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ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

AERONAUTICS AND ASTRONAUTICS

Doctor of Philosophy

A THEORETICAL STUDY OF THE PERFORMANCE OF RESISTOJET NOZZLES

Ian Edwards

The theoretical development of four computer models of resistojet nozzle
performance is reported. Five main energy loss processes are accounted
for; these are (i) frozen chemical rate processes, (ii) finite rate
vibrational relaxation, (iii) incomplete expansion, (iv) viscous flow
and (v) radial flow.

The nozzle flow is assumed to be composed of an inviscid core and
a viscous boundary layer, where the boundary layer is represented by
the patching together of similar solutions of the laminar boundary
layer equations. General similar boundary layer equations have been
developed which include the radial dependences accounting for trans-
verse curvature. Four simplified classes of similar equations are
identified, and extensive solutions have been obtained for the Falkner-
Skan equation and a modified Falkner-Skan equation which includes the
effects of transverse curvature, over the range of pressure gradient
parameter, B, from O. to 10. Vibrational relaxation is modelled by
using an approximate sudden freezing criterion.

Performance predictions are presented for HZ’ CH&’ CO2 and NH3 for
plenum temperatures extending from 300 to 3000°K and plenum pressures
from 200 to 10 kNm_z. A wide variety of nozzle geometries is also

considered. The results are compared with the predictions of the

slender channel model of Rae and with experimental measurements.
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NOTATION

Area

Constants in the Landau-Teller equation, eq. (4.29)

Polynomial coefficients used

in eq. (4.15)

Reynolds number based on stagnation conditions and

1
throat radius, B = pT(ZHT)zR*/uT

Discharge coefficient, eq. (2.40)

Thrust coefficient, eq. (2.49)

Binary diffusion coefficient

Thrust

Ratio of local to geometric radius, G = r/R

Total enthalpy per unit mass, H = h + u?/2

Transformed form factor
Heat of formation

Specific impulse, eq. (2.48)
Knudsen number

Equilibrium constant

Factor defined by eq. (5.22)
Nozzle wall length

Mach number

Molecular weight

Momentum parameter

Power

Prandtl number, Pr = ucp/k

Boundary layer integrals of similar solutions, eqs. (3.68)

to (3.72)

Nozzle radius

Radius of curvature at nozzle throat

Universal gas constant, Ru =
Nozzle inlet radius

Nozzle exit radius
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1.987 cal mole
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=

ReD*

Re

Specific gas constant, R = Ru/ﬁ

k k%
Reynolds number based on throat diameter, ReD* = 20 u R /uT
% %
Reynolds number based on wall length, Re; =p u L/uT
Dimensionless enthalpy function, § = H/HT -1

Temperature

Jet velocity

N . .th .
Mole fraction of i species

Constants used in eq. (5.1) to define shape of nozzle
divergent section

Skin friction coefficient, eq. (3.64)

i=n

Molar heat, c ° = Z c? .
i=1 Pot

Specific heat, ¢ = ¢ °/M
P P

Vibrational energy per unit mass
Dimensionless stream function, eq. (3.26)
also, mole fraction of undissociated NH3 not included in
equilibrium calculation
Dimensionless total enthalpy function, g = H/He

. . -2
Acceleration due to gravity, 8, = 9.80665 ms
Static enthalpy per unit mass
Thermal conductivity
Shear parameter
Mass flow rate
Correlation parameter
Pressure
Distribution of heat sources in potential flow

Rate of heat transfer at wall

Local radius
also, recovery factor , eq. (3.79)

Entropy per unit mass
Velocity in x=-direction

Velocity in y-direction

(ix)



X Coordinate in direction parallel to wall

y Coordinate in direction normal to wall

Y4 Distance from wall in radial plane, yq = ¥ cos o
z Distance along axis

z, Axis length

z Axial distance in divergent section (see figure on page 104)
o Local wall angle

a, Effective nozzle half angle at exit

a, o, Degree of dissociation

B Pressure gradient parameter, eq. (3.40)

Y Ratio of specific heats, v = cpo/(cpo - Ru)

8 Boundary layer overall thickness

6* Boundary layer displacement thickness

€ Nozzle area ratio, € = Exit area/Throat area

n Transformed y-coordinate, eq. (3.23)

With subscript, an efficiency

*

N % c™ efficiency, eq. (2.53)

N, Value of n for which u/ue = 0.995

n, Value of n for which ] 1 - u/ue | < 10-.5

6 Boundary layer momentum thickness

61 Nozzle wall angle at start of convergent section
92 Nozzle wall angle at start of divergent section
A Ratio of density-viscosity product, A = pu/owuw
u Coefficient of viscosity

v Kinematic viscosity

€ Transformed x—~coordinate, eq. (3.22)

p Density

c Hypersonic parameter, 0 = uez/He

T Characteristic time

5 Dissociation time

Tf@ Local flow time

(%)



o] Factor in vibrational rate equatiom, eq. (4.30)
also, quantity defined by eq. (5.23)

¥ Stream function

) Exponent in viscosity-temperature power law, eq. (3.42)
0 Transverse curvature parameter, eq. (3.46)

$ Rate parameter used in eq. (4.34)

Superscripts

* denotes throat

denotes differential

denotes transformed plane (Cohen and Reshotko theory)

Subscripts

C denotes frozen chemical rate processes
D denotes radial flow

E denotes incomplete expansion

F denotes frozen vibrational rate processes
H denotes heater

N denotes nozzle

R denctes recombined state

Res denotes resistojet

T denotes total or stagnation

\ denotes viscous flow

a denotes adiabatic wall

d denotes radial plane

e denotes freestream or inviscid core
eff denotes effective inviscid flow

el denotes electric

eq denotes equilibrium conditions

ex denotes nozzle exit plane

fp denotes freezing point
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g denotes gas at entrance to nozzle

hl denotes heater losses

i denotes jet

mix denotes mixture

nl denotes nozzle losses

pY denotes propellant at 300°K

trans denotes transit

tr denotes transformed plane (Cohen and Reshotko theory)
v denotes vibration

w denotes wall conditons
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Chapter One Introduction

1.1 General Background

The work presented in this thesis originates from an interest in the
use of resistojets for various propulsion duties on spacecraft, A subject
of some importance in the design of resistojet systems is the performance
of the resistojet motor. It is this topic which is examined here, and
in particular theoretical models are reported of the energy loss processes
found in the nozzle flow.

A resistojet motor is a low-thrust rocket, consisting of a heater
and a convergent-divergent nozzle. It is essentially an energy conversion
device in which the heater converts electric power to thermal energy by
resistance heating, the heat subsequently being transferred to the gas
stream, adding to the energy inherent in the propellant. Upon expansion
through the nozzle the internal energy of the propellant is converted to
kinetic energy. In a conventional chemical rocket, the heat release
accompanying the chemical reaction between the fuel and oxidant provides
an energy source, whereas in the resistojet motor the main source of
energy comes from an external electric power supply. Thus of the forms
of electric propulsion - electrothermal, electrostatic and electromagnetic
~ the resistojet provides the simplest example of electrothermal

(1)

propulsiocn. On account of its low thrust (less than 10 N) the resistojet,
like all other forms of electrothermal propulsion, is suitable only for
operation in a space environment.

The most important property of rocket performance is the exhaust
velocity, which in an ideal situation is limited by the enthalpy per unit
mass, or specific enthalpy, of the propellant. This in turn is limited
by the heater stagnation temperature and therefore by the maximum temper-
ature which can be tolerated by the resistojet structure. Propellants

with the highest specific enthalpy are the gases with low molecular weight.

-1-



The gases suitable for use in resistojets which are considered here are
hydrogen, methane, ammonia and carbon dioxide. While not a complete list
of the possible propellants, these gases cover a wide range of performance
capabilities, from an ideal exhaust velocity of 11.2 kms"1 for H2 at a
stagnation temperature of 3000°K (an upper temperature limit), down to
0.67 kmsm1 for 002 at 300°K. In reality these theoretical values are

never achieved, since the conversion of thermal energy to kinetic energy
in the resistojet motor is not an ideal process. Thus Page et al (2)
measured a jet velocity of 8.22 kms_l9 with a hydrogen resistojet at a
temperature of 24000K, compared to an ideal jet velocity of 9.36 kmshl,

in other words an energy conversion efficiency of 0.77. In this study

it is intended, by taking into account the various energy loss processes
occurring in the nozzle flow, to make more realistic predictions of
resistojet nozzle performance.

The rest of this chapter is divided into four parts. In the next
section the development of the resistojet motor and of the resistojet
system are discussed, and useful applications to space missions are
considered. The physics of the gas flow through the heater and nozzle is
examined in section 1.3, and particular emphasis is given to the losses
incurred in the nozzle flow. This is followed in section 1.4 by a review
of the literature on theoretical performance of resistojets. In the final
section the aims of this research are described, the features included
in the model of nozzle performance are defined and the contents of this

thesis are outlined.

1.2 Resistojet Engineering and Applications

The first published reference to the concept of a resistojet motor

(3)

was due to Jack in 1961, and it was a relatively straightforward tasik

to demonstrate the concepts feasibility in the laboratory. Howard(é)
reported in 1962 on the performance of a hydrogen resistojet, where, for

-



an input power of 30 kW, a thrust of 6.04 N was measured, giving a specific
impulse of 846 seconds. Additional complication is encountered when con-
sidering a resistojet for use in space, since the motor is then part of

an independent system. The hardware of this system consists basically

of four parts; propellant tankage, power source, control equipment, i.e.
electronics, valves and feed lines, and the motor itself. Two consumable
quantities, the propellant flow and electric power provide the primary
inputs to the resistojet motor. A schematic of the resistojet system is

shown below.

Power Source

electric power

et of
t Nozzle ¢
Propellant  [propeiant | Hegter fhermal energy  directed

thermal energy of v B e o
Storage gas increased) I Lokintic energy) tlr:‘:rg;

Resistojet System

In designing a system to operate in space, constraints are imposed which
are not present in the laboratory. These constraints, affecting not only
the resistojet system but the whole spacecraft, arise from:

(1) the limited mass which can be raised to a given orbit, and

(2) the limited amount of electric power available.

A major factor in the system design must be the mission for which it is
required and a brief discussion of resistojet applications is in order.

Uses of resistojets fall into two broad categories, auxiliary propulsion
and prime propulsion. DMost spacecraft require some form of auxiliary
propulsion for such functions as manoceuvring, station keeping and attitude
control. Nearly all low-thrust (less than 10N) systems used to date have
been based on cold flow gas jets, e.g. the cold nitrogen jets on the Mariner
space vehicles(s). However by using a small amount of power, i.e. converting
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a cold jet into a resistojet, weight savings and improved performance
result. In this case the design involves trading-off the decreased
propellant mass requirements against the increased mass of the power
supply. Low-thrust resistojets, of the order of 50 ml, with power con-
sumptions of the order of 10 - 200 W have been used, or are proposed for,

(6,7)

the various satellite control duties.

(8) (9)

Lord, and studies for the Manned Orbital Research Laboratory

s
have shown that the payload in final orbit can be increased significantly
by injecting a satellite or spacecraft into a low parking orbit using a
conventional chemical booster, and using large resistojets (thrust of order
1 N) to increase the orbital altitude by means of a spiral transfer
trajectory, rather than by boosting the payload to altitude directly.

The penalty is an increased transfer time. In a subsequent study Lord

(10)

and Parkinson have widened the scope of their work by demonstrating

the advantages of cowbining resistojets with ion motors to produce mixed
thruster systems of versatile performance. Recent calculations(ll),
using a two-stage transfer for large communications satellites, indicate
that not only is a good trade-off between payload and transfer time
possible, but also that the system offers substantial economic savings.
The importance of a mission analysis to the design of a resistojet
system is that it specifies (i) the total impulse requirement and
(ii) the power and mass allocations. In general the power and mass
allocations are not independent of one another, and it is convenient to
think of the electric power supply in terms of an equivalent mass. Solar
arrays provide the usual power source for long duration space missions,
so that the mass per unit power of the array is an important quantity.
One approach to the design of resistojet systems is to minimise the system
mass(lz)° This involves an optimisation of several conflicting factors.
The factors involved are:-
(1) Mass per unit power of the solar array.

(2) Mass of system hardware, i.e. propellant tankage, control

—l—



equipment, resistojet motor and thermal shielding.
(3) TMass of propellant, which depends »n the propellant

properties and on the performance of the resistojet motor.

It is the final factor which is investigated in this thesis.

The type of mission has obviocus implications for the choice of
propellant. Thus for missions of restricted lifetime, such as the
orbital transfer of large space vehicles, hydrogen, with its large specific
enthalpy and consequent high exhaust velocity, is the best choice of

(8-10) For missions, such as satellite attitude control, in

propellant.
wkich resistojets would be operated in a pulsed mode over a period of
several years, then the use of hydrogen, which has to be stored
cryogenically and therefore has a restricted storage lifetime, is not
feasible. For such duties other gases, such as ammonia and hydrazine,
stored indefinitely as saturated liquids in a simple, thin-walled,
pressure tank, are attractive propellants,(13) Ir manned space
operations, the biowaste products of the environmental control/life
support system such as carbon dioxide, methane and water can be used

as resistojet propellants,(g’la)

It follows that propellant supply and
storage problems are then minimised, although intrinsically they are not
such good propellants.

To sum up, however good the other components of the system, it is
the performance of the resistojet motor which ultimately determines the
usefulness of the system, so that prediction of the motor performance is
very important. As already indicated the conversion of thermal energy
to kinetic energy suffers from various losses, and in the next section
the processes causing a reduction from the ideal performance are

examined.



1.3 Gasdynamics of the Resistojet Motor

In order to simplify matters, attention is restricted in the present
work to steady state operation, i.e. the resistojet motor receives a
continuous supply of electric power and propellant. The models which are
subsequently developed are therefore only strictly applicable to con-
tinuous operation, but it will be shown that as far as the nozzle
performance 1is concefned these models can also be applied to pulsed

operation,

1.3.1 1Ideal Situation

In the ideal situation all the electric power transferred to the
heater is used in increasing the thermal energy content of the propellant,
in other words increasing the total enthalpy. Further, during expansion
through the nozzle the propellant internal energy is converted into
kinetic energy directed along the mozzle axis. Thus the energy put into
the resistojet motor, by the propellant and that added as electrical
energy, is converted entirely to jet energy at the nozzle exit.

There are several implications in this definition which are useful
when considering the real situation. The assumption that all the
electric power is converted intc the internal energy of the propellant
implies that no heat transfer losses occur through radiation or conduction
from the resistojet body. It further implies that the gas flow through
the heater and nozzle is non heat-conducting and inviccid. From a
macroscopic viewpoint the gas is regarded simply as a thermal energy sink
in the heater and as a kinetic energy source in the nozzle. At the
microscopic level this definition demands that the internal energy processes
react to changes in the equilibrium conditions with an infinitely fast rate.
Since all the internal energy is assumed to be converted to kinetic energy,
it is further implied that at exit from the nozzle the gas temperature is
zero, so that all molecular and atomic excitation has ceased.

_6_



The ideal situation in terms of energy flow, i.e. power, is

presented schematically below.

Electric Power

l:’l Jet Power
“ | Heater [==5™% Nozzle —p *
g

Inherent Powe;

in Propellant

P

pr

Ideal Resistojet Flow

A power balance for this ideal case gives

(a) Heater Pe1 + PPr = Pg (1.1)
b N 1 P = P, 1.2
(b) ozzle o 3 (1.2)
(¢) Overall Pel + Ppr = Pj (1.3)

An overall resistojet efficiency is then

P.
n = ]
Res IS (1.4)
el pr
and in this case nRes = 1

1.3.2 Real Situation

Some hint has already been given of the non-~idealities occurring in
the real flow. Thus, there are losses due to tadiation from the heater
directly to space, and due to conduction to the spacecraft body and
nozzle, where it is subsequently lost by radiation. These heat transfer
losses mean that not all of the electric energy is transferred to the
propellant. Within the propellant flow there are various non-ideal gas-—
dynamic processes, not all necessarily causing a reduction in performance
but complicating the picture. The gasdynamic problem is conveniently

considered in two parts, (a) heater flow and (b) nozzle flow.

-7



(a) Heater flow
There are a variety of heater designs (see, for instance Ref. 1,
pages 104 - 105) and of the most recent configurations the most promising

(2)

appear to be the concentric tubes scheme of Page et al and the vortex

. 15 . .

heater of Murch and Krleve( ), Two factors which may influence the
performance of a resistojet heater are thermodynamic nonequilibrium and
viscous flow. Considerations of these two phenomena are restricted to

tubular heaters where it is easier to assess semi-quantitatively what

is happening.

Thermodynamic nonequilibrium and rate processes

The establishment of thermodynamic equilibrium between the various
internal emergy modes - translation, rotation and vibration - and chemical
equilibrium do not occur instantaneously but require finite times. Since
the time taken for the gas to flow through the heater may be short, some
of the processes occurring in the flow may not have time to equilibrate.
Suppose that the time required to approach equilibrium can be represented
by a time T , which is a "'relaxation' time for the energy mode or a
chemical time for the chemical reaction, then an initial prediction of the
occurrence of nonequilibrium can be made by comparing the various
characteristic times, T , with the transit time through the heater,

(16) . e e .
T The ratio T/7 has two limiting cases; 1if 1/t + 0
trans. trans trans
the process is very fast in comparison to the transit time, and equilibrium
conditions exist at exit. At the other extreme, with the transit time
> ©

very fast in comparison with the characteristic time, i.e. T/ ,

T
trans

the process effectively does not take place. Nonequilibrium can occur in
an excitation environment, as in the heater flow, or in a de-excitation
environment, as in the nozzle flow. The characteristic time describing
a process in these situations is different, with the de-excitation time
being considerably shorter than the excitation time (see Ref. 16, p. 151).

However for the order of magnitude arguments used in this chapter it is

_.8..



assumed that the "relaxation" time is identical in both situations.

(17)

The transit time for the heater of Page is calculated to be

of the order of 100 msec; as this is a large device, typical transit
times can be taken to be in the range 10 to 100 msec. Relaxation and
chemical times are functions of temperature and pressure, and in general
they are inversely proportional to pressure and increase exponentially
with decreasing temperature. Translational and rotational energy modes

10“9 (18)

relax very quickly, with times typically of sec. for most gases s

so these modes may be considered to be in equilibrium. Vibrational
relaxation is somewhat slower. Rate data gathered from the literature 1is
presented in Appendix B, and it can be seen from Fig. Bl that, for the

polyatomiecs CO CH4 and NH,, the vibrational relaxation time, Tv’ is

29 39

less than 10-.5 sec. at a pressure of 1 atm. for temperatures above

300 °K. The vibrational mode of H2 is not significantly excited until

temperatures greater than 1000°K, where pTv < 10 4 sec. For the above
gases vibration can be taken to be in equilibrium through the heater.
However Nz, which is a product of the dissociation of NH3, relaxes very
slowly and even at ZOOOOK, pTv s 10—3 atm.sec. A decision regarding
vibrational nonequilibrium in nitrogen is delayed until after an

examination of the chemical times.

(19)

The equilibrium constants of formation taken from the JANAF tables
indicate that under equilibrium conditions NH3 would begin to dissociate

. . o . . . .
into N2 and H2 at temperatures above 300 K, but in practice kinetic

considerations suggest that significant decomposition does not occur until

a much higher temperature. Reaction rate data for NH_, is sparse.

3
(20)

. o .
Sawyer notes that temperatures in excess of 1500 K were required to

produce measurable ammonia decomposition from the homogeneous reaction.

(z1) for NH3 in

Ar diluent, indicate a dissociation time, TD(NH3) = O(lo-z)sec° at 2000°k.

Calculations based on the rate data of Michel and Wagner

The decomposition rate is increased by heterogeneous catalysis on the
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metallic heater surfaces and shorter dissociation times are suggested

(22)

by the data of Logan and Kemball . Approximate calculations give

T (NH,) = 0(10™%) sec. at 1500°K and T (W) = 0(107°) sec. at 2000°K.

(23)

Miles in a study of the catalytic dissociation of NH_ by various

3
0 . . .
surfaces for temperatures up to 800 K, found substantial decomposition
at comparable mass flows to those of present interest, but with space
velocities (mass flow rate/area) about two orders lower. Finally

(24)

Perroud has investigated NH_, decomposition in tungsten tubes over the

3
temperature range from 1000 to 3000°K. The findings of Refs. 20 to 24
indicate that NH3 dissociates in two phases, as a gas phase reaction and
as a wall catalysed reaction. A “threshold" temperature for significant
homogeneous dissociation to commence exists at about 1500 to 1600°k.
Heterogeneous reaction occurs at lower temperatures with "threshold"

temperatures reported to vary from 12000\(24) down to 4OOOK(23).

The
concept of a threshold temperature is misleading, since the heterogeneous
catalysis requires collision of the propellant molecules with the heater
wall, while the homogeneous reaction is slow at typical resistojet
temperatures (less than ZOOOOK). Under these conditions the chemical

rate can be diffusion limited and even though the temperature is high
enough to cause dissociation, the bulk of the gas may be convected through
the heater before more than a fraction of the total number of molecules
has a chance to react on the wall. It is difficult to infer much from

the references about resistojet operations since the experimental
geometries and residence times are so different from those of resistojet
heaters. However, it is to be expected that at low temperatures (BOOOK)
NH3 will remain undissociated, and by ZOOOOK, say, a considerable amount of
decomposition will occur. Experimental work is under way in this
laboratory to measure ammonia dissociation in typical resistojet heater
(25)

configurations

Now re-examining the vibrational relaxation of N_, it is apparent

2’
that NZ will be present in an ammonia resistojet heater as part of a
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mixture of NZ’ H2 and NH3. It is well known that mixtures in which

there is a fast relaxing component, such as NH_, relax at a rate compar-

3’
able to that of the fastest component (see section 4.4). Thus it is
reasonable to assume that for the gases considered here vibrational
energy is in equilibrium at exit from the heater.

Of the other propellants, CH4 and H2 can also dissociate under
resistojet heater conditions. It is observed in resistojet experiments

employing CH4 (26,15) that deposition of solid carbon occurs at high

(26)

temperatures. Halbach using a large concentric tube heater determined

an upper operating temperature of IOOOOK, whereas Murch and Krieve(ls)
using a small vortex heater note that no measurable carbon deposition
occurs below 1900°K. The difference between these observations is almost
certainly caused by the different heater transit times. Equilibrium
calculaticns for H2 indicate that only a small amount of dissociation
occurs at temperatures below 2000°K. This fact allied to TD(HZ) = 0(1)
sec, based on calculations of the rate data from Refs. 27 and 28, suggests
that the presence of atomic hydrogen is unlikely at temperatures below
ZOOOOK, and even at higher temperatures it will be present only in very
small quantities.

The effect of nonequilibrium in the chemical rate processes is a

4

reduction in the power put in to the nozzle, Pg' In the case of CH, a

reduction in Pg is preferred to the deposition of solid carbon.

Viscosity and heat conduction

Further nonequilibrium processes which must be considered in a real
gas are viscosity and heat conduction. In resistojet heaters with the
stagnation pressure typically of order of 1 atm, the flow is a continuum,
so the condition of no slip at the heater surface applies. Thus the gas
layer adjacent to the heater wall has zero velocity and its temperature
is identical to that of the wall. Gradients in velocity and temperature
are set up in a direction normal to the flow since momentum and energy
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are being tramsported through the heater by the propellant molecules.
These gradients give rise to the phenomena of viscosity and heat
conduction.

The effects of viscosity and heat conduction extend throughout the
heater flow, and for the low speeds and small dimensions typical of
resistojet heat=zrs the flow should be laminar. From the aspect of con-
verting electrical energy to thermal energy this is not advantageous
since the haat transfer is less efficient than in a turbulent flow.
Viscous flow causes a loss in momentum due to skin friction which is
reflected in a drop in the total pressure. The overall effect of
viscosity and heat conduction is dissipative in that it causers a
reduction in the gas power, Pg. Unlike the thermodynamic rate processes,
no general conclusions can be made regarding the magnitude of the viscous

losses without a thorough analysis based on particular geometries.

Although the rate processes and the phenomena of viscosity and heat
conductior have been considered separately, in fact they occur sirultan-
eously and interact. In particular the chemical rate processes will
couple with the viscous flow. Thus the heterogeneous decomposition of
ammonia, occurring at the heater surface, does so in a region of reduced
velocity and therefore increased residence time. It followss that at a
given position there will be a gradient in the gas composition, as well
as in the velccity and temperature. This gives rise to an additional
nonequilibrium process, mass diffusion,which has already been briefly

mentioned.

() 1ozzle Flow

In the expansion process the non-idealities are again examined
individually, while it is recognised that they are not independent. The
non~idealities are considered to be :

(1) Chemical rate processes

..12....



(2 Vibrational rate processes

(3 Incomplete expansion, i.e. a finite area ratio nozzle
(4) Viscous flow

(5) Condensation of the efflux gas

) Radial flow at exit from the nozzle.

Chemical rate processes

As discussed earlier, ammonia, hydrogen and methane are gases whose
chemical composition can change during pascage through the heater.
Dissociation of methane is not desirable and in practice resistojets
would not be cperated in a regime -here this occurs. Therefore the
following remarks regarding chemical rate processes in the nozzle are
confined to ammonia and hydrogen.

Resistojet performance can be considerably influenced by variation
of the chemical composition in the nozzle; as the pronellant expands it
experiences large drops in temperature and pressure, which, if equilibrium
is to be maintained, must be accompanied by a decrease in the degree of
dissociation. The recombination process is an exothermic reaction so
that it acts as an apparent heat source and this sensible energy should
be converted by the nozzle into useful kinetic energy. Unfortunately,
the chemistry may not have time to come to equilibrium so that the
contribution from chemical energy to the jet energy will lag behind its
equilibrium value. Recombination times (of the same magnitude as the
dissociation times) are large in comparison with the nozzle transit time,
which is typically 10_5 to 10_6 seconds. Thus it is to be expected that
in most of the nozzle Flow, certainly in the supersonic section, recom-
bination will not occur and the chemical composition will remain constant.
The effect on performance of freezing the chemical rate processes is to

cause a reduction in the jet power, P..
J

Vibrational rate processes

A further significant factor is the rate of vibrational deactivation.
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As the propellant expands the temperature and pressure decrease,
increasing the vibrational relaxatiom time, T_, so that this time can
become comparable to, or larger than, the nozzle transit time, Trans®
Thus, it is alsc possible for vibrational energy to lag behind its
equilibrium value and ultimately to become constant. For diatomic gases,
such as H2 and N2

at resistojet operating temperatures, the possible loss in jet energy due

, with only a small amount of energy invested in vibration

to vibrational freezing is small. FHowever, vibrational energy constitutes
a considerable proportion of the total internal energy of the polyatomic

moleculies, NH,, CH, and CO,, so that the potential losses are much higher.

3° 4 2

Examination of the rate data in Fig. Bl indicates the vibrational
relaxation times of Hz and N2 are comparable to, or longer than, the
nozzle transit time. Therefore it is likely that the vibrational rate
processes of these propellants will freeze during expansion through the

nozzle. 1In the case of the polyatomics, T , so that vibrational

<
v trans
energy may remain in equilibrium longer. The establishment of a reason-—

able freezing criterion is then very important.

Incomplete expansion

To expand the propellant fully, so that the jet temperature at the
nozzle exit reaches absolute zero, would require an infinitely long
nozzle. A more realistic nozzle with a finite area ratio (i.e. ratio
of exit area to throat area) leads to the flow being underexpanded; in
which case energy remains in the active internal modes of the propellant
and is not converted to jet energy. Hence; there is a further reduction

in the effective jet power.

Viscous flow

In conventional rocket motors the chamber pressure is of the order

of 100 atm. and Reynolds numbers, characterising the nozzle flow, of 106
are typical. As a consequence, the dissipative effects of visgcosity and
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heat conduction are confined to a thin boundary layer on the nozzle
surface. This affects performance in several ways. First, the free-
stream properties such as density and velocity are altered from those
values obtained when the flow is inviscid throughout the nozzle.

The viscous layer effectively displaces the inviscid core, so
that in the nozzle divergent section (see Fig. 1) the core density is
higher and the velocity is lower than in the ideal case. Thus there is
a reduction in the exhaust velocity. At the nozzle throat, viscosity
causes a decrease in the effective throat area and therefore in the mass

Secondly,
flow rateol the boundary layer,being a region of reduced velocity and
mass flow, has a womentum Aefecit which 1s manifest as a
reduction in thrust. At these Reynolds numbers the losses in perform—
ance are only small.

As Reynolds numbers decrease so the viscous flow occupies an
increasing proportion of the nozzle flow field, and in resistojet nozzles,
which operate at relatively small Reynolds numbers, the viscous effects
can be pronounced. Examination of the literature on resistojets reveals
that they have been operated over a range of Reynolds numbers (based on
throat diameter, RED*) from about 500 to 5000. In this regime the
viscous flow 1s laminar. At ReD* of order 104 the effects of viscosity
and heat conduction are still confined to a boundary layer, but as
Reynolds numbers decrease (for instance, through a reduction in
stagnation pressure) the boundary layer thickens rapidly and by ReD* =
0(102) the viscous effects can exterd across the whole of the nozzle
cross—section. In electron beam measurements on low density nitrogen

(29)

nozzle flows at a nozzle area ratioc of 66:1, Rothe found that the

whole of the nozzle flow at exit was viscous at ReD less than 250.

*

However at higher Reynolds numbers, Re_, = 0(65Q), his measurements

D%
indicate the existence of an effectively inviscid core throughout the

nozzle. The viscous loss and the occurrence of fully viscous flow are
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dependent not only on ReD*, but also on the nozzle area ratio, € . Thus,
at ReD* = 200 and, say, € = 4 a resistojet nozzle flow field consists
essentially of an inviscid core and a viscous boundary layer, whereas
with a large area ratio, say € = 200, apart from a inviscid core in the
vicinity of the throat, virtually the whole of the supersonic portion

of the nozzle is viscous.

It is well known that the thermal condition of the nozzle wall
has a considerable influence on the viscous flow. Thus in the design
of wind-tunnels for hypersonic, low density flow the nozzle walls are
often cooled to reduce the boundary layer tuickness (e.g. see Ref. 30).
In resistojets the nozzle wall temperature is high, tending to the
heater stagnation conditions(z), and it follows that viscous losses are
severe,

A further boundary condition winich must be examined in connection

non-
with the viscous phenomena arises from[continuum flow considerations.
The condition of no slip at the nozzle wall becomes questionable in low

(31)

thrust engines and a more appropriate boundary condition is one in

which the layer of gas immediately adjacent to the nozzle surface has a

finite tangential velocity. According to Schaaf and Chambré(32),

for
Reynolds numbers greater than unity the slip flow regime can be
defined by the limits

5

Vile

0.01 <

where M and Re are the flow Mach number and Reynolds number respectively.
In the divergent section of a resistojet nozzle the Mach number will
increase from unity at the throat to a value of four or five, say, at
the nozzle exit. The corresponding Peynolds numcer based on the nozzle
diameter is inversely proportional to the local radius, so that it
decreases as Mach number increases. Thus even at the nozzle thkroat for
yA 4 . .
the range of Re from 10”7 to 10 slip flow is the correct boundary

D*
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condition, and with increasing distance along the axis the effect becomes
more pronounced.

There are two principal effects associated with slip flow, ome is
the previously mentioned slip velocity and the other a temperature jump
between the gas and nozzle wall. Unlike the other gasdynamic processes
considered here, the effect on performance is not in itself detrimerntal,
The fact that there is a finite velocity at the nozzle wall means that
the viscous flow produces a smaller velocity defect than in the continuum
flow case, which in turn reduces the skin friction. Further, there is
a decrease in the heat transfer between the gas and nozzle surface since
there is an effective thermal contact resistance associated with the

. (32 . . . ..
temperature jump ' ). In connection with rarefied nozzle flows it 1s

33)

alsc worth mentioning the work of Milligan( , who has examined nozzle

characteristics over a range of Reynolds numbers from 10_2 to 102.

It is appropriate at this point, to note that some difficulty is
experienced in measuring experimentally that performance of a resistojet
which is truly representative of its space operation. This results from
the low stagnation pressures with which resistojets are operated. It
follows that at exit from the nozzle the pressure is very lowv and is
comparable to the ambient pressure which is maintained in the space

(7

simulation facility. Yoshida et al in experiments on hydrogen and
ammonia resistojets observed that the ambient »nressure of the vacuur
chamber has a significant effect on performance. At a cell pressure of
300 microns a specific imnulse of 539 seconds was measured with hydrogen.
As cell pressure was decreased, keeping all other factors constant, large
improvements in performance were observed; by 10 microns the specific
impulse had increased to 20 seconds and continued to do so until ambient
pressures below one micron were achieved, where the specific impulse
leveled off at 556” seconds. This change in performance was not caused

by windage effects and was attributed mainly te the viscous interaction
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of the vacuum chamber pressure with the low eynolds number flow in the
nozzle. Obviously this is of some importance in relating theoretical

and experimental resistojet performance.

Condensation of the efflux gas

Under certain conditions condersation of the propellant can occur
during the expansion process. When an ideal gas expands isentropically
through 2 nozzle, the temperature and cressure decrease such that
p/TY/(Y-l) = constant. This isentrope will cross the saturated vapour
pressure p_ . = f(T), on a p~T plane,and the gas will tend to condense

t

in liquid or solid droplets. Examination of entropy-enthalpy charts

N (34) . . . .
for NHB and CO2 reveals that in an isentropic expansion from

. . 0 . . .
stagnation conditions of 300 K and 1 atm., ammonia achieves the saturation
o .

vapour pressure of 0.23 atm. at a temperature of 210°K; the equivalent
- ) .
figures for 002 are 0.1 atm. at 170 XK. The actual onset of condensation
. . . . (35)
1s dependent on the particular gas and the nozzle conditions. Wegener
notes that high temperature gradients lead to high supercooling, or
supersaturation. Thus in the expansion of water vapour he observed
supercooling up to 100°K in a nozzle with a temperature gradient of

o -1 . . . .
100 ecm . 1In resistojet nozzles temperature gradients several times
this are typical so that supersaturation is likely to be high, and in
turn the appearance of condensate in the efflux will be delayed. It is
not immediately apparent what the effect on nozzle performance is, since
condensation although returning energy to the flow through the latent

heat is also likely to cause a shock which reduces the Mach number. More

specific evidence could not be found in the literature.

Radial flow

The final non-ideality arises from the fact that the exhaust velocity
possesses a component in the radial direction which does not contribute to
thrust, so causing a reduction in jet power. In the inviscid situation, or
the effectively inviscid, i.e. high Reynolds numter flow with a thin
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boundary layer, the radial flow loss is dependent only on the geometry of
the nozzle divergent section. To minimise this loss nozzles are usually
bell-shaped so that at the nozzle exit the wall angle tends to zero.
This produces a flow which is directed emtirely along the nozzle axis.
In resistcjet nozzles, boundary layers are thick and the largest compon-
radial

ents of fvelocity occur in a region of reduced momentum flux. Thus the
radial flow loss is reduced and with it the need for contoured nozzles.

In fact most nozzles used in resistojet motors have been of a conical

divergent section.

The six processes which have been considered to occur in the
resistojet nozzle are not independent of one another, and some couplings
caused by the presence of viscosity are considered below. It has just
been indicated that there is a coupling between the radial flow and
viscous flow so that, for a given geometry, as the boundary layer thickens
the radial flow loss decreases,; and vice varsa.

In an inviscid nozzle flow it has been assessed that little or no
chemistry will occur, but with the presence of viscosity a region of
reduced velocity and therefore increased residence time is found adjacent
to the nozzle wall. To illustrate the nossible effect on resistojet
performance let us assume that the flow consists of an inviscid core and
a laminar boundary layer. In the inviscid core, recombination processes
will be essentially frozen, but in the boundary layer tecause of the
increased residence time it would appear that recombination is more likely.
The resistojet nozzle wall is hot, so that in the boundarvy layer the
temperature will be increased in comparison to the freestream values, and
the effect will be to reduce the recombination rate, therefore offsetting
the increased residence time. Further factors irfluencing atomic recom—
bination in the boundary layer are velocity slip and temperature jump at
the nozzle surface. These will have conflicting trends on the chemical
rate. Finally, and probably most immortant, are the ~atalytic promerties

~1 9.—



of the nozzle material. It is difficult to predict with so many con-
tributing factors what the real situation will be, but it is likely
that the amounts of atomic recombination will be less than in the more
conventional cold wall case (for instance, see Ref. 36).

Vibrational processes will be affected by viscosity in a similar
manner to chemisiry. Since vibrational rates are ccnsiderably faster
than chemical rates it is to be expected that, for the case where
vibrational energy is frozen in an assumed inviscid core, some vibrational
relaxation will occur in the boundary layer. Obviously when vibrational
energy is in equilibrium in the core it will also be in equilibrium in
the boundary layer. The effects on performance of recombination or
vibrational relaxation is benmeficial since energy is returned to tha

active degrees of freedom.

It was convenient tc consider the gasdynamics of the heater and the
nozzle separately. Yowever the performance of a resistojet motor is
dependent, not only on the individual performances of the heater and
nozzle, but also on how they behave as a unit. This is most apparent in
the losses resulting from viscous flow and frozen chemistry. Thus the
viscous loss in the nozzle flow is dependent on the throat diameter
Reynolds number, which is determined by the plenum nressure and by the
pressure drop caused by the viscous flow in the heater. Further, the
flow emanating from the heater is fully viscous, so that in the convergent
section of the nozzle where one would intuitively expect viscous effects
to be small, conceptual division of the flow into an inviscid core and a
boundary layer is incorrect. Another example of the interaction between
the heater and nozzle is to be found in the losses due to frozen chemical

rate processes. The possibility that dissociation of NI, say, does not

3’

occur in the heater, although causing a reduction in the ideal gas powver,

P , is not mecessarily a loss in overall efficiency, since recombinaticn
(=3
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losses will not be incurred. Thus the ratio of the jet power to the
power input to the resistojet may actually be larger when dissociation

(37)

does not occur. There are other points, obvious in retrospect, which
could be mentioned at this stage, but they are best dealt with in the
discussion of results in Chapter Six.

In a similar manner to the ideal case a power balance for thes real

case gives:

= B =
(z) Heater Pel + Ppr Pg + P”l (1.5)
(b) Kozzle P =P, + P (1.6)
g ] nl
"D =
(c) Overall Pel + Ppr PJ + Phl + Pnl .7
A heater efficiency can be defined as
Pg
" T PP (1.8
el pr
and a nozzle efficiency as
]
g
so that the overall efficiency (eq. 1.4) is
n = n. N (1.10)

In equations (1.5) and (1.5) the power losses due to gasdynamic non-—

idealities in the heater, and in the nozzle, P are introduced.

Phl’ nl’

The most significant point to emerge from this examination of the
resistojet motor is that the physics of the flow through the heater and
nozzle is extremely complex. It is apparent that to make any advance in
the modelling of resistojet performance some simplification is necessary.
However before considering this further, the literature on the theorstical
verformance of resistojets is reviewed.
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1.4 Literature on the Theoretical Performance of Resistojets

As tha resistojet concept is comparatively new the literature dealing
specifically with the theoretical performance of resistojet motors is
meagre. The approach adopted in all the references given here is to
consider the performance of the heater and nozzle separately.

Two references should be mentioned in comnection with heater per-

17 .
a7n describes a heat transfer

formance. The first bv Page and Short
analysis, based on the electrical analogy with heat transfer, whick tras
carried out in the design of = larpze concentric—tube heater. Further,
calculations using the conventional Hagen-Poiseuille formula, predicted
values for the stagnation pressure drop through the heater which were
several times smaller than those measured experimentally. In a later

work, Gaubatz, James and Page(38)

have computed the compositions of
various biowaste propellants using both equilibrium and nonequilibrium
chemistry programs for the heater flow. An empirical correlation of
nozzle efficiency then enabled the prediction of the overall motor
performance.

The approach adooted in other works has been tc specify the »nlenum
conditicns produced by the heater, i.e. the stagnation pressure and
temperature, and propellant composition, and to evaluate the nozzle
performance taking into account some of the processes which were discussed
in section 1.3. The first theoretical analysis of nozzle performance,
reported in Ref. 39, was used in the design of a high temperature hydrogen
resistojet. This mrdel was based on an inviscid expansion in the nozzle
modified by the growth of a viscous boundary layer, where the main
assumptions were a one-dimensioral, frozen flow with an adiabatic nozzle
wall. An empirical displacement thickness - Reynolds number relation vas
used to characterise the houndary layer growth. Calculations at the design
plenum conditions of 2600°K and 2.7 atm. were carried out for a range of

conical nozzles, but no comparison between experimental and predicted
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performance is gziven.

(40)

Jefferies and Cumbers describe a computer program, capable of
calculating the laminar boundary layer in an axisymmetric nozzle, which
has been applied to the design of nozzles for electrothermal thrusters.
The most notable feature of this work is that vibrational energy was
assumed to be in equilibrium in the inviscid core. Although calculations
for a specific gas are not reported it is to be expected that such a
formulation would be useful in determining the performance of the poly-
atomic propellants,

In an experimental and analytical investigation of low-thrust

(41)

nozzle performance Murch et al have examined the dependence of
thruster performance on nozzle geometry. Using the assumptions of quasi
one—-dimensional flow with vibrational energy frozen at the heater stag-
nation conditions, the losses accounted for were due to incomplete
expansion, viscous flow and radial flow. It was realised that the
inviscid core-boundary layver interaction was important, and iteration
between solutions of the two regimes was carried out until the change

in the effective area ratio at the nozzle exit had converged to an
acceptable value. The boundary layer calculation was bhased on the
approximate method for laminar boundary layers of Cohen and Reshotko(éz),
where the nozzle wall was assumed to be adiabatic. The propellants
examined were hylrogen and nitrogen. Commarisons between the experi-
mental measurements and theoretical predictions are not good, with
calculated nozzle efficiencies from 5 to 207 higher than experiment.
Murch remarks that for the Reynolds number range in which they were
interested, i.e. a Reynolds number based on throat diameter from 600 to
3000, the boundary layer thickness at the nozzle throat was only a few
percent of the throat radius. By assuming that the boundary layer
thickness at the throat was zero, computations were made only for the

supersonic section of the nozzle. However, in this range of Reynolds

numbers the discharge coefficient, a measure of the boundary layer
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thickness at the throat, is noticeably less than unity, so that this
assumption is in error. This accounts partly for the large discrepancy
between experiment and theory, but a more likely cause can bhe attributed
to the vacuum chamber pressure effects on viscous flow, a phenomenon not
widely recognised at that time.

Of some importance to the present study is the work carried out by

(43)

Rae on viscous low-density nozzle flows. The starting point in Rae's

analysis was the Navier-Stokes equations. These were simplified by using

s . .
( ), which are that the ratio

the slender channel assumptions of Williams
of radial to axial velocity components, and the ratio of axial to radial
gradients are each of the order of the slenderness ratio of the nozzle,
i.e. of order (R/L). The result vas the slender channel equations:
equations which are formally identical with the boundary layer equations,
inciuding the radial denendences that account for transverse curvature,

but which are valid throughout the channel. At the nozzle wall, slip
boundary conditions are alloved. After non-dimensionalising the variables,
Rae represented the governing set of non-linear partial differential
equations by an implicit finite difference scheme, which was then
programmed to solve the direct problem of low-density flow from given
reservoir conditions through a nozzle of given snape. Computations have
been executed for a gas with vy = 1.4, Pr = 0,75 and w = 0.9, for several

conical nozzles at Reynolds numbers, Re helow 660.7

D*?

There are a number of interesting points in Pae's results, of which
three are mentioned at this juncture:
1. TFor a nozzle of area ratio 37:1 there was effectively an

inviscid core throughout the nozzle for Re_, = 650, but by

D%

Re ® 200 the flow was completely viscous. These findings

L]
N . . . (29)
were later confirmed experimentally by Rothe .

..24_
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2. Rae remarks that, where the flow was essentially divided
into an inviscid core and a bLeundary layer, the conditions
on the nozzle axis could be calculated within a few percent
of the values predicted with the slender channel approach,
by using the isentropic one—dimensional flow of an effective
area ratio found by subtracting the displacement thickness

from the geometric radius.

3. Heat transfer from the wall to the gas was examined by
making the wall temperature identical to the stagnation
temperature. It was observed that the velocity and temper-
ature profiles were practically the same as those obtained

with an adiabatic wall.

(45}

The final reference is by Kallis, Goodman and Halbach who

have used Rae's program, assuming an adiabatic wall, to study the viscous
effects on biowaste resistojet performance. Comparison with expmerimental
measurements of the performance of HZ’ CHA’ £0, and ¥,0 over a range of

2 2

Reynclds numbers, Re from 800 te 4500 is good.

D%’

1.5 Present Approach

1.5.1 Aims of This Work

So far in this Introduction the resistojet system has been
examined, the processes occurring in the motor identified and the
literature on theoretical performance of resistojets reviewed. At this
stage it is pertinent to ask, what are the aims of the present research?

In the U.K. work on resistojets is concentrated mainly in two
places. At the Rocket Propulsion Establishment, Westcott, hydrogen
resistojets with a design thrust of 0.65N are being investigated for
use as the primary propulsion of communications satellites. At the
Royal Aircraft Establishment, Farnborough, ammonia resistojets of
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approximately 50 mN thrust are being developed for use in satellite
attitude control. To complement the experimental and theoretical research
being carried out in these two areas and to provide performance predictions

for other propellants, such as CH, and co,, it was decided to develon

4
computer models of resistojet nozzle verformance which could he applied
relatively quickly over a wide range of overating conditions. Before

this can be done, it is necessary to guantify the »rocesses causing a
reduction in the ideal nozzle performance. Thus, modelling of the energy
loss processes occurring in the nozzle is the prime concern of the wresent

work. With a better understanding of the gasdynamic situation in the

nozzle it is then possible to make realistic performance predictions.

1.5.2 1Vviodel Situation

In order to examine resistojet nozzle performance over a wide
range of conditions some compromise has to be made regarding the number
of processes included in the model and the degree of sophistication
with which they are accounted. An iumediate simplification comes from
neglecting to model the heater performance. While not physically
realistic it is a necessary step, since the heater losses are greatly
dependent on the particular configuration. It is therefore not anpropriate
in what is essentially a design study to devote a considerable amount of
effort to modelling the heater performance. Some loss of accuracy must
result from this fundamental approximation but it is incurred with the
substantial advantage that the performance model can be applied to a wide
range of resistojet designs. Since the heater flow is not represented,
the thermodynamic quantities - stagnation temperature, stagnation
pressure and propellant composition - must be specified as input variables
to the nozzle calculation. Provided that these quantities are knowm, or
can be estimated, comparison between theory and experiment is possibhle.

The basic principle used in defining the model nozzle flow, is that
where circumstances dictate, for instance through a lack of kinetic data,
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the approximations made to the real situation are such that the energy
loss is overestimated, therefore resulting in a lower bound on nozzle
performance. Two of the non-idealities considered te occur in the
nozzle flow, i.e. incomplete expansion and radial flow, can be accounted
for in a straightforward manner, as will be shown in Chapter 2. The

others require further consideration to obtain reasonable approximation.

1. Chemical rate processes

Losses arising from frozen composition are important in resistojets
employing NH3° They are also possibla in hydrogen resistojets operating
at temperatures of the order of 2500°%. In view of the previous dis-—
cussion it is thought that only a small amount of recombination is
possible in resistojet nozzles. A reasonable approximation which is
consistent with an overestimate of the frozen composition loss is to
assume that the chemical rate processes are frozen throughout the nozzle.

This also produces some simplification of the viscous flow problem.

2, Vibrational rate processes

An upper bound on energy losses caused by vibrational nonequilibrium
can be found by assuming that the vibrational rate processes are also
frozen at entrance to the nozzle. Since vibrational energy relaxes very
quickly, losses obtained with this aporoximation may be considerably
overestimated. A lower bound results from assuming that vibration remains
in equilibrium with transiation throughout the nozzle. A third, more
realistic, alternative is to adopt a model in which the rate processes
remain in equilibrium up to a calculated freezing point and are frozen

downstream of this position. All three approximations are examined.

3. Viscous flow

It was seen in the literature review, section 1.4, that the effects
of viscosity and heat conduction on the performance of resistojet nozzles
can be taken into account by considering that dissipation eitber,

~
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(i) extends over the entire nozzle flow field, so that the
governing equations are the comnlete Navier-Stokes
equations,

or (i1) is confined to a regiom at the nozzle wall which is

governed by the boundary layer equations.

(43)

The first approach, or the slender channel version used by Rse , is
most suitable for application to resistojet nozzles at Reynolds numbers,

Re below about 500. At higher Reynolds numbers Rae's approach

D*?
although producing useful resistojet performance predictions, as shown
in Ref. 45, is extremely time consuming in comparison with more conven-—
tional methods. The boundary layer equations used in the second approach
are a simplification of the Mavier—Stokes equations, obtained by assuming
that the boundary layer thickness is very small in comparison to a
typical dimension of the body, such as the nozzle wall length. It follows
that boundary layer theory is an asymptotic theory where the assumntions
used are satisfied with an increasing degree of accuracy as Reynolds
number increases. In the present work the assumption is made that the
dissipative effects of viscosity and heat conduction are confined to a
boundary layer which is not necessarily thin. It i5 assumed that the
nozzle flow is composed of two parts — an inviscid core, and a boundary
layer which is governed by the boundary layer equations,

Further assumptions are necessary regarding the boundary conditions.
An adiabatic nozzle wall, shown to be a good approximation to the thermal

. . . . L1,
boundary condition in resistojet nozzles (41, 43, 45)

, 1s adopted in this
work. As regards to the slip condition, the earlier considerations and

the results of Refs. 43 and 45 confirm that velocity slip and heat transfer
do occur at the nozzle wall. The approximation used here is that the flow
is a continuum, so that the no slip condition is applicable. This
appreximation will result in some overestimate of the viscous loss, but

with the benefit of a decrease in comrputer time.
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A point worth noting, is that in the usual thin boundary layer
theory the pressure along the wall can be regarded as being "impressed"
by the external flow so that it becomes a given function. However in
the case of lower Reynolds numbers and consequent thick boundary layers,
interaction occurs between the boundary layer and the inviscid core, so
that the pressure distribution along the nozzle wall is not known

a priori.

4, Condensation of the efflux gas

Condensation is a phenomenon which could occur in the expansion

of such gases as NH,, CO, and CH4, when a resistojet is operated under

3° 772

cold or nearly cold heater conditions. Since resistojet design operating
temperatures are typically 1000°K or larger, condensation is possible
only under extreme off-design conditions which are rarely encountered,

(12)

e.g. during initial attitude acquisition , and it is therefore not

modelled in this work.

The model situation is summarised schematically :-

Heater

A R
(Tr.pr.X; specified) | Nozzle |}—=

Model Resistojet Flow

where P,, P, P_, P_ and P_ represent the possible losses in jet power,

c> "F> "E’ 'V D
Pj’ due to frozen chemical rate processes, frozen vibrational rate
processes, incomplete expansion, viscous flow and radial flow, respectively.
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Thus from equation (1.6)

= P -
Pj g Pl

al PC + PF + PE + P

where P + PD (1.11)

\

By calculating the individual losses it is then possible to obtain the
jet power and other performance variables, such as thrust and specific
impulse.

At the beginning of section 1.3 it was stated that the models which
are developed in this study are strictly applicabie only to steady state
operation. It is worth comsidering for a moment a resistojet operating
in the transient mode, in which small impulses are used for, say,
satellite attitude control. The pulse lengths (typically 10 to 100 ms)
are several orders of magnitude larger than the nozzle transit time (of
order 10 us) so that the nozzle is operating under quasi steady—state
conditions. The trapsit time through the heater (typically 1 ms) is
more comparable to the pulse length, so that the plenum conditions are
a function of time. But, égain provided that these conditions can be
estimated, some useful estimates of transient performance can be made

from the predictions of a steady-state model (for instance, see Ref. 12).

The contents of the remainder of this thesis are arranged as
follows. 1In the next chapter a framework for accounting for the five
separate losses is presented. The nozzle performance is analysed by
starting from the ideal situation and successively adding the various
non-idealities to produce a realistic performance model, Parameters
characterising the overall nozzle performance are also defimed. In
Chapter Three the laminar boundary laver problem is examined., The
approach used in this work is based on similar solutions of the laminar
boundary layer equations. The general similar eauations are derived,
the implications of similarity are studied and solutions are presented

..30_



for four classes of simplified similar equations. Modelling of
vibrational relaxation is considered in Chapter Four. Potential flow
relations are developed corresronding to the cases where the vibrational
rate processes are (i) frozen, (ii) in equilibrium, (iii) initially in
equilibrium but frozen downstream of a realistic freezing position.

A sudden freezing criterion is outlined and an approximate model is
described of the vibrational relaxation in NH3~H2—N2 mixtures. In
Chapter Five the details of four computer models of resistojet nozzle
performance are given. After describing the general calculation
procedure the four models are outlined. This is followed in Chapter
Six by a presentation and discussion of the results of these models.

Finally, the thcsis is summarised and the major conclusions which are

drawn from this study are listed in Chapter Seven.
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Chapter Two Analysis of Nozzle Performance

2.1 Introduction

A performance analysis is necessary in order to quantify the loss
processes which are considered to occur in the resistojet nozzle. We
start by considering the idealised flow discussed in Chapter 1, where the
available propellant enthalpy is converted entirely into jet emergy; by
introducing the various loss mechanisms a mathematical model of the nozzle
performance is obtained. The loss processes considered in the present
study arise from :

1. frozen chemical rate processes,

2. freezing of the propellant vibrational energy modes,

3. incomplete expansion,

4, viscous flow,

5. radial component of exhaust velocity,

and are introduced to the model in this order. In the real situation the
loss processes cannot strictly be divorced from each other, so that the
following analysis must be regarded cnly as a convenient form of

accountancy.

2.2 Performance Analysis of Individual Losses

2.2.1 1Ideal Performance

As an ideal performance case the following situation is defined:
the flow is considered to be one-dimensional, to be in complete equilibrium
through a nozzle of infinite area ratio, and to suffer mo losses through
viscous and radial flow. The ambient pressure at exit is taken to be zero.
From the energy equation for steady non heat-conducting flow, the specific

enthalpy available for conversion to kinetic energy is

V.2 = h_ - h. (2.1)



The flow presented to the nozzle can consist of a single species or a
mixture of species resulting from the decomposition of the propellant
in the heater. In the case of a dissociated mixture of n species, the

specific enthalpy at temperature T is
T

i=n
7 ox, ® 4t + [A HO(T )] (2.2)
i:l 1 p’l f o

T i

[o]

=

o
where ['AHf(To) ]i is the standard heat of formation of the ith species

at temperature To , taken in this work as 298°K. Thus eq. (2.1) bhecomes

. T
1=n o o
Ty2 L 07 x|, ar+ |aE_(T)
2 ] = i p,i £
MT i=1 T ? i
o
_ T
1 i=n o (o}
-=1 7 x c_ ., dT + [AH (T )] (2.3)
= .= i P,1 fo
M. i=1 T i
J o j

In the ideal situation the chemical rate processes remain in equilibrium
through the noczzle and the jet temperature, Tj = 0 t. The available

specific enthalpy is then

. T
i=n o
ly2=117 gy c_ . dT + | AHo(T)
2 3 ﬁT 521 1 p,i f o
To 1 T
(o]
1 © °
;_{—R- <, dT + I:AHf(To):] (2.4)
T R
o

where R denotes the recombined state. When only one species is

present, eq. (2.4) simplifies to

T
T,

¢ dT (2.5)
p

w
Ze

o}

t It is convenient to express exhaust properties such as velocity
and temperature in terms of their effective jet values, so that
the available enthalpy and jet velocity can be simply related
through expressions equivalent to eq. (2.1). Only when the nozzle
is infinite are exhaust and effective jet conditions identical.
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The jet power is defined as

1 . 2
P. = —=—mV. (2.6)
k| 2 ]

and in the ideal situation all the available enthalpy is regained at the

nozzle exit, i.e. Pj = Pg. Under equilibrium conditions the mass flow

is choked at the nozzle throat, and mass continuity gives

m = 7R p u 2.7
The thruyst is simply
F = 1 Vj (2.8)

2.2.2 Frozen Chemical Rate Processes

Introducing the first assumption that the propellant composition,
produced by the heater, remains constant during expansion through the
nozzle means that there is a reduction in jet power. The available

specific enthalpy is

2
V. =

) .9
%Jc Z X, c_ . dT (2.9)

2

where the jet temperature ch = 0, and subscript C denotes frozen
chemical rate processes. With chemistry frozen, choking again occurs at

the throat and relations equivalent to eqs. (2.6) to (2.8) become

_ 1 .
ch 5 T VjC (2.10)
. . %2 * % (2.11)
mc - R pC U,C . ®
FC = mC VjC (2.12)

It follows that the jet power loss due to frozen chemistry is

PC = Pj - PjC (2.13)

A measure of the jet power loss when chemistry is frozen is given by the

efficiency
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C V. (2.14)

For the case where only one chemical species is present, energy is

not invested in chemistry and by definition ne = 1.

2.2.3 Frozen Vibrational Relaxation Processes

In Chapter 4 three models of the relaxation of the propellant
vibrational energy modes are examined. They correspond to the cases
where the vibrational energy modes

(1) remain in equilibrium with the translational energy modes

throughout the nozzle;

(2) are in equilibrium down to a realistic freezing position,

but make no further contribution to the jet energy beyond
this point, i.e. vibrational relaxation is frozen;

(3) are frozen throughout the nozzle.

The nozzle performance analysis of the previous section corresponds to

case (1), where by definition there is no loss in the available specific
enthalpy due to freezing of the vibrational energy modes. Examining

the case where freezing can occur in the nozzle, i.e. case 2, it is implied

that there is a further loss in jet power. The available specific enthalpy

is TT
1 2 1 ign o o
V. = — X. . + . .
L Vier =2 Lo c:p’1 a7 (Cp,l)F Tfp (2.15)
2 M., i=1
T T
fp
where Tfp is the static temperature corresponding to the freezing position.
- . 3 O »
Subscript F denotes frozen vibrational rate processes, so that (cp i)F is
H

the molar heat capacity due to the translational and rotational energy
modes only. Again the jet temperature TjCF = 0.

In the vibrational nonequilibrium model (case 2), an approximation
to the freezing position is used when freezing occurs in the convergent

section or in the immediate vicinity of the nozzle throat. Under these
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circumstances freezing is arbitrarily delayed to a position downstream of the
nozzle throat, with little loss in accuracy. This is done in order to

avoid difficulties in satisfying mass continuity, and a further discussion
can be found in section 4.2.3. Then with vibrational equilibrium in the
convergent section the mass flow rate is m,, as in eq. (2.11). The

C

expressions for jet power and thrust are

1. 2
= = 2
PjCF 2 C ijF (2.16)
FCF = 1, VjCF (2.17)

and an efficiency accounting for the frozen vibrational energy loss is

defined as

= (2.18)

When vibrational rate processes are assumed to be frozen throughout

the nozzle, as in case (3), the available specific enthalpy becomes

i=
2 = T [s)
L Vieg = X 1 X, (e .) (2.19)
2 = . 1 ps1°F
{ i=1 >
T
Choking still occurs at the throat and the mass flow rate is now
. . R*z % % (2.20
Ter T °cr Ycr +20)
T - ] » - L . * - .
he expressions for PjCF and FCF are modified by substituting - for m

2.2.4 Incomplete Expansion

The next step in the analysis is the introduction of a finite nozzle,
which implies that the jet temperature is no longer zero at exit from the
nozzle. In other words the process of converting the theoretically available
enthalpy to directed jet energy is not complete, as energy remains in the
propellant translational, rotational, vibrational and chemical modes.

Since chemical and vibrational energy can be unavailable from previous
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considerations, the incomplete expansion loss is dependent upon the
propellant rate processes as well as the nozzle area ratio.
Allowing for incomplete expansion, the expressions corresponding

to egs. (2.9), (2.15) and (2.19) are

F'TT
2 1 1=n o
equilibrium 5 V. . == Yox, . ar (2.21)
] i, di=1  *| JT.. Pot
T JCE
TT
i=n [
equilibrium 1 .2 1 o o -
~ frozen: 2 VjCFE = .g X1 cp,l dat + (Cp,l)F(Tfp TjCFE) (2.22)
MT 1=l J T
fp
T, - T. ) i=n
. 1 2 _ ( T JCFE o
frozen: > VjCFE = El Xi (Cp,i)F (2.23)

I, i
where subscript E denotes incomplete expansion. Relations (2.21) to
(2.23), obtained from an energy equation equivalent to eq. (2.1), cannot
be evaluated at this stage since the effective jet temperature

T , or T.

jCFE 3G

remainder of this analysis, only the case where vibrational energy is

B is undefined. To avoid unnecessary repetition in the

frozen throughout the nozzle is examined.

The mass flow rate remains unchanged at m._, and as before the

CF
jet power and thrust are defined
_ 1 . 2
Picre 7 Yr Yicre (2.24)
Fore = Tor Vicre (2.25)

An efficiency accounting for the energy loss due to incomplete expansion

is defined as

N = JCFE | (2.26)

Examination of the momentum equation applied at the exit plane
gives
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2
F = 7R2

2
CFE PecFE  YeCFE R (2.27)

T Pocrr "

in which a pressure term, not apparent in eq. (2.25), appears explicitly.
The notation eCFE refers to isentropic flow conditions at the nozzle

exit., Using continuity of mass and an equation of state
p = PRT (2.28)
eq. (2.27) can be written as

1
2
CF MeCFE

F =

CFE Top Yecrr & F

y

) (2.29)

Comparing eqs. (2.25) and (2.29) the effective jet velocity is defined

in terms of the exit conditions as

@+ ——— ) (2.30)

CF MeCFE

VicrE YeCFE
The exhaust velocity and Mach number are related to exhaust temperature

. . . . . A
Te”FE’ which in turn is a function of the nozzle area ratio, € = ex .
c &2

A
Expressions relating Te and &/A% are developed in section 4.2, so that by
equating (2.23) and (2.30) a jet temperature may be defined. However,
this step is unnecessary since the important performance variable, the

effective jet velocity, VjCFE » can be obtained from the momentum equation

without resorting to eq. (2.23).

2.2.5 Viscous Flow

The presence of viscous flow complicates the analysis. The approach
adopted in this work, presented in the next chapter, considers the flow to
consist of two parts - an inviscid core and a viscous boundary layer.

A major assumption made is that the chemical and vibrational relaxation
processes are constant across the radial plane of the nozzle. Thus no
recombination is considered to occur in the boundary layer or on the hot
nozzle surface. Similarly the vibrational temperature across the boundary

layer is assumed to be identical to the freestream Vibrational temperature,
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whereas vibrational temperature in the boundary layer should follow
the static temperature if vibrational processes are in equilibrium in
the inviscid core, and should tend to this behaviour if the core is
vibrationally frozen. The reasons for the assumption of frozen chemistry
have heen previously discussed in Chapter One, where it was showmn to be
a fair approximation for the situation considered here. However, the
assumption regarding vibrational relaxation in the boundary layer is not
realistic, but, as demonstrated in the next chapter, is unavoidable with
similar solutions of the laminar boundary layer equations.

A momentum balance at the exit plane gives the following relation

for thrust:
R

2
F =

R=8 )2 2 2
crEy = PecrEv Yecrry " (RO F 2T | putrdr 4 p oppy T (2.3

R—Gd

where Gd = 6§ cos a, is the boundary layer thickness in the radial plane
(see Figure 2), and subscript V denotes viscous flow. The usual boundary
layer approximation that there is no pressure gradient across the boundary
layer is employed.

Applying continuity at any station in the nozzle gives
R

= - 2
Topy peCFV U opy (R Sd) + 27 purdr (2.32)

R—Gd

The notation eCFV refers to inviscid core conditions within the nczzle, and
eCFEV to conditions in the core at the nozzle exit plane. Mass continuity
may also be expressed in terms of the boundary layer displacement thickness,

so that

i

*
= - 2
CFV peCFV YeCFV m(R - § cos a) (2.33)

To simplify the nomenclature the subscripts CFEV are dropped in eqs. (2.34)

and (2.35). Using eq. (2.32) in (2.31) the thrust becomes
R

= - - 2
F mu 2w ou(ue u)rdr + P, TR (2.34)

R-
6d
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Rearranging eq. (2.34) with the aid of eq. (2.33), the thrust can be

expressed as

R
. R2 2 ( (
F = mu 1-—m= pp:i Ll - B—]rdr -2 5 (2.35)
¢ (-6 cosa)? (R J e e Ye Y 1
\—Gd

It should be noted that, with the addition of viscous flow to the
analysis, no assumption has been made regarding the position at which
choking occurs in the nozzle.

In a similar manner to eq. (2.25) thrust can be expressed in terms

of an effective jet velocity, so

Ferev = ey VjcrEv (2.36)
and comparing eqs. (2.35) and (2.36)
. (R
e | 1
V. = u J1 - —m———— | 1l - —|xdr -~ (2.37)
% 2 ¥
JCFEV e (R-8 cosa)? R Pela Ye Y Mi J
L R-6 CFRV
The effective jet power is now
1, 2
Pscrry = 2™ Vjcrmy (2.38)

and an efficiency accounting for the velocity defect due to viscous flow

is defined as
V. 2
jCFE
The efficiency accountingfor the mass defect due to viscous flow, i.e. the

discharge coefficient, is simply

#
c. = <V (2.40)

Ter

2.2.6 Radial Flow
So far in the analysis no consideration has been given to the fact

that the exhaust velocity may have components in the axial and radial
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directions. Only the axial component contributes to the jet velocity
and to account for the loss due to radial flew requires an integration of
the velocity components across the exit plane. In general this loss is
small, particularly so in the case of flows with thicl: boundary layers as
found in resistcojet nozzles. It is therefore not thoughf worthwhile to
account fully for the radial flow loss: although the following analysis
has some theoretical justification it cannot be regarded as completely
rigorous.

Reverting to an ideal case with no viscous flow, eq. (2.27) can be

written, using mass continuity, as

= Y 2
Ferm Bop YecFE ¥ Pecrr ™ (2.41)

The flow at the nozzle exit can be regarded as a segment of a spherical

(46)

source flow, and it can be shown for such a flow that the thrust can

be expressed as

= & 1 + cos a 2
Ferep T e VecrE [ 2 } * Pocpp ™ (2.42)

where @ 1is the nozzle wall angle at the exit plane.

The effect of a viscous boundary layer is to reduce the effective
nozzle radius to one less than geometric. By subtracting the boundary
layer displacement thickness from the geometric radius an effective radius
and therefore effective nozzle geometry can be defined, i.e.

Reffective =R - 5 co0s o. Considering the flow at the effective nozzle
exit also to be a segment of a spherical source flow allows a similar
treatment to the inviscid case. Comparing eqs. (2.35), (2.41) and (2.42)

an approximate expression for the thrust with allowance for the radial

flow loss is

R
. 1+ cosa R2 2 pu [ u ] 1
F = m u Q| = r——— | —— 1—~—rd1""'——2'
3 %
CFEVD CFV | e > (T=6" cosa)? - [R [ P oY% u, Y Me
R-§
R d

CFEV

-41~ (2.43)



where o, is the effective nozzle angle at exit.

The relations for effective jet velocity and power are

R
v -y 1-+cosae _ R2 2 pu [1 u err 1
: = % o2 - B 2
JCFEVD € 2 (R-§ cosa)? R _ peue Ye YMe
CFLV
R 6d
(2.44)
P Ly v (2.45
jCFEVD 2 CFV ' jCFEVD +45)
Finally, an efficiency accounting for the radial flow loss is
2
n = Vi CFEVD
D VjCFEV (2.46)

Thus to summarise, efficiencies and n_ accounting

"er " Mg My D
for the velocity defect due to the individual loss processes have been
defined in eqs. (2.14), (2.18), (2.26), (2.39) and (2.46), and a discharge

coefficient, CD accounting for the mass defect due to viscous flow in

eq. (2.40).

2.3 Overall Nozzle Performance Parameters

, and mass flow rate, m._ ., are the dimensional

Thrust, F Y

CFEVD
variables which essentially describe the overall nozzle performance.
Individually they provide little information regarding the efficiency
of the nozzle or the properties of the propellant, but the ratio of the
two, i.e. thrust per unit mass flow rate, or effective jet velocity.

v _ Ferevp (2.47)

jCFEVD o
CFV

is a usefulcharacteristic of performance. Jet velocity is more

usually expressed in terms of a specific impulse

_ VicrEVD
sp 8,

(2.48)
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and although reflecting nozzle efficiency it is primarily a function of
the propellant specific enthalpy.
More dependent on the nozzle performance is the thrust coefficient;

a dimensionless factor defined by

F
Cp = 22 (2.49)
Py A

Noting that the overall nozzle velocity defect is defined by

v 2
n _JCFEVD (2.50)
N .
]
or simply the product of the individual efficiencies
n = n_n_ n_ n_n (2.51)

then using eqs. (2.47), (2.8), (2.50) and (2.40) the thrust coefficient

can be expressed as

ﬁCF F :
o - || [ (), @52
Py A

. . *
A frequently used parameter characterising the mass defect is the C

efficiency
m m
n = SEV _ CF . (2.53)
* . . D
C m m

Effects on mass flow rate of freezing the chemical and vibrational rate

processes are small and ﬁCF/ﬁ closely approximates to unity. In comparison,

the mass defect due to viscous flow, CD, can be considerably less than unity
at the Reynolds numbers typical of resistojet operation. Thus the use of

C.. is preferred to n

D % 1in eq. (2.52). The second term in eq. (2.52) is

c

the ideal thrust coefficient and is dependent on the plenum temperature

and choice of propellant; for the propellants considered, i.e. NH3, HZ’

CH4 and COZ’ over the temperature range from 300 to ZOOOOK, its value can
vary between 1.8 and 2.2. The third term in eq. (2.52) represents the
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nozzle velocity defect. It is apparent that the thrust coefficient

is a function of several, sometimes conflicting, trends and consideration

of this factor alone can cloud understanding of the nozzle performance.
To characterise the overall resistojet nozzle performance attention

will be confined mainly to :

(1) nozzle efficiency, n a measure cf the velocity defect

N’
(2) discharge coefficient, CD’ a measure of the mass defect

and (3) specific impulse, Isp’ a measure of the propellant performance.

Finally, an estimate of the electric power required by the
resistojet is necessary. The actual performance of the resistojet
heater is not modelled in this work. It is assumed that Ny = 1 in
which case the required power per unit mass flow is the difference between

the ideal jet specific enthalpy (Pj = Pg) and the specific enthalpy

inherent in the propellant at entry to the heater. Thus

1. 2
Peﬁ = -2‘ mCFV Vj hPr (2.54)
where
T
_ 1 e o o 4
h o= — ) X, c” . daT + | AH] (T ) (2.55)
PT N i=1 ps £ oy
PE T
o pTr

where pr denotes propellant conditions at inlet to the heater and

o . . . . .
Tpr = 300 K. Pem is only an approximation to the resistojet power
requirement, but as far as the nozzle performance is concermed it can be

thought of as the effective electric power transferred to the propellant.
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Chapter Three Laminar Boundary Layer Theory

3.1 Introduction

As shown in Chapter One, primarily for reasons of computational
efficiency it is convenient to assume that the effects of wviscosity and
heat conduction are confined to a boundary layer in resistojet nozzle
flows. Additional simplifying assumptions were also noted: (1) that the
flow is a continuum so that the condition of no slip applies at the
nozzle surface, and (2) that an adiabatic wall 1s a good approximation
to the thermal condition of a resistojet nozzle.

A number of methods are available in the literature which can be
used to calculate the formation of a compressible boundary layer (for
instance, see Ref. 47, ch. 9). At the start of the research the

(41)

approach of Murch et al was followed. This was based on Cohen and
Peshotko's approximate method for the compressible laminar boundary layer
with heat transfer and arbitrary pressure gradient. For a number of
reasons (described later) iffurch's approach was found to be unsatisfactory,
even for an adiabatic wall, and recourse had to be made to Cohen and
Reshotke's original method. This is an extension to compressible flows

of Thwaites correlation technique for calculating incompressible laminar
boundary layers. In an equivalent manner to Thwaites, the two-
dimensional boundary layer equations were expressed in terms of correlation
parameters which were related to the wall shear, the surface heat transfer
and the freestream velocity. The evaluation of these quaatities was then
carried out by utilising similar solutions of the laminar boundary layer
equations previously determined by Cohen and Reshotko(48), A modification
of Cohen and Reshotko's method which has been successfully applied to the
present resistojet nozzle flow investigation is reported in detail in
Reference 37, and a summary of the model is presented in section 5.3.

This preliminary model influenced the way in which later, more
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rigorous, theory was developed and some of the points raised during

its development are discussed here. A source of some difficulty in the
application of Cohen and Reshotko's cheory to the resistojet problem

is that the similar solutions on which the correlation parameters were
based had beea determined only for values of the pressure gradient
parameter, f , up to 2. The pressure gradients found in resistojet
nozzle flow fields are highly favourable, in general, with values of B
considerably in excess of 2, so that extrapolation of the correlation

(41)

parameters beyond B = 2 was necessary. Murch et al surmounted the
problem by fitting quadratics to the correlations of Cohen and Resbotko,
thus securing extrapolations beyond B = 2. Such an extranolation is
difficult to justify since it is easily seen that a quadratic does not
give the correct rate of change of curvature. Edwards and Jansson(37)
used graphical extrapolation (see Fig. 22} to obtain new values of the
correlation prarameters beyond B = 2 which led to performance predictions
which agreed well with experiment. This agreement was to an extent
fortuitous since ihe correlation extensions were not theoretically
justified. Thus this first model emphasised the need for similar solutions
of tihe laminar boundary layer equations over a wider range of conditions
than was to be found in the literature. Further, since results obtained
with this model were encouraging it was decided to pursue the similar
solutions approach, and all boundary layer models reported in this thesis
are based on similar solutions.

In the next section a background to the contents of this chapter
is provided by a review of the more important references on similar
solutions. The equations relevant to comnressible, axisymmetric laminar
boundary layer flow are examined in section 3.3, and they are manipulated
into a form in which the similarity concept can be applied. The mathe-
matical conditions imposed by the assumption of similarity and the

boundary laver parameters required in the performance analysis are
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derived in section 3.4. In the final section similar solutions for

some cases of interest in resistojet nozzle flows are presented.

3.2 A Literature Review of Similar Solutions

The boundary layer equations for two-dimensional, incompressible
flow over a flat plate represent the conservation of mass and the

conservation of momentum. They may be written as

du v

oy = = .1

o + 5y 0 (3.1)
' 2.

ugi + vg—l-l- =y u (3.2)
X y ayz

y = 0: u=v=0 , y*+*o : u=>u (3.3)

Under certain circumstances, by using a transformation of variables,
derivatives of the dependent variables become separable and the
governing equations reduce from partial differential equations to
ordinary differential equations. This technique was first employed on

equations (3.1) and (3.2) by Blasius (see Ref. 49, p. 126). Using the

i
ue
n = Y[ ;;‘}

and introducing a stream function

transformation

Yy = (que)% £(m)

where £(n) denotes a dimensionless stream function, Blasius reduced

equations (3.1) and (3.2) to the ordinary differential equation

£ o+ 2f" = 0O (3.4)
where (') denotes differentiation with respect to n.
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Equation (3.4) is of significance since it leads to the first
example of a similar sclution in laminar boundary layer theory. The
solution of equation (3.4) is similar in the sense that the velocity
profiles, u(x,y), at different stations, X, are identical in the trans-
formed plane and differ only by scaling factors in u and vy in the x-vy
plane. Mo physical or mathematical approximations beyond those already
used in deriving the boundary layer equations are necessary in the
derivation of the Blasius equation so that the solution of this equation
is exact.,

Falkner and Skan(so) have considered two-dimensional, incompress-—

ible laminar boundary layers where pressure gradients were present in

the external flow. In this case the momentum equation becoues

2
u g% + v %E = - l.gB. P o0 LU (3.5)
y p dx ayz

In a similar manner to Blasius they obtained an ordinary differential

equation, which can be written

w2 -£2) 4 £ = 0 (3.6)

Provided that the freestream velocity oheys a power law of the form

where m is a constant, solutions of equation (3.6) are also similar and
exact. Solutions of the Falkner-Skan equation for a range of values of
= . . (51)
B = 2m/(wm-1) from - 0.1988 up to 2.4 have been obtained by Hartree .
Necessary steps in the derivation of similar solutions for com-
pressible flows are the Illingworth-Stewartson transformations. In
independent examinations of the two-dimensional, laminary boundary layer

on an isothermal surface, Stewartson(sz) (53)

and Illingworth used trans-—
formations of the form & = £(x) and n = n(x,y) to transform a compressible
flow in the x-y plane to an equivalent incompressible flow in the £-n
plane, subject to the fluid property assumntions of unit Prandtl number
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and a linear viscosity-temperature relation. Removal of the density,
o , serves two purposes: (i) it reduces the number of variables and
(ii) it facilitates solution of the transformed problem by existing
incompressible solutions.

Another transformation which is required in the application of
similar solutions to axisyrmetric flows is that due to angler. In a
study of incompressible boundary layers on axisymmetric bodies Mangler
(see Ref. 49, n. 235) showed that such flows can be reduced to an
equivalent two-dimensional problem agairn by transformations of the
form & = &(x) and n = n{x,y). It is noted that a combination of the
Illingworth—-Stewartson and Mangler transformations, usually referred to
as the Lees—Dorodnitsyn transformations (see egs. 3.22 and 3.23),
reduces the axisymmetric, compressible boundary layer to an equivalent
two—-dimensional, incompressible flow. A fuller discussion of these
transformations can be found in Ref. 54,

For compressible flows an additional relation representing the
conservation of total energy is necessary to describe the boundary layer.

The two-dimensional compressible laminar boundary layer equations now

become
3 3
= + = =
= (pu) e (pv) 0 (3.7)
au du _ _dp 2 | 3u
Chalipe Y oy dx 3y [u dy ] (3.8)
oM dH I L) 1] 3 [u?
— e . = —— { —— o - ] e | c———
Mo T PV oy 3y {Pr ay ¥ (1 Pr] ay[z (3.9)
2
where the total enthalpy per unit mass, H = h + %T .

There have been several attempts to derive similar solutions for
compressible flow and of the earlier work the previously mentioned study
(48)

of Cohen and Reshotko is notable. They examined the flow over an

isothermal surface of a model fluid with Prandtl number of unity and a
linear viscosity-temperature relation. For the general case with heat
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transfer occurring between the fluid and surface the total temperature of the
fluid is no lenger uniform, so that sclution of the energy equation is

not trivial and an additional similar variable based on the total

enthalpy is required. Applying the Stewartson—-Illingworth transformations
to equations (3.7) to (3.9) Cohen and Reshotko obtained two coupled

ordinary differential equatioms, which can be written

£ + B + S - £' ) + £f£"

I
—~
]

(3.10)

s" + £57 = 0 (3.11)

where £ is again a dimensionless stream function such that f' = u/ue

and S is a dimensionless total enthalpy functiom, S = H/HT - 1. Solutions
were obtained by Cohen and Reshotko for a range of heat transfer conditions,
with the wall temperature varying from zero to twice the stagnation
temperature.

Of the more recent similar solutions for a general gas with Prandtl
number not unity and various viscosity—-temperature laws, those due to
Dewey and Gross(ss) are noteworthy. Solutions of the similar boundary
layer equations for values of Prandtl number, Pr, extending from 0.5 to
1.0, and w , the exponent in a viscosity—ierperature law (of the form
u = ATw) equal to 0.5, 0.7 and 1.0, were obtained over a wider range of
pressure gradients than hitherto. They have also examined fairly
rigorously the restrictions imposed by similarity.

A final point which should be noted, is that in most compressible
flows for which similar solutions have heen obtained, the concept of
similarity is no longer physically exact, as it is in incompressible
flows, but is a mathematical approximation necessary to reduce the
partial differential equations to ordinary differential equations. This

point is examined in more detail later.
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3.3 The Boundary Layer Equations

In nozzle flows where the boundary layer is thick, as it is in
resistoiet nozzles, the radial dependences accounting for transverse
curvature have been demonstrated to be an important consideration in
the growth of the boundary 1ayeé§o)The governing equations of the laminar

boundary 1layer in curvilinear ccordinates, which include first-order

transverse curvature, developed by Probstein and Elliott(56) can be
written :-
Conservation of mass,

8()+3_()_0 (3.12)

_3—}-{— pur ay pPVY = W12}
Conservation of momentum,
. . . du du _  dp , 1 3 u
in x—-direction pu = + pv 5 = 5§-+ ;'ay [ur 5;-} (3.13)
. . . 9p
in y~direction 5;- = 0 (3.14)
Conservation of total energy,

i 38 _ 13 J_ [u aH 1) 9 [uz]
Pu X tev 3y T 3y ‘ tPr 3y u(l Pr] oy \ 2 (3.15)

In the derivation of equation (3.15) it is assumed that Lewis number,

p D c
Le = ___lé__B. =1, i.e. the magnitudes of the diffusion and conduction
terms in the thermal energy equations are identical.

Additional relations come from:-

The equation of state

p(x,y) = pe(x) = P, RTe = PRT (3.16)

and a viscosity-temperature relation, not explicitly defined at this
stage,
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uo= (T (3.17)
The coordinate system used is shovm in Fig. 2, where

r(x,y) = B(x) -y cos o (3.18)

(56>

In the original derivation of the governing equations, the assumption
that S/Rc << 1 was made concerning longitudinal wall curvature, i.e. that
the boundary layer thickness was much less than the nozzle wall radius

of curvature. In the present study such an assumption can be criticised
in the vicinity of the nozzle throat, where the local radius of curvature
is small, in those cases when the boundary layer occupies a substantial
portion of the throat. However this will only cccur at Reynolds numbers
where the other boundary layer approximations are so severely strained
that the validity of the whole approach is in question.

To extend the work to thick boundary layers, a stream function,

V(x,y), may be introduced which satisfies continuity :

\
o _
-é—x- = pvy
o (3.19)
5y pur
so that equations (3.13) and (3.15) become
B du _ wdw _ __Pe 3 [ du (3.20)
3y 3x 3% oy T ax T oy (M oy .
8y OH _ 3y dH _ 9 u 3H 1 3 [u?
dy 9x  ox dy 9y {‘{Pr ay"“[l Pr] 3y 2 (3.21)
. . . . . (54)
Applying now a modification of the Lees-Dorodnitsyn transformations ,
>4
£ = P u u R? dx (3.22)
v w e
0
p_u v
n = =% %— r dy (3.23)
(28)* e




the independent variables may be trausformed from x and y to £ and n.

The modifications are, firstly in the v to n transformation, where r is

kept under the integral, so that r/R is not constrained to be unity and

a thin boundary layer 1is not necessarily assumed;

secondly the refer-

ence viscosity refers to the wall rather than the freestream conditions.

The following operators should be noted

( .a } ~ Due Y ( a 3
) . [
¥y (ey? L 0
5 _ M an) (s
(5] - 3 )

Further, a non—dimensional stream function is defined by

£g,n) = &M
(26)*
such that
v . O
a  an
e

and introducing a non-dimensional total enthalpy function,

g(g€, n)

m'm

After the application of equations (3.22) to (3.28) and after some

manipulation, equations (3.20) and (3.21) hecome

2
3 Jew e | 2%( | gg_aue Pe [gng £ O2F _ 2e[3F
5 R I P
n quW b 31’]2 u 9§ o} an 31’]2 an
2 u 2
B__QL[EJ 1 9g __e_{l_}_]a:f_@ﬁ: : %8 25[9_
on ipwuw R Pr 3n He Pr] on 3n2 n 9

32f _ 3%f
3E3n  an?
f og _ 28
n 9§ an

(3.24)
(3.25)
(3.26)
(3.27)

(3.28)

af} (3.29)

Equations (3.29) and (3.30) are now the general non-similar equations,

equivalent forms of which have been used by Jaffe, Lind and Smith

(58)

external flows, and by Whitfield for nozzle flous.

(57)

for

The equations con-

stitute a pair of coupled partial differential equations and as such can
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be solved by finite difference techniques. As in the case of Rae's

1 ; {(43,45)
slender channel orogram

solution on & digital computer of the non-
similar equations is extremely time consuming. A particularly useful
technique in the reduction of the complexity of the problem is the
assumption, if it is justified, of local similarity, so that equations
(3.29) and (3.30) become a pair of coupled ordinary differential
equations. In this case it is assumed that the derivatives with respect
to £ of the boundary layer dependent variables are small compared to the
corresponding n—derivatives, so that the right hand side of equations
(3.29) and (3.30) can be neglected. Those terms on the left hand sides
which are functions of £ are assumed to take their local values, and

the boundary layer equations are considered as ordinary differential
equations in n, with £ as a parameter.

The concept of local similarity infers that at every streamwise
station the boundary layer adjusts to changes in the geometric and
thermodynamic boundary conditions, and is identical in all essential
respects to the similar boundary layer vhose 'tistory’ includes the
local boundary conditions. A strong case for the use of similar
solutions in some non~similar flows is made by Evans(59). In his work

on incompressible laminar boundary layers he used a series expansion of

the non-similar stream function, f£(&, n), of the form
£(E,m) = £() + &£ + g2 £,n) + oeo

where fo(n) is the first-order similar stream function and the higher-
order functioms fi(n) (i =1, ..., n) make a decreasing contribution to
f(¢,n). 1In particular for more favourable pressure gradients it was
shown that the first-order similar solution is by far the most important
contribution, so that f(&,n) can be usefully approximated by fo(n).
Evans results show that, for a pressure gradient parameter, B, equal to
unity, the dimensionless shear stress at the wall, f'"(o), resulting from

_54_




the first-order similar solution contributed over 957 of the full non-
similar value of £f“(o0). This contribution increased with increasing
nressure gradient. Local similarity is assumed in this work, and its
application to resistojet nozzle flows is discussed further in

section 5.4.

3.4 The Similar Boundary Layer Equations

3.4.1 Derivation of Equations

The ordinary differential equations resulting from the assumption

of similarity in equations (3.29) and (3.30) are

du P

2
R THR B A et 28 e ] e _ .4 0o
{ R ] £ + ” Iz 5 £ + ff 0 (3.3

I
Z
5
(0]
| —

2 1
pu r 2{&l + EE, 1 - 1 £1 7 + fg' =0 (3.32)
o U R Pr H Pr g '
ww { e

where (') denotes differentiation with respect to nN.
Remembering that f and g are non-dimensional stream and enthalpy

functions (defined by eqs. 3.26 and 3.28), the boundary conditions are:

(L At the wall (i} o mass flux, f{o) =9
(ii) No slip condition, £'(0) = O

(iii) Timensionless shear stress,

f7(0) = constant r (3.33)

(iv) Either (a) with heat transfer
g(o) = H(o)/He and g'(o) = constant

Or (b) for adiabatic wall

g(0o) = constant and g'(o) =0 J




(2) At the outer edge of the boundary layer

G £'(¢=) = 1 )
(ii) £"(*) = O
b (3.34)
(iii) g (=) = 1
(iv) g'(=) = O )

The inner boundary conditions £ (o) and either g'(o) or g(o) are
initially unknown and must be found as part of the solution.
In order for similar solutions of equations (3.31) and (3.32) to

exist the following conditions are necessary :

du ( p
28 e e e52 =
(L ;e_ T [5— f ] = F(n)
ou
(2) s - A(n)
wow
2
r -
(3) [ i‘} = G(n)
4) Pr = Pr{(n)

As pointed out by Hayes and Probstein(6o)

similarity is a mathematical
state. In general, not all of the individual conditions (1) to (4) can
be physically satisfied simultaneously, and it is necessary to determine
when the assumption of similarity is correct or reasonable,

Examining the first condition, which using equation (3.16), can be

written as

= == — - (3.35)

we need to express T/Te in terms of the similar variables f and g. For

an isenthalpic flow the energy equation for the external flow is simply

HT = He. (It is appropriate at this point to note that in the Class B
_56_




similar equation, which is presented in section 3.5.2, in order to
satisfy some of the restrictions required for similarity it is necessary
to introduce a distribution of heat sources and heat sinks in the external

flow. In this case the flow is no longer isenthalpic and the energy

equation. can be written

HT + q = He (3.36)

where q = q(£) represents the rate of heat zeneration in the external
flow.) Quite generally, for a thermally and calorically perfect gas

(cp = constant), the energy equation can be written

u2
= £
He cp Te + 5 (3.37)
u2
In the boundary layer H = cDT + 5
so that T/Te can be expressed
2
T H "%’
T = A (3.38)
T 2
e u
a - ==
e 2
Then eq. {(3.35) becomes
2
fp - Y
zgd_“s{ig..f,z]=§_d“e FTE
u, d& e u, dg uez u
Be "3
3 due He q —u2
- r 2 " 2
Ye 95 g - Yot [ Te U
¢ 2
du T
..._2_5_ = e,T - §12
o 3@ T [ g - f (3.39)
e e
where '1‘e T and Te are the freestream total and static temperatures
b
respectively. When the flow is isenthalpic (q = 0) Te T is identical
k4
to TT, but when q = q(&), Te T becomes a variable. 1If
I
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28 due Te,T
u

£ T
e e

= B (3.40)

is constant, the expression becomes

2E due De ) )
=2 —— —_— - 1 - — ¥ - 7 .
o I 5 £ B(g - £'% ) =F(n) (3.41)
e
giving the required condition. B8 is referred to as the pressure

gradient parameter. Thus the first condition is satisfied subject to
the restrictions that .
(1) specific heat of fluid, cp = constant

(ii) pressure gradient parameter, B = constant.

The second required condition is

PH

p_u
ww

A viscosity-temperature law of the form
W

is adopted, where A and w are constants, then in a manner similar to

Dewey and Gross(ss) one obtains
w-1
pu I w-l - Te,T T
p_H T T T
ww w W e,T
Now 2
. _out 2
T i 2 ue 12
= = g - —— f
T H 28
e,T e
so that
T 2 w~-1
pU e,T _ e £12
p U 28
W W W e

With the restrictions that
(1) the ratio of freestream stagnation to wall temperature,
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T T = constant
e,T/ w consta

{(ii) hypersonic parameter, o = uezlﬁe = constant

(iii) exponent in a power law viscosity-temperature relation
(eq. 3.42), w = constant.

w-1

T
pu — ;QT ( g - g f"'Z] - )\(n) (3.43)
W W W

The restriction c¢ constant is also implicit in this relation

2
. .. r . e .
The third condition that {;J = G(n) can be satisfied in two
ways :

(a) Restricting consideration to a thin boundary layer the

approximation r = R can be used, in which case G = 1.

(b) Using eq. (3.18) and substituting for r in eq. (3.23)

pe ue
n =

(R - v cos a)dy

olo

(2£) 2 .

o]

Differentiating, rearranging and integrating

3 (Mo 4
éZEi EE- dn = (R - y cos a)dy
e e, o
2
= - Y _cos o
Ry 3
Substituting for y from eq. (3.18)
1 (Mo
(28) e o = RZ - y2
P u o} 2 cos o
e e J,
So
r |2 2(25)% cos O " Pe
[ E—] = 1 - — dn (3.44)
) p u R? P
e e )

But from eq (3.39)

pe 2 Te T 2

- = 1 ] - '

5 £ + Te (g £'9)
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so eq. (3.44) becomes

1 n n
2 7 T (
({z] -1 - 2&) cose J £2a + 2T | (g2 (3.45)
) pe ue R? o] e Jo

Thus with the restrictions that

(1) the transverse curvature parameter,

1
0 = 2(26)° cos a

(3.46)
2
Pe Ye R
is constant
and (ii) the ratio of the freestream stagnation to static
temperature, T /T is comstant,we have
e, T' e
n n
r |2 Te T
T = 1-0 £72dn + = (g-£'2)dn } = G(n) (3.47)

o] e [¢]

Again it is mnecessary for cP to be constant to obtain this third required
condition,

The final condition concerning similarity in Prandtl number is not
examined in detail since only the case, Pr = constant, (in particular
Pr = 1.0 and 9.7) is of interest. The case Pr = constant # 1 requires

that in eq. (3.32) ueZ/He is constant, or in other words
o = constant

With all these conditions satisfied the similar boundary layer

equations resulting from eqs. (3.31) and (3.32) are

]

)\Gf”:l + B(g-£'2) + ££7 = 0 (3.48)
7
e {B s a-Lyeren | wggr -0 (3.49)
B Pr ” Pr i & ’

where f and g are the dependent variables, A and G are additional
variables which can be expressed in terms of f and g, and B, Pr and ©
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are constants. The boundary conditions are as in eqs. (3.33) and (3.34)

together with the additional conditions

A(e) = G(o) = 1

The solution of the full similar boundary laver equations (egs.
3.48 and 3.49) constitutes a complex problem. Lowever, it is not
physically possible to satisfy all the mathematical restrictions at one
time, and some simplification results by restricting the analysis to
physical flows which are approximately similar. Dependent upor the
assumptions made about the fluid properties, various classes of similar
boundary layer equations can be defined. Some cases of interest are
presented in section 3.5. To conclude this section the boundary layer

parameters required in the performance analysis are derived.

3.4.2 Boundary Layer Parameters

The displacement thickness, which is a measure of the mass flow

defect, is defined for axisymmetric flow as
8% 0
27T ¥ Py Yg dy = 2w r(pe u, " pu)dy (3.50)
0 o

substituting for rin the left hand side of eq. (3.50) and integrating

we obtain
%

—~ %
% 2
_cos o § © } (3.51)

§
= n
I 2mrp, U, dy 2T Py Uy _fd 2
o

The right hand side of ey. (3.50) can be transformed with the .aid of

eq. (3.23)
et n
1 % Pe g
2m r(p u, - puddy = 2m(28)* el (3.52)
) 0 e
where n_ is taken to be that value of n for which i 1 < 10—5.
e

Finally by equating the right hand sides of eqs. (3.51) and (3.52) we
%
obtain a quadratic in 6 , the appropriate solution of which is
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2o

1
% 2 p
5 R 1 -4 1 -2cosa (%) —& _ 12|y (3.53)
cOos O 2
p u R
e e

The positive square root term in the quadratic is ignored since this
represents an equivalent external flow. Introducing the transverse curva-

ture parameter (eq. 3.46) and substituting for pe/p , ed. (3.53) becomes

% u ( T Moo n :
¢ = co§ i L il_()[ ;,T J (g-£'2)dn - [ °°f'(l'f')dn] (3.54)

e
[¢) (o]

Similarly the momentum thickness is a measure of the momentum

deficit due to the boundary layer and is defined by

6 «
2 - . -2
J 2T Tt pe u, dy [ 27 1 p(ueu u“)dy (3.55)
0 0

%
In an analogous manner to the derivation of § we obtain

R
cos o

8 =

2
{10 pa-ea )] .59

0
The boundary layer overall thickness, § , is taken to be that
value of y for which u/ue = 0.995, and can be defined from eqs. (3.23)

and (3.18) as

S Mo
(25)% Pe
(R -y cos a)dy = —= dn (3.57)
p_u p
e e
0 0
where n, is that value of n for which £’ =-§— = 0.,995. Upon integration
e
eq. (3.57) becomes
( e o Te :
§ = & - - 12 _e,T —£12 .
o5 & 1 { 1 O[ {O f'4dn + T, (g~£'“)dn (3.58)

Equations (3.54), (3.56) and (3.58) include the effects of trans-—
verse curvature and are the appropriate expressions for the case of a
thick boundary layer. For the thin boundary layer case these equations

reduce to

-62~




n

* RO N
§ 2 cos o ;’ J (g_fsz)dn - ’
e
— o
Fnoo
0
8 Ty | £Q - £an
‘0
5 R O Te,
2 cos o T

(o}

n

0]

0

[ao]

£ (1-f")dn

|

n n
T e e
[ (g-£'2)dn + l f'zdn]
e

Using eqs. (3.18), (3.23) and (3.46), the integral appearing in the

thrust and jet velocity relations (see egqs. 2.35 and 2.37) can be

expressed for the general case as

0

n

e
£f'(1-£")dn

(3.59)

(3.60)

(3.61)

(3.62)

Additional parameters which are of interest in the boundary layer

analysis are the skin friction coefficient and the heat transfer at the

nozzle wall.

u{:a_ql
c = ¥ oy |w

£

The skin friction coefficient is defined by

and using eqs. (3.24) and (3.27) this can be written

20

. =
f (2£)? o

W

Uw R
f" (O)

Finally, the heat transfer at the wall is given by

ok [
w

T
oy

.,

which, using eqs. (3.24), (3.28) and (3.37), becomes

1 4
w uw ue R He g' (o)

(25)% Pr
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3.5 Similar Solutions

0f the various types of laminar viscous flow which are represented
by the similar boundary layer equations, attention is confined here to
four classes of similar equations which can be used to model resistojet
nozzle flow. For convenience these equations, which are special cases
of the general similar equations, ¢qs. (3.48) and (3.49), are designated
Class A,B, C and D. Before proceeding to the similar solutions it is
necessary to examine the pertinant gasdynamic conditions and the
various apprcximations which can be made to them.

The nozzle flow is an extremely rapid expansion of a high temper-
ature gas from a relatively low pressure plenum into a vacuum. As a
consequence of the low stagnation pressure {order of one atmosphere)
and the hot nozzle surface;, where the wall temperature approximates to
the plenum temperature, the boundary layer is thick, tending to occupy
the whole of the divergent section at low Reynolds numbers. As a
consequence of the high plenum temperature the gas is vibrationally
excited at entrance to the nozzle. Turing expansion the static
temperature in the inviscid core falls and the degree of excitation
may be reduced through equilibvation of the vibrational energy with
translational energy. In the boundary layer (i.e. in the radial
direction) the opnosite process can occur. At any station in the nozzle
the static temperature across the boundary layer increases from that of
the inviscid core to the higher temperature of the nozzle wall. The
vibrational temperature will tend to follow this behaviour, so that
propellant specific heat is a function of distance from the nozzle wall.
However, the similar boundary layer equations as formulated here, are
valid only for a constant specific heat and one is forced to use the
approximation that at a given station snecific heat is constant across
the boundary layer, and equal to that of the inviscid core.
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The situation regarding the thermal condition of the wall is,
as pointed out in Chapter One, of some importance to the nozzle per-
formance. A realistic, and convenient approximation is to assume that
the nozzle wall is adiabatic, i.e. no heat transfer occurs. For the
gases considered (NHS’ CH&’ COZ,H2 and Nz) over the temperature range
from 300° to 3000°X the Prandtl number lies between 0.74 and 0.69.
Similarly the viscosity~temperature exponent, w , lies between (.90

and 0.65 for all the gases except MH,, vhere  decreases from 1.10

39
at 3OOOK to 0.9C at 3000°K. (See Fig. 3 and section 3.5.4). A reason-
able physical approximation, which produces comnsiderable simplification
of the similar equations, is to take the values of Pr and w to be unity.
This approximation is used in the Class A, B and C similar equations.

In Classes A and R the wall is assumed to be adiabatic. Similar solutions
with the thin boundary layer approximation G = r/R = 1 are examined in
Class A, and in Class B the thin boundary layer constraint is relaxed

by allowing G = G(n). i.e. transverse curvature effects are included.

In the third class of equations, ¢, again with Pr =w , G = 1, the
intention is to examine the effect of a modest amount of heat transfer
from the nozzle wall to the propellant flow. Solutions of these
equations represent the case where the gas recovery temperature is less
than the wall temperature. Such a situation can occur in pulsed
resistojet operation when the stagnation temperature attained by the
propellant during heating can be less than the stagnation temperature.
Finally, Class D similar equations examine the effects of using more
realistic approximations to Prandtl number and the exponent of the
viscosity-temperature relation,in particular some solutions are presented
for Pr = w = 0.7. The case examined is that of an adiabatic wall, and

it follows for Prandtl number less than unity that the recovery temper-

ature is less than the stagnation temperature.
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3.5.1 Class A Solutions (Falkner-Skan equation)

Making the following approximations regarding fluid properties and
the flow:
(1) Prandtl number, Pr = 1
(ii) Viscosity-temperature exponent, w = 1
(iii) Thin boundary layer approximation, G = 1
(iv) Total enthalpy profile, g = 1, which together with

Pr = 1 implies that the wall is adiabatic,

produces considerable simplification and a decoupling of the momentum
and energy equations. The similar equation resulting from these

approximations in eqs. (3.48) and (3.49) is

£ 4+ B(L - £'2) + £ =0 (3.67)

This is a form of eq. (3.6), the Falkner-Skan equation. The boundary

conditions are

f(o) = £'(0) = 0, £"(o) = constant and £'(®) = 1,

Restrictions necessary for similarity are

(i) cp = constant
(ii) B8 = constant
For an isenthalpic flow, q = 0 in eq. (3.35), therefore Te T = TT
2
and since g =1, T =T_, i.e. the wall temperature is identical to

W T?

the stagnation temperature. The physical situations for which the above
restrictions hold must now be examined. The implication of the form of
the pressure gradient parameter in eq. (3.40) is that the external

velocity gradient is given by

=3

u
e e

E T

i

(50)

In the original work of Falkner and Skan the flow considered was
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incompressible, so ’1‘e = T, = constant and the potential flow required

for similarity was

where A and 8 are constants. For such a flow similarity between
different stations is exact.

In the case of compressible nozzle flow when Te is a variable,
the potential velocity cannot be expressed explicitly in terms of § ,
so that in general similarity is not exact. There are two physical
situations for which similarity is exact, one is that in which there
is a stagnation point for the inviscid flow, when Te + Ty and u, > 0;
the other occurs when the potential velocity is constant, in which case
the pressure gradient is zero, corresponding in the present study to
the hypersonic limit when the freestream Mach number is very large.
Thus, apart from some limited physical situations, eq. (3.67) and its
restrictions are not exact, and solutions of this equation together with
the assumption of local similarity are used only as a means to an end,
i.e. the approximate modelling of viscous flow in a resistojet nozzle.

Eq. (3.67) constitutes mathematically a non—linear two-point
boundary value nroblem where it is required to obtain nrofiles for f,

(51)

f' and £f" as a function of n. Hartree has obtained solutions to
this equation for values of pressure gradient narameter, B , up to 2.4.
However, as noted earlier, the velocity gradients found in resistojet
nozzles are extremely large, with B varying typically from 2. to 8. in
the nozzle divergent section. Evans(sg) has produced solutions for
large B , but for values of B greater than unity he uses a different
similar variable, which is effectively 1/f, and his similar solutions
are not compatible with the present formulation.

Solutions of eq. (3.67) for O £ B £ 10, were derived in this
study using a fourth order Runge-Kutta integration technique. The two

point boundary value problem was treated as an initial value problem,
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where the unknown boundary condition f' (o) was obtained by satisfying

the outer boundary conditions with convergence criteria, (1-f'(»)) < 1()“.5

5 (55)

and £"(») g 10 °. It should be mentioned that Dewey and Gross have
produced a few solutions for values of B between 2. and 5., but values
of £%(o) are quoted only to three decimal places. Further they note
that convergence was difficult for cases invelving B greater than 2.

In most of these cases they relaxed the convergence criteria to 10—3.

No such difficulties were experienced in this work. Details of the
mathematical techniques employed in the derivation of the present similar
solutions are given in Appendix A.

In section 3.4.2 it was shown that five integrals of the velocity

and total enthalpy profiles are required. They are :-

nco
P, = J (g - £'%)an (3.68)
1
[0}
Fn°°
P, = £1(1 - £')dn (3.69)
‘0
e
P, = £'2dn (3.70)
‘0
n
e
P, = f (g = £'2)dn (3.71)
(o]
n
e
P, = [ f1(1 - £")dn (3.72)
[0}

A reduction in the number of integrals to be evaluated and subsequently
used in the nozzle performance models is achieved by making the assump-

tiomns that

The difference between these integrals comes from the arbitrary definition
of the edge of the boundary layer. In the expnressions for the momentum
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and displacement thickness n_ is taken to be the first value of n for
which f' 2 (.99992, whereas in the definition of the overall thickness
and in the thrust integral, g is that value of n for which £¥ = €.995.
The approximation that ng equals n_ introduces a maximum error of less
than one percent in P[+ and P5. The overall effect, which is small, is
£o cause an overestimate of the boundary layer thickness, 6 , and an
underestimate of the thrust.

Values of £'(o0), Pl’ P2 and P3 for the Class A similar equation
are given in Table I, and these results are illustrated in Figs. &4 to 6.
In order to interpret these results it is useful to examine the momentum
equation, eq. (3.13), which with the approximation that r = R can be

written

du du _ dp d du

This equation expresses the balance between the inertia forces on the
left hand side and the pressure and viscous forces on the right hand
side. At the wall the inertia forces are zero so the pressure and
viscous forces must balance. With increasing distance from the wall
the inertia forces increase and the shear forces must decrease, since
dp/dx is comnstant across the boundary layer. Variation of the dimemnsion-
less shear stress, f'", in the transformed plane is shown in Fig., 4 for
various values of B from C to 10. This figure shows that at the wall,
i.e. n = 0 in the transformed plane, the gradient of the dimensionless
shear stress, £ (0), is zero for B = 0, and as the pressure gradient
becomes more favourable (increasing B) so f''(o) increases and f'" (o)
becomes more negative. In other words the wall shear stress required
to balance the pressure gradient becomes correspondingly larger. As a
consequence of the increased value of f'"(o) the shear stress decreases
more rapidly with f.vourable pressure gradient, and it follows that the
inertia forces increase quicker and the boundary layer thickness in the
transformed plane is diminished.
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The corresponding velocity profiles are shown in Fig. 5, where it
is seen that the more uniform shear stress nrofile for B = C is reflected
in a more linear velocity profile. Variation of the wall shear stress
and of the boundary layer integrals with the pressure gradient parameter
is shown in Fig. 6. The wall shear stress. f''(¢) increases monotonically
1° P2 and P3 are decreasing functions of

B . From eqs. (3.5%9) to (3.61) it is therefore inferred that the boundary

with B8 , whereas the integrale P

T

layer thicknesses in the physical plane, § , § and 6 alsc Lecome smaller

o,

as B is raised. Following from this last statement, a point of some
significance in later applications of the Class A solutions to the
resistojet problem, is that as the pressure gradient falls in the
divergent section of the nozzle (see Fig. 23) so the boundary layer thick-

nesses increase. This is particularly noticeable in the behaviour of P1

and P2 for values of B below 2.

3.5.2 Class B Solutions (lModified Falkner—Skan equation including

transversa curvature)
Retaining assumptions (1), (ii) and (iv) of the Class A solutions,
i.e. Pr = w = g = 1, but relaxing the thin boundary .ayer constraint,

results in a modified Falkner—Skan equation oi the form

.

[_Gf" l + B(L ~ £'2) + ff" =090 (3.73)

where G comes from eq. (3.47), which, with g = 1, can be written

n T " n
G=1-20 J £'2 gn + —S2= f (1-£'2)dn (3.74)
(o]

T
0 e
The boundary conditions are

f(o) = £'(0) = 0, £"(o) = constant, G(o) =1 and f'(®) =1

Restrictions necessary for similarity are :

(i) cP = constant
du T
(ii) B = %E -EEE ;’ = constant
e e




N

s o
(iii) © = 2(28)" cos = constant
0 T PZ
[ 1Y
e e

. T .
(iv) e,T = constant

Let us consider the situaticn where the notential flow is

isenthalpic, 1.e. @ = 0 in eq. (3.36), which means that T =T =

e,T T

constant and Tw = TT. It follows from restriction (iv), with Te =
constant, that there is only one physical situation in compressible flow
for which similarity is exact, and that igs at the stagnation point, when
u, = 0. 1In the more general case, restrictions (ii) and (iv) are
inconsistent since a variable velocity, u,s and a constant static
temperature, Te’ cannot be maintained simultaneously. This difficulty
is overcome to some extent by the introduction of a distribution of
heat sources and sinks in the potential flow, i.e. g = q(£). In this
case the total enthalpy He is a variable, so that the freestream total
temperature is variable and from restriction (iv) Te becomes a variahle.
Such a situation maintains some consistency in the restrictions, but,
as in the Falkner-Skan equation, in the general case it 1s not possible
to express u, explicitly in terms of & for a compressible flow.
However, by patching together solutions of eq. (3.73) which are appropriate
to the conditions at different stations in a resistojet nozzle, it should
be possible to model approximately a viscous flow in which some account
has been taken of tie effects of trarsverse curvature.

Although it is of limited interest in the present work, it 1s noted
mo which equals T

e,T T

for ¢ = 0, since pe is a constant. The conditions for similarity to be

that for incompressible flows Te can be equal to T

exact are then that B and O are constants.
Solutions of the modified Falkner-Skan equation have been obtained
over the following range of conditions for B, © and Te,T/Te 3
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< < 8.
1. < TesT/Te N

This is not a complete coverage of the conditions found in resistojet

nozzles. In particular values of Te T/Te greater than 8 may be experi-

9
enced in nozzles with area ratios greater than 100, but these conditions
are sufficient for an approximate examination of the effects of trans-
verse curvature on the boundary layer growth. Values of f'(o), Pl’ P2
and P3 for the Class B similar sclutions are presented in Table II,
where the convergence criteria used were £ (®) < 10.5 and (1-£° (=) < 10*5.

It is seen in Table II that, for certain combinations of B8, © and
Te,T/Te’ no solutions of the unknown boundary condition, f'" (o) could be
found which satisfied all the other boundary conditions. The reasons
for this will be discussed shortly. Before considering the results
further it is again imstructive to examine the momentum equation,

Pu %% + pv EE- = - QE- + %-35-{ ur %;-}

The differences between the Class A and B similar solutions arise from
the way in which the radial dependences accounting for transverse

curvature are included in the shear stress term. In the thin boundary

layer approximation for axisymmetric flows r/R = 1, so the shear stress
. d Jdu . . . 11
term is 35- H 5;— , which corresponds in the Falkner-Skan equation to f'.

. . )
The equivalent terms for a thick boundary layer are %- E-—'(ur = ] and

dy dy
7
o]

Computed prcfiles of the shear stress, f', velocity, f', and the
ratic of the local to geometric radius, G, for a typical case (B = 2,

O = 0.2 and Te /Te = 4.) are shown in Fig. 7. Comparison with the shear

,T
stress and velocity profiles for 8 = 2 in the conventional Falkner-Skan

equation reveals certain differences. These all originate from the fact
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that G = r/R is a decreasing function of n in the Class B solutions,
whereas in the thin boundary layer case G is taken to be unity. The
first point to note is that including transverse curvature produces a
decrease in the wall shear stress. The mathematical reason for this

e
can be seen by expanding [éf"iJ , thus

ki
[Gf"_l = G' £f% + G £

At the wall, i.e. n = 0, the Class A and B similar equations can be
written as

Class A, " (o) +B = 0

Class B, G'(0) f"() + £ () + B = 0 (with G(o) = 1)

For the effectively planar flow of the Class A equation, the pressure
gradient is balanced by the rate of change of the shear stress at the
wall. In the Class B equation, transverse curvature introduces an
additional negative term, the effect of which is to make f"' (o) less
negative and by implication to reduce the value of f''(o). The physical
implication is that for internal flows transverse curvature acts as an
adverse pressure gradient, since the wall shear stress necessary to
balance the pressure gradient is reduced. VWhen N is a non-zero the
bracketed term in the relation for G, eq. (3.74), must be considered.
This term is composed of two parts;

n T T n
(i) J £72 gn and (ii) ; J(1~f'2)dn,

0] e o]

where the second part is dominant for small n and the first part is
dominant for large N . The implication of the fuller shape of the shear
stress profile over the inner portion of the transformed plane is that
the inertia forces are reduced in comparison to the case where transverse
curvature 1is not included (Class A). This is to be expected with
Te,T/Te greater than unity, since the second term takes account, through

Te T/Te’ of the region of reduced density and therefore of smaller inertia
3
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forces near the wall. As N tends to N so the second term tends to
zerco and the first term increases at a constant rate. Thus G = r/R
tends to a linear function of n . The effect of transverse curvature
at large values of n is to cause a reduction in the shear stress and

therefore the boundary layer thickness in the transformed plane is

decreased. It follows that the velocity profile for this typical case
is slightly more linear when transverse curvature is included.

Some shear stress profiles for B = 2 and 10 in the Class B similar
solutions are illustrated in Fig. 8. An important feature of the results
is that with increasing pressure gradient parameter the effects of trans-
verse curvature are reduced. It is seen in Fig. 8 for B = 10 that even
with the largest influence of transverse curvature (© = 0.3 and Te,T/T
= 8.) the differences in shear stress between Class A and Class B are
not large, in fact they are much the same as the typical case just

discussed. The combination of large © and Te T/Te at lower pressure

s

gradient parameters has a more pronounced effect. Thus for 6 = 2,

@ = 0.2 and Te T/'I‘,e = 8. the reduced density near the wall combined with

b
the effects of transverse curvature produces a region of almost uniform
shear stress. The transverse curvature, acting as an adverse pressure
gradient, effectively offsets the increased inertia forces, and it is
only by n = 0.5 when G(= r/R) has decreased to 0.3 that the transverse
curvature can no longer offset the increasing inertia forces and shear
stress changes significantly. The corresponding velocity profile in

Fig. 9 indicates that the rate of change of the inertia forces then
decreases rapidly to a constant value appropriate to the freestream
conditions, so that the shear stress drops off dramatically. Convergence
was difficult to achieve for this particular case (B = 2, 0 = 0.2 and
Te,T/Te)’ so that it lies very close to the region where solutions for
f"(0) could not be obtained.

Variation of the wall shear stress with pressure gradient parameter

is shown in Fig. 10 for a range of values of transverse curvature para-
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meter and freestream stagnation to static temperature ratio. A

notable feature is that, for given values of © and Te,T/Te the £'" (o)
versus B curves are almost linearly displaced from the Class A curve.
Further, the displacement of these curves is nearly linear with changes
in® or T /Te° The fact that solutions for £"(o) could not be obtained

e,T

where both © and Te T/Te are large is also apparent in Fig. 10. This

s
feature is most noticeable for low values of B8 . 1In order to examine
how this comes about let us consider the curve where © = 0.2 and
Te,T/Te = 8. At B = 10 the shear stress and velocity profiles do not
differ substantially from the Class A profiles but as the pressure
gradient parameter falls several factors contribute to change this
picture. Over the inner portion of the transformed boundary layer the
shear stress profile becomes fuller as the adverse pressure gradient
effect of tramsverse curvature progressively offsets the decreased
favourable pressure gradient. Also the ratio of the local to geometric
radii becomes smaller as n tends to n_. In the nearly limiting case
with B = 2, which was previously described, r/R is less than 10_3 at
n_ . At lower values cf the pressure gradient parameter ¥/R is negative
as n tends to n_. This has a noticeable effect on the velocity profile
in that it is no longer asymptotic to f' = u/ue = 1, so that the
behaviour of eq. (3.73) under these conditions is not like that of a
boundary layer. A thorough examination of this phenomenon showed that
there was no value of f''(o) which would produce a velocity profile
that was asymptotic to f£' = 1, however it was found that the velocity
profile became asymptotic to a value of the velocity ratio which was
less than unity. The implication of this behaviour is that for certain
combinations of pressure gradient parameter, transverse curvature para-
meter and freestream stagnation to static temperature ratio for which no
solution of f"(o) could be found, eq. (3.73) no longer describes a

boundary layer flow (see Chapter Six).
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The boundary layer integrals P P2 and P, are illustrated in

1’° 3
Figs. 11 to 13. It is seen that the values of all three integrals are
smaller than the corresponding Class A integrals, and once again the

reduction in value is almost a linear function of the changes in O or

T /T . The decrease in n_ is reflected most noticeably in the P

e, T e 3

integrals. It must be emphasised that this discussion of the Class B
similar solutions has been confined to the transformed plane. Con-
sideration of how these solutions transform to the physical plane is
complicated by the form of the equations for the boundary layer thick-
nesses (eqs. 3.54, 3.56 and 3.58), and by the n to y transformation

(eq. 3.23). This is examined in Chapter Six.

3.5.3 Class C Solutions (Coupled momentum and energy equations)

Using the assumptions that

(i) Prandtl number,Pr =1
(ii) Viscosity-temperature exponent, W = 1

(iii) The boundary layer is thin, G =1

and allowing the total enthalpy function g to be a function of n,
g = g(n), with the boundary condition that g(o) # 1, allows one to
examine heat transfer between the gas and the wall. Under these con-

ditions eqs. (3.48) and (3.49) become

£ + (g - va) + f£"

|
O

(3.75)

g"' + fg' = 0 (3.76)

The boundary conditions are

f(o)

it

£f'(o) = 0, f£"(0)

constant, f'(=) =1

g(o)

H(o)/He . g' (o) constant, g{(®) =1

Similarity restrictions are

(1) cp

(ii) B

constant

constant
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The implication of these restrictions are identical to those of
Class A except that TW = constant # TT. Thus similarity is exact for
the cases of stagnation point flow and zero pressure gradient only;
for all other cases, even when the above restrictions are obeyed, simil-
arity is only approximately correct.

Of particular interest here is the case where heat transfer

(43)

occurs from the wall to the gas. Rae in his study of low density
nozzle flows noted that with the wall temperature somewhat higher than
the recovery temperature the boundary layer profiles hardly differed
from those obtained with an adiabatic wall. This has important
implications to the performance of pulsed resistojets and it was hoped
that solutions of eqs. (3.75) and (3.76) with g(o) greater than unity
would confirm this finding. However some difficulty was experienced

in obtaining solutions of sufficient accuracy for the boundary layer
integrals to be evaluated properly. The reason for this is to be found
in the fact that eqs. (3.75) and (3.76) are extremely non-linear when
g(o) is larger than unity, and the nroblem is complicated by the presence
of two unknown boundary conditions, f£"(o) and g'(o). A considerable
number of solutions of equations equivalent to eqs. (3.75) and (3.76),

(52)

for g(o) less than unity, have been presented by Cohen and Reshotko ,

(61) and Dewey and Gross(ss). Test cases to compare with

Li and Nagamatsu
these solutions were carried out in this work and no difficulty was
experienced in obtaining accurate values of £f"(o) and g'(o). To a great
extent this was due to the linearity of the energy equation for g(o) < 1,
specifically that g'(o) = F(g(®)) is linear. The linearity of the energy
equation has also been noted by Smith and Clutter(62). When g(o) is
larger than unity this relation is non—~linear and becomes more so with
increasing pressure gradient parameter.

The case examined here used the somewhat arbitrarily chosen

boundary condition of g(o) equal to 1.2. At B = O the momentum and
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energy equation are uncoupled so that the velocity profile is independent
of the total enthalpy profile, and solution is straightforward. Values
of £"(o) and g'(o) with convergence criteria on f'"(®) and g'(«) of 10_5
are presented in Table III. When B is larger than zero the two equations
couple and use must be made of numerical procedures such as a Newton-—
Raphson two-variable routine to obtain the values of f'" (o) and g'(o).
However convergence was found to be extremely slow and to reduce com-
puting time a visual search for solutions was adopted. Again this was
not particularly satisfactory and only solutions for values of 8 up to
3.0 are given in Table III. 1In order to obtain solutions the convergence
criteria were relaxed considerably. Values of the boundary layer
integrals were not evaluated. References 52 and 55 present some solu-

(55) also

tions with g(o) = 2 for values of B up to 2. Dewey and Gross
note difficulty in obtaining convergence but in this respect they
appear to have been more successful than the present author since

convergence to 10 is reported.

(52)

As first noted by Cohen and Reshotko a feature of the similar sol-
utions when heat is transferred from the wall to the gas is that there
is an overshoot in the velocity profile with favourable pressure
gradients. When the freestream velocity is uniiorm, i.e. 8 = 0, the
velocity profile is identical to that of the Class A solutions, but as

B increases so the velocity at the edge of the boundary layer increases
to a value greater than the freestream and then slowly returns to the
freestream velocity as N tends to N_ . For the relatively modest amount
of wall heating obtained with g(o) = 1.2 the overshoot is small; the
maximum overshoot found here, occurred at B = 3.0, producing a value

of f' approximately equal to 1.005. However, the magnitude of the wall
shear stress is noticeably larger than the adiabatic wall case (Class A).
It is shown in Fig. 14 that the difference in f'' (o) becomes larger with

increasing pressure gradient. Also drawn in this figure is the gradient
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of the total enthalpy function, g'(o). In the case of an adiabatic

wall with q, = 0, by definition g' (o) equals zero for all values of B8 ,
but when the stagnation enthalpy at the wall is greater than the

recovery temperature there must be a gradient in the total enthalpy
which transfers thermal energy from the wall to the gas. It is indicated
by the approximate solutions presented here that g'(o) tends to a
constant value as the pressure gradient increases, and the implication
from eq. (3.66) is that with other factors constant the amount of heat

transferred must also tend to a constant value.

3.5.4 Class D Solutions (An adiabatic wall with realistic

values for the Prandtl number and viscosity-temperature
exponent)
The final class of similar solutions presented here, considers

the case where the following assumptions are made:

(1) Pr = constant # 1
(ii) w = constant # 1
(iii) 6 =1, i.e. the thin boundary layer approximation.

Under these circumstances the similar equations become

)

{)\f"} + B(g-£'2) + ff" = 0 (3.77)
1
)\_g_'__,_ 20 1—-—1— £rey + fg' =0 (3.78)
Pr Pr g :
where
T w-1
pU e,T 2
)\ = RN I = —D -— ?
o w T (&0 ')
W W w

For an adiabatic wall the boundary conditions of eqs.(3.77) and (3.78)

are
f(o) = £'(0) = 0, £f"(0) = constant, £f'(®) =1
g(o) = constant = g, g'() =0, g(») =1
A(o) = 1

where the subscript a denotes an adiabatic wall.
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The restrictions necessary for similarity are :

(1) cp = constant
d T
(ii) B = 2t ~2S e,T _ constant
u_ d& T
e e
T
(1i1) ;’T constant
w.
u2
(iv) g = 5%— = constant
e

Before examining the implications of these restrictions it is
useful to define the recovery factor. The total enthalpy at the wall
is given by

H = h + r-— (3.79)

where r is the recovery factor. For the case where the total enthalpy
remains constant across the boundary layer, i.e. g = 1, with Prandtl
number equal to unity, the recovery factor is unity. When Prandtl

number is non~-unity, the total enthalpy which is recovered by an
adiabatic wall is different from the freestream total enthalpy, so the
recovery factor is no longer unity. Rearranging eq. (3.79), with the aid

of eq. (3.37)

H ~-H
r = 1 + =
e
which can be written
g -1

In the case of an isenthalpic flow the freestream stagnation

enthalpy, He, is identical to the stagnation enthalpy, H It is there-

T

fore implied that Te

T equals T.,, and from restriction (iii) the wall

T

’

temperature TW remains constant. From restriction (iv) it follows that
u, must also remain constant, so that once again there are only two cases
for which similarity is exact, i.e. stagnation point flow (ue = 0) and
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constant velocity flow (B = 0). Addition of an extra degree of
freedom by allowing q = q(&) does not alleviate this situatiomn, so
that in general similarity can only be approximately correct.,

Some work is to be found in the literature on similar solutions
where realistic viscosity~-temperature laws and values of Prandtl
number have been used. The most thorough investigation for Prandtl
numbers less than unity has been carried out by Dewey and Gross, and
solutions for Pr = 0.5, 0.7 and 1.0, w = 0.5, 0.7 and 1.0, and 0 = O,
0.5 and 1.0 are presented in Refs. 55 and 63. However Dewey and Gross
were particularly interested in the cold wall case and gave little
consideration to the adiabatic wall which is of interest here. It is
shown in Fig. 3 that taking Prandtl number equal to 0.7 is a reasonable

approximation for CHA’ NH3, COZ’ H, and Nz. The exponent in a viscosity-

2

temperature relation of the form, u = ATw, shows a wider spread but a
useful approximation for all the gases except NH3 is again to take
equal to 0.7. Ammonia is best approximated by a linear viscosity-
temperature relation. The source of most of this data is based on a

Lennard-Jones 6~12 potential model(sa); the viscosity data for N_ and

2
(85, 86)

H2 comes from experimental measurements for temperatures up to

2200°K.

In order to assess what differences in the boundary layer result
from using more realistic values for Prandtl number and viscosity-
temperature exponent, solutions of eqs. (3.77) and (3.78) have been
obtained with Pr = w = 0.7. The differences from, say, the Class A
solutions should be most marked where the boundary layer is thickest,
i.e. at exit from the nozzle. A useful approximation to the hypersonic
parameter in this case, is to take 0 equal to unity. Solutions of the
Class D similar equations with Pr=w =0.7, 0 = 1.0 for values of the
pressure gradient parameter from O. to 2. are presented in Table IV.

At higher values of B the non-linearity of eqs. (3.77) and (3.78)
prevented solutions being obtained for £ (o) and g(o). This is not too
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serious a drawback since for many resistojet nozzles the pressure
gradient parameter at exit is about two.

It is apparent from a comparison of the £lass D and A similar
equations that the balance of the inertia, pressure and viscous forces
through the boundary layer must be altered. However, the shear stress
profiles drawn in Fig. 15 indicate that the differences in the transport
of momentum through the boundary layer are small. The difference in
shape of the shear stress profiles for the Class D and A solutions is
most marked at 8 = 0; with increasing B the pressure gradient becomes
the forcing function in the similar equations so that the profiles
closely resemble one another. It follows that the velocity profiles
(Fig. 16) are not markedly different. An effect of the more realistic
values for Pr and w is to cause an increase in the thickness of the
velocity boundary layer in the transformed plane. Since there is no
additional distortion in the n to y transformations, as there is in the
Class B similar equations when r/R = G(n), it can be inferred that the
velocity boundary layer thickness in the physical plane will be larger
than that with Pr = w = 1,

There is a significant difference, however, in the behaviour of
the total enthalpy profile (also Fig. 16). Three points are immediately
obvious;

(i) the presence of a small overshoot in the total
enthalpy at the edge of the velocity boundary layer,
(ii) the thickness of the thermal boundary layer is greater
than that of the velocity boundary layer,
(iii)  the total enthalpy function at the wall, g,» decreases

with increasing pressure gradient.

The first point is the most remarkable. It is inferred from the shape
of the total enthalpy profile that thermal energy is being transported
from the hotter regions near the wall (n = 0) to the colder freestream.
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At the edge of the velocity boundary layer the viscous effects become
negligible, but thermal conduction has not ceased so that heat is still
being transported into the cold region at the edge of the freestream.
In the case when Prandtl number is unity the thicknesses of the thermal
and velocity boundary layers are identical, when Prandtl number is less
than unity it is to be expected (see for instance, Ref. 54, p.38) that

-1
= 0(Pr %?). Brief calculations of these thicknesses

5thermal/5velocity
in the transformed plane confirm that this is a good approximation in
the hypersonic limit.

The third point concerning the behaviour of 8,40 is illustrated
in Fig. 17. It is seen from eq. (3.80) that with o = 1 the recovery
factor, r, is identical to g, Further it is observed that the
recovery factor is only a weak function of the pressure gradient
parameter. An additional effect of increased B is to cause a
reduction in the dimensionless wall shear stress, f''(c), from the
equivalent value of the Falkner-Skan equation.

The boundary layer integrals P, and P_ for the Class D solutions

4 5

are included in Table IV, but, even when an overshoot occurs in the

total enthalpy profile, the differences between P_. and PA’ and P, and

1 Z

P5 are still small. The integrals Pl, P2 and P3 are shown in Fig. 18,

where it is seen that the most significant difference from the Class A
integrals is in the increased value of e
P3 = J £12dn,

0

which will be reflected in anincreased boundary layer thickness, §.

_83..




Chapter Four Vibrational Relaxation

4.1 Introduction

The vibrational heat capacity of the molecules can constitute a
significant proportion of the stagnation enthalpy for propellants of
interest in resistojet operation. There are two factors involved in
determining the amount of energy in?ested in vibration, one is the number
of vibrational modes possessed by the molecule, the second is the degree
to which these are excited at a given temperature. Both factors are
dependent on the particular gas; the first by the number of atoms in
the molecule and its geometry, the second by the vibrational frequency
of each mode. Diatomic gases, with one vibrational mode only, and large
vibrational frequencies, have small vibrational heat capacities over the
temperature range of interest, consequently the ratio of vibrational
, 1s small; e.g. at 2000°K

energy to stagnation enthalpy, e_ ./h

v, T'"T

e ./h. is only 0.05 for H, and 0.10 for N,. Polyatomic gases, with a
v, T''T 2 2

greater number of vibrational degrees of freedom and much smaller
vibrational frequencies which are more highly excited in this temperature
regime, have correspondingly larger heat capacities, so that by 2000°K

/h

amount to 0.39, €.42 and 0.50 for NH3, CC, and CH, respectively.

ev,T T 2

Energy stored in the vibrational modes is potentially available for
conversion to translational energy in the resistojet nozzle and in this
chapter the conversion process and its effect on performance are
examined.,

Exchange of energy from vibration to translation is a finite rate
process requiring a large number of collisions to produce equilibrium,
the rate of relaxation being proportional to pressure and increasing
exponentially as temperature rises. Thus for one atmosphere pressure the
required number of collisons for diatomic gases is 0(106) at BOOOK

4 (18)

decreasing to less than 10 at 2000°K. The requirements for
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polyatomics are considerably less, again due to the smaller vibrational
energy spacing, with the corresponding values of 0(103) to 0(102)
collisions. It has already been pointed out that very high accelerations
are experienced in resistojet nozzles, and rates of cooling of 108 °k/sec
are typical. Consequently, if the rate of vibrational relaxation is too
slow to follow the rate of temperature fall during the expansion, there
is a departure from local thermodynamic equilibrium resulting in an
excess of energy in the vibrational modes which is not transferred to the
active degrees of freedom. In general such nonequilibrium flows exist

in resistojet nozzles, where at entrance the temperature is high, the
vibrational relaxation 1is fast and near—equilibrium is maintained,
however the relaxation rates decrease rapidly as temperature and density
fall through the nozzle and a relatively narrow region is found in which
nonequilibrium effects predominate. Downstream of this the flow consists
of a region where vibraticnal relaxation has effectively ceased and the

(16)

vibrational processes are considered to be frozen. The effect of

vibrational freezing on nozzle performance is to cause a reduction in
the enthalpy available for conversion to jet energy.

For diatomic gases such as N2 and air the vibrational nonequilibrium
. . . . . .. (64,65)
region is predicted to occur in the vicinity of the nozzle throat.
No reference to vibrational relaxation in the expansion of a pure poly-
atomic gas has been found in the literature, however some experiments have

(66,67) It is indicated

(66) tha

been conducted with diatomic~polyatomic mixtures.
by the vibrational temperature measurements of Sebacher et al t
nonequilibrium effects in the expansion of a 002 - N2 mixture are spread
over a broader region, with eventual vibrational freezing occurring
further downstream than is the case with NZ alore,

In the present work vibrational relaxation is considered in three
ways. In the first an upper bound is set on the effects of vibrational

freezing by assuming that vibrational rate processes are frozemn throughout

the nozzle. Since any possible chemical rate processes are also considered
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to be frozen the only contributions to jet energy come from the
rotational and translational degrees of freedom. In the second, the
assumption that vibrational energy remains in equilibrium throughout
the nozzle provides the other limiting case. However difficulties are
encountered in modelling the viscous boundary layer, since, as discussed
earlier in section 3.4, a necessary condition of the similar solutions
is that specific heat remains constant across the boundary layer. With
vibrational energy in equilibrium the temperature characterising
vibration is identical to the static temperature throughout the nozzle,
implying that specific heat is a variable in the radial plane; but in
order to satisfy similarity the approximation must be used that at a
given station the vibrational temperature across the boundary layer is
constant, and equal to that of the inviscid core. The final approach
attempts to model the more realistic nonequilibrium situation by using

(69) which makes use of the fact that

the sudden freezing approximation,
the nonequilibrium region is narrow and in the limit can be regarded as
a discontinuity in going from an equilibrium flow to one in which
vibrational energy is frozen.,

In terms of the overall nozzle performance the vibrational energy model
has a great bearing on the available enthalpy and so on the actual
jet velocity. At a more detailed level, it determines the potential
flow properties such as temperature and velocity which must be known
before the boundary layer calculation can be carried out. The next
section derives relations governing the behaviour of the inviscid core
temperature as a function of nozzle area ratio for the three approaches
outlined above. Further consideration of the nonequilibrium flow and
details of an approximate sudden freezing model are presented in section
4.3. The chapter concludes with a description of an approximate model

faNH, - N - H, mi .
of a NH, 5 5 mixture
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4.2 Potential Flow Parameters

The nozzle flow is considered in two parts, (i) a potential core
in which the fluid properties are assumed to vary in the axial direction
only, and (ii) a boundary layer on the nozzle wall (to which the
dissipative effects are confined) where the fluid properties are
functions of both axial and radial position. By assuming that the only
consequence of the boundary layer is a displacement of the effective
wall position an effective inviscid flow can be defined. In the quasi
one-dimensional approximation the fluid variables in the effective flow
are dependent only on the axial distance down the nozzle. Using this
and the assumption of steady adiabatic flow, equations relating fluid
properties to nozzle geometry can be derived.

For a thermally perfect gas the second law of thermodynamics

can be expressed as

Tds = ¢ dT - dp 4.1)
P P

Using the equation of state (eq. 3.5), in the form

J

___‘:I_T (4.2)
eq. (4.1) becomes

(4.3)

Since the effective flow is assumed to be reversible and adiabatic it is

by definition isentropic, so ds = O and eq. (4.3) becomes

(]
=

I 2 & (4.4)

T p

[

With chemical rate processes assumed to be frozen throughout the nozzle
the propellant molecular weight, M, remains constant. Eq. (4.4) can

then be integrated from stagnation conditions to the effective conditions
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(PC’ TC) at any station in the nozzle to give

Tp Py
o dpC
c 4T = R — (4.5)
P c u Pe
TC pC
The energy equation for isentropic flow can be expressed as
cp dT + udu = O (4.6)
which, with frozen chemistry, integrates to give
TT )
o Yc
T = — .
%_ ¢ dT, 5 4.7)
M TC
Finally mass continuity can be written
n, = A = o a" (4.8)
e T Pt T P % y

Equations (4.5), (4.7) and (4.8), together with a relation linking molar

heat, cpo, with temperature completely describe the problem.

4,2.1 Frozen Vibrational Energy

With the additional assumption that vibrational rate processes are
o .
frozen throughout the nozzle, cP becomes independent of temperature and

eq. (4.5) gives the usual isentropic flow relation

Yer Wep = D

!

P
T TE“ (4.9)
Pop CF

where the subscripts C and F denote frozen chemical and vibrational rate

processes, and Yop = © O/(cO

- R ) is the ratio of the frozen specific
pF " pF u

heats.

It follows from eq. (4.2) that

— = (4.10)
Pcr CF

3

=3
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For the case of é; = C;F eq. (4.7) is simply

1/2
) (4.11)

0

— c -

Yop = | 2 2E g = Tep
M

Then using eqs. (4.8), (4.10) and (4.11) an area-temperature relation

is obtained of the form

/¢y 1)
% % * CF T - * 11/2
A P u T T CF
Il =T I S (4.12)
P Jcr CF T = CF
%
The throat temperature, TCF is obtained from the fact that at
the choking position M = 1, therefore
1/2
% Ru T*
Yer er T | Yer 5 cor (4.13)
Equating this expression to eq. (4.11) applied at the throat, gives
. T (4.14)
CF YCF + 1

Eq. (4.12) is valid for both subsonic and supersonic flow. The
temperature, TCF’ corresponding to a given area ratio, A/A* , can he
found by using a Newton-Raphson iteration procedure, however an inherent
difficulty of such procedures is that without extreme care the incorrect
root can be found. In the present work an alternative procedure is used,
where an arbitrary temperature distribution is specified and the
corresponding distribution of area ratio is obtained from eq. (4.12).
Then by using an interpolation routine the temperature distribution

corresponding to the actual area ratio distribution is found.

4.2.2 Equilibrium Vibrational Energy

Allowing the vibrational processes to have an infinite rate
necessitates a functional form of molar heat capacity with temperature.
This is achieved by fitting tenth order polyncmial approximations to
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the JANAF data (19) over the temperature range 100 to 3000°K, The
polynomial coefficients for HZ’ Nz, NH3, CH4 and CO2 are given in

Table V. Using

P = 7 a7 (4.15)

eq. (4.5) can be integrated to give

AO/Ru
P T i=10 A, . .
L. {Tl exp 1%{‘ I =@ -1h (4.16)
P¢ | c "o i=1
The density ratio is
[ (AO/Ru‘l)
p T i=10 . .
1 .
Lo E empii- I At -1h (4.17)
c |-¢c u i=l i
Similarly eq. (4.7) becomes
. 1/2
i=10 A, . .
2 1 1+1 1+1
u = - —hN (T - T ) (4.18)

Eqs. (4.8), (4.17) and (4.18) combine to give

i=10 ]
JERDLT A s |2
A _|TI i=0 (i+l) T C
* T i=10
A - -C ;A (@ 11 g it
L _
exp i 1310 A i i }
% Ru i=1 E (TT - TC )
exp{ - lflo A @t - 1o “-19
P R ~— T C
u 1=1 i
By analogy with eq. (4.13)
- 1/2
 _ k % R % ‘
ue T e {.YC :2 TC (4.20)
L x|

and using eq. (4.18) at the choking position the following identity can
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be formed

1=10 *1
. T A. T
= C
C = 2 1210 ___A_i;__ (T i+1 -— T 1+1) - 1£ t *
=0 (i+1) T C TZ10 ” Ru T, =0 (4.21)
) A T.-R
i= 1 C u

By calculating the value of ¢ for a series of values of T between TT

* %
and TCF that value of TC = T, for which ¢ = O can be derived using an
interpolation routine. Then the temperature-area relation of eq. (4.19)

is solved in exactly the same manner as the frozen flow case.

4.2.3 Sudden Freezing Approximation to Nonequilibrium

Vibrational Energy

Assuming that the region of vibrational nonequilibrium found
between the near—equilibrium and frozen flow regimes can be approximated
by a sudden freezing point results in some simplification of the
potential flow analysis. Since the two regions being patched together
at the freezing point are both isentropic the resulting flow is also
isentropic and eqs. (4.5) and (4.7) are still valid. It has already been
indicated in section 2.2.3 that some difficulty is experienced in
satisfying mass continuity when the freezing criterion (section 4.3) is
satisfied before choking has occurred, as can happen when the propellant
is a single diatomic species or a diatomic mixture. In this situation
the position at which choking occurs is not known a priori and an
iterative process is required to calculate the mass flow rate. At the
lower temperatures where the effect is noticeable the difference in mass
flow rate, with vibrational rate processes in equilibrium or frozen
throughout the nozzle, is small. To avoid undue complication arising
from a relatively minor point, vibrational energy is assumed to remain in
equilibrium to downstream of the choking position. In fact, the exact
position at which vibrational freezing is allowed to occur is determined
by the boundary layer calculation (see section 5.2.3.).
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The flow is considered in two parts. 1In the first, corresponding

to equilibrium flow, the temperature Te satisfies the inequality

> >
Tp 2 T 2 Ty

where Tfp is the value of TC at the freezing point. Expressions for
* %
TC and TC = TC(A/A ) are identical to eqs. (4.21) and (4.19). The second

part corresponds to the frozen flow region, where

>
Tfp TCF

Eq. (4.5) can now be written as

TT Tfp Pr
o dT o dT _ dp
cp T ch T Ru ) (4.22)
Tfp T D
which upon integration gives
) )
(ch/Ru 1) G ch)/Ru .
P T T 1=10 A, . .
T _ T T 1 i i1
5 T T eXP\R z jr-(TT —Tfp) (4.23)
P CF “£p u i=0
The density ratioc is
) o
(ch/Ru 1) _ A ch)/Ru ]
DT TT TT 1 1=10 A. i i
CF £p u i=0 P
Similarly, eq. (4.7) can be written as
2
1 T o T UeE
= 2 dr + ¢ dt = (4.25)
# P pF 2
T Ter
and using the form of cp given in eq. (4.15) this becomes
1/2
i=10 A. . .
2 o 1 i+] i+l
%r T | 24 pF TepTew) * izo @ Tt Tep ) (4.26)
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An area-temperature relation results from using eq. (4.8) in the form

* %

o] u
é;; . € ¢ (4.27)
A

Per Ycr

* %

and substituting for Pe > Yo 0 Peg and u from eqs. (4.17), (4.18),

CF
(4.24) and (4.26). Solution is facilitated in the manner previously

described at the end of section 4.2.1.

4.3 Sudden Freezing Model

A considerable amount of effort has been directed teowards under-—
standing the effects of vibrational nonequilibrium in steady nozzle flows,
and a number of exact calculations combining the flow equations and
those for the relaxation process have been made (64’68’65’70). These
calculations have all been for diatomic gases where the fraction of the
total flow energy which may be frozen in the molecular vibrations is
comparatively small. 1In such cases it has been shown that no great loss
in accuracy results from assuming that the flow equations and the

vibrational rate equation are decoupled 7L

, but in the case of poly-
atomic gases where vibrational energy can amount to over half of the
total energy such an approach is not valid. The fact that nonequilibrium,
whether the relaxation process be molecular dissociation or vibration,
is confined to a relatively narrow region has led to the sudden freezing
approximation (69’72), in which the flow is considered to be in
equilibrium down to a freezing point and to remain frozen from them on.
By suitable choice of an empirical constant the freezing point is found
to characterise the position of the region where rapid departure from
equilibrium occurs.

The present work is primarily a parametric performance study,
requiring the examination of a number of variables over a wide range of

conditions, and in this context vibrational nonequilibrium is modelled
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by the sudden freezing approximation. A more exact analysis would be
useful for the polyatomic gases where vibrational nonequilibrium in
nozzle flows occurs over a broader region, but owing to the considerable
uncertainty in rate data for such gases this complexity is not warranted.
Isentropic relations governing temperature and nozzle geometry,
obtained by patching together an upstream region of equilibrium flow and
a downstream frozen equilibrium region, where the patching point is
given by a freezing criterion, were deduced in section 4.2.3. It remains
to derive the sudden freezing criterion.

(73)

The classical theorv of Landau and Teller gives a linear
equation for the rate of increase of vibrational energy of a diatomic

gas due to the transfer of energy from the translational and rotational
degrees of freedom. With the assumptions that (i) the vibrational

energy of the molecules can be represented by a simple harmonic oscillator

and (ii) transfer of energy from translation to vibration is an adiabatic

process, a vibrational rate equation can be written

dev ev eq {T) - eV
ac T, (4.28)

where e, is the vibrational specific energy and ev,eq (T) is the value
of e, at equilibrium at temperature T. The vibrational relaxation time,
T, is expressed approximately as
T = 4 exp[ E~J1/3 (4.29)
v P T
where A and B are empirical molecular constants. Eq. (4.29), usually
referred to as the Landau-Teller equation, relates the relaxation time
to the local pressure and temperature for a diatomic gas in an excitation
process. Experimental confirmation of the Landau-Teller equation has been
given by the large amount of relaxation data obtained from shock wave

experiments, i.e. measurements of overall vibrational excitation, in which
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1/3

a linear dependence of log (pTv) with T is exhibited by most
diatomic gases, many diatomic mixtures and several polyatomics (for
example, see Refs.74, 75). On account of its simplicity the Landau-
Teller treatment is often applied to more complex situations with little,
or no, further theoretical justification.

A de-excitation process, such as a nozzle flow, involves an
overall energy transfer which is different from that of a normal
shock wave flow. It has been reported by several researchers (for
example, see Refs. 76, 77, 6€) that the vibrational relaxation processes
in .a de-excitation environmment are much faster than in an excitation

environment, and the deduced relaxation times are factors from 5 to 70

times faster. Various reasons have been put forward for this behaviour,

an

such as the effects of polyatomic impurities on the relaxation process s

or the possibility that collisional deactivation of the upper vibrational

levels involves multi-quanta exchange(76), In a study of vibrational

(78)

relaxation of anharmonic oscillator molecules , i1t is shown for N2
that the combined effects of anharmonicity and vibration - vibration
de-excitation can result in a far more rapid relaxation in expansion

flows where the local conditions are far from equilibrium. The situation
regarding vibrational de-cxcitation in polyatomic gases is far from

clear, but it is to be expected, as in the expansion of mixtures of

N2 - CO2 (66,67) and N2 - CO2 - H20(68), that with several competing
processes available to de—-excite the upper vibrational levels vibrational
relaxation will be extremely rapid. In the present circumstances the

best approach seems to be to accept the form of the Landau-Teller equation
for predicting relaxation behaviour, and include a factor ¢ to account for

the discrepancy between excitation and de-excitation relaxation times.

A modified vibrational rate equation is written

1/3
5 ] (4.30)

T = é ex P
P v ¢ Pl T
where ¢ may vary between 1 and 100.
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The work of Bray (16)

, shows that when the flow time characterising
thelocal rate of expansion is much larger than the vibrational relaxation
time, vibrational rate processes can be considered to be in equilibrium
with translation. Similarly when the local flow time is much shorter than
the relaxation time vibrational energy remains constant. Nonequilibrium
exists when the two characteristic times are of the same magnitude. The

rate equation (4.28) can be written as

deV ev,eq(T) - e,

u

e dz T
v

which can be rearranged tc give

de 1-e T)/e
e v o= v,eq'P/%y (4.31)
e, dz TV
Defining a local flow time as
u, dev -1
T T e & (4.32)
v eq

which is a maximum in the equilibrium 1limit, Bray shows, using eqs. (4.31)

and (4.32), that

T e (T)
V.o, 1 - _V.eq
Tf1 ®v
Under conditions of near-equilibrium flow T _ << T and e > e (T);
v f1 v v.eq

in the frozen flow limit with T »>> r_., e 1is constant and 7T_, ~ O.

The nonequilibrium region exists between these two limits where % Tepe

By considering vibration to be in equilibrium with translation when
Tv < Ter and to be frozen when this relation does not hold, a sudden
freezing position can be defined as that point where Tfl = TV. It is

more informative physically to express this criterion in terms of the rates
. . . . . . (79)
of expansion and of vibrational deactivation, thus Phinney uses a

freezing criterion which can be expressed as
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u de
e

_}_1 = P|v (4.33)
dz i

eq v

where P is a constant of order unity, matching the appnroximate criterion
with more exact solutions. Here, freezing is considered to have occurred
when the time rate of change of vibrational energy with rate processes in
equilibrium (left hand side of eq. (4.33)) exceeds the kinetically possible
vibrational energy gradient (right hand side). Introducing eq. (4.30) into

(4.33) the freezing criterion can be written as

de pe

=]

<
It

(2]

v (4.34)
leq A exp{ %-]1/3

Jjed
where ® = Pé. Eq. (4.34) is the form of the sudden freezing criterion
which is used in thisiwork.
The constants A and B required to fit the Landau-Teller equation to
experimental relaxation times are presented in Appendix B for gases
HZ’ NZ’ NHB’ CH4 and COZ' A literature survey of the vibrational rate

data relevant to these gases and for various mixtures is also presented in

this place.

4.4  An Approximate Model of Vibrational Relaxation in NH3 :_ﬂz :~N2

Mixtures

At the operating temperatures found in resistojets, NH3, is the only
gas considered here which can disssociate into a mixture containing two or
more vibrationally excited species. If chemical equilibrium is attained
in the heater, at temperatures above 1OOOOK the efflux gas consists
essentially of a NZ—HZ binary mixture; however, more realistically, the
chemical kinetic rate of dissociation is probably never sufficiently high
for all the NH_, to be disssociated during its rapid passage of the heater,

3

so even at ZOOOOK the efflux consists of a N2~H2-NH3 mixture, all three
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species being vibrationally excited. In order to examine the nozzle
performance in the case where finite vibrational rate processes are
assumed to occur, some consideration of vibrational relaxation in mixtures
is required.

In a series of shock tube experiments performed on mixtures of

)
NO~CO, NO-N, and CO,-N,, Taylor, Camac and Feinberg(go’

9 o Nys found that

vibrational relaxation in these mixtures was controlled by rapid V-V
energy exchange processes, as a consequence of which they observed
dramatic reductions in the relaxation time of the slower component. These
experiments indicate that the component with the faster T-V energy

xchange rate initially relaxes rapidly to some fraction of its final
equilibrium vibrational energy; at this point V-V processes force the

two components to approach equilibrium with the same rate. Further, the

vibrational temperature measurements in expanding mixtures of CO, and N

2 2°
performed by Sebacher, Guy and Lee(66), show in fact that there are two

separate relaxation modes. The first, corresponding to T-V energy

exchange of N, has a longer relaxation time than the second, which

2

corresponds to a V-V coupling between Hz and CO,_, the energy being

2’

transferred to translation by the faster T-V process of CO Multiple

9
relaxation paths are well known for polyatomic gases, where the larger

number of modes increases the chances of frequency matching and intra-

. . 81
molecular processes such as Fermi resonance are possible ( ).

Appendix B presents some information on vibrational relaxation in

, . 82
mixtures where H_ is present. DMoore (82)

2 points out that vibration-

rotation (V-R) energy exchange becomes important in molecules containing
hydrogen atoms, and the extremely rapid vibrational deactivation of mixtures
of CHA—H2 and NZ—HZ must, in part, be due to this mechanism, which also
must be present in the ammonia case.

The ammonia nozzle flow problem may be further complicated by the

effect of chemistry in the heater om the vibrational population distribution.
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The heterogeneous dissociation of ammonia on the heater wall should give
rise to a distribution, characteristic of the wall temperature, since a
sorption/desorption process is involved, but the homogeneous reaction in
the gas phase can give rise to non-Bolitzmann distributions via atom—-atom
recombinaticns. However the homogeneous reaction is about an order
slower than the hetercgeneous one for temperatures below ZOOOOK, thus

only up to 107 of the N_ and H_ may be affected. Further the transit

2 2
time of the heater is of order 1 ms. during which there will be of order
106 - 107 collisions, which are enough essentially to restore equilibrium,

particularly if polyatomics are present (section 4.1). While the physics
of the situation remains intriguingly complex with several possible V-V
and V-R processes competing to deactivate the higher vibrational levels,
as far as engineering is concerned the gas at heater exit/nozzle
entrance may be taken to be in vibrational equilibrium. Of course the
relaxation through the nozzle is still complex and due to the lack of
experimental data and theoretical knowledge the model for the relaxation
of NH3—-N2-H2 mixtures necessarily is crude.

The model which is proposed is intended to produce a lower bound on
performance by making pessimistic approximations to the relaxation rate.

The first assumption is that N_ is de—excited via rapid H, vibrational~

2 2

rotation-translation energy transfer processes, so it is not a rate-
limiting step in the overall de-excitation process. In other words the

vibrational mode of N2 is assumed to act only as an energy store and the

possibility that it may relax separately is not considered. Thus in the
equilibrium limit with a NZ—HZ mixture, the vibrational relaxation rate

1s identical to that of HZ' This is consistent with a worst case

approximation since experimental evidence in Appendix B suggests that a

mixture relaxes nearly ten times faster than pure H For the more

NZ—H2 9
general case of a NZ—HZ—NH3 mixture the rate of de-excitation is assumed

to be determined by the behaviour of the HZ—NH3 with NZ making no

contribution to the rate process. The equivalent HZ—NHB mixture is then
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(83)

assumed to follow the "parallel resistance' law for simple mixtures,
P p

which can be expressed as

-1 X(Hz) X(NHB) ( )
(t) = e 4 ——— 4,35
vk TV(HZ) TV(NH3)

where the mole fractions have been normalised so that X(Hz) + X(NH3) = 1.
For mixtures such as C02-N2 with a resonant V-V exchange process eq. (4.35)
works extremely well, in an excitation environment; however, for mixtures
in which H2 is present the relaxation rate is always underestimated.

Apart from some uncertainties in the NH3 relaxation rate (reviewed in
Appendix B), by making the sweeping approximations above, therefore, the

lowest possible relaxation rates should be predicted and a lower bound

on performance produced.
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Chapter Five Computer Models of Nozzle Performance

5.1 Introduction

This chapter returns to the problem which was defined in Chapter
One, that of modelling the performance of resistojet nozzles on a
digital computer. The requirement of the model can be stated as
follows. For a given nozzle geometry, given propellant and specified
nozzle input conditions, i.e. stagnation temperature, pressure and
composition, it is desired to calculate the performance taking into
account losses due to frozen chemical rate processes, frozen vibrational
rate processes, incomplete expansion, viscous flow and radial flow at
the nozzle exit. The basis of accounting for these losses in terms of
jet power was presented in Chapter Two. Two sources of loss, i.e,.
viscous flow and the finite vibrational relaxation rate, required
further consideration, which has occupied the last two chapters.
Several alternative approaches for modelling both the viscous flow and
the vibrational rate processes were developed so that a hierarchy of
models of resistojet nozzle performance may be produced, which describe
the losses with increasing degrees of complexity.

In the computation the philosophy was adopted that a common
program structure would apply te all the performance models. Therefore
to change from one model where, say, the boundary layer calculation
is based on the Class A similar solutions, to another model using the
Class B solutions, in principle requires only substitution of one
segment for amother. The basic calculation procedure is described in
nsection 5.2, While a common structure runs throughout the computer
models which are used here, it is not practical from the viewpoint of
economy in computer storage and execution time to write programs in
which the segments are interchangeable. Thus the various models are
optimised for a specific purpose, so that they are distinct programs.
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Four models are reported in this chapter, the main features of which

are summarised below.

Model Zero is a preliminary model used to examine the magnitude
of the various losses. In order to set a lower limit on performance,
'worst case' approximations are made. The vibrational rate processes
are considered to be frozen throughout the nozzle, and the boundary
layer calculation is based on the approximate method of Cohen and
Reshotko, which was introduced in section 3.1 and is described in more

detail in section 5.3.

Model One differs from Model Zero only in the boundary layer calcula-
tion. Here the laminar boundary layer is represented by the "patching
together'" of the Class A similar solutions (section 3.5.1). The
assumptions of unit Prandtl number, a linear viscosity-temperature
relationship and an adiabatic wall are still retained, but the

fundamental boundary layer solutions are rigorous, (section 5.4).

Model Two examines the effects on performance of allowing
vibrational energy to relax through the nozzle. There are two
alternatives. 1In the first, a freezing criterion is applied, so that
some loss from frozen vibrational energy may still occur. The secon@
alternative results from removing the freezing criterion, in which
case vibrational energy remains in equilibrium throughout the nozzle.
The boundary layer calculation is again based on the Class A similar

solutions. A description of this model is given in section 5.5.

Model Three reverts to the assumption of frozen vibrational rate
processes, but differs from Model One in that the Class B similar
solutions are used in the boundary layer calculation. Therefore it is
intended for a study of the effects of transverse curvature on resistojet

nozzle performance. It is presented in section 5.6.
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5.2 Calculation Procedure

The basic computer program consists of three main sections (see
the flow diagram in Fig. 19). Details of the nozzle geometry, and of
the propellant chemistry and thermodynamics, are evaluated in the first
section. The second section is an iteration in which for an assumed
effective geometry, the isentropic core properties and the corresponding
boundary layer growth are calculated to produce a new effective geometry.
This process is repeated either, a given number of times, or, until
satisfactory convergence of the boundary layer—isentropic core calcul-
ation is achieved. In the final section the performance parameters
are evaluated. The individual sections are now described in more

detail.

5.2.1 Nozzle Geometry

The nozzle is considered in three parts :

(i) a conical convergent section, where the geometric variables which
must be specified are the inlet radius, Rl’ and the convergent

half angle, © (see accompanying figure),

19

(ii) a circular throat section with radius of curvature, Rc’ and

* -
throat radius, R , smoothly connecting the convergent section to

(iii) the divergent section where the wall shape is described by

R=6, z_ + az

2 2
2 Zp + sz (5.1)

D
so that nozzles from horn through conical to bell shapes can be

generated.

Obviously a higher-order series could be used, but eq. (5.1) was found
to be sufficient for the present purposes. An additional variable

. o oo . . *
which must be specified is the area ratio, € = (RZ/R )?
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Nozzle Geometric Variables

The geometry calculation simply divides the nozzle axis into 100 equal
parts, and evaluates the radius, wall position and local wall angle,
¢, at each of the resulting 101 stations. The station immediately
upstream of the geometric throat is also determined for use later in

a mass flow rate calculation.

5.2.2 Propellant Chemistry and Thermodynamics

There are two alternatives in this subsection corresponding to
the cases where the propellant either dissociates during passage
through the heater, or remains a single species. In the first
alternative, as well as summing the contributions to the thermo-
dynamic variables from two or more species, the program calculates
the chemical composition. Of the propellants considered here, 002
does not dissociate at resistojet operating temperatures. Methane
does dissociate, with detrimental effects on the useful resistbjet
life. The temperature at which carbon deposition becomes significant

(38)

is a function of the heater geometry and transit time , but in

the present work it is considered to remain a single species. The

highest temperature for which results have been obtained for 002 and

CH4 is 2000°K. The remaining two propellants, i.e. NH3 and HZ’

dissociate without solid deposition to produce an increase in jet velocity.
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It has been indicated in Chapter One that decomposition is a finite

rate process, which requires kinetic data on both the gas phase and

wall catalysed reactions for complete modelling. In the case of NH

H
and 9

and a

of the reaction. The performance of NH

3

insufficient kinetic data is available to make good predictions
simplifed approach is used, which considers only the end state

3 is investigated for temper-

0 . . caea
atures up to 2000 K. Examination of the ecuilibrium constants, KD,

in the JANATF tables

(19)

shows that at temperatures below 2000°% the

components finally present can be taken as NHB’ ¥, and H,. Strictly

2 2

at temperatures above 1200°K monatomic hydrogen is also present in

the equilibrium composition, but to simplify matters it is assumed

to be

absent at temperatures below 2000°K. The chemical equilibrium

in the heater can then be written as

ZNH3 = N2 + 3H2 (5.2)

The mole fractions of the three species are given by

where

Ty

and K
p

X(NH3) = (1-a1)/(1+a1)
X(Nz) = a1/2(1+a1) (5.3)
X(HZ) = 3X(N2)

@5 the degree of dissociation of NH3 at the plenum conditions

and P is given by

4K
- j2) (5.4)
4KP + ZJEFH

is the equilibrium constant for eq. (5.2) at TT.

If the transit time of the heater 1s less than the characteristic

time for decomposition, the above equilibrium calculation does not truly

represent the propellant composition at the heater exit; allowance is

made for the occurrence of non-equilibrium flow, by introducing a

variable f in eqs. (5.3). £ is taken as the mole fraction of undissociated
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ammonia not included in the equilibrium calculation. Thus f equals
zero for an equilibrium composition at exit, and f equals unity when

NH, remains undissociated. Egs. (5.3) become :

3
X(H,) = £ + (1-£) (1=, )/ (I+a)) )
X(NZ) = (1—f)01/2(1+a1) (5.5)
X(Hz) = 3X(N2) )

Hydrogen, being a propellant suitable for prime propulsion, is

likely to be operated at higher temperatures than NH CHA or CO

39

since the available electric power will be greater. A maximum

23

temperature is taken to be 3000°K. At temperatures below 2000°K
the simplifying assumption is made that hydrogen remains a single

. o . . . .
species. Above 2000°K the dissociation reaction

H, & 2H (5.6)

should be considered. Whether any dissociation can occur in the rapid
passage through the heater ig doubtful, and in most of the computation
H2 is considered to remain a single species. In order to set a limit
on the possible effects of dissociation, the performance with the

equilibrium composition is also examined. The degree of dissociation

in the equilibrium mixture is simply

K
- /__p
) T (5.7

and the mole fractions are

X(H,) (1-a,)/(1+a,)
2 2 2 (5.8)

X(H)

20,/ (1+2,)

where Kp is the equilibrium constant appropriate to eq. (5.6) at a
plenum temperature of TT.
In the remainder of this subsection the available enthalpy is

evaluated for the ideal state, when no losses are incurred, and for
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the case when the composition is frozen throughout the nozzle. These
relations are given by eqs. (2.4) and (2.9). The corresponding mass
flow rates, eqs. (2.7) and (2.11) are also calculated. The information
on which these calculations are based is again taken from the JANAF
tables. As previously mentioned, tenth-order polynomials for the

molar heats of H WHB, CH, and CO, have been derived, and the

92 Nys 4 2
coefficients are presented in Table V. It is seen in this table that
there are two sets of coefficients for H2° This is necessary since
hydrogen is an unusual molecule in that the rctational energy is not
fully excited until about 360°K. Thus over the temperature range in
which the function cpo = CPO(T) is required (approximately 50°K to
3OOOOK) there are two steps in the molar heat behaviour corresponding
to the excitation of first rotational energy and then vibrational
energy. It is difficult to accurately fit a polynomial to such a
curve so that two polynomials are used, one for temperatures equal to,
or less than SOOOK, and the other for higher temperatures.

The subsection finishes by calculating the viscosity of the

propellant at the rlenum conditions. Viscosity data for the gases

of interest is shown in Fig. 20. For the mixture of NH, - N, ~ H

3 2 2
the empirical formula developed by Ulybin(88) is used. This can be
written
=3 (ui)T
= hY ——
(umix) (Umix’ .z Xi (u.) (5.9)
T Ref 1i=1 1
Ref
where (umix) is the viscosity of the mixture at a reference
77 Ref
temperature, (ui) and (ui) are the viscosities of the ith component
T Ref
at temperature TT’ and the reference temperature. The reference
temperature is taken as 283°K. In the equilibritm mixture of Hz and H,
monatomic hydrogen is assumed to have the same viscosity as Hz.
Smith(89) presents theoretical values for the viscosity of monatomic

hydrogen, indicating that the viscosity of H is approximately 307 less
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than that of Hy- Since the amount of monatomic hydrogen present is

small, and the viscosities of H, and H are similar, the error

2

involved in the above assumption is small.

5.2.3 The Boundary Layer-Isentropic Core Iteration Procedure

The second section of the program is an iteration and it is
considered as a whole, rather than in subsections, so as to emphasise
the fundamental features of the procedure. More complete descriptions
of the various isentropic core and boundary layer subsections are
given in 5.3 to 5.6.

By assuming that the only consequence of the boundary layer is
a displacement of the effective wall position, an effective inviscid
flow can be defined. Further assuming that the effective flow is
quasi one~dimensional means that the fluid variables, such as
temperature and velocity, are dependent only on the axial distance
down the nozzle. The iteration starts by calculating the axial
temperature distribution corresponding to a completely inviscid flow,
i.e. the initial effective geometry is taken to be the actual nozzle
geometry. These calculations are carried out at the 101 stations
previously evaluated in program section 1 (5.2.1). The resulting
pressure gradient is then calculated, from which the corresponding
boundary layer growth is found at each station. At this stage all
that is required in the boundary layer calculation is an estimate of
the displacement thickness, 5*. In high Reynolds number flow the
boundary layer has a negligible displacement effect on the potential
flow, but in resistojets where the boundary layer occupies a consider-
able portion of the nozzle flow field the interaction cannot be
ignored. Thus a new effective geometry must be defined and the corres-—
ponding isentropic core and boundary layer calculation repeated. A new
effective geometry is found by taking the average value of the old
effective geometry and that resulting from displacement by the boundary
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. . th
layer. In general, the new effective geometry, given by the n
iteration, can be written as

1 *
(Reff) - E.{(Reff) *R=- (O )n } (5.9

o+l n

A feature of viscous nozzle flows is that the choking position
is no longer necessarily coincident with the geometric throat, and its
exact position is determined in the effective geometry subsection.
This is found by examining the boundary layer in the throat region in
more detail. In particular the effective radii at the five stations
immediately upstream and five stations immediately downstream of the
previous choking position (i.e. ten in all) are interpolated by a
cubic spline subroutine (CSFMIE) to find the axial position for which
(R-G*) is a minimum. This gives the new effective throat. Mass
continuity at each station in the nozzle can now be satisfied so that
the isentropic core properties corresponding to the new effective
geometry can be recalculated.

There are a variety of ways of testing the iteration procedure
for convergence. The method used here is to examine the ratio of the
effective area ratio at exit to the initial inviscid area ratio, i.e.
the geometric area ratio, €. Convergence of this procedure is
illustrated in Fig. 21 for a hydrogen resistojet nozzle with £ = 25
and plenum temperature of 1500°K over a range of Reynolds numbers,
ReD*, from 4030 down to 201. At the higher Reynolds numbers, i.e.
ReD* greater than 1000, comnvergence to the final effective area ratio
is smooth, but at lower Reynolds numbers (in this case lower plenum
pressures) the process is slower and oscillatory. At the lowest ReD*
convergence has not occurred after five boundary layer calculations,
and increasing the number of iterations causes the process to become
divergent. The reason for this lies in the fact that with a larger
number of iterations the numerical errors introduced in computation
are increased; in particular numerical differentiation becomes
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troublesome. This is of some importance to the present results and
it is examined further in the discussion of results in Chapter Six.
The point which is made at this juncture is that convergence to a
specified value cannot be achieved over the whole range of Reynolds
numbers. Thus the approach adopted in this study is that the
iteration procedure is carried out a fixed number of times rather than
to a convergence criterion. A reasonable compromise is taken as
three isentropic core - boundary layer - effective geometry iterations,
with a fourth and final calculation of the isentropic core parameters
to give mass continuity. 1In the final boundary layer calculation
other boundary layer parameters such as the momentum thickness and
overall thickness are also evaluated.

It should be noted that the available specific enthalpy when
vibrational energy is frozen throughout the nozzle, or freezes in
the nozzle, given in eqs. (2.19) and (2.15), is calculated at the
end of the first isentropic core calculation, i.e. when the complete
flow is inviscid. The jet velocity with the additional loss due to

incomplete expansion, V given by eq. (2.30), is also calculated

jCFE?

at this point.

5.2.4 Performance Parameters

In the final section of the basic program the parameters such
as thrust, jet power and the various efficiencies are calculated. The
required relations are all set out in Chapter Two and only a word of
explanation about the radial flow loss is necessary. Account of the
loss in thrust due to the radial component of exhaust velocity is
given by the expression (1 + cos ae)/Z., vhere o is the effective
nozzle angle at exit. An estimate of @, can be obtained from the
change in the effective radius between the last two stations in the

nozzle. This can be expressed as

* *
(R-6) -~ (B-§)
tan a, = 101 100 (5.19)

Z101 ~ %100

-110-



5.3 Model Zero

This model is described in two parts, (i) the isentrooic core
calculation with vibrational rate processes frozen at entrance at
the nozzle, and (ii) the approximate method of Cohen and Reshotko for

compressible laminar boundary layers.

5.3.1 Isentropic Core Calcvlation (Vibrational Energy Frozen)

The theory relevant to this situation is developed in section
4.2.1 and the order in which the isentropic core properties are

evaluated in the program is given below.

*

(1) The temperature at the choking position, T CF? is

obtained from eq. (4.14).
(ii) The area ratios at 100 points through the subsonic
section of the nozzle are calculated from eq. (4.12),

which correspond to the temperatures

1 *
T=T —J—(TT—T ) where i = 1,2 ..., 100

T 100 CF

(iii) Using the subroutine CSFMIE (Fig. 19) the resulting 100
points in the T - A plane are interpolated to give the
temperatures which correspond to the area ratio of the
required equi-spaced stations in the subsonic flow.

(iv) A similar procedure to operations (ii) and (iii) is
carried out in the supersonic flow. The initial
temperature - area distribution is evaluated at the

temperatures given by

* i

* -
T =T cF " Taa-(T - TT/ZO.) where i = 1,2...,100

CF

(v) With the values of TCF corresponding to the 101 equi-
spaced stations through the nozzle, all other isentropic
core properties can be evaluated. Thus the velocity,

density and pressure come from eqs. (4.11), (4.10) and
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(4.9). The Mach number is given by

M_ =1 Yoo — T (5.11)

It is noted that the temperature-area (T-A) method of evaluating
the properties of a constant specific heat isentropic core differs
from the conventional Mach number-area (M-A) relation which was
initially used and reported in Ref. 37. The present T-A method is
preferred for its accuracy and speed of calculation as the original
M~A relation requires an iteration procedure, which converges very

slowly as Mach number tends to unity.

5.3.2 Application of Cohen and Reshotko's Approximate Boundary

Layer Method to Resistojet Nozzles

The following description of the Cohen and Reshotko boundary layer
method is fairly concise. For further details the reader should con-
sult the original paper.(Az)

The fundamental relation of this approximate method is the

momentum integral equationin the transformed, incompressible plane,

which Cohen and Reshotko reduce to the form

e L1 | - N, s.) (5.12)

€ ax {du /d%
e

where N(n, Sw) = 2[:n(Htr + 2) + %J (5.13)

The tilde notation refers to quantities in the transformed plane, thus
ﬁe is the freestream velocity in the (%, ¥) plane. N, known as the
momentum parameter, is a function of n and Sw’ which is obtained from

(48)

the earlier similar solutions of Cohen and Reshotko for Pr = w = 1.

SW is a non-dimensional enthalpy function given by

SW = BW/HT - 1.

n is a correlation parameter, related to the pressure gradient and £ is
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a shear parameter. The final quantity Htr is a transformed boundary
layer form factor which is given by

*
= § 8
Htr tr/ tr

where G*tr and etr are the corresponding displacement and momentum
thicknesses. The three quantities Htr’ s*tr and etr are all evaluated
in Cohen and Reshotko's first paper.

The problem is to determine the value of the correlation para-
meter, n, at the particular station under consideration; once n is
known, etr and thus 9 (momentum thickness in the physical plane) can
be determined leading to values for 5" and § . An approach suggested
by Cohen and Reshotko for the case of an isothermal wall, i.e. when
Sw remains constant, is to assume a linear relationship between the
momentum parameter, N, and the correlation number, n. This implies
that

N = A + Bn (5.14)
Using eq. (5.14) in eq. (5.12) results in a linear first order equation,

the solution of which is

n=-aGE)" =2 | @ (B-1) 4 (5.15)

Transforming to the compressible plane and converting to axisymmetric
flow by application of the standard Mangler transformation the

following equation is obtained

/L [37— 1]
2(T

U [-5Y—'-3-] (1-B) 2(v-1).
. S i@ [ |2e) v n ) [re g (B-1>d[z<_]
uWa®d e (R/R)2 2" |Tp e L
L o
(5.16)

Provided that A and B are known the correlation parameter, n, can be
determined in terms of the inviscid core conditions at any station in
the nozzle. The momentum thickness, © , is obtained from
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1,
02 = - 122 5| s - (5.17)
w T e { e]
di—
u

When the wall is assumed to be adiabatic, for Pr = 1 it is implied

that TW = TTs uw = UT and Sw =0,

The displacement thickness is given by
* T

T
6 - 6 —— i - .
T (htr +1) -1 (5.18)

and the boundary layer thickness

O
]
@)
B
”
+
i
| ol
s
+
Pt

(5.19)

taken at u/ue = 0.995.

The correlations of Cohen and Reshotko for SW = 0, of ¥ versus n,
Htr versus n, and Gtr/etr versus n are presented in Fig. 22. It is
seen that there is a maximum favourable pressure gradient (negative
correlation parameter) that can be dealt with by this method, which
corresponds to B = 2, As already discussed the pressure gradients in
resistojet nozzles are very favourable and correlations for more
negative values of n are required. This was achieved by extrapolating
the existing correlations graphically. It is also observed from the

top graph in Fig. 22 that a linear relation for N = N(n) is a good

approximation. A suitable relation is

N = 0.3% + 4.78n (5.20)
which is the linear approximation at n = - 0.15. However, it was
found that the choice of the tangent line had little influence on the
various boundary layer thicknesses.
At a given station the sequence of operations in the boundary
layer subsection are :-
(1) The correlation parameter, n, is calculated from

eq. (5.16). This requires the use of subroutines
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CSINT and DYDX.

(ii) Using the interpolation subroutine CSFMIE the

appropriate values of Htr and Gtrletr are obtained.

(1i1) The momentum and displacement thicknesses are
evaluated from eqs. (5.17) and (5.18). 1In the final
boundary layer calculation (i.e. third iteration) the
overall boundary layer thickness, given by eq. (5.19),

is also calculated.

(iv) Since these boundary layer thicknesses are all normal
to the nozzle wall, the interpolation subroutine is
again used to give the corresponding thicknesses in

the radial plane (see Fig. 2).

Finally, the integral in the thrust relation (eq. 2.35) can be
evaluated upon the assumption of a linear velocity profile. It can

be shown (see Ref. 37) that an approximate expression for this integral

is R
2 Pu u _ 20
;E peUe [1 G;J rdr R K1 (5.21)
R-Sd
2
o 1n[¢+1] - ¢? 1n[ ¢ -1
5 -1 $2-1
where K, =1 == (5.22)
L R $2 o+1
ln[ ] -¢ 1 [———J + 2
$2-1 ¢-1
2C F TT
and ¢ = —PL = (5.23)
ue2

5.4 Model One

In this model the vibrational rate processes are again assumed
to be frozen, but the boundary layer calculation is based on the Class A
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similar solutions which wevre developed in Chapter Three.

Similar solutions can be applied to a general non-similar flow
by using the concept of local similarity. To paraphrase layes and
Probstein (Ref. 60, p.313), the applicability of this technique
relies essentially on the condition that the freestream flow properties
vary sufficiently slowly with the x~dependent variable £ (eq. 3.22).
Provided that this is the case the full non-similar equations (egs.
3.29 and 3.30) can justifiably be approximated by ordinary differential
equations in N, in which £ appears only as a parameter {egs. 3.31 and
3.32). Thus in the application of local similarity to the present
problem, the flow is assumed to be similar in the vicinity of a given
station in the nozzle. For the values of the £-dependent parameters,
such as the pressure gradient and transverse curvature parameters,
appropriate to that station the boundary layer can be predicted by
using the previously determined similar solutioms of section 3.5. By
assuming that the flow at each station throughout the nozzle is
locally similar the boundary layer development can then be approximated
by connecting (or "patching together’’) these similar solutions.

In the Class A similar equation, i.e. the Falkner-Skan equation
(eq. 3.67), only the pressure gradient parameter, 8 , is £-dependent.
Variation of B in a typical resistojet nozzle is shown in Fig. 23. It
is seen that B changes appreciably through the nozzle, in which case
the assumption of local similarity is only a crude approximation.
Therefore, the modelling of the boundary layer development by successive
patching of the similar solutions, appropriate to each station, is not
theoretically valid. In spite of this, justification for the use of
similar solutions in this study is to be found in the good agreement
with other experimental and theoretical results, given in Chapter Six.

The order in which the boundary layer calculation is applied at
each station 1is as follows.
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(i) The x-coordinate is transformed through the use of eq. (3.22),
‘}X
J

o

g = o u u R?dx
Wwoe

w

(1ii) The pressure gradient is determined from eq. (3.40), which can

be written as

g = —.é.di%i
ue g Te

(iii) Hence, the appropriate values of P_ and P2 (also P, in the

1 3
third iteration) can be obtained by interpolation of the

values presented in Table I.

(iv) The tramsverse curvature parameter is evaluated from eq. (3.46),

1
6 = 2(28)% cos ©
p u R2
e e
) The displacement thickness is calculated from eq. (3.59),

which can be written as

*
8 = r~P

2 cos o

In the final iteration the momentum and overall boundary layer

thickness are also determined. Eqs. (3.60) and (3.61) can be

expressed
0 RO
2 cos o 2
5 [T
- 2 cos o I T, 3

(vi) Finally, the corresponding thicknesses in the radial plane

are derived by interpolation.
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5.5 Model Two

In this model the effects on performance of allowing vibrational
rate processes to relax in the nozzle flow are examined with the
theory which has been described in sections 4.2.2 and 4.5. The
boundary layer calculation is exactly as described in Model Onme.

First, the calculation procedure for the sudden freezing
approximation of ncnequilibrium flow is outlined.

%

(i) The temperature at the choking position, TC , 1s determined

from the identity given in eq. 4.21.

(ii) The temperature distribution in the subsonic flow is evaluated
by obtaining an arbitrary temperature-—area distribution from

eq. (4.19), where the temperatures are specified by

i * .
T—TT—W(TT TC) (1—1,2..., 100)

Then the unknown temperatures corresponding to the required
area ratios at the equi-spaced stations on the nozzle axis

can be determined by interpolation.

(iii) For the first five stations in the supersonic flow it is
assumed that vibrational energy remains in equilibrium. Uhy
this is done is explained shortly. The temperature at these

stations is then determined in a similar manner to step (ii).

(iv) At each station downstream of this an initial, equi-temperature
difference, temperature—area distribution is defined with eq.
(4.19), from which the unknown temperature for the required area

ratio can be obtained.

(v) The freezing criterion given by eq. (4.34) is applied. When
this is satisfied, i.e. when the rate of change of vibrational
energy with rate processes in equilibrium exceeds the kinetically
possible rate, vibrational freezing is assumed to have occurred,
, becomes a constant.

o
so that the molar heat, cp
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(vi) The required temperature-area distribution in the remainder
of the nozzle is then derived by internolating an initial,
equi-temperature difference, temperature-area distribution

given by eq. (4.27).

(vii) Values for velocity, density and the other isentropic core
variables are derived from the relevant relations given in

sections 4.2.2 and 4.2.3.

It is necessary to assume that vibrational rate processes remain in
equilibrium in the vicinity of the throat, in order that no discontin-
uities are obtained in the displacement thickness in this region.
Although the flow variables such as velocity and temperature (from
eqs. 4.26 and 4.27) are continuous functions at the patching point,
i.e. the freezing position, the gradients of these variables must be
discontinuous. It follows that there is a discontinuity in the rate
of change of the displacement thickness at the freezing position. If
this is allowed to occur at any of the 10 stations which are used in
the determination of the choking position, the subsequent calculation
of the mass flow rate can be disturbed. This assumption has little
or no effect on the performance of the polyatomic propellants, where
the vibrational energy is a significant fraction of the total internal
energy, since, in general, freezing does not occur until well into
the supersonic flow (see Chapter Six). In the case of the diatomic
propellants it can markedly delay freezing. However the vibrational
energy content is small in this case, and the effect on performance is
negligible.

Second, the calculation procedure for the case where vibrational
energy remains in equilibrium throughout the nozzle is obtained by
simply removing the freezing criterion. In this case steps (v) and

(vi) in the above list are not used.
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5.6 Model Three

This model makes use of the Class B similar solutions to examine
the nozzle performance, when some account is taken of the effects of
transverse curvature in the boundary layer development. It is
assumed that vibrational energy is frozen at entrance to the nozzle,
so that the isentropic core calculation is as described in section
5.3.1.

In a like manner to Model One the Class B similar solutions are
patched together to approximate the boundary layer growth through a
resistojet nozzle. The same reservations must be made regarding the
applicability of solutions of the modified Falkner-Skan equation,
as were noted with the straightforward Falkner-Skan equation. It is
seen from section 3.5.2 that there are three £-dependent parameters
in the Class B equation (eq. 3.73) - the pressure gradient parameter,
transverse curvature parameter and freestream stagnation to static
temperature ratio. The variations of B, O and TT/Te in a typical
resistojet nozzle flow are shown in Fig. 23. Tt is assumed in the
patching of the Class B solutions that the freestream stagnation

temperature, T is identical to the plenum stagnation temperature

e,T’
TT. This factor combined with the other reservations means that

the boundary layer model can account only very approximately for the
effects of transverse curvature. MHowever, it is interesting to see

what are the differences between this model and Model One, where the
boundary layer solutions are essentially for planar flow and conversion
to axisymmetric flow is achieved with the standard Mangler transformation.

The calculation procedure follows that described in section 5.4.

For completeness it is outlined below.
(i) The transformation from x to £ ic carried out with eq. (3.22).

(ii) The pressure gradient parameter, B, and the transverse curvature
P
parameter, ©, are calculated from eqs. (3.40) and (3.46).
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(iii) At each station, for the known values of 8, © and TT/Te’ the

integrals P1 and P2 (later P_ also) are obtained by interpolation

3
of Table II. The fact that these integrals are almost linear
with changes in © and TT/Te, for the region in which solutions

were obtained, results in some simplification of the inter-

polation procedure.

(iv) The displacement thickness is obtained from eq. (3.53) which,

using the definitions for P. and P23 can be written as

1

1
]

& - coia [1"{1'9[% Pl'Pz]}J

The momentum and overall boundary layer thicknesses come

from eqs. (3.56) and (3.58), and can be expressed as

1

2

6 = R 1 - { 1-0P }
cos O 2

1
2

T
R T
5 - - —
cos o 1 { 1-9 [ T, P1 * P3 } }

(v) These thicknesses are converted to the radial plane.
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Chapter Six Results and Discussion

6.1 Introduction

The models of resistojet nozzle performance which were described
in the previous chapter have been programmed in FORTRAN IV, and results
have been obtained, on an ICL 1907 digital computer, for NH3, CH4, CO2
and Hz over a wide range of plenum conditions and nozzle geometries.
The results, and discussion of their significance, fall into three
parts; (i) an examination of the predictions of the four models for
one resistojet nozzle geometry over a matrix of plenum conditions,

(ii) an examination of the variation in performance with different
nozzle geometries, and (iii) a comparison with published results for
the experimental performance of resistojet motors, and for other
related nozzle experiments.

Predictions of Models Zero, One, Two and Three for a nominal
nozzle geometry are presented in section 6.2. The main purpose of this
section is to quantify the individual efficiencies, and to gain an
insight into the gasdynamics of resistojet nozzle flows. Obviously,
this depends on the approximations used in the various models so that,
to an extent, the discussion is a comparative one. The results of the

models are considered in the following order :

(1) Model Zero, serves as an introduction to the results
and quantifies the various possible losses.

(ii) Model One, in which the Class A similar solutions are
employed, is used almost exclusively for an examination
of the viscous flow losses. Since vibrational rate
processes are assumed to be frozen, the discussion
concentrates mainly on the results for hydrogen, where
this assumption is reasomnable.
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(iii) Model Two, which allows vibrational relaxation to occur,
15 used to examine the problem of vibrational freezing
more closely. It is therefore concerned mainly with

C0, and NH,.

the losses suffered by CH4, 9 3

(iv) Model Three, employing the Class B similar solutionms,
is again concerned with the viscous flow losses.
Comparison is made with the results of Model One in
order to ascertain what effect first-order transverse

curvature has on the boundary layer development.

It is found that the predictions of the different boundary layer
models differ, although the trends are similar. The results of Model
One (i.e. boundary layver calculation based on the Class A similar
golutions) are the most pessimistic, and this model is used to examine
the variation in performance with different nozzle geometries. These
results are presented in section 6.3.

In section 6.4 comparisons of the predictions of Models One and
Two are made with experimental results which have been reported in the
literature. It was remarked previously that a number of difficulties
are encountered in accurately measuring resistojet performance. The
way in which these factors affect comparisons between experiment and
theory is also discussed.

The overall performance parameters such as specific impulse and
thrust coefficient are not discussed at length, however, extensive
tabulations of the performance figures obtained with Model Two for
hydrogen, methane, carbon dioxide and ammonia for thenominal nozzle

geometry are presented in Table VI.

6.2 Nominal Nozzle Geometry

In order to examine the differences between the predictions of
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the four performance models and to gain an understanding of the physics
of resistojet nozzle flow, computation was first carried out for a
fixed nozzle geometry with a conical divergent section of 25 : 1 area

ratio. The geometric parameters (see figure on page 104) are

defined :~

R1 = 2.0 mm
- o

61 = 60,

R = 2.0 mm

c

R* = 0.5 mm
_ o)

62 = 207,

£ = 25.

a = b = 0.

Calculations were performed at 25 points in the following matrix of
plenum conditions:
Py (kNm ™ 2) 200. 100. 50. 25. 10.

T, (°r) 300. 500. 1000. 1500. 2000.

6.2.1 Predictions of Model Zero

To recapitulate,the main features of this model are that
(i) vibrational rate processes are assumed to be frozen throughout the
nozzle and (ii) the boundary layer calculation is based on the approx-
imate method of Cohen and Reshotko. Although the boundary layer
calculation is not strictly justified, the results obtained with this
model are useful since they give the relative magnitudes of the component
losses, therefore enabling an assessment to be made of the processes
which should be examined further. To avoid undue repetition, only
results for NH, and H, are presented. The individual losses arising

3 2

from frozen flow, viscous flow and so forth are now examined in turn.

(1) Frozen chemical rate processes

At temperatures below 2000°K,NH, is the only propellant which is

3
-124-



considered to dissociate during passage through the heater. In order
to set a limit on the maximum loss which results from the non-recovery
of dissociation energy in the nozzle flow, the performance with the
NH3 "equilibrium" composition is studied. Under equilibrium conditions
NH3 dissociates almost completely between 300 and 500°K to produce a
diatomic mixture of N2 and EZv This causes a dramatic decrease in the
efficiency accounting for the frozen chemistry loss, N.,» as is shown
in Fig. 24a. At higher temperatures the fraction of the electric

power going into dissociation energy decreases in comparison to the
power required actually to raise the temperature, so that n. increases.
The case illustrated is for a plenum pressure of 50 kNm—z° In the
equilibrium limit the composition is significantly dependent on pressure
(pressure range, 10 to 200 kNm_Z) only at temperatures between 300 and
SOOOK, the effect of lowering the pressure is to favour dissociation,
and vice versa. Dissociation has two effects on the overall nozzle
performance, one is to decrease the nozzle efficiency through nc, and

the other is to increase the exhaust velocity through the reduced

molecular weight.

(ii) Frozen vibrational rate processes
The loss in jet power arising from the assumption of freezing
vibrational energy at entrance to the nozzle is illustrated in Fig. 24b,

in terms of the efficiency, n As temperature is raised the fraction

7
of the total internal energy which is invested in the vibrational modes

increases, therefore o falls. For undissociated NH3 the potential

loss is large, with a 227 reduction in the ideal jet power at 10000K,
increasing to 397 at 2000°K. However, the frozen vibratiomal energy
loss decreases as NH3 dissociates, so that in the equilibrium limit,
when it is essentially a diatomic mixture there is only a 6% reduction

in jet power at T = 2000°K. The vibrational energy loss in pure H

T 2

is even smaller than equilibrium NH3, with ng = 0.95 at 2000°K.
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It is noted from Fig. 24b that g for H2 is greater than unity
at temperatures below 1000°K. This is a consequence of the assumption

made in Model Zero of a constant ratio of specific heats, = 1.4

Yer

) o
(i.e. ¢

oCF = 6.,9545), which implies that the translaiional and

rotational modes are fully excited, and that the vibrational mode is
not active. At temperatures below 360°K the two rotational degrees
of freedom of HZ are less than fully excited and with decreasing
temperature the molar heat decreases, therefore the ratio of the
specific heats increases. At approximately 50%% only the lowest
rotational energy level of the H2 molecule is occupied so that it
behaves effectively as a monatomic molecule with only three trans-—
lational energy modes excited. Thus in summing the contributions

. o, .
from the internal energy modes from T to O K, the assumption that

T

Y =Y = 1.4 causes an overestimate of the available enthalpy and

CF
therefore of the jet velocity (c.f. egs. 2.19 and 2.9).

An inference from the behaviour of the frozen flow losses of
NH3 according to Model Zero, is that the chemical and vibrational
energy losses are inversely coupled. 1In the equilibrium limit the
frozen vibrational energy loss is small and frozen chemistry losses

are large, whereas when NH_, remains undissociated the chemistry loss

3

is non-existant but the vibrational energy loss is large.

(iii) Incomplete expansion loss.

Clearly this is a function of the nozzle geometry, since the
arount of energy which is retained in the active internal energy modes
should decrease as the area ratio becomes larger. It is also dependent
on the number of active degrees of freedom. Thus in Model Zero, with
the vibrational processes frozen, there are five active degrees of
freedom (three translational and two rotatiomal) for a diatomic mole-
cule, which for the nominal geometry (¢ = 25.) gives an efficiency
accounting for the incomplete expansion loss, n, = 0.8816. For a non-

E
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linear polyatomic such as NH3 there are three rotational degrees,
giving a total of six active degrees of freedom so that the incomplete

expansion loss is larger, with HE = 0.8353 for an area ratio of 25 : 1.

(iv) Viscous flow loss

The losses arising from the dissipative effects of viscosity
and heat conduction are manifest in two ways. The first 1s as a
velocity defect with a consequent reduction in the jet velocity and
jet power, and the second is as a mass defect, which although not

affecting the jet velocity or nozzle efficiency, 0 causes a reduction

N’

in thrust since the mass flow rate is reduced.

There are two causes ©f the velocity defect, (i) disblacement
of the potential core by the viscous boundary layer reduces the
effective mnozzle area ratio and (ii) skin friction on the nozzle
surface causes a momentum deficit in the boundary layer flow.

Viscous flow losses are dependent on both the plenum temperature
and pressure and are usually correlated against Reynolds number. The

velocity defect, nv, igs illustrated in Fig. 25a as a function of the
E
throat diameter Reynolds number, Ren* =20 u R /UT. It 1is seen that

nV is strongly dependent on Reynolds number, with the loss increasing

as ReD* decreases. (ReD* falls when TT is raised and/or pp is lowered.)

As Reynolds number falls the boundary layer thickens; for hydrogen

at ReD* * 14000. the boundary laver overall thickness is only 207 of

the nozzle radius at the exit plane, but by Re_, = 250, (5/R)ex * 0.75,

D*

i.e. 947 of the nozzle exit area is occupied by a viscous "boundary

layer' and only 6% is a potential core. To a lesser extent nV is

dependent on the propellant, in particular on the ratio of the frozen

specific heats, Y For clarity the results for equilibrium NH, have

3

not been included in Fig. 25, but for all temperatures in the matrix

CF’

A o, L .. . ..
of plenum conditions, except 300K at which little dissociation occurs,

line for H,. At a

the velocity defect coincides with the N - ReD_(.c 9
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given Re_, the velocity defect is greater for NH3(YCF = 4/3) than for

D*

HZ(YCF = 7/5). This difference arises from the predicted pressure
gradient at the nozzle exit being less favourable for a polyatomic

molecule such as NH

1pe It follows that for a given Re the boundary

D%

layer momentum thickness is greater with ammonia and therefore the
velocity defect is larger. The difference in the velocity defect

caused by skin friction is offsei to a minor extent by the behaviour

o

of the displacement thickness, since, for a given ReD*, 8 is slightly

smaller (approximately 47) in the case of ammonia. This information
suggests that the form factor, equal to 5*/6, is dependent on the
propellant specific heat ratio. The boundary layer theory used in
Model Zero predicts, that for the nominal geometry over the range of
ReD* from 104 down to 30C, the form factor at nozzle exit decreases
9° In the case
= 104 and

from approximately 16. to 10. when the propellant is H

of NH3 the corresponding values are 5k/9 = 12, at Re
*

/6 = 8.5 at Re , = 300.

D*

The result that the displacement thickness is smaller for NH3

at a given Reynolds number is also reflected in the variation of

the discharge coefficient with Re ,, which is presented in Fig. 25b.

D

The difference is small and the two lines for Hz and NH3 are practically

coincident. At ReD* = 10& the discharge coefficient is approximately

= 102 it falls to CD % 0.72. Values for n_, below

0.96 and by Re v

D*
ReD* = 300 are not presented in Fig. 25a since the flow is predicted
to be completely viscous at exit from the nozzle. Although, according
to its definition, there is still an effective inviscid core, the

results obtained under these conditons are not consistent with those

obtained at slightly higher Reynolds numbers.

{(v) Radial flow loss
The final non-ideality to be considered is inversely coupled

to the viscous flow loss, and in particular it is related to the
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development of the displacement thickness at the nozzle exit. For

the nominal geometry, the loss in jet velocity due to radial flow

is small. Thus at ReD* = 104 the efficiency accounting for the radial

flow loss, is approximately 0.96, and as the boundary layer

UD,

thickens with decreasing ReD*, N, increases so that at Re ., = 300,

D )]
nD equals 0.985.

The overall nczzle efficiency, n.,, is illustrated as a function

N
of plenum temperature in Fig. 26a for the case where the plenum
pressure is 50 kNm_z. It is immediately apparent that the overall

efficiency of equilibrium NH_, is dominated by the frozen chemistry

3
loss. However the equilibrium limit is not a realistic case since
kinetic considerations (section 1.3.2) indicate that little or no
dissociation is likely to occur at temperatures below about 1000°K.
When NH3 remains undissociated the dominant loss is caused by the
assumption of frozen vibrational rate processes. The incomplete
expansion loss is also substantial (nF * 0.84), as is the velocity
defect caused by viscous flow, which is most severe at the highest
temperatures, and lowest pressures. At 300°K the overall nozzle
efficiency with undissociated NH3 is Ny = 0.75, but this falls with
increasing temperature, and by T_ = 2000 K, n_ ~ 0.42, Using hydrogen

T
as the propellant results in a far greater efficiency, since the
potential vibrational energy loss is considerably smaller. Here, the
dominant loss processes are incomplete expansion and viscous flow.
Again HN falls as temperature is raised, from 0.82 at 300°K to 0.68 at
2000°K.

In Chapter Two it was pointed out that the thrust coefficient,
defined by eq. (2.52), does not provide a great deal of information
about the overall nozzle efficiency. However, it is an important
design parameter, in that it relates the plenum pressure and throat

area to the resulting thrust. The variation of thrust coefficient,
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corresponding to Fig. 26a, is shown in Fig. 26b. It is noted from

eq. (2.52) that C,, is proportional to CD, so that the thrust coefficient

T

exhibits a strong ReD* dependence.

6.2.2 Predictions of Model One

In this model the laminar boundary layer calculation is based on
the Class A similar solutions, i.e. solutions of the Falkner-Skan
equation. Since these solutions are valid over a wider range of
favourable pressure gradients than those used in the Cohen and
Reshotko method of Model Zero and are still computationally economic,
they are used to examine the viscous flow losses in the nominal

nozzle more closely. Results have been obtained for H NH3 (both

2’

the equilibrium and undissociated cases), CH4 and CO2 for the basic

matrix of plenum conditions.
Before discussing the boundary layer results, the losses due
to frozen vibrational energy and incomplete expansion are briefly

described. The frozen chemistry loss with equilibrium NH3 was out-

lined in section 6.2.1 and is not discussed further. As in the case
of undissociated NH,, the loss arising from the freezing of vibrational energy

at nozzle entranece can be substantial with CH, or CO, as the propellant.

4 2

The behaviour of the frozen flow efficiency, Mg, as a function of

plenum temperature is illustrated in Fig. 27. The ne = TT curves for

H2 and NH3 of Fig. 24b are also included for completeness. It is

seen from the cuarves for CO2 and CH4 that even at IOOOOK, over 307

of the potential jet power is locked up in vibrational energy. This

. . o .
value 1ncreases with temperature, so that by 2000 K the loss 1s over

427 with 002 and over 507 with CH4. Fig. 27 demonstrates that the

vibrational modes of the 002 molecule are excited at comparatively
low temperatures, and vibrational freezing could produce a 77 loss
.. o . . .

in jet power even at 300 K. This "worst case' examination of the

possible losses which could result from the freezing of vibrational
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energy emphasises that at high temperature a large fraction of the
total internal energy of polyatomic molecules is invested in vibration.
Hence the need for a more accurate assessment of this loss, which is

given in Model Two. The incomplete expansion loss sucifered with

CH_,+ as the propellant, with vibrational energy frozen, is identical to

that of NHS’ i.e. ng = 0.8353 for a nozzle area vatio of 25 : 1.

Carbon dicxide, unlike CH4 and NH3 which are non-linear polvatomics

with three rotational degrees of freedom, is a linear molecule with
only two rotational degrees. Therefore the incomplete expansion loss

of CO2 is the same as H, when there is no vibrational relaxation,

2

i.e. nE = 0.8816 for € = 25.

In the remainder of this section the predictions of the boundary
layer growth and the viscous flow losses, which are produced with the
calculation procedure outlined in section 5.4, are examined. The

efficiency accounting for the velocity defect, N_, is shown as a

\

function of ReD* in Fig. 28. As in Model Zero, i.e. the modified

Cohen and Reshotko theory, the results of Model One give two distinct

curves corresponding to Y

CF = 1.4 (HZ’ CO2 and equilibrium NH3) where

the curve is composed of cover 80 points, and Y . _ = 1.33 (NH3 and CHA)

cr

where there are over 50 points on the curve. It is observed in the

case with YCF = 1.4 that the velocity defect increases rapidly when

ReD* falls below 250. The same behaviour is found with Yop = 1.33

for ReD* below 200. Calculations, additional to the basic matrix, were
carried out at TT = 1500°K for Py between 25. and 10. kNm_2 in order

to clearly define the drop-off region. At the lowest pressures

(ReD* = 102) it was found that the isentropic core-boundary layer
iteration procedure produced an unacceptably large value for the dis-
placement thickness in the divergent section so that the effective
radivs predicted by eq. (5.9) was negative, in which case the comput-

ation was abandoned. The conditions at which this occurs therefore lie
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outside the range of applicability of the present model. At Reynolds
numbers above ReD* = 150 the results were found to lie on comsistent
lines and they are included in Fig. 28. The prediction of a rapid
drop—-off in efficiency is obviously of some importance to resistojet
nozzle performance and the validity of the prediction will be examined

shortly.

The n_ - ReD* curve for y

v = 1.4, of Model Zero, is included in

CF
Fig. 28 in order to compare the two boundary layer calculations. It
is seen that down to ReD* = 400 theve 1s close agreement between the
two methods. However this is fortuitous, since the boundary layer
thicknesses at the aozzle exit predicted by the modified Cohen and
Reshotko theory are some 25 to 307 larger than those given in Model
One. This factor is offset by the different expressions used for the
thrust integral, since the approximate relation used in Model Zero
(eq. 5.21) predicts a considerably larger thrust than the "exact"
relation of Model One (eq. 3.62). By chance, the two differences
cancel out to give nearly the same answers.

Explanation of the differences in nV (which relates to the
velocity defect) for different ratios of frozen specific heats can be
found from an examination of the boundary layer theory of section 3.4.

The crucial factor in the boundary layer development is the pressure

gradient parameter, B, which from eq. (3.40) can be written

It can be deduced from the temperature—area relationship of eq. (4.12)

that, when the propellant has a lower specific heat ratio, YCF’ a

given area ratio produces a higher freestream static temperature, Te
(TCF in eq. 4.12). In other words, for a given nozzle the conversion
of internal energy to kinetic energy is less efficient when the

propellant is NH3 or CH4, than is the case for 002 or HZ' It follows

for NH3 and CH4 that at any station in the nozzle, the ratio of the
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stagnation to static temperature, TT/Te’ is smaller and, since the

28 du

quantity, o 'HEE , does not vary significantly with Y the pressure

CF’
gradient parameter is also smaller. Thus for a given Reynolds number

the boundary layer integrals, P, to P3, are larger (see Fig. 6), which

1

in turn affects the boundary layer thicknesses. The difference is most

marked in the momentum thickness, defined by eq. (3.60) as

6 - RO
~ 2 cos a 2

and for a typical case with ReD* = 2000, the momentum thickness is

approximately 167 greater with Y,. = 4/3 than with YCF = 7/5. The

CF
boundary layer overall thickness is also larger (typically 2%), but
as found with Model Zero the displacement thickness is smaller for

*
= = 8 = 1 T 7
YCF 4/3. At ReD* 2000, (YCF 7/5) is approximately 67 larger

%
than ¢ (YCF = 4/3). Examining eq (3.59), which can be written as
T
* R © T
6 = ——— —_— —
2 cos ¢ Te Pl P2

it is inferred that the increase in the value of P, for Y r = 4/3, is

1 C
more than compensated by the decrease in TT/Te and the increase in P2.
*
The overall effect of the changes in ¢ and ® for different YCF is to

3 and CHA' It 1s noted
2

that there is a pressure term, Py T R”, in the thrust relation of

increase the velocity defect incurred with NH

eq. (2.34). The effect of viscous flow on the importance of this term
is not large, and it will be considered in the discussion of the dis~
placement effect which follows shortly.

The mass flow defect, in the form of a discharge coefficlent,

is shown in Fig. 29 for the nominal geometry over the range of ReD*

from 35,000 to below 200. It has just been noted that the displacement

thickness at the nozzle exit is larger for a given ReD* when YCF = 1.4,

At the throat this still holds but the differences are small, so that

C_ (Y

b = 1.4) is only slightly smaller than CD(YCF =1.33"). The

CF
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boundary iayer affects the position at which choking occurs, so that

it is not necessarily conincident with the ge metric throat as it is

defined to be in the inviscid flows which are considered here.

However the effect is small; at ReD* = 104 the choking position is

*

shifted downstream of the throat by 0.02R , this increases slightly

as RED* falls and by Re
*

C.1R .

D% = 200 the downstream movement is approximately
Displacement of the inviscid core by the boundary layer produces
a smaller effective flow area. This is particularly noticeable in the
divergent section (see Fig. 33), and although there is a reduction in
the effective throat area the overall result is a reduction in the
equivalent inviscid area ratio. This increases the static temperature
distribution along the nozzle centre line, which in turn reduces the
velocity. The distribution of the stagnation to static temperature
ratio along the nozzle axis is shown in Fig. 30 for hydrogen at a
plenum temperature, TT = 1500°K. 1In the ideal inviscid flow the
static temperature falls fairly uniformly through the divergent section
to reach 250°K at the nozzle exit. Viscosity and heat conduction in
the boundary layer modify this picture, so that Te decreases less

2

rapidly. At a plenum pressure of 200kNm (R = 2015), the temper-

eD?’c
T . o

ature of the inviscid core at exit has only decreased to 310 K, and

as ReD* falls with decreasing pressure the static temperature increases,

so that by Re_, = 201, Te at exit has only fallen to 410°K. This

D*
increase in static temperature means that the static pressure at the
exit plane is also higher than in an inviscid flow. It follows that
the pressure term in the thrust relation is somewhat larger, thus

somewhat offsetting the velocity defects due to the momentum deficit

and the displacement effect of the boundary layer.

Radial velocity profiles through the nozzle are shown in Fig. 31

for a nominal case, i.e. the nominal geometry, TT = 1500°K and
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Py = 50 kNmfz, with hydrogen as the propellant. The Reynolds number
based on throat diamter corresponding to these plenum conditions is
ReD* = 504, First a few words of explanation are necessary before the

profiles are discussed. The ordinate of this figure is u/Vj B where

CF

u is the local velocity in the x—-direction and V.

5CFE is an ideal jet

velocity which takes into account the losses from frozen chemistry,
frozen vibrational energy and incomplete expansion. The abscissa is
v cos a/R, where y is the distance normal to the nozzle wall and o is
the local wall angle, These velocity profiles were obtained from a
separate similar solutions program which basically integrated a form

of eq. (3.61), which can be written

T n n
- RO __ T 12 12
= T oos o Te JO (1-ff%)dn + JO f'4dn (6.1)

It should be noted that the profiles were transformed from the plane
normal to the wall into the radial plane simply by multiplying by
cos 0, whereas in the nozzle programs the boundary layer thicknesses
in the radial plane were obtained more correctly by interpolation.

differs from the exhaust velocity when

Finally, the jet velocity VjCFE

the flow is inviscid since there is an additional pressure term in the
definition of VjCFE {eq. 2.30). It is seen from Fig. 31 that in the
convergent section and in the throat section down to station 30

(z/zL = 0.29), the inviscid core occupies over 807 of the nozzle radius
at each station. In the main divergent section the boundary layer
develops quite rapidly, giving §/R = 0.5 at the nozzle exit. In other
words, Model One predicts that the boundary layer occupies three-

quarters of the cross-sectional area at the nozzle exit for Re_ , = 504.

D
It is seen from the slope of the velocity profiles at the nozzle

wall that the wall shear stress increases through the convergent

section of the nozzle and reaches a maximum just downstream of the

throat. It is found in Fig. 23 that the maximum pressure gradient
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parameter, B, and therefore maximum wall shear stress, occurs at
z/zL = 0.33. Downstream of this the pressure gradient drops off rapidly
with a consequent reduction in the slope of the velocity profile. Two

sources of velocity defect can be deduced from the shape of the exit

velocity profile (z/zL = 1.). They are

(i) A defect in the inviscid core velocity due to the
displacement effect.
(ii) A velocity defect in the boundary layer, which is

manifest as the momentum thickness.

It is apparent that the boundary layer momentum deficit causes the
largest loss in jet velocity.

Velocity profiles at the nozzle exit for plenum pressures of 50,
25 and 20 kNm_2 are shown in Fig. 32. The propellant is hydrogen. It
was pointed out earlier that in the boundary layer calculation of
Model One the important factor in determining the boundary layer
development is the pressure gradient parameter, . Values of g at
the nozzle exit for the three cases illustrated in Fig. 32 and for

Pp = 200 and 100 kNmm2 are listed below.

PT(kNmfz) Repx Boxit Ny
200 2015 2.65 0.919
100 1007 2.42 0.888

50 504 2.19 0.845
25 252 1.70 0.780
20 201 1.11 0.713

1t is seen from this table that Bex'

it falls almost linearly with 1og10

@eD*)for ReD* down to 504, but decreases rapidly at lower Reynolds
numbers. It follows that the value of the momentum thickness integral,
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1

P2 = J £f'(1-£")dn, increases rapidly for values of Be less than 2.,
0

X1t

with a corresponding decrease in n It was noted in section 5.2.3

v
(also see Fig. 21) that convergence of the boundary layer-inviscid
core iteration procedure was not achieved at ReD* = 201, so that the
predictions for this case are not completely satisfactory. Reasonable
convergence was not achieved after three iterations (i.e. four
isentropic core and three boundary layer calculations) since the
changes in effective geometry between iterations are still large.
Improvement was not forthcoming by increasing the number of iterations
since numerical errors were introduced which caused the procedure to

diverge. Whitfield(Ss)

, in a study of low density wind-tunnel nozzle
flows which was similar in several respects to the present study,
also experienced calculation difficulties when the boundary layer was
very thick. He attributed the source of these errors to the form of
the Lees-Dorodnitsyn transformations, and in particular to the &-x
relation (eq. 3.22). 1In the present study numerical errors are intro-
duced into the pressure gradient parameter by the differential, due/dé.
Numerical differentiation magnifies any round-off errors in the values
of u, and & between each staticn, and with an increasing number of
iterations the errors build up so that the iteration procedure ultimately
diverges. As ReD* falls an increasingly large part of the nozzle flow
field is occupied by the viscous flow, and the importance of the boundary
layer calculation becomes correspondingly greater,

Under circumstances where the boundary layer is very thick,

Whitfield and Lewis(SO)

have used an initial effective geometry which is
less than the actual nozzle geometry. This technique has been applied in
a few cases in the present study. Results obtained here with a modified

initial geometry were similar to those found with the usual procedure

for Reynolds numbers down to 250, with the predicted boundary layer

thicknesses, and therefore velocity defect, being slightly greater.
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However for R D% below 250 (specifically Re = 201) it was found that

D*

the drop-off in n_ was not as rapid as shown in Fig. 28, although once

\Y
again satisfactory convergence was not achieved. It is inferred that,
for the nominal geometry, the predictions of the boundary layer

method of llodel One are valid down to at least Remc = 250, Below

this Reynolds number, although results are given, they are very
tentative. Thus, use of the present boundary layer method at the
lowest Reynolds numbers is not completely satisfactory but the predic-
tions are indicative of the large losses due to viscous flow which

are expected under these conditions. As has already been said in
section 1.5.2., at these low Reynclds numbers the validity of assuming
a boundary layer is doubtful and only calculations based on the Navier-
Stokes equations are strictly correct. However, the present results
show how far a purely boundary layer approach can be taken.

The growth of the boundary layer displacement thickness through
the nozzle, over the range of ReD* from 2015 down to 201 is illustrated
by Fig. 33. It is noticed that 5*/R reaches a minimum well in front
of the throat. 1In the region just downstream of the throat the dis-
placement thickness develops quickly under the influence of the rapid
decrease in pressure gradient (see Figure 23). The change in 5*/R
with Reynolds number is most noticeable in the convergent portion of
the nozzle, and in the divergent section although 5*/R increases as
ReD* falls the effect is not so marked. Thus at the nozzle exit at
ReD* = 2015, 5*/R equals 0.24 causing the effective exit area to be
reduced to 587% of the geometric area. The corresponding figures at
Rej, = 201 are 5*/R = 0.4, or an effective exit area of 367 of the
original. On account of the differential growth of 5*/R the effective
area ratio does not change so markedly with Reynolds number, although
the effective value 1s considerably less than the geometric area ratio
cf 25 : 1. Thus at ReD* = 2015, the effective area ratio is 15.5 : 1

and by Re_, = 201 it decreases to approximately 11 : 1.

D*
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The coefficient of skin friction along the nozzle surface, Ces
defined by eq. (3.64), corresponding to the above range of ReD* is
shown on a semi-log scale in Fig. 34. 1In the convergent section Ce
falls rapidly, levelling off in the region of the throat. When the
pressure gradient falls sharply in the divergent section there is a
decrease in skin friction, but as B levels off and the changes in
density and velocity become smaller Ce tends to a constant value.
Remembering that Fig. 34 is on a semi-log scale it is seen that there
is a large increase in the skin friction coefficient at the lower
Reynolds numbers.

The earlier discussion of the change in the momentum and dis-

placement thickness with Y, suggests, as in Model Zero, that the form

CF

*

factor, 8 /0, is dependent on the type of propellant. The variation
ok

in 6§ /6 at the nozzle exit for the cases of YCF = 7/5 and 4/3 is

illustrated in Fig. 35a as a function of Re It is seen that for a

D*°

given Reynolds number the form factor is considerably larger for the

"distomic" propellants; up to 30% larger at Re_, = 104s and about

D

207 larger at Re , = 200. In Fig. 35b the variation of the form

D
factor through the nominal nozzle is shown as a function of the centre-
line Mach number for H2 and NH3 at plenum conditions of TT = 1500°K

and Pp = SOkNm—z. In the subsonic flow 5*/8 increases only slightly
from 2.06 at Me = 0.2 to approximately 2.7 at Me== 1. In the supersonic
flow, however, the form factor changes substantially. Although the
momentum thickness increases considerably in the supersonic flow
(typically by a factor of five between the throat and nozzle exit),

the increase in the displacement thickness is far greater (typically

a factor of 25). This is a consequence of the hot nozzle wall, which
causes the gas density near the wall to be significantly lower than

in the freestream. Thus at the exit 6*/6 reaches a value of 10. in

the case of NH,, and nearly 12. in the case of H,. Examination of

3’ 2
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eqs. (3.59) and (3.60) reveals that, for the Class A similar solutions,

the form factor can be written

N"dl H"d

- 1. 6.2)

o
HIHI—J

e

%
Strictly, therefore § /8 is a function of TT/Te and B, however the

variation of P1/P with B8 is not large, e.g. P /P2 = 3,58 at B = O.

2 1
and 3.02 at B = 10., so that the behaviour of the form factor in the

nozzle is dominated by the freestream static temperature. Thus if
the form factor were plotted against TT/Te the two curves for different
YCF in Fig. 35b would collapse to one curve.

To summarise the viscous flow losses predicted by Model One:

(i) For a given nozzle, the mass and velocity defects are

dependent on the throat diameter Reynolds number. These

losses become severe at low ReD*.

(ii) The velocity defect is caused by a momentum defect in the
boundary layer and by a reduction in the inviscid core

velocity due to the displacement effect,

A final point concerns the radial flow losses, this is illustrated

in Fig. 36 as a function of Re Since, for a given ReD*, the displace-

D%’

ment thickness obtained at the nozzle exit is larger in the case of

Y = 7/5 it follows that the radial flow loss is reduced in comparison

CF

= 5/3; therefore n_ is more nearly equal to unity. It is seen

to Y D

CF

however that the difference between the two cases is small.

6.2.3 Predictions of Model Two

Model Two is used to investigate the effects of vibrational
relaxation on resistojet nozzle performance, by employing the realistic
freezing criterion which was described in section 4,3. The results are
discussed in two parts; firstly for the single species CH&’ CO2 and HZ’

and secondly for NH, where the problem of vibrational relaxation is

3
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complicated by dissociation. Before these are examined, two points
about the model are noted.

A rate parameter, ®, was introduced in the freezing criterion
given by eq. (4.34). This parameter is the product of two terms,
P and ¢ , where P is a constant of order unity, matching the
approximate sudden freezing criterion with more exact solutions, and
¢ is a factor accounting for the discrepancy between excitation and
de-excitation rates. It was noted in section 4.3 that ¢ varies
typically between 1 and 100. With ® = 1 it is assumed that vibrational
processes in the nozzle flow relax at the same rate as those observed
in shock tube measurements. A reasonable upper bound on the de-
excitation rates is thought to be given by ¢ = 100. 1In Model One,
vibrational energy was frozen at the nozzle entrance, i.e. it was
assumed that the equilibrium rate of change of vibrational energy was
always greater than the kinetically possible rate. The results of
Model One therefore correspond to ¢ = 0. Simply removing the freezing
criterion from the program produces the other limiting state where
vibrational energy remains in equilibrium throughout the nozzle, in
which case ® = ®. The second point concerns the position in the
nozzle at which vibrational energy is allowed to freeze. To simplify
the mass flow calculation it was assumed that freezing was not consid-
ered to occur until five stations downstream of the geometric throat.
Subsequent computation showad this to be a sensible condition (see
below). For the nominal geometry where the throat corresponds to
z/zL = 0,26, this means that vibrational freezing is not allowed to
occur until z/zL > 0.31.
5» €O, and CH,

is shown in Fig. 37 as a function of the plenum temperature, at a

Variation in the frozen flow efficiency, Npo for H

constant plenum pressure of 50 kNm—z, for values of ¢ = 0, 1 and 100.
In the case of carbon dioxide, with ¢ = 1, it is found that freezing

o, .. . .
occurs at z/z, = 0.31; below 1500 K it is constrained to occur here,

L
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and for higher temperatures it occurs spontaneously at this station.
A similar behaviour is exhibited by methane for @ = 1, although for
temperatures above 1000°K the freezing point moves downstream and

at 2000°K freezing occurs at z/zL = 0,39, The effect of vibrational

relaxation is to reduce the frozen flow losses, but it is seen from
Fig. 37 that although there is some improvement between ¢ = 0 and 1,

the frozen vibrational losses are still greater than 307 of N, at

2000°K. However, the situation in CH4 and CO, flows changes dramatically

2

at ® = 106. At the highest temperatures, where the rates are fastest,
it is predicted that vibration will remain in equilibrium thrcughout
the nominal nozzle, in which case np = 1. In the intermediate temper-
ature range, i.e. 500 to 15000K, some loss from vibrational freezing

is still incurred, typically giving a 5% reduction in n It is noted

P

that when & = | g is defined to be unity at all temperatures.

Using Model One, where ¢ = O, it was shown that the maximum

possible vibrational loss suffered by H, was small, since the vibrational

2

content and the degree of excitation were small. Using Model Two, not
unexpectedly it is found that the vibrational loss is even smaller,
and with ¢ = 100, nF = 0,98 at 2000°K. At temperatures above 1000°K
the freezing criterion is satisfied at z/zL = 0.31 to 0.32, but at
lower temperatures with ¢ = 100, and for all temperatures with ¢ = 1,
freezing is constrained by the program to occur at z/zL = 0.31.
Therefore the results for H2 with ® = 1 and 100 are virtually identical.
The results of Model One (section 6.2.2) indicated that the
reduction in static temperature between the plenum and nozzle exit,
achieved by a given nozzle, is smaller for a propellant which has a
larger number of active degrees of freedom. This phenomenon is also
observed in the results of Model Two, and is illustrated in Fig. 38

with axial temperature profiles in CH, and CO, flows, for different

4 2
2

values of ?, for the nominal case where T = 1500°K and Pp = 50kNm *.

T

These profiles were obtained from the final isentropic core calculation,

-142-



so that they include the influence of the viscous boundary layer. With
increasing ¢, freezing is delayed so that more active degrees of freedom
are, or have previcusly been, available to contribute to kinetic energy.
It follows from the potential flow relations of Chapter Four that the
freestream static temperature at any station is increased, or in other
words, the temperature ratio, TT/Te, is decreased. For a polyatomic
propellant there is a large difference in the axial static temperature
distribution between vibrationally frozen (¢ = 0) and equilibrium flow
(® = ), This is most noticeable at the nozzle exit; e.g. for the
CH4 case illustrated in Fig. 38, with ¢ = O the static temperature in
the inviscid core at exit, (T ) , is AOSOK, but with & = », (T ) is
e ex € ex
doubled to 810°K.

Figure 38 further emphasises that correct modelling of vibrational
relaxation is extremely important in predicting the performance of
resistojets whicn employ polyatomic provellants. However, due to the
lack of relaxation data for de-excitation flows, it is only possible
to present likely limiting cases with ¢ = 1 and 100; even within
these limits there is considerable difference in temperature distrib-

utions and in the frozen flow losses.

Although the vibrational energy loss is smaller when relaxation
occurs it does not follow that the full benefits are reflected in the
jet power. As just discussed, (Te)ex increases when vibrational energy
equilibrates, so that the fraction of the available internal energy
(rotational and translational), which is not converted to kinetic
energy, also increases. This means that the incomplete expansion loss
is increased. The change in the efficiency account for the incomplete

expansion loss, N_, with the rate parameter, ¢, is tabulated below for

E

the nominal CO2 and CH4 cases.
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Variation in the Incomplete Expansion Loss of CH, and €O, with

4 2
Vibrational Relaxation (Plenum conditiomns: T. = 15000K, Py = 50 kNm_z)
% ng(C0,) n; (CH,)
0. 0.8816 0.8353
1. 0.8784 0.8247
100. 0.7649 0.6735
o 0.7500 0.6735

It is apparent that the large increase in the frozen flow efficiency,
nF, between ¢ = 1 and 100, is offset to an extent by the decrease in
nE. Further, the incomplete expansion loss is dependent on the plenum
temperature, and increases with TT. An extreme case 1s obtained with

CH, at 2000°K with ¢ = 100, when 0

4 equals 0.61. It should be noted

E
that all the results so far presented are for an area ratio of 25 : 1,
so that the variation in the incomplete expansion loss is a result of
changes in the gasdynamics of the flow and is not due to changes in

the nozzle geometry.

The possible improvement in performance due to the equilibration
of vibrational energy is further offset by an increase in the viscous
flow loss. Since TT/Te at a given station is smaller when vibrational
energy relaxes in the nozzle flow, it follows that the pressure gradient
parameter, B, is also smaller. Consequently the velocity defect due to
viscous flow is increased. The variation in the efficiency accounting

for the viscous flow velocity defect, n_, is shown in Fig. 39 for both

v

CH4 and C02, as a function of Re for values of ® = 0, 1, 100 and ©.

D*
The Reynolds number variation is obtained by plotting the results for
the temperature range 300 to 2000°K. It is seen that the velocity

defect is most severe at the highest temperatures, which in the case of
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a constant plenum pressure (50 kNmfz) corresponds to the lowest Reynolds

numbers. The results for given values of TT and ® over a range of Pr

produce a family of approximately parallel n. - RGD* curves., Examination

v

of the following table of results for CH,, at plenum conditions of

4’
1500°K and 50 kNm—z, reveals several changes in the boundary layer

structure at the nozzle exit when ¢ varies between 0 and 100.

Variation in the Boundary Layer at Nozzle Exit with Vibrational

Relaxation
*
) ) 8 9
Rep . ox (mm) ox (mm) ox (mm) (Me) .
0 1064. 1.127 0.679 0.067 4,04
1. 996. 1.202 0.658 0.084 3.90
100(*) 896. 1.305 0.530 0.126 3.11

The most striking change is in the momentum thickness, Gex, which nearly
doubles in value between the case where vibrational energy is completely
frozen (¢ = 0) and where it remains in equilibrium throughout the nozzle
(® = 100). Since the loss in jet velocity is dependent on eex it

follows that there is a substantial decrease in n

v with increasing ¢

(see eqs. 2.44 and 3.62). The opposite effect is seen to occur in the

- - . *
displacement thickness, i.e. 6ex

decreases as vibrational energy
equilibrates. The mathematical reasons for the changes in 6 and 6*
with TT/Te have been discussed in section 6.2.2, and the physical
implications are now described. With vibrational energy in equilibrium
the freestream static temperature is higher, therefore the temperature
difference across the boundary layer is smaller and the density at

the nozzle wall is more comparable to the freestream demsity. It

follows that (i) the mass flow in the boundary layer is higher when

vibrational energy relaxes (particularly when the flow is supersonic),
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therefore the displacement thickness is smaller; and (ii) the region
of the greatest velocity defect at the nozzle wall corresponds to an
increased density, so that the momentum defect is increased. The
effect of & on the form factor, 6*/6, is pronounced; with ® =0
(6*/6)ex = 10., but with 9 = 100, (6*/6)ex = 4, Thus the shape of the
velocity profile is much fuller when vibrational energy is in equilibrium.
It is emphasised that these predictions are based on similar
solutions of the laminar boundary layer equations, in which it is
assumed that the propellant specific heat remains a constant at any
station. They can therefore only be taken as an indication of the
effects of vibrational relaxation on the boundary layer development.

Calculation of the frozen vibrational efficiency, is carried

nF,
out in the first isentropic core calculation, i.e. it corresponds to
the loss suffered in a completely inviscid flow and is not affected
by the subsequent boundary layer calculations. However, the boundary
layer can have a significant effect on the freezing position, since
it increases the freestream temperature and therefore decreases the
rate of change of vibrational energy in the expansion. Any change in
the freezing position is felt in the boundary layer calculation and
in the estimation of the viscous flow loss. If the freezing criterion
is satisfied well into the supersonic inviscid flow, then the presence
of the boundary layer will further delay freezing. Thus for CH4 at
1000°K with o = 100, freezing occurs at z/zL = 0.77 in the inviscid
flow, and after the final boundary layer calculation the freezing
position is shifted downstream to z/zL = 0.92. However when freezing
in the inviscid flow occurs in the vicinity of the throat, the sub-
sequent boundary layer calculations have little or no effect on the
freezing position.

Vibrational equilibrium has a small effect on the mass defect due

to viscous flow. It is observed that there is a slight improvement in

the discharge coefficient, which is consistent with the behaviour noted
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in section 6.2.2, where C_(Y,.. = 4/3) was greater than CD(YCF = 7/5).

D' CF

The maximum increase is less than half of one per cent of CD at the

lowest Reynolds numbers.

So far we have considered vibrational relaxation for plenum
conditions where the temperature has been varied, and the pressure held
constant. However, the rate of vibrational relaxation is directly
proportional to pressure (see eq. 4.34), so that it is to be expected
that changes in plenum pressure will also affect vibrational freezing.

The dependence of the frozen flow efficiency, N_,, on the plenum

F
pressure is particularly noticeable in the case of CH4 and the effect
is illustrated in Fig. 40 for temperatures of 1000, 1500 and ZOOOOK;
the rate parameter is unity. At 1OOOOK, for plenum pressures of 25
and 50 kNm—2 freezing occurs just downstream of the throat at z/zL =
0.31, and HF therefore remains constant. With further increases in

Pys the kinetic rate becomes sufficiently fast for a downstream
movement of the freezing position. The result is an increase in the
frozen flow efficiency which is essentially linear with 1og10 (pT).

At higher temperatures the downstream movement 1s even more pronounced.
Thus at plenum conditions of 2000°K and 25 kNm_2 freezing is predicted
= 0.6C, but by increasing the

to occur at z/z_ = 0.34, which gives n

L F

= 0.59, giving n, =

pressure to 200 kNm“-2 freezing is delayed to z/z F

L
0.74. This is a substantial change. It follows from the previous

discussion that the losses from incomplete expansion and viscous flow

will partly counteract any changes in the frozen flow loss.

It is apparent that vibrational relaxation produces a considerable
complication of the flow structure in resistojet nozzles where the
propellant is a polyatomic, such as methane or carbon dioxide. In
Model One where vibrational energy was frozen throughout the nominal
nozzle, for a given propellant. the losses due to frozen flow, incomplete
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expansion and viscous flow were independent of one another. This is
not the case in Model Two, where there is a strong coupling between
nF, nE and nv. It has been demonstrated that the losses are dependent
on the amount of energy invested in vibration as well as the rate

of vibrational relaxation, which in turn is dependent on the plenum
pressure and temperature.

The result of these conflicting factors on the overall performance
of CH4 and CO2 is shown in Fig. 41, which is a graph of specific impulse
versus plenum temperature for various values of ®., It is seen that the
closer one gets to fully equilibrium flow the higher the specific
impulse. The maximum improvement in performance from ¢ = 0 to ¢ = =
is found at 2000°K where a 15% increase in IS is predicted for both
CH4 and C02. At lower temperatures where the vibrational content is
smaller, the difference in performance is less marked. Vibrationmal
relaxation in H2 resistojet nozzles has only been briefly mentioned,
since the effect on performance is a minor one. This is substantiated
by the following figures. At 2000°K and 50 kNm—z, with ¢ = 0, the
specific impulse is predicted by Model One to be 653 seconds, while
Model Two predicts ISp = 660 seconds when ® = 100, which is only a one
per cent difference. Thus the results for H, of Models One and Two

2

are very similar.

Turning now to the predictions of Model Two for ammonia, the
problem of vibrational relaxation is complicated by dissociation in
the resistojet heater, so that a mixture of several vibrationally
excited species is present in the nozzle flow. It was assumed that,
for temperatures below ZOOOOK,the dissociated mixture consisted of
three species - NH3, N2 and H2 - and a plausible model of the vibrational
relaxation in such a mixture was developed in section 4.4.

The results of Model Two for the equilibrium and undissociated

cases are presented in Fig. 42, for the plenum pressure of 50 kNm-Z.
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Let us first examine the equilibrium limit, i.e. f = O in eq. (5.5).
At temperatures above 500°K the mixture consists essentially of H2
and NZ’ and it was seen for this case in Model One with ¢ = 0, that
the vibrational energy loss was small. The results of Model Two

with the realistic value of ¢ = 1 indicate. that g does not differ

signficantly from unity (even at 2000°K e = 0.98). Next examining
the undissociated case (f = 1.), it is noted that most of the comput-

ation was carried out with the rate equation which exhibits the

usual temperature dependence, i.e.

- L,
pTV = 2.46 x 10 17 exp(152.6/T) 3 atm.sec. Rate eq. 1

It is seen from Fig. B.2 in Appendix B, that the rates predicted by
this equation are extremely fast, particularly at high temperatures,
so it is not surprising to find that substantial equilibration of

vibrational energy is predicted by Model Two. Figure 42 shows that

the loss in the frozen flow efficiency, N_, of undissociated ammonia

F
is found to be small using rate equation 1 with ¢ = 1. With ¢ = 100
it is predicted that, at plenum temperatures above 1OOOOK, vibration
remains in equilibrium with translation throughout the nominal nozzle.
A curve for undissociated NH3 for ¢ = 100 is not included in Fig. 42

since ﬂF does not vary significantly from unity in any case. The

alternative rate equation for pure NH,, based on the experimental data

3’

of Bass and Winter (see Appendix B), is
-7 1,
PT, = 1.78 x 10 * exp(-28.85/T) "3 atm.sec. Rate eq. 2

This has a different temperature dependence to the first equation, i.e
the rate decreases with increasing temperature. Using this equation
with ¢ = 1, it is found that at temperatures above 1000°K freezing
occurs in the range of z/zL from 0.7 to 0.8. It is seen from Fig. 42
that the result is a decrease in Npo which is largest at 2000°K where
n_, ¥ 0.88. However, using rate equation 2 with ¢ = 100 it is found

F
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that the flow remains in equilibrium for the whole temperature range.
Although there are differences in the results obtained with these two,
very different, rate equations, the results are notable for both show~
ing that the vibrational energy loss suffered in undissociated NH3
nozzle flows is small.

Calculations have also been carried out for partially dissociated
mixtures for values of £, the mole fraction of NH3 which is not
included in the equilibrium calculation, equal to 0.2, 0.4, 0.6 and
0.8. The form of the "parallel resistance" law (eq. 4.35), which was
used in the approximate model of vibrational relaxation in NH3~N2-—H2
mixtures (section 4.4), 1s such that the relaxation time of the mixture
corresponds to that of the fastest component, 1.e. NH3° This holds
for all the ammonia mixtures considered here, except f = 0 at temper—
atures above 500°K when NH3 is only a trace species. The computations
show that the losses from finite rate vibrational processes are small
for partially dissociated mixtures; in fact, the nF - T curves are
intermediate between the equilibrium and undissociated limits. Thus
it is concluded that the vibrational energy loss in ammonia resistojets
is small.

Vibrational relaxation in NH3 has the same effect on incomplete

expansion and viscous flow losses as was described earlier for CH4 and
CO2° Since the degree of relaxation in ammonia is substantial it follows
that the incomplete expansion and viscous flow efficiencies will be
markedly lower than the predictions of Model One. These differences will
be most acute when £ = 1., i.e. when ammcnia remains undissociated. In
the following table the efficiencies accounting for the losses due to
frozen vibration, incomplete expansion and viscous flow, and the overall

nozzle efficiency, which are predicted by Models One (¢ = 0) and Two

(? = 1), are compared.
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Comparison cf Predictions of Models One and Two for NH

3
-2
(£ =1, p, = 50 kim *)

o
T.C°K)

300. 0.992 { 0.997 | 0.835 | 0.835 | 0.954 | 0.953 | 0.758 | 0.766
500. 0.951 | 0.980 | 0.835 | 0.833 | 0.931 | 0.926 | 0.702 | 0.733
1000. 0.815 | 0.975 { 0.835 | 0.803 | 0.887 | 0.854 | 0.564 | 0.652
1500. 0.717 | 1.000 | 0.835 | 0.740 | 0.858 | 0.799 | 0.474 |} 0.576

2000. 0.652 1.000 | 0.835 | 0.697 | 0.830 | 0.755 | 0.417 | 0.513

It may be seen that there are large differences in the individual
efficiencies between the two models, which are most prominent at the
highest temperatures. However, the effect of vibrational relaxation
on the overall nozzle efficiency is beneficial. This is illustrated in
terms of specific impulse in Fig. 43, for both the undissociated and
equilibrium cases. Three points are made about this figure. Firstly,
differences in specific impulse predicted by Models One and Two are
small in the equilibrium limit (f = 0), and of the order of 107 for
undissociated NH3 (f = 1) at temperatures above 1500°K. Secondly,
it is seen that the two rate equations and different values of the rate
parameter used in Model Two (i.e. ¢ > 0), produce very similar specific
impulses for undissociated NH3, Finally, Model Two predicts up to 307
difference in specific impulse between the equilibrium and undissociated
cases.

Dissociation of NH3 is obviously advantagecus for the resulting
increase in specific impulse. Whether it is achieved in resistojets
is dependent on the kinetics of the decomposition and c¢n the heater
design. As seen in the discussion of Model Zero, dissociation causes
a considerable decrease in the overall nozzle efficiency, since electric
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power going into dissociation energy is not subsequently recovered by
recombination in the nozzle expansion. Results obtained with Model

Two for the variation in nozzle efficiency with differing degrees of
dissociation are shown in Fig. 44. At temperatures below 1400°K it

is seen that a maximum nozzle efficiency is given by the undissociated
(f = 1.) case. At higher temperatures Ny is maximised with the
partially dissociated mixtures, and by 2000°K the most efficient use

of the nozzle is with the equilibrium mixture. It is apparent from
Figs. 43 and 44 that the performance of ammonia resistojets is dominated

by the chemical kinetics occurring in the heater flow.

To summarise the main performance implications of Model Two for

the nominal nozzle :

(i) Frozen vibrational energy loss in the cases of NH3 and H2 is
small. For CH4 and COZ’ an upper limit on vibrational rates
(® = 100) indicates that substantial vibrational equilibration

occurs, but with a lower limit (2 = 1) the losses are still large.

(ii) Any improvements in the frozen flow efficiency, due to

Npe
vibrational relaxation are partly offset by increased incomplete

expansion and viscous flow losses.

(iii) The overall effect of vibrational equilibration is to increase

the nozzle efficiency and specific impulse.

Results of Model Two for the nominal geometry are pr2sented in

Table VI for the following cases :-

(a) Undissociated hydrogen for the range of plenum temperatures
from 300 to BOOOOK, and equilibrium hydrogen for TT from
2000 to 3000°K.

(b) Methane for TT from 300 to 2000°K.

(c) Carbon dioxide for T, from 300 to 2000°K.

T
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(d) Undissociated and equilibrium ammonia for the temperature

range 300 to 2000°K.

The rate parameter, %, is equal to unity in all cases except for HZ’
where for TT greater than 500°k ¢ equals 100 and for temperatures
below this @ = ®, A few cases for hydrogen with the equilibrium
composition are included in Table VI (a) although this limit is not
thought to be realisable in resistojet operation. TFor the purpose
6f calculating the freezing position in the equilibrium hydrogen

mixture it is assumed, without further justification, that the

vibrational relaxation of the mixture is identical to pure HZ'

6.2.4 Predictions of Model Three

Briefly recapitulating, the boundary layer calculation used in
this mcdel is based on solutions of a modified Falkner-Skan equation,
which includes the radial dependences accounting for transverse
curvature (l.e. the Class B similar solutions of section 3.5.2). The
assumption was made that vibrational energy was frozen throughout the
nozzle (¢ = 0), so that an indication of the effects of transverse
curvature on resistojet performance can be gained by comparing the
results of Models Three and One. The computation carried out with
Model Three has not been sc extensive as the previous models due partly
to the increased execution time, of the order of 200 seconds compared
to 25 seconds need by Model One, and partly to a lack of overall
project time. Thus results have been obtained only for hydrogen.

It was noted in section 3.5.2 that it was not possible to obtain
solutions of the modified Falkner-Skan equation (eq. 3.73) over the
complete range of dimensionless parameters 8, O and TT/Te. This point is
of some importance not only in the interpretation of the results but
also in their derivation, as will now be explained. The boundary layer
calculation procedure, given in section 5.6, consists mainly of inter-
polating the integrals Pl to P, of Table II. However, the interpolation

3
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routine CSFMIE also extrapolates quite efficiently, so that the boundary
layer thicknesses can be evaluated for combinations of the pressure
gradient parameter, transverse curvature parameter and total to static
temperature ratio for which there are no solutions of the similar
equation, eq. (3.73). Thus some care is necessary in obtaining the
results, particularly for the lower values of 8, and the higher values
of © and TT/Te° This combination of conditons is found in the nominal

nozzle at the exit plane, when Re_, is low, (see Fig. 23). The

D*
results presented here correspond to the range of Reynolds numbers,
ReD*, from 2015 to 252. 1In order to verify the validity of these

results for ReD* < 504, separate similar solutions of eq. (3.73)
were obtained for the combinations of B, © and TT/Te pertinent to the
conditicns at the exit plane.

The first point about the results of Model Three is that the
boundary layer growth in the convergent and throat section is almost
identical to the prediction of Model One. Thus the discharge
coefficient, which characterises the subsonic and transonic flow, is
found to be only 0.17 larger with Model Three over the range of ReD*
from 252 to 2015. It can therefore be concluded that transverse
curvature has an insignificant effect on the flow in the convergent
and throat section. This is attributed to the fact that TT/Te
approximates to unity in these sections, so that the dimensionless
wall shear stress, f''(o), is almost the same as that predicted by
Model One (see Fig. 10).

In the divergent section the temperature vatio TT/Te increases
considerably, and, combined with a falling pressure gradient, causes
differences in the predictions of the two models. These differences
are most pronounced at the nozzle exit, aund the boundary layer
thicknesses at this station are compared in Fig. 45. It is seen that
the overall boundary layer thickness and the displacement thickness

are predicted to be larger (of the order of 37), when transverse
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curvature is included. This is not a large difference, particularly
since the similar solutions and the equations for the boundary layer
thicknesses are quite different. However the effect of transverse
curvature causes a considerable decrease in the momencum thickness,

of the order of 207. The differences in 8 are smallest at the highest

Reynolds numbers and increase with falling Re_, when the bcundary

D
layer thickens. It was noted in section 6.2.2 that decreasing Reynolds
number causes the pressure gradient parameter and the total to static
temperature ratio to decrease. Thus at ReD* = 2015, the values of

B and TT/Te at the nozzle exit are 2.65 and 4.9 respectively, whereas
at Rep, = 252, B = 1.70 and TT/Te = 3.9. Decreasing Re, has the
opposite effect on the transverse curvature parameter, O , so that

© = 0.15 at Rej, = 2015 and @ = 0.25 at Re;, = 252. This change

has a significant influence on the boundary layer development and
especially on the form factor 5*/9. In Model One, the form factor
decreases from approximately 13.6 to 10.6 in this Reynolds nurber
range, whereas the comparable figures for Model Three (i.e. including
transverse curvature) are 16. and 14.3 respectively. It is worth
examining the definitions of the boundary layer thicknesses to see

where this difference comes from. Using eqs. (3.59) and (3.60) the

form factor in the boundary layer theory of Model One can be written

% T P

- £ 1 _
8 T T P 1 (6.2)
e 2

jog]

and in Model Three, from eqs. (3.53) and (3.56), we can write

R

& e
5= = (6.3)

1
- - 2
1-1{1 OPZ}

Thus in Model One, eq. (6.2) can be expressed

*
§
5 = F(@B, TT/Te)
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and similarly in Model Three, eq. (6.3) is

5*

It is apparent that the form factor is independent of the transverse
curvature parameter in Model One, but in Model Three 6*/8 is intimately
dependent on 9.

In reducing the momentum thickness, transverse curvature causes
the velocity defect due to viscous flow to be reduced. The efficiency
accounting for this loss, nv, is shown for Models One and Three in
Fig. 46. It is observed that the difference between the two models
is considerable and this is most noticeable at the lowest Reynolds
numbers. However, an interesting point is that for values of ReD*
below 250, the combinations of B, © and TT/Te found in the vicinity
of the nozzle exit lie in the region where solutions of the modified
Falkner-Skan equation could not be obtained. This is also the region
in which a rapid drop-off in ﬂV is observed in Model One. Although
it may be a coincidence, the two distinct models both suffer from
computational difficulties when they are applied to the nominal
nozzle at ReD* below approximately 250. The fact that both boundary
layer models are unsatisfactory implies that a calculation procedure
based on the full Navier-Stokes equations must be used at these
cenditions.

While it is stres:ad that the analysis and application of the
similar solutions of the modified Falkner-Skan equation have been
far from rigorous, there are several interesting implications about
the effects of transverse curvature on the boundary layer development
in resistojet nozzles. The results of what is essentially a first-
order perturbation of conventional thin boundary layer theory show that:

(1) Transverse curvature has little effect on subsonic

nozzle flov.
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(ii) The effects on the overall and displacement thicknesses
are minor ones.

(iii) However, including transverse curvature causes a marked
reduction in the momentum thickness and consequent

velocity defect due to viscous flow.

6.3 Variation of Nozzle Geometry

It was shown for the nominal gecmetry in the previous section
that the various loss mechanisms are dependent on one another. This
is particularly so in the case of the polyatomic propellants where the
losses due to frozen vibrational energy, incomplete expansion, viscous
flow and radial flow are all coupled. When we consider which model
should be used to examine the variation in performance with changes
in the nozzle geometry it is apparent that Model Two, which allows
vibrational relaxation, will produce extremely complicated results.

In order to achieve some simplification, apart from discussing the
incomplete expansion loss suffered by polyatomic propellants with

vibrational energy in equilibrium, H, is used as the propellant in

2
this section. The assumption of frozen vibrational energy is reason~
able in this case so that Model One is employed. It is accepted that
Model One is not the most sophisticated model which has been developed
in this work, however the fact that it is computationally economical
allows examination of a wide range of variables. The changes in
performance due to variations of the nozzle geometry are dependent

on the viscous flow, so that further simplification is achieved,
without loss in generality, by using a plenum temperature of 1500°K
and allowing pressure to be the only plenum variable. The nozzle
geometry consists conceptually of three parts: the convergent,
throat and divergent sections. They are considered in that order.

Unless otherwise stated the remaining geometric variables which describe
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the nozzle are identical to the nominal geometry. Values of these

variables are listed at the beginning of section 6.2.

(1) Convergent section

It is generally accepted that the shape of the convergent
section of a convergent-divergent nozzle has little effect on the
nozzle performance. Changes in the shape of the convergent section
were not investigated thoroughly, but the few results that were
obtained confirm this statement. Only the effect of the initial

wall angle, 0., was investigated in any detail. Using an inlet

1
radius of 2.5 mm, the convergent half angle was varied from 15 to
90° in steps of 150, for a plenum pressure of 50 kNm.-2 (i.e. ReD* =

504). With increasing 8. it was found that there was a slight, but

1
consistent, increase in the efficiency accounting for the viscous

flow velocity defect, nv, from 0.839 with 8, = 15° to 0.843 with

1

8, = 90°. The changes in the discharge coefficient were negligible.

While changes in the shape of the convergent section are predicted
to have little effect on performance, it should be appreciated that
these findings depend on the assumption that stagnation conditions
exist at the nozzle entrance plane. 1In actual fact the gas will have
a finite velocity at exit from the heater, and the velocity profile
may be fully viscous. The form of this profile and the shape of the
convergent section may therefore be important to resistojet performance.
However, the effects of a starting profile cannot be assessed with the

models used in this study.

(ii) Throat section

There are two variables in the throat geometry; they are the
radius of curvature, RC and the throat radius R*. The effects of the
radius of the wall curvature on performance were investigated for values
of RC from 0.5 mm to 4.0 mm, i.e. RC/R* from 1. to 8., for ReD* from

16000. down to 150. Decreasing Rc produces a more favourable pressure
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gradient at the throat, so that the boundary layer thickness is
reduced. Thus the displacement thickness is also smaller, and it

follows that the discharge coefficient, C., is larger. The variation

D’
of the discharge coefficient with throat diameter Reynolds number

is illustrated in Fig. 47. At the highest Re_, the differences in CD

*

* /
with RC/R are small, e.g. at Re_, = 10" there is less than a 2%

*
decrease in CD between RC/R = 1., and 8. At the lower Reynolds

numbers the differences are more pronounced, e.g. at Re_, = 250,
1

1)7’:

% *
CD = 0.883 with RC/R = 1 which decreases to 0.806 with RC/R = 8,

This predicted change in the discharge coefficient with the ratio

of Rc to R* is confirmed by experiment, as will be discussed in
section 6.4. The radius of curvature affects not only the discharge
coefficient but also the velocity defect due to viscous flow, as

represented by N This effect is again most pronounced at low Re

v’ DL

* *
At Re_, = 252, Ny equals 0.754 with Rc/R = 8., but with Rc/R =1,

D*

Ny increases to 0.786.

. . . * .
The second variable is the throat radius, R . It was shown in
the last section that for a given propellant the velocity defect due

to viscous flow is dependent only on ReD* (see Fig. 28). Since ReD*
%

% &
is defined as ReD* =p u R /uT, it would appear at first sight

*
that changes in n,, with R may be deduced directly from this graph.

v

However, as will be shown shortly, the viscous flow loss is dependent

not only on Re_, but also on the nozzle area ratio, and in particular

D*

* %
on the Reynolds number based on wall length, defined by ReL =p u L.

Hp

Thus Fig. 28 can be used to predict Ny for nozzleswith different
throat radii only if the whole nozzle is scaled so that ReL/ReD* remains

a constant.

(iii) Divergent section

This is the most important part of the convergent-divergent nozzle.
Attention is first given to conical divergent shapes, where the two
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variables are area ratio, €, and divergent half angle, 62.

(a) Area ratio, e.

It was shown in the discussion of Model One (section 6.2.2) that
with vibrational energy frozen the incomplete expansion efficiency,
Ngo for a given nozzle, was dependent only on the ratio of the frozen

specific heats, In order to determine the magnitude of this

YCF.
loss over a wide range of area ratios, a simple program based on

egs. (2.26), (2.30), (4.11) and (4.12) was written to calculate the

area ratio and resulting n_ required to achieve a given exit temper-

E

ature. The results are illustrated in Fig. 48a for the cases of a
monatomic gas (YCF = 5/3), a diatomic or linear polyatomic gas

(Y., = 7/5) and a non-linear polyatomic gas (YCF = 4/3) over the range

CF

of € from 1 to 1000. As previously noted, the incomplete expansion
loss increases with the complexity of the propellant molecule; and
from Fig. 48a it is seen, not unexpectedly, that the loss decreases
with increasing area ratio.

We are also aware from section 6.2.3 that vibrational relaxation

can significantly influence n This dependence is strongest when

£

vibrational energy is in equilibrium, and in order to set a limit on
the incomplete expansion loss an additional program, based on eqs.
(2.26), (2.30), (4.18) and (4.19), was written to evaluate the

behaviour of nE for this situation. With vibrational relaxation

the incomplete expansion loss is no longer independent of the plenum

temperature, so that T is a function of the area ratio, the propellant

il

properties and the plenum temperature. The results for H2 and NH3 are

shown in Fig. 48b. In the case of H2 vibrational relaxation makes

little difference in nE from the YCF = 1.4 curve, and only results

for TT = 2000°K are shown. The curve is truncated at € = 200 since
the temperature at the exit plane equals 1OOOK, which was the minimum

temperature considered. The results for NH3 (undissociated) show
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considerable differences from the frozen case where Yep = 473,
particularly at the higher temperatures. Thus with a plenum
temperature of 1000°% (at which temperature little dissociation of

NH3 is likely in resistojets) an area ratio of 10 : 1 produces an

incomplete expansion efficiency of 0.71. Increasing ¢ causes some

improvement, but even with € = 100, increases only to 0.87. These

g

figures contrast sharply with the incomplete expansion loss for a
g piy

monatomic where n_ equals 0.94 at ¢ = 10, and 0.99 at € = 100. For

o
completeness the N T € curves for CO2 and CH4 are shown in Figs. 48c
and 48d. It is therefore emphasised that the use of polyatomic
propellants in resistojet motors incurs a severe penalty in the

form of large incomplete expansion losses, if vibrational equilibrium
is maintained throughout the nozzle.

Although an increased area ratio produces improvements in the
incomplete expansion the benefits in the jet velocity are countered
by the increased viscous flow loss. An increase in €, keeping R*
constant, produces a larger surface area and it follows that the
momentum defect is increased. The effect of changes in the nozzle
area ratio on the overall nozzle performance were investigated with

Model One for a range of plenum pressure, therefore Re for area

D*?

ratios from 4 to 800 : 1. The results for n the velocity defect

V’

due to viscous flow, are shown in Fig. 49. It is seen that, for a

given Re Ny decreases as € is raised. Also the rapid drop-off in

D#*?

Ny which was found with the nominal geometry (€ = 25) is exhibited by
other nozzles at different ReD*. (It may be remembered that with the

nominal geometry at Re = 201 convergence of the isentropic core-

D*
boundary layer iteration procedure was not completely satisfactory,
and the results under these conditions were regarded as tentative,

The same reservations must also be made for the other geometries where
the drop-off is very steep.) In the nominal nozzle this occurred when

the pressure gradient parameter, B, fell below a value of about two.
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With larger area ratios this occurs at higher plenum pressures and
therefore higher Reynolds numbers, and the result is the behaviour

shown in Fig. 49. It can be seen that the velocity defect, Ny» is

dependent on the throat diameter Reynclds number and the nozzle area
ratio. Since the change in € represents a change in the nozzle wall

length, it is more useful to correlate Ny as a function of ReD* and

Re., where Re_ is a Reynolds number based on the wall length. The

L L

ratios of ReL to ReD* are included alongside the values of ¢ in Fig.49.

Thus the Ny curves can then be applied to other nozzle geometries
for which R* is not necessarily equal to 0.5 mm, provided that
ReL/ReD* = L/ZR* remains constant.

It is apparent that variation of the nozzle area ratio causes
a coupling of the incomplete expansion and viscous flow loss, and
this in turn affects the radial flow loss. The overall nozzle

performance corresponding to Fig. 49 is shown in Fig. 50, in terms

i
n_)?, which is simply the ratio of

of an efficiency, n = (nE "y p

the specific impulses, to 1 At the smallest area ratios

IspCFEVD spCF’

there 1s a distinect improvement in efficiency by increasing € from
4 to 10, since the improvements in incomplete expansion outweigh the
viscous flow penalty. This is also true for the larger area ratios

at higher Re but as Reynolds number decreases the drop-off in

D*”’
the viscous flow efficiency when Bex ¥ 2. more than offsets the improve-

ments in N so that there is a rapid decrease in the overall efficiency.

o
An envelope drawn around these curves would represent an optimum
performance. It is stressed, however, that this is not a true optimum
as only the area ratio has been varied while the divergent shape and
the half angle, 92, have been held constant.

The information presented in Fig. 50 has been re-interpreted in
Fig. 5la, where contours of constant efficiency have teen drawn on a

graph of ReL versus Re First a word of explanation is necessary.

D**

Examining the line n = 0.90 in Tig. 50 it can be seen that a nozzle
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with € = 25 corresponds to ReD* ~ 4000. Vith increasing area ratio
the Reynolds number, required to achieve this efficiency, falls and

reaches a minimum at ReD* = 1200 when the area ratio lies between

100 and 200. Further increases in & cause the required ReD to rise,

*

and by € = 800, ReD* is required to be approximately 5000, In order
that the optimum area ratio can be evaluated more precisely it is

necessary to draw a graph either of Re_ versus Re

L ok 88 in Fig. 5la,

or of & versus ReD*° The former was chosen since the discussion is

. %
then not restricted to a nczzle with R = 0.5 mm. The n = 0.9 contour
in Fig. 5la corresponding to the increase in € just described starts

at ReD* = 4000, moves to the left and reaches a minimum Reynolds

number (ReD*) for which this efficiency can be achieved at Re_, = 1200;

n*

this point corresponds to the "optimum" e. With increasing € the
viscous flow loss predominates and the constant efficiency contour

moves to the right. The line joining the minimum Re_, points can

D*

now easily be drawn. It is seen that this '‘optimum" efficiency line

is essentially linear on a 1og10 Re_ versus 1og10 Re., plot. This

L D*

is redrawn in Fig. 51b on the original axes of n and Re An

D*%*

(90)

experimental "optimum' I /ISp curve determined by Halbach

spCFEVD
is included for comparisomn. This figure is discussed further in
section 6.4, but at this stage it is noted that there is encouraging
agreement.

Finally, it 1is seen in Fig. 5la that no contours are found on the
left hand side of the diagonal. The implication is that the model
cannot be used to predict the performance of nozzles where the nozzle
design and plenum conditions produce values of Re_ and Re which lie

L n*

within this region.

(b) Divergent Half Angle, 92.
Still restricting the discussion to conical nozzles, the next

geometric variable to be considered is the initial wall angle of the

~163~



divergent section, 62, which for a conical shape is the wall angle

throughout the divergent section. The effect of 62 on the nozzle

performance essentially involves trading off the viscous flow loss
against the radial flow loss. The changes in performance were first

investigated for the nominal nozzle, changing only 6,, for the range

29
of ReD* from 16000 down to approximately 100; the divergent angle

. o . . .
was varied from 5 to 40 . Variation of the nozzle efficiency,

3
|
~
3
Jho
e}
~
Nk

, 1s shown in Fig. 52, which 1s a plot of 62 versus ReD*

on which lines of constant n have been drawn. It is seen that
changes in the divergence angle can significantly affect the nozzle
efficiency. The nozzle performance is dominated by the viscous losses

at small divergence angles, but with increasing 62 the nozzle becomes

shorter for a given € and the viscous loss is less severe. However

the radial flow increases in sigpnificance and at large 62 this loss is

dominant. Thus there is an intermediate region in which the combined
viscous flow-radial flow loss is minimised; or, put another way, for

an optimum value of 9, exists which maximises the

a given Re 2

D*

efficiency, N. At ReD* = 104, the optimum divergence angle for a

nozzle of 25 : 1 area ratio is approximately 1209 and with decreasing

Reynolds number the boundary layer thickens and the optimum 62

increases, so that at Re « = 200, (92) is almost 400.

D optimum

A similar investigation of the variation in performance with

divergence angle was carried out for € 100 and 400. The resulting

optimum 92 curves are shown in Fig. 53. Superimposed on this figure

are contours of constant efficiency, n = IspCFEVD/IspCF° It is seen

that for a given Re_, the optimum half angle increases with e, however

D*

the differences in (62) with € are not large. The reasons for

optimum
this can be found by examining the component losses for the different

area ratios for the case where (6,) . = 200. The relevant
2’ optimum

information is tabulated below.
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- 4
€ Re . g Ny p n = (ng ng np)
25. 1700. 0.882 0.910 0.976 C.885

100. 2650. 0.932 0.917 0.980 0.915
400, 4400. 0.960 0.928 0.983 0.936

The decisive factor in the similarity of the (62) - Re curves

optimum D*
is the viscous flow efficiency, nv. It is seen from Fig. 49 that the
Reynolds numbers at which 92 = 20° is optimum, i.e, ReD* in the above

table, are situated in the region where there are no major differences
in nv between different area ratios. The relative boundary layer
thickness, at the nozzle exit increases with € as evidenced by nD,
but the combined effect is that the optimum curves are very similar
for different area ratios.

It should be remembered, however, that these results are the

product of a quasi one-dimensional theory and for this reason the

results for larger divergent angles can be criticised.

(c) Variation in Shape of the Divergent Section

The previous observation that there are gains to be made in the
nozzle efficiency by increasing the divergence angle at lower
Reynolds numbers suggests that performance benefits are also to be
obtained by using a horn divergent shape.

This suggestion was briefly

examined for a nozzle of 100 : 1 area ratio. The relation used to
describe the shape of the divergent section is given by eq. (5.1),

which is

All the geometries so far discussed have used a conical shape where
a =b = 0. To produce variations in the divergent shape, geometries
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were considered where the parameter b was again set to zero but with a
non—-zero. The values of a which were used, are 5, 10, 15,25 and 50
and the resulting shapesof the divergent section, with 82 = 20°
(0.3491 rads), are shown in Fig. 54. The resulting performance
figures, in terms of the specific impulse ratio are shown in Fig. 55.
At the highest Reynolds numbers where the viscous effects are smallest
the conical shape (a = C) produces the most efficient nozzle. The

horn nozzles are penalised by large radial flow losses, e.g. at

Re ., = 8060 with a = 50, n

D = 0.847 compared to p of 0.968 with

D
a = 0. Decreasing ReD* reduces the radial flow loss. Thus it is

seen from Fig., 55 that with decreasing ReD*, nozzles with larger values
of a become more efficient in comparison to those with smaller a. At

the lowest Reynolds numbers the mozzle with a = 50 is the most efficient,
although the radial flow loss is still substantial the divergence of

the nozzle wall allows the effective inviscid core to occupy a larger

portion of the nozzle flow field.

The following points summarise the main findings concerning the

variation in performance with resistojet nozzle geometry :—
(i) The convergent section has little influence on performance.

%

(ii) Decreasing the ratioc of Rc to R increases the discharge
coefficient and, to a lesser extent, reduces the viscous
flow veloecity defect. The improvements are most

significant at low ReD*.

(iii) Since the viscous flow, mass and velocity defects are
strong functions of the throat diameter Reynolds number,
it follows that these losses are dependent on the throat

%
radius, R .

(iv) Substantial losses from incomplete expansion are found for
all nozzles employing polyatomic propellants, when
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vibrational equilibrium is maintained throughout the nozzle.

(v) The viscous flow velocity defect i- shown to be dependent
on two Reynolds numbers, based on the throat diameter and

wall length respectively.

(vi) For conical nozzles of given divergence angle the optimum

area ratio increases with ReD*.

(vii) The optimum divergence angle in conical nozzles increases
as ReD* is lowered. However, the optimum is not a strong
function of area ratio.

(viii) At lower Reynolds numbers, horn shaped nozzles offer

considerable performance benefits.

6.4 Comparison with Experiment

The crucial test of any theoretical model is how its predictions
compare with experimental measurements. Although a considerable amount
of experimental work has been done on resistojet motors, there is not
a lot of data in the literature which can be regarded as reliable.

This 1s caused mainly by the small size and low thrust levels of
resistojets, so that it is extremely difficult, physically, to monitor
much more than the gross performance quantities of thrust and mass flow
rate. Even these parameters are only obtained accurately when extreme
care is taken (for instance see Ref. 93). As mentioned in Chapter One,
the fact that perfect vacua cannot be maintained in space simulation
chambers causes additional complication, since the ambient pressure

of the vacuum chamber interacts with the low density viscous nozzle
flow with adverse effects on the resistojet performance. This was

)]

clearly demonstrated in the work of Yoshida et al , who measured
a specific impulse of 539 seconds from a hydrogen resistojet at a

vacuum chamber pressure of 300 microns, but as the chamber pressure
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was lowered the specific impulse improved markedly to reach nearly

670 seconds at a pressure of one micron. It is for this reason that
much of the early data on resistojet performance is considered
unreliable. On account of their small size+ detailed flow measurements,
such as the velocity and density profiles at the nozzle exit, have
never been taken. Finally, even such basic properties as plenum
temperature and pressure are difficult to measure directly and are
often inferred from other information.

As comparisons of thrust and mass flow rates reveal very little
about the structure of the flow and the nature of the loss processes
found in resistojet nozzles, resort has to be made to other experi-
mental data in which some, if not all, of the losses are found. The

(91)

first experimental comparison is with the work of Tang , who has
made extensive measurements of the discharge coefficient in small
* . .
(R = 0.25mm) convergent-divergent nozzles at a stagnation temperature
o} . . . . . .
of 300 K. This work was an experimental and theoretical investigation

*
of the dependence of C_ on the throat geometry (RC/R ) for the gases

D
Hys N2’ Ar and He. 1In the theoretical part of his study, Tang derived
closed-form, analytic solutions for the discharge coefficient as a
function of Reynolds number and throat geometry, which he obtained
from the Falkner-Skan equation for values of 8 = 1, 2 and infinity.
However it is the experimental aspect of this work which is of

primary interest, as Tang's results are very consistent and it is

possible to draw fair mean lines through his data. Comparisons of the

from 100 to 20000.

results for the four gases over the range of ReD*

*
with the predictions of Model One for a nozzle with R = 0.258 mm and
%
RC/R = 2.18 is shown in Fig. 56a. Firstit is noted that the experi-
mental results for He and Ar are coincident. The corresponding

theoretical curve (YC = 5/3) is found to give a consistently higher

F
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value of discharge coefficient, although the maximum difference is
only of the order of 27. 1In the case of H, and N,, Tang's
experimental results do not produce coincident lines as is predicted
by Model One with YCF = 7/5. The measured N2 curve again lies below
the predicted curve, although the maximum difference is less than 17.

However the comparison between experiment and theory for K, is very

2
favourable. At the lowest Reynoclds numbers the two curves are
coincident, but as ReD* increases the difference also increases, which
is contrary to what one intuitively expects to happen when the boundary
layer thickness decreases. The difference in the experimental CD
between H2 and N2 is ascribed mainly to the differing amounts of
velocity slip at the nozzle surface. WNext, the effects of variation
in the throat geometry as measured by Tang and as predicted by llodel

One are compared in Fig. 56b. The test gas is N, and the geometries

2
considered are the previous case with RC/R* = 2,18 and another with

a sharper throat where Rc/R* = 1. It was predicted in section 6.3

that reductions in the throat radius of curvature cause an improvement
in the discharge coefficient, and Tang's data confirms this behaviour
as is shown in Fig. 56b. The agreement between prediction and measure-
ment 1s seen to be good, and the little difference that there is at

low Reynolds numbers is attributed to the neglect in the theory of the
terms accounting for longitudinal curvature.

Mention was made in Chapter One of the investigations of Rae(43)

and Rothe(28)

on viscous low~density nozzle fiows. The former was a
theoretical study which employed the slender channel approximation

tc the Navier—Stokes equations, to examine the viscous flow in various
nozzles for Reynolds numbers below ReD* * 660. (See footnote on page 28).
In the second work, Rothe used an electron beam to obtain radial density
and temperature profiles at several stations in two conical nozzles,

at Reynolds numbers comparable to those studied by Rae. The nozzles

*
were comparatively small, with R = 1.25 and 2.5 mm, and € = 66.
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Nitrogen was used as the test gas at a stagnation temperature of 300°K.
The main interest of these studies was in the existence at ReD* less

that 50 of a supersonic ‘''bubble" inside the nozzle divergent sectionm,
with a subsequent shock-free viscous transition to supsonic flow.

This phenomenon lies outside the predictive capabilities of the

present boundary layer models, however Rothe reports on an experiment
with ReD* = 633 which the present models can handle. Predications of
Model One for the centreline density and temperature distributions in
this case are compared to Rothe'’s measurements and Rae's predictions

in Figs. 57a and 57b. The present results are seen to compare
favourably with those of Rae, although both sets of theoretical curves
differ from Rothe's experimental data. It must be pointed out that

the modelling of the nozzle geometry in the present computation was

not exact since the throat shape which was used here differed from

the experimental geometry. The actual throat radius of curvature was
0.64 mm giving RC/R* = 0.51, which is a very sharp throat. In most

cases reported in this thesis the calculations were carried out at

101 equi-spaced stations along the nozzle axis. Using such a procedure
with Rothe's geometry produced an ill-defined throat section, and
sensible results were not obtained. Attempts to alter the step-size
were not successful in this particular case, and the difficulty was
overcome by modifying the geometry to give RC/R* = 2., Although the
effects of this difference on the boundary layer growth in the

divergent section are only small, the two theoretical predictions are
not strictly comparable.

A better example is to be found from the experiments of Yevseyev(gz)
on the flow of air through a nominally inviscid Mach 6 nozzle from a
plenum temperature of 300°K. In this nozzle the throat radius was 5 mm
and RC/R* = 13,4, so that the throat section did not present a problem,
The plenum pressure was somewhat lower at 500 Nm~2, which gives a throat

diameter Reynolds number of 660 and is therefore comparable to Rothe's
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case. In fact Yevseyev's data was used by Rae as his original test
case. Comparison of Yevseyev's measured centreline Mach number
distribution with the predictions of Rae and with Model One are

shown in Fig. 58a. The agreement of the present predictions with
Yevseyev's data is seen to be good, and is considerably better than
the predictions of Rae taken from Ref. 43. However, further examination
of Yevseyev's data indicates that this agreement must, to an extent,
be fortuitous,since Rae’s model predicts the velocity profiles more
accurately. Comparison of the predicted velocity profiles of Rae

and of Model One with Yevseyev's velocity measurements for the
station z/R* = 11.1 is given in Fig. 58b. It is seen that the no
slip condition which is assumed in the present work differs consider-
ably from Rae's prediction of uw/ue = 0.15. This assumption largely
offsets the increased velocity defect at the edge of the boundary
layer which is predicted by Rae. Nevertheless, it is remarkable that
the boundary layer/inviscid core model succeeds as well as it does

at such low Reynolds numbers.

Turning now to the prediction of resistojet performance, a useful
starting point is the previously discussed hydrogen resistojet of
Yoshida et a1(7)o This resistojet is composed of a concentric tube heater
and a conical nozzle with an area ratio of 32.6 : 1. Yoshida
estimated the plenum temperature by two methods, (i) using an
optical pyrometer sighted on the rear wall of the heating element
and (ii) using an overall energy balance. It is inferred from Ref. 7
for the case where the specific impulse was measured to be 668.6

seconds that the plenum temperature, T lay between 1800 and 1900°K.

T?
No mention is made of the plenum pressure, but an examination of the
results of Model One for a range of plenum pressures indicates that
P must have been of the order of 170 kNm—z. It is noted that the

supply pressure was approximately 340 kNm—z, so it is implied that an
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extremely large pressure drop occurred in the heater. Computation
was carried out with Models One and Two for Pp = 170 kNm—2 and T =
1800 and 1900°K. The other nozzle geometric variables were 92 = 22.,

* * a
R = 0.2365 mm and it was assumed that RC/R = 1. Comparison of the

results is shown below.

Comparison of Predictions of Models One and Two with H2

Resistojet of Yoshida

= o = = o =
‘ TT 1800 K (ReD* 640) TT 1900 K (ReD* 600)
Meas-
ured

=0 (9= 100 ® = $ =0 (o= 100 ® =

m(gs ) 0.00688|0.00688|0.00683|0.00683{0.0066810.00662|0.00662
F(m N) 45.1 43.3 43.5 43.6 43.3 43.4 43.5
I (s) 6€8.6 |641.9 |649.6 |651.6 [658.1 [666.9 [670.5
Mpes ©F My 0.597} 0.731| 0.748| 0.753] 0.723 05743 0.751

Pel(w) 218.8 |[157.4 |156.2 |{156.2 |[163.9 |162.6 [162.6

Since there is some uncertainty in the plenum conditions, in particular
in the value of Py it follows that the comparison between Yoshida's
measurements and the present predictions is only approximate. Of the
parameters presented in the above table the specific impulse is the
least affected by the plenum pressure, being essentially a function of
temperature, with the pressure exerting a secondary influence through
the Reynolds number dependence of the viscous flow velocity defect.

It is seen from Fig. 28 that, for a similar nozzle geometry, Ny is

not critically dependent on Reynolds number for ReD* of the order of
600. Thus comparison of the specific impulse is the most meaningful,
The comparison is seen to be good, and it is again noted that the

rate parameter, ¢, has only a small influence on the theoretical
performance of hydrogen. The comparisons of n

with n_ and of P
s e

Re N 1
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are not so meaningful since losses from the heater contribute to the
experimental figures.
An experiment in which the influence of the heater should have

a lesser bearing on the overall efficiency is reported by Murch and

(15)

Krieve , who have developed a vortex heater which they claim gives

very low thermal losses for temperatures below 1200°K. Using this

design Murch and Krieve have measured the performance of NH3, CH4

and 002 for heater temperatures up to 2000°K. The amount of hot metal

surface in the heater is very small so that it is expected that little
catalytic decomposition of the propellants will occur. In fact when

using CH, Murch and Krieve found no measurable deposition of solid

4
carbon at heater temperatures below 1900°K. In order to compare
with these experiments computation was carried out with Model Two,
with ® = 1, for a range of plenum temperatures using the stated
nozzle dimensions of R* = 0,216 mm, € = 40; it was assumed that

*
= 20° and RC/R = 2, Comparisons of the results for NH,, CH

3 774

and CO2 are shown in Figs. 59 to 61. First examining the performance

%

predictions for ammonia, it is seen from Fig. 59a that the mean

curve of electric power per unit thrust plotted against specific
impulse, taken from the data of Murch and Krieve, is matched extremely
well by the undissociated (£ = 1) curve predicted by Model Two for a
plenum pressure of 145 kNm*z, Comparison of the measured resistojet
efficiency, n

s with the predicted nozzle efficiency, n_, for f = 1,

Res N?

shown in Fig. 59b is also seen to be good. Results of Model Two for
the equilibrium limit (f = 0) are also included in these figures
and it is seen that even at high temperatures there is little resemblance
between the £ = O curves and the experimental curves. It 1s observed
that specific impulses of over 3C0 seconds were measured by Murch and
Krieve, which suggests that either some dissociation occurred, or
heater temperatures well in excess of 2000°K were achieved.

Comparison of the methane performance parameters is shown in
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Fig. 60. It is seen that the present theoretical results do not
correspond as well as in the case of NH3, although the shapes of both
the Pel/F versus Isp’ and n versus Isp curves are very similar. It
is not readily apparent what is the cause of the significantly higher
theoretical performance, but it should be mentioned that there is
considerable scatter in all of the data of Murch and Krieve, in some
cases as much as 207. Finally, the carbon dioxide performance curves
are shown in Fig. 61. Again the comparison is fair only, although
here too the present author has some reservations about the experi-
mental data. For instance, Murch and Krieve report a specific impulse
of 68 seconds for CO2 when it is operated cold (300°K) which is a
value greater than that produced by an ideal nozzle with no losses.
However, accepting the considerable degree of uncertainty in the
plenum conditions it is seen that Model Two gives a reasonable
prediction of the overall performance of the polyatomic propellants
for a range of plenum temperatures.

It was mentioned in the literature review of section 1.4 that
the slender channel computer program of Rae has been used by Kallis,

Goodman and Halbach(45)

to predict the performance of resistojets.

For three reasons this was a welcome addition to the literature.
Firstly, it provided additional theoretical modelling of resistojet
nozzle flows. Secondly, it reported experimental results for several
propellants for which the vacuum chamber pressure was less than two
microns. Finally, and perhaps most importantly, in relating experiment
and theory Kallis et al have had to evaluate the plenum conditions, TT

and pTo A further point is that full details of the nozzle geometry

*
were given. These are 81 = 70?, R = 0,2286 mm, RC = 0.254 mm and
€ = 360. The divergent section was of a horn shape which in the

present calculations was approximated by
= 2
R 0.21292D + 27.OzD
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Model Two was run with ¢ = 100 to compare with some of the cases
reported in Ref. 45. With this geometry the stepsize was modified
in the vicinity of the throat without encountering any computational
difficulties. Comparison of the predictions of Model Two with the
experimental results of Kallis, Goodman and Halbach, and with the

predictions of the Rae program are tabulated below.

Comparison of Predictions of Model Two with Results of Kallis,

Goodman and Halbach

I (s)
o) PT SP
Gas | Tp("K) a2y Rep [ . [ "Ree"| 7 Diff. |Model| % Diff.
™ Pte! Model|with Expt.| Two |with Expt.
H2 1667. 223. 893.{ 630. 630. 0.0 653.6 + 3.7
H2 777. 233. [2384.] 436. 431, - 1.1 445.2 + 2.1
CH4 1060. 172. 12533. 2217. 206. - 9.2 212.0 - 6.6
CO2 1222, 213. [2890.) 143. 150. + 4.9 138.3 - 3.3
CH4 667. .182. | 4405.| 172. 168. - 2.3 165.1 - 4.0

It is seen that in comparison to the experimental specific impulse,

Model Two overestimates the performance of H2 and underestimates for

002 and CH&' The percentage difference with the experimental ISp is
comparable to that obtained with the "Rae' model. However it should

be noted that the slender channel program used the assumption of a
constant ratio of specific heats, Y. Kallis et al make the approximation
that v is equal to the value appropriate to the plenum temperature, with
vibrational energy in equilibrium, and is constant throughout the nozzle.
This is not physically valid and the effect on performance is to cause

an increase in specific impulse over the case where vibration is in

equilibrium with translation. Thus, apart from the CO, case, more

2

correct modelling of the vibrational relaxation would reduce their

predicted specific impulse and therefore cause an increase in the percentage
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difference of the "Rae' model with experiment.

"optimum" nozzle efficiency

Next, the theoretical and experimental
curves which are shown in Fig. 51t are briefly discussed. The theoretical

curve was obtained with Model One by deriving that area ratio which

/I for a given Reynolds number, for the case of

maximised n = IspCFEVD spCF

conical nozzles with a divergent half angle of 20°  The experimental

curve was derived by Halbach(go)

, who essentially analysed a large amount
of experimental data from which he obtained a conservative optimum curve.
Thus the two curves are not necessarily optimum at any point. However
they are very useful indicators of the maximum nozzle efficiency as a
function of ReD*, and the fact that there is less than 2% difference
between them for ReD* ranging from 600 to 6000 substantiates the present
performance predictions.

Finally, it is interesting to note that Halbach, together with
Page and Short, i.e. the authors of Ref. 2, have designed a 3kW
hydrogen resistojet with a nozzle area ratio of 100 : 1. Details of
the preliminary testing of this resistojet at R.P.E., Westcott have
been reported in Ref. 93. Although measurements have not yet been
made at the design operating temperature of 24800K, the predictions
of Model Two using a vibrational rate parameter, & = 100, are found
to compare very favourably with the performance estimates of Halbach
et al. These performance predictions are listed below, without

further comment.

=176~



Predicted Performance of RPE Resistojet (TT = 24800K,

- -2 -
-BT 304 kNm ~, ReD* 2100)

Estimated Performance | Model Two
(Ref. 93) Predictions

. -1

m (gs ) 0.0806 0.0822
F () 0.652 0.655

-1

Vj (kms ) 8.09 7.97

Pj (kW) 2.64 2.61
nC- 1.000
g 0.991
e 0.931
nv 0.902
n 0.983
e 0.810 0.818
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Chapter Seven Summary Discussion

This thesis has been concerned with the theoretical prediction
of resistojet performance; in particular it identifies the various
energy loss processes, and models the gasdynamics of the nozzle flow.

It was shown in Chapter One that a complex, interacting situation
exists in the nozzle flow, so that a number of assumptions were made
in the analysis to make the problem more tractable. For the sake of
computational economy an inviscid core/viscous boundary layer model
was assumed, and an important portion of this work has been devoted
to the development of similar solutions of the laminar boundary layer
equations, where the boundary conditions at the nozzle wall were that
of no slip and an adiabatic wall. These solutions were then used to
represent the boundary layer development. The nozzle flow was
assumed to be quasi one~dimensiocnal, and vibrational relaxation of
the propellant was modelled by assuming that at a given station in the
nozzle the specific heat was constant.

A hierarchy of computer programs have been developed which
describe the gasdynamics with varying degrees of sophistication. The
effects of the major variables {(propellant, temperature, pressure,
degree of dissociation, vibrational rate and nozzle design) were
examined using the appropriate computer program. It was found that,
even in the simplified situations considered here, the various energy
loss processes were intimately coupled; for example vibrational
relaxation leads to increased losses from viscous flow and incomplete
expansion. It was also shown that the performance of ammonia resistojets
is significantly affected by propellant decomposition, but in order to
accurately model the performance, more complete kinetic data of the NH3
dissociation is required. Further it is noted that there is little
vibrational relaxation data in the literature for the polyatomic gases

at
- NH3, CH4 and 002 - 1in a de-exciﬁ?on environment.
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The agreement of calculations based on solutions of the Falkner-
Skan equation with experimentally measured boundary layers is reasonable,
even when the boundary layer is thick, thereby justifying the approach.
Overall resistojet performance parameters have been compared with
experiment and with the semi-empirical estimates of Halbach. Again
the agreement is satisfactorily good. Predictions of the present
performance models are also found to compare favourably with alternative
theoretical predictions based on Rae's slender channel model. An
important advantage of the computer programs reported in this work is
that they are very economical. For instance, the best program
(Model Two) requires 80 seconds per case on an ICL 1907 computer,
whereas the modified Rae program used by Kallis et al typically takes
900 seconds per case on a CDC 6500 computer - a computer which is
approximately ten times faster.

Although the present results compare favourably with a range of
experiments, in view of the assumptions made, it must be accepted that
this agreement is in parts fortuitous. Thus it is recognised that the
basic model (inviscid core/viscous boundary layer) is inappropriate
when the flow is essentially viscous throughout the mozzle, which in
typical resistojet nozzles occurs for RED* of the order of a few
hundreds. It is in this region that the slender channel approach is
most applicable and where the imnclusion of slip velocity is essential.
However, the agreement of the present models with experiment over the
region of Reynolds numbers of practical interest in resistojet applic-

ations (500 < Re . < 5000) has been shown to be satisfactory. Finally,

D
the fact that considerable difficulties are experienced in the experi-
mental determination of resistojet performance, means that the comput-

ationally economical models developed here are of considerable use in

resistojet design,
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The major conclusions of this study are as follows :

The five energy loss processes considered to occur in resistojet
nozzle flows, are all potentially important. Depending on the
propellant, the losses from frozen chemistry and finite
vibrational relaxation rate may be dominant. Losses from
incomplete expansion, viscous flow and radial flow are coupled
and they can be traded-off against each other to produce an

optimum nozzle.

It has been demonstrated that the basic approach, in which
the flow is separated into an inviscid core and a viscous
boundary layer, provides an adequate description of most
resistojet nozzle flows except near the onset of viscous
closure; this limit is a function of two Reynolds numbers

based on the throat diameter and the wall length.

Representation of the laminar boundary layer by the patching
together of similar solutions of the Falkner-Skan equation,

leads to predictions which agree quite well with experiment.

According to the solutions of the modified Falkner-Skan
equation the influence of transverse curvature on the boundary
layer development is significant only in the supersonic region
of the nozzle, where the effect is to somewhat reduce the
boundary layer momentum thickness and therefore decrease the
velocity defect due to viscous flow. Fowever the overall
effect on resistojet nozzle performance is relatively small,
so that use of the ordinary Falkner—Skan equation, which is
better justified theoretically, is considered to be satis—

factory for the purpose of resistojet performance prediction.

The results show that the losses due to finite vibrational
rate processes in the polyatomic propellants are very dependent
on the relaxation rates of such gases in a de—excitation environment.
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Vibrational relaxation in the polyatomic propellants
significantly affects the losses due to incomplete expansion

and viscous flow.

Performance predictions obtained with Model Two, i.e. the
model which is found to compare best with experiment, are

tabulated for H29 CHA’ CO2 and NH, for the nominal geometry

3

over a range of plenum conditions.

The models presented here will be of considerable help in
the design of resistojet nozzles and in the theoretical

prediction of resistojet performance.
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Appendix A Discussion of hathematical Techniques Used in

Solving the Similar Boundary Loyer Equations

The similar boundary layer equations, such as eq. {3.67) or
eqs. (3.77) and (3.78), constitute a non-linear two-point boundary
value problem in which either one or two of the inner boundary
conditions are unknown. The crux of the solution of these equations
lies in determining the correct unknown boundary conditions. There
are various ways of achieving this, of which two are mentioned here.
The first method is termed quasilinearisation, and an account of the
application of this approach to solving the Falkner-Skan equation has

(1)

been given by Radbill . In essence this method simply linearises

the original differential equations, however it is pointed out by

(2)

Nachtsheim and Swigert that several difficulties can be experienced
with quasilinearisation, of which the most significant is the fact that
the solution can become badly determined. This, added to the complex
formulation of the method makes quasilinearisation unattractive. An
alternative, which was used here, is to treat the similar equations as
an initial value problem(3). In this method guess values are used for
the unknown initial conditions and the ordinary differential equations
are integrated until quantities such as velocity and shear stress
become asymptotic at large n . Integration is carried out for several
trial values of the unknown boundary conditions and the correct value
is obtained by interpolation.

This method is also not without its difficulties. These can be
illustrated by considering the Falkner-Skan equations (eq. 3.67). The
first point concerns the initial guess value of f''(o) which is the
unknown boundary condition in the Falkner-Skan equation. If this
initial guess is too large then the boundary layer profiles such as the

velocity profile tend to infinity with large values of n; 1if it is too

small then the velocity ratio will reach a maximum which is less than
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unity and then decrease. Thus there is a restricted range of values
about the required £ (c) which can be used to obtain the correct initial
condition. The second point is concerned with the method for which the
acceptable guess values of f£"(o) are then interpolated. Smith and

Clutter(é)

, in an examination of the laminar boundary layer equatiomns,
used a shooting technique in which the previous guess values of £'(o0)
were fitted by linear, quadratic or cubic curves in the f" (o) - £f'(»)
plane. These curves were then used to predict the value of £"(o) which
would produce f'(=) = 1. Integration was then carried for the new
value of f" (o) and the process was repeated until convergence was
achieved. These techniques have been used in this study, but were
found to be satisfactory only when the ordinary differential equations
were not excessively non-linear, i.e. for small values of the pressure
gradient parameter. A far more attractive technigue is the Newton-—
Raphson iteration method (ref. 5, p. 447). This method was used here
for the Class A and B similar equations, and is briefly described. A
guess value of f"(o) which was known to be less than the required value
was used to start the calculation, and the similar equation was then
integrated until a maximum in f'(n) was reached; this value was
assumed to be f£'(x). The guess value of f''(o) was then perturbed and
the process repeated. This formed the pre-requisite for use of the

Newton-Raphson equation, which for the present problem can be written

£'(0),q = £1(0), ~ (£'(=®), = 1.)/(@(E' (™), = 1.)/dE"(0))

where k = 2 for the first application of this equation. The whole
integration and the Newton-Raphson process were repeated until

.—5
- ! (o
(1 £'( )k) <10

-5
Ml <
and £1'( )k L 10

Four or five applications of the Newton-Raphson process were required
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in most cases for the Class A and B equations. It was observed that
when these equations were extremely non-linear (i.e. at large B), if

a value of f'(®) which was larger than unity was used in the iteration
process, convergence was corrupted. To overcome this all values of

f" (o) for which f'(®) was larger than unity were ignored, so that the
Newton—-Raphson method was used as an extrapolation procedure.

In . the cases where there are two unknown boundary conditions,
as in the Class C and D similar eauations, a two variable Newton-
Raphson procedure was used (see Ref. 5, p. 450). This method was not
so successful as its one wvariable counterpart, and then was only
relatively satisfactory for values of pressure gradient less than
unity. At higher values of B convergence was very slow. The diffi-
culty lay in the fact that the perturbation required to achieve
convergence in one variable had a detrimental effect on the convergence
of the other variable, so that the Newton-Raphson procedure was trying
to work in opposite directions. The process converges, but does so
at a decreasing rate as the correct outer boundary conditions are
approached.

Actual integration of the similar equations was carried out using
a fourth-order Runge-Kutta procedure (see Ref. 5, p.236). To use the
Runge-Kutta method the original ordinary differential equation(s) must
be reduced to a series of first-order equations. In the case of the
Falkner-Skan equation four first-order equations are required, and for
the Class D equations (eqs. 3.77 and 3.78) seven equations are
necessary. At low values of B (less than two) the step size used was
An = 0.01. Thus in solving the Falkner-Skan equation for B = O about
600 steps were required in going from n = 0 ton =n_. At higher
pressure gradients the step size was reduced and in general for B8
greater than five, An = 0.001 was used. This resulted in about 2500
steps across the boundary layer. The use of such small step sizes

almost certainly accounts for the present successful integration of the
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Falkner-Skan equations for B greater than two.

It is recommended procedure in the use of Runge-Kutta integration
techniques to vary the step size until consistency in the results is
obtained. Although thorough checks on the accuracy of the similar
solutions have not been carried out, examination of the following
table of solutions of the Falkner—~Skan equations shows that the values
of £'"(0) which have been obtained should be consistent to at least

six decimal places.

B An n, £" (o)

0. 0.1 5.8 0.469 601 372
0. 0.01 5.78 0.469 601 457
0. 0.001 5.779 0.469 601 465
10. 0.01 2.46 3.675 234 01
10. 0.001 2,447 3.675 234 06
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Appendix B Literature Survey of Relevant Vibrational Rate Data

A survey of vibrational rate data for gases used as resistojet
propellants is necessary in order to obtain the empirical constants A

and B of the Landau-Teller equation,

1/3
pT = A exp(B/T)

(4.29)
v

required in the sudden freezing model. It should be noted that all the
data presented here are obtained from shock wave experiments, therefore
they are measurements of excitation rates. Of the molecules considered,

N2 and C02, have been extensively examined and only mean experimental

lines are presented. For H2 and CHA’ although not so widely studied, there

is sufficient data in the literature to enable determination of the Landau-

Teller constants with some degree of confidence. However, the available

. . . . 19
data for NH3 1s scarce, even contradictory, with recent experiments (19)

indicating an unusual temperature dependence.*
Considerable experimental information is available on the rates
for exchange of energy between translational and vibrational (T-V) mode

of diatomic molecules, (see, for instance, Ref. 2) including NZ which is

of interest here, since along with H_ it is a product of NH, dissociationm.

2 3
In Fig. Bl, a plot of 1og10 (pTv) against Tm1/3 for various single gases,

two lines are presented for N, which are least squares fits of the

2

experimental data of Refs. 1 and 2. Agreement between the two lines is

good, and in a later survey of vibrational relaxation processes, Taylor

(3) (2)

and Bitterman confirm the mean line suggested by Millikan and White .

This line is used to obtain the Landau-Teller constants for NZ' The other

diatomic molecule of interest, H,, has not been examined thoroughly,

(4-7)

29
however the rate data that exists does indicate a linear dependence

of 10g10 (pTv) with T—l/3 . The least squares line of Kiefer and Lutz(a),

obtained over the temperature range 1100 to 27OOOK, when extrapolated to

~192-
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lower temperatures in Fig. Bl, agrees extremely well with the measurement

(5)

of de Martini and Decius

(6)

for pTV (HZ) = 1.06 x 10—3 atm.sec. at 3OOOK.

AT 1400°K White notes that PT, (HZ) is less than 2.usec.atm., a rate

slightly faster than the measurements of Ref. 4. A further measurement

(7

by Gaydon and Hurle confirms the general behaviour of the mean of

Kiefer and Lutz, and this line is used in the present study.
For polyatomic molecules with two or more vibrational modes,

vibration-vibration (V-V) energy exchange becomes important. Taylor and

(3)

Bitterman note that in general V-V rates are faster than the

corresponding T-V process and that the rate controlling process for
vibrational energy exchange in polyatomic molecules is a T-V exchange
with one specific mode, and all the other modes are equilibrated by

rapid inter—and/or intramolecular vibrational exchange. The mechanisms
of vibrational excitation and de—-excitation are clearly dependent on the
V-V processes, however in application to a sudden freezing model only the
rate-limiting step of energy transfer from vibration to translation is of
interest. It is stressed that in the Landau-Teller theory the transition
probabilities, and therefore rates, of energy exchange from V-T and T~V
are identical.

Of the polyatomic molecules, carbon dioxide has been widely studied;

(8)

see Ref. 3. The least squares line of Carnavale et al" ', presented in

Fig. Bl, agrees closely with the mean of Taylor and Bitterman's extensive

(9-13)

survey, and is the relation adopted here. The data for CH once

4

again, approximates to a straight line on a Landau-Teller plot. At 3OOOK,

there is good agreement between the values given in Refs. 9, 10 and 13 for

pTV(CH4) of 1.9, 1.6 and 1.86 sec.atm., respectively. Eucken and Aybar(ll),

(12) (13)

Richards and Sigafos , and Hill and Winter present relaxation data

of CH4 for temperatures up to 1400°K and a sensible straight line can be

drawn through the data.

Few references on vibrational relaxation of NH3 are to be found in

the literature, but such data as there is indicates very fast relaxation
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. - 14-16
with pTV < 10 6 atm,.sec. at room temperature. Early measurements( )

(15)

(22)

reporting two separate relaxation times. Cottrell and McCoubrey in

were at temperatures below 400°K, with Buschizann and Schafer

reviewing the early work expressed some doubt over the double relaxation
. (17,18)
of Ref. 15, but these results together with two later measurements
at room temperature were, until very recently, the only data available.

(18) A7) Lt 300%

The measurements of Strauch and Decius , and Jones et al
indicate extremely fast vibrational relaxation with values of pt_ equal

to 6. X 10—9 and 4.4 X 10-10 atm.sec. respectively. On the basis of these
eight points, with a spread of over three decades at 3OOOK, a "mean"

line was drawn. As found with other gases an increase in rate is predicted
with elevated temperature, so much so that by IOOOOK, pTv(NHB) = 10“10
atm.sec. It was realised that extrapolation of such skant information to
high temperatures must be regarded with extreme caution. The recently

reported (April 1972) measurements of Bass and Winter(lg)

confirm this
caution. Using an ultrasonic absorption technique, over the range 300

to 77OOK, the inferred relaxation times increase slowly with temperature,
contrary to all other findings. Relaxation times are still extremely fast
with pTV < 10—8 atm.sec., but the situation regarding temperature dependence

(20)

is far from resolved. At temperatures above 770°K Winter notes that
dissociation of NH3 occurs, and, although composition measurements were

not taken, a vibrational relaxation time of 3.5 x 10—9 sec. is indicated
at 953°K.

The constants used in the Landau-Teller equation based on the mean

lines derived in Fig. Bl (replotted in Fig. B2) are :-

A (atm.sec.) B(0K1/3)
N, 1.16 x 10”1 225.4
H, 3.9 x 1019 100.
co, 3.94 x 108 32.8
CH, 2.93 x 10 ° 43.3
NH, 2.46 x 10 152.6
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In order to examine the effect on nozzle performance of the ammonia
relaxation behaviour found in Ref. 19, a modified Landau-Teller equation
of the form pTV = 1.78 x 10_7 exp(—28.,85/T)1/3 is also used.

Included in Fig. B2 are some vibrational relaxation data for

mixtures which may assist in the approximate modelling of the relaxation

(143

in NH _-H_-N_, mixtures. It is pointed out that vibration-rotation

37272
energy exchange becomes important in hydride-like molecules, such as

9

CH4 and NH3. Therefore the measurements of Yardley, Fertig and Moore

with CHA-N2 and CH4~H2 mixtures are relevant. At room temperature with

X(CHA) varying from 0.0225 tc 0.1044 in a nitrogen diluent, vibrational

relaxation times are fast, and of the same magnitude as T, in pure CH4.

The relaxation time for a mixture of 0.9335 CH, + 0.665 H_ is faster

4 2
. . -7 .. (21)
than in CH4 alone, with PT (CH4—H2) =9, x 10 ' atm.sec. White

reporting on measurements in a H_ -

9 N2 mixture with X(Hz) = 0.02, over

the temperature range 1700 to ZQOOOK, also finds that the mixture

relaxes more quickly than either of the individual components. The data

(20)

point of Winter for a mixture of NH,, N, and H2 is also included in

37 2

Fig., B2, and a faster relaxation, compared with the measurements for pure
NH3 of Ref. 19, is again apparent. In general, the policy throughout
this work has been to underestimate rather than overestimate performance.

By assuming that mixtures such as CH and N obey a ''parallel

L) 27ty

" law produces an underestimate of vibrational relaxation rates.

resistance
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Tables One to
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Four
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D2F (0) /DETA2
DG(0) /DETA
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Pl

P2
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P4

P5

TET/TE

THETA
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Ch
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REDST

TT
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TABLE ONE

D2F(0)/DETAZ2

469601457
.587036209
686706574
.854420103
.995835908
.120267200

1.232587800
1.477224100
1.687218090
2.043937050
2.347285940
2.,615779440
2.859213690
3.292581350
3.675234060

S OO O D TCDIOD="=adaa

P1

.673187
.502581
.379174
206110
086674
997344
.927084
.800975
715251
602971
530644
L479074
439916
. 383481
344054

QO OO DO DO OO ODOO

CLASS A SIMILAR SOLUTIONS

P2

.467982
.433848
.406590
.365042
.334572
.310201
.290704
.254555
.229218
.195221
.172897
.156803
N44494
126632
114076

P3

2.046813
2.007432
1.965941
1.888513
1.815769
1.748781
1.687151
1.555020
1.447560
1.283600
.163883
.071895
.998547
.887755
.807050

DO A -



TABLE TWQ CLAssS B sImyILAR SspluTlons

BETA THETA  TET/TE D2F{0)/DETA2 P1 p2 P3

Qo 0.1 1. 0,440333646 L 619946 0,439909 1,749304
Uy 071 4, 0, 359850026 462587 o ' 3391 81 1,185625
O 041 84 NO SOLUTION

Oy 0,2 T 0,409473259 1.564939 0,409473 1,437534
O 0,2 bs NO SOLUTION

0 0,2 8, NO SOLUTION ‘

0y 0,3 1 0,376607491 1,507847 0,376076 10134154
04 0,3 by NO SOLUTION

Qs 0.3 8, NO SOLUTION

O 0,6 1, NO SOLUTION

0+ 0,4 bs NO SOLUTION

o A 8 NO SOLUTION

Ts 0.1 1. 1.,20495955¢0 0,909440 0.281542 1,536983
Te 071 by 1:136139990 0,862154 0,258743 1:30387¢
1, 0%1 8, 1,031053960 0,793792 0,225068 o 965820
14 0.2 1. 1217669298 , 891409 , 272109 38

1o 0,2 by 1, 024965128 0 790780 8:525399\ ' gzsa
Ty 0.2 8. NO SOLUTION

T 0,3 1. 1,147708490 0,872937 0,262368 1,228726
T 0,3 by NO SOLUTION

T 0.3 8 NO SOLUTION

1 0.4 1. 1117907430 0,853968 0,25226% 1,070905
T 0,4 by NO SOLUT]ON

T 0.6 8, NO SOLUTION




TaghE TWO (CONTINUED 1)

CLASS B SIMILAR SOLUTIONS

D2FC(0)/DETA2 P P2 P3

2, 0.1 1, 1,659797410 07704768 0,223789 1 3432@0
2, 01 b 1590224080 0~ 67?076 0,210481 1983
2, 0% 8, 11491834800 04638014 01194453 } '985831
Z, 0,2 1, 1 631909700 0- 69%%13 0,218240 1 zaross
<, 0,2 4, 1, ' 486195920 0636248 0,190082 o. 939059
¢y 0y2 8, 1253770550 07553822 0,1643335 0,414807
2, 073 1, 11603510320 01683266 01212556 11143803
2, 03 4, 1371627670 0591468 0,167077 0.634919
2, 023 8, NO SOLUTION

2y 0,4 1. 1,974545550 D,672204 0.206720 1,038128
24 0.4 by NO SOLUTION

24 044 8, NO SOLUTION

3, 0y1 1. 2,016615710 0,595529 0,191371 1,209846
34 031 by 1.947611560 0,575976 0,181989 1099830
3, 0,1 8y 1.851221120 0,548701 168764 0,744892
30 0.2 1 1,98891185¢ 0,587985 0,187451 11134789
34 0,2 b, 1,84578578¢ 0,567482 0,167828 0704204
3 0,2 8, 1:,629331200 0,486509 0.,137295 0,5647599
34 0e3 1 1,960794949 0.580339 0,183454 14058226
3 0.3 by 1,73645453) 0,516953 0.152354 0,6%92178
3, 0,3 84 NO SOLUT]ON

3y 0,4 1. 1.932229400 0,572557 0.,179371 0,979985
3y 0,4 by NO SOLUTION

34 0.k 8 NO SOLUT]ON




Tapke TWO (cONTINUEp 2) chaSS g SIMILAR SQLUTIONS

BETA THETA  TET/TE D2FCO)/DETAR P1 p2 PS
b, 0,1 1. 2,320024010 01524878 0,169917 1,105303
by 071 b, 2,251358310 0509773 0,162676 1 018130
by 071 8, 2,156117450 07488847 0,152556 0,896776
4, 0,2 1, 2,292431320 D ;519045 0,166899 1,065853
4y 072 4, 2:150799240 0487920 0,151849 0,864655
4, 072 8, 1,941930010 07442150 0,129165 0 592$53
4, 0,3 1, 2,264484980 0513937 0,163819 0,985241
b, 0,3 4, 2,064240160 0%464793 0140211 0,700283
4, 03 8, NO SOLUTION
by 0y 6 1 2,236158690 0,507951 0,160676 0,923415
by 0y 4 by 1.92929457¢ D.439891 0.127389 04518457
by 0,64 8 NO SOLUTION
54 031 14 2,58855735¢ 0.474370 0154373 11023424
54 0v by 20520120640 0.462071 0,168681 01754386
D 0,1 8, 2,6256642560 0,465903 0.1602%% 0,851575
Se 0.2 1 24561040130 0.46%9616 0+151908 0:974220
o 0:2 by 2,420601210 0.,464357 0.939723 01825078
o 0.2 8. 2,21610271%0 0.407737 0.121686 0.605109
54 0,3 1 21533209550 0,464808 0.149%06 01926443
4 0¢3 4, 2,315594980 0.425759 0,130407 0, 691111
= 0,3 8, 1.969441800 0,372745 0.098748 04308989
Se 0.4 1 250506497 0.6459945 0.166865 o,arszoz
24 0,4 by 2,20405675¢ 0,405992 0.120323 0e545330
S 0.6 8, NO SOLUT]ON




TABLE TWU (CONTINUED 3) CLASS B SIMILAR SOLUTJIONS

BETA THETA  TET/TE DRFC0)/DETA2 P 4 P3

6 : ,83202032 435943 0,1642442 0,757205
6. 8&? 2: 2! 75%75?098 85225571 0:337476 0:895388
6, 071 8, 2669823650 07411309 0,130601 0,811113
6. 0':2 1, 25894558210 0;431931 0”60364 0!9‘15254
6, 072 b, 2,664637040 0,610685 0,130128 0,788649
0, 072 8, 2, 663647640 0,380181 0,115166 0,604151
6 073 1, 2.776812210 0,427879 0,138258 0,872627
o, 0}3 b, 2.561056360 0395140 0,122366 0,675607
6, 03 8, 2,227879170 07344761 0,096900 0,356322
6, 0yé 1, 2,?4875543@ ();423785 D,13612¢ 0,829352
0, 074 by 2,651774530 0,378758 0,114060 0,554392
6, 074 8, NO sOLyTION

8, 0 1, 3,265426930 0380451 0,125068 0,855845
S 071 b, 3,197389830 07372557 0,12129¢ 0, 808491
8, 0,1 8, 31104216400 02361759 0,11609%¢ 0, 743554
8, 072 1, 3,238040780 0377395 0,123487 0,823452
8, 0.2 b, 5.099103350 07361282 0,115738 0726302
8, 0,2 8, 2,901946710 0.338349 0,104550 0,583251
8, 0,3 1, 3,210611630 0,374314 0,121888 0, 790710
8, 0,3 4, 2.997150050 0,349590 0,109925 0, '640325
b, 0%3 8, 2,678485940Q 0,312725 0,091555% 0,408449
8, 04 1, 3,182527140 0:371205 0,120269 0,757407
8, 0,4 4, 2.890725290 0337397 0,103794 9,549553
&, 0.4 8, NO sOLUTION




TABLE TWD (CONCLUDED) CLASS B SIMILALAR SOLUTIONS

BETA THETA  TET/TE DRF(0)/pETA2 P1 P2 P3
Tu, 0 1, 3,6648105120 07341606 0,112813 0,789052
14, oM b, 3,580224070 0335235 0,109767 0, 1762560
10, 0.1 8, 3,487557930 0326486 0,105562 0.687466
10, 0,2 1, 3,62076957 04339439 0,111537 0,754751
10, 0t2 4, 3,482486680 0.326167 0,105307 0676169
10, 02 8, 3 287883700 0307919 0,096435 0,564014
10, 0.3 1. 3 593218520 0 336653 0,110249 0, 728&23
10, 023 4, 3,381584680 03316804 0,100665 0 606?08
10, 073 8, 31079139020 03287729 0,086290 o 424228
10, 0;4 1, 3 565642270 0, 334“8 0,108946 0 ?01146
19, 034 b, 31276930630 0307100 0,095807 0 534112
10, 0,4 8, NO gOLUTION




TABLE THREE CLASS C SIMILAR SOLUTIONS

BETA P2FCQ)/DETAR PGCQ) /DETA CONVERGENCE ,
0.0 0,469602 =0,093920 0400001
0.5 0,991100 =0,109190 0,00020
1.0 1,338000 =0,116200 0,00100
2,0 1,854800 =0,123500 0,00200
3,0 2,260800 =0,128600 0,01000 \ ,
TABLE FOUR CLASS D SIMILAR SOLUTIONS
BETA D2FC(U)/DETAZ G(U) p1 pe p3 ph pd CoNVERGENCE
0:0 0150560 08186 1.570670 0,502876 2,871860 1.551310 0.499298 0,00001
0r  Ji30ie)  Dizoss  qiarBers  Qi3feres 5284200 11038750 0'3eBFeB  0.00003
1.0 1218484 07074 0,865623 0,31160% 1,99%050 0.847768 0,3 ma~w 0,00010
2:0 1257690 0.7540 0,646024 0,253462 1,731%20 0,637457 0,25206 0,00100




C LCENOPUSLUN=C

—dt

TABLE FIVE

NH3

01849707E 01
lo_wwwrcammom
0,457411E=04
=0, &6QUBTE=Q?7
=0:785314E=q9
01054709€E=43
“04071701E="16
01551814E=49
“0.103734E=22
011640688E=26
=04102104E=30

TEMPERATURE RANGE

CH&

0,086782E (1
0.289340E"01
m),287314E=03
0,133884E~05
“(,31858)E=g8
0. 454925E=194
=0,413044Emy 4

CPO =

cn2

Omﬁmomoom 01
uc_NuJmemJog
0,219303E=03
=0,672783E=06
0s117973E=(8
=0»130416E=11
0.937532E=45

Ue by T4DE=7 mc.&wwuowmmam
=(),880124E=21 0e127623E=24
0.181759E=24 =(0.2116864E=25
ny,162666E=28 D.aummﬁommme
NH3, CH4, CO2, N2 100 710
Ha(1) 50 TO 500 PEG,K

H2(2)

500 TO 3000 DEG,K

SIGMACACI) 2¢T*w]))

N2

0,650947E 04
0,644756E=p2
~0,355515Em04
0,96095%E=07
0413 mNOmmoo
0,124113E=12
=0, 707495616
0.261132E=99
=0,604330Em23
0,797862Ema7
=0, 458731E=3

3000 DEQ,K

MoLAR HEAT CApPACITY, polYNOMIAL CQEFFICIENTS

H2(Y)

0.470085E 04
0+307488E=0
*0,126364E202
0,238780E=04
ao_mmoawumuoo
0:132074E=q8
=0,483084E=14
0s113752E=43
=0,167164QE=46
0:139459€E=¢ 7%
=0,506489E=23

H2¢2)

0425863%E€ 01
o.rawmcommca
20 ,163896E=03
0,3561964E=06
201 494235E=0%
o.»ucﬁucmmaw
=0,237720€=15
0:790265E=94 9
=QsR39231E=22
01 329382E=26
20,19699%E=30




TABLE SIX RESISTOJET PERFORMANCE PARAMETERS FOR NOMINAL NOZZLE GEOMETRY

TABLE SIX(A) HYDROGEN
UNDISSOCIATED, ETAC = 1,000

TT PT REDST PEL F DMDT ISP cT CcD ETAF ETAE ETAV ETAD ETAN

300, 200, 13330, 0, 0,2416 10,0943 261,2 1,538 0.976 1.000 0.881 0.969 0.964 0,825
300. 100, 6915, 0, 0,1190 10,0467 259,9 1,516 0,966 1,000 0,881 0.955 0.969 0,818
300, 50, 3457, 0., 0,0582 10,0230 258,0 1,483 0.952 1,000 0,881 0,937 0,973 0,806
300, 25, 1729, 0, 0,0282 10,0113 254,8 1,435 0,933 1,000 0,881 0.9117 0,976 0,786
500, 200, 7591, 210, 10,2419 0,0724 340,5 1,540 0,968 1,000 0,881 0.957 0.968 0,805
500, 100, 3795, 103, 0,1184 10,0357 338,0 1,508 0,954 1,000 0,881 0,939 0,972 0.794
500, 50, 1898. 59. 0,0574 10,0175 334,11 1,462 0,936 1,000 0,881 0,915 0,976 0,775
500, 25, 949, 25, 0,0275 10,0853 328,4 1,399 0.911 1,000 0,881 0.882 0.978 0.749
1000, 200, 3271, 594, 0,2422 10,0502 492,3 1.542 0,951 1,000 0,881 0,934 0,973 0,805
1000, 100, 1636, 252, 0,1171 0,0246 486,17 1,491 0,932 1,000 0,881 0.908 0.932 0,785

1000, 50, 817. 122, 0,0558 0,0119 477,17 1,421 0.904 1,000 0,881 0.873 0,978 0,756
1000, 25, 409, 59, 00,0261 10,0057 465,5 1,331 0.869 1,000 0.881 0.831 0,978 0,720
1500, 200, 1993, 721, 0,2367 0,0401 601.6 1,507 0,938 0,996 0,881 0.916 0.976 0,784
1500, 100, 996, 351, 0,1132 10,0195 591,0 1,441 0.914 0,996 0.881 0.882 0.978 0,756
1500, 50. 498, 169, 0.0533 0,0094 577,5 1,358 0.881 0,996 0,881 0,841 0.979 0,722
2000, 200, 1402, 895, 10,2323 0,0341 695,171 1.479 0,928 0,990 0,880 0,896 0,977 0,762
2000, 100, 701, 433, 0,1101 0,0165 679,9 1,402 0,899 0,985 0,880 0.860 0,978 0,729
2000, 50, 350, 207, 0,0511 0,0079 660,4 1,302 0,859 0,982 0,881 0,811 0.981 0,688
2500, 200, 1062, 1048, 0,2290 0,0300 778,9 1.458 0.918 0,985 0,878 0.880 0,978 0,744
2500, 100, 531, 506, 0.1076 0,0145 758,0 1,370 0,886 0,978 0,879 0.838 0,978 0,705
3000, 200, 845, 1186, 0.,2258 0,0269 855,0 1,438 0,909 0,987 0.876 0,862 0.978 0,728

3000, 100, 422, 570, 0.1054 10,0129 830,17 1.342 0.874 0,977 0,877 0.817 0.980 0,687




TT

2000,
2000,
2000,
2500,
2500,
3000,

PT

200,
100,

50,
200,
100,
100,

TABLE SIX(A)

REDST

1394,
695,
346,

1039,
515,
393,

PEL

998,
504,
255,

1397,
741,

1061,

CONTINUED

F

0,2322
0,1100
0.0510
0.2281
0.1071
0,1038

EQUILIBRIUM COMPOSITION

DMDT

0,0339
0,0164
0.0078
0,0293
0,0140
0,0120

ISP

699,0
685,3
667,6
794,5
780,6
885,1

cT

1,478
1.400
1.300
1.452
1.364
1,322

cb

0.927
0,898
0,858
0.916
0.884
0.867

ETAC

0,909
0,876
0,834
0,768
0,702
0,548

ETAF

0,991
0.988
0.983
0,994
0,989
0,997

ETAE

0.883
0.884
0.886
0.887
0,892
0.907

ETAV

0.898
0.861
0.811
0.882
0.845
0.830

ETAD

0.977
0.978
0.985
0,978
0.978
0.985

ETAN

0.697
0.644
0,499
0.584
0.512
0.405



17

300,
300.
300,
300,
500,
500,
500,
500,
1000,
1000,
1000,
1000,
1500,
1500,
1500,
1500,
2000,
2000,
2000,
2000,

PT

200,
100,
50,
25,
200,
100,
50,
25,
200,
100,
50.
25,
200,
100,
50,
25,
200,
100,
50,
25,

TABLE SIX(B)

REDST

30270,
15140,
7569,
3784,
15260,
7628,
3814,
1907,
6433,
3217,
1608,
804,
3983,
1992,
996,
498,
2858,
1429,
714,
357,

126,

710,
548,
169,

81,

METHANE

F

0.2598
0.1286
0,0633
0,0310
0.2569
0.1265
0.0619
0.0299
0.2589
0.1244
0.0594
0.0280
0,2640
0.1254
0.0581
0.0269
0.2645
0.1248
0,0575
0.0261

ETAC = 1,000

DMDT

0,2623
0.1303
0,0645
0,0318
0,1974
0.0978
0.0483
0.,0237
0.1341
0.0661
0.0324
0.0158
0.1076
0.0529
0.0258
0.0125
0.,0922
0,0452
0,0220
0,0105

ISP

101,0
100,7
100,1
99,2
132,7
131.9
130,7
128,8
196,8
191,2
186,7
181,1
250,2
241,7
229 ,7
220,0
292,6
281.6
267,2
252,6

cT

1,654
1.634
1,613
1,578
1.635
1.611
1.575
1.524
1,648
1.584
1.512
1,428
1.681
1.596
1.481
1.370
1,684
1.590
1,465
1.329

cb

0,984
0.978
0.968
0.956
0,978
0.969
0.958
0.939
0.968
0.954
0.936
0.911
0.959
0.943
0.920
0.889
0.952
0.934
0.907
0.870

ETAF

0,999
0.999
0.999
0.999
0.965
0,965
0.965
0.965
0.836
0.806
0,775
0,775
0.778
0,732
0,688
0,657
0.740
0.695
0.647
0,601

ETAE

0,835
0,835
0,835
0,835
0,834
0,834
0,834
0.834
0.823
0.828
0,832
0.832
0.801
0,815
0,825
0,830
0.780
0.800
0,816
0,826

ETAV

0.975
0.965
0.950
0.929
0,963
0,947
0.925
0.885
0.933
0.909
0.887
0.833
0.907
0,881
0.833
0.794
0.883
0.846
0.799
0.758

ETAD

0.958
0.962
0.966
0.971
0,962
0.966
0.970
0.974
0.966
0,971
0.974
0.977
0.968
0,972
0.976
0.978
0.969
0,973
0.976
0.978

ETAN

0.779
0.774
0,765
0,752
0,745
0,736
0.722
0.702
0,620
0,589
0.557
0.525
0.547
0.511
0,461
0.423
0.494
0,458
0,412
0,368




TT

300,
300,
300,
300,
500,
500,
500,
500,
1000,
1000,
1000,
1000,
1500,
1500,
1500,
1500,
2000,
2000,
2000,
2000,

PT

200,
100,
50,
25,
200,
100,
50,
25,
200,
100,
50,
25,
200,

50,
25,
200,
100,
50,
25,

REDST

36880,

18440,
9220,
4610,

18110,
9057,
4528,
2264,
7554,
3777.
1889,

944,
4662,
2331,
1165,

583,
3336,
1668,

834,

417,

TABLE SIX(C)

PEL

OO OC
-

61,
30,
15,
7.
171,
85,
41,
20,
255,
126,
61,
30,
325,
159,
77.
37.

CARBON DIOXIDE

F

0,2547
0.1263
0.0624
0.0306
0.2524
0.1246
0.0611
0,0297
0.2505
0.9213
0.0587
0,0280
0,2497
0.1193
0.0570
0,0269
0.2493
0.1178
0.0555
0,0260

ETAC = 1,000

DMDT

0,4339
0.2156
0.1069
0.0528
0,3281
0.1627
0.0804
0,0395
00,2261
0.1116
0,5480
0.0267
0.1822
0.0896
0,0438
0.0212
0.1565
0,0767
0.0373
0,0179

Isp

59,9
59,7
59,5
59,1
78,4
78,1
77,5
76,6
13,0
110.8
109,3
107.1
139.8
135,8
132.6
129.,3
162,5
156,6
151,6
147,7

cT

1,621
1,608
1.588
1.558
1.607
1.586
1.556
1.512
1.595
1.544
1.496
1.428
1,590
1.520
1.451
1,368
1.587
1.500
1.413
1.322

cob

0.986
0.980
0.971
0.960
0.980
0.972
0.960
0.944
0.969
0.957
0.940
0.916
0.961
0.946
0.925
0.895
0.955
0.937
0.911
0.875

ETAF

0,973
0,973
0,973
0.973
0,898
0,898
0,898
0,898
0,785
0.765
0,765
0.765
0,737
0,707
0,697
0.697
0.708
0,677
0,658
0.658

ETAE

0,880
0,880
0,880
0.880
0,879
0,879
0.879
0.879
0,876
0,879
0.879
0,879
0,873
0,877
0,878
0,878
0,871
0,876
0.878
0,878

ETAV

0.980
0.971
0.959
0.942
0.970
0,957
0.938
0.913
0.949
0.930
0.902
0.864
0.931
0.909
0.875
0,830
0,925
0,890
0.854
0,809

ETAD

0.958
0.962
0,967
0.971
0.962
0.967
0.971
0.975
0.968
0.972
0.975
0.978
0.970
0.974
0,977
0.979
0,972
0.976
0.978
0.979

ETAN

0,804
0.800
0.794
0,783
0.737
0.730
0.719
0,702
0.632
0.608
0.591
0.568
0.582
0,549
0,524
0,498
0.554
0.515
0,483
chmmw




T7

300,
300,
300,
300,
500,
500,
500,
500,
1000,
1000,
1000,
1000,
1500,
1500,
1500,
1500,
2000,
2000,
2000,
2000,

PT

200,
100,
50,
25,
200,
100,
50,
25,
200,
100,
50,
25,
200,
100,
50,
25,
200,
100,
50,
25,

TABLE SIX(D)

REDST

34500,
17250,
8626,
4313,
15280,
7638,
3819,
1920,
5453,
2727,
1363,
682,
3137,
1569,
784,
392,
2170,
1085,
543,
271,

416,
204,
99,
48,
550,
268,
130,
62,

AMMONTIA

F

0.2602
0.1289
0.0636
0.0311
0,2589
0.1274
0.0621
0.0300
0.2619
0.1271
0.0608
0.0285
0.2626
0,1260
0.0593
0,0272
0.2606
0.,1238
0.0575
0,0259

UNDISSOCIATED,
DMDT ISP
0.2704 98,1
0.,1344 97,9
0,0666 97,3
0.0329 96,5
0,2049 128,9
0.1015 128,0
0.0501 126,5
0,.0246 124,5
0.1396 191,3
0.0687 188.5
0,.0336 184,3
0,0250 178,3
0.1116 239,9
0.0547 234,8
0.0266 227,4
0,0128 217.3
0.0953 278,7
0.0666 271.1
0,0255 260,4
0.0107 250,0

ETAC = 1,000

CcT

1.656
1.641
1.619
1.585
1,648
1.622
1.583
1,529
1.667
1,618
1,548
1.454
1.672
1.604
1.511
1.387
1.659
1.576
1.464
1.318

co

0.985
0.979
0.970
0,958
0.978
0.969
0.956
0,939
0.964
0.950
0.930
0,902
0.954
0.935
0.909
0.874
0.945
0.923
0,892
0.851

ETAF

0.997
0.997
0.997
0,997
0,988
0.983
0,980
0,977
0.985
0,980
0,975
0,968
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1,000

ETAE

0,835
0,835
0.835
0.835
0,832
0.832
0,833
0,833
0,798
0,801
0,803
0,806
0,740
0,740
0,740
0,740
0.697
0,697
0,697
0,697

ETAV

0.977
0.967
0,953
0,933
0,963
0,949
0.926
0,896
0,925
0,895
0.854
0,80n
0.896
0,854
0,799
0,728
0.871
0.820
0.755
0,672

ETAD

0.957
0.961
0.966
0.970
0.962
0.966
0.970
0.974
0.966
0.970
0.974
0.977
0.966
0.971
0.974
0.976
0.968
0.972
0,975
0.977

ETAN

0.778
0.773
0,766
0.753
0,761
0.750
0.733
0,710
0.703
0.682
0.652
0.610
0,641
0,614
0.576
0.526
0,587
0.556
0.513
0,457




17T

300,
300,
300,
300,
500,
500,
500,
500,
1000,
1000,
1000,
1000,
1500,
1500,
1500,
1500,
2000,
2000,
2000,
2000,

PT

200,
100,
50,
25,
200,
100,
50,
25,
200,
100,
50,
25,
200,
00,
50,
25.
200,
100,
50,
25,

TABLE SIX(D)

REDST

31470,
17020,
8463,
4199,
14360,
7108,
3530,
1758,
6061,
3030,
1515,
758,
3710,
1855,
927,
464,
2624,
1312,
656,
328,

CONTINUED

0.2601
0,1288
0.0634
0,0310
0.,2530
0.1245
0.0608
0.0294
0,2475
0.1208
0.0583
0,0277
0.2432
0.1178
0,0563
0.0264
0.2400
0.1155
0,0548
0,0254

EQUILIBRIUM COMPOSITION

DMDT

0.2674
0.1323
0,0651
0.0319
0.1597
0.0771
0,0374
0.0181
0.1043
0.,0513
0.2510
0,0122
0.0837
0.0410
0.0199
0,0096
0.0714
0.0349
0,0169
0.0081

Isp

99,2
99,3
99,2
99,3

161.6

164, 6

165.9

165, 4

242,0

240,0

236.5

232,2

296, 4

292.3

288,0

280,8

342,8

337.5

331,0

321, 1

CT

1,656
1.640
1.615
1,581
1.614
1,585
1.549
1,499
1.576
1.538
1.484
1,413
1,548
1,500
1,433
1,347
1.528
1.470
1.395
1,294

cob

0.985
0.979
0.970
0.958
0.977
0.967
0.953
0,934
0.964
0.950
0.929
0.901
0,955
0.936
0.910
0.876
0.947
0.925
0.896
0,856

ETAC

0.916
0.886
0.847
0,799
0,474
0,452
0.440
0,433
0.602
0,602
0.602
0,602
0,700
0,700
0,700
0,700
0.762
0,762
0,762
0,762

ETAF

0.999
0.999
0.999
1,000
1,000
1,000
1,000
1.000
1,000
1.000
1,000
1,000
0,989
0,989
0.989
0,989
0,976
0.976
0.979
0,979

ETAE

0.837
0.838
0.839
0,841
0.874
0.877
0.879
0.880
0,881
0.881
0.881
0,881
0,881
0.881
0.881
0,881
0.880
0.880
0.880
0,880

ETAV

0.977
0.967
0.953
0.933
0.964
0.955
0.936
0.911
0.951
0.931
0.904
0.868
0.937
0,911
0.878
0.835
0,923
0,893
0.854
0.803

ETAD

0.957
0.961
0.966
0,970
0,964
0,969
0,973
0,976
0.970
0.974
0.977
0.978
0.973
0.976
0,978
0.979
0,974
0,977
0,979
0.981

ETAN

0.716
0.689
0,653
0.608
0,389
0.370
0.356
0.342
0,491
0.482
0.469
0,452
0,555
0.542
0.524
0,498
0.588
0.571
0.549
0.517
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