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UNIVERSITY OP SOUTHAMPTON 

ABSTRACT 

PACULTY OF MATHEMATICAL STUDIES 

MATHEMATICS 

Doctor of Philosophy 

MATHEMATICAL MODELLING OF UNSTEADY PROBLEMS 

IN THIN AEROFOH; THEORY 

by Martin Peter Pope 

The de-icing of aircraft wings by the injection of fluid through a slot in the leading edge of 

the wing is analysed. A review of current de-icing methods is presented and the semi-infinite 

slot-injection equation derived, which is a singular partial integro-differential equation. The 

Stefan condition is used to close the system. A discretisation of the equations is presented 

and the subsequent numerical results are analysed. The model is then revised to account for 

the retraction of the ice layer away from the slot. An asymptotic result for thin ice layers is 

also presented. 

The problem of describing the motion of a thin, flexible membrane fixed at both ends (a 

'sail') is then considered. The steady sail is analysed for the case of an inextensible sail 

and previous work on this topic is extended by using a discretisation of the singular integro-

difi'erential equation that is pertinent to the later analysis of the unsteady sail. An asymptotic 

expression for the eigenvalues of the system, defined as the values of the tension parameter 

for which the sail generates zero lift, is also presented. The problem is then extended to that 

of an extensible sail and numerical results are presented for both the sail with excess length 

and the membrane without slack. 

The case where the angle of incidence of the sail to the free stream is a prescribed function 

of time is then analysed. Previous work on this subject is extended to include the extensible 

sail and numerical results are presented. A linear stability analysis is then undertaken for 

both the inextensible and elastic sails; the resulting quadratic eigenvalue problem is solved 

numerically and is in agreement with the numerical experiments. 

The trailing edge of the membrane is now permitted to move freely and thus the motion of 

a 'flag' is analysed. The inclusion of bending stifl'ness is found to be crucial to the stability 

properties of the flag. The steady equation of motion is numerically approximated for both 

a hinged flag and a flag that is clamped at the leading edge. The unsteady flag equation is 

then discretised and numerical results are presented. A linear stability analysis is performed, 

the conclusions of which are consistent with the numerical approximations of the unsteady 

flag equation. 
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Notation for De-Icing by Slot Injection 

B{x, t) height of ice layer 

C(x, t) transformed non-dimensional height of ice layer, C(z, t) — t) 

Cp speci6c heat 

source strength is Eg 

k thermal conductivity 

L width of slot 

latent heat 

M mass flow out of slot 

pf static pressure in downstream film 

Po static pressure of perturbed flow 

Ps static pressure in slot 

Poo static pressure of outer flow 

ptao total pressure of outer flow 

q fluid velocity 

S{x, t) height of shear layer 

t time 

ti re-scaled non-dimensional time, ti = 

T{x,t) transformed non-dimensional height of shear layer, T{x,t) = M^3S{x,t) 

Tf temperature of downstream film/ice boundary 

Ti temperature of injected fluid 

To temperature of outer flow/downstream film boundary 

Tu) temperature of ice/wing boundary 

T~ temperature in downstream film 

T~̂  temperature in ice layer 

u, V components of fluid velocity in x, y directions respectively 

Uoo speed of outer flow 

X, y Cartesian coordinates 

e non-dimensional small parameter 

1] integration variable in z-direction 

A non-dimensional Stefan parameter 

p density of outer flow 

xp stream function of flow in downstream film 

ipo stream function of perturbed flow 

Throughout this thesis an asterisk denotes a non-dimensional variable, e.g S*. If the asterisks 

are omitted then the text within the relevant chapter indicates so. 
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Notation for Sail and Flag Problems 

Courant number 

X coordinate of the trailing edge of the flag 

Cl non-dimensional lift coefficient 

/ ( z , strength of each vortex is <) 

Fy component of tension in ^-direction 

distance between sail ends 

length of flag 

Lt total lift generated by sail 

M{x, t) bending moment 

p static pressure 

q fluid velocity 

shearing force 

S{x, t) displacement in ^/-direction 

T tension of sail 

u, V components of fluid velocity in x, y directions respectively 

C/oo speed of outer flow 

X, y Cartesian coordinates 

a angle of incidence 

l3 non-dimensional tension parameter, 0^ = T p ' ~ ^ U ^ = /iA~^ 

7 flexural rigidity 

e non-dimensional small parameter 

77 integration variable in x-direction 

6 angle that Sx{x,t) makes with i-axis 

K non-dimensional ratio of outer flow momentum to flexural rigidity 

A non-dimensional inverse tension parameter, A = 2pU^LT^^ = 

A extensibility of sail 

/i non-dimensional inverse mass ratio 

p density of fluid 

p' mass per unit length 

a complex stability constant, a = Ur + ioi 

(/) velocity potential of perturbed flow 

Tp stream function of perturbed flow 

Throughout this thesis an asterisk denotes a non-dimensional variable, e.g S*. If the asterisks 

are omitted then the text within the relevant chapter indicates so. In addition, a bar is used 

to denote a steady solution in the linear stability analysis, e.g S. 
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Chapter 1 

In t roduct ion 

This thesis analyses three distinct problems that use thin aerofoil approximations to derive the 

relevant equations of motion. All three problems are time-dependent in some way although 

the problem of de-icing by slot injection is quasi-steady in that time may be scaled such 

that it is merely a parameter of the problem. In each case, thin aerofoil theory permits 

the linearisation of the problem and the resulting equations of motion are singular partial 

integro-differential equations. These equations contain Hilbert transforms which are defined 

as integrals with a Cauchy kernel, {r} — x)~^. The construction of accurate numerical schemes 

for this type of equation is far from trivial and this thesis presents numerical methods that 

permit accurate approximations whilst not being computationally expensive. 

Although the problems analysed within this thesis all utilise thin aerofoil approximations 

they describe very different physical systems. Therefore the review of current literature un-

dertaken by the author is divided amongst the relevant chapters and is not presented in bulk 

at the outset of the thesis. This style has been adopted to enable the reader to read the 

review that is pertinent to the problem described within the chapter. In addition, each chap-

ter contains a detailed conclusions section relevant to the problem being discussed. However, 

summary conclusions are given in Chapter 9 along with suggestions for further research. Two 

Appendices are provided, the first of which derives the stream function for small perturba-

tion problems. Appendix B details the inversion formulae for Hilbert Transforms that are 

extensively used throughout this thesis. 

1.1 Overview of Work Pe r fo rmed 

The first problem, analysed in Chapter 2, is that of de-icing aircraft surfaces by the slot-

injection of hot fluid into the outer flow. This is a variation on the slot-film cooling work 

of Fitt et a/.(1985)[13]. The static pressure within the slot is assumed to exceed that of 



the outer flow by a "small" amount thus stipulating that the perturbation to the outer flow 

is such that thin aerofoil theory may be employed. The resulting slot-injection equation is 

a semi-infinite singular partial integro-differential equation in terms of the shear layer and 

the height of the ice. The Stefan condition is employed to close the system by providing 

a relationship between the temperatures of the injected fluid and the frozen liquid and the 

rate of decay of the ice layer. The de-icing equations are then discretised and a numerical 

result presented for a particular choice of the initial height of the ice. The model is revised 

to account for the retraction of the ice layer away from the trailing edge of the slot and this 

modification is included into the numerical scheme. An asymptotic solution for small ice 

layers is also presented. 

The steady sail problem is discussed in Chapter 3. This problem models the irrotational 

flow of an inviscid, incompressible fluid past a two-dimensional membrane. The sail is flexible, 

thin, of finite mass and is fixed at both ends. This chapter commences by analysing the 

steady sail equation that was originally derived by Voelz(1950)[50] and again, apparently 

independently, by Thwaites(1961)[46]. The finite difference method employed here is different 

from that given by previous authors in that it is pertinent to the study of the unsteady sail 

equation in Chapter 4. Both Voelz and Thwaites numerically analysed the case where the 

material of the sail is inextensible. Their results show that in the steady case there exists 

certain angles of incidence for which more than one sail shape is possible depending on the 

tension within the sail. This phenomenon motivated Thwaites to analyse the eigenvalues 

of the system, defined as the values of the tension parameter for which the sail generates 

zero lift. The work of Thwaites is extended here to include an asymptotic approximation 

for the eigenvalues corresponding to large values of the tension parameter. The steady sail 

problem is then extended to the case of an extensible sail. This problem was first analysed by 

Jackson(1983)[20] who approximated the sail by a cubic and plotted the relationship between 

the tension and angle of incidence for different materials. It is noted here that the extensible 

sail does not require an excess length in order to achieve a non-zero shape when placed in the 

outer flow and hence the presented results are for the extensible sail (1) with excess length 

and (2) without slack. The steady sail under large tension and at large angle of incidence is 

also considered. 

Chapter 4 details the unsteady sail problem where the angle of incidence is now a prescribed 

function of time. This is an extension of the work of Lattimer(1996)[25] who proposed and 

numerically approximated the unsteady sail equation for an inextensible sail. The singular 

integral within the equation of motion is discretised here using methods similar to those of 

the previous chapter. The results presented are for an angle of incidence that changes linearly 

between two angles for which there exists multiple steady solutions. By starting the sail in 

each of the different steady solutions for the initial angle, the results show the motion that 



the sail undergoes and the final solution to which it tends. Results are given for the extensible 

sails with slack and without excess length; the results of the extensible sail with slack are 

interesting in that they tend to the inextensible sail results in the limit as the sail becomes 

increasingly less extensible. 

A linear stability analysis of the unsteady sail equation is undertaken in Chapter 5. At the 

time of writing, no previous publications that present the linear stability of the unsteady sail 

equation can be found. A similar work is that of Haselgrove &: Tuck(1976)[18] who analysed 

the stability of the unsteady "jib" which is a sail attached to a fully porous sheet at its 

trailing edge. In the limit as the sheet length tends to zero the jib tends to the sail problem. 

However, in the work of Haselgrove & Tuck the jib is of zero mass which is a significant 

departure from the model presented here. In this thesis, the linear stability of the high mass 

sail is considered first since the governing equation in this limit does not contain a Hilbert 

transform. The resulting linearised equation may be solved analytically. The linear stability 

analysis for the order one mass sail is far more difficult, however, and numerical methods 

are employed. Once discretised, the perturbed unsteady sail equation and the associated 

length condition form a quadratic eigenvalue problem which is solved numerically. The linear 

stability results are then presented for the inextensible sail, the extensible sail without slack 

and the elastic sail with excess length. 

Chapter 6 details the unsteady flag problem which is a modification of the sail problem 

in that the trailing edge of the membrane may now freely move. Earlier work on this topic 

includes Haselgrove(1973) [17] who analysed a flag of zero mass and Lattimer(1996)[25] who 

proposed the equation for a flag of finite mass in the absence of bending stiffness. The 

work presented here is for a flag with non-zero mass and of finite bending stiffness. The 

equation of motion is derived and it is noted that the method of attachment at the leading 

edge is of paramount importance since the flag may be either freely hinged or clamped with 

zero gradient. The steady flag problem is then numerically analysed for both methods of 

attachment and results are presented for various angles of incidence and values of the outer 

flow momentum to flexural rigidity ratio. The limiting case of a flag of large flexural rigidity 

is analysed and the flag shape in this limit is calculated. Attention is then turned to the 

unsteady flag equation and an explicit discretisation is presented. Von Neumann stability 

analysis is performed on this numerical scheme and the associated Courant number is derived. 

A selection of numerical results are then presented for the unsteady flag for both the hinged 

and clamped cases. 

A stability analysis of the unsteady flag equation including bending stiffness is performed 

in Chapter 7. The high mass limit is considered first which is solved analytically for both 

the hinged and clamped flags. The order one mass flag is then considered. The perturbed 

equation, when discretised, is a quadratic eigenvalue problem and this is transformed to a 



standard eigenvalue problem which is then solved numerically. The marginal stability curves 

for both hinged and clamped flags are presented and discussed. Several example calculations 

of the full unsteady flag equation are presented to illustrate the motion of the flag in relation 

to the stability curve. 

Several other variations on the unsteady sail problem are considered in Chapter 8. The 

changes that can be made to the sail equation, the boundary conditions and the length 

condition are discussed and their relevance to difl'erent physical systems. The inclusion of 

gravity, the jib of finite mass and the drying of a wet sail are all valid problems involving thin 

aerofoil theory that are discussed within this chapter. An analysis of the sail with bending 

stiffness is also presented, including a derivation of the governing unsteady equation. The 

relevant boundary conditions are also introduced which depend on the method of attachment 

used at the sail ends. The steady, stiff sail is then considered and numerical results are 

presented for each of the four possible attachment regimes. 

The numerical results presented within this thesis were computed using FORTRAN-77 

coding on a SUN SPARC2 machine. The NAG library has also been employed throughout 

and the exact routine used is given within the relevant text. The quoted computation times 

within this thesis have been measured using these facilities. 



Chapter 2 

De-icing by Slot-Injection 

There's an old gentleman, he's ninety-three years old now, Jerry Leatherer. He 

wrote a paper more than fifty years ago, and in those days state-of-the-art advice 

was that ice was going to kill you.^ 

Rudi Kapustin, former investigator in charge of major accidents, 

National Transportation Safety Board 

The problem of de-icing by slot injection is a variation on the work presented by Fitt et 

a/.(1985)[13] who studied the perpendicular slot-injection of fluid into a semi-infinite outer 

flow. Lattimer(1996)[25] extended this work to unsteady slot-injection by stipulating that 

the pressure within the slot is a given function of time. The de-icing problem analysed here is 

for steady slot pressure and time may be scaled such that there are no time derivatives in the 

equations of motion, i.e. time is merely a parameter of the problem. Therefore, de-icing by 

slot injection serves as a good introduction to the more complicated, fully unsteady problems 

discussed later in this thesis. 

The slot-injection equation for the de-icing problem is a singular partial integro-differential 

equation which is similar to that derived by Fitt et a/. (1985) [13] but with a minor alteration 

to account for the ice layer. No analytic solution has yet been found to this equation and 

numerical methods are employed to approximate the solution. The slot injection equation 

has two unknown quantities: the height of the ice layer and the position of the shear layer 

which is the boundary between the injected fluid and the outer flow. The Stefan condition 

is used to close the system by relating the temperatures in the ice and the injected fluid and 

the rate at which the ice layer melts. 

This chapter begins with an introduction to the problem of de-icing aircraft wings and the 

' Quotation reproduced with the kind permission of Nicholas Faith, author of "Black Box - The Final 

Investigations" published by Macmillan Publishers Ltd, London 



various methods for successfully removing any ice accumulations. The slot-injection equation 

is then derived. By assuming that the static pressure of the fluid in the slot exceeds the 

pressure in the outer flow by a small amount, the perturbation to the outer flow created by 

the injected fluid is "small" and hence thin aerofoil approximations may be employed. The 

pressures in the slot and the downstream film layer are then equated to the pressure in the 

outer flow to give a singular partial integro-difl'erential equation in terms of the height of the 

ice layer and the position of the shear layer. Attention is then turned to the temperatures in 

both the downstream film and the ice layer and the Stefan equation is used to find the height 

of the ice layer as a function of time. The sections that then follow present a discretisation of 

the system of equations and numerical results for different initial ice layers. An asymptotic 

approximation for thin ice layers is also presented. 

2.1 The De-icing of Aircraf t Wings 

When an aircraft is in flight it is possible for ice to accumulate on the wings, particularly on the 

leading edges. This layer of ice causes the elective shape of the wing to alter thus inevitably 

increasing drag and decreasing lift as stated in Shin et a/.(1994)[37]. Kiernan(1995)[23] and 

Thomas et a/. (1996) [45] both reported aircraft crashes that were due to the ice that had 

accumulated on the aircraft's wings during flight. Faith(1996)[8] detailed the most infamous 

commercial airliner accident involving ice - the Air Florida incident on 13 January 1982. 

This accident involved a Boeing 737 that crashed into a bridge over the Potomac River, 

Washington within a few seconds of taking off. The subsequent investigation revealed that 

despite the fact that it was snowing heavily the de-icing system was never activated. The 

seriousness of ice accumulation is best summed up with: 

Frankly, I don't know how much more often you can tell people that you have 

to have a clean airplane; you can't have ice on it. I know the operations are 

complex - traffic situations, airport traffic, clearances, weather conditions that 

delay airplanes. Those are all facts of life. These things happen. But the bottom 

line is, when you've got ice on the airplane you don't go; when you're in a certain 

type of airplane, you get out of it. I don't think we need any more conferences. I 

think we need crew members to be aware of the fact that if you load an airplane 

up with ice, you're probably going to die.^ 

Rudi Kapustin, former investigator in charge of major accidents, 

National Transportation Safety Board 

^Quotation reproduced with the kind permission of Nicholas Faith, author of "Black Box - The Final 

Investigations" published by Macmillan Publishers Ltd, London 



The methods by which ice accumulation may be tackled fall into two categories; the first is 

anti-icing where the aim is to prevent any ice from ever accumulating on the aircraft's surfaces. 

By far the most common of these methods is to spray the aircraft with de-icing chemicals prior 

to take-off. According to Kiernan(1995)[23] the most common de-icing agents are propylene 

glycol or ethylene glycol. However, these liquids do not adhere to the aircraft for more than 

30 to 35 minutes of flight time after which the aircraft is in danger of ice accumulation. 

Kiernan(1995)[23] reported that more advanced chemicals are being developed which may 

adhere to the aircraft for longer. The second method is to de-ice the aircraft during the 

flight itself once ice has accumulated on the wings. Thomas et aZ. (1996) [45] listed the main 

methods of de-icing as : 1) freezing point depressants, 2) surface deformation and 3) thermal 

melting. 

The method of using freezing point depressants, as explained by Thomas et a/. (1996) [45], is 

a system whereby the leading edges of the wings are covered in slots through which ethylene 

glycol, a de-icing agent, is expelled during flight. The glycol de-ices the aft parts of the 

wing by flowing over the ice layer. Experimental testing of this method was performed by 

Kohlman et aZ. (1982) [24] and it was found to be an effective method of de-icing. However, 

the drawbacks of this system are that the glycol must be stored on board thus increasing the 

weight of the aircraft and also the pilot of the vehicle must decide when to activate the de-

icing system. Kiernan (1995) [23] states that the method most commonly used is for the pilot 

to actually look at the aircraft's wings to detect ice accumulation although optical sensors 

that detect ice build up are being developed in an attempt to minimise unnecessary glycol 

consumption. 

The method of surface deformation is a system whereby the ice covered surface is suddenly 

deformed in some way. This deformation cracks the ice layer and then the detached ice 

particles are carried away by the air flowing over the wing surface. One such method is the 

use of pneumatic boots which are inflatable bladders that are fixed to the surface requiring 

de-icing. Faith(1996)[8] states that this method is most commonly used on turbo-propeller 

driven commercial aircraft owing to the fact that such engines do not generate sufficient 

heat to effectively de-ice the external surfaces. The bladders are instantaneously inflated 

during flight to distort the ice layer and destroy the adhesion between the ice and the wing. 

Another method is electromagnetic impulse de-icing (EIDI) where the aircraft's outer surface 

is deformed by passing a high and instantaneous electrical current through a coil located just 

underneath the aircraft's skin. The opposing magnetic flelds in the coil and the shell repel 

each other and the surface is deformed for a fraction of a second. EIDI has been proved to be 

an effective means of removing ice layers. However, the drawbacks of the system are fatigue 

in the wings due to the repeated deformations and also the electromagnetic energy produced 

by the coil damaging the avionics of the aircraft. 
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Thermal melting of the ice layer is achieved by three main methods: 1) the use of elec-

trothermal heaters situated on the aircraft's wings, 2) the passing of hot air under the skin 

of the aircraft and 3) the use of de-icing by slot-injection of a hot gas on to the wing surface. 

The electrothermal heaters require electrical energy in order to produce heat and hence the 

power consumption of the aircraft is increased. In addition, the heaters do not cover the 

entire wing since heat is only applied to specific areas thus permitting ice to form elsewhere 

on the wing. On modern commercial airliners, electrical heating is only used on external 

probes and sensors and for the flight deck windscreens as detailed in Evans(1997) [7]. The 

system of passing hot air under the skin of the aircraft is the most popular de-icing method 

used on modern commercial jet airliners as stated in Faith(1996)[8]. The jet engines produce 

sufficient heat to successfully de-ice the entire surface of both wings and is commonly referred 

to as the "hot wing" de-icing method. The method of de-icing by slot-injection, analysed 

within this thesis, is a system whereby hot air is expelled through slots in the leading edge 

of the wing and melts the layer of ice from above and not from below as in the previous two 

cases. This eliminates the problem of large pieces of ice becoming detached from the wing 

and travelling downstream. The ice is instead melted from above and is gradually reduced in 

thickness. In addition, owing to the repeated use of the hot air generated by the aircraft, the 

system may be activated for the duration of the flight and hence not only makes an effective 

method of de-icing but also provides a means of anti-icing the aircraft. The permanent use 

of this system also means that the pilot will no longer have to use judgement on whether the 

de-icing system should be activated. 

2.2 The Slot-Inject ion Equa t ion 

The undisturbed free stream is considered to be an inviscid, incompressible fluid flowing 

parallel to the rc-axis at constant speed Uoo in the half-space {y > 0, —oo < x < oo}. Letting 

p and Poo denote the density and static pressure of the outer flow respectively, the total 

pressure in the outer flow is given by 

1 ,,2 
Ptoo — Poo + 2 P^oo • 

Letting the origin denote the leading edge of the slot it is assumed that the trailing edge 

is at (I/,0) thus defining the width of the slot. The streamline separating the injected flow 

and the outer flow is denoted by y = S{x, t) and the boundary of the ice layer is denoted by 

y = Figure 2.1 depicts the geometry of the problem. Pit t et al. (1985)[13] (referred 

to as Pitt et al. for the remainder of this chapter) state that expressing the static pressure 

in the slot by 

jPs ==.Poo 4- (2-1) 



J Outer Flow 

Downstream 
Film 

Figure 2.1: Geometry of the De-Icing Problem 

where e -C 1 ensures that neither (i) not enough gas is released from the slot nor (ii) that the 

fluid is injected too normally. Hence ps exceeds Poo by a small amount but this is sufficient 

so that fluid is expelled from the slot. Pitt et al. state that by arranging the pressures in this 

way the outer flow will separate at the leading edge of the slot with zero slope thus creating 

a "lid" efl'ect, i.e. = 0 . 

In the film layer downstream of the slot the static pressure is within 0{pU^e^) of Poo 

and hence the horizontal velocity, u, is 0(E(7oo). Standard aerofoil theory states that an 

aerofoil of thickness 6 produces pressure variations of 0{pU^5). Equating these two pressure 

relationships gives J = and hence the downstream film thickness is Since the mass 

flow, M, is the product of film thickness, density and velocity the mass flow in the downstream 

film is 

M/ = (2.2) 

and the mass flow in the slot is 

A4, == (2.3) 

where v is the vertical velocity of the fluid in the slot. Equating equations (2.2) and (2.3) 

reveals that 

= 0([/ooe^). 

In the downstream film layer the problem is non-dimensionalised using the variables (an 

asterisk denotes a non-dimensional variable) 

X = Lx* 

2/ = 



u = eUocU* 

M = 

g 

B 

V = e Ĵ̂ C/ocV"' 

where i/j is the stream function of the flow and M* is the order one dimensionless mass flow. 

Since the flow is irrotational V'̂ ip = 0 in the downstream film which when non-dimensionalised 

becomes, to lowest order, , = 0 and therefore 

The boundary conditions are tp* = 0 on y* = and ip* = on y* = S*{x*,t*) and 

therefore the stream function is 

and since u* = ip*,, 

== (2.4) 

Bernoulli's equation applies to the injected flow, i.e. Pstatic + \p^ is constant throughout. 

Applying this to the slot and the downstream layer gives 

Poo + + 0(e®) = Pf + 

Non-dimensionalising the static pressure in the downstream layer, p f , with pj = pU^p*f 

and using equation (2.4) gives the non-dimensional expression for the static pressure in the 

downstream film: 

Non-dimensionalising ps with = pU^p*, equation (2.1) gives the non-dimensional static 

pressure in the slot 

In order to derive equation (2.6) it is assumed that the vertical velocity has the same order of 

magnitude, i.e. 0{Uoo£^), right up to the top of the slot. It is clear that at the trailing edge 

of the slot these orders of magnitude will not apply but to lowest order we may neglect this 

region. Equations (2.5) and (2.6) are expressions for the non-dimensional static pressures in 

the film layer and the slot respectively. These pressures must both be equal to the pressure 

in the outer flow just above the shear layer and an expression for this is derived in the next 

section. 
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2 .2 .1 T h e P r e s s u r e E q u a t i o n for t h e O u t e r F l o w 

Thin aerofoil theory applies to the outer flow since the perturbation to the free stream is 

"small", i.e. O(e^). The shear layer of the flow, y = S{x, t), may be modelled as a distribution 

of sources situated along the positive z-axis since the perturbation has thickness O(e^) but 

generates no lift. The strength of each source is defined as €^g{x, t) where g = 0(1) and using 

equation (A.3) the stream function of the perturbed flow, ipo, is given by 

g2 rco f y \ 
V'o = (Zoo!/ + ) d?? 

ziT Jo \x - rjj 

where UooV is the stream function of the outer flow. For y = 5(a;, t) to be a streamline of the 

flow the total derivative of y — 5(x, t) must be equal to zero, i.e. 

= 0 

and hence 

(2.7) 

where Uo and Vo are the fluid velocities of the perturbed flow in the x and y directions 

respectively. Noting that Uo = ipoy and Vo = —i'ox we may express Uq and Vo as 

^2 rCO 

and 
g2 roo ^ 

When considering the outer flow, y = S{x,t) is simply the positive a;-axis to lowest order 

according to the linearised approximations of thin aerofoil theory. Using equations (A.4) and 

(A.5) the limits of the velocities as y tends to zero are 

,2 foo 

and 

lini(uo) = L/oo + ^ (2.8) 
27r Jo X — -q 

lim(%) = ^g(a:,(). (2.9) 

Equations (2.8) and (2.9) may be substituted into equation (2.7) to give 

S, + s A u ^ + f f < ^ 4 = f 5 ( . . i). (2.10) 
[ 2tt Jo X — T] j 2 

In order to compare the magnitude of each of the terms it is necessary to non-dimensionalise 

equation (2.10). The non-dimensional variables used here are 

X = Lx* 
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2/ = 

9 — ^oc5 

g = 

Hence equation (2.10) when non-dimensionaUsed is 

( z* ,r ) 4- 5 ' : . ( z \ r ) ^ 
Zir Jo X* — rj* 

g*(a:*,r) 

which to lowest order is 

= (2.11) 

The above scaling for t is therefore required in order for y = S{x, t) to be a streamline of the 

flow. Bernoulli's equation applies to the flow and since there are no external body forces 

PcX)+2/3( /&;=Po+2P("o+fo) (2 12) 

where po is the static pressure of the perturbed How. Thin aerofoil theory is invoked to 

determine Uo and Vo on the x-axis and hence equation (2.8) gives 

=Vl + t ^ £ + 0{e*) 

and equation (2.9) reveals that is of order e^. Hence equation (2.12) becomes, to lowest 

order, 

Non-dimensionalising po with pU^^p* and using the non-dimensional variables listed above 

the non-dimensional expression for the static pressure in the outer flow in terms of g* is 

Using equation (2.11), p* may be expressed in terms of S* 

Poo 
Po = 

TT Vo rr* -

which is the desired expression for the pressure in the outer flow 

(2.13) 
Vo rr* -
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2.2.2 Pressure Matching 

It is now necessary to equate the pressures in the slot and downstream film to the pressure 

in the outer flow. 

Slot : Outer Flow 

Equating equations (2.6) and (2.13), i.e. observing that p* = p*, gives 

which simplifies to 

Poo _ Poo 1 2 

^ - 7 / 0 

Downstream Film : Outer Flow 

Since p j — p*, equations (2.5) and (2.13) reveal that 

.2 

Hence equations (2.14) and (2.15) are the equations of motion for the slot film de-icing 

problem and may be written in the form 

1 r 
IT Jo X* — Tj* 

- 1 0 < a ; ' < l 

(2.16) 

_ 1 _i Ml T * > 1 

Equation (2.16) is the de-icing equation and involves both S*{x*, t*) and B*{x*,t*). It should 

be noted that if B* is known then equation (2.16) may be solved for S*. In order to obtain 

a second equation to close the system it is necessary to analyse the ice layer B* in further 

detail. If B* is known then the boundary conditions of this equation are S*{0,t*) = 0 and 

^ ; . ( o , r ) = 0 

2.3 T h e S te fan Equat ion 

In order to derive another equation of motion it is necessary to analyse the temperatures in 

the downstream film layer and the ice layer. The interface between these regions, y = B{x,t), 

is examined using the Stefan condition. This condition provides a relationship between the 

temperatures in the two regions which is an equation in terms of B and S as required. In 

order to use the Stefan condition it is necessary to derive expressions for the temperature 

in both the downstream film and the solid ice layer. Therefore the temperatures must be 

defined in all four regions of the problem as follows: 
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To = the temperature of the outer flow/downstream film boundary 

Tf — the temperature of the downstream film/ice boundary 

Tj = the temperature of the injected fluid and 

Tu) = the temperature of the ice/wing boundary. 

Here it is obvious that Ti > To in order for de-icing to take place. The downstream film layer 

and the solid ice layer are analysed separately. 

Downstream Film Layer 

Let T~ denote the temperature in the downstream film layer so that To < T~ < Ti. The 

heat equation holds for this region, i.e. 

+ ( q . V ) r - ) = (2.17) 

where Cp is the specific heat of the injected fluid, q is the velocity and k is the thermal conduc-

tivity. Using the orders of magnitude derived earlier the problem may be non-dimensionalised 

as follows 

a; = 

3/ = 

« = eC/ooU* 

2; = 

g = 

g = 

L _ 
t 

r - = 3^ + (2} -

Hence T~* = 0 when = To and T~* = 1 when T " = Tf which is a convenient method of 

non-dimensionalising T". The non-dimensional version of equation (2.17) is therefore 

k 
eTi: -I- -K = +0(6^^). (2.18) 

Equation (2.18) has a dimensionless parameter, the magnitude of which is crucial to the 

problem. This parameter will henceforth be referred to as the "film parameter" and is equal 

to 
pCpUoo^^ Li 

k 

Consider the case when the film parameter is much less than one. This implies that, to lowest 

order, equation (2.18) is 3 ^ . = 0 which gives 

T - * = f (a;*)!/* 4-0(37*). 
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Using the boundary conditions that (1) T = 0 when y* = S* and (2) T = 1 on y* = B*, 

P{x*) and Q{x*) may be evaluated to give 

I - - = (2.19) 

which is the required expression for T* in the downstream film. 

Solid Ice Layer 

Let T'^ denote the temperature within the solid ice layer. Since there is no velocity within 

this region the heat equation reduces to 

Non-dimensionalising this using the variables above along with T'^ = 7 } + {T-w —Tf)T'^* gives 

where the magnitude of the non-dimensional parameter here, henceforth named the "ice 

parameter", is also crucial to the problem. A simple case to solve is when the magnitude of 

the ice parameter is much less than one in which case equation (2.20) reduces to = 0. 

This equation may be solved in a similar way to the downstream case where the boundary 

conditions in the ice layer are (1) T^' — 0 when y* = B* and (2) T"*"* = 1 on y* = 0 to give 

3"^-' = 1 - (2.21) 
B* 

which is the required equation for the temperature in the solid ice layer. 

Since we now have expressions for the temperatures in the downstream film and solid 

ice layers we require a further condition that supplies a relationship between the temper-

atures within these two regions. This condition is the Stefan Condition (see, for example, 

Tayler(1986)[44]) which is 

where Lh is the latent heat of the fluid and where — and + denote the downstream film 

side of B* and the solid ice layer side respectively. The non-dimensional Stefan condition is 

therefore 
UcqLi 

Lft 

The non-dimensional parameter in the above equation is henceforth referred to as the "Stefan 

parameter" and is denoted by A*, the magnitude of which is crucial to the problem. If A* 

is considered to be much less than one then T*. = 0 to lowest order and hence the ice layer 

will melt immediately upon the hot air being injected. Considering A* to be much greater 
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than one then, to lowest order, = 0 which implies that the ice layer will never melt. If, 

however, A* is 0(1) then the non-dimensional Stefan condition is 

r;. 
Equations (2.19) and (2.21) may be differentiated with respect to y* and substituted into 

the above equation to give 

1 7 : ^ ^ + (2-22) 

Hence equations (2.16) and (2.22) are the required equations of motion for this particular 

de-icing problem, where both the film parameter and the ice parameter are much less than 

one and the Stefan parameter is 0(1). 

2.4 Asympto t i c Solution for T h i n Ice Layers 

This section details an approximation of the melting ice layer for small B, i.e. for very thin ice 

layers. Consider equation (2.22), the equation of motion derived using the Stefan condition. 

For small B this equation is, to lowest order, 

= 1 

the general solution of which is 

2 r 

This equation could be solved for a given f*{x*) and t* to find the ice layer, B*. However, 

in order to provide consistency with the numerical results presented later, we employ the fol-

lowing transformations for B* and t* (the justification for these transformations is presented 

in Section 2.5); 

to give 

C* = ^ (2.23) 

where g*{x*) = f*{x*)M*~3. Equation (2.23) is the general solution for the small B* problem 

where g* is the initial ice layer. 

Consider the specific case where g* is given by g*{x*) = \/x* — 1. Therefore C* at time tl 

is given by 

I If* 
C* = J x* — 1 — 

Using this equation, the expected shape of the ice layer at any given time may be plotted 

and Figure 2.2 presents the shape of the ice layer for various values of This Figure reveals 
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that as time advances, the ice layer retreats away from the leading edge of the slot and the 

point where C*{x*,t*) = 0 (henceforth denoted by x*j) is equal to 2;} = 1 + 

2 

t = 0.1 
f = O.J 

Figmre 2.2: The Thin Ice Layer, 

2.5 Discret isat ion of t h e De-icing Equa t ions 

This discretisation was originally presented in Pit t et al. for the similar slot-injection equa-

tion. The first step towards a numerical solution is to invert equation (2.16). Using equa-

tions (B.7) and (B.8) the inverted equation is 

-I (2.24) 
27r Ji [S*{r]*,t*) — B * { r ] * — X*) 

This particular inversion has been chosen so that the boundary condition 5'*. (0, <*) = 0 is 

satisfied. It would be convenient if M* could be removed f rom this equation and this is 

achieved by using the following transformations: 

Substituting these relationships into equation (2.24) gives 

(2.25) 

a;* 

27r Vi M*^''[T'*(7)*,t*) —C*(7;*,(*)]^\/^(77*—a;*) 
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M* 
and equating powers of M* gives 

which implies that n = 2/3 permits M* to be removed equation (2.24) and the equation to 

be solved is therefore 

\/T* /"OO 
^ 4 5 . (2.26) 
2-k Ji [T*{T]*,t*) — C*{ri*,t*)] y/^{ri*—x*) 

This equation provides numerical difficulties because the integral involved is a Cauchy princi-

pal value integral. Integrating (2.26) with respect to x* and utilising the fact that T*(0, t*) = 0 

gives 

T(z , ( ) = 
2-K 

- 2 , -k log 
xA?-

• dr]. (2.2^1 

Note that the asterisks denoting the non-dimensional variables are here and henceforth in this 

chapter omitted for clarity. In order to discretise equation (2.27) it is necessary to construct 

a method to cope with the region [1, oo). This is achieved here by utilising the following two 

methods: 

(1) Since the mesh must obviously be constructed of a finite number of points the problem 

must be divided into two sections. The first is to create a mesh of points % for 1 < i < A'' + 1 

and solve equation (2.27) over this region. It is then necessary to calculate an error term, 

E'at+i, which is equal to equation (2.27) calculated over the region from oo). The 

accuracy of the method will obviously increase as the value of is increased. 

(2) Owing to the "lid" effect of the shear layer over 0 < x < 1 discussed earlier it is reasonable 

to expect that T changes most significantly in the region close to the trailing edge of the slot. 

Hence the accuracy of the method is increased if more mesh points are located near x = 1. 

An easy way to do this is to use an exponential grid where (771 = 1), where 

/? = 1 produces a uniformly spaced mesh. Given values for AT 4- 1 and we note that 

77^+1 = = . . . = Hence = (77^+1):^. 

Using the above methods and assuming that [T — C] is piecewise constant on the interval 

at a fixed time tm and is equal to [T — C] evaluated at equation (2.27) is 

approximated by 

N , 

2rT(xi , ( „ ) « g - C(%, („)]2 A . 
%&+! „ fXi , 

< —2. / h log 
V ^ 

for 2 = 1 , . . . , jV + 1 and where 

^N+i — 
1 

+ \/57 

[^(77, (_) - C(,7, I V 77' 
drj. 

dr] + En+i 

(2.28) 

(2.29) 
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The integral in equation (2.28) is evaluated and is given by 

A t = ( \ /% - y % + l ) + (% + l - 37;) log 

- ( % - a r j l o g 

- /%+! -

\ / % + \ / ^ (2.30) 
•s/Vk \f^i 

The discretisation of equation (2.28) in terms of is therefore 

27rT'(Zi,(m) = ^ j [T(%,fm) - C ' (%,(m)]"^At} +^^^+1-

k=-\ 

For large t^at+i, [T — C] is considered to be constant and hence equation (2.29) may be 

evaluated to give 

C'(^Af+l) ^m)]^ 
2 ^ + 1 , 1 

2 
77N+1 

Xi 
log 

jVN + l 

V li 

Relaxation is employed for the method and hence the iterative scheme is 

N 

for i = 1, 

27rT'j,-|-i (2;̂ , tfTj) — ^ ' -^ik [̂ 7 (%; ^m) Cj(%; ^m)] 
k=l 

+ 2XiQ [Tj{T]N+i,tm) — Cj{r}j^+i,tm)] 

. , AT + 1, Ait as deGned in equation (2.30) and with Q(a!) given by 

(2.31) 

2 
Q(o!) = a + - ( 1 — a^) log 

a 4-1 
a — I 

Equation (2.16) may now be solved for a given initial guess for To and a given C. The 

values of T between 0 and 1 are then be found by substituting the computed values into 

equation (2.28). 

It is now necessary to discretise the second equation of motion, equation (2.22). In order 

to express this equation in terms of T and C the transformations used above are employed. 

Hence using equation (2.25) with n = 2/3 as before, equation (2.22) becomes 

- A M s Q 
1 1 

+ 
c - r c 

M is removed from this equation by re-scaling time, i.e. t = M'&ti to give 

— 

1 1 
+ 

c - r c 

This may be discretised using finite differences. Denoting C{xi,ti,n) by C f and T{xi , t i j 

by T™ the discretisation is 

6(1 
CJ m+l cr] 

1 

c r -
+ j _ 
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which when re-arranged gives 

c ; m+l c r - (2.32) 

Equations (2.32) and (2.31) are the numerical scheme for the de-icing problem. The values 

of A, 6ti, Tf and Cf must be supplied and equation (2.32) is used to approximate C}. These 

computed values are used in equation (2.31) in order to estimate T/ thus completing one 

time-step of the problem. The following section gives the results obtained for the case when 

equation (2.16) is solved for C = C{x) which serves as a useful numerical check. 

2.5.1 Results for the Case C = C(x) Only 

The case where C = C{x) is the case for which the ice layer cannot melt, i.e. the ice 

represents a fixed obstacle that the injected flow must navigate. Figure 2.3 depicts the shear 

layer obtained when C(a;) = 0 for re > 1 and this solution agrees with the results obtained by 

Fitt et ai. One other result is given here and Figure 2.4 depicts the case when C{x) = 0.5. It 

can be seen that as C increases in magnitude, the "gap" between T and C at a; = 1 decreases. 

This is a consequence of the "lid" effect, i.e. the fact that 5'i(0, <) = 0. 

1.5 

L25 

0.5 

0.25 

Figure 2.3: Plot of Shear Layer for C{x) = 0 
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y = c w 

&25 

Figure 2.4: Plot of Shear Layer for C(x) — 0.5 

2.6 Resul ts and Discussion for t h e De-Icing P rob l em 

The method derived in Section 2.5 was executed with A = 1 and n = 200 for various values of 

Cf. The scheme was operated over m time-steps where on the {m + lY^ time-step < 0 

for any i. The computations were terminated here because < 0 implies that the wing 

surface itself is being melted. It is shown later how this problem is overcome. 

Results for Cf = 0.5 

Figure 2.5 shows the case for Cf = 0.5 with a time-step of Sti = 0.01. The numerical 

procedure was terminated at ti = 0.07 since for ti > 0.07 there existed some values of CJ" 

that were less than zero, as discussed above. The main features of the ice layer are the 

"rounding-off" of the ice layer at x close to one and the reduction in the height of the ice as 

time progresses. There is also a substantial degree of melting for large values of x which is 

a consequence of the assumption that both the ice and film parameters are much less than 

one. Attention is now turned to the model where the ice layer is permitted to retract away 

from the leading edge of the slot. 
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t = 0.04 

f = 0.07 

Figure 2.5: The De-Icing Plot for C{x,0) = 0.5 

2.6.1 Revised Model to Account for the Retraction of the Ice Layer 

The results presented above indicate that the ice layer "melts away" from the trailing edge 

of the slot as time progresses but the model is inaccurate in that the method is invalid for 

C™ < 0. The method of analysing the behaviour of the melting ice layer is to examine the 

new problem 

f 0 jB*==0 

g . i g . + > 0 

This is a simple adjustment to the numerical procedure derived above and the change is to 

set the calculated C™ that are less than zero be equal to zero, i.e. if C f < 0 then set C f = 0. 

Figure 2.6 shows the solution obtained for Cf = 0.5 with a time-step of 5ti = 0.01 for time 

ti > 0.06 and the ice is virtually removed from the region at ti = 0.1. 

These results raise the question of how fast the ice layer retracts from the trailing edge of 

the slot which is, after all, the key physical question. Denoting the x-coordinate of the point 

where CJ" = 0 by x j , Figure 2.7 shows how xi increases as ti increases for the case where 

C° = 0.5. The time step used to create Figure 2.7 was 5ti = 0.001. 
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Figure 2.6: De-icing Plots for C{x,0) — 0.5, ti > 0.06 

0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 

Figure 2.7: Position of the Ice Layer Front, Xf, for C{x,0) = 0.5, ti > 0.06 
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2.7 Conclusions 

The analysis presented here numerically solves the equations that describe the system of 

de-icing by slot-injection. This problem is by far the simplest of the de-icing problems since 

both the ice parameter and the film parameter are assumed to be much less than one. This 

may be an over-simplification since the two parameters are actually coupled to one other and 

therefore the problem analysed here may significantly differ from the problems where one or 

both of the parameters is of order one. These additional problems are to be the subject of 

further research. 

One possible consequence of the assumptions made here is that the numerical results show 

some evidence that any ice infinitely far from the slot will melt, which is obviously not true. 

Indeed, once the ice layer starts to retract from the trailing edge it is only a short time before 

the region is completely de-iced. 

The problem of de-icing by slot injection may be made fully unsteady by assuming that 

the pressure in the slot is a function of time, i.e. e = e{t). This is an extension of the work 

performed on unsteady slot injection by Lattimer(1996)[25] who found that this problem 

exhibited severe instabilities. Therefore the problem of unsteady de-icing by slot injection 

is a topic of further research that could certainly follow any success with the standard slot-

injection model. In this thesis, however, attention is now turned to the unsteady sail which 

was first analysed by Lattimer for the case of an inextensible sail and Lattimer's work is 

extended here to the case of an extensible membrane. It is shown that the problems encoun-

tered in Lattimer's thesis may not be entirely due to the errors associated with the choice 

of numerical scheme but may be due to the properties of the sail itself. The next chapter 

introduces the sail problem by analysing the steady sail problem which, for the inextensible 

sail, is a problem that has been extensively researched prior to the writing of this thesis. 
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Chapter 3 

T h e Steady Sail 

The steady sail equation is a singular integro-differential equation that describes the steady, 

irrotational flow of an inviscid, incompressible fluid past a two-dimensional sail of finite 

mass. The sail is modelled as a thin, flexible membrane constructed of a material that may 

be inelastic or extensible. The sail is fixed at both ends and may be made of a porous material 

although the work presented in this thesis assumes that the sail is impermeable to the outer 

flow. The crucial stipulation in this problem is that the angle of incidence of the outer flow 

to the sail is "small" in some sense (which will be made clear below) thus permitting the sail 

to be modelled using thin aerofoil theory. The case examined in this chapter is when the 

angle of incidence is constant; Chapter 4 examines the unsteady problem where the angle of 

incidence is a prescribed function of time. 

The sail problem is not truly analogous to the case of a yacht sail since the trailing edge 

of such a sail is not necessarily fixed; yacht sails are permitted to move in an angular motion 

about the leading edge of the sail, normally under the control of the sailor. However, the case 

of a sail with fixed ends does have some analogous cases such as hang-glider wings, sailwings 

and the flight of small mammals such as bats. According to Sneyd(1984)[41], it is believed 

that the pterodactyl had wings that were essentially stretched membranes whereby the shape 

of the wing was altered during flight by stretching the skin of the wing. 

Before attempting to solve the time-dependent unsteady problem it is illuminating to 

analyse the steady problem which reveals a phenomenon that may, at first, be intuitively 

unexpected. This unforeseen finding is the presence of more than one steady solution for 

certain values of the angle of incidence. 

This chapter begins by first considering the case where the material of the sail is assumed 

to be inextensible. The governing equation of motion is derived along with the necessary 

condition for the length of the sail to be correct. The resulting singular integro-differential 

equation is then discretised and a selection of numerical results are shown. There follows an 
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analysis of the eigenvalues of the steady sail equation; defined as the values of the tension 

parameter for which the sail generates zero lift. An asymptotic analysis for large eigenvalues 

is also presented. 

Attention is then turned to the case where the material of the sail is extensible. In this case 

the sail does not necessarily require an excess length in order to achieve a non-zero shape. 

Both problems are analysed separately and limiting cases as the sail tends to an inextensible 

material are presented along with numerical results for varying degrees of the extensibility of 

the sail. 

3.1 Li te ra ture Review 

The literature review presented here is written as an overview of the published work to date. 

More thorough and in-depth literature reviews are given by Chapleo(1968)[4] and, more 

recently, Newman (1987) [31 ]. The work of Newman is probably the most thorough literature 

review on the steady sail published to date and the reader is referred to this paper for a 

detailed briefing on the problem. 

The earliest published work concerning the steady, inextensible sail is reported to be 

Cisotti(1932)[5] who analysed a non-porous sail with flow separation at the trailing edge. 

However, the first linear analysis was performed by Voelz(1950)[50] who modelled the sail 

as a distribution of vortices along the line joining the fixed ends. Voelz used Fourier sine 

series to numerically solve the equation of motion and also approximated the first eigenvalue 

of the equation, defined as the value of the tension parameter for which there is smooth 

attachment at the leading edge of the sail. Thwaites(1961)[46] repeated the methods of 

Voelz, apparently unaware of the previous work, and numerically approximated the first six 

eigenvalues of the problem. Thwaites also included the porosity of the membrane in the 

derivation of the sail equation although the subsequent numerical analysis was performed on 

a non-porous sail. Thwaites considered the relationship between the eigenvalues and the lift 

generated by the sail and concluded that the odd-numbered eigenvalues were meaningless. 

The analysis of Thwaites is widely considered to be the pioneering work on the steady sail 

problem. Neilsen(1963)[30] expanded the problem to three dimensions and performed some 

experiments that did not agree with those predicted by the theory. Neilsen reported that 

these differences were due to the small porosity of the experimental sail and the effects of 

boundary layer separation. Barakat(1968)[2] numerically approximated the steady, porous 

problem and found that small values of the porosity of the sail do not radically affect the sail 

shape nor lift. However, the main result of Barakat is that the steady sail problem no longer 

exhibits eigenvalue solutions owing to the fact that the flow can no longer smoothly attach 

at the leading edge since the sail is porous at this point. 
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Several authors have since expanded on the work of Thwaites(1961)[46] for example, 

Vanden-Broeck(1982)[48] used non-linear analysis to model the sail and agreed with the 

results of Thwaites for small values of the excess length. Irvine(1979)[19] found the first 

eigenvalue of the steady sail equation analytically but made the assumption that the first 

eigenfunction is a circular arc, which was known to be incorrect. Sneyd(1984)[41] analysed 

the static stability of the sail, which is an important property of a sail in flight. Sneyd found 

that sails with slack are statically unstable regardless of the extensibility of the sail whereas a 

sail with no excess length is statically stable. Sneyd concluded that this is how bats are able 

to fly without the use of stabilising wings since the wings of a bat are essentially stretched 

membranes whose shape may be altered during flight. Jackson(1983)[20] extended the work 

of Thwaites to that of an extensible sail and plotted the relationship between the tension and 

the angle of incidence for different extensibilities by assuming that the sail was a cubic. The 

problem of how two sails interact was examined by Jackson(1984)[21]. 

Sugimoto(1996)[42] is just one of the many papers that have attempted to extend the model 

to three dimensions. The three-dimensional sail is a problem that is attracting increasing 

interest, perhaps owing to the fact that competitive sailing is becoming a more popular and 

commercial sport. Current research is dedicated to finding the sail shape that generates 

maximum lift and is centred around finding the most advantageous "cut" of the sail, which 

is the natural shape of the sail when removed from the outer flow. For example. Burns 

Fallow(1996)[3] outlined how the modern yacht sail is designed using the three-dimensional 

lamination (SDL) manufacturing process. 

More recent papers on the two-dimensional problem are primarily concerned with two 

topics: the effects of a viscous outer flow and the phenomenon of "luffing". The effects of vis-

cosity have been analysed in an attempt to explain the discrepancy between the experimental 

data available and the results given by the inviscid theory. One of the first publications to 

analyse the viscous case was Newman &; Low(1984)[32] who used a linearised model of the 

sail. In this paper, experiments were performed for a flow with Reynolds number 1.2 x 10^ 

at a steady angle of incidence. Newman & Low found that the positive concave sail shapes 

obtained in the experiments agreed well with the theoretical shapes but that both the ten-

sion and the centre of pressure of the sail were significantly different. These discrepancies 

were concluded to be due to separation at the leading edge and not due to the approxi-

mations made in the linearisation of the problem. Newman & Low's justification for this 

was that the non-linear analysis of Vanden-Broeck(1982)[48] provided results that were also 

different from the experimental data obtained. Further viscous analysis was performed by 

Smith & Shyy(1995)[40] and results were obtained for Reynolds numbers between 2 x 10^ and 

10"*. Some experiments were performed but no thorough analysis of the differences was pre-

sented. Among the most informative papers concerning experimental results is Greenhalgh 
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et a/.(1984)[15]. The experimental results obtained for the lift were accurate to within 5% 

of the results predicted by Thwaites(1961)[46] and Neilsen(1963)[30] for angle of incidence, 

Q, in the range —5° < a < 8°. The experimental results for the tension in the sail, how-

ever, adopted a similar relationship to that predicted by inviscid theory but the experimental 

values were found to be greater than the theoretical predictions. No reason was given for 

this discrepancy. Cyr & Newman(1996)[6] modelled the two-dimensional sail with viscous 

outer flow and separation at the trailing edge. They performed experiments on sails using 

thin steel wires under high tension to hold the fixed ends and the Reynolds number of the 

flow was calculated to be 3.6 x 10^. Cyr & Newman obtained a good agreement between the 

experimental and theoretical results for excess lengths up to e = 0.16. The discrepancy for 

greater excess lengths is undoubtedly due to the fact that they considered the tension of the 

sail to be constant. Jackson & Fiddes(1995)[22] presented a model that included a viscous 

outer flow and a tension that was a function of z. A weak viscous-inviscid interaction method 

was used and the viscous effects confined to a separation bubble at the leading edge and to 

thin boundary layers. The theoretical results were compared to the experimental results of 

previous authors and a good agreement was made with the bulk of the results. In comparing 

the viscous results and those of the inviscid model a similar agreement was reported. Both 

the lift and the tension in the viscous case were found to be up to 5% smaller than in the 

inviscid model. 

One feature of many of the reviewed papers that contain experimental results is that they all 

report having found experimental sail shapes that agree well with inviscid theory. However, it 

should be noted that these comparisons have only been made for positive concave sail shapes 

which are all very similar regardless of the choice of a . Thus, although it is quite easy for 

an author to claim that their sail shapes agree with inviscid theory, these claims should be 

treated with some caution. 

A sail is said to "luff" when it oscillates wildly between a positive concave and a wholly 

negative sail shape. This phenomenon has been observed to occur when sailing "into the 

wind", i.e. at zero angle of incidence. Thwaites(1961)[46] noticed that two solutions exist 

when a = 0, each solution being a reflection of the other through the line joining the ends of 

the sail. Many authors have examined the luffing of a sail with one of the most comprehensive 

studies being Newman(1987)[31] who included a photograph of a sail just prior to luffing which 

depicts an almost stationary flow on the underside of the sail. However, Newman reported 

that the phenomenon of luffing is still not fully understood, in particular the sail shape that 

is adopted for a close to zero is still a topic of research. 
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3.2 Derivat ion of t he Steady Sail Equa t ion 

The sail equation governs the irrotational flow of an inviscid, incompressible fluid flowing past 

a two-dimensional sail at angle of incidence, a , and at constant speed Uoo- It is assumed that 

the sail is non-porous, although the effects of porosity could easily be included if required. 

The leading and trailing edges of the sail are called the "luff" and "leach" respectively and are 

placed distance L apart. The excess length of the sail is "small" compared to L (this is made 

clear below) and hence the perturbation to the outer flow may be modelled using thin aerofoil 

theory. Figure 3.1 illustrates this problem in the (a;,y)-plane where y = S{x) describes the 

shape of the sail. The stream function of the flow is employed to derive the equation of 

Figure 3.1: Schematic Diagram of a Sail 

motion. The unperturbed flow far from the sail has velocity q = (C/qo cosa, C/qo s ina) and 

therefore the stream function for the unperturbed flow is i/Jqo = yU^o cos a — xUoo sin a . Since 

the angle of incidence is small cos a % 1, sin a % a and therefore, to lowest order, 

Tpoo — yUoo xUqqCX. 

The sail has no thickness but generates lift. Therefore, assuming the stream function to be 

of the form given in equation (A.3), 

iTT Jo Z 

where e 1 and the function f{x) is to be determined. The parameter e is quantifled by 

the fact that the excess length of the sail is defined as e^L, as detailed later. The x and y 
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components of the fluid velocity are therefore 

respectively. Since the sail is non-porous, y — S{x) is a streamline of the How and hence 

= 0 

and since 5 is a function of x only, the above equation is uS' = v. Thin aerofoil theory 

states that, to lowest order, this condition may be applied on the z-axis and hence in the 

limit as y tends to zero, using the equations in (3.1) and utilising the expressions given in 

equations (A.4) and (A.5), this is 

S' [Uoo + = UooO: — — drj (3.2) 
V 2 J 2tt Jo X — T] 

which is a relationship between f{x) and S{x). 

To find f{x) it is necessary to analyse the static equilibrium of the sail which implies that 

the lift on the sail due to the vortices along the line x = 0 to x = L must be equal and opposite 

to the tension in the sail. Figure 3.2 illustrates the static equilibrium of a sail element of 

width 6x due to the tension, T, in the sail where 9 is the angle that S'{x) makes with the 

rc-axis. Hence the force in the {/-direction, Fy, exerted on the element 6x by the tension is 

= (T -t- siii(g -t- (̂ 0) - Tsing. 

Since there are no shearing forces present, = 0 i.e. T is constant, and therefore Fy — T59 

to lowest order. 

Bernoulli's equation applies to the flow, i.e. p + + f^) is constant throughout, where 

p denotes the static pressure, p is the density of the fluid and there are no external body 

forces present. Considering Bernoulli's equation in the limit as y tends to zero gives 

M - + ^ 0-

Denoting the pressure difference across the a:-axis by Ap and using equations (3.1), (A.4) and 

(A.5), the above relationship reduces to 

Ap = pE(7oo/(a;). (3.3) 

Hence the total lift on the sail element of width 5x is peUoof {x)5x and therefore the result 

deduced from the static equilibrium of the sail element is 

T66 = —peUoof{x)5x. 
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Figure 3.2: Static Equilibrium of a Sail Element 

Since to lowest order 9{x) = S'{x) the above equation gives 

(3.4) 

which is the desired expression for f{x). Substituting equation (3.4) into equation (3.2) gives 

rg" ' 
UooOi. + 

T i 
L Q" 

drj. (3.5) 
2pl7ooy 27r/)[/ooVo a; — 

In order to compare the magnitude of each of the terms it is necessary to non-dimensionalise 

equation (3.5). The non-dimensional variables used here are 

X = Lx* 

77 = Lrj* 

!/ = eZ,!/* 

g = eZ/g* 

T 

a = ea 
_ 

A* 
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where an asterisk denotes a non-dimensional variable. Hence equation (3.5) becomes, to 

lowest order, 

which is the non-dimensional steady sail equation. The boundary conditions are 5*(0) = 

5'*(1) — 0 since the sail ends are fixed. The Kut ta condition states that the flow separates 

smoothly at the trailing edge and hence the vortex at z* = 1 has zero magnitude. Equa-

tion (3.4) states that the Kutta condition is therefore S*"{1) = 0. This third boundary 

condition for the steady sail problem is employed when inverting equation (3.6), as shown 

later. 

As mentioned above, the length of the sail exceeds L by only a small amount, i.e. the 

length of the sail may be given by L{1 4- e^) and therefore, for the inextensible sail 

2,(1 + 2̂) = + (3.7) 
Jo 

Thwaites(1961)[46] utilised the fact that the angle of incidence, a , is small. Hence Thwaites 

scaled S{x) with aL. Therefore e is of order a, which justifies the above scaling for a. The 

advantage of the scaling used here is that e does not depend on time when the unsteady case 

is analysed. The non-dimensional version of equation (3.7) is therefore, to lowest order, 

1 /-I 

VO 

Equation (3.8) is known as the "length condition" for the inextensible sail. It enables a* 

to be found for a given A* in the steady, inextensible case. In addition, whilst the steady 

sail equation (3.6) is linear, the overall problem is in fact non-linear because of this length 

condition. 

3.2.1 Solution for Large Tension 

One useful limit of equation (3.6) is when the tension in the sail is large, i.e. A* is small. 

In the limit as A* ^ 0 but a* — 0(1) equation (3.6) becomes S*"{x*) = 0. Imposing the 

fixed end boundary conditions gives the solution S*{x*) = 0 which does not satisfy the length 

condition (3.8). Therefore large tension implies a large angle of incidence and therefore in 

the limit A* 0 where A*a* = 0(1), equation (3.6) becomes 

1 

^ jf'(.S*')2ckc* = 1. (3.8) 
/ Jo 

Jo Tj* — X* 

This is inverted, using equation (B.3), and the Kut ta condition imposed to give 

A*a* 
IT Jo ri" 

g*"(a;*) = -A*a*y 1 — X* 

32 



where equation (B.4) has been utilised to eliminate the singular integral. Integrating this 

equation with respect to x* and imposing the boundary conditions S*{0) = S*{1) = 0 gives 

5̂  *' = X*a* — v ^ v ^ l — X* — ^ arcsin(2x* — 1)^ 

and 

5* 
16 

{(23* + 1 ) (4 \ / ^a / 1 — X* — tt) + 2(4x* — 1) arcsin(2a;* — 1 ) | (3.9) 

Using the above expression for S*', the length condition, equation (3.8) states that 

; r a * = 
384 

Ott̂  — 64 

The unique solution for a sail under large tension and at large angle of incidence is presented 

in Figure 3.3. 

0.7 

Figure 3.3: The Sail Under Large Tension and at Large Angle of Incidence 

3.3 Discret isat ion of the Steady Sail E q u a t i o n 

The steady sail equation has been discretised in many ways by the different authors that have 

researched the subject. Voelz(1950)[50] and Thwaites(1961)[46] made the transformation 

2x = L ( 1 — COS0) and used Fourier sine series to determine the solution. This method 
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has been used in several subsequent papers including Neilsen(1963)[30] and, more recently, 

Sneyd(1984)[41]. Other methods used have been the use of Jacob! polynomials by both 

Barakat(1968)[2] and, more recently, Murata Sz Tanaka(1989)[28], Chebyshev polynomials 

by Fitt & Lattimer[ll] and finite differences by Lattimer(1996)[25]. The latter of these 

methods is pertinent to the discretisation of the unsteady sail equation and a finite difference 

method is also employed here. 

In order to discretise the steady sail equation it is easiest to invert equation (3.6) since 

the highest derivative of S* occurs within the singular integral. Using the result given in 

equation (B.3), the inverse of equation (3.6) is (upon imposing the Kutta condition) 

- a ' ) 
5"*" (a;*) = A* a 

TT i \n 
T (3.10) 

1 — 7]* {rj* — X*) 

Lattimer(1996)[25] integrated equation (3.10) with respect to x* before applying finite 

differences. This method removes the x*~^ singularity and reduces the {rj* — x*)^^ term to 

a weaker, logarithmic term. Whilst this method is convenient for the steady sail equation 

it is of no use in the unsteady case since the unsteady sail equation cannot be reduced to a 

simpler form by integrating with respect to x*. Therefore the numerical scheme derived here 

is a direct discretisation of equation (3.10). The discretisation of the Hilbert transform in 

this equation is employed in the later analysis of the unsteady sail problem. The first step is 

to use equation (B.4) to re-write equation (3.10) as 

r-l 
g"(a:) = A / 1 - . 

TT if. 
X 

(3.11) 
a: Vo V 1 - )7 (^ - :c) 

where the asterisks are here and henceforth omitted for clarity. The interval [0,1] is now 

divided into n equally spaced intervals. The n + 1 mesh points are denoted by % for i — 

0 , . . . , n where rji — i5x (with 6x = 1/n). The S" term in the above equation is discretised 

using central differences leaving the task of discretising the right-hand side. The first step is 

to write the integral in equation (3.11) as the sum of the integrals over each sub-interval, i.e. 

rl 
! • 

X 

X £ . A n 
1 — rj {rj — X ) TT X - E / " 

fc=i 

T1 •dr}. 
1 — r] [r] — x) 

A key assumption made here is that S' is constant on the interval and is equal to 

{S'{r]k~i) + S'{r]k))/2. Hence the approximation of X becomes 

X 9 ('S"(%-i) + 5"(%)) 
1 

•Ivk-I 

V drj 

1 — 7] {t] — x) 
(3.12) 

and the expression within the square brackets is evaluated to give 

1 — X /"% I r? drj 

Jvk-l V 1 — 7? (77 — a;) TT V a; 
X 1 
— a r c s i n ( ^ ) -|— In 

TT /_2_ + 
1-T] ^ i I 1 — 1 :7=:7k-l 

(3.13) 
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Care must be exercised in choosing the collocation points since the logarithmic term in 

equation (3.13) is unbounded when x = r]. Collocating x at the mid-point of each sub-

interval, i.e. 
+ Xi _ 2i — 1 

2 2n 

enables equation (3.12) to be evaluated as 

k=l 

where Qik is given by 

Qik 
1 / 2 ( n - z ) 4 - l 

TT 2%-l 
arcsm arcsm 

I k — 1 

71 
+ 

2% 
In 

'\^2k{n—i)-^k'^t^ [2i—l){Ti—k) 
y/2k{n—i)+k—^y{2i—l)(Tl-k) 

(3.14) 

These two equations give the discretisation of the singular integral in equation (3.11) in 

terms of 5". Forward differences are used here to discretise the first order derivatives of S, 

except for S'{r]n) for which backward differences are used since rjn+i is undefined. Hence the 

discretisation of I is 

n—l 

6x 
Qik{Sk+l — Sk-l) 

k=l 

2AQi 
- 9 n—l 

where % denotes the numerical approximation of 6'(%). Therefore the discretisation of the 

inverted steady sail equation (3.11) is 

n—l 

Si+1 — 2Si + — X6x ^ Qik{Sk+i — Sk-i) + 2XSxQinSn-i — —Xa{Sx)^ 
In 

(3.15) 
k=l 

for i = 1,... ,n — 1, boundary conditions 5*0 = 5„ = 0 and Q^/c defined in equation (3.14). 

This is an (n — 1) x (n — 1) system of equations that may be solved using standard methods 

for a given A, a and n to give Si. 

3.3.1 The Importance of the Length Condition 

Having discretised equation (3.11), an approximation for S{xi) {i = l , . . . , n ) may now be 

computed for a given A, a and n. However, an extra condition is required to specify the 

relationship between A and a in order for the sail to have the correct length. The inextensible 

length condition (3.8) is employed and is easily discretised by assuming that S"(x) is constant 

within each sub-region, as before. An important fact to notice here is that equation (3.8) 

is independent of both A and a and is therefore an implicit condition for the values of S. 
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Therefore in the steady, inextensible sail problem either A or a is fixed, equation (3.15) is 

solved and the values of S obtained are checked to see if they satisfy the length condition. 

Linear interpolation lends itself well to this problem and the correct value of a corresponding 

to a fixed A may be found. Another, more direct, method of finding a for a fixed A is given by 

Lattimer(1996)[25]. This method requires solving the system of equations for a fixed value of 

a and then re-scaling the values obtained so that the solution satisfies the length condition. 

For example, using the estimated angle a = 1 the correct angle of incidence is given by 

This method is valid because equation (3.11) is invariant when S and a are transformed 

using kS and ka respectively. Lattimer's method requires the system of equations to be 

solved only once and is hence significantly faster than the linear interpolation method used 

here. However, the method employed by Lattimer is not pertinent to the unsteady sail 

problem analysed later whereas the linear interpolation method used to approximate the 

steady solution may be used in the unsteady analysis. 

3.4 Resul ts and Discussion 

As stated above, the relationship between A and a may be calculated numerically. Figure 3.4 

shows this relationship, which was calculated using n = 500 and values of A in the range 

0 < A < 20. The most interesting feature of Figure 3.4 is that the relationship between 

a and A is not one-to-one. For example, for a = 0.6, A may be 1.780345, 3.147935 or 

5.603348 (to six decimal places). Figure 3.5 presents the sail shapes obtained for these three 

values of A. Whilst two of these shapes are of the same sign throughout, there exists a 

solution that intersects the z-axis once. The presence of such solutions was first discovered 

by Thwaites(1961)[46]. Henceforth, sails that intersect the x-axis at least once in the region 

0 < X < 1 are named "wavy" solutions to the sail equation. 

Therefore, the sail shape obtained depends not only on the choice of a but also on the 

tension within the sail. An important observation is that the sail shape for A = 1.780345 

is the only "positive concave" sail shape; named "positive" because S{xi) > 0 for all i and 

"concave" because the curvature is of the same sign throughout the sail. Furthermore, for a 

given a there exists one and only one positive concave solution and this corresponds to the 

value of A given by the bottom branch of the curve in Figure 3.4. Moreover, the positive 

concave sail shape is the only solution for angles of incidence in the range a. > amax ~ 0.99. 

Another useful relationship between the tension and the angle of incidence is the plot of Aa 

against A for A < 2.316. This relationship is presented in Figure 3.6. The numerical results 

show that in the limit as A —> 0, Aa —> 3.93 which agrees with the analytical result presented 
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Figure 3.4: Plot of A Against a for the Inextensible Sail 
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Figure 3.5: The Three Inextensible Sail Shapes at a = 0.6 
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in Section 3.2.1. Figure 3.6 was first presented by Thwaites(1961)[46] albeit incorrectly since 

Thwaites' values of A are a factor of 10"* out from the correct figures given here. 

4 

2 

1 

Figure 3.6: Plot of \ a Against A for the Positive Concave Solutions 

One drawback of the above discretisation is the error involved in approximating S'{x). The 

approximation made is that S' is constant on the interval [%_i, %], and is equal to the mean 

of the values of S' at %_i and %- In order to increase the overall accuracy of the method 

it is therefore necessary to increase the number of mesh intervals, n. However, since the 

computation time required for the above numerical scheme is proportional to n^, the method 

becomes infeasible to execute within a reasonable time period for large n. For example, with 

n = 1000 the method takes approximately ten minutes to execute. Therefore, if n is increased 

to 10,000 then the method would take several hours to find a for a given A. 

The accuracy of the method is best illustrated with an example sail shape computed using 

different values of n. Figure 3.7 depicts the positive concave sail shapes corresponding to 

a = 0.6 computed using both n = 50 and n = 1000. The difference between the two 

solutions appears to be negligible considering that the more accurate plot is calculated using 

20 times more mesh intervals. The plot of A for values of n in the range 50 < n < 1000 

given in Figure 3.8 confirms that whilst the method rapidly converges to the solution as n is 

increased, the results for small n are still accurate to two decimal places. 
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n=1000 

Figure 3.7: The Positive Concave Sail Shape at a = 0.6 Computed Using n = 50 and n = 1000 
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Figure 3.8: Values of A for the Positive Concave Sail Solution at a = 0.6 

39 



3.4.1 Analysis of the Lift Generated by the Sail 

Since the outer flow is inviscid, the Hft generated by a sail element of length bx is equal to 

where Ap is the variation in static pressure across the sail in the vertical direction. 

Hence the total lift, Li, generated by the sail is 

rL 

Lt 

Using equation (3.3) this is 

Jo 
and substituting equation (3.4) in the above equation gives the lift in terms of S'{x) 

rL 

Lt - T / 
Jo 

Using the substitution Lt = epU^LCl /2 the non-dimensional lift coefficient is therefore 

where the asterisks are omitted for clarity. Figure 3.9 shows the plot of C l against A where 

the dotted lines represent the discontinuities in the lift, which occur at particular values of 

A. At these values of A, numerically calculated to be 2.316, 7.192, 8.634, 13.64 and 14.92 (to 

10 

1 

Figure 3.9: Plot of the Lift, Cl, Against A 

four significant figures) in the range 0 < A < 20, the lift Cl may take two values of equal 
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magnitude. These values of A correspond to flows at zero angle of incidence to the sail which 

is confirmed in Figure 3.4. Substituting a = 0 into equation (3.6) reveals that if S{x) is a 

solution then so is —S{x) and therefore there are two solutions of the steady sail equation 

at a = 0, each one being a reflection of the other across the line y = 0, thus explaining 

the existence of the two values of Cl at the above values of A. Figure 3.9 also depicts the 

values of A for which the sail generates zero lift. These values relate to the case where there 

is smooth attachment at the leading edge of the sail in addition to smooth separation at the 

trailing edge. Thwaites(1961)[46] named this the "critical case" of the steady sail problem. 

3.5 T h e Crit ical Case and Eigenvalue Analysis 

As mentioned above, for any choice of a there exists one and only one positive concave 

solution. However, for a < Qmax ~ 0.99 there exist additional solutions that vary in shape 

according to the tension within the sail. By drawing comparisons between the sail and an 

aerofoil, Thwaites(1961)[46] hypothesised that there exists certain critical incidences for which 

the outer flow smoothly attaches at the leading edge of the sail. The condition for there to 

be smooth attachment in thin aerofoil theory is that the strength of the vortex at z = 0 

must be equal to zero and hence ^"(O) = 0 from equation (3.4). Considering the inverted 

steady sail equation (3.11) in the limit as x tends to zero (ignoring the singular integral term) 

suggests that S" ~ x~2. Therefore S' ~ 2x^ + A tends to a constant as x tends to zero. 

Lattimer(1996)[25] shows in his Appendix A.4, equation (A. 12) that 

lim J . / ^ = constant 
x-^oJo V 1 — 7? (7? — a;) 

since 
/ T 

0 Z -4O. 
1 — X 

This illustrates that both terms on the right-hand side of equation (3.11) exhibit square root 

singularities as x tends to zero. Hence S"{0) is approximated by 

~ ^ ( i ' v B ? " " " 

and therefore the bracketed term in this equation must be equal to zero for smooth attach-

ment. This expression is discretised by assuming that S'{x) is constant over each sub-interval 

of the mesh, as before, to give 

1 "• 
n + 5''(%)) [arcsin(2% - 1) - arcsin(2%-i - 1)] = Tra. (3.16) 

k=i 

Hence for a given A, both S' and a are computed using equation (3.15) and equation (3.16) 

is used to determine whether an eigenvalue solution has been found. 
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3.5.1 Numerical Results of the Eigenvalue Analysis 

The eigenvalues of the problem are henceforth denoted by Xj, j = 1,2, The first 36 

eigenvalues were found to four significant figures using the method described in the previous 

section with n = 500 and are given in Table 3.1. Thwaites(1961)[46] obtained the first six 

j j ^3 
1 2.316 10 30.65 

2 5.507 11 3180 

3 8.634 12 3&95 

4 1L79 13 40.10 

5 1A92 14 4126 

6 18.07 15 4&41 

7 2L21 16 4&57 

8 24^6 17 52J3 

9 27^0 18 55.89 

j j 

19 59.05 28 87.65 

20 62.22 29 9&84 

21 65.38 30 94^4 

22 6&56 31 97^4 

23 7L73 32 10&5 

24 74^1 33 10&7 

25 78.09 34 10&9 

26 8L27 35 l l&l 

27 84^6 36 113.3 

Table 3.1: The First 36 Eigenvalues of the Steady Sail Equation 

eigenvalues of the problem. In the above calculations, Ai and A2 agree with the corresponding 

eigenvalues found by Thwaites. However, A 3 above differs from the A3 of Thwaites by 1.0 x 

and A4 through Ag differ to Thwaites by 1.0 x 10~^. This is a consequence of using 

n = 500 in the above calculations. The method was executed again using n = 1000 for 

eigenvalues 3 to 6 and this increase in mesh points enables sufficient accuracy to provide 

eigenvalues that agree with Thwaites. This disparity with Thwaites when using n = 500 

indicates that the eigenvalues for large j with n = 500 may not necessarily agree with 

eigenvalues computed using n > 1000. Indeed, the eigenvalues for j > 10 in Table 3.1, 

whilst valid eigenvalues of the n = 500 problem, should not be treated as accurate solutions 

for larger values of n. This is explained further in Section 3.5.2. 

The positions of the first six eigenvalues in the A against a plot are shown in Figure 3.4. 

The sail shape (eigenfunction) corresponding to Xj is henceforth denoted by Sj. An inter-

esting feature is that for odd values of j , Sj is symmetric about x — 1/2 and for even values 

of j, Sj is anti-symmetric about x = 1/2. This was first noticed by Thwaites(1961) [46] but 

wrongly stated in his paper as the odd-numbered critical eigenvalues giving anti-symmetric 

sail shapes. The symmetric sail shapes are the eigenvalue solutions for a = 0 and they are not 

unique since for a = 0, ±S'(.x) are solutions. Thwaites, therefore, dismissed the odd-numbered 

eigenfunctions as meaningless. 

From Figures 3.4 and 3.9, the even-numbered eigenfunctions are anti-symmetrical sail 
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shapes that generate zero lift at non-zero angle of incidence. Thwaites named these even-

numbered Xj the "critical eigenvalues" of the inextensible sail problem and the first three 

critical eigenfunctions are presented in Figure 3.10. 

0.4 

X = 5.51 
1=11.78 
1 = 18.08 

a W 0 

Figure 3.10: The First Three Critical Eigenfunctions 

When sail shapes are plotted for non-eigenvalue values of A the only solutions that are 

positive concave are for A < Ai % 2.316. Hence Si is the only positive concave eigenfunction. 

Moreover, for any value of a there exists a solution with A < 2.316 and therefore, for all values 

of a , one and only one of the solutions is positive concave. In addition, for a > amax ~ 0.99 

the positive concave solution is the only solution. Another useful observation is that for \ j < 

A < Aj+i the corresponding sail shape intersects the r-axis j — 1 times between 0 < z < 1. 

3 .5 .2 E i g e n v a l u e s for Large j 

In this section an attempt is made to derive an asymptotic expression for the eigenvalues of 

the sail equation for large j. As detailed in the previous section Sj intersects the a;-axis j — I 

times and hence it is reasonable to approximate Sj{x) for large j by 

Sj{x) = Inn 
I 

where A is a real constant. With S defined as above, S'(O) = 5(1) = 0 and S"'(0) = ^" ( l ) = 0 

and hence the above equation lends itself well to an eigenvalue solution. Substituting this 
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(3.17) 

approximation into equation (3.6) gives 

ri 
Anj -f dri 

Jo 

The integral in equation (3.17) is evaluated by first calculating the following two integrals 

cos {irjri) 

A - a ) 

£ 0 V - x 

cos (7rj(l — i ) ) + I cos(7rj3:) sin (7rj(l 

drj = —7rsin(7rj2;) + 

z ) ) 
+ 0 

1 

and 

i sin(7rj7)) 

7) — z 

•Kjx{l — x) 

xcos{TTjx) C0s(7rj(l — x)) + (1 — z) 
drj = TTCosinjx) 

xs'm{iTjx) sin(7rji'(l — x)) 

7rjx{l — x) 

These two integrals are now combined to give 

"l 

%jz:(l 

+ 0 

X 
+ 

£ 0 lire + 0 (3.18) 

This approximation is invalid at the sail ends. However, proceeding with this analysis provides 

some insight into the behaviour of Xj. By making the assumption that a is of order 1 / j , 

which is reasonable given that a is defined as being small, substituting equation (3.18) into 

equation (3.17) gives 

A:=: JTT-^ o(j) (3.19) 

thus indicating that the j t h eigenvalue for large j is Xj % jir. Using the numerical results given 

in Table 3.1 we may further investigate this hypothesis by plotting the values of Xj —jir. It is 

hoped that such a plot would identify the value of the unknown quantity in equation (3.19) 

since the above, analytical, analysis does not reveal the o{j) term. This plot is given in 

Figure 3.11 and shows that the results calculated using n = 500 are not particularly useful in 

estimating the o{j) term. However, repeating the calculations with n = 1000 provides more 

encouraging results since the plot of the o{j) term diverges at a significantly slower rate than 

the plot for n = 500. Hence it could be expected that results for larger n will provide a more 

accurate approximation of the o(j) term but the significant increase in the computational 

time required prevented this further analysis from being executed. 

3.6 The Steady, Extensible Sail 

The analysis of the steady sail problem is now extended to the case of an extensible sail. The 

sail is modelled as an extensible, non-porous, flexible, thin sail of finite length and mass that 

is fixed at both ends. As is the case with the inextensible sail, the length conditions for the 
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Figure 3.11: Plot of the o(j) Term 

extensible sail are of paramount importance to the problem. In the inextensible sail problem 

discussed above, the sail was assumed to have a length that is greater than the distance 

between the fixed ends of the sail. It is this excess length, or slack, that permits the sail to 

assume a particular shape when the sail is placed into the outer flow. (It should be noted that 

throughout this thesis the words "slack" and "excess length" represent identical quantities 

and both are used to aid the lucidity of the explanations.) In the extensible case, however, 

there is no requirement for there to be any slack since the extensibility of the sail alone 

permits the sail shape to change. However, the extensible sail with slack is interesting since 

this sail tends to the inextensible case in the limit as the extensible sail becomes increasingly 

less elastic. 

Since the flow is inviscid there are no shearing forces on the sail and therefore the tension 

within the sail is independent of x. Therefore, the analysis presented in Section 3.2 still holds 

for the extensible sail and therefore the steady sail equation (3.6) is valid here. The changes 

to be made to the analysis of the inextensible sail are therefore only in the corresponding 

length conditions. Both cases of the steady, extensible case are now considered below. 
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3.6.1 The Extensible Sail With Slack 

This sail has an excess length over the distance between the fixed sail ends; the natural length 

of the sail is equal to L{1 + e^). This representation of the sail's excess length was shown to 

be valid in Section 3.2. Using Hooke's Law gives 

r = A j - ^(1 + j . (3.20) 

where A is a constant (henceforth referred to as the "extensibility") that measures the elas-

ticity of the sail material (note, for clarity, that the modulus of elasticity of a material is 

Al where I is the natural length of the material). Equation (3.20) is non-dimensionalised by 

using 

X = Lx* 

T 

g = eiLg* 

A* 

to obtain, to lowest order, 

Jo /o A'A* 

Note that in the limit as A* tends to infinity this length condition tends to the inextensible 

length condition, equation (3.8), as expected. 

3.6.2 Results and Discussion 

Using the numerical method described above with the minor adjustment to the length con-

dition, the results for the extensible sail with slack were easily obtained. Figure 3.12 shows 

the plot of A* against a* for three values of the extensibility (using n — 500). This plot 

confirms that as the sail becomes less elastic, the relationship between A* and a* tends to 

the inextensible solution, as expected. Moreover, the plot for A* = 10 is very close to the 

curve for the inextensible sail which indicates that the sail shapes are very similar. This 

is illustrated in Figure 3.13 which depicts the positive concave sail shapes at a* = 0.6 for 

various values of A*. 

The eigenvalues of the unsteady sail equation for the extensible sail with slack may be 

computed using equation (3.16) and were found to be equal to those computed for the inex-

tensible sail. This is obviously the case for the eigenvalues corresponding to a* = 0 since these 

eigenvalues are independent of A*, as confirmed in Figure 3.12. However, for the eigenvalues 

corresponding to a* ^ 0, Figure 3.12 dictates that the corresponding angles of incidence are 

greater than in the inextensible sail problem. 
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A = 10 

Figure 3.12: Plot of A Against a for the Extensible Sail With Slack 

A = 10 
Inextensible 

Figure 3.13: Positive Concave Sail Shapes of the Extensible Sail With Slack at a = 0.6 
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3 .6 .3 T h e E x t e n s i b l e Sail W i t h o u t S lack 

The natural length of the sail is now assumed to be equal to L thus stipulating that the sail 

has no slack. Hooke's Law governs the length of this sail and states that 

r = A + j (3.21) 

In the limit as A —> oo, equation (3.21) states that the extension of the sail tends to zero, i.e. 

the length of the sail tends to L, as expected. Equation (3.21) may be non-dimensionalised 

using the variables introduced in Section 3.6.1 to give, to lowest order, 

Jo A* A* 

3 .6 .4 R e s u l t s a n d D i s c u s s i o n 

The relationship between A* and a* was numerically calculated for a fixed value of A* and 

Figure 3.14 shows this relationship for A* = 1 ,5 and 10 in the range 1 < A* < 10 (computed 

using n = 500). 

10 

Inextensible 
A = 1 
A = 5 
A = 10 

Figure 3.14; Plot of A Against a for the Extensible Sail Without Slack 

The relationship between A* and a* is many-to-one, as was the case for the inextensible 

sail and extensible sail with slack. However, as A* increases, the range of a* for which there 



exists multiple solutions decreases. Hence, as the sail becomes less extensible the positive 

concave solution is the only solution for increasingly more values of a*. Figure 3.15 shows the 

positive concave sail shapes for a 

0 

0.6 for A* = 1, 5 and 10. As A* increases, the deviation 
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yL== 10 

1 1 
0.2 0.4 0.6 0.8 

Figure 3.15: Positive Concave Sail Shapes of the Extensible Sail Without Slack at a = 0.6 

from the a;*-axis decreases as expected. 

The eigenvalues for this case are also found to coincide with the inextensible values of 

A*. However, the corresponding angles of incidence for the eigenvalues of the extensible sail 

without slack are significantly smaller than those of the previous two cases, as depicted in 

Figure 3.14. 

3.7 Conclusions 

The theory of the steady, inextensible sail had been extensively researched prior to the 

writing of this thesis. However, the analysis performed here expands on previous work by 

presenting a different discretisation of the inverted sail equation (3.10). This method of 

directly calculating the Hilbert transform within each mesh-interval is more pertinent to the 

unsteady problem than the methods given by previous authors. 

The relationship between the tension parameter. A*, and the angle of incidence, a*, for the 

inextensible sail is computed and agrees with the results first found by Thwaites(1961)[46]. 
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This is a crucial result for the sail problem since it shows that the relationship between A* 

and Of* is not one-to-one: there is more than one solution for a* < 0.99 and for a* > 0.99 

the positive concave sail shape is the only solution. Moreover, a positive concave solution 

exists for all a*, occurring for values of A* < 2.316. For A* greater than this value the shape 

of the sail is found to depend on the eigenvalues of the steady sail equation, Aj, defined as 

the values of A* for which there is smooth attachment at the leading edge in addition to 

smooth separation at the trailing edge of the sail. It is found that for Aj < A* < Aj_,_j the 

corresponding sail shape intersects the x-axis j — 1 times. It is also shown that the odd-

numbered eigenvalues correspond to solutions for a* = 0 and at these eigenvalues the lift is 

found to be non-zero and takes two values, differing only in sign. This phenomena occurs 

because at a* = 0 both ±5* are solutions. The even-numbered eigenvalues correspond to 

cases for which there is zero lift at non-zero angle of incidence. Thwaites(1961) [46] named 

these the "critical eigenvalues". 

The fact that the "waviness" of the sail increases as j increases leads to an asymptotic 

analysis of the eigenvalues for large j . This model, although invalid at the sail ends, predicts 

that Aj = jTT + 0(1) regardless of whether the sail is inextensible or elastic. Numerical 

calculations were performed to test this analysis but were inconclusive since the computational 

time required to find solutions to a satisfactory accuracy was too great. 

The problem of the steady, extensible sail has been far less researched prior to the writing 

of this thesis than the inextensible sail. The extensible sail may have an excess length or 

have a natural length of L and both models have been presented. The analysis of the steady, 

extensible sail with slack shows that as A* —> oo the solution tends to the inextensible solution, 

as expected. The results for the steady, extensible sail without slack reveal that as the sail 

becomes less extensible, i.e. as A* increases, the range of a* for which there are multiple 

solutions decreases. This is to be expected since in the limit as A* tends to infinity, S* 

tends to zero. The eigenvalues of the extensible sail problem were found to coincide with the 

inextensible values of A* regardless of whether the extensible sail has excess length. However, 

the corresponding angles of incidence are larger than the inextensible values for the extensible 

sail with slack and smaller in the case of the extensible sail in the absence of excess length. 

The steady sail problem, although interesting, is obviously not as realistic as the unsteady 

sail problem where the angle of incidence is a prescribed function of time. However, the 

numerical methods derived for the steady sail equation are useful when analysing the unsteady 

case. The analysis of the steady sail also shows the existence of more than one solution for 

a certain range of a*. This phenomenon proves to be a deciding factor in the stability of the 

solutions. 
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Chapter 4 

The Uns teady Sail 

The analysis of the two-dimensional sail is now extended to a more realistic problem by 

stipulating that the angle of incidence is a prescribed function of time, i.e. a = a(t). This 

chapter begins with a derivation of the unsteady sail equation, which is a singular partial 

integro-differential equation for which no analytic solution has been found at the time of 

writing. Both the inextensible and extensible sails introduced in Chapter 3 are analysed here 

and the relevant length condition for each problem is presented. The unsteady sail equation is 

then discretised using a finite difference method similar to that used in the previous chapter. 

In the case of an extensible sail, the tension parameter, (3, may be removed from the equations 

of motion. This implies that the extensible sail problems may be solved more accurately and 

more efficiently than the inextensible problem since f3 does not have to be estimated at each 

time-step. Numerical results are also presented for a particular choice of a{t). An analysis 

of the energy within the system highlights a crucial difference between the inextensible and 

the extensible problems and may explain why the inextensible sail is so difficult to accurately 

model. 

4.1 L i t e r a tu re Review 

There is far less published work on the unsteady sail problem than on the steady problem. 

One of the first papers on the unsteady topic is that of Smith & Shyy(1995)[39] who analysed 

the motion of a sail subjected to a viscous outer flow with a harmonically driven angle of 

incidence. However, it is the fully unsteady problem for which the angle of incidence is any 

prescribed function of time that is of most interest here. Haselgrove(1973)[17] (and the sub-

sequent journal Haselgrove & Tuck(1976)[18]) proposed an equation for the unsteady "jib" 

which is a sail attached to a non-porous sheet at its trailing edge. Whilst no solutions to 

the unsteady equation were presented, Haselgrove & Tuck analysed the linear stability of 
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the equation. Further details of their work are presented in Chapter 5. The most compre-

hensive study of the unsteady sail problem to date is that of Lattimer(1996) [25]. Lattimer 

proposed the unsteady sail equation and the length condition for the inextensible sail and 

then discretised these using an explicit finite difference scheme. The numerical analysis of 

Lattimer concentrated on problems for which the angle of incidence is initially zero and there-

fore Lattimer effectively studied the "luffing" of a sail. The subsequent published work of 

this Ph.D. thesis is Fitt & Lattimer[11] in which the unsteady sail equation was discretised 

using Chebyshev polynomials. The analysis of the unsteady sail problem is extended here, 

using a different discretisation, to the case of the extensible sail. The numerical examples 

use an angle of incidence that changes linearly from one angle to another where both angles 

are chosen such that there are multiple steady solutions which the sail can start from and 

converge towards. 

4.2 Derivat ion of the Uns teady Sail Equa t ion 

This derivation was first presented by Lattimer(1996)[25]. The parameters of the problem 

are the same as in the steady case with the exception that a = a(t) which implies that the 

sail shape varies with time, i.e. S = S{x,t). The sail is approximated by a distribution of 

vortices along the line y = S{x,t) with the strength of each vortex being equal to ef{x,t) 

and hence the stream function for the unsteady problem takes a similar form to that of the 

steady case namely 

IQ 

where equation (A.3) has been used with g{ri, t) — 0 since the sail has zero thickness but 

generates lift. The key observation is that for a non-porous sail y — S{x, t) must be a 

streamline of the perturbed flow. Hence 

^ [ 2 / - ^(a;,^)] = 0 

which may be written as 

St 4- uSx = V (4.2) 

where u and v are the components of the fluid velocity in the x and y directions respectively. 

Since the perturbation to the outer flow is small (order e) thin aerofoil theory is employed 

and hence equation (4.2) is applied, to lowest order, on the a;-axis. Using the stream function 

given above and employing equations (A.4) and (A.5) the velocities of the perturbed flow in 

the limit as y tends to zero are 

! /->0 A y - > 0 27r J o X — T] 
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Substituting these relationships into equation (4.2) gives the thin aerofoil approximation for 

the unsteady sail in terms of /(rc, t) 

(ux> + — UooO:{t) — — drj. (4.3) 

In order to find f{x, t) it is necessary to analyse the forces acting on the sail and the subsequent 

motion of the membrane. The forces acting on the membrane are the tension in the sail and 

the pressure difference across the sail (regardless of whether the membrane is inextensible or 

elastic). Applying Newton's second law in the vertical direction to a sail element of width 5x 

gives 

Fy + Ap6x = p'SxStt (4.4) 

where Fy is the component of the tension in the sail in the ^-direction, Ap denotes the change 

in static pressure across the sail and p' is the mass of the sail per uni t length. Using the same 

analysis that was performed in the derivation for the steady sail equation gives Fy = TS9 

because there are no shearing forces present {9 is the angle tha t the slope of the sail makes 

with the x-axis). The pressure difference across the sail is found by applying the unsteady 

Bernoulli equation to the flow and analysing the limit of this relationship as y tends to zero, 

which in the absence of external body forces is 

[4̂ ]%- 4- 4- == 0 (4.5) 

P L 

where is the velocity potential of the perturbed flow and p is the density of the fluid. The 

second term of the equation is simply 

^[p)S- = ~ 

and the third term may be evaluated as 

= e[/oo/(a;,f) + O(E^). 

The first term, is slightly less obvious. Using the definitions (j)x — ipy and 4>y — —ipxi 

equation (4.1) gives 

arctan ( ^ 1 (f??. (4.6) 
2nVo \ 2 — 

Lattimer(1996)[25] argued that equation (4.6) is continuous across the line y = 0 and deduced 

that 

= 0. (4.7) 

Very recently, a closer analysis of the branch cuts of equation (4.6) has suggested that equa-

tion (4.7) may not be true. The situation is still unclear, however, and fur ther research is 

necessary. For the remainder of this thesis equation (4.7) is assumed to hold. 
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Hence equation (4.5) becomes Ap = epUoof{x.t) and substituting this expression in equa-

tion (4.4) gives 

T56 + peUooSxf{x, t) = p'SxSu-

Since, to lowest order, 6{x,t) — Sx{x,t) the above equation gives the desired expression for 

/(a;, Z): 

== . (4.8) 

Substituting this into equation (4.3) gives 

The non-dimensional variables (denoted by asterisks) used are 

X — Lx* 

•q = Lrj* 

% == 

g 

la == GCK* 

T = P'^p'Ul 

/!• (S;. + 5 ; . - a ' ) = i / ' dr," (4.10) 
TT Jo ri* - X* 

and using these transformations, equation (4.9) becomes, to lowest order 

•q* 

which is the non-dimensional unsteady sail equation with fixed end boundary conditions 

S*{0,t*) = S*{l,t*) = 0. The Kutta condition states that the vortex situated at the 

trailing edge must have zero strength. Equation (4.8) therefore states that (l,f*) — 

= 0 and since the ends of the sail are fixed the Kutta condition for the un-

steady sail is — 0. 

Equation (4.10) is dependent on two non-dimensional parameters, namely ji* and /?*. The 

parameter /i* is the ratio of the density of the fluid to the mass per unit length of the sail 

and is therefore constant. In contrast, the parameter [i* is not constant with time since the 

tension in the sail varies as the shape of the sail changes. Equation (4.10) can be solved 

numerically for any real /3* > 0 but the solutions obtained must satisfy the relevant length 
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condition for all t*. Hence /3* must be chosen so that the relevant length condition is satisfied. 

Equation (4.10) may be solved for a chosen /?* and then the relevant length condition used 

to observe whether the choice of (3* was correct. This process must be performed at each 

time-step so it would seem that this problem may require significant computational time. 

4 .2 .1 T h e L e n g t h C o n d i t i o n s 

The unsteady sail equation (4.10) holds for both the inextensible and the extensible sail 

problems since shearing forces are neglected here. Therefore the only difference between 

the three cases is in the respective length conditions. Since A* in the steady analysis is 

A* = the three length conditions are 

inextensible 

extensible, without slack (4.11) 
0 /i'A* 

49"' + 2 extensible, with slack. 

An important feature of the extensible length conditions is that they are explicit in terms of 

(5* and hence may be eliminated from equation (4.10) leaving S* as the only unknown 

quantity. This is a significant improvement over the inextensible problem since P*' does 

not have to be approximated using, for example, linear interpolation when analysing the 

extensible cases. However, note that the problem is still non-linear. The integral in the 

above length conditions is easily discretised using the method outlined in Section 3.3.1. 

4.3 Useful Limits of the Uns teady Sail E q u a t i o n 

Lattimer(1996)[25] analysed various limiting cases of the unsteady sail equation for the in-

extensible sail. The tension parameter of the sail, /3* ,̂ in this case is determined by the 

inextensible length condition and hence equation (4.10) depends on only two parameters: the 

angle of incidence, and //*, the ratio of the density of the fluid to the mass of the sail. 

The unsteady sail of small mass, i.e. large //*, was analysed by Lattimer for both order one 

and large values of a* and both analytic and numerical results presented. The case of the 

large mass sail, i.e. small //*, was also examined for order one values of a* and also for the 

case where a* is sufficiently large such that a*ji* is of order one. 

The limit where /i* ^ 0 but a* = 0(1) was shown by Lattimer to have the governing 

equation 

S * , = 0 
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with boundary conditions S*{0^t*) = S*{l.t*) = = 0. It is obvious from this 

equation that for non-zero values of /?* the only steady solution that satisfies the boundary 

conditions is S*{x*,t*) = 0, which does not satisfy the length condition. This implies that 

the sail will never settle down to a steady solution and will always be in motion. However, 

Lattimer shows that if the sail is initially at rest, i.e. S^, (x*, 0) = 0 then /?* = 0 and the sail 

remains stationary for all time which simply implies that the outer flow is unable to influence 

such a heavy sail. If the sail is initially in motion then the inertia of the sail is counteracted 

by the tension since the aerodynamic effects of the sail are negligible in this case. 

The limit where fj,* tends to zero but where the angle of incidence, a*(t*), is sufficiently 

large such that a*n* = 0(1) is shown by Lattimer to be governed by 

subject to the same boundary conditions as for the previous large mass case. The steady 

solution for this case is the solution for the sail of large tension, equation (3.9). This is 

because a large angle of incidence implies that the sail will have a large tension. Lattimer 

showed that if the sail is initially at rest then the sail will remain in this steady solution. This 

is due to the fact that the aerodynamic effects are negligible when compared to the tension 

in the sail and the inertia. 

The final limit analysed by Lattimer is for large angles of incidence with an order one value 

of /i*. Utilising the length condition it is shown that whilst p* is a function of time the sail 

itself remains stationary. 

The above description of the work presented by Lattimer is an overview of the limiting 

cases of the unsteady sail equation. The linear stability of the large mass sail equations is 

examined in Section 5.2. 

4.4 Discret isa t ion of the Uns t eady Sail E q u a t i o n 

Equation (4.10) is inverted using equation (B.3) to give 

% - fis.. = / ' ^ (4.12) 
TT V X Jo \Jl — r] [11 — X) vx — x^ 

where the asterisks are here and henceforth omitted for clarity. The boundary conditions 

for this equation are S{0,t) = S{l,t) = S'xi(l,t) = 0. Using the latter boundary condition 

and noting that the sail ends are stationary implies that C must be equal to zero. Using 

equation (B.4), equation (4.12) simplifies to 
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with fixed end boundary conditions as above. Lattimer(1996)[2o] presents an implicit dis-

cretisation of this equation but the problem is easily discretised by other methods to give an 

explicit scheme as explained below. 

The singular integral involving 5"̂  is discretised by using the method presented in Sec-

tion 3.3 to give 

/ I - 3 : \ 

t t V X i W -1') " " f c S ^ 

where Q,* is given by equation (3.14), Sj is the numerical approximation of S{xi,tj) and 

5x = 1/n is the mesh width. Similarly, the same method is employed to discretise the 

singular integral involving St in equation (4.13) to give 

• f " ' f i t Q..- m - s n + (SL, -

where backward differences are used to create an explicit scheme. Hence, using central 

differences for the second order derivatives of S the numerical scheme is 

St' = 2s{-st' + ( ^ { s ; ^ , - 2 s ; + si_ci 

n f Qj ci 1 4- q j 
^ 2 . & - 1 

k=l 

- / . a t ^ - g r ' ) + (4.14) 
t=l V ^ 

for 2 = l , . . . , n — 1 and where = a{tj) with boundary conditions 3^ = 3^= 0. This 

explicit scheme requires the values of S from the previous two time-steps and therefore it 

is necessary to create an initial condition that allows data to be created on a fictitious 

layer. A simple initial condition that achieves this is to state that the sail is initially at rest 

at the steady solution corresponding to a(0). This stipulates that the unsteady motion will 

commence at time t = 0 with the flow before then being a steady flow with the angle of 

incidence fixed at the correct value to achieve the initial sail shape. Therefore St(x,0) = 0 

which implies that 5"^^ = 5° for i = 0 , . . . , n. 

Equation (4.14) is the discretisation of the unsteady sail equation that is used for both the 

inextensible and the extensible cases. However, the key factor with the extensible cases is 

that P may be removed from the discretisation. 

4.4.1 Numerical Stability Analysis 

In order to determine whether the explicit method given by equation (4.14) is numerically 

stable it is useful to employ Von Neumann stability analysis. The numerical stability of the 
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unsteady sail equation was first analysed by Lattimer(1996)[25] who made the assumption 

that the numerical stability depended primarily on the highest order derivatives to derive the 

following condition for stability: 

5x 
< 1. (4.15) 

where c is the Courant number. Since 6x is fixed but /? varies with time it is necessary to 

select St such that the Courant number is less than one at each time-step. This poses a 

stability problem when fixing St since f3 may vary such that the Courant number violates the 

above condition. To support the assumptions made above to derive this Courant number, 

the author has found, through performing the numerical computations below, that the above 

condition is rigidly adhered to for numerical stability. 

4.5 Resul ts and Discussion for t h e Inextens ib le Sail 

As discussed above, Lattimer(1996)[25] analysed the inextensible sail problem where the angle 

of incidence is initially zero. Lattimer presented results for a range of a{t) that started from 

both the positive concave and wholly negative solutions. The case analysed here is when the 

angle of incidence changes linearly between two positive values of a . The choices of the initial 

and final angles are values for which multiple solutions exist and it is intended to examine 

how the sail shape changes with time depending on the initial solution. This is a previously 

unresearched case both in terms of theory and experimental da ta . 

The statistic of most interest here is the plot of P{t) since this not only reveals the solution 

that the sail tends to but also the manner in which the solution was achieved. For particularly 

interesting cases the sail shapes themselves are also presented, taken at integer values of t. 

The mass of the sail is fixed at yU = 1 for both the inextensible and the extensible results. 

The results presented here are for a{t) changing linearly from ckq to ai where both oq and 

a i are angles for which there are multiple steady solutions, i.e. cto, a i < 0.99. In the examples 

presented here for the inextensible sail the choice of these angles of incidence is ao = 0.25 and 

a i = 0.75. Figure 3.4 depicts that there are five steady solutions corresponding to ao and 

three solutions for ai for the inextensible sail; the corresponding values of /S are in Table 4.1. 

/Si A A A A 

ao = 0.25 0.6966 0.6191 0.3944 0.3188 0.2836 

a i = 0.75 0.7720 0.5407 0.4326 - -

Table 4.1: Values of (3 for the Inextensible Sail 

58 



The positive concave sail shapes for ag and a i correspond to the values of /3i and the 

wholly negative solutions correspond to The remaining solutions for j3i {i = 3, 4, 5) 

intersect the z-axis i — 2 times between 0 < a: < 1 and S"(0) is positive for both * = 3 and 5. 

The choice of a{t) changes linearly from oq to ai and the time-dependent angle of incidence 

used here is 

' 1 + 1 0 < ( < 1 

a{t) = < (4.16) 

I I z > i -

One difficulty with the numerical method is illustrated using the Courant number, given 

by equation (4.15), which states that St must be 0 ( l / n ) if the method is to remain stable, 

assuming that (3 = 0(1) . Therefore it takes approximately 0 ( n ) time-steps to reach a 

specified time but in the inextensible case linear interpolation must be used at each time-

step to find the correct (3 thus increasing the computational time dramatically. Hence it 

is preferable to execute the method with as small a value of n as possible. Unfortunately, 

decreasing n also decreases the accuracy. The error in the numerical scheme depends primarily 

on the square-root singularity at a; = 0 that multiplies the integral in equation (4.13) and this 

implies that the method has an error of 0{5x^) and hence the accuracy at a given time, fg, is 

of 0{tgn~i) . This represents a significant reduction in accuracy as n decreases and therefore 

n must be chosen such that the accuracy is acceptable yet the computational time required is 

not too expensive. The choice of n used for the inextensible problem is n = 200 which gives 

an accuracy at time tg of approximately 0.07tg. Therefore the results for large t must be 

treated with some caution although they are included here to illustrate both the oscillatory 

motion of the sail and the small instabilities that are undoubtedly due to the approximations 

made for the length of the sail at each time-step. 

Starting at Pi = 0.6966 (initially positive concave sail) 

The calculations were performed using a time-step of St = 0.001. The plot of how (3 varies 

with t is given in Figure 4.1 along with Pi = 0.7720 (the steady positive concave solution 

for o i ) . Hence /3 starts from the initial value of 0.6966 and then increases with t. At t = 1 

the sail has achieved the positive concave solution corresponding to a i and then, for t > 1, 

the sail oscillates around this solution with an almost constant period. There also appears 

to be a very small amount of damping in the oscillations, thus indicating that for large t 

the sail may settle down to the steady, positive concave solution for a i . However, numerical 

instabilities plague the plot of /? and these are undoubtedly due to the fact that the length 

condition is approximated at each time-step; a small perturbation is being introduced to the 

length of the membrane. These instabilities become more significant as n is increased and, 

for example, with n = 500 the method is terminally unstable at t = 0.56. 
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Figure 4.1; /5(i) for the Inextensible Sail that is Initially in the Positive Concave Shape 

Starting at /32 = 0.6191 (initially wholly negative sail) 

Figure 4.2 presents the plot of (5{t) for the sail that is initially in the wholly negative shape. 

As a increases, /? decreases and the sail moves towards the wholly negative sail shape. For 

t > 1, (3 oscillates around the value of (3 corresponding to the wholly negative sail shape for 

a i , i.e. /%, but the oscillations do not have a uniform period as is the case with the positive 

concave case described above. 

Starting at Ps = 0.3944 

The plot obtained for (3 when the initial sail shape is that which corresponds to is shown 

in Figure 4.3. The plot shows that as t increases, /3 changes to and then oscillates around 

the positive concave sail shape for a i , i.e. /3i; therefore this sail is unstable. However, P{t) is 

discontinuous at several values of t which implies that the errors in the scheme are significant 

and this hypothesis is supported by the observation that (3 oscillates increasing more wildly 

as t increases. Hence the solutions for large t must be treated with extreme caution. 

The most interesting feature of Figure 4.3 is that at t = 1 the angle of incidence is equal 

to ai yet (3 is only equal to 0.4735 and clearly the sail has some way to go before reaching 

the positive concave sail shape. This is in contrast to the /5i and P2 cases above for which (3 

changed virtually linearly with a for t < 1. Between t = 1 and t — 1.68, however, the sail 
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Figure 4.2: /3(i) for the Inextensible Sail that is Initially in the Wholly Negative Shape 

p a ) 1 

Figure 4.3; /3(i) for the Inextensible Sail that Starts at 
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undergoes a rapid movement and peaks at /? = 1.26. This rapid movement is undoubtedly 

due to the inertia of the sail and is the reason for the oscillatory motion since the sail is 

always trying to settle down to the steady solution corresponding to a i . The sail shapes, 

taken at integer values of t. are presented in Figures 4.4 and 4.5, which confirm that the sail 

initially moves a small distance in comparison to the shapes for t > 1. 

0.7 

% 

Figure 4.4; The Inextensible Sail that Starts at /Js. (t = 0 . . . 5) 

Starting at 184 = 0.3188 

Figure 4.6 shows the plot o f w h e n starting at P4. The method is found to reach the positive 

concave solution at t = 1.64 and then go unstable at t = 1.71 since (3 tends to infinity. These 

times are confirmed when using n = 500. It is difficult to say whether the instability is 

due to error accumulation in the method or a trait of the sail problem itself. It should be 

noted that the sail does not significantly move for f < 1 but subsequently undergoes a rapid 

acceleration and changes to a positive concave shape. The sail is clearly travelling at some 

speed by the time the positive concave shape has been achieved at ( = 1.64 and the kinetic 

energy of the sail may be too large for the sail to counteract and then start an oscillatory 

motion. Hence it may be the case that the sail has gained an inertia so great that the sail 

breaks at approximately t = 1.71. It is interesting to note that when the sail is started at P3, 

as described above, the first peak in [3 is achieved a.t t = 1.68 (see Figure 4.3) which is close 

to the time at which (3 is infinitely large here. 
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0=0.75 

Figure 4.5: The Inextensible Sail that Starts at P3. (t = 6 . . . 10). The Steady Solution for 

a = 0.75 is also Shown. 
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Figure 4.6: /3(^) for the Inextensible Sails that Start at ,84 and 
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Starting at /?5 — 0.2836 

The corresponding plot of (3 is also given in Figure 4.6. In a similar way to the two previous 

cases, (3 remains virtually constant for f < 1 but then undergoes a rapid change and achieves 

the positive concave solution at i = 1.45. The sail then continues past this solution and peaks 

twice; once at i = 1.54 and again at i = 1.66. The sail then returns to the positive concave 

solution and it is from this time that an oscillatory motion is witnessed in the /3i, /32 and 

(3z examples described above. However the method fails here since /? approaches infinity at 

t = 2.62 which cannot be explained without further analysis since this may be due to either 

the error accumulation associated with the numerical method or perhaps the properties of 

the sail itself. 

The numerical results for the inextensible sail are not encouraging. All of the /3(t) presented 

above exhibit discontinuities which in two cases lead to the method being terminally unstable. 

The main difficulty appears to be that the inextensible sail has difficulty in commencing an 

oscillatory motion once a has ceased to change. In some cases the speed of the sail at < = 1 

is so great that it may be the case that the sail itself is breaking. In the next section it is 

shown that the extensible sail with slack may be solved with a far greater degree of success. 

4.6 Resul t s and Discussion for t h e Extens ib le Sail W i t h Slack 

The limiting cases of A = 1 (a "very extensible" sail) and A = 10 (an "almost inextensible" 

sail) are examined here. The steady results presented in Section 3.6.2 show that as A is 

decreased the range of a for which there are multiple steady solutions increases. The values 

of ao = 0.25 and ai = 0.75 used in the previous section are also used in this case and a{t) is 

defined in equation (4.16). The same a{t) is used here in an at tempt to provide comparable 

results between the extensible sail with slack and the inextensible results presented above. 

The main advantage of the extensible problems is that [3 is given explicitly in the length 

condition, equation (4.11) and hence (3 is removed from the discretisation given in equa-

tion (4.14). This has an immediate impact on both the accuracy and the computational 

time required for the method since linear interpolation is not required at each time-step. A 

larger value of n is therefore used for the extensible problems since the accumulated error 

associated with (3 is significantly smaller than in the inextensible problem; n = 500 was used 

in the calculation of the results presented here. 
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4.6.1 Results for A = 1 

Using the numerical scheme for the steady problem presented in Section 3.3 the values of (3 

for CKQ = 0.25 and a i = 0.75 for A = 1 are given in Table 4.2. 

A A A A A A A 

ao = 0.25 0.6853 0.6284 0.3929 0.3212 0.2840 0.2439 0.2345 

a i = 0.75 0.7374 0.5664 0.4250 - - - -

Table 4.2: Values of for the Extensible Sail With Slack (A = 1) 

As before, the values of f3i and correspond to the positive concave and wholly negative 

sails respectively and for (3i {i — 3,... ,7) the sail intersects the a;-axis i — 2 times between the 

sail masts. An additional observation is that for odd values of i the value of S"(0) is positive. 

The numerical method is executed for all /3j obtained for ao as the initial condition and the 

numerical results are presented below. 

Starting at = 0.6853 (initially positive concave sail) 

The time-step used here was 6t = 0.002 which, from equation (4.15), requires that (3{t) < 1 

for numerical stability and the resulting plot of P{t) is presented in Figure 4.7. The most 

noticeable difference when comparing this plot to the inextensible case in Figure 4.1 is that 

P{t) exhibits no discontinuities in the range 0 < i < 10. This is primarily due to the increase 

in accuracy for the extensible problem. The sail starts from the steady positive concave 

shape for qq and moves towards the steady positive concave solution for ax, as expected. For 

t > 0.83 the sail oscillates around the steady solution with a constant period. It is difficult 

to conclude from Figure 4.7 whether or not the oscillations exhibit any damping and in order 

to examine this further it is illustrative to examine the kinetic energy of the sail which will 

decrease as time progresses for damped oscillations. 

The non-dimensional kinetic energy, /C*, calculated using the non-dimensional variables 

presented in Section 3.2, is given by 

The kinetic energy for the sail that is initially in the positive concave shape is shown in 

Figure 4.8 and it is clear that the oscillations of the sail are damped albeit very weakly for 

t > 6. Hence for large t the sail appears to converge to the positive concave solution for a i . 
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Figure 4.7: /9(t) for the Extensible Sails With Slack that are Initially in the Positive Concave 

and Wholly Negative Shapes (A = 1) 
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Figure 4.8: Kinetic Energy for the Extensible Sails With Slack tha t are Initially in the Positive 

Concave and Wholly Negative Shapes (A = 1) 
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Starting at — 0.6284 (initially wholly negative sail) 

Figure 4.7 also shows the plot of P{t) which illustrates that the sail moves towards the wholly 

negative solution for a i and then oscillates around this solution. It is interesting to note 

that the sail first passes the solution for a i at i = 0.83 which is the same time as was found 

for the positive concave sail. The first turning point of P{t) also occurs at the same time as 

the previous example, i.e. at t = 1.15. The period of the oscillations around the ai solution 

is again constant and whilst the oscillations have greater amplitude than the f3i case there 

is still evidence of a degree of damping in the oscillations. Figure 4.8 confirms the presence 

of damping and illustrates the difference in the velocity in the sail when compared to the 

positive concave solution. 

Starting at = 0.3929 and /?4 = 0.3212 

The corresponding plots of f3{t) are presented in Figure 4.9. These two plots are, at first 

glance, very similar since both sails tend to the positive concave sail shape for a i and then 

commence an oscillatory motion about this solution; thus these wavy sails are unstable. The 

oscillations appear to be damped for both cases and hence may eventually decay to the 

positive concave solution. There are several differences between these plots of (3{t) and the 

plots obtained for the sails examined above. 

1.1 

Starting at 

Starting at p 

Figure 4.9: /3{t) for the Extensible Sails With Slack that S tar t at Ps and P4. (A = 1) 
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The most noticeable difference is the presence of the rapid changes in (5 in Figure 4.9 

whereas the function (3{t) is much smoother for the solutions presented in Figure 4.7. These 

sudden changes in (3 are due to the fact that the sail is travelling at much higher speeds than 

the Pi and (32 cases and is "snapping" into the extreme sail shapes represented by the sharp 

turning points in (5. The cause of the higher sail speeds is because the sail moves from a 

wavy shape to a positive concave shape. This is illustrated in Figure 4.9 since at i = 1 the 

sail has hardly moved from its starting position yet for 1 < t < 2.2 the sail undergoes a rapid 

movement before commencing the oscillations about the positive concave solution for a i . 

Another interesting feature of Figure 4.9, for the starting at case, is the presence of the 

minima that occurs at i = 3.21. This minima indicates that the sail has achieved the first 

extreme shape and has then moved back past the positive concave solution to a shape below 

the solution for a i . It is this first minima that causes some difficulty when the method is 

executed for St > 0.001 since numerical errors cause the value of /? at i ^ 3.3 to become 

negative and hence the method is unstable. It is interesting to note that this minima does 

not occur for the /34 case and this observation is discussed later. 

The above observations from the P{t) plots are confirmed by the sail shapes given in 

Figures 4.10 and 4.11 (starting at /Js) and Figures 4.12 and 4.13 (starting at P4). 

1.2 

% rj 

Figure 4.10: The Extensible Sail With Slack that Starts at Ps. (i = 0 . . . 5) (A = 1) 
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S(x, t) 0.6 -

0=0.75 

Figure 4.11: The Extensible Sail With Slack that Starts at /?3. (t = 6... 10) (A = 1). The 

Steady Solution for a = 0.75 is also Shown. 

% 0.4 

Figure 4.12: The Extensible Sail With Slack that Starts ai (3^. {t = 0.. .5) (A = 1) 
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Figure 4.13: The Extensible Sail With Slack that Starts at P4. (t = 6 . . . 10) (A = 1). The 

Steady Solution for a = 0.75 is also Shown. 

Starting at ,65 = 0.2840, /3e = 0.2439 and (3j = 0.2345 

Figures 4.14 and 4.15 show the plots of /3(i) for these three cases. All three plots reveal no 

new observations - the wavy sails are unstable. However, it is interesting to note the presence 

of the significant minima for the (3̂  and Pj cases. Care must be exercised in the choice of the 

time-step since for 8t > 0.001 the method is unstable at this minima which occurs at i w 3.3, 

the same time that the corresponding minima occurred for the (3̂  case. It is interesting to 

note that this significantly small minima is only apparent for the odd-numbered /3j cases 

which are the cases for which 0) > 0. 
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Figure 4.14: /3(t) for the Extensible Sails With Slack that Star t at (3̂  and (3 .̂ (A = 1) 

Figure 4.15: /3(t) for the Extensible Sail With Slack that Starts at /?%. (A = 1) 
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4.6.2 Results for A = 10 

The values of ^ for the steady solutions at ao = 0.25 and a i = 0.75 are presented in Table 4.3. 

These values are very similar to those obtained for the inextensible problem thus indicating 

that the A = 10 sail has almost identical steady solutions to the inextensible sail. 

A A A A /35 

ao = 0.25 0.6945 0.6200 0.3951 0.3197 0.2849 

a i = 0.75 0.7659 0.5435 0.4328 - -

Table 4.3: Values of /5 for the Extensible Sail W i t h Slack (A — 10) 

Starting at (3i = 0.6945 and P2 = 0.6200 

The plots of (3{t) for these cases are presented in Figure 4.16. The (3{t) obtained for A = 10 
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Figure 4.16: /3(f) for the Extensible Sails With Slack that Start at (3i and (A = 10) 

is different from the inextensible results presented in Figures 4.1 and 4.2 since there are no 

discontinuities in this case. The extensibility of the sail appears to enable the membrane 

to travel past the steady solution for a i and gradually peak at a positive concave/wholly 

negative sail shape before commencing an oscillatory motion around the steady solution. 

This is a feasible explanation why f3{i) for the inextensible sail exhibits discontinuities since 
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the membrane is unable to extend and hence absorb the inertia of the sail at i = 1. 

Starting at ,83 = 0.3951. (3̂  = 0.3197 and /̂ s = 0.2849 

The results for /3(t) in these cases all exhibit a terminal instability at the first minima of 

(3{t). These occur at times t = 2.01, 2.10 and 1.90 for /Ss, (34 and Ps respectively. This 

is a surprising result for the (3̂  case since the corresponding inextensible problem, whilst 

exhibiting a significant first minima, is successfully solved, albeit with severe discontinuities. 

Hence, the instabilities for the inextensible case starting at Ps can be concluded to be due to 

the numerical errors associated with the discretisation. 

4.7 Resu l t s and Discussion for t h e Extens ib le Sail W i t h o u t 

Slack 

The results presented here are for A = 1 and A = 10. The steady results of Section 3.6.4 

show that as A increases the range of a for which there exists multiple steady solutions 

decreases. Therefore, the choice of a i and 02 differs here from that of the inextensible sail 

and extensible sail with slack results presented above. However, the steady results for the 

extensible sail without slack do not tend to the inextensible results as A tends to infinity; 

this case is analysed here for completeness and to support the linear stability analysis of 

Chapter 5, 

The choice of a{t) used in this section is 

^ 0 < t < 0.5 

I f > & 5 

and since both ccq = 0.1 and a i = 0.2 exhibit multiple steady solutions as confirmed by 

Figure 3.14. Throughout the analysis presented below n = 500 was used along with a time 

increment of 5t = 0.002. The Courant number of the explicit scheme, equation (4.15), states 

that [3{t) must remain less than one for numerical stability. 

4.7.1 Results for A = 1 

The numerical method described in Section 3.3 was used to calculate the values of/3 for the 

initial and final values of the angle of incidence and Table 4.4 contains the results of these 

computations. 

73 



Pi A A A A 

do = 0.1 0.6738 0.6403 0.3899 0.3218 0.2850 

a i = 0.2 0.6893 0.6221 0.4031 - -

Table 4.4: Values of /? for the Extensible Sail Without Slack (A = 1) 

Starting at (5i = 0.6738 and ^2 = 0-6403 

The plots of I3{t) for these two cases are presented in Figure 4.17. 

0.7 

0.68 

0.66 

POO 

Starting at p, 

Starting at |3 

0 6 4 

0.62 -

0.6 
10 

Figure 4.17: /3(i) for the Extensible Sails Without Slack that Start at (3i and (A = 1) 

The sail starting at (5i = 0.6738 converges to the positive concave steady solution for 

a i = 0.2 and this is confirmed by the kinetic energy plot presented in Figure 4.18. Therefore 

this sail is stable to the perturbation made although the rate of convergence is relatively 

slow. In contrast, whilst the wholly negative sail oscillates around the wholly negative steady 

solution for a i , the magnitude of the oscillations increases as time advances. This is confirmed 

in Figure 4.18 since the kinetic energy of the sail increases with t. Should this sail be analysed 

for larger values of ^ it is expected that the sail will eventually diverge to the positive concave 

sail shape. However, this may not be confirmed using the numerical scheme since the errors 

associated with the discretisation significantly increase as time advances. 
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Figure 4.18; Kinetic Energy for the Extensible Sails Without Slack that Start at and /%. 

(A = 1) 

Starting at (3̂  = 0.3899, A = 0.3218 and /Ss = 0.2850 

The plots of /5(t) for these three cases are presented in Figures 4.19 and 4.20. These plots are 

all similar in shape with the sail hardly deviating from the initial solution until ( « 1 (note 

that in this case the angle of incidence ceases to change at t = 0.5). The sail then undergoes 

a large acceleration and commences an oscillatory motion about the positive concave solution 

for a i — 0.2. Therefore all three wavy sails are unstable. In addition, the significant minima 

in /3{t) that occurred in the extensible, with slack case does not cause the method to terminate 

here. Figure 4.19 shows that the minima occurs at almost the same time and has similar 

magnitude regardless of the sign of ^^(0,0). 

The sail shapes for the extensible sail without slack starting at (3̂  = 0.2850 taken at integer 

values of t are presented in Figures 4.21 and 4.22. These plots confirm the behaviour of the 

sail discussed above. 
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Figure 4.19: (3{t) for the Extensible Sails Without Slack that Start at (3^ and (A = 1) 

Figure 4.20; /3(f) for the Extensible Sail Without Slack that Starts at [3 .̂ (A = 1) 
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Figure 4.21: The Extensible Sail Without Slack that Starts ai (3^. (( = 0 . . . 5) (A = 1) 
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n 0.4 

Figure 4.22: The Extensible Sail Without Slack that Starts ai (3^. {t = 6... 10) (A = 1). The 

Steady Solution for a = 0.2 is also Shown. 
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4.7.2 Results for A = 10 

The values of/3 for the steady solutions for ao = 0.1 and a i = 0.2 are presented in Table 4.5. 

A A A 

Q̂O — 0-1 0.7065 0.5994 0.4168 

ai — 0.2 0.7491 0.5212 CL4d21 

Table 4.5: Values of /3 for the Extensible Sail Without Slack (A — 10) 

Starting at /3i = 0.7065 and 0.5994 

The plots of /?(t) for these two cases are presented in Figure 4.23. As is found for the A = 1 

sail, the positive concave and the wholly negative sails do not significantly change shape 

as time increases. However, the wholly negative sail does not appear to settle to a steady 

solution as time advances and is hence unstable. 
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Figure 4.23: /3{t) for the Extensible Sails Without Slack that Start at /5i and /%- (A = 10) 
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Starting at /̂ s = 0.4168 

The final result presented in this section is the plot of (3{t) given in Figure 4.24. This plot 

shows that at i = 1 the sail has moved slightly away from the initial solution and then 

diverges away from the wavy sail shape and oscillates around the positive concave solution 

for a i = 0.2 with decaying amplitude. 

1 

P(f) 0.7 

Figure 4.24: l3{t) for the Extensible Sail Without Slack that Starts at (A = 10) 

4.8 Analysis of t he Energy in t h e Extens ib le Sail 

Lattimer(1996) [25] presented an analysis of the energy in the inextensible sail and concluded 

that the kinetic energy of the system must balance with the energy generated by the aero-

dynamic lift. However, the resulting "energy equation" of Lattimer does not reveal a great 

deal about the case when fj. is of order one and therefore Lattimer concentrated on the case 

where n is small. The energy analysis of Lattimer is extended to include the extensible sail 

by first re-writing the unsteady sail equation (4.10) as 

1 i 
where 

IT Jo T] - X 
-drj = Sx + St a 

/i 
(4.17) 
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Lattimer noticed that 7 is the aerodynamic force and (3'̂ Sxx is the force due to the tension. 

By multiplying equation (4.17) by St and then integrating with respect to x Lattimer derived 

the following expression for the energy within the sail: 

The first term of this equation is the rate of change of the kinetic energy of the system, the 

second term is the work done by the tension within the sail and the term on the right-hand 

side is the energy attained from the lift generated by the sail. Lattimer showed that the 

second term vanishes in the case of the inextensible sail but in the case of an extensible sail 

the second term may be evaluated by integrating by parts to give 

% \ 2 

since the sail ends are stationary for all t. The integral in the second term is the integral 

that arises in the length conditions for both the inextensible and extensible sails. Since this 

integral is constant in the case of the inextensible sail this term vanishes leaving the previously 

stated relationship between the kinetic energy and the aerodynamic lift. However, for the 

extensible sail this integral is a function of (3 and since the extensible, with slack, length 

condition differs from the extensible, without slack, length condition by only a constant, the 

second term in equation (4.18) is the same for both cases giving 

for both extensible cases. Equation (4.19) is the energy equation for the extensible sail with 

or without slack, the second term of which is the rate of change of the tension within the 

sail. Therefore the extensible sail may store some of the energy imparted onto it by the 

aerodynamic lift. Equation (4.19) goes some way to explaining why the extensible sail is 

able to navigate a sudden significant change in the angle of incidence as is experienced in 

the examples above when a ceases to change. Since a sudden change in a will undoubtedly 

affect the lift generated by the sail, the extensible sail is able to absorb such sudden changes 

in the aerodynamic energy by stretching. However, the inextensible sail must immediately 

convert the change in aerodynamic energy to kinetic energy which if the sail is travelling at 

some speed will cause difficulties and may even cause the sail to break. 

4.9 Conclusions 

Marchaj(1964)[26] has the opinion that "the theory and practice of sailing are undoubtedly 

uneasy bedfellows" and given the difficulties associated with calculating and interpreting 

accurate results for the unsteady sail it is hard to disagree. Moreover, the inextensible case 
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presents the additional problem of instability when the angle of incidence ceases to change 

as does the extensible sail for large values of A. 

The examples used here were constructed so that an analysis was performed of the cases 

when the angle of incidence changes linearly from oq to a i . The choice of these angles is such 

that they are both angles for which there are multiple steady solutions leaving the question 

of how the sail behaves when initially placed in any one of the steady solutions for ao • It has 

been shown that for the inextensible sail and the extensible sail with slack the following are 

true for the tested cases: 

(1) The sail that is initially in the positive concave sail shape moves to and then oscillates 

around the positive concave solution for a i with decaying amplitude. 

(2) The sail that starts in the wholly negative sail shape proceeds to and then oscillates 

around the wholly negative solution for o i with decaying amplitude. 

(3) For the case where the sail starts in any of the wavy shapes for ao, the sail moves to 

and then oscillates around the positive concave sail shape for a i . 

Therefore, none of the sails examined here converge to a wavy solution. Indeed all sails 

proceed to the positive concave sail apart from the sail that is initially in the wholly negative 

sail shape. The oscillatory motion of the sail is due to the fact that the sail possesses inertia 

when the angle of incidence ceases to change and hence the sail overshoots the correct solution 

and then proceeds to adjust itself to the correct steady solution for a i . However, it is the 

sudden change from a time-dependent angle of incidence to a steady a that causes the insta-

bility problems particularly in the case of the inextensible sail. The energy equation for the 

inextensible sail that was first derived by Lattimer(1996)[25] dictates that the rate of change 

in the kinetic energy must be equal to the energy imparted on the sail by the aerodynamic 

lift. Hence when the angle of incidence suddenly ceases to change, the aerodynamic lift will 

instantaneously decrease thus indicating that the sail must instantaneously slow down. This 

is obviously not possible since the inertia possessed by the sail carries it beyond the steady 

solution for a i . Therefore if the sail is travelling at a significant speed then the tension within 

the sail may increase to a value that is sufficient to cause the sail to break. This is most 

easily illustrated by the plot of (3(t) in Figure 4.1 for the inextensible sail that initially starts 

at the positive concave solution, /5i. The instabilities in P{t) commence at t = 1, the time at 

which the angle of incidence ceases to change. However, the plots presented in Figures 4.1 

and 4.2 do not become terminally unstable, i.e. P remains in the range 0 < /3 < oc for times 

0 < i < 10. The reason for this is because the positive concave sail shapes are all relatively 

similar as are the wholly negative solutions and therefore the velocity of the sail is relatively 

small in these cases. The story is different, however, when the sail is initially in a wavy shape. 

It can be seen from all the presented plots of /3(f) for a sail that starts in a wavy shape that 
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the sail moves very little at first because the sail changes to a positive concave shape. Upon 

achieving the positive concave shape the sail then produces a significantly larger lift which 

causes the sail to accelerate towards the steady positive concave solution for a i and by the 

time that the sail achieves this steady solution it is travelling with such a high speed that the 

sail cannot decelerate immediately and remain at the steady solution. Hence the sail over-

shoots the steady solution and then decelerates in order to commence an oscillatory motion 

around the steady solution for a i . The A = 1 sail is able to extend and absorb the large 

kinetic energy of the sail and start a smooth oscillatory motion about the steady solution for 

ai- As A is increased, however, increasingly fewer cases are successful, in particular the sails 

that start at a wavy solution are found to exhibit terminal instabilities. Indeed, for A = 10 

the only cases that work are for the sails that start in the non-wavy shapes. This appears to 

be contradicted by the fact that the results for (3̂  in the inextensible case appear to indicate 

that the sail does not break. However, given the discontinuities in 0 present in Figure 4.3 

and the fact the the oscillations become increasingly random as t increases it is reasonable 

to conclude that the numerical errors in the method have become significant and hence this 

plot must be treated with a great deal of caution. 

The work of this chapter attempts to show that the problems encountered with the unsteady 

sail are not necessarily insurmountable. The analysis of the extensible sail indicated that this 

is a far easier problem to solve accurately, especially for very extensible sails. It is the case 

of the inextensible sail, however, that causes the greatest difficulty and the failures observed 

may even be due to the properties of the inextensible membrane itself, rather than the 

numerical method used. The next chapter presents a linear stability analysis of the unsteady 

sail equation in an attempt to confirm the phenomena described above. 
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Chapter 5 

Linear Stabil i ty Analysis of t h e 

Uns t eady Sail Equa t ion 

One significant result of the previous chapter is that wavy sails seem to proceed to a positive 

concave shape regardless of the extensibility and the excess length of the sail. This raises the 

question of how the sail behaves under small, time-dependent perturbations. This chapter 

presents a linear stability analysis of the unsteady sail equation and examines the stability 

properties of both inextensible and extensible sails. 

Firstly, a review of the current literature concerning the stability of the unsteady sail is 

undertaken. The most significant work on this subject to date is the work of Haselgrove & 

Tuck and a detailed analysis of their published work is presented. The simpler problem of 

the large mass sail is then considered; the sail equation in this case does not contain a Hilbert 

transform. It transpires that the stability analysis of this limiting case may be performed 

analytically. 

Attention is then turned to the order one mass sail equation which is initially perturbed 

and linearised. The resulting problem is a quadratic eigenvalue problem and a method of 

numerically solving this problem is presented. The three sail problems are then analysed: 

the inextensible sail, the extensible sail with slack and the extensible sail without excess 

length. The analysis is concerned with finding the value of A* for which the steady solution 

is marginally stable and also the relative rates of convergence/divergence for the remaining 

solutions. 

5.1 L i t e ra tu re Review 

At the time of writing, there are very few published works covering the stability of the 

sail. One of the first works to comment on this topic is Neilsen(1963)[30] who hypothe-
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sised that only the positive concave sails are stable. Neilsen's justification for this was that 

the first eigenvalue solution possesses two possible solutions but no formal stability analy-

sis was performed. More recently Newman & Paidoussis(1991)[33] analysed the stability of 

the two-dimensional, inextensible sail. However, the solution to the proposed equation was 

approximated using the Galerkin method of weighted averages and thin aerofoil theory was 

not employed. Using this approximation, the subsequent analysis predicted that the sails 

for which A* < tt are stable to small, time-exponential perturbations. Sygulski(1997)[43] 

analysed the stability of the three-dimensional sail which was modelled as a membrane (of 

any given shape) supported by an infinite baffle. The fluid was only permitted to flow over 

the membrane with the fluid underneath remaining stationary. Results were presented for 

circular, square and rectangular membranes. However, it is the work of Haselgrove & Tuck 

that is the most informative on the sail stability problem and an overview of their work is 

given below. 

5.1.1 The Work of Haselgrove & Tuck 

Haselgrove(1973)[17] is a Ph.D. thesis that examined the two-dimensional jib which is a sail 

attached to a sheet at its trailing edge. The configuration of the steady jib is depicted in 

Figure 5.1 where (L, 0) is the point where a jib with no sheet (i.e. a sail) would attach to the 

x-axis and {R 4- L, 0) is where the sheet of finite length is attached. The sheet is assumed to 

y—S(x, t) 

Figure 5.1: The Jib Configuration Used by Haselgrove 

be fully porous and hence generates no lift and assumes a straight line, the gradient of which 
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is equal to S'{L*, t). Haselgrove examined the steady problem for various lengths of the sheet 

in an attempt to find the configuration that generates the maximum lift whilst minimising 

the range for which there exists multiple steady solutions. Using the parameter t] = R/L, 

Haselgrove concluded that the optimum value of rj was 0.25. It should be noted that a sheet 

of zero length, i.e. rj = 0, reproduces the steady sail problem of Thwaites(1961)[46]. Tuck & 

Haselgrove(1972)[47] is the published paper of this topic in Haselgrove's thesis which includes 

plots of A* against a* for various sheet lengths. 

Haselgrove(1973) [ 17] also proposed an unsteady jib equation and performed a linear sta-

bility analysis by perturbing both S{x,t) and P{t). The derivation of Haselgrove's unsteady 

equation differs from that presented in Chapter 4.2 by two major assumptions. The first is 

that the sail (and the sheet) are defined as being of negligible mass, i.e. p' = 0. This is a 

significant departure from the work of this thesis. The effect of assuming that the sail is of 

negligible mass is that the Su term within the Hilbert transform in equation (4.10) vanishes. 

The second assumption is the inclusion of an infinite wake in the region x > R + L, the region 

downstream from the point where the sheet attaches to the z-axis. The inclusion of such 

a wake stipulates that the Hilbert transform in the unsteady equation is now semi-infinite 

as opposed to the finite Hilbert transform of equation (4.10). Hence the unsteady equa-

tion of Haselgrove is significantly different from the corresponding equation in this thesis. 

Haselgrove concluded that all positive concave and wholly negative sails are stable to small, 

time-exponential perturbations and that all wavy sails are unstable; the point of marginal 

stability was found to be the lowest value of A for which dX/da is infinite, i.e. the lower two 

branches of Figure 3.4 possess stable solutions. Haselgrove & Tuck(1976)[18] is the resulting 

published paper of this work. 

Before performing a linear stability analysis on the unsteady sail equation for order one 

sail mass it is instructive to first analyse the high mass sail. The unsteady equation in this 

case does not include a Hilbert transform thus considerably simplifying the analysis. 

5.2 T h e Large Mass Sail 

In Section 4.3 two versions of the unsteady sail equation in the limit as /i* tends to zero are 

presented. The first of these is the limit that /i* —> 0 but a* is of order one and in this case 

the unsteady sail equation reduces to 

g ; . , . = 0 . 

However, the only steady solution to this problem that satisfies both of the fixed end boundary 

conditions is = 0. By fixing the trailing edge of the sail at some point (A:, A:), A: ^ 0 the 

steady solution to this problem is now non-zero. i.e. S*{x*) = kx*. Since we wish to analyse 
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sails with Exed ends situated on the line ;/* = 0 this limiting case is not analysed here. 

The second large mass sail equation is when /i* ->• 0 but a* is large such that a*^i* = 0(1) . 

The unsteady sail equation (4.10) in this case reduces to 

g; . , . (s. i) 

subject to the boundary conditions S*{Q,t*) = = 0. The steady 

solution of this problem is identical to the solution presented in Section 3.2.1 since a sail at 

large angle of incidence has large tension. The steady solution is thus given by equation (3.9), 

where the tension parameter A* = i.e. 

S{x) = —^^=2 I(2a: + l)(4%/x\/l - x — tt) + 2(4z — 1) arcsin(2% — 1)1 
16/3 ^ 

where S and (3 denote the steady solution of the problem. Note that here and henceforth 

the asterisks denoting the non-dimensional variables are omitted for clarity. As observed in 

Section 3.2.1, the length condition gives 

384 

y — 64 

Therefore (3 depends on the steady angle of incidence but the shape of the sail is unique 

and hence it is impossible for such a sail to be unstable since the sail cannot diverge to 

an alternative shape. Moreover, /3 cannot tend to infinity because /iOf in the above length 

condition is defined as being of order one. However, the sail may be stable such that a small 

perturbation made to the steady solution may decay, permitting the sail shape to return to 

To formally analyse the linear stability of equation (5.1), both [3{t) and S{x, t) are perturbed 

because a change in the sail shape implies a corresponding change in the tension. The linear 

perturbations used here assume that that the disturbance is t ime exponential, i.e. 

:9(r,t) = g(a:) + / ( r )e ' ' \ /3(^) = ^ + /3ie'̂ * (5.2) 

where the unknown (complex) quantities f{x) and /3i are assumed to be small. Note that 

a general function of a:, / ( x ) , is used here as opposed to the exp(A:2:) perturbation normally 

employed in linear stability analysis. The reason for this is that when the order one mass 

sail equation is considered, the Hilbert transform of exp(A:i) is not proportional to exp(/ca:). 

The third unknown in the above perturbations, u = a,. + icJî  is a complex constant whose 

real part determines whether the perturbation to the steady solution grows or decays. For 

(Tr > 0 the perturbation increases as time increases and the steady solution is unstable under 

small disturbances whereas a sail that is stable to such perturbations has a negative Or- The 

complex part of a enables the period of the oscillations to be determined. 
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Substituting the above perturbations for S and (3 into equation (5.1) and ignoring terms 

of order Pi and Pif{x) gives 

_ 2;8A^'(a:) = 0. 

The general solution for this equation is, in terms of the constants A and B 

/ ( i ) = Aexp(cra;) + B e x p ( — + 
a/3 

X 

exp(az) 
'1-T? 

exp(—cr7y)d7y — exp(—err) 
V JO 

ll-rj 

V 
exp{a'rj)dr] > (5.3) 

where a = a(3 . Applying the boundary condition at z = 0 reveals that B = —A and the 

condition at a; = 1 gives 

^ sinh(cr) + A J - — -
(7/3 Vo V 7? 

^ — - sinh(cr(l — 7]))d?] = 0 
V 

(5.4) 

which is an equation in terms of the two unknown quantities, A and Pi. The length condition 

gives the second equation. Applying the above perturbations to the inextensible length 

condition, equation (4.11), reveals that 

-1 
[ S'f'{x)dx = 0 

Jo 10 

to leading order. Evaluating this integral by parts and substituting the known Sxx gives 

V W == 0. 

Substituting equation (5.3) into the above equation and using the relationship B = —A gives 

the second equation for and 

2.4 [ ' , / I ^ s i n h ( a x ) d x + A / ' 
Vo V r Vo V a; 

e"~ I J-—-e '^^drj — e -'TZ / I 
0 V 77 

dx = 0. (5.5) 

Hence equations (5.4) and (5.5) are simultaneous, linear, homogeneous equations for A and 

/3i. This system has a non-trivial solution if and only if 

sinh(cr) I [ J- - \ smh{a{x ~ r]))dr]dx— 
0 vo 

^ / 1 — Tj 
4 / smh.{ar])dri 

0 V V 

V 

1 ll — T] 
sinh(cr(l — r]))drj 0. (5.6) 

/o V 77 

It is obvious that cf = 0 is a solution of this equation. Moreover, by approximating equa-

tion (5.6) numerically it is easy to confirm that CT = 0 is the only solution of this equation. 
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f/far, H-.?:: - a ) = (5.7) 
IT Vo f?--:% 

This result implies that a = 0 and hence the large mass sail is marginally stable to small 

perturbations. This implies that any small, linear perturbation to the steady solution will 

neither grow nor decay which is not an unexpected result since the sail cannot be unstable, 

as explained above. This is also reasonable since the outer flow is unable to move a sail of 

such large mass. 

5.3 T h e Orde r One Mass Sail 

Attention is now turned to the unsteady sail problem for which /i is of order one. The 

unsteady sail equation, derived in Section 4.2, is 

IT To )?--

subject to the fixed end boundary conditions 5(0, i) = S{l,t) = 0 and the Kutta condition 

Sxxi^,^) — 0. The asterisks denoting the non-dimensional variables are omitted for clarity. 

Since the unsteady sail equation is the same regardless of the extensibility of the sail the 

crucial difference in the models is the relevant length condition given by equation (4.11). 

Therefore there are three separate problems to be analysed: the inextensible sail, the exten-

sible sail with slack and the extensible sail without excess length. 

5.3.1 The Inextensible Sail 

Section 4.4 states that the inverted version of equation (5.7) upon applying the Kut ta condi-

tion is 

+ h - f ) ' 

The perturbations for S{x,t) and P{t) given in equation (5.2) are now substituted into this 

equation. Since the perturbation is small, terms of order Pf and (3if{x) are ignored and 

exp{at) cancelled throughout to give the linearised perturbation equation 

(r2jF(3) (T 
/ I - 3 '̂1 /(??) 

7r V X Jo y I — T] {t] — x) 
+ 

= 0 (5.9) 

subject to /(O) = / ( I ) = 0 where (3 and S {x) are the known steady solution. The length 

condition for the inextensible sail, equation (4.11), is also perturbed and linearised to give 

[ S'{x)f'{x)dx = 0. (5.10) 
Jo 

The region 0 < z < 1 is now divided into equally spaced intervals, the mesh-points of which 

are denoted by % = in~^, z = 0 , . . . , n. Care must be exercised in the treatment of /(?]) over 



each sub-interval [%_i,?-/;] since both f{ri) and /'(?]) are present in equation (5.9). Letting 

f{rj) be piecewise linear over each interval, i.e. 

fi — fi-l 1 

for 77 G [T]i-i,rii] {5x = 1/n) gives the approximation 

(/ : - / i - l ) 

/(%) iv — Vi-l) + fi-l — T~(/i ~ fi-l)iv — Vi-l) + fi-l 

(5.11) 

(5.12) 

for rj in the same sub-interval as above. Therefore the singular integral involving /'(??) in 

equation (5.9) is easily discretised using the method detailed in Section 3.3 to give 

f j , 1 — X 

£ -dr] 
TT V Z Vo V 1 - 77 (77 - a;) t = l 

2// 
QiA:(/A: " A - l ) 

where Qik is given in equation (3.14). The singular integral multiplying a in equation (5.9) 

requires careful analysis. Approximating the integral over the entire region by the sum of the 

integrals over each sub-interval and substituting equation (5.12) gives 

dr] 
I Hl 

5x 
^ { f k — f k - l ) 

k=l 
n 

3 
7]2 

TT V Z y i - 7 ? ( 7 7 - z ) 

— 2 / i ^ ( A : — l)Qikifk — f k - l ) + 2/" ^ Qikfk-l-
k=l k=l 

(5.13) 

Therefore it is necessary to discretise the singular integral contained within the square brack-

ets in the above equation. This is achieved as follows 

l l - x /-% 3 
T]2 

y i - ()? - a:) 

I j (77 — X + x) 1 / I - a ; m 
TT V z V 1 - 77 ( 7 7 - 3 : ) 

TT 

1 / I - a ; m 

i x Vk-i 

•n 
1 — 77 

dr] + X 
TT V X u 

dr] 

I — r] {r] — x) 

1 1 — X 

a; 
arcsm in(277 — 1) — 2^77(1 — 77) 

Vk 

+ 2xQik 

which when substituting x = {xi^i +Xi)/2 = {2i — l)/2n to avoid the singularity as discussed 

in Section 3.3 gives 

' '2k-1 2{n — i) 1 ( . f 2k — n 
= 2^V 2 i - l Urcsm ( I - arcsm 

n 

n 

n n 
k{n — k) J{k — l){n — k + I) > + 

(2% - l)Q(t 
77, 

(5.14) 

Substituting this into equation (5.13) gives 

n 71 71 
~ X / ^^kifk — f k - l ) — 2jU ^ ( / c — l)Qik{fk — f k - l ) + 2/7, ^ Qikfk-l-A 

k=l k=l 
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Therefore, the discretisation of the perturbed, linearised equation (5.9) is 

cr^/i + cr 

+ 

71 ^ . 

^-^Rikifk — fk~l) — 2^{k — l)Qikifk — f k - l ) + '^l-l'Qikfk-lj 

.k=l 

(id)^ (/i+l — 2/i + / i - l ) — ^ ^ — A - l ) 0 (&15) 

for i = 1 , . . . , n — 1 and /o = /n = 0. The discretised version of the inextensible length 

condition, equation (5.10), is 

Y^iSk - Sk-i)ifk - fk-i) = 0 
6x 

(5.16) 
k=l 

subject to the above boundary conditions for / . 

Equations (5.15) and (5.16) are now written in matrix form to give the quadratic eigenvalue 

problem 

(7̂  A / + (zB/ + C / = 0 (5.17) 

where 

/ A \ 

/ = • 

A - i 

V y 

and the matrices A, B and C are of dimension n x n. The first (n — 1) rows of these 

matrices are constructed using the relevant coefficients in equation (5.15) and the n th row is 

constructed using the length condition, equation (5.16). Hence the nth rows of both A and 

B consist entirely of zeros since the length condition is implicit in terms of a. In addition 

the n th column of both A and B are zero owing to the fact that Pi does not multiply either 

<7̂  or a in equation (5.15). 

In order to solve the quadratic eigenvalue problem (5.17) the following vector is introduced 

r = 

which when substituted into equation (5.17) gives 

- ( 7 r - a B / - C y = 0. 

Equations (5.18) and (5.19) are now written as 

I 0 

0 - c 
r 
f 

= a 
0 A 

1 B 
r 
f 

(5.18) 

(5.19) 

(5.20) 

or, alternatively 

Mg = aNg 
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where M and N are 2n x 2n matrices. Therefore a generalised eigenvalue problem for a 

must now be solved. For a given steady solution, equation (5.20) was solved numerically 

using NAG routine F02BJF to calculate the 2n eigenvalues of the system. Care must be 

exercised in the interpretation of the numerical results from such a library routine since there 

exists 4 infinite eigenvalues, effectively two conjugate pairs, that correspond to the zero row 

and zero column in matrix N. The remaining 2n — 4 eigenvalues dictate whether the steady 

solution is stable, marginally stable or unstable to the perturbation introduced. If all 2n — 4 

eigenvalues have negative real part then the perturbation decays as time increases and the 

solution is stable. However, should any of the eigenvalues have positive real part then the 

system is unstable. In order to determine the relative rates of convergence or divergence the 

eigenvalue with the maximum real part is of paramount importance since it is this eigenvalue 

that dominates for large t. 

The method was executed with /i = 1 and n = 100 for various steady solutions and the 196 

relevant eigenvalues obtained for each case analysed for the stability conditions described 

above. For reference, the NAG routine F02BJF has a computational speed that is propor-

tional to which poses a severe restriction on the number of mesh points used (particularly 

since the steady solution also has to be computed). With n = 100 the average computational 

time was approximately 90 seconds to calculate the eigenvalues for a given steady solution 

and with n = 200 the time taken was 510 seconds. Comments on the accuracy of the method 

as n increases are given later in this section. 

The results below are given, for clarity, in terms of A = so that the analysis of the 

steady sail in Chapter 3 may be more readily interpreted, in particular with reference to the 

A against a plot, Figure 3.4. 

Figure 5.2 depicts the magnitude of the maximum real part of the 196 eigenvalues for 

1 < A < 10. This plot shows that the point of marginal stability (henceforth denoted by 

Am) is the smallest value of A for which dX/da is infinite, i.e. the lowest two branches of 

Figure 3.4 are stable solutions (in this case, A^ ~ 4.40). Hence both the positive concave and 

wholly negative inextensible solutions are stable to small perturbations. This supports the 

numerical results of Section 4.5 which show that the initially positive concave sail progresses 

towards another positive concave sail shape and the initially wholly negative sail also remains 

of the same shape. In addition, it is shown in Section 4.5 that the wavy solutions diverge 

away from their original shapes and adopt a positive concave solution, since this is the sail 

shape that generates the greatest lift. 

The magnitude of max(cjr) is of paramount importance when determining the rate of con-

vergence or divergence of the solutions. Figure 5.2 indicates that the rate of convergence for 
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max(0r) 

Figure 5.2: max(crr) Against A 

the stable solutions is far slower than the rate of divergence for the unstable, wavy solutions. 

In addition, there is no significant increase in max(crr) as the sail adopts increasingly wavy 

solutions. 

The value of the imaginary part of the eigenvalue with maximum real part is also of 

interest since this determines whether the motion of the perturbed solution is oscillatory 

or monotonic. The calculations performed to construct Figure 5.2 reveal that the stable 

solutions (for A < Am), have an imaginary part of magnitude 0(1) thus indicating that these 

solutions oscillate around the steady solution with decaying amplitude. This is witnessed in 

Section 4.5 although there are numerical instabilities present in Figures 4.1 and 4.2. However, 

for the unstable solutions corresponding to A > \m the imaginary part of the eigenvalue with 

the maximum real part is identically zero which implies that these unstable solutions do not 

oscillate around the steady solution. Instead these sails, upon being perturbed, monotonically 

diverge away from their steady solutions which is also witnessed in Section 4.5 where the wavy 

solutions adopt a positive concave shape soon after the angle of incidence begins to change; 

there is no oscillatory motion around the steady, wavy solution. 

It is worth commenting on the accuracy of the above method as the number of mesh 

points, n, is increased. Using the example of the wholly negative sail at a = 0.75 the value 

of max((7r) was —0.042 when computed using n = 100 and the corresponding imaginary part 

was ±7.38. The author has found that varying n produces results that agree to these values 
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to two significant figures provided that n > 50. Therefore the choice of n = 100 is justified 

not only for computational speed but also for accuracy. 

5.3.2 The Extensible Sail With Slack 

As stated above, the inverted unsteady sail equation (5.8) holds for both the extensible and 

the inelastic sails. Therefore, the linearised perturbation equation (5.9) and the associated 

boundary conditions are valid for this analysis and it is the length condition that provides 

the crucial difference to the analysis of the previous section. Using the perturbations given 

in equation (5.2) the length condition for the extensible sail without slack, equation (4.11), 

gives the linearised length condition 

/ 5 ^ = 0. 
Jo 

(5.21) 
10 AiA 

This is a minor alteration to the numerical method employed in the previous section: element 

Cnn is no longer zero but is now equal to the coefficient of /3i in equation (5.21). The quadratic 

eigenvalue problem, equation (5.17), is solved using the same numerical method as before and 

the 2n — 4 relevant eigenvalues dictate the stability properties. 

The results presented here are for // = 1 and n = 100 for various values of A. The calculated 

results show that the point of marginal stability, X^, is now a function of A. Table 5.1 gives 

the calculated values of Xm for various values of the extensibility. 

A 1 1.1 1.5 2.0 5.0 10.0 

Xm 1.87 4.36 4.36 4.38 4.39 

Table 5.1: Selected Points of Marginal Stability for the Extensible Sail With Slack 

Table 5.1 shows that as A increases, Xm tends to the inextensible result, as expected. The 

solutions for X < Xm are stable with a maximum real part of order 10"^ and a corresponding 

imaginary part of order one, thus indicating that these solutions converge towards the steady 

solution in an oscillatory motion. Letting X ,̂ denote the point at the peak of the second 

branch of the A against a plot in Figure 3.4 (i.e. A > A ,̂ are wavy solutions) it is noted that 

for Xm < X < Xyj the solutions are unstable - the magnitudes of the real and imaginary parts 

of the dominant eigenvalue are similar to that of the stable solutions for A < Xm- Therefore 

these solutions diverge away from the steady solution in an oscillatory motion with increasing 

magnitude. The solutions for A > A^ are real with modulus of order one. Therefore the wavy 

solutions rapidly diverge away from the steady solution in a monotonic motion. These results 
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agree with those of Section 4.6 which show that the wavy sails rapidly diverge away from the 

steady solution and eventually adopt a positive concave solution. 

5.3.3 The Extensible Sail Without Slack 

The length condition given in equation (4.11) when perturbed and linearised gives the same 

equation as in the extensible, with slack problem, i.e. equation (5.21). Therefore the matrices 

M and N are the same for both the extensible sail cases, the only difference being the steady 

solution used for the analysis. 

The results presented here are for /x = 1 and were computed with n = 100. Crucially, 

the analysis of max(crr) reveals that Xm coincides with the first eigenvalue solution, i.e. 

= Ai w 2.316, regardless of the value of A. Therefore the positive concave sails are 

the only stable solutions for the extensible sail without slack and the magnitude of max(crr) 

for these solutions is 10"^ with an corresponding imaginary part of order one. Therefore the 

positive concave solutions converge with an oscillatory motion. The wholly negative solutions 

corresponding to < A < A ,̂ are unstable with similar orders of magnitude to the above, 

stable solutions. Therefore the wholly negative sails, when perturbed, diverge away from the 

steady solution with an oscillatory motion of increasing amplitude. This is supported by the 

results presented in Section 4.7 which show that the positive concave sail converges whilst 

the amplitude of the oscillations for the wholly negative sail increases as time advances. The 

value of max((Jr) for the wavy solutions is real and of order one thus indicating that the wavy 

solutions monotonically diverge away from the steady solution. This is also supported by the 

results of Section 4.7. 

5.4 Conclusions 

The stability analysis of this chapter extends the work of Haselgrove & Tuck(1976)[18] to that 

of an inextensible sail of finite mass. In addition, the e f f e c t s of using an extensible material 

for the sail w e r e analysed and results obtained for various values of the extensibility of the 

sail. 

Haselgrove & Tuck(1976)[18] concluded that inextensible, negligible mass sails are stable 

in the range A < « 4.40 where A„, is the point at the peak of the second branch of the A 

against a plot in Figure 3.4 (the solutions for A > A ,̂ are wavy). It is shown in this chapter 

that this range is unchanged when the effects of the mass of the sail are included. However, 

analysis of the dominant eigenvalue for large t (i.e. the eigenvalue with max(o'r)) reveals that 

steady solutions in the range A < A^ converge relatively slowly when compared to the rate 
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of divergence of the wavy solutions. The motion of the stable sails is found to be oscillatory 

whereas the wavy sails monotonically diverge away from the steady solution. These results 

confirm those witnessed in the numerical analysis of the unsteady sail equation in Chapter 4. 

The extensible sail with slack is stable for X < Xm but it is found that Xm is now a function 

of A. The calculation of Xm is computationally intensive since bisection must be performed on 

equation (5.20) for each value of A analysed. A selection of computed Xm is given in Table 5.1 

and it is shown that as A increases the point of marginal stability, Xm, rapidly converges to 

the value obtained in the inextensible analysis as required. The unstable solutions in the 

range Xm < ^ < have a complex eigenvalue with a positive maximum real part thus 

indicating that the sail oscillates around the steady solution with increasing amplitude. The 

wavy sails, however, have a real maximum eigenvalue and therefore monotonically diverge 

away from the steady solution. In order to satisfy the length condition, however, the sail has 

to adopt a feasible shape and thus adopts the positive concave solution owing to the fact that 

this is the solution that generates the greatest lift. 

The extensible sail without excess length is stable for A < % 2.32, i.e. only the positive 

concave solutions are stable. In this case, Xm does not vary as the extensibility of the sail is 

changed. Therefore the positive concave sails are the only stable solutions for the extensible 

sail without slack. The wholly negative solutions are unstable but are found to oscillate 

around the steady solution with increasing magnitude. The wavy solutions, however, diverge 

at a significantly faster rate and monotonically move away from the steady solution towards 

the positive concave shape. 
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Chapter 6 

T h e Flag 

The unsteady flag is a variation on the sail problem analysed in Chapter 4 in that the trailing 

edge of the membrane is now permitted to move freely in the (x, y)-plane as opposed to being 

rigidly fixed to the x-axis. This chapter commences by considering the flag of zero bending 

stiffness and a short wavelength stability analysis concludes that such a flag is unstable. The 

introduction of flexural rigidity is shown to enable the flag to remain stable under some short 

wavelength perturbations and it is this problem that the bulk of the chapter is dedicated 

to. By analysing the forces on the flag and employing simple beam theory the unsteady 

flag equation is derived and the associated boundary conditions are found to depend on the 

method of attachment of the flag at the leading edge: the flag may be either freely hinged or 

clamped with zero gradient at a; = 0. 

The steady flag problem is analysed in various limiting cases of the outer flow momentum 

to flexural rigidity ratio. The flag equation is then discretised and numerical results are 

presented for both the hinged and the clamped cases. 

Attention is then turned to the unsteady flag equation. Various limiting cases of this 

equation are presented and analysed. The flag of order one flexural rigidity and mass is then 

numerically approximated by using an explicit finite difference scheme. Numerical results 

are then presented for both the hinged and the clamped flags for a particular choice of the 

time-dependent angle of incidence. 

6.1 L i t e r a tu r e Review 

At the time of writing there are few published works on the flag problem. Lattimer(1996)[25] 

performed an analysis of the flag of finite mass and zero bending stiffness and concluded that 

the resulting equation is simply the unsteady sail equation (4.10) with (3 equal to zero since 

the flag has zero tension throughout its length, as discussed later. The boundary conditions 
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for this problem are S*{0,t*) = = 0. Lattimer stated that the flag has no length 

condition. This is true to the extent that the length condition for the flag is no longer required 

to close the system. However, it is shown in Section 6.3 that the length condition for this 

problem reveals an important property of the free end of the flag. Lattimer also performed 

a partial analysis of the linear stability of the flag which is expanded on here in Section 6.2. 

Haselgrove(1973)[17] briefly examined the flag of zero mass and no bending stiffness and 

concluded that such a configuration is unstable to small perturbations. Backer et aL(1991)[l] 

considered the fluttering of fibres in industrial airspinning processes but this analysis was of 

a single elastic fibre of zero mass in an infinite, parallel sided channel. The reader should 

note that the jib problem analysed by Tuck & Haselgrove(1972)[47] is significantly different 

from the flag problem since the trailing edge of the jib is not free. 

6.2 T h e Flag of Zero Bending Stiffness 

This problem is analysed by Haselgrove(1973)[17] for a flag of zero mass and, more recently, 

by Lattimer(1996)[25] for the finite mass case. The crucial observation made by Lattimer 

concerns the tension within the flag. Since the tension is the only force in the horizontal 

direction and, to lowest order, there is no horizontal motion of the flag at a; — 1 the tension 

is therefore zero at the trailing edge. Moreover, since there are no shearing forces present, 

the tension is constant and thus the flag is of zero tension throughout. The non-dimensional 

equation for a flag of zero mass in the absence of bending stiffness is therefore simply the 

unsteady sail equation (4.10) with /3 equal to zero, i.e. 

f (6.1) 
Jo T] — X 

1 

TT VO 77' 

with boundary conditions S*{0,t*) = (1, i*) = 0. Note that the steady solution of this 

problem is S*{x*) — a*x* which simply states that the flag aligns itself with the outer flow. 

A linear stability analysis of the flag is also performed, albeit in part, by Lattimer who 

introduced the perturbation 

(6.2) 

where cr is a complex number, the imaginary part of which determines the stability of the 

flag. Note that a* may be assumed to be zero without loss of generality. Substituting this 

into equation (6.1) gives the linearised equation 

s ' h -
77* 

which is, however, incorrectly stated by Lattimer. This may be solved as a quadratic eigen-

value problem for a using the techniques detailed in Chapter 5. However, it is simpler to 
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conduct a preliminary investigation of the stability properties by performing a short wave-

length analysis. Letting S* = exp{ikx*) where A; 3> 1 and using the asymptotic result for 

the singular integral given in equation (3.18), to leading order, the problem simplifies to the 

quadratic equation 

+ /i*CT + fi*k = 0. 

Therefore fi* — 4A; must be greater than zero for the flag to be stable. However, since k is 

large (certainly much greater than fi*) the flag is unstable to short wavelength perturbations. 

This is not surprising since this flag offers no resistance to the aerodynamic forces imparted 

on it which in turn permits the inertia of the flag to increase significantly. It is the inertia 

alone that prevents the flag from aligning with the outer flow and thus causes the unstable 

properties. Everyday observation of fluttering flags confirms this instability since without 

bending stiffness the trailing edge of a flag inevitably "rolls up" in an unstable manner. 

Introducing bending stiffness may offer a method of reducing the inertia of the flag and this 

problem is analysed for the remainder of this chapter. 

6.3 T h e Flag wi th Bending Stiffness 

The properties of the outer flow in this case are identical to those used in the sail problem 

of Chapters 3 and 4. The flag, denoted by S{x,t), is considered to be fixed at 2: = 0, of 

length L and the free end is situated above the point x = c where c < L, as depicted in 

Figure 6.1. The flag is modelled by a distribution of vortices of strength ef{x,t) along the 

line y = S{x,t). Noting that the flag is of zero thickness, equation (A.3) gives the stream 

function for the unsteady flag 

The flag is non-porous and is therefore a streamline of the flow. Following the analysis of the 

unsteady sail detailed in Section 4.2, the thin aerofoil approximation for the flag in terms of 

f{x, t) and c is 

St + Sn (c/oo + ^ ^ 

An analysis of the forces acting upon the flag must be performed in order to flnd the rela-

tionship between / and S. Simple beam theory is employed here to analyse the inclusion of 

bending stiffness within the flag. There are many texts on the subject of beam theory such as 

Meirovitch(1975)[27] and Tayler(1986)[44]. These texts analyse the vibration of a thin beam 

subject to a small vertical translation. Meirovitch(1975)[27] states that simple beam theory 

requires that the rotation of the beam must be insignificant compared to the vertical transla-

tion and that the shear deformation be small in relation to bending deformation. Meirovitch 
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a ( f ) V / 0 

Figure 6.1; Diagram of a Flag 

concludes that these conditions are valid if the length of the bar is large compared to the 

vertical displacement. Since the perturbation of the flag is, by definition, small compared to 

the length of the flag the above condition is satisfied and thus simple beam theory applies 

here. 

The flag is uniform with p' denoting the mass per unit length. The flexural rigidity is given 

by J = E X I where E is the Young's modulus of elasticity and I the cross-sectional moment 

of inertia about the axis normal to both x and y. Hence as 7 increases, the flag's ability to 

bend is restricted since more force is required per unit length to produce the same vertical 

displacement. Figure 6.2 depicts the forces acting on a flag element of length 5x where Q{x,t) 

denotes the shearing force, M{x,t) is the bending moment and Ap is the pressure difference 

across the flag. Applying Newton's Second Law to the flag element in the vertical direction 

g i v e s 

(Q + — Q + 

which reduces to 

Qx + Ap = p'Stt- (6-4) 

Taking moments about x (denoting anti-clockwise moments as positive) gives 

(M -H — M -t- (Q -I- 4- Ap = 0 
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Figure 6.2: The Forces Acting on a Flag Element 

which, in the limit as 6x tends to zero, is 

Mx + Q = 0- (6.5) 

Differentiating (6.5) with respect to x and substituting into equation (6.4) gives 

~Mxx + Ap = p'Stt- (6 6) 

Elementary texts on the mechanics of materials such as Plumpton & Tomkys(1964)[36] show 

that the relationship between the bending moment and the curvature of the flag is 

M = 

which when substituted into equation (6.6) gives 

~^SxxXX "t" ~ P Stt-

(6.7) 

(6.8) 

The pressure difference across the flag is found by applying the unsteady Bernoulli equation 

to the flow and in this case it is identical to the analysis of Section 4.2 which concludes that 

Ap = epUoof{x,t). Therefore, equation (6.8) gives f{x,t) in terms of S{x,t) as required 

1 
/(a; ,f) '{p + ySxxxx) (6.9) 

which when substituted into equation (6.3) gives 

1 
'S'i + 'S'a; ( Uoo + -{p'Stt + jSx UrTcO ~ 

1 i ^ + "yS, 
(6.10) 

' V Vo z - 7? 

The upper limit of the singular integral in this equation is x = c which is an unknown quantity 

and depends on the shape of the flag. It is therefore necessary to find a relationship between 

c and the known length of the flag, L. This is given by the length condition which states that 

j + S'^dx. (6.11) 
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The non-dimensional variables (denoted by asterisks) used for the flag are 

!/ = 6^2/* 

g = 

a = ea* 

/ 2pL 

which when substituted into equation (6.11) give, to lowest order, 

L — c = f ^ S*,^dx*. 
2 

This states that for 0(e) perturbations of the flag the trailing edge moves horizontally by 

O(e^). Hence c may be replaced by L in equation (6.10) without loss of accuracy to leading 

order. The non-dimensional version of equation (6.10) to leading order is therefore 

1 + 7 * "9; 

TT Jo Tj* 

which is the equation for the unsteady flag of finite mass with bending stiffness. The bound-

ary conditions for this equation require careful consideration and depend on the method of 

attachment at the leading edge. 

6.3.1 Boundary Conditions 

If the flag is clamped at z = 0 then the slope of the flag is zero at this point. The boundary 

conditions at the leading edge are therefore 5*(0,i*) = 0 and S**{0,t*) = 0. 

Should the flag be hinged at the leading edge then the bending moment is zero at a; = 0. 

Therefore equation (6.7) is used to determine the boundary conditions at z* = 0 in this case: 

= 0 and = 0. 

The boundary conditions at the free end of the flag are common to both the clamped 

a n d h i n g e d c a s e s . S i n c e t h e t r a i l i n g e d g e i s f r e e , t h e s h e a r i n g f o r c e i s z e r o a t z = Z, a n d 

equation (6.5) states that Mx{L,t) = 0. Using equation (6.7) and noting that 7 is non-zero 

gives the boundary condition = 0. The bending moment will also be zero at 

the trailing edge and hence equation (6.7) gives (1, (*) = 0. 
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A fifth boundary condition is required to calculate the constant that is introduced upon 

inverting equation (6.12). This is the Kutta condition which states that the vortex at the 

trailing edge must be of zero strength. Hence equation (6.9) when non-dimensionalised as 

above gives the Kut ta condition at x* = 1: + j * = 0. 

In summary, the boundary conditions for the flag problem are as follows: 

= 0 

(1, r ) + y (1, r ) = 0 (6.13) 

together with either 

if the flag is clamped at z* = 0 or 

^:.(o,r) = o 

.(0,(*) = 0 

for a flag that is hinged at the leading edge. Henceforth, the flag is referred to as "clamped" 

if it is clamped at a:* = 0 and "hinged" if it is hinged at the leading edge. Henceforth, 

references to the "flag" describe the flag of finite mass with non-zero bending stiffness. 

6.4 Shor t Wavelength Stabih ty Analysis 

Before proceeding with a thorough analysis of the flag problem it is illustrative to flrst examine 

the stability properties of the stiff flag under short wavelength perturbations. It is shown in 

Section 6.2 that the flag with zero bending stiffness is unstable to such perturbations and 

the analysis presented here shows that the inclusion of bending stiffness causes the stability 

properties of the flag to alter. 

A steady solution to equation (6.12) is S** = a* and hence a* = 0 may be used here 

without loss of generality. Substituting the perturbation given in equation (6.2) into the 

unsteady flag equation (6.12) gives the following linearised equation 

TT Jo rj* — X* 

Letting S* be of the form S* = exp{ikx*) for A: 3> 1 and using the asymptotic result given in 

equation (3.18), the stability problem is governed by the following quadratic equation 

cr^ + f-i*a + fi*k — = 0. 
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1 fl S*""(n*) 
^ ( 6 . 1 4 ) 

TT Jo rj* — X* 

Therefore jU*̂  — 4^*fc + 47* must be greater than zero for the flag to be stable. This 

is certainly t rue for large k since 7* > 0 is a property of the flag. Hence the flag with 

bending stiffness is stable to short wavelength perturbations which is an encouraging result 

and is obviously true from everyday observations. An extensive analysis of the unsteady stiff 

flag is thus justified; the following section analyses the flag subjected to a constant angle of 

incidence. 

6.5 T h e S teady Flag 

Before analysing the unsteady flag equation and its various limiting cases it is illustrative 

to flrst examine the steady problem, i.e. where a* is constant. The steady flag equation is 

(6.12) with all time-derivatives set to zero, i.e. 

r]* 

The boundary conditions for this problem are 5*(0) = S*"{1) = S*"'{1) = 0 along with the 

K u t t a condition — 0 and either 5*'(0) = 0 for the clamped flag or S*"{0) = 0 for 

the hinged flag. The steady flag equation (6.14) contains a non-dimensional parameter, k*, 

d e f i n e d a s 

7* 7 

Therefore k* is the ratio of the density of the outer flow momentum to the flexural rigidity 

of the flag; it is independent of the mass of the flag, p', since a change in flag mass does not 

afl'ect the steady solution. However, the ratio of the outer flow momentum to the flexural 

rigidity of the flag is crucial: a small value of k* implies that the flexural rigidity of the flag 

dominates the momentum of the outer flow. In this limit the outer flow is unable to influence 

the flag for order one angles of incidence as shown in the next section. 

6.5.1 The Flag of Large Flexural Rigidity 

In the limit as K* -4- 0 and a* = 0(1) (a very stiff flag), equation (6.14) is simply 

g*""(z*) = 0. 

The solution for a hinged flag is therefore S*{x*) = a*x* which states that the flag is aligned 

with the outer flow, which is obviously true. For a clamped flag, the solution is S*{x*) = 0 

which implies that the flag is too stiff for the outer flow to affect it which is reasonable since 

a * i s o f o r d e r o n e . 

A more interesting limit is when k* —>• 0 but K*a* is of order one, i.e. the angle of incidence, 

whilst still small, is an order of magnitude larger. For a hinged flag, S*' = 0{a*) and the flag 
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still aligns with the outer flow. For a clamped flag, 5*' = 0(1) and equation (6.14) becomes 

1 i TT Jo 7? — Z 

The solution is found analytically by first using (B.3) to invert the above equation and 

equation (B.4) simplifies the singular integral to give 

1 — X* 
+ 

C 

z* - a:*) 

The Kut t a condition, 5*""(1) — 0, implies that C = 0. The resulting equation is then 

integrated four times with respect to x* and the boundary conditions for the clamped case, 

5*(0) = 5*'(0) = = S*"'{1) — 0, imposed to give the solution 

K*a* 

+ 

24 

3*3 13z*2 31z* 

24 ^ 144 576 

16 32 

5 \ 

16 32 768^ 
arcsin(2z* — 1) 

Stt 
(6.15) 

The flag shape for K*a* = 1 is presented in Figure 6.3; as might be expected for a clamped 

flag, the deviations from the a:*-axis are small. 

0.08 

0.04 

Figure 6.3; The Clamped Flag of Large Flexural Rigidity at Large Angle of Incidence 
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6.5.2 Discretisation of the Steady Flag Equation 

The steady flag equation is discretised here using finite differences. The first step is to invert 

equation (6.14) using equation (B.3) to obtain 

- r ) 

where the asterisks are here and henceforth omitted. The Kutta condition i m p l i e s that C = 0 

and equation (B.4) is used to s i m p l i f y the singular integral to give 

5™(^) ^ ' ' ' ' + <G.16) 

subject to the boundary conditions that depend on whether the flag is hinged or clamped. 

The region 0 < a: < 1 is now divided into n equally spaced intervals. The n + 1 mesh 

points are denoted by rji = in~^ for i = 0,... ,n and the numerical approximation of S{r]i) 

is denoted by Si. The singular integral in equation (6.16) is discretised using the method 

detailed in Section 3.3 to obtain 

i \ / r ? ^ { ^ ) S Q,USm - S t - i ) - - S „ - i ) 

where Qik is given in equation (3.14) and Sx = 1/n. The S""{x) term is discretised using the 

central differences formula 

and hence the discretisation of equation (6.16) is 

n —1 

{Si+2 — 45';+! + 65j — 4Si_i + Si-2) + k(Sx)^ ^ Qik{Sk+i — %-i) 
k=\ 

+2KQm(<^a;)^(5'n - S'n-i) = (6.17) 

for i = 0 , . . . , n. The boundary conditions are required to eliminate the fictitious points 

outside of the region 0 < x < 1 as detailed in Smith(1978)[38]. The system of equations to 

be solved therefore depends on the method of attachment at the leading edge. 

6.5.3 Numerical Solution for the Steady, Hinged Flag 

The solutions for the steady flag are obviously straight lines with gradient a* but numerical 

solutions are presented here as a means of checking the numerical scheme. Since the solution 

of the flag equation is known for i = 0 equation (6.17) is imposed at i = 1 to give 

71 — 1 

( ^ 3 — 4 ^ 2 + 6S'i — 45'o + 5 L i ) + k,{5X)'^ ^ QikiSk+i ^ Sk-i) 
k=i 

+2K(3it((^z)^(6'n — 5'n-i) = Ko;((^a:)^\/n — 1. (6.18) 
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The boundary conditions at a; = 0 for the hinged flag when discretised give the relationships 

5(0) = 0 => = 0, ^"(O) = 0 => 5 - 1 = —Si (6.19) 

which permits the removal of the fictitious points in the above discretisation for 2 = 1 to give 

n — l 
( % - 45'2 + 5gi) + E 

A:=l 

+2KQi»(M^( '9n - (6.20) 

Imposing equation (6.17) at the trailing edge, i.e. for i = n. gives 

n — l 

(•5714-2 — 45n4-l + 65„ — 45„_1 + Sn-2) + k{5x)^ ^ QnkiSk+l " Sk-l) 
k=l 

-\-2KQnn{Sx)^ {Sn — Sn-l) — 0- (6.21) 

This has two fictitious points namely Sn+i and Sn+2- The boundary conditions at the trailing 

edge give the required relationship between these points and the unknowns 5„ and 5„_i as 

follows: 

^ " ( l ) = 0 Sn+l = 25„ — Sn-l, S"'{1) = 0 => Sn+2 — + 35„ — Sn-l = 0. 

Substituting the former of these two equations into the latter gives Sn+2 = 35^ — 2S'„_i. 

These are the relationships required to eliminate the fictitious points in equation (6.21) to 

yield 

71— 1 

(5'n - 26"^-! + 'S'n-2) + E - ^ t - l ) 
k=l 

+2KQ^^((^z)^(g^ - S n - l ) = 0. (6.22) 

Repeating the above analysis for 2 = n — 1 and using the above equation for Sn+i gives the 

third boundary equation 

n—l 

{ — 2Sn + 5Sn-l — 4 S ' „ _ 2 + Sn-s) + k{Sx)^ Qn-l,k{Sk+l " % - l ) 

k=l 

+2KQn_i n(^a:)^(5n - S ^ - l ) = ^ - (6-23) 
\/n — 1 

Therefore the system of n equations for the n unknowns Si,. .. , Sn is constructed of equa-

tions (6.20), (6.22) and (6.23) along with equation (6.17) for i = 2, . . . , n — 2. The system 

is linear and was solved for a given k, a and n using NAG routine F04ATF. The results 

presented here for the steady hinged flag were calculated using = 500 and show the flag 

shapes for various values of k and a. 
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a - 0.5 
o( — 0.1 

0.5 

Figure 6.4: Hinged Flags with k = 1 

The flag shapes for K — 1 for three values of the angle of incidence, a , are presented in 

Figure 6.4. These flags all assume straight lines and are perfectly aligned with the outer flow, 

as expected. An analysis of the flags for negative a , i.e. a downward moving outer flow, 

shows that the corresponding flag shapes are reflections of the positive a flags about the line 

6.5.4 Numerical Solution for the Steady, Clamped Flag 

The steady solutions for the clamped flag are more interesting than the hinged case since the 

flag is unable to align with the outer flow for non-zero a . The discretisation of the problem is 

slightly diff'erent to that of the hinged flag owing to the variations in the boundary condition 

for 5 at a: = 0. As in the previous section, equation (6.17) is imposed at i = 1 to give 

equation (6.18). However, the boundary conditions at x = 0 for the clamped flag give 

5'(0) = 0 5*0 = 0, 5"(0) = 0 => 

which is a trivial, but crucial, difference to the hinged flag discretisation. Hence equa-

tion (6.18) becomes the boundary equation 
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n — 1 

(% - 4^2 + 7gi) + ^ 
k=l 

+2K.Qin{5x)'^ {Sn — Sn- i ) = Ka{Sx)'^\/n — 1. ( 6 . 2 5 ) 

The boundary conditions at z = 1 are identical regardless of the method of attachment at 

the leading edge. Therefore the system of n equations for the clamped flag is (6.25), (6.22), 

(6.23) and equation (6.17) for i = 2 , . . . , n — 2. 

Figure 6.5 shows the results obtained for k = 1 with n = 500 for three values of a (the time 

taken to compute each of these solutions was approximately one minute). For all three shapes 

the presence of the boundary condition at 5"(0) = 0 has an obvious effect on the flag shape 

when compared to the hinged flag results. The deviation of the flag from the z - a x i s increases 

as a increases, as expected. However this deviation is far less than in the hinged case, for 

example the results for a = 1 indicate that 5(1) % 0.07 for the clamped flag compared to 

5(1) = 1 for the corresponding hinged case. 

0.08 

0 . 0 7 

0.06 

0 . 0 5 

& 0 4 

0 . 0 3 

0.02 -

0.0] 

a = 0 . 5 

a = 0.1 

0.2 0 . 4 0.6 

Figure 6.5: Clamped Flags with k = 1 

Figure 6.6 illustrates the flag's behaviour for a = I for various values of k. As k. decreases 

t h e flag d e v i a t e s l e s s f r o m t h e l i n e i/ = 0 , a s e x p e c t e d . 
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K= 10 

K = 0.5 
K = 0.1 

0.2 

Figure 6.6; Clamped Flags at a = 1 

6.6 T h e U n s t e a d y Flag 

In this Section, equation (6.12) is discretised using an explicit finite difference method similar 

to that employed for the unsteady sail in Chapter 4. However, before numerically analysing 

this equation it is illustrative to examine various limiting cases of the unsteady flag equation. 

6.6.1 The Unsteady Flag of Large Flexural Rigidity 

In the limit as 7 oo but f ia is of order one equation (6.12) becomes 

Sxxxxi^li) — 0 

the solution of which for a hinged flag is S{x, t) = a(t)x: a hinged flag merely aligns with the 

flow for all a{t). The solution for a clamped flag, however, is S{x,t) = 0 which implies that 

the flag is too stiff for the outer flow to influence it. 

A more interesting limit is when 7 —)• 00 but is of order one. For a clamped flag, 

equation (6.12) reduces to the quasi-steady equation 

(6.26) 
TT Jo 7] - X 7 

The Kutta condition, equation (6.13), in the limit as 7 tends to infinity is Sxxxxi^,^) — 0 

and hence equation (6.26) may be inverted and solved analytically to give the quasi-steady 
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solution 

a r c s i i i ( 2 z — 1) 

TT ? TT ^ 
" M " + - % " + 6 4 ^ 

Repeating this process for a hinged flag with the boundary conditions 5(0,t) = Sxx{0,t) = 

Sxx{^, t ) = Sxxxi^it) = 0 reveals that there is no solution. This is because S is no longer of 

order one for a hinged flag. When = 0(1) and a -4 oo with = 0(1) it transpires 

that S = 0{a) in which case the leading order equation is Sxxxx{x,t) = 0 and therefore 

S{x,t) = a{t)x. Alternatively, when a = 0(1) and fi oo so that — 0(1) , S is once 

again 0(1) but now satisfies 

!^{S, + S,-a(t)) = - - f ' 

This equation could be solved numerically but since it is not illustrative to do so, attention 

is turned to the unsteady equation for a flag of order one flexural rigidity. 

6,6.2 The Unsteady Flag of Large Mass 

For a flag of large mass and order one outer flow density, // is small and hence in the limit as 

/i -4 0 equation (6.12) becomes 

1 _ Q 
TT Vo 7? — Z 

This is inverted using equation (B.3) and the Kut ta condition, equation (6.13), imposed to 

give the Euler-Bernoulli equation for a simple beam (see, for example, Tayler(1986)[44]): 

'S'ft + ' Y & m = 0- (6.27) 

This is e E e c t i v e l y a balance between the inertia and the shearing force within the flag since 

the aerodynamic forces are negligible in this limiting case. The steady solutions of this 

equation are the same as for the large flexural rigidity flag examined in the previous section, 

i.e. S{x) = ax for the hinged flag and S{x) = 0 for the clamped flag. Since a — 0(1) it 

is unlikely that the aerodynamic efl'ects of the outer flow will influence the flag in any way. 

However, considering large angles of incidence in the limit as /i tends to zero but / la = 0(1), 

equation (6.12) becomes 

1 J ' ^ 
TT Jo ry — .T 
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This is inverted and the Kut ta condition imposed to give the equation 

Stt + • iSxxxx = (6.28) 

The steady solution of this problem is equation (6.15) since a steady flag of large mass behaves 

similarly to a flag of large flexural rigidity. However, the force that the outer flow imparts 

on the flag is now included. The equation may be easily discretised using, for example, 

central differences and using the boundary conditions to eliminate the fictitious mesh points. 

However, it is more instructive to proceed directly to the flag of both order one flexural 

rigidity and mass since the governing equation in this case contains a singular-integral. The 

linear stability of equation (6.28) is analysed in Section 7, however. 

6.7 Numer i ca l Solution of t h e Uns t eady F lag Equa t ion 

The first step towards a numerical procedure is to invert the unsteady flag equation (6.12) 

using (B.3) and apply the Kutta condition (6.13) to obtain 

Stt + == i f ' (6.29) 
ttV X Jo y l - r i \ r i - x J V x 

where equation (B.4) has been used to simplify the singular integral. The region 0 < z < 1 

is again divided into n equally spaced intervals of width 6x. Equation (6.29) is discretised 

using finite differences for the derivatives of S{x, t) and the method detailed in Section 4.4 

details the discretisation of the singular integral to give 

St' = 2si - sr' - - 4%1 + esi - 4s/_, + s;_,) 

^ E QMSL, - s U - - si_,) 
k~l 

n 

^ ( 6 . 3 0 ) 

fc=i ' 

for i = 0, . . . , n where Sj is the numerical approximation of S{xi,tj), a{tj) is abbreviated 

by and Qi^ is given in equation (3.14). Therefore the boundary conditions are required 

to eliminate the external, fictitious points. However, before discretising the hinged and the 

clamped cases it is illustrative to first analyse the numerical stability of the above explicit 

scheme. 

6.7.1 Numerical Stability Analysis 

As in Chapter 4, Von Neumann stability analysis is performed on the numerical scheme for 

the flag in order to derive the Courant number for the method. The assumption made here 
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is that the s t a b i l i t y of the method depends on the highest order derivatives for S. Hence the 

stability analysis performed here is on the equation 

Stt + iSxxxx = 0. (6.31) 

The small perturbation at Zp, t j is defined as 

= ( 6 . 3 2 ) 

where i = \ / ^ , a is a positive integer, p is equal to i in the above discretisation and 7 is 

a complex constant. This method expresses the perturbation as a Fourier sine series and 

Smith(1978)[38] shows that the perturbation does not increase in magnitude if and only if 

1̂ 1 < 1-

Assuming that the stability of the method depends only on the highest order derivatives, 

the discretisation of equation (6.31) is 

- 1 

(4 ip = + esj - 4SU + s u . 

However, the perturbation function also satisfies this equation and hence substituting 

equation (6.32) into the above equation and dividing through by exp{i(apSx))r]^ gives the 

quadratic equation 

7]'^ — 2br] + 1 = 0 (6,33) 

where ^ 

^ ^ ^ (cos^(o(^z) — 2cos(aJ2;) + l ) . 
[oxp \ / 

S i n c e a n d o a r e a l l n o n - c o m p l e x , 6 < 1 . T h e r o o t s o f e q u a t i o n ( 6 . 3 3 ) a r e 

m b + \/5^ — 1, 112 = b ~ \/fe2 — 1. 

The values of b are required to be such that \ri\ < 1. For 6 < — 1, |%| > 1 and hence the 

method is unstable. For the remaining values — 1 < 6 < 1 , 6 ^ < 1 which implies that 

m b + i\/\ — 6^, r\2 = h — i\/\ — b'^ 

and therefore |r/i| = |%| = 1 and hence the method is stable for |6| < 1 which, using the 

above definition of 6, gives the following condition for stability: 

'y(d%)2 
0 < (1 — cos(o(fr))^ < 1. 

Since (1—cos(o(^z))^ is always less than or equal to four the Courant number for this numerical 

scheme, c, must satisfy 
4'y(d()'' 

c 
(dz)4 
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for numerical stability. This Courant number is valid if the above assumption concerning the 

derivatives contained within the method is correct. To support this the author has found, 

through performing the numerical calculations contained within the next two sections, that 

the above inequality is rigidly adhered to for numerical stability. 

Equation (6.34) highlights a major drawback of using an explicit method to solve the 

unsteady flag equation. Since 7 is a property of the flag, both 6x and 5t must be chosen so 

that the Courant number is less than one. However, the Courant number increases rapidly 

as n increases and thus an extremely small time-step must be used. For example, to execute 

a procedure for 7 = 1 and n = 500 up t o t = 4 requires 2 x 10® time-steps, which is 

computationally expensive. Clearly a compromise must be reached and, as is the case for the 

unsteady sail, the number of mesh points used is decreased. Hence n = 100 is used for the 

computations presented below. Several calculations were also performed using n = 1000 and 

the agreement between these results and those of the n = 100 experiments was excellent. 

6.7.2 Results for the Hinged Flag 

Equation (6.30) is valid for i = 0 , . . . ,n and the boundary conditions are used to eliminate 

the fictitious points outside of the region 0 < re < 1. The boundary conditions at the leading 

edge for the hinged flag are stated in (6.19) which when substituted into equation (6.30) with 

i = I gives the boundary equation 

s;+' = 2S{ - s r ' - - 4Si + 5s ; ) 

- f L . ) -
k=i 

E (6.35) 
k=i 

In a similar manner, both i = n — 1 and i — n are substituted into equation (6.30) and 

the boundary equations stated earlier permit the elimination of and to give, for 

2 = n — 1: 

k=l 

1 1 3 



and for i = n: 

S t ' = + 

E - s L o - - s U ) 
k=l 

E ( 6 . 3 7 ) 
k=l 

Therefore equations (6.35), (6.36) and (6.37) along with equation (6.30) for i = 2 , . . . , n — 2 

permit the calculation of Sj'^^ for i = 1 , . . . , n for the hinged flag. The initial condition used 

here is that the flag is initially at rest, i.e. St{x,0) = 0, which gives Sj = Sf. The initial flag 

shape, Sf, is computed using the numerical procedure derived in Section 6.5.3 for the angle 

of incidence 

Two sets of results are presented here for the hinged flag and the same a{t) is used for both 

examples, the only difference being the values of 7 used. As stated in the previous section, 

n = 100 is used throughout and ^ = 1. The choice of a{t) is 

N - 1 0 < ( < 1 

a ( ( ) = ( 6 . 3 8 ) 

An important question is whether the flag converges to the steady solution for a = 0.25 as 

time increases or whether some other motion ensues. 

Results for 7 = 1 

The initial flag shape for this case is S{x, 0) = — 0 . 2 5 a ; since the flag is aligned with the 

outer flow as discussed in Section 6.5.3. The corresponding steady solution for a = 0.25 

is a reflection of this initial solution about the x-axis. The time increment used here was 

St = 5 X 10^® thus ensuring that the Courant number was less than one. The method was 

executed over 100, 000 time-steps and thus the motion of the flag is analysed for 0 < f < 5. 

Unlike the unsteady sail, the flag does not possess a property that permits an easy analysis 

of the convergence properties. One indicator, however, is the trailing edge position as a 

function of time. This plot indicates whether the flag is unstable but is insufficient to prove 

convergence since it is possible that the trailing edge could remain stationary whilst the rest 

of the flag oscillates wildly. The kinetic energy is therefore a useful measure of the motion 

since a decay in kinetic energy indicates that the flag is converging to a solution. 

Figure 6.7 shows how 5(1, t) varies with time for the flag with 7 = 1 (the end-point of the 

steady solutions for a = 0.25 is also depicted for clarity). This figure indicates that whilst 

at ^ = 0.5 the angle of incidence ceases to change, the flag has hardly deviated from the 
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Figure 6.7: 5(1, i) for 7 = 1 (hinged) 

initial solution. However, for 0.5 < t < 3.5 the flag moves rapidly past the steady solution 

for a = 0.25 and then appears to begin an oscillatory motion about this steady solution. 

The kinetic energy, depicted in Figure 6.8, confirms that the motion of the trailing edge is 

reflected throughout the entire flag. 

A selection of flag shapes taken at various values of t is presented in Figure 6.9 along with 

the steady solutions for a = ±0.25. The flag for 7 = 1 appears to be significantly rigid so 

that the motion merely consists of a sequence of straight lines. 

Results for 7 = 0.1 

The time increment used here was 6t = 1.5 x 10~^ and the analysis is presented for 0 < t < 10. 

The steady solutions for 7 = 0.1 are identical to those for 7 = 1; the hinged flag is aligned 

with the outer flow for constant a . However, the resulting motion is significantly difl'erent 

and Figure 6.10 presents the plot of for 7 = 0.1. 

This figure indicates that the flag has hardly deviated from the initial solution at t = 0.5 

but then undergoes a large acceleration and oscillates around the steady solution for a = 0.25. 

However, it appears that the oscillations increase in magnitude as time advances indicating 

that this flag is unstable and the kinetic energy plot given in Figure 6.11 c o n f i r m s this 

behaviour. 
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Figure 6.8: Kinetic Energy for 7 = 1 (hinged) 

S(x, t) 0 

a=0.25 

Figure 6.9; Hinged Flag Shapes for 7 = 1. The Steady Solution for a = 0.25 is also Shown. 
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Figure 6.10: S{l,t) for 7 = 0.1 (hinged) 
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Figure 6.11: Kinetic Energy for 7 = 0.1 (hinged) 
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The flag shapes presented here are taken at the peak points of 5(1, t) at t = 3.02, 5.17, 7.32 

and 9.47 and are shown in Figure 6.12 along with the steady solutions for a = ±0.25. The 

most significant feature of this figure is the shapes that the flag adopts owing to the fact that 

7 is small enough so that the aerodynamic forces influence the curvature of the flag itself. 

The motion of the flag is also of particular interest since it is a first order mode solution: 

there is a point ~ 0.65 where there is almost zero motion of the flag and the portions of 

the flag either side of move in opposite directions in a "see-saw" motion. It is this motion 

which increases in magnitude as time progresses and thus the flag does not decay to a steady 

solution. 

f= j .02 

a=0.25 

Figure 6.12: Hinged Flag Shapes for 7 = 0.1. The Steady Solution for a = 0.25 is also Shown. 

118 



6 . 7 . 3 R e s u l t s f o r t h e C l a m p e d F l a g 

The discretisation for this case differs to that presented in the previous section for the i = 1 

boundary equation. Substituting i = 1 into equation (6.30) and using equation (6.24) to 

eliminate S^_i gives the boundary equation 

E - s u ) - - s U 
k=l 

E - -9̂1)+ 
k=\ 

This equation along with (6.36), (6.37) and (6.30) for i — 2,.. . ,n — 2 are the explicit scheme 

for the clamped flag. 

The results presented here are for 7 = 1 and 7 = 0.1 with a{t) given by equation (6.38) 

and ^ = 1. As before, n = 100 was used throughout. 

Results for 7 = 1 

The time increment used here was dt = 5 x 10"^ and the results presented are for 0 < t < 5. 

The plot of 5(1, t) for this flag is given in Figure 6.13 along with the position of the trailing 

edge for the steady solution at a = 0.25. At i = 0.5 the angle of incidence is equal to 0.25 but 

the flag only appears to have moved to approximately half way between the steady solutions, 

i.e. 5(1,0.5) « 0. The flag then passes the steady solution for a = 0.25 and then oscillates 

around this shape with a decaying magnitude. 

The plot of the flag's kinetic energy presented in Figure 6.14 confirms that the entire flag 

is converging to the steady solution for a = 0.25. 

The flag shapes shown in Figure 6.15 are taken at peak values of 5(1, t) in Figure 6.13. 

These shapes confirm that the flag is indeed converging to the final steady solution. 

Results for 7 = 0.1 

The time-step used here was 5t = 1.5 x 10"^ and the method was executed for 0 < i < 10. 

The 5(1, i) plot is given in Figure 6.16. The trailing edge of the flag has hardly moved at 

t = 0.5 but then undergoes a significant acceleration and peaks beyond 5(1) for a = 0.25. 

The subsequent oscillatory motion appears to diverge away from the final steady solution 

and this is confirmed by the kinetic energy values shown in Figure 6.17. 

It is also interesting to note that at t = 0.5 the flag possesses a significant kinetic energy 

which when coupled with the observation made above implies that the main body of the flag 

is undergoing a rapid motion whilst the trailing edge remains almost stationary. 

119 



0.04 

0.03 -

0.02 

0.01 

-0.01 

-0.02 
0 O j 1 L5 2 2.5 

t 
4 4 j 5 

Figure 6.13; for 7 = 1 (clamped) 
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Figure 6.14: Kinetic Energy for 7 — 1 (clamped) 
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Figure 6.15: Clamped Flag Shapes for 7 = 1. The Steady Solution for a = 0.25 is also 

Shown. 
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Figure 6.16: S{l,t) for 7 = 0.1 (clamped) 
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Figure 6.17: Kinetic Energy for 7 = 0.1 (clamped) 

The corresponding flag shapes are presented in Figure 6.18. Owing to the relatively slow 

divergence away from the final steady solution these flag shapes are not particularly illustra-

tive of the stability properties of the flag with 7 = 0.1. However, it should be noted that the 

first order mode motion witnessed in the hinged flag with 7 = 0.1 case is again present here. 

The stationary point Xs is located at approximately x = 0.77 which is closer to the trailing 

edge than in the corresponding hinged case. 

6.8 Conclus ions 

The equation of the finite mass unsteady flag with bending stiffness is proposed here. This 

flag is shown to be stable to high frequency perturbations unlike the flag with no bending 

stiffness. 

The steady flag with small outer flow momentum to high flexural rigidity ratio, k*, is 

analysed and the seemingly trivial solution that the hinged flag aligns itself with the outer 

flow is derived. However, for small angles of incidence the outer flow is unable to influence 

the clamped flag and the solution is S*(x*) = 0. For large angles of incidence the steady, 

clamped flag adopts a non-zero shape which is dependent on the value of K*a*. 

The steady flag equation for order one values of k* is discretised and numerical results are 

presented for various values of k* and the angle of incidence, a*. The hinged flag merely 
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Figure 6.18: Clamped Flag Shapes for 7 = 0.1. The Steady Solution for a = 0.25 is also 

Shown. 

aligns itself with the outer flow, as expected. The results for the steady, clamped flag are far 

more interesting. The flag in this case cannot align itself wi th the outer flow for non-zero 

Q* and instead bends under the influence of the aerodynamic forces imparted onto it. The 

per turbat ion from the 2;*-axis is therefore significantly less than in the hinged case. The 

deviation from y* = 0 decreases as the angle of incidence decreases and/or k* decreases, as 

expected. 

An explicit method for the unsteady flag equation is derived, the Courant number of 

which severely restricts the number of mesh points over which the flag equation may be 

approximated if numerical instabilities are to be avoided. T h e corresponding solutions for 

the hinged flag show that for 7* = 1 the outer flow is unable to significantly influence the 

curvature of the flag. The hinged flag with 7* = 0.1, however, is unstable under the enforced 

motion. Indeed the curvature of the flag significantly changes as time advances and a first 

order mode motion is witnessed with a stationary point at x* % 0.65. The oscillations increase 

in magnitude as time progresses as does the kinetic energy of the flag. 

The numerical results for the clamped flag with 7* = 1 show that this flag converges to 

the steady solution corresponding to the final angle of incidence. However, for 7* = 0.1 the 

clamped flag is unstable and consequently diverges away from the final solution. The first 

order mode motion is again present although the stationary point of the flag is nearer the 
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trailing edge than in the hinged case. 

The analysis of this chapter indicates that the stability properties of the flag depend on the 

value of 7* used; the flag without bending stiffness is always unstable and stable solutions 

have been witnessed for finite values of 7*. The question of how the flag behaves under small, 

time-dependent perturbations is tackled in the next chapter. 
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Chapter 7 

Linear Stabil i ty Analysis of t h e 

U n s t e a d y Flag Equa t ion 

This chapter presents a linear stability analysis of the unsteady flag equation that was derived 

in Chapter 6. The large mass flag, i.e. the limit of equation (6.12) as //* tends to zero, is 

considered first. The governing equation in this case does not contain a singular integral thus 

significantly simplifying the analysis. Attention is then turned to the /i* = 0(1) case and 

the discretised equation is a quadratic eigenvalue problem. Both the hinged and clamped 

flags are analysed and the marginal stability curve for each case is presented. The numerical 

method for approximating the unsteady flag equation derived in the previous chapter is used 

here to provide illustrative examples of the flag's stability and to support the validity of the 

marginal stability curves. 

The short wavelength stability analysis presented in Section 6.4 shows that the flag with 

bending stiffness is stable to some short wavelength perturbations whilst it is shown in Sec-

tion 6.2 that the flag in the absence of bending stiffness is unstable to such perturbations. 

The linear stability analysis presented here is for the stiff flag under the time-dependent 

perturbation 

= 5'(%) 4- /(a:)e'^^ (7 .1 ) 

where S{x) is the steady solution and f{x) is assumed to be small, i.e. 0(e). The asterisks 

denoting the non-dimensional variables are omitted throughout this chapter for clarity. The 

complex constant a = Ur + ioi dictates the stability properties of the flag; CTt- > 0 implies 

that the corresponding steady solution is unstable to the enforced perturbation. However, 

before analysing the stability of the unsteady flag equation (6.12) it is instructive to analyse 

the simpler case of the large mass flag. 
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7.1 T h e Large Mass Flag 

The analysis of Section 6.6.2 presents two limits of equation (6.12) as -4 0; one for a. = 0 (1) 

and the other for j ia = 0(1) . The steady solutions of these problems are that the hinged 

flag aligns itself with the outer flow, S{x) — 0 for the clamped flag for order one values of a 

and for [la = 0(1) the steady solution for the clamped flag is given by equation (6.15). In 

order to determine the stability of these solutions the perturbation given in equation (7.1) is 

applied to equations (6.27) and (6.28). These equations, when perturbed and linearised, give 

the same equation in terms of f{x) and a, namely 

7 / " " + = 0. 

The general solution of this equation is 

/ ( z ) = + De" 

where 

-a 2 \ 4 

a 
• 

(7.2) 

The boundary conditions are now imposed to give a system of equations for the unknown 

constants A, 5 , C and D. The fixed end boundary condition /(O) = 0 gives 

A-\-B + C + D = Q (7.3) 

and / " ( I ) = 0 gives 

vie" + Be - " - - De" ' ' ' - 0 (7.4) 

and also / ' " ( I ) = 0 reveals that 

yle" - Be - " - iCe'" + zDe"'" = 0. (7.5) 

These conditions are common to both the hinged and clamped flags. Examining the hinged 

flag first, the additional boundary condition at x = 0 is /"(O) = 0 which gives 

A + B — C — D = Q 

and therefore the system of equations for the four unknown constants is 

/ 1 1 1 1 \ / A \ 

V 1 - 1 

B 

C 

1 y \ ^ y 

0 
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For this system to have a non-trivial solution the determinant of the above matrix must be 

zero which yields the equation 

8isinh(a)[sin(a) — cos (a)] = 0 

which has solutions a = 0, 7r/4-|-n7r where n is an integer. Using equation (7.2), a = 0 implies 

that a = 0 and a = tx/A -t- n-K gives a — %(n/4 -t- which, since 7 > 0, reveals that 

Gr = 0. Therefore the hinged flag is marginally stable to small perturbations. 

The clamped flag has the boundary condition /'(O) = 0 which gives the equation 

which when combined with equations (7.3), (7.4) and (7.5) gives the system of equations 

/ 1 1 1 1 \ / A \ 

—e B 

C 
0. 

\ 1 —1 i -i J \ D J 

Equating the determinant of this matrix to zero gives 

8i sin(o) siiih(a) = 0 

the solutions of which are a = 0, mr. As shown above, a = 0 implies that (7 = 0 and using 

equation (7.2) shows that a = mr gives a = i (n7r)^ .^ and hence <7̂  = 0 and the clamped 

flag is marginally stable. 

The result of the above analysis is that the flag is marginally stable in the limit as 0 

regardless of the magnitude of a and the method of attachment at the leading edge. This is 

not an unexpected result since the aerodynamic forces imparted on the flag are insufficient 

to influence the perturbed shape either back to or to diverge away from the steady solution. 

The stability results for the order one mass flag equation are presented in the next section. 

7.2 T h e O r d e r One Mass Flag 

The inverted flag equation (6.29) is perturbed using equation (7.1) to give 

M /I - 2: / V fiv) 
e /(%) + & 

TT 
(7.6) 

The boundary conditions are /(O) = / " ( I ) = / ' " ( I ) = 0 along with /"(O) = 0 (hinged flag) 

or /'(O) = 0 (clamped flag). The above equation is similar to the linearised perturbation 

relationship for the unsteady sail, equation (5.9), but with the crucial difference that the 
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only unknown in equation (7.6) is / ( i ) . In addition, the steady solution ^(z) does not 

appear in equation (7.6) and hence the stability properties of the flag may be calculated 

using only the corresponding values of 7 and 11. 

Equation (7.6) is discretised using the method employed in the linear stability analysis of 

the unsteady sail in Chapter 5, i.e. /'(?]) and /(??) are approximated using equations (5.11) 

and (5.12) respectively. Therefore the discretisation of equation (7.6) is 

+ e 

+ 

— f k - l ) — 2//(A — l)Qik{fk — f k - l ) + 2/iQifc/fc-l| 

7 
^ifi+2 — 4 / j + l + 6 / 2 — 4 / i _ i + f i - l ) + "^ Qikifk — f k - l ) 
J {5x 

0 (7.7) 

for ; = l , . . . , n where Qik is given in equation (3.14) and Rik by equation (5.14). The 

boundary conditions are used to eliminate the fictitious mesh points in equation (7.7). Using 

the method detailed in Sections 6.5.3 and 6.5.4 the discretisation at 2 = 1 is 

a f i + a 
" n , .. 

^ J ^ R l k i f k — f k - l ) — — l)Qikifk — f k - l ) + ^ f J - Q l k f k - l j 

+ 7 
(/3 - 4/2 + c / i ) + ^ E - A - i ) 

k=l 

0 (7.8) 

where C = 5 for the hinged flag and C — 7 for the clamped version. The discretisations at 

i = n — 1 and i = n are the same regardless of the method of attachment at the leading edge 

and are given by 

0" fn-l + C 
^ f 11 

— fk~l) — 2/i(A: — l)Qn-l,k{fk ~ f k - l ) + '^fJ'Qn-l,kfk-lj 

+ 

.k=l 

7 
J4 ( —2/n + 5fn-l — 4 / „ _ 2 + fn-s) + ^ ^ Qn-l,k{fk — f k - l ) 0 (7^) 

and 

cr /n + cr 

+ 

^-^Rnkifk — f k - l ) — 2^:(& — ^)Q7ikifk — f k - l ) + j 
lk=l 

7 2/i 
w ( / n — 2 / „ _ i + fn-2) + ^ E Qnkifk — f k - l ) 0 (7.10) 

respectively. Therefore equations (7.8), (7.9) and (7.10) along with (7.7) for 2 < i < n — 2 

form the system of n equations for the n unknowns / i , . . . , Introducing the vector 

/ A \ 

\ fn J 
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enables the problem to be written in matrix form to give the quadratic eigenvalue problem 

cr̂ VLjF-h fBjF t (]/== 0. (711) 

By using equation (7.8) to construct the top rows of the matrices A, B and C, equation (7.7) 

for rows 2,... ,n — 2, (7.9) for row n — 1 and (7.10) for the bot tom row, the matrix A is the 

identity matrix. Furthermore, the quadratic eigenvalue problem is simplified by introducing 

the vector 
== 

which when substituted into equation (7.11) gives 

--iSjF' - ( zy :=0 . 

These two equations are combined to give the standard eigenvalue problem 

V - - » / v r y ^ ' ( r ) 

which may be written as 

Mg = ag 

where M is a 2n x 2n non-singular matrix. This is a significantly simpler problem than that 

encountered in the linear stability analysis of the sail since the resulting problem is a standard 

eigenvalue problem as opposed to the generalised eigenvalue problem solved in Chapter 5. 

7 . 2 . 1 R e s u l t s a n d D i s c u s s i o n f o r t h e H i n g e d F l a g 

Equation (7.12) was solved for a given 7, /i and n using NAG routine F02EBF and the 2n 

eigenvalues obtained were analysed to locate the dominant eigenvalue for large i, i.e. the 

eigenvalue with the maximum real part, max(crr). A positive value of max((7r) implies that 

the flag is unstable to small perturbations whereas a negative max(crr) means that the flag 

will converge back to the steady solution as time advances. 

The stability properties of the hinged flag are summarised in the marginal stability plot. 

Figure 7.1. This figure shows the presence of both stable and unstable solutions that are 

dependent on the corresponding values of 7 and pi. 

For 7 > 1.88 the hinged flag is stable to the small perturbation introduced. This is because 

the flag is sufficiently stiff that the outer flow cannot significantly influence the curvature of 

the flag. However, for 7 < 1.88 there exists unstable solutions that depend on the value of 

fi. The behaviour of the flag in this region is best explained with the aid of the six points 

plotted on Figure 7.1: Points 1 to 5 correspond to 7 = 0.5 with various values of fj. and Point 

6 to 7 = 0.15, fi = 16. 
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Figure 7.1: Marginal Stability Plot for the Hinged Flag. 
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Considering Point 1 first, where 7 = 0.5 and /i = 0. The flag is found to be marginally 

stable at this point, i.e. max(crr) = 0. The corresponding imaginary part of this eigenvalue 

is zero thus indicating that the motion of the flag will be non-oscillatory. Moreover, all flags 

with /X = 0 are found to be marginally stable which agrees with the asymptotic analysis of 

Section 7.1. In the limit as /x = IpLp'"^ -4 0 the aerodynamic force imparted on the flag is 

insignificant when compared to the mass of the flag and therefore the outer flow is unable 

to return the perturbed flag to the steady solution nor create a divergent motion - the flag 

remains in the perturbed shape. The numerical procedure derived in the previous chapter is 

used to confirm this hypothesis. The angle of incidence is fixed at a{i) = 0.25 for all t and 

the steady solution for a = 0.26 is used as the perturbed flag shape. The steady solutions 

for a = 0.25 and a = 0.26 are given in Figure 7.2. 

0.3 

&25 

0.2 

5^^ &15 

0.1 

0.05 

Perturbed Solution 

Steady Solution for a = 0.25 

0.2 0.4 0.6 

Figure 7.2: The Steady Solution for a = 0.25 and the Perturbed Solution. 

The numerical procedure was operated using n = 100 and 6t = 7 x 10"® over 100,000 

time-steps. The resulting values of S { l , t ) confirm that the trailing edge of the flag remains 

at the position of the perturbed solution. In addition, analysis of the kinetic energy of the 

flag also conflrms that the entire flag does not deviate from the initial, perturbed solution, 

i.e. the kinetic energy is zero for all time. 

Point 2 on Figure 7.1 denotes the solution 7 = 0.5, jj, = 0.414 where the flag is found to 

be marginally stable with corresponding imaginary part equal to ±10.7. Therefore the flag 

oscillates around the steady solution with constant amplitude. The unsteady flag equation 
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is numerically approximated using the same example as above for illustration. Note that 

the steady and perturbed solutions for a = 0.25 and 0.26 respectively are identical to those 

given in Figure 7.2 since steady hinged flags align with the outer flow. Figure 7.3 is the 

corresponding plot of 5(1. t) and Figure 7.4 depicts the kinetic energy of the flag for 0 < ( < 7. 

These two figures confirm that the flag converges back to the steady solution as time advances. 

However, the magnitude of the kinetic energy of the flag indicates that the flag is moving 

at very small speeds. This is consistent with the magnitude of fi used in this example since 

the aerodynamic forces imparted on the flag are barely sufficient to move the flag from the 

perturbed solution, given the mass of the flag material. The subsequent increase in kinetic 

energy is small and the outer flow is able to generate an oscillatory motion of the flag yet 

cannot influence convergence towards the steady solution corresponding to a = 0.25. 

0U56 

0.254 

&252 

r; 0.248 

0.246 

0.244 

0242 

0 J 4 

Figure 7.3: S{l,t) for the Hinged Flag with 7 = 0.5, fi = 0.414 (Point 2). 

Point 3 on Figure 7.1 depicts the solution 7 = 0.5, /i = 2 and the linear stability analy-

sis above gives max(o-r) = 7.31 x 10~^ with corresponding imaginary part equal to ±10.51. 

Therefore this flag is unstable and oscillates around the steady solution with increasing ampli-

tude. In addition, the magnitude of max((7r) dictates that the rate of divergence is relatively 

slow; the outer flow has sufficient strength to move the perturbed solution but is unable to 

counteract the subsequent increase in inertia and thus the flag diverges away from the steady 

solution. The numerical example above is also used here to illustrate the motion of this flag. 

Figure 7.5 is the plot of S{l,t) which shows that the flag moves away from the perturbed 
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Figure 7.4: Kinetic Energy for the Hinged Flag with 7 = 0.5, /i = 0.414 (Point 2). 

solution and commences an oscillatory motion about the steady solution. The amplitude of 

this motion, however, increases as time advances as predicted by the linear stability analy-

sis. This is confirmed by the plot of the kinetic energy given in Figure 7.6. Note that the 

acceleration of this flag at ( = 0 is greater that that of the previous example. This confirms 

that the outer flow is able to move this flag more swiftly than the previous, more massive, 

example. 

Another important feature of this example is the shape tha t the flag adopts as time ad-

vances. A first order mode solution is witnessed here, i.e. there is one point of the flag that 

remains almost stationary and the flag portions either side of this location moves in opposite 

directions. This was witnessed in Section 6.7.2 for the 7 = 0.1, ji = I example and the flag 

shapes for this were given in Figure 6.12. Upon further investigation of this observation, it 

appears that all solutions in the lower unstable region in Figure 7.1 adopt this first order 

mode flag shape. This occurs for 7 < 1.88 because the flag is sufficiently flexible that the 

outer flow can influence the curvature of the flag itself. The behaviour of the flag as both the 

mass and the flexural rigidity are further reduced is discussed later in this section. 

The solution denoted by Point 4 on Figure 7.1 is 7 = 0.5, /v, = 5.32148 where the flag 

is again found to be marginally stable with an imaginary par t of ±11.01. Hence this flag 

oscillates around the steady solution but the amplitude of the oscillations remains constant. 

This is because the outer flow imparts an aerodynamic force that is sufficient to counteract 
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Figure 7.5: 5(1, t) for the Hinged Flag with 7 = 0.5, // = 2 (Point 3). 
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Figure 7.6: Kinetic Energy for the Hinged Flag with 7 = 0.5, // = 2 (Point 3). 
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the inertia of the flag. The numerical computations performed for this case are for the same 

example as above and the resulting plot of S{l,t) is given in Figure 7.7. The trailing edge of 

this flag moves to and then oscillates around the steady solution for a = 0.25 with constant 

amplitude as predicted. Note that the period of the oscillations of this flag is approximately 

equal to that of the previous case for ji = 2. This occurs because the imaginary part of the 

eigenvalue with max(c7f-) is similar in these two cases. 

(1256 

0 J 5 4 -

^ ( 1 2 5 

&248 

0.246 -

&244 

Figure 7.7: S{l.t) for the Hinged Flag with 7 = 0.5, /j, = 5.32148 (Point 4). 

Point 5 on Figure 7.1 denotes the stable solution 7 = 0.5 and p = 7. In this case, 

max(cTr) = —0.19 which states that the rate of convergence will be faster than the rate of 

divergence witnessed in Figure 7.5 for Point 3. For solutions with 7 = 0.5 and /i > 5.32148 

the outer flow imparts an aerodynamic force that is suflicient to not only move the flag from 

the perturbed solution but to overcome the subsequent increase in inertia and force the flag to 

converge back to the steady solution. As increases, the value of max(crr) decreases further 

thus supporting the fact that as the outer flow density to flag mass ratio increases, the flag 

converges back to the steady solution more rapidly. In order to illustrate the stable motion 

of the flag with fi = 7. Figure 7.8 shows S{l,t) for the numerical example used above. The 

motion of the flag is oscillatory with decaying amplitude, as predicted. 

As stated above, the lower region of unstable solutions in Figure 7.1 represents flags that 

adopt a first order mode shape as they diverge away from the steady solution. In order 

to investigate the properties of the unstable solutions with > 5.53 an example is used 
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Figure 7.8: 5(1, t) for the Hinged Flag with 7 = 0.5, n = 7 (Point 5). 

here to determine the stability properties of Point 6 which is 7 = 0.15 and /i = 16. The 

value of max(crr) for this solution is calculated to be equal to 0.12 which states that the rate 

of divergence will be approximately equal to the rate of convergence of the Point 5 solution 

above. The imaginary part of the dominant eigenvalue is ±18.86 which states that the motion 

is oscillatory. The example used above was executed here and the resulting plot of 5(1, t) is 

given in Figure 7.9 which confirms the above predictions. Analysis of the how the shape of 

the flag changes with time reveals a significant phenomenon. Whilst the flag does not move 

far from the steady solution, because the perturbation made is small, there are two stationary 

points present along the length of the flag. Therefore this is a second order mode solution as 

opposed to the first order mode solution witnessed in the numerical example performed for 

Point 3. Therefore, higher order modes exist as /i is further increased and 7 is decreased, i.e. 

for lighter, more flexible flags. Indeed the presence of third order solutions can be seen on 

Figure 7.1 for 7 % 0.03. /i % 23. 

7 . 2 . 2 R e s u l t s a n d D i s c u s s i o n f o r t h e C l a m p e d F l a g 

The eigenvalue problem, equation (7.12), is solved for the clamped flag with a given 7, and 

n and the 2n eigenvalues are examined for the stability conditions discussed in the previous 

section. The resulting marginal stability plot is presented in Figure 7.10 for 0 < // < 26. 

This stability plot is similar in shape to the corresponding plot for the hinged flag, Fig-
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Figure 7.9: 5(1, f) for the Hinged Flag with 7 = 0.15, fi = 16 (Point 6). 
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Figure < .10: Marginal Stability Plot for the Clamped Flag 
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lire 7.1. The most significant difference between the two plots, however, is the fact that the 

range of 7 for which there exists unstable solutions is smaller in the case of the clamped flag 

than in the hinged case; for the clamped flag, unstable solutions exist for 7 < 1 yet in the 

hinged case they exist for 7 < 1.88. One reason for this is the fact that the hinged flag is 

able to move even if the curvature of the flag remains unchanged whereas the clamped flag 

can only move if it is sufficiently flexible that the outer flow can affect its shape. Therefore, 

for flexural rigidity to outer flow density ratios in the region 1 < 7 < 1.88 the outer flow is 

unable to signiflcantly influence the curvature of the clamped flag but is still able to move 

the hinged flag because it is allowed to freely pivot at the leading edge. This observation is 

supported by the numerical results of Sections 6.7.2 and 6.7.3 where the kinetic energy of 

the clamped flag is typically an order of magnitude smaller than the kinetic energy of the 

corresponding hinged flag. 

The stability properties of the clamped flags are similar to those of the hinged flag and 

therefore it is not illustrative to include another set of example calculations such as those 

given in the hinged case. The presence of a third lobe of the curve for /i w 25 in Figure 7.10 

is evidence of the existence of higher order mode solutions for the clamped flag. 

7.3 Conclus ions 

The linear stability of the flag equation including bending stiffness was an unresearched topic 

at the time of writing. The analysis of this chapter attempts to show how the hinged and 

clamped flags behave when subjected to a small, time-dependent perturbation. 

The large mass flag is considered first and the linearised perturbation equation is the 

same regardless of the magnitude of the angle of incidence, a*. It is shown that this flag is 

marginally stable regardless of the method of attachment at the leading edge. This is because 

the aerodynamic force imparted on the flag in this case is insignificant when compared to the 

mass of the flag and therefore the flag remains at the perturbed shape for all time. 

The case when the outer flow density to flag mass ratio is order one is then examined. The 

resulting quadratic eigenvalue problem is transformed to a standard eigenvalue problem thus 

enabling numerical methods to be used. This was solved for various values of 7* and /i* to 

construct the marginal stability curve for the hinged flag, Figure 7.1. This plot reveals that 

no unstable solutions exist for 7* > 1.88 since the flag is sufficiently stiff that the outer flow 

is unable to affect the curvature of the flag. In addition, unstable solutions with ji* < 5.53 

are found to be first order mode solutions, i.e. there exists a point on the flag that remains 

virtually stationary whilst the portions of the flag on either side of this point move in opposite 

directions. In addition, for n* > 5.53 there exists higher mode solutions that correspond to 

increasingly smaller values of 7*. 
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The marginal stability curve for the clamped flag is presented in Figure 7.10. The general 

shape of this curve is similar to that of the hinged flag with the exception that the range 

of 7* for which first order mode solutions exist decreases. This variance is due to the fact 

that the clamped flag can only significantly move (and hence go unstable) if the outer fiow 

is sufficiently strong that the curvature of the flag can be altered. The hinged flag, however, 

can also move by rotating about its leading edge. The higher order mode solutions are also 

present in the case of the clamped flag and correspond to light and flexible flags. 

The linear stability analysis presented here fully explains the results presented in Chapter 6. 

In addition, the numerical examples executed in this chapter all agree with the linear stability 

predictions thus providing a self-consistent set of results. 
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Chapter 8 

Varia t ions on the Sail P r o b l e m 

The analysis of the sail problem discussed in previous chapters may be modified to model a 

variety of different systems. The modifications occur through changes in the derivation of the 

sail equation itself, the boundary conditions or the associated length condition. The equation 

itself must be modified if the forces acting upon the sail are altered from that of the original 

derivation presented in Chapters 3 and 4. The boundary conditions must be changed should 

the ends of the sail no longer be rigidly fixed or the method of attachment is altered. The 

length condition should be modified if the properties of the sail material itself are changed. 

One example of a modification to the inextensible sail problem is the introduction of elasticity 

into the sail which was introduced in Chapter 3. To account for this modification the length 

condition of the problem was modified. 

This chapter outlines a selection of the variations that have been considered by the author 

at the time of writing. The equations of motion are proposed where possible and discussions 

are made as to the complexity of the resulting model. Complete solutions are not presented 

here, however, but indications as to how the problems may be solved are suggested. 

8.1 T h e Inclusion of Gravi ty 

External body forces are easily included into the unsteady sail equation by adjusting the 

analysis of the forces acting on the membrane. To include gravity, for example, the force 

balance equation (4.4) becomes 

(8.1) 

where g is the acceleration due to gravity. Applying the unsteady Bernoulli equation to the 

fiow just above and just below the sail and noting that g is constant throughout gives 

Ap = Ep[/^/(a:,<) 
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which is the same expression as for the unsteady sail analysis in Chapter 4. Substituting this 

into equation (8.1) and noting that Fy = TSxx to lowest order gives f{x,t) for the unsteady 

sail including gravity 

= (8 .2) 

Substituting into the thin aerofoil approximation for the sail, equation (4.3), and 

using the non-dimensional variables given in Section 4.2 along with g = eU^L^^g* gives the 

unsteady sail equation taking into account the effects of gravity 

+ % _ a) = 1 J ' + 9 
TT Jo T] — X 

where the asterisks denoting the non-dimensional variables are omitted. The fixed end 

boundary conditions for this problem are the same as for the normal unsteady sail namely 

5(0, t) = S{l,t) = 0. The Kutta condition states that must be equal to zero and 

therefore equation (8.2) gives — P'^Sxx{i,t) + 5 = 0. Since the trailing edge of the 

flag is fixed, the Kut ta condition for the unsteady flag including gravity is Sxxi^^t) = gl3~'̂ ; 

this boundary condition for the stiff sail is therefore a function of time since the tension of 

the sail, /3, changes as the sail moves. 

Many other cases of the sail under the influence of body forces may be considered by making 

simple adjustments to the force balance of a sail element. One such example is the inclusion 

of porosity which was originally introduced into the sail equation by Thwaites(1961) [46]. The 

effects of porosity were further analysed by Barakat(1968)[2] who found that even sails with 

a small porosity produce very different results from that of a non-porous sail. 

8.2 T h e J i b of F in i te Mass 

Variations to the unsteady sail problem may also be made using the boundary conditions and 

length condition. For example Haselgrove &: Tuck(1976)[18] analysed the unsteady, zero-mass 

jib as previously explained in Section 5.1.1. The resulting steady jib equation of Haselgrove 

& Tuck is essentially the same as the steady sail equation of Thwaites(1961) [46] the only 

modifications being the boundary condition at the leach of the sail and the length condition. 

The equation for the unsteady jib of finite mass is thus easily obtained by combining the 

work of Chapter 4 and Haselgrove & Tuck(1976)[18]. The resulting relation is the unsteady 

sail equation (4.10) but with boundary conditions for the sail ends as follows 

jr*(o,<') = 0 

and 
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and the Kut ta condition 

= 0 

where R* = R/L. The length condition for the unsteady jib is therefore 

1 1 
2 

8.3 T h e D r y i n g of a Wet Sail 

This problem concerns the drying of a sail that contains a volume of fluid and is pertinent 

to the study of the process of drying fibres and sheets. The drying process is performed 

by the outer flow passing over both the upper and lower surfaces of the sail. The pressure 

difference across the sail forces the water within the membrane to the surface where it can be 

successfully removed. The primary considerations here are therefore the porosity of the sail 

to the fluid, the effect that the mass of the water has on the shape of the sail and the bound 

on the thickness of the sail in order for thin aerofoil theory to still remain valid to leading 

order. 

The transport of the water through the sail is considered here to be governed by Darcy's 

Law which states that the velocity of the fluid is proportional to the pressure difference across 

the sail. Denoting the fluid velocity within the sail by q and the pressure difl'erence by Ap 

Darcy's Law is 

(&3) 
H d 

where k is the relative permeability of the sail material to the fluid, /j, is the dynamic viscosity 

of the fluid and d is the thickness of the sail. Equation (8.3) immediately reveals a potential 

problem which is the fact that Ap changes sign as the sail changes shape and, moreover, the 

pressure difference may not always be of the same sign in the region 0 < a; < 1 particularly if 

the sail is in a wavy shape. Hence it is possible that there exists two free boundaries in this 

problem and there may be periods when the sail is not drying at all but the sail still contains 

a region of fluid as illustrated in Figure 8.1. 

The method of how the water is removed from the surface of the sail is another complica-

tion. Several academic papers have been written on this subject but most rely on empirical 

measurements rather than rigorous proof. Hansen(1992)[16] studies the drying of laundry 

where the wet specimen is placed in a stationary but hot environment and hence free con-

vection dries the material. The moving boundary between the wet and dry sections of the 

material is analysed and an experiment performed on a T-shirt. Nuh & Brinkworth(1997)[34] 

analyse the drying of crops, in particular Soya beans. The individual beans are assumed to 

be spherical and immediately surrounding the grain is a vapour/air region (named vair region 

in this Nuh & Brinkworth's document) where the water content of the outer flow is high. A 
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Figure 8.1: The Drying Sail Problem 
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key assumption in this work is that the moisture profile is parabolic in shape which simplifies 

the analysis. The crucial variable is the partial vapour pressure within the vair region since 

the water content of the air surrounding the grains has a direct effect on the rate at which 

the water is removed from the surface of the grain. A more complicated model still is given 

by Fernandez & Howell(1997) [9] who state that the moisture may exist as vapour, free liquid 

or bound water within the porous material itself. 

A suitable choice of drying model is difficult and the choice of whether a vapour/air region 

exists in the wet sail problem is indeed a matter that requires careful consideration. At the 

time of writing, no literature could be found on the problem where the material is dried from 

both sides nor the cases where the pressure gradient changes sign or the material itself signifi-

cantly changes shape. A more in-depth study of the drying sail problem will almost certainly 

require the thorough analysis of paradigm problems involving the above complications before 

attempting the full sail problem. 

Another consideration is the bound on the thickness of the sail such that Darcy's Law may 

be applied yet the assumptions of thin aerofoil theory are not violated. In order for the model 

to be valid the rate at which fluid/air is expelled from the sail must be much less than the 

vertical component of the outer, perturbed flow around the sail. The analysis of Section 4.2 

shows that the vertical component of the outer flow velocity is of order elloo and therefore, 

denoting the velocity of the expelled fluid by Vi, gives: 

The pressure gradient across the sail is Ap = 0{€pU^) and hence using Darcy's Law: 

Hence the bound on the sail thickness is given by 

^P^oo 

for the fluid flow out of the sail to be negligible when compared to the flow surrounding the 

sail. Typical values of the relative permeability for materials other than those of rock are 

difficult to f i n d since most research in this area concerns underground geothermal systems. 

Typical values for sand and rock range from 10~®m^ to Taking a value of /c = 

10~^°m^ and stipulating that the fluid within the sail is water and that the outer flow is 

moving at 1 metre per second, the bound on the sail thickness is d 3> 10~'^m. This is 

encouraging since a sail with a thickness of a few millimetres is sufficiently wide such that 

the pressure gradient across the sail is unable to expel the fluid at a speed which influences 

the outer flow. 
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The unsteady sail equation (4.10) is only valid for a sail of constant mass. If the mass of 

the fluid within the sail is to be considered in the drying analysis then the sail equation needs 

to account for this. The derivation presented in Section 4.2 is still valid in this case with the 

exception that the force balance, equation (4.4), becomes 

where m{t) is the total mass of the sail. Denoting the constant mass of the sail material 

by ps per unit length and the time-dependent mass of the fluid within the sail by Pf{t) (i.e. 

m(t) = Ps + Pf{t)) the force balance becomes 

4- . 

Therefore the mass of the water and the mass of the sail are of the same order of magnitude 

which is realistic if the fluid within the sail is water as noted by Hansen(1992)[16]. The 

analysis of Section 4.2 remains valid for the terms involving Fy and Ap and hence the required 

expression for f{x,t) is 

() = 1 + (pa + - T g i i } . 

Substituting this into the thin aerofoil approximation for S in terms o f / , equation (4.3), and 

using the additional non-dimensional variables T = U^psP*'^, Pg = 2pLpJ^ and p*j = 2pLpJ^ 

the sail equation for a sail of time-dependent mass is, to lowest order 

TT Jo T] - X 

where the asterisks are omitted. Note that ps = l / p in the constant mass unsteady sail 

equation and hence for pf = 0 equation (4.10) is recovered, as expected. 

8.4 The Stiff Sail 

The sail described in Chapters 3 and 4 is of zero bending s t i f f n e s s and this section extends 

the analysis to include the flexural rigidity of the sail material. No published work can be 

found on this subject at the time of writing. 

8 . 4 . 1 D e r i v a t i o n o f t h e U n s t e a d y S t i f f S a i l E q u a t i o n 

T h e d e r i v a t i o n o f t h e flag e q u a t i o n p r e s e n t e d i n S e c t i o n 6 . 3 i s c o m b i n e d h e r e w i t h t h e u n s t e a d y 

sail analysis of Section 4.2. The forces acting on an element of the sail are illustrated in 

Figure 6.2 along with the additional force due to tension. Denoting the component of the 
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tension in the ^-direction by Fy and applying Newton's Second Law in the vertical direction 

gives 

Qx 4" Fy 4- Ap = p Sit 

and taking moments about x gives 

Mx + <5 = 0 

where Q{x,t) is the shearing force, Ap is the pressure difference across the membrane, p' is 

the mass of the sail per unit length, M{x, t) is the bending moment and S{x, t) is the position 

of the sail. Following the derivation of the flag in Section 6.3 and noting that Fy = TSxx to 

lowest order as shown in Section 3.2 gives 

/(x, t) = — [p Sti — TSxx + IfSxxxx) • 

Substituting this into equation (6.3) and using the non-dimensional variables presented in 

Section 6.3 along with T = (3*'^p'U^ from Section 4.2 gives, to lowest order, the unsteady 

equation for the sail of finite bending stiffness 

The boundary conditions of this equation require careful consideration and these are discussed 

in the next section. 

' * n V o n ' - z * 

8 .4 .2 B o u n d a r y C o n d i t i o n s 

The flag described in Chapter 6 was either hinged or clamped at the leading edge. Con-

sequently the stiff sail may be either hinged or clamped at bo th ends giving four possible 

regimes to analyse: hinged at both ends, clamped at both ends or a combination of methods 

at either end. Equation (8.5) requires five boundary conditions if it is to be inverted, three 

of which are independent of the method of attachment at either end: the ends of the sail are 

fixed giving S*{0,t*) = S*{l,t*) — 0 and the Kut ta condition states that = 0, i.e. 

since the ends of the sail are stationary. The second boundary condition at the leading edge 

depends on the method of attachment. As detailed in Section 6.3.1 the boundary condition 

for the sail that is hinged at z* = 0 is 

g : . , . ( o , r ) = o 

and if the sail is clamped at the leading edge 

g : . ( o , r ) = o. 
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Similarly the remaining boundary condition at the trailing edge is 

5 ' % . ( i , r ) = o 

if the sail is hinged and 

should the sail be clamped. 

The final condition required is the condition that the length of the sail remains constant 

since the material of the membrane is assumed to be inextensible in the current analysis. 

The length condition for the sail remains the same regardless of the bending stiffness of the 

material and is given in equation (3.8). This condition is required to find the tension within 

the sail and is implicit in terms of (3* thus imposing severe restrictions on the numerical 

method used. 

Some discussion is warranted here to justify the boundary conditions used for the sail in 

the absence of bending stiffness in Chapters 3 and 4 since the equation analysed in this 

case requires three boundary conditions: the fixed end conditions plus the Kut ta condition. 

The boundary conditions for the method of attachment at the ends of the sail have not 

been ignored, however. The sail in this case is hinged at both ends and therefore the bending 

moment must be equal to zero at both x = 0 and x = L. Equation (6.7) states that M{x,t) — 

lSxx{x. t) and since 7 = 0 in this case the bending moment is equal to zero throughout the 

sail including the end points and thus the attachment conditions are automatically satisfied. 

8 .4 .3 T h e S t e a d y , S t i f f S a i l 

The steady version of equation (8.5) is 

2 S*S*" 
= l - - / ' iZEZZLZZ-ZAilob,* (8.6) 

TT Jo 77* — X* 

where tz* = = 2pL^U^'y''^ is the ratio of the outer flow momentum to the flexural 

rigidity of the flag and A* = = 2pLU^T~^ is the ratio of outer flow momentum to the 

tension within the sail. Both of these non-dimensional ratios are used in the earlier analysis 

of the steady flag and the steady sail respectively. The boundary conditions are 

j?*(0) == (?*(!) == 0 

corresponding to the fixed ends of the sail, the Kut ta condition 

K* A* 

a n d ( E i t h e r 
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o r 

y*' g*'(0) = 0 

if the sail is hinged or clamped at the leading edge respectively along with 

= 0 

if the sail is hinged at the trailing edge or 

= 0 

if it is clamped at x* = 1. However, before numerically approximating equation (8.6) it is 

illustrative to first analyse the limiting cases for k* , the ratio of the outer flow momentum to 

the flexural rigidity of the sail material. Equation (8.6) in the limit as k* tends to infinity, i.e. 

the flexural rigidity of the material vanishes in comparison to the density of the outer flow, 

becomes the steady sail equation (3.6) as expected. The limit as k* tends to zero, however, 

requires the careful consideration presented in the next section. 

8 . 4 . 4 T h e S a i l o f L a r g e F l e x u r a l R i g i d i t y 

In the limit as k* tends to zero but a remains of order one, the steady stiff sail equation 

simplifies to 

= 0 

where the asterisks are here and henceforth omitted for clarity. The solution for each of the 

four attachment regimes is therefore S{x) — 0 since the outer flow is unable to influence the 

curvature of the sail. This is not a solution for the inextensible sail, however, since the length 

condition is no longer satisfied and hence for order one values of a in this limit the stiff sail 

equation has no solution. 

Considering large values of a , i.e. Ka = 0(1), equation (8.6) becomes 

TT To 7? 

This equation may be inverted using equation (B.3) to give 

.1 gWM 
-f —drj = —na. 
Vo n - z 

S""{x) = KaJ f- ^ 
y / x y j l — X 

but the Kut ta condition, equation (8.7), cannot be used to find C here. This is because a 

large angle of incidence implies that the sail is under large tension, yet A has been assumed 

t o r e m a i n o f o r d e r o n e i n t h e a b o v e e q u a t i o n . L e t t i n g A b e o f t h e s a m e o r d e r a s K t h e s t e a d y 

stiff sail equation reduces to 

A V z 
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where equation (B.4) has been used to calculate the value of the singular integral exactly. 

The Kut ta condition implies that C = 0 and the resulting equation is a fourth-order, non-

homogeneous ordinary differential equation for S{x), the solution of which is easily found 

using standard methods. However, it is more illustrative to numerically approximate the 

steady stiff sail equation for order one values of k, which is achieved in the following section. 

8 . 4 . 5 D i s c r e t i s a t i o n o f t h e S t e a d y S t i f f S a i l E q u a t i o n 

The steady stiff sail equation (8.6) is inverted using equation (B.3) to give 

where the Kut ta condition, equation (8.7), has been used to calculate the inversion constant. 

This is similar to the steady flag equation (6.14) and hence the method employed in Sec-

tion 6.5.2 to discretise the equation of motion is adopted here. Therefore the approximate 

version of equation (8.6) is 

1 f 5*2+2 — + 6Si — 4:Si-i + Si-2\ 1 I Si^\ — ISi + Si-\ 

(^x)'^ ) A V 

fc=l ^ 

for 2 = 1 , . . . , n — 1 where Qik is given by equation (3.14) and the unknown quantities are 

since 5o = S'n = 0 denote the fixed ends of the sail. Hence the boundary 

conditions are required to eliminate the fictitious points and, as is discussed in Chapter 6, 

depend on the method of attachment at the ends of the sail. Utilising the elimination process 

developed in Section 6.5.2 at the leading edge of the sail gives, for i = 1 

1 (S^,— 452 + aS\ \ 1 fS2- 251 \ 1 r) (Q Q \ 

S n - i = OL\Jn — 1 ( 8 . 9 ) 

where a = 5 if the sail is hinged at the leading edge and a = 7 if the sail is clamped at a: = 0. 

Similarly at the trailing edge of the sail the discretised equation is 

1 ( — 46'n_2 + ffn-S ^ 1 f ~'^Sn-l + Sn~-2\ , 1 ^ fa q \ 

(fc)3 — ( S p — ) " 

- = - A ? (8-10) 

where 6 = 5 or 7 for a hinged or clamped sail at the trailing edge respectively. 

T h e r e f o r e e q u a t i o n s ( 8 . 9 ) . ( 8 . 1 0 ) a l o n g w i t h ( 8 . 8 ) f o r z — 2 , . . . , n — 2 f o r m t h e s y s t e m o f 

n — 1 l i n e a r e q u a t i o n s f o r t h e u n k n o w n s 5 ' ; ,% = l , . . . , n — 1 . T h i s s y s t e m i s s o l v e d n u m e r i c a l l y 
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for a given n, k and a and the length condition is used to find the value of A tha t ensures tha t 

the length of the sail is correct. The results presented below were calculated using n = 200 

and all four at tachment regimes are examined. 

8 .4 .6 R e s u l t s f o r t h e S t e a d y S t i f f Sa i l H i n g e d a t B o t h E n d s 

This case is analogous to the steady sail problem derived in Chapter 3 in tha t both ends 

of the sail are permit ted to freely pivot and this provides a useful check of the numerical 

procedure derived above. Table 8.1 depicts the values of A calculated for the positive concave 

sail shape corresponding to a — 0.6. 

n oo (inext) 1 0 0 0 1 0 0 8 0 6 0 5 0 4 0 20 1 8 

A L 7 7 9 1 . 8 1 2 2 J 5 2 2 . 2 7 1 2 . 5 0 0 2 . 7 2 1 3 . 1 3 8 1 & 6 2 5 & 2 0 

Table 8.1: Values of A for the Positive Concave Sail Hinged at Both Ends at a = 0.6 

This table shows tha t as k decreases, i.e. the flexural rigidity of the sail increases, A 

increases and for K < 18 no numerical solutions can be found. This agrees with the analysis 

of Section 8.4.4 which states that there is no solution in the limit as k tends to zero since the 

sail is so stiff tha t the outer flow is unable to influence it. 

Figure 8.2 depicts the positive concave and wholly negative sail shapes for both the solution 

of zero flexural rigidity and the stiff sail with k = 50. One important feature of this plot is 

tha t the inflection in the wholly negative sail is no longer present when the stiffness of the 

sail is included and thus the solution for k = 50 is negative concave. 

Another interesting feature of including the flexural rigidity of the sail is illustrated in 

Figure 8.3 which depicts the plot of A against a for the case where k = 50. This plot shows 

tha t the positive concave solutions, given by the lower branch of this curve, exist for all values 

of a as is found for the zero flexural rigidity sail in Chapter 3. The value of A corresponding 

to a — 0 has increased from 2.316 for the sail of zero flexural rigidity to 4.303 in this case. In 

addition, there exists a range of a (0 < a < 0.81) for which negative concave solutions exist, 

as discussed above. However, the higher mode (wavy) solutions witnessed in Chapter 3 do 

not exist in this case owing to the fact that the curvature of such sails cannot be achieved if 

the flexural rigidity of the sail is taken into account. 

8 .4 .7 R e s u l t s f o r t h e S t e a d y S t i f f Sa i l C l a m p e d a t t h e L e a d i n g E d g e a n d 

H i n g e d a t t h e T r a i l i n g E d g e 

In this case, no numerical solutions were found for k < 50 and the only solution for k = 50 

is the wholly positive solution. Various sail shapes for a = 0.6 are presented in Figure 8.4. 
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Zero Flexural Rigidity 
K = 50 

0 

Figure 8.2: The Sail Hinged at Both Ends: Zero Flexural Rigidity and k = 50 (a = 0.6) 
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Figure 8.3: Plot of A Against a for the Stiff Sail Hinged at Both Ends with k = 50 
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K = 1000 
<=100 
K = 50 

S(x) 0 

0.2 0 . 4 0.6 0.8 

Figure 8.4: The Stiff Sail Clamped at the Leading Edge and Hinged at the Traihng Edge 

(a = 0.6) 

The effect of clamping the leading edge is that S'{x) near x = 0 decreases as k decreases, as 

expected. In order for the length of the sail to be correct implies that S'{x) near the trailing 

edge increases. For k. < 50, however, the sail is unable to adopt the curvature required 

to support the inflection introduced by clamping the leading edge and hence no solution is 

possible. 

8 .4 .8 R e s u l t s f o r t h e S t e a d y S t i f f Sa i l H i n g e d a t t h e L e a d i n g E d g e a n d 

C l a m p e d a t t h e T r a i l i n g E d g e 

The numerical solutions of this case reveal that unlike the previous problem, no wholly 

negative solutions exist for k < 100 as shown in Figure 8.5 which depicts the sail shapes 

corresponding to q = 0.6. This is undoubtedly due to the fact that the K u t t a condition is 

enforced at the trailing edge of the sail in this analysis. Similar to the results of the previous 

section, clamping the sail creates an inflection which the sail is unable to adopt for small 

values of k. 
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K = 1000 
K = 500 
K = 50 

Figure 8.5: The Stiff Sail Hinged at the Leading Edge and Clamped at the Trailing Edge 

(a = 0.6) 

8 . 4 . 9 R e s u l t s f o r t h e S t e a d y S a i l C l a m p e d a t B o t h E n d s 

The effect of clamping one end of the sail is that an inflection is introduced into the sail shape 

near the clamped end. Clamping the sail at both ends, therefore, severely restricts the sail in 

that it must be sufBciently flexible to cope with these inflections. This sail has no solutions 

for K < 150 whereas all of the three previous cases had solutions for k > 50. This is owing to 

the fact that as the sail gets stiffer it is unable to adopt a shape that ensures that the length 

of the sail is correct. This is best illustrated in Figure 8.6 which shows the wholly positive 

and wholly negative shapes for various large values of k, under the angle of incidence a — 0.6. 

It should be noted that the wholly positive solution is the only solution for k = 150 and that 

no solutions could be found for k less than this figure. 

The main feature of the wholly positive sails in this case is that as k decreases the effect 

of the clamps becomes more significant, as expected. Hence as the flexural rigidity of the 

sail material increases further the sail is unable to adopt a shape where the excess length is 

correct as shown is Section 8.4.4. 
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K = 1000 
K = 500 
K = 1 5 0 

0 

Figure 8.6: The Stiff Sail Clamped at Both Ends (a = 0.6) 

8.5 Conclus ions 

This chapter introduces the main variations to the sail problem that the author has analysed 

to date. The problems of including gravity and the jib of finite mass are modelled by trivial 

modifications to the boundary conditions and the length condition. It is not instructive to 

solve these problems within this thesis since the sail equation has not changed significantly 

from the standard sail problem of the earlier chapters. 

The drying of a wet sail problem is, in contrast, a much more difficult problem solely 

due to the complexities involved in the modelling of the drying process. The problem of 

including the mass of the water within the sail is simply a modification of the force balance 

and equation (8.4) may be numerically approximated for a given pf{t). The equation required 

to close the system must be the product of a more in-depth analysis than that presented here. 

The analysis of the stiff sail shows that including bending stiffness into the analysis of the 

steady problem produces results that are quite different to those of the sail of zero flexural 

rigidity. However, for k < 50 there are no solutions regardless of the method of attachment 

at the fixed ends. This is another drawback of using the stipulation that the material of the 

sail is inextensible since the membrane is unable to adopt a shape that satisfies both the 

rigidity constraints of the sail and the length condition simultaneously. The most immediate 

r e s u l t o f i n c l u d i n g b e n d i n g s t i f f n e s s i s t h a t t h e w a v y s a i l s h a p e s o b s e r v e d i n C h a p t e r 3 a r e 

154 



no longer solutions if the flexural rigidity of the membrane is increased. This is because the 

stiff sail is unable to adopt the curves required to achieve such shapes whilst ensuring tha t 

the excess length of the sail is correct. By clamping the sail at one or both ends a further 

restriction on the success of the problem is introduced since the sail must bend so that the 

inflection introduced by the clamps is achieved whilst adopting sufficient curvature such as 

to ensure the correct membrane length. This is confirmed by the observation that the range 

of K for which there exists solutions for the sail that is clamped at both ends is smaller than 

in the other three cases. 

The unsteady stiff sail may be easily discretised using the numerical schemes detailed in 

Chapters 3 and 6. However, it is the presence of the wavy solutions that provided the most 

interest in the analysis of Chapter 4 and such solutions are absent in the case of the steady 

stiff sail for reasonably small values of k. Therefore the numerical approximation of the 

unsteady stiff sail is not undertaken within this thesis. 
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Chapter 9 

Conclusions 

The work of this thesis shows that the singular partial integro-differential equations that 

arise when utilising thin aerofoil approximations in unsteady problems are extremely difficult 

equations to solve. Indeed, no analytical solutions have been found to any of the singular 

integral equations contained within this thesis at the time of writing. The use of numerical 

methods, however, is shown to produce results to a satisfactory degree of accuracy whilst not 

being computationally expensive. 

The results for the de-icing by slot injection problem discussed in Chapter 2 show that 

the ice near the trailing edge of the slot is melted faster than ice downstream of the slot, as 

expected. This produces a "rounding-off" of the ice at x = L and it is this that causes the ice 

layer to retract away from the slot as time increases. The revised model to account for this 

retraction shows that the ice is quickly removed altogether once the ice layer has started to 

retract away from the slot. The asymptotic equation for thin ice layers is solved analytically. 

The sail problem of Chapters 3 through 5 extends previous work on the subject by: (1) 

extending both the steady and unsteady problems to analyse extensible sails, (2) analysing 

the eigenvalues for large values of the tension parameter, (3) presenting unsteady results for 

an angle of incidence that changes between two angles that have multiple steady solutions 

and (4) performing a linear stability analysis of the unsteady sail equation for both the 

inextensible and extensible sails and the sail of large mass. 

The conclusions of the linear stability analysis (confirmed by the numerical experiments 

performed in Chapter 4) are as follows. All of the wavy sail shapes are linearly unstable to 

small perturbations and diverge monotonically towards a positive concave shape regardless 

of the sail's extensibility and the presence of excess length. For the inextensible sail, the pos-

itive concave and wholly negative solutions are linearly stable and converge in an oscillatory 

motion with decaying amplitude. In the case of the extensible sail with slack, the point of 

marginal stability is a function of the extensibility of the sail and therefore a proportion of 
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the non-wavy sails are linear unstable. However, these unstable sails are found to diverge 

with an oscillatory motion and the rate of divergence is relatively slow when compared to the 

monotonic divergence of the wavy solutions. For the extensible sail without excess length, the 

positive concave sails are linearly stable (oscillatory motion) and all of the wholly negative 

sails are linearly unstable although the rate of divergence is relatively slow when compared 

to the motion of the wavy solutions. 

The analysis of the flag in Chapter 6 modifies previous work on the topic to include the 

mass and bending stiffness of the flag material. The flag of zero bending stiffness is proved to 

be unstable to short wavelength perturbations (which is obvious from everyday observations 

of flapping flags) whilst including bending stiffness produces stable results under short wave-

length perturbations. The unsteady flag equation with bending stiffness and finite mass is 

derived by utilising simple beam theory to analyse the forces acting on the flag. The steady 

solutions for the hinged flag are trivial since the flag merely aligns with the outer flow but 

a flag that is clamped at the leading edge has steady solutions with constant sign curvature 

throughout and the deviation from the z-axis depends on the flexural rigidity of the flag. 

The explicit scheme derived for the unsteady flag equation has a major drawback in that the 

Courant number of the method dictates that a relatively small number of mesh points must 

be used in order to analyse the flag over reasonable time periods. Numerical experiments 

were performed, the results of which agree with the linear stability analysis of Chapter 7. The 

marginal stability curve for the flag is quantitatively similar for both methods of attachment 

at the leading edge. It is found that the values of both the mass and flexural rigidity of the 

flag are crucial for linear stability. Some unstable flags adopt a first order mode solution as 

time advances (i.e. there exists one point on the flag that is virtually stationary and the 

portions of the flag either side of this point move in opposite directions). For sufficiently 

small values of the mass and flexural rigidity, higher order mode solutions exist which was 

confirmed using the numerical procedure described above. 

The variations of the unsteady sail problem analysed in Chapter 8 are illustrations of 

how the work on the sail problem could be extended; complete solutions are not presented 

but indications as to how the problems may be solved are suggested. The most extensively 

analysed problem in this chapter is the sail including bending stiffness. For this problem four 

possible attachment regimes exist: (1) hinged at both ends, (2) clamped at both ends, (3) 

hinged at the leading edge and clamped at the trailing edge and (4) clamped at the leading 

edge and hinged at the trailing edge. Numerical solutions for the steady, stiff sail for all 

of these regimes are presented and it is found that wavy solutions no longer exist. This is 

because the sail is unable to adopt the curvature required for such solutions whilst ensuring 

that the length condition is adhered to. 
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9.1 R e c o m m e n d a t i o n s for Fur the r Research 

One extension of the analysis of de-icing by slot injection presented here is to consider the 

case where the excess pressure within the slot is a function of time; this is unsteady de-icing 

by slot-injection. However, before undertaking this problem it should be noted that this is an 

extension of the unsteady slot-film cooling work of Lattimer(1996)[25] who found that this 

simpler problem is highly unstable. 

The variations on the sail problem discussed in Chapter 8 could be analysed in further 

depth, in particular the unsteady stiff sail. However, the absence of wavy solutions implies 

that this may not provide an extensive area for further research. The drying of a flexible sail 

is a complicated problem because a suitable model of the drying process seems to be absent 

from the current literature; such a model would have to cater for pressure gradients that 

change in sign as time advances. 

The flag problem could be easily extended to include the e f f e c t s of gravity. In this case, 

the steady hinged flag would not necessarily align with the outer flow thus providing more 

interesting solutions. In addition, the resistance of the hinge mechanism itself could be 

introduced. One method would be to stipulate that the resistance of the hinge is proportional 

to the speed of the flag near the leading edge. This could have drastic effects on the stability 

properties of the hinged flag since any significant motion of the flag would be resisted. 

Areas that future research could also analyse is the extension to three-dimensions of all 

the physical systems analysed within this thesis and also the e f f e c t s of viscosity could be 

investigated. Whilst there is a lot of current research activity on the sail problem, the flag 

is being less intensively analysed despite the obvious industrial applications such as textile 

manufacture. Therefore, extending the flag problem to three dimensions or including viscosity 

would provide the reader with interesting and challenging ways to extend the work of this 

thesis. 
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Appendix A 

T h e Der ivat ion of t h e S t r e a m 

Func t ion for Small P e r t u r b a t i o n 

P r o b l e m s 

One method of deriving the equation of motion for a problem using thin aerofoil theory is 

to utilise the stream function of the flow. This method is particularly useful because several 

quantities of the flow may be easily derived from the stream function, for example the fluid 

velocity and the velocity potential. The stream function for the perturbed flow consists of 

a maximum of three components depending on the nature of the perturbation. These three 

components correspond to the undisturbed outer flow, the lift generated by the perturbation 

and the thickness of the perturbation. 

The outer flow is considered to be a steady and irrotational flow of an incompressible, 

inviscid fluid with constant speed ?7oo) density p and static pressure poo- The total pressure 

of the flow is defined as ptoo = Poo + The outer flow is assumed to flow past a 

body which causes a 'small' perturbation to the outer flow and the region over which the 

perturbation acts is denoted by R. With this type of flow the main consideration is often the 

shape of the dividing streamline which is denoted by y = S{x) unless otherwise stated. The 

order of magnitude of S{x) is given by e" where e -C 1 and n is a positive integer. 

There are two classes of small perturbation problems: (1) two-dimensional half-space 

problems where the outer flow takes place in the region {—oo < 2; < oo,y > 0} and (2) 

two-dimensional whole-space problems where the outer flow takes place in the whole of the 

(x,y)-plane. In these problems thin aerofoil theory states that to lowest order the boundary 

conditions that exist on R may be satisfied on the line y = 0- In addition, a small parameter, 

e, must be defined such that the perturbation to the free stream is 0{e). 
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A . l T h e S t r e a m Function for a P e r t u r b a t i o n t h a t Genera tes 

Lift 

Thin aerofoil theory states that a perturbation that produces lift may be modelled as a 

distribution of vortices located on R. Suppose that R lies on the interval a < x < b then, 

to lowest order, the perturbation may be modelled as a distribution of vortices lying on the 

x-axis between x = a and x = b. Since the strength of each vortex is small it is denoted 

here by ef{x) where f{x) is assumed to be order one. Hence the complex potential, w, for a 

vortex situated at x = 77 is given by 

w = — ln(z — 1]). 
Ztt 

Letting z — x + iy gives, for the distribution of vortices: 

and 

These expressions for the velocities of the flow permit the derivation of the stream function 

for a perturbation that produces lift: 

^ = + (A.l) 

A.2 T h e S t r e a m Function for a P e r t u r b a t i o n t h a t has Thick-

ness 

Suppose that the region R is defined as in the previous section. Thin aerofoil theory states 

that to lowest order the region R may be modelled as a distribution of sources along the 

cc-axis between x — a and x = b. Denoting the strength of each source be eg{x), where g{x) 

is of order one, the complex potential of the flow for a source situated at a; = 77 is 

w = —-— ln(z — rj). 
ZTT 

Therefore the velocities for the flow are: 

and 

27r Va (a; - 7/)̂  + 

These may be used to derive the following expression for the stream function of a perturbation 

that has thickness ^ 

•)/) = - ^ / 5(77) arctan ( — - — ] dr/. (A.2) 
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A . 3 T h e S t r e a m Funct ion for a General P e r t u r b a t i o n 

Equations (A.l) and (A.2) are used to construct the stream function for a general perturbed 

flow. Denoting the stream function for the outer, unperturbed flow by V'oo gives 

e /-fi ffn) 
= Voo(a:,2/) + ^ y +1/̂ )̂ 7? 

+ - ^ / 5(77) arctan f — - — ( A . 3 ) 

A.4 A s y m p t o t i c Behaviour of t h e Fluid Velocity 

The velocity of the fluid in the x and y directions can be easily obtained from the stream 

function as follows: 

and 

When considering the outer flow thin aerofoil theory states tha t the perturbation is simply 

the z-axis to lowest order. Therefore the limits of u and u as y tends to zero are important 

quantities. An important relationship is that 

l i m / y — ^ ^ ' 2 ^ 2 ^ % = TT / - ,7 )o(7) )d77 
o/a (a ; -7 ; )2+; /2 

where a{r}) is an arbitrary function of 7̂  and <5(2: — rj) is the Dirac delta function. Hence the 

limits of u and v as y tends to zero are: 

g()7) 

and 

l i m ( u ) = ( ^ 0 0 ) ^ ( 1 , 0 ) ± ^ / ( i ) + ^ 
y^0= I In Ja X ~ T] 

l i m ( r ) = - ( V ' o o ) i ( 3 ; , 0 ) - ± ( A . 5 ) 
ZTT Va a; - 77 2 
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Appendix B 

Invers ion Formulae for Hi lbe r t 

T r a n s f o r m s 

A Hilbert transform is defined as an integral with a Cauchy kernel, i.e. 

jF(%) 

£ -dr]. 
/o % - Z 

Since {rj — x)~^ is not integrable if the point rj — x occurs within the range [o, 6] care must 

be exercised in the treatment of the Hilbert transform. Note that the Cauchy principal value 

is defined as 

r i m l A 
( -+0 - Z % --SC j 

which takes into account the symmetry of the singularity and is a particular trait of Hilbert 

transforms. 

Hilbert transforms occur in a variety of different problems, not only the aerodynamic 

problems analysed within this thesis. Fitt et a/.(1985)[13] derive an equation containing a 

semi-infinite Hilbert transform that governs the slot-injection of a fluid into a cross-flow. 

This work is expanded on in both this thesis and in Fitt & Lattimer(1997)[12] who analyse 

a high-Reynolds-number cross-flow combining slot-injection and slot-suction. The governing 

equation in this case contains a finite Hilbert transform. Varley & W a l k e r ( 1 9 8 9 ) [ 4 9 ] describe 

several physical systems in which semi-infinite Hilbert transforms arise such as the Dock 

problem, a heat conduction problem and Stewartson's equation given by 

y w . i r fw, , 
which is proposed in Stewartson(1960). Varley & Walker derive closed-form solutions to a 

certain class of semi-infinite Hilbert transforms. Other diverse problems that include Hilbert 

transforms include the study of cracks in geothermal reservoirs as in Fitt et a/. (1995)[10] and 
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the high-Reynolds-number flow down a backwards facing step. This problem is fully analysed 

in O 'Malley et aZ.(1991)[35]. 

The majority of the above works, particularly the ones published since 1980, employ numer-

ical methods to approximate the solutions. In order to use numerical procedures the singular-

integral equations are inverted to remove the highest order derivatives from within the Hilbert 

transform. These inversion formulae are given in texts such as Muskhelishvili(1953)[29] and 

Gakhov(1966)[14] and are extensively used throughout this thesis. The inversion formulae 

given below are for finite and semi-infinite Hilbert transforms. 

B . l Invers ion of F in i te Hi lber t T rans fo rms 

A finite Hilbert transform is 

Vo 

i ajy) 

TT To 7; — Z 

where a and /? are arbitrary functions. The multiplication by has been included here 

since all of the Hilbert transforms contained within this thesis are multiplied by this quantity. 

The three possible inversions of this transform are; 

TT 77 (77-3;) \ /3;(l -

where C is an arbitrary constant. 

B . 1 . 1 T w o U s e f u l R e s u l t s f o r F i n i t e H i l b e r t T r a n s f o r m s 

The following results may be calculated using the above formulae: 

TT Jo V 1 - 7? (77 — a;) 

I r II-V dv (B5, 

and 

IT Jo \l rj {r] - x) 

B.2 Invers ion of Semi-Infinite Hi lber t T r a n s f o r m s 

A semi-infinite Hilbert transform is 

TT Vo 37 — 3; 
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The two possible inversions are: 

'8 .6) 

where C is an arbitrary constant. 

B . 2 . 1 A U s e f u l R e s u l t f o r S e m i - I n f i n i t e H i l b e r t T r a n s f o r m s 

It is easily shown that 

. = 0. (13.8) 
If Jo --ic) 
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