any improvements in the frozen flow efficiency, n^, due to 

vibrational relaxation are partly offset by increased incomplete 

expansion and viscous flow losses. 

(iii) The overall effect of vibrational equilibration is to increase 

the nozzle efficiency and specific impulse. 

Results of Model Two for the nominal geometry are prasented in 

Table VI for the following cases :-

(a) Undissociated hydrogen for the range of plenum temperatures 

from 300 to 3000°K, and equilibrium hydrogen for T^ from 

2000 to 3000°K. 

(b) Methane for T^ from 300 to 2000°K. 

(c) Carbon dioxide for T^ from 300 to 2000°K. 
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(d) Undissociated and equilibrium ammonia for the temperature 

range 300 to 2000°K. 

The rate parameter, is equal to unity in all cases except for 

where for greater than 500°K $ equals 100 and for temperatures 

below this $ = °°. A few cases for hydrogen with the equilibrium 

composition are included in Table VI (a) although this limit is not 

thought to be realisable in resistojet operation. For the purpose 

of calculating the freezing position in the equilibrium hydrogen 

mixture it is assumed, without further justification, that the 

vibrational relaxation of the mixture is identical to pure . 

6.2.4 Predictions of Model Three 

Briefly recapitulating, the boundary layer calculation used in 

this model is based on solutions of a modified Falkner-Skan equation, 

which includes the radial dependences accounting for transverse 

curvature (i.e. the Class B similar solutions of section 3.5.2). The 

assumption was made that vibrational energy was frozen throughout the 

nozzle (# = 0), so that an indication of the effects of transverse 

curvature on resistojet performance can be gained by comparing the 

results of Models Three and One. The computation carried out with 

Model Three has not been so extensive as the previous models due partly 

to the increased execution time, of the order of 200 seconds compared 

to 25 seconds need by Model One, and partly to a lack of overall 

project time. Thus results have been obtained only for hydrogen. 

It was noted in section 3.5.2 that it was not possible to obtain 

solutions of the modified Falkner-Skan equation (eq. 3.73) over the 

complete range of dimensionless parameters g, 6 and T^/T^. This point is 

of some importance not only in the interpretation of the results but 

also in their derivation, as will now be explained. The boundary layer 

calculation procedure, given in section 5.6, consists mainly of inter-

polating the integrals to P^ of Table II. However, the interpolation 
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routine CSFMIE also extrapolates quite efficiently, so that the boundary 

layer thicknesses can be evaluated for combinations of the pressure 

gradient parameter, transverse curvature parameter and total to static 

temperature ratio for which there are no solutions of the similar 

equation, eq. (3.73). Thus some care is necessary in obtaining the 

results, particularly for the lower values of 6, and the higher values 

of 8 and T^/T^. This combination of conditons is found in the nominal 

nozzle at the exit plane, when Re^^ is low, (see Fig, 23). The 

results presented here correspond to the range of Reynolds numbers, 

Re^^, from 2015 to 252. In order to verify the validity of these 

results for Re^* < 504, separate similar solutions of eq. (3.73) 

were obtained for the combinations of S, 0 and T^/T^ pertinent to the 

conditions at the exit plane. 

The first point about the results of Model Three is that the 

boundary layer growth in the convergent and throat section is almost 

identical to the prediction of Model One. Thus the discharge 

coefficient, which characterises the subsonic and transonic flow, is 

found to be only 0.1% larger with Model Three over the range of Re^* 

from 252 to 2015. It can therefore be concluded that transverse 

curvature has an insignificant effect on the flow in the convergent 

and throat section. This is attributed to the fact that T^/T^ 

approximates to unity in these sections, so that the dimensionless 

wall shear stress, f"(o), is almost the same as that predicted by 

Model One (see Fig. 10). 

In the divergent section the temperature ratio T^/T^ increases 

considerably5 and, combined with a falling pressure gradient, causes 

differences in the predictions of the two models. These differences 

are most pronounced at the nozzle exit, and the boundary layer 

thicknesses at this station are compared in Fig. 45. It is seen that 

the overall boundary layer thickness and the displacement thickness 

are predicted to be larger (of the order of 3%), when transverse 
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curvature is included. This is not a large difference, particularly 

since the similar solutions and the equations for the boundary layer 

thicknesses are quite different. However the effect of transverse 

curvature causes a considerable decrease in the momencum thickness, 

of the order of 20%. The differences in 6 are smallest at the highest 

Reynolds numbers and increase with falling Re^* when the boundary 

layer thickens. It was noted in section 6.2.2 that decreasing Reynolds 

number causes the pressure gradient parameter and the total to static 

temperature ratio to decrease. Thus at Re^^ = 2015, the values of 

3 and T^/T^ at the nozzle exit are 2.65 and 4.9 respectively, whereas 

at Re^a = 252; 8 = 1.70 and T^/T^ = 3.9. Decreasing Re^* has the 

opposite effect on the transverse curvature parameter, 0 , so that 

® = 0.15 at Re^a = 2015 and Q =0.25 at Re^^ = 252. This change 

has a significant influence on the boundary layer development and 

especially on the form factor 5 / 9 , in Model One, the form factor 

decreases from approximately 13.6 to 10.6 in this Reynolds nurber 

range, whereas the comparable figures for Model Three (i.e. including 

transverse curvature) are 16. and 14.3 respectively. It is worth 

examining the definitions of the boundary layer thicknesses to see 

where this difference comes from. Using eqs. (3.59) and (3.60) the 

form factor in the boundary layer theory of Model One can be written 

tr- = - 1 (6-2) 

e 2 

and in Model Three, from eqs. (3.53) and (3.56), we can write 

rT 
e 

* 1 - U - 8 

| - = 1 (6.3) 
1 - { 1 - 0 Pg}* 

Thus in Model One, eq. (6.2) can be expressed 

6* 
8- = F(G, T^/T^) 
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and similarly in Model Three, eq. (6.3) is 

= F(B, 1J1 , 6) 

It is apparent that the form factor is independent of the transverse 

curvature parameter in Model One, but in Model Three 6 /9 is intimately 

dependent on 0. 

In reducing the momentum thickness, transverse curvature causes 

the velocity defect due to viscous flow to be reduced. The efficiency 

accounting for this loss, n^, is shown for Models One and Three in 

Fig. 46. It is observed that the difference between the two models 

is considerable and this is most noticeable at the lowest Reynolds 

numbers. However, an interesting point is that for values of Re . 
J)K 

below 250; the combinations of 3, 0 and T^/T^ found in the vicinity 

of the nozzle exit lie in the region where solutions of the modified 

Falkner-Skan equation could not be obtained. This is also the region 

in which a rapid drop-off in is observed in Model One. Although 

it may be a coincidence, the two distinct models both suffer from 

computational difficulties when they are applied to the nominal 

nozzle at Re^* below approximately 250. The fact that both boundary 

layer models are unsatisfactory implies that a calculation procedure 

based on the full Navier-Stokes equations must be used at these 

conditions. 

While it is stres ;ed that the analysis and application of the 

similar solutions of the modified Falkner-Skan equation have been 

far from rigorous, there are several interesting implications about 

the effects of transverse curvature on the boundary layer development 

in resistojet nozzles. The results of what is essentially a first-

order perturbation of conventional thin boundary layer theory show that: 

(i) Transverse curvature has little effect on subsonic 

nozzle floxr. 
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(ii) The effects on the overall and displacement thicknesses 

are minor ones. 

(iii) However, including transverse curvature causes a marked 

reduction in the momentum thickness and consequent 

velocity defect due to viscous flow. 

6.3 Variation of Nozzle Geometry 

It was shox-m for the nominal geometry in the previous section 

that the various loss mechanisms are dependent on one another. This 

is particularly so in the case of the polyatomic propellants where the 

losses due to frozen vibrational energy, incomplete expansion, viscous 

flow and radial flow are all coupled. \«Ihen we consider which model 

should be used to examine the variation in performance with changes 

in the nozzle geometry it is apparent that Model Two, which allows 

vibrational relaxation, will produce extremely complicated results. 

In order to achieve some simplification, apart from discussing the 

incomplete expansion loss suffered by polyatomic propellants with 

vibrational energy in equilibrium, is used as the propellant in 

this section. The assumption of frozen vibrational energy is reason-

able in this case so that Model One is employed. It is accepted that 

Model One is not the most sophisticated model which has been developed 

in this work, however the fact that it is computationally economical 

allows examination of a wide range of variables. The changes in 

performance due to variations of the nozzle geometry are dependent 

on the viscous flow, so that further simplification is achieved, 

without loss in generality, by using a plenum temperature of 1500°K 

and allowing pressure to be the only plenum variable. The nozzle 

geometry consists conceptually of three parts: the convergent, 

throat and divergent sections. They are considered in that order. 

Unless otherwise stated the remaining geometric variables which describe 
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the nozzle are identical to the nominal geometry. Values of these 

variables are listed at the beginning of section 6.2. 

(i) Convergent section 

It is generally accepted that the shape of the convergent 

section of a convergent-divergent nozzle has little effect on the 

nozzle performance. Changes in the shape of the convergent section 

were not investigated thoroughly, but the few results that were 

obtained confirm this statement. Only the effect of the initial 

wall angle, 6^, was investigated in any detail. Using an inlet 

radius of 2.5 mm. the convergent half angle was varied from 15 to 

90° in steps of 15°, for a plenum pressure of 50 kNm ^ (i.e. Re^* = 

504). With increasing 9^ it was found that there was a slight, but 

consistent, increase in the efficiency accounting for the viscous 

flow velocity defect, from 0.839 with 6^ = 15° to 0.843 with 

= 90°. The changes in the discharge coefficient were negligible. 

While changes in the shape of the convergent section are predicted 

to have little effect on performance, it should be appreciated that 

these findings depend on the assumption that stagnation conditions 

exist at the nozzle entrance plane. In actual fact the gas will have 

a finite velocity at exit from the heater, and the velocity profile 

may be fully viscous. The form of this profile and the shape of the 

convergent section may therefore be important to resistojet performance. 

However, the effects of a starting profile cannot be assessed with the 

models used in this study. 

(ii) Throat section 

There are two variables in the throat geometry; they are the 

radius of curvature, R and the throat radius R . The effects of the 
c 

radius of the wall curvature on performance were investigated for values 

* 
of R from 0.5 mm to 4.0 mm, i.e. R /R from 1. to 8., for Re_. from 

c c D* 

16000. dovm to 150. Decreasing R^ produces a more favourable pressure 
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gradient at the throat, so that the boundary layer thickness is 

reduced. Thus the displacement thickness is also smaller, and it 

follows that the discharge coefficient, C^, is larger. The variation 

of the discharge coefficient with throat diameter Reynolds number 

is illustrated in Pig. 47. At the highest Re^^ the differences in 

with R^/R are small, e.g. at = 10"̂  there is less than a 2% 

decrease in C_ between R /R = 1. and 8. At the lower Reynolds 
D c 

numbers the differences are more pronounced, e.g. at Re^^ = 250, 

C_ = 0.883 with R /R = 1 which decreases to 0.806 with R /R = 8 . 
D c c 

This predicted change in the discharge coefficient with the ratio 

of R^ to R is confirmed by experiment, as will be discussed in 

section 6.4. The radius of curvature affects not only the discharge 

coefficient but also the velocity defect due to viscous flow, as 

represented by This effect is again most pronounced at low Re^^. 

At Re„^ = 252, n„ equals 0.754 with R /R = 8 . , but with R /R = 1 . 
jj" V c c 

increases to 0.786. 

The second variable is the throat radius, R . It was shown in 

the last section that for a given propellant the velocity defect due 

to viscous flow is dependent only on Re^^ (see Fig. 28). Since Re^* 

is defined as Re^^ = P u R /p^, it would appear at first sight 

that changes in with R may be deduced directly from this graph. 

However, as will be shown shortly, the viscous flow loss is dependent 

not only on Re^^ but also on the nozzle area ratio, and in particular 

on the Reynolds number based on wall length, defined by Re^ = p u L . 
* * 1 

Thus Fig. 28 can be used to predict for nozzleswith different 

throat radii only if the whole nozzle is scaled so that Re^/Re^* remains 

a constant. 

(iii) Divergent section 

This is the most important part of the convergent-divergent nozzle. 

Attention is first given to conical divergent shapes, where the two 
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variables are area ratio, e, and divergent half angle, Gg-

(a) Area ratio, e. 

It was shown in the discussion of Model One (section 6.2.2) that 

with vibrational energy frozen the incomplete expansion efficiency. 

Tig, for a given nozzle, was dependent only on the ratio of the frozen 

specific heats, In order to determine the magnitude of this 

loss over a wide range of area ratios, a simple program based on 

eqs. (2.26), (2.30), (4.11) and (4.12) was written to calculate the 

area ratio and resulting required to achieve a given exit temper-

ature. The results are illustrated in Fig. 48a for the cases of a 

monatomic gas (Y^^ =5/3), a diatomic or linear polyatomic gas 

(Ygp = 7/5) and a non-linear polyatomic gas (y^^ = 4/3) over the range 

of e from 1 to 1000. As previously noted, the incomplete expansion 

loss increases with the complexity of the propellent molecule: and 

from Fig. 48a it is seen, not unexpectedly, that the loss decreases 

with increasing area ratio. 

We are also aware from section 6.2.3 that vibrational relaxation 

can significantly influence This dependence is strongest when 

vibrational energy is in equilibrium, and in order to set a limit on 

the incomplete expansion loss an additional program, based on eqs. 

(2.26), (2.30), (4,18) and (4.19), was written to evaluate the 

behaviour of for this situation. With vibrational relaxation 

the incomplete expansion loss is no longer independent of the plenum 

temperature, so that is a function of the area ratio, the propellant 

properties and the plenum temperature. The results for and NH^ are 

shown in Fig, 48b. In the case of vibrational relaxation makes 

little difference in n from the y = 1.4 curve, and only results 

for T^ = 2000°K are shown. The curve is truncated at e - 200 since 

the temperature at the exit plane equals 100°K, which was the minimum 

temperature considered. The results for NK^ (undissociated) show 
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considerable differences from the frozen case where = 4/3, 

particularly at the higher temperatures. Thus with a plenum, 

temperature of 1000°K (at which temperature little dissociation of 

NH^ is likely in resistojets) an area ratio of 10 : 1 produces an 

incomplete expansion efficiency of 0.71. Increasing e causes some 

improvements but even with e = 100, rip increases only to 0.87. These 

figures contrast sharply with the incomplete expansion loss for a 

monatomic where rip equals 0.94 at e = 10, and 0.99 at e = 100. For 

completeness the - e curves for CO^ and CH^ are shoT<m in Figs. 48c 

and 48d. It is therefore emphasised that the use of polyatomic 

propellants in resistojet motors incurs a severe penalty in the 

form of large incomplete expansion losses, if vibrational equilibrium 

is maintained throughout the nozzle. 

Although an increased area ratio produces improvements in the 

incomplete expansion the benefits in the jet velocity are countered 

by the increased viscous flow loss. An increase in e, keeping R 

constant, produces a larger surface area and it follows that the 

momentum defect is increased. The effect of changes in the nozzle 

area ratio on the overall nozzle performance were investigated with 

Model One for a range of plenum pressure, therefore Re^^, for area 

ratios from 4 to 800 ; 1. The results for the velocity defect 

due to viscous flow, are shovm in Fig. 49. It is seen that, for a 

given Re^^, decreases as e is raised. Also the rapid drop-off in 

which was found with the nominal geometry (£ = 25) is exhibited by 

other nozzles at different Re^^. (It may be remembered that with the 

nominal geometry at Re^* = 201 convergence of the isentropic core-

boundary layer iteration procedure was not completely satisfactory, 

and the results under these conditions were regarded as tentative. 

The same reservations must also be made for the other geometries where 

the drop-off is very steep.) In the nominal nozzle this occurred when 

the pressure gradient parameter, 6, fell below a value of about two. 
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with larger area ratios this occurs at higher plenum pressures and 

therefore higher Reynolds numbers, and the result is the behaviour 

shown in Fig, 49. It can be seen that the velocity defect, is 

dependent on the throat diameter Reynolds number and the nozzle area 

ratio. Since the change in e represents a change in the nozzle wall 

length, it is more useful to correlate as a function of Re^* and 

Re^ 5 where Re is a Reynolds number based on the wall length. The 

ratios of Re^ to Re^* are included alongside the values of e in Fig.49. 

Thus the curves can then be applied to other nozzle geometries 

for which R is not necessarily equal to 0.5 mm, provided that 

A 

Re^/Re^^ = L/2R remains constant. 

It is apparent that variation of the nozzle area ratio causes 

a coupling of the incomplete expansion and viscous flow loss, and 

this in turn affects the radial flow loss. The overall nozzle 

performance corresponding to Fig. 49 is shown in Fig. 50, in terms 

of an efficiency, n = (n^ which is simply the ratio of 

the specific impulses, I to I At the smallest area ratios 
spCFEVD spCF 

there is a distinct improvement in efficiency by increasing e from 

4 to 10, since the improvements in incomplete expansion outweigh the 

viscous flow penalty. This is also true for the larger area ratios 

at higher Re^^, but as Reynolds number decreases the drop-off in 

the viscous flow efficiency when 3^^ - 2. more than offsets the improve-

ments in Tig, so that there is a rapid decrease in the overall efficiency. 

An envelope drawn around these curves would represent an optimum 

performance. It is stressed, however, that this is not a true optimum 

as only the area ratio has been varied while the divergent shape and 

the half angle, Gg* have been held constant. 

The information presented in Fig. 50 has been re-interpreted in 

Fig. 51a, where contours of constant efficiency have been dra^m on a 

graph of Re^ versus Re^*. First a word of explanation is necessary. 

Examining the line n = 0.90 in Fig. 50 it can be seen that a nozzle 
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with e = 25 corresponds to Re * - 4000. With increasing area ratio 

the Reynolds number, required to achieve this efficiency, falls and 

reaches a minimum at Re^^ - 1200 when the area ratio lies between 

100 and 200. Further increases in e cause the required Re^^ to rise, 

and by E = 800, Re^^ is required to be approximately 5000. In order 

that the optimum area ratio can be evaluated more precisely it is 

necessary to draw a graph either of Re^ versus Re^*, as in Fig. 51a, 

or of e versus Re^^. The former was chosen since the discussion is 

A 

then not restricted to a nozzle with R =0.5 ram. The n =0.9 contour 

in Fig. 51a corresponding to the increase in e just described starts 

at Re^a ~ 4000, moves to the left and reaches a minimum Reynolds 

number (Re^^) for which this efficiency can be achieved at Re^^ = 1200; 

this point corresponds to the "optimum" e. With increasing e the 

viscous flow loss predominates and the constant efficiency contour 

moves to the right. The line joining the minimum Re^* points can 

now easily be drawn. It is seen that this "optimum" efficiency line 

is essentially linear on a log^^ Re^ versus log^^ Re^^ plot. This 

is redrawn in Fig. 51b on the original axes of n and Re^^. An 

experimental "optimum" Igp^pEVD^^sp determined by Halbach^^^^ 

is included for comparison. This figure is discussed further in 

section 6.4, but at this stage it is noted that there is encouraging 

agreement. 

Finally, it is seen in Fig. 51a that no contours are found on the 

left hand side of the diagonal. The implication is that the model 

cannot be used to predict the performance of nozzles where the nozzle 

design and plenum conditions produce values of Re^ and Re^^ which lie 

within this region. 

(b) Divergent Half Angle, 8 . 

Still restricting the discussion to conical nozzles, the next 

geometric variable to be considered is the initial wall angle of thp 

-163-



divergent section, 8^, which for a conical shape is the wall angle 

throughout the divergent section. The effect of 6^ on the nozzle 

performance essentially involves trading off the viscous flow loss 

against the radial flow loss. The changes in performance were first 

investigated for the nominal nozzle, changing only 8^, for the range 

of Rê ĵ  from 16000 down to approximately 100; the divergent angle 

was varied from 5 to 40°. Variation of the nozzle efficiency, 

n = (Tig is shoxTO in Fig. 52, which is a plot of 8^ versus Re^* 

on which lines of constant n have been drawn. It is seen that 

changes in the divergence angle can significantly affect the nozzle 

efficiency. The nozzle performance is dominated by the viscous losses 

at small divergence angles, but with increasing 8^ the nozzle becomes 

shorter for a given e and the viscous loss is less severe. However 

the radial flow increases in significance and at large 8 this loss is 

dominant. Thus there is an intermediate region in which the combined 

viscous flow-radial flow loss is minimised; or, put another way, for 

a given Re^^ an optimum value of 8 exists which maximises the 

efficiency, n. At Re^^ = 10^, the optimum divergence angle for a 

nozzle of 25 : 1 area ratio is approximately 12°, and with decreasing 

Reynolds number the boundary layer thickens and the optimum 8^ 

increases, so that at Re^* = 200, 2^optimum al»OSt 40°. 

A similar investigation of the variation in performance with 

divergence angle was carried out for e = 100 and 400. The resulting 

optimum 8^ curves are shown in Fig. 53. Superimposed on this figure 

are contours of constant efficiency, 1 = 1 It is seen 
^ spCFEVD spCF 

that for a given Re^* the optimum half angle increases with e, however 

the differences in (0„) with e are not large. The reasons for 
2 optimum ° 

this can be found by examining the component losses for the different 

area ratios for the case where (8 ) . = 20°. The relevant 
2 optimum 

information is tabulated below. 
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E " = ("E "V 

25. 1700. 0.882 0.910 0.976 C.885 

100. 2650. 0.932 0.917 0,980 0.915 

400. 4400. 0.960 0-928 0.983 0.936 

The decisive factor in the similarity of the (9„) . - Re. 
^ 2'optimum D* 

curves 

is the viscous flow efficiency, It is seen from Fig. 49 that the 

Reynolds numbers at which 8^ = 20° is optimum, i.e. Re^* in the above 

table, are situated in the region where there are no major differences 

in between different area ratios. The relative boundary layer 

thickness, at the nozzle exit increases with £ as evidenced by 

but the combined effect is that the optimum curves are very similar 

for different area ratios. 

It should be remembered, however, that these results are the 

product of a quasi one-dimensional theory and for this reason the 

results for larger divergent angles can be criticised. 

(c) Variation in Shape of the Divergent Section 

The previous observation that there are gains to be made in the 

nozzle efficiency by increasing the divergence angle at lower 

Reynolds numbers suggests that performance benefits are also to be 

obtained by using a horn divergent shape. This suggestion was briefly 

examined for a nozzle of 100 : 1 area ratio. The relation used to 

describe the shape of the divergent section is given by eq. (5.1), 

which is 

^ ' "2%* 

All the geometries so far discussed have used a conical shape where 

a = b = 0. To produce variations in the divergent shape, geometries 

-165-



were considered where the parameter b was again set to zero but with a 

non-zero. The values of a which were used, are 5, 10, 15,25 and 50 

and the resulting shapes of the divergent section, with 8̂ , = 20° 

(0.3491 rads), are shown in Fig. 54. The resulting performance 

figures, in terms of the specific impulse ratio are shown in Fig. 55. 

At the highest Reynolds numbers where the viscous effects are smallest 

the conical shape (a = 0) produces the most efficient nozzle. The 

horn nozzles are penalised by large radial flow losses, e.g. at 

Re^* = 8060 with a = 50, = 0.847 compared to of 0.968 with 

a = 0. Decreasing Re^^ reduces the radial flow loss. Thus it is 

seen from Fig. 55 that with decreasing Re^^, nozzles with larger values 

of a become more efficient in comparison to those with smaller a. At 

the lowest Reynolds numbers the nozzle with a = 50 is the most efficient, 

although the radial flow loss is still substantial the divergence of 

the nozzle wall allows the effective inviscid core to occupy a larger 

portion of the nozzle flow field. 

The following points summarise the main findings concerning the 

variation in performance with resistojet nozzle geometry :-

(i) The convergent section has little influence on performance. 

* 

(ii) Decreasing the ratio of R^ to R increases the discharge 

coefficient and, to a lesser extent, reduces the viscous 

flow velocity defect. The improvements are most 

significant at low Re^*. 

(iii) Since the viscous flow, mass and velocity defects are 

strong functions of the throat diameter Reynolds number, 

it follows that these losses are dependent on the throat 
* 

radius, R . 

(iv) Substantial losses from incomplete expansion are found for 

all nozzles employing polyatomic propellants, when 
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vibrational equilibrium is maintained throughout the nozzle. 

(v) The viscous flow velocity defect i-" shoxm to be dependent 

on two Reynolds numbers, based on the throat diameter and 

wall length respectively. 

(vi) For conical nozzles of given divergence angle the optimum 

area ratio increases with Re^^. 

(vii) The optimum divergence angle in conical nozzles increases 

as is lowered. However, the optimum is not a strong 

function of area ratio. 

(viii) At lower Reynolds numbers, horn shaped nozzles offer 

considerable performance benefits. 

6.4 Comparison with Experiment 

The crucial test of any theoretical model is how its predictions 

compare with experimental measurements. Although a considerable amount 

of experimental work has been done on resistojet motors, there is not 

a lot of data in the literature which can be regarded as reliable. 

This is caused mainly by the small size and low thrust levels of 

resistojets, so that it is extremely difficult, physically, to monitor 

much more than the gross performance quantities of thrust and mass flow 

rate. Even these parameters are only obtained accurately when extreme 

care is taken (for instance see Ref. 93). As mentioned in Chapter One, 

the fact that perfect vacua cannot be maintained in space simulation 

chambers causes additional complication, since the ambient pressure 

of the vacuum chamber interacts with the low density viscous nozzle 

flow with adverse effects on the resistojet performance. This was 

clearly demonstrated in the work of Yoshida et al , who measured 

a specific impulse of 539 seconds from a hydrogen resistojet at a 

vacuum chamber pressure of 300 microns, but as the chamber pressure 
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was lowered the specific impulse improved markedly to reach nearly 

670 seconds at a pressure of one micron. It is for this reason that 

much of the early data on resistojet performance is considered 

• « i" 

unreliable. On account of their small size detailed flow measurements, 

such as the velocity and density profiles at the nozzle exit, have 

never been taken. Finally, even such basic properties as plenum 

temperature and pressure are difficult to measure directly and are 

often inferred from other information. 

As comparisons of thrust and mass flow rates reveal very little 

about the structure of the flow and the nature of the loss processes 

found in resistojet nozzles, resort has to be made to other experi-

mental data in which some, if not all, of the losses are found. The 

first experimental comparison is with the work of Tang^^^\ who has 
made extensive measurements of the discharge coefficient in small 

* 

(R - Go25mm) convergent-divergent nozzles at a stagnation temperature 

of 300°K. This work was an experimental and theoretical investigation 

of the dependence of on the throat geometry (R^/R ) for the gases 

N2> Ar and He. In the theoretical part of his study. Tang derived 

closed-form, analytic solutions for the discharge coefficient as a 

function of Reynolds number and throat geometry, which he obtained 

from the Falkner-Skan equation for values of 0 = 1, 2 and infinity. 

However it is the experimental aspect of this work which is of 

primary interest, as Tang's results are very consistent and it is 

possible to draw fair mean lines through his data. Comparisons of the 

results for the four gases over the range of Re^^ from 100 to 20000. 

with the predictions of Model One for a nozzle with R = 0.258 mm and 
A 

R-^/R = 2.18 is shorn in Fig. 56a. First it is noted that the experi-

mental results for He and Ar are coincident. The corresponding 

theoretical curve = 5/3) is found to give a consistently higher 
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value of discharge coefficient, although the maximum difference is 

only of the order of 2%. In the case of and N^, Tang's 

experimental results do not produce coincident lines as is predicted 

by Model One with = 7/5. The measured curve again lies below 

the predicted curve, although the maximum difference is less than 1%. 

However the comparison between experiment and theory for is very 

favourable. At the lowest Reynolds numbers the two curves are 

coincident, but as Re * increases the difference also increases, which 

is contrary to what one intuitively expects to happen when the boundary 

layer thickness decreases. The difference in the experimental 

between and is ascribed mainly to the differing amounts of 

velocity slip at the nozzle surface. Next, the effects of variation 

in the throat geometry as measured by Tang and as predicted by Model 

One are compared in Fig. 56b. The test gas is and the geometries 

considered are the previous case with R^/R = 2.18 and another with 

A 

a sharper throat where R^/R = 1 . It was predicted in section 6.3 

that reductions in the throat radius of curvature cause an improvement 

in the discharge coefficient, and Tang's data confirms this behaviour 

as is shown in Fig. 56b. The agreement between prediction and measure-

ment is seen to be good, and the little difference that there is at 

low Reynolds numbers is attributed to the neglect in the theory of the 

terms accounting for longitudinal curvature. 

Mention was made in Chapter One of the investigations of Rae^^^^ 

and Rothe^^^^ on viscous low-density nozzle flows. The former was a 

theoretical study which employed the slender channel approximation 

to the Navier-Stokes equations ̂  to examine the viscous flow in various 

nozzles for Reynolds numbers below Re^^ - 660. (See footnote on page 28) 

In the second work, Rothe used an electron beam to obtain radial density 

and temperature profiles at several stations in two conical nozzles, 

at Reynolds numbers comparable to those studied by Rae. The nozzles 
* 

were comparatively small^ with R =1.25 and 2.5 mm, and e = 66. 
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Nitrogen was used as the test gas at a stagnation temperature of 300°K. 

The main interest of these studies was in the existence at Re . less 
D* 

that 50 of a supersonic "bubble" inside the nozzle divergent section, 

with a subsequent shock-free viscous transition to suDSonic flow. 

This phenomenon lies outside the predictive capabilities of the 

present boundary layer models, however Rothe reports on an experiment 

with Re^^ = 633 which the present models can handle. Predications of 

Model One for the centreline density and temperature distributions in 

this case are compared to Rothe's measurements and Rae's predictions 

in Figs. 57a and 57b. The present results are seen to compare 

favourably with those of Rae, although both sets of theoretical curves 

differ from Eothe's experimental data. It must be pointed out that 

the modelling of the nozzle geometry in the present computation was 

not exact since the throat shape which was used here differed from 

the experimental geometry. The actual throat radius of curvature was 

* 

0.64 mm giving R^/R = 0.51, which is a very sharp throat. In most 

cases reported in this thesis the calculations were carried out at 

101 equi-spaced stations along the nozzle axis. Using such a procedure 

with Rothe's geometry produced an ill-defined throat section, and 

sensible results were not obtained. Attempts to alter the step-size 

were not successful in this particular case, and the difficulty was 
* 

overcome by modifying the geometry to give R^/R = 2. Although the 

effects of this difference on the boundary layer growth in the 

divergent section are only small, the two theoretical predictions are 

not strictly comparable. 
( ° 2 ) 

A better example is to be found from the experiments of Yevseyev 

on the flow of air through a nominally inviscid Mach 6 nozzle from a 

plenum temperature of 300°K. In this nozzle the throat radius was 5 mm 
* 

and R /R - 13.4, so that the throat section did not present a problem. 
c 

-2 

The plenum pressure was somewhat lower at 500 Mm , which gives a throat 

diameter Reynolds number of 660 and is therefore comparable to Rothe's -170-



case. In fact Yevseyev's data was used by Rae as his original test 

case. Comparison of Yevseyev's measured centreline Mach number 

distribution with the predictions of Rae and with Model One are 

shown in Fig. 58a. The agreement of the present predictions with 

Yevseyev's data is seen to be good, and is considerably better than 

the predictions of Rae taken from Ref. 43. However, further examination 

of Yevseyev's data indicates that this agreement must, to an extent, 

be fortuitous 5 since Rae's model predicts the velocity profiles more 

accurately. Comparison of the predicted velocity profiles of Rae 

and of Model One with Yevseyev's velocity measurements for the 

station z/R = 11.1 is given in Fig. 58b. It is seen that the no 

slip condition which is assumed in the present work differs consider-

ably from Rae's prediction of u^/u^ - 0.15. This assumption largely 

offsets the increased velocity defect at the edge of the boundary 

layer which is predicted by Rae. Nevertheless, it is remarkable that 

the boundary layer/inviscid core model succeeds as well as it does 

at such low Reynolds numbers. 

Turning now to the prediction of resistojet performance, a useful 

starting point is the previously discussed hydrogen resistojet of 

Yoshida et al^^\ This resistojet is composed of a concentric tube heater 

and a conical nozzle with an area ratio of 32.6 : 1. Yoshida 

estimated the plenum temperature by two methods, (i) using an 

optical pyrometer sighted on the rear wall of the heating element 

and (ii) using an overall energy balance. It is inferred from Ref. 7 

for the case where the specific impulse was measured to be 668.6 

seconds that the plenum temperature, T^, lay between 1800 and 1900°K. 

No mention is made of the plenum pressure, but an examination of the 

results of Model One for a range of plenum pressures indicates that 

- 2 
Prp must have been of the order of 170 kNm . It is noted that the 

- 2 
supply pressure was approximately 340 kNm , so it is implied that an 
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extremely large pressure drop occurred in the heater. Computation 

- 2 . 
was carried out with Models One and Two for p = 170 kNm and T = 

1 T 

1800 and 1900°K. The other nozzle geometric variables were 8^ = 22?, 

R = 0.2365 mm and it was assumed that R^/R = 1. Comparison of the 

results is shown below. 

Comparison of Predictions of Models One and Two with 

Resistojet of Yoshida 

Meas-

T2=1800°K (Re^* = 640) T^=1900°K (Re^a = 600) 

ured 
# = 0 100 $ = 00 0 = 0 $= 100 $ = 00 

° / -1\ 
m(gs ) 0.00688 0=00688 0.00683 0.00683 0.00668 0.00662 0.00662 

F(m W) 45.1 43.3 43.5 43.6 43.3 43.4 43.5 

Isp(s) 668.6 641.9 649.6 651.6 658.1 666.9 670.5 

"Res " \ 
0.597 0.731 0.748 0.753 0.723 0.743 0.751 

218.8 157.4 156.2 156.2 163.9 162.6 162.6 

Since there is some uncertainty in the plenum conditions, in particular 

in the value of p^, it follows that the comparison between Yoshida's 

measurements and the present predictions is only approximate. Of the 

parameters presented in the above table the specific impulse is the 

least affected by the plenum pressure, being essentially a function of 

temperature, with the pressure exerting a secondary influence through 

the Reynolds number dependence of the viscous flow velocity defect. 

It is seen from Fig. 28 that, for a similar nozzle geometry, is 

not critically dependent on Reynolds number for Re^^ of the order of 

600, Thus comparison of the specific impulse is the most meaningful. 

The comparison is seen to be good, and it is again noted that the 

rate parameter, has only a small influence on the theoretical 

performance of hydrogen. The comparisons of n^^^gWith and of 
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are not so meaningful since losses from the heater contribute to the 

experimental figures. 

An experiment in which the influence of the heater should have 

a lesser bearing on the overall efficiency is reported by Murch and 

Krieve^^^\ who have developed a vortex heater which they claim gives 

very low thermal losses for temperatures below 1200°K. Using this 

design Murch and Krieve have measured the performance of CH^ 

and CO^ for heater temperatures up to 2000°K. The amount of hot metal 

surface in the heater is very small so that it is expected that little 

catalytic decomposition of the propellants will occur. In fact when 

using CH^ Murch and Krieve found no measurable deposition of solid 

carbon at heater temperatures below 1900°K. In order to compare 

with these experiments computation was carried out with Model Two, 

with $ = 1; for a range of plenum temperatures using the stated 

* 

nozzle dimensions of R == 0.216 mm, £ = 40; it was assumed that 

82 ~ 20? and = 2. Comparisons of the results for CH^ 

and CO^ are shown in Figs. 59 to 61. First examining the performance 

predictions for ammonia, it is seen from Fig. 59a that the mean 

curve of electric power per unit thrust plotted against specific 

impulse, taken from the data of Murch and Krieve, is matched extremely 

well by the undissociated (f = 1) curve predicted by Model Two for a 
"2 a 

plenum pressure of 145 kNm , Comparison of the measured resistojet 

efficiency, with the predicted nozzle efficiency, n^, for f = 1, 

shown in Fig. 59b is also seen to be good. Results of Model Two for 

the equilibrium limit (f = 0) are also included in these figures 

and it is seen that even at high temperatures there is little resemblance 

between the f = 0 curves and the experimental curves. It is observed 

that specific impulses of over 300 seconds were measured by Murch and 

Krieve, which suggests that either some dissociation occurred, or 

heater temperatures well in excess of 2000°K were achieved. 

Comparison of the methane performance parameters is shown in 
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Fig. 60. It is seen that the present theoretical results do not 

correspond as well as in the case of NH,, although the shapes of both 

the P T/F versus I , and n versus I curves are very similar. It 
el sp sp 

is not readily apparent what is the cause of the significantly higher 

theoretical performance, but it should be mentioned that there is 

considerable scatter in all of the data of Murch and Krieve, in some 

cases as much as 20%. Finally, the carbon dioxide performance curves 

are shoxra in Fig. 61. Again the comparison is fair only, although 

here too the present author has some reservations about the experi-

mental data. For instance, Murch and Krieve report a specific impulse 

of 68 seconds for CO^ when it is operated cold (300°K) which is a 

value greater than that produced by an ideal nozzle with no losses. 

However, accepting the considerable degree of uncertainty in the 

plenum conditions it is seen that Model Two gives a reasonable 

prediction of the overall performance of the polyatomic propellants 

for a range of plenum temperatures. 

It was mentioned in the literature review of section 1.4 that 

the slender channel computer program of Rae has been used by Kallis, 

(45) 

Goodman and Halbach to predict the performance of resistojets. 

For three reasons this was a welcome addition to the literature. 

Firstly, it provided additional theoretical modelling of resistojet 

nozzle flows. Secondly, it reported experimental results for several 

propellants for which the vacuum chamber pressure was less than two 

microns. Finally, and perhaps most importantly, in relating experiment 

and theory Kallis et al have had to evaluate the plenum conditions, 

and p^. A further point is that full details of the nozzle geometry 
o * 

were given. These are 8^ = 70., R = 0.2286 mm, = 0.254 mm and 

G = 360. The divergent section was of a horn shape which in the 

present calculations was approximated by 
R = 0.2129z + 27.0z^2 
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Model Two was run with $ = 100 to compare with some of the cases 

reported in Ref. 45. With this geometry the stepsize was modified 

in the vicinity of the throat without encountering any computational 

difficulties. Comparison of the predictions of Model Two with the 

experimental results of Kallis, Goodman and Halbach, and with the 

predictions of the Rae program are tabulated below. 

Comparison of Predictions of Model Two with Results of Kallis, 

Goodman and Halbach 

Gas TT(°K) 
PT 

(kNm 

Isp (:) 

Gas TT(°K) 
PT 

(kNm Expt. 
"Rae" 
Model 

% Diff. 
with Expt. 

Model 
Two 

% Diff. 
with Expt. 

1667. 223. 893. 630. 630. 0.0 653.6 + 3.7 

^2 
777. 233. 2384. 436. 431. - 1.1 445.2 + 2.1 

CH. 
4 

1000, 172. 2533. 227. 206. - 9.2 212.0 - 6.6 

CO^ 1222. 213. 2890. 143. 150. + 4.9 138.3 - 3.3 

CH, 
4 

667. .182. 4405. 172. 168. - 2.3 165.1 - 4.0 

It is seen that in comparison to the experimental specific impulse. 

Model Two overestimates the performance of and underestimates for 

COg and CH^. The percentage difference with the experimental 1^^ is 

comparable to that obtained with the "Rae'' model. However it should 

be noted that the slender channel program used the assumption of a 

constant ratio of specific heats, Y. Kallis et al make the approximation 

that Y is equal to the value appropriate to the plenum temperature, with 

vibrational energy in equilibrium, and is constant throughout the nozzle. 

This is not physically valid and the effect on performance is to cause 

an increase in specific impulse over the case where vibration is in 

equilibrium with translation. Thus, apart from the CO^ case, more 

correct modelling of the vibrational relaxation would reduce their 

predicted specific impulse and therefore cause an increase in the percentage 
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difference of the "Rae" model with experiment. 

Next, the theoretical and experimental ''optimum" nozzle efficiency 

curves which are shown in Fig. 51b are briefly discussed. The theoretical 

curve was obtained with Model One by deriving that area ratio which 

maximised n = IgpCpEVD^^spCF ^ given Reynolds number, for the case of 

conical nozzles with a divergent half angle of 20? The experimental 

curve was derived by Halbach^^^^, who essentially analysed a large amount 

of experimental data from which he obtained a conservative optimum curve. 

Thus the two curves are not necessarily optimum at any point. However 

they are very useful indicators of the maximum nozzle efficiency as a 

function of Re„., and the fact that there is less than 2% difference 

between them for Re^^ ranging from 600 to 6000 substantiates the present 

performance predictions. 

Finally, it is interesting to note that Halbach, together with 

Page and Short, i.e. the authors of Ref. 2, have designed a 3kW 

hydrogen resistojet with a nozzle area ratio of 100 : 1. Details of 

the preliminary testing of this resistojet at R.P.E., Westcott have 

been reported in Ref. 93. Although measurements have not yet been 

made at the design operating temperature of 2480°K, the predictions 

of Model Two using a vibrational rate parameter, 0 = 100, are found 

to compare very favourably with the performance estimates of Halbach 

et al. These performance predictions are listed below, without 

further comment. 
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Predicted Performance of RPE Resistojet (T^ = 2480 K, 

= 304 = 2100) 

Estimated Performance 
(Ref. 93) 

Model Two 
Predictions 

m (gs 0.0806 0.0822 

F (N) 0.652 0.655 

vj (kms~^) 8.09 7.97 

pj (kW) 2.64 2.61 

\ ' 
1.000 

0.991 

0.931 

0.902 

% 0.983 

\ 0.810 0.818 

-177-



Chapter Seven Summary Discussion 

This thesis has been concerned with the theoretical prediction 

of resistojet performance; in particular it identifies the various 

energy loss processes, and models the gasdynamics of the nozzle flow. 

It was shown in Chapter One that a complex, interacting situation 

exists in the nozzle flow, so that a number of assumptions were made 

in the analysis to make the problem more tractable. For the sake of 

computational economy an inviscid core/viscous boundary layer model 

was assumed, and an important portion of this work has been devoted 

to the development of similar solutions of the laminar boundary layer 

equations, where the boundary conditions at the nozzle wall were that 

of no slip and an adiabatic wall. These solutions were then used to 

represent the boundary layer development. The nozzle flow was 

assumed to be quasi one-dimensional, and vibrational relaxation of 

the propellant was modelled by assuming that at a given station in the 

nozzle the specific heat was constant. 

A hierarchy of computer programs have been developed which 

describe the gasdynamics with varying degrees of sophistication. The 

effects of the major variables (propellant, temperature, pressure, 

degree of dissociation, vibrational rate and nozzle design) were 

examined using the appropriate computer program. It was found that, 

even in the simplified situations considered here, the various energy 

loss processes were intimately coupled; for example vibrational 

relaxation leads to increased losses from viscous flow and incomplete 

expansion. It was also shown that the performance of ammonia resistojets 

is significantly affected by propellant decomposition, but in order to 

accurately model the performance, more complete kinetic data of the 

dissociation is required. Further it is noted that there is little 

vibrational relaxation data in the literature for the polyatomic gases 

at 
- NHg, CH^ and CO^ - in a de-excitj^on environment. 
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The agreement of calculations based on solutions of the Falkner-

Skan equation with experimentally measured boundary layers is reasonable, 

even when the boundary layer is thick, thereby justifying the approach. 

Overall resistojet performance parameters have been compared with 

experiment and with the semi-empirical estimates of Halbach. Again 

the agreement is satisfactorily good. Predictions of the present 

performance models are also found to compare favourably with alternative 

theoretical predictions based on Rae's slender channel model. An 

important advantage of the computer programs reported in this work is 

that they are very economical. For instance, the best program 

(Model Two) requires 80 seconds per case on an ICL 1907 computer, 

whereas the modified Rae program used by Kallis et al typically takes 

900 seconds per case on a CDC 6500 computer - a computer which is 

approximately ten times faster. 

Although the present results compare favourably with a range of 

experiments, in view of the assumptions made, it must be accepted that 

this agreement is in parts fortuitous. Thus it is recognised that the 

basic model (inviscid core/viscous boundary layer) is inappropriate 

when the flow is essentially viscous throughout the nozzle, which in 

typical resistojet nozzles occurs for Re^^ of the order of a few 

hundreds. It is in this region that the slender channel approach is 

most applicable and where the inclusion of slip velocity is essential. 

However, the agreement of the present models with experiment over the 

region of Reynolds numbers of practical interest in resistojet applic-

ations (500 ̂  Re^^ ^ 5000) has been shown to be satisfactory. Finally, 

the fact that considerable difficulties are experienced in the experi-

mental determination of resistojet performance, means that the comput-

ationally economical models developed here are of considerable use in 

resistojet design. 
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The major conclusions of this study are as follows ; 

1. The five energy loss processes considered to occur in resistojet 

nozzle flows, are all potentially important. Depending on the 

propellant, the losses from frozen chemistry and finite 

vibrational relaxation rate may be dominant. Losses from 

incomplete expansion, viscous flow and radial flow are coupled 

and they can be traded-off against each other to pro^ice an 

aptimum nozzle. 

2. It has been demonstrated that the basic approach, in which 

the flow is separated into an inviscid core and a viscous 

boundary layer, provides an adequate description of most 

resistojet nozzle flows except near the onset of viscous 

closure; this limit is a function of two Reynolds numbers 

based on the throat diameter and the wall length. 

3. Representation of the laminar boundary layer by the patching 

together of similar solutions of the Falkner-Skan equation, 

leads to predictions which agree quite well with experiment. 

4. According to the solutions of the modified Falkner-Skan 

equation the influence of transverse curvature on the boundary 

layer development is significant only in the supersonic region 

of the nozzle, where the effect is to somewhat reduce the 

boundary layer momentum thickness and therefore decrease the 

velocity defect due to viscous flow. However the overall 

effect on resistojet nozzle performance is relatively small, 

so that use of the ordinary Falkner-Skan equation, which is 

better justified theoreticallyj is considered to be satis-

factory for the purpose of resistojet performance prediction. 

5. The results show that the losses due to finite vibrational 

rate processes in the polyatomic propellants are very dependent 

on the relaxation rates of such gases in a de-excitation environment. 
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6. Vibrational relaxation in the polyatomic propellants 

significantly affects the losses due to incomplete expansion 

and viscous flow. 

7. Performance predictions obtained with Model Two, i.e. the 

model which is found to compare best with experiment, are 

tabulated for CH^, CO^ and NH^ for the nominal geometry 

over a range of plenum conditions. 

8. The models presented here will be of considerable help in 

the design of resistojet nozzles and in the theoretical 

prediction of resistojet performance. 
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Appendix A Discussion of Mathematical Techniques Used in 

Solving the Similar Boundary Lr.yer Equations 

The similar boundary layer equations» such as eq. (3.67) or 

eqs. (3.77) and (3.78), constitute a non-linear two-point boundary 

value problem in which either one or two of the inner boundary 

conditions are unknown. The crux of the solution of these equations 

lies in determining the correct unkno^ra boundary conditions. There 

are various ways of achieving this, of which two are mentioned here. 

The first method is termed quasilinearisation, and an account of the 

application of this approach to solving the Falkner-Skan equation has 

been given by Radbill^^\ In essence this method simply linearises 

the original differential equations, however it is pointed out by 

(2) 

Nachtsheim and Swigert that several difficulties can be experienced 

with quasilinearisation, of which the most significant is the fact that 

the solution can become badly determined. This, added to the complex 

formulation of the method makes quasilinearisation unattractive. An 

alternative, which was used here, is to treat the similar equations as 
(3) 

an initial value problem . In this method guess values are used for 

the unknown initial conditions and the ordinary differential equations 

are integrated until quantities such as velocity and shear stress 

become asymptotic at large n . Integration is carried out for several 

trial values of the unknown boundary conditions and the correct value 

is obtained by interpolation. 

This method is also not without its difficulties. These can be 

illustrated by considering the Falkner-Skan equations (eq. 3.67). The 

first point concerns the initial guess value of f"(o) which is the 

unknown boundary condition in the Falkner-Skan equation. If this 

initial guess is too large then the boundary layer profiles such as the 

velocity profile tend to infinity with large values of n; if it is too 

small then the velocity ratio will reach a maximum which is less than 
- 1 8 8 -



unity and then decrease. Thus there is a restricted range of values 

about the required f"(o) which can be used to obtain the correct initial 

condition. The second point is concerned with the method for which the 

acceptable guess values of f"(o) are then interpolated. Smith and 

C l u t t e r i n an examination of the laminar boundary layer equations, 

used a shooting technique in which the previous guess values of f"(o) 

were fitted by linear, quadratic or cubic curves in the f"(o) - f'("») 

plane. These curves were then used to predict the value of f"(o) which 

would produce f'(°°) = 1. Integration was then carried for the new 

value of f"(o) and the process was repeated until convergence was 

achieved. These techniques have been used in this study, but were 

found to be satisfactory only when the ordinary differential equations 

were not excessively non-linear, i.e. for small values of the pressure 

gradient parameter. A far more attractive technique is the Newton-

Raphson iteration method (ref. 5, p. 447). This method was used here 

for the Class A and B similar equations, and is briefly described. A 

guess value of f"(o) which was known to be less than the required value 

was used to start the calculation, and the similar equation was then 

integrated until a maximum in f'(n) was reached; this value was 

assumed to be f'(°°). The guess value of f"(o) was then perturbed and 

the process repeated. This formed the pre-requisite for use of the 

Newton-Raphson equation, which for the present problem can be written 

where k = 2 for the first application of this equation. The whole 

integration and the Newton-Raphson process were repeated until 

(1 - .< lo"^ 

and f"(») ^ 10~^ 

Four or five applications of the Newton-Raphson process were required 
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in most cases for the Class A and B equations. It was observed that 

when these equations were extremely non-linear (i.e. at large 0), if 

a value of f'(™) which was larger than unity was used in the iteration 

process, convergence was corrupted. To overcome this all values of 

f"(o) for which f'(") was larger than unity were ignored, so that the 

Newton-Raphson method was used as an extrapolation procedure. 

In . the cases where there are two unlcnoxra boundary conditions, 

as in the Class C and D similar equations, a two variable Newton-

Raphson procedure was used (see Ref. 5, p. 450). This method was not 

so successful as its one variable counterpart, and then was only 

relatively satisfactory for values of pressure gradient less than 

unity. At higher values of 3 convergence was very slow. The diffi-

culty lay in the fact that the perturbation required to achieve 

convergence in one variable had a detrimental effect on the convergence 

of the other variable, so that the Kewton-Raphson procedure was trying 

to work in opposite directions. The process converges, but does so 

at a decreasing rate as the correct outer boundary conditions are 

approached. 

Actual integration of the similar equations was carried out using 

a fourth-order Runge-Kutta procedure (see Ref. 5, p.236). To use the 

Runge-Kutta method the original ordinary differential equation(s) must 

be reduced to a series of first-order equations. In the case of the 

Falkner-Skan equation four first-order equations are required, and for 

the Class D equations (eqs. 3.77 and 3.78) seven equations are 

necessary. At low values of B (less than two) the step size used was 

Ari = 0.01. Thus in solving the Falkner-Skan equation for 3 = 0 about 

600 steps were required in going from n = 0 to n = n^. At higher 

pressure gradients the step size was reduced and in general for 6 

greater than five. An = 0.001 was used. This resulted in about 2500 

steps across the boundary layer. The use of such small step sizes 

almost certainly accounts for the present successful integration of the 
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Falkner-Skan equations for B greater than two. 

It is recommended procedure in the use of Runge-Kutta integration 

techniques to vary the step size until consistency in the results is 

obtained. Although thorough checks on the accuracy of the similar 

solutions have not been carried out, examination of the following 

table of solutions of the Falkner-Skan equations shows that the values 

of f"(o) which have been obtained should be consistent to at least 

six decimal places. 

3 An n f"(o) 

0. 0.1 5.8 0.469 601 372 

0. 0.01 5.78 0.469 601 457 

0. 0.001 5.779 0.469 601 465 

10. 0.01 2.46 3.675 234 01 

10. 0.001 2.447 3.675 234 06 
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Appendix B Literature Survey of Relevant Vibrational Rate Data 

A survey of vibrational rate data for gases used as resistojet 

propellants is necessary in order to obtain the empirical constants A 

and B of the Landau-Teller equation, 

1/3 
pT = A exp(B/T) ' (4.29) 

required in the sudden freezing model. It should be noted that all the 

data presented here are obtained from shock wave experiments, therefore 

they are measurements of excitation rates. Of the molecules considered, 

Ng and CO^, have been extensively examined and only mean experimental 

lines are presented. For and CH^, although not so widely studied, there 

is sufficient data in the literature to enable determination of the Landau-

Teller constants with some degree of confidence. However, the available 

(19) 

data for is scarce, even contradictory, with recent experiments 

indicating an unusual temperature dependence.* 

Considerable experimental information is available on the rates 

for exchange of energy between translational and vibrational (T-V) mode 

of diatomic molecules, (see, for instance, Ref. 2) including N which is 

of interest here, since along with it is a product of NH^ dissociation. 
—. 2 / 2 

In Fig. Bl, a plot of log^^ (p?^) against T for various single gases, 

two lines are presented for which are least squares fits of the 

experimental data of Refs. 1 and 2. Agreement between the two lines is 

good, and in a later survey of vibrational relaxation processes, Taylor 
(3) (2) 

and Bitterman confirm the mean line suggested by Millikan and White 

This line is used to obtain the Landau-Teller constants for N^. The other 

diatomic molecule of interest, has not been examined thoroughly, 

however the rate data that exists does indicate a linear dependence 

of log^Q (pT^) with T . The least squares line of Kiefer and Lutz^^\ 

obtained over the temperature range 1100 to 2700°K, when extrapolated to 
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lower temperatures in Fig. Bl, agrees extremely well with the measurement 

fS") -3 o 
of de Martini and Decius for pr^ (H^) = 1.06 x 10 atm.sec. at 300 K. 

AT 1400°K %ite^^^ notes that pr^ (H^) is less than 2.ysec.atm., a rate 

slightly faster than the measurements of Ref. 4. A further measurement 

by Gaydon and Hurle^^^ confirms the general behaviour of the mean of 

Kiefer and Lutz, and this line is used in the present study. 

For polyatomic molecules with tvro or more vibrational modes, 

vibration-vibration (V-V) energy exchange becomes important. Taylor and 

(3) 

Bitterman note that in general V-V rates are faster than the 

corresponding T-V process and that the rate controlling process for 

vibrational energy exchange in polyatomic molecules is a T-V exchange 

with one specific mode, and all the other modes are equilibrated by 

rapid inter-and/or intramolecular vibrational exchange. The mechanisms 

of vibrational excitation and de-excitation are clearly dependent on the 

V-V processes, however in application to a sudden freezing model only the 

rate-limiting step of energy transfer from vibration to translation is of 

interest. It is stressed that in the Landau-Teller theory the transition 

probabilities, and therefore rates, of energy exchange from V-T and T-V 

are identical. 

Of the polyatomic molecules, carbon dioxide has been widely studied; 

see Ref. 3. The least squares line of Camavale et al^^\ presented in 

Fig. Bl, agrees closely with the mean of Taylor and Bitterman's extensive 
(9-13) 

survey, and is the relation adopted here. The data for CH^ , once 

again, approximates to a straight line on a Landau-Teller plot. At 300°K, 

there is good agreement between the values given in Refs. 9, 10 and 13 for 

pT^(CH^) of 1.9, 1.6 and 1.86 sec.atm., respectively. Eucken and Aybar^^^^ 
(12) . . (13) 

Richards and Sigafos , and Hill and Winter present relaxation data 

of CH^ for temperatures up to 1400°K and a sensible straight line can be 

drawn through the data. 

Few references on vibrational relaxation of are to be found in 

the literature, but such data as there is indicates very fast relaxation 
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9 ""6 CXA-~'16) 
with 10 atm.sec. at room temperature. Early measurements 

were at temperatures below 400°K, with Buschi.iann and Schafer^^^^ 

(22) 

reporting two separate relaxation times. Cottrell and McCoubrey in 

reviewing the early work expressed some doubt over the double relaxation 

of Ref. 15, but these results together with two later measurements 

at room temperature were, until very recently, the only data available. 

The measurements of Strauch and Decius^^^\ and Jones et al^^^^ at 300°K 

indicate extremely fast vibrational relaxation with values of px^ equal 

- 9 -10 

to 6. X 10 and 4.4 x 10 atm.sec. respectively. On the basis of these 

eight points, with a spread of over three decades at 300°K, a "mean" 

line was drawn. As found with other gases an increase in rate is predicted 

with elevated temperature, so much so that by 1000°K, pT^(WH^) = 10 

atm.sec. It was realised that extrapolation of such skant information to 

high temperatures must be regarded with extreme caution. The recently 
(19) 

reported (April 1972) measurements of Bass and Winter confirm this 

caution. Using an ultrasonic absorption technique, over the range 300 

to 770°K, the inferred relaxation times increase slowly with temperature, 

contrary to all other findings. Relaxation times are still extremely fast 

- 8 

with pT̂ ^ < 10 atm.sec., but the situation regarding temperature dependence 

is far from resolved. At temperatures above 770°K W i n t e r n o t e s that 

dissociation of WK^ occurs, and, although composition measurements were 
-9 

not taken, a vibrational relaxation time of 3.5 x 10 sec. is indicated 

at 953°K. 

The constants used in the Landau-Teller equation based on the mean 

lines derived in Fig, B1 (replotted in Fig. B2) are :-
A (atm.sec.) B(°K^^^) 

Ng 1.16 X loT^l 225.4 

3.9 X 10~^° 100. 

CO^ 3.94 X 10~® 32.8 

CH^ 2.93 X 10~^ 43.3 

NH^ 2.46 X 10~^^ 152.6 
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In order to examine the effect on nozzle performance of the ammonia 

relaxation behaviour found in Ref. 19, a modified Landau-Teller equation 

-7 1/3 
of the form pT^ = 1.78 x 10 exp(-28.85/T) ' is also used. 

Included in Fig. B2 are some vibrational relaxation data for 

mixtures which may assist in the approximate modelling of the relaxation 

in mixtures. It is pointed out^^^^ that vibration-rotation 

energy exchange becomes important in hydride-like molecules, such as 

(9) 

CH^ and NH^. Therefore the measurements of Yardley, Fertig and Moore 

with CH^-N^ and mixtures are relevant. At room temperature with 

X(CH^) varying from 0.0225 to 0.1044 in a nitrogen diluent, vibrational 

relaxation times are fast, and of the same magnitude as in pure CH^. 

The relaxation time for a mixture of 0.9335 CH^ + 0.665 is faster 

than in CH^ alone, with px^ = 9 . x 10 ^ atm.sec. White^^^^ 

reporting on measurements in a H2-N2 mixture with XCHg) = 0.02, over 

the temperature range 1700 to 2400°K; also finds that the mixture 

relaxes more quickly than either of the individual components. The data 

point of W i n t e r f o r a mixture of NH^. and is also included in 

Fig. B2, and a faster relaxation, compared with the measurements for pure 

NH^ of Ref. 19, is again apparent. In general, the policy throughout 

this work has been to underestimate rather than overestimate performance. 

By assuming that mixtures such as and Ng'Hg obey a "parallel 

resistance" law produces an underestimate of vibrational relaxation rates. 
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Notation used in Tables 

Tables One to Four 
Table Six 

BETA = B CD s 

D2F(0)/DETA2 = f"(o) CT s 

DG(0)/DETA = g'(o) DMDT ®CFV 

G(0) = g(o) ETAG 

PI 
ETAD = 

^D 

P2 
ETAE St 

P3 
= ^ ETAF = 

^F 

P4 
ETAN 

P5 
ETAV 

TET/TE 
F ^CFEVD 

THETA = e ISP ^spCFEVD 

PEL = 
^el 

Table Five PT P-f 

REDST ^®D* 
o 

^®D* 

CPO = c 
p TT ^T 
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TABLE ONE CLASS A S I M I L A R S O L U T I O N S 

BETA D 2 F ( 0 ) / D E T A 2 P I P2 P3 

0 . 0 0 . 4 6 9 6 0 1 4 5 7 1 . 6 7 3 1 8 7 0 . 4 6 7 9 8 2 2 . 0 4 6 8 1 3 
0 . 1 0 . 5 8 7 0 3 6 2 0 9 1 . 5 0 2 5 8 1 0 . 4 3 3 8 4 8 2 . 0 0 7 4 3 2 
0 . 2 0 . 6 8 6 7 0 6 5 7 4 1 . 3 7 9 1 7 4 0 . 4 0 6 5 9 0 1 . 9 6 5 9 4 1 
0 . 4 0 . 8 5 4 4 2 0 1 0 3 1 . 2 0 6 1 1 0 0 . 3 6 5 0 4 2 1 . 8 8 8 5 1 3 
0 . 6 0 . 9 9 5 8 3 5 9 0 8 1 . 0 8 6 6 7 4 0 . 3 3 4 5 7 2 1 . 8 1 5 7 6 9 
0 . 8 1 . 1 2 0 2 6 7 2 0 0 0 . 9 9 7 3 4 4 0 . 3 1 0 2 0 1 1 . 7 4 8 7 8 1 
1 . 0 1 . 2 3 2 5 8 7 8 0 0 0 . 9 2 7 0 8 4 0 . 2 9 0 7 0 4 1 . 6 8 7 1 5 1 
1 . 5 1 . 4 7 7 2 2 4 1 0 0 0 . 8 0 0 9 7 5 0 . 2 5 4 5 5 5 1 . 5 5 5 0 2 0 
2 . 0 1 . 6 8 7 2 1 8 0 9 0 0 . 7 1 5 2 5 1 0 . 2 2 9 2 1 8 1 . 4 4 7 5 6 0 
3 . 0 2 . 0 4 3 9 3 7 0 5 0 0 . 6 0 2 9 7 1 0 . 1 9 5 2 2 1 1 . 2 8 3 6 0 0 
4 . 0 2 . 3 4 7 2 8 5 9 4 0 0 . 5 3 0 6 4 4 0 . 1 7 2 8 9 7 1 . 1 6 3 8 8 3 
5 . 0 2 . 6 1 5 7 7 9 4 6 0 0 . 4 7 9 0 7 4 0 . 1 5 6 8 0 3 1 . 0 7 1 8 9 5 
6 . 0 2 . 8 5 9 2 1 3 6 9 0 0 . 4 3 9 9 1 6 0 . 1 4 4 4 9 4 0 . 9 9 8 5 4 7 
8 . 0 3 . 2 9 2 5 8 1 3 5 0 0 . 3 8 3 4 8 1 0 . 1 2 6 6 3 2 0 . 8 8 7 7 5 5 

1 0 . 0 3 . 6 7 5 2 3 4 0 6 0 0 . 3 4 4 0 5 4 0 . 1 1 4 0 7 6 0 . 8 0 7 0 5 0 



T A B L E TWO G L A S S 8 S I M I L A R S O L U T I O N S 

B E T A T H f T A T E T / T E D 2 F < 0 ? / 0 E T A 2 P i P2 P S 

0 , 
0, 
OI 

0, 
Ui 

OI 

0, 
Q« 

0, 
Of 

0« 

OI 

§:-J 

oZz 

til 
1:1 
0 7 4 

1, 

4, 

8, 

1, 
4 , 
8 , 
1 I 

4 , 
8, 
1 I 

4 ! 

8, 

0 , 4 4 9 3 3 3 6 4 6 
0 , 3 5 9 8 5 0 0 2 6 
NO S O L U T I O N 

0 , 4 0 9 4 / 3 2 5 1 

NO S O L U T I O N 

NO S O L U T I O N 

0 , 3 7 6 6 0 7 4 9 1 
NO S O L U T I O N 

NO S O L U T I O N 

NO S O L U T I O N 

NO S O L U T I O N 

NO S O L U T I O N 

1 . 6 1 9 9 4 6 
1 ; 4 6 2 S 8 7 

1 , 5 6 4 9 3 9 

1 , 5 0 7 8 1 7 

0 , 4 3 9 1 0 ? 
0 , 3 5 9 9 8 1 

0 , 6 0 9 * 7 3 

0 , 3 7 6 0 7 6 

1 , 7 4 1 3 0 4 
1 , 1 8 5 6 2 5 

1 , 4 3 7 3 3 4 

1 , 1 3 4 1 5 4 

1 . o ; i 1 1 1 , 2 0 4 9 5 9 5 5 0 0 , 9 ^ 9 4 4 0 0 , 2 8 1 5 4 2 1 , 5 3 6 9 0 3 

1 , 0 7 1 4 , 1 , 1 3 4 1 3 9 9 9 0 0 , 8 6 2 1 5 4 0 , 2 5 8 7 4 3 1 , 3 0 3 8 7 0 
1 , o n 8 , 1 , 0 3 1 0 5 3 9 6 0 0 , 7 9 3 7 9 2 0 , 2 2 5 0 6 8 0 , 9 6 5 * 2 0 

1 f 0 t 2 1» 1 , 1 7 6 6 9 2 9 8 0 0 , 8 9 1 4 0 9 1 : 3 8 4 2 1 3 
1 , 072 4 , 1 , 0 2 4 9 6 5 1 2 0 o ; 7 9 o ? o o 0 , 8 8 5 6 2 4 

11 072 8 , NO S O L U T I O N 

1 , 073 1 , 1 . 1 4 7 7 0 8 4 9 0 0 , 8 7 2 9 3 7 0 , 2 6 2 3 6 8 1 , 2 2 8 7 2 6 

1« 0 , 3 4 , NO S O L U T I O N 
0 , 8 7 2 9 3 7 

11 0 , 3 8 , NO S O L U T I O N 

1 i 0 . 4 1 , 1 , 1 1 7 9 0 7 4 5 0 0 . 8 5 3 9 6 8 0 , 2 5 2 2 6 9 1 , o 7 o 9 o 5 

1 , 0 . 4 4 , NO S O L U T I O N 

1 , 0 . 4 8 , NO S O L U T I O N 



T A B U TWO ( C O N T I N U E D 1 ) CLASS B SIMILAR SOLUTIONS 

B E T A T H B T A T E T / T E D 2 F < 0 ) / D E T A 2 P I P 2 P 5 

ii 
2, 
2. 
2. 
2, 

o:i 
o'l 
o}i 
o;2 
o;2 
0?2 
0^3 
0^3 
Q : 3 

O'S 
074 
0 7 4 

1 , 6 5 9 7 9 7 4 1 0 

1 5 9 0 2 2 4 0 8 0 

1 , 4 9 1 8 3 4 8 0 0 

1 , 6 3 1 9 0 9 7 0 0 

R , 4 8 6 1 9 5 9 2 0 

1 , 2 5 3 7 7 0 5 5 0 

1 , 6 0 3 5 1 0 3 2 0 

1 , 3 7 1 6 2 7 6 7 0 

NO S O L U T I O N 

1 , 5 7 4 5 4 5 5 5 0 

NO S O L U T I O N 

NO S O L U T I O N 

0 ' 7 0 4 7 6 8 

0 6 7 7 0 7 6 

0 , ' 6 3 8 0 1 4 

0 , 6 9 4 1 1 3 

0 , 6 3 6 2 4 8 

0 ' 5 5 3 8 2 2 

0 ; 6 8 3 2 6 6 

0 , ' 5 9 1 4 6 8 

0 , 6 7 2 2 0 4 

0 , 2 2 3 7 8 9 

0 . 2 1 0 4 8 1 

0 , 1 9 1 4 5 3 

0 , 2 1 8 2 4 0 

0 , 1 9 0 0 8 2 

0 , 1 4 3 3 3 5 

0 , 2 1 2 5 5 6 

0 , 1 6 7 0 7 7 

0 . 2 0 6 7 2 0 

0;985831 
1 , 2 4 7 0 5 5 

0 . 9 3 1 0 5 9 

0:416807 
1il43eo3 
0,^34919 

1 , 0 3 8 1 2 8 

3, 
3 $ 

3 , 

3 , 

3 , 

3 , 

3 . 

3 . 

3 , 

3 , 

3 , 

3 , 

o;'i 
0'.'1 
o;i 

072 

i 
o;3 
0 , 4 

0 V 4 

0 . 4 

2 , 0 1 6 6 1 5 7 1 0 

1 , 9 4 7 6 1 1 5 6 0 

1 , 8 5 1 2 2 1 1 2 0 

1,988911850 
1 . 8 4 5 ^ 8 5 7 8 0 

1 , 6 2 9 3 3 1 2 0 0 

1 ,96O79494Q 
1 , 7 3 6 4 5 4 5 3 0 

NO S O L U T I O N 

1 . 9 3 2 2 2 9 4 0 0 
NO S O L U T I O N 

NO S O L U T I O N 

0 , 5 9 5 5 2 9 

0 , 5 7 5 9 7 6 

0;548701 
0 , 5 8 7 9 8 5 

0 , 5 4 7 4 8 2 

O;4865O9 
0 , 5 8 0 3 3 1 

0 , 5 1 6 9 5 3 

0 . 5 7 2 5 5 7 

0 . 1 9 1 3 7 1 

0 , 1 8 1 9 8 9 

0 , 1 6 8 7 6 4 

0 , 1 8 7 4 5 1 

0 , 1 6 7 8 2 8 

0 , 1 3 7 2 9 5 

0,183454 

0 , 1 5 2 3 5 4 

0 . 1 7 9 3 7 1 

1 , 2 0 9 8 4 6 

1 , 0 9 9 9 3 0 

0 , 9 4 4 8 9 2 

1 , 1 3 4 7 8 1 

0 , 9 0 4 2 0 4 

0 , 5 4 7 5 9 9 

1 , 0 5 8 2 2 6 

0,692178 

0 , 9 7 9 9 8 5 



T A G L E TWO ( C O N T I N U E D 2 ) C I a S S B S I M I L A R S O L U T I O N S 

B E T A 

4, 
4, 

:• 

t' 

41 
4 , 

41 

T H I T A 

0,1 
071 

071 
072 
0'2 
0;2 
0 , 3 

0 - 3 

o;3 
0f4 
074 
07* 

T E T / T E D 2 P ( 0 ) / D E T A 2 P I P 2 P 3 

1 , 2 , 3 2 0 0 2 4 0 1 0 0 , ' 5 2 4 8 7 8 0 1 6 9 9 1 7 1 , 1 0 5 3 0 3 

4 1 2 , 2 5 1 3 5 8 3 1 0 0 , 5 0 9 7 7 3 0 1 6 2 6 7 6 1 ( 0 1 8 1 3 0 

8 , 2 . 1 5 6 1 1 7 4 5 0 0 ; 4 8 8 8 4 7 0 1 5 2 5 5 6 0 , 9 9 6 7 7 6 

1 . 2 , 2 9 2 4 3 1 3 2 0 0 , 5 1 9 0 4 5 0 1 6 6 8 9 0 1 , 0 4 5 8 5 3 

4 , 2 , 1 5 0 7 9 9 2 4 0 0 . 4 8 7 9 2 0 0 1 5 1 8 4 9 0 , 8 6 4 6 5 5 

8 . 1 , 9 4 1 9 3 0 0 1 0 0 , " 4 4 2 1 5 0 0 1 2 9 1 6 5 0 , 5 9 2 4 5 3 

1 , 2 , 2 6 4 4 8 4 9 8 0 0 . 5 1 3 1 3 7 0 1 6 3 8 1 1 0 , 9 8 5 2 4 1 

4 . 2 , 0 4 4 2 4 0 1 6 0 0 } 4 6 4 7 9 3 0 1 4 0 2 1 1 0 , 7 0 0 2 8 3 

8 , NO S O L U T I O N 

1 . 2 , 2 3 6 1 5 8 6 9 0 0 , 5 0 7 1 5 1 0 1 6 0 6 7 6 0 , 9 2 3 4 1 5 

4 , 1 , 9 2 9 2 9 4 5 7 0 0 , 4 3 9 8 9 1 0 1 2 7 3 8 9 0 » 5 1 8 4 5 7 

NO S O L U T I O N 

5 , sr, 1 , 2 . 5 8 8 5 5 7 3 5 0 0 . 4 7 4 3 7 0 0 . 1 5 4 3 7 3 1 , 0 2 3 4 2 4 

5 , sr, 4 , 2 , 5 2 0 1 2 0 6 4 0 0 , 4 6 2 0 7 1 0 , 1 4 8 4 8 1 O I 9 5 1 3 8 6 

5 , 0 . 1 8 , 2 , 4 2 5 6 4 2 5 6 0 0 , 4 4 5 1 0 3 0 , 1 4 0 2 9 1 0 , 8 5 1 ) 7 5 

5 , 0 7 2 1 ! 2 , 5 6 1 0 4 0 1 3 0 0 , 4 6 9 6 1 6 0 » L 5 L 9 O 8 0 , 9 7 4 2 2 0 

5 . olz 4 , 2 , 4 2 0 4 0 1 2 1 0 0 . 4 4 4 3 5 7 0 , 1 3 9 7 2 3 0 , 8 2 5 0 7 8 

5 . 0 7 2 8 , 2 , 2 1 6 1 0 2 7 1 0 0 . 4 0 7 7 3 7 0 . 1 2 1 6 8 6 0 , 6 0 5 1 0 9 

5 , O ; 3 I t 2 , 5 3 3 2 0 9 5 5 0 0 , ' 4 6 4 8 0 8 0 . 1 4 9 4 0 6 0 , 9 2 4 1 4 3 

5 , O ; 3 4 , 2 , 3 1 5 5 9 4 9 ^ 0 0 . 4 2 5 7 5 9 0 , 1 3 0 4 0 7 0 , 6 9 1 1 1 1 

5 , 0 . 3 8 , 1 . 9 6 9 4 4 1 8 0 0 0 . 3 7 2 7 4 5 0 . 0 9 8 7 4 8 0 , 3 0 8 1 8 1 

5 , 0 . 4 1 1 2 , 5 O 5 O 4 4 9 7 O 0 . 4 5 9 9 4 5 0 . 1 4 6 8 6 5 0 , 8 7 3 2 0 2 

5 , 0 , 4 4 , 2 , 2 0 4 0 5 6 7 5 0 0 , 4 0 5 9 9 2 0 . 1 2 0 3 2 3 0 , 5 4 5 5 3 0 

5 , 0 , 4 8 , NO S O L U T I O N 



T A B U T W U ( C O N T I N U E D 3 ) C U S S B S I M I L A R S O L U T I O N S 

B E T A T H I T A T E T / T E D 2 F < 0 ) / D E T A 2 P i P 2 P S 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

8 

a 
8 
8 
8 
8 
8 
8 
b 

8 

8 

8 , 

0,1 
0)1 
0';i 
0 ; 2 
o ; 2 
o;2 
0 ? 3 
0*3 

0 7 3 
OVA 

o;4 

o ; 4 

o;i 

oil 

0^2 

o ; 2 
0 , 2 
o ; 3 

o:3 
0*3 

o;4 

0.-4 

0 . 4 

2 , 6 6 9 * 2 3 6 5 0 

2 8 0 4 5 5 8 2 1 0 

2 , 6 6 4 6 3 7 0 4 0 

2 , 4 6 3 4 4 7 6 4 0 

2 , 7 7 6 8 1 2 2 1 0 

2 , 5 6 1 0 5 6 3 6 0 
2 , 2 2 7 8 7 9 1 7 0 

2 , 7 4 8 7 6 5 4 3 0 

2 . 4 5 1 7 7 4 5 3 0 

NO S O L U T I O N 

3 , 2 6 5 4 2 6 9 3 0 

3 , 1 9 7 5 8 9 6 3 0 
3 , 1 0 4 2 1 6 4 0 0 
3 , 2 3 8 0 4 0 7 8 0 
3 , 0 9 9 1 0 3 3 5 0 
2 . 9 0 1 9 4 6 7 1 0 
3 , 2 1 0 4 1 1 6 3 0 
2 , 9 9 7 1 5 0 0 5 0 
2 . 6 7 8 4 8 5 9 4 0 
3 , 1 8 2 5 2 7 1 4 0 
2 . 8 9 0 7 2 5 2 9 0 

NO S O L U T I O N 

0 ; 4 1 1 3 Q 9 
0 4 3 1 9 3 1 
0 ; 4 1 0 6 8 5 
0 . 3 8 0 1 8 1 
0 . 4 2 7 8 7 9 
0 , 3 9 5 1 4 0 
0 , ' 3 4 4 7 6 1 
0 , 4 2 3 7 8 5 
0 . 3 7 8 7 5 8 

0 ; 3 8 0 4 5 1 
0 : 3 7 2 5 5 7 
0 * 3 6 1 7 5 1 
0 ; 3 7 7 3 9 5 
0 . ' 3 6 1 2 8 2 
0 . 3 3 8 3 4 9 
0 . 3 7 4 3 1 4 
0 , 3 4 9 5 9 0 
0 ^ 3 1 2 7 2 5 
0 . 3 7 1 2 0 5 
0 : 3 3 7 3 9 7 

0 1 4 2 4 4 2 0 [IIIUI 
, 8 1 1 1 1 3 

0 1 3 7 4 7 6 0 [IIIUI 
, 8 1 1 1 1 3 0 1 3 0 6 0 1 0 

[IIIUI 
, 8 1 1 1 1 3 

0 1 4 0 3 6 4 0 9 1 5 2 5 4 

0 1 3 0 1 2 8 0 , 7 8 8 6 1 9 

0 1 1 5 1 6 6 0 , 6 0 4 1 5 1 
0 1 3 8 2 5 8 0 , 8 7 2 6 2 7 
0 1 2 2 3 6 6 0 6 7 5 6 0 7 

0 0 9 6 9 0 0 0 , 3 5 6 3 2 2 

0 1 3 6 1 2 2 0 , 8 2 9 3 5 2 

0 1 1 4 0 6 0 0 , 5 5 4 3 9 2 

1 2 5 0 6 8 

1 2 1 2 9 2 
1 1 6 0 9 2 
1 2 3 4 8 7 
1 1 5 7 3 8 
1 0 4 5 5 0 
121888 
1 0 9 9 2 5 

0 9 1 5 5 5 
1 2 0 2 6 9 

1 0 3 7 9 1 

0 , 8 5 5 8 4 5 

0 , 8 0 8 4 9 1 
0 , 7 4 3 5 5 4 
0 , 8 2 3 4 5 2 
0 , 7 2 6 3 0 2 
0 , 5 8 3 2 5 1 
0 , 7 9 0 7 1 0 
0 , 6 4 0 3 2 5 
0 , 4 0 8 4 4 1 
0 , 7 5 7 4 0 7 
0 , 5 4 9 5 6 3 



T A B U TWO ( C O N C L U D E D ) C L A S S B SIHILALAR S O L U T I O N S 

B E T A T H | T A T E T / T E D 2 F < 0 ) / D E T A 2 

1 V 
lU 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

o;i 

o;i 

o;i 

0:2 
0*2 
0;2 
0 : 3 

0 ; 3 

0';3 
o;4 
o;A 

0 . 4 

1 , 
4 , 

8, 

I: 
8, 
1. 

:: 
I: 
8 , 

3 , 6 4 8 1 0 5 1 2 0 

3 , 5 8 0 2 2 4 0 7 0 

3 , 4 8 7 5 5 7 9 3 0 

3 , 6 2 0 7 6 9 5 7 0 

3 , 4 8 2 4 8 6 6 8 0 

3 , 2 8 7 8 8 3 7 0 0 

3 , 5 9 3 2 1 8 5 2 0 

3 3 8 1 5 8 4 6 8 0 

3 , 0 7 1 1 3 9 0 2 0 

3 , 5 6 5 4 4 2 2 7 0 

3 , 2 7 6 9 3 0 6 3 0 

NO S O L U T I O N 

P I 

0 ; 3 4 1 6 0 6 

0 , 3 3 5 2 3 5 

0 ' 3 2 6 4 8 6 

0 , 3 3 9 1 3 9 

0 * 3 2 6 1 6 7 

Q ; 3 0 7 9 1 9 

07336653 
0 , 3 1 6 8 0 4 

0 : 2 8 7 7 2 9 

0 , ' 3 3 4 1 4 8 

0 ; 3 0 7 1 0 0 

P 2 

0 , 1 1 2 8 1 3 

0 , 1 0 9 7 6 7 

0 , 1 0 5 5 6 2 

0 , 1 1 1 5 3 7 

0 ^ 1 0 5 3 0 7 

0 , 0 9 6 4 3 5 

0 . 1 1 0 2 4 9 

0 , 1 0 0 6 6 5 

0 , 0 8 6 2 9 0 

0 , 1 0 8 9 4 6 

0 , 0 9 5 8 0 7 

P3 

0 , 7 8 1 0 5 2 

0 , 7 4 2 5 6 0 

0 , 6 8 7 4 6 6 

0 , 7 5 4 7 5 1 

0 , 6 7 6 1 6 1 

0 , 5 6 4 0 1 4 

0 , 7 2 8 1 2 3 

0 , 6 0 6 7 0 8 

0 , 4 2 4 2 2 8 

0 , 7 0 1 1 4 6 

0 , 5 3 4 1 1 2 
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ot w. T~ vr ot: -oĵvi oc o oc oc rs 
>0 >00 PGf^f'WOf" ODU) V —« 
r f t f f i m m m m m m m m i n m 
n a a a a a a a s t a z 
A } - » O O O O O O —» 

wsaotw—» <n 

a a it a (f 
O O O O O O O O O O o »<»»<•««•••<•«• <•« 
—» tat iv( ̂o#a -»#»«» 
>OIV AH yC Mi W 0 0 O -» Wl 
t> O •'OO" -M O «j4 IV) go 
>0 Ui i\> ro -v O iv) >0 00 OD o ac 
o o d w o j v ) W W O >0 >0ui rvj 

w o e Wij> » o >c ^ 
rti tn ra fn jti m m.in ifi tm m ma 
a ft n n it n (I !i it 1 w 
w i v t v — » - » - » o o o o o 
O 1»> CW iC VI.IV 109- W 



TABLE S I X R E S I S T O J E T PERFORMANCE PARAMETERS FOR NOMINAL NOZZLE GEOMETRY 

TABLE S I X ( A ) HYDROGEN 
U N D I S S O C I A T E D , ETAC = 1 . 0 0 0 

TT PT REDST PEL F DMDT I S P CT CD ETAF ETAE ETAV ETAD ETAN 

3 0 0 . 2 0 0 . 1 3 8 3 0 . 0 . 0 , 2 4 1 6 0 , 0 9 4 3 2 6 1 . 2 1 , 5 3 8 0 . 9 7 6 1 . 0 0 0 0 . 8 8 1 0 , 9 6 9 0 . 9 6 4 0 , 8 2 5 
3 0 0 . 1 0 0 . 6 9 1 5 , 0 . 0 , 1 1 9 0 0 . 0 4 6 7 2 5 9 , 9 1 . 5 1 6 0 , 9 6 6 1 , 0 0 0 0 , 8 8 1 0 . 9 5 5 0 . 9 6 9 0 , 8 1 8 
3 0 0 . 5 0 . 3 4 5 7 . 0 , 0 , 0 5 8 2 0 . 0 2 3 0 2 5 8 , 0 1 , 4 8 3 0 . 9 5 2 1 , 0 0 0 0 , 8 8 1 0 . 9 3 7 0 . 9 7 3 0 , 8 0 6 
3 0 0 . 2 5 . 1 7 2 9 . 0 . 0 , 0 2 8 2 0 . 0 1 1 3 2 5 4 , 8 1 , 4 3 5 0 . 9 3 3 1 , 0 0 0 0 , 8 8 1 0 . 9 1 1 0 . 9 7 6 0 , 7 8 6 
5 0 0 . 2 0 0 . 7 5 9 1 . 2 1 0 . 0 . 2 4 1 9 0 . 0 7 2 4 3 4 0 , 5 1 , 5 4 0 0 . 9 6 8 1 . 0 0 0 0 , 8 8 1 0 . 9 5 7 0 . 9 6 8 0 , 8 0 5 
5 0 0 . 1 0 0 . 3 7 9 5 , 1 0 3 , 0 . 1 1 8 4 0 . 0 3 5 7 3 3 8 , 0 1 . 5 0 8 0 . 9 5 4 1 , 0 0 0 0 , 8 8 1 0 . 9 3 9 0 . 9 7 2 0 . 7 9 4 
5 0 0 . 5 0 . 1 8 9 8 . 51 , 0 . 0 5 7 4 0 . 0 1 7 5 3 3 4 , 1 1 , 4 6 2 0 . 9 3 6 1 , 0 0 0 0 , 8 8 1 0 . 9 1 5 0 . 9 7 6 0 . 7 7 5 
5 0 0 , 2 5 . 9 4 9 , 2 5 . 0 , 0 2 7 5 0 . 0 8 5 3 3 2 8 . 4 1 . 3 9 9 0 . 9 1 1 1 . 0 0 0 0 , 8 8 1 0 . 8 8 2 0 . 9 7 8 0 . 7 4 9 

1 0 0 0 . 2 0 0 . 3 2 7 1 . 5 1 4 , 0 . 2 4 2 2 0 , 0 5 0 2 49 2 , 3 1 . 5 4 2 0 . 9 5 1 1 . 0 0 0 0 . 8 8 1 0 . 9 3 4 0 . 9 7 3 0 . 8 0 5 
1 0 0 0 . 1 0 0 . 1 6 3 6 . 2 5 2 , 0 , 1 1 7 1 0 , 0 2 4 6 4 8 6 , 1 1 . 4 9 1 0 . 9 3 2 1 , 0 0 0 0 . 8 8 1 0 . 9 0 8 0 . 9 3 2 0 . 7 8 5 
1 0 0 0 . 5 0 . 8 1 7 . 1 2 2 , 0 . 0 5 5 8 0 . 0 1 1 9 4 7 7 . 1 1 . 4 2 1 0 . 9 0 4 1 , 0 0 0 0 , 8 8 1 0 . 8 7 3 0 . 9 7 8 0 . 7 5 6 
1 0 0 0 . 2 5 . 4 0 9 . 5 9 , 0 . 0 2 6 1 0 , 0 0 5 7 4 6 5 . 5 1 . 3 3 1 0 . 8 6 9 1 , 0 0 0 0 . 8 8 1 0 . 8 3 1 0 . 9 7 8 0 . 7 2 0 
1 5 0 0 . 2 0 0 . 1 9 9 3 . 7 2 1 , 0 . 2 3 6 7 0 , 0 4 0 1 6 0 1 . 6 1 . 5 0 7 0 . 9 3 8 0 , 9 9 6 0 . 8 8 1 0 . 9 1 6 0 . 9 7 6 0 . 7 8 4 
1 5 0 0 . 1 0 0 . 9 9 6 , 3 5 1 , 0 . 1 1 3 2 0 , 0 1 9 5 5 9 1 . 0 1 . 4 4 1 0 . 9 1 4 0 , 9 9 6 0 . 8 8 1 0 . 8 8 2 0 . 9 7 8 0 . 7 5 6 
1 5 0 0 . 5 0 . 4 9 8 . 1 6 9 , 0 . 0 5 3 3 0 , 0 0 9 4 5 7 7 . 5 1 . 3 5 8 0 . 8 8 1 0 . 9 9 6 0 . 8 8 1 0 . 8 4 1 0 . 9 7 9 0 , 7 2 2 
2 0 0 0 . 2 0 0 . 1 4 0 2 . 8 9 5 , 0 . 2 3 2 3 0 . 0 3 4 1 6 9 5 , 1 1 . 4 7 9 0 . 9 2 8 0 , 9 9 0 0 . 8 8 0 0 . 8 9 6 0 . 9 7 7 0 . 7 6 2 
2 0 0 0 . 1 0 0 . 7 0 1 . 4 3 3 . 0 . 1 1 0 1 0 , 0 1 6 5 6 7 9 , 9 1 . 4 0 2 0 . 8 9 9 0 , 9 8 5 0 , 8 8 0 0 . 8 6 0 0 . 9 7 8 0 . 7 2 9 
2 0 0 0 . 5 0 . 3 5 0 , 2 0 7 . 0 . 0 5 1 1 0 , 0 0 7 9 6 6 0 , 4 1 . 3 0 2 0 . 8 5 9 0 , 9 8 2 0 , 8 8 1 0 . 8 1 1 0 . 9 8 1 0 , 6 8 8 
2 5 0 0 . 2 0 0 . 1 0 6 2 , 1 0 4 8 , 0 . 2 2 9 0 0 , 0 3 0 0 7 7 8 , 9 1 . 4 5 8 0 . 9 1 8 0 , 9 8 5 0 , 8 7 8 0 . 8 8 0 0 . 9 7 8 0 . 7 4 4 
2 5 0 0 . 1 0 0 . 5 3 1 . 5 0 6 , 0 . 1 0 7 6 0 , 0 1 4 5 7 5 8 , 0 1 . 3 7 0 0 . 8 8 6 0 , 9 7 8 0 , 8 7 9 0 . 8 3 8 0 . 9 7 8 0 . 7 0 5 
3 0 0 0 . 2 0 0 . 8 4 5 , 1 1 8 6 , 0 . 2 2 5 8 0 , 0 2 6 9 8 5 5 , 0 1 . 4 3 8 0 . 9 0 9 0 , 9 8 7 0 , 8 7 6 0 , 8 6 2 0 . 9 7 8 0.728 
3 0 0 0 . 1 0 0 . 4 2 2 , 5 7 0 , 0 . 1 0 5 4 0 , 0 1 2 9 8 3 0 , 1 1 . 3 4 2 0 . 8 7 4 0 , 9 7 7 0 . 8 7 7 0 . 8 1 7 0 . 9 8 0 0 . 6 8 7 



TABLE S I X ( A ) C O N T I N U E D 

E Q U I L I B R I U M C O M P O S I T I O N 

TT PT REOST PEL F DMDT I S P CT CD ETAC ETAF ETAE ETAV ETAD ETAN 

2 0 0 0 . 2 0 0 . 1 3 9 4 , 9 9 8 , 0 , 2 3 2 2 0 , 0 3 3 9 6 9 9 , 0 1 , 4 7 8 0 . 9 2 7 0 , 9 0 9 0 , 9 9 1 0 . 8 8 3 0 . 8 9 8 0 . 9 7 7 0 . 6 9 7 
2 0 0 0 . 1 0 0 . 6 9 5 , 5 0 4 , 0 , 1 1 0 0 0 , 0 1 6 4 6 8 5 , 3 1 , 4 0 0 0 . 8 9 8 0 , 8 7 6 0 . 9 8 8 0 . 8 8 4 0 . 8 6 1 0 . 9 7 8 0 . 6 4 4 
2 0 0 0 . 5 0 . 3 4 6 . 2 5 5 , 0 . 0 5 1 0 0 . 0 0 7 8 6 6 7 , 6 1 . 3 0 0 0 , 8 5 8 0 , 8 3 4 0 . 9 8 3 0 . 8 8 6 0 . 8 1 1 0 . 9 8 5 0 . 4 9 9 
2 5 0 0 . 2 0 0 , 1 0 3 9 , 1 3 9 7 , 0 . 2 2 8 1 0 , 0 2 9 3 7 9 4 , 5 1 . 4 5 2 0 . 9 1 6 0 , 7 6 8 0 , 9 9 4 0 . 8 8 7 0 . 8 8 2 0 . 9 7 8 0 . 5 8 4 
2 5 0 0 . 1 0 0 . 5 1 5 , 7 4 1 , 0 , 1 0 7 1 0 , 0 1 4 0 7 8 0 , 6 1 , 3 6 4 0 . 8 8 4 0 , 7 0 2 0 , 9 8 9 0 , 8 9 2 0 . 8 4 5 0 . 9 7 8 0 . 5 1 2 
3 0 0 0 . 1 0 0 . 3 9 3 . 1 0 6 1 , 0 , 1 0 3 8 0 , 0 1 2 0 8 8 5 , 1 1 , 3 2 2 0 . 8 6 7 0 , 5 4 8 0 , 9 9 7 0 . 9 0 7 0 . 8 3 0 0 . 9 8 5 0 . 4 0 5 



T A B L E S I X ( B ) METHANE 
ETAC = 1 . 0 0 0 

TT PT REDST PEL F DMDT I S P CT CD ETAF ETAE ETAV ETAD ETAN 

3 0 0 . 2 0 0 . 3 0 2 7 0 . 0 , 0 . 2 5 9 8 0 . 2 6 2 3 1 0 1 . 0 1 . 6 5 4 0 . 9 8 6 0 . 9 9 9 0 . 8 3 5 0 . 9 7 5 0 . 9 5 8 0 . 7 7 9 
3 0 0 . 1 0 0 . 1 5 1 4 0 , 0 . 0 . 1 2 8 6 0 . 1 3 0 3 1 0 0 , 7 1 , 6 3 4 0 . 9 7 8 0 . 9 9 9 0 . 8 3 5 0 . 9 6 5 0 . 9 6 2 0 . 7 7 4 
3 0 0 . 5 0 . 7 5 6 9 . 0 , 0 . 0 6 3 3 0 . 0 6 4 5 1 0 0 , 1 1 . 6 1 3 0 . 9 6 8 0 . 9 9 9 0 . 8 3 5 0 . 9 5 0 0 . 9 6 6 0 . 7 6 5 
3 0 0 . 2 5 . 3 7 8 4 . 0 , 0 . 0 3 1 0 0 , 0 3 1 8 9 9 . 2 1 . 5 7 8 0 . 9 5 6 0 . 9 9 9 0 , 8 3 5 0 . 9 2 9 0 . 9 7 1 0 . 7 5 2 
5 0 0 . 2 0 0 . 1 5 2 6 0 . 1 0 0 , 0 . 2 5 6 9 0 , 1 9 7 4 1 3 2 , 7 1 , 6 3 5 0 . 9 7 8 0 . 9 6 5 0 . 8 3 4 0 . 9 6 3 0 . 9 6 2 0 . 7 4 5 
5 0 0 . 1 0 0 . 7 6 2 8 , 5 0 . 0 . 1 2 6 5 0 . 0 9 7 8 1 3 1 . 9 1 , 6 1 1 0 . 9 6 9 0 . 9 6 5 0 . 8 3 4 0 . 9 4 7 0 . 9 6 6 0 . 7 3 6 
5 0 0 . 5 0 . 3 8 1 4 , 2 4 . 0 . 0 6 1 9 0 . 0 4 8 3 1 3 0 , 7 1 , 5 7 5 0 . 9 5 8 0 . 9 6 5 0 . 8 3 4 0 . 9 2 5 0 . 9 7 0 0 . 7 2 2 
5 0 0 . 2 5 . 1 9 0 7 , 1 2 . 0 . 0 2 9 9 0 . 0 2 3 7 1 2 8 , 8 1 , 5 2 4 0 . 9 3 9 0 . 9 6 5 0 . 8 3 4 0 . 8 8 5 0 . 9 7 4 0 . 7 0 2 

1 0 0 0 . 2 0 0 . 6 4 3 3 . 3 1 9 . 0 . 2 5 8 9 0 . 1 3 4 1 1 9 6 , 8 1 , 6 4 8 0 . 9 6 8 0 . 8 3 6 0 . 8 2 3 0 . 9 3 3 0 . 9 6 6 0 . 6 2 0 
1 0 0 0 . 1 0 0 . 3 2 1 7 , 1 5 7 . 0 . 1 2 4 4 0 . 0 6 6 1 1 9 1 , 2 1 . 5 8 4 0 . 9 5 4 0 . 8 0 6 0 . 8 2 8 0 . 9 0 9 0 . 9 7 1 0 . 5 8 9 
1 0 0 0 . 5 0 . 1 6 0 8 , 7 7 . 0 . 0 5 9 4 0 . 0 3 2 4 1 8 6 , 7 1 , 5 1 2 0 . 9 3 6 0 . 7 7 5 0 . 8 3 2 0 . 8 8 7 0 . 9 7 4 0 . 5 5 7 
1 0 0 0 . 2 5 . 8 0 4 , 3 8 . 0 . 0 2 8 0 0 . 0 1 5 8 1 8 1 , 1 1 , 4 2 8 0 . 9 1 1 0 , 7 7 5 0 . 8 3 2 0 . 8 3 3 0 . 9 7 7 0 . 5 2 5 
1 5 0 0 . 2 0 0 . 3 9 8 3 . 5 2 4 . 0 . 2 6 4 0 0 . 1 0 7 6 2 5 0 , 2 1 . 6 8 1 0 . 9 5 9 0 . 7 7 8 0 . 8 0 1 0 . 9 0 7 0 . 9 6 8 0 . 5 4 7 
1 5 0 0 . 1 0 0 . 1 9 9 2 , 2 5 8 . 0 . 1 2 5 4 0 . 0 5 2 9 2 4 1 . 7 1 . 5 9 6 0 . 9 4 3 0 , 7 3 2 0 . 8 1 5 0 . 8 8 1 0 . 9 7 2 0 . 5 1 1 
1 5 0 0 . 5 0 . 9 9 6 . 1 2 6 , 0 . 0 5 8 1 0 . 0 2 5 8 2 2 9 . 7 1 , 4 8 1 0 . 9 2 0 0 , 6 8 8 0 . 8 2 5 0 . 8 3 3 0 . 9 7 6 0 . 4 6 1 
1 5 0 0 . 2 5 . 4 9 8 . 6 1 . 0 . 0 2 6 9 0 . 0 1 2 5 2 2 0 . 0 1 , 3 7 0 0 . 8 8 9 0 , 6 5 7 0 , 8 3 0 0 . 7 9 4 0 . 9 7 8 0 . 4 2 3 
2 0 0 0 . 2 0 0 . 2 8 5 8 , 7 1 0 , 0 . 2 6 4 5 0 . 0 9 2 2 2 9 2 , 6 1 , 6 8 4 0 . 9 5 2 0 . 7 4 0 0 , 7 8 0 0 . 8 8 3 0 . 9 6 9 0 . 4 9 4 
2 0 0 0 . 1 0 0 . 1 4 2 9 , 3 4 8 , 0 . 1 2 4 8 0 , 0 4 5 2 2 8 1 . 6 1 . 5 9 0 0 . 9 3 4 0 . 6 9 5 0 . 8 0 0 0 . 8 4 6 0 . 9 7 3 0 . 4 5 8 
2 0 0 0 . 5 0 . 7 1 4 , 1 6 9 , 0 . 0 5 7 5 0 , 0 2 2 0 2 6 7 . 2 1 , 4 6 5 0 . 9 0 7 0 . 6 4 7 0 . 8 1 6 0 . 7 9 9 0 . 9 7 6 0 . 4 1 2 
2 0 0 0 . 2 5 . 3 5 7 . 8 1 , 0 , 0 2 6 1 0 , 0 1 0 5 2 5 2 . 6 1 . 3 2 9 0 . 8 7 0 0 , 6 0 1 0 , 8 2 6 0 . 7 5 8 0 . 9 7 8 0 . 3 6 8 



o o o o o o o o o o o o o o o o o o o o 
o o o o o o o o o o o o o o o o o o o o 

-A IV —k f\) -» f>J —» 
r v L n o o r v L n o o r j L n o o N L n o 
L n o o o c n o o O L n o o O L n o o 

rv -A iv 
o rv Lfi o o 
O VI o o o 

-» CM -» ro -»VJNf\)f~OOOf^^OOO 
^ooov4vi-»vj0^ooNL/if>jvio-»o\nj^oo 
—»wo^woo^w^f^oo"\fvio^r\jvi-*-^rvf^OD 
"\jf^OOOLMLn-»F\Jf~\0->jf^f^OONOOOOO 

-» w -»nj -* 
oa->jvirooj^rouiro4soo-Nj 
•M-Nj>Ouno-^O^uiO-^Ln—»-Ni 

-» LrJ O 
wn o -» o o o o 

o 
(/) 

> 
00 
r-
m 

CO 

X 

o 

o o o o o o o o o o o o o o o o o o o o 
• • • • • • • • • • • • • • • • • • • a 

oo-»fvoo-»i>joo-*rooo-»rooo-»ro 
rvvi-»f^rvLn—&f^rvvirvvirv<>f\^Lnvy(>rvv/i 
o^\wr!^>oo-\j>o>ooooo—fcONO-*-p>rvjofv>o-P^ 
O L n O O W O O L M N O N W L n ^ - ^ O ^ ^ O f ^ W N 

D > 
%) 
OD 
O 

O O O O O O O O O O O O O O O O O O O O # * « # # # # « » * # « « # « « # # # * 
ooo-*ooo-»ov-n-»t\joo-»o<jo-»ro^ 
-»0j-sji-nr\}^0o0ooj^s-»r\jwoo0rov/i0-»w 
•>j->4O.0^_»0j^r\)0.0ci-»o>0oiv)00r\j0^v^iAi 
~Ow->juir>oooc^r»j-\ioo^*^^-\j-^oo'>OOv^ 

o 
3 
C7 

O 
X 

- \ i - » o r v O f v \ ^ o - v o o i A i o - u o o o o o o o o 

^OOUiOvlOC»00-»O^OOOOU1-»4>-»>>/t->jO 

to 
T) 

3> 
o 

r«j—»ooooijif\)'Oi\j<i^^o—'i-noooiJiooorM 
rvjoao->joo-»oooo04!»i-nf\)00->jooc»cx)-» 

o 
o 
o 

o o o o o o o o o o o o o o o o o o o o • • « • • • • • • • • • • • • • • • • • 
00'0^^00'0>0^'0'0^'0-0'0'0'0>0'0^"0 

V I — ^ N L n v i v i o ^ - ^ o o N O f ^ o r v o o - ^ o c ^ 

n 
o 

o o o o o o o o o o o o o o o o o o o o m 
• » • • • • • • • • « « • « • • • • • • —4 
0>.O^0^'>IO>O-M->J»-«J->J->)00000000^O^v0>0 » 
L m u i N O ^ O O O W O O O O O O O O O N - V N N Ti 
Oooo->«joo->j>i-M->juiv-nk/ii»noo(»ooooChiu<wc«i 

O O O O O O O O O O O O O O O O O O O O m « • • • « • • « • • • • • • « • • « • • 
Ooooooooooooooooooooooooooooooooooooodoo > 

00 000-»-3JC»->iW>0<ivOO-0-<30>00000 

O O O O O O O O O O O O O O O O O O O O # * # # # * # « # # # # « # # * * # # # 
00000000000>0>0cx<3^'0^^0^0>0>0"0^^ 
OV/1>0(\)W-\JO040^O0J^-»<J4V/I->J^»U1->J00 
^ f s O v i O L n ' 0 - » 4 > ' r \ ) O O w o o ^ o r v ^ - » o 

> < 

o o o o o o o o o o o o o o o o o o o o # * # * * # « # # # # # # # « • • « • • 
nO'O'O'O'O'O'O'O'O'O'O'O'O^O'O'O^'O'O'O 

^ooo^r\j>o-Ni^ooov!T\)Oovi-»->jfv-»'Mf\)Oo 

> 

o o o o o o o o o o o o o o o o o o o o # * # # « # # # « # # # # * # # * # # # 
f ~ f ~ V 1 V 1 f ~ V 1 V l V 1 V I V i O ^ N N N N N N 0 0 0 0 
v^oo—»vi^0xj^ooo0oo»jo-»o«jogoo>coo 
0ov4vi^0o4s ^nuoo-»oonjru^ONLM^ O ^ 

> z 



TABLE S I X ( D ) AMMONIA 
U N D I S S O C I A T E D , ETAC = 1 , 0 0 0 

TT PT REDST PEL F DMDT I S P CT CD ETAF ETAE ETAV ETAD ETAN 

3 0 0 . 2 0 0 . 3 4 5 0 0 . 0 , 0 . 2 6 0 2 0 . 2 7 0 4 9 8 , 1 1 . 6 5 6 0 . 9 8 5 0 , 9 9 7 0 . 8 3 5 0 . 9 7 7 0 , 9 5 7 0 . 7 7 8 
3 0 0 . 1 0 0 . 1 7 2 5 0 , 0 , 0 , 1 2 8 9 0 , 1 3 4 4 9 7 , 9 1 , 6 4 1 0 . 9 7 9 0 , 9 9 7 0 , 8 3 5 0 . 9 6 7 0 . 9 6 1 0 , 7 7 3 
3 0 0 . 5 0 . 8 6 2 6 . 0 , 0 . 0 6 3 6 0 , 0 6 6 6 9 7 , 3 1 . 6 1 9 0 . 9 7 0 0 . 9 9 7 0 , 8 3 5 0 , 9 5 3 0 . 9 6 6 0 , 7 6 6 
3 0 0 . 2 5 . 4 3 1 3 . 0 , 0 . 0 3 1 1 0 , 0 3 2 9 9 6 , 5 1 , 5 8 5 0 . 9 5 8 0 , 9 9 7 0 , 8 3 5 0 , 9 3 3 0 . 9 7 0 0 , 7 5 3 
5 0 0 . 2 0 0 . 1 5 2 8 0 . 9 3 , 0 , 2 5 8 9 0 , 2 0 4 9 1 2 8 , 9 1 . 6 4 8 0 . 9 7 8 0 , 9 8 8 0 , 8 3 2 0 , 9 6 3 0 . 9 6 2 0 , 7 6 1 
5 0 0 . 1 0 0 . 7 6 3 8 . 4 6 , 0 , 1 2 7 4 0 . 1 0 1 5 1 2 8 , 0 1 . 6 2 2 0 . 9 6 9 0 , 9 8 3 0 . 8 3 2 0 . 9 4 9 0 . 9 6 6 0 . 7 5 0 
5 0 0 . 5 0 . 3 8 1 9 . 2 3 , 0 . 0 6 2 1 0 . 0 5 0 1 1 2 6 , 5 1 . 5 8 3 0 . 9 5 6 0 , 9 8 0 0 , 8 3 3 0 . 9 2 6 0 . 9 7 0 0 . 7 3 3 
5 0 0 . 2 5 . 1 9 2 0 , 11 . 0 . 0 3 0 0 0 . 0 2 4 6 1 2 4 , 5 1 . 5 2 9 0 . 9 3 9 0 , 9 7 7 0 , 8 3 3 0 , 8 9 6 0 . 9 7 4 0 . 7 1 0 

1 0 0 0 . 2 0 0 . 5 4 5 3 . 2 6 7 , 0 . 2 6 1 9 0 . 1 3 9 6 1 9 1 , 3 1 . 6 6 7 0 . 9 6 4 0 , 9 8 5 0 , 7 9 8 0 , 9 2 5 0 . 9 6 6 0 . 7 0 3 
1 0 0 0 . 1 0 0 . 2 7 2 7 , 1 3 1 , 0 . 1 2 7 1 0 . 0 6 8 7 1 8 8 . 5 1 . 6 1 8 0 . 9 5 0 0 , 9 8 0 0 . 8 0 1 0 , 8 9 5 0 . 9 7 0 0 . 6 8 2 
1 0 0 0 . 5 0 . 1 3 6 3 . 6 4 , 0 . 0 6 0 8 0 , 0 3 3 6 1 8 4 , 3 1 . 5 4 8 0 . 9 3 0 0 , 9 7 5 0 . 8 0 3 0 . 8 5 4 0 . 9 7 4 0 . 6 5 2 
1 0 0 0 . 2 5 . 6 8 2 , 3 1 . 0 . 0 2 8 5 0 , 0 2 5 0 1 7 8 . 3 1 . 4 5 4 0 . 9 0 2 0 , 9 6 8 0 , 8 0 6 0 , 8 0 0 0 . 9 7 7 0 . 6 1 0 
1 5 0 0 . 2 0 0 . 3 1 3 7 , 4 1 6 , 0 , 2 6 2 6 0 , 1 1 1 6 2 3 9 , 9 1 . 6 7 2 0 . 9 5 4 1 , 0 0 0 0 , 7 4 0 0 , 8 9 6 0 . 9 6 6 0 . 6 4 1 
1 5 0 0 . 1 0 0 . 1 5 6 9 , 2 0 4 , 0 , 1 2 6 0 0 . 0 5 4 7 2 3 4 , 8 1 . 6 0 4 0 . 9 3 5 1 , 0 0 0 0 , 7 4 0 0 , 8 5 4 0 . 9 7 1 0 , 6 1 4 
1 5 0 0 . 5 0 . 7 8 4 , 9 9 , 0 . 0 5 9 3 0 , 0 2 6 6 2 2 7 , 4 1 , 5 1 1 0 . 9 0 9 1 , 0 0 0 0 , 7 4 0 0 , 7 9 9 0 . 9 7 4 0 , 5 7 6 
1 5 0 0 . 2 5 . 3 9 2 , 4 8 , 0 . 0 2 7 2 0 , 0 1 2 8 2 1 7 . 3 1 , 3 8 7 0 . 8 7 4 1 . 0 0 0 0 , 7 4 0 0 , 7 2 8 0 . 9 7 6 0 , 5 2 6 
2 0 0 0 . 2 0 0 . 2 1 7 0 , 5 5 0 , 0 . 2 6 0 6 0 . 0 9 5 3 2 7 8 , 7 1 , 6 5 9 0 . 9 4 5 1 . 0 0 0 0 , 6 9 7 0 . 8 7 1 0 . 9 6 8 0 . 5 8 7 
2 0 0 0 . 1 0 0 . 1 0 8 5 , 2 6 8 . 0 . 1 2 3 8 0 . 0 4 6 6 2 7 1 . 1 1 , 5 7 6 0 . 9 2 3 1 . 0 0 0 0 , 6 9 7 0 . 8 2 0 0 . 9 7 2 0 . 5 5 6 
2 0 0 0 . 5 0 . 5 4 3 , 1 3 0 , 0 , 0 5 7 5 0 . 0 2 5 5 2 6 0 , 4 1 , 4 6 4 0 . 8 9 2 1 . 0 0 0 0 , 6 9 7 0 , 7 5 5 0 . 9 7 5 0 , 5 1 3 
2 0 0 0 . 2 5 . 2 7 1 , 6 2 , 0 , 0 2 5 9 0 , 0 1 0 7 2 5 0 , 0 1 , 3 1 8 0 , 8 5 1 1 , 0 0 0 0 , 6 9 7 0 , 6 7 2 0 . 9 7 7 0 , 4 5 7 
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Convergent section 

P l e n u m D i v e r g e n t s e c t i o n 

1/ I Throat 

Fig-1 Nozzle Configuration 



Fig 2 Coordinate System 
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Fig.5 V e l o c i t y P r o f i l e s f o r C l a s s A S i m i l a r S o l u t i o n s 
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Fig.6 Variation of Dimensioniess Wall Shear Stress 

& Boundary Layer Integrals (Class A) 



key 

— C i s i s s A 

-- (][a<25 EB 

C l a s s A ^ —2-

Class B =2. , 0 = 0 2 , 1 : 7 - 4 

To 

Tp 1-5 

f 

1.0 

J 0 
3' 

Fig 7 A Comparison of Class A & B Pr P r o f i l e s 



2-

. / / 

C l a s s 

, ( b o t h \ y A e = ^ ) 

\ =02 

s \ 

I 

T e T - A e = 1 - , » = 0 4 

3. 
.// 

\ 
\ 

\ 

A 

\ 

\ \ ^ T e T A e = 8 - , 0 = 0 - 3 

\ 
w 

1-

0 

W \ \ 

\\ 

\ 
0 

X ^ ^ C I a s s A 

— ̂  — ITT 

1. 

F i g . 8 S h e a r S t r e s s Profiles f o r C l a s s B S i m i l a r S o i u t i o i T 



(both l^yi^=8.) 

— n " 
p^jaafamagc 

P = 2 -

T e T / ' e 0-3 

p =10-

j 1 L_J J L 
2- J -

Fiq 9 Velocitv Profiles for Class B Similar Solutions 



Class A ( 0 = O O 

Fig-IO Variation of Wall Shear Stress,f'(°)(Class B) 



Class A 

Fig-ll V a r i a t i o n of R, r* I D ^ 
L> / 

V O 



0 
0 4- 6-

P 
8- 1 0 

F i g - 1 2 V a r i a t i o n of R ( C l a s s B ) 
^ o 



0 3 

_ 

P 

'•'"a 

F i g - 1 3 V a r i a t i o n o f F 3 = f d r ] ( C l a s s B ) 
V o 



3-

2. 

c" f(0) 

0 

k e y 
-- C l a s s A ( g c o ) = 1 - 0 ) 

C l a s s C ( g ( o ) = 1 2 ) 

0-1 

a(o: 

b \ g - % S h e a r S t r e s s & T o t a l E n t h a l p y F u n c t i o n 
G r a d i e n t a t W a l l ( C l a s s C 



20 

k e y 
C l a s s A ( P r = u > = 1 . ) 
C l a s s D ( P r = C O =0-7^(5 n l ) 

\ ^ P ~ ^ 

1. 

F i g E C o m p a r i s o n o f S h e a r S t r e s s P r o f i l e s ( C l a s s A & D ) 



0 ' 9 Q — 

1-

key 

C l a s s A ( P r = o j = 1 ) 
C l a s s D ( P r = w = 0 7 , ( ) = 1 ) 

I I ! a 

D' 

r i g l G lotal e n t h a l p y & V e l o c i t y P r o f i l e s ( C l a s s u ) 



20 

0-
0-

k e y 
C l a s s A ( P r = w = 1 ) 
C l a s s D ( P r = cu=0'7,o = 1 ) 

0 5 
i 
10 

P 
1-5 20 

F i g 1 7 S h e a r S t r e s s & T o t a l E n t h a l p y a t W a l l ( C l a s s D ) 



R 

F i g - 1 8 B o u n d a r y L a y e r I n t e g r a l s ( C l a s s u ) 



M a s t e r S e g m e n t 

r ' 
N o z z l e G e o m e t r y 

r " 

P r o p e l l a n t C h e m i s t r y 
a n d T h e r m o d y n a m i c 

I s e n t r o p i c C o r e 

s 
jsection 

y e s c o n v e r t g e n c e 

i [ B o u n d a r y L a y e r C a i c u l a t i o n 
i 

E f f e c t i v e G e o m e t r y 

s e c t i o n 2 

P e r f o r m a n c e P a r a m e t e r s [ s e c t i o n o 

S u b r o u t i n e s 

C S I N T c u b i c - s p l i n e i n t e g r a t i o n 
C S F M I E c u b i c - s p l i n e i n t e r p o l a t i o n 
D Y D X t h r e e - p o i n t differentiation 

F i g l S F l o w D i a g r a m o f N o z z l e P r o g r a m s 



10. 

8-

T . 
£ 
U 

sr 

O 

X 

o 6 . 
u 
m 

o 

D 4 . 

CD 
O 
CJ 

2 

0 

Ref 

8 7 
8 5 

° 86 
R e s t o f d a t a f r o m 8 4 

Tempera tu re CK) 

r.-stroamh » 

3000 

F i g 2 0 V i s c o s i t y D a t a 



c 
<u 

w 

Nominal geometry 

Hydrogen 

Model One 

2 3 4 5 6 
N u m b e r o f I t e r a t i o n s , n 

F i g 2 1 C o n v e r g e n c e o f B o u n d a r y L a y e r - I n v i s c i d 
C o r e I t e r a t i o n P r o c e d u r e ( M o d e l O n e ) 



1 0 r 

4- Limit of C&R 

^Linear Approximation 

I I 

Extrapolation 

G / t r 

-jn 

-(}4 - 0 3 - 0 2 -01 C) 

Correlation Number, n 

1 0 - 2 2 C o r r e l a t i o n P a r a m e t e r s o f C o h e n & R e : ; h o t k o 



0-8 

Hydrogen 

I ^ c l S O O ^ K 

= 50kNm' 

Nominal geometry 

^ A l 

F i g . 2 3 V a r i a t i o n o f 3 - d e p e n d e n t P a r a m e t e r s 
( M o d e l O n e ) 



10 

08 

f o r u n d i s s o c i a t e d N H g 

e q u i l i b r i u m N H 3 

Pj. = 5 0 k N m " r 2 
sMEKSKmr.afarcTf.i'SvT 

3 0 0 5 0 0 1000 
T T ( ° K ) 

( a ) F r o z e n C h e m i s t r y L o s s e s 

1 5 0 0 2000 

wiw.npnw.i'ii 

3 0 0 5 0 0 1000 
T t C K ) 1 5 0 0 'TV rv 

( b ) F r o z e n V i b r a t i o n a l E n e r g y L o s s e s 

F i g - 2 4 Frozen Flow Losses(Model 9t V/ 



N H q u n d i s s . 

Nominal Geometry 

R e ^ * 

( a ) V e l o c i t y D e f e c t 

T - j raM«jB0B»'aMWi>c^cnyiaL{W5^ 

u n d i s s o c i a t e d N H 

( b ) M a s s D e f e c t 
R e p ^ ; 

;iw*T|'Ti 

Nominal Geometry f 

aaamxataserjx •rlatssavjOKMiLnnri -'--l! 

I ' f 

F i g - 2 5 V i s c o u s F l o w L o s s e s ( M o d e l Z e r o ) 



w 

0-8 j 

0 - 7 

0 6 

H n 

0 5 

0 - 4 N H 3 ( e q u j . ) 

3 0 0 5 0 0 1 0 0 0 
( a ) N o z z i e E f f i c i e n c y 

H 

N H - , ( u n d i s s . ) 
- 2 p^ = 50 kN m 

Nominal Geometry 

T - p C K ) ^ 5 0 0 
aar - J 

2000 
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