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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

TRACKING SPERM WHALES USING PASSIVE ACOUSTICS AND PARTICLE

FILTERS

by Mark Lyndon Hadley

Passive acoustics provides a powerful tool for marine mammal research and mitigation of
the risk posed by high energy anthropogenic acoustic activities through monitoring animal
positions. Animal vocalisations can be detected and utilised in poor visibility conditions and
while animals are dived. Marine mammal research is often conducted on restricted financial
budgets by non-government organisations and academic institutions from boats or ships towing
hydrophone arrays often comprising only two elements. The arrival time-delay of the acoustic
wavefront from the vocalising animals across the array aperture is computed, often using freely
available software, and typically regarded as the bearing of the animal to the array. This
methodology is limited as it provides no ranging information and, until a boat manoeuvre is
performed, whether the animal is to the left or right of the array remains ambiguous. Methods
of determining range that have been suggested either negate the fact the animal is moving,
rely on robust detection of acoustic reflections, rely on accurate equipment calibration and
knowledge of the animal’s orientation or require modification of hydrophone equipment.

There is a clear need to develop an improved method of estimating animal position as
relative bearing, range and elevation to a hydrophone array or boat based on time-delay
measurements. To avoid the costs of upgrading hydrophone arrays, and potentially the size
of the vessels required to tow them, a software solution is desirable. This thesis proposes
that the source location be modelled as a probability density function and that the source
location is estimated as the mean. This is developed into a practical method using particle
filters to track sperm whales. Sperm whales are the ideal subject species for this kind of
development because the high sound pressure levels of their impulsive vocalisations (up to 236
dB re 1 µPa) makes them relatively simple to detect. Simulation tracking results demonstrate
particle filters are capable of tracking a manoeuvring target using time-delay measurements.
Tracking results for real data are presented and compared to the pseudotrack reconstructed
from a tag equipped with accelerometers, magnetometers, a depth sensor and an acousitc
recorder placed on the subject animal. For the majority of datasets the animal is tracked
to a position relatively close to the surface sighting position. Sperm whales are typically
encountered in groups, therefore a viable tracking solution needs to be capable of tracking
multiple animals. A multiple hypothesis tracking method is proposed and tested for associating
received vocalisations with animals, whereby vocalisations are correctly associated for periods
exceeding 15 minutes.
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âk System state parameter vector estimate at time k
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eÿ System noise y-dimension acceleration sample

ez System noise z-dimension position sample

eż System noise z-dimension velocity sample

ez̈ System noise z-dimension acceleration sample

F Time invariant system matrix

Fk Time variant system matrix

fk ( ) Time variant measurement function

f ( ) Time invariant measurement function

Gk−1 Time variant system noise scaling matrix

g ( ) Abstract function

H Time invariant measurement matrix

Hk Time variant measurement matrix

hk ( ) Time variant measurement function

h ( ) Time invariant measurement function

hsignal ( , {Θk}n) Transfer function determined by the propagation channel

parameters {Θk}n

I Identity matrix

I Abstract integral
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ẋ Cartesian coordinate system x-dimension velocity
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Chapter 1

Introduction

Acoustics play a key role in marine mammal research, specifically on cetaceans. As anthropo-

genic ocean activity, and therefore oceanic noise, increases so too do the needs for research on

marine mammals and methods for the mitigation of the potential harm they may be subject

too. This thesis presents a novel method for tracking dived and vocalising marine mammals

using two element towed hydrophone arrays.

1.1 Acoustics in Marine Mammal Research

Passive acoustics provides a powerful tool in the study of marine mammals. Acoustics can be

utilised to detect vocalising animals that are dived and when visibility conditions are poor such

as during bad weather and at night. How powerful a tool passive acoustics provides depends

on the subject species, sperm whales are particularly vocal and produce clicks at high sound

pressure levels so can be detected relatively easily and from greater ranges than species that

are less vocal and vocalise at lower sound pressure levels. Establishing range estimates from

acoustics is also often a non-trivial task. A wide variety of acoustics themed literature cove-

ring research utilising acoustics and developing acoustic based research methodologies exists.

Research where acoustics have been utilised include regional population studies [1–6], local

population density estimates [7], behavioural studies [8–13] and physical vocalising structures

and vocalisation waveforms [14–19]. The literature developing acoustics based methodologies

covers localisation from fixed hydrophone arrays [20–27], localisation from towed hydrophone

arrays [28–30], detection and classification [31–34] and investigations into detection rates and

array configurations [35–37]. These methods have been developed for a variety of subject

species including sperm whales (Physeter macrocephalus) [3], Cuvier’s beaked whales (Ziphius

cavirostris) [11], Blainville’s beaked whales (Mesoplodon densirostris) [6], harbour porpoises

(Phocoena phocoena) [4], blue whales (Balaenoptera musculus) [12], fin whales (Balaenop-

tera physalus) [2], north Atlantic right whales (Eubalaena glacialis) [8] and bowhead whales

(Balaena mysticetus) [1].

1
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1.2 Anthropogenic Acoustic Threats to Marine Mammals

Recently there has been growing concern regarding the impact of anthropogenic noise on

marine mammals, particularly from military active sonar exercises and seismic surveying for

oil and gas [38–41]. Military active sonar exercises are regarded as responsible for several mass

cetacean stranding events [42], particularly of beaked whales, notably May 1996 in Greece [43],

March 2000 in the Bahamas [44] and September 2002 in the Canary Islands [45–47]. To

mitigate the risk posed by these kinds of activities it is necessary to monitor for the presence

of marine mammals, for which acoustics provides a useful tool.

1.3 Towed Hydrophone Arrays

The most common hydrophone array configuration utilised in many marine mammal acoustic

based research projects is a towed hydrophone array consisting of two hydrophone elements

spaced between 25 cm and 300 cm [3–5, 12]. These hydrophone array configurations provide

a single time-delay measurement representing the difference in arrival time of an acoustic

wavefront between the receivers. This time-delay is commonly assumed to be a measure

of bearing of the animal from the axis between the two receiving sensors where it remains

ambiguous as to whether the source animal is to the left or right of the array and how far

the animal is. Resolving the left-right ambiguity is possible by manoeuvring the array and

observing the change in measured time-delay [3]. The time-delay measurement is, in fact,

a function of both the animal horizontal bearing and vertical elevation angles, therefore the

ambiguity of the animal’s position is characterised as a hyperboloid centred on the array

axis. It has been proposed that range can be resolved using acoustic reflections [28, 29, 48],

triangulation [3] or received sound pressure levels [20]. All three of these methods suffer

from major drawbacks, surface reflections often can not be robustly detected, triangulation

methods fail to account for the motion of the animal and the use of sound pressure levels

requires knowledge of environmental parameters, vocalisation directionality properties that

are unlikely to be available and accurate equipment calibration.

Appropriate computer software, such as PAMGUARD [49], can compute an assumed horizon-

tal angle from which vocalisations are received given the measured time-delay. When operated

by a suitably skilled individual such a tracking system can be effective, however, reliability

is dependent on the operator’s tracking skills. As the number of vocalising animals increases

so too does the workload placed on the operator and the effectiveness of the tracking system

is likely to decrease. Range information can be acquired through triangulation by using two

pairs of hydrophone elements in the array so that two time-delay measurements are computed

for each received click. However, even if utilising arrays comprising of two hydrophone element

pairs, a left-right ambiguity remains and depth information can not be established without

robust detection of acoustic reflections. Many marine mammal research projects operate with

limited financial resources so acquisition of new hydrophones arrays or larger towing vessels,

required for towing larger hydrophone arrays, may not be possible.
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A clear need exists for a robust automated software based tracking method capable of esti-

mating bearing, range and elevation of an animal from time-delay measurements from any

configuration of towed hydrophone array, particularly two element arrays. Developments for

two element hydrophone arrays could later be expanded to include the additional informa-

tion provided by additional elements as future work. It is proposed that estimating these

parameters from successive time-delay measurements can be achieved by modelling the source

location ambiguity as a probability density function (PDF) so that all possible locations can be

modelled and maintained between estimate updates. A point representing the source location

can then be estimated as the mean of the PDF.

1.4 Particle Filters and the Proposed Tracking Solution

Tracking filters are recursive Bayesian estimators that have been utilised in various forms in

tracking applications since the 1960s when Kalman first reported development of the Kalman

filter [50]. Target states are estimated from a prior distribution that models how the system

evolves over time and the measurement PDF defined by the measurement and statistical

parameters of the measurement noise process. Particle filters are a category of tracking filter

based on sequential Monte-Carlo simulations that became a practical solution to tracking

problems in 1993 when the necessary computing power became readily available [51–54].

Particle filters have been utilised in a variety of applications including maritime and aviation

angle-only measurement tracking [55], navigation [56] and computer vision [57]. Particle filters

have been widely reported to provide effective tracking solutions where the measurements are

angle-only measurements and the problem is to estimate target range [55,58–61]. It is proposed

that by applying similar methods the bearing, range and elevation angle of a whale can be

passively tracked from the time-delay measurements measured across the array aperture.

Sperm whales are the ideal candidate species for developing tracking methods because the

impulsive characteristics, source sound pressure levels (up to 236 dB re 1 µPa peak-to-peak)

and central frequency (15 kHz) of their vocalisations allows for propagation over significant

ranges rendering them relatively easy to detect [13–16].

1.5 Thesis Structure

Chapter 2 discusses acoustic localisation methods generally and those developed specifically

for tracking sperm whales. Chapter 2 then proceeds to develop and describe in more detail

the proposed tracking method. The conceptual tracking problem and its solution are pre-

sented in chapter 3; followed by derivation of the Kalman filter, discussions of the extended

and unscented Kalman filters, a conceptual derivation of the particle filter and discussion of

the sampling importance re-sampling (SIR), auxiliary SIR and locally linearised particle fil-

ters. Application of tracking filters, namely the SIR particle filter, to sperm whale tracking
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is discussed. Chapter 4 discusses motion modelling, tracking coordinate systems and sperm

whale motion. Following these sections an appropriate sperm whale tracking motion model

is developed and coordinate system presented. Chapter 5 tests the proposed tracking system

on simulated data. The complexity of the problem is increased over the course of the chapter

to test the algorithm’s performance and consistency. Sperm whales are often encountered in

groups, therefore a viable tracking solution needs to be capable of correctly associating each

received vocalisation with the individual animal that produced it. Chapter 6 addresses this

issue using a multiple hypothesis tracker. Tracking of real sperm whales with the develo-

ped algorithms is presented in chapter 7. Conclusions and suggestions for further work are

discussed in chapter 8.

This thesis makes the following contributions to tracking and marine mammal research:

1. Proposition that acoustic localisation of a sperm whale using a two element towed array

should model the ambiguity of the animal’s position as a PDF where the mean of the

PDF is regarded as the animal location.

2. Modelling sperm whale motion so that changes in heading, pitch and speed are normally

distributed but speed samples are subject to a rejection function that prevents the

model achieving unrealistically high speeds due to a lack of range information in the

measurements.

3. An MHT based algorithm to associate received vocalisations with click trains from in-

dividual animals and discriminate against clutter using the time-delay measurement for

each received click.

4. Implementation of spatial tracking using particle filtering to localise the animal using

time-delay measurements from a two element towed hydrophone array.



Chapter 2

Acoustic Localisation

Acoustic localisation is the computation of the position of an acoustic source via an array

of acoustic sensors in known positions. Source location is computed based on differences in

propagation time of the sound from source to each receiver. The configuration of the array

depends on the application and the environment. For acoustic sperm whale tracking the

hydrophone array is most commonly of a linear configuration so that it can easily be towed

behind a boat, however fixed wide or small aperture arrays may also be used.

This chapter reviews current methods of localising an acoustic source, in particular sperm

whales and other marine mammals using either a fixed hydrophone array or a towed array.

Section 2.1 conceptualises the localisation problem as the inverse of the forward propagation

model. Computation of arrival time differences are discussed in section 2.2 and beamforming

as a method of determining the direction of an acoustic source is described in section 2.3. A

discussion on hydrophone array configurations is presented in section 2.4 and using surface

reflection detections to create virtual sensors is described in section 2.5. Localisation methods

for both fixed and towed hydrophone arrays are presented in sections 2.6 and 2.7. Finally

the proposed novel method of localising using tracking filters in conjunction with towed linear

arrays is presented in section 2.8.

2.1 Localisation Problem

Propagation of an acoustic wavefront from an acoustic source at position ak to a set of Nr

receivers at positions {rk}1:Nr
to give a set of measured delays bk can be modelled as [22]:

bk = h (ak; Θk) + vk (2.1)

where h models the function transforming the position of the acoustic source to the measured

time-delays, Θk are the parameters affecting the propagation channels at time k such as water

temperature and salinity [62] and vk is a noise process that characterises the errors in the

time-delay measurement process.

5
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The model (2.1) can be inverted to provide a conceptual solution to the localisation problem

whereby the acoustic source location is:

ak = h−1 (bk; Θk) (2.2)

The noise term vk has been omitted because it is unknown. Omission can be justified if

vk is assumed to be a normally distributed zero-mean random process so that E {vk} = 0.

It is unlikely that the exact channel parameters Θk will be available, especially when the

propagation medium is sea water, in this case an assumed or estimated parameter set Θ̂k may

be used instead so that the approximated inverse of (2.1) is [22]:

âk = h−1
(
bk; Θ̂k

)
(2.3)

Two sources of error exist, if Θ̂k 6= Θk then âk 6= ak and the effects of vk have been ignored.

If statistical parameters of vk are known then localised linear approximations of the model

can be made to evaluate the effects of vk on âk [22]. The effects of errors in a single model

parameter Θ̂k(n) can also be quantified as a change in source location δâk given the change

in that parameter:

δâk =
∆h−1

(
bk; Θ̂k

)

δΘk(n)
δΘk(n) (2.4)

where Θk(n) is the nth component of the propagation parameter vector Θk and

∆h
−1

(
bk; Θ̂k

)
/δΘk(n) is the model sensitivity. Generally sources closer to the geometric centre

of the array are less sensitive to errors in model parameters [22].

2.2 Time-Delay Estimation

A sound wavefront propagating from source position ak to sensors at positions {rk}1 and

{rk}2 will arrive at each sensor with a time difference τ , so that the received signals can be

modelled as [63,64]:

sk(1) = h
signal
k (ssource

k , {Θk}1) + vk(1) (2.5)

sk(2) = h
signal
k+τ (ssource

k , {Θk}2) + vk(2) (2.6)

where h
signal
k ( ) represents the combined transfer function of the acoustic propagation channel

from source to receiver and the transfer function of receiving equipment, ssource
k is the acoustic

signal at the source, sk(1) is the signal received on channel 1 and vk(1) is a noise process

affecting the signal received on channel 1. The arrival time-delay τ can be found by cross-

correlating the two signals:

sk(1)⋆sk(2) =
∞∑

k=−∞

sτ (1)sk+τ (2) (2.7)
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Figure 2.1: The signals received from the same acoustic wavefront arriving at two spatially se-
parated sensors are shown in (a). The cross-correlation function of the two signals
is shown in (b). The peak in the cross-correlation function indicates the arrival
time-delay between the two sensors.

where ⋆ denotes cross-correlation function the maximum of which is at lag τ which corres-

ponds to the arrival time-delay. An example of the cross-correlation process for measuring

time-delay is shown in figure 2.1. Figure 2.1(a) shows the signals of a sperm whale click re-

ceived by two acoustic sensors, one in red and one in blue. The cross-correlation function of

the two signals is shown in figure 2.1(b), where the peak in the function represents the point

of maximum correlation and therefore the delay in arrival.

If the source is at long range it can be assumed that the source is in the array’s far-field

and that the wavefront is planar. Given the distance between the sensors and the effective

propagation speed of the wavefront then the time-delay τ can be transformed to a received

angle α. This angle is the direction of the source from the axis of the sensor pair, so that a

forward end-fire arrival is 0 rads and rearward end-fire arrival is π rads:

α = cos−1 c

d
τ (2.8)

where d is the distance between the sensors and c is the effective sound propagation speed.

The angle α is a function of bearing, φ,and elevation, ψ, of the source from the sensor pair:

α = cos−1 (cosψ cosφ) (2.9)

Multiple solutions satisfy this function for any given α. The time-delay (and hence α) is

independent of source range, therefore if φ and ψ are unchanged but the source range is

decreased or increased the time-delay will remain the same. In practice this causes a source

location ambiguity whereby the source can lie anywhere on the surface of a hyperboloid centred

on the axis between the sensors. In 2D (no elevation parameter) φ and α are equal and the

ambiguity is a hyperbola [65], as illustrated in figure 2.2.
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Figure 2.2: The hyperbola shaped source location ambiguity curve obtained from time-delay τ

2.2.1 Measurement Error

Typically the signals will be processed digitally so τ will be measured in samples which results

in a quantisation error in the computation of α. This error can be quantified using a first-

order Taylor series expansion. The received angle can be described as the cosine function of

an arrival ± some variation (or error) δτ :

α = cos−1
(
c

d
τ +

c

d
δτ

)
(2.10)

The first-order Taylor series approximation is:

g (x+ δx) ≃ g (x) + δxg′ (x) (2.11)

In the case of the inverse cosine function the first order Taylor series terms are:

g (x) = cos−1 x g′ (x) = − 1√
1 − x2

(2.12)

Applying the terms of (2.12) to (2.10) and substituting into (2.11) yields:

α ≃ cos−1 c

d
τ − c

d

δτ√
1 − τ2

(2.13)

If the first term of (2.13) is the clean reception angle given τ then the variance of the distri-

bution is given by the square of the second term:

var {α} =
c2var {δτ}
d2 (1 − τ2)

(2.14)

This shows that if var {τ c/d} is fixed, then as |τ c/d| increases so too does var {α}. In practice

this means there is a measurement error due to quantisation that increases as the target angle
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Figure 2.3: The signal envelope of a sperm whale click train

nears end-fire.

2.2.2 Time-Delay Coherence

The robustness of cross-correlation for time-delay estimation is largely dependent on the co-

herence of the signals received on the two sensors. The coherence function Γs(1)s(2) (ω) is

defined as the cross-power spectrum of signals received by the two sensors, Ωs(1)s(2) (ω), over

the square root of the product of the two auto-power spectra, Ωs(1)s(1) (ω) and Ωs(2)s(2) (ω) of

the two signals, [64]:

Γs(1)s(2) (ω) =
Ωs(1)s(2) (ω)

√
Ωs(1)s(1) (ω) Ωs(2)s(2) (ω)

(2.15)

If coherence is low, Γs(1)s(2) (ω) ≪ 1, then there is more likely to be error in the time-delay

estimation and therefore error in the respective received angle as described in section 2.2.1.

Coherence is largely dependent on the signal-to-noise ratio (SNR) which decreases as the

distance between the two sensors increases, therefore poor coherence is more likely to be a

problem on large aperture arrays, such as bottom mounted sensors, than on small aperture

arrays such as towed arrays and portable fixed arrays. Low coherence of sperm whale clicks

on widely spaced sensors can be attributed to the directional characteristics of sperm whale

vocalisations potentially causing the received signals to differ significantly [14, 16, 22]. Sperm

whale clicks are also regular, without being exactly periodic, so multiple peaks can occur in

the cross-correlation function and determining the correct peak may not be a trivial task.

This problem may be compounded if the animal is significantly closer to one sensor than the

other so that the click at time k+1 arrives at the near sensor before the click at time k arrives

at the far sensor. The problem becomes even more involved in the presence of multi-path

arrivals via surface or sea-floor reflections.
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Figure 2.4: The spectrogram of a sperm whale click train. Clicks are visible as short duration
wide-band impulses

2.2.3 Cross-correlation of Low Coherence Signals

Where it is not possible to extract robust cross-correlations using the received time domain

signals it may be possible to cross-correlate transformed signals or evaluate time-delays based

on a statistical analysis of the signals. One alternative to cross-correlating acoustic signals

is to cross-correlate the signal envelopes. Typical sperm whale echo-location clicks have a

duration of approximately 20 ms [13], therefore 20 ms is the logical window size for computing

the power of the signals. An example of a click train envelope is shown in figure 2.3. If

the cross-correlation function of the signal envelopes still includes multiple peaks then it is

possible to compute a histogram of the correlation within a time-window [22]. The peak value

of the histogram is taken to represent the correct delay. Further estimation is then possible

by taking the mean of the delay values falling into the peak bin.

Time-delays can be computed by cross-correlating the spectrograms of the received signals or

frequency contour maps derived from the spectrograms. The echo-location clicks are clearly

visible in the spectrogram of figure 2.4 as short duration wide-band impulses. In the case

of sperm whale clicks a click map can be produced from the spectrogram on each channel,

essentially a binary string where ‘1’ represents the presence of a click, these strings can then

be cross-correlated. This is the system used by the United States Navy’s Marine Mammal

Monitoring on Navy Ranges (M3R) project [24]. When an acoustic signal includes multi-path

arrivals it is typically useful to determine which correlation peak corresponds to the direct

arrivals. In such cases the direct arrivals can be identified using an ‘augmented-template

correlation function’ (ATCF) which is a cross-correlation of the non-negative lags of an auto-

correlation function with the lags from a cross-correlation function [66,67].
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Figure 2.5: The sensor and filtering arrangement for beamforming with a planar wavefront ap-
proaching the sensor array at angle αk.

2.3 Beamforming

The arrival time-delay estimation discussed in section 2.2 works on the principle of detecting an

acoustic event and computing the direction from which it was received, beamforming utilises

the opposite approach of listening in specific directions and then detecting any acoustic events

that may be present [68, 69]. Beamforming on linear arrays is achieved using an array of

sensors and spatially processing the planar waves received across the array for specified angles

of incidence.

Figure 2.5 shows a planar wavefront propagating across a sensor array at angle αk. Each signal

feeds into an FIR filter, the coefficients of which are set to implement a variable time-delay

line used to control the angle of the beam. Using:

τk =
d

c
sinαk (2.16)

the time-delay of the wavefront arriving on adjacent sensors can be calculated, where a time-

delay of 0 is an arrival at 0 rads (broadside)1. The wavefront arriving on sensors 1 and 2

1This is a deviation from the standard used in section 2.2 and elsewhere, however treating a bearing of 0
rads as broadside simplifies derivation of the beamforming equations and conforms to the accepted standard
for beamforming.
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Figure 2.6: Time-bearing display showing beams formed between forward end-fire 0◦ and rear
end-fire 180◦. The energy between 0◦ and 40◦ is boat noise. Energy from sperm
whale clicks can also be observed.

arrives with delay τ , at a delay of 2τ between sensors 1 and 3 and with a delay of (M − 1)τ

between sensors 1 and M . The beam is formed by spatially summing over the delayed signals:

sbeam
k =

M∑

m=1

sk−(m−1)τ (m) (2.17)

The result, sbeam
k , is the beam signal in the direction αk with acoustic signals from sources at

other angles filtered out. A more efficient method of implementation is to utilise the phase

difference of the arriving wavefront at each sensor in place of the time-delay line, so that:

sbeam
k =

M∑

m=1

Aamp exp {−j (2πω0 (k − (m− 1)τ) − ρ · [(m− 1)d, 0])} (2.18)

= Aamp exp {2πjω0k}
M∑

m=1

exp {−j (2πω0(m− 1)τ + ρ · [(m− 1)d, 0])} (2.19)

where Aamp is amplitude, ω0 is the temporal frequency of the wave, [(m− 1)l, 0] is the posi-

tion of the mth sensor and ρ is the wave number vector given the wavelength λ and sound

propagation speed:

ρ =

[
ω

c
sinα,

ω

c
cosα

]
(2.20)

where ω/c = 2π/λ. A time-bearing display using beamforming for detecting sperm whale clicks

over a 1 minute period is shown in figure 2.6. Forward end-fire is at 0◦ and rear end-fire is

at 180◦. The band of energy between 0◦ and 40◦ is noise created by the vessel towing the
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hydrophone array. Sperm whale clicks can also be observed, one click train can be observed

between 50◦ and 85◦ between 0 s and 60 s. As is the case for source bearing estimation using

time-delay measurements, beamforming on linear arrays results in a source location ambiguity

surface for any combination of φ and ψ that satisfies (2.9) and is unable to determine range.

Beamforming is used to detect and track marine mammals in [70] where left-right information

is inferred from the known snaking of the array (acquired using heading sensors) as it is towed

through the water. TNO’s Delphinus array, designed for marine mammal research, is equipped

with 16 low frequency elements for beamforming [37, 47]. Further discussion of beamforming

is beyond the scope of this work as it is not utilised, however more information is available

in [68,69].

2.4 Hydrophone Array Configurations

Hydrophone arrays for marine mammal research can be divided into two categories, towed

arrays and fixed arrays. Towed arrays are linear arrays towed behind a boat or ship, whereas

fixed arrays maintain a fixed position. The most common hydrophone configuration used

in marine mammal studies are towed hydrophone arrays. Such arrays comprise of a length

of towing cable followed by the hydrophone elements towed behind a boat or ship. Towed

arrays often consist of only two hydrophone elements which can be used to compute arrival

time-delay measurements across the array aperture [3]. The inclusion of more elements within

the array allows for beamforming [37, 47]. Although the computed source direction is one

dimensional, and therefore results in a source ambiguity hyperboloid, towed arrays are very

popular because the costs of construction and deployment are relatively low. Towed arrays

can also be used in population surveys over large areas [3,4] and for tracking specific individual

animals through a dive cycle [47].

When utilising a towed hydrophone array comprising of a single hydrophone pair, time-delay

measurements are extracted as described in section 2.2. The time-delays are then used to

approximate the bearing of the source animal and, over time, establish range and whether the

animal is to the left or right of the towing vessel. A more detailed discussion of localisation

using towed arrays is presented in section 2.7. Towed arrays can be extended to include

a second hydrophone pair which can be used with the first to triangulate the range of a

vocalising animal [28,29]. The two hydrophone pairs are separated by some distance so there

is a technical challenge in associating the clicks received on each hydrophone pair from the

same source animal.

Fixed arrays can be either large aperture or small aperture. Small aperture arrays can be

deployed temporarily or permanently, however large aperture arrays, such as bottom mounted

sensors, tend to be long term deployments due to cost. An example of a large aperture array

is the US Navy’s Atlantic Underwater Test and Evaluation Centre (AUTEC) range where the

hydrophones are mounted on the sea-floor and spread over distances of several kilometres [71].

Arrays such as the AUTEC range are very expensive to deploy and maintain. Finfer et al.
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Figure 2.7: An acoustic source and the direct and reflected acoustic propagation paths. The
reflected path can be used to establish a virtual receiver

utilised a small aperture fixed array lowered over the side of a sailing boat to localise clicking

sounds in British coastal waters [72]. Small fixed arrays can easily be lowered over the side of a

boat, raised again and relocated, however it would take considerably more time to acoustically

survey the same area than if using a towed array.

The benefit of fixed arrays over towed arrays is that they do not have to be linear and there-

fore the elements can be separated over three dimensions thereby allowing three dimensional

localisation. Three dimensional localisation is possible with only four elements separated over

the three dimensions, however this can lead to ambiguous source localisations so ideally a

minimum of five elements should be utilised [73]. Localisation methods for fixed arrays are

presented in section 2.6.

2.5 Surface Reflections and Virtual Sensors

Sperm whale clicks are often received on hydrophones via more than one propagation path

through the ocean. The first arrival is direct but the second is reflected via either the surface

or the sea floor. Reflected waves propagate via a longer path so are received after the direct

arrival, if detected and associated with the correct direct arrival they can be used to establish

virtual sensors and provide additional localising information [22,23,28,29,63,74].

The propagation paths of the direct and reflected receptions are shown in figure 2.7. Cross-

correlating the direct and reflected arrivals on a single sensor yields the delay between the

direct arrival and the reflection in a similar manner as is achieved by cross-correlating the

signals received on two separate sensors. If a reflection can be detected then the additional

time-delay measurement can be defined as being between the real sensor below the surface

and a virtual sensor an equal distance above the surface.

Nosal and Frazer propose using only the time-delays between direct and reflected arrivals

rather than measuring the time-delays of direct arrivals between sensors, for localising on

large aperture fixed arrays [23]. The direct-reflected time-delays are used to establish an
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Figure 2.8: A 2D illustration of four hyperbolas and the acoustic source at the point at which
they intersect

ambiguity surface around each individual sensor where the source is located at the point at

which the ambiguity surfaces around each sensor intersect. To account for error in the cross-

correlations and the eventuality that all the surfaces do not uniquely intersect at a specific

point, a radial-basis function is applied to each of the ambiguity surfaces. Each point on

the ambiguity surface has a high probability which reduces for points away for the ambiguity

surface. The source location is the point in 3D space at which the product probability is

greatest.

Surface reflections can be utilised for source depth estimation on towed arrays [28, 29] and

improving depth estimation for fixed arrays [22]. For algorithms using surface reflections

in localisation to be robust detection of reflections and association with the correct direct

arrival must be reliable. In many cases, especially for sources at longer ranges, reflections are

not necessarily detectable or distinguishable from the direct arrival, consequently techniques

utilising surface reflections are not always practical.

2.6 Fixed Array Localisation

The time-delays on a fixed array are measured between a reference sensor and each of the

Nr −1 additional sensors. Each of the Nr −1 time-delays defines a hyperboloid centred on the

sensor pair axis, the point at which each of these hyperboloids intersect represents the source

location, shown in figure 2.8.

Having acquired the time-delays it remains to solve (2.3). Three-dimensional resolution is pos-

sible given appropriate sensor separations and can be achieved via a weighted least squares or
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an analytical approach. The weighted least squares approach involves searching for the source

location parameters that, when substituted into (2.1), match the time-delay measurements.

An analytical approach requires calculating the propagation time for the acoustic wavefront to

propagate from the source to the reference sensor and combining the result with the measured

time-delays to find the source location. Both these methods are presented in the following

sections.

2.6.1 Weighted Least Squares Localisation

If h ( ) is entirely accurate and Θ̂k = Θk then the maximum likelihood of the source location

is obtained by minimising the weighted least squares function [22]:

Ψ (ak) =
N∑

n=2

(τ(1, n) − h (ak; Θk))2

var {τ(1, n)} (2.21)

where τ(1, n) is the time-delay between receivers 1 and n. The measurement noise variance

var {τ(1, n)} between sensors 1 and n is derived from spectral analysis of the delay estimates.

Assuming low frequency components relate to animal movement, the noise variance can be

estimated from higher frequency components. The source location is the minimum of the

squared error surface where the value of ak minimises Ψ (ak). The minimum is found using a

gradient descent algorithm such as the Nelder-Mead simplex algorithm [75].

2.6.2 Analytical Localisation

Given an array of acoustic sensors at time k at known positions {rk}1:Nr
, a vector of known

arrival times between the reference sensor and other sensors and a known constant sound

speed c, then the source location ak can be determined analytically [73, 76]. The distance

between the source location and the nth sensor {rk}n is:

|| {rk}n − ak|| = ct(n) (2.22)

= c (τ(1, n) + t(1)) (2.23)

where t(1) is the propagation time from source to reference receiver, t(n) is the propagation

time from source to the nth sensor and c is the sound propagation speed. When squared this

expression becomes:

|| {rk}n − ak||2 = c2 (τ(1, n) + t(1))2 (2.24)

If the reference sensor {rk}1 is positioned at the origin of the coordinate system then the

propagation time, t(1), from source to the reference sensor can be calculated. If the source
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Figure 2.9: Side projection of a two element towed hydrophone configuration with typical cable
length and aperture for tracking sperm whales

location is2:

ak = R−1 ι

2
− c2t(1)R−1τ (2.25)

where:

R =




{rk(1)}2 {rk(2)}2 {rk(3)}2

{rk(1)}3 {rk(2)}3 {rk(3)}3

{rk(1)}4 {rk(2)}4 {rk(3)}4

{rk(1)}5 {rk(2)}5 {rk(3)}5




(2.26)

τ =




τ(1, 2)

τ(1, 3)

τ(1, 4)

τ(1, 5)




(2.27)

ι =




|| {rk}2 ||2 − c2τ2(1, 2)

|| {rk}3 ||2 − c2τ2(1, 3)

|| {rk}4 ||2 − c2τ2(1, 4)

|| {rk}5 ||2 − c2τ2(1, 5)




(2.28)

then solving:

t(1) =
cρ2 ±

√
c2ρ2

2 − (c2ρ3 − 1) ρ1

2c (c2ρ3 − 1)
(2.29)

yields the propagation time from ak to {rk}1, where:

ρ1 =
({

r−1
}

1:5
ι
)T ({

r−1
}

1:5
ι
)

(2.30)

ρ2 =
({

r−1
}

1:5
τ

)T ({
r−1

}
1:5

ι
)

(2.31)

ρ3 =
({

r−1
}

1:5
τ

)T ({
r−1

}
1:5

τ
)

(2.32)

Where the effective sound speed between ak and each sensor {rk}1:5 is not equal t(1) becomes

the root of a quartic, details of this case and the necessary equations are presented in [76].
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2.7 Towed Array Localisation

A typical towed hydrophone array with a single element pair yields a single time-delay mea-

surement that results in a hyperboloid shaped ambiguity surface centred on the array axis, as

described in section 2.2. The configuration of a two element towed hydrophone array is shown

in figure 2.9 along with typical cable length, 100 - 200 m, and aperture, 1.4 - 3 m, for tracking

sperm whales. Although a single measurement alone yields a source ambiguity it is possible

to use multiple measurements to approximate the position of an animal.

Estimates of the animal’s bearing to the hydrophone array can be made by negating the fact

that the received time-delay is a function of both the bearing and elevation of the animal and

assuming it is simply a function of the bearing. Making this assumption reduces the ambiguity

surface to an ambiguity curve and it remains to resolve the range of the animal and whether

the animal lies to the left or right of the hydrophone pair.

Towed arrays may be equipped with array positioning instrumentation such as depth sensors,

heading sensors, inclinometers and speed sensors. Such instrumentation provides information

on the position and motion of the array elements relative to the boat which will be different

to the boat itself due to the cable length. The information from the positioning instruments

can be used in conjunction with the acoustic data to improve location estimation accuracy

and are important for use of the localisation methods described by Thode [28,29].

2.7.1 Range Estimation

Range estimation aims to establish the distance of the animal from the hydrophone array.

Range can be subdivided into horizontal range, depth and slant range which is the magnitude

of the horizontal range and depth. A very crude method of range estimation is to use the re-

ceived sound pressure level [20]. This method assumes the equipment is accurately calibrated,

good knowledge of the environmental parameters is available and the animals’ vocalisations

are omni-directional which, for sperm whales, is not the case [16].

If time-delay measurements are acquired from the array in two different positions, the source

is stationary and the hydrophones and source are in the same horizontal plane, so that α = φ

then the horizontal range can be estimated using multi-view geometry [77]. The necessary

multi-view geometry is shown in figure 2.10. The position of the source rk at time k and k+n

can be independently defined as the sum of the hydrophone array position and the relative

source position:

ak = rk + rk [cosφk, sinφk]′ (2.33)

ak+n = rk+n + rk+n [cosφk+n, sinφk+n]′ (2.34)

2
R is used here as a matrix of sensor position row vectors, as defined in (2.26), and should not be confused

with the use of R with subscript (of the variables the covariance is taken of) as a notation for covariance
matrices in following chapters.
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Figure 2.10: Multi-view geometry for calculating the range of and localising a stationary target
using bearings measured at k and k + n from positions rk and rk+n

where rk
3 is the unknown horizontal range at time k and ak = ak+n. The difference in

the relative positions of the source at each measurement is the same as the difference in the

position of the array:

rk+n − rk = rk+n

[
cosφk+n

sinφk+n

]
− rk

[
cosφk

sinφk

]
(2.35)

Re-formulating in matrix-vector form gives:

rk+n − rk =

[
cosφk − cosφk+n

sinφk − sinφk+n

]−1 [
rk+n

rk

]
(2.36)

which, when re-arranged to make the ranges the subject is:

[
rk

rk+n

]
=

[
cosφk − cosφk+n

sinφk − sinφk+n

]−1

[rk+n − rk] (2.37)

Substituting the calculated ranges back into (2.33) and (2.34) yields the position of the source.

In practice it is the range at time k+ n which is of interest as this is the most recent position

of the array.

The multi-view geometric approach relies on the target being stationary. If the animal is

moving in the same direction as the array the range will be over-estimated, if the animal

is travelling in the opposite direction the range will be under-estimated as shown in figures

2.11(a) and 2.11(b). The extent of the error is dependent on the magnitude of the speed diffe-

rence. For the stationary assumptions to hold the array must be moving significantly quicker

than the animal. Although this method of range estimation can be described analytically it is

typically performed using computer software whereby the operator plots bearing lines, derived

from the time-delay measurements, on a chart and looks for the point at which they intersect.

Reconfiguring a towed hydrophone array to consist of two hydrophone element pairs as shown

in figure 2.12 allows slant range to be computed using multi-view geometry because time-delay

3It should be noted that rk is the position vector of the receiving sensor pair and rk is the target range.
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Figure 2.11: Examples of how source motion causes error in range estimation when the source
is travelling (a) the same direction as the boat and (b) the opposite direction to
the boat.

measurements are received on both hydrophone pairs from the same vocalisation. In such cases

the source location ambiguity surface is reduced to circular shape at a range determined by

the time-delay received at each sensor pair.

Using Surface Reflections to Improve Range Estimation and Estimate Depth

Using surface reflections and knowledge of the global inclination of the array and local inclina-

tion of the hydrophone pairs depth and horizontal range estimation becomes possible [28,29].

Figure 2.12 shows the geometry of a two sensor pair array. Two additional array geometry

elements are introduced here, the local inclination angle at the rear element pair, νlocal, and

the global inclination angle between the front and rear sensor pairs, νglobal. Exploiting the

geometries shown in figure 2.12 the slant range of the animal to the rear hydrophone pair,

rdirect,rear, can be calculated as:

rdirect,rear = rfront,rear +
dfront,rearrfront,rear cosαdirect,rear −

((
dfront,rear

)2
+

(
rfront,rear

)2
)
/2

dfront,rear − rfront,rear cosαdirect,rear

(2.38)
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Figure 2.12: The geometries of direct and surface reflected arrivals of sperm vocalisations to the
hydrophones pairs on a two hydrophone pair array (after Thode 2005 [29])

where rfront,rear is the difference in slant range of direct arrivals to the front and rear hy-

drophone pairs, dfront,rear is the distance between the front and rear hydrophone pairs and

αdirect,rear is the received angle of the direct arrival on the rear hydrophone pair. Equation

(2.38) assumes that νlocal = νglobal, i.e. the array cable is straight. If νlocal 6= νglobal then:

rdirect,rear = rfront,rear +
A1 −A2

A3 −A4 −A5
(2.39)

where:

A1 = dfront,rearrfront,rear cos νglobal cos νlocal

(
dfront,rear

)2
+

(
rfront,rear

)2

2
(2.40)

A2 = dfront,rear sin
(
νlocal − νglobal

)
. . .

. . .

[
zrear − rdirect-rear,reflec-rear 2rfront,rear + rdirect-rear,reflec-rear

4zrear

]
(2.41)

A3 = cos νlocalrfront,rear (2.42)

A4 = dfront,rear cosαdirect,rear cos νglobal (2.43)

A5 = dfront,rearrdirect-rear,reflec-rear sin
νlocal − νglobal

zrear
(2.44)

where zrear is the depth of the rear element pair. The propagation distances for the direct

arrivals (also the slant range) and reflected arrivals can be defined as:

rdirect,rear =
√

(rhoriz,rear)
2

+ (zwhale − zrear)
2

(2.45)

rreflec,rear =
√

(rhoriz,rear)
2

+ (zwhale + zrear)
2

(2.46)
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The rear hydrophone pair slant range can be used along with the front hydrophone pair slant

range to calculate animal depth. The front hydrophone pair slant range is computed from the

rear direct arrival:

(
rdirect,front

)2
=

(
dfront,rear

)2
+

(
rdirect,rear

)2
− 2dfront,rearrdirect,rear cosαglobal (2.47)

where αglobal is the angle of reception from the time-delay between the front and rear hydro-

phone pairs. The animal depth, zwhale, can now be calculated:

zwhale =

(
rreflec,rear − rdirect,rear

) (
2rdirect,front + 2rfront,rear +

(
rreflec,rear − rdirect,rear

))

4zrear

(2.48)

The horizontal range of the animal from the rear hydrophone pair and depth can now be

calculated using (2.45) and (2.48) and used to calculate the horizontal bearing of the animal.

As well as this analytic method it is also possible to compute the source location of the animal

via this geometry using a numerical method [29].

Although this method provides three dimensional localisation once the left-right ambiguity

has been resolved (see section 2.7.2) it relies on being able to robustly detect surface reflec-

tions. The appropriate instrumentation on the array to enable knowledge of the array depth

and inclination at both the front and rear hydrophone pairs and the appropriate element

arrangement is also necessary.

2.7.2 Left-Right Resolution

When tracking a sperm whale using a single-hydrophone pair towed array it is common to

assume that the animal is in the same horizontal plane as the hydrophone pair so that α = φ. In

this case the three-dimensional hyperboloid ambiguity surface collapses to a two-dimensional

ambiguity hyperbola, as illustrated in figure 2.2. One implication of this assumption is, in the

two-dimensional case, it is unknown whether the animal is to the left or right of the array and

is referred to as the left-right ambiguity.

A left-right ambiguity can be resolved by manoeuvring the towed array and monitoring the

change in received time-delay. If after turning the towing vessel and array to port the clicks

are received from a more forward direction then the animal is to the left, if the click receptions

move towards the rear then then animal is to the right. This process is shown in figure 2.13.

This method can fail to produce a clear resolution of the ambiguity if the horizontal range

is relatively short in comparison to the animal’s depth as the elevation component of the

received measurement will be significant. As for range estimation using a hydrophone pair,

left-right ambiguity resolution is typically performed by a human operator plotting bearing

lines, derived from the time-delay measurements, on a digital chart and deciding to which side

of the boat the animal is situated.

An alternative method of resolving left-right ambiguity is to tow an additional hydrophone

with some horizontal separation to the standard hydrophone pair [29]. The time-delay between
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ak+n

rk+n

rk

Figure 2.13: To resolve the left-right ambiguity the vessel manoeuvres to the left and the mea-
surements move rearwards indicating the animal is to the right

the additional hydrophone and the standard hydrophone pair can then be used to determine on

which side of the array the animal is situated. Practicality is limited because of the difficulties

involved in maintaining independent hydrophones in the correct relative positions due to

differing cable lengths and tow depths that are dependent on hydrophone array buoyancy

characteristics.

2.8 Proposed Localisation and Tracking Solution

Several methods for localising vocalising sperm whales for different configurations of array

have been reviewed. The most common array configuration is the towed array utilising a

hydrophone pair, therefore development of improved localisation and tracking methods for

these types of arrays and their associated measurements is warranted. It is desirable to avoid

the use of additional equipment, received sound pressure level measurements and detection of

surface reflections. Methods that can be implemented purely in software are likely to bring the

most far-reaching benefits because NGOs and academic institutions can upgrade their tracking

systems without the cost of purchasing additional hardware or replacement hydrophone arrays.

Hydrophone pair towed array systems have been utilised successfully and effectively for many

years, however they require a human operator to decide on the position of the animal. Al-

though the assumptions required for the associated tracking, range and left-right estimation

methods are crude and results are subjective to the skills of the operator, they utilise only

the time-delay measurements of directly arriving clicks. If the assumptions that the hydro-

phones and animal are in the same plane and that the animal is stationary can be relaxed

then improved localisation, including depth estimation, would be possible. Additionally it

is also desirable to automate the localisation and tracking process. Methods that have been

proposed for this purpose require either additional hardware, in the form of more hydrophone
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elements and positioning instruments, or robust surface reflection detection.

As discussed, there are many possible positions in which the animal could be situated to

produce a given time-delay measurement. It is proposed that if the source location ambiguity

is modelled as a probability density function (PDF) then the source can be estimated as the

mean of the PDF via a minimum mean squared error (MMSE) estimate. The PDF modelling

the ambiguity can then be updated whenever a new measurement is received and a new

estimate made. Initially the PDF can be uniform over the source ambiguity hyperboloid.

As more measurements are acquired the PDF will change shape to favour a particular range

interval and, as the towing vessel and array manoeuvre, a bearing and elevation interval.

Given the source location ak, it is a relatively simple process using (2.1) to calculate the delay

τk. As discussed in section 2.2.1 the measurement process is noisy so it is appropriate to

represent τk in terms of a PDF:

p (bk|ak) (2.49)

where bk = τk, the mean of PDF (2.49) is given by (2.1) when vk = 0 and the variance is

defined by the noise process vk, itself dependent on the resolution of the cross-correlation.

Inversion of (2.49) requires Bayes’s theorem [78] so that ak is derived from the posterior

distribution dependent on all the previously measured time-delays, known as the measurement

history:

p (ak|b1:k) =
p (bk|ak) p (ak|b1:k−1)

p (bk|b1:k−1)
(2.50)

The derivation of this posterior distribution is presented in section 3.2. A further advantage

of a Bayesian approach to tracking is that should a second hydrophone pair be available the

additional time-delay measurement is simply augmented to the measurement vector bk and

the information is incorporated into constructing the posterior PDF representing the animal’s

position.

Tracking filters, such as the Kalman filter and particle filter, are recursive Bayesian estimators

and the particle filter has been reported as successfully tracking a target from passive bearing

measurements where range is a parameter to be estimated [54, 55, 58, 59, 79–82]. Typically

bearings tracking scenarios track only range and bearing from a bearing measurement or track

range, bearing and elevation from both bearing and elevation measurements. The proposition

here is novel because the target to be tracked is a sperm whale, the equipment available is

relatively simple and bearing, elevation and range are to be estimated from a measurement

that is a function of the bearing and elevation of the whale to the array.

2.9 Summary and Conclusion

An acoustic wavefront propagating through the ocean from an acoustic source to a set of

sensors arrives on each receiver at a different time. The delays in the arrival time can be

computed using cross-correlation. Using these time-delays it is possible to localise the acoustic

source.
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Both fixed and towed hydrophone array configurations are utilised in acoustic based marine

mammal research. Fixed arrays separate the hydrophones over three dimensions to enable

three dimensional source localisation. Towed arrays are by far the most widely used because

of the relatively low cost of construction, deployment, re-deployment and the volume of ocean

they can be used to survey. Towed array elements are arranged in a linear configuration so are

unable to unambiguously resolve source location from a single acoustic arrival. Furthermore,

in marine mammal research typically only a single hydrophone pair is used resulting in a

hyperboloid shaped source location ambiguity surface. Methods have been developed to infer

animal range and resolve whether the animal is to the left or right of the observing vessel,

however these methods are somewhat crude and subjective.

Alternative towed array tracking methods have been proposed, however these often rely on

robust detection of surface reflections or additional equipment. Here it has been proposed that

the location of the vocalising sperm whale should be represented as a PDF constructed from

the received time-delay measurements. This would allow multiple hypotheses of the animal’s

position, along with the likelihood that an animal is in that position, to be maintained. This

PDF can then be updated whenever a new measurement is received. This is achievable if the

PDF of the animal’s position is a posterior PDF as defined by Bayes’s theorem.

Tracking filters can be utilised to implement the proposed tracking solution and are discussed

in chapter 3. Chapter 4 then builds on some of the specificities required for the application of

tracking filters to sperm whale tracking. Tracking filters are then applied to simulated data

for testing in chapter 5 before being applied to track a real sperm whale in chapter 7.





Chapter 3

Tracking Filters

After reviewing acoustic localisation methods for both fixed and towed hydrophone array

configurations in chapter 2, section 2.8 proposed representing the location of an acoustic source

as a probability density function (PDF). Such a formulation of the localisation problem allows

information on the source animal’s location to be inferred from time-delay measurements

that individually contain very limited and non-specific information. It was proposed that by

taking several such measurements over time as the tracking vessel and array manoeuvre the

information can collectively be used to infer the relative range, bearing and elevation of the

animal from the hydrophone array.

This chapter formulates a source location PDF as the posterior PDF given by Bayes’s theorem.

In section 3.1 the tracking problem is conceptualised as a recursive state estimation problem.

Section 3.2 formulates a recursive state estimation solution using Bayes’s theorem. The first

implementable version of the conceptual solution is the Kalman filter, presented in section

3.3, which is then extended to non-linear and non-Gaussian systems in section 3.4. Particle

filtering, which utilises Monte-Carlo simulations to model the posterior PDF instead of using

parametric modelling, is discussed in sections 3.5 and 3.6. Finally application of the subjects

covered in sections 3.1 to 3.6 to acoustic sperm whale tracking is described in section 3.7,

including discussion on the appropriate choice of tracking filter.

3.1 Conceptual Tracking Problem

The change in parameters of many systems, such as the position of a whale, can be characteri-

sed in a recursive form, whereby the current system parameters are a function of the previous

system parameters. In reality the system is likely to function in a continuous fashion, however

measurement acquisition and tracking are likely to be performed in the digital domain so a

discrete representation is likely to be more useful. In discrete form the system function is

characterised as a recursive Markov process [53, 54,83–85]:

ak = fk−1 (ak−1, ek−1) (3.1)

27
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where ak is the system state parameter vector at time k and ak ∈ RNa , fk−1 ( ) is the time

dynamic system function defining the transformation of the system parameters between time

k − 1 and k and ek−1 is a noise term that accounts for system components not modelled by

fk−1 ( ).

The transformation of the system parameters to measurement data, such as from whale posi-

tion to a time delay measurement, can be defined as the function [53,54,83–85]:

bk = hk (ak,vk) (3.2)

where bk is the measurement data vector at time k and bk ∈ RNb , hk ( ) is the time dyna-

mic measurement function defining the transformation between the system parameters and

measurement data and vk is a noise term that accounts for measurement components not

modelled by hk ( ).

Using the functions defined in (3.1) and (3.2), PDFs for the system update process and the

measurement process can be constructed. The transitional prior PDF, characterising the

transition of the previous system parameters to the current system parameters, is defined

as [54]:

p (ak|ak−1) (3.3)

The transitional prior could be expanded to include previous system parameters because each

parameter is dependent on the one before:

p (ak|ak−1) = p (ak|ak−1,a1:k−2)

= p (ak|a1:k−1) (3.4)

however, if the system is assumed to be a first order Markov process then ak is only dependent

on ak−1, therefore (3.4) is assumed to be the same as (3.3).

The PDF characterising the evidential data given the system parameters, referred to as the

likelihood, is defined as:

p (bk|ak) (3.5)

The likelihood density may also be expanded to include previous system parameters:

p (bk|ak) = p (bk|ak,a1:k−1) (3.6)

however, making the Markovian assumption, the term a1:k−1 can be omitted and (3.5) is

sufficient.

Where the noise components do not exist these PDFs are simply delta functions centred on

the result of the function, as shown for (3.1) in figure 3.1(a). Where there is a noise term the

shape of the PDF is defined by the distribution of the noise, as shown in figure 3.1(b) where

the noise is normally distributed.

Typically it is not the system parameters that are known but the measurement data. The
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Figure 3.1: The PDFs of the system function output with (a) no system noise and (b) normally
distributed system noise

tracking problem is to recursively estimate the target system parameters using (3.3) and (3.5).

3.2 Conceptual Tracking Solution

Estimation of the system parameters from the measurement data can be described as an inver-

sion of the forward function (3.2). Inversion of the model is often not possible as information

may have been lost in the measurement transformation which can lead to an ambiguous so-

lution, such as the loss of range information in the computation of a time-delay between two

hydrophone elements. As the solution to (3.2) is ambiguous it is more appropriate to formu-

late a PDF representing ak dependent on the measurement history b1:k = {b1, . . . ,bk}. In

order to obtain this distribution it is necessary to derive the posterior distribution from the

expanded evidence density (3.6):

p (ak|b1:k) (3.7)

which can be constructed using Bayes’s theorem.

Bayes’s theorem describes how to find the distribution of the system parameter X given the

measurement data Y :

p (X|Y ) =
p (Y |X) p (X)

p (Y )
(3.8)

where the term p (X) and p (Y |X) are the prior and likelihood respectively, p (Y ) is a nor-

malising factor and p (X|Y ) is the resulting posterior distribution. Formulating the tracking

problem in a recursive manner using Bayes’s theorem requires expressions for the prior and

normalising densities.

The transitional prior defines the current system parameter, ak, as dependent on the pre-

vious, ak−1, however the information needed to construct the previous posterior density, from

which ak−1 is derived, is the measurement data history, b1:k−1. At initialisation the poste-
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rior density is p (a0 |b0) which is recursively updated using the measurement data history,

b1:k to construct the posterior density p (ak|b1:k). Therefore, the prediction of the target

state using the measurements b1:k−1, referred to as the dynamic prior, is dependent on the

previous posterior and the transitional prior and is obtained via the Chapman-Kolmogorov

equation [53,54]:

p (ak|b1:k−1) =

∫
p (ak|ak−1) p (ak−1|b1:k−1)dak−1 (3.9)

Updating the prediction to include the current measurement, bk, to obtain p (ak|b1:k) requires

deriving the normalising factor, obtained by integrating the product of the likelihood and

dynamic prior with respect to ak:

p (bk|b1:k−1) =

∫
p (bk|ak) p (ak|b1:k−1)dak (3.10)

By substituting (3.5), (3.9) and (3.10) into (3.8) the posterior density is obtained:

p (ak|b1:k) = p (ak|bk,b1:k−1)

=
p (bk|ak) p (ak|b1:k−1)

p (bk|b1:k−1)
(3.11)

The distribution (3.11) is computed from the transitional prior distribution, (3.9), and the

likelihood distribution, p (bk|ak). Computation of p (ak|b1:k) can be described as a two stage

process, the first stage being computation of the transitional prior, (3.9), and the second stage

being computation of the posterior, (3.11). This two stage process forms the basis of the

tracking filter methods discussed in the following sections of this chapter.

Once the posterior density has been obtained it can be used to estimate the system parameters

ak as the distribution mean, via a minimum mean squared error (MMSE) estimate, or as the

distribution peak, via a maximum a-priori (MAP) estimate:

âMMSE
k|k ≡ E {ak|b1:k} =

∫
ak · p (ak|b1:k)∂ak (3.12)

âMAP
k|k ≡ arg max

ak

p (ak|b1:k) (3.13)

The different estimation methods may result in a different parameter estimate from the same

posterior PDF. In the case of a symmetric density the estimates are the same, as shown in

figure 3.2(a). If the density is asymmetric the estimates will most likely be different, as shown

in figure 3.2(b).

3.2.1 Tracking Filters as a Solution to the Tracking Problem

As shown by (3.9) and (3.11) the conceptual solution for obtaining the posterior density is a

recursive process so a recursive estimator is an obvious solution to a practical implementation

of (3.11). In practice a recursive estimator has a fixed memory requirement - as only the

evidence, transitional prior, dynamic prior and normalising distributions need to be retained
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Figure 3.2: Differences in MMSE and MAP estimates for (a) a normal PDF and (b) a beta PDF

- and so is suitable for real-time implementation.

Unfortunately storage of the necessary distributions is not necessarily a trivial matter. In

the case of normal PDFs the mean and covariance provide a complete description of the

density. If the distribution is non-Gaussian there is a potentially infinite memory requirement

to store enough information for a complete description. Gaussianity in all densities involved

is dependent on the functions (3.1) and (3.2) being linear and the noise processes ek and vk

being normally distributed and additive. If such conditions for the densities are met then the

Kalman filter, reviewed in section 3.3, is the optimal recursive estimator [53, 54, 84–86]. If

these conditions are not met then either a Gaussian distribution will have to be fitted to the

non-Gaussian densities so they can be applied to the Kalman filter framework, as they are

in the extended and unscented Kalman filters, or modelled discretely, as they are in particle

filtering.

3.3 The Kalman Filter

First proposed in 1960 as a more practical alternative to the Wiener filter [50], the Kalman

filter is a Bayesian estimator where the optimality criterion is the minimum mean squared

error:

E

{(
ak − âk|k

)2
}

(3.14)

which lies at the mean of a normal posterior distribution. The Kalman filter recursively

computes the optimal Bayesian solution for non-stationary processes as opposed to the N -

block adaptation of the Wiener filter, which assumes the system is stationary over a block of

N samples.

To adequately describe the posterior density parametrically it must be accurately described by

a mean and covariance, i.e. normally distributed, which means the system and measurement
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noise processes must both be Gaussian. For the posterior to remain normally distributed the

system and measurement functions must both be linear. If both these criteria are met then

the Kalman filter is the optimal recursive estimator [54].

The Kalman filter implements the two step approach to parameter estimation described by

(3.9) and (3.11), a prediction stage followed by a prediction update stage via an MMSE

estimate. Firstly the system and measurement equations are linearised, the prediction stage

is derived, then the MMSE estimator is presented and finally the Kalman update is derived.

The discussions in this section draw largely from [54,84,86].

3.3.1 Linear System and Measurement Functions

Re-stating the system (3.1) and measurement (3.2) functions to assume linearity allows them

to be expressed in matrix vector form:

ak = Fak−1 + ek−1 (3.15)

bk = Hak + vk (3.16)

where F and H are the system and measurement matrices characterising fk ( ) and hk ( )

respectively1 and ek and vk are additive system and measurement noise processes.

3.3.2 Target State Prediction

The transitional prior density, necessary to compute the posterior distribution, is acquired

by predicting the current target state from the target state at k − 1. If ak−1 is known then,

assuming ignorance of the measurement noise, ak can be predicted using:

âk|k−1 = E {ak|b1:k−1} (3.17)

= E {Fak−1 + ek−1|b1:k−1} (3.18)

= FE {ak−1|b1:k−1} (3.19)

where âk|k−1 is the prediction of system parameters at k given the information available at k−1.

The noise term ek is dropped from the prediction because it is independent sample-to-sample

and zero mean so E {ek} = 0, furthermore bk−1 and ek are orthogonal so E {ek|b1:k−1} = 0.

Therefore, the prediction step is:

âk|k−1 = Fâk−1|k−1 (3.20)

The target state prediction (3.20) will be updated using the Kalman update to obtain the

final state estimate in section 3.3.4.

1The matrices F and H have been set time-invariant by not maintaining the time subscript, k, from f
k

( )
and hk ( ) for clarity of notation; simply re-instating the time subscript would restore the time variability.
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3.3.3 The MMSE Estimator

If ek and vk are assumed to be zero-mean white Gaussian processes with auto-covariance

matrices Ree and Rvv respectively:

E {e1:k} = 0 E {ekem} =

{
0 k 6= m

Ree k = m

E {v1:k} = 0 E {vkvm} =

{
0 k 6= m

Rvv k = m

then ak and bk are assumed to be Gaussian random variables with covariance matrix:

R =

[
Raa Rab

Rba Rbb

]
(3.21)

so the joint probability of the Gaussian distribution of a and b can be described as [86]:

p (a,b) =
1√

2π |Rab| exp



−1

2

[
a − E {a}
b − E {b}

]′

R−1
ab

[
a − E {a}
b − E {b}

]

 (3.22)

which means the conditional probability, p (a|b), is also Gaussian [86]:

E {a|b} = E {a} + RabR−1
bb

(b − E {b}) (3.23)

The MMSE estimate is the mean of the posterior distribution, as stated in (3.12), and the

parameter estimate is conditional on the measurement history:

âk|k = E {ak|b1:k} (3.24)

Given zero means to eliminate the terms E {a} and E {b} and applying (3.23), the MMSE

estimate conditional on the measurement history is:

âMMSE
k|k = RabR−1

bb
b1:k (3.25)

The parameters ak are correlated sample to sample and therefore the data samples bk are

also correlated sample to sample. For linear MMSE estimation to be optimal the estimation

error must be orthogonal to each data sample [86, 87]. These estimation errors represent the

measurement noise and unpredictable parts of the signal and are found by subtracting the

predicted data from the actual data:

b̃k = bk − b̂k|k−1 (3.26)

where the measurement data prediction is:

b̂k|k−1 = Hâk|k−1 (3.27)
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Incorporating the innovation into (3.24) gives:

âk|k = E

{
ak|b1:k−1, b̃k

}
(3.28)

which using (3.17) can be expanded to:

âk|k = E {ak|b1:k−1} + E

{
ak|b̃k

}
(3.29)

= âk|k−1 + E

{
ak|b̃k

}
(3.30)

This establishes the predict-update form of the Kalman filter. It now remains to derive the

update expression for the estimator E

{
ak|b̃k

}
.

3.3.4 The Kalman Update

Given the predicted system parameters, âk|k−1, the unpredictable parameter components are

estimated by an MMSE estimate. Expanding E

{
ak|b̃k

}
gives:

E

{
ak|b̃k

}
= R

ab̃
R−1

b̃b̃
b̃k (3.31)

= E

{
akb̃k

}
E

{
b̃kb̃k

}−1
b̃k (3.32)

= E

{
akb̃k

}
E

{
b̃kb̃k

}−1 (
bk − b̂k|k−1

)
(3.33)

where E {ak} = 0. If the covariance matrix product is combined to a single representation

Kk, known as the Kalman gain, so that:

Kk = R
ab̃

R−1
b̃b̃

(3.34)

= E

{
akb̃k

}
E

{
b̃kb̃k

}−1
(3.35)

then (3.30) can be expressed as:

âk|k = âk|k−1 + Kk

(
bk − b̂k|k−1

)
(3.36)

Further expansion of the b̃k terms in (3.35) gives Kk in terms of ak, âk|k−1 and bk:

Kk = E

{
ak

(
bk − Hâk|k−1

)′
}
E

{(
bk − Hak|k−1

) (
bk − Hak|k−1

)′
}−1

(3.37)

This expansion still leaves an ak term in the first expectation, which is unknown and therefore

needs eliminating. Using the fact that the system parameter prediction and innovation terms

are uncorrelated so that E

{
âk|k−1b̃k

}
= 0 then:

E

{(
ak − âk|k−1

)}
= E

{
akb̃k

}
− E

{
âk|k−1b̃k

}
(3.38)

= E

{
ak|b̃k

}
(3.39)
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Using this property the covariance matrix R
ab̃

can be derived:

R
ab̃

= E

{
ak

(
bk − Hâk|k−1

)′
}

(3.40)

= E

{(
ak − âk|k−1

) (
bk − Hâk|k−1

)′
}

(3.41)

= E

{(
ak − âk|k−1

) (
Hak − Hâk|k−1 + vk

)′
}

(3.42)

= E

{(
Fak−1 − Fâk−1|k−1 + ek−1

) (
HFâk−1|k−1 − HFâk−1|k−1 + Hek + vk

)′
}

(3.43)

= HE

{
F

(
ak−1 − âk−1|k−1

) (
ak−1 − âk−1|k−1

)′
F′ + Ree

}
(3.44)

= H
(
FPk−1|k−1F′ + Ree

)
(3.45)

where Pk−1|k−1 =
(
ak−1 − âk−1|k−1

) (
ak−1 − âk−1|k−1

)′
is the mean squared error (MSE)

matrix from the previous estimate. The auto-covariance matrix R
b̃b̃

, the inverse of which is

used in the computation of MMSE estimator, is derived by expanding to terms of the system

parameters, system matrix, measurement matrix and noise covariance matrices:

R
b̃b̃

= E

{(
bk − Hâk|k−1

) (
bk − Hâk|k−1

)′
}

(3.46)

= E

{(
Hak − Hâk|k−1 + vk

) (
Hak − Hâk|k−1 + vk

)′
}

(3.47)

= E

{(
HFak−1 − HFâk−1|k−1 + Hek + vk

) (
HFak−1 − HFâk−1|k−1 + Hek + vk

)′
}

(3.48)

= HE

{
F

(
ak−1 − âk−1|k−1

) (
ak−1 − âk−1|k−1

)′
F′ + Ree

}
H′ + Rvv (3.49)

= H
(
FPk−1|k−1F′ + Ree

)
H′ + Rvv (3.50)

Now the Kalman gain can be expressed in terms of MSE and covariance matrices:

Kk = R
ab̃

R−1
b̃b̃

(3.51)

=
[
H

(
FPk−1|k−1F′ + Ree

)] [
H

(
FPk−1|k−1F′ + Ree

)
H′ + Rvv

]−1
(3.52)

The MSE of the prediction, Pk|k−1, is given by:

Pk|k−1 = E

{(
ak − âk|k−1

) (
ak − âk|k−1

)′
}

(3.53)

= E

{(
ak − Fâk−1|k−1

) (
ak − Fâk−1|k−1

)′
}

(3.54)

= FPk−1|k−1F′ + Ree (3.55)
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Algorithm 3.1
[
âk|k,Pk|k

]
= Kalman Filter

(
âk−1|k−1,Pk−1|k−1

)

Predict the state at k from âk−1|k−1:

âk|k−1 = Fâk−1|k−1

Predict the MSE:

Pk|k−1 = FPk−1|k−1F′ + Ree

Calculate the Kalman gain matrix:

Kk =
[
Pk|k−1H′

k

] [
HPk|k−1H′ + Rvv

]−1

Apply update to prediction:

âk|k = âk|k−1 + Kk

(
bk − Hâk|k−1

)

Update the MSE:

Pk|k = (I − KkH) Pk|k−1

It is now necessary to derive a recursive expression for Pk|k:

Pk|k = E

{(
ak − âk|k−1

) (
ak − âk|k−1

)′
}

(3.56)

= E

{(
akâk|k−1 − Kk

(
bk − Hâk|k−1

)) (
akâk|k−1 − Kk

(
bk − Hâk|k−1

))′
}

(3.57)

= E

{(
ak − âk|k−1

) (
ak − âk|k−1

)′
}

− E

{(
ak − âk|k−1

) (
bk − Hâk|k−1

)′
K′

k

}
. . .

· · · − E

{
Kk

(
bk − Hâk|k−1

) (
ak − âk|k−1

)′
}
. . .

· · · + E

{
Kk

(
bk − Hâk|k−1

) (
bk − Hâk|k−1

)′
K′

k

}
(3.58)

Substituting Pk|k−1 into the first expectation of (3.58), R
ab̃

into the second and third and

R
b̃b̃

into the fourth the error correlation matrix, Pk|k, becomes:

Pk|k = Pk|k−1 − R
ab̃

K′
k − KkR′

ab̃
+ KkR

b̃b̃
K′

k (3.59)

= Pk|k−1 − R
ab̃

[
R

ab̃
R−1

b̃b̃

]′
−

[
R

ab̃
R−1

b̃b̃

]
R′

ab̃
+

[
R

ab̃
R−1

b̃b̃

]
R

b̃b̃

[
R

ab̃
R−1

b̃b̃

]′
(3.60)

= Pk|k−1 − KkR′
ab̃

(3.61)

An implementable form of the recursive expression for the MSE is finally derived by substi-

tuting R
ab̃

= Pk|k−1H′:

Pk|k = (I − KkH) Pk|k−1 (3.62)

In practice this requires an expression for P0|−1. If the actual error value is unknown then

Pk|k−1 is usually initialised with large values on the diagonal. The final Kalman filter algorithm

is summarised in Algorithm 3.1.

The Kalman filter has been derived and will be applied within a multiple hypothesis tracking

(MHT) framework in chapter 6 to identify which clicks came from which animals based on

time-delay history. Adaptations of the Kalman filter for tracking non-linear and non-Gaussian

problems are presented in the next section.
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3.4 Sub-Optimal Extensions to the Kalman Filter

Two of the most widely considered adaptations of the Kalman filter for non-linear and non-

Gaussian tracking problems are the extended Kalman filter (EKF) and the unscented Kalman

filter (UKF) [54, 85, 86, 88–90]. Both algorithms are sub-optimal but have been successfully

applied, notably the EKF has been used extensively in angle-only tracking applications [79,

91–93]. Neither algorithm is utilised in this work but both are included for completeness and

are briefly discussed.

3.4.1 Extended Kalman Filter

The EKF achieves non-linear estimation by approximating the non-linear system and mea-

surement functions as linear for the error matrix and Kalman gain calculations. The system

and measurement equations, (3.1) and (3.2), are re-stated as non-linear with additive noise

processes so that:

ak = f (ak−1) + ek−1 (3.63)

bk = h (ak) + vk (3.64)

where f ( ) and h ( ) have been assumed to be time-invariant so that the time subscript can

be dropped for clarity of notation. A linearisation of (3.63) is derived via a first-order Taylor

series expansion around the last state estimate, âk−1|k−1:

f (ak−1) ≈ f
(
âk−1|k−1

)
+

∂f

∂ak−1

∣∣∣∣
ak−1=âk−1|k−1

(
ak−1 − âk−1|k−1

)
(3.65)

where the linear estimate of the system function is represented by the Jacobian matrix:

F̂k−1 =
∂f

∂ak−1

∣∣∣∣
ak−1=âk−1|k−1

(3.66)

The linear system function estimate F̂k−1 is time indexed to allow for variation in the previous

parameter estimate âk−1|k−1. Similarly the linearised estimate of the measurement function

(3.64) is:

h (ak) ≈ h
(
ak|k−1

)
+

∂h

∂ak

∣∣∣∣
ak=âk|k−1

(
ak − âk|k−1

)
(3.67)

where the linear estimate of the measurement function is represented by the Jacobian matrix:

Ĥk =
∂h

∂ak

∣∣∣∣
ak=âk|k−1

(3.68)
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Algorithm 3.2
[
âk|k,Pk|k

]
= EFK

(
âk−1|k−1,Pk−1|k−1

)

Predict system state at k from âk−1|k−1:

âk|k−1 = f
(
âk−1|k−1

)

Compute the Jacobian matrix F̂k−1:

F̂k−1 = ∂f
∂ak−1

∣∣∣
ak−1=âk−1|k−1

Predict the MSE:

Pk|k−1 = F̂k−1Pk−1|k−1F̂′
k−1 + Ree

Compute the Jacobian matrix Ĥk:

Ĥk = ∂h
∂ak

∣∣∣
ak=âk|k−1

Calculate the Kalman gain matrix:

Kk =
[
Pk|k−1Ĥ′

k

] [
ĤkPk−1|k−1Ĥ′

k + Rvv

]−1

Apply update to prediction:

âk|k = âk|k−1 + Kk

(
bk − h

(
âk|k−1

))

Update the MSE:

Pk|k =
(
I − KkĤk

)
Pk|k−1

The linearised system and measurement functions can now be respectively defined as:

ak = F̂k−1ak−1 + ek−1 +
(
f

(
âk−1|k−1

)
− F̂k−1âk−1|k−1

)
(3.69)

bk = Ĥkak + vk +
(
h

(
âk|k−1

)
− Ĥkâk|k−1

)
(3.70)

The EKF algorithm is obtained by substituting F̂k−1 and Ĥk into the error equations (3.55)

and (3.62) and the Kalman gain equation (3.52). The complete EKF algorithm is shown in

Algorithm 3.2. Although the EKF addresses the linearity constraints of the Kalman filter

it is only reliable for non-linear systems that update at regular intervals and do not violate

the assumptions of local linearity [88, 89]. EKF convergence relies on the propagation of the

deterministic component f
(
âk−1|k−1 − F̂k−1âk−1|k−1

)
through the system, however this can

introduce large errors and consequently the filter may diverge [90]. Implementation issues

also arise due to the non-trivial requirement of computing the Jacobian matrices (3.66) and

(3.68) [88,90].

3.4.2 Unscented Kalman Filter

Julier and Uhlman proposed applying the unscented transform to the Kalman filter framework

as an alternative to the EKF [88] under the premise that it’s simpler to model an arbitrary

distribution as a Gaussian than to linearise an arbitrary non-linear function [90]. The dis-

tributions are represented by a set of strategically drawn samples known as sigma points.

Implementation of the UKF is, in general, simpler than for the EKF because the UKF does

not require the computation of Jacobian matrices.
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Non-linear Transform

Figure 3.3: Randomly drawn samples and the strategically drawn sigma points drawn from the
distribution at k−1. The random samples and sigma points are propagated through
a non-linear function to give the non-Gaussian distribution at k.

Unscented Transform

The set of 2NA +1 sigma points, A, are chosen so that they represent the mean and covariance

of the system distribution. Each of the 2NA + 1 points is assigned a respective weight, W:

{A}0 = ā {W}0 =
κ

(NA + κ)
(3.71)

{A}1:NA
= ā +

{(√
(NA + κ) Raa

)}

1:NA

{W}1:NA
=

1

2 (NA + κ)
(3.72)

{A}NA+1:2NA
= ā −

{(√
(NA + κ) Raa

)}

1:NA

{W}NA+1:2NA
=

1

2 (NA + κ)
(3.73)

where κ ∈ R,
{(√

(NA + κ) Raa

)}
n

is the nth column of the matrix square root of (n+ κ) Raa

and W is the set of weights associated with the sigma points. The parameter κ is a positive

value that controls the distance from the central sigma point at which the sigma points repre-

senting the variance are drawn. A useful heuristic for Gaussian distributions is NA+κ = 3 [88].

The prior distribution parameters are obtained by propagating the sigma points through the

non-linear system function, so that:

Ak = f (Ak−1) (3.74)

A mean and covariance are then calculated from the transformed sigma points:

āk =
2NA∑

n=0

{W}n {Ak}n (3.75)

Raa =
2NA∑

n=0

{W}n ({Ak}n − āk) ({Ak}n − āk)′ (3.76)

The left side distribution shown in figure 3.3 shows a set of randomly drawn samples from
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a normal distribution and the representative strategically drawn sigma points. The random

samples and sigma points are propagated through a non-linear function resulting in the right

side non-Gaussian distribution which the sigma points still model as normal. The resulting

distribution estimate is accurate up to the third-order Taylor series expansion and estimation

of non-Gaussian distributions is accurate up to the second order. It can be shown that the

unscented transform is able to partially include information from higher orders [88, 90].

UKF Algorithm

The UKF algorithm is shown in algorithm 3.3 based on the UKF algorithm presented in [94].

The algorithm replaces the auto-covariance matrix Raa in equations 3.71 to 3.73 with the

MSE matrix Pk−1|k−1. At initialisation P0|0 can be defined as P0|0 = E

{
(a0 − â0) (a0 − â0)′

}
,

however this requires knowledge of a0, as an alternative the diagonal of matrix P0|0 can be

set to large values.

Square Root Unscented Kalman Filter

A modification of the UKF is the square root UKF which attempts to reduce processing time

and improve filter stability by updating the covariance matrices at each time step instead of

re-calculating them [61, 94]. This is made possible by calculating the Cholesky factors of the

initial error matrix and then updating them via a QR decomposition and Cholesky update at

each time step.

3.4.3 Summary

For linear Gaussian tracking problems the Kalman filter is the optimal recursive estimator. If

the necessary restrictions of the Kalman filter can not be met then the EKF and UKF provide

alternative, although sub-optimal, tracking algorithms. The UKF is simpler to implement

than the EKF since there is no need to compute the necessary Jacobian matrices. The UKF

also provides better higher order statistical modelling than the EKF [88].

The EKF and UKF may still prove to be inadequate, in this case it may be necessary to adopt

a Monte-Carlo approach, whereby the non-Gaussian posterior distribution is modelled as a

set of discrete points. This is the approach taken in particle filtering which is presented in the

following sections.

3.5 Conceptual Particle Filtering Solution

Particle filtering methods were first suggested in the 1960s but the lack of available computing

power made them impractical [54]. In the early 1990s they re-emerged as a solution to non-

linear non-Gaussian tracking problems using sequential Monte-Carlo simulations to model
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Algorithm 3.3
[
âk|k,Pk|k

]
= UKF

(
âk−1|k−1,Pk−1|k−1

)

Calculate sigma points {Ak−1}1:NA
and weights {W}1:NA

using equations 3.71 to 3.73 sub-
stituting Raa for Pk−1|k−1

Transform sigma points via system function:

{Ak}1:NA
= f

(
{Ak−1}1:NA

)

Calculate statistics of the sigma points:

âk|k−1 =
2NA∑

n=0

{W}n {Ak}n

Raa =
2NA∑

n=0

{W}n

(
{Ak}n − âk|k−1

) (
{Ak}n − âk|k−1

)′
+ Ree

Transform parameter sigma points to measurement sigma points:

Bk = h (Ak)

Calculate the statistics for the measurement and innovation:

b̂k =
2NA∑

n=0

{W}n {Bk}n

R
b̃b̃

=
2NA∑

n=0

{W}n

(
{Bk}n − b̂k

) (
{Bk}n − b̂k

)′
+ Rvv

Calculate the covariance of the system parameters and the innovation:

R
ab̃

=
2nA∑

n=0

{W}n ({Ak}n − âk)
(
{Bk}n − b̂k

)′

Calculate the Kalman gain:
Kk = R

ab̃
R

b̃b̃

Update the prediction

âk|k = âk|k−1 + Kk

(
bk − b̂k

)

Update the MSE matrix:
Pk|k = Raa − KkR

b̃b̃
K′

k
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the posterior distribution as a set of discrete points in the parameter space with a set of

supporting weights [51]. The Kalman filter and its derivatives model the posterior distribution

parametrically as Gaussian and then make a MMSE estimate, however a Gaussian model

may fail to accurately represent the underlying statistics of the system and measurement

processes. Using a set of discrete points in the parameter space modelling of non-Gaussian

distributions is possible. This section presents a conceptual particle filtering solution to the

tracking problem and discusses Monte-Carlo integration, importance sampling, sequential

importance sampling, re-sampling and finally a theoretical generic particle filter. Practical

particle filters are presented in section 3.6.

3.5.1 Monte-Carlo Integration

Particle filtering approximates the posterior distribution p (ak|b1:k) as a set of ‘particles’

consisting of discrete points and supporting weights. This is achieved through Monte-Carlo

estimation which approximates the integral I of a function as the mean of a set of samples

drawn from the posterior PDF.

The integral of the function g (a):

I =

∫
g (a)da (3.77)

can be factorised so that:

I =

∫
̥ (a) p (a)da (3.78)

where ̥ (a) and p (a) are factors of g (a) and p (a) is a PDF, so that
∫
p (a)da = 1. An

estimate of the integral can be obtained from the sample mean as:

Î =
1

Na

Na∑

n=1

̥ ({a}n) (3.79)

where Na ≫ 1 and {a}1:Na
are samples drawn from the PDF p (a)2. Figure 3.4 shows a

continuous distribution and a Monte-Carlo point-wise approximation.

The law of large numbers states that Î will converge to I if the samples {a}1:Na
are independent

[54]. If the variance of ̥ (a):

var {̥} =

∫
(̥ (a) − I)2 p (a)da (3.80)

is finite then the central limit theorem holds and the estimation error converges in distribution

to [54]:

lim
Na→∞

√
Na

(
Î − I

)
∼ N (0, var {̥}) (3.81)

The rate of convergence of the estimation error, Ĩ = Î − I, is dependent on the number of

samples Na, specifically the convergence rate is of order O
(
N

1/2

a

)
[54].

2In section 3.1 Na referred to the dimensionality of vector a, here - and elsewhere - Na denotes the number
of Monte-Carlo samples so that a complete set is {a}

1:Na
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a

p
(a

)

Figure 3.4: A continuous distribution (blue) and the Monte-Carlo point-wise approximation
(red)

Target
Posterior PDF

Importance
Sampling PDF

a

p
(a

)

Figure 3.5: The target posterior PDF and an importance sampling approximation

When applying Monte-Carlo integration to a Bayesian context the PDF, p (a), corresponds to

the posterior distribution. It is usually not possible to sample from the posterior distribution

because it is often multivariate, non-standard and only known up to a proportionality constant.

This problem is overcome by importance sampling.

3.5.2 Importance Sampling

As it is not usually possible to sample directly from the posterior PDF, p (a), samples are

drawn from an importance density, q (ak), which is related to the posterior, such that:

p (a) = w̃ (a) q (a) (3.82)

The concept of an importance density is illustrated in figure 3.5. The solid blue line represents

the true posterior, or target, PDF and the dotted red line represents the importance PDF.
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Rearranging (3.82) and substituting into (3.78) gives:

I =

∫
̥ (a)

p (a)

q (a)
q (a)da (3.83)

=

∫
̥ (a) w̃ (a) q (a)da (3.84)

Using (3.79) and the samples {a}1:Na
drawn from ̥ (a) and w̃ (a), the Monte-Carlo estimate

of (3.84) is:

Î =
1

Na

Na∑

n=1

̥ ({a}n) w̃ ({a}n) (3.85)

If the normalising constant of the posterior density is unknown then the importance weights

must be normalised so that they sum to unity. In this case the Monte-Carlo estimate of Î is:

Î =
Na∑

n=1

̥ ({a}n)w ({a}n) (3.86)

where the normalised weight for particle n is:

w ({a}n) =
w̃ ({a}n)

∑Na

m=1 w̃ ({a}m)
(3.87)

The final Monte-Carlo estimate using the importance distribution is given by equation (3.86).

It is now convenient to formulate importance sampling as a recursive process so that it can

be incorporated into a recursive tracking filter.

3.5.3 Sequential Importance Sampling

Sequential importance sampling is the recursive formulation of importance sampling as pre-

sented in section 3.5.2. If the weights are proportional to the joint posterior and importance

densities then:

{w}n ∝ p ({a0:k}n |b1:k)

q ({a0:k}n |b1:k)
(3.88)

where {a0:k}n is the nth particle and {w}n is the nth supporting weight. This allows the

joint posterior to be characterised as {{a0:k}1:N , {wk}1:N } [53]. Using this property the joint

posterior can be discretely approximated from an importance density as:

p (a0:k|b1:k) ≈
Na∑

n=1

{wk}n δ (a0:k − {a0:k}n) (3.89)

To fit this approximation into the recursive conceptual solution presented in section 3.2 the

current joint posterior p (a0:k|b1:k) - which incorporates all states up until time k - needs to

be calculable from the previous joint posterior p (a0:k−1|b1:k−1). This approximation can be

made through the joint importance density approximation so that the previous importance
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density is updated using the marginal importance density:

q (a0:k|b1:k)
△
= q (ak|a0:k−1,b1:k) q (a0:k−1|b1:k−1) (3.90)

This provides the joint importance density at k. For p (a0:k|b1:k) to be approximated it is also

necessary to obtain the weight update. Expanding p (a0:k|b1:k) in terms of p (a0:k−1|b1:k−1),

p (bk|ak) and p (ak|ak−1):

p (a0:k|b1:k) =
p (bk|a0:k,b1:k−1) p (a0:k|b1:k−1)

p (bk|b1:k−1)
(3.91)

=
p (bk|a0:k,b1:k−1) p (ak|a0:k−1,b1:k−1) p (a0:k−1|b1:k−1)

p (bk|b1:k−1)
(3.92)

=
p (bk) p (ak|a0:k−1)

p (bk|b1:k−1)
p (a0:k−1|b1:k−1) (3.93)

∝ p (bk|ak) p (ak|ak−1) p (a0:k−1|b1:k−1) (3.94)

Note the similarity of (3.91) with (3.11), the difference being the expansion of the previous

state and measurement terms to include the full state and measurement history. Substituting

(3.90) and (3.94) into (3.88) gives a recursive expression for the weight update:

{wk}n ∝ p (bk| {ak}n) p ({ak}n | {ak−1}n) p ({a0:k−1} |b1:k−1)

q ({ak}n |a0:k−1,b1:k) q ({a0:k−1}n |b1:k−1)
(3.95)

= {wk−1}n

p (bk| {ak}n) p ({ak}n | {ak−1}n)

q ({ak}n | {a0:k−1}n ,b1:k)
(3.96)

If q (ak|a0:k−1,b1:k) = q (ak|ak−1,bk) then the importance density is only dependent on ak−1

and bk and the result is an estimate of the posterior p (ak|b1:k). The updated weight can now

be expressed as:

{wk}n ∝ {wk−1}n

p (bk| {a}n) p ({ak}n | {ak−1}n)

q ({ak}n | {ak−1}n ,bk)
(3.97)

so that the posterior estimate is:

p (ak|b1:k) ≈
Na∑

n=1

{wk}n δ (ak − {ak}n) (3.98)

It can be shown that as Na → ∞ (3.98) approaches the true posterior density p (ak|b1:k)

[53, 54,95].

3.5.4 The SIS Particle Filter

The SIS particle filter is an implementation of the recursive posterior estimate derived in

section 3.5.3, represents the simplest form of particle filter and provides the basis for practical

versions of the particle filter. The complete SIS particle filter procedure is shown in algorithm

3.4. The SIS particle filter itself has practical issues because it suffers from sample degeneracy

whereby variance of the particles increases over time and all but one of the weights becomes
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Algorithm 3.4
[
{ak, wk}1:Na

]
= SIS Particle Filter

(
{ak−1, wk−1}1:Na

,bk

)

For all particles:
for n = 1 : Na do

Draw particle:
{ak}n ∼ q (ak| {ak−1}n ,bk)
Assign a weight:

{wk}n ∝ {wk−1}n

p(bk|{ak}
n)p({ak}

n
|{ak−1}

n)
q({ak}

n
|{ak−1}

n
,bk)

end for
return

(
{ak, wk}1:Na

)

negligible [53,83]. The algorithm suggests particles are sampled from the optimal importance

distribution, which is the true posterior, an operation that is typically not possible or very

difficult [54]. Both these issues are addressed in the following sections and lead to a practical

particle filter.

3.5.5 Particle Re-Sampling

Sample degeneracy can be quantified as the number of effective particles:

Neff =
Na

1 + var {w̃k} (3.99)

where w̃k = p
(

{ak}
n

|b1:k

)
/q

(
{ak}

n
| {ak−1}

n
, bk

)
is the ‘true’ weight which can not be exactly

evaluated [53,54]. An approximation of the number of effective weights can be calculated by:

N̂eff =
1

∑N
n=1

{
w2

k

}
n

(3.100)

where N̂eff ≤ Na indicates degeneracy and N̂eff ≪ Na indicates severe degeneracy.

Three options are available to maintain sufficient sample variance and prevent degeneracy:

brute force, whereby enough particles are utilised to postpone degeneration until tracking

is complete; optimally selecting the importance distribution to minimise particle variance or

re-sampling of the particles based on the assigned weights or re-sampling the particle set. The

most common method of overcoming degeneracy is re-sampling. There are three common types

of re-sampling: multi-nomial re-sampling; systematic re-sampling and residual re-sampling

which may be applied systematically or adaptively [83]. All three re-sampling schemes are

based on removing particles of low probability, i.e. a low weight, and replacing them with

duplicates of those with a higher probability whilst allowing through a small quantity of low

weight particles to maintain diversity in the filter. Multi-nomial re-sampling randomly selects

particles from the current particle set and assigns them to a new particle set whereby particles

of higher probability are more likely to be selected. Systematic re-sampling is based on an

‘ordered’ technique and residual re-sampling is based on estimating the number of times each

particle should be replicated [83]. Multi-nomial re-sampling is the most commonly described
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1

0

{wk}m

{µ}m

m

Figure 3.6: The process of re-sampling, {µ}m ∼ U [0, 1] maps to particle {ak}m. The selected
particle has a higher chance of being selected and multiplied because of its high value
of {wk}m.

method in the tracking filter literature so is the method that will be used in this work.

Although the particle sets before and after re-sampling are different they approximate the

same distribution. A graphical representation of the re-sampling algorithm is shown in figure

3.6; particles for re-sampling are chosen randomly by drawing a random value from a uniform

distribution {µ}m ∼ U [1, 0] and mapping to particle index m. In figure 3.6 the sample {ak}m

has been selected for re-sampling; this particle has a higher probability of being re-sampled

because it has a higher weight {wk}m.

The re-sampling algorithm is shown in algorithm 3.5 in a generalised version which returns

the re-sampled particle set, the weights of the re-sampled particle set and the indices of

the particles in the previous particle set that were re-sampled. Differing combinations of

these returned variables are utilised by different particle filter implementations. Although re-

sampling is designed to overcome the problem of sample degeneracy it can lead to the opposite

problem of sample impoverishment, whereby the variance of the weights greatly decreases and

the particles collapse to a single point [53, 54, 83]. Sample impoverishment is most likely to

occur in applications where system noise is particularly low.

3.5.6 The Generic Particle Filter

The generic particle filter bridges the gap between the SIS particle filter in section 3.5.4 and the

practical particle filters presented in section 3.6 and incorporates the re-sampling algorithm

into the SIS particle filter. The generic particle filter algorithm is shown in algorithm 3.6.

The generic particle filter states the importance density to be q (ak| {ak−1}n ,bk) but still

leaves it undefined.
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Algorithm 3.5
[
{ak, wk, n}1:Na

]
= Re-sample

(
{ak, wk}1:Na

)

Initialise the CDF: ǫ1 = 0
Construct the CDF:
for n = 2 : Na do

{ǫ}n = {ǫ}n−1 + {wk}n

end for
Start at the bottom of the CDF: n = 1
Draw starting point: {µ}1 ∼ U [

0, N−1
a

]

For the whole CDF:
for m = 1 : Na do

Move Along the CDF:
{µ}m = {µ}1 +N−1

a (m− 1)
while {µ}m > {ǫ}n do

Move along the CDF: n = n+ 1
end while
Assign sample: {ak}m = {ak}n

Assign weight: {wk}m = N−1
a

Assign parent: {n}m = n
end for
return

(
{ak, wk, n}1:Na

)

3.5.7 The Optimal Importance Density

The optimal choice of importance density is the density that minimises sample impoverishment

through minimisation of the weight variance so that:

var {{w1:k}n} =
{
w2

1:k

}
n

[∫
(p (bk|ak, {ak−1}n) (ak| {ak−1}n))2

q (ak| {ak−1}n ,bk)
dak − p (bk| {ak−1}n)2

]

(3.101)

is minimised. The distribution that minimises the weight variance is the posterior distribution

[54,83]:

q (ak| {ak−1}n ,bk)opt = p (ak| {ak−1}n ,bk) (3.102)

=
p (bk|ak {ak−1}n) p (ak| {ak−1}n)

p (bk|ak−1)
(3.103)

Substituting (3.103) into (3.97) gives:

{wk}n ∝ {wk−1}n p (bk| {ak−1}n) (3.104)

which implies the weights at time k can be computed before the particles are propaga-

ted. To use this optimal importance density it is necessary to be able to sample from

p (ak| {ak−1}n ,bk) and evaluate:

p (bk| {ak−1}n) =

∫
p (bk|ak) p (ak| {ak−1}n)dak (3.105)
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Previous particle set

{ak}1:Na

Measurement Likelihood

p (bk|ak)

MMSE or MAP Estimate

âMMSE
k|k or âMAP

k|k

Re-sample

{a∗
k}1:Na

System update

{ak+1}1:Na

Figure 3.7: A single iteration of a particle filter, the prior samples are weighted, an estimate is
computed, the particles are re-sampled and propagated for the next iteration

up to a normalising constant [54]. Neither of these may possible unless p (ak| {ak−1}n ,bk) is

Gaussian or the possible states of {ak} are limited to a discrete set, so this optimal choice is

often unusable. Further information on the optimal importance density can be found in [54,83].

The choice of importance density is the most critical component in the design of a particle

filter and the next section presents practical particle filtering solutions based on alternative

importance densities.

3.6 Practical Particle Filters

The particle filtering solution proposed in section 3.5 makes use of an abstract importance

density, the optimal choice of which is the posterior density, however this is often unavailable.

This section presents the sampling importance re-sampling particle filter and discusses several

other practical particle filtering algorithms 3.

3.6.1 SIR Particle Filter

The sampling importance re-sampling (SIR) particle filter, also known as the bootstrap filter

or condensation filter, was presented by Gordon, Salmond and Smith in 1993 as a method for

overcoming the limitations of the EKF [51]. The SIR particle filter uses the transitional prior

as the importance density. Computation of the importance weights from the transitional prior

is relatively simple and has lead to the SIR particle filter being widely adopted.

3In this sense the term ‘practical’ describes particle filtering algorithms regarded as being readily implemen-
table.
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Algorithm 3.6
[
{ak, wk}1:Na

]
= Generic Particle Filter

(
{ak−1, wk−1}1:Na

,bk

)

Draw samples from importance distribution:
for n = 1 : Na do

Draw particle: {ak}n ∼ q (ak| {ak−1}n ,bk)

Assign a weight: {wk}n ∝ {wk−1}n

p(bk|{ak}
n)p({ak}

n
|{ak−1}

n)
q({ak}

n
|{ak−1}

n
,bk)

end for
Normalise weights: {wk}1:Na

=
{w}1:Na∑
Na

n=1
{wk}n

Calculate the number of effective particles: N̂eff = 1∑
Na

n=1
{w2

k
}n

If the number of effective particles is below a threshold re-sample:
if N̂eff < Nthresh then[

{ak, wk,−}1:Na

]
= Re-sample

(
{ak, wk}1:Na

)

end if
return

(
{ak, wk}1:Na

)

The Transitional Prior Importance Density

If the transitional prior importance density is defined as:

q (ak| {ak−1}n ,bk)prior = p (ak| {ak−1}n) (3.106)

then substituting (3.106) into (3.96) gives:

{wk}n ∝ {wk−1}n p (bk| {ak}n) (3.107)

because the priors cancel. Using this weighting, based on the likelihood, the importance

weights can not be evaluated before the particles are propagated as they can be with the

optimal importance density. Furthermore, if the weight is entirely dependent on the likelihood,

sequential updating becomes unnecessary because re-sampling is performed at every time step

whereby the weights of the re-sampled particles are {wk}n = 1/Na [83].

The SIR Algorithm

The SIR particle filter algorithm is given in algorithm 3.7. Although re-sampling is required at

every iteration to ensure convergence, it is possible to reduce computational load by carrying

the weights from the previous iteration and only re-sampling if N̂eff < Nthresh [60,83,96], which

is the form of the SIR algorithm described here. If re-sampling is employed at every iteration

the effective particle test can be dropped and there is no need to store the importance weights

from the previous iteration.

As well as utilising easily realisable importance samples, the assumptions and additional infor-

mation needed are also limited. The requirements are that the following be known: the initial

density at k = 0, {a0}n ∼ p (a0); the system function fk−1 (ak−1, ek−1) and noise distribution

p (e) and the measurement function hk (ak,vk) and noise distribution p (v).
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Algorithm 3.7
[
{ak, wk}1:Na

]
= SIR

(
{ak−1, wk−1}1:Na

)

Draw particles from transitional prior density:
for n = 1 : Na do

Draw Particle: {ak}n ∼ p (ak| {ak−1}n)
Assign a weight: {w̃k}n = {wk−1}n p (bk| {ak}n)

end for
Normalise weights: {wk}n =

{w̃k}
n∑

Na

n=1
{w̃2

k
}

n

Make a re-sampling decision:
N̂eff

1∑
Na

1:n
{w2

k
}

n

if N̂eff ≤ Nthresh then
Re-sample:

[
{ak,−,−}1:Na

]
= Re-sample

(
{ak, wk}1:Na

)

end if
return

(
{ak, wk}1:Na

)

Although relatively simple to implement there are drawbacks to the SIR filter. Firstly, ap-

proximation of the tails of p (ak|b1:k−1) is poor and when outliers occur there is also poor

approximation of (3.11) [83, 97]. Secondly, although re-sampling is utilised, sufficient system

variance is still required to prevent sample degeneracy [53, 83]. Finally, the latest measure-

ment bk is not utilised in the importance density as it is in the generic particle filter, therefore

searching of the state space is relatively inefficient [53,54,97].

3.6.2 Other Particle Filters

Other particle filtering algorithms are based on alternative importance distributions. This

section reviews two other particle filtering algorithms, the auxiliary SIR (ASIR) particle filter

and the locally linearised particle filter (LLPF) which have both been proposed for angle-only

target tracking [61, 97]. The SIR particle filter will be utilised in chapters 5 and 7 so the full

algorithm has been given in this chapter; the ASIR and LLPF algorithms are not utilised

in later chapters so only the key parts of them are discussed in this section, however full

algorithm listings can be found in appendix A (algorithms A.1 and A.2).

Auxiliary SIR Particle Filter

The ASIR particle filter attempts to include information from the latest measurement into

the importance density to improve posterior modelling of outlying particles and tail modelling

performance. Pitt and Shepherd proposed using the latest measurement by performing the

re-sampling step at k−1 after the measurement at k has been acquired but before the particles

are propagated [54, 83, 97]. Samples are drawn from the joint density p (ak, n|b1:k), which is
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derived from:

p (ak, n|b1:k) ∝ p (bk|ak) p (ak, n|b1:k−1) (3.108)

= p (bk|ak) p (a|n,b1:k−1) p (n|b1:k−1) (3.109)

= p (bk|ak) p (ak| {bk−1}n) {wk−1}n (3.110)

This results in particles drawn from the pair {ak, n}1:Ma
, where Ma represents a different set

of indices to Na but is still the same length [53, 54]. Dropping n from (3.110) results in the

density p (ak|b1:k). The importance density is defined as:

q (ak, n|b1:k) ∝ p (bk| {ǎk}n) p (ak| {ak−1}n) (3.111)

where {ǎk}n is a term in some way related to ak given {ak−1}n, for example it may be the

mean or a sample drawn from the transitional prior. The weight update for the ASIR filter

is:

{wk}m ∝ {wk−1}{n}
m

p (bk| {ak}m) p
(
{ak}m | {ak−1}{n}

m

)

q ({ak}m , {n}m |b1:k)
(3.112)

=
p (bk| {bk}m)

p
(
bk| {ǎk}{n}

m

) (3.113)

The complete ASIR particle filtering algorithm is given in algorithm A.1 in appendix A. The

advantage of the ASIR particle filter over the SIR filter is that samples are more likely to be

drawn from areas of high likelihood which makes the ASIR filter less sensitive to outliers when

system variance is low. However, in cases where system noise variance is high the ASIR may

provide inferior performance compared to the SIR filter [54].

Locally Linearised Particle Filters

The LLPF models each sample point as a local Gaussian with a mean and covariance so that

each particle represents a local normal PDF rather than a discrete point (as in the SIR and

ASIR) so that:

q ({ak}n | {ak−1}n ,bk)LLPF = N
({

ak; âk, P̂k

}
n

)
(3.114)

The Gaussian parameters {âk}n and
{

P̂k

}
n

are acquired by propagating each of the previous

particle set and respective covariances through an iteration of an EKF or UKF. Importance

samples are drawn from the updated mean and covariance values. Weights are computed as:

{w̃k}n =
p (bk| {ak}n) p ({ak}n | {ak−1}n)

q ({ak}n | {ak−1}n ,bk)LLPF

(3.115)

The complete LLPF algorithm is given in algorithm A.2 in appendix A. Due to the reasons

discussed in section 3.4 there is little reason to use the EKF over the UKF to obtain {âk}n

and
{

P̂k

}
n
. This method of approximating the importance density propagates the particles
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towards the likelihood function, consequently the LLPF can be expected to perform better

than the SIR particle filter [54]. Yu et al. suggest that a variation of the LLPF based on the

square root UKF provides better angle-only tracking than the SIR particle filter [61].

There are a large number of other types of particle filters, some of the more common being

regularised particle filters [98, 99], multiple model-particle filters [54] and Rao-Blackwellised

particle filters [100].

3.7 Application of Particle Filters to Sperm Whale Tracking

The sperm whale towed array tracking problem described in chapter 1 and formulated in

section 2.8, whereby the source location ambiguity is represented as a PDF, is an application

of the conceptual tracking problem defined in section 3.1 and can be solved using the solution

defined in section 3.2. It follows that a spatial sperm whale tracking solution can be developed

from one of the tracking filters presented in sections 3.3, 3.4 and 3.6. This section discusses

the system and measurement components of the specific application and the requirements that

must be satisfied by the choice of tracking filter. Appropriate system functions are discussed

in chapter 4.

3.7.1 System State, System Function and System Noise

The system parameters, function and noise components represent the animal’s spatial posi-

tion and motion relative to the tracking array. Position is most intuitively represented in a

Cartesian coordinate system, for which there are linear system models, however alternative

coordinate systems, such as polar coordinates may provide improved tracking performance. A

more extensive review of coordinate systems and motion modelling is presented in chapter 4

where the specific choices of motion model and coordinate system are defined. Kalman filter

can be used in conjunction with polar coordinate systems when bearing, elevation and range

measurements are available. If range measurements are not available, as is the case in many

passive tracking applications, the tracking problem becomes a bearings only problem whereby

the measurement function is non-linear thereby eliminating the Kalman filter as a tracking

option and reducing the choice of tracking filter to an EKF, UKF or particle filter which can

operate when the system and measurement functions are non-linear [59,79].

Depending on the order of the motion model chosen the system noise process will account for

changes in animal position, velocity, acceleration or possibly higher order motion statistics.

Taking a conventional constant velocity motion model [101] the system noise will be the

changes in animal velocity, i. e. representative of acceleration. Data for animal motion whilst

dived is presented in chapter 4 but collection of such information is not a medial task and

requires a degree of estimation. It remains however that there is a limit to how fast the

animal can travel and there may be limits to the length of time for which some speeds may

be maintained. This may lead to instances where the animal is more likely to slow down than
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accelerate and therefore a normally distributed noise density may not be sufficiently accurate.

In such cases the Kalman filter will again not be applicable and possibly would also make the

EKF and the UKF impractical.

3.7.2 Measurement, Measurement Function and Measurement Noise

In towed array tracking with a single hydrophone pair the measurement is a single time-delay,

τ , measured across the array aperture. Using (2.8) and (2.9), the time delay can be defined

as:

τ = (cosφ cosψ) dc−1 (3.116)

where φ and ψ are the horizontal and vertical angles of the target to the array respectively, d

is the array aperture and c is the sound propagation speed. As the measurement at k is the

time-delay:

bk = τ (3.117)

then the measurement function is:

h (ak) + vk ≡ (cosφ cosψ) dc−1 (3.118)

The measurement noise component, vk, of the time-delay measurement originates in the cross-

correlation stage of the time-delay estimation process. The resolution of the time-delay esti-

mate is dependent on the digital sampling rate of the data acquisition and the array aperture

size. The cross-correlation computes the delay to an integer number of samples and therefore

the process suffers from quantisation. Due to the reasons discussed in section 2.2.1, this error

will not be normally distributed and will depend on the direction of arrival, whereby broad-

side arrivals will suffer less quantisation than end-fire receptions, so whilst at the whale is

at broadside linear assumptions my be valid, however at end-fire these assumptions may not

hold.

3.7.3 Choice of Tracking Filter for Sperm Whale Tracking

The shape of the PDFs required to represent the source animal’s position are unlikely to be

normal and may be multi-modal, uniform or a variety of other shapes. Disregarding other

click receptions, for a single click reception the PDF over the ambiguity hyperbola will be

uniform. This limits the effectiveness of the Kalman filter and its derivatives as tracking filter

options because such distributions can not be adequately modelled using first and second

order statistics. Furthermore, the measurement function is non-linear and the integer value

quantisation error of the measurements prevent the EKF or UKF assumptions holding true.

Depending on the choice of system function and noise distribution these components may also

be non-linear and non-Gaussian and therefore may not be adequately modelled by the EKF

and UKF. Particle filters are capable of modelling the non-linear functions and non-Gaussian

distributions necessary for this application and are therefore the tracking filter of choice.
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The SIR particle filter has previously been applied to angle-only target tracking with high

rates of success in several applications [55, 58, 59, 80, 81]. The ASIR particle filter and LLPF

have been shown to offer improved performance over the SIR particle filter in some angle-only

tracking applications [61,97]. The specifics of the current tracking application differ in that the

system noise is comparatively high and the time-delay measurement being used is a function

of both the bearing and elevation of the animal to the array. Use of this measurement feature

is somewhat novel. The simplicity and versatility of the SIR particle filter make it the ideal

tracking filter choice for this application.

3.8 Summary and Conclusion

This chapter has presented a target tracking and state-estimation problem whereby the ob-

jective is to estimate a target state given a related measurement. This concept has been

developed into several practical tracking filters with the particle filter being selected as the

most appropriate for tracking sperm whales from time-delay measurements acquired from

a towed hydrophone array. This section summarises this chapter and how what has been

presented relates to what is presented in the following chapters.

Given a measurement which is related in some way to a set of target parameters it is desirable

to estimate those parameters. In this case the parameters are the whale’s position and velocity

and the measurement is the time-delay in reception of the vocalisation across two hydrophones.

The process by which the parameters change and measurements are acquired can be separated

into separate processes whereby the current parameters are a recursive function of the previous

parameters and the measurement is a function that transforms the parameters to the received

measurement. The system process comprises a known system function, describing the whale’s

motion, and a noise component which accounts for unknown processes in the system function,

such as the animal’s accelerations. The measurement process comprises a known measurement

function and a noise term to account for errors in the acquisition process.

Given the target state it is a relatively simple process to estimate the measurement that would

be received. The inverse process requires Bayes’s theorem, which states that the PDF of a

target parameter set given a measurement is the product of the likelihood of the measurement

given the parameters and prior probability that the target parameters occurred. Assuming

the target state can be modelled as a Markovian process, a recursive formulation of Bayes’s

theorem is possible, in this instance the probability of the target state is made dependent on

the previous measurements using the Chapman-Kolmogorov equation. The resulting posterior

distribution can then be used to compute MMSE or MAP estimates of the target state.

If the noise process driving the system process and the measurement noise are both normally

distributed and the system and measurement functions are both linear then the statistics of

the system measurement processes can be described parametrically as a mean and variance.

This enables an MMSE estimate of the system state to be made from the measurements. If

the linear and Gaussian assumptions can not be made then an alternative to the Kalman
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filter is necessary. Two adaptations of the Kalman filter, the EKF and UKF, have been

discussed which attempt to fit the non-linear and non-Gaussian systems into the Kalman

filter framework.

Although the Kalman filter does not have the non-linear capabilities necessary for the spatial

tracking problem of tracking sperm whale positions from time-delay measurements it will

be utilised as part of a multi-hypothesis tracker (MHT) in chapter 6. This will enable the

association of clicks with a source animal based on the time-delay history of click receptions.

In this application the predict-update nature of the Kalman filter forms an essential part of

the MHT’s operation.

Particle filters model the likelihood and prior PDFs using Monte-Carlo estimates so that the

densities are approximated as a set of discrete points and respective support weights. This is in

contrast to the Kalman filter which models the distributions parametrically. The major benefit

of particle filters over Kalman filters is that they’re capable of tracking where the system and

measurement functions are non-linear and the noise distributions are non-Gaussian. A MAP

or MMSE estimate can be made from the particles at each iteration depending on the nature

of the tracking problem.

Particle filters offer the best tracking filter solution for tracking sperm whales from towed

hydrophone arrays because the measurement function is non-linear and measurement noise

is non-Gaussian. The particle filter allows complete freedom of choice for the system and

measurement functions and respective distributions. The particle filter is also easily adapted to

tracking for other configurations of array by changing the system and measurement functions.

Further development of the particle filter for the subject application requires development of

the system function and the system noise statistics, presented in chapter 4. The tracking filter

also requires testing with simulations, chapter 5, before being used to track the position of

an animal based on real data, chapter 7. Kalman filters are utilised in multiple hypothesis

tracking in chapter 6.



Chapter 4

Motion Modelling

Chapter 3 presented a conceptual tracking filter solution for target state estimation and several

practical tracking filter implementations. Central to each of these is the concept of a system

function, which in spatial target tracking describes the position and motion of the target.

In addition to selecting an appropriate system function an appropriate coordinate system is

required along with a noise distribution which adequately represents the un-modelled changes

in the target motion. This chapter presents several motion models and coordinate systems,

discusses the known characteristics of sperm whale swimming motion and finally presents the

selected coordinate system, system function and system noise distribution.

4.1 Motion Models

Many generalised motion models have been suggested in the target tracking literature and it is

necessary in this work to identify which of these is the most appropriate and any modifications

that may be required for sperm whale motion modelling. A comprehensive survey of target

motion models is presented by Li and Jilkov [101], this section presents an overview of the

models reported by Li and Jilkov and as such draws largely from their work. Even though

coordinate systems are presented and discussed in section 4.2, these models are presented

in Cartesian form and in the case of an alternative coordinate system being utilised then

conversion of the state parameters between coordinate systems is possible.

4.1.1 Conceptual Motion Modelling Solution

In the physical world a moving target is an object occupying a volume of space, however

in target tracking it is typically easier to identify the target as a point such as the centre

of volume or centre of mass. The position of this point can be modelled in continual time

as [101]:

a (tk) = f (a (tk−1) ,u (tk−1) , e (tk−1) , (tk − tk−1)) , a (t0) = a0 (4.1)

57
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where u is a known control vector representing the deterministic control input to the target or

of the observing platform and tk is time at discrete time index k. Tracking is to be performed

in discrete time so it is convenient to re-phrase (4.1) as:

ak = fk−1 (ak−1,uk−1, ek−1) (4.2)

where ak = a (tk), uk = u (tk) and ek = e (tk). If the control process uk and noise process ek

are additive then (4.2) becomes:

ak = fk−1 (ak−1) + uk−1 + ek−1 (4.3)

Although deterministic manoeuvring motion modelling methods exist [102–104] the control

process is typically unknown and modelled as a random process [101]. As such, uk will

be omitted from the following sections - and reinstated later to represent the deterministic

component of the observing boat manoeuvres - so that (4.3) becomes:

ak = fk−1 (ak−1) + ek−1 (4.4)

If fk−1 is a linear function, as could be assumed if motion is modelled in a Cartesian coordinate

system, (4.4) can be re-phrased in matrix-vector form:

ak = Fk−1ak−1 + Gk−1ek−1 (4.5)

where Fk and Gk are defined in the following sections as both are dependent on the order of

the model utilised.

4.1.2 Random Walk

Random walk motion models present a very simple motion modelling solution. The lowest

possible order of system state vector is the three dimensional target position vector:

ak =




xk

yk

zk


 (4.6)

The noise process ek−1 represents the displacement in target position between k− 1 and k, so

that:

ak = ak−1 + ek−1 (4.7)

Although random walks can be applied to the Kalman filter and its derivatives they typically

fail to model the target state dynamics sufficiently and the target state prediction âk|k−1 =

âk−1|k−1. Random walks can be useful in conjunction with particle filters if the system function

is unknown but a system noise distribution can be established through statistical analysis of the
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target state parameters. In this case system noise samples can be drawn from the distribution:

ek−1 ∼ N (0,Ree) (4.8)

where N is a normal distribution (which can be substituted for any desired distribution) and

applied to particles using (4.7).

4.1.3 Constant Velocity Motion Models

Constant velocity motion models are utilised to model the motion of a target travelling at

near constant velocity in a near constant direction, also described as non-manoeuvring. In

a constant velocity motion model the system state vector is comprised of the position and

velocity in x, y and z dimensions:

ak = [x, ẋ, y, ẏ, z, ż]′ (4.9)

where ẋ, ẏ, ż are velocities. The system state update is defined as:

ak = Fak−1 + Gek−1 (4.10)

where:

F =




1 T 0 0 0 0

0 1 0 0 0 0

0 0 1 T 0 0

0 0 0 1 0 0

0 0 0 0 1 T

0 0 0 0 0 1




G =




T 2/2 0 0

T 0 0

0 T 2/2 0

0 T 0

0 0 T 2/2

0 0 T




ek =




eẋ

eẏ

eż


 (4.11)

The noise process ek represents noise on the target velocities. The time subscript k has been

dropped from F and G for clarity of notation under the assumption that the measurement

period, T , is constant. In practice sperm whale clicks are a-periodic and therefore the measu-

rements and target updates are applied a-periodically and the non-constant period between

measurements and updates will be denoted as Tk. Where necessary the time subscripts will

be restored to Fk and Gk.

Under this model the components of ek are uncoupled across the three dimensions so that the

covariance of Gek is given by:

Ree = diag [var {eẋ} Q, var {eẏ} Q, var {eż} Q] (4.12)

where:

Q =

[
T 4/4 T 3/2

T 3/2 T 2

]
(4.13)



60 Chapter 4. Motion Modelling

4.1.4 Coordinate-Uncoupled Manoeuvre Models

A target that is changing speed and direction is described as a manoeuvring target whereby

accurate motion modelling requires an appropriate motion model. Manoeuvring target motion

models can be divided into two categories, coordinate-uncoupled and coordinate-coupled. The

coordinate-uncoupled motion models reviewed in this section model acceleration, which is

independent across the x, y and z dimensions, as independent white noise processes. Each

of the three models discussed - white noise acceleration, Wiener sequence and polynomial -

are differentiated by the model order. Coordinate-coupled motion models, which maintain

dependence on changes in target motion across the dimensions, are discussed in section 4.1.5.

White Noise Acceleration Model

The white noise acceleration model represents the simplest form of manoeuvring target motion

model. The vectors ak and ek and matrices F and G remain the same order and the update

equations remain the same as for the constant velocity motion model, the difference being that

the system noise covariance matrix Ree values are much higher to allow a greater freedom of

variation in the changes affecting ẋk, ẏk and żk. This model is attractive for its simplicity and

is useful when manoeuvring is small or random [101].

Wiener Sequence

A manoeuvring target’s trajectory, such as an aircraft’s, is typically governed by the determi-

nistic control input vector defining the rate of acceleration of the target in each dimension.

The target accelerations are incorporated into the target state vector as additional dimensions:

ak = [xk, ẋk, ẍk, yk, ẏk, ÿk, zk, żk, z̈k]′ (4.14)

where ẍk, ÿk and z̈k are the acceleration parameters across the three dimensions of the coor-

dinate system.

In the physical world acceleration is a continuous process which, when sampled, can be descri-

bed as a process that increments or decrements independently between k − 1 and k. As such

acceleration can be modelled as a Wiener sequence and the motion model can be expressed

in matrix-vector form as:

ak = Fak−1 + Gek−1 (4.15)
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where:

F = diag [F3,F3,F3] F3 =




1 T T 2/2

0 1 T

0 0 1


 (4.16)

G = diag [G3,G3,G3] G3 =




T 2/2

T

1


 (4.17)

In this model the covariance matrix of ek is:

Ree = diag [var {eẍ} Q3, var {eÿ} Q3, var {ez̈} Q3] (4.18)

where:

Q3 =




T 4/4 T 3/2 T 2/2

T 3/2 T 2 T

T 2/2 T 1


 (4.19)

The Wiener model is in some ways unrealistic, most manoeuvring targets are unlikely to

manoeuvre with constant acceleration uncoupled across x, y and z, however like the white

noise model, the Wiener model is attractive because it remains relatively simple.

Polynomial

The constant velocity motion model in section 4.1.3, the white noise acceleration model and

the Wiener acceleration motion model can be regarded as specific 1st and 2nd order polynomial

motion models. Generalising these models yields a polynomial motion model expression:

ak = Fak + G




ex

ey

ez


 (4.20)

where:

ak = [xk, . . . , x
n
k/n!, yk, . . . , y

n
k/n!, zk, . . . , z

n
k /n!]′ (4.21)

F = diag [Fn,Fn,Fn] Fn =




1 T . . . Tn/n

0 1 . . . Tn−1/n− 1
...

...
. . .

...

0 0 . . . 1




(4.22)

G = diag [Gn,Gn,Gn] Gn =




Tn/n
...

T

1




(4.23)
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The order, n, of the model is the model derivative that is assumed to be near-constant.

Like the other motion models reviewed in this section this model is coordinate uncoupled.

Although polynomial models are generally useful for fitting data and solving smoothing pro-

blems, tracking is however a prediction and filtering problem. Regardless of this many special

polynomial motion modelling methods have been developed for target tracking [101].

4.1.5 Coordinate Coupled Manoeuvre Models

Although in the literature many angle-only tracking problems use either constant velocity or

coordinate uncoupled acceleration motion models [58, 59, 61, 79, 96, 105], other more sophisti-

cated motion models have been proposed [101,106,107]; the following sections provide a brief

overview of two of these methods.

Singer Model

Singer proposed modelling acceleration as a first order Markov process instead of as a Wie-

ner sequence, whereby the acceleration increment is dependent on the previous [101, 106].

Acceleration, äk, can be described as:

äk = ζäk−1 + ëk−1 (4.24)

where äk = [ẍk, ÿk, z̈k]′ is the acceleration vector in each dimension, ëk is a zero-mean white

noise process, ζ = exp {−ηT}, η = 1/T and T is the manoeuvre time constant. The Markov

process assumed by the Singer model is a zero-mean, first order, stationary process. The

resulting system update equation is:

ak = Fak−1 + Gek (4.25)

where:

F = diag [Fη,Fη,Fη] (4.26)

Fη =




1 T (ηT − 1 + exp {−ηT}) /η2

0 1 (1 − exp {−ηT )} /η
0 0 exp {−ηT}


 (4.27)

Singer also proposes that the variance parameters, var {ẍk}, var {ÿk} and var {z̈k}, model

tenerary-uniform distributions for each dimension [106], shown in figure 4.1. This distribution

allows the target to manoeuvre with zero acceleration with probability p (0); accelerate or

decelerate at rate ämax with probability p (ämax) or accelerate or decelerate at a rate with

uniform probability distributed between ±ämax where p (ämax), p (0) and ämax are design

parameters.

The Singer model does not make use of online information about the target manoeuvre so,
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ä
0

Figure 4.1: Tenerary-uniform mixture PDF used in the Singer motion model

like the other models discussed here, can be regarded as an a-priori motion model, however

adaptation of parameters η, p (ämax), p (0), T and ämax based on online data, if available,

is possible [101]. The Singer model is limited in that it is symmetric with zero-mean which

implies that the average target acceleration is also zero and acceleration is as probable as

deceleration.

Mean Adaptive Model

The mean adaptive acceleration model is a Singer model modified so that the mean acceleration

can be adapted to non-zero values [101]:

äk = ãk + āk (4.28)

where ãk is the zero-mean Singer acceleration process and āk is the mean of the acceleration

assumed constant over each sampling interval. The acceleration estimate, âk−1, of the true

acceleration, äk−1, from all available information (the measurements b1:k) is taken to be the

current value of the mean acceleration, āk, recursively updated from time 1 to k, so that

āk = âk−1. The resulting system update expression is:

ak = Fak−1 + Jāk + Gek (4.29)

where:

F = diag [Fη,Fη,Fη] (4.30)

and:

J = diag [Jη,Jη,Jη] (4.31)

Jη =







T 2/2

T

1


 −




(ηT − 1 + exp {−ηT}) /η2

(1 − exp {−ηT )} /η
exp {−ηT}





 (4.32)

and G is defined in (4.17).
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4.2 Coordinate Systems

The motion models presented in section 4.1 are derived in the Cartesian Coordinate system,

however alternative coordinate systems have been proposed in the literature, notably the 2

dimensional modified polar coordinate (MPC) system [79] and its three dimensional equivalent

the modified spherical coordinate (MSC) system [59,91,92]. This section reviews and compares

the Cartesian coordinate and MSC systems.

Cartesian coordinate systems can be used in tracking applications where measurements acqui-

red from sensors with three dimensional separation are available [108]. If tracking acoustically

using bottom mounted sensors or other fixed hydrophone array, as discussed in chapter 2, then

a Cartesian coordinate system is suitable because the sensors are spread over three dimen-

sions [22–24]. Often in single observer tracking scenarios measurements are acquired in polar

or spherical coordinate form relative to the observer’s own position [55, 84]. In passive tra-

cking applications, such as passive sonar and infra-red heat signature tracking, range is often

un-measurable until the observing platform performs a manoeuvre, this is a classical tracking

problem known as angle-only (or bearings-only1) tracking in which range is a parameter to be

estimated [55, 59]. The necessary observer manoeuvring information is incorporated via the

inclusion of the detereministic control vector uk in the system function.

Cartesian and spherical coordinate systems are illustrated in figure 4.2. In the horizontal

plane, figures 4.2(a) and 4.2(b), the x-axis of the Cartesian system lies along the centreline of

the boat and indicates a bearing of 0 rads and the y-axis is perpendicular to the centreline of

the boat, if the boat changes heading the coordinate system rotates with the boat. Bearing is

measured in radians, where bearings to the left are between 0 and π and bearings to the right

are between 0 and −π; if the animal is behind the boat it will be represented by a bearing

greater than π/2 or less than −π/2. In the vertical (x-z) plane, figures 4.2(c) and 4.2(d), the

elevation is measured between 0 and −π/2 rads. The elevation angle is only given as between

− π/2 and 0 because it is reasonable to assume the animal is below the boat and positioning

behind the boat is signified by bearing.

Early solutions to the angle-only tracking problem relied on time motion analysis methods

until the EKF was proposed as a tracking solution, however the estimator displays stability

issues primarily due to ill-conditioning of the covariance matrix [109]. These issues arise

because the x and y components (x, y and z in 3 dimensions) of the state vector are coupled

to both the observable angle and un-observable range. Introduction of the modified polar

coordinate (MPC) system provides a method that automatically decouples the observable

angle and un-observable nearness (range reciprocal) components [79]. The MPC state vector

1‘Bearings-only’ tracking is the most commonly used term in the literature, however here it will be referred
to as ‘angle-only’ tracking to differentiate between the arrival angle of the application specific measurement
and relative horizontal bearing of the animal’s position.
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Figure 4.2: Cartesian and spherical coordinate systems illustrated in the horizontal and vertical
planes. Bearings are measured in radians, positive to the left and negative to the
right. Elevation is measured between 0 and −π/2 rads because the animal will never
be higher than sea level.
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is2:

aMPC
k =




1/rk

ṙk/rk

φk

φ̇k




=




1√
x2+y2

ẋx+ẏy
x2+y2

tan−1 y
x

ẏx−ẋy
x2+y2




(4.33)

Nearness is utilised in place of range so that as the range of the target increases the respective

components of the covariance matrix decrease instead of increase, which would cause filter

instability. The component ṙk/rk is the inverse of the ‘time-to-go’, often used as a measure

of track priority [91]. Three of the state components, aMPC
k (2), aMPC

k (3) and aMPC
k (4) are

measurable using angle-only information as shown by the state differentials:

ȧMPC
k =




− (ṙ/r) (1/r)

φ̇2 − (ṙ/r) + (1/r) (ẋ sinφ+ ẏ cosφ)

φ̇

−2φ̇ (ṙ/r) + (1/r) (ẋ cosφ− ẏ sinφ)




(4.34)

The transformation from MPC back to Cartesian is:

acar
k =




r cosφ

rṙ cosφ− rφ̇ sinφ

r sinφ

rṙ sinφ+ rφ̇ cosφ




(4.35)

The MPC system can be extended to three dimensions as the modified spherical coordinate

(MSC) system [59, 91–93], where the state vector is expanded to include the vertical angle

(elevation) and vertical angular velocity components:

aMSC
k =




1/r

ṙ/r

φ

φ̇

ψ

ψ̇




=




1√
x2+y2+z2

ẋx+ẏy+żz
x2+y2+z2

tan−1 y
x

ẏx−ẋy
x2+y2 cos

(
tan−1 −z√

x2+y2

)

tan−1 −z√
x2+y2

−ż(x2+y2)+z(ẋx+ẏy)

(x2+y2+z2)
√

x2+y2




(4.36)

2Time indices have been dropped from vector elements for clarity
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Transformation from MSC back to Cartesian is achieved using the following:

acar
k =




x

ẋ

y

ẏ

z

ż




=




r cosψ cosφ

ṙ cosψ cosφ− rψ̇ sinψ cosφ− rφ̇ cosψ sinφ

r cosψ sinφ

ṙ cosψ sinφ− rψ̇ sinψ sinφ+ rφ̇ cosψ cosφ

−r sinψ

−ṙ sinψ − rψ̇ cosψ




(4.37)

More discussion and presentation of the MSC system is given in [59, 91–93]. Due to the

non-linearities involved in the transformation between Cartesian coordinates and received

bearings and the resultant ill-conditioning of the covariance matrices, MPC and MSC systems

are widely accepted as the optimal coordinate systems for bearings-only tracking using EKFs.

Although most particle filters can handle the non-linearities and don’t suffer from covariance

matrix ill-conditioning problems, it has been shown that particle filter tracking performance

improves when an MSC system state is utilised [59]. Matrix ill-conditioning problems may

occur in locally-linearised particle filters. This category of particle filter uses an EKF or

UKF to update the state of each particle, part of this process involves updating covariance

matrices that are utilised in the next filter iteration. A discussion of the appropriateness of

the Cartesian, MPC and MSC coordinate systems for sperm whale tracking from a single

time-delay measurement is presented in section 4.5.

4.3 Sperm Whale Dive Motion

Developing an appropriate motion model and selecting an appropriate parameter for the sys-

tem variance requires an analysis of information available on sperm whale motion. This section

presents an overview of the sperm whale’s dive cycle and profile followed by a dive reconstruc-

tion from a data acquisition tag (DTAG) and a discussion of swimming speeds determined

from various sources.

4.3.1 Dive Profile

A dive cycle consists of three stages, descent, foraging and ascent [13, 110, 111], which yields

an approximately U-shaped dive profile. Figure 4.3 shows a single dive profile recorded by the

depth sensor on a DTAG - incorporating a depth sensor, acoustic sensor, a three-dimensional

accelerometer and a three-dimensional magnetometer [112] - attached to the animal using

suction cups. The data shown in figure 4.3 was acquired as part of the 3S 2009 project [47],

data from the same tag deployment will be utilised in chapters 6 and 7.

A dive initiates with the animal performing a ‘fluke up’ whereby the animal pitches down from

a horizontal position on the surface for the descent to depth. Fluking is visually observable

from the sea surface as the animal raises its tail fluke and descends [13]. The fluke up sighting
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Figure 4.3: An example sperm whale dive profile

provides the last opportunity to obtain a fix on the animal’s position until it surfaces. DTAG

data shows descent angles are between 40◦ and 60◦ with a vertical velocity between 1 and

1.5 ms−1 [110]. These figures are consistent with those acquired using acoustic localisation

methods of between 0.8 and 1.4 ms−1 [9]. Vocalisations can start soon after the dive has

commenced or may be delayed for several minutes until the animal reaches a preferred foraging

depth layer [10]. Vocalisations are produced for approximately 2/3 of the descent phase. The

dive continues to depths typically between 300 and 800 m, however dives may reach depths

of 1 - 2 km and, in some cases, be as shallow as 200 m [13].

The foraging phase occurs after the descent and within favoured depth layers [10]. Sperm

whales are believed to travel at similar speeds during the horizontal foraging stage of the

dive as they do at the surface, specifically between 0.55 ms−1 and 1.39 ms−1, derived from

displacement measurements over periods of 30 minutes to 2 hours [13]. Acoustic localisation

measurements estimate horizontal swim speeds of between 0.2 and 2.6 ms−1 depending on if

the animal is swimming with or against the current [9]. Foraging times are typically 15 to 30

minutes for a typical 30 to 45 minute dive [13].

During the ascent phase vertical velocities vary from 1.1 to 1.56 ms−1 at a pitch between 43◦

and 75◦ [110]. Vocalisation typically stops at the end of the foraging stage with the animal

quiet during the ascent to the surface.

4.3.2 DTAG Dive and Track Reconstruction

Figures 4.4(a) and 4.4(b) show the profile of a dive and the corresponding reconstruction of

the horizontal movements of the animal between the sightings at fluke up and surfacing. The

horizontal track is reconstructed using the accelerometer and magnetometer recordings and

then fitted to the sighting locations. No speed over ground or positioning sensors are available

on the DTAG so the reconstruction is prone to error and may give the position of the animal

as different to the sighting. Transforming the reconstruction to match the sighting positions
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Figure 4.4: The dive profile (a) and horizontal pseudotrack reconstruction from DTAG data (b)
for a sperm whale
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can be justified as compensating for current flow which is not detected by the accelerometers.

In such cases the direction and magnitude of the transformation should be checked against

preceding and succeeding dives, if the directions and magnitudes are significant then the

current compensation argument is not valid as there are physical limits to how rapidly the

current speed and direction can change.

Although the DTAG itself includes accelerometers there is a lack of information on the varia-

tions in the absolute speed of the animal. Although it is known that the animal must have to

manoeuvre to catch prey [10], there is also a lack of available information regarding the rate

of change of heading and pitch.

The next section establishes a distribution from which noise samples representing changes in

acceleration can be drawn, however appropriate values may need to be established through

experimentation.

4.4 System Noise for Sperm Whale Tracking

Development of the motion model requires developing an appropriate distribution from which

to draw system noise samples. Since no ranging information is available in the measurements,

filter stability depends on the accuracy of the representation of the system function and

noise distribution, otherwise a solution may be found that fits the measurements but with

an unrealistic range estimate. Firstly this section looks at the limitations of drawing samples

from a normal distribution in terms of realistic representation of animal acceleration and

deceleration. Following this an alternative sampling method is proposed that incorporates a

rejection function of speed samples that are unrealistic.

4.4.1 Insufficiencies in Gaussian Modelling

The exact shape of the system noise distribution depends on whether noise samples are drawn

from a distribution representing the speed or acceleration of the animal, however the need to

maintain realism in the statistical representation of the animal’s motion remains. The discus-

sion in this section is applicable whether the noise samples represent velocity or acceleration.

If using a Cartesian coordinate system for tracking then simply drawing velocity or acceleration

samples from a normal distribution uncouples the motion model across the three dimensions,

which may also lead to unrealistic speeds being modelled. This can be overcome by modelling

speed and direction using a spherical coordinate system so that only a single speed sample

needs to be drawn. Speed is a measure of magnitude so can only be positive, this can be

overcome when drawing values from a normal distribution by taking the absolute value of

drawn negative samples.

Figure 4.5 shows two normal distributions, where the curve is centred at the speed at time

k. The curve represents the distribution from which a sample for the speed at time k+ 1 can
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Figure 4.6: A hyperbolic tangent function used to reduce the probability of samples that would
cause unrealistic speed in the motion model

be drawn (this may be achieved by drawing a new speed sample or drawing and adding an

acceleration sample to the current speed). As discussed in section 4.3, typical travel speeds

for a sperm whale are between 0.55 ms−1 and 1.39 ms−1, however the mean of the red curve

shows the animal to be travelling slightly faster at 1.55 ms−1. The normal distribution of the

red curve allows samples to be drawn that would cause the animal’s speed to increase even

further. This mechanism allows the model to represent the animal’s speed as a process which

increases without bound.

4.4.2 Overcoming Limitations of a Gaussian System Noise Distribution

The limitations presented by using a system noise distribution that is independent of current

speed, such as a normal distribution, can be overcome by drawing samples from an alternative

distribution, however formulating the necessary distribution is not a trivial task. Further

complications in formulating an appropriate distribution may be presented by the order of

the motion model. An alternative is to simulate a non-Gaussian distribution by rejecting

system noise samples drawn from a normal distribution that do not conform to the model,

this approach is discussed in this section.

The difficulties of drawing system samples from a distribution independent of the current
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speed, υk, and limiting the modelled maximum speed, υmax, of the animal can be overcome

using a second distribution as the basis for rejecting samples using the speed at k and what

the speed would be at k + 1 given the drawn sample. After a system noise sample is drawn

the updated target speed is calculated followed by calculation of an acceptance criteria using

the hyperbolic tangent function:

χ (υk−1 + υ̇k) = (1 − C)

(
tanh (AB −A(υk−1 + υ̇k) − 1) + 1

2

)
+ C (4.38)

which forms the curve shown in figure 4.6 where A is the maximum gradient of the curve,

B is the speed at the steepest point of the curve and C is the offset from the speed axis.

The resulting probability is compared against a sample drawn from the uniform distribution

µ ∼ U (0, 1), acceptance of the system noise sample is given by:

υk =




υk−1 + υ̇k if µ < χ (υk−1 + υ̇k)

υk−1 otherwise
(4.39)

If the test is failed the system sample can be either rejected, and the old speed sample used,

or the process can be repeated until a sample is drawn that is accepted. The shape of the

rejection function can be controlled using the gradient, A, curve mid-point, B, and offset,

C, parameters. The curve mid-point parameter controls the speed at which a sample has

a 50% chance of being rejected (assuming no offset) and the gradient controls the rate of

transition from automatic acceptance to automatic rejection (again assuming no offset). The

offset parameter allows a small proportion of system samples that would cause high speeds to

be accepted, this may be necessary to maintain diversity in the particle filter. Use of the offset

parameter will however cause changes in the midpoint and gradient parameters. A benefit of

this system is system samples can be rejected based on the resulting speed regardless of the

order of the motion model.

4.5 Motion Model and Coordinate System for Sperm Whale

Tracking

Sections 4.1, 4.2 and 4.4 have discussed the design elements necessary to formulate a motion

model for target tracking and section 4.3 has discussed sperm whale swimming motion. This

section develops and presents a complete system function for updating particle states.

4.5.1 Coordinate System

For the purpose of tracking an animal from a boat it makes sense to present results in a

spherical coordinate system centred over the boat. This will provide intuitive measurements

relative to the boat and conform with the polar coordinate system typically used to record

visual sightings.
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The MSC system could be utilised even though the use of a SIR particle filter negates the

necessity of maintaining filter stability by selection of a coordinate system that reduces matrix

ill-conditioning. If a locally-linearised particle filter were to be utilised it may be necessary to

use an MSC system because matrix ill-conditioning may be a problem in the locally-linearised

particle propagation stage. The MSC system does however provide a coordinate system which

includes bearing, elevation and range related parameters.

For the MSE estimate of the animal position the state of each particle will be transformed to

Cartesian coordinates. This is necessary because if the particles are spread across the x-axis

to the rear of the boat then the resulting estimate will place the animal in front of the boat,

for example the mean of − 3π/4 and 3π/4, both bearings to the rear of the boat, is 0, directly

ahead of the boat; the estimate should be to the rear of the boat at π rads. Computing the

MSE estimate in Cartesian space alleviates this problem.

4.5.2 Motion Model

As discussed in section 4.3, there is considerable understanding of the sperm whales’s dive

cycle, however there is not enough knowledge about the instantaneous motion, such as ac-

celerations and manoeuvring, to enable a sophisticated motion model to be developed. Fur-

thermore a normal distribution noise model is not adequately representative of the changes

in speed sperm whale motion is realistically subjected to. Appropriate modelling of the sys-

tem noise distribution is necessary to avoid the estimated range increasing exponentially and

causing the filter to effectively behave in an unstable manner so the draw and accept/reject

system discussed in section 4.4 will be used.

Since there is insufficient understanding of instantaneous sperm whale accelerations and ma-

noeuvring a random walk may be applicable, however there are drawbacks to a random walk

model in Cartesian space. Firstly such a model in Cartesian form is uncoupled across di-

mensions so changes of velocity in one direction do not affect changes of velocity in the other

two and lead to unrealistic overall speeds. A normal system noise distribution in this appli-

cation should have a mean of 0 to avoid bias towards motion in a particular direction. The

sample most likely to be drawn from a normal distribution with a mean of 0 is 0, effectively

meaning no movement. Alternatively a uniform distribution could be utilised which would

increase the likelihood of non-zero samples being drawn, however this puts hard minimum

and maximum limits on the samples that may be drawn and the mean remains as zero. Se-

condly, drawing samples in Cartesian form complicates the accept/reject method of drawing

system noise samples because, although calculating speed is trivial, deciding what to do with

rejected samples yet still allow changes in direction is less so. Finally a random walk could

yield particles manoeuvring in a unrealistic way because the particle would not include any

velocity or trajectory information. It is proposed that system samples be drawn independently

for changes in target speed, heading and pitch. This uncouples sample drawing for direction

and speed into separate processes so that samples for change in speed can be rejected while
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samples for change in heading and pitch can be maintained, so that:

eυ
k ∼ N (0, var {υ}) (4.40)

eγ
k ∼ N (0, var {γ}) (4.41)

eβ
k ∼ N (0, var {β}) (4.42)

where γk and βk are change in target heading and pitch respectively. In general terms the

direction a target is facing may not be the direction in which it is travelling in this case ‘pitch’

is taken to be the angle relative to horizontal at which the target is ascending or descending.

The transformation between Cartesian velocities and speed and angular velocities is:

υk =
√
ẋ2

k + ẏ2
k + ż2

k (4.43)

γk = tan−1 ẏk

ẋk
(4.44)

βk = tan−1 −ż√
ẋ2

k + ẏ2
k

(4.45)

and:

ẋk = υk cosβk cos γk (4.46)

ẏk = υk cosβk sin γk (4.47)

żk = υk sin βk (4.48)

Samples drawn from distributions representative of motion in a spherical coordinate system

will be transformed to Cartesian for application of a near-constant velocity motion model as

described in section 4.1.3. Should such a coordinate system be used, then there are methods for

applying constant velocity motion models directly to MPCs [79] and MSCs using a numerical

solver based on the Euler method [113], however it is simpler to transform to Cartesian and

perform the update analytically.

As the coordinate system is centred over the boat the velocity of the target is relative to the

boat, a fact that is negated in the drawing of speed, heading and pitch samples so needs to

be corrected for in the system function. The coordinate system also needs to be rotated with

changes in boat heading to represent the relative change in bearing of the target to the boat.

Concatenating both these parameters, the change in boat heading, θ̇boat
k , and boat speed υboat

k ,

together yield a control vector of the form:

uk =

[
θ̇boat

k

υboat
k

]
(4.49)

The x-axis of the coordinate system is aligned with the centreline of the boat, therefore the

correction for boat motion only needs to be applied to the x dimension of the target’s velocity:

acar
k = acar

k + Luk (2) (4.50)
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where:

L =




0

1

0

0

0

0




(4.51)

The rotation is applied to the heading and position of the target:

acar
k = Θkacar

k (4.52)

where:

Θk =




cosuk (1) 0 sin uk (1) 0 0 0

0 cosuk (1) 0 sin uk (1) 0 0

− sin uk (1) 0 cosuk (1) 0 0 0

0 − sin uk (1) 0 cosuk (1) 0 0

0 0 0 0 0 0

0 0 0 0 0 0




(4.53)

The complete system function which will be used for propagating particles is summarised in

algorithm 4.1.

4.6 Conclusion and Summary

This chapter has reviewed motion modelling and coordinate systems commonly used in target

tracking and sperm whale motion over a dive cycle. From these reviews coordinate systems,

a system noise sampling scheme and a motion model have been developed.

The motion models presented can be categorised as random walk, constant velocity, coor-

dinate un-coupled manoeuvre and coordinate coupled manoeuvre models. A random walk

motion model updates the target position by drawing samples for the target displacement

from a distribution approximated through statistical analysis of the target state parameters.

Random walks are particularly useful when limited knowledge about the target’s motion is

available. Given suitable information more sophisticated and representative motion models

can be developed. By incorporating the first order differential of the target state (the ve-

locity) into the system state vector, the target can be modelled using a constant velocity

motion model. In this case the velocity is a noise driven process and the target is modelled

as travelling on a near-constant course at a near-constant speed. The modelling that results

is more representative of the target’s motion mechanics and therefore allows a more efficient

searching of the state space than a random walk. Manoeuvring target motion models can be

further derived by the inclusion of acceleration, jerk or possibly higher order state differen-

tials. Coordinate coupled manoeuvring motion models prevent acceleration in each dimension

changing independently from each other and model constant turn rates.
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Algorithm 4.1 [acar
k ] = System Function

(
acar

k−1,uk, [var {υ} , var {γ} , var {β}]′
)

Compute speed, heading and pitch:

υk−1 =

√(
acar

k−1(2)
)2

+
(
acar

k−1(4)
)2

+
(
acar

k−1(6)
)2

γk−1 = tan−1 acar
k−1

(4)

acar
k−1

(2)

βk−1 = tan−1 −acar
k−1

(6)√
(acar

k−1
(2))

2
+(acar

k−1
(4))

2

Draw system noise samples using (4.40) to (4.42):
eυ

k ∼ N (0, var {υ})
eγ

k ∼ N (0, var {γ})

eβ
k ∼ N (0, var {β})

Test for speed update acceptance using (4.38) and (4.39)
if Speed accepted then
υk = υk−1 + eυ

k

else
υk = υk−1

end if
Update heading and pitch:
γk = γk−1 + eγ

k

βk = βk−1 + eβ
k

Set new Cartesian position and velocities:

acar
k =




acar
k−1(1)
υk cosβ cos γ
acar

k−1(3)
υk cosβ sin γ
acar

k−1(5)
υk sin β




Update particle state:
acar

k = F (Θacar
k − Luk(2)) + Luk(2)

return acar
k

Although over the period of a complete dive cycle the animal does manoeuvre and change

course a near-constant velocity motion model has been selected as the most appropriate for

use in particle filters for tracking sperm whales because of the lack of knowledge of the ins-

tantaneous accelerations and manoeuvres. Under these circumstances a lower order motion

model prevents ‘over-fitting’ of the model to the system. A correct system variance allows for

changes in direction and speed which will vary over the course of the dive.

The time-delay measurements in sperm whale tracking are a function of the bearing and

elevation of the target but not the range. Using a normal system noise distribution could lead

to unrealistic speeds in the motion model because speed is un-coupled from the measurements

so must be limited by the statistics of the noise distribution. This can be achieved by utilising

a system noise distribution whereby the likelihood of particles achieving unrealistic speeds is

proportionally reduced as speed increases. This is achieved using a rejection function whereby

system noise samples that will put a particle’s speed beyond a threshold are increasingly less

likely to be accepted.
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During visual sighting and tracking an animal’s position relative to the boat is recorded in

terms of bearing and range and it is logical to extend this polar system to acoustic tracking.

Due to matrix ill-conditioning issues that arise in angle-only tracking applications when using

a Cartesian coordinate system the MPC system is typically utilised. This coordinate system is

extended to three dimensions by the MSC system which includes elevation angle and elevation

angular velocity components. The range of the target from the boat is achieved by inverting

the range reciprocal component. The coordinate system is centred over the boat so that

the x-axis is aligned with the centre-line of the boat, therefore the bearing of the animals is

judged relative to the heading of the boat, rather than relative to north. This requires that the

position of the particles be rotated within the coordinate system as the boat changes course.

Any particle lying off the starboard quarter has a negative bearing whilst any particle at

the equivalent bearing to port has a positive bearing. The estimate should place the target

directly to the stern of the boat at ±π rads, however an MMSE estimate of the bearing will

result in an estimate at 0 rads, directly ahead of the boat. This issue can be overcome by

performing the MMSE estimate in Cartesian coordinates.

System noise samples will be drawn in a spherical coordinate system centred over the particle

for two reasons: firstly changes in velocity will be coupled across the three dimensions thereby

preventing them varying independently; secondly if the drawn samples result in a high speed

which is rejected by the rejection function the horizontal and vertical angular acceleration

samples can still be applied.

The subjects reviewed and discussed in this chapter have led to the development of algorithm

4.1 which will be incorporated into the particle propagation stage of the SIR particle filter

algorithm to propagate the particles from {ak−1}1:N to {ak}1:N . This concludes the tracking

filter development for the simulated dataset results and analysis presented in chapter 5 and

real dataset results presented in chapter 7.





Chapter 5

Application to Simulated Datasets

Chapter 3 proposed using an SIR particle filter to track the position of a whale relative to

the observing boat from successive time-delay measurements, described in chapter 2, and

the boat manoeuvring information. Chapter 4 described various motion models, that can

be utilised as the system function, and state space coordinate systems prior to developing a

motion model appropriate to tracking sperm whales. This chapter tests and evaluates the

tracking capabilities of the proposed methods using simulated data. Utilising simulated data

at this stage provides two benefits, firstly the ground truth is available, which is not true for

the real datasets, and secondly, the complexity of the tracking problem can be controlled.

Results from several simulated test datasets are presented. The tracking problem complexity

is increased between sets of experiments. Firstly a constant speed non-manoeuvring target is

simulated, followed by a dataset where the target manoeuvres in the horizontal plane. The

complexity is then increased by sequentially introducing manoeuvring in the horizontal and

vertical planes, changes in speed and initialising the tracking filter without knowledge of the

true initial position of the target.

5.1 Tracking Filter Performance Criteria and Evaluation

Ideally a tracking method should be able to:

1. Estimate position;

2. Estimate speed and direction of travel;

3. Perform both without knowledge of the starting position and direction of whale motion.

The sections of this chapter evaluate the capability of a particle filter to satisfy each of these

requirements by incrementally increasing the complexity of the problem. The drawing of noise

samples in the system function using a random number generator results in different Monte-

Carlo approximations of the prior distribution, therefore results can differ between repeated

79
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tracking runs of the same measurement data. Consistency is evaluated by comparing results

over multiple realisations of the algorithm using the same such parameters.

5.1.1 Experimental Methodology

Tracking results for a whale travelling on a constant course at a constant speed are presented

in section 5.2. The experiments in sections 5.3, 5.4 and 5.5 follow a consistent structure.

For the experiments in each of these sections at least two test datasets are presented. The

datasets are generated randomly following function (3.1) and implemented using algorithm

4.1. For each of the parameters - heading, pitch and speed - a data variance is specified

for a normal distribution from which samples for changes in each of these parameters are

drawn. Samples drawn for the change in speed are subject to the rejection function described

in section 4.4. As a Consequence, the variance of the resulting datasets may differ to that

specified. Measurement time-delays are calculated for the relative positions of the whale to the

observing boat. Where appropriate, multiple datasets may be processed using the same data

parameters. This allows testing of the consistency of tracking performance between datasets

generated from the same system model. The speed sample rejection function remains the

same for all experiments as:

χ (υk−1 + υ̇k) =
tanh (2 − 2 ((υk−1 + υ̇k) − 1)) + 1

2
(5.1)

Testing of tracking performance when the initial position of the whale is unknown in section

5.6 utilises a dataset from section 5.5. This allows comparison between cases where the

initial location is known and where it is unknown. Many of the developments in this chapter

are applicable to any passive acoustic target tracking using time-delay measurements, not just

sperm whales, therefore there is some interchanging of the use of the words ‘whale’ and ‘target’

where discussion refers specifically to tracking sperm whales then the target is referred to as

a whale.

5.1.2 Performance Criteria and Evaluation

Tracking performance is evaluated for a set of motion models using different heading, pitch

and speed variances. Results are presented in terms of spherical coordinates relative to the

boat and as a Cartesian reconstruction of the path taken by the simulated boat and the true

path followed by the simulated whale.

Several performance measurement criteria can be applied in the evaluation and a track may

meet some of these better than others, whilst another tracking realisation may better satisfy

others, therefore tracking performance criteria are prioritised in the following order:

1. Tracking of the whale for the entire dataset duration;
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2. Tracking of the time-delay measurement as a function of the MMSE estimates of bearing

and elevation;

3. Tracking of bearing;

4. Tracking of elevation;

5. Tracking of range.

The highest priority of the tracking criteria is the ability to track a whale for all the measu-

rements without the estimator being unable to compute a solution. If the estimator is unable

to complete a track its usefulness is limited. The second priority is that the estimated time-

delays should fit the measurements. This demonstrates that the estimator has converged to

a solution that fits the measurements and therefore is valid. Bearing is the third priority

because the boat manoeuvres in the horizontal plane, therefore this dimension of the motion

model includes a deterministic component whereby changes in boat heading cause a change

in the bearing of the whale. It is this deterministic component that causes range to become

observable during a manoeuvre, as discussed in section 4.2. Elevation is the fourth priority

because the measurement is a function of bearing and elevation. Range estimation is the

lowest priority because range is uncoupled from the time-delay measurement and therefore is

the most difficult to estimate.

Results are presented in several ways. Firstly estimated bearing, elevation, slant range and

time-delay for one results set at each test variance is shown along with the true bearing,

elevation, range and time-delay. Secondly, a plan view of the boat and true whale positions

are shown with a Cartesian reconstruction of the track for each test variance. Although

the Cartesian reconstructions are limited to two dimensions so do not explicitly show depth

estimates, the longitude and latitude reconstruction alone is often useful. Where tracking

errors are small it is occasionally difficult to see the difference between results under different

test parameters so error plots for bearing, elevation, range and time-delay are presented. It is

important to take into consideration the axes scales when considering these plots. Finally, to

check performance consistency over multiple results sets under the same parameters a table

of mean square error (MSE) values for bearing, elevation, range and time-delay at each test

variance is presented. For each estimated system state parameter at each test variance a

minimum, mean and maximum MSE computed from five results sets is presented, the smaller

the difference between the minimum and maximum the more consistent the performance. A

statistical analysis of MSE values was not performed due to the limited number of results sets.

Where appropriate multiple results for a single dataset under the same test parameters are

presented to provide a visual representation of performance consistency.

The Cramer-Rao lower bound (CRLB), which represents the theoretical minimum variance of

an unbiased estimator, is not presented. Although the CRLB has been derived for tracking

where passive bearing and elevation measurements are available [54], derivation for tracking

where the measurement is a time-delay that is a function of both bearing and elevation is a

complex process beyond the scope of this work.
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5.2 Non-Manoeuvring Constant Velocity Target Tracking

This section explores the capabilities of a particle filter to track a target, which is not neces-

sarily a whale, with separation from the observer in the x, y and z dimensions travelling at a

constant velocity in a constant direction so that there is zero heading variance, var {γ} = 0,

zero pitch variance, var {β} = 0 and zero speed variance, var {υ} = 0, at a known starting

point using a time-delay measurement.

Figure 5.1(a) shows the simulation dataset with the target travelling at a constant speed in

a straight line at 400 m depth. The boat manoeuvres four times to simulate how a tracking

vessel might behave when following an animal so that range becomes observable. Figure 5.1(b)

shows the relative position of the target to the boat in spherical coordinates and the time-delay

received across the array aperture.

Straight line tracking performance is evaluated using particle filters with increasing test va-

riances for var {γ}. With var {γ} set close to zero and correct initialisation, the filter can be

expected to track the target accurately as the motion model closely represents the target’s

motion.

Figure 5.2 shows multiple results for tracking the simulated target in figure 5.1. The target

has been tracked several times with the test variance var {γ} set to values in the range of

1.7453×10−9 rads2 to 1.2217×10−2 rads2. This does not exploit the knowledge that the target

is not manoeuvring, however the filter does use knowledge that speed is constant because the

speed variance is set to var {υ} = 0. The tracks where var {γ} is higher show greater deviation

from the true track, which is to be expected because the particles effectively have more freedom

to diverge to alternative solutions that fit the measurements. Figure 5.2(a) shows the bearing,

elevation, range and time-delay estimates of the target from the observer.

For all trialled variances bearing tracking remains accurate. Errors in both the elevation

and range estimates increase with test variance as expected, the range more so than the

elevation. Both re-converge and the errors decrease at the points where the observer performs

a manoeuvre, then diverge again until the next manoeuvre. At all times the estimate of bearing

and elevation transform to a time-delay that closely matches the measurement, demonstrating

the particle filter has converged to a solution that fits the measurements.

Figure 5.3 shows the estimation error for bearing, elevation, range and time-delay that is

obtained for each trialled test variance. As expected, the error is greatest for the results set

where the test variance is highest.

In the SIR particle filter algorithm system noise samples are drawn randomly from the sys-

tem noise distribution, therefore, although the importance density remains the same, the

Monte-Carlo point wise approximation of the importance density will differ from realisation

to realisation. Consequently, tracking results may differ when re-processing the same data

with the same test variances. Performance consistency can be evaluated by re-running the

tracking filter with the same measurement dataset and test variances multiple times. Table
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(a) Plan view of true target and boat positions
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(b) Positions of the target relative to the boat in spherical coordinates and the
time-delay received across the array aperture

Figure 5.1: Simulation dataset for a constant velocity non-manoeuvring target, (a) the plan view
of the boat and target and (b) the relative positions of the target from the boat in
spherical coordinates and the received time-delays.
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(a) Relative position of target and tracking results relative to boat in spherical form
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(b) Plan view reconstruction of boat path, target path and tracking results in Carte-
sian form

Figure 5.2: True target positions and tracking results in (a) spherical coordinates relative to
the boat and (b) plan view reconstruction of the boat and true target positions and
tracking results for different heading test variances.
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Figure 5.3: Relative position tracking errors for the results in figure 5.2 at each heading test
variance. The legend is given in figure 5.2.

Parameter System MSE Statistics
Variance min mean max

Bearing
(rads)

1.7453 × 10−9 8.2186 × 10−4 8.2186 × 10−4 8.2186 × 10−4

1.7453 × 10−4 8.1294 × 10−4 8.1294 × 10−4 8.1294 × 10−4

1.0472 × 10−3 9.7711 × 10−4 9.7711 × 10−4 9.7711 × 10−4

3.4907 × 10−3 3.0834 × 10−3 3.0834 × 10−3 3.0834 × 10−3

1.2217 × 10−2 2.8879 × 10−3 2.8879 × 10−3 2.8879 × 10−3

Elevation
(rads)

1.7453 × 10−9 2.5777 × 10−8 2.5777 × 10−8 2.5777 × 10−8

1.7453 × 10−4 1.9192 × 10−4 1.9192 × 10−4 1.9192 × 10−4

1.0472 × 10−3 3.0395 × 10−4 3.0395 × 10−4 3.0395 × 10−4

3.4907 × 10−3 1.572 × 10−3 1.572 × 10−3 1.572 × 10−3

1.2217 × 10−2 3.0227 × 10−3 3.0227 × 10−3 3.0227 × 10−3

Range
(m)

1.7453 × 10−9 1.1455 × 10−2 1.1455 × 10−2 1.1455 × 10−2

1.7453 × 10−4 322.61 322.61 322.61
1.0472 × 10−3 514.11 514.11 514.11
3.4907 × 10−3 1429 1429 1429
1.2217 × 10−2 2213 2213 2213

Time Delay
(samples)

1.7453 × 10−9 4.5396 4.5396 4.5396
1.7453 × 10−4 4.6507 4.6507 4.6507
1.0472 × 10−3 4.8312 4.8312 4.8312
3.4907 × 10−3 10.145 10.145 10.145
1.2217 × 10−2 6.6559 6.6559 6.6559

Table 5.1: Minimum, mean and maximum MSE values for five tracking results sets at each test
variance for the dataset shown in figure 5.1.
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5.1 shows minimum, mean and maximum MSE values for bearing, elevation and range and

the time-delay derived from the bearing and elevation estimates over five results sets at each

test variance. The minimum, mean and maximum MSE scores across results sets in table 5.1

are equal. This demonstrates that over each results set the estimator performed consistently

with respect to the overall MSE.

5.2.1 Summary

This section has shown that if the initial position and direction of travel of a constant speed

non-manoeuvring target is known then it can be tracked from a time-delay measurement.

Results show consistent and accurate performance for bearing, elevation, range and time-

delay estimation. In this case range estimation is the component of the target state vector

which is most sensitive to changes in var {γ}.

5.3 Horizontally Manoeuvring Constant Speed Target

Tracking

Section 5.2 presented tracking results for a constant speed non-manoeuvring target for different

test variances. As expected, optimal tracking performance was obtained utilising the smallest

heading test variance because the true motion of the target has zero variance. This section tests

tracking filter performance with datasets where the target is manoeuvring in the horizontal

plane only.

Figures 5.4 and 5.5 show simulation datasets for a target travelling at a constant velocity

at 400 m depth and manoeuvring in the horizontal plane. The generation of the dataset in

5.4 draws samples for the change in target heading from a normal distribution with variance

var {γ} = 1.0472 × 10−3 and the dataset shown in figure 5.5 draws samples for the change in

heading from a normal distribution with variance var {γ} = 1.2217 × 10−2.

Tracking results for the dataset generated with var {γ} = 1.0472 × 10−3 are shown in figure

5.6 and error plots are shown in figure 5.7. For a test variance of var {γ} = 1.7453 × 10−9

the target track is estimated as a straight line because the particles are unable to change

heading at a rate high enough to match that of the true target motion. As a consequence

bearing estimates fail to converge which also causes a failure of the time-delay estimate track

to converge, demonstrating that the estimated track does not match the measurements.

Results in figure 5.6 are surprising because they show the optimal tracking system variance

as var {γ} = 1.7453 × 10−4, below that at which the data were generated. Figure 5.6 shows

all the tracking results follow the correct target positions until the manoeuvre at 120 s, after

this point all the tracks diverge from the true position then adjust heading to converge back

towards the true track. Between manoeuvres the track at test variance var {γ} = 1.7453×10−4

is more bound to a straight line assumption. Consequently, the track is more fixed on the
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(a) Plan view of true target and boat positions
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(b) Positions of the target relative to the boat in spherical coordinates and the time-delay
received across the array aperture

Figure 5.4: Simulation dataset for a constant velocity manoeuvring target where changes in
target heading a drawn from a normal distribution with variance var {γ} = 1.0472 ×
10−3, shown in (a) plan view and (b) relative positions of the target from the boat
in spherical coordinates and the received time-delays.
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(a) Plan view of true target and boat positions
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(b) Positions of the target relative to the boat in spherical coordinates and the time-delay
received across the array aperture

Figure 5.5: Simulation dataset for a constant velocity manoeuvring target where changes in
target heading a drawn from a normal distribution with variance var {γ} = 1.2217 ×
10−3, shown in (a) plan view and (b) relative positions of the target from the boat
in spherical coordinates and the received time-delays.
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(a) Relative position of target and tracking results relative to boat in spherical form
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(b) Plan view reconstruction of boat path, target path and tracking results in Carte-
sian form

Figure 5.6: True target positions and tracking results for the dataset shown in figure 5.4 in (a)
spherical coordinates relative to the boat and (b) plan view reconstruction of the boat
and true target positions and tracking results for different heading test variances.
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Figure 5.7: Relative position tracking errors for the results in figure 5.6 at each heading test
variance. The legend is given in figure 5.6.

Parameter System MSE Statistics
Variance min mean max

Bearing
(rads)

1.7453 × 10−9 1.9353 × 10−3 1.9353 × 10−3 1.9353 × 10−3

1.7453 × 10−4 7.8927 × 10−4 7.8927 × 10−4 7.8927 × 10−4

1.0472 × 10−3 1.0907 × 10−3 1.0907 × 10−3 1.0907 × 10−3

3.4907 × 10−3 2.4023 × 10−3 2.4023 × 10−3 2.4023 × 10−3

1.2217 × 10−2 2.5596 × 10−3 2.5596 × 10−3 2.5596 × 10−3

Elevation
(rads)

1.7453 × 10−9 2.759 × 10−4 2.759 × 10−4 2.759 × 10−4

1.7453 × 10−4 1.3328 × 10−4 1.3328 × 10−4 1.3328 × 10−4

1.0472 × 10−3 8.6259 × 10−4 8.6259 × 10−4 8.6259 × 10−4

3.4907 × 10−3 1.7386 × 10−3 1.7386 × 10−3 1.7386 × 10−3

1.2217 × 10−2 1.0945 × 10−2 1.0945 × 10−2 1.0945 × 10−2

Range
(m)

1.7453 × 10−9 180.42 180.42 180.42
1.7453 × 10−4 194.21 194.21 194.21
1.0472 × 10−3 1078.4 1078.4 1078.4
3.4907 × 10−3 1464.2 1464.2 1464.2
1.2217 × 10−2 8229.4 8229.4 8229.4

Time Delay
(samples)

1.7453 × 10−9 9.8273 9.8273 9.8273
1.7453 × 10−4 4.4592 4.4592 4.4592
1.0472 × 10−3 4.9634 4.9634 4.9634
3.4907 × 10−3 7.6746 7.6746 7.6746
1.2217 × 10−2 8.3811 8.3811 8.3811

Table 5.2: Minimum, mean and maximum MSE values for five tracking results sets at each test
variance for the dataset shown in figure 5.4
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Parameter System MSE Statistics
Variance min mean max

Bearing
(rads)

1.7453 × 10−9 2.8491 × 10−3 2.8654 × 10−3 2.8812 × 10−3

1.7453 × 10−4 7.9174 × 10−4 8.1027 × 10−4 8.2317 × 10−4

1.0472 × 10−3 9.3581 × 10−4 3.3934 × 10−3 7.8765 × 10−3

3.4907 × 10−3 3.6923 × 10−3 4.9657 × 10−3 6.6152 × 10−3

1.2217 × 10−2 1.2919 × 10−3 1.869 × 10−3 3.2808 × 10−3

Elevation
(rads)

1.7453 × 10−9 1.4857 × 10−3 1.493 × 10−3 1.5002 × 10−3

1.7453 × 10−4 9.7451 × 10−5 1.1284 × 10−4 1.2274 × 10−4

1.0472 × 10−3 2.684 × 10−4 1.2267 × 10−3 2.533 × 10−3

3.4907 × 10−3 1.5528 × 10−3 1.7386 × 10−3 1.7386 × 10−3

1.2217 × 10−2 2.7633 × 10−4 5.829 × 10−4 1.4632 × 10−3

Range
(m)

1.7453 × 10−9 1380.3 1384.5 1388.7
1.7453 × 10−4 141.34 151.13 164.82
1.0472 × 10−3 339.42 1521.8 3214.1
3.4907 × 10−3 1911.7 2047.9 2227.2
1.2217 × 10−2 289.03 608.8 1509.6

Time Delay
(samples)

1.7453 × 10−9 19.879 19.983 20.085
1.7453 × 10−4 4.5894 4.6935 4.7722
1.0472 × 10−3 5.1663 13.657 29.711
3.4907 × 10−3 14.62 19.035 25.154
1.2217 × 10−2 5.6753 7.6052 11.711

Table 5.3: Minimum, mean and maximum MSE values for five tracking results sets at each test
variance for the dataset shown in figure 5.5

heading established after the manoeuvre to converge back to the true track than the other

tracks with a greater heading variance.

The equal minimum, mean and maximum MSE values in table 5.2 for each test variance are

a consequence of the limited number of solutions that fit the measurements. Target pitch and

speed variances are both 0, therefore the only varying system parameter affecting how well

the particles fit the measurement is the target heading. Assuming the heading of the particles

is normally distributed around the true heading of the target the MMSE estimate of the range

will not match that of the true target. By the time the manoeuvre occurs the particles will

have diverged from the true target track. When the manoeuvre occurs the particles at a

greater range are more likely to provide a closer match to the measurements and the lower

weighted particles re-sampled out, which explains why the majority of the tracking results in

figure 5.6(b) over-estimate range after the first manoeuvre. Due to only one system parameter

having a non-zero variance this behaviour is likely to be repeated at each tracking realisation.

The matching minimum, mean and maximum MSE values do not indicate that each tracking

instance produces either exactly the same results or particle movements, only that the overall

error is the same.

Figures 5.8 and 5.9 show tracking results and errors for the dataset shown in figure 5.5. For

this dataset the track estimate at test variance var {γ} = 1.7453 × 10−9 diverges from the

solution in bearing, elevation, range and time-delay. In this case the assumption that the

target is moving on a constant course at a constant velocity is not valid. The most accurate
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(a) Relative position of target and tracking results relative to boat in spherical form
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(b) Plan view reconstruction of boat path, target path and tracking results in Carte-
sian form

Figure 5.8: True target positions and tracking results in (a) spherical coordinates relative to the
boat and (b) plan view reconstruction of the boat and target positions for different
heading test variances.
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Figure 5.9: Relative position tracking errors for the results shown in figure 5.8 at each heading
test variance. The legend is given in figure 5.8.

tracking results are given by a test variance of var {γ} = 1.7453 × 10−4. For both datasets

tracking results converge across bearing, elevation, range and time-delay. Tracking results for

test variances of var {γ} = 1.0472 × 10−3 and var {γ} = 3.4907 × 10−3 do not track the target

as accurately. From figures 5.8 and 5.9 and the MSE values shown in table 5.3 it can be seen

that for var {γ} = 1.2217×10−2 the mean and maximum MSE values are the second lowest for

bearing, elevation, range and time-delay. This suggests that the relationship between how the

particles spread through the state space, the particle weights and the mean of those particles

is non-linear and unpredictable and therefore it may be necessary to find a value for var {γ}
that gives good performance through experimentation.

Figures 5.10 and 5.11 show true target positions and estimated tracks for a second dataset

where samples for change in heading were drawn from a normal distribution with variance

var {γ} = 1.2217×10−2. For this dataset the tracks at test variances var {γ} = 1.7453×10−4,

var {γ} = 1.0472 × 10−3 and var {γ} = 3.4907 × 10−3 all converge to solutions close to the

true target state by the time tracking ceases. For both datasets drawn from a variance

var {γ} = 1.2217 × 10−2 the range estimates fall short at the first manoeuvre when the test

variance is either var {γ} = 1.0472 × 10−3 or var {γ} = 3.4907 × 10−3. The track estimate

using non-manoeuvring constant velocity assumptions in figure 5.10 does not converge to a

solution that fits the measurements.

For all three datasets presented in this section, tracking results are accurate until the boat

undergoes the first manoeuvre, at which point the track estimates diverge. Until the ma-

noeuvre occurs only particles following the course of the true target, and therefore fit the

measurements, receive a high weighting. Particles varying from this course tend to result in
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(a) Positions of target and tracking results relative to boat in spherical form
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(b) Plan view reconstruction of boat path, target path and tracking results in Carte-
sian form

Figure 5.10: True target positions and tracking results in (a) spherical coordinates relative to the
boat and (b) plan view reconstruction of the boat and target positions for different
heading test variances.
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Figure 5.11: Relative position tracking errors for the results shown in figure 5.10 at each heading
test variance. The legend is given in figure 5.10.

Parameter System MSE Statistics
Variance min mean max

Bearing
(rads)

1.7453 × 10−9 1.7701 × 10−2 1.7754 × 10−2 1.7775 × 10−2

1.7453 × 10−4 7.8254 × 10−4 8.0928 × 10−4 8.3297 × 10−4

1.0472 × 10−3 8.5837 × 10−4 1.1935 × 10−3 1.9175 × 10−3

3.4907 × 10−3 9.9084 × 10−4 1.3608 × 10−3 1.6352 × 10−3

1.2217 × 10−2 1.303 × 10−3 1.5769 × 10−3 2.0774 × 10−3

Elevation
(rads)

1.7453 × 10−9 2.0878 × 10−3 2.0973 × 10−3 2.101 × 10−3

1.7453 × 10−4 2.2091 × 10−4 4.8345 × 10−4 7.3201 × 10−4

1.0472 × 10−3 7.1196 × 10−4 9.6256 × 10−4 1.224 × 10−3

3.4907 × 10−3 9.5125 × 10−4 7.5451 × 10−3 2.0726 × 10−2

1.2217 × 10−2 9.5125 × 10−4 7.5451 × 10−3 2.6671 × 10−2

Range
(m)

1.7453 × 10−9 1725.6 1731.1 1733.3
1.7453 × 10−4 272.65 635.37 977.31
1.0472 × 10−3 622.35 861.37 1025.9
3.4907 × 10−3 703.7 5695.7 16507
1.2217 × 10−2 5069 10549 25892

Time Delay
(samples)

1.7453 × 10−9 75.439 75.695 75.796
1.7453 × 10−4 4.3925 4.6047 4.7798
1.0472 × 10−3 4.6837 5.3128 6.4296
3.4907 × 10−3 5.3438 10.889 28.925
1.2217 × 10−2 7.0029 16.847 38.412

Table 5.4: Minimum, mean and maximum MSE values for five tracking results sets at each test
variance for the dataset shown in figure 5.10
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an effective measurement different to the true measurement and receive a low weighting. After

the boat manoeuvre occurs the shape of the posterior distribution changes so that particles

that have deviated from a continuous course may now fit the measurements while others may

not. This effect can be observed in the results as a step change in the estimated track.

5.3.1 Summary

This section has presented three test datasets and tracking results for a target manoeuvring

in the horizontal plane. Results show that an assumption that the target is travelling at

constant speed and heading is not sufficient for estimating position accurately. More accurate

tracking results can be achieved using a white noise process manoeuvring motion model with a

variance var {γ} of magnitude in the order of 10−4 even when the data variance is of an order

of magnitude of 10−3 or 10−2. The next section tests target tracking for a target manoeuvring

both horizontally and vertically.

5.4 Horizontal and Vertical Manoeuvring Constant Speed

Target Tracking

Section 5.3 presented tracking results for a target manoeuvring in the horizontal plane. It was

shown that for both higher and lower data variances a relatively low test variance, var {γ},

produced the most accurate tracking performance. This section expands on developments in

the previous section by extending the target’s manoeuvring characteristics to include changes

in pitch as well as heading.

Figures 5.12 shows a simulation dataset for a target manoeuvring both in the horizontal and

vertical planes with samples for changes in heading and pitch drawn from normal distributions

with variances var {γ} = 1.0472×10−3 and var {β} = 1.0472×10−3 and 5.13 shows a simulation

dataset for a target manoeuvring both in the horizontal and vertical planes with samples

for changes in heading and pitch drawn from normal distributions with variances var {γ} =

1.2217 × 10−2 and var {β} = 1.2217 × 10−2. Samples for changes in heading and pitch are

drawn independently and for both datasets var {υ} = 0 so that speed remains constant.

Figures 5.14 and 5.15 show tracking results and tracking errors for the dataset shown in figure

5.12. Results show a non-manoeuvring and constant speed motion model provides the most

accurate tracking of the system variances trialled. In this case the target is moving on a

relatively straight course so the tracking results with a test variance of var {γ} = var {β} =

1.7453 × 10−9 diverge least from the true target track, as shown by the MSE scores in table

5.5.

Figures 5.16 and 5.17 show tracking results and errors for the dataset shown in figure 5.13.

Results at each test variance match the measurements with exception of var {γ} = var {β} =

1.7453 × 10−9. In this case the non-manoeuvring constant speed motion assumptions are
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(a) Plan view of true target and boat positions
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(b) Positions of the target relative to the boat in spherical coordinates and the time-delay
received across the array aperture

Figure 5.12: Simulation dataset for a constant velocity manoeuvring target where changes in
target heading and pitch are drawn from normal distributions with variances
var {γ} = 1.0472 × 10−3 and var {β} = 1.0472 × 10−3, shown in 5.12a plan view
and 5.12b relative positions of the target from the boat in spherical coordinates
and the received time-delays.
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(a) Plan view of true target and boat positions

0 200 400 600
-2.5

-2

-1.5

-1

-0.5

0 200 400 600
-0.7

-0.6

-0.5

-0.4

-0.3

0 200 400 600
-100

-50

0

50

100

0 200 400 600
400

600

800

1000

Bearing

B
ea

ri
n
g

:
ra

d
s

Time : s Time : s

Time : sTime : s

Elevation

E
le

va
ti

on
:

ra
d
s

Slant Range

R
an

ge
:

m

Time-Delay

T
im

e-
D

el
ay

:
sa

m
p
le

s

(b) Positions of the target relative to the boat in spherical coordinates and the time-delay
received across the array aperture

Figure 5.13: Simulation dataset for a constant velocity manoeuvring target where changes in
target heading and pitch are drawn from normal distributions with variances
var {γ} = 1.2217×10−3 and var {β} = 1.2217×10−3, shown in 5.13a top down view
and 5.13b relative positions of the target from the boat in spherical coordinates and
the received time-delays.



Chapter 5. Application to Simulated Datasets 99

0 200 400 600
-3

-2

-1

0

0 200 400 600
-1

-0.8

-0.6

-0.4

-0.2

0 200 400 600
-100

-50

0

50

100

0 200 400 600
400

600

800

1000

Bearing
B

ea
ri

n
g

:
ra

d
s

Time : s Time : s

Time : sTime : s

Elevation

E
le

va
ti

on
:

ra
d
s

Slant Range

R
an

ge
:

m

Time-Delay

T
im

e-
D

el
ay

:
sa

m
p
le

s

(a) Relative position of target and tracking results relative to boat in spherical form
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(b) Plan view reconstruction of boat path, target path and tracking results in Carte-
sian form

Figure 5.14: True target positions and tracking results in (a) spherical coordinates relative to the
boat and (b) plan view reconstruction of the boat and target positions for different
heading and pitch test variances.
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Figure 5.15: Relative position tracking errors for the results shown in figure 5.14 at each heading
test variance. The legend is given in figure 5.14.

Parameter System MSE Statistics
Variance min mean max

Bearing
(rads)

1.7453 × 10−9 9.4278 × 10−4 9.4435 × 10−4 9.4529 × 10−4

1.7453 × 10−4 8.6609 × 10−4 1.0411 × 10−3 1.283 × 10−3

1.0472 × 10−3 1.224 × 10−3 1.7428 × 10−3 2.3021 × 10−3

3.4907 × 10−3 2.4616 × 10−3 3.3407 × 10−3 5.6053 × 10−3

1.2217 × 10−2 2.5931 × 10−3 2.7234 × 10−3 2.9717 × 10−3

Elevation
(rads)

1.7453 × 10−9 7.6784 × 10−5 7.7034 × 10−5 7.7364 × 10−5

1.7453 × 10−4 3.3029 × 10−4 6.5085 × 10−4 1.0421 × 10−3

1.0472 × 10−3 7.8617 × 10−4 9.9507 × 10−4 1.1888 × 10−3

3.4907 × 10−3 1.1966 × 10−3 2.427 × 10−3 3.5592 × 10−2

1.2217 × 10−2 8.9688 × 10−4 2.21 × 10−3 3.3489 × 10−3

Range
(m)

1.7453 × 10−9 78.242 78.304 78.418
1.7453 × 10−4 821.99 1602.3 3530.9
1.0472 × 10−3 1446.3 2831.8 3791.2
3.4907 × 10−3 3092.4 5121.1 6362.2
1.2217 × 10−2 3619.6 5384.1 6381.9

Time Delay
(samples)

1.7453 × 10−9 4.7087 4.7132 4.7164
1.7453 × 10−4 4.4163 5.8214 7.9561
1.0472 × 10−3 7.3365 9.091 11.167
3.4907 × 10−3 9.2148 13.191 21.781
1.2217 × 10−2 6.8047 8.5191 11.858

Table 5.5: Minimum, mean and maximum MSE values for five tracking results sets at each test
variance for the dataset shown in figure 5.12.
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(a) Relative position of target and tracking results relative to boat in spherical form
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(b) Plan view reconstruction of boat path, target path and tracking results in Carte-
sian form

Figure 5.16: True target positions and tracking results in (a) spherical coordinates relative to the
boat and (b) plan view reconstruction of the boat and target positions for different
heading and pitch test variances.
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Figure 5.17: Relative position tracking errors for the results in figure 5.6 at each heading test
variance. The legend is given in figure 5.6.

not valid, although bearing has been tracked correctly. The divergence of the time-delay

estimates for the test variance var {γ} = var {β} = 1.7453 × 10−9 is caused by errors in the

elevation estimate. Large errors occur in range estimates for all the test variances. The test

variance resulting in minimal error whilst still producing a solution that fits the measurements

is var {γ} = var {β} = 1.7453 × 10−4.

Figure 5.18 shows the five tracking results sets used for the computation of MSE scores at test

variance var {γ} = var {β} = 1.7453×10−4 in table 5.6. Results sets 1, 2, 4 and 5 demonstrate

consistent performance, however for results in set 3 range estimates diverge significantly. Bea-

ring estimates remain consistent across all runs but show divergence after the final manoeuvre,

which is also shown in the time-delay estimates. Elevation estimates for results sets 2, 3, 4

and 5 are consistent but diverge from the true elevation. Elevation estimates for results set 1

differ to results sets 2, 3, 4 and 5 but do converge.

Figures 5.19 and 5.20 show true positions, tracking results and tracking errors for a second da-

taset generated with samples for change in heading and pitch drawn from normal distributions

with variances var {γ} = var {β} = 1.2217 × 10−2.

Table 5.7 shows a test variance var {γ} = var {β} = 1.7453 × 10−9 which provides the most

accurate tracking. Examination of figure 5.20 shows a general tracking divergence at test

variance var {γ} = var {β} = 1.7453 × 10−9 across bearing, elevation, range and time-delay.

Error in the time-delay estimate increases exponentially, whereas it is relatively steady for

other test variances. Taking error distributions over time into account, the most robust

tracking is achieved with test variances var {γ} = var {β} = 1.7453 × 10−4.
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(a) Relative position of target and tracking results relative to boat in spherical form

0 200 400 600 800 1000 1200
-800

-600

-400

-200

0

200

400  

 

Run 1
Run 2
Run 3
Run 4
Run 5
True target
Boat

y
-a

x
is

:
m

x-axis : m

(b) Plan view reconstruction of boat path, target path and tracking results in Cartesian
form

Figure 5.18: Multiple results sets for the dataset shown in figure 5.13 at heading and pitch test
variances of var {γ} = 1.7453 × 10−4 and var {β} = 1.7453 × 10−4.
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Parameter System MSE Statistics
Variance min mean max

Bearing
(rads)

1.7453 × 10−9 9.5587 × 10−4 9.5846 × 10−4 9.636 × 10−4

1.7453 × 10−4 8.1871 × 10−4 1.3206 × 10−3 2.4751 × 10−3

1.0472 × 10−3 1.6535 × 10−3 2.1924 × 10−3 2.7431 × 10−3

3.4907 × 10−3 1.4446 × 10−3 1.6798 × 10−3 1.9764 × 10−3

1.2217 × 10−2 1.9329 × 10−3 2.376 × 10−3 3.2511 × 10−3

Elevation
(rads)

1.7453 × 10−9 9.9219 × 10−3 9.9382 × 10−3 9.963 × 10−3

1.7453 × 10−4 1.2465 × 10−3 5.5836 × 10−3 1.0024 × 10−2

1.0472 × 10−3 5.5891 × 10−4 9.8709 × 10−4 1.4132 × 10−3

3.4907 × 10−3 7.5205 × 10−4 1.0815 × 10−3 1.5185 × 10−3

1.2217 × 10−2 1.3313 × 10−3 2.9017 × 10−3 5.6577 × 10−3

Range
(m)

1.7453 × 10−9 289.61 293.4 295.74
1.7453 × 10−4 952.76 4938.7 18689
1.0472 × 10−3 3204.9 3791.4 4138.5
3.4907 × 10−3 3479.6 4242.8 5035.4
1.2217 × 10−2 4229.4 5381.9 7584.9

Time Delay
(samples)

1.7453 × 10−9 26.952 27.041 27.148
1.7453 × 10−4 4.6931 7.9004 9.5438
1.0472 × 10−3 9.2002 12.958 16.001
3.4907 × 10−3 6.7214 9.1831 11.759
1.2217 × 10−2 9.6174 13.26 17.437

Table 5.6: Minimum, mean and maximum MSE values for five tracking results sets at each test
variance for the dataset shown in figure 5.13

Parameter System MSE Statistics
Variance min mean max

Bearing
(rads)

1.7453 × 10−9 8.5369 × 10−4 8.5425 × 10−4 8.5469 × 10−4

1.7453 × 10−4 8.0118 × 10−4 1.0036 × 10−3 1.2981 × 10−3

1.0472 × 10−3 9.1279 × 10−4 1.9144 × 10−3 2.7164 × 10−3

3.4907 × 10−3 1.0303 × 10−3 1.9566 × 10−3 2.6323 × 10−3

1.2217 × 10−2 3.0749 × 10−3 3.6012 × 10−3 4.0468 × 10−3

Elevation
(rads)

1.7453 × 10−9 2.1816 × 10−4 2.1907 × 10−4 2.2015 × 10−4

1.7453 × 10−4 2.7369 × 10−4 7.7594 × 10−4 1.3153 × 10−3

1.0472 × 10−3 2.4112 × 10−4 1.1317 × 10−3 1.4725 × 10−3

3.4907 × 10−3 2.2957 × 10−4 1.9929 × 10−3 3.4326 × 10−3

1.2217 × 10−2 2.7271 × 10−3 3.5134 × 10−3 4.3006 × 10−3

Range
(m)

1.7453 × 10−9 150.57 151.49 152.3
1.7453 × 10−4 508.58 1951 3688.8
1.0472 × 10−3 1228.8 2195.1 5067.3
3.4907 × 10−3 2129.4 5787.2 10029
1.2217 × 10−2 1836.6 5171.5 11765

Time Delay
(samples)

1.7453 × 10−9 4.99272 4.9996 5.0062
1.7453 × 10−4 4.3213 5.6361 7.1933
1.0472 × 10−3 4.9786 8.2971 11.014
3.4907 × 10−3 4.4645 6.9163 8.6988
1.2217 × 10−2 7.4165 8.4332 9.7963

Table 5.7: Minimum, mean and maximum MSE values for five tracking results sets at each test
variance for the dataset shown in figure 5.19. The legend is given in figure 5.19
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(a) Relative position of target and tracking results relative to boat in spherical form
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(b) Plan view reconstruction of boat path, target path and tracking results in Carte-
sian form

Figure 5.19: True target positions and tracking results for a second dataset where change in
heading and pitch samples are drawn from normal distributions with variances
var {γ} = 1.2217×10−2 and var {β} = 1.2217×10−2. Relative true target positions
and tracking results are shown in figure (a) and plan view reconstructions of true
target positions, boat positions and tracking results are shown in figure (b).
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Figure 5.20: Relative position tracking errors for the results in figure 5.19 at each heading test
variance. The legend is given in figure 5.19.

5.4.1 Summary

This section has presented tracking results for simulated datasets where the target is ma-

noeuvring in both the horizontal and vertical planes. Bearing and range tracking results for

the dataset with a data variance var {γ} = var {β} = 1.0472 × 10−4 showed optimal tracking

performance with a test variance of 1.7453 × 10−9, essentially providing a straight line as-

sumption. For both datasets with a data variance of 1.2217 × 10−2 the most robust tracking

results are provided by a test variance var {γ} = var {β} = 1.7453×10−4. The multiple results

sets in figure 5.18 for the dataset shown in figure 5.13 show consistent tracking performance

where results fit the measurements in all cases. The same conclusions were found in section

5.3. Section 5.5 further extends the tracking problem to include varying target speed.

5.5 Manoeuvring Varying Speed Target Tracking

Section 5.4 presented tracking results for a simulated target manoeuvring in both the horizon-

tal and vertical planes. This section extends the tracking problem to tracking a manoeuvring

target that is also changing speed.

Figure 5.21 shows the positions of the simulated target dataset generated by drawing samples

for change in heading and pitch from normal distributions with variances var {γ} = var {β} =

1.2217×10−2 and samples for change in speed drawn from a normal distribution with variance

var {υ} = 10−6 ms−1. Speed samples were subject to the rejection function described in



Chapter 5. Application to Simulated Datasets 107

0 200 400 600
-3

-2

-1

0

0 200 400 600
-1.5

-1

-0.5

0

0 200 400 600
-100

-50

0

50

100

0 200 400 600
400

600

800

1000

Bearing
B

ea
ri

n
g

:
ra

d
s

Time : s Time : s

Time : sTime : s

Elevation

E
le

va
ti

on
:

ra
d
s

Slant Range

R
an

ge
:

m

Time-Delay

T
im

e-
D

el
ay

:
sa

m
p
le

s

(a) Relative position of target and tracking results relative to boat in spherical form

0 200 400 600 800 1000 1200
-600

-400

-200

0

200

400  

 

10-10

10-8

10-6

10-4

10-2

1
True target
Boat

y
-a

x
is

:
m

x-axis : m

(b) Plan view reconstruction of boat path, target path and tracking results in Cartesian
form

Figure 5.21: True target positions and tracking results for a dataset where samples for changes
in heading, pitch and speed are drawn from a normal distribution with variances
var {γ} = 1.0472×10−3, var {β} = 1.0472×10−3 and var {υ} = 10−6. Relative true
target positions and tracking results are shown in (a) plan view reconstructions and
true target positions, boat positions and tracking results are shown in figure (b).
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Figure 5.22: Relative position tracking errors for the results in figure 5.21 at each heading and
pitch test variance. The legend is given in figure 5.21.

sections 4.4 and 4.5 which limits speeds within the system function.

Figure 5.21 also shows tracking results for the dataset over different speed test variances

var {υ} between 10−10 and 1 and a heading and pitch test variance of var {γ} = var {β} =

1.0472 × 10−3. Corresponding error plots are shown in figure 5.22. Time-delay estimation

results for all test variances follow the trend of the measurements and demonstrate accurate

bearing estimation performance until the final manoeuvre where divergence occurs. Elevation

results are mixed, the elevation tracking results in figure 5.21(a) show that the best elevation

angle tracking performance is obtained with a speed test variance of 10−4 whilst least accurate

tracking performance results from speed test variances of 10−2 and 1 with the other test speed

variances providing elevation tracking results in between. Range tracking results are also

mixed, up until the manoeuvre at 360 s all range estimates are short of the true range, beyond

this time lower test speed variances result in range over-estimation while higher speed test

variances result in range under-estimation. Range estimation errors are between ±200 m

which, with a true range of 600 m, is an error of up to 33%.

Figure 5.23 shows results over five tracking realisations with the same test parameters where

var {γ} = var {β} = 1.0472 × 10−3 and var {υ} = 10−6 at test variances var {γ} = var {β} =

1.0472 × 10−3 and var {υ} = 10−8. Figure 5.23 shows that four of the five results sets are

consistent across the estimation parameters. Range and, to a lesser extent, elevation results

for run 4 differ to the other runs. Beyond 120 s run 4 diverges and over-estimates range with a

greater error magnitude than the other runs while elevation angle estimation is arguably more

accurate after 360 s. These results show performance to be reasonably consistent, however

inconsistencies do occur.
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(a) Relative position of target and tracking results relative to boat in spherical form
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(b) Plan view reconstruction of boat path, target path and tracking results in Cartesian
form

Figure 5.23: Multiple results sets for the dataset shown in figure 5.21 for test variances var {γ} =
1.0472 × 10−3, var {β} = 1.0472 × 10−3 and var {υ} = 10−8.
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Parameter System MSE Statistics
Variance min mean max

Bearing
(rads)

10−10 2.6428 × 10−3 3.2226 × 10−3 4.3823 × 10−3

10−8 1.3344 × 10−3 2.7675 × 10−3 3.5156 × 10−3

10−6 1.284 × 10−3 2.4396 × 10−3 3.4185 × 10−3

10−4 1.2998 × 10−3 2.1417 × 10−3 3.2547 × 10−3

10−2 1.2003 × 10−3 4.198 × 10−3 8.2985 × 10−3

1 2.0636 × 10−3 6.3491 × 10−3 9.964 × 10−3

Elevation
(rads)

10−10 2.2838 × 10−3 3.3021 × 10−3 4.0799 × 10−3

10−8 4.8143 × 10−4 3.2081 × 10−3 6.2462 × 10−3

10−6 7.5348 × 10−4 2.2937 × 10−3 3.7932 × 10−3

10−4 8.6084 × 10−4 2.5813 × 10−3 4.857 × 10−3

10−2 5.5302 × 10−4 1.1259 × 10−2 2.3831 × 10−2

1 2.0527 × 10−3 1.5447 × 10−2 3.1146 × 10−2

Range
(m)

10−10 1114 1718.4 2406.3
10−8 1117.2 3290.2 9824.8
10−6 928.71 2335.5 5885.7
10−3 3057.9 8707.6 22098
10−2 660.25 5264.6 12123

1 1530.7 6007.1 11045

Time Delay
(samples)

10−10 10.825 12.83 14.735
10−8 5.1491 11.416 14.916
10−6 6.8238 10.21 12.272
10−4 6.7322 7.6761 8.8863
10−2 4.8841 8.2915 10.873

1 3.2048 3.9231 5.018

Table 5.8: Minimum, mean and maximum MSE values for five tracking results sets at each test
variance for the dataset shown in figure 5.21
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The mean MSE values over five runs in table 5.8 for bearing estimation show an optimal speed

test variance of 10−4. For elevation angle estimation there is little difference in mean MSE over

test variances 10−10 and 10−4. The mean range estimation MSE generally increases with speed

test variance while mean MSE for time-delay generally decreases as test variance increases.

This suggests that for greater speed test variances the particles are able to occupy a greater

volume of the state space and re-sample and adapt more quickly when manoeuvres occur.

The adaptation is shown on the time-delay plot in figure 5.22, where the time-delay estimate

error for var {υ} = 1 spikes during manoeuvres but converges back to zero quicker than for

lower variances. Although time-delay error quickly reduces after manoeuvres this is not true

for bearing and elevation estimation which continue to include errors. This demonstrates the

particles are able to diverge from the true target position yet still occupy a volume of the state

space that fits the measurements.

Figure 5.24 shows the positions of a second manoeuvring varying speed dataset generated by

drawing samples from normal distributions with variances var {γ} = var {β} = 1.0472 × 10−3

and var {υ} = 10−2. Figure 5.24 also shows tracking results for test speed variances between

10−10 and 1 and heading and pitch test variances of var {γ} = var {β} = 1.0472×10−3. Results

show that if the test speed variance is not sufficiently high then the particle distribution can

not achieve a speed high enough to effectively model the motion of the target.

For test speed variances of 10−10, 10−8 and 10−6 the tracking results presented in figure 5.24

show that tracking fails after the manoeuvre at 200 s. This occurs because the particles are not

sufficiently distributed across the state space and all particles receive a zero weighting. If all

particles receive a zero weight then the normalisation step of algorithm 3.7 fails due to a divide

by zero error. This could be overcome by increasing the measurement variance, however such

an increase may result in degraded tracking performance because particles further from the

measurement will receive higher weightings. Such a solution can be regarded as an artificial

fix for a lack of spreading of the particles through the state space.

Tracking results using speed test variances of 10−4, 10−2 and 1 track the target for the duration

of the measurements. However, from figures 5.24 and 5.25 it is difficult to draw conclusions

as to which test variance provides the most accurate tracking results overall.

Figure 5.26 shows five tracking results sets with test variances var {γ} = var {β} = 1.0472 ×
10−3 and var {υ} = 10−4. Tracking results are inconsistent across the results sets. Bearing

estimates remain accurate for the majority of all results sets. A boat manoeuvre occurs at

360 seconds, after which results set 4 diverges, mirrored by a divergence in the time-delay

estimate. Elevation estimates follow the same trend but results set 5 diverges after the final

manoeuvre. Range estimates are generally inconsistent with over 1000 m difference between

results sets 4 and 5.

Figure 5.27 shows tracking results for multiple results sets run under the same conditions as

the results shown in figure 5.26 but with 10 000 particles instead of 1000. An importance

distribution approximated using 10 000 samples more accurately represents the true impor-

tance distribution than using 1000 samples. By utilising more samples, approximations of the
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(a) Relative position of target and tracking results relative to boat in spherical form
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(b) Plan view reconstruction of boat path, target path and tracking results in Cartesian
form

Figure 5.24: True target positions and tracking results in (a) relative spherical form and (b)
Cartesian reconstructions for data parameters, var {γ} = var {β} = 1.0472 × 10−3

and var {υ} = 10−2
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Figure 5.25: Relative position tracking errors for the results shown in figure 5.24 at each speed
test variance. The legend is given in figure 5.24.

importance distribution between particle filter realisations with the same data and parame-

ters is more consistent, therefore results are also expected to be more consistent. Results in

figure 5.27 show more consistent tracking until the manoeuvre at 360 s. Beyond 360 s range

estimates diverge with two results sets showing range over-estimates and three results sets

showing consistent range under-estimates. After the manoeuvre at 480 s the three results

sets under-estimating the range also diverge from each other, the bearing estimates diverge

and the elevation estimates diverge. Compared to the results shown in figure 5.26, bearing,

range and time-delay estimates are arguably more consistent and therefore show, when there

are more degrees of freedom in the system function, it is necessary to increase the number of

particles to maintain performance consistency. However, even with more particles consistency

is still lost in comparison to when there are fewer degrees of freedom in the system function

and when data variance is lower.

Table 5.9 shows MSE values for the dataset shown in figure 5.24 using 1000 particles. Like table

5.8, table 5.9 shows time-delay tracking improves as speed test variance increases, however

bearing and elevation tracking accuracy decreases. It could be argued from the MSE values

that range estimation improves as the test variance increases and the mean MSE for test

variance 10−2 is relatively high compared to the other two test variances because of a large

range error in one of the results sets.
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(a) Relative position of target and tracking results relative to boat in spherical form
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(b) Plan view reconstruction of boat path, target path and tracking results in Cartesian
form

Figure 5.26: Multiple results sets for the dataset shown in figure 5.24 for test variances var {γ} =
1.0472 × 10−3, var {β} = 1.0472 × 10−3 and var {υ} = 10−4.
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(a) Relative position of target and tracking results relative to boat in spherical form
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(b) Plan view reconstruction of boat path, target path and tracking results in Cartesian
form

Figure 5.27: A repeat of the multiple results sets experiments with fixed test variances shown in
figure 5.26 with 10 000 particles rather than 1000 so that the sampled importance
distribution better approximates the true importance distribution. Results show
more consistent performance until the manoeuvre at 360 seconds.
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Parameter System MSE Statistics
Variance min mean max

Bearing
(rads)

10−4 7.6697 × 10−3 1.8057 × 10−2 4.9025 × 10−2

10−2 1.6469 × 10−3 1.9077 × 10−2 7.5464 × 10−2

1 3.845 × 10−3 4.0015 × 10−2 1.3009 × 10−1

Elevation
(rads)

10−4 3.0414 × 10−3 6.2977 × 10−3 9.9621 × 10−3

10−2 1.4529 × 10−3 1.1555 × 10−2 3.0201 × 10−2

1 2.548 × 10−3 1.2036 × 10−2 1.7166 × 10−2

Range
(m)

10−4 2985.7 11970 23306
10−2 2650.3 66367 1.5085 × 105

1 2438.5 10581 17032

Time Delay
(samples)

10−4 20.726 29.515 50.373
10−2 3.8214 21.16 72.816

1 3.938 12.237 33.525

Table 5.9: Minimum, mean and maximum MSE values for five tracking results sets at each test
variance for the dataset shown in figure 5.24

5.5.1 Summary

This chapter has presented results for tracking a simulated target which is manoeuvring ho-

rizontally and vertically and changing speed. Results show the variance var {υ} must be

sufficiently high as to allow the particles to be able to effectively achieve the speeds of the true

target. If var {υ} is too high bearing and elevation tracking accuracy will be reduced. The

next section discusses tracking performance when the initial position of the target is unknown.

5.6 Manoeuvring Varying Velocity Target Tracking with

Unknown Start Position

Sections 5.3 to 5.5 presented tracking results for manoeuvring simulated target datasets ini-

tialised at the correct location and with the target travelling in the correct direction. This

section discusses tracking performance when the initial target location and direction of travel

are unknown. Particles are initialised on an ambiguity hyperboloid derived from the initial

time-delay measurement. Results will demonstrate the particle filter’s capabilities to resolve

the track from an unknown initial starting position.

Figure 5.28 shows tracking results for the dataset tracked in figure 5.21 without initialising at

the correct start location with test variances var {γ} = var {β} = 1.0472 × 10−3 and var {υ}
between 10−10 and 1. Tracking results shown in figure 5.28 demonstrate how the particles

lie on the ambiguity surface and adapt to a solution. Initially MMSE bearing estimates lie

on a relative mean bearing of 0 rads, as shown by the bearing estimates in 5.28(a) and the

Cartesian track reconstructions shown in figure 5.28(b). Although each particle is in a position

that satisfies the measurement it does not necessarily follow that the MMSE estimate derived

from these particles will conform to the measured time-delay.
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(a) Relative position of target and tracking results relative to boat in spherical form
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(b) Plan view reconstruction of boat path, target path and tracking results in Cartesian
form

Figure 5.28: True target positions and tracking results in (a) relative spherical form and (b)
Cartesian reconstructions for data parameters, var {γ} = var {β} = 1.0472 × 10−3

and var {υ} = 10−6
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As system noise samples are drawn, particles receive varying weightings with the less likely

particles tending to be removed by the re-sampling process. Over time the particles converge

to a solution whereby the MMSE estimate of the bearing and elevation is expected to match

the time-delay measurements. The bearings tracking results in figure 5.28(a) show the tra-

cking filter adapting to a bearing solution, from ahead to one side. For test speed variances

var {υ} = 10−10 and var {υ} = 10−4 the particle filter adapts to a solution on the incorrect

side of the boat which causes tracking to fail at the first manoeuvre. The tracks that converge

to the incorrect side fail because, after the manoeuvre, none of the particles are in a position

that sufficiently matches the time-delay measurements to receive a non-zero weighting. Fur-

thermore the tracks for test variances 10−8 and 10−6, which have converged to the correct side,

also fail around 550 s. From 5.28 it can be seen that they both diverge from the true bearing

and there is significant error in the time-delay estimation. This is likely caused by the speed

test variance being insufficient for the particles to achieve a speed allowing them to maintain

a solution that sufficiently fits the measurements. For test speed variances var {υ} = 10−8,

var {υ} = 10−6, var {υ} = 10−2 and var {υ} = 1 bearings are successfully tracked, however

tracking for test variances var {υ} = 10−8 and var {υ} = 10−6 does eventually fail. All test

variances default to an elevation angle of 0 or near 0 rads which results in time-delay estima-

tion error, however the estimated time-delays do follow the measurement trend. Range is also

significantly over-estimated, by up to twice the true range.

Results in figure 5.28 demonstrate most accurate tracking results were achieved using a speed

test variance of var {υ} = 1. Figure 5.28 demonstrates a test variance of 1 completed tracking

for the complete duration of the data, converged to the correct side and provided the best range

estimates. Five results sets are shown in figure 5.29 that demonstrate consistent performance.

Although all five results sets initially converge to the incorrect side of the boat, with a test

variance of 1 enough diversity is maintained in the filter that it is able to adapt to the correct

side once the manoeuvre has occurred. In all cases range is significantly over-estimated and

elevation angle estimates default to near 0 for all results sets.

5.6.1 Summary

This section has demonstrated that tracking a manoeuvring varying speed target without

initialising at the correct starting location produces unreliable tracking results. In practice

this limits the usefulness of the developed tracking method when attempting to track from an

initial acoustic detection without a visual sighting and position fix of the animal.

5.7 Conclusions

This chapter has presented tracking results for simulated datasets using the proposed tracking

algorithm, system function and noise distribution. The tracking problem complexity has been

increased throughout this chapter from a non-manoeuvring constant speed target to a ma-

noeuvring varying speed target with unknown starting position. Results have been presented
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(a) Relative position of target and tracking results relative to boat in spherical form
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(b) Plan view reconstruction of boat path, target path and tracking results in Cartesian
form

Figure 5.29: Multiple results sets for the dataset shown in figure 5.28 with test variances
var {γ} = 1.0472 × 10−3, var {β} = 1.0472 × 10−3 and var {υ} = 10−8.
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in relative spherical and Cartesian form and as MSE values. This section summarises the

results presented in sections 5.2, 5.3, 5.4, 5.5 and 5.6 and discusses the conclusions from these

experiments that can be applied to sperm whale tracking in chapter 7.

5.7.1 Results Summary

Section 5.2 presented a dataset for a constant speed non-manoeuvring target initialised at a

known location. In this case the target travels in a straight line without any change in speed,

therefore the motion model describes the target motion completely. As expected the lowest

test heading variance var {γ} = 1.7453 × 10−9, provides tracking results with the lowest error.

Time-delay estimation error generally increases with test heading variance (the exception being

the second highest test variance, 3.4907 × 10−3). The equal minimum, mean and maximum

MSE values for each test variance demonstrate consistent estimator performance across results

sets.

Tracking results for a target manoeuvring in the horizontal plane and travelling at a constant

speed and at a known starting position are presented in section 5.3, representing the first

stage of developing the complexity of the tracking problem. Results for two datasets were

presented. One dataset was generated using Monte-Carlo simulations whereby samples for

changes in heading were drawn from a normal distribution with variance var {γ} = 1.0472 ×
10−3 and the other from a normal distribution with variance var {γ} = 1.2217 × 10−2. For

both datasets the minimum, mean and maximum time-delay MSE values over all five results

sets for bearing, elevation, range and time-delay are achieved with test variance var {γ} =

1.7453 × 10−4. Consistent MSEs for bearing, elevation, range and time-delay were achieved

for all test variances across all results sets for the dataset where var {γ} = 1.0472 × 10−3. For

the dataset with test variance var {γ} = 1.2217 × 10−2 the minimum, mean and maximum

MSE values are different, therefore demonstrating inconsistent performance. MSE values for

a second dataset where var {γ} = 1.2217 × 10−2 shows that performance is not consistent

across datasets generated from the same distributions, therefore tracking performance is also

dependent on relative target and boat motion. Results also demonstrate that if the target is

not travelling in a straight line then, unsurprisingly, a straight line motion model does not

yield good tracking results.

Section 5.4 presented tracking results for a target manoeuvring with changes in heading and

pitch with known starting location. One dataset was presented where samples for changes in

heading and pitch were drawn from normal distributions with variances var {γ} = 1.0472 ×
10−3 and var {β} = 1.0472 × 10−3 and two datasets where samples were drawn from distri-

butions with variances var {γ} = 1.2217 × 10−2 and var {β} = 1.2217 × 10−2. Samples for

changes in heading and changes in pitch were drawn independently.

MSE scores show that minimal tracking errors are achieved for test variances var {γ} =

1.7453 × 10−9 and var {β} = 1.7453 × 10−9. These scores are misleading because they fail

to show the distribution of errors over the duration of the tracking process. Examination of
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results and error plots shows that the time-delay estimate, and other estimated parameters,

are correct when estimation starts but diverge at an increasing rate. Section 5.1 specifies

continual and accurate time-delay estimation as a priority in results evaluation, therefore the

test variances that give the lowest MSE scores are not necessarily the optimal choice.

Section 5.5 extends the tracking problem to targets travelling at varying speeds. Two datasets

were presented with samples for change in heading and pitch drawn from normal distributions

with variances var {γ} = 1.0472 × 10−3 and var {β} = 1.0472 × 10−3 with samples for change

in speed drawn from distributions with variances var {υ} = 10−6 and 10−2 respectively. The

motion model, for both dataset generation and tracking, included the speed rejection function

described in section 4.4. Test variances var {γ} = 1.0472 × 10−4 and var {β} = 1.0472 × 10−4

were fixed while test variances for var {υ} between 10−10 and 1 were trialled.

Results showed that higher test speed variances provided the most accurate time-delay estima-

tion whilst tracking of bearing, elevation and range did not demonstrate that any particular

test variance performed better than any other. For the dataset with change in speed samples

drawn from a distribution with variance var {υ} = 10−2, the test variances less than 10−4

failed to track for the entire duration of the data. The multiple results set for this dataset

demonstrated consistent performance for bearing and time-delay with the exception of results

set 4 and range estimation was generally inconsistent.

Section 5.6 utilised the datasets with speed samples drawn from a distribution with variance

var {υ} = 10−6 from section 5.5 to test the capabilities of the estimator to track a target and

resolve the left-right and elevation ambiguity when the starting location is unknown. The

particles were initialised on the surface of the ambiguity hyperboloid. Results demonstrated

an inability to track elevation angle. Bearing estimates generally diverged, in two cases tra-

cking failed at the first manoeuvre because the estimator was unable to resolve the left-right

ambiguity. Range estimation was generally poor, the best range estimates were achieved with

a test speed variance of 1. Results demonstrate a sufficient speed variance is required to

maintain enough diversity in the filter to prevent range from being greatly over-estimated and

delay left-right ambiguity resolution until a boat manoeuvre has occurred.

5.7.2 Experimentally Derived Conclusions

As the tracking problem becomes more complex and the order of the state space increases,

accuracy and consistency with which the target can be tracked reduces. Most accurate tracking

is also not achieved when the system test variance is the same as that with which the data

were created. In the case of a manoeuvring target, relatively low test variances for heading

and pitch resulted in the most accurate, and often consistent, tracking performance. When

target speed also varied a relatively high test speed variance provided the most accurate and

consistent tracking performance. Results suggest that experimentation is required to establish

appropriate heading, pitch and speed test variances and that the estimator should be initialised

with a sighting location. Testing with real data will be presented in chapter 7.





Chapter 6

Tracking Multiple Animals

The tracking filters presented in chapter 3 are in a form that only allows tracking of a single tar-

get. Sperm whales are frequently encountered in groups rather than as isolated individuals,

therefore a practical tracking solution needs to be able to track multiple animals simulta-

neously. Figure 6.1 shows click trains received with different time-delays across the array

aperture over a period of 25 minutes. Also present among the click trains are false detections,

due to other impulsive sound events in the water, referred to as ‘clutter’.

The capability to track multiple animals requires being able to correctly identify the source

animal for each received click which can be either an animal already being tracked or an

animal that has not been previously detected. The test dataset includes click detections

from multiple animals, so to be useful for testing of a spatial tracking system a method to

associate received clicks with the individual animal that produced it is necessary. Multiple

target tracking (MTT) is a classical tracking problem and considerable effort has been spent

on developing MTT methods [114].

6.1 Multiple Target Tracking problem

MTT is a common requirement of many tracking applications [59, 60, 114, 115]. When a

measurement or set of measurements are received they need to be associated with a source

target, a problem that becomes increasingly difficult when the number of targets is unknown

and varying. Each received measurement can be either:

1. from an existing target;

2. a newly detected target;

3. or a false alarm.

A complete MTT system needs to be able to handle all three of these potentials and the

termination of a target track [114, 115]. It is particularly important these criteria are met in

passive acoustic tracking where very different target states may yield similar measurements

123
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Figure 6.1: An example of click trains received from several vocalising sperm whales at differing
source angles and the time-delay of the reception of each click across the hydrophone
pair

and new target measurements may emerge having previously been masked by existing target

measurements [116]. It is also worth noting that measurement sensors can be classed as either

type 1 sensors or type 2 sensors [115]. A type 1 sensor, such as a radar, collects a set of

measurements from all targets and associates all measurements collectively. A type 2 sensor

associates each measurement as it is received. Passive acoustic tracking utilises a type 2 sensor

and therefore type 1 sensors are not considered here.

6.2 Multiple Target Tracking Solutions

The literature presents many solutions to the multiple target tracking problem including

nearest neighbour (NN), global nearest neighbour (GNN), joint probability data association

(JPDA), incorporation of the data association into the particle filter and multiple hypothesis

tracking (MHT).

NN data association associates a received measurement with the target closest matching that

observation on an individual basis [59,114]. The influence of false detections can be mitigated

by simply applying a gate to the target state, whereby measurements not within the gate of

any target are treated as either new targets or noise. NN data association methods allow a

single measurement to be used to update multiple targets whilst other measurements may

not be utilised at all or multiple measurements may update a single target. The GNN at-

tempts to alleviate this problem by restricting each target to being updated by a single update

measurement. Data association decisions are based on the shortest global distance between

measurements and targets. In JPDA all targets are updated by a probability weighted sum

of all measurements within their gates [59, 114, 117]. A drawback of the JPDA method is it
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suffers from a coalescence problem whereby closely spaced targets come together.

Classical data association techniques are typically based around Kalman filter tracking appli-

cations, whereby the system and measurement functions are linear and the respective noise

processes are Gaussian, however this does not necessarily rule them out from being used with

particle filtering methods. It has been suggested that an independent partition particle filter

can be used to track multiple targets but this relies on knowledge of how many targets are

present [118]. The data association solution for an unknown number of targets can be incor-

porated into the particle filter using a Gibbs sampler [60, 96, 119, 120]. The Gibbs sampler

allows estimation of p (X) given the marginal distributions p (Y |X) and p (X|Y ) [120]. In

the multi-target tracking case it is the distribution p (Z,X) that is desired where Z is a data

association identifier, found by generating samples from the marginal distributions p (Y |Z,X)

and p (Z,X|Y ) [96, 119]. This can be expanded to include statistical testing as to whether a

target has appeared or disappeared [60].

MHT involves deferring the decision as to which target a measurement originated from until

more measurements have been collected [114]. Whenever a new measurement is received a

hypothesis is formed for each target from which the measurement could have originated, each

of these hypotheses are propagated for each new measurement until a point in the future

where the uncertainty is resolved by Nmeas subsequent measurements.

Multiple animal tracking can be formulated into a complete associate and track problem or

separated into independent association and tracking problems. The former requires including

the association decision into the tracking process. The latter involves identifying which click

train each received click is associated with by tracking the time-delay of each click train and

then spatially tracking individual animals separately using the time-delay tracks.

Click association is a problem in itself and approaching it separately to spatial tracking means

developments can be applied independently of spatial tracking developments. Additionally no

modification of the particle filter developments presented so far are required. MHT has been

successfully applied to tracking the central frequency of beaked whale clicks for the purposes

of linking click trains and detecting odontocete buzzes [7, 32]. The remainder of this chapter

develops a method for associating received time-delays with target animals by tracking the

time-delay of click trains using an MHT.

6.3 Introduction to MHT

Association of measurements to tracks using a deferred decision process was first presented

as a complete algorithm by Reid [115]. The algorithm allowed for measurements to be as-

sociated with existing targets, new targets or clutter. For each measurement received new

hypotheses are formed whereby the measurement is and is not associated once with each exis-

ting target and once with a newly appearing target. In general terms any measurement can

be associated with all targets, however to reduce computational load it is common to ‘gate’
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Figure 6.3: A hypothesis tree with 3 confirmed targets and 2 received measurements where
Nmeas = 2

measurements whereby a distance test between each measurement and target state prediction

âk|k−1 is performed to eliminate the most unlikely tracks [114,121,122].

An example of the gating process is shown in figure 6.2. The measurements bk, bk−1 and

bk−2 could all be from previously undetected targets or clutter, however bk−1 lies within the

gates of both predicted states of targets
{

âk|k−1

}
1

and
{

âk|k−1

}
2

so could also be from either

of the existing targets while bk only lies within the gate of predicted target state
{

âk|k−1

}
1

so could be from
{

âk|k−1

}
1

or a new target but not from
{

âk|k−1

}
2
, whilst the measurement

bk−2 could have originated from target
{

âk|k−1

}
2

or a new target but not from
{

âk|k−1

}
1
.

After the gating process hypotheses are formed, as illustrated by the tree depicted in figure 6.3,

whereby each hypothesis is a potential track of each target. Figure 6.3 shows a measurement

association hypothesis tree with three confirmed targets and two received measurements so

that Nmeas = 2. The blue circles represent confirmed tracks for targets {ak−2}1:3. For each

received measurement there is a hypothesis that the measurement is associated with each
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target for which it falls within the gate around that target’s state prediction, green circles

- e.g.
{

âk|k

}
1
, that the measurement is not associated with a target state prediction even

though it may be within the gate, which therefore remains the current best estimate of target

position, red circles - e.g.
{

âk|k−1

}
1
, and that the received measurement originated from a new

target, purple circles - e.g. {âk−1}4. For each hypothesis that a measurement is associated with

a target a hypothesis exists that the measurement is not associated with that target. Each

target can have multiple tracks until the source of each measurement is confirmed, beyond

which each target has a single confirmed track, for example hypotheses 1-3 are tracks of the

same target. Hypotheses 1, 2 and 3 also demonstrate that if a measurement is associated with

a target, and therefore results in the predicted track being updated by the measurement, may

affect whether later measurements are within the target gate. Once a track is confirmed the

target is classed as confirmed and active.

Each hypothesis is assigned a track score. The track score is formulated recursively as a log

likelihood ratio. Initially the track score for confirmed targets is the respective secondary track

score (discussed below) and is a large negative value for newly initialised track hypotheses.

Each time a measurement is received the track score of each hypothesis may be updated

depending on whether that hypothesis utilises the measurement:

lk =




lk−1 + log

[
exp {−σTk} p

(
ak|k−1,Pk|k−1,bk

)]
if measurement utilised

lk−1 + log [exp {−σTk}] if measurement not utilised
(6.1)

where lk is the log likelihood at time k, Tk is the elapsed time since the last time a measurement

was associated with that hypothesis, exp {−σTk} is a track ageing term, where σ is a design

parameter, and p
(
ak|k−1,Pk|k−1,bk

)
is the likelihood of a measurement being associated with

a specific track [114, 121, 123]. The track scores are compiled into a vector l of length equal

to the current number of hypotheses, Nhyp.

The hypotheses are formulated into a binary matrix representation, C, [32, 121–123], the

matrix for the hypothesis tree shown in figure 6.3 is:

C =




1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

1 1 0 0 0 1 0 1 1 0

1 0 0 1 0 0 0 1 0 1




︸ ︷︷ ︸
Track hypotheses





Confirmed tracks

}
Measurements and new tracks

(6.2)

Each column of C represents a track hypothesis. In this example the first three rows account

for the confirmed existing targets while the last two rows account for the assignment of the

measurements to each track for each hypothesis. The first column represents the hypothesis

that both measurements are associated with confirmed target one, the sixth column represents

the hypothesis that the first measurement comes from confirmed target three and the last

column represents the hypothesis that the second measurement comes from a newly detected
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target.

Under the constraint that every measurement must be used once and only once and that each

confirmed target can’t be terminated (until later in the algorithm) the aim is to find:

max l′a (6.3)

subject to:

Ca = i (6.4)

where:

i = [1, 1, . . . , 1]′ (6.5)

The solution can be found using binary integer programming [121,123] which is similar to linear

and integer programming [75] but constrains the solution to only consisting of zeros and ones.

The solution is the global hypothesis that has the highest probability under the constraint

that each measurement and each confirmed target must be utilised once. When the solution

is found the oldest tested measurement, bk−Nmeas , is confirmed as assigned to a target then

the data association for that measurement is complete. Where a measurement is associated

with a new target track that track is regarded as ‘active’. If after Nmeas measurements a

measurement is confirmed as having come from a new target then that track’s status changes

to ‘active and confirmed’ and the existence of a new target is confirmed.

In addition to the hypothesis related track score, confirmed tracks also have a secondary track

score that is reset to zero each time that track is confirmed as updated by a measurement.

For each measurement that is confirmed as originating from an individual target all other

confirmed target secondary scores are updated to represent the time since they were last

updated. The recursive update of the secondary score is [121]:

l2nd
k = l2nd

k−1 + log [(1 − p (DT )) exp {−σTk}] (6.6)

where p (DT ) is the probability that a target is detected and is set close to 1 [121]. The

secondary scores are compared to a termination threshold, when the secondary score for an

individual target falls below this threshold that target’s status is changed to ‘inactive’ and the

track is no longer updated. This effectively terminates targets that haven’t been updated for

a predetermined period of time.

6.4 MHT Algorithm

The MHT algorithm is summarised in algorithms 6.1 and 6.2.
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Algorithm 6.1[{
âk|k, P̂k|k

}
1:Mhyps

,Φk, lk, l
2nd
k

]
= MHT

({
âk−1|k−1, P̂k−1|k−1

}
1:Nhyps

,Φk−1, lk−1, l
2nd
k−1,bk

)

Predict track states:
for n = 1 : Nhyps do

System state:{
âk|k−1

}
n

= F
{

âk−1|k−1

}
n

MSE matrix:{
Pk|k−1

}
n

= F
{

Pk−1|k−1

}
n

F′ + Ree

end for
Gate measurement against all active tracks:
m = Nhyps + 1
for n = 1 : Nhyps do

If in gate

if
∣∣∣bk − H

{
âk|k−1

}
n

∣∣∣ ≤ gate then

Create associated hypothesis and apply Kalman update:[{
âk|k, P̂k|k

}
m

]
= kalman update

({
âk|k−1, P̂k|k−1

}
n

)

Assign parent hypothesis:
Φk(m) = Φk(n)
Update track score:

lk(m) = lk−1(n) + log
[
exp {−σTk} p

({
âk|k−1, P̂k|k−1

}
n
,bk

)]

m = m+ 1;
end if
Set system state and MSE matrix for non-associated hypothesis:{

âk|k, P̂k|k

}
n

=
{

âk|k−1, P̂k|k−1

}
n

Update track Score:
lk(n) = lk−1(n) + log [exp {−σTk}]

end for
New track hypothesis:{

âk|k, P̂k|k

}
m

=
{

bk, P̂0

}

lk(m) = l2nd
k (m) = l0

N = m
. . . Continued in algorithm 6.2

6.5 Intersection Angle Testing

As shown at 900 s in figure 6.1 time-delays for two click trains can intersect, whereby they cross

each other. To be a practical solution the MHT must be capable of tracking individual click

trains through such intersections, such a situation is shown by an example in [122]. This section

evaluates the performance with which the MHT correctly associates measurements with two

targets using two intersecting lines where the measurements - the 0th order derivative - are

affected by Gaussian white noise. This will provide an indication as to how well the MHT will

be able to associate received clicks with the correct animal when click trains intersect.

The through-intersection tracking performance is evaluated for an acute intersection angle of

18◦ and an intersection at right angles. For the acute intersection angle the gradients of the

two lines, +0.2 and −0.2, will be much closer than for the two lines intersecting at right angles
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Algorithm 6.2 MHT continued

. . . Continued from algorithm 6.1
Form hypothesis matrix C from Φk

Solve binary integer program:
ξ = bintprog (C, lk, i)
where ξ is the hypothesis from which the measurement originated at k −Nmeas

Update secondary track scores:
for n = 1 : N do

if n = ξ then
l2nd
k (n) = 0

else
l2nd
k (n) = l2nd

k−1 + log [(1 − p (DT )) exp {−σTk}]
end if

end for
Set track statuses:
m = 1
for 1 : N do

if l2nd
k (n) > l2nd

threshold then[{
âk|k, P̂k|k

}
m
,Φk(m), lk(m), l2nd

k (m)
]

=
[{

âk|k, P̂k|k

}
n
,Φk(n), lk(n), l2nd

k (n)
]

end if
end for
Mhyps = m

return

[{
âk|k, P̂k|k

}
1:Mhyps

,Φk, lk, l
2nd
k

]

with gradients of +1 and −1. It is the gradient, representative of velocity, that is utilised in

the state prediction stage, therefore the greater the difference in the velocities the greater the

magnitude of the difference there will be in the state predictions.

For each straight line target the system and measurement variance parameters can affect the

measurement association. Setting a higher value for the system variance increases the effect

of the measurement in state estimation and the previous state estimate effects how close the

target is to the measurement gate. Although not utilised here, the size of the gate may be set

proportional to the measurement variance, therefore measurement variance could also affect

the gate size.

Using a measurement history of six measurements, performance consistency is tested by re-

peating each experiment for ten different sets of measurement noise samples. This allows the

affect of chance in the drawing of the measurement noise samples on tracking performance to

be minimised. For these tests the actual system noise is zero, hence the straight lines, however

the system noise parameter of the MHT estimator is varied to simulate a lack of knowledge

of the true system noise variance within the filter. The measurement noise variance is set to

the value used for drawing the noise samples.

Results in table 6.1 show performance for tracking multiple targets through an intersection,

and therefore correct association of measurements, is dependent on the intersection angle,

system noise parameter setting in the estimator and the measurement noise variance. For
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Intersection angle System variance Measurement variance Performance rate

90◦

[
0.0025 0.005
0.005 0.01

]
0.1 10/10

90◦

[
0.25 0.5
0.5 1

]
0.1 10/10

90◦

[
0.0025 0.005
0.005 0.01

]
1 10/10

90◦

[
0.25 0.5
0.5 1

]
1 9/10

18◦

[
0.0025 0.005
0.005 0.01

]
0.1 9/10

18◦

[
0.25 0.5
0.5 1

]
0.1 5/10

18◦

[
0.0025 0.005
0.005 0.01

]
1 8/10

18◦

[
0.25 0.5
0.5 1

]
1 2/10

Table 6.1: Rates of correct data association for MHT tracking of intersecting tracks for differing
intersection angles, system variances and measurement variances

right-angle intersections at higher and lower system and measurement variances track success

rates through intersections are very high. Even though at the point of intersection the statics

of the target state are the same, a right-angle intersection represents a greater difference in

target state due to the target velocity. This manifests in the estimator through the prediction

stage because the target states diverge more rapidly than for a more acute angle and it takes

a higher system noise variance to effectively mask the effects of the target velocity in the

prediction stage. At shallower angles tracking success rates are lower. Full results plots for

each experiment are given in appendix B.

6.6 MHT for Tracking Time-Delays

This section applies the MHT concepts presented in section 6.3 to tracking and associating

the time-delays of click trains from individual animals using algorithm 6.1. The system state

vector and function and measurement vector and function are developed in section 6.6.1. MHT

time-delay tracking results for three datasets are presented and discussed in section 6.6.2.

6.6.1 System State and Measurement for Time-Delay Tracking

Applying the MHT to tracking time-delays requires defining the system and measurement

vectors. The system state vector is the measured time-delay and rate of time-delay change:

ak =

[
τ

τ̇

]
(6.7)
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Figure 6.4: MHT tracking results for the clicks trains shown in figure 6.1

where the system update function is:

ak = Fkak−1 + ek (6.8)

=

[
1 Tk

0 1

]
ak−1 + ek (6.9)

where Tk is the time since the track was updated. The measurement is simply the time-delay:

bk = Hak + vk (6.10)

=
[

1 0
]

ak + vk (6.11)

= τk + vk (6.12)

where the noise term vk represents quantisation and selection of incorrect peaks in the cross-

correlation function. Experimentation shows a measurement history length of 6 provides

adequate performance whilst processing significantly faster than real time. As a guide to

computational loading the dataset shown in figure 6.1 covers a duration of 25 minutes, a

MATLAB implementation of the MHT algorithm processes this dataset in less than 45 seconds

to produce the results in figure 6.4 on a 2.4 GHz Intel Core 2 Duo processor in a laptop

computer.

6.6.2 Results

Figure 6.4 shows MHT results for the click trains shown in figure 6.1. There are three visually

identifiable click trains, however eleven have been identified by the MHT. The MHT appears

to have broken up the tracks one might visually regard as belonging to a single animal.

Specifically, while track 10 appears to correspond to a complete visual track, tracks 4 and 9
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Figure 6.5: Manual corrections to the results in figure 6.4 to establish complete tracks for three
vocalising animals

Parameter Value

System covariance matrix Raa

[
T 4

k /4 T 3
k /2

T 3
k /2 T 2

k

]
0.0177

Measurement variance Rbb 22
Measurement history 6
Measurement gate size 5
Probability of detection pDT 0.99999
New track likelihood lnew -500 000
Track ageing term σ 1
Track termination threshold -100

Table 6.2: MHT parameters for results in figure 6.4
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Figure 6.6: The smoothing effect of the MHT on the integer quantised time-delay measurements

appear to be part of the same track and tracks 1, 5 and 6 also appear to be parts of another

track. The parameters used for this dataset were found through experimentation and are

shown in table 6.2. As animals typically produce click trains continuing for many minutes

(including short periods of silence) any track of length one, or shorter than an alternative

threshold, can be regarded as clutter and not vocalisations. Track 10 represents the time-

delays of the clicks received from the subject animal and upon visual examination appears to

be completely tracked, however it only takes minor manual adjustment to obtain complete

tracks for the other two vocalising animals, as shown in figure 6.5.

The MHT can be implemented to associate delay measurements to individual animals in two

ways:

1. The time indices of delay measurements can be cross-referenced against the time-indices

of the MHT tracks thereby allowing the original measurements to be associated to an

individual animal and used as the input to the spatial tracking filters;

2. The tracks output by the MHT themselves can be used as the measurements and utilised

as input to the spatial tracking filters.

Using the latter method mitigates the effect of outlying mis-associated measurements through

smoothing by the Kalman filters within the MHT. Figure 6.6 shows a click received at 45

seconds with a delay of -2 samples, a magnitude of four samples away from the trend, however

the tracking result using this measurement is within a sample of the trend. A second useful

bi-product of the smoothing effect is that the delay measurements are no longer quantised

to integer numbers of samples. The quantisation of the time-delays is clearly observable in

figure 6.6 and it can be seen that the track points occur at the same time indices as the

measurements but don’t suffer from quantisation. This effect may be used as a substitute for

the interpolation of acoustic signals or correlation functions when attempting to increase the
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(a) MHT tracks for a set of click trains
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(b) Manually corrected MHT tracks for a set of click trains

Figure 6.7: MHT tracking results and manually adjusted tracks for a set of click trains

resolution of time-delay measurements.

Tracking results for another set of click trains is shown in figure 6.7(a). On inspection the

click trains in this set are less clearly observed and MHT tracking appears to be less effective

with some tracks making large jumps in state and some tracks being broken across continuing

click trains. Manual adjustment of the MHT tracks yields the click train tracks from three

animals, shown in figure 6.7(b).

Figure 6.8 shows an example of when a complete click train is successfully tracked for the

duration of a complete dive. At first examination the reason for the subject click train being

successfully tracked may appear to be because it is the only click train in this dataset, however

during this time other impulsive trains do start and stop without affect on the track of the click
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Figure 6.8: MHT tracking results for a click train where the complete click train has been tracked
and no manual adjustment is necessary beyond selection of the click trains of interest

train of interest. If another click train were present in this dataset it would not necessarily

change the tracking result unless it closely matched or intersected the click train that is

present. The results for this dataset demonstrate that the MHT algorithm can track a complete

click train, as also shown by the tracking results for track 10 in dataset 1 (figure 6.4), and

discriminate against clutter so, even when errors do exist, is still useful for identifying clicks

in a click train when only a single animal is vocalising.

6.7 Conclusion and Discussion

Any practical sperm whale tracking solution needs to be able to track multiple animals, the

method developed in this chapter enables this by associating received clicks with individual

animals so that they can each be spatially tracked within a single target tracking context. The

MHT approaches the data association problem as a tracking problem and defers confirmation

of association until more measurements have been collected and allows for the detection of

previously undetected animals.

The results presented show mixed performance, out of the three datasets two complete click

trains have been tracked with others requiring manual adjustment. The performance de-

monstrated is sufficient for the purposes of testing spatial tracking on the test datasets and

under these criteria some manual adjustment of MHT results is acceptable. In practical real-

time tracking applications further development of the algorithm may be necessary to improve

robustness (discussed below). As well as applications to real-time tracking the methods de-

veloped in this chapter can also be used in post-collection data-analysis. During analysis of

data collected during line-transect surveys [3] it is often necessary to manually identify sperm

whale clicks and associate them with a click train, effectively tracking click trains by hand.
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The MHT method developed here automates much of this process and manual correction of

MHT results which do include errors would take considerably less time than manually tracking

entire click trains. The tracking process utilises Kalman filters which smooth the measure-

ments, where the measurement error is the quantisation effect of the cross-correlation process

in the time-delay computation. This results in a similar effect to that achieved when utilising

interpolation of the cross-correlation function or acoustic signals to improve time-delay reso-

lution. Smoothing in this manner also aids in the reduction of the impact of mis-associated

clicks. An example of this is shown in figure 6.6.

For real-time click train tracking the MHT method may require further development to ensure

it is robust enough, primarily in tracking click trains through boat manoeuvres. One approach

would be to incorporate a control vector for the array derived from the boat speed and heading

into the motion model, or explicit array motion data if it is available. One difficulty with

this however relates to the source location ambiguity surface that results from the function

between bearing, elevation, range and the time-delay measurement. Depending on the bearing

and elevation of the animal from the array, the extent of the effect of the manoeuvre on the

measurements would be different for each target; for example the measurements from a target

with a zero elevation angle will appear to be affected by the manoeuvre to a much greater

extent than that at a steep elevation angle. Such effects would occur because the time-delay

is a function of bearing and elevation but a manoeuvre only applies a control vector to the

bearing parameter.

An alternative to incorporating the control vector into the motion model would be to use an

interacting multiple-model MHT (IMM-MHT) [124, 125]. IMM-MHT combines interacting

multiple-model EKFs with MHT so that tracks can be predicted with a constant velocity mo-

tion model, a manoeuvring motion model or a random acceleration motion model. Switching

of the models is based on an automated manoeuvre detection function of the data received

or could be detected from boat or array heading information. This would enable improved

tracking of click train time-delays when the array manoeuvres and more precise tracking of

time-delays varying at a constant rate through more precise filter settings. A further applica-

tion of using MHT for click train tracking is in feature extraction for automated classification

of odontocete clicks. The capability to track click trains from individual animals allows extrac-

tion of information from the complete train rather than simply the isolated clicks, such as the

inter-click interval. MHT have also been utilised by Gerard et al. for classifying odontocete

buzz clicks by tracking click frequency [32].

The MHT method developed for associating clicks with click trains from individual animals has

been shown to perform sufficiently well for the requirements of distinguishing the time-delays

of the clicks from the subject animal with those of other animals and clutter in the dataset.

As well as being a solution to the multi-target tracking problem there are other possible

applications of the methods developed. Manually refined MHT results for several datasets

will be utilised as the measurements in chapter 7 in which the spatial tracking methods will

be applied to sperm whale data.





Chapter 7

Sperm Whale Tracking

This chapter utilises the tracking algorithms tested in chapter 5 for tracking a sperm whale

over several dive cycles. Time-delays are computed from acoustic recordings made from a

towed hydrophone array and the MHT method presented in chapter 6 is utilised to identify

which clicks originated from the subject animal. Results are compared against pseudotrack

reconstructions of the animal’s movements from DTAG data. The exact position of the animal

when vocalising begins is unknown so the algorithm is initialised using the dive sighting

position. Performance consistency is tested over multiple tracking instances of the same

dataset with the same test parameters. The tracking error that results from initialising using

the sighting position and not the animal’s exact position is evaluated by initialising tracking for

two datasets from the pseudotrack position when the animal starts vocalising and comparing

against the tracking results when initialising using the dive sighting.

7.1 Dataset

The dataset utilised to test the tracking methods developed was collected in the Norwegian sea

in northern Norway in 2009 as part of the 3S project [47]. The dataset includes acoustic data

from a towed hydrophone array, dive and surface sightings positioning information, DTAG

data from which a pseudotrack of the animal’s path can be reconstructed and global posi-

tion system (GPS) positioning logs for the vessel towing the hydrophone array. This section

discusses collection of the dataset, processing of the data required to extract the necessary

time-delays from the acoustic data and modelling the motion of the array from the GPS data

log.

7.1.1 Collection

The dataset was collected in 2009 as part of the Sea Mammals Sonar Safety (3S) project in the

Norwegian sea in northern Norway. The project aim was to collect data on the behavioural

responses of sperm, pilot and killer whales to low and mid frequency active sonar. Funding

139
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support was provided by the Royal Norwegian Navy and Norwegian Ministry of Defence, the

Royal Netherlands Navy and Dutch Ministry of Defence, Office of Naval Research - USA - and

the World Wildlife Fund - Norway. Collaborating research organisations were the Norwegian

Defence Research Establishment (FFI), the Netherlands Organisation for Applied Scientific

Research (TNO), the Sea Mammal Research Unit (SMRU) at St. Andrew’s University and

Woods Hole Oceanographic Institution (WHOI).

To maximise the information acquired from the trials acoustic, sightings and DTAG informa-

tion were recorded. Acoustic and sighting data were acquired from two vessels, the ‘observation

vessel’ and the ‘source vessel’ which also towed the sonar source. Before exposure experiments

began the subject animal was tagged with a DTAG to record motion information and acoustic

arrivals at the animal. For this work recordings and sightings from only the observation vessel

will be utilised. The availability of the sighting and DTAG information provides the data re-

quired to initialise the algorithm and references against which acoustic tracking performance

can be compared.

7.1.2 Acoustic Data

The hydrophone array comprised of 16 elements within a 1.5 m aperture with 100 m of tow

cable. During the exposure experiments the most forward and rearward elements were both

fed to a computer and used for tracking and not recorded, the inner most 12 of the remaining

elements were fed to a digital multi-track recorder. Of the 12 channels recorded the two outer

most channels with 1.4 m separation are used for time-delay computation in these experiments.

Recordings were made at 96 kHz and down-sampled to 48 kHz for click detection and time-

delay computation. Down-sampling the acoustic data in this manner reduces the resolution

of the final computed time-delay measurement, however in this application can be justified

for two reasons, firstly the centroid frequency of sperm whale clicks is typically ∼ 15 kHz [13],

well within the 24 kHz bandwidth of 48 kHz recordings, so little is gained by performing click

detection at higher sample rates. Secondly, array snaking (small oscillatory changes in array

heading as a consequence of towing motion through the water) becomes more apparent in the

time-delay measurements when increasing the resolution of the time-delay computation data.

If the array were to maintain a constant course without snaking then ideally the acoustic

tracking system would utilise the highest sample rate possible. The error caused by array

snaking is known to be large, such that there is little additional contribution to the error due

to quantisation, even at 48 kHz. Furthermore, 48 kHz is the typical sample rate used in sperm

whale tracking. Resolution of the time-delay measurement can be improved by up-sampling

the correlation function via appropriate interpolation methods, that are based on the band-

limit of the signal. Finally the computed time-delays are processed by the MHT processing

stage developed in chapter 6 to associate measurement with separate source animals and

identify which clicks originated from the subject animal. Prior to click detection and time-

delay computation both acoustic data channels were high-pass filtered with a roll off at 200

Hz to remove low frequency noise that could interfere with these processes.
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Figure 7.1: The front (blue) and rear (red) hydrophone channel powers for several sperm whale
clicks and the switch on (magenta) and switch off (cyan) thresholds.

Click Detection

Click detection is performed using a double threshold method on the signal envelope described

in section 2.2.2. One threshold is set higher than the other, when the signal power exceeds

the first threshold a click is regarded as having been detected, when the power falls back

below the second threshold the click is regarded as having ended. This method of detection

is preferable over using a single threshold because it prevents multiple clicks being identified

when in fact only a single click is present. Such errors can occur if the signal power exceeds the

threshold and drops below it before once again exceeding it within the same click. Example

signal envelopes for front (blue) and rear (red) hydrophone channels with switch on (magenta)

and switch off (cyan) thresholds are shown in figure 7.1.

Time-Delay Computation

Once a click has been detected the arrival time-delay across the aperture between the hydro-

phones is computed using cross-correlation of the waveforms on the front and rear channels as

described in section 2.2. The two waveforms are windowed at the same start and finish times

using a square window of sufficient width so as to include the complete click on both channels

within the maximum possible arrival delay. Waveforms for the front and rear channels and

the square window are shown in figure 7.2.

7.1.3 DTAG

The DTAG is equipped with three-dimensional accelerometers and magnetometers, a depth

sensor and acoustic recorder, however the DTAG lacks positioning instrumentation [112].
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Figure 7.2: The front (blue) and rear (red) hydrophone channel signals and the square windowing
(green) applied to both for computing the time-delay.

Reconstruction of positions of the animal is possible using the sightings information and

accelerometer, magnetometer and pressure sensor data, the resultant reconstruction is referred

to as the ‘pseudotrack’ because it is a reconstruction from higher order motion data and

therefore is subject to error. A full discussion of the pseudotrack reconstruction from DTAG

data is beyond the scope of this work, however more information is available in [112]. If the

pseudotrack is reconstructed over a complete tag deployment, based on the sighting position

of the animal at the first dive and last dive or surfacing at which the tag was still attached,

the pseudotrack is unlikely to pass through the locations at which the animal was sighted

between dives. It is possible to overcome this problem by transforming the pseudotrack during

individual dives so that the reconstruction matches the dive and surface sightings. Justification

and validation of such transforming is discussed in section 4.3, however here an alternative

validation is possible. Since the position of the boat is known the position of the array can

be approximated, as discussed in section 7.2, and the relative bearing and angle of elevation

between the array and pseudotrack can be calculated. Using these bearing and elevation

angles, (2.9) and rearranging (2.8) the time-delay that would have been measured from the

relative pseudotrack positions can be simulated. The level of confidence in the pseudotrack

is related to the correlation between the simulated time-delay from the pseudotrack and the

true measured time-delay. The greater the correlation the more confidence there is in the

pseudotrack.

7.2 Array Motion Modelling

Incorporation of the control vector into the system function to enable use of the deterministic

control input of the hydrophone array requires a control vector data-stream. Array motion

data is not available for this dataset but GPS data-streams for the towing vessel are available.
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Figure 7.3: The heading data delay line for which the length N is to be found

The array is some distance behind the towing vessel, in this case approximately 100 m, so the

GPS data from the boat is not entirely representative of the array’s motion.

In the absence of array positioning data it is necessary to model the array motion from the

boat GPS by applying an appropriate delay to the heading and positioning data in the boat

GPS log. The GPS data-stream delay N , is computed by integrating boat speed with respect

to time so that:

dtow
k =

∫ k

k−N
υboat(t)dt (7.1)

where dtow
k is the length of the tow cable. In discrete form (7.1) becomes:

dtow
k =

k∑

n=k−N

υboat
n Tn (7.2)

where Tn is the nth GPS logging time interval. The variable delay line is illustrated in figure

7.3. This model makes several assumptions: the array instantly responds to changes in boat

speed; the axis between the array elements is always perfectly horizontal without ever tilting;

the array is at a depth of 0 m and the specified array length is the horizontal distance behind

the boat. Examination of the boat GPS data shows the boat does not maintain a constant

course but varies in heading due to swell and waves. It is unlikely the array responds to

these heading variations but may vary in an oscillatory fashion due to turbulent water flow,

which can be observed in the measured time-delays as previously discussed. Both of these

components can be regarded as noise, the effects of which can be reduced by smoothing

both the array heading data and the time-delay measurements which, for the time-delays, is

effectively performed by Kalman filters within the MHT at the data association stage.

7.3 Tracking Results

Chapter 5 concluded that tracking performance is more effective when initialised at a specific

point rather than when initialising as an ambiguity surface derived from a time-delay measu-

rement. In practice the best known confirmed animal position during a dive is the sighting at

dive time, therefore it is logical to initialise the particle filter at this point. After initialisa-

tion the particles should be propagated through the state space from the initialisation point

proportionally to the time between the sighting and start of the animal’s vocalisations. This

propagation accounts for the displacement of the animal between the sighting and the start

of acoustic tracking.
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This section presents tracking results for five datasets. Results are shown in a spherical

form, as for the simulations in chapter 5, the bearing angle, elevation angle, slant range

and estimated time-delay computed from the estimated bearing and elevation angles. These

plots are supplemented with additional plots showing horizontal range and depth estimates

computed from the estimated slant range and elevation angle. Horizontal range plots provide

a more intuitive range representation for comparing results in spherical coordinates with those

reconstructed in latitude and longitude.

System noise is assumed to be normally distributed, where var {γ} = var {β} = 1.7453,

var {υ̇} = 10 and the speed sample rejection function is:

χ (υk−1 + υ̇k) =
tanh (2 − 2 ((υk−1 + υ̇k) − 1)) + 1

2
(7.3)

where the updated speed is accepted on condition (4.39). These values were found through

experimentation. Measurement noise is also assumed to be normally distributed with variance

var {b} = 1.

Figure 7.4 shows the positions of the animal as estimated by the particle filter from mea-

surements recorded during a dive on 6th June 2009 where the animal was sighted diving at

10:55:10 am and sighted at the surface again at 11:30:15 am. Position estimates are relative

to the array with point marks showing the times at which vocalisations occurred. The blue

line represents the relative position of the pseudotrack to the boat and the red line shows the

animal position estimated from the acoustic measurements. The time-delay plot also shows a

green line which are the time-delay measurements that result from the MHT processing stage

to associate clicks with the source animals. The particle filter estimated positions closely fit

the measurements, however the time-delays computed from the pseudotrack positions are not

such a close match to the measured time-delays which limits confidence in the pseudotrack

reconstruction, but they do follow the trend of the time-delay measurements. A notable peak

in the pseudotrack time-delay is present at 1300 s. This occurs as a manifestation of the

corresponding peaks in the pseudotrack bearing and elevation angles, at the same time there

are also local slant and horizontal range peaks. At sightings the pseudotrack accurately repre-

sents the animal position because it is fitted to those sighting positions so confidence is higher

around these points and lower in between these points. Depth measurement is an exception

because it is recorded by a calibrated pressure sensor so is considered to be reliable. The plots

of the relative pseudotrack positions continue beyond the end of the acoustic tracking until

the animal is sighted.

Particle filter estimated bearings and the pseudotrack bearings follow the same trend, with

the particle filter tending to estimate the animal bearing as slightly more rearward than the

pseudotrack suggests. Elevation angle estimates tend to over-estimate the elevation angle,

along with the over-estimated slant range this places the estimated animal depth considerably

beyond the depth recorded by the DTAG. Horizontal range estimates, computed from the

slant range and elevation angle estimates, match the trend of the horizontal range of the

pseudotrack with a relatively large over-estimate beyond 1200 s until the end of acoustic
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Figure 7.4: Relative particle filter estimated positions for acoustic tracking (red), the pseudo-
track (blue) and the measured time-delays as output by the MHT (green) for dataset
1. Red points and green points - in the time-delay plot - show when vocalisations
occurred.
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Figure 7.5: Global position reconstructions for the particle filter estimated acoustic track (red),
the positions of the array (cyan) and the pseudotrack (blue) for the dataset and
results shown in figure 7.4. Also shown are the animal sighting positions (green
circles), the boat positions at the sightings (green triangles), the positions of the
array and pseudotrack when vocalisations start (black stars) and the positions of
the array and pseudotrack when vocalisations end (magenta stars). The points on
the acoustic track indicate the occurrence of an animal vocalisation. Date: June 9th
2009. Time: 10:55:10 am - 11:30:15 am

tracking, at which point the extent of the over-estimate reduces.

Figure 7.5 shows a reconstruction of the positions of the array, the pseudotrack and the animal

as estimated by the particle filter for the dataset and results shown in figure 7.4. Also shown

are dive and surface sighting positions of the animal (green circles), the position of the boat

from which the sightings were made (green triangles), the position of the array and pseudotrack

when the animal started vocalising and acoustic tracking commenced (black stars) and the

position of the array when vocalisation and acoustic tracking ceased (magenta stars). The

reconstruction shows periods during which there are no detected vocalisations which do not

appear to be matched by the plots in figure 7.4, this occurs because of filter adaptations

as a consequence of array manoeuvres which cause the MMSE estimated position to shift

rapidly. The difference in horizontal range of the pseudotrack and particle filter estimated

track between 1300 and 1600 s is visible. The short-coming of this method of displaying

tracking results is that the respective locations of the array, pseudotrack and particle filter

estimated positions at a particular time index are not easily discernible. Figures 7.4 and 7.5

show good overall tracking results.

Figure 7.6 shows relative estimated positions for a second dataset where the animal was seen

diving at 3:00:54 pm and sighted at the surface again at 3:26:20 pm. The estimated time-

delay closely matches the measured time-delay and the pseudotrack time-delay follows the

trend and, although does not match exactly, is quite close to the measurements and therefore
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Figure 7.6: Relative particle filter estimated positions for acoustic tracking (red), the pseudo-
track (blue) and the measured time-delays as output by the MHT (green) for dataset
2.
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Figure 7.7: Global position reconstructions for the particle filter estimated acoustic track (red),
the positions of the array (cyan) and the pseudotrack (blue) for the dataset and
results shown in figure 7.6. Date: June 9th 2009. Time: 3:00:54 pm - 3:26:20 pm

there is moderate confidence in the pseudotrack. Bearing and elevation angle estimates follow

the trend of the pseudotrack bearing and elevation angles, with obvious occasional errors in the

elevation angle estimate. Range is significantly under-estimated and only starts to converge

back to the pseudotrack range at 750 s. Depth estimates, computed from the estimated slant

range and elevation angle, generally show a depth under-estimate. Elevation angle estimates

follow the trend of the pseudotrack elevation angle, so the error in depth estimation is a

result of under-estimates of the slant range. Rapid changes in bearing and time-delay of the

pseudotrack, between 1200 and 1400 s, in figure 7.6 occur where the heading of the array

passes through north and where the relative bearing of the pseudotrack passes between either

side of directly ahead of the boat.

Figure 7.7 shows the array and pseudotrack positions and reconstruction from the particle

filter estimated positions for the dataset and results in figure 7.6. The final estimated posi-

tion is directly behind the array, a position suggested by the time-delay measurements. The

difference between the pseudotrack time-delay and the measured and estimated time-delays

is proportional to the difference in estimated bearing and pseudotrack bearing. This suggests

that the pseudotrack reconstruction is in error when vocalisation ceases.

Figure 7.8 shows relative position tracking results for a third dataset where the animal was

sighted diving at 12:42:01 pm and sighted at the surface at 1:17:26 pm. A significant difference

between the pseudotrack and measured time-delays can be observed, therefore confidence in

the pseudotrack is low. Furthermore, between 1100 and 1300 s the estimated time-delays differ

slightly to the measured time-delay. Estimates of bearing, elevation and slant and horizontal

ranges also differ significantly to the pseudotrack. Depth estimates also do not match the
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Figure 7.8: Relative particle filter estimated positions for acoustic tracking (red), the pseudo-
track (blue) and the measured time-delays as output by the MHT (green) for dataset
3.
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Figure 7.9: Global position reconstructions for the particle filter estimated acoustic track (red),
the positions of the array (cyan) and the pseudotrack (blue) for the dataset and
results shown in figure 7.8. Date: June 9th 2009. Time: 12:42:01 pm - 1:17:26 pm

depth recorded by the pressure sensor on the DTAG.

Figure 7.9 shows the positions of the array, pseudotrack and particle filter estimated track

reconstruction for the dataset and results shown in figure 7.8. Unlike the previous two datasets

vocalisation starts a significant time, and therefore distance, from the dive sighting position.

The first estimated position however remains at the sighting position even though the time

period between sighting and tracking is taken into account by the estimator. This occurs

because the sighting position is the mean of the particle positions in the state space. The

estimated positions follow the positions of the array during a manoeuvre where the boat and

array circle round to form a loop which shows a trend in tracking results to follow the array,

however this solution still fits the measurements. When acoustic tracking ceases the range and

bearing of the estimated track and the pseudotrack are very similar and the acoustic track

finishes close to the surface sighting position.

Figure 7.10 shows tracking position results for a dive cycle where the animal was sighted diving

at 1:28:21 pm and sighted at the surface again at 2:05:40 pm. The time-delay measurements

and pseudotrack time-delays for dataset 4 in figure 7.10 are not well correlated before 600 s.

After 600 s correlation improves and therefore confidence in the pseudotrack improves. Bearing

estimates and the pseudotrack are not close matches and there is considerable difference

between the pseudotrack and elevation estimate between 900 and 1600 s, however the bearing

and elevation estimates fit the time-delay measurements. The over-estimated elevation angle

places the animal at a depth significantly greater than the DTAG recorded depth. Slant range

estimates follow the trend of the pseudotrack slant range but also include large errors while

there are also large differences in the horizontal range estimates and pseudotrack horizontal
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Figure 7.10: Relative particle filter estimated positions for acoustic tracking (red), the pseu-
dotrack (blue) and the measured time-delays as output by the MHT (green) for
dataset 4.
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Figure 7.11: Global position reconstructions for the particle filter estimated acoustic track (red),
the positions of the array (cyan) and the pseudotrack (blue) for the dataset and
results shown in figure 7.10. Date: June 9th 2009. Time: 1:28:21 pm - 2:05:40 pm

range.

Figure 7.11 shows the positions of the array, pseudotrack and particle filter estimated animal

positions for the dataset and results shown in figure 7.10. Acoustic tracking results appear to

relate to the course taken by the array. This observation is reinforced, at times, by bearing

estimates placing the animal ahead of the array and steep elevation angle estimates placing

the animal nearly directly below the array. When acoustic tracking ceases the particle filter

bearing estimates are close to those of the pseudotrack and the sighting.

Relative position estimates for a fifth dataset, where the dive sighting occurred at 4:31:43 pm

and sighted at the surface again at 5:14:07 pm, are shown in figure 7.12. Estimated time-delays

correlate with the time-delay measurements and the majority of pseudotrack time-delays also

closely match. Bearing, elevation and slant range estimates also follow the general trend of

the pseudotrack. Horizontal range estimates don’t correlate to the pseudotrack horizontal

range as well, however when acoustic tracking ceases estimated horizontal range is fairly close

to the pseudotrack horizontal range. The step change in slant range between 500 and 1000

s occurs at the same time as a decrease in elevation angle and manifests as an error in the

depth estimate.

Figure 7.13 shows the array positions, pseudotrack positions and reconstructed positions es-

timated by the particle filter in figure 7.12. The position reconstruction of the particle filter

estimated track initially follows the pseudotrack. As tracking continues the bearing estimates

tend towards zero which places the animal ahead of the array, however for the earlier stages

of tracking the error in the reconstruction is relatively small.
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Figure 7.12: Relative particle filter estimated positions for acoustic tracking (red), the pseu-
dotrack (blue) and the measured time-delays as output by the MHT (green) for
dataset 5.
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Figure 7.13: Global position reconstructions for the particle filter estimated acoustic track (red),
the positions of the array (cyan) and the pseudotrack (blue) for the dataset and
results shown in figure 7.12. Date: June 9th 2009. Time: 4:31:43 pm - 5:14:07 pm

7.3.1 Performance Consistency Over Multiple Tracking Instances

Figures 7.14 and 7.15 show multiple particle filter tracking instances for dataset 2, shown in

figures 7.4 and 7.5. For all tracking instances time-delay estimates correlate with the measured

time-delays. Bearing estimates very closely match across all tracking instances. Elevation,

slant range and horizontal range follow the same trends but do not match across tracking

instances as consistently as for bearing. Differences in slant range and elevation manifest

in the depth estimates which are spread over an interval of 400 m. Across all the tracking

instances final position estimates show consistent trends that would cause visual observers to

look in the same direction and at similar ranges for the animal surfacing.

7.4 Initialisation From Pseudotrack

Section 7.3 demonstrated that the sighting location provides adequate information for the

purposes of initialising the particle filter, however there is often a short delay between the

sighting and the start of the animal’s vocalisations. Occasionally this delay is significant, such

as in dataset 3. Using the pseudotrack reconstruction from the DTAG deployment it is possible

to initialise tracking from the animal location provided by the pseudotrack. Although not

possible in practice, testing tracking when initialising using more precise location information

from the pseudotrack, when vocalisation starts, allows evaluation of tracking error induced by

initialisation at the sighting position.

Figures 7.16 and 7.17 show tracking results for dataset 1 where tracking has been initialised
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Figure 7.14: Relative positions for multiple particle filter acoustic tracking instances and the
DTAG pseudotrack. Points on the estimates indicating the times of vocalisations
have been omitted for clarity.
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Figure 7.15: Global position reconstructions for multiple particle filter acoustic tracking ins-
tances, the DTAG pseudotrack and the array positions for the results shown in
figure 7.14. Points indicating the points at which vocalisations occur have been
omitted for clarity.

using the pseudotrack. In this dataset vocalisation starts almost immediately after the animal

is sighted diving, therefore the animal has not travelled a significant distance and tracking

results closely resemble those presented in figures 7.4, 7.5, 7.12 and 7.13.

The time difference between the dive sighting and the start of vocalisations is much longer

for dataset 3. Tracking results for initialisation using the sighting position in figures 7.8

and 7.9 demonstrated the algorithm was capable of adapting and over-coming the initial

animal location error. Figures 7.18 and 7.19 show tracking results for dataset 3 when

initialising from the pseudotrack position for the time at which vocalising, and therefore

acoustic tracking, starts. Although overall confidence in the pseudotrack is relatively low,

due to the difference between the measured time-delays and the pseudotrack time-delays,

confidence is high when vocalisation starts because the measured and pseudotrack time-delays

closely match. Differences in results are most easily observed by comparing figures 7.9 and

7.19. The overall shape of the acoustic track reconstructions are very similar with the acoustic

track doubling back on itself to form a loop, however the exact shape and position of this loop

is different. The final horizontal range estimates differ but final bearing estimates are very

similar between figures 7.9 and 7.19.

7.5 Summary and Conclusion

Tracking results have been presented for five datasets. The control vector for the array was

derived by assuming a fixed length array tow cable between the array and the boat and
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Figure 7.16: Relative positions for multiple acoustic tracking runs and the DTAG pseudotrack
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Figure 7.17: Global position reconstructions for multiple acoustic tracking runs and the DTAG
pseudotrack



158 Chapter 7. Sperm Whale Tracking

0 500 1000 1500

-100

0

100

0 500 1000 1500

-80

-60

-40

-20

0

0 500 1000 1500
0

1000

2000

0 500 1000 1500
0

500

1000

0 500 1000 1500
-40

-20

0

20

40

0 500 1000 1500

-1500

-1000

-500

0

Bearing Elevation

Slant Range Horizontal Range

Time-Delay Depth

Time : sTime : s

Time : sTime : s

Time : sTime : s

B
ea

ri
n
g

:
d
eg

re
es

E
le

va
ti

on
:

d
eg

re
es

R
an

ge
:

m

R
an

ge
:

m
D

el
ay

:
sa

m
p
le

s

D
ep

th
:

m

Figure 7.18: Relative positions for multiple acoustic tracking runs and the DTAG pseudotrack
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Figure 7.19: Global position reconstructions for multiple acoustic tracking runs and the DTAG
pseudotrack
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delaying the boat GPS data proportionally to the boat speed. Results for all five datasets

were initialised using the position of the sighting when the animal dived. As an indicator of

computational time of computing the results shown in figures 7.4 and 7.5, a dataset of 20

minutes duration, takes 2 minutes 40 seconds on a 2.4 GHz Intel Core 2 Duo processor in a

laptop computer when implemented in MATLAB and utilising 1000 particles.

Tracking results were compared to the pseudotrack reconstructed from the information ac-

quired by the DTAG and fitted to the sighting positions. Confidence in the pseudotrack was

judged by computing the time-delay that would have been received if the animal were in

the positions suggested by the pseudotrack and comparing those time-delays to the measured

time-delays. The better the correlation between the pseudotrack and measured time-delays

the more confidence there was deemed to be in the pseudotrack reconstruction of the whale’s

positions. Where confidence was low the pseudotrack was deemed to be a poor representation

of the ground-truth.

Acoustic tracking results were presented in two forms. Firstly, results were presented in a

spherical coordinate system relative to the array with additional horizontal range, depth and

time-delay plots for the estimated animal position alongside the equivalent relative positions

of the pseudotrack. Secondly, results were shown in a global position reconstruction in latitude

and longitude with the positions of the array and pseudotrack. Also shown were the positions

of the animal when it was sighted, the position of the boat from which the sightings were

recorded and the positions of the array and pseudotrack when the initial and final vocalisations

were received. All results placed the final estimated animal position relatively close to the

position at which the animal was next sighted at the surface. Repeat tracking realisations

of dataset 1 demonstrate that multiple tracking instances do not produce exactly the same

results but do demonstrate a consistency in tracking trends.

Between the dive sighting and the animal starting to vocalise it moves, therefore an initial

tracking error is incurred by initialising the particle filter using the sighting position. In

dataset 1 the interval between the dive sighting and start of vocalisations is relatively short,

therefore displacement of the animal over this interval is limited. The difference in tracking

results between initialising from the sighting and from the pseudotrack is negligible. In dataset

3 the interval between the dive sighting and start of vocalisations is significant and therefore so

is the displacement of the animal. When initialised from the dive sighting the algorithm was

able to adapt and estimated a target track that ends close to the surface sighting position.

Initialisation from the pseudotrack resulted in a track estimate that was different to the

sighting initialised track but followed the same trend.

Several sources of tracking error exist. Firstly, as discussed in chapter 5, the tracking solution

is the mean of several tracks that fit the measurements and therefore convergence to the

true track is not guaranteed. Secondly, errors in the computation of the time-delays and the

MHT data association stages causes measurement noise which reduces tracking performance.

Finally, modelling of the array motion and position from the boat GPS data includes several

assumptions which can lead to errors manifesting in the control vector input to the system
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function. Performance improvements may be gained by equipping the hydrophone array with

additional positioning and motion sensing instrumentation.

The conclusions drawn from the results depend on the context of the application within which

the tracking algorithm is utilised. In scientific research, where it is simply necessary to follow

the dived animal to its next surfacing point, the algorithm has performed satisfactorily. For

each tracking realisation of each dataset the algorithm estimates the animal position within

a reasonable distance of the position of the pseudotrack when the animal stopped vocalising.

In this case a ‘reasonable distance’ is defined as being in a location that could be seen within

a 90◦ arc of the field of vision of a visual observer. It should be taken into account that this

bearing will change if the boat changes heading after vocalisation has ceased. If the algorithm

were to be employed in an anthropogenic acoustic impact mitigation application then accurate

range estimation is important to ensure a minimum safe distance is maintained between the

animal and acoustic source. If the algorithm demonstrated a distinct tendency to over-estimate

the range of the animal, though not significantly, then it would be performing suitably well

from a conservation viewpoint, which unfortunately is not the case. Overall, results show the

proposed algorithm is of practical use for some research purposes. Results may improve given

the appropriate array positioning instrumentation and additional hydrophone elements.



Chapter 8

Conclusions

A particle filter solution has been developed and presented for tracking dived and vocalising

sperm whales using passive acoustic arrival time-delays between two element towed hydro-

phone arrays. This concluding chapter summarises the previous chapters and discusses the

usefulness of the results produced by the developed algorithms and future work and further

development.

8.1 Summary and Results Evaluation

This section summarises the work presented over the previous chapters. Chapter 2 discussed

the limitations of localising and tracking sperm whales using a towed hydrophone array. A

time-delay measurement acquired using a hydrophone element pair is often assumed to be the

animal bearing, either to the left or right of the array. Such assumptions negate animal depth,

range is unknown and a left-right ambiguity remains. Range estimates and left-right ambiguity

resolution can be established from successive time-delay measurements in conjunction with

boat manoeuvres, however these methods fail to account for the animal’s motion. It was

proposed that the source location ambiguity be modelled as a PDF that can be updated each

time a new measurement is received.

Tracking in the manner proposed in chapter 2 can be implemented using the tracking filters

discussed in chapter 3. It was concluded that the SIR particle filter is the most suitable

tracking filter for the application because the system noise variance is relatively high and the

SIR particle filter has previously been successfully applied to bearings and angle only tracking

problems.

Critical to the design of a particle filter solution is the design of the importance distribution,

which is subject to the system function and system noise distribution. Chapter 4 reviewed se-

veral motion models and tracking coordinate systems and developed a suitable system function

for modelling sperm whale motion. It was proposed that system noise samples be drawn in a

spherical system with motion updates applied in Cartesian coordinates. Samples for changes

161



162 Chapter 8. Conclusions

in heading, pitch and speed were drawn from a normal distribution. Once drawn, speed noise

samples were subjected to a rejection function that limited the maximum speed that could be

obtained within the model. Without this rejection stage particles would be able to accelerate

to speeds that would not realistically represent sperm whale motion and commonly lead to

significant range over-estimates. It was also concluded that MMSE estimates of the animal’s

position from the particles should be computed in Cartesian space to avoid possible bearing

estimation problems where a target passing behind the array could be estimated as being in

front.

In chapter 5 the proposed algorithm was tested on several simulated datasets. The complexity

of the tracking problem was developed from tracking a simple non-manoeuvring constant

velocity target at a known starting position and travelling in a known direction using a time-

delay measurement to tracking a manoeuvring varying velocity target at an unknown starting

location. As the number of parameters to be estimated increased tracking accuracy and

consistency decreased. It was concluded that a manoeuvring and varying velocity target can

be tracked using time-delay measurements but information on the starting location is required.

In a practical sperm whale tracking situation this location would be a sighting.

Sperm whales are typically encountered in groups, so to maximise its usefulness, a tracking

system needs the facility to track multiple animals simultaneously. Association of received

clicks to specific click trains is not a trivial task and is a research topic in itself. Multiple animal

tracking was separated into a measurement association problem and target tracking problem,

whereby once measurement data has been associated each target is individually tracked as

a single target tracking problem. Chapter 6 concluded that separating the measurement

association and tracking components was the most appropriate solution so that the developed

measurement association algorithm could be employed independently of the spatial tracking

algorithm.

An MHT measurement association solution was developed and tested, whereby click associa-

tion was based on the received time-delay. Results demonstrated that the majority of clicks

were correctly associated with the correct click train, however breaks in the click trains did

occasionally appear. In these cases the algorithm had divided the click train into several click

trains. Other click detections were either identified as clutter or incorrectly associated with

short trains of impulse detections. For use in chapter 7 some manual adjustment of the MHT

data association results was necessary, however the time necessary for this is significantly less

than manually associating clicks with animals.

Utilising a MHT based data association solution demonstrated two additional benefits. Firstly

identification of click trains is useful for the detection of sperm whales. Isolated sperm whale

clicks are unlikely to be received independently of a click train, therefore identifying if a click

is part of a click train contributes to identification of sperm whales. This method could be

expanded to identifying echo location click vocalisations from other cetacean species, such as

beaked whales. Once a click train has been detected classification can then be performed on

the complete click train. Secondly, the Kalman filters in the MHT smooth the time-delay
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measurements thereby reducing the effect of the integer quantisation that results from the

cross-correlation process. This effect achieves the same aim as interpolation of the acoustic

signals or cross-correlation function to increase the resolution of the time-delay measurements.

Separating the data association algorithm from the spatial tracking algorithm increases the

applicability of the developed solution as it can be utilised independently of the particle filter

based developments.

Chapter 7 demonstrated the tracking algorithm on five dive cycles of an animal from a real

dataset with the sighting position utilised as the initial position. As well as acoustic and

sightings data, the dataset also included DTAG data from which the pseudotrack could be

reconstructed and against which the acoustic track could be compared. Results were presented

relative to the array in spherical form and as a global position reconstruction. Typically the

bearing estimate when tracking ended was close to the bearing at which the animal was then

sighted when manoeuvres performed after tracking had ceased were taken into account. Range

and elevation estimates were less successful, however all tracking results presented a solution

that fitted the time-delay measurements. Tracking performance was adequate for applications

where it is necessary to follow an animal during a dive, however range measurements are likely

to be insufficient for monitoring the relative range of animals for the mitigation of the impact

of anthropogenic acoustic sources such as sonar and seismic surveying.

Consistency results for the first dive cycle demonstrated the most consistently estimated pa-

rameter is bearing. Estimation of other parameters consistently followed the same trends.

Further experiments tested the tracking difference that results from utilising the sighiting as

the initial position by initialising from the pseudotrack position when vocalisation begins.

When vocalisation commenced shortly after the dive sighting tracking results demonstrated

very little difference. When the period between sighting and vocalising was longer the track

reconstruction formed a similar shape but in a slightly different position. It was concluded

that sighting information was sufficient for initialising the algorithm.

8.2 Future Work

Several points of further development exist for both the MHT data association algorithm

and particle filter spatial tracking algorithms. Further developments could improve tracking

performance and broaden the application range for the methods developed.

Given a pre-determined sound pressure exposure level regarded as acceptable and assumptions

of the environmental parameters affecting acoustic propagation, a minimum safe distance

between source and animal can be calculated. The tracking method demonstrated produces

tracking results and range estimates that are subject to a degree of error and therefore it is

necessary to incorporate this error into the minimum safe distance calculation. Although not

entirely accurate, the pseudotracks that yielded effective time-delay estimates close to those

actually measured provide the best available data of actual animal position. The error between

these pseudotracks and the acoustically derived track could then be computed. The magnitude
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of this error, particularly for slant range, could be a potential area of conflict of interest for

concerned parties. From a conservation angle this error margin should be wide, and therefore

cautious, to minimise the potential of the animal’s position incorrectly being estimated as

beyond the minimum range when it is in fact within the minimum range boundary. Provision

of a larger error margin is unlikely to be favourable with communities such as the oil and gas

industry who are unlikely to want to pause a survey when there is doubt surrounding whether

an animal’s range is less than the minimum safe distance. A decision on the acceptable error

margins would have to be based on how the estimation error effects the sound pressure level

received by the animal and the corresponding risk.

The data association algorithm tended to fail around the occurrence of array manoeuvres.

When using a MHT incorporating Kalman filters there’s a trade-off between tracking per-

formance during manoeuvring and non-manoeuvring periods. It could be suggested that

performance of the MHT algorithm could be enhanced during both periods by incorporation

of manoeuvring information, however applying a control vector to the system function will not

alleviate the problem. The received time-delay measurement is a function of both the bearing

and elevation angles, therefore the control vector is not representative of the received change

in measurement when a manoeuvre is performed. In such cases an interacting multiple model

MHT (IMM-MHT) may be more appropriate. An IMM-MHT utilises EKFs instead of Kal-

man filters and therefore allows system function switching where the utilised system function

is dependent on whether the observer is manoeuvring or not [124–126]. If no manoeuvre is

in progress a constant velocity motion model is utilised, where a manoeuvre is progress the

system function switches to a manoeuvring motion model. Typically manoeuvres are detected

from the system dynamics and measurements, however model switching could be controlled

by the control vector.

Further improvements in spatial tracking performance could be achieved through both algo-

rithm and hardware development. It has been suggested that improved angle-only tracking is

achievable using a locally-linearised particle filter [61], which has not been tested in this work.

Another area that has not been explored is the effect of time-delay measurement error on

tracking results both within the MHT time-delay tracking and data-association method and

in the particle filter spatial tracking method. There are several potential areas of interest sur-

rounding time-delay error. Firstly the sampling rate the acoustic data streams are captured

at directly affects the resolution of the time-delay measurement which, in turn, affects refine-

ment of the gate size in the MHT as well as the measurement covariance matrix. The effects

of measurement noise propagate from the MHT output to the particle filter spatial tracking

results should also be examined. Further investigation could examine the optimal sample rate

that provides the best possible time-delay resolution within the practical constraints of the

application so that array snaking does not become apparent in the time-delay measurements.

Secondly, the relationship between animal position relative to the hydrophone array and es-

timation error could be quantified. Acoustic receptions close to end-fire positions suffer from

greater quantisation in time-delay computation, as discussed in section 2.2.1, and animals at

greater range moving in a comparable manner to animals at closer range will produce less
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variation in time-delay measurements. The effects of both of these positioning factors on

tracking performance should be investigated.

The towed hydrophone array configuration utilised in this work represents the simplest hy-

drophone configuration possible and therefore arguably the most difficult tracking problem.

Incorporating additional hydrophone element pairs into the hydrophone array, as discussed in

section 2.7.1, would provide additional time-delay measurements that could provide ranging

information [28,29] and therefore reduce the order of the source ambiguity. This could greatly

improve estimation because the measurement set would become a function of bearing, ele-

vation and range. Adaptation of the algorithm to utilise these additional time-delays would

require appropriate modification of the measurement function. These modifications would

involve computing two time-delays for each particle as would be received by each hydrophone

element pair. It would be necessary to treat one element pair as a ‘master’ pair, which the

animal’s position is tracked in relation to, and the other as a ‘slave’ pair who’s position is

known relative to the master pair. It would be necessary to compute separate control vectors

for each element pair because the separation between the sensor pairs results in one respon-

ding to manoeuvres before the other. This can be implemented using the method described in

section 7.2 with the appropriate distances for each hydrophone pair behind the towing vessel

and then calculating the position of the slave pair in relation to the master pair. Such a

configuration would also provide initial ranging information so it may be possible to initiate

tracking without a dive position sighting.

The hydrophone array could be further enhanced through the addition of positioning and

heading sensors on the hydrophone elements. Such instrumentation would reduce errors that

arise as a result of the assumptions made when computing the array heading from the boat

GPS in section 7.2. Particle filtering could also be utilised in tracking and computing range

estimates using measurements received by an acoustic vector sensor [127].

As mentioned in chapter 1, acoustics are utilised in the study of other deep diving and great

whale species including the beaked whale family (Ziphiidae) [36], north Atlantic right whales,

fin whales and blue whales [12]. Given suitable detection and time-delay measurement al-

gorithms, the tracking algorithm could be applied to tracking these other species. Smaller

cetacean species can often be tracked visually, are encountered in large groups or do not

produce vocalisations at insufficient source sound pressure levels and at frequencies too high

to propagate over the distances required for acoustic tracking in the manner as presented

here for sperm whales. The tracking algorithm could be combined with frequency contour

tracking [128,129], for tracking cetaceans that produce tonal vocalisations such as humpback

whales (Megaptera novaeangliae). Scope also exists for development of the tracking algorithms

to track non-marine mammal targets such as ships and submarines.
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Appendix A

Particle Filter Algorithms

This appendix presents algorithms for the ASIR particle filter, algorithm A.1, and unscented

particle filter, algorithm A.2, discussed in sections 3.6.2 and 3.6.2.

Algorithm A.1 [{ak, wk}n] = ASIR
(
{ak−1, wk−1}1:N ,bk

)

for n = 1:N do
Compute {ǎk}n

Compute weight: {w̃k}n = q (n|b1:k) ∝ p (bk| {ǎk}n) {wk−1}n

end for
Normalise weights: {wk}1:N = {w̃k}1:N

∑
N

n=1
{w̃k}n

Re-sample set {ǎk}1:N :

[−,−, {n}m] = RESAMPLE
(
{ǎk, wk}1:N

)

Draw samples from impotance distribution:
for n = 1:N do

Draw sample: {ak}m ∼ q (ak| {n}m ,b1:k) = p
(
ak| {ak−1}{n}m

)

Assign weight: {w̃k}n = p(bk|{ak}m)

p
(

bk|{ǎk}{n}m)

end for
Normalise weights: {wk}1:N = {w̃k}1:N

∑
N

n=1
{w̃k}n

return ({ak, wk}n)
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Algorithm A.2
[
{ak,Pk}1:N

]
= UPF

(
{ak−1,Pk−1}1:N ,bk

)

for n = 1:N do

Update mean and covariance:

[{
âk, P̂k

}1:N
]

= UKF
(
{ak−1,Pk−1}1:N ,bk

)

Draw importance sample: {ak}n = N
({

ak; âk, P̂k

}n)

Assign weight: {w̃k}n =
p(bk|{ak}n)p({ak}n|{ak−1}n)

q({ak}n|{ak−1}n,bk)

end for
Normalise weights: {wk}1:N = {w̃k}1:N

∑
N

n=1
{w̃}n

Resample:
[
{ak,−, n}1:N

m

]
= RESAMPLE

(
{ak, wk}1:N

)

Assign covariance: {Pk}1:N
m =

{
P̂

}1:N

{n}m

return
[
{ak,Pk}1:N

]



Appendix B

MHT Intersection Experiment

Results

MHT intersection test result plots for results presented in table 6.1 are shown in figures B.1 to

B.8. Variable parameters are provided with each figure and invariable parameters are listed

in table B.1.

Parameter Value

Nmeas 6
gate 9
l2nd
threshold -10000
l0 -1000
σ 0.2

Table B.1: In variable parameters for MHT intersection tests
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Figure B.2: Intersection angle 90◦, system variance

[
0.25 0.5
0.5 1

]
and measurement variance

0.1



184 Appendix B. MHT Intersection Experiment Results

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

Figure B.3: Intersection angle 90◦, system variance

[
0.0025 0.005
0.005 0.01

]
and measurement va-

riance 1
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Figure B.4: Intersection angle 90◦, system variance

[
0.25 0.5
0.5 1

]
and measurement variance 1
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Figure B.5: Intersection angle 18◦, system variance

[
0.0025 0.005
0.005 0.01

]
and measurement va-

riance 0.1
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Figure B.6: Intersection angle 18◦, system variance

[
0.25 0.5
0.5 1

]
and measurement variance

0.1
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Figure B.7: Intersection angle 18◦, system variance

[
0.0025 0.005
0.005 0.01

]
and measurement va-

riance 1
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Figure B.8: Intersection angle 18◦, system variance

[
0.25 0.5
0.5 1

]
and measurement variance 1


