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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

RANDOM-VORTEX-PARTICLE METHODS

APPLIED TO BROADBAND FAN INTERACTION NOISE

by Martina Dieste

The general aim of this thesis is to investigate the suitability of a stochastic method for

computational aeroacoustics, the specific objective being to devise a stochastic method

to generate synthetic turbulence and combine it with the linearised Euler equations

to predict broadband fan interaction noise. In modern turbofan designs broadband fan

noise is a dominant source of aircraft noise, the most efficient source being the interaction

between upstream turbulence and the stator vanes.

The stochastic method developed to generate synthetic turbulence reproduces two-

dimensional isotropic turbulent flows by filtering a random field. The filter is expressed

in terms of the energy spectrum and controls the spatial properties of the synthetic

turbulence. In contrast with previous work, non-Gaussian filters are developed to model

more realistic energy spectra such as Liepmann and von Kármán spectra. The tempo-

ral decorrelation present in turbulent flows is modelled using Langevin Equations. A

standard Langevin equation and a second-order Langevin model are derived in details

and validated for fan interaction noise. In contrast with classical methods to generate

synthetic turbulence, random-vortex-particle methods can be extended to cope with in-

homogeneous non-stationary turbulence with little modification from the formulation

for homogeneous turbulence.

The stochastic method is applied for first time to broadband fan interaction noise. The

method is firstly validated for frozen turbulence interacting with an airfoil. The temporal

decorrelation is then included in the method to assess the influence of the integral

time scale on the radiated acoustic sound field. The method is also combined with

an existing wake model to represent the inhomogeneous non-stationary turbulent flow

found downstream of a fan. Finally, comparison with existing experimental data for an

isolated airfoil in a turbulent jet demonstrates the benefits of using more realistic energy

spectra.
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Chapter 1

Introduction

1.1 Background

Nowadays, additional noise pollution is not tolerated by the general public. As a conse-

quence, noise regulations are being progressively strengthened. The growth in air traffic

(predicted to nearly triple between 2009 and 2028 [1]) must therefore be compensated

by the design of quieter aircraft. This will require important advances in low-noise tech-

nologies. Significant efforts are being made by industries and research institutes in order

to understand, predict and ultimately reduce noise emission from aircraft.

The major sources of aircraft noise include jet mixing noise, fan noise, turbine noise,

combustor noise, compressor noise and airframe noise [2]. Since the appearance of noise

regulations in the 1960s and the subsequent development of noise reduction technologies,

the relative importance of aircraft noise sources and the total sound power radiated have

evolved. The individual contributions of various engine noise sources corresponding to an

early commercial turbojet and a modern high bypass-ratio turbofan engine are shown in

Figure 1.1. A dramatic reduction in jet noise has been achieved thanks to engine designs

with increasingly higher bypass-ratio; and fan noise has become a dominant source of

noise on modern aircraft. A breakdown of the relative contribution of noise sources on

modern aircraft at take-off and approach are shown in Figure 1.2. At take-off, jet and fan

noise are the most significant sources contributing to overall sound power. At approach,

fan noise is the dominant source, followed by airframe noise. Therefore, reducing fan

noise in modern aircraft is a major priority in order to balance the expected growth in

air traffic with noise restrictions near airports.

Fan noise is composed of both tonal noise and broadband noise. Tonal noise can be

efficiently attenuated by optimising the properties of the acoustic liners to target the

blade passing frequency and its harmonics. Broadband fan noise remains more difficult

to predict and reduce due to its random nature, wide frequency content and numerous

source mechanisms.

1
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Figure 1.1: Amplitude and directivity of engine noise sources from an early turbojet
and a modern turbofan. (Reproduced with permission from Astley et al. [2].)

Figure 1.2: Relative power levels of noise sources in modern aircraft at take-off and
approach. (Reproduced with permission from Astley et al. [2].)

In modern turbofan engines broadband fan noise is generated at the fan rotor blades and

the fan outlet guide vanes. Broadband fan noise is efficiently generated by the interaction

between upstream turbulence and the rotor blades or stator vanes (interaction noise).

Even if the upstream flow is clean of turbulence, broadband fan noise is generated by

the scattering of surface pressure at the trailing edge caused by the boundary layers

that develop along the fan blades and stator vanes (self-noise). Tip-vortex noise is also

generated in the annular gap between the blade tips and the fan casing. The most

efficient source of broadband fan noise in modern aircraft engines is thought to be the

interaction of the rotor turbulent wakes with the downstream stator vanes [3].

1.2 Techniques for predicting broadband fan noise

A possible avenue to predict broadband fan noise is the use of Direct Numerical Sim-

ulations (DNS) where the complete Navier-Stokes of fluid dynamics are solved without

simplification. Another possibility is Large Eddy Simulation (LES) where small-scale

turbulence is modelled but large-scale turbulence is fully resolved. Due to the large

range of spatial and time scales present in turbulent flows, these methods can be very

demanding in time and computational resources, and they are restricted to relatively low
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Reynolds numbers. Even though computational resources available have drastically in-

creased over the past few years, DNS and LES remain too expensive to be used routinely

within an industrial context.

An alternative approach to DNS and LES is to split the problem in two parts. Based

on the observation that the acoustic field is a small by-product of the overall fluid

dynamics, the acoustic source region, generally governed by non-linear effects, is solved

using standard Computational Fluid Dynamics (CFD) tools, and then the acoustic field

is predicted using source and propagation models such as Lighthill’s analogy. Although

these methods are cheaper than a complete CFD analysis, the CFD simulation of the

source region still remains expensive for industrial applications [4].

The computational cost of these so-called hybrid methods can be reduced by replacing

the unsteady CFD stage by synthetic turbulence. Stochastic methods can be used to

generate synthetic random turbulent fields that are not exact solutions of the fluid dy-

namics but that capture several key features of the sound sources, such as the correlation

length and time scales, spectrum, etc. Input parameters are obtained from Reynolds

Averaged Navier-Stokes (RANS) equations which are significantly less costly than com-

plete unsteady simulations like LES. The resulting synthetic field can be combined with

an aeroacoustic model describing both the sources and the propagation of sound. This

approach results in accurate predictions of the generation and propagation of acoustic

perturbations [5]. The rationale is that this approach is cheaper than DNS and LES from

a computational point of view, and therefore working with higher Reynolds numbers is

more affordable.

Stochastic methods to generate synthetic turbulent flows have been originally devel-

oped to simulate scalar diffusion and also to obtain inflow turbulence for DNS or LES.

Early attempts relied on expressing the turbulent velocity field as a finite sum of Fourier

modes where parameters such as amplitudes, wavenumbers and phases are chosen ran-

domly following certain distributions. This approach was first introduced by Kraichnan

[6] in 1970 and different revisions of this method for computational aeroacoustic pur-

poses have been presented [7, 8, 5]. These revisions include the use of more realistic

models to describe the turbulence energy spectrum and more sophisticated treatment

of the temporal properties of the turbulence. Fourier-mode methods, also known as

SNGR methods, present a good level of accuracy, however they can be computationally

demanding and have difficulties representing inhomogeneous turbulence [4].

In order to develop cheaper computational methods, techniques based on filtering ran-

dom data have been developed [9, 10, 11]. The main idea behind these methods is to

obtain the turbulent field by filtering stochastic fields. The filter is used to control the

statistical properties of the generated field in such a way that they match the prop-

erties of the turbulent flow. An important effort to develop filter-based methods for

computational aeroacoustics has been lead by Ewert [12].



4 Chapter 1. Introduction

1.3 Aims and contributions of this thesis

The general aim of this thesis is to investigate the suitability of stochastic methods

for computational aeroacoustic purposes, the specific aim being to devise a stochastic

method to generate synthetic turbulence and combine it with the linearised Euler equa-

tions to predict broadband fan interaction noise. Therefore, the work done in this thesis

can be split in two areas, the computational method (develop and validate and stochas-

tic method to generate synthetic turbulence) and the application (use the stochastic

method to study broadband fan interaction noise).

Based on this distinction between method and application, different methods to generate

synthetic turbulent flows are reviewed in chapter 2 and then an overview of different tech-

niques used to investigate broadband fan noise with an emphasis on stochastic methods

is provided in chapter 3.

1.3.1 Synthetic turbulence

The stochastic method used in this thesis is a filter-based method that stems from the

works of Careta et al. [9] and Ewert et al. [10]. It generates synthetic two-dimensional

isotropic turbulent flows and requires as inputs some statistical properties of the turbu-

lent flow such as energy spectrum, integral length and time scales and kinetic energy.

These properties can be either modelled using empirical laws, measured or predicted

from RANS simulations.

The spatial statistical properties of the synthetic turbulence are controlled by a filter

which is fully determined by the turbulence energy spectrum. In contrast with Ewert

and coworkers who focus on the use of Gaussian filters, in this work different energy

spectra are considered by selecting different filters. In particular, Gaussian, Liepmann

and von Kármán spectra are considered. Whilst the Gaussian spectrum has certain

advantages from a computational point of view, Liepmann and von Kármán spectra are

more commonly used in turbulence modelling for broadband fan noise applications [13].

Advantages and disadvantages of selecting different filters will be discussed in terms of

computational performance and accuracy.

The temporal properties of the turbulence are included in the method via the stochastic

field upon which the filter acts. Two cases are considered. The first case is frozen turbu-

lence where only convection effects are included. The second case is evolving turbulence

where the time correlation of the turbulence is modelled through Langevin equations.

Standard Langevin equations are stochastic differential equations widely used to model

the fluid dynamics involved in turbulent diffusion at large Reynolds numbers [14]. How-

ever, it will be shown that a standard Langevin equation is not suitable for coupling with
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the linearised Euler equation solver used here due to the lack of differentiability of the re-

sulting synthetic velocity field. A second-order Langevin model is proposed to overcome

numerical issues related to the standard Langevin equation. A second-order Langevin

model has also been used by Siefert and Ewert [15] to model temporal correlations for

aeroacoustics but a different formulation is proposed here.

The stochastic method is implemented in a purely Lagrangian approach. In a purely

Lagrangian approach the locations of the vortices are not restricted to the grid points

and move freely due to the convection effects. In addition, in contrast with Ewert et

al.’s work, vorticity is not interpolated onto an auxiliary grid to compute the synthetic

velocity field.

Note that a grid-based discretisation of the method is also briefly presented in this work.

This implementation is used as a preliminary validation of the stochastic method1.

Different implementations of the stochastic method to generate synthetic inhomoge-

neous non-stationary turbulence are proposed and validated. In contrast with Fourier-

mode methods, which have difficulties representing inhomogeneous turbulence, it will

be shown that the stochastic method used here can produce synthetic inhomogeneous

non-stationary turbulence accurately with only little modification.

1.3.2 Application to broadband fan noise

In this thesis synthetic turbulence is combined with the linearised Euler equations to

predict broadband fan interaction noise. This application of filter-based methods in

computational aeroacoustics has not been considered before.

The linearised Euler equations are solved in the time domain using a general in-house

finite-difference code with the synthetic turbulence implemented as a boundary con-

dition along the airfoil. The test case considered is a flat plate interacting with a

two-dimensional turbulent stream. This test case is particularly suitable for this work

because analytical solutions are available.

The LEE solver is initially validated for incident frozen gusts at different frequencies

covering the typical range of interest of broadband noise. The accuracy of the solver is

assessed by comparing the response function of the airfoil against the analytical solution

proposed by Amiet [17] modified for a fully two-dimensional acoustic field.

The linearised Euler equations are then combined with the stochastic method to generate

synthetic turbulence previously devised in this thesis. Firstly, the interaction between

frozen turbulence and an isolated flat plate is considered. This serves as a validation

1The preliminary validation of the stochastic method has been submitted by the author for partial
fulfilment of a MSc at Universidad de Santiago de Compostela, Spain. See Ref. [16].
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of the stochastic method and also as a validation of the full method to predict broad-

band fan noise. The synthetic turbulence is validated by computing correlations and

one-dimensional energy spectra along the airfoil. In order to improve the quality of

the synthetic velocity field, a parametric study is conducted to select the optimal nu-

merical parameters for the method. The far-field acoustic pressure is validated against

Amiet’s analytical solution. Trade-offs between computational costs and accuracy are

also discussed.

Secondly, broadband fan interaction noise generated by evolving turbulence is examined.

The temporal decorrelation of the turbulence is first modelled with a standard Langevin

equation. Even though it provides accurate statistics of the turbulence along the flat

plate, significant spurious sound sources are introduced at high frequencies. In con-

trast, the proposed second-order Langevin model not only provides accurate statistics

of the turbulence but also reliable far-field noise predictions. This test case validates the

stochastic method to generate synthetic evolving turbulence and also allows to assess

the sensitivity of the predicted acoustic field to the integral time scale of the turbulence.

Thirdly, the stochastic method is modified to provide a more realistic description of

rotor-stator interaction noise. Broadband noise is produced when the turbulent wakes

generated by the rotor blades impinge on the stator vanes. To model the inhomogenous

non-stationary turbulence typically found upstream of the stator vanes, the stochastic

method is combined with the wake model proposed by Jurdic [18]. This wake model

allows for strong variations of the turbulent kinetic energy.

Finally, numerical results are compared against existing experimental data of an airfoil

interacting with a turbulent stream. While experiments are carried out with an airfoil

with realistic geometry, a flat plate is used in the numerical simulations which in addition

are fully two-dimensional. This comparison provides another opportunity to validate

the numerical method and it also demonstrates the benefits of using the von Kármán

spectrum instead of a Gaussian spectrum to describe the turbulence energy spectrum.

1.3.3 Contributions of this thesis

The contributions of this thesis are:

• New non-Gaussian filters are developed to represent non-Gaussian spectra instead

of using a series of Gaussian filters.

• A detailed description and validation of a second-order Langevin model to describe

the temporal correlation of turbulent flows is provided.

• A wake model is combined with a filter-based method to generate synthetic the

inhomogeneous non-stationary turbulence found downstream of a fan.
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• The stochastic method is implemented in a purely Lagrangian approach.

• The filter-based method is applied to predict broadband fan interaction noise.

The effects of temporal decorrelation and inhomogeneity are carefully assessed. In

addition, numerical results are compared against experimental data.

Results obtained during this project have been presented at the 15th, 16st and 17nd

AIAA/CEAS Aeroacoustic Conference [19, 20, 21], 16th and 17th International Confer-

ence in Sound and Vibration [22, 23] and at the 20th International Congress on Acous-

tics [24].

1.4 Outline of contents

This thesis is structured as follows. In the next chapter the generation of synthetic

turbulence is discussed. After an overview of the subject, the more relevant methods

and issues of generating synthetic turbulence are presented, the method used in this

work is then derived. The numerical implementation of the method is also described.

The formulation of the method for Gaussian, Liepmann and von Kármán energy spectra

is then discussed. Finally, results of a preliminary validation of the stochastic method

for the Gaussian spectrum are shown.

In chapter 3 the synthetic turbulence is combined with the linearised Euler equations to

predict broadband fan interaction noise. After reviewing different techniques to predict

broadband fan interaction noise, the physical model under consideration is explained.

The implementation of the LEE solver is described and validated for the case of incident

frozen gusts interacting with a flat plate.

In chapter 4 broadband fan interaction noise is predicted by combining the LEE solver

presented in the previous chapter with the stochastic method to generate synthetic

turbulence introduced in chapter 2. The test case considered is that of an isolated

flat plate interacting with frozen homogeneous isotropic turbulence. The stochastic

method is validated for Gaussian, Liepmann and von Kármán spectra by assessing the

statistics of the turbulence and comparing far-field noise levels against a modified version

of Amiet’s analytical solution [17]. The computational performance of the method is

discussed for each of the three spectra considered in this work.

In chapter 5 the method is extended to include the temporal decorrelation of the turbu-

lence by considering first- and second-order Langevin models. Both models are derived

in details and validated for the test case previously considered in chapter 4. Finally,

the sensitivity of the far-field noise levels to the integral time scale of the turbulence is

evaluated.
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In chapter 6 different implementations of the stochastic method to generate synthetic

inhomogeneous non-stationary turbulence are examined and then combined with a wake

model to represent trains of turbulent rotor wakes. The statistical behaviour of the

synthetic turbulence along the flat plate and noise levels in the far field are assessed for

different wake configurations.

In chapter 7, numerical results are compared against existing experimental data for an

isolated airfoil in a turbulent stream. First, the experimental set up is described and

the aerodynamic and acoustic measurements are analysed to extract the input data for

the stochastic method. Numerical simulations of the experiment are then performed

using Gaussian and von Kármán filters and numerical results are compared against

aerodynamic and acoustic measurements.

Finally, chapter 8 discusses the main conclusions and future areas of research.



Chapter 2

Synthetic Turbulence

In this chapter methods to generate synthetic turbulent flows are discussed. Firstly,

an overview of existing techniques to generate synthetic turbulence is presented. Spe-

cial attention is given to the procedures to obtain the velocity field, the choice of tar-

get statistical parameters and features such as time-decorrelation, inhomogeneity and

anisotropy. Advantages and limitations of the methods are discussed. Secondly, the

stochastic method that forms the basis for the work presented in this thesis is described

in details. It accounts for two-dimensional, evolving, homogeneous, isotropic turbulence.

The method consists of filtering a random field where the filter is defined such that tar-

get statistical properties of the turbulence are recovered. The numerical implementation

is then discussed using a Lagrangian formulation and also with a grid-based approach

for the specific case of separable filters. Thirdly, the stochastic method is illustrated

by considering the filters corresponding to Gaussian, Liepmann and von Kármán tur-

bulence spectra. Finally, a preliminary validation of the method to generate synthetic

turbulence is performed for the Gaussian spectrum.

2.1 Overview of methods to generate synthetic turbulence

The aim of stochastic methods is to generate synthetic turbulent velocity fields that

capture the key features of turbulence, such as integral length and time scales and

target values of kinetic energy, but that are not necessarily exact solutions of fluid

dynamics equations. The idea is that such an approach is cheap and yet provides

accurate solutions.

While this work concentrates on using synthetic turbulence as a source of sound for

Computational Aero-Acoustics (CAA), synthetic turbulence has been used for a wide

range of applications. For instance, synthetic turbulence has also been used to model

scalar diffusion and to generate unsteady inflow forcing for CFD simulations.

9



10 Chapter 2. Synthetic Turbulence

Early attempts to stochastically generate velocity fields relied on expressing them as a

finite sum of Fourier modes with random amplitudes. More recently, methods based on

digital filtering of random data have also been devised in order to develop cheaper and

more flexible computational codes.

This section intends to provide an overview of the methods (rather than the applications)

and to highlight their advantages and disadvantages. The main aspects covered are how

the synthetic velocity field is defined and how it copes with temporal correlation and

inhomogeneity. After reviewing different methods, techniques to include the effects of

anisotropy are discussed.

2.1.1 Methods based on Fourier modes

2.1.1.1 Kraichnan’s method

The generation of stochastic velocity fields based on random Fourier modes was initially

introduced by Kraichnan [6] in 1970, the objective being to reproduce the diffusion of

fluid particles by the random velocity field of a turbulent incompressible flow. Kraich-

nan’s method is the precursor of the family of methods known as Stochastic Noise

Generation and Radiation (SNGR). It generates an artificial velocity field with pre-

scribed energy spectra in two or three dimensions. The field obtained is divergence-free,

statistically stationary, homogeneous and isotropic.

Kraichnan’s method expresses the velocity field as a superposition of time-harmonic

plane waves as follows:

u(x, t) =
N∑
n=1

[v(κn) cos(κn · x+ ωnt) +w(κn) sin(κn · x+ ωnt)] , (2.1)

where κn is the wave vector and ωn the angular frequency of each mode. In order to

ensure that the velocity field is incompressible (∇ · u = 0), the amplitudes v and w are

defined in terms of the wave vector using

v(κn) = ζn × κn, w(κn) = ξn × κn, (2.2)

where ζn and ξn are random unit vectors and their distributions are defined so as to

obtain a solution of u which is statistically isotropic and with the prescribed energy

spectrum. The frequencies ωn are independent Gaussian variables with zero mean and

standard deviation ω−1c such that the time correlation is given by

R(t) = 〈u(x, t1) u(x, t2)〉 = exp

(
−ω

2
c t

2

2

)
, (2.3)
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where t = |t2 − t1| and 〈 〉 stands for the ensemble average. The corresponding integral

time scale is τ =
√
π/2ω−1c . Frozen turbulence can be considered by setting ωc = 0.

Kraichnan considered two different energy spectra: a Gaussian spectrum centred at a

given wavenumber κc; or a single wavenumber component using a Dirac delta function.

In 3D these spectra are

E1(κ) =
16
√

2π

π
u2rmsκ

4κ−5c exp

(
−2κ2

κ2c

)
, E2(κ) =

3

2
u2rmsδ(κ− κc), (2.4)

and in 2D,

E3(κ) =
9

2
u2rmsκ

3κ−4c exp

(
−3κ2

2κ2c

)
, E4(κ) = u2rmsδ(κ− κc), (2.5)

where urms is the root-mean-square velocity measured in any direction and δ stands for

the Dirac function. The wavenumber κc at which the spectrum peaks can be related to

the integral length scale of the turbulence λ using that (see Ref. [14])

λ =
π

2u2rms

∫ ∞
0

E(κ)

κ
dκ, (3D) (2.6)

λ =
2

u2rms

∫ ∞
0

E(κ)

κ
dκ. (2D) (2.7)

It follows that the integral length scales corresponding to the energy spectra in Eqs. (2.4)

and (2.5) are:

λ1 =
√

2πκ−1c , λ2 =
3

4
πκ−1c , λ3 =

√
3π

2
κ−1c , λ4 = 2κ−1c . (2.8)

The wavenumber space is stochastically discretised by picking the wave numbers κn

from statistically isotropic distributions so that in the limit N →∞ the desired energy

spectrum is realised.

Note that Kraichnan’s method requires a large number of modes N to properly capture

the statistical behaviour of the turbulence. Note also that in order to compute statistical

quantities, such as correlations, a number of realisations of the velocity field in Eq. (2.1)

has to be computed.

2.1.1.2 Bechara et al.’s method

Kraichnan’s [6] method has been modified by Bechara et al. [8] to study aerodynamic

noise from free turbulent flows, with the objective to use more realistic energy spectrum

models than those considered by Kraichnan.
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Bechara et al. proposed to obtained the synthetic velocity field as a finite sum of only

cosine waves but with random phase

u(x) = 2

N∑
n=1

vn cos(κn · x+ ψn)σn, (2.9)

where vn, ψn, and σn are the amplitude, phase, and direction of the nth mode associated

with the wave vector κn. Flow incompressibility is achieved by ensuring that κn ·σn = 0.

A key difference with Kraichnan’s method is that, instead of representing the range of

wavenumbers by a random distribution along the κ-axis, Bechara et al. suggested to

used a fixed discretisation of the wavenumbers so that the resolution can be optimised

at different ranges of the energy spectrum. Bechara et al. proposed to use a logarithmic

distribution of N wavenumbers between κl = 2π/l, which corresponds to the largest eddy

with l being the characteristic length scale of the largest eddy, and the Kolmogorov

wavenumber κkol =
(
ε/ν3

)1/4
where ε stands for the dissipation rate and ν for the

kinematic viscosity. The logarithmic step is given by

∆κl =
1

N − 1
log

(
κkol
κl

)
, (2.10)

and the list of wavenumbers is given by κn = (∆κl)
n−1κl. This distribution provides a

better resolution of the smaller wavenumbers than the inertial subrange, therefore one

can argue that the discretisation is improved in the regime where most of the energy is

contained.

Then, the amplitude of each Fourier mode, vn, is determined through the definition of

the kinetic energy, K, in terms of the energy spectrum

K =

∫ ∞
0

E(κ)dκ, (2.11)

and the velocity field

K =
1

2
〈ui(x, t) ui(x, t)〉 =

N∑
n=1

v2n. (2.12)

The amplitude of each wavenumber component can therefore be directly related to the

energy spectrum by using:

vn =
√
E(κn)∆κn, (2.13)

where ∆κn is the small interval in the spectrum centred at κn. Note that in contrast with

Kraichnan’s method, the amplitude of each mode is not a random variable with a given

distribution but deterministically prescribed by the energy spectrum of the turbulence.
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Bechara et al. [8] selected the modified von Kármán spectrum

E(κ) = A
K

κc

(κ/κc)
4

[1 + (κ/κc)2]17/6
exp

(
−2κ2

κ2kol

)
(2.14)

to simulate the energy spectrum. A is an amplitude parameter such that Eq. (2.11) is

verified. This spectrum is a more accurate description of the turbulence energy spectrum

than the Gaussian spectrum proposed by Kraichnan. It is able to represent not only the

energy containing range but also the inertial subrange capturing the 5/3 Kolmogorov’s

law and the exponential decay characteristic of the dissipation range.

Note that from a computational point of view, Eq. (2.9) is cheaper than Eq. (2.1) since

it requires the generation of less random numbers, but the resulting velocity field is

independent of time. In order to obtain temporal decorrelations, Bechara et al. proposed

to form a time series by using a succession of independent realisations of the velocity

field and then filtering these to obtain the desired loss of correlation in time.

2.1.1.3 Bailly et al.’s method

The velocity field, u, generated with the method proposed by Bechara et al. in Eq. (2.9)

does not include convection effects. This limitation has been addressed by Bailly et

al. in Ref. [7] where the method proposed by Bechara et al. [8] has been modified by

explicitly including time dependence and convection effects. Eq. (2.9) is modified to

read

u(x, t) = 2
N∑
n=1

vn cos[κn · (x− tuc) + ψn + ωnt]σn, (2.15)

where uc is the convection velocity and the random variable ωn is the angular frequency

of the nth mode and is given by ωn =
√

2K/3κn. Convection effects are introduced by

essentially considering a change of frame of reference.

In contrast with Bechara et al., Bailly et al. chose to discretise the wavenumber range

with the non-linear distribution

κn = κl + (∆κl)
n−1, for n = 1, 2, . . . , N where ∆κl = κkol−κl

N−1 , (2.16)

A comparison of Bechara et al.’s and Bailly et al.’s methods performed by Billson et

al. [5] shows that the distribution given by Eq. (2.16) is more appropriate than the

logarithmic distribution proposed by Bechara et al.. As argued by Bechara et al., a

logarithmic distribution of the wavenumbers offers a better resolution of the spectrum

for small wavenumbers corresponding to the most energy containing eddies. However,

the error on the largest wavenumbers, which are poorly resolved, is amplified by the

increasing ∆κn for larger wavenumbers in Eq. (2.13).
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From a computational point of view Bailly et al.’s method is more efficient than Bechara

et al.’s because in the former one velocity field needs to be computed for each time.

However, Bechara et al.’s method requires the computation, storage and then filtering

series of independent realisations of the velocity field for each time step.

A drawback of Bailly et al.’s method is that an extension to inhomogeneous turbulence

is not straightforward, as argued by Omais et al. [4]. If r is a spatial separation and T

is the time over which the averaging is performed, the spatial correlation tensor for the

velocity field in the directions i and j and for a single mode n, Rijn, can be written as

Rijn(r) =
F

T

{
1−

[
ωn(x) + κn · uc(x)

ωn(x+ r) + κn · uc(x+ r)

]2}−1
, (2.17)

where F is a finite non-zero quantity. For an inhomogeneous turbulence the term in

square brackets is different from one and therefore the spatial correlation tensor tends

to zero as time increases, which is not physical.

2.1.1.4 Billson et al.’s method

Billson et al. [25] proposed a modification of the SNGR methods to model the time

correlation of the turbulence. First, at each time step an auxiliary synthetic velocity

field, v, is defined using Bechara et al.’s [8] method but considering the wavenumber

discretisation proposed by Bailly et al. [7]. Then, the time-dependent velocity field, u,

is obtained by solving the stochastic equation

u(x, t) = αu(x, t−∆t) + β[v(x, t) + v(x, t−∆t)], (2.18)

where α = exp(−∆t/τ), β = A
√

(1− α2)/2, ∆t is the time step, τ is the integral time

scale and A is an amplitude parameter that enables the control of the kinetic energy of

the turbulence. Note that Eq. (2.18) models the time correlation of u as exp(−t/τ).

Convection effects are introduced in Billson et al.’s method by solving the convection

equation ∂
∂tu+ ∂

∂xj
[(uc)ju] = 0 for u(x, t−∆t) prior to its use in Eq. (2.18).

In comparison with Bailly et al.’s method, this approach requires fewer Fourier modes

to achieve a similar accuracy for the statistics since at each time step the velocity field

u is the weighted sum of previous independent velocity fields v. However, in contrast

with Bailly et al.’s method, Billson et al.’s method requires the storage the auxiliary

velocity field, v, and the time-dependent velocity field, u, from the previous time step.
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2.1.2 Methods based on digital filters

Fourier-mode methods can be computationally demanding as they require a large number

of modes and for each mode various random variables must be provided. In addition,

they have problems representing inhomogeneous turbulence. In an attempt to improve

computational efficiency, methods based on digital filters have been devised. The basic

idea behind these methods is to filter white noise in order to obtain the velocity field of

a turbulent flow with the desired properties. Therefore, the key with these methods is

to define the appropriate filter.

2.1.2.1 Klein et al.’s method

Klein et al. [11] proposed a new approach to generate artificial inflow data reproduc-

ing first and second order one-point statistics as well as two-point correlations. This

approach is based on filtering white noise and it is directly formulated in the discrete

setting. The one-dimensional discrete filter-based method reads

v(xm) =

N∑
n=−N

bnrm+n, (2.19)

where rm is a random series of white noise with zero mean and 〈rn rm〉 = δnm. bn are

the filter coefficients and N is the support of the filter. Eq. (2.19) is similar to finite

difference stencil applied to a random field weighted by the filter coefficients.

From the definition of the velocity field in Eq. (2.19), a relation between the filter and

the normalised autocorrelation of v can easily be derived,

Rvv(|xm+k − xm|) =
〈v(xm) v(xm+k)〉
〈v(xm) v(xm)〉

=

∑N
j=−N+k bjbj−k∑N

j=−N b
2
j

. (2.20)

Hence, the coefficients bn of the filter have to be defined such that the velocity field

has the desired autocorrelation. It is important to note that this equation is implicitly

assuming filter coefficients that are independent of spatial position, and hence assuming

homogeneity.

The simplest way to calculate the filter coefficients is by assuming a Gaussian shape for

the autocorrelation

Rvv(r) = exp

(
−πr

2

4λ2

)
, (2.21)

where λ is the integral length scale. Without this simplification finding the filters is

not trivial and for instance in semi-infinite domains the filters are not uniquely defined.

A detailed description of the process to obtained the filter coefficients is presented in

Ref. [26].



16 Chapter 2. Synthetic Turbulence

An extension to three dimensions is achieved by generating three independent one-

dimensional velocity fields using Eq. (2.19). Different sets of filter coefficients may be

considered in each direction so that the desired integral length scales are recovered.

A significant drawback of Klein et al.’s method is that it is based solely on the reproduc-

tion of statistical data and does not incorporate any information about the physics, apart

from the two-point correlation. For instance, the velocity field is not even divergence-free

as one would expect from an incompressible flow.

2.1.2.2 Careta et al.’s method

Careta et al. [9] presented a method that uses a random scalar field in order to obtain

a two-dimensional, isotropic, stationary, and homogeneous stochastic velocity field. In

contrast with Klein et al.’s method, the turbulent velocity field obtained with Careta et

al.’s method is guaranteed to be divergence free. This is achieved by working in terms

of the stream function, η, such that

u(x, t) =

(
−∂η
∂y

(x, t),
∂η

∂x
(x, t)

)T

. (2.22)

The central point of this method is to define η in such a way that the synthetic velocity

field has the required statistical properties. Careta et al. proposed to describe the

temporal correlation by means of a stochastic differential equation known as Langevin

equation [14]
∂

∂t
η(x, t) = −1

τ
η(x, t) +

Q[λ2∇2]

τ
ζ(x, t), (2.23)

where λ and τ are the spatial and temporal length scales respectively.

The first term in Eq. (2.23) is a linear drift coefficient that causes the velocity of η to

relax toward zero on the time scale τ . The second term introduces a zero-mean random

source whose standard deviation is controlled by the linear differential operator Q and

ζ(r, t) is a Gaussian white noise with zero mean and correlation

〈ζ(x1, t1) ζ(x2, t2)〉 = 2εδ(x1 − x2)δ(t1 − t2), (2.24)

with ε the intensity of the noise. The operator Q, which is written in terms of the

Laplacian ∇2, acts as a filter that controls the statistics of the turbulence, such as the

correlation length. Eq. (2.23) also determines that the time correlation of the synthetic

velocity field is exponential, exp(−t/τ).

To identify the differential operator Q, it is convenient to work in the wavenumber space.

In particular, by expressing the two-point two-time correlation of the velocity field u in

terms the two-point two-time correlation of the stream function η, it is possible to relate
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the operator Q with the energy spectrum of the turbulence yielding

E(κ) =
ε

4πτ
κ3Q2[−λ2κ2]. (2.25)

Therefore, Careta et al.’s method relies on finding an operator Q that yields the de-

sired velocity field assuming that the intensity of the noise, the spatial and temporal

correlation lengths, and the energy spectrum are prescribed.

The method by Careta et al. has the advantage of not being restricted to a specific

energy spectrum, and more realistic expressions for the energy spectrum can be used

instead of Gaussian spectrum. In addition, in contrast with Klein et al.’s method, the

synthetic velocity field is divergence free but it does not include convection effects.

2.1.2.3 Ewert’s method

A filter-based method able to reproduce the convection effects has been developed by

Ewert [10] and is known as Random-Particle-Mesh (RPM) or Fast-Random-Particle-

Mesh (FRPM) depending on the numerical implementation.

Ewert presented a new method to generate synthetic turbulence specifically for aeroa-

coustic applications with the aim of developing a fast and cheap stochastic approach

to model unsteady turbulent sound sources [10]. The method has already been applied

to a wide range of aeroacoustic problems in jet noise and broadband fan noise, see

Ref. [27, 28, 29, 30].

The RPM method borrows ideas from Careta et al. [9] and Klein et al. [11]. From the

former, the method expresses the velocity field in terms of a stream function and models

the time correlation by solving a Langevin equation. From the latter, it uses the idea of

filtering random data to obtain the stream function. Note that, in contrast with Careta

et al.’s method, the filter is expressed in terms of a convolution product rather than as

a differential operator. The result is a divergence-free velocity field able to reproduce

the two-point two-time correlation tensor of locally homogeneous isotropic turbulence.

The RPM method generates a three-dimensional synthetic velocity field, u, by expressing

it in terms of a 3D stream function η such that each of its components is defined as

ηi(x, t) =

∫
R3

G(|x− x′|)Ui(x′, t)dx′, (2.26)

with i = 1, 2, 3 and Ui are three independent white noise fields with zero mean. The

filter G controls the spatial properties of the synthetic turbulence. Once it is discretised,

the RPM method can by interpreted as a collection of random vortex particles. Each of

these particles induces a velocity field and u is given by summing up their contributions.
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In contrast with Careta et al.’s method, which is not restricted to a specific energy

spectrum, the original RPM method is based on the assumption that the spatial corre-

lation function of each ηi is Gaussian and therefore the corresponding energy spectrum

is Gaussian. This assumption yields a filter of the form:

G(x) = A exp

(
−πx

2

2λ2

)
, (2.27)

where A is related with the kinetic energy of the turbulence and λ is the integral length

scale of the turbulence.

The limitation of the original method to model only Gaussian energy spectra has been

addressed by Siefert and Ewert in Ref. [15] where they proposed an extension of RPM to

deal with non-Gaussian spectra by using a hierarchy of Gaussian filters. The extended

method consists in superposing N independent velocity fields by defining the stream

function as

ηi(x, t) =

N∑
n=1

∫
R3

G(n)(|x− x′|)U (n)
i (x′, t)dx′, (2.28)

where each filter G(n) is defined by Eq. (2.27) with amplitude factor A and the integral

length scale λ chosen to describe a specific wavenumber range of the non-Gaussian energy

spectrum. In order to include the different integral length scales to recreate non-

Gaussian spectra, the number of vortices considered must therefore increase compared

to the Gaussian spectrum.

Convection effects can be taken into account by stating that each stochastic field Ui

follows a transport equation
D0

Dt
Ui = 0, (2.29)

where D0/Dt = ∂/∂t+uc ·∇ is the material derivative and uc is a given convection veloc-

ity. Assuming a constant convection velocity and Taylor’s frozen turbulence hypothesis,

for small spatial and temporal separation, r = x2 − x1 and t = |t2 − t1|,

〈Ui(x1, t1)Uj(x2, t2)〉 = δ(r − uct)δij . (2.30)

In order to include the effects of time correlation, a similar method to that of Careta [9]

is used. Each random field Ui is generated by solving a Langevin equation (see Ref. [28])

D0

Dt
Ui =

1

τ
Ui +

√
2

τ
ζi, (2.31)

where τ is a Lagrangian integral time scale and ζi is a white noise field such that

〈ζi(x, t)〉 = 0, 〈ζi(x1, t1) ζj(x2, t2)〉 = δ(r)δ(t)δij . (2.32)
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For small spatial separations r and temporal separations t, for which Taylor’s hypothesis

holds, each random field Ui has the properties

〈Ui(x, t)〉 = 0, 〈Ui(x1, t1)Uj(x2, t2)〉 = δ(r − uct) exp(−t/τ)δij . (2.33)

Note that the RPM method assumes an exponential correlation in time. This choice is

supported by the measurements of Davis et al. [27]. Note also that if we assume τ →∞,

Eqs. (2.29) - (2.30) for frozen turbulence are recovered.

From a computational point of view, Ewert’s method has some advantages. Gaussian

filters are separable functions of each component of x, and hence the velocity field can

be computed by applying a one-dimensional filtering operation in each direction. In

addition, only one set of random values needs to be generated for each realisation of the

synthetic velocity field. This is in contrast with random Fourier-mode methods where

various random variables have to be generated.

2.1.3 Methods to generate synthetic anisotropic turbulence

Methods to generate synthetic anisotropic turbulence are now reviewed. They follow a

common scheme:

1. Obtain the desired statistical properties of the turbulence such as integral length

and time scales and Reynolds stress Rij = 〈ui uj〉.

2. Generate an auxiliary isotropic synthetic velocity field.

3. Apply a set of transformations to the auxiliary velocity field so that the resulting

velocity field is anisotropic and recreates the required statistical properties.

The mean flow components, integral length and time scales and the Reynolds stresses

can be either measured or predicted from RANS simulations. Reynolds stresses specified

locally at any point can be estimated from the local turbulent kinetic energy and dissi-

pation rates. A model commonly used for that purpose is a linear approach, however it

has been shown by Omais et al. [4] that the use of a non-linear Reynolds stress tensor

model can significantly improve the quality of the anisotropic synthetic turbulent field.

Lund et al. [31] presented a method to generate synthetic anisotropic turbulence to

provide inflow conditions for LES. The proposed method generates three independent

sequences of random numbers, vi, i = 1, 2, 3 each with zero mean and unit variance and

then applies the transformation ui = Aijvj , where

A =

 (R11)
1/2 0 0

R21/A11 (R22 −A2
21)

1/2 0

R31/A11 (R32 −A21A31)/A22

(
R32 −A2

31 −A2
32

)1/2
 , (2.34)
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to obtained the anisotropic velocity field u. This basic procedure to recover Reynolds

stresses does not however provide information on two-point correlations. A way of

overcoming this problem is by generating random numbers which are correlated in space.

For instance, the filter-based method by Klein et al.’s [11] can be used to generate the

random numbers, and the resulting velocity field would have the desired integral length

scale, Reynolds stresses and a Gaussian two-point correlation tensor.

A more sophisticated method to generate synthetic anisotropic turbulent flows has been

presented by Smirnov et al. [32]. This method was used to generate anisotropic tur-

bulence for initial and inlet boundary conditions for LES. Smirnov et al.’s method uses

scaling and orthogonal transformation operations applied to isotropic turbulence, and

takes as input the integral length and time scales of the turbulence, and the Reynolds

stresses. The three-dimensional anisotropic turbulence is generated by Smirnov et al.’s

method in three steps:

• Firstly the anisotropic correlation tensor R is diagonalised by writing R = ATCA

with C the diagonal matrix of the eigenvalues. R being symmetric, the tensor A

defines an orthogonal transformation associated with the principal directions of

the correlation tensor.

• Secondly, a transient flow field v is generated. In their paper Smirnov et al. used a

Fourier-mode technique similar to Kraichnan’s [6] to generate the isotropic velocity

field v. However, this method to achieve anisotropic turbulence is not restricted to

velocity fields obtained through random Fourier modes. One might prefer instead

to generate the isotropic velocity field using a method based on digital filters.

• Finally, the anisotropic velocity field u is obtained through the relation: u = ACv.

Smirnov et al.’s is not only able to obtain an anisotropic turbulent velocity field, but it

also preserves the incompressibility condition for locally homogeneous turbulence. Note

that the derivatives of C can be neglected in the case of weakly inhomogeneous flows

since they are slowly varying functions of position. The resulting anisotropic velocity

field has the desired Reynolds stresses and integral length and time scales.

Billson et al.’s [33] used a method similar to Smirnov et al.’s to generate synthetic

anisotropic turbulence for aeroacoustic purposes. In this case, an auxiliary isotropic

velocity field is first generated using Bechara et al.’s [8] method. Then a series of trans-

formations similar to those proposed by Smirnov et al. are applied to recover Reynolds

stresses and length scales. Finally the filtering in time described in section 2.1.1.4 is

performed to obtain a time-dependent, anisotropic velocity field.



Chapter 2. Synthetic Turbulence 21

2.2 Random-Vortex-Particle method

We now present the random-vortex-particle method used in this work to generate syn-

thetic turbulent flows. It generates synthetic two-dimensional, isotropic, locally homoge-

nous turbulent flows1. It requires as inputs some statistical properties of the turbulent

flow such as energy spectrum, correlation, integral length scale and kinetic energy. These

properties can be either modelled using empirical laws, measured or predicted from

RANS simulations.

The method developed in this work is a filter-based method that builds upon the work of

Careta et al. [9] and Ewert et al. [27, 28]. In both methods, the velocity field is defined

in terms of a stream function that is obtained by filtering random data. In addition, both

methods use a Langevin equation to model the temporal decorrelation of the velocity

field. The main difference between them is the definition of the stream function; and

in particular the filter that determines the stream function. Ewert’s method enforces

a Gaussian correlation, but the filter in Careta et al. is defined in terms of the energy

spectrum.

The idea here is to combine both methods in the sense of being able to obtain a turbulent

velocity field by providing either the correlation or the energy spectrum. Therefore, the

resulting method is not restricted to any specific correlation or energy spectrum and

convection effects and temporal correlations are captured. Special care will be made in

the mathematical derivation of the equations involved.

We are interested in the generation of the velocity field, denoted by u′(x, t) with com-

ponents u′x(x, t) and u′y(x, t), of an isotropic two-dimensional turbulent flow.

Assuming an incompressible flow, mass conservation is equivalent to a divergence-free

condition. From Helmholtz decomposition (see Ref. [34]) we know that there exists a

stream function, η = (0, 0, η), such that

u′(x, t) =

(
∂η

∂y
(x, t),−∂η

∂x
(x, t)

)T

. (2.35)

This simplifies our problem by reducing the formulation to a scalar field.

Since the turbulent velocity field is written in terms of the stream function, our problem

can be split into two parts: establishing the relationship between the statistics of the

flow itself u′ and those of the stream function η, and providing an appropriate method

to describe the stream function.

1 In chapter 6 the stochastic method is extended to deal with non-stationary inhomogeneous turbulent
flows. The extension for three-dimensional anisotropic turbulence is discussed in Appendix A.
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2.2.1 Spatial statistics of the stream function

In this section, the turbulence is assumed statistically stationary and locally homoge-

neous. Therefore the statistics of the turbulence are invariant under a shift in time and

slow varying functions of position. In addition, we are only interested in the fluctuations

so we look at the correlations independently of the mean flow.

The stationary spatial two-point correlation tensor of the velocity field u′,

Rij(r) = 〈u′i(x1, t) u
′
j(x2, t)〉, (2.36)

where r = x2 − x1, is related to the stationary two-point correlation of the stream

function η,

C(r) = 〈η(x1, t) η(x2, t)〉. (2.37)

Their relationship will provide the definition of the filter from which the model to gen-

erate synthetic turbulence used in this work is built.

For convenience, instead of working directly with the two-point correlation tensor, the

trace of the correlation tensor Rij is considered (see Ref. [9])

R(r) =
1

2
Rii(r). (2.38)

Inserting the definition of the turbulent velocity field in Eq. (2.35) into Eq. (2.36) and

combining with Eq. (2.38) yields (see Appendix B.1)

R(r) = −1

2

[
1

r

dC

dr
(r) +

d2C

dr2
(r)

]
. (2.39)

In isotropic turbulence, the statistics of the flow do not depend on direction but only

on distance. As a consequence, the Fourier transform of the statistics into wavenumber

space can be expressed in terms of the Bessel function of zeroth order J0, (see Ap-

pendix B.2). In particular, the stationary two-point correlation of the stream function

η can be written

C(r) =
1

4π2

∫
R2

Ĉ(κ) exp(iκ · r)dκ =
1

2π

∫ ∞
0

κĈ(κ)J0(κr)dκ, (2.40)

where κ is the wavenumber associated with the wave vector κ and Ĉ stands for the

Fourier transform of C in wavenumber space. Hence, using Eq. (2.40) it is possible to

simplify the expression for R(r):

R(r) =
1

8π

∫ ∞
0

κ3Ĉ(κ)

[
2

κr
J1(κr) + J0(κr)− J2(κr)

]
dκ. (2.41)
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Using the relation J1(κr) = κr [J0(κr) + J2(κr)] /2 yields

R(r) =
1

4π

∫ ∞
0

κ3Ĉ(κ)J0(κr)dκ. (2.42)

Due to the relation between the Fourier transform and Bessel functions in isotropy and

comparing with Eq. (2.40) we get:

R̂(κ) =
1

2
κ2Ĉ(κ), (2.43)

which represents the relation between the correlation of the turbulent velocity field and

the correlation of the stream function η in wavenumber space.

By assuming isotropic homogeneity, the stationary spatial two-point correlation tensor

of the velocity field u′, Rij , can be written in terms of the lateral, f(r), and longitudinal,

g(r), autocorrelation functions as

Rij(r) = [f(r)− g(r)]ninj + g(r)δij , (2.44)

where r = |r|, the vector components ni stand for the unit vector in the r2−r1 direction

and δij is the Kronecker symbol. Note that

R11(re1) = f(r), R22(re1) = g(r), (2.45)

where e1 = (1, 0). Using continuity in 2D we can relate f and g via

g(r) = f(r) + r
df

dr
(r). (2.46)

By relating Eq. (2.36) with Eqs. (2.45) and (2.46) (see Appendix B.3), we can give

explicit expressions for f and g in terms of the stationary two-point correlation C of the

stream function η:

f(r) = −1

r

dC

dr
(r), g(r) = −d2C

dr2
(r). (2.47)

It will also be useful to derive the relation between the energy spectrum, denoted as

E(κ), and the correlation of the stream function. To do so, R will be related to E(κ)

through the velocity spectrum, φij(κ).

On the one hand, the velocity spectrum is defined in homogeneous turbulence as the

Fourier transform of the correlation Rij(r) [14]:

φij(κ) =

∫
R2

Rij(r) exp(−iκ · r)dr. (2.48)
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Hence, the Fourier transform of Eq. (2.38) is R̂(κ) = φii(κ)/2, which yields when com-

paring with Eq. (2.43)

φii(κ) = κ2Ĉ(κ). (2.49)

On the other hand, the energy spectrum is defined in terms of the velocity spectrum as

[14]

E(κ) =
1

4π2

∮
1

2
φii(κ)dS(κ), (2.50)

where S(κ) denotes the circle in the wavenumber space of radius κ centred at the origin.

Hence

E(κ) =
1

4π
κφii(κ). (2.51)

Inserting Eq. (2.49) into Eq. (2.51) we finally get the relation between the correlation of

the stream function and the energy spectrum

E(κ) =
1

4π
κ3Ĉ(κ). (2.52)

2.2.2 Stochastic model

Now that the statistics of the turbulent velocity field have been defined in terms of those

of the stream function, an appropriate method to define the stream function needs to

be provided.

Following Ewert’s et al. [28] approach, a two-dimensional turbulent flow can be obtained

when the stream function η is generated by filtering a random field. This can be written

as

η(x, t) =

∫
R2

G(|x− x′|, t)U(x′, t)dx′, (2.53)

where G is the filter and U is a random field that controls the temporal properties of

the turbulence.

The stochastic field U is defined as zero-mean white noise field in space:

〈U(x, t)〉 = 0, 〈U(x1, t) U(x2, t)〉 = δ(x2 − x1). (2.54)

RU (t) = 〈U(x, t1) U(x, t2)〉 denotes the time correlation of U with t = |t2 − t1|. For

small spatial and temporal separation, for which Taylor’s frozen turbulence hypothesis

holds (the scale for the turbulence dynamics is large compared to the passage time) U

satisfies the following properties:

〈U(x, t)〉 = 0, 〈U(x1, t1) U(x2, t2)〉 = δ(r − tuc)RU (t), (2.55)
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If the turbulence is assumed to be frozen (the integral time scale of the turbulence tends

to infinity), then the time correlation of U is independent of the temporal separation

and only convection effects are included in the model. Therefore

D0

Dt
U = 0, (2.56)

where D0/Dt = ∂/∂t + uc · ∇ with uc the convection velocity. This yields RU (t) = 1.

The convection velocity of the flow, uc, is an input parameter of the stochastic method.

This parameter can be provided by RANS or LES simulations or by measurements.

However, in addition to convection effects, there is a loss of correlation in time due to

the turbulent mixing. Effects of time decorrelation in turbulent flows can be introduced

in the method by assuming D0U/Dt 6= 0. This yields a correlation for U which is a

function of temporal separation. A common way to model the time-dependence present

in turbulent flows is to use Langevin models [14]. A detailed discussion on how to include

the effects of loss of correlation in time in the method proposed in this work to generate

synthetic turbulence can be found in chapter 5.

The expression of the synthetic velocity field, u′, can be recovered when rewriting the

correlation of η in terms of the filter G. This is done by combining Eq. (2.53) and

Eq. (2.55) (see Appendix B.4) to get

C(r, t) = (G ∗G)(|r − tuc|, t)RU (t), (2.57)

where ∗ represents the convolution operator in space. RU models the loss of correlation

in time. The term r− tuc introduces the convection effects in the correlation. Since the

effect of a uniform flow is equivalent to that of a change of frame of reference, considering

a frame of reference associated with the mean flow we have

C(r, t) = (G ∗G)(r, t)RU (t), Ĉ(κ, t) = Ĝ(κ, t)2RU (t). (2.58)

Note that the analysis in the previous section was carried out in a frame of reference

moving with the mean flow. Time evolution of u′ is fully specified by RU (t) and spatial

statistics are characterised by the filter.

The expression of the filter in the wavenumber space is found when inserting Eq. (2.58)

into Eq. (2.43) or into Eq. (2.52) yielding

R̂(κ) =
1

2
κ2Ĝ(κ)2, E(κ) =

1

4π
κ3Ĝ(κ)2. (2.59)
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The filter in physical space can be obtained by applying the inverse Fourier transform

to Eq. (2.59) to get

G(r) =
1√
2π

∫ ∞
0

R̂(κ)1/2J0(κr)dκ, G(r) =
1√
π

∫ ∞
0

(
E(κ)

κ

)1/2

J0(κr)dκ. (2.60)

To summarise, the synthetic velocity field u′ can be defined in terms of a prescribed

energy spectrum or a prescribed correlation function by

u′x(x, t) =
∂

∂y

∫
R2

G(|x− x′|)U(x′, t)dx′, (2.61a)

u′y(x, t) = − ∂

∂x

∫
R2

G(|x− x′|)U(x′, t)dx′, (2.61b)

where G is a function satisfying either of the expressions in Eq. (2.60) and the random

field U is completely specified by Eq. (2.56) if the turbulence is assumed frozen. A more

general expression of U that accounts for the influence of the integral time scale of the

flow is provided in chapter 5.

2.3 Numerical implementation

In this section, numerical discretisation of the equations following a grid-based scheme

and a Lagrangian approach are discussed. So far the method has been derived in a

continuous frame, but once it is discretised the synthetic turbulence can be interpreted

as a cloud of vortices with random strengths as it will be shown in section 2.3.1.

With a grid-based discretisation vortices are only located at grid points. In contrast, in a

Lagrangian discretisation vortices are convected with the base flow independently of the

grid points and two implementations can be considered to compute the induced velocity

field. In the first implementation the vorticity is interpolated onto an auxiliary grid,

which is then used to compute the velocity field. This approach is followed by Ewert [30].

In the second implementation, the velocity field is computed using directly the vortices

locations. We refer to this implementation as a purely Lagrangian approach. From a

computational point of view, for the particular application considered here, one could

argue that a purely Lagrangian discretisation yields a cheaper and faster simulation.

Vorticity does not need to be interpolated onto an auxiliary grid and although the

computation of the velocity field could be optimised by having the vorticity located at

specific grid points, in this case it is not relevant since the velocity field is just computed

at a few grid points that are nearby. The benefits of a purely Lagrangian approach could

drastically increase when using more complex geometries (and therefore more complex

grids) and non-uniform mean flows.
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We briefly use a grid-based discretisation for validating the random-vortex-particle

method, but for the application of the method we move to a Lagrangian approach.

2.3.1 Lagrangian discretisation

A novelty of the method to generate synthetic turbulence used in this work is that it is

discretised in a purely Lagrangian approach. This discretisation will be used to combine

the linearised Euler equations and the synthetic turbulence. Therefore, the synthetic

velocity field will be computed independently of the grid used to discretise the simulation

domain.

The following notation is introduced in order to rewrite Eq. (2.61) in a Lagrangian formu-

lation. Each fluid element in the region S0 at an initial time t0 follows a trajectory given

by x′(x0, t), where x0(x
′, t) is its starting point and J = |dx′/dx0| the corresponding

Jacobian (note that for incompressible flows J = 1).

The fluctuating component of the turbulent velocity field for a fixed frame of reference

is obtained using the method to generate synthetic turbulence by the expression

u′(x, t) =

∫
R2

G(|x− x′|)U(x′, t)dx′, (2.62)

where G = (∂G/∂y,−∂G/∂x)T. Using the above notation, it can be rewritten in a

Lagrangian formulation yielding

u′(x, t) =

∫
S0
G(|x− x′(x0, t)|,K(x′), λ(x′))U(x0, t)Jdx0. (2.63)

Note that here we are making explicit the dependence of the filter on the kinetic en-

ergy, K, and the integral length scale, λ, of the fluid. In addition, both quantities are

said to depend on the position x′ and not on x. While this is not necessary for ho-

mogeneous turbulent flows (statistics are not dependent on position), it is crucial for

inhomogeneous turbulent flows. This will be addressed in chapter 6 where inhomoge-

neous, non-stationary turbulence is considered.

By describing the volume S0 using elements {S0n}Nn=1, Eq. (2.63) can be written

u′(x, t) =
N∑
n=1

∫
S0n
G(|x− x′(x0, t)|,K(x′), λ(x′))U(x0, t)Jdx0. (2.64)

Each element S0n can be understood as a small fluid element whose trajectory is given

by x′(x0, t).

If the fluid elements S0n are small compared to the integral length scale λ(xn), it is

possible to consider that G is almost constant over each S0n, yielding the following
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approximation

u′(x, t) =

N∑
n=1

G(|x− xn(t)|,K(xn), λ(xn))

∫
S0n

U(x0, t)Jdx0, (2.65)

where xn is the position of S0n as it moves across the domain. xn can be defined as the

barycenter of S0n
xn =

∫
S0n
x′(x0, t)Jdx0. (2.66)

Finally, Eq. (2.65) can be rewritten as

u′(x, t) =

N∑
n=1

G(|x− xn(t)|,K(xn), λ(xn))Un(t), (2.67)

by defining Un as the weighted average of U over the fluid element S0n

Un(t) =

∫
S0n

U(x0, t)Jdx0. (2.68)

Therefore, the synthetic turbulent velocity field at x can be interpreted as the sum of

N vortices such that the nth vortex is located at xn. The velocity distribution induced

by each vortex depends on the distance between the vortex and the observer and the

integral length scale of the flow λ, and has strength Un.

For the case of frozen turbulence, for an observer moving with the base flow the value of

U(x0, t) is constant with respect to time yielding a constant expression for the strength

of the vortices. By frozen turbulence we are then not just stating that the statistics of

the turbulence are frozen, but also the turbulent velocity field is frozen with respect to

an observer moving with the base flow.

If including the effects of time correlation in the random-vortex-particle method, the

expression of U(x0, t) is time dependent. The time variation of Un controls the temporal

decorrelation of the turbulence and it is usually modelled by a Langevin equation [14].

See chapter 5 for further details on the implementation of evolving turbulence.

In this thesis we consider uniform mean flows in which case the Jacobian is unit simpli-

fying Eqs. (2.66) and (2.68). In addition, the volume S0 can be described using N fluid

elements S0n of equal size meaning that the the initial strength of the vortex particles

can be picked from the same distribution.

More general cases can also be considered. For incompressible non-uniform mean flows,

more care is required to establish the size of each fluid element S0n. In addition, the

mean flow has to be interpolated onto the CAA grid which can then be used to get the

mean flow at each vortex location. For compressible flows, the Jacobian is not expected

to strongly vary over each fluid element and hence the vortex locations xn defined in
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Eq. (2.66) and their strength Un in Eq. (2.68) can be obtained by:

xn(t) = J̄n(t)

∫
S0n
x′(x0, t)dx0, Un(t) = J̄n(t)

∫
S0n

U(x0, t)dx0, (2.69)

where J̄n(t) is the average of the Jacobian over the fluid element S0n at time t. This

implies that for each vortex particle its initial strength is stochastically generated and

then at each time its strength and current location is deterministically modified to

accommodate for the change in volume of the fluid element.

2.3.2 Grid-based discretisation

A grid-based discretisation is used in this work for a preliminary validation of the nu-

merical method which serves as a proof of concept, see section 2.5. The random-vortex-

particle method in Eq. (2.61) is discretised here assuming filters separable in space and

neglecting convection effects. A parametric study to assess the error introduced when

approximating the continuous method with the grid-based discrete method is also in-

cluded in this section.

2.3.2.1 Discretisation

The grid-based discrete version of Eq. (2.61) is now derived under the assumption that

the filter is a separable function of x and y, G(x, y) = Gx(x)Gy(y).

The continuous model in Eq. (2.61) can then be rewritten as

u′x(x, y) =

∫ ∞
−∞

Fx(x− x′)
[∫ ∞
−∞

Fy(y − y′)U(x′, y′)dy′
]

dx′, (2.70a)

u′y(x, y) =

∫ ∞
−∞

Hx(x− x′)
[∫ ∞
−∞

Hy(y − y′)U(x′, y′)dy′
]

dx′, (2.70b)

where

Fx(x) = Gx(x), Fy(y) =
∂Gy
∂y

(y), Hx(x) = −∂Gx
∂x

(x), Hy(y) = Gy(y). (2.71)

Considering non-uniform Cartesian grids {xp}∞p=−∞ and {yq}∞q=−∞ in the x and y-

directions respectively, and assuming fine grids compared to the variation of Fx, Fy,

Hx and Hy, Eq. (2.70) can be approximated at the grid point (xn, ym) by

u′x(xn, ym) =

M1∑
q=−M1

N1∑
p=−N1

Fy(yn − yq)Fx(xn − xp)r(xp, yq), (2.72a)
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u′y(xn, ym) =

M2∑
q=−M2

N2∑
p=−N2

Hy(yn − yq)Hx(xn − xp)r(xp, yq). (2.72b)

The quantity r(xp, yq) is a random value obtained by averaging the stochastic field U

over the grid spacing

r(xp, yq) =

∫ 4q
2

−
4q−1

2

∫ 4p
2

−
4p−1

2

U(x̃, ỹ)dx̃dỹ, (2.73)

where 4p stands for the distance between the grid points xp and xp+1 and 4q for the

distance between yq and yq+1. Straightforward algebra using the properties of U yields

〈r(xp, yq)〉 = 0, 〈r(xp, yq) r(xp′ , yq′)〉 =
(4p +4p−1) (4q +4q−1)

4
δpp′δqq′ . (2.74)

Note that in principle the summations in Eq. (2.72) should be infinity but in practice

they are approximated by the finite quantities M1,M2, N1 and N2.

The set of equations in Eq. (2.72) can be seen as a finite difference stencil applied to the

random field r where Fx, Fy, Hx, and Hy act as weights.

2.3.2.2 Analysis of the numerical error

In this section, the level of error incurred by approximating the continuous equations

defining u′ in Eq. (2.61) by their discrete version in Eq. (2.72) is assessed.

An analysis of the effect of truncation and discretisation over the correlation and energy

spectrum is carried out to determine the error. Since the filter is assumed to be a

separable function following the same behaviour in x and y directions, this analysis

is performed in one dimension. In this case, the analytical expression of the stream

function is

η(x) =

∫ ∞
−∞

G(x− x′)U(x′)dx′, (2.75)

and the expressions of the correlation and the energy spectrum in wavenumber space

are respectively

Ĉ(κ) = Ĝ(κ)2, E(κ) =
1

4π
κ3Ĝ(κ)2, (2.76)

where Ĝ stands for the one-dimensional filter in wavenumber space.

The effects of truncation can be represented by a ‘window’ function with width A

wA(x) =

{
1 if −A < x < A

0 otherwise
(2.77)
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that when applied to the filter makes its support finite. Therefore, Eq. (2.75) can be

approximated by

η(x) ≈
∫ ∞
−∞

wA(x′)G(x′)U(x+ x′)dx′. (2.78)

It this case, the correlation and the energy spectrum are given by the convolution of the

filter and the window function as

Ĉ(κ) ≈ (Ĝ ∗ ŵA)(κ)2, E(κ) ≈ 1

4π
κ3(Ĝ ∗ ŵA)(κ)2. (2.79)

The error derived from the discretisation of the problem can also be taken into account

by introducing the Dirac comb function weighted by the grid spacing

D(x) =
∞∑

n=−∞

4n−1 +4n

2
δ(x− xn). (2.80)

Substituting the filter G in Eq. (2.75) by DG, the stream function reads

η(x) ≈
∞∑

n=−∞

4n−1 +4n

2
G(xn)U(x+ xn). (2.81)

Consequently, the correlation and the energy spectrum are recovered through

Ĉ(κ) ≈ (Ĝ ∗ D̂)(κ)2, E(κ) ≈ 1

4π
κ3(Ĝ ∗ D̂)(κ)2. (2.82)

In order to evaluate both effects at a time, the infinite sum in Eq. (2.80) is truncated

D(x) =

M∑
n=−M

4n−1 +4n

2
δ(x− xn), where A =

1

2

M−1∑
i=−M

4i. (2.83)

This can be understood as applying the window function wA to the Dirac comb function

D instead of directly to the filter. By comparing Eq. (2.82) against the corresponding

theoretical expressions in Eq. (2.76), it is possible to perform a parametric study that

enables us to measure the level of error introduced by the discretisation of the method.

This analysis will be performed in section 2.5.3.

2.4 Extension to non-Gaussian energy spectra

The random-vortex-particle method described in section 2.2 requires as input either the

correlation tensor or the energy spectrum of the turbulence. For each choice of these

functions a different filter will be obtained, see Eq. (2.60). In this section, we focus

on the advantages and disadvantages of selecting different energy spectra, and hence

different filters, for two-dimensional turbulent flows.
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So far, most methods using filtered random data have been based on Gaussian filters,

yielding Gaussian correlation and Gaussian spectra. For turbulence modelling, and

especially for broadband fan noise considered in this work, it is more common to use

Liepmann and von Kármán spectra.

The use of Gaussian filters does not restrict the synthetic velocity field to Gaussian en-

ergy spectrum as shown by Siefert and Ewert in Ref. [15]. By superimposing a collection

of Gaussian filters with different length scales non-Gaussian energy spectra are recov-

ered. Such a procedure has a higher computational cost when reproducing non-Gaussian

spectra instead of Gaussian spectrum since a much larger number of vortices is required.

A different approach from that of Siefert and Ewert is considered in this work. Instead

of superimposing Gaussian filters to obtain non-Gaussian spectra, non-Gaussian filters

are directly used. Expressions for the filter required by the method to generate synthetic

turbulence used in this work corresponding to the Gaussian, Liepmann and von Kármán

spectra are now derived and the main differences are then discussed.

2.4.1 Gaussian spectrum

Kraichnan proposed to simulate a 2D energy spectrum in Ref. [6] with a Gaussian shape

function given by

Eg(κ) =
2

π2
Kλ4κ3 exp

(
−λ

2κ2

π

)
, (2.84)

where K is the kinetic energy and λ the integral length scale.

Comparing the latter expression in Eq. (2.59) and Eq. (2.84), the filter in wavenumber

space is found to be

Ĝg(κ) = 2λ2
√

2K

π
exp

(
−λ

2κ2

2π

)
. (2.85)

Using the relation Eq. (2.40) between the Fourier transform and the Bessel function for

two-dimensional isotropic flows, the filter in physical space reads

Gg(r) =

√
2K

π
exp

(
−πr

2

2λ2

)
. (2.86)

From a computational point of view, the filter given by Eq. (2.86) provides a good

computational performance. Gaussian filters are separable functions of x and y. Hence

the filtering procedure can be successively applied in each direction. This yields a more

efficient method.
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2.4.2 Liepmann spectrum

Liepmann proposed to represent the energy spectrum of a turbulent flow in wavenumber

space by

El(κ) =
16

3π
Kλ5

κ4

(1 + λ2κ2)3
. (2.87)

The Liepmann spectrum provides a better representation of the energy-containing range

than the Gaussian energy spectrum.

The filter corresponding to the Liepmann spectrum is obtained by inserting Eq. (2.87)

into the latter expression in Eq. (2.59), which yields in the wavenumber space

Ĝl(κ) = 8λ2
√
Kλ

3

κ1/2

(1 + λ2κ2)3/2
. (2.88)

Using Eq. (2.60), the filter in physical space reads

Gl(r) =
4

π

√
K

3

[
Γ(1/4)Γ(5/4)√

π
1F2

(
5

4
;
3

4
, 1;

r2

4λ2

)
− Γ(3/4)

Γ(5/4)

√
2r

λ
1F2

(
3

2
;
5

4
,
5

4
;
r2

4λ2

)]
,

(2.89)

where Γ is the gamma function and 1F2 stands for the generalised hypergeometric func-

tion with parameters p = 1 and q = 2 (see Ref. [35]).

2.4.3 Von Kármán spectrum

The von Kármán spectrum is recognised as giving a better fit to measured turbulence

spectra than Liepmann and Gaussian models. It is able to recreate the energy containing

range and the inertial subrange capturing the −5/3 Kolmogorov’s law. Its expression is

given by

Ek(κ) =
110

27π
Kλς4

κ4

(1 + ς2κ2)17/6
, (2.90)

where ς =
Γ(1/3)√
πΓ(5/6)

λ. Comparing the latter expression in Eq. (2.59) and Eq. (2.90),

the filter in wavenumber space is

Ĝk(κ) =
2

3

√
110Kλ

3
ς2

κ1/2

(1 + ς2κ2)17/12
. (2.91)

Inserting Eq. (2.90) into the latter expression in Eq. (2.60) the filter reads in physical

space

Gk(r) =
1

π

√
110Kλ

3ς

[
Γ(7/6)Γ(5/4)

Γ(17/12)
1F2

(
5

4
;
5

6
, 1; r2∗

)
− Γ(5/6)

Γ(7/6)
r
1/3
∗ 1F2

(
17

12
;
7

6
,
7

6
; r2∗

)]
,

(2.92)
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where r∗ = r/(2ς).

2.4.4 Discussion

So far most of the methods to generate synthetic turbulence based on filtering random

data have considered only Gaussian filters, so it is worth discussing the differences with

von Kármán and Liepmann filters. The three energy spectra considered in this work are

depicted in Figure 2.1 for the same kinetic energy, K, and integral length sale, λ.

The von Kármán spectrum provides the best fit to measured turbulence spectra of the

three models considered here decaying with a slope of −5/3 in the inertial subrange. The

Liepmann spectrum represents a good fit to real energy spectra but does not account

for the −5/3 Kolmogorov’s law in the inertial subrange. Gaussian spectrum is not able

to approximate the inertial subrange due to the fast decay of the exponential function.

The loss of energy captured by the Gaussian energy spectrum at the universal subrange

is compensated by a higher peak, so that they all achieve the same target value of kinetic

energy.
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Figure 2.1: Comparison of energy spectra models. (− ·−) Gaussian spectrum, (− −)
Liepmann spectrum and (—–) von Kármán spectrum.

The different behaviour of the energy spectra shown in Figure 2.1 is reflected in the

behaviour of the filters, as shown in Figure 2.2. Of particular importance is the behaviour

of the filter near the origin. Using an asymptotic expansion for small r, the Gaussian

filter has a regular behaviour Gg(r) ≈ G0+G1r
2 when r → 0. In contrast Liepmann and

von Kármán filters behave as Gl(r) ≈ L0+L1r
1/2 and Gk(r) ≈ K0+K1r

1/3, respectively

(the coefficients G0, L0, L1,K0 and K1 are functions of the integral length scale and

kinetic energy alone). The fact that Liepmann and von Kármán filters are not as regular

as the Gaussian filter can also be seen in Figure 2.2. This is a direct consequence of the
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fact that the Liepmann and von Kármán filters present a slow algebraic decay in the

wavenumber space as κ→∞ (see Eqs. (2.88) and (2.91)) in contrast to an exponential

decay for the Gaussian filter. The Liepmann filter decays in the wave number space as

κ−5/2 and von Kármán filter as κ−7/3. Smoothness and compactness properties of Fourier

transforms indicate that the smoother a function is, the faster its transform decays for

large wavenumber [36]. Therefore, in both cases –Liepmann and von Kármán– the

filter itself is a continuous function within the physical space but their first and second

derivatives do not exist at zero, otherwise the decay in the wavenumber space would

be at least as fast as κ−3. This lack of regularity has consequences for the numerical

implementation described in section 3.3.2.

Regarding the behaviour of the filters for large distances (r → ∞) the Liepmann and

von Kármán filters decrease at much lower rates than the Gaussian filter. This implies

that the region of influence of each vortex will be larger for Liepmann and von Kármán

filters than for the Gaussian filter. In turn, this implies that the numerical method

will be more demanding for the von Kármán filter, followed by the Liepmann filter and

finally the Gaussian filter, see section 4.3.1.
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Figure 2.2: Filters corresponding to Gaussian (− · −), Liepmann (− −) and von
Kármán (—–) spectra versus distance in linear scale (left) and logarithmic scale (right).

2.4.5 Interpolation of the filters

The computational performance of the random-vortex-particle method in Eq. (2.62) is

directly related with the mathematical expression that defines the filter. The filters de-

rived from Gaussian, Liepmann and von Kármán energy spectra involve the calculations

of exponentials and hypergeometric functions which can be very costly, see Eqs. (2.86),

(2.89) and (2.92). In addition, for a typical simulation one needs to evaluate these filters

several million times. An attempt was therefore made in this work to use interpolated

filters which are much faster than the exact expressions.
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In order to compute the synthetic velocity field, the random-vortex-particle method uses

the filter derivatives, see Eq. (2.62), which further complicates the analytical expressions.

Therefore, it is the derivatives of the filters that are interpolated.

The Gaussian filter decays exponentially in physical space, Eq. (2.86), and it is an in-

finitely continuous and differentiable function. Thus an accurate interpolation of the

derivative of the Gaussian filter is achieved relatively easily. Obtaining accurate inter-

polations for Liepmann and von Kármán spectra requires more care. As discussed in

section 2.4.4, larger radius than that for the Gaussian spectrum have to be considered

in order not to introduce significant truncation error. In addition, the derivatives of

Liepmann and von Kármán filters have a singularity at r = 0. The interpolations used

in this work have been obtained with Matlab using rational function approximations.

2.5 Validation

Filter-based methods to generate synthetic turbulence have so far being mainly restricted

to Gaussian filters. Therefore, the method used in this work is firstly validated for these

filters. Since Gaussian filters are separable in space, a grid-based discretisation is simple

to derive and implement as the filter can be applied separately in each direction, see

section 2.3.2. Convection effects and temporal decorrelation are not included in this

preliminary validation which is intended as a proof of concept only and a full validation

of the random-vortex-particle method in Eq. (2.61) will be presented when applying the

method to broadband fan noise.

As a first step, the parametric study introduced in section 2.3.2 is performed to determine

the values of the grid spacing and stencil width in Eq. (2.72). In a second step, simulation

results are presented. The statistical properties of the turbulence are compared against

theoretical results in order to assess the accuracy of the numerical method.

2.5.1 Problem definition and computational setup

The problem is made non-dimensional using the integral length scale λ and the kinetic

energy K.

The computational domain is a square grid of size 6λ with grid spacing 4 in both

directions. The number of nodes in the domain is N × N . Since the velocity field at

each grid point depends on points in a lattice centred at this grid point (see Eq. (2.72)),

an extended grid has to be considered. This grid has N + 2M points in each direction

when choosing M1 = M2 = N1 = N2 = M in Eq. (2.72). As an example both grids are

plotted in Figure 2.5(a) for the values N = 37 and M = 12.
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2.5.2 Method

The discrete version of the random-vortex-particle method in Eq. (2.72) for the Gaussian

filter in Eq. (2.86) reads

u′x(xn, ym) = −
√

2πK

λ2

M∑
q=−M

M∑
p=−M

(yn−yq) exp

{
−π[(xn − xp)2 + (yn − yq)2]

2λ2

}
r(xp, yq),

(2.93a)

u′y(xn, ym) =

√
2πK

λ2

M∑
q=−M

M∑
p=−M

(xn − xp) exp

{
−π[(xn − xp)2 + (yn − yq)2]

2λ2

}
r(xp, yq).

(2.93b)

According to Eq. (2.74), r(xp, yq) follows a normal distribution with zero mean and

standard deviation 4. They are independently generated for each realisation.

Another way to assess the method is to consider the stream function and the vorticity

field. For the stream function we have:

η(xn, ym) =

√
2K

π

M∑
q=−M

M∑
p=−M

exp

{
−π[(xn − xp)2 + (yn − yq)2]

2λ2

}
r(xp, yq). (2.94)

For the vorticity field w = ∇× u′, we have w3 = −∂2η/∂x2 − ∂2η/∂y2. In the case of

the Gaussian spectrum, this yields

w3(xn, ym) =

√
2πK

λ2

M∑
q=−M

M∑
p=−M

exp

{
−π[(xn − xp)2 + (yn − yq)2]

2λ2

}
(

2− π

λ2
[(xn − xp)2 + (yn − yq)2]

)
r(xp, yq).

(2.95)

2.5.3 Effect of truncation and discretisation

As shown in section 2.3.2, the error derived from the numerical discretisation of the

continuous method in Eq. (2.61) can be controlled by choosing appropriate values for

grid spacing 4 and the stencil width M . These values can be chosen by comparing the

numerical correlation and the energy spectrum in Eq. (2.82) against the corresponding

theoretical expressions in Eq. (2.76).

Figure 2.3 shows the correlation and the energy spectrum in wavenumber space for values

of grid spacing 4 = λ/4, λ/6, λ/8 and λ/10 and a large value for M = 24 such that

the truncation error is negligible. There is a very good agreement between analytical

and numerical results up to wavenumbers corresponding to wavelengths resolved by four

grid points. The effect of truncation is assessed in Figure 2.4 where the correlation and

energy spectrum in wavenumber space are shown for a fixed value of 4 = λ/6 and
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Figure 2.3: Correlation and energy spectrum versus κλ in linear and logarithmic
scales, respectively. Solid line corresponds to analytical expressions and symbols to
numerical results obtained for M = 24, and 4 = λ/4 (×), 4 = λ/6 (◦), 4 = λ/8
(+) and 4 = λ/10 (C). Vertical lines represent where four points per wavelength are

achieved.

allowing M to vary from 10 to 16. Little differences are observed in the correlation by

increasing the width of the stencil, see Figure 2.4(a). However, if we look at the energy

spectrum in Figure 2.4(b) we see that including contributions from grid points that are

further away improves the accuracy of the method for large wavenumbers. For values of

M larger than 12, numerical results provide a good fit to the theoretical spectrum for

wavenumbers corresponding to amplitudes more than 40 dB lower than the peak of the

Gaussian. In conclusion, with 4 = λ/6 and M = 12 the statistics of the turbulence are

considered to be accurately reproduced.

2.5.4 Validation and illustration of the synthetic field

Now that the parameter values in Eq. (2.93) have been selected to control the numerical

error, we focus on the preliminary validation of the random-vortex-particle method for

Gaussian filters.
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Figure 2.4: Correlation and energy spectrum versus κλ in linear and logarithmic
scales, respectively. Solid line corresponds to analytical expressions and symbols to
numerical results obtained for 4 = λ/6, and M = 10(C), M = 12 (+), M = 14 (◦),

and M = 16 (×).

The computational domain corresponding to the parameter values selected is given by

a grid with N = 37 nodes in each direction using a extended grid of L = 61 nodes in

each direction as illustrated in Figure 2.5(a).

Figure 2.5(b) shows a given realisation of the fluctuating velocity field u′ and Figure 2.6

snapshots of the corresponding the stream function η and the vorticity. It can be ob-

served that the typical size of the vortices is consistent with the expected integral length

scale of the turbulence.

With the aim of analysing of the statistical properties of the synthetic turbulent velocity

field, analytical and numerical correlations computed with respect to the central point of

the grid are studied. Analytical and stochastically generated two-point correlations R11,

R22 and R12 are shown in Figure 2.7. It shows that the numerical method captures the

features present in the analytical two-point correlations over the whole domain. In order

to get an estimate of the numerical error, the difference between analytical and numeri-

cal two-point correlations is shown in Figure 2.8. Very good agreement is obtained in all
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Figure 2.5: Left: Grid used in the simulation. Computational domain grid with
37 × 37 nodes (·). Extended grid with 61 × 61 nodes (·). Right: Snapshot of the

synthetic velocity field u′.

Figure 2.6: Snapshot of the stream function (left) used to generate the stochastic
velocity field u′ and the corresponding vorticity field (right).

cases with a maximum relative error of about 6%. To illustrate this error further, ana-

lytical and numerical two-point correlations are compared along a segment chosen such

that the larger values of the correlation are captured. Figure 2.8(b) shows the two-point

correlation R11 along the segment {(x, y)/x = 0; y ∈ [0, 0.5]}. Figure 2.8(d) shows the

two-point correlation R22 along the segment {(x, y)/x ∈ [0, 0.5] ; y = 0}. Figure 2.8(f)

shows the two-point correlation R12 along the segment {(x, y)/x ∈ [0, 0.5] ; y = x}. It can

be observed that numerical results provide a very good fit to theoretical correlations.

In conclusion, the preliminary validation of the random-vortex-particle method per-

formed in this section for Gaussian filters shows that the method is capable of repro-

ducing the two-point correlation tensor and achieve a target value of kinetic energy.

Therefore, we now focus on its application to predict broadband fan noise.
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(a) Analytical two-point correlation R11 (b) Numerical two-point correlation R11

(c) Analytical two-point correlation R22 (d) Numerical two-point correlation R22

(e) Analytical two-point correlation R12 (f) Numerical two-point correlation R12

Figure 2.7: Contour plots of correlations Rij . Averages taken over 2,000 realisations.
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Figure 2.8: Left: Contour plots of the difference between analytical and numer-
ical two-point correlations R11 (a), R22 (c) and R12 (e). Right: Analytical (—)
and numerical (− −) two-point correlation R11 for distances r along the sengment
{(x, y)/x = 0; y ∈ [0, 0.5]} (b), R22 along {(x, y)/x ∈ [0, 0.5] ; y = 0} (d), and R12 along

{(x, y)/x ∈ [0, 0.5] ; y = x} (f). Averages taken over 2, 000 realisations.



Chapter 3

Broadband Fan Interaction Noise

The aim of this project is to predict broadband fan interaction noise by combining

the linearised Euler equations (LEE) with the stochastic method to generate synthetic

turbulence presented in the previous chapter.

Aerodynamic noise can be efficiently generated by unsteady flows interacting with rigid

surfaces. When the flow around the surface is unsteady, it generates unsteady forces

on the surface which conversely generate pressure fluctuations on the fluid, that then

propagate as sound. The incoming unsteady velocity disturbances can already exist

as atmospheric turbulence or be generated by flow interaction with other objects, for

instance the turbulent wake of a rotor blade.

Analytical methods to predict broadband fan interaction noise are restricted to idealised

geometries and mean flows. High fidelity numerical methods such as Direct Numerical

Simulations (DNS) of the Navier-Stokes equations of fluid dynamics or Large Eddy

Simulations (LES) are still too expensive to be used routinely in the design process.

An objective of this work is to contribute in showing that a hybrid method where the

Computational Fluid Dynamics (CFD) stage is replaced by stochastically generated

turbulence is cheaper and provides accurate noise predictions.

We restrict ourselves to two-dimensional problems and we neglect the effects of the

airfoil geometry. This is not a restriction of the method itself but a simplification made

for validation purposes. Therefore, extending the numerical method to deal with three-

dimensional non-uniform flows interacting with real airfoils is feasible but goes beyond

the scope of the current research study which concentrates in formulating and validating

the method.

This chapter begins with an overview of different techniques used to predict broadband

fan noise with an emphasis on stochastic methods. Note that we focus on methods

used in previous work rather than details of the applications. Then, the hybrid method

proposed in this work to predict broadband fan interaction noise is presented. Also

43
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included in this chapter is a description of the LEE-solver and its validation for a flat

plate interacting with a single gust.

3.1 Overview of broadband interaction noise models

Important reductions in jet noise have been achieved since the 1960’s by designing en-

gines with increasingly higher bypass-ratio. Consequently, fan noise has become a major

source of noise in modern aircraft [37]. While tonal noise can be efficiently reduced by

tuning the liner properties to target the blade passing frequency and its harmonics,

broadband fan noise remains more difficult to predict and to reduce due to its random

nature, high frequency content and numerous source mechanisms.

Various noise sources mechanisms contribute to the overall broadband fan noise. Even

if the inlet flow is steady and uniform, turbulent boundary layers develop along the

blade surface and acoustic waves are scattered at the trailing edge. This is known as

trailing-edge noise (or self-noise) and defines the minimum amount of noise from a fan in

the absence of installation effects [38]1. In ducted fans, tip vortex noise is generated in

the annular gap between the blade tips and the fan casing. Its amplitude increases with

the size of the gap and can affect the self-noise of the blade [3]. Leading-edge noise (or

interaction noise) is generated by incoming turbulent flows impinging on the fan blades

or stator vanes. Interaction is considered one of the main mechanisms of broadband

noise on isolated airfoils in the presence of incoming turbulence [39]. In a rotor-stator

configuration, rotor noise is likely to be less efficient than the interaction between the

turbulent wakes shed from the rotor and the stator vanes [3].

Broadband fan noise has been studied extensively for the last seventy years and a large

body of theoretical, experimental and numerical methods can be found in the literature.

We first describe the difficulties that arise when deriving analytical models. Then, we

focus on numerical techniques which are based on stochastic methods.

3.1.1 Analytical models

Von Kármán and Sears were the first to develop an analytical solution for broadband fan

interaction noise in 1938 [40]. They considered the incompressible response of a zero-

thickness isolated fixed flat plate undergoing a two-dimensional sinusoidal gust convected

by the free stream. This theory was then generalised by Adamczyk [41] to capture the

effects of three-dimensional oblique sinusoidal gusts in a compressible fluid. Effects of

1 An additional source mechanism is vortex shedding noise which is associated with the laminar
boundary layer along the blade surface and it is produced by vortices created in the wake of the trailing
edge. Its effects increase with the thickness of the trailing edge but for the case of broadband fan noise
its contribution to the total sound power radiated is not of practical importance [39].
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compressibility are especially significant at high frequencies [39]. Adamczyk’s analyti-

cal solution is based on Landahl’s iteration procedure where leading and trailing edge

boundary conditions are alternately applied. This allows the leading-edge solution to

be calculated for a semi infinite flat plate, and similarly to calculate a trailing-edge

correction that can be incorporated into the leading-edge solution [42].

Also using Landahl’s iteration procedure, Amiet [17] proposed an analytical solution

for the pressure jump along the flat plate and far-field noise levels generated by the

interaction of frozen gusts with a two-dimensional flat plate. Different solutions were

proposed for the low and high frequency ranges. While the airfoil response function

at high frequencies is based on Landahl’s iteration procedure, at the lower frequency

range it is explicitly provided. This yields a more efficient method; due to the strong

communication between the leading and the trailing edge at low frequencies, many

iterations are required to give a good approximation of the response function [43]. In

the high frequency range, Amiet proposed to used the first two iterations to obtain

response function along the flat plate. Amiet’s analytical solution was subsequently

applied to the case of the rotational motion of a flat plate [44].

For turbomachinery, blade rows with large number of blades and large thickness, where

interactions between nearby blades are important, analytical models representing cas-

cades of airfoils are more suited [45]. For instance, Glegg [46] proposed an analytical

solution for three-dimensional rectilinear cascade of flat plates with finite chord excited

by three-dimensional gusts.

Efforts have also been focused on developing analytical solutions for more realistic ge-

ometries. Evers and Peake [47] proposed an analytical solution for gusts interacting with

a cascade of blades in a non-uniform mean flow at non-zero angle of attack including the

effects of small but non-zero camber and airfoil thickness. Roger [48] extended Amiet’s

analytical solution to include more realistic shapes such as parallelogram for segments

of sweep blades and polygons accounting for chord length variations along the span and

using strip theory to reconstruct a three-dimensional blade.

Current analytical solutions for broadband fan interaction noise are only approximate

solutions and they are restricted to idealised geometries and mean flows. However,

provided that careful assessment of the assumptions is made not to lead to substantial

errors, analytical solutions are a powerful technique to obtain fast and cheap predictions.

For instance, they are particularly useful for preliminary designs or for validating more

realistic numerical techniques. In fact, numerical results obtained in this thesis are

validated against Amiet’s analytical model.

We will consider here an isolated fixed flat plate interacting with two-dimensional isotropic

turbulence. Therefore, Amiet’s analytical solution [17] is a well suited analytical model
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once it is modified to account for a fully two-dimensional acoustic far field. More in-

formation on the modified analytical solution can be found in Appendix C.1 and it is

summarised here for the sake of clarity.

The random sound field radiated by the airfoil is characterised in the far field by the

Power Spectral Density (PSD) of the acoustic pressure. The corresponding expression

for the analytical PSD in 2D is of the form

Spp(x, y, ω) =
ρ20u0κ0y

2π

2σ3
φvv(κx)|L(x, κx)|2, (3.1)

where ω is the angular frequency, κ0 = ω/c0 is the free-field acoustic wavenumber,

κx = ω/u0 is the chordwise hydrodynamic wavenumber, M the Mach number and

σ =
√
x2 + β2y2 with β2 = 1−M2. φvv is the velocity spectrum and is determined by

the streamwise correlation of the turbulent velocity field normal to the airfoil

v(x, t) =

∫
R
v̂(κx) exp[iκx(x− u0t)]dκx, v̂(κx) =

1

2π

∫
R
v(x̃) exp(−iκxx̃)dx̃. (3.2)

L is the lift function that relates to the net pressure jump ∆P̂ along the airfoil. For a

single wavenumber component, the pressure jump is determined by the response function

g and the turbulent velocity field v as:

∆P̂ (x, ω) = 2πρ0v̂(κx)g(x, κx). (3.3)

Expressions for the response functions and lift of the airfoil can be found in [17].

3.1.2 Numerical methods

The most accurate approach to investigate broadband fan interaction noise is to fully

resolved the Navier-Stokes equations via Direct Numerical Simulations. These simula-

tions are extremely demanding from a computational point of view, because they require

large computational domains to cover a few acoustic wavelengths, while the small scales

present in turbulence have also to be resolved. Despite the rapid increase in computa-

tional resources, DNS are still restricted to low Reynolds numbers [49].

An alternative to DNS is Large Eddy Simulation which resolves only turbulent scales

larger than the cell size of the mesh while the smaller scales are modelled. LES are

considerably cheaper than DNS, but they remain too costly as well to be used routinely

in an industrial context [45].

A third approach is to split the problem in two parts, the acoustic source region where

nonlinear effects dominates is resolved using computational fluid dynamics tools, and

then the acoustic field is predicted using source and propagation methods such as
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Lighthill analogy [50]. Although these methods are cheaper than complete flow sim-

ulations, the DNS or LES stage still remains expensive within an industrial context

[4].

An alternative to solving the complete Navier-Stokes equations in the source region is to

generate a synthetic velocity field that captures the main features of the turbulence and

then couple it with a sound propagation method. This approach is based on the stochas-

tic generation of turbulent flows which can then be used to compute sound sources in

the linearised Euler equations or Lighthill’s analogy. Such a hybrid method can provide

accurate predictions of the generation and propagation of acoustic perturbations [5].

The rationale is that this approach is cheaper than DNS and LES from a computational

point of view, still capture relevant features of the sound sources and therefore provide

a way to consider higher Reynolds numbers. We now review different techniques that

rely on the use of stochastic methods to predict broadband fan noise.

Atassi et al. [51] studied the effects of three-dimensional gusts convected with a uniform

mean flow on a cascade of flat plates. Sound generation and propagation are modelled

by the linearised Euler equations and solved in the frequency domain for the incident

and scattered fields. The perturbations are decomposed into an acoustical part and

a vortical part. The incident velocity field is assumed to be purely vortical and it is

specified as a sum of Fourier modes. The noise spectrum is calculated as the weighted

sum of the acoustic response to a large number of upstream Fourier components. The

method has later been extended to include non-uniform base flows [52] and different

energy spectra [13]. In contrast with the method by Atassi and coworkers, the stochastic

method proposed here solves the LEE in the time domain only for the scattered field.

With a time-domain formulation the wide range of frequencies required to investigate

broadband noise can be resolved simultaneously.

Casper and Farassat [53] developed a formulation for broadband fan noise predictions

where the turbulent wall pressure along the airfoil is modelled by Fourier modes whose

parameters are stochastically generated. A time-domain formulation of the Ffowcs-

Williams Hawkings equation with loading term is used to predict the acoustic far field.

This method has been applied to interaction noise of flat plate with homogeneous

isotropic turbulence. To represent the incident turbulence, leading and trailing-edge

response functions proposed by Adamczyk [41] were considered and combined with gust

amplitudes derived from von Kármán energy spectrum. The method has also been ap-

plied to trailing-edge noise by considering only the trailing-edge response function [54].

Ewert et al. [55] studied the effects of trailing edge noise from a two-dimensional airfoil

moving through evolving, homogeneous, isotropic turbulence. The method combines

synthetic turbulence with an acoustic analogy. Following Atassi et al.’s approach, the

flow perturbations are decomposed in an acoustical and a vortical part and sound prop-

agation is solved for the incident and scattered fields. In contrast with Atassi and
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Farassat, the stochastic method does not rely on Fourier modes, but it is a filter-based

method. In particular, the RPM method described in section 2.1.2.3 is used to spec-

ify the vortical component of the velocity field. The synthetic turbulence is then used

to compute the sound sources on acoustic analogy which are given by the fluctuating

component of the Lamb vector (w × u where w is the vorticity). In order to reduce

the computational cost, the synthetic velocity field is implemented only above the airfoil

in a grid-based discretisation. The acoustic analogy is solved in the time domain and

the predicted sound levels are rescaled to account for the noise sources on both sides

of the airfoil and to adapt the simulation to the problem of sound radiation from a

three-dimensional airfoil.

3.2 Physical Model

We propose to model broadband fan interaction noise by using an hybrid method that

combines the linearised Euler equations with synthetic turbulence. The linearised Euler

equations are solved in the time domain for the scattered field only. The sources of noise

along the airfoil are computed using the method to generate synthetic turbulent velocity

fields presented in the previous chapter and imposed as a boundary condition along the

solid surfaces.

3.2.1 Governing equations

Sound propagation is separated from noise generation and modelled by the linearised

Euler equations assuming that the fluid is an ideal gas, inviscid, and isentropic. The

linearised Euler equations are solved in the time domain, so that a wide range of frequen-

cies can be investigated with a single simulation. (Note that by choosing a conservative

form, one avoids storing gradients of the mean flow.)

Assuming that the fluctuations are small compared to the mean flow, the flow variables

are given by

u = u0 + u′, p = p0 + p′, ρ = ρ0 + ρ′, (3.4)

where u = (u, v) is the velocity field, p for acoustic pressure, ρ for density, subscript 0

for mean components and superscript ′ for fluctuating components.

The governing equations for the linearised two-dimensional Euler equations in conser-

vative form are written
∂q

∂t
+
∂Aq

∂x
+
∂Bq

∂y
= s. (3.5)

To obtain a conservative formulation of the LEE, the variable for pressure has been

substituted by π = (p/p∞)(1/γ) with p∞ constant, which is the variable introduced to
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formulate Lilley’s equation [56]. γ stands for the ratio of specific heats. The vector of

unknowns is q = (ρ′, (ρu)′, (ρv)′, π′)T with π′ = π0p
′/(γp0), the coefficient matrices are

A =


0 1 0 0

−u20 2u0 0 ρ0c
2
0/π0

−u0v0 v0 u0 0

−u0π0/ρ0 π0/ρ0 0 u0

 , B =


0 0 1 0

−u0v0 v0 u0 0

−v20 0 2v0 ρ0c
2
0/π0

−v0π0/ρ0 0 π0/ρ0 v0

 ,

where c0 stands for the sound speed and s is the source term. The mean flow can be

obtained either from measurements or using CFD tools. The equations in the system

Eq. (3.5) correspond to mass conservation, momentum and modified pressure.

3.2.2 Boundary condition along the airfoil

Because we solve the linearised Euler equations for the scattered field only, sources of

noise along the airfoil are introduced in the linearised Euler equations as a hard-wall

boundary condition. If we note n the unit normal vector pointing towards the airfoil, a

hard-wall boundary condition along the airfoil implies that u0 · n = 0 and u′ · n = 0.

The turbulent velocity field can be decomposed into a scattered field, u′s, (which is

mostly acoustic although, due to the vortex shedding, also has a vortical part) and an

incident turbulent field, u′i, yielding: u′ = u′s + u′i. Therefore, by imposing the hard-

wall boundary condition, the normal component of the scattered field along the airfoil

is fully specified in terms of the incident velocity filed as u′s ·n = −u′i ·n. The incident

velocity field, u′i, is computed along the airfoil using the random-vortex-particle method

as if there were no flat plate.

Therefore, the acoustic field can be computed by solving the linearised Euler equations

for the scattered field only. Note that the model in Eq. (3.5) is still valid when replacing

u′ by u′s.

3.3 Linearised Euler equations code

The numerical implementation of the physical model described in the previous section

is now presented. The linearised Euler equations are solved using a general in-house

finite-difference solver developed at the ISVR.

Spatial derivatives are approximated using seven-point fourth-order Dispersion-Relation-

Preserving (DRP) [57] schemes, which are optimised to minimise the dispersion error. A

six-stage optimised explicit Runge-Kutta scheme [58] is implemented to perform the time

integration. The time step of the method is an input parameter that can be provided

directly or through the Courant-Friedrichs-Lewy (CFL) number. The simulation domain
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is divided into overlapping blocks which are synchronised between the stages of the

Runge-Kutta scheme using Message Passing Interface (MPI). The order of the tasks

performed by the solver at each stage of the Runge-Kutta scheme is as follows:

1. Update the flux vectors Aq and Bq.

2. Compute the divergence of the flux vectors to obtain ∂q/∂t.

3. Perform the time integration.

4. Synchronise the blocks.

3.3.1 Small wavelengths treatment

Wavelength components that are too small to be accurately resolved by the grid are

removed after every step of the Runge Kutta scheme from the solution using a filtering

procedure [58],

q̃ = q− σD(q), (3.6)

where D is a spatial filter that retains only the small wavelength components and σ is

an input parameter that controls its strength. The filter is defined as:

D(q) =

M∑
n=−M

dnq(x+ n∆x), (3.7)

where dn is a symmetric stencil (dn = d−n) and ∆x the grid spacing. For a single

wavenumber component q ∼ exp(iκx), we get in wavenumber space:

D̂(α) = d0 + 2
M∑
n=1

dn cos(nα), (3.8)

where α = κ∆x. The stencil coefficients are determined by constrains on the filter:

• Do not increase the amplitude of the wavenumber components: D̂(α) > 0,

• Very long wavelength components should not be modified: D̂(0) = 0,

• Short wavelength components should be filtered: D̂(π) = 1.

3.3.2 Boundary condition along the airfoil

The sources of noise are introduced as a hard-wall boundary condition along the airfoil

using the characteristics formulation of Kim et al. [59].
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First we need to define the characteristic waves in the normal direction to the airfoil

surface. Along the boundary of the airfoil, we note n = (nx, ny) the unit normal vector

pointing towards the wall and τ = (−ny, nx) is the tangential vector. Eq. (3.5) can then

be written2

∂q

∂t
+
∂Cq

∂n
+
∂Dq

∂τ
= s, (3.9)

where C = Anx + Bny and D = −Any + Bny. Cq represents the flux in the direction

normal to the airfoil. The previous equation can be rewritten yielding

∂q

∂t
+ C

∂q

∂n
= r with r = s− ∂Dq

∂τ
− q

∂C

∂n
. (3.10)

C can be diagonalised as C = W−1ΛW, where Λ is a diagonal matrix storing the

eigenvalues and W is the matrix of eigenvectors. Therefore, multiplying by W−1 the

above equations
∂q̃

∂t
+ Λ

∂q̃

∂n
= r̃, (3.11)

where q̃ denotes the amplitudes of the characteristics which are given by q̃ = W−1q

and their phase speeds are determined by Λ.

We now have to specify how to modify the amplitude of the acoustic wave travelling

into the computational domain. We note q̃ = (qv, qe, q
−
a , q

+
a ) the amplitude of the char-

acteristics corresponding to vorticity, entropy and acoustic waves, respectively. Using

q = Wq̃ and u0 · n = 0 we can get

ρ0u
′ · n = c0q

+
a − c0q−a . (3.12)

Then, the boundary condition can be imposed by rewritten the amplitude of the charac-

teristic acoustic wave travelling into the computational domain in terms of the amplitude

of the characteristic acoustic wave travelling out:

q−a = q+a −
ρ0
c0

(u′ · n). (3.13)

We then use q = Wq̃ to compute the modified value of the solution along the airfoil.

This is done at every stage of the Runge Kutta scheme between tasks (3) and (4).

Note that we solve the linearised Euler equation for the scattered field only, therefore

u′ · n in Eq. (3.13) stands for the scattered turbulent velocity normal to the airfoil.

Relating this with section 3.2.2, we find that Eq. (3.13) can be rewritten as

q−a = q+a +
ρ0
c0

(u′i · n), (3.14)

where u′i is the incident turbulent velocity field which is computed along the airfoil with

the random-vortex-particle method.

2Note that curvature terms are neglected in Eq. (3.9) since in this thesis we will only consider flat
plates.
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Another approach to implement the boundary condition along the airfoil was consid-

ered in this work. Instead of modifying the amplitudes of the characteristics, the rates

of change of the amplitudes were modified. If we note l = (lv, le, l
−
a , l

+
a ) the rate of

change of the characteristics corresponding to vorticity, entropy and acoustic waves re-

spectively, we can write ∂q/∂t = Wl. Proceeding as above, the boundary condition can

be implemented on ∂q/∂t by using

l−a = l+a +
ρ0
c0

∂

∂t
(u′i · n). (3.15)

The reason for imposing for using Eq. (3.14) instead of Eq. (3.15) is that Eq. (3.15)

requires second derivatives of the filter used to compute the synthetic velocity field, while

Eq. (3.14) requires only first derivatives. In this study we work with filters corresponding

to Gaussian, Liepmann and von Kármán spectra. The Gaussian filter is smooth and

its derivatives can be computed up to any order. However, Liepmann and von Kármán

filters are not differentiable at zero. This lack of smoothness has proved to introduce a

significant source of error when implementing the boundary condition in terms of ∂q/∂t.

3.3.3 Non-reflecting boundary conditions

For isolated airfoils sounds propagates to infinity. To mimic this non-reflecting boundary

conditions are implemented. The implementation is based on the use of a buffer zone

in a region close to the boundary [60]. The actual size of the buffer zone is an input

parameter. Along the grid points on the buffer zone the amplitude of the characteristic

wave travelling into the simulation domain, q−a , is scaled by a factor α decreasing from

1 to 0: q−a (1 − α). This means that the amplitude of the characteristic travelling into

the domain is set to zero at the boundary of the computational domain and it is not

modified at the beginning of the buffer zone providing a smooth transition to remove

spurious reflections as the width of buffer zone increases [60].

3.3.4 Ffowcs-Williams Hawkings formulation

The acoustic solution in the far field is obtained with the Ffowcs-Williams Hawkings

(FWH) formulation using a fixed control surface surrounding the sources and assuming

a uniform mean flow outside the control surface.

The solution q along the control surface is stored at the required time steps during

the simulation and then post-processed in Matlab using the FWH formulation in the

frequency domain.
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3.4 Validation

The validation of the linearised Euler equations solver for the study of broadband fan

interaction noise is presented in this section. Since our aim in this section is to validate

the LEE code, the random-vortex-particle method is not used. Instead we consider

incident frozen gusts at different frequencies interacting with a flat plate with zero angle

of attack. We are therefore checking that the LEE simulations are able to reproduce

accurately the response function of the airfoil.

The parameters considered for this validation are the grid resolution, the pollution due

to poorly resolved small wavelengths, the non-reflective boundary conditions, and the

location of the Ffowcs-Williams Hawking control surface.

The influence of these parameters on the accuracy of the LEE solver is assessed by

comparing the pressure jump along the airfoil and the far-field directivities against the

analytical solutions obtained by Amiet in Ref. [17] modified for a fully two-dimensional

problem. More information on Amiet’s analytical solution can be found in section 3.1.1.

Sound Pressure Levels (SPL) in the far field shown here (and throughtout this thesis)

are normalised by the distance d between the observer and the centre of the airfoil and

by the turbulent kinetic energy K:

SPL = 10 log10

(
d Spp
K

)
, (3.16)

where Spp is the Power Spectral Density (PSD) of the acoustic pressure field computed

on a circular arc centred on the airfoil where angles are measured from the trailing edge.

Due to the symmetry of the problem with respect to the x-axis, far-field acoustic results

are shown for angles from 0 to 180 degrees only.

3.4.1 Problem definition

The problem is made non-dimensional using the chord of the airfoil, c, mean flow density,

ρ0, and sound speed, c0. The mean flow velocity u0 is parallel and uniform and its Mach

number is set to 0.362 to considered the same test case as in Ref. [17].

The incident velocity field is a collection of frozen gusts excited at different frequencies

and amplitudes, see Eq. (3.2). In this validation, we assume that the incident velocity

field is the sum of three gusts with the same amplitude at the frequencies corresponding

to the Strouhal numbers St1 = 6, St2 = St1/2 and St3 = 2St1, respectively where

Sti = fic/u0 with fi the frequency of the ith gust. These frequencies were selected to

cover the typical range of interest of broadband noise. Therefore, the incident turbulent
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field imposed as a boundary condition along the airfoil (see section 3.3.2) is defined as:

u′y(x, 0, t) =

3∑
i=1

cos [2πfi(x/u0 − t)] . (3.17)

3.4.2 Computational setup

The simulation domain is [−1.5, 1.5]× [−1, 1] with the flat plate located at [−0.5, 0.5]×
{0}. This domain is divided into 6 blocks as shown in Figure 3.1. Each block is dis-

cretised with uniform grid using the same grid resolution for all blocks. Non-reflecting

boundary conditions are implemented everywhere on the simulation domain by using

buffer zones as explained in section 3.3.3.

The following baseline configuration is considered. Each block is discretised by with

200× 200 points per block yielding a CFL number of 0.69. The size of the buffer zone is

10 grid points in every boundary apart from the outflow boundary where due to larger

outgoing acoustic wavelengths a buffer zone of 40 points is used. The strength of the

selective filter is set to 0.6 and the FWH control surface is the ‘configuration 1’ shown

in 3.2.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

x / c

y 
/ c

Buffer zone

FWH control surface

Flat plate

Figure 3.1: Sketch of the computational domain showing the flat plate location (—),
the FWH control surface (+), the block distribution (− −), and the buffer zone (· · · ).

3.4.3 Validation of FWH formulation

The Ffowcs-Williams Hawking formulation is employed to compute far-field results. The

influence of the choice of control surface on the far-field results is assessed by considering

three different control surface configurations. Each one of the configurations is a rectan-

gle surrounding the airfoil as shown in Figure 3.2. Results obtained with each of these
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are compared in order to assess the sensitivity of the far-field solution to the choice of

control surface. Simulation results shown here correspond to the computational setup

described above and with each block discretised by a uniform grid with 200 points in

each direction.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

x / c

y 
/ c

Figure 3.2: Configurations of the FWH control surface: ‘configuration 1’ (+), ‘con-
figuration 2’ and (◦), and ‘configuration 3’ (B).

Figure 3.3 shows the error incurred with the different control surfaces at the highest

Strouhal number St3. The error shown is the relative error given by |pi(θ)− pj(θ)|/|pi(θ)|
where p stands for the PSD of the acoustic pressure field in the far-field and the subscripts

i and j refer to different control surfaces. It is found that the relative error is larger when

considering ‘configuration 2’. This suggests that this control surface is too close to the

airfoil and that the solution at the FWH control surface is polluted due to the presence of

vortices, see Figure 3.6. The relative error between ‘configuration 1’ and ‘configuration

3’ is of the order of 2%. This shows that provided that the control surface is located

far enough from the turbulent flow surrounding the airfoil, it has little influence on far-

field acoustic results computed with the Ffowcs-Williams Hawking formulation. Similar

levels of error are obtained for the Strouhal numbers St1 and St2. Due to the smaller

amount of data storage required by ‘configuration 1’ compared to ‘configuration 3’, the

former is selected.

3.4.4 Non-reflecting boundary conditions

In order to test the presence of spurious reflection at the boundaries due to the non-

reflecting boundary condition, a larger computational domain is considered. This com-

putational domain is [−4.5, 4.5]× [−2, 4] with the flat plate located at [−0.5, 0.5]× {0},
see Figure 3.4. The same configuration as for the baseline case is used but with in-

creased size. Due to the symmetry of the problem with respect to the x-axis, the upper
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Figure 3.3: Relative error in directivity for Strouhal number St3 obtained from three
different configurations of the FWH control surface. ‘configuration 1’ vs ‘configura-
tion 2’ (− −), ‘configuration 1’ vs ‘configuration 3’ (—–) and ‘configuration 2’ vs

‘configuration 3’ (− · −).

side of the flat plate was further extended than the lower side, in order to reduce the

computational cost.

Figure 3.4: Snapshot of the acoustic pressure field for incident frozen gusts at Strouhal
numbers St1 = 6, St2 = St1/2 and St3 = 2St1.

Sound pressure levels obtained directly using the larger simulation domain at a distance

d = 3 from the centre of the flat plate are compared against the FWH far-field solution

given by ‘configuration 1’ in Figure 3.5. Directivities predicted with the FWH formula-

tion are in very good agreement with those obtained directly for Strouhal numbers St1

and St2. This suggests that at d = 3 we already observe the 1/r decay characteristic
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of the PSD associated with cylindrical spreading of 2D waves. This distance captures

at least 3 acoustic wavelengths for the smallest Strouhal number (based on zero Mach

number). For the highest Strouhal number St3 similar patterns are predicted by both

methods, but the noise levels computed directly decrease faster as the angle increases

compared to results obtained with FWH formulation. This corresponds with the small-

est acoustic wavelengths we have (highest frequency and waves travelling upstream),

therefore the difference observed can be related to the dissipation caused by the selec-

tive filter to remove small wavelengths, see section 3.3.1. Acoustic waves must travel

the computational domain longer if computed directly at d = 3, and the selective filter

seems to have a noticeable effect on these particular waves. (The effects of the filter

strength are examined in the next section.)
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Figure 3.5: Directivity at Strouhal numbers St2 = St1/2 (a), St1 (b), and St3 = 2St1
(c) obtained using Amiet’s analytical solution (—–), FWH formulation (− −) and
computing directly (− · −). For St3, (− · −) corresponds to results obtained with the

selective filter strength set to 0.4.

If we now compare numerical results against Amiet’s analytical solution, we can see

that SPL predicted by the FWH formulation are in good agreement with analytical

SPL for the three frequencies in a margin of 2 dB. In addition to possible pollution due

to the selective filter, another explanation for the disagreement in amplitude between

the acoustic pressure field computed with FWH formulation and Amiet’s analytical

solution is the vortex shedding. Vortex shedding is produced at the trailing edge due

to the pressure discontinuity between the upper and lower sides of the flat plate, as

illustrated in Figure 3.6. However the presence of vortices crossing the FWH control
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surface downstream of the airfoil can introduce spurious noise sources. This pollution

due to vortex shedding, although small, could be significant at high frequencies, relative

to the noise levels.

Figure 3.6: Snapshot of the velocity in the normal direction incident frozen gusts at
Strouhal numbers St1 = 6, St2 = St1/2 and St3 = 2St1.

3.4.5 Selective filter strength

As explained in section 3.3.1, poorly resolved wavelengths are removed by a selective

filter which is grid-dependent. The influence of the strength of the filter is measured

here by comparing numerical far-field directivities against Amiet’s analytical solution.

To illustrate this, Figure 3.7 shows the influence of the filter strength on the far-field

acoustic pressure for the highest Strouhal number, St3, as it is more sensitive to the

choice of filter strength than both St1 and St2. In this case the simulation domain

is discretised by a uniform grid with 200 × 200 points on each block. One can see

that the PSD is sensitive to the filter strength, especially at upstream locations. The

best approximation to Amiet’s analytical solution is provided by the filter strength 0.6.

This suggests that by selecting the filter strength too low poorly resolved wavelengths

introduce pollution in the solution and if the strength is set too high dissipation occurs,

as shown in Figure 3.5.

3.4.6 Grid resolution

A parametric study is also performed on the grid resolution by considering 100 × 100,

200 × 200, and 300 × 300 points per block. This yields a grid resolution of at least 7

points per hydrodynamic wavelength and 13 points per acoustic wavelength for the grid
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Figure 3.7: Influence of the filter strength for uniform grid with 200× 200 points per
block. Analytical (—–) directivity at Strouhal number St3 = 2St1 versus numerical

results for the filter strengths: 0.2 (− ◦ −), 0.4 (− · −), 0.6 (− −), and 1 (· · · ).

with 100×100 points. The time step is left constant and the CFL number corresponding

to each grid is 0.23, 0.46, and 0.69, respectively. The strength of the filter that removes

poorly resolved wavelengths is grid dependent, therefore for each grid the filter strength

is selected by performing a parametric study as shown in the previous section yielding

the strengths 0.4, 0.6, and 0.8, respectively.

Far-field directivities obtained using the grids under investigation are compared in Fig-

ure 3.8. While the grid with 100 × 100 points is too coarse to provide an accurate

approximation of Amiet’s solution, similar levels of error are found between the far-field

directivities obtained with the grid with 200 × 200 points and 300 × 300 points with

respect to the analytical solution. Due to the limited improvement in accuracy and

substantial increase in computational cost, the grid with 200 × 200 points is preferred

over the grid with 300× 300 points.

3.4.7 Pressure jump along the airfoil

The pressure jump along the airfoil is now used to fully validate the airfoil response

function. For this test case, each block uses a uniform grid of 200 × 200 points and a

selective filter strength 0.6.

The amplitude of the pressure jump along the flat plate is shown in Figure 3.9. Numerical

results are in good agreement with Amiet’s analytical solution for the three Strouhal

numbers under investigation. Amplitude levels are well captured along the airfoil with

a slight change in local maxima, especially on the front half of the airfoil. Note that the

leading edge of the flat plate is a pressure singularity which is particularly difficult to

handle in numerical methods.
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Figure 3.8: Comparison of uniform grids with different number of points per block.
Analytical (—–) directivity at Strouhal number St3 = 2St1 versus numerical results for

grids with 100× 100 (− · −), 200× 200 (− −), and 300× 300 (− ◦ −) points.
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Figure 3.9: Analytical (—–) versus numerical (− −) amplitude of the pressure jump
along the airfoil at Strouhal numbers St2 = St1/2 (a), St1 = 6 (b), and St3 = 2St1 (c).
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Another feature that can be observed in Figure 3.9 is that the Kutta condition (zero

pressure jump) at the trailing edge is not fully satisfied by the LEE solver. The accuracy

of this trailing-edge boundary condition is not critical for interaction noise as the sound

production is dominated by the leading edge. However, the treatment of the trailing

edge changes the interference pattern between acoustic waves scattered at the trailing

edge and noise radiated at the leading edge3.

3.4.8 Conclusions

The LEE solver has been validated and it was shown that the response of an airfoil to

incident frozen gust can be very accurately predicted. In addition, from the parametric

study presented in this section the following guidelines are obtained. Each block on

the simulation domain is discretised by a uniform grid of 200 × 200 points using a

selective filter to remove poorly resolved small scale components with strength 0.6. Far-

field results are obtained using FWH formulation with the control surface defined by

‘configuration 1’.

Numerical solutions for the pressure jump along the airfoil and far-field directivities

obtained for this choice of parameters are in good agreement with Amiet’s analytical

solution. Regarding the pressure jump along the airfoil, the overall shape is recovered

although the local maxima are not located at the same positions. This could be caused

by a lack of resolution of the trailing edge where acoustic waves are scattered back

towards the leading edge and the numerical difficulties associated with the singularity

at the leading edge. Far-field directivities are also very well captured by the numerical

method, see Figure 3.10. Numerical SPL slightly differs from Amiet’s analytical solution

upstream of the airfoil as the frequency increases. It is our understanding that the

pollution introduced by the vortex shedding crossing the FWH control surface could

also affect the results in the far field.

From the detailed tests shown in this chapter, we are confident that the numerical

solutions provided by the LEE solver are accurate for the parameter values described

above. In the next chapters of this thesis, the linearised LEE solver is combined with

the random-vortex-particle method to predict broadband fan interaction noise.

3 Two numerical approaches were considered in an attempt to improve the resolution of the trailing
edge. The first of them is the numerical treatment of the trailing edge proposed by Sandberg et al. in
Ref. [49] where for the first two grid points downstream of the trailing edge the streamwise derivatives
are determined employing the same central finite-difference scheme as everywhere else in the domain but
with values of the upstream points being specified as the average of the top and bottom surfaces. This
smoothes the pressure discontinuity at the trailing edge. The second approach considered consisted in
applying a window filter to the synthetic velocity field along the flat plate so that the amplitude of the
wall velocity is not modified near the leading edge and then it is smoothly reduced reaching zero before
the trailing edge. None of these approaches led to a significant improvement in far-field accuracy and
were therefore rejected.
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Figure 3.10: Analytical (—–) versus numerical (− −) far-field directivities at Strouhal
numbers St2 = St1/2 (a), St1 = 6 (b), and St3 = 2St1 (c).



Chapter 4

Frozen Turbulence

In this chapter, the generation of broadband noise due to the interaction of frozen

turbulence with a flat plate and its propagation are discussed. By frozen turbulence we

mean that not only the statistical behaviour of the flow is frozen but also the turbulent

velocity field is frozen with respect to a frame of reference moving with the mean flow.

So there is no loss of correlation with time and the velocity field seen by an observer

moving with the mean flow is constant.

Parametric studies are performed to test both the quality of the synthetic turbulent

flow and the accuracy of the predicted sound field. Therefore, this chapter serves as

a validation of the stochastic method presented in chapter 2 and also to the complete

sound propagation method described in chapter 3. The computational performance

of the method for the Gaussian, Liepmann and von Kármán energy spectra is also

discussed.

4.1 Definition of the test case

The test case considered is a flat plate with zero angle of attack interacting with homo-

geneous isotropic frozen turbulence. The problem is made non-dimensional using the

chord of the airfoil c, mean flow density ρ0 and sound speed c0. The parameters are

chosen to be similar to the test case previously presented by Amiet in Ref. [17] with

both his analytical solution and experimental data. For this test case the mean flow

Mach number is set to 0.362 and the turbulence integral length scale is λ = 0.07. Note

that the inputs for the stochastic method are not provided by RANS but instead the

turbulence is specified upstream independently of the airfoil.

This test case is very well suited for the validation of the numerical method because

analytical solutions are available. Amiet’s analytical solution in Eq. (3.1) is used to

63
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assess the accuracy of the method and also to determine trade-offs between accuracy

and computational costs.

4.2 Computational setup

The simulation domain is [−1.5, 1.5]× [−1, 1] with the airfoil located at [−0.5, 0.5]×{0}.
The domain is divided into 6 blocks, each of them discretised by a Cartesian grid with

200 points in each direction. The time step is such that the CFL number is 0.8.

This computational domain was already used to validate the linearised Euler equations

solver, and therefore the guidelines obtained from the parametric study performed in

section 3.4 apply here. The strength of the selective filter is set to 0.6 and far-field results

are obtained using FWH formulation with the control surface defined by ‘configuration

1’ as shown in Figure 3.2.

Vortex particles are launched from a vertical segment upstream of the flat plate and

convected with the mean flow. Due to the assumption of frozen turbulence, the vortex

strengths remain constant in time and they are randomly chosen using a Gaussian dis-

tribution with zero mean and standard deviation determined by the vortex density, see

section 2.3.1. Vortices are removed once they are out of the range of influence of the flat

plate in order to reduce the computational cost.

4.3 Results

We begin by validating the turbulent field generated by the random-vortex-particle

method in Eq. (2.61). We then assess the accuracy of the acoustic far field by compar-

ing sound pressure levels against Amiet’s analytical solution for a fully two-dimensional

problem, see Eq. (3.1). The derivation of the analytical solution can be found in Ap-

pendix C.1.

4.3.1 Synthetic turbulence

The validation of the stochastic method performed in section 2.5 was restricted to sepa-

rable filters and included no time-dependence. Here, however, neither of these constrains

are considered. In addition, while the method was implemented in a grid-based discreti-

sation in the previous validation, in this case a purely Lagrangian approach is used. The

validation of the correlations along the flat plate will therefore act as a validation of the

method to generate synthetic turbulence on its Lagrangian version.
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4.3.1.1 Two-point correlations and one-dimensional spectra

In this section, the quality of the synthetic turbulence generated by the random-vortex-

particle method is assessed by evaluating two-point correlations and one-dimensional

spectra along the airfoil. Extensive parametric studies are performed for Gaussian,

Liepmann and von Kármán filters in order to find the optimum parameters for the

method. For the sake of brevity, details of the parametric study are shown for the

Gaussian spectra and then only the main results are presented for Liepmann and von

Kármán spectra.

At this point, it might be useful to highlight two features of the synthetic turbulence.

First, the use of random number generators in the numerical method has an impact

on assessing the influence of the parameter values on the statistical behaviour of the

turbulence1. The other issue is that there is no clear criteria to state when the statistics

are sufficiently accurate. Because this is a validation, we consider more samples that

needed in practice. Due to this, we focus on the trends of the statistical properties and

simply examine their sensitivity to the different parameters involved in the generation

of synthetic turbulence.

The influence of the parameters involved in generating synthetic turbulence with the

random-vortex-particle method can be divided in two categories. The first one is how

to distribute the vortices. This is controlled by two parameters: the maximum distance

rmax from the flat plate at which the vortex particles still contribute to the velocity

field and the distance ∆ between vortices, see Figure 4.1. The maximum distance rmax

essentially defines the size of the region around the airfoil where random vortices need

to be distributed. Within this region, vortices are located following a Cartesian dis-

tribution determined by the distance ∆. Hence, the number of vortices varies roughly

as (rmax/∆)2. The accuracy of the method is improved by considering large rmax and

increasing the density of vortices (small ∆), but this has an influence on the computa-

tional cost. The second category is how to sample the numerical solution to obtained

reliable statistics. This is controlled by the number of samples, Ns, the sampling rate,

∆s, and the total number of time steps that needs to be considered, Nf . The Central

Limit Theorem shows that the accuracy of the statistics increases as more random data

is considered [35]. This also has an influence on the computational cost of the method

(running the simulation for a large number of time steps Nf and storing many samples

Ns).

1 Random number generators use computational algorithms that produce sequences of pseudorandom
numbers determined by a seed. By using different seeds, the random-vortex-particle yields different ve-
locity fields even when selecting the same parameter values which will be reflected in the statistics. Using
the same seed provides the same series of random numbers but a change in the parameters of method
has an influence on how they are used and hence different velocity fields are obtained. These aspects
complicate assessing the influence of the different parameter values in the statistics of the turbulence.
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Figure 4.1: Sketch of the region around the airfoil where vortices are distributed
showing the maximum distance rmax at which vortices must be located and the distance

∆ between vortices.

We first discuss trade-offs between computational cost and accuracy due to the vortex

distribution and we then consider the sampling of the numerical solution.

The maximum distance at which a vortex is yet significantly contributing to the velocity

field is defined in terms of the integral length scale of the turbulence as zmax = rmax/λ.

The influence of the filter in the velocity field is controlled by zmax – see Eqs. (2.86),

(2.89) and (2.92) – and it decreases as zmax increases, see Figure 2.2. Therefore, we can

get a cutoff for zmax that depends on the filter. This cutoff is set at 10−4; a vortex is

no longer contributing to the velocity field when the amplitude of the first derivative of

filter at the distance at which the vortex is located is smaller than 10−4. As it has been

argued in section 2.4.4, Liepmann and von Kármán filters have a slower rate of decay

with distance than the Gaussian filter, see Figure 2.2. That means that vortices further

away from a given location on the flat plate will no longer contribute to the velocity

field when using a Gaussian filter but they will do with any of the other two filters.

In particular, rmax = 2.43λ for Gaussian filter, rmax = 4.57λ for Liepmann filter and

rmax = 5.43λ for von Kármán filter.

The distance ∆ between vortices determines the density of vortices surrounding the flat

plate. The effect of the density of vortices on the quality of the synthetic turbulence

along the flat plate is examined by assessing the two-point correlations R11 and R22

(see Eq. (2.36)) and the one-dimensional energy spectra E11 and E22. Note that the

one-dimensional energy spectrum Eij is defined as twice the one-dimensional Fourier

transform of Rij (see Ref. [14])

Eij(κ) = 2

∫
R
Rij(r) exp(−iκr)dr. (4.1)
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Figure 4.2 compares stochastic and theoretical two-point correlations R11 and R22 and

one-dimensional energy spectra E11 and E22 computed using the Gaussian filter for

vortex density corresponding to ∆ = λ/2, ∆ = λ/6, ∆ = λ/10, and ∆ = λ/16. It

appears that the statistics of the synthetic velocity field are not highly sensitive to the

distance between vortices provided that they are at least ∆ = λ/6 close to each other. If

we focus on the correlations obtained for the case ∆ = λ/2, we see that the stochastically

generated correlations have problems capturing the peak at r = 0 and also the fact that

the correlation tends to zero as the distance increases. However, similar levels of error

are found by distributing the vortices at distances ∆ < λ/6. Since the synthetic velocity

field at each point is computed as the sum of the contributions of the vortices closer

than rmax, the smaller ∆ is, the more expensive the method is from a computational

point of view. As a trade-off between accuracy and computational cost, for the synthetic

velocity field computed with the Gaussian filter, we propose to distribute the vortices

every ∆ = λ/6.
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Figure 4.2: Analytical solution (—) against numerical results obtained with the Gaus-
sian filter for vortex distance ∆ = λ/2 (—), ∆ = λ/6 (− · −), ∆ = λ/10 (− −) and
∆ = λ/16 (∗). Top: correlations R11 and R22 computed with respect to the central
point of the airfoil. Bottom: one-dimensional energy spectra E11 and E22. Averages

taken over Ns = 2, 500 samples at a sampling rate ∆s = 40∆t.

Another important aspect is the way the numerical solution is sampled to compute

reliable statistics. If averages are taken over Ns number of samples at a sampling rate
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∆s, then it means that the simulation runs for at least Nf = Ns∆s/∆t time steps, or

equivalently the total simulation time is Tf = ∆sNs. (Note that the total simulation

time here does not include the initial time required to clean the computational domain.)

Therefore, on the one hand, the more samples and the further apart they are picked, the

more computationally expensive the method is. On the other hand, one has to ensure

that enough different random data is contributing to the time series in order to obtained

meaningful statistics. In this case, we have to ensure that different vortex particles

are contributing to the time series. The sensitivity to the sampling parameters is now

evaluated for a fixed distance between vortices ∆ and distance of influence rmax.

Figure 4.3 shows the influence of increasing the number of samples Ns from 1, 000 to

20, 000 on the two-point correlations R11 and R22 and the one-dimensional energy spec-

tra E11 and E22. While the behaviour of the analytical correlation R22 is captured

using 5, 000 samples, the R11 correlation is yet not well approximated. The numerical

correlation R11 computed with 5, 000 samples is neither able to reproduce the peak as

r → 0 neither the decay as r →∞; in fact at least 20, 000 samples are required to have

a good approximation as r → 0. Regarding the one-dimensional energy spectra, more

than 10, 000 samples have to be considered in order to capture the behaviour of E11 for

small wavenumbers. Note that the larger the number of samples, the more expensive

the method is as the simulation will need to run longer.

The influence of the sampling rate ∆s is now assessed by fixing the number of samples

to Ns = 20, 000. Figure 4.4 shows that the stochastic two-point correlations R11 and

R22 and the one-dimensional energy spectra E11 and E22 of the synthetic turbulence

tend to theoretical results as the sampling rate increases, although little sensitivity to a

change of sampling rate from ∆s = 5∆t to ∆s = 20∆t is found. The explanation for this

phenomena is related to the constrain of frozen turbulence. As it has been previously

discussed, the synthetic velocity field is frozen in the sense that if we move along with

the flow we always see the same velocity pattern. By considering a sampling rate small

in comparison with the time that it takes to a vortex to travel a distance rmax, the

velocity field captured by two consecutive samples is essentially the same. Therefore,

there are samples carrying redundant information. This can be solved by increasing the

sampling rate which implies that for the same number of samples the simulation must

be run longer and it is therefore more expensive.

We now fix the total computational time of the simulation and examine the influence of

the sampling rate on the statistics of the turbulence along the airfoil. Figure 4.5 shows

the influence of the sampling rate from ∆s = 5∆t to 200∆t for a fixed number of time

steps Nf = 100, 000. Note that in this case the number of samples is not constant.

The larger the sampling rate, the smaller the time series to compute the statistics is.

A sampling rate larger than 100∆t does not capture the two-point correlations. If we

focus on the stochastic R11 correlation, it does not tend to zero as the distance increases.
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Figure 4.3: Analytical solution (—) against numerical results obtained with the Gaus-
sian filter for number of samples Ns = 1, 000 (—), Ns = 5, 000 (− · −), Ns = 10, 000
(− −), and Ns = 20, 000 (∗). Top: correlations R11 and R22 computed with respect to
the central point of the airfoil. Bottom: one-dimensional energy spectra E11 and E22.

Vortices distributed every ∆ = λ/16 and sampling rate ∆s = 5∆t.

However, neither the correlations nor the spectra are sensitive to a sampling rate smaller

than 50∆t which corresponds to Ns = 2, 000.

From this parametric study, it can be concluded that the parameter values rmax = 2.43λ

and ∆ = λ/6 generate synthetic turbulent velocity fields computed using the Gaussian

filter that accurately reproduce the two-point correlations and one-dimensional energy

spectra when considering Ns = 2, 500 samples at a rate ∆s = 40∆t, see Figure 4.6.

Similar parametric studies have been carried out for Liepmann and von Kármán filters

and they provide the following results. For the Liepmann filter, a sufficient level of

agreement between the stochastically generated correlations R11 and R22 and the one-

dimensional energy spectra E11 and E22 with their corresponding analytical expressions

is achieved for the parameter values: rmax = 4.57λ, ∆ = λ/8, Ns = 8, 000 and ∆s =

60∆t as shown in Figure 4.7. Regarding the von Kármán filter, rmax = 5.43λ, ∆ = λ/8,

Ns = 8, 000 and ∆s = 60∆t have been selected in order to obtain satisfactory agreement

with analytical results, see Figure 4.8.
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Figure 4.4: Analytical solution (—) against numerical results obtained with the Gaus-
sian filter with sampling rate ∆s = 1∆t (—), ∆s = 5∆t (−·−), and ∆s = 20∆t (− −).
Top: correlations R11 and R22 computed with respect to the central point of the air-
foil. Bottom: one-dimensional energy spectra E11 and E22. Vortices distributed every

∆ = λ/16 and number of samples Ns = 20, 000.

Note that the for Liepmann and von Kármán filters vortices are distributed at a smaller

distance ∆ compared to that selected for the Gaussian filters. This choice relates with

the larger content of large wavenumbers present in Liepmann and von Kármán models.

Compare for instance the one-dimensional energy spectra in Figures 4.6, 4.7 and 4.8.

Large wavenumbers – or high frequency – content is produced by small vortices and the

size of a vortex is controlled by the distance ∆, see Eq. (2.68).

Finally note that methods to generate synthetic turbulence based on Fourier modes

(SNGR methods) are somehow criticised due to the large number of modes that must

be considered in order to compute the velocity field, see section 2.1. However, it appears

from the parametric studies performed in this section that methods based on filtering

random data present a similar problem requiring large amounts of vortex particles.
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Figure 4.5: Analytical solution (—) against numerical results obtained with the Gaus-
sian filter and sampling rate ∆s = 5∆t (—), ∆s = 50∆t (−·−), ∆s = 100∆t (− −) and
∆s = 200∆t (∗). Top: correlations R11 and R22 computed with respect to the central
point of the airfoil. Bottom: one-dimensional energy spectra E11 and E22. Vortices

distributed every ∆ = λ/16 and number of time steps Nf = 100, 000.

4.3.1.2 Two-point two-time correlations

The statistical properties of the synthetic turbulence can also be assessed by considering

two-point two-time correlations along the airfoil: Rij(r, t) = 〈u′i(x1, t1) u
′
j(x2, t2)〉 where

r = |x2 − x1| and t = |t2 − t1|. The synthetic turbulent velocity field u′ generated by

the stochastic method in Eq. (2.61) yields

Rij(r, t) =

∫
R2

∫
R2

Gi(|x1 − x′|)Gj(|x2 − x′′|)〈U(x′, t1) U(x′′, t2)〉dx′dx′′, (4.2)

where Gi stands for the ith component of G = ∇× (0, 0, G). Using the properties of the

stochastic field U in Eq. (2.55), one finds that the general expression for the two-point

two-time correlation tensor is

Rij(r, t) = RU (t)

∫
R2

Gi(|x1 − x′|)Gj(|x1 − x′ + r − tuc|)dx′, (4.3)
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Figure 4.6: Analytical solution (—) against numerical results (− −) obtained for
Gaussian filter with vortices every ∆ = λ/6, sampling rate ∆s = 40∆t, and number
samples Ns = 2, 500. Top: correlations R11 and R22 computed with respect to the

central point of the airfoil. Bottom: one-dimensional energy spectra E11 and E22.

with RU (t) = 〈U(x, t1) U(x, t2)〉 the time correlation of U . For a fixed time delay, the

two-point correlation has the shape inherited by the filter with amplitude scaled by the

time correlation of U .

Since the synthetic turbulent velocity field is used as a boundary condition in the lin-

earised Euler equations along the flat plate, we are focussing on the two-point two-time

correlations R11 and R22 on the direction r = re1. By combining Eqs. (2.45), (2.47)

and (2.57) we get:

R11(r, t) = −1

r

d

dr
(G ∗G)(|r − tuc|, t)RU (t), (4.4)

R22(r, t) = − d2

dr2
(G ∗G)(|r − tuc|, t)RU (t). (4.5)

Assuming a model of the energy spectrum of the turbulence, it is possible to provide

explicit expressions for the two-point two-time correlations R11 and R22 in Eqs. (4.4)

and (4.5) along the airfoil. For instance, for the case of the Gaussian energy spectrum
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Figure 4.7: Analytical solution (—) against numerical results (− −) obtained for
Liepmann filter with vortices every ∆ = λ/8, sampling rate ∆s = 60∆t, and number
samples Ns = 8, 000. Top: correlations R11 and R22 computed with respect to the

central point of the airfoil. Bottom: one-dimensional energy spectra E11 and E22.

we have:

R11(r, t) = K exp

[
π(r − u0t)2

4λ2

]
RU (t), (4.6)

R22(r, t) = K exp

[
π(r − u0t)2

4λ2

] [
1− π(r − u0t)

2λ2

]
RU (t). (4.7)

Note that for the case of frozen turbulence the time correlation of the stochastic field U

is RU (t) = 1.

Figure 4.9 shows the numerical and theoretical correlations R11 and R22 plotted against

time for several spatial separations r/c = 0, 0.2, 0.4, 0.6, 0.8 and 1. Good level of

agreement is obtained when comparing numerical and analytical two-point two-time

correlations R11 and R22 for the different locations. For any fixed distance r, the cor-

relations have a Gaussian shape inherited from the filter used to generate the synthetic

velocity field.

If we focus on the two-point two-time correlation at a specific non-zero distance, for

instance r/c = 1, Figure 4.9 shows that the correlation peaks at the time that it takes for
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Figure 4.8: Analytical solution (—) against numerical results (− −) obtained for von
Kármán filter with vortices every ∆ = λ/8, sampling rate ∆s = 60∆t, and number
samples Ns = 8, 000. Top: correlations R11 and R22 computed with respect to the

central point of the airfoil. Bottom: one-dimensional energy spectra E11 and E22.

a vortex particle to travel the distance r/c = 1. This means that the highest correlation

is achieved when the velocity field is actually generated by the same set of vortices. In

addition, there is no loss of correlation between a vortex at a given time and the same

vortex at a later time since the maximum value of the correlation is K. Note that for

the case of frozen turbulence the strength of each vortex is kept constant in time.

Similar levels of accuracy are obtained for Liepmann and von Kármán filters.

4.3.2 Acoustic pressure

Now that the quality of the synthetic turbulence along the flat plate has been assessed

and guidelines on how to choose the parameters involved were obtained, we focus on the

sound propagation.

Figure 4.10 depicts a snapshot of the acoustic pressure field around the airfoil for the

Gaussian spectrum. It illustrates that most of the noise is radiated from the leading

edge. Although it is not obvious here, acoustic waves generated at the leading edge
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Figure 4.9: Two-point two-time correlations R11 (top) and R22 (bottom) for separa-
tions: r/c = 0 (—), r/c = 0.2 (—), r/c = 0.4 (—), r/c = 0.6 (—), r/c = 0.8 (—), and
r/c = 1 (—). Solid lines represent analytical results and symbols stochastic results.

Averages taken from 25, 000 samples with sampling rate ∆s = 20∆t.

are scattered at the trailing edge. Note that even though numerical pollution can be

observed in the outgoing boundary of the domain, a parametric study on the size of the

buffer zone has been performed to ensure that it does not influence far-field noise levels.

Figure 4.10: Snapshot of the acoustic pressure field for the Gaussian spectrum.

Far-field results are obtained with the Ffowcs-Williams Hawkings formulation by locat-

ing a control surface around the airfoil as described in section 3.4. In contrast with

far-field results obtained in the validation of the LEE solver, here Thompson’s multi-

taper method [61] is used to compute the numerical Power Spectral Density (PSD).

The Thompson’s multitaper method uses as input a time-domain signal which can be
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obtained as the Fourier transform of the Ffowcs-Williams Hawkings formulation. The

statistical behaviour of the far-field noise is obtained by sampling over 16,384 time steps

so that results lie within a confidence interval of 1.16 dB.

The frequency range of interest is found to correspond to Strouhal numbers between 0

and 10 based on 20 dB difference with peak noise levels. For this highest frequency, the

smallest hydrodynamic wavelengths are resolved by 17 points per wavelength and the

smallest acoustic wavelengths by 35 points per wavelength.

The power spectral density in the far field obtained from Gaussian, Liepmann and

von Kármán spectra is compared against Amiet’s analytical solution for a fully two-

dimensional problem, Eq. (3.1), in terms of noise spectrum and directivity. The PSD is

computed on a circular arc centred on the airfoil where angles are measured from the

downstream direction. Sound Pressure Levels (SPL) in the far field are normalised by

the distance between the observer and the centre of the flat plate and the kinetic energy,

see Eq. (3.16).

Figure 4.11 shows sound pressure levels for the Gaussian spectrum compared against

analytical results for observers located at 30, 60, 120, and 150 degrees from the down-

stream direction. Figures 4.12 and 4.13 depict SPL at the same locations but computed

using synthetic turbulent velocity field generated with the Liepmann and von Kármán

spectra respectively. Noise levels are in good agreement with the analytical solution for

the three spectra at all locations, especially for the Gaussian spectrum. For upstream

locations, numerical results obtained with Liepmann and von Kármán spectra do not

capture as accurately the shape of the noise spectra for Strouhal numbers larger than

6. Note however that these discrepancies are observed when the noise levels are already

more than 15 dB bellow what is observed downstream. Similar issues for high frequencies

at upstream directions were found during the validation of the LEE solver and possible

reasons were also identified, see section 3.4.

Sound pressure levels obtained with the three energy spectra are shown in Figure 4.14

for an observer located in the far field at 90 degrees. Differences on the acoustic far

field are observed by considering different energy spectra of the turbulence. Liepmann

and von Kármán spectra predict similar noise levels over the whole range of frequencies

with a maximum difference smaller than 2 dB. Regarding the Gaussian spectrum, we

can see that the peak is located at a higher frequency and it decays faster. The trends of

the sound pressure levels for the different filters can be directly linked with those of the

energy spectra shown in Figure 2.1. Note that in Amiet’s analytical solution, Eq. (3.1),

it can be observed that the energy spectrum acts as an amplitude factor in the sound

pressure levels.

Directivities for Strouhal numbers St = 4 and St = 8 are shown in Figure 4.15 for

the Gaussian spectrum. Good agreement is obtained when comparing numerical results

against the proposed analytical solution. The fit between analytical and numerical
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Figure 4.11: Analytical (—) versus numerical (− −) SPL for the Gaussian spectrum.
Observers located at 30◦ (a), 60◦ (b), 120◦ (c), and 150◦ (d).

0 2 4 6 8 10
−55

−50

−45

−40

−35

St = f c / u
0

S
P

L,
 d

B

(a)

0 2 4 6 8 10

−55

−50

−45

−40

−35

St = f c / u
0

S
P

L,
 d

B

(b)

0 2 4 6 8 10
−60

−55

−50

−45

−40

St = f c / u
0

S
P

L,
 d

B

(c)

0 2 4 6 8 10
−70

−65

−60

−55

−50

−45

St = f c / u
0

S
P

L,
 d

B

(d)

Figure 4.12: Analytical (—) versus numerical (− −) SPL for Liepmann spectrum.
Observers located at 30◦ (a), 60◦ (b), 120◦ (c), and 150◦ (d).

results is slightly poorer at angles corresponding to upstream locations. This is thought

not to be related with the performance of the method to generate synthetic turbulence

but with the linearised Euler equations solver. Note that the small level of error observed

here is in concordance with results obtained on the validation of the LEE solver in

section 3.4. Similar results in terms of accuracy are obtained when considering either

Liepmann or von Kármán spectrum due to the fact that the turbulence spectrum only

affects the absolute level of the directivity at any given frequency.
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Figure 4.13: Analytical (—) versus numerical (− −) SPL for von Kármán spectrum.
Observers located at 30◦ (a), 60◦ (b), 120◦ (c), and 150◦ (d).
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Figure 4.14: SPL corresponding to Gaussian (− · −), Liepmann (− −) and von
Kármán (—) spectra for an observer located in the far field at 90◦.

The accuracy of the acoustic propagation method is also tested in terms of Sound Power

Levels (PWL). The acoustic power in a circular arc of radius r enclosing the airfoil can

be computed by (see Ref. [62])

PWL =
1−M2

2ρ0c0

∫ 2π

0

√
1−M2 sin θ2[√

1−M2 sin θ2 −M cos θ
]2 Spp(r, θ) r dθ. (4.8)

Figure 4.16 shows the overall acoustic power radiated from the airfoil for Gaussian,
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Figure 4.15: Analytical (—) versus numerical (− −) far-field directivity using the
Gaussian filter at St = 4 (top) and St = 8 (bottom).

Liepmann and von Kármán energy spectra respectively. Good agreement is found be-

tween numerical and theoretical results with a maximum error smaller than 1 dB. This

shows that discrepancies observed for Liepmann and von Kármán spectra at upstreams

directions can be considered negligible compared to the overall acoustic power.
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Figure 4.16: Analytical (—) versus numerical (− −) sound power levels for Gaussian
(left), Liepmann (centre) and von Kármán (right) spectra.

Finally note that because this is intended as a validation of the numerical method,

far-field noise results are computed by averaging over 16, 384 samples so that results

lie within a confidence interval of 1.16 dB. In practice the confidence interval could

be relaxed to reduce the number of samples required. For instance, numerical results

computed with 8, 192 and 4, 096 samples lie within confidence intervals of 1.5 and 1.83

dB, respectively. Sound pressure levels computed by averaging over 16, 384, 8, 192 and

4, 096 samples for an observer located at 90 degrees are shown in Figure 4.17. Sound

pressure levels predicted with the three sampling procedures are in good agreement with

Amiet’s analytical solution.
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Figure 4.17: SPL with Gaussian spectrum for an observed in the far field at 90◦.
Amiet’s analytical solution (—). Numerical results computed with 16, 384 samples

(B), 8, 192 samples (◦) and 4, 096 samples (×).

4.4 Computational performance

For each spectrum, three aspects have to be considered to assess the computational time

of the stochastic method: the time required to evaluate the filter, the density of vortex

particles, and the sampling of the numerical results to obtain accurate statistics.

Due to the use of interpolated functions that are much faster to compute than the exact

expressions defining the filters (see section 2.4.5), the computational times required to

evaluate Gaussian, Liepmann and von Kármán filters for a given vortex particle are

almost identical.

The density of vortex particles is controlled by the maximum distance rmax from the

flat plate at which vortices have to be distributed and the distance ∆ between vortices.

For each spectrum, guidelines for choosing the optimum values for rmax and ∆ have

been identified in section 4.3.1. It has been shown that the number of vortex particles

is larger for the von Kármán spectrum, followed by the Liepmann spectrum and the

Gaussian spectrum, see table 4.1. However, this increase in vortex particles does not

have a significant impact on the computational time required to compute the velocity

field. In particular, an increase in computational time of less than 2% is observed when

computing the velocity field either with Liepmann or von Kármán filters compared to

the Gaussian filter. In addition, the computational times associated with Liepmann and

von Kármán filters are very similar.

The computational time appears to present a stronger sensitivity to the energy spectra

when sampling the numerical results to obtain accurate statistics of the turbulence along

the airfoil. The parametric studies presented in section 4.3.1 show that similar levels

of accuracy with theoretical results are obtained when increasing the total number of
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Computational times Number of
LEE (gust) Synthetic turbulence vortex particles

Gaussian 1 0.1 3, 812

Liepmann 1 0.12 14, 282

von Kármán 1 0.12 18, 304

Table 4.1: Comparison of the computational cost of the method when considering
different energy spectra. Computational times are normalised by the computational

time required by the LEE simulation alone.

time steps by 5 for Liepmann and von Kármán filters compared to the Gaussian filter.

The time increase is related to the larger content of energy at high frequencies found in

Liepmann and von Kármán spectra. This is not an issue of how we represent the energy

spectra but of capturing the larger high frequency content of realistic energy spectra.

Computational times discussed above referred to computing the synthetic velocity field

alone (LEE are not solved at the same time). Compared to the computational time

of the LEE simulation when imposing a deterministic gust along the airfoil, the com-

putational time required to compute the synthetic velocity field is about 10% for the

Gaussian spectrum and 12% for the Liepmann and von Karman spectra, as illustrated

in table 4.1. When the synthetic field is computed as part of the LEE simulation, some

inconsistencies in the computational times have been found and computational times of

the LEE simulation alone and computing the synthetic turbulence do not add up. The

total computational time of the simulation is significantly larger than the sum of the

computational time required to generate synthetic turbulence and the computational

time to compute the sound propagation. The increase in computational time varies de-

pending on the energy spectra and it is larger for the von Kármán spectrum. An issue

with the efficiency of the cache memory has been identified as the cause of this problem.

4.5 Conclusions

In this chapter broadband fan interaction noise due to frozen turbulence impinging on

an isolated airfoil has been studied by combining the linearised Euler equations solver

described in chapter 3 with the random-particle method presented in chapter 2.

The statistical behaviour of the synthetic turbulence along the airfoil is accurately cap-

tured by the stochastic method. We have identified two aspects that have an impact

on the accuracy of the statistics: the density of vortex particles and the sampling of

the simulation results. Parametric studies on the number of vortices required by the

Gaussian, Liepmann and von Kármán filters show that the von Kármán filter requires

more vortices to compute the velocity field at a given location followed by the Liepmann

and Gaussian filters. The increase on the number of vortices is caused by a slower rate
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of decay of the filter with distance and a larger content of energy at high wavenumbers,

see Figure 2.2. In addition, Liepmann and von Kármán filters require a larger sampling

rate to obtain similar levels of accuracy with theoretical results than the Gaussian filters.

This results in a longer simulation time for Liepmann and von Kármán spectra than for

the Gaussian spectrum. The increase in computational time is explained by the large

content of energy at high wavenumbers found in realistic energy spectra and does not

relate with the technique used to represent the energy spectrum in the method.

Far-field noise levels predicted by the stochastic method are in good agreement with

Amiet’s analytical solution. Sound pressure levels are accurately predicted for the three

spectra at different far-field locations. Small discrepancies with the analytical solution

can be observed at high frequencies for upstreams locations, but they do not significantly

influence the overall acoustic power radiated from the airfoil.

As expected, the choice of the energy spectrum – or the filter – to generate the synthetic

velocity field has an impact on the predicted acoustic far field. Noise levels predicted

with Liepmann and von Kármán energy spectra peak are similar frequencies but different

trends can be observed. However, when considering the Gaussian spectra the predicted

sound pressure levels peak at a higher frequency and present a faster rate of decay.

For this test case, up to an average 5 dB difference is found between numerical results

predicted with von Kármán and Gaussian spectra.

Regarding the computational performance of the method, the computational times re-

quired to compute the velocity field itself is almost independent of the energy spectra.

However, in order to obtain reliable statistics along the airfoil, longer simulation times

are required for the von Kármán and Liepmann spectra than for the Gaussian spectrum.

This is related to the larger content of energy at high frequencies found in Liepmann and

von Kármán spectra. It has been observed that when the stochastic method is combined

with the LEE solver, computational times required to predict the acoustic field are not

consistent with the individual computational times of the stochastic method and the

LEE solver using a deterministic source. An issue with the use of cache memory has

been identified as the cause.
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Evolving Turbulence

In the previous chapters it was assumed that the incident turbulent field was a frozen

velocity pattern in time and was simply convected along with the mean flow. However,

the velocity field associated to a turbulent flow is a random process in time. It is expected

that for an observer moving with the mean flow, the velocity field will evolve and is also

a random process with an associated decorrelation in time.

In this chapter, the effects of temporal decorrelation observed in real turbulent flows are

included in the stochastic method to generate synthetic turbulence. We will refer the

synthetic turbulent flow as “evolving turbulence” if the effects of time decorrelation are

modelled. This is a generalisation of frozen turbulence where only convection effects are

included and where the resulting turbulent velocity field seen by an observer moving

with the base flow is a frozen pattern.

Time decorrelation is modelled in the stochastic method through the use of first and

second-order Langevin models. First-order Langevin models –or Langevin equations– are

commonly used to represent the fluid dynamics involved in turbulent diffusion processes

at large Reynolds numbers. However, it will be shown here that numerical issues arise

when a standard Langevin equation is coupled with the linearised Euler solver described

in section 3.3. As proposed by Siefert and Ewert [15] a second-order Langevin model

is considered to overcome the numerical issues derived from Langevin equations. Note

that in this work a different second-order model from that in Ref. [15] is proposed and

validated.

Simulation results for broadband fan interaction noise are presented for the same test

case as in the previous chapter. Sound pressure levels in the far field are also compared

against the analytical solution and numerical results obtained for the case of frozen

turbulence. In addition, the influence of the integral time scale of the turbulence in

the acoustic pressure field radiated from the airfoil is assessed. Since our aim is to

evaluate the effects of including temporal decorrelation in the method, only the Gaussian

spectrum will be used as input.

83
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5.1 Langevin Equation

In a first attempt to include the effects of evolving turbulence in the stochastic method

to generate synthetic turbulence, a standard Langevin equation is used to model the

evolution in time of the synthetic velocity field.

Langevin equations are stochastic differential equations originally derived to represent

Brownian motions and now widely used to model the fluid dynamics involved in turbulent

diffusion at large Reynolds numbers [14]. In the field of aeroacoustics, Ewert et al. [27]

considered a Langevin equation to model the effects of time correlation on synthetic

turbulence, see section 2.1.2.3.

5.1.1 Model

The method to generate synthetic turbulence introduced in section 2.2 is based on com-

puting the velocity field u′ using u′ = ∇× (0, 0, η) and:

η(x, t) =

∫
R2

G(|x− x′|, t)U(x′, t)dx′. (5.1)

The spatial statistics of the synthetic turbulence are controlled by the filter G while the

random field U determines the temporal properties of the flow.

The velocity field associated to a turbulent flow can be understood as a random process

in time and its temporal properties can be included in the stochastic method by defining

the time evolution of the stochastic field U as a Langevin equation of the form

D0

Dt
U = −αU + βζ, (5.2)

with initial condition U(0) = U0 where U0 is also a random variable. The material

derivative is given by D0/Dt = ∂/∂t+ uc · ∇ with uc the convection velocity along the

stream lines. ζ is a statistically stationary Gaussian white noise source. The coefficients

α and β of the Langevin equation can be related to the statistical properties of the

turbulence, as we shall do later in this section.

Eq. (5.2) is a stochastic differential equation representing two aspects. A deterministic

part, −αU , causes the average drift of the solution from the initial condition to relax

as α→ 0 and a stochastic part, βζ, accounts for the inertial diffusion process adding a

zero-mean random source of standard deviation β. The coefficient α can be interpreted

as the parameter accounting for the correlation of the process: the larger α is, the quicker

the process will become uncorrelated with its initial condition. The coefficient β controls

the strength of the random source such that U is statistically stationary.
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The stochastic source ζ in Eq. (5.2) is defined as the time derivative of a Wiener process

ζ̃, which is a continuous Gaussian process with independent increments such that (see

Ref. [63] for more details)

〈ζ̃(x, t)〉 = 0, 〈[ζ̃(x, t1)− ζ̃(x, t2)]
2〉 = |t2 − t1|. (5.3)

Therefore, it can be shown that ζ is a white noise source that verifies:

〈ζ(x, t)〉 = 0, 〈ζ(x1, t1) ζ(x2, t2)〉 = δ(x1 − x2)δ(t2 − t1), (5.4)

where δ stands for the Dirac function. Note that strictly speaking the continuous Gaus-

sian white noise process ζ does not exist as a conventional function of time since the

Wiener process is not differentiable and the Eq. (5.2) should be understood in the sense

of a stochastic differential equation as explained in Ref. [63].

The rate of change over time of a vortex particle along the streamlines defined by the

convection velocity uc can be derived from the Lagrangian version of Eq. (5.2):

∂

∂t
U(x′(x0, t), t) = −αU(x′(x0, t), t) + βζ(x′(x0, t), t). (5.5)

The material derivative in the mean flow, D0/Dt, is the derivative taken along a path

moving with the mean flow, hence in a Lagrangian formulation it simply becomes the

derivative with respect to time.

To simplify the notation, we consider the strength of each fluid particle as a function of

time: U(x′(x0, t)) ∼ U(t). The solution of the Langevin equation in Eq. (5.5) can then

be written (see Ref. [64]):

U(t) = U0 exp(−αt) + β exp(−αt)
∫ t

0
exp(αt′)ζ(t′)dt′, (5.6)

or alternatively

U(t) = U0 exp(−αt) + β exp(−αt)
∫ t

0
exp(αt′)dζ̃(t′), (5.7)

It can be shown that the sample paths determined by a Wiener process are not of

bounded variation on any bounded time, therefore the integrals in Eqs. (5.6) and (5.7)

cannot be defined as ordinary Riemann-Stieltjes integrals but as the Ito Integral, see

Ref. [63].

By considering the solution of the Langevin equation in Eq. (5.6) at two different times

and averaging, the time correlation of U , RU (t) = 〈U(t1) U(t2)〉 where t = |t2 − t1|, is
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given by

RU (t) =〈U2
0 〉 exp[−α(t1 + t2)]

+ β2 exp[−α(t1 + t2)]

∫ t1

0

∫ t2

0
exp[α(t′ + t̃)]〈ζ(t′) ζ(t̃)〉dt′dt̃.

(5.8)

Note that the random variable U0 and the white noise field ζ are uncorrelated.

From Eq. (5.6) and after using Eq. (5.4), one can show that the energy (or variance) of

the random process U is

〈U(t)2〉 =

(
〈U2

0 〉 −
β2

2α

)
exp(−2αt) +

β2

2α
. (5.9)

To ensure that the process is statistically stationary, its energy 〈U(t)2〉 must remain

constant in time. This condition yields a unique definition for β =
√

2α〈U2
0 〉.

A second constraint to be imposed on the stochastic field is concerned with the time

correlation of U in Eq. (5.8). Various experimental data (such as Favre et al. [65])

support an exponential time correlation for the velocity field of turbulent flows. There-

fore, it is logical to define the stochastic field U so that its correlation in time decays as

exp(−t/τ) where τ is the Lagrangian integral time scale of the flow [66]. This condition

yields α = 1/τ when comparing with Eq. (5.8) for β =
√

2α〈U2
0 〉 and using the fact that

ζ is a white noise field.

Therefore, the effects of evolving turbulence can be modelled by a Langevin equation by

defining the rate of change of U as

D0

Dt
U = −1

τ
U +

√
2

τ
〈U2

0 〉 ζ. (5.10)

The initial condition U0 is a random variable following a zero-mean Gaussian distribution

with unit standard deviation, 〈U2
0 〉 = 1. Note that the random field U as defined by

Eq. (5.10) is continuos but not time differentiable, we will show that this is an issue for

predicting the sound field.

Changing the notation so that the stochastic field U defined through a Langevin equation

is explicitly a function of position and time, we get that U satisfies the properties in

Eq. (2.55):

〈U(x, t)〉 = 0, 〈U(x1, t1) U(x2, t2)〉 = δ(r − tuc) exp (−t/τ) , (5.11)

where r = x2−x1. Note that U is defined as a zero-mean white noise field in space and

in this case RU (t) = exp(−t/τ).
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When assuming frozen turbulence, the time correlation tends to infinity, τ → ∞, and

hence the right-hand side of Eq. (5.10) vanishes, indicating that the model is only rep-

resenting convection effects, D0U/Dt = 0.

The following input parameters are required to model the time evolution of the turbu-

lence with the Langevin equation Eq. (5.10):

• Convection velocity of the flow, uc. It can be provided by steady RANS or LES

simulations or by measurements.

• Integral time scale of the turbulence, τ . The Lagrangian time scale τ controls the

temporal correlation of the turbulence. It is a function of the dissipation rate, ε,

and a weak function of the Reynolds number. It can be estimated by the scaling

procedure [14]:

τ ≈ 2K

C0ε
, (5.12)

where C0 is an empirical constant whose value is not yet exactly defined but is

understood to be smaller than 6. We consider C0 = 2.1 as proposed by Pope in

Ref. [14] but the sensitivity of the results to this parameter will be investigated in

section 5.3.

5.1.2 Numerical implementation

The implementation of the stochastic method to generate evolving turbulence is per-

formed using a Lagrangian formulation. As shown in section 2.3.1, the method can be

written as a sum of contributions from individual vortex particles:

u′(x, t) =

N∑
n=1

G(|x− xn(t)|,K(xn), λ(xn))Un(t), (5.13)

where G = ∇× (0, 0, G) and Un is the weighted average of U over the nth fluid element

S0n:

Un(t) =

∫
S0n

U(x′(x0, t), t)Jdx0. (5.14)

The filterG controls the spatial statistics of the turbulence and it is fully defined by either

the two-point correlation tensor or the energy spectra through either of the expressions

in Eq. (2.59).

Un can be understood as the strength of each vortex particle and its value can be deduced

by relating Eq. (5.14) with the Langevin equation in Eq. (5.5). Integrating Eq. (5.5)

over the fluid element S0n, we have:

∂

∂t
Un(t) = −1

τ
Un(t) +

√
2

τ
ζn(t), (5.15)
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where ζn is the weighted average of the random source over the fluid element S0n:

ζn(t) =

∫
S0n

ζ(x′(x0, t), t)Jdx0.

Initial conditions for each Un and values for ζn at each time step must be provided

in order to define the strength of the vortex particles at each time. Since U0 and ζ

are independent random variables following a zero-mean Gaussian distribution with

unit standard deviation, by definition Un(0) and ζn(t) follow a zero-mean Gaussian

distribution with variance: ∫
S0n

J2dx0.

Note that for incompressible flows J = 1 and the variance of Un(0) and ζn(t) is equal to

the area of the fluid element S0n.

Finally, in order to implement Eq. (5.13) the discrete version of the Langevin equation

in Eq. (5.15) must be provided. For small time steps ∆t the time derivative of U can be

approximated using a simple Euler scheme:

∂

∂t
Un(t) ≈ Un(t+ ∆t)− Un(t)

∆t
. (5.16)

This approximation is also applied to the stochastic source ζ which is defined as the

time derivative of the Wiener process ζ̃:

ζn(t) ≈ ζ̃n(t+ ∆t)− ζ̃n(t)

∆t
. (5.17)

Inserting both approximations in Eq. (5.15)

Un(t+ ∆t) =

(
1− ∆t

τ

)
Un(t) +

√
2

τ

[
ζ̃n(t+ ∆t)− ζ̃n(t)

]
. (5.18)

From the properties of the Wiener process ζ̃ in Eq. (5.3), we see that the increment

ζ̃n(t + ∆t) − ζ̃n(t) follows a zero-mean Gaussian distribution with variance determined

by the time step ∆t and the density of vortices. This term can then by rewritten as√
∆tζn where ζn follows a zero-mean Gaussian distribution with variance determined by

the density of vortices. Therefore, Eq. (5.18) is rewritten as:

Un(t+ ∆t) =

(
1− ∆t

τ

)
Un(t) +

√
2∆t

τ
ζn(t), (5.19)

where Un and ζn are independent random variables picked from zero-mean Gaussian

distributions with variance determined by the density of vortex particles.

Note that in order to be consistent with the time discretisation of the LEE solver (see

section 3.3) the strength of the vortices is updated at every stage of the Runge-Kutta
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method.

5.1.3 Results

Numerical simulations have been performed to investigate the effects of evolving tur-

bulence on broadband fan interaction noise. The test case considered in the previous

chapter to investigate the effects of frozen turbulence is now employed with the aim of

comparing both sets of results.

The statistical behaviour of the synthetic velocity field along the airfoil and the acoustic

pressure in the near and far field are examined in order to identify the influence of

evolving turbulence on the predicted noise levels.

5.1.3.1 Problem definition

The test case considered is that of a flat plate with zero angle of attack interacting

with homogeneous isotropic turbulence. The problem is made non-dimensional using

the chord, mean density, and sound speed.

The parameters are the same as those used to validate the method for the case of frozen

turbulence, see chapter 4. The turbulence is convected by a uniform mean flow with

Mach number of 0.362 in the x-direction and it is characterised by an integral length

scale λ = 0.07.

In order to include the effects of evolving turbulence, the method also requires the inte-

gral time scale of the turbulence. Following the scaling procedure proposed in Eq. (5.12)

with the constant C0 = 2.1, the Lagrangian integral time scale corresponding to the flow

under consideration is τ = 20.86.

5.1.3.2 Computational setup

The computational setup implemented for this test case is the same as for the simulation

of frozen turbulence in chapter 4.

The simulation domain is [−1.5, 1.5]× [−1, 1] with the airfoil located at [−0.5, 0.5]×{0}.
The domain is divided into 6 blocks, each of them discretised by a Cartesian grid with

200 points in each direction. The time step is such that the CFL number is 0.8. Vortex-

particles are launched from a vertical segment upstream of the flat plate, convected with

the mean flow and removed once they are out of the range of influence of the flat plate.

In contrast with the case of frozen turbulence where the strength of each vortex particle

remains constant, the strength of each particle now varies in time according to Eq. (5.19).
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The initial strength of each vortex particle follows a Gaussian distribution with zero

mean and standard deviation determined by the density of vortices in the domain. And

it is updated at every stage of the Runge-Kutta method. Note that the time step used in

the numerical discretisation is at least four orders of magnitude smaller than the integral

time scale of the turbulence.

To simplify the discussion and focus on the effects of evolving turbulence compared

to frozen turbulence, simulation results are only presented assuming that the energy

spectrum of the turbulence is Gaussian.

The synthetic velocity field at each point is given by summing the contribution of vortices

located in its vicinity. For the case of frozen turbulence, a parametric study over the

distribution of vortices required to obtain reliable statistics has been performed, see

section 4.3.1. The conclusions of this parametric study are also used for the case of

evolving turbulence. Therefore, reliable statistics can be obtained for the Gaussian

spectrum when generating vortices in the region determined by rmax = 2.43λ with a

distance between vortices of ∆ = λ/6.

5.1.3.3 Synthetic turbulence

The quality of the synthetic turbulence generated by the random-vortex-particle method

in Eq. (5.13) is assessed by evaluating its statistical behaviour along the airfoil. Two-

point correlations R11 and R22 and one-dimensional spectra E11 and E22 (defined by

Eqs. (2.36) and (4.1)) computed along the flat plate are given in Figure 5.1 showing that

the random-vortex-particle method is able to achieve very accurately the expected two-

point correlation functions and energy spectra when the rate of change of the strength

of the vortex particles is defined by the Langevin equation Eq. (5.19).

Since the temporal correlation of the turbulence is now included in the random-vortex-

particle method, it is important to study the behaviour of the two-point two-time cor-

relations R11 and R22 along the airfoil.

Figure 5.2 shows the two-point two-time correlations R11 and R22 plotted against time

for several spatial separations r/c = 0, 0.2, 0.4, 0.6, 0.8, and 1 along the airfoil. Very good

level of agreement is obtained when comparing numerical and analytical correlations R11

and R22 for the different locations.

The correlations for a spacial separation of r/c = 1 corresponds to two points that are

one chord away. That is correlations between the leading and the trailing edge of the

airfoil. As one would expect, the maximum correlation between them occurs at the time

that it takes for the vortices to travel the chord of the airfoil. In contrast with the case

of frozen turbulence (see Figure 4.9) the correlation is no longer unit, but decreases due

to the temporal decorrelation of U modelled by the Langevin equation as exp(−t/τ).
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Figure 5.1: Analytical solution (—) against numerical results (− −) obtained for
Gaussian spectrum. Top: two-point correlations R11 and R22 computed with respect

to the centre of the airfoil. Bottom: one-dimensional energy spectra E11 and E22.
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Figure 5.2: Two-point two-time correlations R11 (top) and R22 (bottom) for sepa-
rations: r/c = 0 (—), r/c = 0.2 (—), r/c = 0.4 (—), r/c = 0.6 (—), r/c = 0.8 (—),
and r/c = 1 (—). Solid lines represent analytical results and symbols stochastic results
obtained with a standard Langevin equation. Averages taken from 25, 000 samples with

sampling rate ∆s = 20∆t.
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Therefore, for this test case, the integral time scale of the turbulence τ = 20.86 yields

about 12% loss of temporal correlation for points that are one chord apart.

5.1.3.4 Acoustic pressure field

Now that the quality of the synthetic turbulence has been validated, we look at the

scattered acoustic field. The acoustic pressure field surrounding the flat plate generated

by its interaction with the evolving turbulence is depicted in Figure 5.3. In comparison

with the acoustic pressure field generated by frozen turbulence shown in Figure 4.10, it

features additional sound waves with small wavelengths radiating from the plate. For

the case with frozen turbulence, most of the noise is radiated from the leading edge

and then is scattered at the trailing edge. However, in this case, there are significant

additional sound sources located mostly along the middle of the flat plate.

Figure 5.3: Snapshot of the acoustic pressure field for the Gaussian spectrum gener-
ated with a standard Langevin equation.

Noise levels in the far field are also computed using the same procedure as in chapter 4.

Figure 5.4 shows sound pressure levels compared against numerical and analytical results

for the case of frozen turbulence (τ → ∞) for observers in the far field at 30, 60, 90,

120, and 150 degrees from the downstream direction. For observers located downstream,

noise levels are very similar to those of the case of frozen turbulence for Strouhal numbers

smaller than 6 and there are increased noise levels at higher frequencies. A much more

significant increase between frozen and evolving turbulence is observed for upstream

locations. Noise levels at 120 and 150 degrees are larger for evolving turbulence than

those generated with frozen turbulence over the whole range of frequencies. In particular,

at 150 degrees an almost flat spectrum is found for Strouhal numbers larger than 4

and the interference pattern originally generated by the interaction between the noise
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radiated from the leading edge and the scattering at the trailing edge is no longer present.

Even though the overall sound pressure levels in the upstream direction are about 10

dB lower that the levels downstream, the large content of sound at high frequencies is

significant.
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Figure 5.4: Analytical (—) and numerical (− · −) SPL for frozen turbulence versus
numerical (− −) SPL for evolving turbulence. Observers located at 30◦ (a), 60◦ (b),

90◦ (c), 120◦ (d), and 150◦ (e).

Directivities at the Strouhal numbers St = 4 and St = 8 are shown in Figure 5.5.

Numerical results obtained for evolving turbulence are plotted against numerical and

analytical results for the case of frozen turbulence. From 0 to 90 degrees the same

trends and similar noise levels are obtained compared with frozen turbulence. However,

for upstream directions there is a dramatic change between results obtained with frozen

and evolving turbulence. For the latter case, sound pressure levels at St = 8 are larger

upstream than downstream.

Finally if we plot the overall acoustic power radiated by the airfoil as shown in Figure 5.6,

we can also see that including the effects of temporal decorrelation with the Langevin

equation (5.10), the method predicts a significant increase at high frequencies compared

to frozen turbulence.
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Figure 5.5: Analytical (—) and numerical (− · −) far-field directivity for frozen tur-
bulence versus numerical (− −) directivity for evolving turbulence at St = 4 (top) and

St = 8 (bottom).
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Figure 5.6: Analytical (—) and numerical (−·−) acoustic power for frozen turbulence
versus numerical results (− −) for evolving turbulence.

5.1.4 Discussion

At this point one might question whether the higher noise levels observed at high fre-

quencies are a genuine effect of introducing time correlation in the synthetic velocity

field or instead represent spurious sources introduced by the time discretisation of the

model.

A possible explanation for the larger amplitude of noise levels at high frequencies could

be a lack of numerical resolution in space or time, but this has been ruled out. First of

all, in the frequency range of interest (St < 10) the smallest hydrodynamic wavelengths

are resolved by at least 17 points per wavelength and the smallest acoustic wavelengths

by 35 points per wavelength. In addition, the solution seems also independent of the

time step used in the numerical integration. Figure 5.7 shows the SPL for observers

located at 30, 60, 90, 120, and 150 degrees. Results for frozen turbulence are compared
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against numerical results for evolving turbulence computed using three different time

steps corresponding to CFL numbers of 0.8, 0.4 and 0.2. (Numerical results are all

obtained with the same sampling frequency and number of samples.) We can see that

reducing the time step does not change the noise levels at high frequencies. This suggests

that the larger amplitude of noise levels at high frequencies is not caused by a lack of

numerical resolution.
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Figure 5.7: Analytical (—) and numerical (− · −) SPL for frozen turbulence versus
numerical SPL for evolving turbulence obtained with numerical time steps correspond-
ing to CFL numbers of 0.8 (◦), 0.4 (×) and 0.2 (B). Observers located at 30◦ (a), 60◦

(b), 90◦ (c), 120◦ (d), and 150◦ (e).

Given that the stochastic method for evolving turbulence and the high-order LEE solver

have both been validated, another explanation is that numerical issues arise when cou-

pling the two to perform the time integration of the differential equations. The time

evolution of the strength of each vortex particle modelled by Eq. (5.10) is continuous

but not differentiable and therefore the resulting synthetic turbulent velocity field along

the flat plate is not differentiable in time, as illustrated in Figure 5.8. The Runge-Kutta

scheme used for the time integration of the linearised Euler equations could be modified

so as to deal with stochastic differential equations more accurately (see Ref. [63]), but
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that would require to use a different time integration scheme for only a few grid points,

which could be rather cumbersome to implement.
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Figure 5.8: Top: Synthetic turbulent velocity field computed at the centre of the flat
plate versus time. Bottom: Time evolution of the strength of a given vortex particle

modelled by the Langevin equation in Eq. (5.10).

A possible alternative to modifying the Runge-Kutta scheme is to smooth the evolution

of the synthetic velocity field by adding a filter in time. In order to implement such a

filter it will be necessary to store several previous time steps, so this approach is not

used here due to the associated computational cost.

Yet another alternative is to model the time correlation of the turbulence in such a way

that the resulting synthetic velocity field is a differentiable function in time. This can

be achieved from two different approaches. One approach is to smooth the random field

U given by the Langevin equation by filtering it with the help on a second Langevin

equation. This approach has been proposed by Ewert and Siefert in Ref. [15]. Another

approach is to modify the stochastic source in the Langevin equation. The stochastic

field U is not differentiable in time due to the lack of continuity of the stochastic source

ζ. Therefore, we propose to replace ζ in the Langevin equation (5.10) by a continuous

random source. Both approaches result in second-order Langevin models but with differ-

ent set of parameters. While in Ref. [15] just an overview of the second-order Langevin

model is included, in the next section the model proposed here is presented in detail.

5.2 Second-order Langevin model

In this section the stochastic source in a standard Langevin equation is modified so that

it is a continuous function in time. The objective is that the resulting stochastic field U
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would be a differentiable function in time and hence the numerical issues discussed in

the previous section would be overcome.

5.2.1 Model

The numerical issues introduced by the standard Langevin equation in Eq. (5.10) are

related with the lack of continuity of the source term ζ. Here the theory is generalised

by considering a stochastic source W which is assumed to be a continuous function in

time (so it is not pure white noise) and it is also assumed to be correlated with U . This

yields the Langevin equation
D0

Dt
U = −1

τ
U +W, (5.20)

with initial condition U(0) = U0 where U0 is also a random variable. We begin by

deriving the conditions onW and U0 for the random process to be statistically stationary.

Then we describe how W can be generated.

Proceeding as for the standard Langevin equation in Eq. (5.10), the rate of change over

time of the stochastic field U along the streamlines defined by the convection velocity,

uc, can be derived from the Lagrangian version of Eq. (5.20):

∂

∂t
U(x′(x0, t), t) = −1

τ
U(x′(x0, t), t) +W (x′(x0, t), t). (5.21)

This is similar to Eq. (5.5) but now the source term is continuous in time and correlated

with U .

For each fluid element, the solution of Eq. (5.21) as a function of time can be written:

U(t) = U0 exp(−t/τ) + exp(−t/τ)

∫ t

0
exp(t′/τ)W (t′)dt′. (5.22)

Note that in contrast with the standard Langevin equation, the integral can be defined

in the standard way (it is not an stochastic integral) since W is continuous in time. Its

energy (or variance), 〈U(t)2〉, is therefore given by:

〈U(t)2〉 =〈U2
0 〉 exp(−2t/τ) + 2 exp(−2t/τ)

∫ t

0
exp(t′/τ)〈U0 W (t′)〉dt′

+ exp(−2t/τ)

∫ t

0
exp(t′/τ)

∫ t

0
exp(t̃/τ)〈W (t′) W (t̃)〉dt′dt̃. (5.23)

From the requirement that the random process U is statistically stationary, we can use

that 〈U(t)2〉 = 〈U2
0 〉 to get:

〈U0 W (t)〉 =
〈U2

0 〉
τ

exp(t/τ)

[
1− τ

〈U2
0 〉

∫ t

0
exp(−s/τ)RW (s)ds

]
, (5.24)
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where RW is the time correlation of W : RW (t) = 〈W (t1) W (t2)〉 with t = |t2− t1|. W is

also a random process in time, therefore it can be assumed that its correlation with U0

vanishes with time. Hence, we can impose the condition that 〈U0 W (t)〉 → 0 as t→∞.

For this condition to be verified, the term in brackets in Eq. (5.24) must be of the order

of exp[−t(1 + A)/τ ] where A is a constant such that A < 0. Following Krasnoff et al.

[67], this condition can be achieved by defining:

RW (t) = 〈W 2
0 〉 exp(−γt), (5.25)

with 〈W 2
0 〉 = 〈U2

0 〉/(ττd) and γ = (1/τd − 1/τ) where an additional time scale τd such

that τd � τ has been introduced. With these choices we get:

〈U0 W (t)〉 =
〈U2

0 〉
τ〈W 2

0 〉
RW (t), (5.26)

which, when combined with Eq. (5.23), yields a constant energy of U .

The resulting time correlation, RU (t) = 〈U(t1) U(t2)〉, is

RU (t) =
exp (−t/τ) 〈U2

0 〉
τ − 2τd

{
τ − τd − τd exp

[(
2

τ
− 1

τd

)
t

]}
. (5.27)

It converges to 〈U2
0 〉 exp (−t/τ) as τd → 0 verifying Eq. (5.11). The influence of the

additional parameter τd will be described in section 5.2.3.2.

The stochastic source W in the Langevin equation Eq. (5.20) is now fully defined and

it can be generated using a second Langevin equation (similar to the one used in sec-

tion 5.1):
D0

Dt
W = −α′W + β′ζ, (5.28)

where ζ is a continuous white noise source that can be defined as the time derivative of

a Wiener process verifying Eq. (5.4):

〈ζ(x, t)〉 = 0, 〈ζ(x1, t1) ζ(x2, t2)〉 = δ(x2 − x1)δ(t2 − t1). (5.29)

Following the same analysis as for the standard Langevin equation Eq. (5.2), the random

source W is statistically stationary with time correlation RW (t) = 〈W 2
0 〉 exp(−γt) if one

defines β′ =
√

2α′〈W 2
0 〉 and α′ = γ.

The initial condition W (0) = W0 is by definition a random variable following a zero-

mean Gaussian distribution with variance 〈W 2
0 〉 = 〈U2

0 〉/(ττd). It follows from Eq. (5.26)

that W0 and U0 are correlated verifying 〈U0 W0〉 = 〈U2
0 〉/(τ〈W 2

0 〉). These constraints

can be met by defining W0 such that:

W0 =
1

τ
U0 +

√
γ

τ
ξ, (5.30)
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where ξ is an independent zero-mean random variable with unit variance.

Note that the integral time scale of the source W is 1/γ. Since τd � τ , the characteristic

time scale of W is of the order of τd. Following Krasnoff et al. [67], from a physical

point of view the source W can be understood to represent the viscous diffusion process

of the smallest turbulent motions which occur at the Kolmogorov time scale. Based on

this interpretation, the ratio τ/τd scales as the Reynolds number.

To summarise, the combination of Eq. (5.20) and Eq. (5.28) forms a second-order

Langevin model given by: 
D0

Dt
U = −1

τ
U +W,

D0

Dt
W = −γW +

√
2γ〈W 2

0 〉 ζ,
(5.31)

with γ = 1/τd − 1/τ . W is continuous but not differentiable in time. U is therefore

smoother when generated by the second-order Langevin model in Eq. (5.31) than if it

were generated by the standard Langevin equation in Eq. (5.10) with noise source a

white noise field.

For the case of frozen turbulence, both time scales τ and τd tend to infinity. Hence

the right-hand sides in the system Eq. (5.31) are equal to zero and the model is only

representing convection effects, D0U/Dt = 0 and D0W/Dt = 0. Note that Eq. (5.30)

verifies W0 = 0 for the case of frozen turbulence (τ, τd →∞).

The second-order Langevin model, Eq. (5.31), requires the following input parameters

to model the time evolution of the turbulence:

• Convection velocity of the flow, uc. It can be provided by steady RANS or LES

simulations or by measurements.

• Integral time scale of the turbulence, τ . τ is the Lagrangian time scale of the

turbulence. It is a function of the dissipation rate, ε, and a weak function of the

Reynolds number. Its value is given throughout the scaling procedure proposed

by Pope [14] to define the integral length scale of the turbulence for the Langevin

equation. See Eq. (5.12) and the related discussion in section 5.3.

• Characteristic time scale of the viscous dissipation process, τd. From the point of

view of the physics of turbulent flows, τd is of the order of the Kolmogorov time

scale [67]. However, τd is used here as a numerical parameter to smooth the time

evolution of the strength of the vortices. A discussion of how this parameter is

chosen will be given in section 5.2.3.2.
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5.2.2 Numerical implementation

The numerical discretisation of the second-order Langevin model is performed following

the same approach as for the first-order Langevin model.

The Lagrangian formulation of the second-order Langevin model, Eq. (5.31), reads
∂

∂t
U(x′(x0, t), t) = −1

τ
U(x′(x0, t), t) +W (x′(x0, t), t),

∂

∂t
W (x′(x0, t), t) = −γW (x′(x0, t), t) +

√
2γ〈W 2

0 〉 ζ(x′(x0, t), t).

(5.32)

The rate of change of the strength of the vortex particle Un can be derived by integrating

Eq. (5.32) over the nth fluid element S0n,
∂

∂t
Un(t) = −1

τ
Un(t) +Wn(t),

∂

∂t
Wn(t) = −γWn(t) +

√
2γ〈W 2

0 〉 ζn(t),

(5.33)

where Wn and ζn are the weighted averages over S0n of W and ζ, respectively

Wn(t) =

∫
S0n

W (x′(x0, t), t)Jdx0, and ζn(t) =

∫
S0n

ζ(x′(x0, t), t)Jdx0.

In order to determine the strength of the nth vortex particle at each time, values for

ζn at each time step must be provided together with initial conditions for Un and Wn.

Since U0 and ζ are random variables following a zero-mean Gaussian distribution with

unit standard deviation, by definition Un(0) and ζn(t) follow a zero-mean Gaussian

distribution with variance: ∫
S0n

J2dx0.

W0 is a random variable following a zero-mean Gaussian distribution with variance

〈W 2
0 〉 = 〈U2

0 〉/(ττd), therefore Wn(0) follows a zero-mean Gaussian distribution with

variance:
1

ττd

∫
S0n

J2dx0.

Note that for incompressible flows we have J = 1.

The numerical discretisation of the second-order Langevin model in Eq. (5.33) is also

based on a forward Euler scheme, yielding:
Un(t+ ∆t) =

(
1− ∆t

τ

)
Un(t) + ∆tWn(t), (5.34a)

Wn(t+ ∆t) = (1− γ∆t)Wn(t) +
√

2γ∆t〈W 2
0 〉 ζn(t). (5.34b)
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Note that while the rate of change of Wn is defined by a Langevin equation with source

term a white noise field (and therefore the analysis performed in section 5.1.2 applies),

the rate of change of the stochastic field Un is determined by a Langevin equation with a

continuous source term. This is why the factor
√

∆t on the right hand side of Eq. (5.34b)

is not found in Eq. (5.34a).

In summary, the second-order Langevin model proposed in this section can be combined

with the random-vortex-particle method to generate synthetic evolving turbulence in a

Lagrangian formulation yielding Eq. (2.67).

5.2.3 Validation

Numerical simulations are performed to evaluate the statistical behaviour of the turbu-

lence along the airfoil and far-field noise levels. As in chapter 4, acoustic predictions

in the far field are compared against Amiet’s analytical solution for the case of frozen

turbulence but also against the results obtained for evolving turbulence modelled with

the standard Langevin equation.

It is shown in this section that provided the small time scale τd is selected properly, the

second-order Langevin model provides with synthetic turbulent velocity fields with the

same statistical behaviour as the standard Langevin equation. However, by modelling

the rate of change of the vortex strengths with the proposed second-order Langevin

model, the spurious high frequency sound sources observed with the Langevin equation

are not present.

5.2.3.1 Problem definition and computational set up

The test case and corresponding computational set up used to investigate broadband

interaction noise in the previous section is also considered here. Please refer to sec-

tion 5.1.3.1 and section 5.1.3.2 for a full description.

The only difference with the previous computational set up, is that the strength of each

vortex particle is now modelled by the second-order Langevin model in Eq. (5.34). In

this case, the method requires as input an additional time scale, τd. We begin by defining

some guidelines to adjust the value of τd.

5.2.3.2 Influence of the additional time scale τd

The second-order Langevin model in Eq. (5.31) relies on a stochastic source W with

integral time scale 1/γ ≈ τd to model the time evolution of the strengths of the vortex

particles. In this work the time scale τd is used merely as a numerical parameter that
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controls the smoothness of the strength of the vortex particles over time. Two constraints

are imposed over τd:

• The first constraint is that τd must be sufficiently smaller than the integral time

scale of the turbulence τ so that the time correlation of the vortex strength U

given by Eq. (5.27) is a good approximation of exp (−t/τ).

• The second issue is that the numerical time step used to discretise Eq. (5.33) must

be sufficiently small compared to τd in order to discretise Eq. (5.33) accurately.

The smaller the time scale τd is, the smaller the numerical time step has to be,

and so the more computationally demanding the method is. An effort is therefore

made to select the largest τd possible such that reliable statistics are obtained at

an acceptable computational cost.

A parametric study is therefore performed to adjust the value of τd. The list of cases

included in the parametric study is depicted in table 5.1. For these cases the statistical

behaviour of the turbulence along the flat plate and the acoustic pressure in the far field

are assessed.

τ τ/τd τd/∆t

Test case 1 20.86 700 10

Test case 2 20.86 150 50

Test case 3 20.86 150 100

Test case 4 20.86 70 100

Test case 5 20.86 70 200

Test case 6 20.86 20 350

Table 5.1: List of cases considered to adjust the value of τd.

Figure 5.9 shows the theoretical time correlation of U given by Eq. (5.27) as produced

by the second-order Langevin model for different values of τd against the target time

correlation exp(−t/τ) that we aim to capture. We can see that for ratios τ/τd larger than

70 the error is smaller than 2%, however for ratios τ/τd around 20 the error increases to

about 4%. An important feature is that by increasing the value of τd (τ/τd → 1), the

time correlation of U is overpredicted by the second-order Langevin model. This means

that if τd is not sufficiently small compared to τ , the effects of loss of correlation in time

determined by the integral length scale of the turbulence are partially neglected.

Figure 5.10 depicts both theoretical and numerical two-point two-time correlations R11

and R22 for points along the airfoil at distance r/c = 0.6. Overall, good agreement

is obtained when comparing numerical and analytical correlations. Numerical results

capture the shape inherited from the Gaussian filter and also the loss of correlation due

to the random change in the strength of the vortices. The worst fit between numerical
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Figure 5.9: Target exponential time correlation of U (—) versus theoretical correlation
given by the second-order Langevin model for different values of τd. τ/τd ≈ 700 (B),

τ/τd ≈ 150 (×), τ/τd ≈ 70 (◦), and τ/τd ≈ 20 (C).

and analytical results is found for τ/τd ≈ 20 due to the poor approximation of exp(−t/τ)

by the time correlation of U , as seen in Figure 5.9.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

t u
0
 / c

R
11

(r
,t)

 / 
K

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.2

0.1

0.4

0.7

1

t u
0
 / c

R
22

(r
,t)

 / 
K

Figure 5.10: Two-point two-time correlations R11 (left) and R22 (right) for r/c =
0.6. Solid lines represent analytical results. Symbols stand for numerical correlations
obtained with the second-order Langevin model for τ/τd ≈ 700 (B), τ/τd ≈ 150 (×),
τ/τd ≈ 70 (◦), and τ/τd ≈ 20 (C). Averages taken from 25,000 samples at a sampling

every 20∆t.

It has been shown that if τd is not sufficiently small compared to τ then the second-order

Langevin model in Eq. (5.31) overpredicts the correlation in time of the vortex strength.

This can also be illustrated by plotting the time evolution of the strength of the vortex

particles for the different values of τd. In Figure 5.11 the time evolution of a given

vortex particle modelled with the second-order Langevin model for different values τd

is compared against the time evolution of the same vortex particle modelled with the

standard Langevin equation in Eq. (5.10). We can see that a much smoother behaviour

is obtained with the second-order model compared to the standard Langevin equation.
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The larger the value of the τd is, the smoother the solution is until the point where the

strength is almost independent of time.
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Figure 5.11: Time evolution of the strength of a given vortex particle modelled by
the standard Langevin equation (—) versus the second-order Langevin model (—).

τ/τd ≈ 700 (a), τ/τd ≈ 150 (b), τ/τd ≈ 70 (c), and τ/τd ≈ 20 (d).

Therefore, we can conclude that provided that the small time scale τd is properly selected

the exponential time decorrelation of the turbulence can be captured by modelling the

rate of change of the vortex particles with the second-order Langevin model in Eq. (5.31).

We now focus on the acoustic field predicted when using the second-order Langevin

model for different ratios τ/τd and in how the spurious sound sources radiating at high

frequencies introduced by the standard Langevin equation can be removed. Noise levels

in the far field are computed using the same procedure as for the results obtained for

the case of frozen turbulence in chapter 4.

Figure 5.12 depicts the sound pressure levels for an observer at five different locations:

30, 60, 90, 120, and 150 degrees from the downstream direction. Numerical and analyt-

ical results for frozen turbulence are compared against numerical sound pressure levels

obtained with the second-order Langevin model for the values of τd under investigation.

For the smallest ratio, τ/τd ≈ 20, similar SPL are predicted either by assuming frozen

or evolving turbulence. However, for this case, τd is too large and the second-order

Langevin model underestimates the loss of correlation in time as shown in Figure 5.9.

In contrast, for the smallest value of τd considered here, τ/τd ≈ 700, sound pressure

levels in the far field are similar to those obtained with the standard Langevin equa-

tion showing large sound levels at high frequencies especially for upstream locations, see

Figure 5.4.
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Figure 5.12: Analytical (—) and numerical (− · −) SPL for frozen turbulence versus
numerical results for the case of evolving turbulence computed with τ/τd ≈ 700 (B),
τ/τd ≈ 150 (×), τ/τd ≈ 70 (◦), and τ/τd ≈ 20 (C). Observers located at 30◦ (a), 60◦

(b), 90◦ (c), 120◦ (d), and 150◦ (e).

5.2.3.3 Influence of the numerical time step

We now investigate the sensitivity of the results to the numerical time step ∆t. Numer-

ical results depicted in Figure 5.12 have all been computed using the same time step for

the numerical integration corresponding to a CFL number of 0.8 and it is four orders of

magnitude smaller than the integral time scale τ of the turbulence.

The small time scale τd should be sufficiently large compared to the numerical time step

in order to discretise Eq. (5.31) accurately. Therefore, the influence of the ratio τd/∆t

in far-field noise levels is now discussed for the ratios τ/τd ≈ 70 and τ/τd ≈ 150.

Sound pressure levels for the ratio τ/τd ≈ 70 computed with numerical time steps

corresponding to τd/∆t ≈ 100 and τd/∆t ≈ 200 are depicted in Figure 5.13. Simulation

results obtained with both time steps predict the similar levels of noise for the five

locations considered and only at 150 degrees a disagreement of about 1 dB in amplitude

is found. Note that sound pressure levels at 150 degrees are at least 15 dB bellow what
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it is observed at downstream locations. This suggest that the numerical results converge

for the largest time step, τd/∆t ≈ 100.
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Figure 5.13: Analytical (—) and numerical (− · −) SPL for frozen turbulence versus
numerical results for the case of evolving turbulence computed with τ/τd ≈ 70 and
numerical time steps corresponding to τd/∆t ≈ 100 (×) and τd/∆t ≈ 200 (◦). Observers

located at 30◦ (a), 60◦ (b), 90◦ (c), 120◦ (d), and 150◦ (e).

Figure 5.14 shows far-field sound pressure levels for different locations computed with

τ/τd ≈ 150 and numerical time steps corresponding τd/∆t ≈ 50 and τd/∆t ≈ 100.

Similar SPL are predicted for downstream locations, however at upstream locations

(especially at high frequencies) they are still dependent on the numerical time step

showing that numerical results have not converged for τd/∆t ≈ 50. (This implies that

results shown in Figure 5.12 for τ/τd ≈ 700 were also dependent on the time step.)

Figure 5.15 compares far-field results for τ/τd ≈ 70 against τ/τd ≈ 150 where for each

case the time step is approximately a hundred times smaller than the corresponding τd.

We can see that similar sound pressure levels are predicted in both cases. Therefore,

the method is not highly dependent on the value of the small time scale τd provided

that the time step used in the discretisation is small enough. The computational cost of

the method is higher as the numerical time step decreases; hence one could argue that

selecting the small time scale τd such that τ/τd ≈ 70 is more desirable than τ/τd ≈ 150.
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Figure 5.14: Analytical (—) and numerical (− · −) SPL for frozen turbulence versus
numerical results for the case of evolving turbulence computed with τ/τd ≈ 150 and
numerical time steps corresponding to τd/∆t ≈ 50 (×) and τd/∆t ≈ 100 (◦). Observers

located at 30◦ (a), 60◦ (b), 90◦ (c), 120◦ (d), and 150◦ (e).

In addition, note the numerical time step corresponding to τ/τd ≈ 70 yields a CFL

number of 0.8.

5.2.3.4 Conclusions

From the validation of the second-order Langevin model in Eq. (5.31) performed in this

section it can be concluded that reliable far-field noise levels are predicted by the stochas-

tic method when ensuring that the small time scale τd is at least about 70 times smaller

than the integral time scale τ and about a hundred times larger than the numerical time

step ∆. For these parameter values, the second-order Langevin model achieves accurate

two-point two-time correlations along the airfoil but the large amplitude of noise levels

at high frequencies associated with spurious sound sources predicted by the standard

Langevin equation in Eq. (5.10) are no longer present.
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Figure 5.15: Analytical (—) and numerical (− · −) SPL for frozen turbulence versus
numerical results for the case of evolving turbulence computed with τ/τd ≈ 70 and time
step ∆t (◦) and with τ/τd ≈ 150 and ∆t/2 (×). Observers located at 30◦ (a), 60◦ (b),

90◦ (c), 120◦ (d), and 150◦ (e).

Figure 5.16 shows a snapshot of the acoustic pressure field around the airfoil obtained

by the second-order Langevin model. It can be observed that the large content of sound

waves with small wavelengths radiating from the plate predicted when using the standard

Langevin equation are not found in this case, see Figure 5.3.

Far-field directivities at the Strouhal numbers St = 4 and St = 8 are shown in Figure 5.17

where angles are measured from the downstream direction. It can be seen that for both

Strouhal numbers larger noise levels are found at downstream locations. This is in

contrast with directivities predicted by the standard Langevin equation where larger

amplitudes are predicted for upstream locations (especially for the highest Strouhal

number), see Figure 5.5.

Figure 5.18 depicts the overall acoustic power radiated from the airfoil showing that the

larger amount of power at high frequencies predicted when using the standard Langevin

equation (see Figure 5.6) is not present when modelling the time correlation of the

turbulence with the second-order Langevin model provided that the small time scale τd
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Figure 5.16: Snapshot of the acoustic pressure field for the Gaussian spectrum gen-
erated with a second-order Langevin model.
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Figure 5.17: Far-field directivity at St = 4 (top) and St = 8 (bottom). Analytical
(—) and numerical (− · −) directivity for frozen turbulence versus evolving turbulence

(− −) with τ/τd ≈ 70.

and the numerical time step ∆t are properly selected. Therefore, it is our understanding

that the higher amplitude of noise levels predicted by the standard Langevin equation at

high frequencies (especially significant at upstream locations) are due to spurious sound

sources related with the time discretisation of the sound sources.

We are now confident that the stochastic method predicts reliable far-field noise levels

when modelling the time correlation of the turbulence with the second-order Langevin

model in Eq. (5.31), so we look at the influence of evolving turbulence.
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Figure 5.18: Analytical (—) and numerical (−·−) acoustic power for frozen turbulence
versus numerical results (− −) for the case of evolving turbulence.

5.3 Influence of the integral time scale of the turbulence

In this section the sensitivity of the far-field noise levels to the integral time scale τ of

the turbulence is evaluated. The integral time scale of the turbulence is a function of

the dissipation rate, ε, and a weak function of the Reynolds number. The value of the

integral time scale used so far in this work is based on the scaling procedure proposed

by Pope [14]:

τ ≈ 2K

C0ε
, (5.35)

where C0 is an empirical constant. This scaling procedure relies on the experimental

constant C0 whose value is not precisely established, therefore it is worth to evaluate the

sensitivity of the results obtained so far to such empirical constant, or in other words

the sensitivity of the results to the integral time scale of the turbulence.

Numerical results presented so far in this chapter for evolving turbulence were obtained

by assuming that the empirical constant C0 was 2.1. The value C0 = 2.1 was obtained

from measurements of a thermal wake at low Reynolds numbers and even though τ is

only a weak function of the Reynolds number a different estimate might be required

in this case. In addition, from a theoretical point of view, the derivation of the scaling

process indicates that C0 should be a good estimate of the Kolmogorov universal constant

C0 which is thought to be greater than 4 and possibly around 6 [14].

By selecting different values of C0, different integral time scales τ are obtained. The

smaller C0 is, the larger the integral time scale is, and therefore the more similarities

should be with the case of frozen turbulence (τ → ∞). In contrast, as C0 → C0 the

smaller the integral time scale becomes emphasising the effects of the time decorrelation.

We now assess the dependency of the scattered acoustic field on the constant C0 and

therefore on the integral time scale of the turbulence.

Two additional test cases are considered to investigate the sensitivity of the far-field

radiated sound on the integral time scale of the turbulence, see table 5.2. The first one,
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assumes C0 = 0.66. This choice is in agreement with Krasnoff et al. [67] who proposed

that τ ≈ 3K/ε. For this case the integral time scale is larger than for C0 = 2.1.

Therefore, in order to emphasis the effects of the time correlation in the turbulence,

a second test case with a smaller integral time scale corresponding to C0 = 3.54 is

considered.

As an estimate of the influence of the integral time scale on the statistical behaviour of

the turbulence, the loss of correlation in time for points that are one flat plate away cor-

responding to each of the integral time scales under investigation is stated in table 5.2.

Note that the values of the small time scale τd and the numerical time step ∆t corre-

sponding to each integral time scale τ in table 5.2 are selected following the guidelines

obtained in the previous section.

C0 τ τ/τd τd/∆t Time decorrelation u0τ/λ

Test case 1 0.66 66.40 220 100 5% 340

Test case 2 2.1 20.86 70 100 12% 100

Test case 3 3.54 12.38 70 180 20% 65

Table 5.2: List of cases considered to assess the influence of the integral time scale of
the turbulence in the scattered acoustic field.

Sound pressure levels in the far field obtained with the three integral time scales under

consideration are shown in Figure 5.19. Sound pressure levels at downstream locations

appear to be independent of the integral time scale of the turbulence. If we focus on

SPL at upstream locations, we can see that by reducing the integral time scale of the

turbulence there is a slight increase of sound levels at high frequencies. Noise levels with

larger amplitudes are still 15 dB below of what is observed at downstream locations

and therefore their contribution to the overall sound power at that frequency is not

significant, as shown in Figure 5.20.

In summary, a maximum of 20% loss of correlation between the leading and the trail-

ing edge has been considered. For this test case, the smallest integral time scale of

the turbulence, τ = 12.38, is still much larger than the typical time scale of a vortex

passing near the leading edge, λ/u0 = 0.19. Since most of the noise is radiated from

the leading edge, it is plausible to think that noise levels produced by interaction with

frozen turbulence should be similar to those produced by a turbulent flow characterised

by τ = 12.38. The ratios between the integral length scales of the turbulence considered

here and and the typical time scale of a vortex passing near the leading edge are given

in table 5.2.

Note that for the integral time scale of the turbulence to be of the order of the typical time

scale of a vortex passing next to the leading edge, the scaling procedure in Eq. (5.35)

would require C0 ≈ 230. Even though the value of C0 is not well defined, it is a

weak function of the Reynolds number so such a large value is rather unrealistic. In
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Figure 5.19: Analytical (—) and numerical (− · −) SPL for frozen turbulence versus
numerical results for the case of evolving turbulence computed with the largest (◦), the
intermediate (×) and the smallest (B) integral time scale. Observers located at 30◦

(a), 60◦ (b), 90◦ (c), 120◦ (d), and 150◦ (e).
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Figure 5.20: Analytical (—) and numerical (− · −) acoustic intensity for frozen tur-
bulence versus numerical results for the case of evolving turbulence computed with the

smallest (◦) and the largest (B) integral time scale.

addition, the scaling procedure is based on the fact that C0 should be of the order of

the Kolmogorov universal constant which is thought to be between 4 and 6.
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5.4 Conclusions

The effects of evolving turbulence have been included in the method to generate synthetic

turbulent flows by introducing time-dependence in the strength of each vortex-particle.

Time correlation in synthetic turbulence is usually modelled by Langevin equations,

however a standard Langevin equation is not suitable for coupling with the linearised

Euler equations solver used in this work due to the lack of smoothness of the resulting

synthetic velocity field. It has been shown here that by modelling the time-dependence

of the strength of the vortex-particles with a standard Langevin equation significant

spurious noise sources are generated at high frequencies.

A possible solution to avoid modifying the LEE solver (such as modifying the Runge-

Kutta scheme performing the time integration) is to implement a filter in time that

removes the smallest wavelength components. This possibility was disregarded due to

the computational complexity associated to it.

A second-order Langevin model has been proposed instead. The second-order Langevin

model captures the statistical properties of turbulent flows when assuming that the

integral time scale of the turbulence is large compared to a smaller time scale which

is used here as a numerical parameter. In contrast with standard Langevin equations,

second-order Langevin models describe the turbulent diffusion as a smooth process.

Therefore they are suitable for coupling with the Runge-Kutta scheme implemented in

the LEE solver to perform the time integration.

The effects of evolving turbulence on broadband fan interaction noise have been assessed

for the same test case considered in chapter 4. Reliable far-field results have been

obtained using the second-order Langevin model. They show a very limited increase

in noise levels when compared with the case of frozen turbulence apart from very high

frequencies at upstream locations where noise is negligible. The limited influence of

modelling the time correlation of the turbulence can be explained by noting that most

of the noise is generated at the leading edge and that the physical integral time scale

of the turbulence is much larger than the typical time scale of a vortex-particle passing

near the leading edge. The disparity between these time scales implies that the strength

of the vortex particles varies very little as they pass near the leading edge generating

almost the same turbulent velocity field at that point.

In this chapter, the numerical method has been validated only for the Gaussian spectrum.

Note however, that the conclusions reached apply as well for the Liepmann and von

Kármán filters as the integral time scale of the turbulence and the typical time scale of

a vortex-particle passing near the leading edge are independent of the energy spectra.





Chapter 6

Inhomogeneous Non-stationary

Turbulence

In this chapter the stochastic method is modified to provide a more realistic description

of rotor-stator interaction noise. Broadband noise is produced when the rotor turbulent

wakes impinge on the outlet guide vanes (OGVs or stator vanes) and it is considered

one of the main sources of broadband fan noise in modern turbofan engines.

The turbulence downstream of the fan is strongly inhomogeneous and non-stationary. In

contrast with Fourier-mode methods which are difficult to apply to model inhomogeneous

turbulence [4], we shall demonstrate that random-vortex-particle methods are general

enough to deal with inhomogeneous non-stationary turbulence accurately.

The random-vortex-particle method is extended to represent non-stationary inhomoge-

neous turbulence by combining it with the wake model proposed by Jurdic [18]. This

wake model allows for strong variations of the turbulent kinetic energy. Three different

implementations of the stochastic method are developed and validated. In addition,

to illustrate the capabilities of the method, the statistical properties of the synthetic

turbulence along the OGV and far-field noise levels are assessed for different wake con-

figurations.

6.1 Synthetic inhomogeneous non-stationary turbulence

In this section, the random-vortex-particle method originally introduced in section 2.2

is extended to generate synthetic inhomogeneous non-stationary turbulence. In contrast

with the case considered in the previous chapters of statistically stationary homogeneous

turbulent flows, all statistical quantities of the turbulence such as kinetic energy will now

be considered position and time dependent.

115
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We begin by discussing different implementations of the random-vortex-particle method

to generate synthetic inhomogeneous non-stationary turbulence. Then a wake model

describing the turbulent flows found in the interstage between the fan and the OGVs

is used to obtain the input parameters for the stochastic method. Finally, theoretical

two-point two-time correlations for each of the implementations are presented.

6.1.1 Random-Vortex-Particle Method

In chapter 2 it was shown that the random-vortex-particle method generate turbulence

by summing up the contributions of a series of vortex particles with random strengths,

see section 2.3.1. The velocity field reads:

u′i(x, t) = εij

N∑
n=1

∂

∂xj
G(|x− xn(t)|,K, λ)Un(t), (6.1)

where εij stands for the alternating symbol. G is the spatial filter that controls the

spatial correlation and spectrum of the turbulence. Un(t) can be interpreted as the

strength of the vortex particle located at xn and controls the temporal properties of the

turbulence.

In previous chapters, we focussed on statistically stationary homogeneous turbulence

and hence the kinetic energy K and the integral length scale λ of the turbulence were

constant. Here, our aim is to generate synthetic inhomogeneous non-stationary turbu-

lence in which case the statistics of the turbulence are position and time dependent.

Based on the fact that the filter G is a function of the point x at which the velocity field

is computed and a function of the vortex location xn, different implementations of the

random-vortex-particle method in Eq. (6.1) can be considered1. This consideration was

also pointed out by Ewert in Ref. [55] when comparing broadband trailing edge noise

predicted with the RPM method (see section 2.1.2.3) against laboratory experiments.

In contrast with Ref. [55], where the influence of the implementation on the predicted

noise levels is not discussed, here different implementations are formulated and validated

in details.

We first present the implementations of the stochastic method to generate synthetic

inhomogeneous non-stationary turbulence, and the differences between them are then

discussed.

1The implementations of the stochastic method to generate synthetic inhomogeneous non-stationary
turbulence are presented here directly in a Lagrangian formulation. Note that the derivation of the
stochastic method in a continuous frame performed in chapter 2 still holds here but the definition of the
statistics of the turbulence (correlations, spectra,...) depend now not only on distance and time delay
but also on position and time.
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6.1.1.1 Implementations

Implementation 1

The first extension of the random-vortex-particle method in Eq. (6.1) to deal with inho-

mogeneous non-stationary turbulence is based on the assumption that the statistics of

the turbulence are defined at the vortex location xn. Using that K1/2 is a scaling factor

in the filter (see Eq. (2.60)), G = K1/2G̃ and we get:

u′i(x, t) = εij

N∑
n=1

K1/2(xn, t)
∂

∂xj
G̃(rn, λ(xn, t))Un(t), (6.2)

where rn = |x− xn(t)|.

Implementation 2

The second extension of the stochastic method assumes that the statistics of the turbu-

lence are specified at the point x yielding:

u′i(x, t) = εij

N∑
n=1

∂

∂xj

[
K1/2(x, t)G̃(rn, λ(x, t))

]
Un(t). (6.3)

Implementation 3

There is yet another possible implementation of the random-vortex-particle method to

generate synthetic inhomogeneous turbulence. In this case, the statistics of the turbu-

lence are defined at the point x but instead of specifying the kinetic energy directly

within the stream function, it is imposed to the velocity field itself. Thus, the velocity

field is first generated with Eq. (6.1) defining the integral time scale by its local value

λ(x, t) and constant unit kinetic energy, and then it is scaled to achieve the target value

of kinetic energy K(x, t):

u′i(x, t) = εijK
1/2(x, t)

N∑
n=1

∂

∂xj
G̃(rn, λ(x, t))Un(t). (6.4)

6.1.1.2 Discussion

For the special case of locally homogeneous turbulence (the statistics of the turbulence

are slow varying functions of position), the derivatives ofK and λ with respect to position

can be neglected and Implementations 2 and 3 lead to the same formulation. In addition,

the support of the filter is of the order of the integral length scale and for vortex particles

located at distances rn < λ we get that λ(xn, t) ≈ λ(x, t) and K1/2(xn, t) ≈ K1/2(x, t).

Therefore results obtained with Implementation 1 are expected to be similar to those

obtained with any of the other two implementations.
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The sensitivity of the synthetic velocity field to the implementation might be larger

for strongly inhomogeneous turbulence as large variations of kinetic energy and integral

length scale are observed for distances that are small compared to the integral length

scale. The influence of the implementation for strongly inhomogeneous non-stationary

turbulence on the statistical properties of the synthetic turbulence and radiated sound

field will be evaluated in section 6.2.

It is our understanding that Implementation 1 provides a better representation of the

physics of the problem than Implementations 2 and 3. It models the turbulence as

a cloud of vortex particles where each vortex accounts for the actual properties of the

turbulence at its location. However, Implementations 2 and 3 might have computational

advantages for the application of broadband fan interaction noise. While Implementation

1 enforces the definition of the statistics on the whole region where vortex particles are

distributed, Implementations 2 and 3 require the values of the statistics only at a few

grid points. In this sense, Implementation 3 is the most desirable since Implementation

2 entails computing the spatial derivative of the kinetic energy.

Another aspect to highlight is that if the input parameters of the stochastic method are

provided by RANS simulations, then defining the kinetic energy and the integral length

scale at the boundaries present an added difficulty since the velocity field is zero at the

boundary. One would have then to chose an alternative location to pick the values of

the statistics. In the approach followed in this work, the turbulence is fully specified

upstream of the airfoil and then computed with the random-vortex-particle method as

if there were no airfoil. Therefore, in this case the statistics of the turbulence can be

defined as a function of physical point or of vortex location without ambiguity.

6.1.2 Application to rotor-stator interaction

In order to illustrate the capabilities of the random-vortex-particle method in generating

inhomogeneous non-stationary turbulence, the problem of broadband fan noise due to

rotor-stator interaction has been selected. The turbulence generated by the rotor blades

impinging on the stator vanes is strongly inhomogeneous and non-stationary. In addi-

tion, existing analytical models describing the statistics of the turbulence upstream of

the OGVs can be used to obtain input parameters for validating the stochastic method.

Firstly, the general problem is briefly described. Then the wake model used here to

specify the statistics of the turbulence downstream of a rotor is presented and imple-

mented within the different extensions of the random-vortex-particle method discussed

in the previous section.
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6.1.2.1 Turbulence downstream a rotor

Turbulent flows behind a rotor are non-stationary but their properties are periodic over

one full rotation or from blade to blade if it is assumed that the blades are statistically

identical. Therefore, the statistics of the turbulence downstream of a rotor can be

described as cyclo-stationary [18]. In stationary signals the statistical properties are

independent of time. In contrast, for the case of cyclo-stationary signals the statistical

properties of the signal depend on time.

A sketch of a typical rotor-stator configuration where the geometry of the rotor blades

and the stator vanes are modelled as flat plates is shown in Figure 6.1. This sketch

shows the turbulent wakes of the rotor blades which are convected with the mean flow

towards the stator vanes. For each turbulent wake the maximum turbulence intensity

coincides with the wake centreline and varies across the wake following approximately a

Gaussian distribution [68]. In addition, the turbulent wakes spread as they travel away

from the rotor blades. The width of the wake can be used to estimate the integral length

scale of the turbulence [18].

Figure 6.1: Sketch of a rotor-stator cascade model showing the variation of kinetic
energy due to the rotor turbulent wakes.

The flow upstream of the fan is already turbulent, so the flow in the region between

the wakes is also turbulent although its intensity is weaker than the wake turbulence.

The integral length scale of the background turbulence is thought to be smaller than the

integral length scale of the wake turbulence (vortices within the wake are larger than

those in the background turbulence) but the ratio between them is not well established.
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6.1.3 Wake model

In this thesis, the turbulent flow in the rotor-stator interstage is analytically described by

a wake model proposed by Jurdic in Ref. [18]. The wakes generated by the rotor blades

are statistically identical and modelled as a train of Gaussian functions. The model

assumes that background turbulence and wake turbulence are uncorrelated. The back-

ground turbulence is isotropic, stationary and homogeneous. The spectral characteristics

of the turbulence within the wake are also modelled as homogeneous and isotropic but

modulated by a periodic train of Gaussian functions leading to cyclo-stationary non-

homogeneous turbulence.

Jurdic proposed two implementations. The first implementation is based on a mod-

ulation of homogeneous isotropic velocity fields by a train of Gaussian functions. The

second implementation models directly the statistics of the turbulence in the rotor-stator

interstage section. Both models provide similar levels of accuracy with measurements.

Since our aim is to obtain a description of the kinetic energy and the integral length scale,

the second implementation is more straightforward. It models the kinetic energy as the

sum of the background mean square velocity w2
b and the wake mean square velocity w2

w

at the wake centreline modulated by a train of Gaussian functions:

K(x, t) = w2
b + w2

w

∞∑
m=−∞

exp

[
− ln(2)

(
x− u0t−mu0T

Lw

)2
]
. (6.5)

Lw is the half-wake width. T is the period between two consecutive wakes and it is

determined by the rotor blade spacing and speed of the rotor. u0 is the convection

velocity of the wakes. Note that here the directivity effects on wake propagation are

neglected and the turbulent kinetic energy is described as it arrives parallel to the OGV.

The wake model in Eq. (6.5) is valid for rotor-stator configurations where there is no

overlapping between adjacent wakes. As shown in Ref. [62], if the period between wakes

T is small compared to the half-wake width Lw so that adjacent wakes overlap, the

model leads to unphysical correlation between the wakes.

Following Jurdic’s approach, the integral length scale of the wake turbulence is esti-

mated using the half-wake width Lw as λ = 0.42Lw. In addition, background and wake

turbulence are assumed to be characterised by the same integral length scale. This

assumption has previously been considered, for instance in Refs. [18, 69].

In this work, the wake model in Eq. (6.5) is used to define the values of turbulent kinetic

energy and integral length scale upstream of the OGV which are then introduced as

input parameters in the random-vortex-particle method. We assume that the spreading

of the wakes along the OGV is negligible and hence the integral length scale of the

turbulence remains constant. Therefore, for an observer moving with the mean flow the

train of turbulent wakes form a frozen pattern moving along the stator vanes.
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6.1.4 Statistical properties of the turbulence

Analytical expressions for the two-point two-time correlations of the turbulence are now

presented and will be later used to validate the implementations of the random-vortex-

particle method presented in Eqs. (6.2) - (6.4) with input parameters provided by the

wake model in Eq. (6.5).

For non-stationary inhomogeneous turbulence, the two-point two-time correlation tensor

is defined as Rij(x1, r, t1, t) = 〈u′i(x1, t1) u
′
j(x2, t2)〉, where r = x2−x1 and t = |t2− t1|.

For each implementation of the random-vortex-particle method in Eqs. (6.2) - (6.4),

different analytical expressions are obtained.

For velocity fields obtained with Implementation 1 in Eq. (6.3) based on the definition

of the statistics of the turbulence as functions of the vortex location xn, the two-point

two-time correlations R11 and R22 in the streamwise direction, r = re1, are given by:

Rii(x1, r, t1, t) = RU (t)
N∑
n=1

K(xn, t1)G̃,j(rn)G̃,j(rn + r − u0t), (6.6)

where rn = |x1−xn(t)|. The subscript , j denotes the partial derivative with respect to

the jth component. Closed-form expressions for R11 and R22 are obtained by providing

specific expressions for the energy spectrum.

If the turbulence is obtained with Implementation 2 in Eq. (6.2) based on the definition

of the kinetic energy at point x, we get:

R11(x1, r, t1, t) = −RU (t)K(x1, t1)K
1/2(x1 + r, t2)(G̃,2 ∗ G̃,2)(r − u0t), (6.7)

R22(x1, r, t1, t) = −RU (t)

{([
K1/2

]
,1

(x1, t1)K(x1 + r, t2)

− K1/2(x1, t1)
[
K1/2

]
,1

(x1 + r, t2)

)
(G̃ ∗ G̃,1)(r − u0t)

+
[
K1/2

]
,1

(x1, t1)
[
K1/2

]
,1

(x1 + r, t2)(G̃ ∗ G̃)(r − u0t)

−K1/2(x1, t1)K
1/2(x1 + r, t2)(G̃,1 ∗ G̃,1)(r − u0t)

}
.

(6.8)

Finally, the two-point two-time correlations R11 and R22 in the streamwise direction for

Implementation 3 in Eq. (6.4), are given by:

R11(x1, r, t1, t) = −RU (t)K1/2(x1, t1)K
1/2(x1 + r, t2)(G̃,2 ∗ G̃,2)(r − u0t), (6.9)

R22(x1, r, t1, t) = −RU (t)K1/2(x1, t1)K
1/2(x1 + r, t2)(G̃,1 ∗ G̃,1)(r − u0t). (6.10)
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Note that since the kinetic energy defined in Eq. (6.5) does not vary in the normal

direction, when combining Implementations 2 and 3 with Eq. (6.5) the same expression is

obtained for the streamwise component of the velocity field. Hence both implementations

yield the same theoretical correlation R11. In contrast, expressions for correlation of the

normal velocity component, R22, differ in the terms involving spatial derivatives of the

kinetic energy in the streamwise direction.

6.2 Validation

In this section, the implementations in Eqs. (6.2) - (6.4) of the random-vortex-particle

method for inhomogeneous non-stationary turbulence are applied to the same test case

to assess the difference in predicted acoustic field.

The sensitivity of the numerical results to the implementation is first tested on the

statistics of the synthetic turbulence and then sound pressure levels in the far field are

compared against Amiet’s analytical solution modified to account for the effect of the

turbulent wakes impinging on the stator vanes. More details on the modified analytical

solution can be found in Appendix C.2.

6.2.1 General problem

Due to the complexity of the rotor-stator configuration, a number of simplifications are

usually made, see Figure 6.1. A general approach is to unroll the rotor-stator configu-

ration to form a periodic system and then use strip theory for each section of the stator

span to reduce the geometry of the vanes to two dimensions. In a further simplification

the stator vanes can be assumed to be identical and their geometry simplified to a flat

plate. Under these constraints and above a critical frequency at which the acoustic power

approximately scales with the number of stator vanes [70], the rotor-stator interaction

problem can be reduced to an isolated flat plate.

It is also assumed here that the effects of the duct enclosing the rotor-stator configuration

are negligible and therefore consider that the noise radiates in the free field. This

assumption is reasonable if the acoustic wavelength is small compared to the distance

between the noise sources and the duct wall [18].

6.2.2 Test case

The test case considered is an isolated flat plate with zero angle of attack interacting

with inhomogeneous non-stationary turbulence. The problem is made non-dimensional

using the chord of the airfoil, mean flow density and sound speed.
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The parameters used in this validation are similar to those considered in previous chap-

ters, see for instance section 4.1. The turbulence is convected by a uniform mean flow

with Mach number 0.362 in the x-direction. In contrast with previous chapters, the tur-

bulent kinetic energy is now a function of position and time which is specified upstream

of the OGV by the wake model introduced in section 6.1.3. The half-wake width Lw

upstream of the OGV is set to about 17% of the chord of the flat plate and the effects of

wake spreading are neglected. The period between adjacent wakes is set to T = 10Lw/u0

and the level of background turbulence to 10%. Using the relation between the half-wake

width and the integral length scale proposed by Jurdic we have λ = 0.07.

Note that for this test case the period between wakes represents about ten times the

characteristic time of travelling along the wake Lw/u0 ensuring that there are no over-

lapping wakes.

6.2.3 Computational setup

The computational setup implemented for this test case coincides with that used for the

simulation of frozen turbulence in chapter 4. To simplify the discussion and focus on

the effects of inhomogeneous non-stationary turbulence, simulation results are presented

only for a Gaussian spectrum. Please refer to section 4.2 for a full description of the

computational set up.

In contrast with the test cases considered in previous chapters, the kinetic energy of the

turbulence now varies in time according to Eq. (6.5). Even though the background and

the wake turbulence are assumed incoherent, the same set of vortex particles is used

to recreate background and wake turbulence. Due to the linearity of the problem it

could be possible to consider two sets of uncorrelated vortices and then sum up their

contributions to the velocity field, however from a computational point of view it is more

efficient to use one single set.

Also in contrast with previous chapters, the acoustic pressure is now non-stationary.

Following the usual treatment of experimental data, the power spectral density of nu-

merical results is obtained by computing the time average. Therefore, the sound pressure

levels correspond to the first harmonic of the time series. Note that to obtain accurate

statistics a sufficiently large amount of wakes must be captured within the time series.

6.2.4 Synthetic turbulence

The time variation of the kinetic energy at a fixed point on the flat plate is shown in

Figure 6.2. Since the typical size of the vortices is λ, roughly five vortices fit within the

wake width. Therefore, large variations of kinetic energy are observed at small distances

yielding strongly inhomogeneous turbulence.
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Figure 6.2: Turbulent kinetic energy at a given point xi versus time. Wake model
with Lw = 0.17/c, T = 10Lw/u0, and 10% level of background turbulence.

The synthetic velocity fields obtained with each of the three implementations proposed

in Eqs. (6.2) - (6.4) are shown in Figure 6.3. The three velocity fields are found to be

very similar. Note that the velocity component in the streamwise direction is defined

by the same equation with either Implementation 2 in Eq. (6.3) or Implementation 3 in

Eq. (6.4).
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Figure 6.3: Synthetic turbulent velocity in the streamwise direction (top) and normal
direction (bottom) versus time. Implementation 1 (—). Implementation 2 (◦). Imple-
mentation 3 (×). Dashed line shows the square root of the turbulent kinetic energy.
Wake model with Lw = 0.17/c, T = 10Lw/u0, and 10% level of background turbulence.

The effects of the variation of kinetic energy in time can be observed in the velocity field

(especially in the normal component) but the largest amplitudes of the instantaneous

velocity field do not necessarily coincide with the maximum of the kinetic energy. For a

particular time, an increase in kinetic energy can be balanced by small vortex strengths

or vice versa, and hence the amplitude of the velocity is not totally controlled by the

amplitude of the kinetic energy. Note that since the vortex strengths follow a zero-mean
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Figure 6.4: Contour plots of the numerical correlations R11 (left) and R22 (right)
computed with Implementation 1. Wake model with Lw = 0.17/c, T = 10Lw/u0, and

10% level of background turbulence.

distribution, the statistical properties of the velocity field are not affected, as illustrated

in Figure 6.4.

Figure 6.4 shows the time evolution of the numerical two-point correlations R11 and

R22 with respect to the centre of the flat plate computed with Implementation 1. The

modulation of the kinetic energy can be observed in the correlation featuring strong

peaks when the centre of the wakes reaches the centre of the flat plate.

The statistical properties of the turbulence along the flat plate are now assessed. We first

evaluate the impact of implementation on the statistical properties by comparing the

theoretical correlations in Eqs. (6.6) - (6.10). We then validate the numerical results by

comparing the stochastically generated correlations against the corresponding analytical

expression.

Figure 6.5 shows the difference between analytical correlations corresponding to the

implementations of the stochastic method over one period T . The two-point correlation

R11 appears to be only slightly influenced by the definition of kinetic energy. Note that

Implementations 2 and 3 lead to the same theoretical correlations R11. The correlation

of the normal component R22 seems to be more sensitive to the implementations. The

largest difference is found between Implementations 1 and 2 with an error of up to 6%.

To better illustrate these differences, the two-point correlation R22 is shown in Figure 6.6

at a time when the centre of the wake reaches the centre of the airfoil. We can see that

similar correlations are predicted from the different implementations.

In order to estimate the numerical error for the three implementations in Eqs. (6.2)

- (6.4), the numerical correlations R11 and R22 are now compared against the corre-

sponding analytical correlations. Figure 6.7 shows a snapshot of the difference between

theoretical and numerical two-point two-time correlations R11 and R22 computed with
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Figure 6.5: Contour plots of the difference between analytical two-point correlations
R11 (left) and R22 (right) computed with respect to the centre of the flat plate. Top:
Difference between Implementations 1 and 2. Centre: Difference between Implementa-
tions 1 and 3. Bottom: Difference between Implementations 2 and 3. Wake model with

Lw = 0.17/c, T = 10Lw/u0, and 10% level of background turbulence.

respect to the centre of the flat plate over one period T . The numerical method seems

to have more difficulties in capturing the correlation of the streamwise component over

the normal component, especially near the peak at r = 0. Good agreement is obtained

for all three implementations showing similar levels of error of about 4%.

In a further attempt to clarify this error, analytical and numerical two-point correlations

are compared in Figure 6.8 for a time when the centre of the wake reaches the centre

of the airfoil. It can be observed that numerical results follow closely the theoretical

correlations. It appears that the most difficult features to capture are the peak at r = 0

and that the correlation tends to zero as the distance increases.

Note that the level of error observed here between numerical and analytical correlations

is slightly larger than in the previous chapters. Due to the cyclo-stationary nature of the
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Figure 6.6: Analytical correlations R22 computed with respect to the centre of the
flat plate at time ti when the centre of the wake reaches the centre of the airfoil.
Implementation 1 (—). Implementation 2 (◦). Implementation 3 (×). Wake model

with Lw = 0.17/c, T = 10Lw/u0, and 10% level of background turbulence.

Figure 6.7: Contour plots of the difference between analytical and numerical two-
point correlations R11 (left) and R22 (right) computed with respect to the centre of
the flat plate over one period T . Top: Implementation 1. Centre: Implementation 2.
Bottom: Implementation 3. Wake model with Lw = 0.17/c, T = 10Lw/u0, and 10%

level of background turbulence.



128 Chapter 6. Inhomogeneous Non-stationary Turbulence

-6 -4 -2 0 2 4 6
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

r / λ

R
11

(r
,t i)

-6 -4 -2 0 2 4 6
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

r / λ

R
22

(r
,t i)

-6 -4 -2 0 2 4 6
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

r / λ

R
11

(r
,t i)

-6 -4 -2 0 2 4 6
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

r / λ

R
22

(r
,t i)

-6 -4 -2 0 2 4 6
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

r / λ

R
11

(r
,t i)

-6 -4 -2 0 2 4 6
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

r / λ

R
22

(r
,t i)

Figure 6.8: Analytical (—) and numerical (◦) two-point correlations R11 (left) and
R22 (right) computed with respect to the centre of the flat plate at time ti when the
centre of the wake reaches the centre of the airfoil. Top: Implementation 1. Centre:
Implementation 2. Bottom: Implementation 3. Wake model with Lw = 0.17/c, T =

10Lw/u0, and 10% level of background turbulence.

turbulence longer time series would be required here to maintain the level of accuracy, as

shown in Figure 4.6, however an error in the 4% margin is not expected to significantly

affect the reliability of predicted far-field noise levels.

6.2.5 Acoustic pressure

Now that the statistical properties of the turbulence have been validated, the sensitivity

of the predicted sound field to the implementation of the stochastic method is assessed.

A snapshot of acoustic pressure in the near field of the flat plate is depicted in Figure 6.9.

It cannot be appreciated here but the evolution of the acoustic pressure shows a cyclic

variation of the sound intensity due to the wakes passing near the flat plate.
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Figure 6.9: Snapshot of the acoustic pressure predicted assuming that the statistics
of the turbulence are specified at the vortex location. Wake model with Lw = 0.17/c,

T = 10Lw/u0, and 10% level of background turbulence.

Figure 6.10 shows sound pressure levels for observers located at 30, 60, 90, 120 and

150 degrees from the downstream direction. Similar noise levels are predicted by all

three implementations in Eqs. (6.2) - (6.4). Therefore, the predicted acoustic field is not

significantly affected by the implementation considered. In addition, numerical results

are in very good agreement with Amiet’s analytical solution.

Far-field directivities for Strouhal numbers St = 4 and 8 are shown in Figure 6.11. Nu-

merical results obtained with the proposed implementations of the stochastic method

predict similar far-field directivities. They are in very good agreement with Amiet’s

analytical solution and it is only for St = 8 at upstream locations that a slight under-

prediction is found. These discrepancies are consistent with what was observed with

homogeneous turbulence in chapter 4.

6.2.6 Conclusions

In this section, the random-vortex-particle method has been validated for the case of

inhomogeneous non-stationary turbulence. The three implementations of the stochastic

method described in Eqs. (6.2) - (6.4) have been used to simulate the same test case and

hence assess the sensitivity of synthetic velocity field and acoustic field to the choice of

implementation.

Differences can be observed on the statistical properties of the turbulence depending on

the implementation of the stochastic method. The influence of the implementation is

stronger for the normal component of the velocity field, especially when computed by
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Figure 6.10: Analytical (—) SPL against numerical results computed with Imple-
mentation 1 (B), Implementation 2 (◦) and Implementation 3 (×). Observers located
at 30◦ (a), 60◦ (b), 90◦ (c), 120◦ (d), and 150◦ (e). Wake model with Lw = 0.17/c,

T = 10Lw/u0, and 10% level of background turbulence.
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Figure 6.11: Directivity at Strouhal numbers St = 4 (top) and St = 8 (bottom).
Amiet’s analytical solution (—). Numerical results computed with Implementation 1
(B), Implementation 2 (◦) and Implementation 3 (×). Wake model with Lw = 0.17/c,

T = 10Lw/u0, and 10% level of background turbulence.
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Implementations 1 and 2. However, the differences are rather limited with the largest

amplitude difference being within a 6% margin.

The sensitivity of predicted far-field noise levels to the implementation of the stochastic

method has also been found negligible and analytical sound pressure levels are accurately

predicted for observes at different far-field locations.

In conclusion, the random-vortex-particle method is general enough to accommodate for

non-stationary inhomogeneous turbulence. For the test case considered here, where no

RANS simulations were used, all three implementations provide reliable far-field noise

predictions.

6.3 Influence of the wake configuration

We now focus on the description of the turbulent wakes generated by the rotor blades

impinging on the stator vanes. The sensitivity of predicted noise levels to the choice of

input parameters for the wake model in Eq. (6.5) is assessed by considering the influence

of the wake separation, followed by the ratio between background and wake turbulence,

and finally the sensitivity to the wake width.

6.3.1 Test case and computational setup

The test case considered here and corresponding computational setup are similar to

those described in section 6.2.2 to assess the sensitivity of the numerical results to the

implementation of the stochastic method. But now all the numerical results presented

are obtained with Implementation 1 of the random-vortex-particle method in Eq. (6.2)

combined with the wake model in Eq. (6.5) for different input parameters.

6.3.2 Influence of the wake separation

In order to evaluate the sensitivity of the predicted noise levels to the wake separation,

three periods are considered: 10Lw/u0, 15Lw/u0 and 20Lw/u0, see table 6.1. For each

case the half-width Lw of the wake is set to 17 % of the stator chord and the integral

length scale can be estimated as λ = 0.07. The level of background turbulence is set

to 10%. The kinetic energy corresponding with these cases is shown in Figure 6.12 as a

function of time. Note that due to the restriction imposed by the wake model Eq. (6.5),

we only consider cases where the wakes are not overlapping.

The statistical properties of the synthetic turbulence along the flat plate are assessed by

computing two-point two-time correlations R11 and R22 defined by Eq. (6.6) with respect

to the centre of the flat plate. Figure 6.13 shows the difference between theoretical and
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T Lw w2
2 w2

1

Test case 1 10Lw/u0 0.17/c 90% 10%

Test case 2 15Lw/u0 0.17/c 90% 10%

Test case 3 20Lw/u0 0.17/c 90% 10%

Table 6.1: List of test cases considered to assess the influence of the wake separation.
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Figure 6.12: Time evolution of the kinetic energy with periods T = 10Lw/u0 (top),
T = 15Lw/u0 (centre) and T = 20Lw/u0 (bottom) at a given point xi. Wake model

with Lw = 0.17/c and 10% level of background turbulence.

numerical correlations R11 and R22 corresponding to T = 15Lw/u0 and T = 20Lw/u0,

respectively. As observed for the period T = 10Lw/u0 in Figure 6.7, the error is slightly

larger for the correlation of the streamwise component than for the normal component.

Yet, in both cases, the statistics of the turbulence are well captured by the stochastic

method, as illustrated in Figure 6.14 where two-point correlations along the flat plate

are shown for a time when the centre of the wakes reaches the centre of the flat plate.

Figure 6.15 shows SPL for observers in the far field at different locations. Numerical

results obtained for each period are in very good agreement with Amiet’s analytical

solution. Predicted noise levels follow the same trends independently of the period but

an increase in amplitude is observed as the period decreases. Hence, if the turbulent

wakes are closer to each other more noise is generated. In fact, the increase in noise levels

scales with the mean-square velocity of the turbulence u2rms, as illustrated in Figure 6.16.
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(a) Wake model with T = 15Lw/u0, Lw = 0.17/c and 10% level of background turbulence.

(b) Wake model with T = 20Lw/u0, Lw = 0.17/c and 10% level of background turbulence.

Figure 6.13: Contour plots of the difference between analytical and numerical two-
point correlations R11 (left) and R22 (right) computed with respect to the centre of the

flat plate over one period T .

6.3.3 Influence of the background turbulence

As described in section 6.1.2.1, turbulent flows impinging on the stator vanes are com-

posed of background turbulence and wake turbulence generated by the rotor blades.

The statistical properties of the background turbulence are not well established yet. It

is assumed homogeneous and isotropic and it is characterised by a smaller integral length

scale but here we assume the same length scale for the background and wake turbulence.

Three different levels of background turbulence are considered here to assess its influence

on rotor-stator interaction noise, as shown in table 6.2 and in Figure 6.17. They vary

from no background turbulence to account for the 30% of the total turbulence intensity.

The period between wakes is set to T = 10Lw/u0 and the half-wake width to the 17%

of the airfoil chord.

As for the previous test cases, the statistics of the turbulence along the flat plate are

very well captured by the random-vortex-particle method. Figure 6.18 shows numerical
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(a) Wake model with T = 15Lw/u0, Lw = 0.17/c and 10% level of background turbulence.

−6 −4 −2 0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

r / λ

R
11

(r
,t i)

−6 −4 −2 0 2 4 6
−0.6

−0.4
−0.2

0
0.2
0.4
0.6

0.8
1

1.2

r / λ

R
22

(r
,t i)

(b) Wake model with T = 20Lw/u0, Lw = 0.17/c and 10% level of background turbulence.

Figure 6.14: Analytical (—) and numerical (◦) two-point correlations R11 (left) and
R22 (right) computed with respect to the centre of the flat plate at time ti when the

centre of the wake reaches the centre of the airfoil.
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Figure 6.15: Far-field sound pressure levels for observers located at 30◦ (a), 60◦ (b),
120◦ (c), and 150◦ (d). Solid lines represent analytical results. Symbols correspond to
numerical results obtained with T = 10Lw/u0 (◦), T = 15Lw/u0 (C) and T = 20Lw/u0

(×). Wake model with Lw = 0.17/c and 10% level of background turbulence.
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Figure 6.16: Numerical SPL normalised by the mean-square velocity for an observed
at 90◦. Periods T = 10Lw/u0 (◦), T = 15Lw/u0 (C) and T = 20Lw/u0 (×). Wake

model with Lw = 0.17/c and 10% level of background turbulence.

T Lw w2
2 w2

1

Test case 1 10Lw/u0 0.17/c 100% 0%

Test case 2 10Lw/u0 0.17/c 90% 10%

Test case 3 10Lw/u0 0.17/c 70% 30%

Table 6.2: List of test cases considered to assess the influence of the level of background
turbulence.
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Figure 6.17: Time evolution of the kinetic energy with 0 % (—), 10 % (− −) and
30 % (− · −) levels of background turbulence. Wake model with Lw = 0.17/c and

T = 10Lw/u0.

and analytical two-point correlations R11 and R22 with respect to the centre of the airfoil

for the test cases corresponding to 0% and 30% background turbulence.

If we now look at the acoustic pressure radiated from the flat plate for each of the three

test cases in table 6.2, we see that numerical sound pressure levels in the far field are

in agreement with Amiet’s analytical solution as shown in Figure 6.19. It can also be

observed that the SPL increase with the level of background turbulence and it also scales

with the mean-square velocity of the turbulence, as shown in Figure 6.20.
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(a) Wake model with T = 10Lw/u0, Lw = 0.17/c and 0% level of background turbulence.
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(b) Wake model with T = 10Lw/u0, Lw = 0.17/c and 30% level of background turbulence.

Figure 6.18: Analytical (—) and numerical (◦) two-point correlations R11 (left) and
R22 (right) computed with respect to the centre of the flat plate at time ti when the

centre of the wake reaches the centre of the airfoil.
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Figure 6.19: Far-field SPL for observers located at 30◦ (a), 60◦ (b), 120◦ (c), and 150◦

(d). Solid lines represent analytical results. Symbols correspond to numerical results
obtained with 0% (×) , 10% (◦) and 30% (C). Wake model with Lw = 0.17/c and

T = 10Lw/u0.
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Figure 6.20: Numerical SPL normalised by the mean-square velocity for an observed
at 90◦. Levels of background turbulence: 0% (×) , 10% (◦) and 30% (C). Wake model

with Lw = 0.17/c and T = 10Lw/u0.

From the results shown here it appears that an increase in background turbulence pro-

duces the same effect in noise levels as a smaller period between wakes. This conclusion

is explained by the fact that the integral length scales of the background turbulence and

the wake turbulence are chosen identical. However if they were different, each turbulence

component would contribute differently to the energy spectrum of the turbulence and

hence the overall noise levels would not scale only with the mean-square velocity.

6.3.4 Influence of the wake width

The turbulent wakes generated by the rotor blades spread as they move away from the

rotor. The width of the wake is therefore a function of the distance from the rotor. To

evaluate the influence of the wake width on the predicted noise levels the three test cases

shown in table 6.3 and Figure 6.21 are considered. The wake half-width Lw varies from

8% of the OGV chord to 24%. The period of the wakes is set to T = 15Lw/u0 and the

level of background turbulence to 10%.

T Lw λ w2
2 w2

1

Test case 1 15Lw/u0 0.08/c 0.035 90% 10%

Test case 2 15Lw/u0 0.17/c 0.07 90% 10%

Test case 3 15Lw/u0 0.24/c 0.1 90% 10%

Table 6.3: List of test cases considered to assess the influence of the wake width.

The integral length scale of the turbulence within the wake is estimated by its relation

with the half-wake width (λ = 0.42Lw) and hence as the wake spreads the integral length

scale of the turbulence increases. Therefore, each test case uses a different distribution

of vortices which is based on the guidelines defined in chapter 4.
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Figure 6.21: Time evolution of the kinetic energy of the turbulence with half-wake
widths Lw = 0.08/c (—), Lw = 0.17/c (− −) and Lw = 0.24/c (− · −). Wake model

with a period T = 15Lw/u0 and 10% background turbulence.
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(a) Wake model with T = 10Lw/u0, Lw = 0.08/c and 10% level of background turbulence.
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(b) Wake model with T = 10Lw/u0, Lw = 0.24/c and 10% level of background turbulence.

Figure 6.22: Analytical (—) and numerical (◦) two-point correlations R11 (left) and
R22 (right) computed with respect to the centre of the flat plate at time ti when the

centre of the wake reaches the centre of the flat plate.

The accuracy of the statistical properties of the turbulence for the half-wake width

Lw = 0.17/c have already been assessed in the previous section and it was shown that

the numerical error is negligible, see Figures 6.13(a) and 6.14(a).

The two-point two-time correlations R11 and R22 for the half-wake widths Lw = 0.08/c

and Lw = 0.24/c are compared against analytical results in Figure 6.22. As for the

previous cases, the numerical results follow closely the theoretical correlations.
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Figure 6.23 shows sound pressure levels for observers at different far-field locations pre-

dicted for the test cases in table 6.3. For each value of Lw numerical SPL are in very

good agreement with Amiet’s analytical solution. It can be observed that the wake

width has an strong impact on noise levels. As expected a larger wake width leads to

an increase in noise levels at lower frequencies and a decrease of noise levels at higher

frequencies.
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Figure 6.23: Far-field sound pressure levels for observers located at 30◦ (a), 60◦

(b), 90◦ (c), 120◦ (d), and 150◦ (e). Solid lines represent analytical results. Symbols
correspond to numerical results obtained with Lw = 0.08/c (◦), Lw = 0.17/c (C), and
Lw = 0.24/c (×). Wake model with a period T = 15Lw/u0 and 10% background

turbulence.

Far-field directivities are shown in Figure 6.24 for Strouhal numbers St = 3 and 6.

Again, numerical predictions are consistent with analytical results. The width of the

wakes does not to modify the shape of the directivities but only changes the absolute

levels.

6.4 Conclusions

In this chapter, the stochastic method has been extended to describe inhomogeneous non-

stationary turbulence. Three different implementations of the random-vortex-particle
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Figure 6.24: Directivity at Strouhal numbers St = 3 (top) and St = 6 (bottom). Solid
lines represent analytical results. Symbols correspond to numerical results obtained
with Lw = 0.08/c (◦), Lw = 0.17/c (C), and Lw = 0.24/c (×). Wake model with a

period T = 15Lw/u0 and 10% background turbulence.

method for inhomogeneous non-stationary turbulence have been proposed and validated.

Implementation 1 is based on the definition of the statistics of the turbulence (kinetic

energy and integral length scale) at the vortex locations. Implementations 2 and 3 are

based on the definition of the kinetic energy and integral length scale at the grid points

and they differ in if the target value of kinetic energy is imposed within the stream

function (Implementation 2) or directly at the velocity field (Implementation 3).

The stochastic method has been applied to the problem of rotor-stator interaction noise

by combining the random-vortex-particle method with an existing wake model. It has

been shown that, for this test case, numerical results are not very sensitive to the choice

of implementation. While Implementation 3 is computationally cheaper, it neglects the

terms with spatial derivatives of the kinetic energy whose influence increases as the

turbulence becomes more inhomogeneous. We argue that the implementation based on

the definition of the kinetic energy of the turbulence at the vortex location is more

realistic since the vortex strength is specified by the local values of the turbulence and

the velocity field is then given by contributions from all the nearby vortices.

The sensitivity of far-field noise levels to the wake configuration has also been discussed.

When modifying the wake separation or the ratio between background and wake turbu-

lence sound pressure levels in the far field have been found to scale with the mean-square

velocity. Variations of the wake width change significantly the frequency content of the

noise spectrum. The larger integral length scales associated with wider wakes produce

stronger noise levels at small frequencies. Note that considering different wake sepa-

rations and levels of background turbulence could also have an impact on the noise

spectrum if the integral length scales of the background turbulence and wake turbulence

were different.



Chapter 7

Comparison with Experiments

The aim of this chapter is to compare sound pressure levels predicted by the stochastic

method against existing experimental results for an isolated airfoil in a turbulent jet.

This comparison provides another opportunity to validate the numerical method. It

also demonstrates the benefits of using the von Kármán spectrum instead of a Gaussian

spectrum to describe the turbulence energy spectrum.

Note that measurements were preformed for a real airfoil geometry but numerical sim-

ulations are carried out for a flat plate. This simplification is not due to a restriction of

the method but the requirements of numerical implementation go beyond the scope of

this project.

7.1 Description of the experiment

As part of the European project FLOCON, leading and trailing edge noise of an iso-

lated airfoil were measured in the ISVR open jet wind tunnel by Gruber and Joseph

[71]. This section describes the experimental setup and the aerodynamic and aeroa-

coustic measurements. We present only leading edge noise data that is relevant for the

comparison with numerical results.

7.1.1 Experimental setup

Figure 7.1 shows pictures of the experimental set up. A more detailed description of the

ISVR DARP quiet open jet wind tunnel facility can be found in Ref. [72].

Air is supplied by a centrifugal fan driven by a variable speed motor. Turbulence is

generated by inserting a grid (visible in Figure 7.1(a)) in the contraction of the nozzle at

50 mm from the nozzle exit. The dimensions of the nozzle exit are 0.45 m width by 0.15

141
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(a) Exterior view of the nozzle. (b) Traverse unit.

(c) Airfoil and side plates of the nozzle. (d) Microphone array.

Figure 7.1: Sketch of the experimental set up.

m height. The streamwise velocity component was measured for jet velocities 20, 40 and

60 m/s (corresponding to Mach numbers 0.06, 0.11 and 0.17, respectively). Two grid

designs were used so that the turbulence intensity at the nozzle exit is approximately

2 or 2.5%. Here, only results obtained for the mean flow velocity 60 m/s and the grid

generating 2.5% turbulent intensity are discussed since this case corresponds with the

highest leading edge noise levels.

The airfoil profile used in the experiment is a NACA651210 with 0.45 m of span and

0.15 m of chord. The leading edge of the airfoil is located at 0.145 m of the exit of

the nozzle. Different angles of attack were measured but only data from zero angle of

attack are used since it allows for a more direct comparison with the previous test case

discussed in chapter 4.

7.1.2 Aerodynamic measurements

Aerodynamic measurements were performed using hot-wire probes and with the airfoil

and side plates removed. We first describe the data measured and we then use it to

characterise the statistical properties of the turbulence upstream of the airfoil. The aim

is to extract from the data the input parameter values for the numerical simulation.
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7.1.2.1 Measured data

Hot-wire measurements of the turbulent velocity component in the streamwise direction

were carried out at two planes parallel to the nozzle exit and located at 0.095 m and at

0.145 m downstream of the nozzle exit, respectively. On each of these planes, hot-wire

data were collected at 9 different locations arranged in a square 3 × 3 array with size

0.225 × 0.075 m. Note that the second plane coincides with the actual position of the

leading edge of the airfoil when it is placed in front of the nozzle.

Tables 7.1 and 7.2 summarise the measured mean flow velocity and turbulence intensity

(TI = urms/u0) at each of the hot-wire probe locations (labelled from top to bottom and

left to right). Measurements at different locations are consistent except those acquired at

locations 7 and 8 in the first plane and location 8 in the second plane which are therefore

rejected. For the remaining locations, the average mean flow velocity is 52.88 m/s and

the average turbulence intensity is 2.12%. The variance of the measured mean flow

velocity and the turbulent intensity in the streamwise direction over the 15 points are

0.18 m/s and 0.1%, respectively. Therefore, the mean flow is approximated as uniform

and the turbulence intensity as statistically homogeneous in the streamwise component.

Location 1 2 3 4 5 6 (7) (8) 9

Mean flow [m/s] 53.32 52.57 52.89 53.09 52.11 53.76 2.99 3.06 52.88

TI [%] 2.17 1.84 1.87 2.16 1.86 1.95 0.87 1.48 2.96

Table 7.1: Mean flow and turbulence intensity TI measured at the plane located at
0.095 m downstream of the nozzle.

Location 1 2 3 4 5 6 7 (8) 9

Mean flow [m/s] 53.34 52.63 52.83 53.17 52.28 52.80 52.80 3.05 52.62

TI [%] 2.25 1.78 2.01 2.19 1.85 2.08 2.24 1.19 2.55

Table 7.2: Mean flow and turbulence intensity TI measured at the plane located at
0.145 m downstream of the nozzle.

Note that the average of the measured mean flow is 52.88 m/s and not the expected

mean flow velocity of 60 m/s. This discrepancy is thought to be related with the cal-

ibration of the hot-wire probes. In addition the average of the measured turbulence

intensity is about 15% lower than expected. Calibration issues affect the reliability of

the measurement to extract appropriate values of the statistical parameters describing

the incoming turbulence (turbulent kinetic energy and integral length scale).

Another aspect to highlight is that no measurements of the turbulent velocity field in

the spanwise and normal directions of the airfoil were performed. Therefore, it is not

possible to verify if the turbulence is isotropic. The experiment was designed to produce

isotropic turbulence, however due to the distance between the turbulence generating

grid and the nozzle exit (50 cm) vortex stretching in the streamwise direction takes
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place. One should expect a larger integral length scale of the normal component of the

turbulence in the streamwise direction. Note that even though the turbulent flow is only

suspected to be weakly anisotropic, analytical and numerical results presented later on

in this chapter would be affected as in both cases it is the normal component of the

turbulent velocity field that is used.

7.1.2.2 Estimation of the kinetic energy and integral length scale of the

turbulence

Aerodynamic measurements can be used to estimate the kinetic energy K and the in-

tegral length scale λ of the turbulence in the streamwise direction. A way of estimating

these is by fitting the velocity spectrum obtained from measurements to an analytical

model for homogeneous isotropic turbulence. Such an analytical velocity spectrum can

be related with a model for the energy spectrum and derived using either two- or three-

dimensional formulations. While the nature of the experiments is three-dimensional,

the numerical simulations are fully two-dimensional and therefore both approaches are

considered here. Von Kármán and Gaussian energy spectra are used to derive analytical

expressions of the velocity spectrum in an attempt to show that although Gaussian spec-

tra are computationally more desirable, von Kármán spectrum provides more accurate

predictions.

The von Kármán energy spectrum previously introduced in Eq. (2.90),

Ek(κ) =
110

27π
Kλς4

κ4

(1 + ς2κ2)17/6
, (7.1)

is used to model the spectrum of two- and three-dimensional turbulence. However, dif-

ferent Gaussian energy spectra are used depending on the dimension of the problem. Fol-

lowing Kraichnan’s approach [6], the Gaussian spectrum for two- and three-dimensional

formulations are

Eg(κ) =
2

π2
Kλ4κ3 exp

(
−λ

2κ2

π

)
, (2D) (7.2)

Eg(κ) =
8

3π3
Kλ5κ4 exp

(
−λ

2κ2

π

)
, (3D) (7.3)

respectively. The Gaussian energy spectrum in Eq. (7.3) has also been considered by

Atassi et al. [13] when discussing the effects of turbulence energy spectra in broadband

fan noise. (See section 3.1 for more details on Atassi et al.’s method.)

We now present the different expressions for the velocity spectrum and then a parametric

study is performed to estimate the kinetic energy and the integral length scale.
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Velocity spectrum from measurements

The velocity spectrum of the measured turbulent field in the streamwise direction at a

given location x is given by

φ11(ω) =

∫ ∞
−∞
〈u′x(x, t0)u

′
x(x, t)〉 exp(−iωt)dt, (7.4)

where ω is the angular frequency, and u′ is the fluctuating component of the velocity.

512 samples of the fluctuating component of the velocity field at a sampling frequency

fs = 20, 012 Hz are used. Similar velocity spectra are found at all locations (except at

those excluded due to low values of mean flow) which contributes in showing that the

streamwise component of the turbulence is statistically homogeneous.

Two-dimensional formulation

An analytical expression for the velocity spectrum of the streamwise component, φ11, can

be derived from its relation with the energy spectrum of the turbulence (see Ref. [14])

φ11(κx) =

∫
R

4πE(κ)

κ

(
1− κ2x

κ2

)
dκy. (7.5)

Then, Taylor’s hypothesis for frozen turbulence can be used to convert temporal to

spatial statistics yielding φ11(ω) = φ11(κx)/2πu0.

Closed-form expressions for the velocity spectrum are given by inserting von Kármán

and Gaussian energy spectra defined in Eqs. (7.1) and (7.2) in Eq. (7.5). This yields the

following expressions:

[φ11]g (ω) =
2Kλ

u0
exp

(
−λ2ω2

πu20

)
, (7.6)

[φ11]k (ω̃) = − 110Kλω̃

27u0π3/2

{
Γ(−4/3)Γ(5/6)

ω̃4/3
F1 +

πΓ(4/3)
[
(ω̃2 − 3)F2 − 5ω̃2F3

]
3(1 + ω̃2)Γ(17/6)

}
, (7.7)

where subscripts g and k refer to the Gaussian and von Kármán spectrum respectively,

F1 = 2F1

(
−5

6
,
17

6
;
7

3
; 1 +

1

ω̃2

)
, F2 = 2F1

(
−1

2
,
1

2
;−1

3
; 1 +

1

ω̃2

)
,

F3 = 2F1

(
−1

2
,−1

2
;−1

3
; 1 +

1

ω̃2

)
, and ω̃ =

Γ(1/3)λ√
πΓ(5/6)u0

ω.

Three-dimensional formulation

For a three-dimensional turbulent flow, the velocity spectrum of the streamwise compo-

nent, φ̃11, is related with the energy spectrum by (see Ref. [14])

φ̃11(κx, κz) =

∫
R

2π2E(κ)

κ2

(
1− κ2x

κ2

)
dκy. (7.8)
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Using again Taylor’s hypothesis for frozen turbulence yields (see Ref. [17])

φ̃11(ω) =
φ11(κx, 0)

4πu0lz
, with lz =

1

R11(κx, 0)

∫ ∞
0

R11(κx, z)dz. (7.9)

R11(κx, z) is the Fourier transform of φ̃11(κx, κz) with respect to κz and hence lz can be

interpreted as a correlation length in the spanwise direction.

The velocity spectrum in the streamwise direction corresponding to the Gaussian energy

spectrum in Eq. (7.3) is

[
φ̃11

]
g

(ω) =
4Kλ

3u0
exp

(
−λ2ω2

πu20

)
, (7.10)

and the velocity spectrum in the streamwise direction corresponding to von Kármán

energy spectrum in Eq. (7.1) is[
φ̃11

]
k

(ω) =
4Kλ

3u0
(1− ω̃2)−5/6. (7.11)

Parametric study

A parametric study is performed to estimate the integral length scale of the turbulence

by fitting the measured velocity spectrum, Eq. (7.4), to the analytical velocity spec-

trum corresponding to von Kármán and Gaussian energy spectra in a two-dimensional

formulation, Eqs. (7.6) and (7.7).

The measured velocity spectrum used in this parametric study corresponds to data

collected at location 5 on the plane located at 0.145 m downstream of the nozzle (see

table 7.2) since this location corresponds to the central position of the leading edge of

the airfoil.

The velocity spectrum obtained from measurements is compared with von Kármán and

Gaussian velocity spectra for integral length scales λ = 0.005, 0.1 and 0.2 m in Fig-

ures 7.2 and 7.3, respectively. In both cases, the turbulent kinetic energy is estimated

through the measured root-mean-square velocity assuming isotropic homogeneous two-

dimensional turbulence, that is K = u2rms. Von Kármán spectrum provides a good fit

to measurements for λ = 0.01 m over the whole range of frequencies. In contrast, for

the Gaussian spectrum neither of the proposed values of the integral length scale pro-

vides a good fit to the measured velocity spectrum. This is due to the fast decay of the

exponential function in the Gaussian velocity spectrum, see Eq. (7.6).

The fit between the Gaussian analytical spectrum and measurements can be improved

by tuning the kinetic energy together with the integral length scale of the turbulence,

see Figure 7.4. The benefits of this strategy are limited to specific frequency ranges; for

instance for λ = 0.01 m and K = 0.6u2rms good agreement is found only between 500 and
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Figure 7.2: Measured velocity spectrum (—) against von Kármán velocity spectrum
with λ = 0.005 m (◦), λ = 0.01 m (B), and λ = 0.02 m (+).
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Figure 7.3: Measured velocity spectrum (—) against Gaussian velocity spectrum with
λ = 0.005 m (◦), λ = 0.01 m (B), and λ = 0.02 m (+).

2,000 Hz. Therefore one option is to consider instead of one single Gaussian spectrum a

series of Gaussian spectra so that by superimposing them a good approximation of the

measured spectrum is achieved. This approach is proposed by Siefert and Ewert [15],

the objective being to model non-Gaussian spectrum with a series of Gaussian filters.

(See section 2.1.2.3 for further information on Ewert’s method.)

In contrast with Siefert and Ewert’s approach, in this thesis we propose the use of one

single energy spectrum to describe the whole range of frequencies. Superimposing more

than one Gaussian spectrum increases the computational cost of the method due to

the associate increase in the number of vortices. Hence, by considering a more realistic
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Figure 7.4: Measured velocity spectrum (—) against Gaussian velocity spectrum with
λ = 0.005 m and K = 0.5u2rms (◦), λ = 0.01 m and K = 0.6u2rms (B), and λ = 0.02 m

and K = 0.65u2rms (+).

model for the energy spectrum the resulting numerical method is simpler and describes

the whole range of frequencies of interest.

Finally, note that using the velocity spectrum to fit the measurements is more robust

than the energy spectrum because it is independent of the number of dimensions. Fig-

ure 7.5 shows Gaussian and von Kármán velocity spectra derived in two dimensions,

Eqs. (7.6) and (7.7), against the corresponding expressions derived in three dimensions,

Eqs. (7.10) and (7.11). We can see that similar fit to the experimental data is obtained

for the same choice of integral length scale and kinetic energy adjusted by a factor 1.5

for the three-dimensional formulation. (The factor 3/2 stems from the definition of the

kinetic energy for isotropic turbulence as shown in Eq. (2.12).)

In summary, the von Kármán spectrum provides an accurate description of the measured

velocity spectrum in the streamwise direction. An integral length scale of λ = 0.01 m is

a good fit to the experimental data. In addition, the value of kinetic energy is consistent

with that derived from the root-mean-square velocity. Regarding the Gaussian spectrum,

only a specific range of frequencies can be approximated for any fixed value of integral

length scale and the kinetic energy must be adjusted independently of the measured

root-mean-square velocity in order to improve the fitting.

7.1.3 Acoustic measurements

The ISVR open jet wind tunnel is located in an anechoic chamber of dimensions 8×8×8

m where noise measurements are performed using a circular array of microphones centred

on trailing edge of the airfoil as shown in Figure 7.1(d). The array consisted of 19

microphones uniformly distributed between 45 degrees from the downstream direction
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Figure 7.5: Measured velocity spectrum (—) against theoretical models. Von Kármán
velocity spectrum derived from 2D (− −) and 3D (◦) formulations with λ = 0.01 m
and K = u2rms and K = 3u2rms/2, respectively. Gaussian velocity spectrum from 2D
(− −) and 3D (B) formulations with λ = 0.01 m and K = 0.6u2rms and K = 0.9u2rms,

respectively.

to 135 degrees. The radius of the microphone array, 1.2 m, is almost three times larger

than the span of the airfoil and captures at least one acoustic wavelength for Strouhal

numbers larger than 0.37 (based on zero Mach number).

The sound spectral density at each microphone location is computed using as input

512 samples of the measured acoustic field at a sampling frequency fs = 51, 200 Hz.

Data measured by the microphone located at 45 degrees is rejected due to a significant

deviation of sound pressure level compared to the other microphones (noise levels being

70 dB lower than the others), see Figure 7.6. Background noise levels were found to be

insignificant and no background correction was applied to the measured data.

An issue with such an open jet facility is that acoustic waves propagate through the jet

shear layer before reaching the microphone, and when doing so waves are refracted as

illustrated in Figure 7.7. This leads to a change in angle and amplitude in the far field.

Thus, for a microphone located at position M outside the jet, due to the refraction of

wavefronts at the shear layer, the angle Θm at which the microphone is located does not

correspond to the angle Θc of propagation inside the jet. Measurements are performed

in terms of Θm but numerical results and Amiet analytical solution are given in terms

of Θc, so a relationship between the two has to be established before compering them.

The model proposed by Amiet [73] is used here to account for the effects of the shear

layer on the angle of propagation and amplitude. The source position is located at

the leading edge of the airfoil and corrections are made under the assumptions of zero-

thickness shear layer, equal distance from present source position (rc = rm) and that

the distance from the source to the shear layer (h = 0.075 m) is small compared to the
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Figure 7.6: Sound power levels at 45◦, 75◦, 110◦ and 135◦ centred at the trailing
edge. Note that SPL at 45◦ have a significant deviation from those at other locations

suggesting a malfunction of the microphone.

Figure 7.7: Sketch of the refraction of sound by a shear layer [73].

distance to the observer (rm = 1.2 m). The relation between the propagation angle

before the refraction Θc and the microphone angle Θm is:

Θc = arctan

(
C

β2 cos Θm +M

)
, (7.12)

where C2 = (1−M cos Θm)2− cos2 Θm and β2 = 1−M2 with M the jet Mach number.

The amplitude change caused by the shear layer can be account for by the correction

factor:

Ac =

√
1 +M2C2

2

[
C

sin Θm
+ (1−M cos Θm)2

]
. (7.13)
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Angle and amplitude corrections corresponding to the microphone locations in the ex-

periment are shown in Figure 7.8 where angles are centred at the leading edge of the

airfoil and measured from the downstream direction. The correction in amplitude is

rather limited with the largest amplitude difference being 1.5 dB for the microphone

located at 40 degrees. In contrast, angles with and without shear layer correction differ

by up to 10 degrees.
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Figure 7.8: Left: Angle correction Θc versus microphone location Θm.
Right: Amplitude correction in dB versus microphone location.

Measured noise levels are further discussed in section 7.3 when compared with Amiet’s

analytical solution and the numerical results. Note that Amiet’s shear layer correction is

applied to analytical and numerical results and noise levels computed from measurements

are left unchanged.

7.2 Numerical Simulations

In this section the stochastic method proposed in this thesis to predict broadband fan

interaction noise is used to simulate the experiment described above.

The following assumptions are made. The geometry of the airfoil is simplified to a

flat plate. The turbulent flow interacting with the airfoil is assumed to be isotropic,

homogeneous and two-dimensional. The turbulence is convected by a uniform mean

flow in the x-direction u0 = 60 m/s (Mach number 0.175).

Synthetic turbulence is generated with the random-vortex-particle method as in Eq. (2.67)

using the Gaussian and von Kármán filters defined by Eqs. (2.86) and (2.92). For both

filters, the turbulence is characterised by an integral length scale of 0.01 m. The turbu-

lent kinetic energy for von Kármán filters is 0.93 m2/s2 while for Gaussian filters is 0.56



152 Chapter 7. Comparison with Experiments

m2/s2, see section 7.1.2.2. The remaining parameter required for the random-vortex-

particle method to generate synthetic turbulence is the Lagrangian time scale which can

be estimated as τ = 0.522 s using the scaling procedure in Eq. (5.12).

7.2.1 Problem definition

The parameters of the problem are made non-dimensional using the chord of the airfoil,

the mean flow density and the sound speed. Table 7.3 summarises the parameters used

in the numerical simulation.

Experiment Simulation

Airfoil geometry NACA651210 Flat plate

Mean flow 60 m/s 0.175

Integral length scale 0.01 m 0.067

Kinetic energy for von Kármán filter 0.935 m2/s2 7.905e-06

Kinetic energy for Gaussian filter 0.561 m2/s2 4.776e-06

Table 7.3: Parameters used in the numerical simulation.

The typical time scale of a vortex passing near the leading edge λ/u0 is various orders

of magnitude smaller than the integral time scale of the turbulence, hence the effects

of temporal decorrelation can be neglected and frozen turbulence is assumed. See sec-

tion 5.4 for a detailed discussion of the assumption of frozen turbulence.

7.2.2 Computational setup

The computational domain is given by [−3.5, 3.5]× [−3, 3] with the flat plate located at

[−0.5, 0.5]× {0}, see Figure 7.9. The domain is divided in fourteen blocks, each with a

uniform Cartesian grid of 200×600 grid points. This grid provides at least 10 points per

hydrodynamic wavelength and 47 points per acoustic wavelength (based on a maximum

Strouhal number St = 20). The time step selected corresponds to a CFL number of 0.8.

Note that the computational domain considered here is significantly larger than the one

used in the previous test case (see section 4.2) due to a larger content of noise at low

frequencies observed in the measured sound pressure levels.

Buffer zones are implemented at the boundary of the simulation domain as explained

in section 3.3.3. The size of the buffer zone is 100 grid points everywhere apart from

the outflow boundary where a buffer zone of 190 points is used. Following a parametric

study similar to that in section 3.4, the strength of the selective filter is set to 0.62.

Far-field acoustic results are obtained using the FWH formulation with a rectangular

control surface enclosing the flat plate as shown in Figure 7.9.
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Figure 7.9: Sketch of the domain of simulation showing the block distribution (− −),
the flat plate location (—) and the FWH-formulation control surface (+) .

The conclusions drawn from the parametric study performed in chapter 4 are used here

to set up the vortex distribution and sampling procedure. The synthetic turbulence is

generated with Gaussian and von Kármán filters. For the Gaussian filter, vortices are

distributed on a region determined by rmax = 2.43λ and at every ∆ = λ/6. For the von

Kármán filter, vortices are distributed on a region determined by rmax = 5.43/λ and at

every ∆ = λ/8, see Figure 4.1. In both cases, the vortices are convected with the mean

flow and their strength remains constant in time, representing frozen turbulence.

7.2.3 Numerical results

The statistical behaviour of the synthetic turbulence and noise levels in the far field are

now examined in order to validate the numerical results.

7.2.3.1 Synthetic turbulence

The quality of the synthetic turbulence is assessed by evaluating its statistical properties

along the flat plate. Two-point correlations R11 and R22 and one-dimensional energy

spectra E11 and E22 (defined by Eqs. (2.36) and (4.1)) are computed along the flat

plate with Gaussian and von Kármán filters. They are shown in Figures 7.10 and 7.11,

respectively. In both cases, the statistical behaviour of the synthetic turbulence is in

very good agreement with the corresponding analytical expressions.
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Figure 7.10: Analytical solution (—) against numerical results (− −) obtained with
the Gaussian spectrum. Top: two-point correlations R11 and R22 computed with re-
spect to the central point of the airfoil. Bottom: one-dimensional energy spectra E11

and E22. Averages taken over 8, 000 samples at a sampling rate 40∆t.

7.2.3.2 Acoustic pressure

A snapshot of the acoustic pressure field around the flat plate is shown in Figure 7.12 for

the Gaussian spectrum. As seen in the previous test case, most of the noise is radiated

from the leading edge and acoustic waves are also scattered at the trailing edge.

Noise levels in the far field are also computed using the same procedure as in chapter 4

but with a sampling frequency adjusted to this test case.

Figure 7.13 shows sound pressure levels for the Gaussian spectrum for observers located

at 30, 60, 90, 120, and 150 degrees centred at the centre of the airfoil and meassured from

the downstream direction. Figure 7.14 shows SPL at the same locations but computed

using the von Kármán spectrum. For both spectra, noise levels are in good agreement

with the fully two-dimensional Amiet’s analytical solution at all locations, and especially

at downstream locations. For upstream locations, numerical results do not capture as

accurately the shape of the noise spectra predicted by the analytical solution. Note that

these discrepancies were already discussed in the previous test case (see chapter 4) and

also that they are observed when the noise levels are more than 15 dB below what is

observed downstream.
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Figure 7.11: Analytical solution (—) against numerical results (− −) obtained with
von Kármán filter. Top: two-point correlations R11 and R22 computed with respect to
the central point of the airfoil. Bottom: one-dimensional energy spectra E11 and E22.

Averages taken over 8, 000 samples at a sampling rate 40∆t.

Figure 7.12: Snapshot of the acoustic pressure field for the Gaussian spectrum.
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We now compare sound pressure levels for this test case against sound pressure levels

predicted for the test case considered in chapter 4, for instance Figure 7.13 against

Figure 4.11 and Figure 7.14 against Figure 4.13. We can see that in both cases the

noise levels peak at similar Strouhal numbers. But, since the present test case has a

slower mean flow velocity than the previous one, large noise levels are found at a lower

frequencies justifying the use of a larger computational domain to accommodate for the

larger wavelength.
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Figure 7.13: Far-field SPL obtained with the Gaussian spectrum for observers located
at 30◦ (a), 60◦ (b), 90◦ (c), 120◦ (d), and 150◦ (e). Amiet’s analytical solution (—).

Numerical results (− −).

7.3 Comparison with experiments

Numerical results obtained in the previous section are now compared with experimental

data. We first discuss the statistical behaviour of the turbulence by comparing the ve-

locity spectrum against measurements and then predicted and measured sound pressure

levels are compared.
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Figure 7.14: Far-field SPL obtained with the von Kármán spectrum for observers
located at 30◦ (a), 60◦ (b), 90◦ (c), 120◦ (d), and 150◦ (e). Amiet’s analytical solution

(—). Numerical results (− −).

7.3.1 Statistical behaviour of the turbulence

In order to verify if the synthetic turbulent velocity field accurately reproduces the

statistical behaviour of the fluctuating component of the velocity field measured in the

experiment, numerical results are compared against the measured velocity spectrum at

the leading edge of the airfoil.

Stochastically generated and measured velocity spectra in the streamwise direction are

compared in Figure 7.15. The velocity spectrum obtained using von Kármán spectrum

provides a good approximation of the measured and analytical velocity spectra for fre-

quencies up to 3 kHz but at higher frequencies larger amplitudes are found. Note that a

slight overprediction of energy levels at high frequencies was also found when comparing

the stochastic one-dimensional energy spectrum in the streamwise direction against its

theoretical expression (see Figure 7.11), but it was shown not to have a significant effect

on the prediction of noise levels (see Figure 7.14) which is our ultimate purpose.

The stochastically generated Gaussian velocity spectrum is in very good agreement with

its analytical expression, but as expected does not fit the measured velocity spectrum
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showing a much faster rate of decay at high frequencies, see section 7.1.2.
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Figure 7.15: Measured velocity spectrum (—) against analytical (—) and numeri-
cal (◦) von Kármán velocity spectra and analytical (—) and numerical (B) Gaussian

velocity spectra at the leading edge.

7.3.2 Noise levels

In previous chapters sound pressure levels in the far field were validated against the

fully two-dimensional Amiet’s analytical solution in Eq. (3.1). Here, due to the three-

dimensional nature of the measured sound pressure levels, a correction factor that ac-

counts for the difference between 2D and 3D must be applied in order to compare

experimental data against the numerical results. The correction factor can be deduced

by comparing Amiet’s analytical solution in equation (17) of Ref. [42], S̃pp, with the

fully two-dimensional solution derived in Appendix C.1, Spp, yielding

S̃pp(x, y, 0, ω) =
κ0Lφ̃22(κx, 0)

σφ22(κx)
Spp(x, y, ω), (7.14)

where ω is the angular frequency, κ0 = ω/c0 is the free-field acoustic wavenumber,

κx = ω/u0 is the hydrodynamic wavenumber in the streamwise direction, L is the span

of the airfoil, σ =
√
x2 + (1−M2)y2 and ·̃ refers to a three-dimensional formulation.

Note that Eq. (7.14) accounts for the difference in sound radiation between two and three

dimensions and also for the difference in the definition of the sound source correspond-

ing to the ratio φ̃22(κx, 0)/φ22(κx). A correction factor to compare two-dimensional

simulations against experiments was also considered by Ewert et al. in Ref. [55] when

predicting broadband trailing edge noise.

In addition to the three-dimensional correction, analytical and numerical results pre-

sented in this section are corrected to include the refraction effects of the open jet shear
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layer as discussed in section 7.1.3. Thus the PSD of the numerical solution and its the-

oretical expression in Eq. (7.14) are not computed directly at the microphone locations

but at the corrected angles defined by Eq. (7.12) and the amplitude of the noise levels

is corrected using Eq. (7.13).

In Figure 7.16 measured sound pressure levels at 50, 90 and 130 degrees from the trailing

edge of the airfoil are compared against analytical and numerical results obtained with

Gaussian and von Kármán spectra. Numerical SPL computed with Gaussian spectrum

do not capture the overall trend of the measured SPL and significant differences are found

for Strouhal numbers larger than 10 due to the fast exponential decay. The agreement

is better for the middle frequency range (where the fitting of the velocity spectra was

optimised for) and especially for upstream locations.

Better agreement is found between predicted sound pressure levels with von Kármán

spectrum and measurements, see Figure 7.16. At downstream locations, the shape of

the noise spectrum is well predicted even though the slope is slightly flatter yielding

larger noise levels at high frequencies. At upstream locations, numerical results very

well capture the trend and amplitude of the measured sound pressure levels. However,

at all locations a slight change of local maxima can be observed and it appears that the

discrepancies between numerical results and measurements increase with frequency.
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Figure 7.16: Sound pressure levels for observers located at 50◦ (a), 90◦(b), and 130◦

(c). Measured SPL (—). Amiet’s analytical solution (—) and numerical (− −) SPL
computed with von Kármán spectrum. Amiet’s analytical solution (—) and numerical

(− −) SPL computed with Gaussian spectrum.
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Directivities for Strouhal numbers St = 2.5, 5 and 10 are shown in Figure 7.17 for the

von Kármán spectrum. Good agreement is observed when comparing numerical results

against the proposed analytical solution with average error of about 1 dB. For the

lowest Strouhal number, the numerical directivity predicts very well the measurements.

Reasonable agreement is found at all locations and for Strouhal numbers St = 5 and

St = 10. However, as observed in Figure 7.16, differences between measurements and

numerical results are more noticeable as the frequency increases and for downstream

locations.
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Figure 7.17: Directivities at Strouhal numbers St = 2.5 (a), St = 5 (b) and St = 10
(c). Measured (◦), analytical (—) and numerical (− −) computed with von Kármán

spectrum.

The acoustic power per unit length radiated between 50 and 135 degrees from the trailing

edge of the airfoil is computed using Eq. (4.8). Numerical PWL computed with Gaus-

sian spectrum provides only limited agreement with measurements, overpredicting the

acoustic power by up to 8 dB from St = 3 to St = 10 and underpredicting it everywhere

else. In contrast, good agreement is found between measured and predicted PWL for

the von Kármán spectrum. Numerical results computed with the von Kármán spectrum

capture the rate of decay of the acoustic pressure for the whole frequency range even

though with a slightly different slope.

The faster rate of decay of the measured noise levels suggests that the turbulent flow

should be characterised by a larger integral time scale of the turbulence (which would

increase noise levels at low frequencies and decrease them at high frequencies). There are

two reasons why this could actually be the case. Firstly, the mean flow velocity is chosen
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Figure 7.18: Acoustic power per unit of length between 50 and 135 degrees from the
trailing edge. Measured PWL (—). Amiet’s analytical solution (—) and numerical
(− −) PWL computed with von Kármán spectrum. Amiet’s analytical solution (—)

and numerical (− −) PWL computed with Gaussian spectrum.

from the specification provided for the fan and not from hot-wire measurements due to

calibration problems, so one might argue that the values of the integral length scale

and kinetic energy estimated from hot-wire measurements could be affected by these

calibration issues. Secondly, the integral length scale of the turbulence was estimated

using the velocity field in the streamwise direction, however the numerical method (see

Eq. (3.14)) and Amiet’s analytical solution (see Eq. (3.1)) require information of the

normal component of the turbulent velocity. Since in the experimental setup the grid

is located in the contraction of the nozzle, vortex stretching in the streamwise direction

occurs between the grid location and the nozzle exit (50 cm downstream) resulting a

integral length scale which could be larger for the normal component of the turbulence

than for the streamwise component.

Another possible source of error between the measurements and the numerical results

is the geometry of the airfoil. While Amiet’s analytical solution and numerical results

assume a flat plate, experiments were conducted using a NACA651210. This change in

geometry results in a different interference pattern between the noise generated at the

leading and its scattering at the trailing edge. The chord of the flat plate is directly

estimated from the chord of the airfoil, however due to the camber of the NACA651210

numerical results underpredict the time that it takes for an acoustic wave scattered

at the trailing edge to reach the leading edge of the airfoil. In addition, Amiet and

Patterson [39] argued that the thickness of the airfoil, tA, significantly reduces noise

levels for frequencies larger than the ratio u0/tA. For this test case, this ratio suggests

that noise levels predicted with a flat plate are higher than those obtained with the

NACA651210 for Strouhal numbers larger than 10.
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7.4 Conclusions

In this chapter numerical results obtained with the stochastic method proposed in this

thesis to predict broadband fan interaction noise have been compared against experi-

mental data for an isolated fixed NACA651210 in a turbulent jet.

Aerodynamic measurements were used to estimate the input parameters for the nu-

merical method. Measurements were only performed for the streamwise component of

the velocity while the numerical method requires as input statistical parameters of the

turbulent velocity field normal to the flat plate. This leads to some uncertainty on the

parameters chosen here since the turbulence might be anisotropic.

This experimental data provides the opportunity to validate the numerical method for

a different test case than that used in chapters 4, 5 and 6. For this additional test case,

the statistics of the turbulence along the flat plate and the predicted noise levels in the

far field are in very good agreement with the corresponding theoretical results.

This test case also shows that the von Kármán spectrum is better suited to predict

broadband fan interaction noise than the Gaussian spectrum. Numerical results obtained

with the Gaussian spectrum show a good agreement with measurements only within a

limited frequency range. In contrast, numerical SPL obtained with the von Kármán

spectrum show a relatively good agreement with measurements over the whole range

of frequencies. In addition, the value of kinetic energy obtained by fitting the velocity

spectrum to the theoretical von Kármán spectrum is consistent with the root-mean-

square velocity of the turbulence whilst for the Gaussian spectrum the kinetic energy is

used as a numerical parameter.

The approach proposed by Siefert and Ewert [15] of modelling the turbulence spectrum

by superimposing a series of Gaussian spectra has also been discussed. It is feasible

to approximate the measured velocity spectrum by superimposing a series of Gaussian

spectra each with parameter values chosen to fit the measurements at specific frequency

ranges. By doing so, it seems that each Gaussian spectrum in the series would actually

provide a reasonable prediction of the acoustic field at the corresponding frequency

range.

In this thesis we argue that due to the increase of computational cost associated with

superimposing a series of Gaussian spectra (the number of vortex particles increases

roughly proportionally to the number of Gaussian spectra), it can potentially be cheaper

to use one single von Kármán spectrum. In addition, noise predictions provided by the

von Kármán spectrum were more accurate with measurements than those obtained with

the single Gaussian spectrum for the relevant frequency range.

It is our understanding that the disagreement found between numerical sound pressure

levels predicted here with the von Kármán spectrum and measurements relates to the
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lack of measurements of the normal component of the turbulence and also due to the

use of a flat plate instead of a NACA651210 geometry. Due to the vortex stretching

that occurs between the turbulence generating grid and the nozzle exit, the integral time

scale for the normal component of the turbulence could be significantly larger than for

the streamwise component. A larger integral length scale would actually improve the

fitting between numerical and measured noise levels. Another factor that influences the

comparison with measurements is that numerical results are obtained for a flat plate.

The thickness of the NACA651210 is thought to reduce noise levels for Strouhal numbers

larger than 10 and the interference pattern between acoustic waves radiated from the

leading edge and those scattered at the trailing edge is modified by the camber of the

airfoil.





Chapter 8

Conclusions

Areas covered in this thesis and the corresponding conclusions are summarised here. In

addition, recommendations for future work are presented.

8.1 Synthetic turbulence

The stochastic method developed and validated in this thesis generates synthetic two-

dimensional incompressible isotropic turbulent flows. It is based on filtering random data

and stems from the works of Careta et al. [9] and Ewert et al. [10]. Once the method

is discretised, the synthetic velocity field can be interpreted as the sum of contributions

of random vortex particles moving with the mean flow.

The spatial statistical properties of the synthetic turbulence are controlled by a filter

which can be determined either by the two-point correlation tensor or by the energy

spectrum. In contrast with most filter-based methods, this work has focussed on filters

specified by the energy spectrum of the turbulence. New non-Gaussian filters have been

developed to model more realistic energy spectra such as Liepmann and von Kármán

spectra. This is a departure from Ewert et al.’s work where non-Gaussian spectra

are modelled using series of Gaussian filters. The influence of the energy spectra on

the synthetic turbulence has been investigated in details. It has been shown that the

quality of the synthetic turbulence depends on how the vortex particles are distributed.

Parametric studies have been performed for each spectrum to establish guidelines for

distributing the vortex particles in the computational domain. From these guidelines, it

can be concluded that more particles has to be considered for the von Kármán spectrum,

followed by the Liepmann spectrum and Gaussian spectrum. The increase in number of

vortex particles is explained by a higher frequency content which also has an impact on

the numerical sampling of the velocity field to capture the statistical properties of the

turbulence. It has been shown that the simulation has to be run for longer to obtain

165
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accurate statistics for turbulence obtained with von Kármán and Liepmann spectra

than with the Gaussian spectra. The increase in vortex density and simulation time is a

consequence of representing more realistic energy spectra and not of the technique used

to represent the spectra. Therefore, the same features would be observed if a series of

Gaussian filters were used to model realistic energy spectra.

The temporal properties of the synthetic turbulence are controlled by a stochastic field.

The cases of frozen and evolving turbulence have been studied in details. In the case

of frozen turbulence – where only convection effects are modelled – vortex particles

are convected with the mean flow with constant strength. The resulting velocity field

seen by an observer moving with the mean flow is a frozen pattern. In the case evolv-

ing turbulence the temporal decorrelation present in turbulent flows has been included

by updating the strengths of the vortices as they are convected with the mean flow.

Langevin equations have been proposed to update the vortex strengths in time. It has

been shown that standard Langevin equations capture the statistical properties of tur-

bulent flows but lead to non-differentiable velocity fields. The lack of differentiability

has proved to be an issue when coupling the stochastic method with the linearised Euler

equations to predict broadband fan noise as spurious sound sources are introduced at

high frequencies. A second-order Langevin model has been proposed and validated as

an alternative to the standard Langevin equation. The second-order Langevin method

can be interpreted as a filtering process to smooth the synthetic velocity field in time.

It has been demonstrated that it reproduces accurately the statistics of the turbulence

and, in contrast to standard Langevin equations, it is suitable to couple with high-order

finite difference schemes.

The stochastic method has also been extended to generate strongly inhomogeneous non-

stationary turbulence. Three different implementations of the stochastic method have

been proposed and validated. They differ in the location at which the turbulent ki-

netic energy and the integral length scale are defined. For the special case of locally

homogeneous turbulent flows, all three implementations were shown to lead to the same

formulation. For inhomogeneous turbulent flows found in aeroacoustic applications, it

has been demonstrated that the choice of implementation has little influence on the syn-

thetic velocity field when the kinetic energy and integral length scale of the turbulence

are provided by an analytical model.

The numerical implementation of the stochastic method has been performed follow-

ing a purely Lagrangian approach. This is also a departure from Ewert et al.Õs work

where vorticity is interpolated onto an auxiliary grid to compute the induced velocity

field. In contrast, in a purely Lagrangian approach the synthetic velocity field is com-

puted directly at the vortex locations determined freely due to the convection effects.

The computational performance of the method has also been improved by implementing

interpolated filters that are much faster to compute than the exact mathematical expres-

sions defining the filters. With the use of interpolation functions, similar computational
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times are required to compute the synthetic velocity field for any of the three energy

spectra considered.

Filter-based methods were initially devised to improve the computational cost of the

SNGR methods which is mainly caused by the large number of Fourier modes required

to compute the velocity field and the large number of realisations required to capture the

statistical properties of the turbulence. In this work, similar features have been identified

in the filter-based methods. One has to ensure that the number of random vortices is

sufficient to properly represent the turbulent velocity field. In addition, the simulation

needs to be run for a long time in order to obtain accurate statistical properties. No

thorough comparison between a SNGR method and the filter-based method has been

performed, but both techniques have to accumulate sufficient random data to accurately

reproduce the statistical properties of the turbulence. An important advantage of the

method presented here with respect to SNGR methods is that it is very flexible when

dealing with strongly inhomogeneous, or non-stationary, turbulence.

8.2 Broadband fan interaction noise

In this thesis the target application of the stochastic method has been broadband fan

interaction noise. This is a new application of filter-based methods which has not been

tackle with RPM methods before.

The LEE solver has been validated for a flat plate interacting with frozen gusts at differ-

ent frequencies. Guidelines for choosing the numerical parameters have been identified

and for those the response of an airfoil to incident deterministic frozen gusts can be very

accurately predicted by the numerical method. Only at high frequencies and upstream

locations where noise is negligible a slight disagreement between numerical and theo-

retical sound pressure levels can be observed. Possible reasons for the discrepancies are

the selective filter that removes poorly resolved small wavelengths and vortex shedding

crossing the FWH control surface.

The stochastic method has firstly been combined with the LEE solver to predict broad-

band interaction noise due to frozen turbulence impinging on a flat plate. Far-field noise

levels predicted with Gaussian, Liepmann and von Kármán energy spectra have been

validated against Amiet’s analytical solution. For each energy spectra, the predicted

noise spectrum and directivities are in very good agreement with the analytical solu-

tion. As expected, the choice of energy spectra has an impact on the radiated acoustic

field. Noise spectra predicted with Liepmann and von Kármán spectra peak at similar

frequencies but a slightly different trend is observed. Noise levels predicted with the

Gaussian spectrum peak at a higher frequency and present a much faster rate of decay

compared to results obtained with von Kármán and Liepmann spectra.
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The sensitivity of broadband fan noise to the temporal decorrelation of the turbu-

lence has also been evaluated by combining the stochastic method with a second-order

Langevin model. It has been demonstrated that very limited increase in noise levels

compared to the case of frozen turbulence is found apart from very high frequencies at

upstream locations where noise is negligible. The limited influence of modelling the time

correlation can be explained by the fact that the integral time scale of the turbulence

is much larger that the typical time scale of a vortex passing near the leading edge.

Therefore, the strength of the vortices vary very little as they pass near the leading edge

generating almost the same velocity field as if the strengths remained constant. The

effects of the time decorrelation could have a larger impact on the radiated acoustic field

when considering realistic airfoil geometries. Whilst for a flat plate most of the noise is

radiated from a point source, for realistic airfoil geometries noise sources are distributed

along the leading edge. Hence, depending on the leading edge radius vortices would have

more time to evolve as they pass near the leading edge. The influence of the temporal

decorrelation it is expected to be perceived only at high frequencies.

The stochastic method has also been extended to model rotor turbulent wakes imping-

ing on a stator vane by combining the random-vortex-particle method with an existing

wake model. The sensitivity of noise levels to the upstream turbulence has been investi-

gated by considering trains of wakes with different width and separation and assuming

that background and wake turbulence have the same integral length scale. Noise levels

were found to increase proportionally to the mean-square velocity of the turbulence for

configurations with different intensity ratio between background and wake turbulence

and for configurations with different periods between wakes. Changes of the wake width

showed a stronger impact on the predicted noise spectrum. The larger the integral

length scale associated with wider wakes leads to a shift of the noise spectrum towards

lower frequencies.

Finally, numerical results have been compared against existing experimental results for

an airfoil in a turbulent jet. This comparison demonstrates that the von Kármán spec-

trum is better suited to predict broadband fan interaction noise than the Gaussian

spectrum. Whilst noise levels predicted with the Gaussian spectrum provide a reason-

able fit to measurements only within a specific frequency range, noise levels predicted

with the von Kármán spectrum are in good agreement with measurements over the

whole range of frequencies of interest. Siefert and Ewert’s approach of using a series of

Gaussian filters to model non-Gaussian spectra has been discussed, but it is the author’s

opinion that the computational cost would increase to levels similar to those of the von

Kármán filter and no improvement in accuracy would be obtained. The differences ob-

served between measurements and predictions obtained with the von Kármán spectrum

are thought to be caused by airfoil geometry effects and also anisotropy effects leading

to a larger integral length scale of the normal component of the turbulence.
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8.3 Future work

The stochastic method developed in this thesis has been validated as an accurate and

computationally efficient tool to predict broadband fan interaction noise. However, there

are areas where further work could significantly benefit the predictions of the method

for broadband fan noise:

• More realistic geometries. This work has focussed on the development and vali-

dation of the method for turbulent flows interacting with flat plates. Considering

more realistic airfoil geometries would provide more reliable noise predictions, es-

pecially at high frequencies where the effects of airfoil thickness and leading edge

shape are relevant. In this case, the mean flow is non-uniform and hence it has

to be specified in the computational domain for instance by performing RANS

simulations. Note that when working with non-uniform mean flows more care is

required to track the location of the vortex particles at each time.

• Three-dimensional simulations. Fully three-dimensional simulations would allow

to consider realistic airfoil geometries and complex non-uniform flows with strong

variations along the span of the airfoil. For instance the numerical method could

then be used to assess the sensitivity of broadband predictions to leading and

trailing-edge treatments such as serrations. In addition the ful three-dimensional

character of the turbulent velocity field could be represented in the simulation.

• Thorough comparison with Fourier-mode methods. At the moment Fourier-mode

methods and filter-based methods to generate synthetic turbulence coexist in CAA.

Some advantages and disadvantages of both techniques have been reported but no

thorough comparison between Fourier-mode methods and random-vortex-particle

methods has been performed so far. Such a comparison would shed light on their

relative capability to capture different physical properties of the turbulence, such

as time decorrelation, inhomogeneity and realistic energy spectra, and the required

computational cost.

• Implementation of the stochastic method within the LEE solver. An inconsistent

increase in computational time has been observed when combining the random-

vortex-particle method with the LEE solver. For any of the three filters considered

in this work, computing the synthetic velocity field itself requires similar computa-

tional times. However, when stochastic method is combined with the LEE solver

a dramatic change in computational time can be observed depending on the filter

used. This issue has been identified with the management of the cache mem-

ory. The von Kármán energy spectrum requires larger arrays to store the vortex

particles, followed by the Liepmann spectrum and the Gaussian spectrum. The
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computational time for the von Kármán spectrum could be reduced by using a dif-

ferent implementation of the numerical method where better memory management

is achieved.



Appendix A

Extensions to more general

turbulent flows

The random-vortex-particle method presented so far in this thesis generates the velocity

field of an incompressible, two-dimensional, isotropic and evolving turbulent flow. In this

appendix, the method will be progressively generalised in order to cope with anisotropic

three-dimensional turbulent flows.

A.1 Three-dimensional flows

A 3D extension of the random-vortex-particle method is possible by determining a three-

dimensional stream function, η, such that [10]

u′(x, t) = ∇× η(x, t) = εijk
∂

∂xj
ηkei, (A.1)

where x is a three-dimensional vector, εijk is the alternating symbol, and ηi is the ith

component of η.

The three-dimensional stream function is defined by considering three independent

stochastic fields, Ui, such that

〈Ui(x, 0)〉 = 0, 〈Ui(x1, t1)Uj(x2, t2)〉 = δ(r − tuc) exp (−t/τ) δij , (A.2)

where r = x2−x1, t = |t1− t2|, δ stands for the Dirac function and δij is the Kronecker

symbol yielding that each component of η is given by

ηi(x, t) =

∫
R3

G(|x− x′|, t)Ui(x′, t)dx′. (A.3)

G is the filter use to obtain the required target values of the turbulent velocity field.

171



172 Appendix A. Extensions to more general turbulent flows

Following a similar scheme to the two-dimensional case (see section 2.2), the statistics

of u′ and η are related in order to obtain the expression for the filter in terms of either

the correlation or the energy spectrum of the turbulent flow.

The stationary two-point two-time correlation tensor of η in a Lagrangian formulation

is given by (see appendix B.5)

Cij(r, t) = δijRUi(t)(G ∗G)(r), Ĉij(κ, t) = δijRUi(t)Ĝ(κ)2, (A.4)

where ∗ stands for the three-dimensional convolution.

In three dimensions, assuming isotropy, a given function can be written in terms of its

Fourier transform and the spherical Bessel function of zeroth order, j0, (see appendix

B.6). In particular, from C(r) = (G ∗G)(r) we get:

C(r) =
1

2π2

∫ ∞
0

Ĝ(κ)2j0(κr)dκ. (A.5)

where r=|r| and κ=|κ|.

The stationary two-point correlation tensor of the three-dimensional velocity field u′,

Rij(r) = 〈u′i(x1) u
′
j(x2)〉, can be written in terms of the lateral, f(r), and longitudinal,

g(r), autocorrelations as

Rij(r) = [f(r)− g(r)]ninj + g(r)δij , (A.6)

where the vector components ni stand for the unit vector in the x1 − x2 direction and

δij is the Kronecker symbol. Mass conservation in 3D connects the autocorrelations f

and g by

g(r) = f(r) +
r

2

df

dr
(r), (A.7)

yielding (see appendix B.7)

f(r) = −2

r

dC

dr
(r), g(r) = −d2C

dr2
(r)− 1

r

dC

dr
(r). (A.8)

Therefore, in three-dimensions the quantity R = Rii/2 reads

R(r) = −d2C

dr2
(r)− 2

r

dC

dr
(r). (A.9)

Performing the corresponding derivatives of Eq. (A.5), the expression of R can be sim-

plified

R(r) =
1

6π2

∫ ∞
0

κ2Ĝ(κ)2
[

6

κr
j1(κr) + j0(κr)− 2j2(κr)

]
dκ, (A.10)
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where j0, j1 and j2 are the spherical Bessel functions of zero, first and second order

respectively. Using the relation j1(κr) = κr [j0(κr) + j2(κr)] /3, we get

R(r) =
1

2π2

∫ ∞
0

κ2Ĝ(κ)2j0(κr)dκ. (A.11)

Hence, due to the relation between the Fourier transform and the spherical Bessel func-

tion and by comparing with Eq. (A.5)

R̂(κ) = κ2Ĝ(κ)2. (A.12)

It also follows from Eq. (A.12) that in the physical space the filter reads

G(r) =
1

2π2

∫ ∞
0

R̂(κ)1/2

κ
j0(κr)dκ. (A.13)

In three dimensions the velocity spectrum, φij , given by the inverse Fourier transform

of the correlation function reads

φij(κ) =

∫
R3

Rij(r) exp(−iκ · r)dr, (A.14)

Hence, by definition of R, its expression in terms of the velocity spectrum in the

wavenumber space is

R̂(κ) =
1

2
φij(κ). (A.15)

Comparing Eq. (A.12) and Eq. (A.15),

φii(κ) = 2κ2Ĝ(κ)2. (A.16)

Finally, the filter can be connected to the energy spectrum, E(κ), through its relation

with the velocity spectrum. In a three-dimensional turbulent flow the velocity spectrum

and the energy spectrum are connected by

E(κ) =
1

8π3

∮
1

2
φii(κ)dS(κ), (A.17)

where S(κ) denotes the sphere in the wavenumber space of radius κ centred at the origin.

Hence,

E(κ) =
1

4π2
κ2φii(κ). (A.18)

Inserting Eq. (A.16) into Eq. (A.18), the relation between the filter kernel and the energy

spectrum in the wavenumber space is given by

E(κ) =
1

2π2
κ4Ĝ(κ)2, (A.19)
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which yields in the physical space

G(r) =
1√
2π

∫ ∞
0

E(κ)1/2

κ2
j0(κr)dκ. (A.20)

Summarising, in this section it has been shown how to generate a synthetic three-

dimensional incompressible evolving turbulent flow under the constrains of homogeneity

and isotropy. The equations that determine the synthetic velocity field of such flow are

given by

u′(x, t) = ∇× η(x, t), (A.21)

where

ηi(x, t) =

∫
R3

G(|x− x′|)Ui(x′, t)dx′, (A.22)

U1, U2, and U3 are three independent stochastic fields verifying Eq. (A.2), and G is

recovered either from Eq. (A.13) or Eq. (A.20).

A.2 Anisotropic turbulence

The remaining constrain in random-vortex-particle method is isotropy. This restriction

can be eliminated by transforming the generated velocity field into a field that matches

the correlation of the desired anisotropic turbulent flow.

By solving the Reynolds-averaged Navier Stokes equations, for instance using a K-ε

model, it is possible to applied a Reynolds stress model and hence recover the local

Reynolds stress of the anisotropic turbulent flow. The set of transformations proposed

by Lund et al. [31] or Smirnov et al. [32] can then be applied to the velocity field

generated with the random-vortex-particle method, see section 2.1.3. The output is a

turbulent anisotropic velocity field whose length and time scales and correlation functions

correspond to those of the original flow.



Appendix B

Detailed derivation of equations

The derivation of some equations presented along this thesis that might require further

explanation is presented in this appendix.

B.1 Derivation of Eq. (2.39)

The stationary two-point correlation of u′ is Rij(r) = 〈u′i(x) u′j(x+ r)〉.

Inserting the definition of u′,

Rij(r) = 〈(−1)j
∂

∂xj
η(x) (−1)i

∂

∂xi
η(x+ r)〉, (B.1)

and applaying properties of the correlation function

Rij(r) = (−1)i+j〈 ∂
∂xj

η(x)
∂

∂xi
η(x+ r)〉, (B.2)

and properties of partial derivatives

Rij(r) = (−1)i+j〈 ∂
∂xj

η(x)
∂

∂ri
η(x+ r)〉, (B.3)

yields

Rij(r) = (−1)i+j
∂

∂ri
〈 ∂
∂xj

η(x) η(x+ r)〉. (B.4)

Since locally homogeneous flows are been considered, by hypothesis

∂

∂xj
〈η(x) η(x+ r)〉 = 0. (B.5)
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Hence, Eq. (B.4) is equivalent to

Rij(r) = (−1)i+j+1 ∂

∂ri
〈η(x)

∂

∂xj
η(x+ r)〉. (B.6)

By the same reasoning as in Eq. (B.3) and Eq. (B.4),

Rij(r) = (−1)i+j+1 ∂2

∂ri∂rj
〈η(x) η(x+ r)〉, (B.7)

Using that the correlation tensor of the stream function η is given by C(r),

Rij(r) = (−1)i+j+1 ∂2

∂ri∂rj
C(r). (B.8)

Performing the second partial derivative of C with respect to ri and rj ,

∂2

∂ri∂rj
C(r) = δij

1

r

d

dr
C(r)− rirj

r3
d

dr
C(r) +

rirj
r2

d2

dr2
C(r). (B.9)

Straightforward algebra shows that half the trace of the correlation tensor Rij is given

by

R(r) =
1

2
[R11(r) +R22(r)] = −1

2

[
1

r

dC

dr
(r) +

d2C

dr2
(r)

]
. (B.10)

B.2 Derivation of Eq. (2.40)

By Fourier transform theory, C(r) can by defined as

C(r) =
1

4π2

∫
R2

Ĉ(κ) exp(iκ · r)dκ, (B.11)

where κ stands for the wavenumber vector and Ĉ denotes the Fourier transformation of

C.

Expressing r and κ in polar coordinates as

r ≡ (rx, ry) = (r cosα, r sinα) (B.12)

κ ≡ (κx, κy) = (κ cos θ, κ sin θ), (B.13)

where κ=|κ|, r=|r| and α, θ ∈ [0, 2π), Eq. (B.11) is found to be

C(r) =
1

4π2

∫ ∞
0

κĈ(κ)

[∫ 2π

0
exp(iκr cos(θ − α))dθ

]
dκ. (B.14)
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Using the definition of the Bessel function of zeroth order given by

J0(x) =
1

2π

∫ 2π

0
exp(ix cos(θ))dθ (B.15)

and that in isotropic turbulence α can be chosen equal to zero, we finally recover the

desired expression of C(r)

C(r) =
1

2π

∫ ∞
0

κĈ(κ)J0(κr)dκ. (B.16)

B.3 Derivation of Eq. (2.47)

By definition of the two-point correlation tensor, Rij(r), of the velocity field u′ expressed

in terms of the stream function η we get

R22(re1) = 〈∂η
∂x

(x, y)
∂η

∂x
(x+ r, y)〉, (B.17)

where e1 stands for the unit vector in the x-direction.

Taking into account that R22(re1) = g(r),

g(r) = 〈∂η
∂x

(x, y)
∂η

∂x
(x+ r, y)〉, (B.18)

and noticing that [∂η∂x(x+ r, y) = ∂η
∂r (x+ r, y)],

g(r) =
∂

∂r
〈∂η
∂x

(x, y) η(x+ r, y)〉. (B.19)

Since the statistics are homogeneous
[
∂
∂x〈η(x, y) η(x+ r, y)〉 = 0

]
,

〈∂η
∂x

(x, y) η(x+ r, y)〉 = −〈η(x, y)
∂η

∂x
(x+ r, y)〉. (B.20)

Inserting Eq. (B.20) into Eq. (B.19)

g(r) = − ∂

∂r
〈η(x, y)

∂η

∂x
(x+ r, y)〉. (B.21)

Proceeding as in Eq. (B.19)

g(r) = − ∂2

∂r2
C(r). (B.22)
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B.4 Derivation of Eq. (2.57)

The stationary two-point two-time correlation of η is

C(r, t) = 〈η(r1, t1) η(r2, t2)〉, (B.23)

where r = r2 − r1 and t = |t1 − t2|. Taking into account the definition of η

C(r, t) = 〈
∫
R2

G(|r1 − r′|)U(r′, t1)dr
′
∫
R2

G(|r2 − s′|)U(s′, t2)ds
′〉, (B.24)

straightforward algebra shows that

C(r, t) =

∫
R2

∫
R2

G(|r1 − r′|)G(|r2 − s′|)〈U(r′, t1) U(s′, t2)〉dr′ds′. (B.25)

Using the properties of the stochastic field U (see Eq. (2.55))

〈U(r′, t1) U(s′, t2)〉 = δ(s′ − r′ − tuc)RU (t), (B.26)

where δ denotes a 2D Dirac function, which reads δ(r) = δ(rx)δ(ry), Eq. (B.25) takes

the form

C(r, t) = exp (−t/τ)

∫
R2

G(|r1 − r′|)G(|r2 − r′ − tuc|)dr′. (B.27)

Using that r2 = r1 + r

C(r, t) = exp (−t/τ)

∫
R2

G(|r1 − r′|)G(|r1 + r − r′ − tuc|)dr′. (B.28)

Applying the change of variable ζ = r′ − r1

C(r, t) = exp (−t/τ)

∫
R2

G(| − ζ|)G(|r − tuc − ζ|)dζ. (B.29)

Therefore, the right hand side of Eq. (B.29) is the self convolution of G,

C(r, t) = (G ∗G)(|r − tuc|)RU (t). (B.30)

Note that the assumption r = r2 − r1 instead of r = r1 − r2 does not change the final

result since C(r, t) = C(−r, t).
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B.5 Derivation of Eq. (A.4)

The stationary two-point two-time correlation of η is given by

Cij(r, t) = 〈ηi(r1, t1) ηj(r2, t2)〉, (B.31)

where r = r2 − r1 and t = |t1 − t2|. Taking into account the definition of η

Cij(r, t) = 〈
∫
R3

G(|r1 − r′|)Ui(r′, t1)dr′
∫
R3

G(|r2 − s′|)Uj(s′, t2)ds′〉, (B.32)

straightforward algebra shows that

Cij(r, t) =

∫
R3

∫
R3

G(|r1 − r′|)G(|r2 − s′|)〈Ui(r′, t1) Uj(s′, t2)〉dr′ds′. (B.33)

U1, U2, and U3 are defined to be three random fields such that

〈Ui(r, 0)〉 = 0, 〈Ui(r1, t1)Uj(r2, t2)〉 = δ(r − tuc)RUi(t)δij , (B.34)

where δ denotes a 3D Dirac function, which reads δ(r) = δ(rx)δ(ry)δ(rz) and δij is the

Kronecker symbol. Hence, Eq. (B.33) takes the form

Cij(r, t) = δijRUi(t)

∫
R3

G(|r1 − r′|)G(|r2 − r′ − tuc|)dr′. (B.35)

Using that r2 = r1 + r

Cij(r, t) = δijRUi(t)

∫
R3

G(|r1 − r′|)G(|r1 + r − r′ − tuc|)dr′. (B.36)

Applying the change of variable ζ = r′ − r1

Cij(r, t) = δijRUi(t)

∫
R3

G(| − ζ|)G(|r − tuc − ζ|)dζ. (B.37)

The right hand side of Eq. (B.37) is the self convolution of the filter G,

Cij(r, t) = δijRUi(t)(G ∗G)(|r − tuc|). (B.38)

Summarising, it has been shown that the stationary correlation of η is

Cij(r, t) = δijRUi(t)(G ∗G)(|r − tuc|). (B.39)

Note that the assumption r = r2 − r1 instead of r = r1 − r2 does not change the final

result since Cij(r) = Cij(−r).
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B.6 Derivation of Eq. (A.5)

By Fourier transform theory, C(r) can by defined as

C(r) =
1

8π3

∫
R3

Ĉ(κ) exp(iκ · r)dκ, (B.40)

where κ stands for the three-dimensional wavenumber vector and Ĉ denotes the Fourier

transformation of C in three dimensions.

Expressing r and κ in spherical coordinates as

r ≡ (rx, ry, rz) = (r cosϕ cos θ, r cosϕ sin θ, r sinϕ), (B.41)

κ ≡ (κx, κy, κz) = (κ cosα cosβ, κ cosα sinβ, κ sinα), (B.42)

where κ=|κ|, r=|r|, ϕ,α ∈ [−π
2 ,

π
2 ), and θ,β ∈ [0, 2π), we get:

κ · r = κr[cosϕ cosα cos(β − θ) + sinϕ sinα]. (B.43)

In isotropic turbulence the directional information depends only on the distance, so we

can choose ϕ = 0 and θ = 0 yielding

κ · r = κr cosα cosβ. (B.44)

Inserting Eq. (B.44) into Eq. (B.40) and performing the change of variables given by

Eqs. (B.41) and (B.42)

C(r) =
1

8π3

∫ ∞
0

Ĉ(κ)

∫ π
2

−π
2

κ cosα

∫ 2π

0
exp(iκr cosα cosβ)dβdαdκ. (B.45)

Using the definition of the Bessel function of zeroth order given by

J0(x) =
1

2π

∫ 2π

0
exp(ix cos θ)dθ, (B.46)

C(r) =
1

4π2

∫ ∞
0

Ĉ(κ)

∫ π
2

−π
2

κ cosαJ0(κr cosα)dαdκ. (B.47)

The integral with respect to α in the above equation∫ π
2

−π
2

κ cosαJ0(κr cosα)dα = 2
sin(κr)

κr
, (B.48)
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is exactly twice the spherical Bessel function of zeroth order, j0, evaluated at κr. Hence,

C(r) =
1

2π2

∫ ∞
0

Ĉ(κ)j0(κr)dκ. (B.49)

B.7 Derivation of Eq. (A.8)

The stationary two-point correlation of u′ is

Rij(r) = 〈u′i(x) u′j(x+ r)〉. (B.50)

Inserting the definition of u′,

Rij(r) = 〈εimn
∂

∂xm
ηn(x) εjpq

∂

∂xp
ηq(x+ r)〉, (B.51)

where εijk stands for the alternating symbol

εijk =


1, if (i, j, k) are cyclic ;

−1, if (i, j, k) are anticyclic ;

0, otherwise.

(B.52)

By properties of the correlation function

Rij(r) = εimnεjpq〈
∂

∂xm
ηn(x)

∂

∂xp
ηq(x+ r)〉. (B.53)

By properties of partial derivatives

Rij(r) = εimnεjpq〈
∂

∂xm
ηn(x)

∂

∂rp
ηq(x+ r)〉, (B.54)

which yields

Rij(r) = εimnεjpq
∂

∂rp
〈 ∂

∂xm
ηn(x) ηq(x+ r)〉. (B.55)

Since isotropic flows are been considered, by hypothesis

∂

∂xm
〈ηn(x) ηq(x+ r)〉 = 0. (B.56)

Hence, Eq. (B.55) is equivalent to

Rij(r) = −εimnεjpq
∂

∂rp
〈ηn(x)

∂

∂xm
ηq(x+ r)〉. (B.57)
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By the same reasoning as in Eq. (B.54) and Eq. (B.55),

Rij(r) = −εimnεjpq
∂2

∂rm∂rp
〈ηn(x) ηq(x+ r)〉, (B.58)

Using that the two-point correlation tensor of the stream function η is given by Cij(r) =

(G ∗G)(|r|)δij ,

Rij(r) = −εimnεjpqδnq
∂2

∂rm∂rp
C(r), (B.59)

where C(r) = (G ∗G)(|r|).

Performing the second partial derivative of C with respect to rm and rp,

∂2

∂rm∂rp
C(r) = δpm

1

r

d

dr
C − rmrp

r3
d

dr
C +

rmrp
r2

d2

dr2
C, (B.60)

Eq. (B.59) can be rewritten as

Rij(r) = −εimnεjpqδnqδpm
1

r

d

dr
C − εimnεjpqδnq

(
d2

dr2
C − 1

r

d

dr
C

)
rmrp
r2

. (B.61)

It can be proved that

εimnεjpqδnqδmp = 2δij , (B.62)

εimnεjpqδnq = δmpδij − δipδjm. (B.63)

Hence,

Rij(r) = −2
1

r

d

dr
Cδij −

(
d2

dr2
C − 1

r

d

dr
C

)
rmrp
r2

δmpδij +

(
d2

dr2
C − 1

r

d

dr
C

)
rmrp
r2

δipδjm.

(B.64)

Straightforward algebra shows

Rij(r) =

(
d2

dr2
C − 1

r

d

dr
C

)
rirj
r2

+

(
− d2

dr2
C − 1

r

d

dr
C

)
δij . (B.65)

Finally, comparing Eq. (B.65) with the expression of the correlation function in terms

of the radial correlations,

Rij(r) = [f(r)− g(r)]ninj + g(r)δij , (B.66)

it is deduced that

f(r) = −2

r

d

dr
C, g(r) = − d2

dr2
C − 1

r

d

dr
C. (B.67)
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It is immediate to show that expressions in Eq. (B.67) verify

g(r) = f(r) +
r

2

df

dr
(r). (B.68)





Appendix C

Amiet’s analytical solution

A modified version of the analytical solution obtained by Amiet [17] is derived in order

to validate the numerical results. Amiet’s analytical solution provides the pressure

jump along the airfoil and the far-field sound generated by the interaction of isotropic,

homogeneous, frozen turbulence with a flat plate. It is first modified to account for a

fully two-dimensional acoustic field. Then, the analytical solution is extended to include

the effects of periodic Gaussian wakes.

C.1 Homogeneous frozen turbulence

Amiet derived a theoretical solution for the sound radiated by a 2b× 2d flat plate in the

xy-plane in an isotropic homogeneous subsonic flow. A similar analysis to that in [17]

is followed here to obtain the expression for the PSD of pressure but assuming that the

turbulent velocity field on the plate is function of its x position only.

The turbulent component of the velocity field normal to the airfoil (upwash velocity)

due to a gust excited at the frequency corresponding to the chordwise hydrodynamic

wavenumber κx = ω/u0 is

v(x, t) = v̂(κx) exp[iκx(x− u0t)], v̂(κx) =
1

2π
v(x) exp(−iκxx), (C.1)

where v̂ is the Fourier transform1of v defined in a frame of reference moving with the

mean flow.

1 The definition of the Fourier transform given here is chosen following Amiet’s formulation but differs
from the definition used everywhere else in this thesis. Therefore, the corresponding 2π factor must be
taking into account when comparing analytical and numerical results.
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The pressure jump along the airfoil for a single wave component is given by

∆P (x, t) = 2πρ0u0v̂(κx)g(x, κx) exp(−iκxu0t) (C.2)

∆P̂ (x, ω) = 2πρ0v̂(κx)g(x, κx), (C.3)

where g(x, κx) is the response function along the airfoil.

At high frequencies the response function can be computed iteratively to correct for

boundary conditions at the leading and trailing edges [43]. Amiet used the first two

iterations to define the response function as the sum of two expressions; one accounting

for the scattering of turbulence at the leading edge and another term for corrections due

to the presence of the trailing edge [42]. The trailing edge response function used here

include the effects of vortex shedding by the addition of an exponential factor of the

form exp (εκxx) (see Ref. [54]). Hence, the response function g in Eq. (C.2) is obtained

as the sum of the response functions corresponding to the leading edge and trailing edge

g1(x, κx) =
exp [−i (µ(1−M)(1 + x)− κx + π/4)]

π
√
π(1−M)(1 + x)κx

, (C.4)

g2(x, κx) = exp (εκxx)

{
−1 + (1 + i)E∗[−x(κx + µ(1 +M))]

}
, (C.5)

respectively. Here E∗ is defined as

E∗(s) =

∫ s

0

exp(−is′)
(2πs′)1/2

ds′,

and ε is a parameter that can be fixed by agreement with measurements. In this case

we use ε = 0.75.

A turbulent flow can be considered as the sum of the contributions from a range of gusts,

each with a different frequency. Therefore, the complete turbulent velocity field along

the airfoil is of the form

v(x, t) =

∫
R
v̂(κx) exp[iκx(x− u0t)]dκx, v̂(κx) =

1

2π

∫
R
v(x) exp(−iκxx)dx, (C.6)

and the complete pressure jump is given by

∆P (x, t) = 2πρ0u0

∫
R
v̂(κx)g(x, κx) exp(−iκxu0t)dκx, (C.7)

∆P̂ (x, ω) = 2πρ0v̂(κx)g(x, κx). (C.8)

The sound radiated by the airfoil can be characterised in the far field by the power

spectral density of the acoustic pressure p:

Spp(x, y, ω) =
1

2π

∫
R
〈p∗(x, y, t)p(s, y, t+ s)〉 exp(iωs)ds, (C.9)
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where the superscript ∗ denotes the complex conjugate. For a two-dimensional acoustic

field, the acoustic pressure can be expressed in terms of the pressure jump along the

airfoil and the corresponding Green’s function G as

p(x, y, t) = −
∫
R

∫
R

∆P̂ (x, ω)
∂

∂y
G(x, y, x1, ω) exp(−iωt)dx1dω. (C.10)

Inserting the complete pressure jump in Eq. (C.7) into Eq. (C.10), the power spectral

density of the acoustic pressure is given by

Spp(x, y, ω) =
ρ20u0κ0y

2π

2σ3
φvv(κx)|L(x, κx)|2, (C.11)

where κ0 = ω/c0 is the free-field acoustic wavenumber, σ =
√
x2 + β2y2 with β2 =

1 − M2, φvv is the streamwise velocity spectrum of v and L. Note that Eq. (C.11)

decays as 1/r as expected for two-dimensional waves.

In two dimensions the velocity spectrum can be related to the energy spectrum, E(κ),

by (see Ref. [14])

φjj(κ) =
E(κ)

πκ

(
1−

κ2j
κ2

)
. (C.12)

The lift function in Eq. (C.11) is defined in terms of the pressure jump along the airfoil

L(x, κx) =

∫ b

−b
g(x0, κx) exp

[
iκ0
β2

x0(M − x/σ)

]
dx0. (C.13)

The lift function is obtained when inserting Eqs. (C.4) and (C.5) into Eq. (C.13) and

summing up their contributions.

C.2 Inhomogeneous non-stationary turbulence

Amiet’s analytical solution is now extended to accommodate for inhomogeneous non-

stationary turbulent flows found downstream of a fan. The turbulent flow downstream

a fan rotor can be characterised by a periodic series of Gaussian wakes superimposed

over background turbulence. Following Jurdic’s [18] approach, the background turbu-

lence is assumed homogeneous and isotropic and the inhomogeneous wake turbulence is

obtained by modulating an homogeneous upwash velocity field with a periodic train of

Gaussian functions. Therefore, the total sound power levels radiated are given by the

sum of the contributions from the background and wake turbulence. The SPL from the

background turbulence can be obtained directly from the analytical solution for homo-

geneous frozen turbulence in Eq. (C.11), so we concentrate on the contribution from the

wake turbulence.
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The turbulent velocity component normal to the airfoil vw is expressed in the form of a

periodic train of Gaussian functions h that modulates an upwash velocity v:

vw(x, t) = h(x, t)v(x, t). (C.14)

The upwash velocity v is assumed homogeneous and it is defined as the sum of contribu-

tions from a range of gusts each with a different frequency as in Eq. (C.6). The periodic

train of Gaussian functions h describes the evolution of the wake and it is defined as

h(x, t) =

∞∑
m=−∞

exp

[
− ln(2)

(
x− u0t−mu0T

Lw

)2
]
, (C.15)

where Lw is the half-width of the wake, T is the period between adjacent wakes and u0

is the convection velocity.

In order to relate the upwash velocity field with the pressure jump along the airfoil,

the train of Gaussian functions is first rewritten as a Fourier series. Using Poisson’s

summation formula, the periodic sum in Eq. (C.15) can be related to the Fourier series

coefficients yielding

h(x, t) =

∞∑
n=−∞

hn exp[iκn(x− u0t)], (C.16)

where hn =
Lw
u0T

√
π

ln(2)
exp

[
− 1

ln(2)

(
πLwn

u0T

)2
]

and κn =
2π

u0T
n.

Therefore, Eq. (C.14) can be rewritten as

vw(x, t) =

∞∑
n=−∞

hn exp[iκn(x− u0t)]v(x, t). (C.17)

The pressure jump is then given by

∆P (x, t) = 2πρ0u0

∫
R

∞∑
n=−∞

hnv̂(κx − κn)g(x, κx) exp(−iκxu0t)dκx, (C.18)

∆P̂ (x, ω) = 2πρ0

∞∑
n=−∞

hnv̂(κx − κn)g(x, κx). (C.19)
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Therefore, in this case the far-field power spectral density of the acoustic pressure defined

in Eq. (C.9) is given by

Spp(x, y, t, ω) =
ρ20u0κ0y

2π

2σ3

∫ b

−b

∫ b

−b

∞∑
n=−∞

∞∑
m=−∞

h∗nhmg
∗(x1, κx − κm + κn)

g(x2, κx)φvv(κx − κm) exp[iu0(κm − κn)t]

∂

∂y
G(x, y, x1, ω − u0(κm − κn))

∂

∂y
G(x, y, x2, ω)dx1dx2. (C.20)

In order to validate the numerical results, the typical approach used to compared against

experimental data of considering the time average of power spectral density is considered

here. That is, taking the Fourier mode m = n in Eq. (C.20):

Spp(x, y, ω) =
ρ20u0κ0y

2π

2σ3

∞∑
n=−∞

h2nφvv(κx − κn)|L(x, κx)|2, (C.21)

where the velocity spectrum of the normal component of the turbulent velocity field φvv

is defined in Eq. (C.12) and the lift function L in Eq. (C.13).
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