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TEMPORAL, SPATIAL, SPECTRAL AND POLARISATION CHARACTERISTICS OF
THE SAR BACKSCATTER FROM REGENERATING TROPICAL FORESTS
by Tatiana Mora Kuplich

The establishment of an accurate global carbon budget and the consequent ability to
understand and predict future environmental change is dependent on knowing the
strength of terrestrial sinks and sources of carbon. Regenerating tropical forests are
one of the major terrestrial carbon sinks as they are found growing quickly and are
sequestering carbon from the atmosphere. Total forest biomass (which includes
above and below ground living mass of plants and litter) is a measure of terrestrial
vegetation carbon content. It follows that to determine the strength of terrestrial
carbon sinks we require information on the location, extent, biomass and biomass
change of regenerating tropical forests. Near-constant cloud cover over the tropics
and an insensitivity to biomass change at relatively low levels of biomass has limited
the use of optical imagery but not Synthetic Aperture Radar (SAR) imagery for the
provision of such information. The biophysical properties of regenerating tropical
forests are related to the temporal, spatial, spectral and polarisation characteristics of
SAR backscatter (6°) and this formed the framework for this thesis. The objectives
were to (i) detect biomass accumulation using the temporal characteristics of ¢°, (ii)
use the spatial characteristics of ¢° (texture) to increase the strength of the
c°/biomass relationship and (iii) use the spectral and polarisation characteristics of ¢°
to classify a surrogate for biomass in regenerating tropical forests (optical Landsat
TM data were also included to widen the spectral analysis).

Although no biomass change was detectable using temporal ¢°, a seasonal pattern
in o° for young regenerating forest was detected, as a result of changing water
content in both vegetation and soil. The influence of recent rainfall was confirmed to
be an important source of variation in ¢°, suggesting the use of SAR data from the
dry season only.

Using simulated data, seven texture measures showed potential for strengthening
the c°/biomass relationship. However, when applied to real SAR data only GLCM
(Grey Level Co-occurrence Matrix) derived contrast strengthened the c°/biomass
relationship. The addition of GLCM-derived contrast to ¢° potentially increases the
accuracy of biomass estimation and mapping.

Neural networks can be used for the classification of land cover in tropical forest
regions. Classification accuracy of around 80% was achieved using combined
multiwavelength and multipolarisation SAR and Landsat TM bands for 4 land cover
classes (pasture, mature forest, 0-5 years old regenerating forests and 6-18 years
old regenerating forest).

These results demonstrated that multiwavelength and multipolarisation SAR data
could provide information on the location, and extent of regenerating tropical forests.
However an increase in the accuracy of biomass estimation relies on the optimal use
of additional information that resides within the spatial, spectral and polarisation
domains of SAR data.
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CHAPTER ONE

Introduction

Regenerating tropical forests are a major terrestrial sink of atmospheric carbon
dioxide (CO,) that can be located, mapped and monitored using Synthetic Aperture
Radar (SAR) data. In this thesis the temporal, spatial, spectral and polarisation
characteristics of SAR backscatter were investigated for regenerating tropical forests
in Brazilian Amazonia. This introductory chapter explains the rationale and objectives

behind the research and gives a description of the thesis outline.

1.1. Global carbon budget

“Humans are altering the global environment, driving changes in crucial

characteristics at rates largely unprecedented in the history of the Earth...
CO: concentrations have varied widely over geological time, but current
rates of change have not been matched ” (Aber and Melillo 2001, p.533).

Carbon (C) is a key element linked to the transfer of energy through ecosystems.
Concentration of atmospheric CO, in many environments and situations controls the
rates of photosynthesis and thus ecosystem productivity (Aber and Melillo 2001). The
link between rising atmospheric CO, concentration and global climatic change is
related to the role of CO, as a greenhouse gas (GHQG) as it traps thermal radiation

and reduces Earth-space release of energy (Royal Society 2001).

The establishment of an accurate global carbon budget and the consequent ability to
predict future environmental change relies upon the identification and quantification

of all sinks and sources of atmospheric CO, (Tremberth et al. 1996). This is because
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the relationship between emissions of CO, and its atmospheric concentration is
dependent upon the uptake and release of CO, from the ocean and terrestrial
ecosystems (Schimel et al. 2001). The partition of atmospheric CO, uptake between

oceans and land is made with increased confidence (Schimel et al. 2001).

The rise in atmospheric CO, concentration from approximately 280 parts per million
(ppm) in 1880 to a current value of around 370 ppm was caused mainly by burning of
fossil fuels but also by deforestation (IPCC 2001). The warming of the global mean
surface temperature by 0.6° C over the 19" and 20" centuries has led to an
international effort aimed at reducing anthropogenic emissions of CO, and other
GHG. The 1997 Kyoto Protocol is the ultimate commitment of developed nations to
reduce their emissions of GHG by 2008-2012 by 5.2% below their emissions in 1990
(Royal Society 2001). At the present, the ratification of the Kyoto protocol is very
close and delegates from more than 160 countries agreed an official rulebook in the
10™ November meeting in Marrakech, Morocco (Schiermeier 2001). The ratification
of the protocol is still dependent on the leading role played by the United States of
America as the world’'s largest CO, emitter, which refuses to ratify the protocol. The
Kyoto Protocol is expected to come into force before the next World Summit on
Sustainable development, to be held in September 2002 in South Africa (Schiermeier
2001).

Estimates of global carbon budgets with natural and human-induced fluxes for the
1990s are shown in figure 1.1. Uncertainties associated with these budgets are
related to differences in measurement methods. 1 PgC =1 Gt of C (1 Gt = 1 million

tonnes) (Royal Society 2001).

Terrestrial ecosystems are currently acting as a major sink for carbon despite large
releases of carbon due to fossil fuel combustion and deforestation (figure 1.1). The
estimates in figure 1.1 show a land carbon sink of 3.2 PgC, although the partition of
fluxes between natural and human-induced as well as between sinks in tropical and
temperate regions is uncertain (IPCC 2001, Schimel et al. 2001). The balance of the
terrestrial carbon cycle requires detailed information on land use change and

ecosystem processes, particularly for the tropics (Schimel et al. 2001)
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Direct carbon fluxes Indirect carbon
caused by human activity fluxes

Carbon flux from

atmosphere to oceans
1.740.5

Fossil fuel combustion
Net increase in
atmospheric CO.

and cement production \
6.4+0.4
3.2+0.1 \ Sink in tropical
vegetation
Land use change
. 1.9+1.3
{mainly deforestation)

1.7:0.8 Sink in temperate and

boreal vegetation
1.3+0.9

Figure 1.1: Estimate of the carbon budget in the 1990s (in PgCyr"). Error bars denote +1
standard deviation (Royal Society 2001).

The role of land carbon sinks was highlighted by the Kyoto Protocol. Each country
has to meet net emission targets to mitigate the warming threat and climate change.
However, the gross carbon release can be reduced by a limited amount by taking
into account forestry activities such as ‘reforestation, afforestation and deforestation’
carried out since 1990 (Grace and Malhi 1999). The operation of these land carbon
sinks into the future, however, is likely to diminish as a result of, among other factors,

forest maturation (Schimel et al. 2001).

1.2. Tropical forests and the carbon budget

Terrestrial carbon stocks are partitioned between vegetation (550 = 100 PgC) and
soils (1750 + 250 PgC) and together they contain three times as much carbon as the
atmosphere (which contains around 760 PgC) (Royal Society 2001). Figure 1.2
shows the relative proportions of carbon in different terrestrial ecosystems and the

clear dominance of forests as the main carbon pools.
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Croplands
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(559)
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Figure 1.2. Estimate of relative proportions of carbon in terrestrial ecosystems (carbon stock
x total area of ecosystem). To note forests as the main carbon pools. In brackets are

estimates of total carbon stock in PgC (Royal Society 2001).

Forests cover around 31% of the Earth’s land surface and of these around 42% are
in low latitudes with more than half in South America. Forests contain around 80% of
all aboveground carbon and around 40% of all belowground (soil, litter and roots)
carbon (Dixon et al. 1994).

The carbon content of forests can be derived directly from forest biomass estimates
and this enables quantification of the amount of carbon released to the atmosphere
(Brown and Lugo 1992). Forest biomass is defined as the total aboveground and
belowground living mass of all vegetation components (as well as the dead mass of
litter) and so integrates measures of volume and wood density (Brown and Lugo
1990, 1992).

Tropical forests are a major terrestrial carbon sink. There is much uncertainty and
controversy about (i) the amount of carbon they currently hold (following different
estimation methods and a poor global data base) and (ii) the balance in space and
time between their joint roles as sources/sinks of carbon (Lugo and Brown 1992,
Grace and Malhi 1999, Schimel et al. 2001). Nevertheless, climatic modelling
experiments have shown evidence of climatic change following replacement of
tropical forest by pasture in Brazilian Amazonia (Shukla et al. 1990, Gash et al.
1996).
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Tropical forest deforestation is responsible for the release of carbon to the
atmosphere via burning of the vegetation, decay of biomass and from soils
(Fearnside 2000). The timing of carbon release depends on the type of land use
change. If burning follows deforestation, CO, will be released immediately, while
decay of remaining vegetation and organic matter in soils can be a source of CO, for

many years (Detwiller and Hall 1988).

Brazil contained, in 1990, around 41% of all remaining areas of tropical forest in the
world (Fearnside 2000). Agriculture, ranching, hydroelectric dams and selective
logging (building of roads and forest clearance) are the main reasons for
deforestation in that country. The dynamics of the deforestation in Brazil will be
discussed in chapter 4. Annual deforestation rates in Brazilian Amazonia have been
estimated by the Brazilian Institute for Space Research (INPE) since 1988 using
Landsat MSS (Multi Spectral Scanner) and TM (Thematic Mapper) images (table 1.1)
as part of the Deforestation Project (PRODES).

Table 1.1. Mean rate of gross deforestation in Brazilian Amazonia (km?y™)
from 1978 to 2000 (INPE 2000).

78/88 88/89 89/90 90/91 91/92 92/94 94/95 95/96 96/97 97/98 98/99 99/00*
21130 17860 13810 11130 13786 14896 20059 18161 13227 17383 17259 19836

*The mean rate for 1999/2000 was based on linear projection of data from 49 Landsat TM scenes.

Estimating global carbon budgets requires detailed information about the net tropical
forest flux, including deforestation rates and carbon sequestration (as a result of
forest regrowth or growth by CO, fertilisation) (Melillo et al. 1996).

Regenerating tropical forests in Brazil increased in extent during the 1970s and
1980s and are known to be sequestering CO, from the atmosphere (Curran et al.
1995, Houghton et al. 2000). Regenerating tropical forests are mainly a result of
farming practices such as slash-and-burn of forest, shifting cultivation or pasture

creation and eventually abandonment followed by forest regrowth (Fearnside 2000).

To determine the total strength of terrestrial carbon sinks in Brazilian Amazonia
information on the location, extent, biomass and biomass change of regenerating

tropical forests is required.
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1.3. The need for remotely sensed information about regenerating tropical
forests

Remote sensing is a tool used to collect information on and better understand the
environment (Curran et al. 1998). Information from remote sensing can be used to
map, estimate and monitor environmental variables (e.g. vegetation biomass, leaf
area index - LAl) from the ecosystems they represent (e.g. tropical forest).
Information on the location, extent, biomass and biomass change of regenerating
tropical forests is needed for the global carbon budget (Curran and Foody 1994) and
also to help in the struggle to maintain the biodiversity of the remaining forested
areas (Viana 1998).

Depending on the region, regenerating forests at different successional stages and
biomass levels cover between around 6% to 60% of the deforested areas in Brazilian
Amazonia (Batista 1999). Remote sensing data in optical wavelengths has been
used for the assessment and quantification of deforestation in Amazonia (e.g. INPE
2000) and for the characterisation of regenerating forest stages (Lucas et al. 1993,
Curran and Foody 1994, Foody et al. 1996, Lucas et al. 2000). The major limitations
of the use of optical data for regenerating tropical forest studies are (i) near-constant
tropical cloud cover and (ii) an insensitivity of reflectance to biomass change at

relatively low levels of biomass.

The use of synthetic aperture radar (SAR) data can overcome these limitations as
SAR data are independent of cloud cover and there is a known positive relationship

between SAR backscatter and biomass up to relatively high levels of biomass.

The framework for this research is based upon the influence of biophysical properties
of regenerating tropical forests on the temporal, spatial, spectral and polarisation

characteristics of SAR backscatter (), represented as follows:

= f(t, x, A, p) [1.1]

where t refers to the temporal, x to the spatial, A to the spectral and p to the

polarisation characteristics of SAR backscatter.
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1. 4. Research aim and thesis objectives

Taking the known positive relationship between SAR backscatter and forest biomass

as a starting point, the aim of this research was to:

e Understand the information content of the temporal, spatial, spectral and
polarisation domain of SAR backscatter as a precursor to determining the accuracy
with which SAR backscatter can be used to derive biophysical properties of

regenerating tropical forests.

Inventory data from two study areas were used. These study areas were located
close to Manaus City, Amazonas State and Tapajés National Forest, Para State,
Brazil, where forest inventories had already been conducted as part of the Terrestrial
Initiative in Global Environmental Research (TIGER) programme of the Natural
Environment Research Council (NERC). These forest inventory data were used to
describe, among other things, biomass and floristic composition of the regenerating
forest plots and to relate them to SAR backscatter. The JERS-1 SAR dataset were
made available to this research as part of the Global Rain Forest Mapping (GRFM)
project of NASDA, the Japanese Space Agency.

Within the framework discussed in section 1.3 the three specific objectives of this

thesis were:

e Detect biomass accumulation using the temporal characteristics of SAR
backscatter.

e Use the spatial characteristics of SAR backscatter to increase the strength of the
backscatter/biomass relationship.

e Use the spectral and polarisation characteristics of SAR backscatter to classify a
surrogate for biomass of regenerating tropical forests. (Optical data were also

included to widen the spectral analysis.)

The first and second objectives were achieved by relating temporal and spatial
(texture) SAR data of both study areas to regenerating tropical forest biomass. The
third objective was achieved by classifying regenerating forest stages in

multiwavelength and multipolarisation SAR data of the Manaus study area.
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1.5. Thesis outline

The outline of the thesis is illustrated in figure 1.3. In chapters 1, 2 and 3 the rationale
behind the research and basic information that underpins the three objectives are
covered. Chapter 2 and 3 present a review of radar fundamentals and the use of
radar data for regenerating tropical forests studies, respectively, establishing the
theoretical framework for the research. Chapter 4 presents the study areas along
with general information about Brazilian Amazonia. The collection of forest inventory
data and the forest regrowth map used as the ground data for chapter 7 are also
described in chapter 4. The regenerating tropical forests are studied using temporal,
spatial, spectral and polarisation characteristics of SAR backscatter in chapters 5, 6
and 7, respectively. Research findings are discussed in each chapter. Finally, the

conclusions for this research are drawn in chapter 8.
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CHAPTER TWO

Radar fundamentals

RADAR, an acronym for “Radio Detection And Ranging”, is an active device that
transmits and receives electromagnetic energy in microwave wavelengths. The
majority of current operational imaging radars use wavelengths between 1 mm to 1
m. Two distinctive features characterise microwave wavelengths from a remote
sensing point of view: (i) microwaves are capable of penetrating the atmosphere
under virtually all conditions, and (ii) microwave reflections or emissions from surface
materials bear no direct relationship to reflectance in the visible or thermal portions of

the spectrum (Lillesand and Kiefer 2000).

The launch of orbital civil radar systems since the 1970s made possible the
acquisition of a unique view of natural resources over the Earth’s surface. Although
much progress has been made in the fields of both active and passive microwave
remote sensing, they are still important research areas for the environmental

sciences, engineering and the military (Lewis and Henderson 1998).

This chapter introduces some of the concepts of imaging radar remote sensing
considered important for understanding their applications to the study of regenerating

tropical forests.

2.1. Radar operation

Radar remote sensing of the land is made possible by the high atmospheric

transmission in the microwave region of the electromagnetic spectrum (figure 2.1).
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As an active sensor, a radar transmits pulses of energy that illuminates the terrain. It
then records the response returned from the objects or targets on the terrain towards
the sensor (Lewis and Henderson 1998). In a radar system, a transmitter sends out
an amplified pulse of energy (a signal), set by a frequency synthesiser and made a
pulse by a modulator. The pulse is sent to the antenna via a transmit/receive switch,
which also converts the antenna to receive the pulses back (for monostatic radars).
When the pulse is received back (called an echo) after being reflected from the
targets, it is amplified, converted to an intermediate frequency, detected and

processed to generate the final radar product (Kingsley and Quegan 1992).

0.2 um 1.0 pum 10 um 1 mm 10 mm 10 cm 1m
T T T N T ) T
ot t +—N + +
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] ]
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Figure 2.1. Electromagnetic spectrum showing atmospheric windows in the visible, near,

middle and thermal infrared and the microwave regions (Lewis and Henderson 1998).

The signal strength and the time delay between transmission and reception are the
main elements of the radar signal (Trevett 1986). The principles of image formation
are assured by the motion of an aircraft or satellite and the recording of these

incoming signals.

The differences between the many imaging radars used in remote sensing are due
primarily to the antenna which determines the spatial resolution in the azimuth (or
travel) direction (Raney 1998). Imaging radars can be divided in two main categories,
depending on the imaging technique used: Real Aperture Radar (RAR) also called
Side Looking Airborne Radar (SLAR) and the Synthetic Aperture Radar (SAR). For
both radar types the side-looking imaging geometry applies. The radar antenna

illuminates a surface strip (footprint) to one side of the nadir track.
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The area continuously imaged from the radar beam is called the swath and can be
divided into near range (the part nearer to the ground track) and far range. Each
transmitted wave front hits the target surface at near range and sweeps across the
swath to far range. The spatial resolution of a radar system can be defined as the
minimum distance between two targets for them to produce separate backscatter or
to be resolved as individual features (Lewis and Anderson 1998). For imaging radars
the spatial resolution is defined according to the flight direction. Azimuth spatial
resolution is parallel to the flight direction and range spatial resolution is

perpendicular to the flight direction.

Real Aperture Radars transmit pulses from a side-looking antenna and are airborne
rather than satellite borne. The azimuth spatial resolution is dependent on the
antenna footprint and is linearly proportional to the distance between the sensor and
the surface. For high spatial resolution requirements in spaceborne platforms this
technique is not viable because the antenna would need to be impractically large
(Elachi 1988).

The synthetic aperture imaging technique in a SAR uses the movement of the sensor
to simulate a much larger antenna than its actual size. A single antenna moving
along the flight line acquires the data and the effect is similar to using an array of
antennas. The target is illuminated several times from different locations generating
numerous echoes that are recorded coherently (i.e., amplitude and phase as a
function of time) and subsequently combined to synthesise a linear array. A higher
spatial resolution is achieved independently of the distance between sensor and
target and by a small antenna (Elachi 1988). SAR systems can be either airborne or

spaceborne and are much more complex than the RAR systems.

2.2. System parameters

Interpreting radar data depends on an understanding of the interaction between
system parameters and target characteristics. Both RAR and SAR systems have
specific operational parameters which will influence the interaction between the
pulses transmitted and the targets on the Earth’s surface. System parameters are

explained in the next section.
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2.2.1. Wavelength

The electromagnetic spectrum (figure 2.1) illustrates the wide range of microwave
wavelengths/frequencies in comparison to visible wavelengths/frequencies. Most of
imaging radars operate in a single band, defined either by its frequency (preferred by
engineers) or wavelength (preferred by geoscientists) (Lewis and Anderson 1998).
The main reason for a single band operation is the limiting power supply, as radar
systems rely upon their own energy source. The antenna design must be specific for
transmitting and receiving a defined wavelength, which can be a limitation for
operation in multi-band mode. Short wavebands or high frequency transmission
require a large amount of power, precluding their use in spaceborne systems (Trevett
1986). Table 2.1 lists some of the common radar bands along with the equation that

relates wavelength and frequency.

Table 2.1: Common wavelength/frequency bands for radar systems
{(Modified from Trevett 1986).

Radar Wavelength - A Frequency - f
band (cm) (MHz)
P 136-77 220-390
UHF 100-30 300-1000
L 30-15 1000-2000
S 15-7.5 2000-4000
C 7.5-3.75 4000-8000
X 3.75-2.40 8000-12500
Ku 2.40-1.67 12500-18000
K 1.67-1.18 18000-26500
Ka 1.18-0.75 26500-40000
/l(cm) - < = 30000 = 30 i ?/Ieergtale-:Iﬁlrt?;c 1;:OS‘S-II-Ie:rtz
f fWMHz) f(GHz) 1 GigaHertz = 10° Hertz
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The interaction of microwaves and targets on Earth’s land surface is dependent on
the wavelength used. Penetration depth increases with the wavelength (Elachi 1988).
The roughness of a surface on a SAR image is also influenced by the wavelength

used.

2.2.2. Polarisation

Microwaves are transversal waves, i.e., in the direction of propagation the electric
and magnetic fields are mutually orthogonal. In addition, the electric field vector
defines the polarisation component. Linear (or planar) polarisation refers to the
vibration of the electric field vector in a parallel direction to the propagating wave.
There are also elliptical and circular polarisations, characterised by the rotation of the
electric field vector in corresponding fashions and these in turn define different

polarisation planes (Lewis and Anderson 1988).

Most of the radar systems use linear polarisation, operating using vertically or
horizontally polarised microwave radiation. As the microwaves are transmitted and
received, the polarisation is defined for the outgoing and incoming radiation and the

antenna design must account for that. Table 2.2 lists the four polarisation types.

Table 2.2: Linear polarisation options (Lewis and Anderson 1998).

Like-polarised

HH Horizontal transmit; Horizontal receive

VV Vertical transmit; Vertical receive

Cross-polarised

VH Vertical transmit; Horizontal receive

HV Horizontal transmit; Vertical receive

Targets on the Earth’s surface scatter microwave radiation differently depending on
the polarisation of the wave transmitted. If the plane of polarisation of the transmitted
wave is parallel to the main line of polarisation of the target being sensed the like-

polarised backscatter is stronger. For instance, a wheat field has a dominant vertical

14



Radar fundamentals

component, so the interaction and backscatter with a VV polarised wave is much

stronger than that with a HH wave (Lewis and Anderson 1998).

The cross-polarisation or depolarisation of the transmitted wave is also a function of
the amount of multiple volumetric scattering taking place at the targets. SAR systems
with cross-polarised receiving capabilities can provide additional information for the
image interpretation and understanding the targetwave interaction (Lewis and
Anderson 1998).

2.2.3. Incident angle

The incident angle (6) is a major factor influencing the radar backscatter and the
appearance of the targets in the images. This angle is defined between the radar
pulse and a line perpendicular to the Earth’s land surface. Figure 2.2 illustrates the
system and local incident angles. In a flat surface, 6 is the complement of the

depression angle (y) (Jensen 2000).

1
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Figure 2.2. Schematic diagrams of system (A) and local (B) incident angles (Lewis and
Anderson 1998).
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In general, smaller 6 results in more backscatter, although for very rough surfaces
the backscatter is independent of 6. Surface roughness, as discussed later in this
chapter, changes as a function of the local incident angle (Lewis and Anderson
1998). This parameter can be used to emphasise the roughness of particular

features on the Earth’s surface.

2.3. Target characteristics

Radar backscatter is the result of the interaction between system parameters and the
characteristics of the target, such as geometry (and associated roughness) and
moisture content (and associated dielectric constant). First the backscattering
coefficient is introduced, as it is a quantitative measure of backscatter intensity from
a specific region on the Earth’s land surface. Surface roughness and electrical

characteristics of the targets are examined next.

2.3.1. Backscatter coefficient

The targets scatter the energy transmitted by the radar in all directions. The energy
scattered in the backward direction is what the radar records. The intensity of each
pixel in a radar image is proportional to the ratio between the density of energy
scattered and the density of energy transmitted from the targets in the Earth’s land
surface (Waring et al. 1995).

The energy backscattered is related to the variable to referred as radar cross-section
(o), and is the amount of transmitted power absorbed and reflected by the target. The
backscatter coefficient (c°) is the amount of radar cross-section per unit area (A) on
the ground (Jensen 2000). ¢° is a characteristic of the scattering behaviour of all
targets within a pixel and because it varies over several orders of magnitude is

expressed as a logarithm with decibel units (Waring et al. 1995).

Backscatter coefficient is a function of wavelength, polarisation and incidence angle,

as well as target characteristics such as roughness, geometry and dielectric
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properties. The targets will be distinguishable in radar images if their backscatter
components are different and the radar spatial resolution is adequate to discriminate

between targets (Trevett 1986).

The backscatter is measured as a complex number, which contains information
about the amplitude (easily converted to ¢° by specific equations) and the phase of
the backscatter (Baltzer 2001). For SAR applications other than interferometry and
polarimetry, however, the phase carries no useful information and can be discarded
(Oliver and Quegan 1998). The information that remains when the phase is
discarded is related to the amplitude of the backscatter. After linear detection and
processing, amplitude SAR data are converted to an amplitude (or magnitude)
image. After square-law detection and processing, amplitude SAR data are

converted to an intensity (or power) image (Kingsley and Quegan 1992).

All SAR images contain speckle, an interference phenomenon produced between
backscatter coming from many random targets within a pixel. The speckle represents
true electromagnetic scattering and influences the interpretation of SAR images
(Oliver and Quegan 1998). In chapter 6 speckle will be discussed as part of spatial

properties of backscatter.

2.3.2. Surface roughness

Surface roughness is one of the important target characteristics that influences the
strength of backscatter and must be considered in relation to the scale at which the
target is being observed. Three scales are often described: microscale roughness,
mesoscale roughness and macroscale roughness, associated respectively with

image tone, image texture and topographic effects (Lewis and Henderson 1998).

Microscale roughness refers to the scale of small components (targets) within an
individual pixel such as leaves and branches of trees or stones. Microscale is
measured in centimetres and is a function of wavelength, the depression angle and
the height of target or component of target. The modified Rayleigh criteria can be

used to express this relationship (Jensen 2000):
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A
25siny

h<

[2.1]

where h is the local height of target or component of target, A is the wavelength in cm
and vy is the depression angle in degrees. Computing h using this criteria for A = 3 cm
(X band) and y= 45°, results in h < 0.17 cm. If the local height of target is < 0.17 cm
the target's surface is considered smooth and a near-perfect specular reflector.
Therefore it will produce a dark tone in the image as no radiation will be

backscattered to the sensor.

Table 2.3 shows the modified Rayleigh criteria for radars with different parameters.
Owing to intrinsic variations of depression angle from far range to near range, the

image tone will also vary across the image (Lewis and Henderson 1998).

Table 2.3: Surface roughness categories and the local height (h) above which the
surface appears rough on three different SAR systems (Jensen 2000).

This is calculated using a modified Rayleigh criteria.

Surface roughness Aircraft K, band Aircraft X band Seasat L band
category A =0.86 cm, y=45° A=3cm,y=45° A=23.5cm,y=70°
Smooth, cm h<0.048 h<0.17 h<1
Intermediate, cm h=0.048 t0 0.276 h=0.1710 0.96 h=1105.68
Rough, cm h>0.276 h>0.96 h>5.68

Mesoscale surface roughness is related to image texture and is a function of the
characteristics of numerous pixels covering a single target, for instance, an entire
forest canopy. With the same A and vy, a forest canopy will present a coarser
roughness (texture) than a grassiand (Jensen 2000). SAR image texture will be
discussed in detail in chapter 6.

Macroscale surface roughness is influenced by shadow caused by topographic slope

and the aspect of the terrain. The macro-texture patterns created by shadow are

often many times larger than an individual pixel (Lewis and Henderson 1998).
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Particular types of strong scattering occur when two or three smooth surfaces are
adjacent, causing double or triple reflection. In this case the surfaces are known as

dihedral or trihedral corner reflectors (Trevett 1986).

2.3.3. Electrical characteristics

The electrical characteristics of targets also determine the intensity of backscatter.
The complex dielectric constant is a measure of the electrical characteristics of
objects, indicating the reflectivity and conductivity of various materials (Lillesand and
Kiefer 2000). The moisture content within materials has a direct influence on the
dielectric constant and reflectivity. The more liquid water within a material the more

reflectivity/backscatter is produced (Waring et al. 1995)

Most materials have a dielectric constant ranging from 3 to 8 when dry, while water
has a dielectric constant of around 80. Forest canopies are excellent reflectors
because of the leaves high moisture content, while dry soils absorb the radar signal

and produce very low (or no) backscatter (Jensen 2000).

2.4. SAR images characteristics

SAR images are configured in either slant range or ground range format. Slant range
is the direct distance from the antenna to an object on the ground, measured using
the time delay from transmission of the signal to the reception of its echo (Raney
1998). The spacing between return signals on slant range imagery is directly
proportional to the time interval between echoes from adjacent terrain features. The
spacing between pixels on ground range imagery is approximately proportional to the
horizontal ground distance between terrain features (Lillesand and Kiefer 2000). In
this latter case, a correction at each data point for local terrain slope and elevation is

required.

Slant range data are the natural result of radar range measurements. Because of the
side-looking geometry, radar images inherently contain geometric distortions, such

as (i) /ayover or the reverse ordering of surface elements on the radar image as a
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result of the tops of objects or slopes being imaged before their bases (most severe
on the near range); (ii) shadow caused by a slope away from the radar illumination
with an angle that is steeper than the radar depression angle and (iii) foreshortening,

that is the effect by which foreslopes appear to be compressed (Trevett 1986).

In general, images acquired at small incident angles (less than 30°) emphasise
variations in surface slope, and geometric distortions due to layover and
foreshortening in mountainous regions can be severe. Images with large incident
angles have reduced geometric distortion and emphasise variations in surface

roughness, although radar shadows increase (Lillesand and Kiefer 2000).

2.5. A new trend: SAR interferometry

SAR interferometry is a technique that uses information on phase derived by
recording the phase difference between two SAR images acquired from slightly
different sensor positions (Wegmdller and Werner 1995). Different sensor positions,
called the baseline, can be achieved by a temporal shift (repeat-pass interferometry)
or spatial shift (single-pass interferometry) (Baltzer 2001). The phases of the
backscatter from the two positions interfere in a characteristic pattern and are
sensitive to change in the scattering elements of targets. The phase difference
between the two positions indicates the average three-dimensional position of the
scattering elements (Baltzer 2001). The phase difference, under certain conditions,
allows the height of scatterers to be inferred and a Digital Elevation Model (DEM) can

be constructed (Oliver and Quegan 1998).

The interferometric coherence/correlation is a measure of the phase properties of
SAR image pairs and indicates displacement and change of the scattering elements
within the scene (Wegmduller and Werner 1995). It also can be seen as the accuracy
in the estimation of the interferometric phase: more accurate phase estimates means
less phase interference and change. Coherence decreases with increasing time
delay and temporal changes in the targets. For forested areas, coherence diminishes
with increase in vegetation density, as the volumetric scattering increases with

movement (wind) and forest growth (Luckman et al. 2000).
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Interferometric data have been used recently to map water level changes in the
Amazon River Basin (Alsdorf et al. 2000). In addition, interferometric data have been
used to derive topographic maps and estimate forest height (Wegmduller and Werner
1995). As tree biomass and age are a function of tree height, interferometric
coherence has been related to tropical forest biomass and age of regenerating

tropical forest plots (Luckman et al. 2000).

SAR interferometry can provide information on the three-dimensional structure of
vegetation and therefore support estimates of forest biophysical variables and forest

mapping and monitoring, including deforestation assessment.

2.6. Available and future SAR systems

The SAR data used in this thesis come primarily from the SAR onboard the
Japanese Earth Resources Satellite JERS-1, launched in February 1992 and
operational until October 1998. More detailed information about JERS-1
characteristics and parameters will be given in chapter 5, along with the analysis of a
temporal series of JERS-1 SAR data. The Spaceborne Imaging Radar — C/X band
Synthetic Aperture Radar (SIR-C/XSAR) onboard the U.S. Space Shuttle Endeavour
that flew in 1994 provided data for the spectral analysis performed in chapter 7 and
details about these sensors will be given there. This section gives some information
about the satellite systems planned for launch in the near future, such as ASAR on
Envisat-1, SAR on Radarsat-2 and PALSAR on ALOS.

In January 2002, the European Space Agency will launch Envisat, a polar-orbiting
Earth observation satellite, carrying an Advanced Synthetic Aperture Radar (ASAR).
The ASAR sensor has been designed to provide continuity to the ERS SAR, but also
to extend the range of measurements through exploitation of its various operating
modes. These modes will enable varied capability in terms of swath width (58 to 405
km), range of incidence angles (from 14° to 45°), spatial resolution (30 to 1000 m)
and polarisation (HH, VV, VH and HV) (http://envisat.esa/int).

Radarsat-2 satellite is scheduled for launch in 2003. It will carry a C-band SAR with
multi-polarisation capability able of imaging at swath widths ranging from 10 to 500
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km, spatial resolutions from 3 to 100 m and incidence angles from 10° to 59°

(http://www.space.gc.ca/csa_sectors/earth_environment/radarsat2/).

NASDA plans to launch an Advanced Land Observing Satellite (ALOS) in summer
2004, following the JERS-1 mission. Among the systems onboard this satellite is a
Phased Array L-band Synthetic Aperture Radar (PALSAR) system. PALSAR will be
multi-polarised and include look angles ranging from 18° to 55°. In its fine spatial
resolution mode, PALSAR will use an HH or VV single polarisation, although a dual
polarisation of HH and HV or VV and VH can be used. Range spatial resolution will
be 10 m for single polarisation operation and 20 m for dual polarisation mode (at a
look angle of 35°) and an azimuth resolution of 10 to 20 m, depending on the number
of looks. PALSAR will also have the ScanSAR mode, which will have a swath width
of 250 to 350 km, with a spatial resolution of about 100 m in both azimuth and range

directions, and a polarisation of either HH or VV (http://alos.nasda.go.jp).

Some characteristics of past, present and future spaceborne imaging radar systems
are shown in table 2.4. Additional information on the systems can be found in the

web sites cited above.

Table 2.4. Characteristics of spaceborne image SAR systems
(modified from Lillesand and Kiefer 2000).

Satellite/sensor  Launch Band Polarisation Spatial resolution (m)
Seasat/SAR 1978 L HH 25
Shuttle/SIR-A 1981 L HH 40
Shuttle/SIR-B 1984 L HH 17-58
Almaz-1/SAR 1991 S HH 10-30
ERS1/2/SAR 1991/95 C 'A% 30
JERS-1/SAR 1992 L HH 18
SIR-C/XSAR 1994 C-L-X multi 15-45
Radarsat/SAR 1995 C HH 8-100
Envisat/ASAR 2002 C multi 30-1000
Radarsat-2/SAR 2003 C multi 3-100

ALOS/PALSAR 2004 L multi 10-100

Note: 1) The wide range of values of some parameters is because these systems all have
several operating modes. Not all of the above values are available in every mode. 2) multi =
multi-polarisation (HH, HV, VV, VH).
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Besides reinforcing a global effort in increasing large-scale environmental research,
these future satellites manifest the need for high quality SAR data. The SIR-C/X-SAR
mission demonstrated the advantages of multi-parameter SAR systems in space.
Although multi-band in a single SAR was not planned for the next orbital systems, the
combination between data of different systems is common and means expanding the

effective use of SAR data in scientific applications.
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CHAPTER THREE

Radar remote sensing of regenerating tropical forests

The framework for the research presented in this thesis is the interaction of SAR
backscatter, depending on its temporal, spatial, spectral and polarisation characteristics,
with regenerating tropical forests. This chapter reviews the use of SAR images to
estimate forest properties (such as biomass) and classify forest types (such as

regenerating forests) within this framework.

This chapter outlines how SAR backscatter has been related successfully to forest
biophysical variables and used for biomass estimation and classification, with emphasis

on regenerating tropical forests.

3.1. Radar remote sensing of forests

Our current understanding of the interaction of microwave radiation with forest canopies
has been obtained primarily from temperate and northern forest ecosystems (e.g. Sader
1987, Le Toan et al. 1992). Limited species diversity coupled with spatially and
structurally homogeneous stands made the backscatter from these formations easier to
understand and model, therefore, a great amount of research has been devoted to them
(Leckie and Ranson 1998).
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Although there are major differences between temperate, northern and tropical forests,
the main findings of radar remote sensing of temperate and northern forests also apply

to tropical forests.

Since the 1960s radar systems have been recognised as particularly useful for military
applications in tropical regions (such as in Vietham), where cloud cover is persistent. In
the 1970s radar data were declassified and airborne high frequency radar systems were
used for mapping natural resources at continental scales. For example, the Brazilian
RADAM (Radar Amazon) Project, one of the largest accomplishments in resources
surveys by SAR data (Azevedo 1971, Leckie and Ranson 1998). During 1980s and
1990s there was a significant growth in research focused on developing approaches for
using SAR in ecosystem studies (Kasischke et al. 1997). This was due to the launching
of many spaceborne SAR systems (such as the SAR onboard the Japanese Earth
Resources Satellite (JERS-1) in 1992) and the increasing need to understand global

environmental processes.

To date, the progress made in the study of SAR data from tropical forests has been in
the assessment of the potential of radar sensors for the discrimination of land cover
types. The ultimate aims being that of (i) monitoring tropical land cover change (Nezry et
al. 1993, Saatchi et al. 1997, Grover et al. 1999, van der Sanden and Hoekman 1999)
and (ii) mapping forest biomass (Luckman et al. 1997a, 1998). These aims are generally
included in a broader context intended to assess the contribution of radar to global

environmental monitoring and ecosystem modelling (Leckie and Ranson 1998).

3.1.3. Forest backscatter

The main components and scattering mechanisms of the total backscatter from forests
comprise backscatter from (1) crown surface and volume, (2) trunks, (3) direct from the
ground, (4) crown-ground scattering and (5) double-bounce scattering from trunk and
ground (Leckie and Ranson 1998). Figure 3.1 shows these components and the
interaction of the main wavelengths used in operational radar remote of forests. Le Toan
et al. (1992) also included multiple scattering from the branches and canopy attenuated

trunk-ground scattering as influencing the total forest backscatter.
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Figure 3.1. Main components and scattering mechanisms that influence the total backscatter
from forests: (1) backscatter from crown surface and volume, (2) backscatter from trunks, (3)
backscatter direct from the ground, (4) crown-ground scattering and (5) double-bounce scattering
from trunk and ground (Leckie and Ranson 1998). Also, the interaction of the main wavelengths

(bands X, C, L and P) used in SAR remote sensing is shown.

The magnitude of the scattering mechanisms and the importance of the different
components are dependent on geometric factors (e.g., structural attributes of trees,
canopy and soil surface roughness) and dielectric properties of vegetation and
underlying surface (e.g., moisture content of vegetation and soil) (Dobson et al. 1995).
Wavelength, polarisation and incidence angle of radiation control these scattering
mechanisms (Leckie and Ranson 1998) and the final backscatter as a result of surface

and/or volume scattering.

At X band, which is a short wavelength, the backscatter results mainly from the upper
part of the canopy (Le Toan et al. 1992) and the leaves, twigs and small branches
(Leckie and Ranson 1998). There is little penetration of the radiation into the canopy,

therefore, volumetric scattering and soil contribution to the final backscatter are weak.
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At C band, which is a intermediate wavelength, greater penetration of the radiation into
the canopy enables further sources of scattering to be active and so there is some
volumetric scattering. Typical sources of scattering at C band are secondary branches
and leaves (Ranson and Sun 1994, Leckie and Ranson 1998). The penetration of crown
thickness by the radiation is normally not exceeded (Le Toan et al. 1992).

At longer L and P band wavelengths, the penetration of the radiation into the canopy is
deeper and components from the lower parts of the canopy are included in the
scattering (Le Toan et al. 1992), as well as the major woody biomass components
(trunks and branches) (Dobson et al. 1992). Trunk-ground and crown-ground
interactions are important at these wavelengths (Leckie and Ranson 1998) and are
mainly dependent on the canopy structure and openness. Foliage and small branches

act as attenuators of the radiation at these wavelengths (Kasischke et al. 1997).

The incidence angle of the SAR sensor determines the amount of vegetation illuminated
by the radar beam. The angular dependence is stronger for surface scattering
mechanisms, when higher scattering is observed for small incidence angles (Leckie and
Ranson 1998). Volumetric scattering mechanisms in the canopy will dominate for high
incidence angles, as a large amount of the canopy is illuminated. For incidence angles
close to nadir, depending on the wavelength and forest type, the ground will contribute

to the scattering mechanisms.

The polarisation of the radiation determines the type of interaction with the forest
components. Co-(or like) polarised radiation interact with structures with a similar
orientation, so vertical stalks will interact strongly with VV (Vertical transmit and receive)
polarisation. Horizontal branches or the soil surface interact strongly with HH (Horizontal
transmit and receive) polarisation. HH can also be a result of trunk-ground scattering
interactions (Dobson ef al. 1992) and VV is more sensitive to canopy attributes (Dobson
et al. 1995). Cross-polarised backscatter (HV - horizontal transmit and vertical receive
and/or VH) is related to volumetric scattering, as the canopy is a medium capable of
depolarisation (Saatchi and Rignot 1997). In general, double bounce trunk-ground, when
not as a result of a perfect corner reflector situation (Leckie and Ranson 1998), is more
likely to produce backscatter in a distinct polarisation than the received one (Waring et
al. 1995).
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3.2. Modelling forest backscatter

Interpretation of radar imagery relies on knowledge about backscatter process and the
relative importance of various scattering mechanisms that contribute to the final
backscatter (Richards 1990). When trying to establish links between backscatter,
scattering mechanisms and vegetation components, energy-matter interaction models
have been used. Many types of models are available to predict the backscatter for a
given target and SAR parameters. Comparison with real SAR data allows various
mechanisms and the contribution of each vegetation component in the final backscatter
to be understood. For backscatter modelling purposes, the forest canopy has two main
characteristics: the gross structure of the scattering medium and the geometry and
electromagnetic properties of the individual vegetation components (Saatchi and
McDonald 1997).

There are several types of backscatter models. When based on electromagnetic theory
and known expressions for backscatter coefficients, these models are called radiative
transfer (RT) models, and their ‘order’ is determined by the complexity of scattering
taken place at the target (Richards 1990). First order RT models take into account only
volume, surface and double-bounce (from trunk and ground and foliage or branches and
ground) scattering mechanisms. Backscatter involving two or more scattering events is
thought to be attenuated inside the canopy and are considered in the second order RT
models (Richards 1990). There are several examples of first order radiative transfer in
the literature, but by far the most utilised is the Michigan microwave canopy scattering
model (MIMICS) (Ulaby et al. 1990). This model considers the canopy as two distinct
homogeneous layers over a ground surface. The first order solution consist of a sum of
the scattering mechanisms occurring between these three layers (McDonald et al.
1991).

Other types of backscatter models are the index or regression models, which are based
on preconceived mathematical expressions and the model parameters are found by
regressions (Richards 1990). The disadvantages of these models are the dependence
of model parameters (where a change would preclude application on other situation)
and little information provided on the physics of the scattering events involved (Richards

1990). A third type of model is called functional or conceptual, but could be called
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phenomenological because of their ability to explain phenomena rather than energy-

matter interactions (Richards 1990).

Few situations, such as the specular reflection from a water surface, can be modelled
exactly. The complexity of a forest ecosystem may require a combination of different
models (Richards 1990). Also, the straightforward inversion of the models to obtain the
required output is unlikely and connecting models are often needed (Kasischke and
Christensen 1990).

Backscatter models are evolving to be more complex and realistic (Leckie and Ranson
1998). Recently, Castel et al. (2001) presented the Architectural Plant Model (AMAP),
which relies on both qualitative and quantitative architectural plant growth descriptions.
The AMAP model provides a more realistic 3-D view of trees and allows differentiating
vertical profiles of ageing canopies. A RT model was modified, fed by canopy
parameters derived by using AMAP model and successfully tested using data from pine

stands in Southern France (Castel et al. 2001).

For tropical forest environments, the available current backscatter models would require
adaptations to take into account a large number of vegetation variables. The difficulties
in obtaining data required as input for the available models also hamper their application
for such environments. However, some authors have used existing models such as
MIMICS (Grover et al. 1999) and a model based on the one devised by Attema and
Ulaby (1978) (Luckman et al. 1998) to try to understand scattering mechanisms over

tropical forests.

To date, few attempts have been made to construct backscatter models that are

applicable exclusively to tropical ecosystem variables (Leysen, pers. comm. 1998).

3.3. Biomass estimation and mapping

The study of radar remote sensing of forests has been aided by theoretical models,
which have helped researchers to understand the causative factors for the backscatter
coming from forests (Dobson et al. 1995). The dependency of backscatter on above

ground biomass was observed and related to the penetration of the radiation into the
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canopy and interaction with the trunk, where most of the volume, therefore, biomass of
the vegetation is concentrated (Sader 1987, Le Toan et al. 1992, Dobson et al. 1992).

HV polarisation in longer wavelengths (L or P band) is the most sensitive to biomass
(Sader 1987, Le Toan et al. 1992, Ranson et al. 1997a) because it originates mainly
from canopy volume scattering (Wang et al. 1995), trunk scattering (Le Toan ef al. 1992)
and is less affected by the ground surface (Ranson and Sun 1994). The sensitivity of
backscatter to biomass is, however, limited by an asymptotic response of backscatter
beyond certain levels of biomass, a phenomenon which is wavelength dependent
(Dobson et al. 1995, Kasischke et al.1997). This ‘saturation’ of the backscatter is
considered the limit for an accurate estimation of biomass from SAR data (Imhoff 1995a)
and normally corresponds to backscatter coming from biomass of mature forest or

dense forest vegetation (table 3.1).

Table 3.1. Saturation levels for backscatter/biomass relationship

Author Type of forest Band Biomass (T ha™)
Sader (1987) Temperate broadleaf L 100
and pine
Dobson et al. (1992) Two species of pine P 100-200
L
Rauste et al. (1994) Temperate coniferous L 100
Imhoff (1995a) Combined data from C 20
conifer and broadleaf L 40
evergreen P 100
Rignot et al. (1997) Tropical L Likely close to 100
Luckman et al. {1997a) Tropical L 60
Araljo et al. (1999) Tropical L 100

The lack of a backscatter/biomass relationship does not necessarily indicate the lack of
sensitivity of backscatter to vegetation. For example, a structural descriptor described as
a ratio between vegetation surface area and volume (SA/V) was found by Imhoff

(1995b) to have an influence on backscatter

30



Radar remote sensing of regenerating tropical forests

Some approaches have been proposed to minimise the influence of the asymptote or
extend the range of estimated biomass from SAR data. Most of these relate to
polarisation and bands ratios, meant to isolate the contribution of biomass to the
backscatter and reduce the effect of forest structure (Ranson and Sun 1994, Foody et
al. 1997). As forest backscatter in different wavelengths and polarisations originate from
separate layers of a canopy, the use of multiple channels or multistep approaches (e.g.,
Dobson et al. 1995) could be used to estimate total above-ground biomass (Kasischke
et al. 1997). For example, the ratio Pyy and Cpy was used successfully by Ranson and
Sun (1994) to estimate biomass up to 250 T ha” in a mixed conifer/ deciduous

temperate forest.

Dobson et al. (1995) consider these band ratios too simplistic, although effective in
extending the range of estimable biomass. Their argument is that the biomass estimate
can hide a variety of structural factors, as same biomass values can represent few tall
trees or many short trees. The corresponding backscatter will be much higher for the
few tall trees than for the many short ones (Dobson et al. 1995). In spite of this, a
combination of bands and polarisations in a multistep approach made possible the
mapping of biomass in a mixed temperate forest up to 250 T ha™ (Dobson et al. 1995).
Saatchi et al. (1997) found an early asymptote on the backscatter in regenerating
tropical forest and attributed it to the lack of the contribution of fresh biomass
components (like lianas and leafy vegetation understory and overstory) in the calculation

of (woody) biomass.

The backscatter/biomass issue must be treated with care, as a lot of variation exists not

only on the ecosystems themselves, but also in the way their biomass are estimated.

Establishing a strong link between backscatter and forest variables is an important part
of the successful estimation of forest biomass from backscatter. As already mentioned,
models are often used to explain the relationship between forest variables, scattering
mechanisms and SAR configuration parameters (Richards 1990, Kasischke and
Christensen 1990). Another approach is the use of statistical analysis, where forest
variables are related to SAR backscatter by regression models (Sader 1987, Le Toan et
al. 1992, Rauste ef al. 1994). Some authors used the combination of the two
approaches, in most cases to assess the results of the predicted biomass or backscatter
via regression (Ranson and Sun 1994, Ferrazzoli et al. 1997, Franson and Israelson

1999). Statistical procedures such as stepwise regression were also used to determine
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the best set of bands and polarisations to discriminate biomass levels (Ranson et al.
1997a).

The mapping of biomass in Northern Michigan forest was achieved successfully by
Dobson et al. (1995) using a three-step process: (1) forest classification into structural
categories, (2) estimation of structural variables (basal area, height and crown biomass)
from polarimetric SAR data and (3) estimation of total biomass based on a simple
biophysical model. Accuracy assessment was performed based on available land cover
maps and was accurate up to a biomass of at least 250 T ha™'. Modelled backscatter
and ratio images of multitemporal polarimetric SAR data were also used successfully to
map biomass in a Northern forest of Maine (Ranson and Sun 1994). PHV data were
used for estimating stem volume of forests in Finland (Rauste et al. 1994), as were pine
forests biomass estimated and mapped (Beaudoin et al. 1994). A procedure devised by
Ranson et al. (1997a) combined simulated variables of a forest growth model to
AIRSAR data based backscatter model and the result was a third model relating all
variables. The final map underestimated biomass and the backscatter asymptote was at
biomass levels of 150 T ha™ (Ranson et al. 1997a). For boreal forests, however, another
procedure based on combined SAR and Landsat Thematic Mapper (TM) data allowed
the estimation of biomass up to 150 T ha™', with RMS (root mean square) errors around
37 T ha (Ranson et al.1997b).

The mapping of biomass for a large area in Brazilian Amazonia used JERS-1 SAR
mosaic data (Luckman et al. 1998) and the biomass categories mapped were from 6 T
ha'to 13 T ha', 14 T ha'to 31 T ha and above 31 T ha™'. The limitation of the réle of
SAR data on biomass estimation was attributed to the asymptote in the
backscatter/biomass relationship (Imhoff 1995a, Luckman et al. 1998), although no

alternatives were considered.

3.4. Forest classification

Classification of a remote sensing image is a process that recognises one or several
categories of real-world objects in pixels (Mather 1999). Normally spectral patterns
present within the images are used as a numerical basis for categorisation, due to
objects inherent reflectance, emittance or scattering properties (Lillesand and Kiefer
2000).
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Classification can use also spatial and temporal information as a basis for
categorisation. Spatial classifiers categorise image pixels based on their spatial
relationships with the surrounding pixels and texture is a commonly used measure of
these relationships (Lillesand and Kiefer 2000). The temporal domain can be used as an
aid to the categorisation of spectral and spatial features present in remote sensing
images. Some features can be identified only when, for instance, a particular season or
phenological stage is reached. The classification process will then use combined
information from the spectral and spatial domains in a temporal series of data (Lillesand
and Kiefer 2000).

The study of forest ecosystems usually requires their differentiation from the remaining
land covers and the classification of specific vegetation communities (Kasischke et al.
1997). Regenerating tropical forests, for instance, are normally found close to mature
forest but also close to agricultural crops, pastures and urban settlements, making their

differentiation from the remaining land cover very useful.

Two main approaches used to classify SAR data have been (1) maximum likelihood
classification (MLE) including supervised and unsupervised cluster analysis and (2)
knowledge-based hierarchical decision trees (Kasischke et al. 1997). The extendibility of
MLE classification results to global scales is usually impaired by the need for localised
training (Kasischke et al. 1997). Knowledge-based approaches have been proposed to
overcome this limitation by using explicit relationships between backscatter and
vegetation structure and then reclassification based on these links and floristic
community (Dobson et al. 1995, Kasischke et al. 1997, Bergen et al. 1998).

Maximum-a-posteriori (MAP) Bayesian classifier was developed for the classification of
multifrequency polarimetric SAR data and differed to the MLE approach because of the

revisions on the decision rules about the classes nature (Saatchi and Rignot 1997).

Recent research has shown promising results using segmentation methods (Oliver
1998, Frery et al. 1999, Grover et al. 1999). These methods consist of aggregation of
pixels with similar properties and limits defined by the borders of the segments (Yanasse

et al. 1997). The segment labelling is performed afterwards in a classification procedure.
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Artificial Neural Network (ANN) based classifiers are also a promising approach. Among
ANN advantages are facilitated incorporation of different types of data which do not

have to fit any particular statistical distribution (Atkinson and Tatnall 1997).

The advantages of each approach depend on the suitability of the classification
estimator to the available data set, which will determine a high accuracy on the
classification process. Good field knowledge, field data and adequate maps make far
easier algorithm training (when needed) and accuracy assessment of the final

classification.

Temperate and boreal forest types have been classified with radar data (Saatchi and
Rignot 1997, Bergen et al. 1998, Williams et al. 1999). For management inventory
purposes, however, radar data does not provide detailed enough information (Leckie
and Ranson 1998). Nevertheless, radar data can provide complementary information to
aerial photographs (Leckie and Ranson 1998) and forest biophysical parameters have
been estimated (Ranson and Sun 1994, Dobson et al. 1995, Ranson et al. 1997b).
When radar data are combined with optical data, forest mapping capabilities are usually

increased.

Manual interpretation of radar images played an important réle on the mapping of
tropical forest types in Brazil and Colombia (RADAM Project) (Kasischke et al. 1997)
and today is still considered an important technique for discriminating forest types
(Leckie and Ranson 1998, Kuntz and Siegert 1999).

Accurate automatic classification of radar data for tropical forest is still under
development and some of the achievements are showed in table 3.2. Merging
classification techniques (Rignot et al. 1997), the use of estimators adapted to radar
data (Nezry et al. 1993, Saatchi et al. 1997, Saatchi et al. 2000) and the use of texture
measures derived from SAR images (Oliver 1998, Saatchi et al. 2000) seem to be the
trends for the high classification accuracy of the vegetation on the tropics. Some
authors, however, found the use of a minimum of two SAR C, L and/or P channels
essential to discriminate between regenerating forest and selectively logged forest (van
der Sanden and Hoekman 1999). Similarly to temperate forests, SAR for tropical forests

has promising but yet complementary capabilities (van der Sanden and Hoekman 1999).

Optical sensor data are commonly combined with SAR images when studying tropical

forests (Nezry et al. 1993, Rignot et al. 1997, Araujo et al. 1999). Time series of optical
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images have been used as a reference in the field or prior to field work to establish the
age of clearings and land cover history (Foody et al. 1997, Luckman et al. 1997a,
Yanasse et al. 1997, Salas and Skole 1998). Thematic maps reflecting age-related
areas were created from classified TM images in a pixel-to-pixel Boolean basis
(Sant’Anna et al. 1995). This procedure, however, is still not possible with SAR images,

due to the much poorer classification performances in tropical forest classes.

3.4.1. Spatial characteristics of backscatter - texture

Texture can be defined as the variation of the grey level of a single pixel (tone) within a
neighbourhood (Mather 1999). This variability can be structured and reflects the spatial
relationships among grey levels of pixels (Mather 1999). Texture is dependent on (i) the
scale of the variation to be defined and (ii) on the scale of observation, limited by the
spatial resolution of remotely sensed data (Mather 1999). For backscatter, textural
attributes quantify the pattern of spatial variations in the strength of backscatter (van der
Sanden and Hoekman 1999). An optimised texture measure depends on the statistical
properties of the backscatter (Oliver and Quegan 1998) and is based on the statistical

dependence between pixels within a region (Kurvonen and Hallikainen 1999).

Many texture measures in remotely sensed data are referenced as important tools in
vegetation and land cover classification. Local statistics texture measures are statistical
moments (such as mean, skewness, kurtosis and coefficient of variation (CV)), of the
window from which the texture of the image is extracted (Kurvonen and Hallikainen
1999). Second-order texture measures (such as entropy, energy, contrast, etc.) relate to
statistical dependence between pixels in a given distance and direction and are
calculated from the grey-level co-occurrence matrix (GLCM) (Kurvonen and Hallikainen
1999, Mather 1999). Another approach for texture analysis includes the variogram that
provides a concise description of the scale and pattern of spatial variability in remotely
sensed data (Curran et al. 1998). These texture measures will be discussed in detail in

chapter 6.

In general, there is an unclear utilisation of the spatial domain in the analysis of remotely

sensed data (Curran et al. 1998). While recent forest discrimination research has shown
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interest on the textural approach, results are difficult to extrapolate because of the

variety of physical environments and techniques used.

For temperate forests in Finland, texture measures (CV and four measures derived from
GLCM) from a multitemporal set of SAR images were found to increase the accuracy of
classification results, even though the final accuracy was around 65% (Kurvonen and
Hallikainen 1999).

Table 3.3 shows some recent results using SAR textural information for tropical forest
discrimination. Low discrimination accuracy results and absence of a texture measure
that works with all or certain forest types are the main conclusions that can be draw from
table 3.3. Also, the use of a simple texture measure (such as the mean) can result in
accurate discrimination between forest types (Yanasse et al. 1997, Podest and Saatchi
1999).

Despite low accuracy in the discrimination of forest types, some authors report
encouraging representation of classes with distinctive texture signatures (Miranda et al.
1996, 1998, van der Sanden and Hoekman 1999). Perhaps the gap in texture modelling
(Oliver and Quegan 1998) will be resolved with a better understanding of the physics
that governs backscatter and associated texture, given that texture is still a promising

approach.

3.4.2. Temporal characteristics of backscatter

The dielectric characteristics of vegetation and soils have a strong effect on backscatter
and are important sources of variation in ¢°. Varying weather conditions are related to
changes in water content of vegetation and soils, therefore, impact directly on
backscatter (Gates 1991). In addition to rainfall, air temperature and wind speed can
induce physiological and/or geometric changes in the vegetation components and
influence backscatter (Leckie and Ranson 1998). The monitoring of seasonal
phenological development is a substantial part of forest ecosystem studies and justifies

the study of temporal backscatter.
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Table 3.2. Examples of classification approaches using radar imagery in tropical ecosystems (adapted from Kasischke et al. 1997).

Data No of classes Radar band/
Ecosystem Purpose Classifier® source and types® Accuracy® polarisation = Reference
Tropical forest Vegetation mapping Supervised MLE SIR-B 6and 8 Medium on SIR-B High Nezry et al.
and adjacent areas adapted to radar SPOT-HRV W,B,A,F,U,Aru on SIR-B +HRV (8 LuH 1993
plus rF, C classes)
Subtropical forest Ecosystem mapping 7 P,L,C, all Pope et al.
and wetlands MLE cluster AIRSAR W,B,AH,S, Medium polarisations 1994
F(2)
Tropical floodplain Map forest flooding Decision SIR-C 5 High LH, Ly, Hess et al.
forest tree W.,fH,H,F,fF Cun 1995
Tropical forest and Map deforestation Supervised on TM, SIR-C 6and7 High on SIR-C LH, Lhv, Rignot et al.
adjacent areas and regeneration after MAP on SIR-C Landsat TM W,F fdF,yrF,B, Higher on SIR-C Ch,Chv 1997
Ct +TM (7 classes)
Tropical forest and Map deforestation 5 Lun, Lrv, Saatchi et al.
adjacent areas and land use MAP supervised SIR-C F,rF,A,Ct,dF Medium Cun,Chv 1997
Tropical forest and Map forest and non Annealed CCRS airborne 2 High with texture {from
adjacent areas forest segmentation SAR F, nF parameters of K- Chn Oliver 1998
distribution)
Amazon Basin Map land cover MAP and hierarchical JERS-1 SAR 14 Medium with first order LuH Saatchi et al.

types in the

Amazon Basin

decision based on

texture measures

100 m resolution

image mosaic

W, r F,nF and 10

vegetation types

texture measures

2000

®Classsification approaches: Maximum likelihood estimator (MLE), Maximum-a-posteriori Bayesian (MAP).

PAgriculture (A), water (W), bare sail (B), clearings (c), urban (U), forest (F), flooded (f), young (y), regenerating (r}, trunks (t), rubber (ru}, disturbed (d), non(n), dead (d).
‘High indicates >90% classification accuracy, medium indicates 70-90% classification accuracy.
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Radar remote sensing of regenerating tropical forests

Ecosystem Purpose Texture measure. Data No of classes Discrimination Band/ Reference
Result assessment source and typesb accuracy® polarisation
Tropical forest Vegetation Semivariogram texture JERS-1 4 Low Lun Miranda et al.
and adjacent areas mapping classifier. Confusion W,F, oF, fF 1996
matrix.
Tropical forest Discriminate Tonal mean, CV SIR-C, 7 Good for the mean in L L,C, all polari- Yanasse et al.
and adjacent areas regenerating (Coefficient of Variation).  Landsat TM age RA, (0,2], (2,4], band (Luv better) sations 1997
stages BD and ED. map (4,6], (6,8], >=9 Poor with CV, better with
years old, F L band
Tropical forest Discriminate K-distribution o CCRS airborne 5 Low and only between F Chn,Cwy, Luckman et al.
and adjacent areas regenerating parameter, CV, GLCM SAR, Landsat TM B, 1-3, 4-6, >6 and other classes 1997b
stages contrast. CV. age map years old, F Better with CV
Tropical forest Map major CV,mean,variance, JERS-1 SAR 8 Medium with mean, Lun Podest and
and adjacent areas land cover entropy,energy, 100 m spatial W, F, rF, nF, fF, variance and entropy. Saatchi 1999
types skewness, kurtosis, resolution fnF, wS, nwS Mean best for overall
contrast. MLE and BD. separability
Tropical forest and Map detailed GLCM derived texture CCRS airborne 8 Low, better measures X,C all van der Sanden
adjacent areas land cover measures. TDy, MLE, SAR F (5 types), IF, contrast and correlation polari- and Hoekman
types Kappa statistics. rF, nF sations 1999

®Result assessment approaches: Maximum likelihood estimator (MLE), Bhattacharyya distance (BD), Euclidean distance (ED), transformed divergence (TD;).

PAgriculture (A), water (W), bare soil (B), clearings (C), forest (F), recent activities (RA), savanna (S), flooded (f), logged (f), regenerating (r), open (o), woody (w), disturbed (d), non(n).

‘High indicates »90% classification accuracy, medium indicates 70-90% classification accuracy, low indicates <70% classification accuracy..
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Results from studies on the seasonal forest backscatter indicated that soil frost and
snow can reduce relative backscatter values and be detected at L and C bands
(Pulliainen et al. 1999). Also, the absence of leaves in deciduous forest trees lowered
the backscatter at C band, raising the assumption of leaves as highly forward
scatterers (Ahern et al. 1993). Other authors, however, found a very weak correlation
between ERS-1 SAR C band backscatter and seasonal changing variables, as
foliage dynamics (Mougin et al. 1998). Weather related variables (rainfall, wind speed
and air temperature) were reported as not being clearly related to backscatter from a

deciduous-coniferous forest (Mougin et al. 1998).

Seasonal effects were observed in a walnut orchard backscatter at X and L bands.
Changes at X band backscatter were attributed to changing water content of
branches and leaves, while at L band to both soil and vegetation water content
variation (McDonald et al. 1991).

For tropical environments, seasonal L band backscatter was detected by Rosenqvist
(1996a) from oil palm stands. The seasonal behaviour corresponded to high
backscatter coinciding with the two annual dry seasons in the area and was
attributed to changing water content of leaves and fronds. For rubber tree
plantations, howevet, even after shedding their leaves, little variation of backscatter
with time was detected (Rosenqvist 1996a). In Brazilian Amazonia, a backscatter
seasonal cycle, corresponding roughly with low backscatter for dry season and high
backscatter for wet season, was detected in low biomass regenerating forest plots
and attributed to the changing water content of vegetation and soils (Kuplich and
Curran 1999).

A general consensus among researchers is that data from the dry season in the
tropics are the most useful when differentiating vegetation classes (Rignot et al.
1997, Luckman et al. 1998, Grover et al. 1999, Kuntz and Siegert 1999). In addition,
backscatter/biomass relationships are stronger during the dry season, because the
influence of water and consequent increase on backscatter are minimised (Luckman
et al. 1998, Kuplich and Curran 1999).

For Amazonian forest, the influence of the season on the backscatter is not restricted
to the effect of water, but also to land cover dynamics, which determines, in addition

to the increased soil moisture in wet seasons, the availability of some temporary
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crops (Saatchi et al. 1997). Moreover, the dry season is the preferable time for
logging, forest clearing and pasture burning, thus care must be taken when analysing

dynamic tropical environments (Saatchi et al. 1997).

3.5. Summary

The study of backscatter of regenerating tropical forests is a relatively new topic
(Foody et al. 1997, Luckman et al. 1997a, 1998, Yanasse et al. 1997, Salas and
Skole 1998). When describing tropical land cover types the diversity of logging and
agricultural practices in areas surrounding tropical forest is revealed. Potential
sources of forest regeneration are added to the ones following slash and burn cycles.
Disturbed forests as a result of selective logging (by hand or machine) are also
common land cover types described for the tropics (Saatchi et al. 1997, van der
Sanden and Hoekman 1999, Kuntz and Siegert 1999, Kuplich et al. 2000b). Different
practices trigger forest regeneration and most of the works concerning backscatter of
tropical had at least one land cover type or class labelled either as regrowth forest
(Nezry et al. 1993, Pope et al. 1994, Rignot et al. 1997), secondary forest (Kuntz and
Siegert 1999, van der Sanden and Hoekman 1999) or regenerating forest (Foody et
al. 1997, Yanasse et al. 1997, Luckman et al. 1997a,b, 1998, Grover et al. 1999).

As part of the regenerating forest process, deforested areas are usually present in
tropical environments and its discrimination from mature forest assessed.
Discrimination between these areas is a function of the contrast offered by the
backscatter of the deforested areas (Ribbes ef al. 1997). The type of logging seems
to determine the intensity of radar backscatter, as woody debris can be removed or
not. If removed and the soil is left bare, the radar response will be of the soils,
therefore, the rules about roughness and soil moisture apply, with stronger

backscatter for rougher and wetter soils (Ulaby et al. 1974).

The presence of residual biomass after logging produces high horizontally polarised
returns, as this polarisation interacted strongly with the remaining trunks (Rignot et al.
1997). When some trees are left standing, double-bounce scattering occurs between
trees and clear forest floor and LHH returns are higher than others bands in SIR-C

configuration (Saatchi et al. 1997). If the wavelength penetrates the forest canopy,
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horizontal co-polarised radiation will also give information about the underlying soil

and canopy- and trunk-ground interactions (Hess et al. 1995).

Some recent studies have suggested limitations on the use of C band in tropical
forest area discrimination (Pope et al. 1994, Luckman et al. 1997b, Rignot et al.
1997, Saatchi et al. 1997, Yanasse et al. 1997, Grover et al. 1999). The reason for
that is the backscatter asymptote at low levels of biomass and consequent C band
insensitivity to even young regenerating forest areas (Saatchi et al. 1997). The
shallow penetration of the C band into forest canopies restricts its use for the
differentiation between deforested areas and forest when the soil is dry and the
influence of water is minimised (Luckman et al. 1997a, Grover et al. 1999). Kuntz and
Siegert (1999), however, found some discrimination power on the texture extracted
from ERS-1 SAR images (CVV band) for Indonesian forests.

L band has proved some success in tropical vegetation studies, owing to its deeper
penetration and volumetric interactions into the canopy (Grover et al. 1999). When
configured as LHV its sensitivity to forest biomass and structure allowed some
discrimination between regenerating stages (Yanasse et al. 1997) and between
regenerating and mature forest (Saatchi et al. 1997). The backscatter asymptote was
found to be the reason for the low separability between regenerating areas and L
band with at least two different polarisations was suggested to perform this task
(Rignot et al. 1997).

Regenerating forest backscatter will approach that of the surrounding mature forest
as the forest grows, so the differentiation between regenerating and mature forest
can become difficult (Leckie and Ranson 1998, Salas and Skole 1998).

Reliable assessment of various forest types including regenerating, selectively-
logged and mature tropical forest required SAR data on C, L and/or P bands (van der
Sanden and Hoekman 1999). Four biophysical indices derived from fully-polarimetric
SAR data were used successfully to discriminate vegetation types (called landscape

units) in the tropics (Pope et al. 1994).

The great variety of tropical forest ecosystems still did not allow the finding of an
ideal radar configuration capable of identification and discrimination at the desired
level. A multitemporal approach along with texture analysis (Saatchi et al. 1997) can

help clarify backscatter/tropical forest relationships.
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The influence of regenerating tropical forest characteristics (e.g. species
composition, their structures and canopy properties) on the backscatter is still not
fully understood. An initial attempt to group regenerating forests by their dominant
species (therefore, reducing structural variability) was made and some encouraging
results obtained (Foody et al. 1997). Variation in biomass was secondary to canopy
spatial variability (canopy closure and homogeneity) in the backscatter of tropical
forest in Belize (Pope et al. 1994). These highlight the limitations of approaches used

to study tropical regenerating forests until now and the amount of work still to do.
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CHAPTER FOUR

Study areas and ground data

This chapter presents background information on the study areas and the ground
data available for them. Brazilian Amazonia is introduced in the context of tropical
rain forests, the Amazon Basin and the Legal Amazon, with general descriptions of
climate, soil and vegetation. This is followed by an outline of the two study areas,
Manaus and Tapajés, where details on the way biophysical properties were

estimated are given. Finally, rainfall and cloudiness data are listed.

4.1. Brazilian Amazonia

American or neotropical rain forests of the permanently wet tropics are the most
extensive block of tropical rain forests, covering one-sixth of the total broad-leaf
forest of the world (Whitmore 1997). The Amazon Basin covers around 6.4 million
km? (7 million km?including the Tocantins-Araguaia Basin) (Ribeiro et al. 1996) and it
is where the Brazilian Amazonia lies. ‘Brazil is the country with more rain forests than
any other’ (Whitmore 1997, p.10).

The Legal Amazon, an administrative region created by the Brazilian government in
1953, covers 9 Brazilian States: Acre, Amapa, Amazonas, Maranhao, Mato Grosso,
Para, Rondb6nia, Roraima and Tocantins and comprises around 5 million km?
(Diegues 1992).

The Amazon river's mouth was first reached from the Andes, in the Cinnamon

expedition by Spanish Francisco de Orellana in 1542 (Gheerbrant 1992).
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Since the 16" century, the exploration of Amazonia by European conquistadors had
mainly a commercial character (Whitmore 1997). In the last 40 years, however,
human disturbances in Amazonia have increased dramatically as a consequence of
its opening for international exploitation and the failure of some Brazilian government
policies (Diegues 1992, Ab’Saber 1996). Amazonia has a critical importance for
Brazil and for the rest of the world, as the ‘single richest region of the tropical biome’

(Myers 1984) and as an ecosystem that is still not fully understood (Ab’Saber 1996).

4.1.1. Climate

Tropical rain forest climates are characterised by monthly mean temperatures of
18°C or more and annual rainfall of at least 1700 mm (Walsh 1996). Variations of
less than 5°C in the mean monthly temperatures are expected in the humid tropics
(Sanchez et al. 1982) and average midday temperatures for the Amazon Basin are in
the range 27°C - 32°C (Pearce and Smith 1993).

Climatic types associated with tropical rain forests are based on, among other things,
the presence or absence of a dry season or periods with a monthly rainfall less than
100 mm (Walsh 1996). Table 4.1 shows these climatic types in general terms and its
associated potential natural vegetation. Tropical montane climates and vegetation

are not considered due to their small coverage in Brazilian Amazonia.

Rainfall averages 2000 mm annually in the central Amazon Basin (Salati and Vose
1984). Superwet climates occupy a small area in upper and western parts of the
Amazon Basin, within Colombia and Peru. Both study areas in the Brazilian Amazon
are typical of the tropical wet seasonal climatic type, with a long wet but also a
significant dry season that lasts from 3 to 5 months (Walsh 1996). Vegetation types

assigned to these climatic types will be discussed later.
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Table 4.1: Climatic types and associated potential natural vegetation for South

American tropical rain forests. Adapted from Walsh (1996).

Climatic Dry Annual Potential natural
type periods rainfall (mm) vegetation

Tropical Periods> 1 month >3000 Lowland and Lower

superwet absent or rare montane rain forest

Relatively frequent short
Tropical dry periods or very > 2000 Lowland and Lower

wet short dry season montane rain forest

Significant dry season of
Tropical wet up to 4 months > 1700 Evergreen seasonal

seasonal < 100 mm rainfall rain forest

Evidence of past environmental conditions, deduced from palynology and direct
physical traces, lead to the assumption that fluctuations in climate (associated with
glacial and interglacial periods) were coupled with fluctuations in vegetation
(Whitmore 1990, Ab’Saber 1996). Changes in rainfall and temperature patterns
throughout the Quaternary are among the most important environmental factors to

which tropical rain forests had to adapt (Richards 1996).

4.1.2. Soils

Most of the Amazon Basin lies below 300 meters with gentle topography (Ab’Saber
1996). Tropical soil types normally have low fertility (Sanchez et al. 1982) as a result
of intensive and prolonged leaching. Heavy rainfall, high temperatures and stability of
land surfaces in the humid tropics have resulted in a high proportion of old and
intensively weathered soils. These soils are deep (2 metres or more), porous and

suffer from rapid water infiltration (Baillie 1996).
Dominating around 75% of the Amazon Basin (Sanchez et al. 1982) are the main soll

groups of Brazilian Amazonia (RADAMBRASIL 1976): the Latosols (Ferralsols (FAO
1971), Oxisols (USDA 1975)) and the Podzols (Acrisol (FAO 1971), Ultisols (USDA
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1975)). These soils are acid, infertile and normally well drained with colours varying
from red to yellow, indicative of the presence of iron oxides (Sanchez et al. 1982).
These soils have coarse to medium topsoil textures and subsoils of medium texture,
as the clay content generally increases with depth (Baillie 1996). Next on the
distribution of soils in the Amazon Basin are the poorly-drained alluvial soils (14%)
followed by moderately fertile well-drained soils (8%) and finally, sandy infertile soils
(3%) (Sanchez et al. 1982).

The main constraints imposed by these types of soils are on agricultural cultivation.
The constraints are chemical rather than physical, like phosphorus deficiency in
around 90% and aluminium toxicity in around 73% of Amazonian soils (Sanchez et
al. 1982). The logging of native vegetation and the consequent soil exposition alter
the ecosystem equilibrium and induce physical and chemical soil change as well as

an increase in the susceptibility to soil erosion (Baillie 1996).

4.1.3. Vegetation

In this section characteristics of mature and regenerating Amazonian forest are
given, after general features of both forest types have been described. After that an
overview of biomass (i.e., the carbon content) of tropical vegetation is presented, as

this is a critical component of the global carbon cycle.

4.1.3.1. Mature forests in Amazonia

Around 94% of the Brazilian Amazon terra firme (i.e., areas not permanently or
seasonally flooded) are covered with forests (Ab’Saber 1996). Distribution patterns of
Amazon forests were a result of tropical humid climate generalisation allied with
forest expansion from refugia (Ab’Saber 1996). As mentioned before, glacial and
interglacial periods were associated with dry and wet periods, respectively. Refuge
theory or the fragmentation of the vegetation in islands or refuges during dry periods
in the late Pleistocene was first used to explain the diversity and endemism of animal

species in Amazonian forests (Richards 1996). Evidence supporting this theory was
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found when analysing distributional patterns of trees from certain families in

Amazonia (Prance 1987).

Even though no agreement was reached in the scientific community to support the
refuge theory, the idea of continual adjustment of tropical rain forests in response to
changing environmental conditions has been accepted (Whitmore 1990, Richards
1996, Ab’Saber 1996). In this context, the concept of climax plant community as a

final successional stage in a climatic climax (Hartshorn 1980) seems questionable.

Budowsky (1965, p.42) defined a climax community as ‘the end product of a
successional sere when a relatively stable, although certainly not static, community
has been reached and when changes of floristic composition, structure and
physiognomy over the age span of the dominants become significant’. Jacobs (1988,
p.97) related climax tropical vegetation to unchanging environmental conditions
stating that ‘climax vegetation is one which has reached its maximum development,
i.e., it consists of the maximum number of species able to survive under the existing
conditions, and one whose composition, if undisturbed, will not change if climate and

soil conditions remain the same’.

More recently it was found that undisturbed tropical forests increase biomass
production under enhanced CO, conditions (Chambers et al. 2001). For a 25%
increase in atmospheric CO, scenario, model simulations showed that carbon
accumulation continue for over a century when the enhanced carbon availability
finishes (Chambers et al. 2001). These authors calculated a new dynamic equilibrium
in carbon storage once a tree has reached its full growth (around 175 years) under

enhanced productivity conditions.

Adjectives as undisturbed, old growth, primary, mature and virgin have been used to
refer to climax communities (Hartshorn 1980). Nowadays, however, growing human
pressure over forests made very unlikely the identity of undisturbed tropical forests.
The term mature forest will be used in this work along with the concept of tropical

mature forest as a mosaic of successional stages (Hartshorn 1980).

The vegetation of tropical mature forests has a more elaborate structure and is richer
in species than any other plant community. The majority of tropical plants are woody
species and of the dimensions of trees. Mixed forests present numerous dominant

tree species and are the mainly type of formation in the tropics (Richards 1996).
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Terra firme dense forests are the dominant mature forest type formation in Amazonia
and present an irregular canopy surface with 25-35 m high trees and emergent trees
that can exceed 40 m. Generally there are 500-700 trees per hectare and 100-280
different tree species per hectare (Nelson 1996). Four to five layers (or strata) are
found and many tree species with small diameters are concentrated in the lower
storeys. Tree trunks are slender and straight and branches appear near the top of the
tree, barks are thin and smooth and vines and epiphytes are abundant. Most of the
trees are evergreen but some large trees in seasonal forests (usually associated with
a tropical wet seasonal climate) can be leafless for periods of few days or weeks.
The amount of leaf-fall depends on the moisture conditions and varies from year to
year, being also a response to severe droughts. For some classification schemes,
leaf-fall is seen just as a leaf-exchange process, not as a part of a deciduous nature
(Richards 1996).

Forest types in Amazonia can be divided by climatic type and elevation (table 3.1) or
based on geomorphological information (RADAMBRASIL 1976). Other approaches
include physiognomic (as closed and open forests classes) and human induced
features (as fragmented forest, deforested or forest converted classes) (Nelson 1996,
Saatchi et al. 2000). The enormous diversity of plant forms and the huge variability in
species composition of mixed Amazonian forests were reflected in the forest

classification schemes proposed until today.

4.1.3.2. Regenerating forests in Amazonia

The germination of plant species in a newly formed forest gap, resulting from a large
tree fall, for instance, is an initial stage of the succession process. These ‘coloniser’
or pioneer species can grow up together with older mature tree species, in a mosaic

of successional stages.

The impacts of human pressure in the tropics have altered some natural cycles and
various areas of mature forest have been cleared completely, mainly for agricultural
purposes. The vegetation communities that replace mature forests are called
secondary forests, secondary growth or simply regenerating forests. In Brazil they

are called capoeiras.
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The structure and species richness of regenerating forests are dependent upon the
type of disturbance and the history of the previous use (Uhl ef al. 1987, Richards
1996, Whitmore 1997). Common features to all regenerating forests are light-
demanding species with (i) a high leaf area index and total stem density, (i) low
density of trees having more than 10 cm diameter at breast height (dbh) and woody
density and basal area (Brown and Lugo 1990). A canopy in regenerating forests has
a tendency to be mono-layered with no emergent trees. ‘After a few years,
particularly on abandoned cuitivated ground, even-aged stands of trees of
remarkably regular structure often grow up. These may consist of a single fast-
growing species such as Cecropia sp. (American Tropics)...”(Richards 1996, p.460).
Table 4.2 lists the main characteristics of tropical pioneer and mature (‘climax’) tree

species, the latter ones are included for ease of comparison.

Pioneer species are very aggressive, producing a large amount of low density wood
in slender trunks rapidly (Whitmore 1997). The main differences between pioneer
and mature species presented in table 4.2 refer to this strategy based on a fast life
but ‘unable to occupy any site permanently’ (Richards 1996). Eventually, pioneer
species create the environment for the establishment of mature forest tree species.
The number of species in a regenerating forest is regulated by the type of
disturbance to which the area has been subject and a rich species composition in the
early phases of succession indicates high opportunities for species establishment
(Brown and Lugo 1990).

Changes in species composition, from pioneer to early and late regenerating species
(Budowski 1965) and associated change in structure are a sign of growing and
maturation of the forest. After 60-80 years regenerating forests are often

indistinguishable from mature forests (Brown and Lugo 1990).

Biomass allocation in tropical regenerating trees varies little in relation to mature
trees, with large amount of biomass concentrated in woody components. The
accumulation of biomass in the different components of trees is a function of age of
the regenerating forest. Figure 4.1 shows the biomass accumulation in wood and
leaves of tropical regenerating forest trees. Woody biomass increases rapidly in the
first years, followed by a slower rate towards maturity. Leaves and roots present a
different pattern, but in initial stages biomass is accumulated more rapidly (Brown
and Lugo 1990).
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Biomass accumulation rates for regenerating forests are dependent upon the history
of previous use and vary in response to environmental conditions (Uhl et al. 1988,
Alves et al. 1997, Lucas et al. 2000). These rates are not commonly reported due to
a lack of comprehensive temporal biomass estimates for regenerating forests in

Brazilian Amazonia (Lucas et al. 2000).
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Figure 4.1. Biomass of leaves and wood (from twigs, branches and stems) of different aged

tropical regenerating forests (modified from Brown and Lugo 1990).

The more frequent pioneer species in Brazilian Amazonia are from Cecropia and
Vismia genera. They differ in structure and in colonisation strategies, being
characteristic of successional pathways dictated by the land use history of the site
they colonise (Williamson et al. 1998, Lucas et al. 2000). Cecropia usually develop in
sites with no heavy use prior to being left fallow. Conversely, Vismia frequently
dominate sites where pastures were abandoned after heavy use, possibly including
burning. Vismia have higher wood density than Cecropia, in shorter and stronger
trunks (Williamson et al. 1998).
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Table 4.2, Main characteristics of pioneer and mature tree species of tropical forests (adapted from Whitmore 1997).

Pioneer

Mature

Common names

Light-demander, (shade-)intolerant, secondary

Shade-bearer, {shade-)tolerant, primary

Germination

Only in canopy gaps open to the sky with full sunlight

Usually below canopy

Seedlings

Cannot survive below canopy in shade, never found there

Can survive below canopy, forming a ‘seedling bank’

Seeds

Small, produced copiously and more or less continuously and

from early in life

Often large, not copious, often produced annually or less

frequently and only in trees that have (almost) reached full height

Soil seed bank

Many species

Few species

Dispersal

By wind or animals, often for a considerable distance

By diverse means, sometimes only a short distance

Dormancy

Capable of dormancy, commonly abundant in forest soils as a

seed bank

Often with no capacity for dormancy, seldom found in soil seed
bank

Growth rate

Carbon fixation rate, unit leaf rate and relative growth rates high

These rates lower

Height growth Fast Often slow
Branching Sparse, few orders Often copious, often several orders
Leaf life Short, one generation present, viz. high turn-over rate Long, sometimes several generations present, slow turn-over rate
Herbivory Leaves susceptible, soft, little chemical defence Leaves sometimes less susceptible due to mechanical toughness
or toxic chemicals
Wood Usually pale, low density, not siliceous Variable, pale to very dark, low to high density, sometimes

siliceous

Ecological range

Wide

Sometimes narrow

Stand table

Negative (no small individuals, no regeneration in situ)

Positive (young individuals, regeneration in situ)

Longevity

Often short

Sometimes very long
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4.1.3.3. Biomass of tropical forests

Biomass can be defined as the total aboveground and belowground living mass of all
vegetation components as well as the dead mass of litter and integrates volume and
wood density information (Brown and Lugo 1990, 1992). Recalling chapter 1, the
carbon content of forests can be derived directly from forest biomass estimates (1 T

biomass = 0.5 T carbon) (Brown and Lugo 1992).

Different approaches can be used for biomass estimation in tropical forests. The first
is the intensive weighing of all vegetation components, a very laborious approach
particularly for roots and large trunks. The second approach is the use of allometric
regression equations derived from the weighing of a subset of trees. These equations
use measurements of diameter and sometimes height and wood densities of trees as

independent variables (Brown et al. 1992).

Considerable variation exists in estimates of tropical forest biomass, mainly due to (i)
confusion about what fraction of total biomass is being considered, (ii) few biomass
estimates derive from real intensive forest measurements and (iii) allometric
equations consider forest variables which are often not available for all tree species
involved (Brown et al. 1992). The use of data derived from forest volume inventories
are supposedly more accurate as they are generally collected from larger sample
areas and ‘the scale of sampling must match the scale of the subject to be measured’
(Brown and Lugo 1992, p.9). The problem is the scarcity and the variability in such

large tropical forest inventories.

Accurate estimates of tropical forest biomass are essential parts of carbon flux
models (Brown and Lugo 1992, Houghton et al. 2000). The need for accuracy is
emphasised today by the large amount of change that biomass and associated
carbon have been subject to, whenever forest conversion and forest regeneration

take place.
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4.1.3.4. Deforestation dynamics in Brazilian Amazonia

Many actors are behind Amazonian deforestation and it is difficult to draw a list of
causes and factors involved. The only real consensus is that deforestation is a result
of human disturbances. The first records of deforestation coincide with records of
human occupation in the area, the indigenous population along the major river
floodplains (varzeas) was believed to be around 6 million before contact with the first
European colonisers in the 16™ century (Anderson 1990). The Portuguese brought
the first non-indian settlements along the varzeas for commercial purposes, as they
looked for spices and drugs. In the 19™ century up to 1910, rubber (latex) extraction
led to an economic boom in the region, migrating people from the drought-affected
areas of the North-east of Brazil and increasing human-disturbance in the forest
(Diegues 1992).

Large-scale deforestation began in 1958 with the construction of the first Amazonian
highway, the Belém-Brasilia (BR364). Large governmental projects of “national
integration” started in the 1960s with the main objective of colonising the remote
borders of Brazil and sustaining the national integrity over the very extense Brazilian
territory. Although fewer people than initially intended were settled, roads were built
(e.g. the Transamazonia) and government started financial incentives to agricultural
and ranching activities (Moran et ai. 1994). Until the 1980s, however, deforestation
rates were about 1.5 % of the Legal Amazon and the annual increase was a mere
0.33 % (Tardin et al. 1980).

Since 1980 deforestation rates increased mainly as a result of government supported
projects, for example subsides for large cattle ranchers that converted forest to
pasture (Anderson 1990, Moran et al. 1994). Large-scale agricultural and cattle
raising schemes were responsible for most of deforestation in despite of the removal
of most fiscal incentives in 1987 (Diegues 1992). Currently pasture is the dominant

land use in forest-converted areas (Ceccon and Miramontes 1999).
Selective logging of commercial timber affected 50-90 % of the total area deforested

in 1996 and is largely underestimated because of its difficult detection. Surface fires

initiated by the logging process also increase forest loss (Nepstad et al. 1999).
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In addition to agriculture, cattle ranching and logging, mineral exploitation is a major
cause of deforestation. The world’s largest iron deposits are extracted in the Carajas
Province, southern Para State. The increasing demand for energy in the area has
resulted in the building of hydroelectric dams and forest cut for charcoal production,

with substantial environmental impact (Diegues 1992).

More recently occupation and colonisation of the Brazilian Amazonia is under private
control and new small-scale settlements are seldom responsible for large
deforestation actions. Around 60 % of arable land is concentrated in the hands of
around 2 % of agricultural landowners, a socially unstable land tenure system
division that calls for agrarian reform (Diegues 1992). The “unequal distribution of
resources” (Anderson 1990) highlights the social dimension of the deforestation
problem. Brazil's external debt (and the use of forest to pay it), inflation and other
economic factors promote land speculation also, indirectly, cause deforestation
(Diegues 1992).

International companies and multinational capital from, among others, Canada,
Japan, Taiwan, United Kingdom and USA, associated with national corporations,
own great expanses of land in Brazilian Amazonia also promoting deforestation
through logging, cattle raising, agricultural and mining (Diegues 1992, Ceccon and
Miramontes 1999).

Alternative use of the forest, such as agroforestry and new-extractivism, can be
combined with implementation of biodiversity reserves in an effort to decrease
deforestation rates, whilst maintaining economic activities in the forest. The challenge
for Brazil and developed nations is to manage forest exploitation and balance

environmental concerns with economic development.

4.2. Study areas

Two areas in Brazilian Amazonia were studied near Manaus and Santarém cities
(Amazonas and Para States, respectively). They were selected as part of British
Terrestrial Initiative in Global Environmental Research (TIGER) project, part of the
Natural Environment Research Council’s (NERC) community program to study global

environmental change. These were the study areas described next.
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4.2.1. Manaus study area

The Manaus study area is located around 70 km north of Manaus City, the capital of
Amazonas State (figure 4.2). It comprises several experimental forest reserves that
are part of the Biological Dynamics of Forest Fragments Project (BDFFP) of the
Brazilian National Institute for Amazonian Research (INPA) and the Smithsonian
Institute in Washington, D.C.. The BR-174 Highway linking Manaus to Boa Vista

(capital of Roraima State) crosses the study area.

The origins of the BDFFP go back to 1979, when INPA and WWF (World Wildlife
Fund) agreed to study the effects of forest fragmentation on different species. Taking
advantage of a Brazilian Law that required the land owners to leave undisturbed half
of the land under development, mature forest reserves were delineated within cattle
ranches. Clearcut areas were used as pastures for cattle grazing. With the Brazilian
economic crisis of the 1980s and the removal of incentives for cattle ranching, most
of the pastures were abandoned and colonised by secondary vegetation. These
reserves have been the subject of several studies and forest regeneration is an
important issue of the BDFFP (Bierregaard and Stouffer 1997).

The Manaus study area is located in moderately rugged terrain, with a maximum
elevation of 142 m above sea level. The main soils within this region are Latosols
that are nutrient-poor and yellow with a high clay content and porosity
(RADAMBRASIL 1976).

The dry season is from June until the beginning of October. The annual rainfall is
around 2290 mm and the mean temperature is around 27° C (data for Manaus station
- coordinates 03.08° S, 60.01° W - and the climatological mean is from 1961-1990,
DNM 1992).
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*Brasilia
)’ 0 400 km
e )

Figure 4.2: Brazilian Legal Amazon and
(a) Manaus and (b) Tapajés study areas.
Numbers on maps refer to location of
inventory plots.

56



Study areas and ground data

In July and August 1993 and 1995 field data were collected at the Manaus study
area. It was part of the NERC TIGER 1.4 Consortium, which involved the Universities

of Wales, Swansea and Southampton (Honzak 1997).

In 1993 fifteen 10x100 m plots and one 15x20 m plot were established in some of the
BDFFP reserves. To locate the plots within a range of regenerating forests biomass,
the approximate age of the plots was determined from a time-series of Landsat TM
data following a post-classification comparison (Lucas et al. 1993). The inventory
was conducted in structurally and floristically homogenous plots, ranging in age from
4 to 16 years (Honzak et al. 1996). Within each plot, the diameter at breast height
(dbh) for all trees greater than 3 cm in diameter were measured, along with the
record of the tree’s genus (and species, when possible). The height of a random
sample of trees (270 individuals) was estimated using an inclinometer (Honzak et al.
1996). The total height was estimated using allometric regressions relating dbh and
height for all species measured in the plots (Honzak et al. 1996). Globa! Positioning
System (GPS) readings were also taken at each plot. In 1995 some of the 1993 plots
were resampled and fourteen additional plots were established in forests younger
than 18 years (Lucas et al. 2000).

These data were used to generate, via allometric equations, an estimate of total

above-ground biomass (T ha ') and density (tree ha™).

Estimates of biomass of mature forest and pasture plots were required in order to
provide an adequate biomass/backscatter range for this study. However, mature
forest and pasture plots were not inventoried for Manaus study area and were

located only in the satellite sensor imagery described later.

4.2.2. Tapajos study area

The Tapajos study area is located in the South of the Amazon River port/city of
Santarém, Para State (figure 4.2). It comprises the Tapajos National Forest, a large
reserve of dense tropical forest (around 200 km?). The Tapajds River is located at the
west of the Tapajés National Forest. East of the Tapajés National Forest and the

study area is the Cuiaba-Santarém highway (BR-163) and a mixture of mature and
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regenerating forest covers. The regenerating forests found there are on abandoned
farmlands and were formerly areas of pasture or crops. The usual agricultural
practice in the area is block-logging, burning of forest, agriculture and a resting
period of five years or more when the area is left to regenerate. Some of these
cleared areas have since been abandoned thus they present regenerating forest at
different successional stages (Shimabukuro et al. 1997). Whenever agricultural areas

are still active, they are mainly used to grow pepper or manioc (cassava).

Tapajos study area is also located in relatively flat terrain with maximum elevation at
280 m above sea level (inside the Tapajés National Forest). The soils are also
Latosol type that are deep, highly weathered and porous, with textures varying from

sandy clay loam to heavy clay (Hernandez Filho ef al. 1993).

The dry season is from July until the beginning of December, the annual rainfall is
around 1911.2 mm and the mean temperature 24.8° C (data for Belterra station -
coordinates 02.38° S, 54.57° W - DNM 1992).

From 24™ August to 15" September 1994 a field data collection campaign was
carried out at the Tapajds study area. It was part of TIGER joint project between what
was the Remote Sensing Applications Development Unit (RSADU) of the British
National Space Centre (BNSC), the Brazilian Institute for Space Research (INPE),
what was the Institute of Terrestrial Ecology (ITE) of the NERC and the Sheffield
Centre for Earth Observation Science (SCEOS) of Sheffield University.

With the aid of an age map, derived from a time-series of Landsat TM data in a post-
classification comparison (Luckman et al. 1995, Sant'Anna et al. 1995), fifteen
10x50m plots in forest were selected. The age map indicated the regenerating stage
and size of the area such as to give sufficiently large regions to be averaged within
SAR images. Forest areas greater than one hectare were considered suitable for
inventory (Luckman et al. 1995) and plots were established in forests aged between
2 and around 25 years. The diameter at breast height (dbh) of each tree greater than
3 cm in diameter for young regenerating plots and greater than 15 cm for mature
forest plots were measured using a girth tape. Approximately every eighth tree was
measured for height using an inclinometer and the remaining tree’s height was
estimated using a regression technique relating height and dbh (Luckman et al.

1997a). Global Positioning System (GPS) readings were also taken at each plot.
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These data were used to generate, via allometric equations, an estimate of total

above-ground biomass (T ha ') and density (tree ha™) as described below.

Estimates of biomass of mature forest and pasture plots were required in order to
provide an adequate biomass/backscatter range. Pasture plots were not inventoried

and were located only in the satellite sensor imagery described later.

4.3. Ground data

In this section the study areas and forest plots described above are presented in

relation to their biomass and rainfall data.

4.3.1. Biomass estimates

Total above-ground biomass (T ha "), herein called biomass, was estimated for the
plots inventoried in Manaus and Tapajds study areas. Allometric regression
equations that use the relationship among dbh, height (h), in some cases wood
density (S, g cm®) and biomass (B) were used (Luckman et al. 1997a). When
available, single species regressions were used, as for Vismia and Cecropia
(equations (1) and (2)). General regressions were used for the rest of secondary and
mature forest species (equations (3) and (4)). Wood density values were found for
most species in Reyes et al. (1992). These equations are shown below, with the

authors and for which genus/type of species they were applied to.

e Uhl et al. (1988) for Vismia:

B = 0.0290 % (dbh?)"*® xh®7’ (1)
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o Uhl et al. (1988) for Cecropia:

B = 0.0298 x (dbh?)°%° x h @)

e Deans et al. (1995) for secondary species:

B = 0.40 + 0.0406 x (dbh2) xhx S (3)

e Brown et al. (1989) for mature species:

B = 0.0899 x (dbh? x hx S)°%5%2 (4)

All of the mature forest plots (10, 15, 16, 17, 18) for Tapajés study area were located

inside the Tapajés National Forest, although only plots 10 and 15 were inventoried.

For Manaus study area, inventory data from 1995 were considered. Biomass
estimates for mature forest plots not visited in the field (plot 17 for Manaus and plots
16, 17 and 18 for Tapajés study area) were taken as those estimated for mature
forest plot (15) in the Tapajés study area. Pasture plots (plot 18 for Manaus and 19
and 20 for Tapajos study area) were located inside known cattle ranching areas, and
the biomass assigned to them was the one associated with established pasture

grasses (Eggers, pers. comm. 1999).

Tables 4.3 and 4.4 show plot numbers and coordinates, land cover, biomass, density

and basal area estimates for the Manaus and Tapajds study areas, respectively.

60



Table 4.3: Field data for the Manaus study area. NA refers to not available,
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NV refers to not visited.

Plot Long, Lat Land Biomass Density Basal area
number coordinates cover (Tha) (trees ha™) (m? ha)

1 -59.964,-2.358 Regenerating forest 1441 2580 25.8
2 -59.953,-2.360 Regenerating forest 131.3 3270 23.9
3 -59.999,-2.352  Regenerating forest  140.3 6880 26.5
4 -569.857,-2.391 Regenerating forest ~ 144.8 2520 26.9
5 -59.888,-2.419 Regenerating forest 134.7 3820 243
6 -60.049,-2.291 Regenerating forest 124.3 2590 21.4
7 -60.051,-2.277 Regenerating forest 130.3 2960 24.8
8 -60.0.3,-2.201 Regenerating forest 143.9 2940 24.4
9 -60.041,-2.396 Regenerating forest 9 3460 20.1
10 -60.042,-2.393 Regenerating forest 127 2850 22.6
11 -60.048,-2.403 Regenerating forest ~ 126.1 2680 24.6
12 -60.018,-2.405 Regenerating forest 131.5 7140 27

13 -60.020,-2.207 Regenerating forest 156.6 3830 25.8
14 -60.080,-2.195 Regenerating forest 117.4 3660 20.7
15 -60.174,-2.434 Regenerating forest 116.3 2630 20

16 -60.171,-2.432 Regenerating forest 32.6 5140 15

17 -59.898,-2.483 Mature forest (NV) 387 NA NA
18 -569.979,-2.354 Pasture (NV) 2 NA NA
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Table 4.4: Field data for the Tapajés study area. NA refers to not available,

NV refers to not visited.

Plot UTM Land Biomass Density Basal area
number  coordinates cover (Tha™) (treeha”) (m’ha’)

1 730017, 9632303 Regenerating forest 62 1120 16.8
2 728753, 9637184 Regenerating forest 15 9720 9

3 731555, 9626650 Regenerating forest 62 4400 17

4 740214, 9635587 Regenerating forest 8 10400 4.8
5 733267, 9618849 Regenerating forest 54 1580 11

6 737409, 9605512 Regenerating forest 82 2440 18.3
7 723404, 9693411 Regenerating forest 78 900 16.3
8 734483, 9693376 Regenerating forest 104 1140 20.8
9 735870, 9691362 Regenerating forest 75 1540 18.9
10 731789, 9680134 Mature forest 181 560 17.9
11 742950, 9682087 Regenerating forest 101 1920 17.5
12 739006, 9681246 Regenerating forest 42 3640 19.3
13 729637, 9668093 Regenerating forest 89 2160 17.9
14 729886, 9661866 Regenerating forest 25 3000 7.8
15 733331, 9691809 Mature forest 387 720 375
16 720838, 9646571 Mature forest (NV) 387 NA NA
17 718826, 9636379  Mature forest (NV) 387 NA NA
18 717528, 9621642  Mature forest (NV) 387 NA NA
19 729889,9642786 Pasture (NV) 2 NA NA
20 730614,9641298 Pasture (NV) 2 NA NA

Biomass estimates for both study areas present a considerable degree of variability,
which was expected as the literature reports wide ranges for the biomass of tropical
mature and regenerating forests. In addition, it is difficuft to account for all potential

sources of errors when measuring forest variables, starting with the selection and
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assumption of homogeneity of a certain forest plot and as a result, no error
assessment was performed. Moreover, there are no error margins associated with
the allometric equations used for biomass estimates in this research (Luckman et al.
1997a).

Estimates of biomass for dense mature forests varied from 166 to 397 T ha ' as
reported by Brown and Lugo (1992) in a comprehensive summary of biomass
inventories in Brazilian Amazonia. This research found 387 T ha™ for mature forest in
Tapajés, which was consistent with previous findings and suitable for assigning to

further known mature forest plots in Tapajés and Manaus study areas.

Regenerating tropical forests biomass values reported in the literature are difficult to
extrapolate, as they are age-dependent and a function of previous use (Uhl et al.
1988). Estimates of biomass for eight year old regenerating forests varied from 5 T
ha 'to 87.1 T ha ™, following light, moderate and heavy use of abandoned pastures
(Uhl et al. 1988). This research found variation between 8 T ha ~' and 156.6 T ha
for regenerating forests in Manaus and Tapajos study areas. Although not
considered here, the biomass variation between 8 T ha ~*and 156.6 T ha ~' reflects

the variety of ages and previous land uses of the regenerating forest plots.

4.3.2. Forest regrowth maps

For both study areas, forest age maps were produced and used as a guide in the
location of the regenerating forest plots in the ground (Lucas et al. 1993 for Manaus
age map and Sant'Anna et al. 1995 for Tapajés age map). The method for the
production of these maps included analysis and classification of TM sensor bands in
broad classes such as mature forest, regenerating forest and agricultural land. With
each temporal TM sensor band classified, the pixels were traced according to the
classes they belonged and a model of changes in land cover was devised (Lucas et
al. 1993).

For Manaus study area seven classes were mapped: mature forest, pasture and five

different ages of regenerating forest (i) <2 years, (i) 2-3 years, (iii) 3-6 years

regenerating from forest, (iv) 3-6 years regenerating from pasture and (v) 6-14 years.
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This chronology of forest regrowth for Manaus study area is an additional source of

information about the area.

The updated Manaus forest regrowth map was used in chapter 7 as the ground data.
Multifrequency and multipolarisation SAR data, along with the 1991 Landsat TM
bands 3, 4 and 5, were tested for the discrimination of mature forest, pasture and age

classes in a classification approach.

4.3.3. Biomass accumulation simulation

The remote sensing data described in the next chapter cover a period from 1992 to
1997 and the ground data described above are from inventories that represent the
biomass for a single date. That was the reason for a biomass accumulation

simulation, which results were used later in conjunction with backscatter.

Dividing biomass by the estimated age of the regenerating forest is usually how
biomass accumulation rates are estimated (Alves et al. 1997, Lucas et al. 2000). This
procedure, however, was not applicable in Tapajés data, as the age of the

regenerating forest plots was not available.

Seven plots in Manaus study area had their measurements taken in two field
campaigns, in 1993 and in 1995. An increase in biomass was observed for all plots
over the two years period, although rates were variable. The biomass estimates were
grouped and subtracted (biomass data from 1995 minus biomass data from 1993),
producing an averaged monthly rate of biomass of 0.6 T ha™ (annual increase of 7.2
T ha™). This value was added or subtracted from the biomass estimates for the

regenerating forest plots depending on the dates of their inventory.

Biomass accumulation rate of 7.2 T ha™' year ™' is within the range already found for
Manaus study area plots (Lucas et al. 2000). Assuming a linear rate of growth,
however, may not be a valid assumption, mainly when dealing with forests younger
than 10 years (Lucas et al. 2000). These authors also found different biomass
accumulation rates depending on the successional pathway that regenerating forests
follow, which was determined by, among other things, the differences in previous

land use intensity.
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4.3.4. Floristic composition

When describing the nature of vegetation communities, some techniques are
proposed to rank species in relation to others (Krebs 1978). The Importance Value
Index (1VI) is used to define the relative dominance of species of a certain community
and enables the comparison among different communities (Krebs 1978). 1Vl was

derived for Manaus and Tapaj0s regenerating forest plots (tables 4.5 and 4.6).

For Manaus study area a comprehensive study on the plots has been undertaken.
With the help of IVI and historical data, the age of the plots and their successional
pathway could be traced. The floristic composition of the regenerating forest plots
was analysed using TWINSPAN classifier (Lucas et al. 2000). The plots were
classified according to their species composition and tree basal area (m? ha™). Three
levels and eight groups were defined, differing basically by the dominant species
(table 4.7).

Table 4.5: Dominant genera for the Manaus regenerating forest plots.

Plot number Dominant genera
1 Cecropia
2 Vismia, Cecropia
3 Vismia, Goupia
4 Cecropia, Gualteria
5 Vismia, Bellutia
6 Vismia, Cecropia
7 Cecropia, Laetia
8 Cecropia
9 Cecropia
10 Cecropia
11 Cecropia, Laetia
12 Vismia
13 Laetia, Vismia
14 Vismia, Miconia
15 Goupia, Vismia
16 Goupia, Vismia
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Table 4.6: Dominant genera for the Tapajos regenerating forest plots.

NA refers to not available.

Plot humber

Dominant genera

Cecropia

NA

Poecilanthe, Cecropia

Poecilanthe, Vismia

Vismia

Vismia

Mangifera

Guatteria

©O| | NI Of O ] W] | -

Orbignya

—_
o

Couratari

—
—

Sloanea
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\V]

Orbignya, Poecilanthe
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w

Vismia, Guatteria

—_
E=N

Vismia

—_
)]

Orbignya

Table 4.7: Classification of floristic composition of the Manaus

regenerating forest plots (Lucas ef al. 2000).

Level

Group

Classification

Vismia-dominated

1

Vismia-dominate {pasture)

Cecropia

Cecropia-mixed

Cecropia-dominated (<10 years)

Cecropia-dominated (>10 years)

Cecropia-Bellucia

Mixed species

0 N O O B~ W N

Vismia-mixed (non-pasture)
Goupia-mixed

Mixed (>20 years)

66



Study areas and ground data

All plots were dominated by pioneer species and the common genera Cecropia and
Vismia were present in almost all forest regeneration categories in table 4.7. Vismia-
dominated forests occurred where pastures had been used previously for moderate
to long periods. In contrast, Cecropia dominated both pasture and non-pasture sites
that had been used for less than two years. Both levels could have been submitted to
fire, although in some plots this was not certain. Mixed forests were found in smaller
clearances and its history was uncertain with previous use ranging from short to long
periods (Lucas et al. 2000).

The forest plots inventoried at Manaus study area may be typical of regeneration
following low intensity of previous use and therefore their biomass and succession

pathways varied accordingly (Lucas et al. 2000).

For the Tapajés study area, however, historical information was not fully available
and the floristic composition of its regenerating forest plots did not seem to provide
evidence of their successional pathway. Only two plots were dominated by Cecropia
and four plots dominated by Vismia genera, which could lead to the assumption that
the previous use of the regenerating forests plots were heavier that the plots at
Manaus study area. Most of the plots were previously cleared and burned to be used
as agricultural land for a variety of crops (excluding pasture) (Shimabukuro et al.
1997). Floristic composition (table 4.6) varied in relation to Manaus plots, but was

also representative of regenerating forests in Brazilian Amazonia.

4.3.5. Rainfall and cloudiness daia

Rainfall data for both study areas were available on a daily basis, but for Tapajos the
weather station from Brazilian Meteorological Office (Barragem Curua-Una Station,
coordinates 2°47°00”S, 54°16'16”"W) was situated around 50 km from the
regenerating forest plots. As the rain in equatorial climates occurs in localised cells
(convective type), these rainfall data may not be representative of the Tapajos study
area. Therefore meteorological images such as from GOES (Geostationary
Operational Environmental Satellite) and Meteosat sensor satellites were checked to
confirm the cloudiness and rainfall. The meteorological images were chosen to be

the closest possible to the time of the JERS-1 satellite overpass, which was usually
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around 15:00 GMT. Figure 4.3 shows both study areas in a cloud-free GOES-8

sensor image.

Figure 4.3: GOES-8 image for 31/07/1997, showing no cloudiness for (M) Manaus and (T)

Tapajos study areas.

For the Manaus study area, data on rainfall were gathered from the LBA website
(Large Scale Biosphere-Atmosphere Experiment in Amazonia, from Brazil). The
actual site where the rainfall measurements were taken is Fazenda Dimona, one of
the reserves of the BDFFP (coordinates 02°19’S, 60°19'W). The data were available
on a daily basis for 1994, 1995 and for part of 1996. For 1993 rainfall data were from
the Brazilian Meteorological Office (Balsa do Rio Urubu Station, coordinates
2°54°47”S, 59°2’2”W) around 100 km away from the study area and without GOES
sensor data available to confirm them. Table 4.8 and 4.9 show the rainfall totals for
the day before the JERS-1 overpass, the total for ten days before the satellite
overpass and cloudiness conditions when GOES or Meteosat sensor images were

available.
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Table 4.8: Rainfall totals (mm) and cloudiness conditions over the

Manaus study area. NA refers to not available.

JERS-1 overpass Day before Ten days before Cloudiness
23/02/93 16.3 80.9 Yes
01/10/93 0 25.4 No
10/02/94 1.2 108.6* NA
05/08/94 0 54 No
28/01/95 10.6 102.2 Yes
02/12/95 1.8 49.8 Yes
12/04/96 NA NA Yes
22/08/96 0 0 No

* 7 days before the satellite overpass.

Table 4.9: Rainfall totals (mm) and cloudiness conditions over the

Tapajés study area. NA refers to not available.

JERS-1 overpass Day before Ten days before Cloudiness
22/08/92 0 29.4 NA
14/02/93 0 44.8 NA
30/03/93 83.8 154.1 Yes
26/06/93 0 17 No
27/07/94 0 11 No
19/01/95 0 39.3 No
10/10/95 0 0.2 No
17/05/96 0 51.5 No
13/08/96 0 2.2 No
31/07/97 0 7.4 No

There was a remarkable agreement between the rainfall totals and the cloud
conditions in the meteorological satellite sensor images over the study areas. The
rainfall data seemed to be suitable icr inferring the water content of the regenerating

forest plots.
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CHAPTER FIVE

Temporal analysis of JERS-1 SAR data
for regenerating tropical forests

In this chapter, the temporal behaviour of regenerating tropical forests on JERS-1/SAR
images was investigated. Following a phase of data pre-processing, which involved
geometric correction and registration, the Digital Number (DN) of regenerating forest
plots were collected. The regenerating forest plots are located in Manaus and Tapajds
study areas, as described in the previous chapter. GPS coordinates taken at the plots
on the ground and TM images from the study areas allowed the collection of the DN.

The DN were later converted to backscatter coefficient (6°), herein called backscatter.

SAR images for both the wet and dry seasons and some rainfall data for the study
areas were available for this research. That allowed an investigation of the influence of
seasonally changing variables in ¢°. As possible sources of temporal variation on c°,
the variables investigated were biomass and rainfall. The objective of this analysis was
to assess the utility of a temporal series of JERS-1/SAR images to detect changes in
c° (or Ac®). The ultimate goal was to detect biomass accumulation in regenerating

forests in two study areas in Brazilian Amazonia based on Ac®.

5.1. JERS-1 satellite

The NASDA (National Space Development Agency of Japan) and MITI (Ministry of
International Trade and Industry of Japan) launched the Japanese Earth Resources
(JERS-1) satellite in 11 February 1992. The satellite carried a Synthetic Aperture
Radar (SAR) and an Optical Sensor (OPS). Despite its two years designed lifetime the
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SAR and some of the bands of the optical sensor were able to observe the Earth for
more than six years, until October 1998. Table 5.1 shows the main characteristics of
the JERS-1 satellite and its SAR.

Table 5.1. Main characteristics of JERS-1 and its SAR (RESTEC leaflet).

Altitude 568 km

Orbit Sun synchronous

Recurrent period 44 days

Antenna size 11.9mx24m

SAR frequency and wavelength  1.275 GHz, 23.5 cm (L band)
SAR polarisation HH

SAR incident angle 38.5° (to the centre of swath)
SAR swath width 75 km

SAR ground resolution 18 m x 18 m (3 looks)

Of the SAR parameters cited above, the band and polarisation (L and HH) make this
sensor suitable for the study of regenerating tropical forests. Ly is able to penetrate
into the vegetation canopy and discrimination between biomass levels is possible
(Pope et al. 1994, Luckman et al. 1998). Coupled with that, the all-weather capabilities
of a L band SAR sensor and the recurrent period of 44 days for the JERS-1 further
increase its utility (Rosenqvist et al. 2000).

5.2. The GRFM project

The Global Rain Forest Mapping (GRFM) project is a joint effort led by NASDA to
acquire a cloud-free data set of the major rain forest areas on Earth. The project,
started in 1995, covered an area of about 40000 km? from the Amazon Basin to
South-East Asia (Rosenqvist et al. 2000). As a major aim of the project, SAR image
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mosaics at 100 m resolution were generated for Africa, South America and South-East
Asia (Rosenqvist et al. 2000). The GRFM project involved 29 technical studies at local
to global scales, led by researchers in universities and scientific organisations
worldwide. These studies were generally supported by ground campaigns and aimed
the assessment of the state of forest and associated flood plains, as can be seen in
Shimada (1999).

As one of the British counterparts of the GRFM project, the present research was

provided with a series of JERS-1/SAR images, enumerated in the next section.

5.3. JERS-1 SAR data

The original JERS-1/SAR images were processed by NASDA and available for this
research at level 2.1. This level corresponds to standard georeferenced amplitude
images resampled to Universal Transverse Mercator (UTM) projection and with pixel
size of 12.5 m. The GRFM SAR data were corrected using corner reflectors deployed
in non-forested areas in Japan, USA, Alaska and Brazil. For correcting the antenna
pattern related radiometric errors (range and azimuth dependent), large areas of
tropical rainforest were used as references. According to Chapman et al. (1999), multi-
temporal studies can be undertaken on JERS-1 SAR data. In equation (5.1) the
“calibration” factor of (-68.5) is set to compensate for absolute errors and is accurate to
around 1 dB. NASDA image products are quantified to 16 bits and the minimum DN
(corresponding to low ¢° of around —20 dB) is around 265 (Chapman et al. 1999).

The study areas in Manaus and Tapajés were extended over two JERS-1 SAR scenes
hence two images were obtained for each of the dates. Data on eight dates were
obtained for the Manaus study area, while the Tapajos study area was covered in ten
dates. The overall period of study covered 60 months and for ease of analysis each of
the dates was coded by month from August 1992 to July 1997. Tables 5.2 and 5.3
present the characteristics of the SAR images for each study area. A total of 16
images (8 dates) were obtained for the Manaus study area and 20 images (10 dates)
were obtained for the Tapajdés study area. Table 5.4 shows the SAR data for both

study areas plus new codes for months used in a joint analysis in section 5.5.5.
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Table 5.2. JERS-1/SAR images for the Manaus study area.

Path/Row Path/Row Date Season Month
414/304  414/305 23/02/93 wet 1
414/304  414/305 01/10/93 dry 9
414/304  414/305 10/02/94 wet 13
414/304  414/305 05/08/94 dry 19
414/304  414/305 28/01/95 wet 24
414/304  414/305 02/12/95 wet 35
414/304  414/305 12/04/96 wet 39
414/304  414/305 22/08/96 dry 43

Note: Approximate central coordinates for path/rows 414/304
are 2°05’'S, 59°4'W and for 414/305 are 2°41'S, 59°50'W.

Table 5.3. JERS-1/SAR data for the Tapajés study area

Path/Row Path/Row  Date Season Month
405/305  405/306 22/08/92 dry 1
405/305  405/306 14/02/93 wet 7
405/305  405/306 30/03/93 wet
405/305  405/306 26/06/93 dry 11
405/305  405/306 27/07/94 dry 24
405/305  405/306 19/01/95 wet 30
405/305  405/306 10/10/95 dry 39
405/305  405/306 17/05/96 wet 46
405/305 405/306 13/08/96 dry 49
405/305  405/306 31/07/97 dry 60

Note: Approximate central coordinates for path/rows 405/305
are 2°24'S, 54° 34'W and for 405/306 are 3°10’S, 55°03'W.
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Table 5.4. JERS-1/SAR images dates for the Tapajés (T) and

the Manaus (M) study areas and their month codes.

Location-Date Season NMonth Location-Date Season Month
T-22/08/92 dry 1 T-19/01/95 wet 30
T-14/02/93 wet 7 M-28/01/95 wet 30
M-23/02/93 wet 7 T-10/10/95 dry 39
T-30/03/93 wet 8 M-02/12/95 wet 41
T-26/06/93 wet 11 M-12/04/96 wet 45
M-01/10/93 dry 15 T-17/05/96 wet 46
M-10/02/94 wet 19 T-13/08/96 dry 49
T-27/07/94 dry 24 M-22/08/96 dry 49
M-05/08/94 dry 25 T-31/07/97 dry 60

5.4. Methods

The images were pre-processed using geometric corrections before the extraction of
the pixel DNs and conversion to backscatter. These backscatter values were then

analysed with the ground data by the steps described next.

5.4.1. Geometric correction and registration

Very often remotely sensed images need to be transformed to a product with
properties similar to a map, with a known scale and projection. The sources of
distortions in remotely sensed images are linked to sensor and satellite instabilities, as
well as the Earth’s rotation. The location of the study area, the overlay of temporal
sequences and the generation of maps are some of the circumstances where the
geometric correction of the images are required. The fitting of coordinates between
two images of the same area is called registration (Mather 1999). The geometric
correction process includes the determination of a common coordinate system
between images and maps by the establishment of a set of ground control points. A

map-to-image coordinate transformation is achieved using polynomial functions from
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first to third-order. A first-order polynomial function can accomplish the geometric
correction of images with no strong “bending” effects. A higher order polynomial
function will be selected to achieve the correction of large distortions on satellite

sensor imagery (Mather 1999).

The assignment of the DN associated with the new corrected pixels is done by means
of a resampling. The nearest neighbour resampling preserves the original DN, as it
takes the closest pixel value to be the new output pixel value. Other methods of
resampling such as bilinear and cubic convolution involve spatial interpolations that

produce new DNs out of the original ones (Mather 1999).

In the case of this research, both Manaus and Tapajés study areas contain few natural
or anthropogenic features suitable for use as ground control points. The geographic
position of those ground control points was taken from topographical maps of the
study areas. However, the ground features chosen as control points were much easier
to locate on optical than on SAR images. For that reason the SAR images were
registered to geometrically corrected Landsat Thematic Mapper (TM) images of the

same area.

For the Manaus study area a Landsat TM image (orbit 231/62 of 08/08/1991) was
geometrically corrected to a UTM projection using ground control points from a
topographic map. A first-order polynomial was used for the mapping and a nearest
neighbour resampling was performed. The final pixel size of the TM image was 25
metres. The SAR image from February 1993 was registered to the TM image and the
fifteen remaining SAR images were subsequently co-registered. The number of
ground control points used for the registering between images was around 18 and the

total RMS errors were of less than one pixel.

Prior to the registration with the TM image, sets 2x2 pixels on the SAR images were
averaged spatially, generating a nominal spatial resolution of 25 metres. Averaging the
pixels before resampling reduced the speckle, but retained the statistical properties of
the SAR images (Luckman et al. 1998).

The procedure applied for the Tapajés study area was nearly the same as described
above. A Landsat TM image (orbit 227/62 of 29/07/1992) was corrected geometrically
to a UTM projection using ground control points from a topographic map. The SAR

image from June 1993 was registered to the TM image and then the nineteen
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remaining SAR images were co-registered. The number of ground control points used
for the registering between images was around 18 and the total root-mean-square

(RMS) errors of the registration were of less than one pixel.

5.4.2. DN to o° conversion

Pixel Digital Numbers (DN) of the SAR images were converted to backscatter

coefficient (c°) in decibels (dB) via equation:

6° =10xlog,, |3 (DN)? /n}+ CF [5.1]

where n is the number of pixels extracted from the images and CF is the “calibration”
factor of —68.5 (Rosenqvist 1996a).

Equation (5.1) was applied in two steps. Firstly, to obtain backscatter in linear units
and prepare the data for the fitting of a model as explained in next section, the images
were squared and divided by (10°%°). To correlate backscatter with the ground data, a
mean value of backscatter was derived from the plots located on the images. Twenty
plots were located on the Tapajés images and eighteen plots on Manaus images,
using their GPS coordinates, knowledge of the area and Landsat TM images. The
smallest polygon used for the estimation of the mean backscatter was composed of 14
pixels or 8750 m?, following the recommendation of Luckman et al. (1997a). The
polygons were located in large homogeneous areas where the biomass was assumed
to be the same as the one measured on the ground. Standard deviation of backscatter
was also computed for each polygon representing the plots in the different images.
Linear units of mean and standard deviation of backscatter were converted to decibels

by multiplying by a 10 x log, factor.

The images from January 1995 (North portion) for Tapajos and from October 1995 for
Manaus contained a stripe with noisy data in the North-South direction and these data
were discarded. To replace the missing data for Manaus, NASDA provided a pair of

images from December 1995 (table 5.2).
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5.4.3. Principal Components Analysis (PCA)

Principal Component (PC) analysis is a statistical technique used to (i) identify groups
of interrelated variables, (ii) reduce the redundancy of variables by reducing the
number of variables and (iii} rewrite the variables in an alternative form (Johnston
1980).

For remotely sensed data, PCA is used to generate new images which are often more
interpretable than the original data. It is also used to compress the information content
of a series of images (such as different bands of the same image or temporal
sequences of images over the same scene) into a reduced number of images, called
the principal component images (Jensen 1986). The PC transformation reduces the
spectral redundancy of data and generates uncorrelated multispectral data that has
ordered variance properties (Jensen 1986). PC translates the original data axes so
that they are reprojected onto a new set of axes or dimensions. The first of this new
set of axes is associated with the maximum amount of variance found in the original
data set. This is the first principal component or eigenvalue (PC1) and represents the
variance of the particular PC mode 1. The second principal component (PC2) is
orthogonal to the first and comprises the second largest amount of variance found in
the data set. The third, fourth, fifth, and so on, principal components contain

decreasing amounts of variance.

The eigenvectors are a set of coordinates defining the direction of the associated
eigenvalue. The length and direction of the PCs are described by the eigenvalues and
eigenvectors (Mather 1999). The eigenvectors can also be interpreted as the
correlation between the original images and the new generated principal components
(Mather 1999). In practical terms, this correlation (or factor loading) informs what

image, out of the original set, contributed more to each of the PC modes.

In this work PCA was used to provide additional information about the change in the
spatial time series SAR data for both study areas. Standardised PCs were obtained
based on the correlation matrices (Eastman and Fulk 1993) of 8 SAR images for the

Manaus study area and 10 SAR images for the Tapajés study area
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5.4.4. Exploratory statistical analysis

An exploratory statistical analysis was undertaken on the mean backscatter for each
plot and date. Normality tests were undertaken as normality is a pre-requisite for the
Analysis of Variance (ANOVA) performed later. The objective of this statistical analysis

was to detect significant differences in 6° between SAR dates.

For the Manaus study area, the distribution of the data were normal (Ko/mogorov-
Smirnov test, p>0.0001) so the mean backscatter could be considered. ANOVA
indicated that the differences in the mean backscatter values among the dates were

statistically significant at the 95% level of confidence (F=5.61, d.f.=7, p<0.05).

For the Tapajés study area, the distribution of the data were non-normal (Ko/mogorov-
Smirnov test, p<0.0001). In this case, the median of the mean backscatter was
considered. The median of the mean backscatter values for each SAR date differed
significantly at the 95% level of confidence (Kruskall-Wallis ANOVA, H=20.4, d.f.=9,
p<0.05).

The variability in the mean backscatter for Manaus data and in the median of the mean

backscatter for Tapajés data were a pointer to the temporal component explored.

5.4.5. Modelling backscatter/biomass relationship

From the trend observed in the data when plotting backscatter against biomass, it was
observed that using a logarithmic (log) function of biomass would resulted in a
stronger correlation between these data than if using a linear function (Dobson et al.
1992; Ranson and Sun 1994). That was probably because of the log function used to
convert DN to ¢°. Consequently, a model with a log fitting (equation 5.2) was applied
to describe the relationship between backscatter and biomass. The model is as

follows:

o’ =a, +a, xlog(biomass) [5.2]
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where ¢° is the backscatter in dB and a, and a; are the coefficients of the log fitting.

Biomass was in units of T ha™.

The log fitting, however, did not allow quantification of the asymptotic region where
backscatter is insensitive to biomass (Le Toan et al. 1992, Dobson et al. 1992, Ranson
and Sun 1994, Imhoff 1995a, Luckman et al. 1997a).

To assess the asymptote in the backscatter/biomass relationship, a second model
(equation 5.3) was fitted to the data (Luckman et al. 1998, Fransson and lsraelsson
1999). This model was based on a water cloud model designed by Attema and Ulaby
(1978) which represents the extinction of microwaves as they pass through a layer of
vegetation made up of elements containing water (Luckman et al. 1998). The
parameter a corresponds to the saturation point of ¢° (in linear units) or when the
asymptote in the relationship backscatter/biomass is reached. B refers to biomass in

units of T ha™.

c° =a— el [5.3]

To get a better fitting of the model, pasture plots in both study areas were included in
the analysis. Although not visited on the ground, these plots were assigned a biomass

of 2 T ha ™' (Eggers, pers. communication, 2000).

For the Manaus study area the fitting of equation (5.3) was compromised by the lack of
low biomass values for regenerating forest plots. For this reason the data for the two

study areas were combined.

The relationship between backscatter and biomass was determined and subsequently
the temporal behaviour of 6° was examined. Different types of analyses allowed some

potential sources of variation in ¢° to be investigated. The main points were:

o The temporal behaviour of DN was assessed through PCA to provide information

about change in the spatial time series of SAR data for both study areas.
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e The temporal behaviour of c°was assessed through plotting the mean ¢° for each
regenerating forest plot against time. Three-dimensional graphs were also produced to
visualise the influence of different biomass levels in the long term distribution of ¢°. In
addition to that, residuals from the mean backscatter for each plot were plotted to

detect any existing anomaly in the data.

e The influence of the biomass accumulation on the behaviour of ¢° was also
determined. Seven plots in Manaus study area had their measurements taken in two
field campaigns, in 1993 an in 1995. Their biomass estimates were grouped and
subtracted, producing an averaged monthly increase of biomass of 0.6 T ha™. This
value was added or subtracted from the biomass estimates for the regenerating forest
plots depending on the dates of their inventory. This biomass accumulation was
simulated regardless the history of disturbance and age of vegetation in the

regenerating forest plots.

e To investigate the influence of rainfall on SAR data, rainfall measurements were
plotted alongside the mean backscatter of some regenerating and mature forest plots

for both study areas.

5.5. Results and discussion

This section presents the results of investigations conducted on some of the possible
sources of temporal variation in ¢°. Backscatter/biomass relationships for both study
areas are presented, along with an attempt to describe the temporal behaviour of ¢°
for regenerating and mature forest plots. An investigation of a possible cyclical pattern
of 6° is presented as well as a simulation of the biomass accumulation during the time

span studied. Finally, the potential influence of rainfall on SAR data is discussed.
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5.5.1. PCA

SAR images from 8 dates were used for the Manaus study area (table 5.5) and SAR
images from 10 dates (referred as bands) were used for the Tapajos study area (table

5.6). Month code was used to ease the identification of trends in the graphs.

Generally the correlation between SAR bands was low. The maximum correlation
coefficient of 0.55 was found between bands 4 (June 1993) and 8 (May 1996) for
Tapajos study area data. The first four principal components of both study areas
concentrated around 70 % of the variance of the original SAR bands (table 5.5 and
5.6). As a result of decreasing information content of PCs with the decline in variance,
the last PCs are likely to contain mainly the noise of the original SAR bands (Kuplich et
al. 2000a).

For both study areas, the first principal component image was the only to depict the
land covers (e.g. pasture and regenerating forest plots) or features seen in the original
SAR bands from where they were derived. In addition, those features were
exceptionally enhanced and contrasted from the mature forest that is the major land
cover for both study areas images. The remaining components did not depict any
feature visually interpretable. They seemed to be variations around different levels of

fine texture and tone.

For the Manaus study area, band 1 (February 1993) and band 6 (December 1995)
contributed with positive eigenvectors (table 5.5 and figure 5.1) suggesting positive
correlation of these bands with the features seen in PC1. Similarly, those bands could
contain unapparent spatial patterns very alike to the ones depicted in PC1 (Eastman
and Fulk 1993).

For Tapajés study area band 1 (August 1992), band 2 (February 1993) and band 4

(June 1993) presented significant positive eigenvectors (table 5.6 and figure 5.2)

suggesting positive correlation of these bands with the features seen in PC1.
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Table 5.5. Principal components coefficients (eigenvectors in columns and
eigenvalues in bottom row as the percentage of variance) for the Manaus study
area SAR images. Cum. Perc. refers to the cumulative percentage of variance.

Date PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

(Month)

02/93 (1) 0.33¢ 0.319 0.317 0406 0.391 0.358 0.318 0.372

10/93(9) -0.386 -0.422 -0.375 0.065 0.410 0.139 0.576 -0.096

02/94(13) -0.386 -0.438 0.486 -0.186 -0.184 0.319 -0.107 0.491

08/94(19) -0.066 0.050 0.549 -0.217 0.095 -0.653 0.453 -0.073

01/95(24) -0.578 0.715 -0.048 -0.243 -0.111 0.243 0.148 -0.029

12/95(35) 0.461 -0.084 0.074 -0570 -0.209 0.445 0.351 -0.293

04/96(39) -0.195 -0.076 0.462 0.327 0.117 0.260 -0.189 -0.720

08/96(43) -0.023 -0.044 -0.031 0.509 -0.7583 -0.018 0.413 -0.015
Percentage

variance 34.04 12.84 11.34 9.37 8.66 8.55 7.99 7.21
Cum.Perc.. 34.04 46.88 5822 6759 7625 8480 92.79 100
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Figure 5.1. Eigenvectors for the first and second principal component from Manaus study area
SAR images. Dates corresponding to month codes are in table 5.5.
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Table 5.6. Principal components coefficients (eigenvectors in columns and
eigenvalues in bottom row as the percentage of variance) for the Tapajés study
area SAR images. Cum. Perc. refers to the cumulative percentage of variance.

Date PCt PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
(Month)

08/92(1) 0.264 0.327 0.318 0.315 0.328 0.316 0.320 0.329 0.317 0.323
02/93(7) 0.640 -0.217 0.214 0.342 -0.206 -0.208 -0.306 0.307 -0.281 -0.175
03/93(8) -0.254 0.365 0.460 0.164 0.370 -0.478 -0.107 -0.221 -0.371 0.015
06/93(11)  0.648 0.266 -0.205 -0.499 0.248 -0.171 0.192 -0.294 -0.071 -0.018
07/94(24)  0.023 -0.139 -0.321 0.129 -0.088 -0.345 -0.023 0.014 -0.104 0.850
01/95(30) -0.052 -0.095 -0.299 0.385 0.000 -0.347 0.722 0.067 -0.072 -0.316
10/95(39) -0.040 0.019 -0.066 -0.036 0.016 0.528 0.204 0.066 -0.810 0.106
05/96(46) 0.018 0.256 -0.608 0.419 0.390 0.152 -0.431 -0.048 0.010 -0.160
08/96(49) -0.013 0.729 -0.092 0.061 -0.673 -0.035 -0.002 0.045 -0.012 -0.011
07/97(60) -0.177 0.130 -0.156 -0.405 0.198 -0.242 -0.075 0.806 -0.075 -0.074
Percentage

variance 51.88 8.48 654 559 505 487 475 455 436 3.93
Cum.Perc. 51.88 60.36 66.90 72.49 77.54 8241 87.16 91.71 96.07 100
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Figure 5.2. Eigenvectors for the first and second principal component from Tapajds study area

SAR images. Dates corresponding to month codes are in table 5.6.
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SAR image time series can enable assessment of land cover variation whether due to
seasonality or disturbance. For the images studied here, however, the main land cover
— mature forest - has not been submitted to any dramatic change, either seasonal or
as a result of disturbance. Therefore the results of PCA demonstrated that the DN
variability in the SAR time series was high but not particularly spatially related. PC1 for
both study areas summarised the features potential to change in a spatial/temporal
perspective: the relative small areas covered by agricultural/pasture activities and the
regenerating forests. The remaining PCs presented features not interpretable in terms
of spatial variations. Nevertheless, the PCA did not show any particular temporal or
sensor derived anomaly that could hinder the analysis to be performed next. In
addition, the weather conditions during the dates of SAR images acquisition and
biomass status of the vegetation may prove useful for understanding the variability
shown during the PCA.

5.5.2. Backscatler and biomass

The relationship between backscatter and biomass was positive for both study areas.
The resulting correlation coefficient (r) for Manaus data was 0.68 (figure 5.3) and 0.77
for Tapajos data (figure 5.4). The biomass range was not so wide in Manaus as it was
in Tapajos study area. Perhaps this was the reason why the correlation between

backscatter and biomass was lower for Manaus data.

Figures 5.5 and 5.6 display the results of regressions using the mean backscatter
values for each of the plots in the Manaus and Tapajés study areas, respectively. Both
regressions showed a stronger relationship between backscatter and biomass, with

correlation coefficients of 0.8 (Manaus) and 0.87 (Tapajés).
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Figure 5.3: Relationship between backscatter and biomass for pasture, regenerating and
mature forest plots at the Manaus study area where all data for individual dates were plotted
(r=0.68, c° = -9.99+0.47*log (biomass), 46% variance accounted for).
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Figure 5.4. Relationship between backscatter and biomass for pasture, regenerating and
mature forest plots at the Tapajés study area where all data for individual dates were plotted

(r=0.77, ¢° = -11.38+0.7031*log (biomass), 59% variance accounted for).

85



Temporal analysis of SAR data for regenerating tropical forests

Backscatter (dB)
@
[=7]
i

0 40 80 120 160 200 240 280 320 360 400

Biomass (T ha'}

Figure 5.5: Relationship between backscatter and biomass for pasture, regenerating and
mature forest plots at the Manaus study area where averaged data were plotted (r=0.80, ¢° = -
9.92+0.46%log (biomass), 64% variance accounted for).
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Figure 5.6. Relationship between backscatter and biomass for pasture, regenerating and
mature forest plots at the Tapajés study area where the mean backscatter for each plot was

used. (r=0.87, 6°=-11.12+0.65*log(biomass), 76% variance accounted for).
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The log model (equation 5.2) utilised here indicated the strength of the
backscatter/biomass relationship. It did not allow, however, to set a limit for the
estimation of biomass from backscatter, as the log does not converge to an
asymptote. Figure 5.7 shows the results of fitting the second model (equation 5.3),
from which it was possible to predict the location of the asymptote and up to what
extent backscatter is sensitive to biomass.
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Figure 5.7: Relationship between backscatter/biomass for pasture, regenerating and mature
forest plots at the Tapajés and Manaus study areas. The curve represents the fitted model
(Luckman et al. 1998) with =0.87 and 76% of the variance accounted for. The parameters of
the fitted model were a=0.17, b=0.04 and c=2.4.

Using equation (5.3) (figure 5.7), the relationship between backscatter and biomass
was found to be stronger (r=0.87) than in the other fittings (figures 5.1 to 5.4). The
asymptote was reached at backscatter of 0.17 (-7.70 dB), which corresponds to
biomass of around 90 T ha'. These values are consistent with previous works (Le
Toan et al. 1992, Dobson et al. 1992, Imhoff 1995a, Wang et al. 1995). For tropical
regenerating forests, it is reported that L band backscatter saturated at biomass levels
of between 40 T ha and 100 T ha™' (Imhoff 1995a, Luckman et al. 1997a, Araujo et al.
1999). These biomass saturation levels would limit the detection and estimation of
biomass for regenerating forests under 13 years old (Uhl et al. 1987, Brown and Lugo
1990).
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5.5.3. Biomass accumulation simulation

Considering the simulation of the biomass accumulation, the model described in
equation (5.3) was applied to Manaus and Tapajos data. The resulting correlation
coefficient () was 0.77 (figure 5.8). The parameter from which the asymptote can be
defined was 0.17, corresponding to —7.64 dB or biomass values of around 100 T ha™.
The biomass accumulation was simulated in a simplistic way, but the correlation
coefficient between backscatter and biomass indicated consistency in the new
biomass values. Nevertheless, the correlation coefficient was lower than the one
obtained with constant biomass values for the time span analysed (figure 5.7). The
biomass simulation performed here might have created a variety of biomass values
not actually present in the field and therefore not followed by comparable backscatter
responses. The apparent backscatter saturation from biomass values around 100 T
ha' have probably limited the correlation analysis up to this biomass value.
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Figure 5.8. Relationship between backscatter and simulated biomass for pasture, regenerating
and mature forest plots at the Manaus and Tapajos and study areas. The curve represents the
fitted model (Luckman et al. 1998) with r=0.77 and 59% of the variance accounted for. The
parameters of the fitted model are a=0.17, b=0.03 and c=2.49.
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5.5.4. Temporal behaviour of backscatter

When analysing the backscatter/biomass behaviour with time, different responses
were found for younger and intermediate regenerating forests. In most cases, younger
regenerating forest plots (below the backscatter/biomass asymptote) had a
backscatter that changed with seasons and over time. Intermediate and mature forest
plots (above the backscatter/biomass asymptote) had a temporally stable o°.
However, this behaviour was more evident for regenerating forest plots in the Tapajoés
study area, as they presented a wider range of biomass. A less dynamic ¢° behaviour
for intermediate and old forest stages was also observed by Quegan et al. (2000) in

pine forest plots in UK.

For regenerating forest plots at the Manaus study area, ¢° ranged between —6.5 dB
and -9 dB (figure 5.9). Most of the plots presented biomass around 130 T ha™ and the
behaviour of 6° did not show any marked trend. Figure 5.9 (a), (b) and (c) show the ¢°
behaviour of plots ranging in biomass from 91 T ha' to 156.6 T ha’'. Some
coincidence among troughs and peaks from different plots were noticed, but not
consistently. In figure 5.9 (a), for instance, decreasing ¢° occurred from February 1993
to October 1993 for all plots, except for plot 5, which exhibit a distinct behaviour. In
some dates, as in April 1996 (figure 5.9 (b)), 6° seem to be restricted to a narrow

range of values.

Plot 16, with low biomass (32 T ha ') and the only plot below the backscatter/biomass
asymptote, had few variations in ¢° (figure 5.9(d)) if compared to plots with similar
biomass in the Tapajos study area. The mature forest plot (figure 5.9(d) plot 17), with a
biomass above the backscatter/biomass asymptote, presented a nearly stable ¢° of
around —7.5 dB.

For the Tapajos study area ¢° ranged between -7 and -9 dB (figure 5.10) for all plots in

regenerating and mature forest.

Plots 2,4,5 (biomass of 15, 8 and 54 T ha™ respectively), illustrated in figure 5.10(a),
had lower backscatter than plots 1 and 3 (both 62 T ha™). Plot 4 (figure 5.10(a)) had

the lowest biomass amongst all plots as well as the widest range of c°. The extremes

values of ¢° for plot 4 corresponded to the wet season (March 1993) with the highest
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backscatter and dry season (October 1995) with the lowest backscatter for the time
span analysed here. Plot 14 (figure 5.10(c)), however, although presenting low
biomass (25 T ha™), had a very variable behaviour of ¢°, without correspondence

between peaks and troughs and wet and dry season data, respectively.

The temporal variation found in plots 4 and 14 may have been due to the large

variability in the data arising from the calculation of mean ¢° from relatively few pixels.

With the exception of plot 6, the plots with biomass close or above the asymptote
presented approximately the same trends of increasing and decreasing ¢° (figure
5.10(b)).

Mature forest plots (plots 10, 15, 16, 17 and 18) presented the more stable behaviour,
with similar trends of increasing or decreasing backscatter (figure 5.10 (b) and (d)).
The six mature forest plots were above the saturation on the sensitivity of radar to
biomass. Mature tropical forest is known to have small variations in ¢°, being often

chosen as a radiometric correction site (Hashimoto et al. 1996, Chapman et al. 1999).

Although the backscatter/biomass relationship was showed in the previous section, it
was not expected that it would explain all variation in ¢°. The temporal analysis
enabled the effect of biomass on ¢° to be isolated as plots above the
backscatter/biomass asymptote were considered and presented similar trends of
increasing and decreasing ¢° with time (Quegan et al. 2000). High biomass plots such
as mature forest presented a high ¢° that indicated the contribution of another
biophysical variables (McDonald et al. 1991, Imhoff 1995b, Dobson et al. 1995, Foody
et al. 1997) and scattering mechanisms (Wang et al. 1995) rather than only biomass to

the final backscatter values.

When temporal variations in ¢° coincided with dry (low backscatter) and rainy season
(high backscatter), the importance of soil moisture contribution and the penetration of
LHH band in young regenerating forest could have been demonstrated (Hess et al.
1995, Saatchi et al. 1997). However, the small number of young regenerating forest

plots that followed this behaviour did not seem to confirm this affirmation.
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91



Temporal analysis of SAR data for regenerating tropical forests

<
& |
=
o
Z =
§
s %
wu 2.3 5
S - ‘/ \ / X —»— Plot 1
o ¥ Y I 0i Plot2
= v I i s
134 S o = —v-- Flotd
\. 2 —=- . Plot5
1% T T T T T T 'l! T T T
&n
55 b
70

Backscatter (dB)
o1
=]

E5 —+— Plotf
seoes Plot 7
=l —¥—- Plot 8
85 —— PlotQ
—= - Plot 10
100 T T T T T T T T T T
&0
55 c
-1+
oy
s sy
b
E =0
S BS54 ; = Rt
& @y 7 T —+— Flot 11
=0 G e i \v -0 Plot 12
N Ny —v— Plat 13
ks —o-- Plot 14
100 T T T T T T T T T T
&0
€5 4 d
104

‘Backscatter (dB)
o
=]

8|5
—a— Plot 15
50 0=+ Plot 18
—v— Plot 17
22 —o-- Plot 18
-i00 - T
o~ (9 fard o < w0 w0 L=} «©o ™~
g Sa & o B e @ RS Rt =
IR E S 3 F3

JERS-1/SAR dates for Tapajos data

Figure 5.10. Temporal behaviour of ¢° from regenerating and mature forest plots in Tapajés

study area.

92



Temporal analysis of SAR data for regenerating tropical forests

Figures 5.11 and 5.12 illustrate the residuals (or deviations from the mean) of the
mean backscatter for selected plots in regenerating and mature forest plots in Manaus
and Tapajos. The analysis of these residuals did not allow the observation of any
particular anomaly of ¢° with time. The tendencies are similar to the ones noticed in
figures 5.9 and 5.10. Young regenerating forest plots (54 Tha',25 Tha and 33 T ha’
— figures 5.11 and 5.12) had more variable backscatter behaviour, with higher
deviations from the mean. Mature and intermediate regenerating forest plots residuals
were much smaller than those of young regenerating forest plots, indicating a greater

stability due to saturation of the backscatter/biomass relationship.

Both the Manaus and Tapajos and study areas (figures 5.9 to 5.13) indicated no

consistent trend of increasing ¢° with time.

—e— 128 T ha' (Plot 1)
--0-- 157 T ha'! (Plot 13)
—v— 33T ha'! (Plot 16)
14 —#- Mature forest

Residuals from mean backscatter (dB)

Feb93 Oct93 Feb94 Aug94 Jan'95 Dec95 Apr96 Aug9b
JERS-1/SAR Manaus data

Figure 5.11. Residuals from mean backscatter of regenerating and mature forest plots in

Manaus study area.
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Figure 5.12. Residuals from mean backscatter of regenerating and mature forest plots in

Tapajés study area.
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5.5.5. Temporal behaviour of backscatter and biomass

For the Manaus data, the tri-dimensional relation of backscatter/biomass/time seen in
figure 5.13 indicated a cyclical pattern. The peaks were concentrated on the region of
intermediate biomass, where most of the data were from. The highest peaks in
backscatter (months 1, 24, 35, 39) corresponded to wet seasons (December to June).
The peak around month 9 (October 1993) corresponded to an unusual high

backscatter in the dry season (July to November) and could not be explained.

The low biomass region, represented only by data from plot 16 (32.6 T ha™),
presented a trough around month 35 (December 1995) which was probably caused by

the absence of data for months 24 and 39 (January 1995 and April 1996) and a low
backscatter value in December 1995.
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Figure 5.13. Biomass and backscatter as a function of time for Manaus data. The dates
relating to months on the x-axis are in table 5.2.
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For the Tapajos study area (figure 5.14) a cyclical pattern of backscatter for low
biomass was observed. Except from month 24 (July 1994) the dry season was
represented by sharp troughs. Similarly, the peaks corresponded roughly to wet

season.
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Figure 5.14. Biomass and backscatter as a function of time for Tapajdés data. The dates
The water content of vegetation varies seasonally and diurnally (McDonald et al. 1991,

relating to months on the x-axis are in table 5.3.

depending on

Gates 1991). The saturation on the SAR response to biomass can hide

are certainly high and dense enough to

including vegetation and canopy structure, the water content

influence on o°. Forests above 90 T ha™

a series of factors

if soil moisture contribution can not

prevent further penetration of L band. Therefore

It has been noted by other authors that SAR imagery acquired during a dry season
relationships (Rignot et al. 1997, Luckman et al. 1997a, Saatchi et al. 1997, Grover et

be accounted for, the varying water content of vegetation parts can play a réle in the
provides the backscatter range needed to develop robust backscatter/biomass

temporal behaviour of ¢° (Ahern et al.1993).
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al. 1999). In a temporal analysis, data from the dry season only would reduce the

influence of water content of vegetation and soils in the backscatter/biomass

relationship.

Figure 5.15 presents a 3D plot of backscatter/biomass/time using simulated biomass

values for Manaus data (see section 5.5.3). The fluctuations in ¢° over time for

intermediate biomass remained, but less consistently. For the low biomass region

there is a negative relationship of decreasing backscatter with time.
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Figure 5.15. Simulated biomass and backscatter as a function of time for Manaus data. The

dates relating to months on the x-axis are in table 5.2.

For Tapajos data, one of the effects of using simulated biomass accumulation was the

fading of the cyclical pattern for low biomass (figure 5.16). In addition, the graph

highlighted the absence of any increasing tendency for ¢°, even in the light of biomass

accumulation.
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The adequacy of simulating biomass accumulation needs to be assessed. However,

the rate of biomass accumulation in regenerating tropical forests is still an object of

investigation (Chapman and Chapman 1999). Errors could have been introduced by

not accounting for the age and rapid biomass accumulation on the first years of

development (Brown and Lugo 1990).
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Figure 5.16. Simulated biomass and backscatter as a function of time for Tapajés data. The

dates relating to months on the x-axis are in table 5.3.

d Manaus data altogether (figure 5.17) no added features

0s an

z

When plotting Tapaj

there were more data points in the region of low and

were present. However,

intermediate biomass. The seasonal cycle in low biomass was kept. Fluctuations of ¢°

for plots with intermediate biomass were not always consistent and there was no

single response for similar biomass levels. This was expected after the known

saturation of SAR response to forest vegetation. Also, variables other than biomass

and water content certainly play a role in the backscatter response of regenerating and

mature tropical forests (Imhoff 1995b, Foody et al. 1997).

It was not possible to detect biomass accumulation with temporal variation in ¢°.
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Figure 5.17. Biomass and backscatter as a function of time for Tapajés and Manaus data. The

dates relating to months on the x-axis are in table 5.4.

5.5.6. Rainfall and backscatter

The seasonality of the backscatter in radar images is a function of the water content in

the amount of water in the soil and the amount of rainfall

b

the vegetation components

intercepted by vegetation surfaces. The moisture holding capacities of the soils is a

function of the topography and drainage characteristics of the study areas (Grover et

al. 1999).

The water content of soils, leaves and woody vegetation components was not

measured in any of the regenerating and mature forest plots. Thus, the sensitivity of

radar to water content and season was investigated by analysing rainfall data with

’s images used to infer cloud conditions and

support from GOES and Meteosat sensor

therefore rainfall occurring in the study areas. As rainfall is convective and occurs in
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localised cells in the study areas, no comprehensive conclusions can be drawn from

this research.

Figures 5.18 and 5.19 display the total rainfall for the previous day and for the
cumulative amount of rain for the ten previous days o the date of SAR image
acquisition. Backscatter from three different biomass stages (young, intermediate and
mature forest plots) were plotted alongside rainfall data, as they represent different

behaviour in the backscatter/biomass relationship.

Figure 5.18 indicated that there was not much coincidence between high rainfall and
peaks in backscatter for the three forest plots in the Manaus study area. The expected
higher backscatter for wetter periods did not occur for the three forest plots in all dates
studied. The available regenerating forest plot with biomass below the
backscatter/biomass asymptote was not included in all eight SAR scenes analysed,
being missed in two dates (months 24 and 39). As a result, the backscatter/rainfall
relationship could not be investigated for January 1995 and April 1996. The influence

of the ten days cumulative rainfall was not remarkable in the Manaus study area data.

Figure 5.19 indicated that there was some coincidence between high rainfall and
peaks in backscatter for the three forest plots in Tapajés study area. The younger
regenerating forest plot (54 T ha™) appeared to parallel closer the rainfall values. This
plot had a biomass below the backscatter/biomass asymptote. The two remaining
plots in figure 5.17 showed a less marked coincidence between rainfall and
backscatter distribution. These plots presented biomass values close or above the
saturation point. Month 60 (July 1997) records showed no rainfall data whatsoever, but
two plots had a high backscatter. The minimum backscatter occurred for the driest
month (Month 60) and the maximum backscatter occurred for the wettest month
(Month 8).

An interesting feature to note in figure 5.19 is the importance of the rainfall records of
up to ten days before the SAR image acquisition date. These 10 days rainfall values
seemed to have an influence in backscatter from the three forest plots. Although
Tapajos study area is in a relatively flat terrain and presenting soils well drained, the
water from rainfall might be held in soils for days, depending on the local topography.
Drainage characteristics of the Tapajos study area were already seen as a dramatic

influence on temporal backscatter (Grover et al. 1999).
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Figure 5.18. Rainfall data of one day before the JERS-1 satellite overpass, total cumulative
rainfall data of ten days before the satellite overpass and backscatter over mature and two
regenerating forest plots for the Manaus study area. The dates relating to months on the x-axis
are table 5.2.
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Figure 5.19. Rainfall data of one day before the JERS-1 satellite overpass, total cumulative
rainfall data of ten days before the satellite overpass and backscatter over mature and two
regenerating forest plots for the Tapajos study area. The dates relating to months on the x-axis
are in table 5.3.
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5.6. Summary

The backscattering properties of thirty regenerating forest plots, six mature forest plots
and three pasture plots were studied at Manaus and Tapajés study areas in Brazilian

Amazonia using a time series of around four years of JERS-1 SAR images.

There was a positive backscatter/biomass relationship at both study areas. The
correlation between the mean backscatter (6°) and biomass for each plot over time
were r=0.80 for Manaus and r=0.87 for Tapajos data. A model was fitted to the data in
order to quantify the location of the asymptote in the c°/biomass relationship. The
resulting correlation was r around 0.87, with saturation in ¢° at biomass levels of
around 90 T ha”. That would limit the detection and estimation of biomass for
regenerating forests under approximately 13 years old (Uhl et al. 1987, Brown and
Lugo 1990).

The o°/biomass/time plots indicated a cyclical pattern in ¢° for young regenerating
forest plots. The pattern was seasonal with the dry season corresponding to lower ¢°
and the wet season corresponding to higher ¢°. This pattern pointed to the influence of
water content in vegetation and soil on ¢°. Rainfall was another important source of
varia}»i/on in o° and regenerating forest plots below the c°asymptote showed

cor/responding high rainfall rates and high ¢° and vice-versa.

The ¢° varied most strongly with time for those regenerating forest plots that had
biomass levels below the ¢° asymptote. A similar temporal ¢° behaviour for
intermediate biomass regenerating plots and mature forest plots indicated properties

other than biomass (i.e. water) influenced the backscatter from tropical forests.

Biomass accumulation was not detected by change in backscatter over time. The
information in the ¢° temporal domain was not related to biomass but primarily to

water content of vegetation and soil.

SAR data from the dry season is recommended for forest studies in order to eliminate

the influence of varying water content of vegetation and soil in backscatter.
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CHAPTER SIX

Spatial analysis of JERS-1 SAR data
for regenerating tropical forests

As tropical forest matures, the structure of the canopy changes due to progressive
replacement of pioneer species by early and late regenerating species. Some of the
physical changes in the canopy through time are related to an increase in height (tree
growth), a decrease in canopy surface homogeneity (as emergent trees start to break
through the canopy) and an increase in canopy thickness (related to more branches
in trees and differentiation into strata) (Richards 1996). All of these changes influence
the spatial characteristics of SAR radiation and consequently the texture of SAR

images.

In this chapter, the texture of regenerating forests and mature forest canopies on
JERS-1 SAR images was investigated. The objective was to assess if spatial
(texture) information derived from SAR imagery could be used to increase the

correlation between backscatter and the log of biomass (logbio).

6.1. Spatial analysis and texture

The spatial analysis of remotely sensed data exploits the relations between pixels in
the images. Texture measures quantify relations between pixels and are therefore an

important tool in the spatial analysis of remotely sensed data.
Texture is an intrinsic property of virtually all surfaces and is visible in, for instance, a

satellite sensor image of the Earth’s surface and a microscopic image of cell cultures.

It is related to the structural arrangements of surfaces and their relationship to the
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surrounding environment as “...an organised area phenomena’ (Haralick 1979).
Despite its importance in image data there is no precise definition or standard

mathematical formulation for texture (Haralick 1979, Soares et al. 1997).

When interpreting aerial photographs or satellite sensor images the tone and texture
of objects are among the most important features in their visual recognition. While
tone refers to the grey level of a resolution cell (pixel in digital images), texture refers
to the spatial distribution of tonal variations at the neighbourhood of the resolution
cell (Haralick et al. 1973, Mather 1999).

Texture is dependent on the scale of observation and is a function of the spatial
resolution (Mather 1999). Local and regional contrast along with scale and preferred
orientation of the texture elements are the components of the texture of a digital
image (Rubin 1990).

6.2. Overview of texture models

Texture analysis is based mainly on structural and statistical approaches (Haralick
1979). The structural approach models texture as a set of primitives that repeat with
a certain periodicity. A primitive is a connected set of pixels characterised, for
instance, by a list of attributes such as its grey levels (Haralick 1979). Texture is
determined by the selection of different types of primitives, the extraction of a set of
features describing these primitives (e.g., size and shape) and the definition of a
placement rule (He and Wang 1990). The identification of primitives and definition of
a placement rule for land covers usually found in remote sensing images can hinder

the application of the structural approach for textural analysis (He and Wang 1990).

More commonly used for remote sensing data is the statistical approach, which
describes texture as a set of local statistical measures based on the spatial
distribution of grey levels of an image. First- and second-order statistical measures
are computed over regions or distances of pixels within the images, respectively.
Several methods and techniques for describing texture based in statistical models
have been developed and these include the variogram, the grey level co-occurrence
matrices (GLCM) and local statistics derivation, which were all used in this work and

are described below.
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6.3. Texture of radar images

Visual interpretation of radar images is based largely on texture (Rubin 1990, Raney
1998). Terms such as rough, smooth, coarse and fine are usually employed for

describing radar image texture (Lewis and Henderson 1998).

Texture analysis is relatively straightforward in images from optical sensor
(incoherent) systems as they contain primarily scene texture. For radar images,
however, texture comprises scene texture and image texture as a result of the

dominating inherent image noise called speckle (Raney 1998).

The presence of speckle in radar data increases the variability of both spatial and
radiometric information. As a result, some image classifiers based on tone alone
classify land cover with low accuracy in radar images (Ulaby et al. 1986). Speckle

also hinders the visual discrimination of land cover in radar images.

Speckle is commonly assumed to be a multiplicative factor to the SAR scene texture
(Ulaby et al. 1986, Soares et al. 1997). The following model combines variability due
to texture and speckle in SAR images (Ulaby et al. 1986):

LG =w 4T, (DFn () [6.1]

where /(j)=l,is the intensity of pixel j in field /, 4, is the mean intensity of field /, T,(j)
represents texture as a random within-field variability and Fy (j) represents speckle

as a fading random variable with a normalised %* (chi-square) distribution.

Image pre-processing techniques such as the use of speckle filters or multilook
averaging of the data can increase the discrimination of land cover in SAR images.
However, these techniques also reduce local variation and therefore partially remove
image texture. Although speckle information is present in image texture, the spatial
variability attributable to intrinsic scene texture is not related to the variability
attributable to speckle (Ulaby et al. 1986). It follows that the intrinsic scene variability
causing the image texture can be detected even in the presence of speckle. This

hypothesis has been corroborated by recent results (as described in section 3.4.1).
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Figure 6.1 shows a subset of a JERS-1/SAR image of the Tapajds study area with
the main land covers and types of texture indicated. Water can be considered
“textureless”. The remaining dark, small local contrast surfaces in the image subset
are examples of recent human activity such as crops, pasture and forest clearings.
Mature forest is characterised by a fine texture, where, at larger spatial resolutions, a
close inspection would reveal bright and dark areas as a result of scattering from
emergent trees and shadowing. Regenerating forests, depending on a series of
factors (e.g., dominant species, regenerating stage, etc), exhibit less texture than
mature forest and are generally darker, although are not always discriminated
visually from mature forest. The absence of emergent trees and a thinner canopy
(less volume scattering) would partially explain the darker appearance of
regenerating forests in radar images. Speckle (although reduced by 3-look
processing and pixel averaging) is also responsible for the fine texture exhibited over
the image that is usually referred as grainy or “salt-and-pepper’ (Lewis and
Henderson 1998).

6.4. Texture measures

Image data recorded on the closest date to the fieldwork were used. JERS-1 SAR
data from July 1994 (fieldwork August/September 1994) was chosen for the Tapajds
study area and SAR data from December 1995 (fieldwork September 1995) were

chosen for the Manaus study area.

In chapter 5, the mean backscatter for regenerating forest, mature forest and pasture
plots were estimated from within polygons located in the amplitude images. In this
chapter, the same polygons were used but this time as subsets of the images. These
subsets were used as input either as images or as text files for the implementation of
texture methods described below. The images were not converted to linear units and
backscatter and the information used was pixel DN. In this chapter, the designation
GL (grey level) is also used for DN as most of the literature in texture analysis uses

pixel values as tonal information.

The statistical texture measures investigated are described next.
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737050
9678100

Different land covers, composed of a mixture of mature
and regenerating forests along with areas of recent human
activities. Dark areas are covered with agricultural

crops, pasture or clearings. Regenerating forests present
different degrees of texture and contrast and might

not be discriminated visually from mature forest.

BR 163 motorway that marks the limits of the National Forest.

Tapajos National Forest — a protected area of mature forest.

Terrain elevation change.

White areas on the river bank are probably inundated forest.

Tapajés River.

N 712100 0 3

Figure 6.1. Subset of JERS-1/SAR image of Tapajés study area and its main land covers.
Corners display UTM coordinates.
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6.4.1. Texture measures derived from the variogram

Geostatistics is a set of statistical techniques used to describe the spatial variation of
variables within a region of interest (Atkinson 1999). These variables are assumed to
be spatially correlated, that is, in a remote sensing context, pixels close together are
more likely to have similar values of a property than pixels further apart (Curran and
Atkinson 1998). The theory of regionalised variables is the framework within which
geostatistical techniques are based (Matheron 1965). A regionalised variable has
properties intermediate between a random and a deterministic variable, mainly
because it presents continuity in space although this continuity is not easily described
by a function (Davis 1986).

The variogram (or semivariogram as it is also called) is a core geostatistical tool and
was first described for remote sensing studies in the late 1980s (Curran 1988,
Woodcock et al. 1988a, Curran and Atkinson 1998). Variograms were mainly used as
pre-requisites for interpolation (or kriging) in mapping and cartographical modelling
(Burrough 1996). Recently, however, the use of variograms for analysis of spatial
information in remotely sensed images has been widely referenced (Miranda et al.
1998, Berberoglu et al. 2000, Chica-Olmo and Hernandez 2000).

The variogram relates the variance of pixels to its spatial location and describes the
scale and patterns of spatial variability (Curran and Atkinson 1998). Pixel's GL can
be interpreted as a regionalised variable and spatially characterised by a variogram

function.

The variogram is derived by calculating half the average squared difference —
semivariance - between pairs of pixels separated by a distance h — the lag distance

(Curran 1988). An estimate of the average semivariance (y) is given by:

mih)

S +h)] [6.1]
) =1

where m is the number of pairs of pixels, x is a pixel location, h is the lag distance
and Z(x) is the pixel value at location x. The larger y the less similar are the pixels
(Curran 1988).
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The resulting variogram is used for the fit of a model with known mathematical
properties. These properties allow the variogram values and descriptors to be used
for the estimation at unsampled locations (Wallace et al. 2000) or texture analysis
(Chica-Olmo and Abarca-Hernandez 2000).

The descriptors of a modelled variogram include information on (i) the distance over
which pixels are correlated (the range), (ii) the level of random variation within pixels
(the nugget variance) and (iii) the total variation present in the data (the sill) (Wallace
et al. 2000). The sill is the summation of the spatially related (structured) and

uncorrelated (nugget) variance.

Uses of the variogram and its descriptors in spatial analysis also include their
connection with scene class properties (for digital classification purposes) and with
continuous scene variables (for understanding spatial relations between and within
variables) (Atkinson and Lewis 2000). Figure 6.2 shows an example of a typical

variogram and its main descriptors.
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Figure 6.2. A variogram and its main descriptors (from Curran and Atkinson 1998).

The models more commonly fitted to experimental variograms are the spherical,

exponential, Gaussian and power models (Atkinson 1999). The nugget and spherical
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models have a defined sill, although the exponential and Gaussian models only
approach the sill asymptotically. These types of model are called bounded. The
power model (of which the linear is a special case) does not present a sill and is
called unbounded (Atkinson 1999).

Variograms were computed for each plot located within the SAR images using the
software GSTAT (Pebesma and Wesseling 1998). Transects of pixels were used as
the regenerating and mature forest plots presented different shapes and sizes. This
software allows the definition of lag spacing and the maximum distance for which
semivariance is calculated. The settings were 25 metres for lag spacing (equal to
pixel size) and 250 m (or 10 pixels) for maximum distance. The plots were assumed
to be isotropic (with the same variation for any direction) and so the transects were
taken with the largest number possible of pixels in any direction. Subsequently

variograms were fitted using nugget and spherical models.

6.4.2. Texture measures derived from the grey level co-occurrence matrix
(GLCM) and sum and difference histogram (SADH)

The application of a set of textural measurements to remotely sensed data began
with the second-order textural measures based on Haralick’'s grey level co-
occurrence matrix (GLCM) (Haralick et al. 1973). Distance and angular spatial
relationships among grey levels are summarised in a GLCM, as it is a measure of the
probability of occurrence of two grey levels separated by a given distance in a given
direction (Mather 1999). GLCM has been used successfully in a variety of SAR
applications, including land-cover mapping (Kurosu et al. 1999, van der Sanden and
Hoekman 1999, Wu and Linders 1999), crop discrimination (Soares et al. 1997) and
forest studies (Luckman et al. 1997, Kurvonen et al. 1999, van der Sanden and
Hoekman 1999).

To determine the spatial information present in a digital image, a co-occurrence
matrix is computed on a pixel neighbourhood delimited by a moving window of a
given size. Each element P(i,j,d,8) of the co-occurrence matrix represents the relative
frequency with which two neighbouring pixels (separated by a distance d and having
an angular relationship 6 ) occur on the image, one with grey level / and the other

with grey level j. Subsequently, statistics are computed from the grey level co-
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occurrence matrix and they describe the spatial information according to the relative

position of the matrix elements (Mather 1999).

Figure 6.3 illustrates the construction of a four-directional co-occurrence matrix.
Figure 6.3(a) displays a 3 x 3 window from an image ranging from 0 to 3 grey levels,
(b) shows the general form of any grey level co-occurrence matrix obtained from (a).
Pairs of neighbour pixels are considered in orientation and the grey level of these
pixels forms the index for incrementing an entry of the matrix. Figures 6.3(c) to 6.3(f)
represent the co-occurrence matrices derived for four angular orientations using

distance of one pixel between two neighbouring pixels.

0 1
0 0 1
2 0 1
(a) (b)
Horizontal Vertical
2 i3l a0 4 110
3:0: 0 .1 fed ]
P P s
! L0020 o Lan0s 0. @
02000 0:21 00
(c) (d)
Left diagonal Right diagonal
4l 000 0 2 .11
o _1 2:40 -0 - 20050 10
13510 0 0 0 “ 110 00
@ 0070 1 0 0 O

(e) (f)

Figure 6.3. An example of the construction of the co-occurrence matrices. (a) 3 x 3 image
quantised to four grey levels (0-3). (b) general form of any spatial co-occurrence matrix for an
image quantised to four grey levels (0-3). #(i,j) represents the number of times grey levels /
and j have been neighbours. (c)-(f) spatial co-occurrence matrices derived for four angular
orientations using distance 1.
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The greater the number found in the diagonal of the GLCM the more homogeneous
is the texture for that part of the image. Several statistical measures can be extracted
from the GLCM to describe specific textural characteristics of the image (Haralick et
al. 1973).

The texture measures analysed in this work are presented below. A short description
is included for the six best known. A more complete theoretical description of the
most commonly used co-occurrence measures can be found elsewhere (Haralick et
al. 1973, Baraldi and Parmiggiani 1995, Soares et al. 1997). Each element P(i j)axay
represents the relative frequency with which two neighbouring pixels separated by a

distance of a,columns and 4, lines occur (Soares et al. 1997).

Entropy (enth):

ENTHyay ==Y, Pls ) axay 109 PU, ) pay [6.2]
i

Entropy is a measure of the degree of disorder in an image. Entropy is larger when
the image is texturally non-uniform or heterogeneous and approaches its maximum
when all GLCM entries have similar contents, indicating an image with completely

random pixel values. Entropy and energy are inversely correlated.

Energy (eneh):

ENEHuny =23 Pl /)iy [6.3]
i

Also called angular second moment and uniformity, energy is a measure of textural
uniformity or pixels pairs repetitions. When the pixels of the image window under
consideration have similar grey levels, energy reaches its maximum (equal or close
to 1). Therefore, constant or periodic distribution of grey levels over the window will

produce high values for energy.
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Contrast (cont):

CONT.y =23 Pli= )VauayPlis 1) axay [6.4]
i

Contrast is a measure of the degree of spread of the grey levels or the average grey
level difference between neighbouring pixels. The contrast values will be higher for
regions exhibiting large local variations. The GLCM associated with these regions will
display more elements distant from the main diagonal, than regions with low contrast.

Local statistics contrast and GLCM contrast are strongly correlated.

Homogeneity (hom):

HOM sy, 22 - (/ - ,) [6.5]

Also called inverse difference momeni, homogeneity is a measure of lack of
variability or the amount of local similarity in the scene. High homogeneity values
suggest small grey tone differences in pair elements. In this case, the associated
GLCM will present elements around the main diagonal. Contrast and homogeneity

are inversely correlated.

Correlation (cor):

> 3P, jaay - i

CORax.ay = ——! [6.6]
[e7.015]

Correlation is a measure of grey level linear dependencies in the image. High
correlation values denote a linear relationship between the grey levels of pixel pairs.
A completely homogeneous area is a limiting case of linear-dependency, for which
correlation reaches its maximum (equal to 1). Correlation is uncorrelated to entropy

and energy, i.e., to pixel pair repetitions.
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Chi-square (chi):

P(I j) Ax, Ay
CHI, = E E 6.7
oy = *)Ax AyP j)Ax, Ay [ ]

Chi-square is a normalisation of the scene energy to the grey levels linear

dependencies of the image. It is correlated to energy.

An alternative to the GLCM method is the replacement of the co-occurrence matrix
by estimates of first order probability functions in its principal axes, namely the sum
and difference histograms (SADH) (Unser, 1986). New variables defining the sum

and difference of grey levels jand j are created and from them a new reduced matrix.

Each element of the sum vector is defined as

P*(K)ax.ay = "> P(i, J)axay Vi+j=k
oy

and each element of the difference vector is defined as

PP (Naxay =3 > P(i, )axay Vi-j=1.
i

Although derived from a “reduced GLCM”, the measures described next have the
same characteristics as mean and variance (section 6.4.3) and as GLCM derived
entropy and energy (shown above). The following measures were extracted using
SADH technique (Soares et al. 1997):

Mean of the sum vector (sme):

SMEnx ay = Y kP* (K)ax ay [6.9]
k
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Variance of the sum vector (sva):

SVAsxay = Y (k — MSax, ay)° P® (K)ax,ay
k

Energy of the sum vector (sene):

SENEax,ay = Y, P (k)? ax.ay
k

Entropy of the sum vector (sent):

SENTax.ay = Y P (k)ax aylog P® (K)ax, ay
k

Mean of the difference vector (dme):

DMEnx,ay = Y IPP (Iax, ay
i

Variance of the difference vector (dva):

DVAsx.ay =Y (I — DMEax, ay)? PP (I)ax, ay
i

Energy of the difference vector (dene):

DENEax sy = 3 PP (1)?axay
/

Entropy of the difference vector (dent):

DENTax sy = =% PP (I)ax aylog P (I)ax ay
/
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[6.10]

[6.11]

[6.12]

[6.13]

[6.14]

[6.15]

[6.16]
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The extraction of the texture measures based on the GLCM were performed using a
code developed using IDL (Interactive Data Language) and ENVI (Environment for
Visualising Images) functions (Renné et al. 1998). Regenerating and mature forest
and pasture plots were used as image subsets and the GLCM measures were

calculated within a moving window of a given size.

An optimal window size for calculating GLCM texture measures is a compromise
between providing enough spatial information to characterise the land cover and
limiting overlapping textures between different land covers (Ulaby et al. 1986).
Window sizes of 3 x 3 and 5 x 5 pixels (corresponding to areas of 75 m x 75 m and
125 m x 125 m respectively) were chosen based on (i) the variogram for each plot

and (ii) prior knowledge of the small size of some regenerating forest plots.

One drawback of the GLCM approach is a requirement for relatively large
computational resources and the production of a sparse matrix, depending on the
quantisation level of the image studied. For a 256 grey level image (8-bit) the GLCM
has 65536 entries, which can result in a very sparse matrix, depending on the region
studied (Soares et al. 1997). Diminishing the quantisation levels of an image, as long
as the textural properties of the image are preserved, can reduce GLCM complexity

and sparseness (Dutra and Huber 1999).

Methods for reducing the grey level range of an image include uniform and equal
probability quantisation. In the uniform quantisation method grey levels are quantised
into separate bins with uniform spaces, without taking into consideration the grey
level distribution of the image. By contrast, in the equal probability quantisation
method each bin has a similar probability, thus producing a near uniform histogram
(Mather 1999).

Although the equal probability quantisation method is generally recommended for
texture analysis (Mather 1999), some authors found no difference when analysing
texture in images reduced by both methods (li, pers. comm. 2000). Following Rennd

et al. (1998) this work used the method of uniform quantisation.

Table 6.1 illustrates the window sizes and quantisation levels which were tested

when deriving GLCM textures measures:
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Table 6.1: Window sizes and quantisation levels used in the calculation of GLCM and

SADH derived texture measures.

Bits Grey levels Window sii
2 4 5x5 pixels
4 16 5x5 pixels
6 64 5x5 pixels
8 256 5x5 pixels
2 4 3x3 pixels
4 16 3x3 pixels
6 64 3x3 pixels
8 256 3x3 pixels

6.4.3. Texture measures derived from local statistics

Local statistics characterise the moments of a neighbourhood of individual pixels in a
particular segment or region of an image. Local statistics have been used extensively
to quantify texture in SAR images (Soares et al. 1997, Kurvonen and Hallikainen
1999, Haack and Bechdol 2000, Saatchi et al. 2000).

The local statistics measures derived from the regenerating forest, mature forest and

pasture plots were analysed in this work. They are presented below:

Notation:
P(i) = F@Gi)/n
F(i) = frequency for grey level (GL) i
n = number of pixels
M = M =Y iP(i) (mean)
v = Vv =Y[i-MPP(i) (variance)
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Mean Absolute Deviation (mad):

Xli-M
MAD:'T [6.17]

Mean absolute deviation is a measure of heterogeneity similar to the variance,
increasing with greater DN differences from the mean.

Median (med):

The median divides a frequency distribution into two halves: half the scores are
above the median and half are below the median. When n is even, the median is
calculated as the midpoint between the (n/2)th and the [(n/2) + 1]th pixel. The median
is less sensitive to extreme scores than the mean and this makes it a more suitable

measure than the mean for image data with highly skewed distributions (Sokal and
Rohlf 1995).

Entropy (ent):

ENT = —Z P(i)log[P(i)] [6.18]

The meaning of local entropy is the same as GLCM derived entropy: a measure of

the amount of disorder in an image.

Energy (ene):

ENE =Y [P(i))? [6.19]

i

Correlated to GLCM energy as a measure of image homogeneity and is at a

maximum when DNs are constant spatially (Saatchi et al. 2000).
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Skewness (ske):

SKE=_1_______ [6.20]
%

Skewness is a measure of the asymmetry of the DN distribution in an image. A

normal DN distribution is symmetric and therefore has no skew (Lane 2000).

Kurtosis (kur):

D (i=Mm*P(i)

KUR = L — [6.21]

Kurtosis is a measure of the relative peakedness (platykurtic) or flatness (leptokurtic)
of the DN distribution. DN distribution with same kurtosis as the normal distribution is
called "mesokurtic" (Saatchi et al. 2000, Lane 2000).

Coefficient of Variation (CV):

oy -3V [6.22]

M

CV is also a measure used to characterise the inhomogeneity of a DN distribution
and it is particularly useful to compare relative amounts of variation in distributions
with different means (Sokal and Rohif 1995).

Local statistics texture measures were extracted using the same code IDL/ENVI

(Rennd et al. 1998). Regenerating forest, mature forest and pasture plots were used

as image subsets and the texture measures were calculated for all whole subsets.
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6.5. An experiment using simulated images

Prior to analysing relationships between texture measures, logbio and backscatter,
an investigation of the texture measures reviewed in section 6.4 was performed. The
objective was to identify those texture measures that maximised the discrimination of
textural information independently of image contrast i.e., backscatter. Different levels
of “contrast” (tonal information) and “clumpiness” (textural information) were created
by means of nine matrices. These matrices were conceived as simulated digital
“images”, with DN varying from 1 to 9, representing areas covered with vegetation
disposed in big clumps, small clumps and randomly. Inside these three basic types of

spatial arrangement (or texture), the contrast of these images was simulated as high,

medium and low. The controlling factors were (i) mean ( X ), which was kept constant
in the images and (ii) standard deviation (S), which was adjusted by changing DN
according to the intended contrast. The design of simulated images is summarised in
table 6.2.

Table 6.2. Simulated images, with varying degrees of clumpiness and
contrast. Standard deviations (S) defining contrast level are also shown:
b refers to big clumps, s refers to small clumps and r refers to random,

while contrast is defined as high, medium (med) and low.

CLUMPINESS
Big clumps Small clumps Random
'@ ' High (5>2.5) bhigh shigh thigh
fc Medium (S=1.5) bmed smed rmed
§ ‘ Low (S<1) blow slow rlow

This experiment involved a small illustrative data set, which provided an indication of
algorithm sensitivity to different textures and contrast but did not account for all
possible textural variation in real SAR data. The simulation of real SAR images would
include a wider DN range and the inclusion of noise (to account for speckle) although
that was not contemplated here. The nine matrices along with their representation as
simulated digital images (in which minimum and maximum DNs were represented as
black and white, respectively), are shown in figure 6.4. The random arrangement
(figures 6.4.g,h,i) of the simulated images is visually similar to the real SAR images of

tropical vegetation (compare with figure 6.1).
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3.56, S=3.75).

a. Big clumps, high contrast ( X

212|2|2|2|5|5|5|5|2

5/5/5|5|2|5|5|5|5|2

5/5|5|5|2|5|5|5|5|2

5|5(5|5|2|5|5|5|5|2
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2|/5|5|5|5[/2|5|5|5]|5

2|/5|5|5|5[/2|5|5|5]|5

212|2|2|2|2|2|2|2|2

3.56, S=1.51).

b. Big clumps, medium contrast ( X

4] 4] 4] 3] 3] 3 4] 4] 4] 4

4| 4| 4| 3] 3| 3| 4] 4] 4 4

4| 4| 4| 3| 3| 3| 4] 4] 4 4

3| 3| 3| 4] 4 4| 3/ 3| 3 3

3| 3| 3] 4] 4 4| 3] 3| 3 3
3| 3| 3| 4] 4] 4| 3] 3] 3| 3

4| 4| 4] 3 3 3| 4| 4] 4| 4

4| 4] 4| 3| 3] 3| 4| 4] 4 4

4| 4] 4 3| 3| 3| 4| 4] 4| 4

3| 4] 3| 3| 3| 3| 4] 4| 4| 4

3.56, S=0.5).

c. Big clumps, low contrast ( X

Figure 6.4. Numerical matrices and corresponding simulated digital images. Mean { X ) and

standard deviation (S) are shown.
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Figure 6.4 (cont). Numerical matrices and corresponding simulated digital images. Mean

are shown.
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Figure 6.4 (cont). Numerical matrices and corresponding simulated digital images. Mean

are shown.
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In all 22 texture measures derived from the GLCM, SADH (using 3 x 3 pixel window

and 256 grey levels) and local statistics were extracted from the simulated images

and variograms were computed, fitted with spherical models and used to calculate a

further five texture measures.

The texture measures able to differentiate clumpiness levels regardless of contrast,

and therefore texture in real data, were selected following analysis of variance (figure

6.5).
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v

Assess if textural information increases
the correlation between
backscatter and biomass of
regenerating tropical forest

Figure 6.5. An experiment using simulated images.
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6.6. Statistical and analytical procedures for evaluating texture measures

An evaluation of the ability of textural information to increase the correlation of
backscatter and log of biomass (logbio) was performed using two data sets: first, 27
texture measures derived from simulated images (as described above) and second,

selected texture measures derived from “real” SAR images of both study areas.

The evaluation involving simulated images aimed at selecting texture measures that
recorded textural information independently of contrast (section 6.5). The mean DN
of texture bands created from simulated images and descriptors from the modeled
variograms were input to an Analysis of Variance (ANOVA), with differences

assessed at 5% (0=0.05) significance levels. ANOVA highlighted the sensitivity of

certain texture measures to particular textural features and allowed the selection of

measures to be used on “real” SAR images (figure 6.5).

The texture measures selected as described above were derived from SAR data.
High image quantisation levels generate sparse GLCM (Dutra and Huber 1999),
which may compromise the accuracy of the probability estimates for GLCM and
SADH and thus derived texture measures (Bijlsma 1993). The window size used for
calculating GLCM texture measures determine the spatial characterisation of the
study plots. Therefore, an additional investigation was undertaken using different
quantisation levels and window sizes when deriving GLCM and SADH texture

measures (table 6.1).

The decision to consider and/or discard a texture measure was based on the

correlation between the texture measure and logbio. The procedures were:

(i) Scatterplots between texture measures and logbio were produced to identify
trends in these relationships. (i) These relationships were quantified by correlation
analysis with Spearman’s rank test. Quantisation levels and window sizes were
tested and the ones that provided the strongest correlation with logbio were selected.
(iii) All the texture measures that were correlated strongly with logbio were selected.
More details of this procedure are provided in section 6.7.5. (iv) Data from the two
study areas were combined and backscatter added to the analysis. Logbio was

regressed against backscatter and the texture measures in a stepwise multiple
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regression procedure. The texture measures that increased the correlation between
backscatter and logbio were identified and models relating these three variables were

proposed.

6.7. Results

The results were presented in two sections:

e In section 6.7.1. simulated images and the utility of 27 texture measures were
explored. The texture measures that maximised the discrimination of textural

information independently of image contrast were selected for use in section 6.7.2.

e In section 6.7.2. the measures selected were applied to real SAR data. The
textural information was related to the log of biomass of the regenerating forest,

mature forest and pasture plots in Manaus and Tapajés study areas.

6.7.1. Texture measures in simulated images

The 27 texture measures derived from the simulated images are discussed here. The
main concern was to check the potential utility of those measures in discriminating
texture regardless of contrast. The statistical significance of the differences in texture
values for levels of clumpiness and contrast were assessed by ANOVA. Intuitive
expectations about the performance of each texture measure were not always met,

as human perception of texture is subjective.

6.7.1.1. Texture measures derived from the variogram

A summary of the variogram descriptors is presented in table 6.3. The modeled
variograms indicated no nugget variance in any of the models as there was neither

noise nor sub-pixel spatial variability.
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Values of range tended to increase according to clumpiness and were indicative of
the size of elements within the images. In big clumps images, range corresponded
roughly to the size of the clumps (three pixels). For small clumps images ranges
were smaller than in big clumps and were indicative of the average spacing of
clumps (one pixel). Random images presented decreasing values of range for
increasing contrast levels. Range was the only variogram-derived measure that

seemed invariant to contrast (table 6.3)

Table 6.3. Semivariance at lags 1, 2 and 3, sill and range of variograms

produced from simulated images and fitted with spherical models.

lag1 lag2 lag3 sill range

High contrast 4.8 9.34 13.76 1517 3.62

Big Medium contrast 1.2 2.03 2.65 2.34 2.56
clumps ) oy contrast 0.12  0.21 0.3 0.26  2.57

High contrast 13.96 13.72 13.7 12.38 0.97
Small Medium contrast 2.16 3.59 2.47 2.77 1.7

clumps ) 5w contrast 0.31 0.48 029 033 1.26
High contrast 9.14 5.27 7.55 6.87 0.97
Random Medium contrast 1.89 2.02 1.94 2.02 1.27
Low contrast 0.45 0.58 0.49 0.51 1.42

Semivariance showed increasing values with lag for big clumps images. For small
clumps and random images no pattern was found and the semivariance either
increased or decreased with lag. Decreasing values of semivariance occurred for

decreasing contrast levels.

Sill values were distinct according to contrast levels and operated as indicators of the
total variance of the images, which was obviously high for high contrast and

decreased for medium and low contrast.

6.7.1.2. Texture measures derived from GLCM and SADH

Although not always statistically significant, the different values of GLCM derived

texture measures (x) were normalised ((X — X min) / (X max — X mn)) fOr comparison. They
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are plotted in figures 6.6 and 6.7. As the normalisation process produced values

ranging between 0 and 1, data trends must be interpreted with care.

Values of GLCM contrast and entropy were very similar and both increased with
decreasing clumpiness (figure 6.6). These measures contain information about DN
disorder and scatter, they are, therefore, more likely to differentiate clumpiness than

contrast.

GLCM energy and homogeneity values were similar for big clumps and small clumps
images (figures 6.6). In addition, for both measures random images exhibited
minimum and maximum values for medium and low contrast, respectively, indicating
their sensitivity to contrast. The theory underlying these measures is related to
uniformity and local similarity of pixel values and therefore these measures are

unlikely to be suitable for differentiating clumpiness.

GLCM correlation and chi-square values varied with clumpiness (figure 6.6). Contrast
levels were not distinct, as in big clumps images correlation mean values were very
similar. High correlation values corresponded to low chi-square values and vice-

versa, denoting the diverse information contained in these two measures.

The first two measures derived from sum of vector technique - mean and variance -
varied according to clumpiness and, to a less extent, to contrast (figure 6.7). Entropy
of the sum vector values varied with contrast, especially for small clumps and
random images. Energy of the sum vector values, however, did not differentiate

either clumpiness or contrast (figure 6.7).

The measures derived from the difference vector — mean and variance - did
discriminate clumpiness and contrast (figure 6.7). For entropy and energy of
difference vector, the discrimination of clumpiness and contrast was less apparent
(figure 6.7). That made those measures less likely to discriminate texture in real SAR
data. Values of entropy and energy of sum and difference vectors were similar with

basically the same trends and magnitudes.
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6.7.1.3. Texture measures derived from local statistics

The local statistics measures were not normalised due to the negative values for

skewness and kurtosis (table 6.4).

Table 6.4. Texture measures derived from local statistics for simulated images.

mad med ent ene ske kur cv

High contrast 1.98 1.53 0.09 0.34 0.12 -0.51 0.34
Big Medium contrast 1.83 179 0.11  0.31 0.03 -0.69 0.18
clumps Low contrast 172 1.72 0.11 0.30 0 -0.78 0.06
High contrast 183 1.79 0.11  0.31 0.03 -0.69 0.18
Small  Medium contrast 1.65 1.52 0.15 0.25 0.11 -0.91 0.23
clumps Low contrast 174 1.72 0.17 0.23 0.13 -0.82 0.08
High contrast 168 1.31 0.22 0.20 0.10 -0.96 0.39
Random Medium contrast 1.83 1.70 0.28 0.15 0.22 -0.50 0.18
Lowcontrast 176 1.92 0.15 0.28 -0.56 -0.08 0.09

The local statistics entropy was sensitive to clumpiness as it presented low values for
big and small clumps images, opposing to the higher values found for random
images (i.e., higher heterogeneity). Energy values, however, were less sensitive to
clumpiness and contrast. Coefficient of variation decreased with image contrast for
each clumpiness level making it unsuitable for quantifying texture in real data. The
remaining measures, i.e., mean absolute deviation (mad), median, skewness and

kurtosis, did not differentiate clumpiness.

6.7.1.4. Statistically significant differences in texture for different levels of clumpiness

and contrast

Analysis of variance (ANOVA) was performed to test if differences in the values of
texture measures identified above were statistically significant for different levels of
contrast and different levels of clumpiness. The ANOVA results show p-values for

testing those differences at a=0.05 (table 6.5).
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None of the texture measures considered was able to discriminate contrast and
clumpiness concomitantly. Contrast was differentiated by five texture measures:
geostatistical measures such as semivariance at lags 1, 2 and 3 (lag1, lag2 and lag3,
respectively), variogram’s sill and coefficient of variation (CV). Semivariance
estimates have been used as “semivariogram signature” of tropical vegetation types
and have been used successfully in their classification (Miranda et al. 1996, 1998).
Sill is a measure of image contrast and was expected to vary accordingly (Cohen et
al. 1990). CV was, as already pointed out, a useful measure for discriminating
tropical forest regeneration stages (Luckman et al. 1997, Yanasse et al. 1997) and

boreal forest types (Kurvonen and Hallikainen 1999).

Clumpiness (texture) was differentiated by range, a measure of the “coarseness” of
the image (Rubin 1990) and also of the size of image elements (Treitz and Howarth
2000).

GLCM derived measures such as contrast (conh), entropy (enth), correlation (cor),
chi-square (chi) and mean of the sum vector (sme) also differentiated clumpiness.
Contrast, entropy and correlation are some of the more relevant measures that can
be derived from the GLCM (Weszka et al. 1976, Haralick 1979, Baraldi and
Parmigiani 1995). They have been used extensively for texture analysis in forest
mapping (Ulaby et al. 1986, Kushwaha et al. 1994), land cover mapping (van der
Sanden and Hoekman 1999, Korusu et al. 1999) and crop discrimination (Soares et
al. 1997) with varied degree of success. The assumption that preceded initial
computations of GLCM was that it contains all textural information of an image
(Haralick et al. 1973) and justifies the inclusion of some of its derived measures for

clumpiness differentiation.

Local statistics entropy (ent) also differentiated clumpiness levels, despite the small

DN range of the simulated images (1-9).

The remaining 15 measures (out of 27) did not show any sensitivity either to

clumpiness or contrast.
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Table 6.5. P-values for differences in contrast and clumpiness levels.

The values statistically significant at a =0.05 were indicated in bold.

CONTRAST CLUMPINESS

lag1 0.013 0.736
lag2 0.011 0.734
lag3 0.001 0.886
sill 0.003 0.855
range 0.991 0.005
conh 0.838 0.031
enth 0.974 0.049
eneh 0.627 0.664
hom 0.105 0.485
cor 0.904 0.006
chi 0.943 0.012
sme 0.942 0.029
sva 0.546 0.524
sent 0.083 0.314
sene 0.248 0.759
dme 0.070 0.612
dva 0.082 0.617
dent 0.269 0.196
dene 0.519 0.198
mad 0.595 0.462
var 0.065 0.710
ske 0.342 0.688
kur 0.789 0.463
cv 0.020 0.865
med 0.300 0.973
ent 0.753 0.044
ene 0.733 0.078
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In summary, the seven measures identified as sensitive to clumpiness but not

contrast were:

= variogram range (range).

»  GLCM contrast (conh),

= GLCM entropy (enth),

=  GLCM correlation (cor),

=  GLCM chi-square (chi),

= SADH mean of sum vector (sme),

= |ocal statistics entropy (ent)

6.7.2. Texture measures in SAR images

The above 7 measures derived from JERS-1 SAR images were used to determine
the relationship between texture and log of biomass of regenerating forests, mature

forests and pasture plots.

6.7.2.1. Texture measure derived from variogram - range

Variograms have been used to characterise the spatial structure of vegetation. These
have been calculated using field transect data (Wallace et al. 2000) or from
combined field and remotely sensed data (Cohen et al. 1990, Bijlsma 1993, Lacaze
et al. 1994, Treitz and Howarth 2000). Resulting trends of range and sill variation as
a function of forest type, for example, were observed using variogram and modelled
variogram descriptor analyses (Treitz and Howarth 2000). Such empirical studies
have demonstrated that range is determined by the size of objects in the image
(Woodcock et al. 1988b).

Figure 6.8 shows a variogram for 3 selected plots in the Tapajés study area.
Semivariance estimates did not provide a unique “signature” for regenerating and
mature forest plot. The values shown in figure 6.8 were derived from pixel transects,

where only a sample of data values was considered. Pixel transects were not as

134



Spatial analysis of SAR dala

representative of the vegetation types in the images as matrices of pixels would have
been (Cohen ef al. 1990). However transects were used here due to software

limitations.

The variograms (figure 6.8) had a multifrequency shape (Curran 1988) for the
overlapping regenerating and mature forest plots and no pattern was recognised.
The remaining plots in both study areas are not presented here as they showed
variograms similar to the ones seen in figure 6.8 with no trend apparent. The range of
influence was about three lags for the three plots, which can be a sign of the low
spatial correlation in the data as a consequence of a random component in pixel DN
introduced by speckle noise. The variogram results indicated the need for modelled
variogram analysis to assess if the range would act as an indicator of vegetation

structure in SAR images.
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Figure 6.8. Variograms derived from three forest plots (with corresponding biomass

estimates) in JERS-1/SAR images of Tapajds study area.

The ranges of the modelled variograms for both study area plots are presented in
table 6.6. The variograms for plots 3, 7 and 8 in Manaus study area could not be
modelled using a spherical model and were therefore discarded. Biomass estimates

and dominant genera for each plot are also included in table 6.6.
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Comparison among relative values of range was performed with care, as no
indication of goodness of model fit was available for the different variograms

produced.

Table 6.6. Range of variograms for pixel transects. Spherical models were
fitted to the variograms. Plot number, biomass and dominant genera in

Manaus (m) and Tapajés (t) study areas. NA refers to not available.

Plot (biomass — T ha™) Dominant genera Range (m)
m1 (144.1) Cecropia 185
m2 (131.3) Vismia, Cecropia 119
m4 (144.8) Cecropia, Guatteria 205
m5 (134.7) Vismia, Bellutia 49
m6 (124.3) Vismia, Cecropia 113

m9 (91) Cecropia 43
m10 (127) Cecropia 164
m11 (126.1) Cecropia, Laetia 93
m12 (131.5) Vismia 181
m13 (156.6) Laetia, Vismia 73
m14 (117.4) Vismia, Miconia 39
m15 (116.3) Goupia, Vismia 156
m16 (32.6) Goupia, Vismia 129
m17 (387) NA 50
m18 (2) NA 170
t1 (62) Cecropia 82
t2 (15) NA 232

t3 (62) Poecilanthe, Cecropia 48
t5 (54) Vismia 165

t6 (82) Vismia 176

t7 (78) Mangifera 45

t8 (104) Guatteria 131
t9 (75) Orbignya 100
t10 (181) NA 49
t11 (101) Sloanea 93
t12 (42) Orbignya, Poecilanthe 45
t13 (89) Vismia, Guatteria 90
t14 (25) Vismia 106
t15 (387) NA 188
t16 (387) NA 144
t17 (387) NA 93
118 (387) NA 93
t19 (2) NA 49
t20 (2) NA 79
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Dominant genera were included in table 6.6. to indicate upper canopy structure,
which was smooth for Cecropia-dominated and rougher for Vismia-dominated
regenerating forest plots (Lucas et al. 2000). Shadows of emergent trees provide the
roughness of upper canopies of mature forest and older stages of forest regeneration
(Grover et al. 1999). Range values in table 6.6 varied from 39 to 205 meters
suggesting different canopy structure and roughness patterns, although no trend was
evident. A relationship between range and logbio was not observable, probably due
to the absence of a direct relation between logbio and structure of canopy, at least in

the diverse regenerating tropical forests.

Figure 6.9 illustrates variograms for 8 forest plots in Manaus and Tapajés study
areas. The upper two variograms (m1 and t1) are for plots dominated by Cecropia
genera even though range values were distinct. For t1, the variogram suggested
periodicity (i.e. a repetitive pattern) in the canopy (Curran 1988) and not the
homogeneity of a smooth canopy. M2 and t6 plots were dominated by Vismia plus
Cecropia and only by Vismia, respectively. These plots had ranges that varied by
around 50 meters. The variograms in figure 6.9 for plots m5 and t13 were both
dominated by Vismia plus Bellutia and Guatteria genera, respectively. Because the
ranges of both m5 and t13 plots varied by 40 meters, similar canopy structures could
have been effectively captured by the variograms. The mature forest plots (m17 and
t18) displayed high sills, indicative of rough canopy surfaces and visually contrasted
land covers in SAR images (Miranda et al. 1998), with ranges of 50 and 93 meters,

respectively.

The image spatial resolution (18 meters) and an averaged pixel size of 25 meters
prevented the quantification of tree crown diameters. Even though tree crowns are
not always individualised in forest formations, the plots could have presented clumps
or density patterns detected by variogram range at higher spatial resolutions. The
inability to define the spatial characteristics of regenerating vegetation through
modelled variogram descriptors could also be linked to the nature of the model used.
Although being best suited for the overall set of different regenerating forest plots, the
spherical model reaches an absolute sill. That implies that the vegetation has a
clumpy canopy structure, which was not always true for the vegetation studied here
(Wallace et al. 2000).
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Figure 6.9. Variograms for eight forest plots in the Manaus (m) and Tapajés (t) study areas.

Spherical models were fitted to the variograms, their descriptors and plot characteristics are in

table 6.6.
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The regenerating forest plots in Manaus and Tapajés study areas were located in
relatively homogeneous areas that were probably not large enough to allow their
spatial structure and physiognomy to be represented by variogram range (Lacaze et
al. 1994). Detailed vegetation horizontal profiles and, in the case of larger
homogeneous areas of regenerating forest plots, regularised variograms would help
to reveal spatial variation in the data (Atkinson and Curran 1997). Furthermore, high-
spatial resolution sensors would provide more information on vegetation structure
and status that could be linked potentially to the features seen in variograms
(Wallace et al. 2000).

Scatterplots of the range and log of biomass were produced for Manaus and Tapajos

study area plots (figures 6.10 and 6.11).
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Figure 6.10. Scatterplots for range and log of biomass of Manaus study area plots.

Variograms estimated from a SAR image (December 1995).
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Figure 6.11. Scatterplots for range and log of biomass of Tapajés study area plots.

Variograms estimated from a SAR image (July 1994).

139



Spatial analysis of SAR data
6.7.2.2. Texture measures derived from GLCM and SADH - contrast, entropy,

correlation, chi-square and mean of sum vector

Before the scatterplots between log of biomass and the five GLCM and SADH
derived texture measures is presented, the effect of window size and quantisation

level in these texture measures derivation is discussed.

Effect of window size and quantisation level

The choice of an optimal window size and quantisation level of the texture data had a
major effect on the correlation analyses performed later. Figure 6.12 shows GLCM
contrast values derived from different configurations of window size and quantisation

level for the Tapajos study area plots.

Figure 6.12 shows that, for the same window size, contrast values increased
according to quantisation level for 4 GL, 16 GL and 64 GL. For 256 GL, contrast
values were situated surprisingly between 4 GL and 16 GL. Contrast values carried
similar textural information at the different quantisation levels. Increasing and
decreasing trends were approximately the same for 16, 64 and 256 grey levels.
Similar trends had been noticed in texture measures derived using GLCM for SPOT-
1 HRV (high resolution visible) data quantisised in 16 GL and 32 GL (Marceau et al.
1990). Contrast values were very similar for 5 x 5 and 3 x 3 pixel windows at all
quantisation levels. The range of contrast values for 4 GL was wider and the lower
contrast values coincided with the lower biomass plots: plot 2 with 15 T ha™, plot 14
with 25 T ha™ and plots 19 and 20 with 2 T ha™. Although the quantisation in only 4
GL will result in information loss (Haralick and Shanmugan 1974), a small number of
GL reduces the complexity and sparseness of a GLCM (Dutra and Huber 1999). A
smaller GLCM could have improved the spatial characterisation of land covers

studied here.

The resulting virtual invariance of contrast values with window size might have been
a result of the small range of window sizes used here. Being an image sample from
which texture measures were estimated, larger window sizes contain increased

textural information (Kurvonen and Hallikainen 1999). A priori knowledge about the
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Manaus and Tapajos study areas prevented the choice of window sizes larger than 5
x 5 pixels. The expected increase in contrast values with window size (and increase

in information content) was not noticeable, also as a result of the small window sizes.
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Figure 6.12. GLCM contrast derived from 5x5 pixel window (top), 3x3 pixel window (bottom)
and 4, 16, 64 and 256 quantisation levels for Tapajds study area plots. 5x5 and 3x3 are the
pixel window sizes and GL refers to grey levels. In X-axis 1 to 14 are regenerating forest

plots, 15 to 18 are mature forest plots and 19 to 20 are pasture plots.
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Scatterplots of texture measures and log of biomass

Scatterplots of the relationships between texture measures and logbio were
produced for Manaus and Tapajos study area data sets (figures 6.13 and 6.14). The
first column of the figures shows the relationship between logbio (X-axis) and the 5
texture measures (Y-axis) that were sensitive to clumpiness but not contrast (section
6.7.1). The remaining columns showed the interrelationships between the 5 texture

measures.

Figure 6.13 shows a positive near-linear relationship for logbio of Manaus study area
plots and GLCM contrast (conh) and entropy (enth). A negative relationship (only
noticeable due to the pasture site — lowest biomass value), where an increase in
logbio values was paralleled by a decline in Y values, was found for GLCM
correlation (cor) and chi-square (chi). SADH mean of sum vector (sme) also showed

a near linear-like positive relationship with logbio.

In figure 6.14, where the scatterplots for Tapajos study area are displayed, the
relationships between logbio and GLCM contrast and entropy were more pronounced
than in Manaus plots. This was due to the wider range of logbio in the Tapajds study
area. However, no apparent relationship was found between logbio and GLCM
correlation and chi-square. SADH mean of the sum vector (sme) had a positive

relationship with logbio (figure 6.14).

When looking for relationships amongst GLCM measures, it was clear that some of
them were highly interrelated (Ulaby et al. 1986), mainly GLCM contrast and entropy
(figure 6.13 and 6.14). For the Manaus data, all GLCM measures were interrelated.
That was not true for Tapajés data, where only contrast and entropy were
interrelated. In the Manaus data, SADH mean of the sum vector seemed related to
the four GLCM measures but for Tapajés data that relationship was present only with

contrast and entropy.

142



Spatial analysis of SAR dala

14900 14000 22000 —005 (23 04s 025 16 15 X0 (33 30
* 5 7 = ¥ «
S
] L xme oo x| e o oo g malox # o o X
- bl
logbio * * * * * -
"
- % * * ® % °
2 = e £ P
b x % x % x % * x %y X
5] ] g Ty LA L
o M 2 * = « H e x
g N x M M x
s conh
g
5
o x X, X X
q 0 5 x = % ¥ x 3
x y ¥ x ey, X kg * x*
i @ £ Xtk e - % s
* - e * xx « o M o x .
B * % enth * x x 2
J -
3
A ~
x x N
.
e T = = [
S
w
4 * « * x x
3
1 B x wx % P xx* % %
3 M x cor M x
] " * wx o
H «~ L E 3 > ¥ I
2] % © z e
2 = x x x x
'R £ 3 x B b
3
] <
] 2
3
| ch
xx wx X ox x x x o= o
] 8
x N « x a
] Y- x * e x B rax | |® xx % S .
X B % % % pxx P A=K b4
a | 3 3 = 7 = -
-
ES x x Fxe & | |® > xX x %
) = xRy oW xS B
- ks « i, N
b =k LPEN % 2 . > i sme
= |
4
S e — — T 4 T T T — ———— — T — T
05 0 15 20 25 [ Fd 03 03 10 11 100 182 104 10¢

Figure 6.13. Scatterplots for selected texture measures and log of biomass for the Manaus
study area. For GLCM derived measures (conh, enth, cor, chi, sme) matrices were estimated
using a 5x5 pixel window and a 2-bit (4 GL) SAR image (December 1995).
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Figure 6.14. Scatterplots for selected texture measures and log of biomass for the Tapajés
study area. For GLCM derived measures (conh, enth, cor, chi, sme) matrices were estimated
using a 5x5 pixel window and a 4-bit (16 GL) SAR image (July 1994).
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The relationship between the GLCM and SADH-derived texture measures and logbio
was probably due to the increase in roughness and complexity of forest canopy that
follows biomass accumulation during growth and maturation of forests. GLCM
contrast and entropy are associated with the degree of spread and disorder of GL.
The values of those measures increased with logbio due to increased scattering in a
rough canopy/high biomass forest. Similarly, GLCM correlation and chi-square were
associated with resemblance and repetition of GL. The values of those measures
tended to decrease with biomass, following the lower backscattering (and therefore

GL variations) from smoother and less layered young canopy.

6.7.2.3. Texture measure derived from local statistics - entropy

For the Manaus study area, no relationship was found between local statistics
entropy and logbio (figure 6.15). For the Tapajés study area, however, some
increase of entropy values with logbio was noticeable, although pasture plots and

intermediate biomass regenerating forest plots did not follow this trend (figure 6.16).
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Figure 6.15. Scatterplots for texture measure entropy (estimated from a SAR image of

December 1995) and log of biomass of Manaus study area.
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Figure 6.16. Scatterplots for texture measure entropy (estimated from a SAR image of July

1994) and log of biomass of Tapajés study area.

6.7.2.4. Analysis of correlation between texture measures and log of biomass

The strength of the relationships previously observed in the scatterplots was
quantified using correlation analysis. In addition, the eight configurations (window
sizes and quantisation levels) from which the texture measures derived from GLCM

and SADH were computed and statistically assessed.

The scatterplots in section 6.7.2.2 showed that for some measures the relationship
between texture and logbio was not linear. Moreover, Kolmogorov-Smirnov
goodness-of-fit tests showed that for the texture measures investigated the data were
not normally distributed. Therefore a rank correlation coefficient (Spearman’s r) was
calculated, as it does not limit analysis to a particular statistical distribution or

parameter (Isaaks and Srivastava 1989).
The logbio and texture relationships with the highest r were the basis to further

considering some of the texture measures previously studied. This procedure is

described below:
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i) For each study area, the correlation coefficient (r) between logbio and texture was
computed. The highest r for each GLCM and SADH texture measure derived in eight
different configurations was highlighted and then the configuration with the maximum

number of highest rwas selected.

if) The texture measures that were related most strongly to logbio were selected on

the basis of data from both study areas.

According to Spearman’s r no correlation was found between range and logbio in
both study areas. This result was already suggested by the scatterplots in section
6.7.2.2.

Many factors could be contributing to the weak relation between logbio and range.
The small size of homogeneous areas and therefore transects used for deriving the
variograms can be a limiting factor as the transects represent only a small portion of
the regenerating forests plots (Cohen et al. 1990). In addition, range is a measure of
clumpiness and biomass is a continuous variable related to the spatial structure of
vegetation. When these variables are used jointly, they were not suitable for
describing the spatial structure of the vegetation studied. Tree crowns and clumps, if
present, were probably not detected by range at the spatial resolution of the JERS-1

SAR images.

The entropy was related to logbio for Tapajos study area plots (Spearman’s r=0.73)

but not for Manaus study area plots. This measure, therefore, was discarded.

The correlation between logbio and the five texture measures extracted in eight
different configurations is presented in table 6.7 (Manaus study area) and table 6.8
(Tapajos study area). The distinct configurations (section 6.4.2) refer to window sizes
and quantisation levels (GL) used for extracting GLCM and SADH derived texture

measures.
The results for the Spearman’s correlation between logbio and the GLCM and SADH

derived texture measures are presented in table 6.7 and 6.8. A 5 x 5 pixel window

and 4 GL was the configuration most strongly related to logbio and therefore was
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selected for extracting texture measures for Manaus study area plots. Generally, the

rvalues were similar for both study areas.

Table 6.7. Spearman’s correlation coefficient between logbio and GLCM

derived texture measures for Manaus study area.

Texture 5x5, 5x5, 5x5, 5x5, 3x3, 3x3, 3x3, 3x3,
measure 4 GL 16 GL 64 GL 256 GL 4GL 16 GL 64 GL 256 GL
conh 0.68 0.24* -0.15* -0.47 0.45* 0.02* -0.34* -0.61
enth 0.56 0.48 0.09* -0.03* 0.53 0.29* -0.07* -0.05"
cor -0.21*  -0.23* -0.24* -0.22* -0.14* -0.14* -0.24* -0.283*
chi -0.44* -0.22* -0.07* -0.09* -0.36* -0.09* -0.001* 0.01*
sme 0.48 0.45* 0.45* 0.44* 0.45* 0.46* 0.49 0.48

Note: Correlation coefficients not significant at 95% confidence levels are signalled with an asterisk(*).
The highest coefficients for each measure are in bold.

Correlation (cor) and chi-square (chi) were not related to logbio in any configuration
tested (table 6.7).

The logbio of Tapajos study area plots and GLCM and SADH derived texture

measures were highly correlated (table 6.8). Correlation (cor) was not significantly

related with logbio.

Table 6.8. Spearman’s correlation coefficient between the logbio

and GLCM derived texture measures for Tapajés study area.

Texture 5x5, 5x5, 5x5, 5x5, 3x3, 3x3, 3x3, 3x3,
measure 4 GL 16 GL 64 GL 256 GL 4GL 16 GL 64 GL 256 GL
conh 0.87 0.79 -0.62 -0.79 0.75 0.69 -0.53 -0.81
enth 0.85 0.94 0.85 0.76 0.86 0.91 0.78 0.71
cor -0.06™ 0.01* -0.02* 0.02* 0.13* -0.24* 0.14* 0.2*
chi -0.16* -0.5 -0.49 -0.48 -0.04*  -0.43* -0.51 -0.48
sme 0.6 0.61 0.61 0.61 0.6 0.62 0.6 0.62

Note: Correlation coefficients not significant at 95% confidence levels are signalled with an asterisk(*).
The highest coefficients for each measure are in bold.
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On the basis of results in the two previous tables, three GLCM and SADH derived
texture measures were selected, based on the results from 5 x 5 pixel window size
and quantisation of 4 GL for Manaus study area and of 16 GL for Tapajos study area.
The following measures were related significantly to logbio in both study areas:
contrast, entropy and mean of sum vector. Measures discarded were correlation and

chi-square due to absence of relationship with logbio in Manaus study area.

6.7.2.4. Multiple regression analysis — Log of biomass, backscatter and the texture

measures

The association between the texture measures and logbio was assessed. Three
texture measures - GLCM contrast, entropy and SADH mean of sum vector — were
selected following their strong relation to the log of biomass. As this chapter aims to
use textural information to increase the correlation between backscatter and logbio,

backscatter was added to the analysis.

The backscatter, log of biomass and texture measures values from Manaus and
Tapajos study areas were merged and the analysis performed jointly. This was due
to the strong relation of the texture measures to the logbio of both study areas and,
additionally, to the stronger relationship between the variables when considering an
increased range of biomass. Despite selecting different “suitable” configurations for
extracting GLCM and SADH texture measures for each study area (section 6.7.2.2),
the multiple regressions were performed using data collected under the same
configuration: 5 x 5 pixel window and 4 GL. The magnitude of texture measures
values was also a function of configuration settings, so it was not possible to combine
values from the two study areas derived under different window sizes and
quantisation levels. 5 x 5 pixel window and 4 GL was Manaus’ study area most
suitable configuration, but for Tapajds study area it still presented a strong correlation

between logbio and the texture measures selected.
Stepwise multiple regression was performed as it allowed simultaneous analysis of

more than one variable. Regression analysis also allows prediction of one variable

from another or others (Neter et al. 1996).
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Scatterplots - logbio, backscatter and the texture measures

Figure 6.17 shows the scatterplots produced with backscatter, logbio and texture
measures GLCM derived contrast, entropy and SADH derived mean of sum vector

data from the two study areas.
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Figure 6.17. Scatterplots for backscatter, logbio and selected texture measures of Manaus

and Tapajos study area plots.

The scatterplots (figure 6.17) demonstrated that logbio and the three texture
measures were correlated with backscatter. The biomass of the two study area plots

combined showed a strong linear relationship with backscatter.

The SADH derived mean of sum vector and backscatter scatterplot appeared to have
highlighted DN differences between the two study areas, as they were grouped in
two linear clusters. Different weather conditions, sensor settings, etc., were reflected
in the images and were captured by sme. Even though SADH derived measures
dealt with relationship in a neighbourhood and therefore were less affected by local
DN or changing weather conditions, sme was derived following a local statistics

measure — the mean - thus being more sensitive to variant scene conditions.
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Mutltiple regression — logbio, backscatter and texture measures

A simple linear regression was performed with backscatter as the independent
variable and the log of biomass as the dependent variable. Then, backward stepwise
multiple regression was performed with backscatter, GLCM contrast, GLCM entropy
and SADH mean of the sum vector as the independent variables and the log of
biomass as the dependent variable in the base model. Stepwise regression started
with a base model and then variables were added or omitted depending on their
ability to increase or decrease the strength of the relationship between the variables
and log of biomass. Backward elimination of variables was chosen as there is less

risk of omitting important variables in the model.

Partial correlation was used to examine the relationship between two variables after
removing the effect of other variables (Johnston 1980, Atkinson and Plummer 1993).
The texture measures and backscatter were derived directly from DN values
therefore some interrelationship between the variables was present. How much of
the relationship between logbio and one variable would remain if the effect of the

other variables was removed (controlled)?

Table 6.9. Partial correlation coefficient between log of biomass (logbio) and a variable,

after controlling for the effect of the remaining variables.

Partial correlation coefficient

backscatter 0.6
contrast 0.52
entropy -0.08*

mean of sum vector 0.13*

Note: Correlation coefficients not significant at 95% confidence
levels are signalled with an asterisk (*).

When controlling the effect of the texture measures on the backscatter/logbio
relationship, it was clear that this relation was independent of the remaining variables

(r=0.6). Table 6.9 also shows that a significant partial correlation coefficient with
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logbio was present when the effect of backscatter and texture measures was
removed from the contrast/logbio relationship (r = 0.52). The entropy/logbio
relationship however, virtually disappeared when the effect of backscatter, contrast
and mean of sum vector was removed (r = -0.08). Similarly, for mean of sum
vector/logbio relationship, a partial correlation coefficient of 0.13 showed no
correlation remaining after backscatter, contrast and entropy removal. These results

were expected following inspection of the scatterplots (figure 6.17).

The correlation between contrast and logbio was independent of backscatter. For
mean of sum vector, however, the relationship with backscatter seen in the
scatterplot was determinant of its relationship with logbio. For entropy, the
relationship with contrast seen in the scatterplot was determinant of its relationship
with logbio. These last two measures did not add information on the

backscatter/biomass relationship.

Table 6.10 shows the results of simple linear regression and multiple regressions
performed on the data. As suggested by the previous analyses, the texture measures
derived from GLCM entropy and from SADH mean of sum vector were removed from
the model relating logbio, backscatter and the texture measures (model 2). Table
6.10 also presents the adjusted R? (R,°), which accounts for the inevitable increase in
the coefficient of multiple determination (R°) when another predictor variable X is
included in the model (Neter et al. 1996).

ANOVA results confirmed the significance of the coefficients to be included in the

models.

Table 6.10. Regression models and corresponding adjusted R? (Raz) and standard error

of estimate (s). Y stands for the log of biomass, b for backscatter and ¢ for GLCM

contrast.
Model R.? s
1.Y=6.29+054b 0.74 0.29
2. Y=224+0.33 b+ 0.0001 ¢ 0.82 0.25

3. Y=0.2b+0.0002 c 0.98 0.26
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P-values for the different coefficients suggested that model 2 could be built without
an intercept (p>0.05) therefore model 3 was designed without it. However,
comparison between R? of the model 3 with R? of the two remaining models is not

possible.

Comparing models 1 and 2 (table 6.10) the adjusted coefficients of determination R.?
increased from 0.74 to 0.82 and the standard errors of the estimates decreased from
0.29 to 0.25 when GLCM contrast information was included in the model. That
indicated the potential increase in the accuracy of biomass estimates from SAR data

with the inclusion of textural information, in this case GLCM derived contrast.

The analysis of appropriateness of the models was done following the diagnosis
steps proposed by Neter et al. (1996). The residuals (difference between observed
and predicted values) of the regressions were plotted against the different variables.
The results of these diagnosis steps are not shown here, but they suggested no
systematic variation in the data, particularly in the variance of the error terms (directly
related to the residuals). The problems that could have arisen from these initial
analyses would probably be related to the gaps in the range of biomass data and

therefore gaps in all the plots produced from the variables studied.

Figure 6.18 shows the regression line in the plot of observed versus predicted (fitted)
values according to model 3. Although the standard error was slightly higher than
when using model 2, model 3 was found more appropriate. The residuals of the
model fitting are shown in figure 6.19 and are in accordance with the assumption of

residual normality in the linear regression models.

Understanding the association between textural measures of SAR images and the
structural properties of vegetation/canopies is not straightforward. The interpretation
of texture itself is pursued less often than the increase in classification accuracy
provided by using a certain texture measure (Bijlsma 1993). Previous studies,
however, showed that spatial patterns such as canopy patchiness (forest areas
intermixed with pasture) and large emergent trees were detected by GLCM contrast
(Ulaby et al. 1986, van der Sanden and Hoekman 1999). Similarly, changes in
canopy that occur during the regeneration of tropical forest was also captured by
GLCM contrast in a study by Luckman et al. (1997), although the local statistics
coefficient of variation (CV) discriminated a wider range of regenerating forest age

classes.
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Figure 6.18. Observed x predicted values according to the model where Y is the log of
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The range of vegetation/canopy structures likely to contribute to different
backscattering properties and therefore texture, was certainly high. Tropical
vegetation structure is very diverse and in particular, when different ages and
successional stages of the forest are involved, their richness in terms of spatial
structures is likely to be reflected in the textural information available from SAR
images. The relationship between age/successional stage, biomass and canopy
structure of the regenerating forest plots could not be established here. Nevertheless,
this relationship has been observed by others (Budowski 1965, Brown and Lugo
1990) and could account for the strong relationship between some texture measures
and the log of biomass. As a measure of local DN variability, GLCM contrast was the

texture measure that best captured the spatial variability of the vegetation/canopy.

6.8. Summary

In this chapter, the use of several texture measures to increase the correlation
between backscatter and the log of biomass was investigated. One experiment using
simulated images identified seven texture measures capable of discriminating image
texture independently of image contrast. They were: GLCM derived contrast, entropy,
correlation, chi-square, SADH derived mean of sum vector, local statistics derived

entropy and variogram derived range.

These seven texture measures were calculated for SAR images and related to the
log of biomass. Only GLCM derived contrast increased the correlation between
backscatter and log of biomass. It was concluded that the addition of GLCM derived

contrast to backscatter potentially increases the accuracy of biomass prediction and

mapping.

Surprisingly, variogram derived range did not show any relationship with the log of
biomass and upper canopy structure (as inferred by dominant species composition).
This analysis might have been limited by the image spatial resolution, the use of pixel
transects to derive the variograms and the bounds imposed by the models used to fit
the data.
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The information in the ¢° spatial domain, as represented by the strong relationship

between some texture measures and log of biomass, was due to the increasing

roughness of ageing forest canopies.
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CHAPTER SEVEN

Classifying regenerating tropical forest stages

using multiwavelength and multipolarisation SAR data

Relationships between tropical forest biomass and temporal and spatial characteristics
of SAR backscatter were quantified in chapters 5 and 6. It is known that (i) the
relationships between SAR data and biomass is dependent upon, among other things,
wavelength and polarisation and (ii) older forest regeneration stages tend to have
greater biomass than young forest regeneration stages. However, the combined use of
both spectral and polarisation characteristics of SAR data for the mapping of forest

regeneration stages has yet to be determined. This chapter addresses this issue.

For the Manaus study area, the age of regenerating forests was a viable surrogate for
biomass (Lucas et al. 2000) and multiwavelength and multipolarisation SAR data were
available. Six SAR bands from different sensors with varied parameters, selected by
discriminant function analysis, were used as input to a neural network based classifier.
The synergy between wavelengths was investigated with the inclusion of visible
wavelengths bands from Landsat TM sensor. Eight bands (56 SAR and 3 TM) were

selected and classified with a neural network.

The accurate classification of regenerating tropical forest stages is an important step in

the estimation of forest biomass and mapping of forest carbon content.
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7.1. Data

The data used as input for discriminant analysis and, after feature selection, for the

neural network based classifier, are described next.

7.1.1. SIR-C/XSAR images

The Spaceborne Imaging Radar — C/X band Synthetic Aperture Radar (SIR-C/XSAR)
flew at an altitude of 225 km onboard the U.S. Space Shuttle Endeavor on April and
October 1994. It was the first spaceborne radar system to provide multifrequency data
(Jordan et al. 1995). The SIR-C was developed by the U.S. National Aeronautics and
Space Administration (NASA) in order to obtain the full polarimetric scattering matrix -
HH, VV, HV and VH - in L and C bands (Evans et al. 1997). The XSAR was the
German/Italian space agency instrument that operated at X band and VV polarisation.
The SIR-C/XSAR system was the next step in a series of spaceborne imaging radars
that started with Seasat (1978) and continued with SIR-A (1981), the Microwave
Remote Sensing Experiment (MRSE, 1983) and SIR-B (1984) (Evans et al. 1997).

The SIR-C/XSAR data were and still are, applied to issues in ecology, hydrology,
geology and oceanography (Evans et al. 1997). The SIR-C/XSAR data were
downloaded from the Shuttle in near-realtime and the first experimental results were
made available in the following year (Dobson et al. 1995, Hess et al. 1995 and Ranson
et al. 1995). The SIR-C/XSAR system has proved to be a key milestone in the recent
history of imaging radars (Kasischke et al. 1997).

The characteristics of the SIR-C/XSAR images used in this work are presented in table
71.
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Table 7.1. SIR-C/XSAR image characteristics.

Frequency and wavelength SIR-C: 1.275 GHz, 23.5 cm (L band)
SIR-C: 5.3 GHz, 5.8 cm (C band)
XSAR: 9.6 GHz, 3.1 cm (X band)

Polarisation SIR-C: HH, HV and VV
XSAR: VWV

Incident angle SIR-C: 33.3°

(to the centre of swath) XSAR: 32.1°

Acquisition date SIR-C/XSAR: 12/04/1994

Spatial resolution 25mx25m

7.1.2. Additional bands

In addition to the SIR-C/XSAR image, a JERS-1 SAR image of the Manaus study area
was included in the analysis. The dry season date closest to the SIR-C/XSAR flight was
selected (table 7.2).

Cloud-free Landsat TM data were available in bands 3, 4 and 5 but for one year after
the SIR-C/XSAR flight (table 7.2). The three TM bands were radiometrically corrected
from DN to radiance using calibration coefficients derived from vicarious experiments
(Bailey 1997). TM bands 3, 4 and 5 were converted to radiance by dividing the DN by
calibration coefficients of 0.9, 1.08 and 7.07 respectively (Bailey 1997). These
coefficients were obtained after the shift (offset) in 1995 Landsat TM calibration had
been interpolated from the calibration coefficients (1984 — 1994) and applied to the DN
(Thome et al. 1997).

The SAR data were filtered with a median filter in a 3 x 3 window to reduce speckle.
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Table 7.2. Remotely sensed data for Manaus study area.

F in band codes refers to median filtered bands.

Satellite/Sensor Band- Path/ Date Band
Polarisation Row code
JERS-1/SAR LHH 414/304 05/08/94 JERS and JERSF
Landsat/TM 3,4,5 231/62 20/09/95 TM3,TM4,TM5
LHH LHH and LHHF
LHV LHV and LHVF
SIR-C/SAR LVV 46_70 12/04/94 LVV and LVVF
CHH CHH and CHHF
CHV CHV and CHVF
CVvV CVV and CVVF
SIR-C/XSAR XvV 46_70 12/04/94 XVV and XVVF

In addition to this data set (and following the conclusions of chapter 6), a GLCM
contrast texture band (called CONT) was derived from the JERS-1 SAR bandina 3 x 3
window and 256 GL. In total, 20 bands were used: 17 SAR bands and 3 TM bands.

7.2. Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) are an artificial intelligence technique inspired by
research on the structure and learning mechanisms of the human brain. ANN are used
to enable computers to learn directly from data and thereby assist in tasks such as

pattern recognition, classification and data compression (Hammerstrom 1993).

The starting point for the development of an ANN was the work by Rosenblatt (1958),
who introduced the concept of perceptron as a processing unit able to receive weighted
information and threshold the results according to a rule (Atkinson and Tatnall 1997).
One of the requirements for input data in a perceptron was linearity, which sometimes
limited its use for classification. Since the 1980s, with increased computer power and
network topologies, ANN has been used for the classification of multi-spectral remotely
sensed imagery (Atkinson and Tatnall 1997). ANN are an alternative to standard
classification methods that require assumptions about the underlying statistics of the

data (Paola and Schowengerdt 1995). In addition to the independence of statistical
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distribution assumption, ANN (i) are adaptive and able to learn underlying relationships
from data, (ii) can generalise and process noisy data and (iii) can be used for near real-
time processing (Hammerstrom 1993). Specifically to remote sensing, ANN can
incorporate different data types and a priori knowledge about the data (Atkinson and
Tatnall 1997).

7.2.1. Structure of an ANN

The basic structure of an ANN comprises a number of simple processing units (nodes)
arranged in a set of connected layers (Foody 1995). The most commonly used ANN for
image classification in remote sensing is based on the multi-layer perceptron (MLP)
trained by the back-propagation algorithm (Atkinson and Tatnall 1997, Kanellopoulos
and Wilkinson 1997). A typical back-propagation ANN has one input layer, a variable

number of intermediate or hidden layers and one output layer (figure 7.1).

Input layer Output layer

Hidden layer

Inputs Outputs

Figure 7.1. Structure of a back-propagation ANN.

The input layer is passive and distributes the data to all nodes in the hidden layer. For
remotely sensed data the input layer usually contains DN from spectral bands and the
number of nodes equals the number of bands. The hidden nodes calculate a weighted
sum of inputs which are then passed through an activation function to produce the

node’s output value. These adjustable weight values contain the knowledge distribution
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of the ANN (Paola and Schowengerdt 1995). The weighted sum of inputs to a node —

net ; - is computed from:

net; =Zw,~jo,- (7.1]
I

where w; are the weights between nodes iand jand o; is the output from node i The

output from a given node j is then computed from:

0; = f(netj) [72]

where fis usually a non-linear sigmoid function which constraint the sums within fixed
limits (Atkinson and Tatnall 1997). The output layer presents the network’s results e.g.,
the classes of a classified image. The number of output nodes equals the number of

classes.

The input data are passed through the connections to the next layer in a feed-forward
manner. The back-propagation algorithm refers to passing the errors back to the hidden
layer, after subtraction of output node results from the previously-established results.
Subsequently, the hidden nodes calculate the weighted sum of the back-propagated
errors to find its contribution to the known output errors. The error values in a hidden
node are weighted by a delta rule equation, which minimises the network’s sum-

squared errors (Hammerstrom 1993). The generalised delta rule equation is as follows:

Acx)ji(n+1):n(Sjo,-)+ocA0)j,-(n) [73]

where 4w ;(n+1) and 4w ;(n) are the weight changes between connecting nodes i and
j at iteration n+1 and iteration n, respectively, n is the learning rate, §; is the rate of

change of the error and o is the momentum parameter (Atkinson and Tatnall 1997).

The learning is achieved by iterative weight adjustment (Kanellopoulos and Wilkinson
1997). If the error is still above some predetermined threshold when the training cycle is
completed, the weights are adjusted and training continues (Paola and Schowengerdt

1995). The adding of momentum term speeds the reduction in the error. An asymptotic

161



Classifying regenerating forest using SAR data

rate of decrease in the total network error can also be used to terminate the training
cycle (Skidmore et al. 1997).

7.2.2. Image classification using an ANN

The process described above makes part of the network’s training similar to the training
for conventional supervised classifiers. The aim of the training phase is to build a model
to define the data and this in turn enables the ANN to generalise and predict outputs
from different input data (Atkinson and Tatnall 1997). The training data are used to
adjust the network weights until the network can identify class membership correctly
and allocate DN values to the class associated with the most ‘highly activated’ output
unit (Foody et al. 1997).

The most common structure of an ANN for image classification includes three fully

interconnected layers (a single hidden layer) (Paola and Schowengerdt 1995).

Many settings influence the ability of an ANN to generalise and classify data including
the training time (Paola and Schowengerdt 1995, Atkinson and Tatnall 1997). If an ANN

is overtrained it may be unable to generalise and classify new data.

After the overall network structure has been determined (number of nodes and hidden
layers, size and selection of training set), some specific settings are selected, usually
following experimentation. The learning rate, learning momentum and number of
training cycle (iterations) are examples of these settings that affect the accuracy of an
ANN classification (Berberoglu et al. 2000). The learning rate is related to the distance
that the values have to travel in a single iteration to change the network error. The
smaller the learning rate, the smaller the changes in the weights at each iteration
(Skidmore et al. 1997). If the learning rate is too big, the network can become unstable.
The learning momentum is added to the learning rate in order to incorporate previous

changes in weight with the direction of learning process (Skidmore et al. 1997).
Finally, the accuracy of the trained network may be evaluated using testing data set.

This is normally done by dividing the available data into a training and a testing data set

and using the latter for testing independently the accuracy of the network.
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7.3. Methods

The methods for preparing the data set, analysing, selecting, classifying and assessing

classification accuracy will be explained next.

7.3.1. Building the data set

7.3.1.1. Ground data — Forest regrowth map

The 1991 forest regrowth map for the Manaus study area (section 4.3.2) included 5
regenerating forest age classes, a mature forest class and a pasture class (Lucas et al.
1993). This map was further refined by the addition of dominant species composition to
the age classes (Lucas ef al. 1996) and for the classification of successional pathways
as determined by prior land use and forest dominating species (Palubinkas et al. 1995,
Foody et. al 1996).

The original 1991 forest regrowth map was updated with the aid of fieldwork and TM
images acquired in 1992, 1994 and 1995 (Bailey 1997). The classes studied here were
taken from the updated Manaus forest regrowth map: (1) pasture, (2) regenerating
forest <3 years, (3) regenerating forest 3-5 years, (4) regenerating forest 6-10 years, (5)
regenerating forest 11-18 years and (6) mature forest. Hereafter they will be called land

use classes, as the pasture class prevents calling them age or regrowth classes.

The forest regrowth map was not covered entirely by the images used in this work. As a
result, an extract of the forest regrowth map common to all images was selected,
making sure that all age classes were represented. The extract covered Fazenda Porto
Alegre and Fazenda Esteio, two cattle ranches part of the BDFFP research areas
(figure 7.2).
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Figure 7.2: Extract from the Manaus forest regrowth map. The production of this map from
multitemporal Landsat sensor data is discussed in Bailey (1997).

7.3.1.2. Remotely sensed data - SAR and TM bands

The SIR-C/XSAR images and the 1995 Landsat TM image were registered to the
geometrically-corrected 1991 Landsat TM image of the same area (section 5.4.1). The

final pixel size of all images was 25 metres.

The extract of the forest regrowth map is shown in SIR-C SAR bands (figure 7.3),
Landsat TM bands (figure 7.4) and in bands from both sensors combined (figure 7.5). In
addition to the main land covers (mature forest, pasture and regenerating forest at
different successional stages), the bands depict the topography of the area. The
influence of slope aspect on backscatter and radiance for the discrimination of the land

cover classes was out of the scope of this research.
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Figure 7.3: SIR-C SAR bands covering Fazenda Porto Alegre and Fazenda Esteio from the
Manaus study area. Band LVVF on red, CHVF on green and LHVF on blue.
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Figure 7.4: Landsat TM bands covering Fazenda Porto Alegre and Fazenda Esteio from the

Manaus study area. Band TM5 on red, TM4 on green and TM3 on blue.
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Figure 7.5: SIR-C SAR and Landsat TM bands covering Fazenda Porto Alegre and Fazenda
Esteio from the Manaus study area. Band TM5 on red, CHVF on green and LHVF on blue.

All 20 SAR and TM bands were rescaled to the same 256 DN (8-bit format) range. This
speeds the convergence of an ANN to a minimal error point as the weights of the nodes
have approximately the same range (Skidmore et al. 1997). In addition a standardised
DN range allowed the performance of discriminant function analysis.

The location of the training and testing sites for the ANN and discriminant function
classifications was based on the forest regrowth map. Pixel values were extracted for
each class from each band, totalling 113 pixels/class/band. These data was used for
DN statistics analysis, discriminant function feature selection and in the first training
attempt in an ANN.
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7.3.2. Exploratory analysis of the remotely sensed data

Displaying the DN data from the different bands by each land cover class provides a
visual summary of the DN distribution. The boxplot is a useful exploratory tool,
particularly when plotted and analysed before the classification of DN data. The data
are presented as a box whose top and bottom are drawn at the lower and upper
quartiles (interquartile range) (Sokal and Rohlf 1995). The median is shown as a line
across the box. Additionally, vertical lines are drawn from the top and bottom of the box
to the largest and smallest value, respectively, that lie within up to 1.5 times the
interquartile range. All values that are further than these lines are plotted individually
(outliers) and values more than 3 interquartile ranges away from the box are given

proeminence (Sokal and Rohlf 1995).

7.3.3. Discriminant function analysis and feature selection

The different bands were submitted to discriminant analysis (DA), in order to identify
those variables able to discriminate the 6 land cover classes (section 7.2.1.1). DA is a
technique used to determine which variables discriminate two or more groups.
Functions that include the variables being analysed (e.g., bands) are built and
predictions as to which class a case (e.g., pixel) belongs are made (Statsoft, Inc. 2001).
The Wilks’ lambda statistic is used for measuring the discrimination power of each
band, based on their variance/covariance matrices. Wilks’ lambda values range from 0
(perfect discrimination) to 1 (no discrimination). The bands selected (also called
canonical variables) will be given a coefficient in the discriminant functions. These
coefficients show the contribution of each band in the discrimination between classes
and, when plotted, which classes are discriminated by each function (Statsoft, Inc.
2001).

DA has been used in remote sensing as a feature selection technique to find the
optimum input representation for neural network training data (Benedikisson and
Sveinsson 1997), to identify bands that optimise discrimination amongst a set of land
cover classes (Thomson et al. 1998) and to classify SAR data with added prior
knowledge (Foody 1995).
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Stepwise DA was performed on the data. Within this approach, at each step, the band
that minimised the overall Wilks’ lambda was entered. Two sets of bands were used: (i)
all 17 SAR bands (filtered and non-filtered data) and (ii) all 17 SAR bands plus 3 TM
bands, a total of 20 bands.

7.3.4. ANN architecture and classification accuracy assessment

Several trials were made before selecting the settings of the ANN using ENVI 3.4
software that provides ANN training and classification as part of the supervised
classification module. The ANN architecture was set as input and output layers plus one
or two hidden layers. The number of nodes was the same as the number of input bands
for the input layer and hidden layer. For the output layer the number of nodes was equal

to the number of classes (6).

Recalling table 3.2 and 3.3, where classification approaches and the use of texture of
radar imagery in tropical ecosystems was reviewed, the use of ANN for the

classification of tropical land cover types remains new avenue for research.

Several experiments were designed to quantify the influence of each ANN variable in
the overall classification accuracy. One setting was varied while holding the other
settings constant. The overall classification accuracy was verified in the training data

set and independent testing data set.

The selection of training and testing data sets was limited by classes coverage/extent.
For instance, mature forest occupied a much larger area than the remaining classes
and class 3 (regenerating forest 3-5 years) covered the smallest area. Training and
testing data sets were changed following inaccurate results for initial ANN experiments.
The results presented in section 7.3 were part of the more accurate achieved hence the
training and testing data sets were considered adequate. The final figures for training

and testing pixels were (training, testing):

(1) Pasture (325, 172).

(2) Regenerating forest <3 years (121,123).
(3) Regenerating forest 3-5 years (30, 83).

(4) Regenerating forest 6-10 years (100, 137).
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(5) Regenerating forest 11-18 years (213, 284).
(6) Mature forest (351, 303).

The ANN was trained until the root mean square (RMS) error reached a constant, which
was after approximately 2000 iterations. Experiments on the effect of the number of

iterations and training accuracy were also performed.

7.4.Results

The results were presented in three sections:

e In section 7.3.1 the DN statistics of the 6 land cover classes were explored in

boxplots.

e In section 7.3.2 the results of Discriminant Analysis were presented, showing 6
bands selected from the 17 SAR bands data set and 8 bands selected from the data
set containing the SAR bands plus 3 TM bands.

e In section 7.3.3 the experiments for defining the settings to be used by the ANN
were shown. ANN classification and accuracy assessment results were presented after
that.

7.4.1. Boxplots

The graphic display of the SAR and TM data in boxplots showed land cover classes
with similar DN medians. The range of rescaled intensity SIR-C L and C data values for
the 6 land cover classes was narrow, especially for HH and VV polarisations (figure
7.6). All classes overlapped, although in most cases the median for pasture class (class
1) was lower than for the remaining classes. For HV data in both L and C bands the
range of DN was wider. The median values for LHV band increased with land cover
“age” (as from class 2 to 6 the “age” of regeneration forest increased until reaching

maturity). LHV is a key band for discriminating between regenerating forest and mature
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forest, because of its sensitivity to biomass and forest structure (Kasischke et al. 1997,
Saatchi et al.1997)

Median-filtered SIR-C data sets showed a slightly narrower DN range and still similar
medians leading to a visually low separability between classes. Cross-polarised bands
LHVF and to a lesser extent CHVF, demonstrated again a wider dynamic range when
compared with non-filtered data. In HH and VV bands the medians were similar for the
different land cover classes. For HV bands, however, some differentiation between

classes seemed possible (figure 7.7).

XSAR XVV and median-filtered XVVF bands showed a relatively wider DN range and
also higher DN values when compared to the SIR-C bands (figure 7.8). Despite that,
the discrimination was limited to pasture (class 1) and the remaining 5 forest classes.
For JERS and JERSF (LHH bands) some differences in median values were present
between pasture and the remaining 5 forest classes. The behavior of median values in
JERS and JERSF bands was similar to the HH and VV SIR-C bands, although a
relatively wider DN range was present (figure 7.8). GLCM derived contrast (CONT)
median values were the higher from the data set, which could be interpreted as highly
contrasted classes. Median values for the forest classes were very similar and

discrimination between these and pasture class may be possible (figure 7.8).

The TM bands showed distinct median values for the three main land cover classes:
pasture (class 1), regenerating forest (classes 2, 3, 4 and 5) and mature forest (class 6)
(figure 7.8). That result was expected since these classes were defined after the use of
the multitemporal Landsat sensor data to produce the forest regrowth map (Lucas et al.
1993, Bailey 1997). In addition, DN values were rescaled from radiance values which
have strong spectral meaning. Median values of the land cover classes in TM bands
followed the spectral behaviour described for forests and pasture. In TM3 (red channel)
values of radiance were low due to pigment absorption of red wavelength (Moran et al.
1994). For TM4 (near-infrared channel) radiance increased with forest age as within-
leaf scattering was greater due to increased number of leaves (Foody et al. 1996). After
reaching a peak in near-infrared radiance, shadow of emergent trees in the canopy
decreased radiance in both visible and near-infrared bands, and as a result mature
forest (class 6) exhibited low radiance values in TM3, TM4 and TM5 (Foody et al.
1996). Increased water absorption and shadowing effects associated with canopy
development decreased radiance in TM5 (Foody et al. 1996). Pasture had higher

radiance than mature forest and regenerating forests in TM3 and TM5.
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Figure 7.6. Boxplots of DN for pixels in training samples by land cover class in non-filtered and
median-filtered XSAR and JERS-1 bands. Upper and lower ends of boxes are upper and lower
quartiles, small squares indicate median, ‘whiskers’ show the interquartile range and values
outside - circles - indicate outliers. Classes are: (1) pasture, (2) regenerating forest <3 years, (3)
regenerating forest 3-5 years, (4) regenerating forest 6-10 years, (5) regenerating forest 11-18

years and (6) mature forest.
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Figure 7.7. Boxplots of DN for pixels in training samples by land cover class in non-filtered and
median-filtered XSAR and JERS-1 bands. Upper and lower ends of boxes are upper and lower
quartiles, small squares indicate median, ‘whiskers’ show the interquartile range and values
outside - circles - indicate outliers. Classes are: (1) pasture, (2) regenerating forest <3 years, (3)
regenerating forest 3-5 years, (4) regenerating forest 6-10 years, (5) regenerating forest 11-18

years and (6) mature forest.
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Figure 7.8. Boxplots of DN for pixels in training samples by land cover class in non-filtered and
median-filtered XSAR and JERS-1 bands, plus TM bands. Upper and lower ends of boxes are
upper and lower quartiles, small squares indicate median, ‘whiskers’ show the interquartile range
and values outside - circles - indicate outliers. Classes are: (1) pasture, (2) regenerating forest
<3 years, (3) regenerating forest 3-5 years, (4) regenerating forest 6-10 years, (5) regenerating

forest 11-18 years and (6) mature forest.
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The boxplots shown in previous 3 figures illustrated the difficulty of mapping the 6 land
cover classes using a single band/wavelength and polarisation. The characterisation of
land cover classes associated with regenerating tropical forests benefit from
multiwavelength and multipolarisation data (Pope et al. 1994). The need for a feature

selection procedure to reduce the dimensionality of the dataset was also highlighted.

7.4.2. Discriminant analysis

The overall discrimination of the 6 land cover classes in the 20 bands is discussed
following presentation of Wilks’ lambda for each band in the data set containing only
SAR bands (7.3.2.1) and in the data set containing SAR plus TM bands (7.3.2.2).

One drawback of the DA backward elimination procedure used here is that once one
band has been removed in the set of discriminant variables, it will not be included again
even if it became a class discriminator in a later stage (Sokal and Rohlf 1995).
However, DA was used as a feature selection technique, where reduction of data

dimensionality without information loss was sought (Mather 1999).

7.4.2.1. SAR bands selected by DA

The stepwise backward DA selected six bands — JERSF, CVVF, LHVF, XVVF, CHVF
and LVVF - as discriminant variables for the 6 land cover classes (table 7.3). The
selected bands are exhibited sequentially according to overall Wilks’ lambda coefficient
and their contribution in reducing the ratio within-classes to total class variation
(Johnston 1980)

Only SAR-filtered bands were selected, probably due to their smaller range of DN for
the land cover classes as seen in the boxplots (table 7.3). Bands discarded include the
non-filtered data (JERS, LHH, LHV, LVV, CHH, CHV, CVV and XVV), the median-
filtered bands in HH polarisation (LHHF and CHHF) and the GLCM contrast (CONT).
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Table 7.3. Bands selected after stepwise discriminant analysis and respective Wilks’

lambda. At each step, the band that minimised the overall Wilks’ lambda was selected.

Wilks' Lambda
JERSF 0.467
CVVF 0.286
LHVF 0.204
XVVF 0.151
CHVF 0.135
LVVF 0.124

JERSF band was the first to be selected, demonstrating the importance of LHH data
(acquired in a wider incidence angle range than SIR-C data) for discriminating between
the 6 land cover classes (table 7.3). Previous researchers have shown that depending
on the number of classes and the classification method used, JERS-1 SAR data can
achieve accurate discrimination in tropical land cover classification (Saatchi et al. 2000,
Simard et al. 2000). When used in combination with optical and/or SAR bands, ancillary
data, multitemporal series or textural information, land cover mapping capabilities of
JERS-1 data are usually increased (Rignot et al. 1997, Rennd et al. 1998, Grover et al.
1999).

Discrimination for the 6 land cover classes was also offered by CVVF, the band and
polarisation present in ERS-1 SAR. Kuntz and Siegert (1999) suggested the use of
ERS-1 SAR CVV band to monitor forest conversion and land cover in tropical forest
environments but with additional information derived from texture and multitemporal
ERS-1 SAR data.

The VV polarisation was selected in 3 bands: LVVF, CVVF and XVVF. That was
probably due to the association of VV polarised backscatter with crown-layer attributes
(Dobson et al. 1995). These attributes varied greatly from pasture (class 1) to a series
of different canopy structures in regenerating forests (class 2 to 5) and mature forest

(class 6).

The HV polarised backscatter is related to total biomass which varied with land cover
class, justifying the selection of LHVF and CHVF. HV polarised data were key to the
differentiation of regenerating forest from mature forest and clearance/pasture in

previous works (Rignot et al. 1997, Saatchi et al. 1997).
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X band (selected as XVVF), although not associated with deep canopy penetration
length and vegetation type discrimination, was used in the 1970s to map tropical
vegetation (RADAM project). However, additional information on topography and
drainage was needed to achieve vegetation type discrimination (Leckie and Ranson
1998).

7.4.2.2. SAR and TM bands selected by DA

The stepwise backward DA selected 8 bands — TM5, TM4, JERSF, TM3, LHVF, CONT,

CHVF and XVVF - as discriminant variables for the 6 land cover classes (table 7.4).

Although the spectral information was spread over 20 bands, only 8 bands were
necessary to define the 6 land cover classes. The selected bands comprised the three
TM bands and only SAR median filtered data. Also, the SAR bands selected present no
overlap in SAR wavelengths and polarisations, as they cover the range X, C and L
bands, with VV, HH (for JERSF) and HV polarisations. Textural information was
included with GLCM derived contrast (CONT). Bands discarded include the non-filtered
data (JERS, LHH, LHV, LVV, CHH, CHV, CVV and XVV) and some of the median-
filtered bands (LHHF, LVVF, CHHF and CVVF).

Table 7.4. Bands selected after stepwise discriminant analysis and respective Wilks’

lambda. At each step, the band that minimises the overall Wilks’ lambda was selected.

Band Wilks' Lambda

TM5 0.160
TM4 0.050
JERSF 0.031
TM3 0.021
LHVF 0.015
CONT 0.012
CHVF 0.010
XVVF 0.009

The overall Wilks’ lambda coefficients were much lower when compared to the SAR

only data set, indicating increased class discrimination (table 7.4). The rank of TM5 as
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the band containing the higher discriminant ability of the data set agreed with the
findings that middle infrared radiation has a strong relationship with those forest
biophysical properties that are related to forest regeneration stage (Boyd et al. 1996).
TM4 was the second band to be selected, followed by bands JERSF and TM3. The
remaining four bands (LHVF, CONT, CHVF and XVVF) had a much lower drop in the

overall Wilks’ lambda coefficient, indicating less discrimination power.

The inclusion of GLCM contrast textural information (band CONT in table 7.7) agreed
with previous works that found that the combination of SAR tonal and textural
information can provide increased tropical land use classification accuracy than using
tonal information alone (SantAnna et al. 1998, van der Sanden and Hoekman 1999,
Saatchi et al. 2000, Simard et al. 2000).

The increase is class discrimination with the addition of optical sensor bands to SAR is
reported widely (Nezry et al. 1993, Rignot et al. 1997, Saatchi et al. 1997, Kuplich et al.
2000). The integration of SAR and optical sensor data in tropical land cover
classification works in a synergistic basis with the classification of land covers
previously unidentified in optical sensor data (e.g. clearances with residual, woody
debris) (Rignot et al. 1997).

The results above highlighted the need for multiwavelength and multipolarisation data
to discriminate tropical land cover classes. While the bands that presented the greater

discriminant ability were selected, the classes that were discriminated most effectively

by any particular band were yet to be determined.

7.4.3. ANN experiments

Plots of classification accuracy for training data were produced to define the ANN

settings that provide more accurate classifications.
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7.4.3.1. ANN experiments with SAR bands

Several experiments were performed in order to define the settings to be used when

training and classifying the ANN.

Training accuracy was controlled mainly by the number of land cover classes. Figure
7.6. shows the dramatic decrease in the SAR bands training accuracy when the number
of classes increased and comprised the 6 land cover classes of the forest regrowth
map. This analysis forecast the problems of discriminating between regenerating forest
stages, as these classes were the ones that were merged into a single regenerating

forest class for the 3 class example in figure 7.9.

The addition of a second hidden layer did not increase training accuracy. For 6 and 2
land cover classes the accuracy was similar, but for the remaining classes the addition
of a second layer decreased the training accuracy (figure 7.9). The final architecture for
the SAR bands was set as three (input, hidden, output) layers with six nodes each
(6:6:6).
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Figure 7.9. The training accuracy of the SAR bands for a varying number of land cover classes
and one and two hidden layers. Learning rate, learning momentum and number of iterations

were 0.2, 0.2 and 2000, respectively.
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The number of iterations changed significantly the training accuracy. The highest

training accuracy was achieved around 2500 iterations. Figure 7.10 shows the training

accuracy according to the number of iterations.
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Figure 7.10. SAR bands training accuracy and number of iterations. Learning rate and learning
momentum were set at 0.2.

The training accuracy varied with learning rate, until reaching stability at a learning rate
of 0.5 (figure 7.11). The peak in training accuracy was reached at a learning rate of 0.4
and this setting was used for the remaining experiments and classifications. The
training accuracy also varied with learning momentum and no stability was reached. A

peak in training accuracy occurred at a learning momentum of 0.9 (figure 7.11).
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Figure 7.11. SAR bands training accuracy, learning rate and learning momentum. The number

of iterations was 2000. Either learning rate or momentum was held at 0.2 while the other varied
from 0.1 to 1.

179



Classifying regenerating forest using SAR data

7.4.3.2. ANN experiments with SAR and TM bands

For the experiments with the data set containing SAR and TM bands, the results varied

less, due to a more stable training accuracy.

The decrease in training accuracy following an increase in the number of land cover
classes was as not marked as for SAR bands only (figure 7.12). The drop in accuracy
from 2 to 6 land cover classes was from 100% to around 60%, compared to a decrease
from 100 % to 40% with the SAR bands alone.

The addition of a second hidden layer had a variable effect on the training accuracy
(with no significant increase or decrease) (figure 7.12). The final architecture for the
SAR and TM bands was also set as three (input, hidden, output) layers with six nodes
each (6:6:6).
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Figure 7.12. SAR and TM bands training accuracy and number of classes for one and two
hidden layers. Learning rate, learning momentum and number of iterations were 0.2, 0.2 and
2000, respectively.

The number of iterations did not change significantly the training accuracy (figure 7.13).
Although the highest training accuracy was achieved around 10000 iterations, the
accuracy was almost as high as 2000 iterations. Therefore, most of the experiments

used 2000 iterations.
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Figure 7.13. SAR and TM bands training accuracy and number of iterations. Learning rate and
learning momentum were set at 0.1.

The training accuracy varied with learning rate, reaching stability at a learning rate of
0.7 (figure 7.14). The peak in training accuracy was reached at a learning rate of 0.1
and this setting was used for the remaining experiments and classifications. The
training accuracy also varied with learning momentum and no stability was reached. In
comparison with the SAR data only, training accuracy oscillated less between the
different values for the two rates. A peak in training accuracy occurred at a learning
momentum of 0.5 (figure 7.14) and this setting was used for the remaining experiments

and classifications.
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Figure 7.14. SAR and TM bands training accuracy and learning rate and learning momentum.
The number of iterations was 2000. Either learning rate or momentum was held at 0.1 while the
other varied from 0.1 to 1.
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7.4.4. ANN classification and classification accuracy

The experiments above enabled the influence of some ANN settings to be quantified in
terms of the training accuracy. This provided a basis on which the settings likely to
provide a more accurate classification could be chosen. In addition, the behaviour of the
ANN was revealed (through each classification and corresponding confusion matrix),
and the ability to discriminate each class was examined in detail. The confusion
matrices also display the producer and user’s accuracy. Producer's accuracy measures
the omission error (error of exclusion) to a certain class and is the probability of a
reference site being correctly classified. User’'s accuracy, on the other hand, is a
measure of commission error (error of inclusion) or the probability that a pixel classified

on the image actually represents that class on the ground. (Congalton 1991).

In spite of careful analyses of the confusion matrices, the results were still “variable and
unpredictable”, using the words of Skidmore et al. (1997). When trying to understand
the results generated by classifying the SAR bands, Principal Components Analysis
(PCA), whose fundamentals were given in chapter 5, was performed. The objective was
to compute the dimensionality of the SAR data and check their adequacy for such a

detailed classification.

7.4.4.1. Classification of SAR bands

The overall training and testing accuracy of SAR band classifications were low. Two key
classifications were selected to analyse the behaviour of each class, particularly the
regenerating forest classes. These were the full 6 land cover classes and a 3 land cover
classes classification, where all regenerating forest stages were merged into a single
class. Unless otherwise stated, the settings were a learning rate of 0.4, learning

momentum of 0.9 and 2500 iterations.

Table 7.5 displays the confusion matrix for the ANN classification of training SAR data
for the 6 land cover classes. The user and producer’s accuracies were also shown. The
matrix revealed low overall accuracy (46%). Pasture (class 1) and mature forest (class
6) had accuracies of around 63% and 56% respectively, but low commission errors

made user’s accuracies of around 98% for both classes. Regenerating forests < 3 years
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(class 2) although classified correctly in 97% of the reference (training) data, was
commissioned to all other classes and only 16% was classified correctly. Classes 3 (3-5
years) and 4 (6-10 years) were ignored on reference data and classified as class 2.

Class 5 (11-18 years) also was classified as class 2.

Table 7.5. Confusion matrix for the ANN classification of SAR training data. Kappa

coefficient was 0.34. UA and PA refer to user and producer’s accuracies.

Reference data

Class 1 2 3 4 5 6 Total UA(%)
1 2067 =1 0 0 0 3 210  98.1

82 1199 "= 118> = ¥30 100 200" 142 718, 1643

o F) 0 0 0 0 0 0 0 0

873 0 0 0 0 0 0 0 0

@5 0 0 0 0 2 9 11 18.18

56 0 2 0 0 2 197 201  98.01
Total 325 121 30 100 213 351 1140 | Overall
PA(%) 63.38 9752 0 0 094 56.13 f a:;‘;;izy |

Classes:

(1) Pasture

(2) Regenerating forest <3 years
(3) Regenerating forest 3-5 years
(4) Regenerating forest 6-10 years
(5) Regenerating forest 11-18 years
(6) Mature forest.

For the testing data (table 7.6), the results were very similar to the training data,
although the overall accuracy was lower (31.4%). Pasture and regenerating forest <3
years presented less omission, unlike mature forest class, that presented more
omission errors than in the training data. Around 80% of the testing pixels were
classified as regenerating forest <3 years, with commission to all classes, which made
its classification inaccurate (around 14%). The classes regenerating forest 3-5 years

and 6-10 years were omitted completely.
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Table 7.6. Confusion matrix for the ANN classification of SAR testing data. Kappa

coefficient was 0.21. UA and PA refer to user and producer’s accuracies.

Reference data

Class 1 2 3 4 5 6 Total UA(%)

1 128 0 2 0 0 0 130  98.46
g2 A28, 79° 937 1 28] 209 873 . 14,09
23 0 0 0 0 0 0 0 0
272 0 0 0 0 0 0 0 0
@5 0 0 1 0 2 1 4 50
56 0 0 1 0 1 93 95  97.89

Total 172 123 83 137 284 303 1102 |[OlciclE

PA(%) 7442 100 O 0 0.7  30.69 31.4%

Classes:

(1) Pasture

(2) Regenerating forest <3 years
(3) Regenerating forest 3-5 years
(4) Regenerating forest 6-10 years
(5) Regenerating forest 11-18 years
(6) Mature forest.

Many factors could be behind these inaccurate classification results. The size and
characteristics of training data were among the factors found by Foody and Arora
(1997) to affect ANN classification results, although small training data sizes were
satisfactory for the ANN used by Paola and Schowengerdt (1995). The size of training

data sets was defined following the average class coverage and accuracy results.

The characteristics of the training data, however, could have limited classification
accuracy. ldeally, training data would have discriminatory characteristics shared with
the classes in the Manaus regrowth map (based on multitemporal Landsat sensor
data); however, this might not be true. Figure 7.3 showed SAR bands and the poor

discrimination of forest regenerating stages within them.

The number of bands or discriminatory variables also affects ANN classification
accuracy. Class separability usually increases with increase in number of bands until
the addition of new bands has no effect or even reduces the classification accuracy
(Bishop 1995, Foody and Arora 1997). Although redundancy on the SAR data was
avoided theoretically when selecting bands by discriminant analysis, the question of the

intrinsic dimensionality of the bands selected still remained.
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Principal components analysis provides information on data set dimensionality (Mather
1999) and was performed on the SAR data. The first two components presented
eigenvalues greater than 1 (Kaiser criterion, Statsoft, Inc. 2001) therefore the
dimensionality of the data was defined as two. Table 7.7. shows the eigenvalues and

the percentage of variance from the SAR data set.

Table 7.7. Eigenvalues and percentage of variance for

principal components extracted from SAR bands.

Eigenvalues

Component Total % of variance
1 2.953 49.21
2 1.012 16.83
3 0.771 12.85
4 0.592 9.86
5 0.352 5.87
6 0.320 5.34

The implications of using a data set with only two dimensions were poor discrimination
of classes and low classification accuracy. Despite the availability of 6 SAR bands
selected by its discriminatory properties, the data were still inadequate for the
representation of the land cover classes. The difficulties of discriminating forest
regenerating stages with SAR data, has been documented elsewhere (Rignot et al.
1997, Saatchi et al. 1997, Sant'’Anna et al. 1998).

Following that, the regenerating forest stages were merged into a single class and the

data were classified into pasture, regenerating forest and mature forest.

Table 7.8 shows the confusion matrix for training SAR data with only three classes and
there was a high overall accuracy (81%). Pasture class was classified accurately in
reference and classified data. However, 42% of reference data on regenerating forest
was classified as mature forest while around 30% of classified mature forest were

erroneously committed to regenerating forest.

185



Classifying regenerating forest using SAR data

Table 7.8. Confusion matrix for the ANN classification of training data in SAR bands.

Kappa coefficient was 0. 7. UA and PA refer to user and producer’s accuracies.

Reference data

Class Pasture Regenerating Mature Total UA (%)
forest forest
g Pasture 303 0 0 303 100
T
T Regenerating 0 151 0 151 100
= forest
§ Mature 2 202 394 598 65.89
o forest
Total 305 353 394 1052 Overall
PA (%) 99.34 4278 100 80.61%

In table 7.9 the usual lower overall accuracy for testing data was shown, but the
remaining classes behaved similarly as in table 7.22. Pasture class was classified

accurately. Mature forest and regenerating forest were not separated completely.

Table 7.9. Confusion matrix for the ANN classification of testing data in SAR bands.

Kappa coefficient was 0. 57. UA and PA refer to user and producer’s accuracies.

Reference data

Class Pasture Regenerating Mature Total UA (%)
forest forest

ol Pasture 239 0 0 239 100
1]
e
T Regenerating 0 87 9 96 90.63
= forest
§ Mature 6 244 326 576 56.6
) forest

Total 245 331 335 911 Overall

PA (%) 97.55 26.28 97.31 71.57%

Saatchi et al. (1997) achieved an accuracy of 87% when classifying the same three
land cover classes in Amazonia with SIR-C LHH, LHV, CHH and CHV data. They used
a Maximum a Posteriori (MAP) classifier, which provided a highly accurate classification

of land cover. A similar result was reported by Rignot et al. (1997).

The discrimination of land cover classes in SAR images is related to the type of class

being considered. Saatchi et al. (2001) achieved an overall accuracy of 89% when
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classifying 13 land cover classes in SIR-C SAR data. The classes included several
types of crops and natural forest fragments, such as mature, flooded and regenerating
forests in the Atlantic Forest in Brazil. Certainly the mapping of regenerating forest
stages requires a very subtle discrimination of classes within the data based on a
precise understanding of class characterisation on the part of the classifier. As the
classes studied were defined following interpretation of multitemporal TM data a
synergy of optical and SAR data with TM bands complementing the gaps left by the

SAR discrimination of the classes is likely to be successful.

7.4.4.2. Classification of SAR and TM bands

The use of combined TM and SAR data provided higher classification accuracy for
training and testing data than for SAR data alone. Figures 7.4 and 7.5 showed the
higher discrimination of land cover classes in TM bands and in combined SAR and TM
bands, respectively, in relation to SAR bands alone (figure 7.3). The two key
classifications analysed were 6 and 4 land cover classes. On the 4 land cover classes
the stages were grouped into a young (0-5 years) and an old (6-18 years) regenerating

forest class. These classes were suggested also by the results below.

Accuracy results of training and test data shared the same characteristics, although
training data provided higher accuracy than testing data (table 7.10 and 7.11). Pasture
and mature forest were classified successfully in both training and testing data. For the

regenerating forest classes (class 2, 3, 4 and 5) the accuracy varied.

Classes 2 and 5 were well discriminated in reference data and few omission errors
were reported. Class 3 in training and testing data was ignored and its reference data
was spread in other regenerating forest stage classes. That was not a surprise due to
the small coverage of class 2 in the forest regrowth map, leading to a poor spectral
characterisation of regenerating forest 3-5 years. Class 3 was mixed mainly with class 2

and class 4 was mixed mainly with class 5 (table 7.10 and 7.11).
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Table 7.10. Confusion matrix for the ANN classification of training data in SAR and TM

bands. Kappa coefficient was 0.75. UA and PA refer to user and producer’s accuracies.

Reference data

Class 1 2 3 4 5 6 Total UA(%)
1 3232 0 0 0 0 325  99.38
£72 1 91 9550, 60 . .67 a0 244 373
o3 0 1 0 0 0 0 1 0
22 0 16 0 7 0 0 23 3043
G 1 4 5 31 146 0 187  78.07
56 0 7 0 5 0 351 360 97.5
Totals 3255 4210 g0 100 213 351 1140 |Overall
PA(%) 99.38 7521 0 7 68.54 100 80.52%
Classes:

(1) Pasture

(2) Regenerating forest <3 years
(3) Regenerating forest 3-5 years
(4) Regenerating forest 6-10 years
(5) Regenerating forest 11-18 years
(6) Mature forest.

Table 7.11. Confusion matrix for the ANN classification of testing data in SAR and TM

bands. Kappa coefficient was 0.63. UA and PA refer to user and producer’s accuracies.

Reference data

Class 1 2 3 4 5 6 Total UA(%)

1 T2 0 0 6 3 0 181  95.03
£2 0 11d=) 56! 43 91 3 304  36.51
o3 0 0 1 4 0 0 5 20
27 0 2 5 6 4 0 17 3529
@5 0 10 7 62 18600 274  67.52
56 0 0 4 16 1 300 321 93.46

Total® 172, 128. .83 137 284 303 1102 |Overall

PA(%) 100 9024 1.2 438 65.14 99.01 70.33%
Classes:

(1) Pasture

(2) Regenerating forest <3 years
(3) Regenerating forest 3-5 years
(4) Regenerating forest 6-10 years
(5) Regenerating forest 11-18 years
(6) Mature forest

The analysis below relates to the classification of SAR and TM bands trained for 4 land

cover classes. As with 6 land cover classes, the characteristics of training and test data

were similar (table 7.12 and 7.13). The overall classification accuracies were high (both
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around 87%). Pasture and mature forest were well discriminated with few omission and

commission errors (figure 7.15).

For the training data, class 2 (regenerating forest 0-5 years) was omitted on the
reference data, indicating, perhaps, a poor training (table 7.12). On the testing data
most of the reference data for class 2 were omitted and misclassified as class 3
(regenerating forest 6-18 years). Figure 7.15 shows the classified image with high
omission for class 2 and high commission for class 3. Discrimination between mature
forest (class 4) and regenerating forest 6-18 years (class 3) was achieved as a result of
combined use of SAR and TM data.

Table 7.12. Confusion matrix for the ANN classification of training data in SAR and TM

bands. Kappa coefficient was 0.82. UA and PA refer to user and producer’s accuracies.

Reference data

Class 1 2 3 4 Total UA(%)
*3 1 304 O 0 0 304 100
g 2 0 0 0 0 0 0
;g 3 1 144 210 0 355
@ 0 0 0 350 350
8 Total 305 144 210 350 1009

PA(%) 99.67 O 100 100
Classes:

(1) Pasture

(2) Regenerating forest 0-5 years
(3) Regenerating forest 6-18 years
(4) Mature forest

Wilkinson et al. (1995) achieved around 80% accuracy when classifying 8 forest
classes in a complex Mediterranean landscape using ANN and ERS-1 SAR and
Landsat TM images. These authors considered the synergistic SAR-optical approach

essential for the discrimination of highly-mixed forest classes.

Regenerating forest up to 15 years old was discriminated from mature forest in TM
bands (Steininger 1996). A limit of up to 10 years old was reported for the detection of
regenerating forests in L band SAR data alone (Saatchi et al. 1997). The use of TM
bands, coupled with SAR texture band (GLCM contrast) and different SAR bands and
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polarisations made it possible to extend this age range up to 18 years and perhaps

beyond.

Table 7.13. Confusion matrix for the ANN classification of testing data in SAR and TM
bands. Kappa coefficient was 0.82. UA and PA refer to user and producer’s accuracies.

Reference data

Class 1 2 3 4 Total UA(%)
£ 244 0 0 1 245  99.59
g 2 0 33 0 11 44 75
23 1 1080 239 1 348  68.68
a7 1 6 0 392 379 = 97.87
O Total 245 147 239 335 966  Overall

PA(%) 9959 2245 100 96.12 86.75%

Classes:

(1) Pasture

(2) Regenerating forest 0-5 years
(3) Regenerating forest 6-18 years
(4) Mature forest
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Figure 7.15. ANN classification using SAR and TM bands. Accuracy results were reported in

tables 7.12 and 7.13.
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7.4. Summary

In this chapter multiwavelength and multipolarisation SAR bands and optical TM bands
were used to classify regenerating forest stages. The six land cover classes used for
training and testing the overall accuracy of the classification were from a forest regrowth

map produced by the classification of a multitemporal series of Landsat TM bands.

The remotely sensed data comprised 20 bands (SAR bands from JERS-1, SIR-C and
XSAR and optical bands from TM) upon which a feature selection technique —
Discriminant Analysis (DA) - was used. The whole data set was submitted to an
exploratory statistical analysis to investigate the discriminating ability of each band. The
land cover classes were not discriminated clearly in most of the bands. However, (i) the
discrimination between land cover classes was slightly higher for cross-polarised data
(SIR-C bands HV and HVF), (ii) TM bands had greater discriminating ability than SAR
bands and (iii) median-filtered SAR bands had greater discriminating ability than non-
filtered bands. Following DA, 6 out of 17 bands were selected in the set containing SAR
bands only and 8 out of the 20 bands were selected in the set containing 7 SAR plus 3
TM bands. A lower overall Wilks’ lambda pointed to increased class discrimination for

the set containing SAR and TM data in relation to SAR data only.

Classification accuracy using SAR bands alone was around 30% for the 6 land cover
classes. When regenerating forest stage classes were merged into a single class, the
classification accuracy increased to around 80%. SAR data alone was unable to
discriminate regenerating forest stages and PCA results demonstrated that the
dimensionality of the 6 SAR bands was 2, limiting their ability to discriminate between
the subtle tonal/textural characteristics of each regenerating stage. A data set
comprising TM and SAR bands showed increased classification accuracy in relation to
SAR data alone, although some confusion between regenerating forest stages was still
present. Following merging of regenerating forest stages into young (0-5 years) and
intermediate (6-18 years), the overall accuracy was around 87%. The combination of
SAR and TM bands were essential for the discrimination between regenerating forest
stages, however, pasture and mature forest were discriminated accurately in both SAR
data alone and in the combined SAR and TM data.
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CHAPTER EIGHT

Conclusions

This thesis has investigated the potential of temporal, spatial, spectral and
polarisation characteristics of SAR backscatter for the study of biomass and land
cover class of tropical forests in two study areas in Brazilian Amazonia. To conclude,
the main findings are divided by subject and summarised, starting by underlining the
answers to the questions posed within the objectives (section 1.4). Finally, the

significance of findings and future work directions are suggested.

8.1. Temporal analysis

No biomass change was detectable with temporal JERS-1 LHH backscatter.

e A positive backscatter/biomass relationship was found (r = 0.87) and indicated
saturation in ¢° at biomass levels of around 90 T ha™.

e A cyclical pattern in ¢° for young regenerating forest plots was detected. The
pattern was seasonal with the dry season corresponding to lower ¢° and the wet
season corresponding to higher ¢°. This result indicated the influence of vegetation
and soil water content on ¢°.

¢ The behaviour of ¢° was more strongly time-dependent for plots below the ¢°
asymptote (e.g., young regenerating forest plots). Although less temporally dynamic
than these young regenerating forest plots, intermediate regenerating and mature

forest plots presented a similar ¢° behaviour.
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e The influence of rainfall was assessed and was found to be an important source
of variation in ¢°. The influence was clearer for young regenerating forest plots,
where the change in the water content of vegetation and soil moisture were probably
detected.

e To eliminate the influence of varying vegetation and soil water content on

backscatter, the use of SAR data from the dry season was recommended.

8.2. Spatial analysis

The addition of GLCM derived contrast to backscatter potentially increases the

accuracy of biomass prediction and mapping.

e Seven texture measures showed, in simulated images, discrimination of image
texture independently of image contrast. They were: GLCM derived contrast, entropy,
correlation, chi-square, SADH derived mean of sum vector, local statistics derived
entropy and variogram derived range.

e These seven texture measures were calculated for real SAR images and the
correlation between them and the log of biomass estimated. Only GLCM derived
contrast increased the correlation between backscatter and log of biomass.

e Values of variogram derived range highlighted the diversity of vegetation/canopy
structures found in the field. However, no relationship was found between range, log
of biomass and dominant species (and therefore upper canopy structure). Image
spatial resolution (18 m), pixel transects (as opposed to pixel matrices) used to
derive the variograms and the models used to fit the data could have limited the
analysis.

e GLCM and SADH derived texture measures extracted using different window
sizes and quantisation levels indicated that textural information was dependent on
quantisation levels. Both window sizes contained the same amount of textural
information.

e The strong relationships between some texture measures, particularly the ones
derived from the GLCM and log of biomass were related to the age-related

roughness of the vegetation canopy.
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8.3. Spectral and polarisation analysis

Multiwavelength and multipolarisation SAR data only had limited utility for the

classification of a surrogate for biomass in regenerating tropical forests.

e Exploratory statistics and discriminant analysis showed that median-filtered SAR
bands had increased discrimination ability of land cover classes (as compared to
non-filtered SAR bands).

e Cross-polarised HV and HVF (median-filtered) bands presented increased
discrimination of land cover classes as compared to the other SAR bands.

¢ Neural networks can be used for the classification of land cover in tropical forest.
e The reduction of speckle was essential for land cover classification using SAR
data, even if the data were previously averaged by multi-look processing.

o Higher overall training and testing accuracies were achieved with SAR and TM
bands in combination, as compared with SAR bands only.

¢ Regenerating forest stages were discriminated in SAR and TM bands when
merged into young (0-5 years) and intermediate (6-18 years) regenerating forest
classes.

e The use of TM bands, coupled with SAR texture band (GLCM contrast) and
different SAR bands and polarisations made it possible to discriminate regenerating
forest up to around 13 years old.

e The overall accuracy for classification of mature forest, pasture, young (0-5
years) and intermediate (6-18 years) regenerating forest classes was around 87%.

e Pasture and mature forest were discriminated accurately in both SAR data and
combined SAR and TM data.

8.3. Summary

The main findings of this thesis are:

¢ The o° temporal characteristics were not related to biomass accumulation. Water

content of vegetation and soil were the main cause of temporal ¢° change.
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Conclusions

e The ¢° spectral and polarisation characteristics had some utility for the mapping
of regenerating forest stages, but require the combination with optical sensor data.

e The spatial characteristics of ¢° have shown a strong relationship with the
biomass of tropical forests. The addition of GLCM contrast information to ¢°

potentially increased the accuracy of biomass estimation from SAR data.

The temporal, spatial, spectral and polarisation characteristics of ¢° present great
potential for the study of regenerating tropical forests. However, this research is still
hindered by the lack of specific knowledge about ¢° mechanisms in tropical forests.
For example, the o° asymptote at biomass levels of around 90 T ha™ (for LHH band)
is a real limitation that encourages future research into the use of other tropical forest
biophysical properties as biomass surrogates when trying to estimate biomass and

biomass change from SAR data.

8.4. Significance of results and future directions

The findings of this research supported the use of SAR data, particularly their spatial
domain, for the study of regenerating tropical forests. However, to move further and
achieve more accurate biomass estimates and mapping with SAR data, some

avenues have yet to be fully explored.

Analysis of temporal backscatter would benefit from knowledge of land cover
changes, rainfall intensity and biomass accumulation rates of regenerating tropical
forests. A change detection approach (as used by Quegan et al. 2000) could isolate
sources of backscatter variation and allow their quantification. The quantification of
all sources of backscatter variation is far from complete, but in this research the

importance of water content in regenerating tropical forests and soils was revealed.

A measure that best captured the spatial variability of vegetation/canopy structure
was GLCM contrast calculated on a LHH band. The assessment of the use of GLCM
contrast (and other texture measures) needs to be done using different SAR bands
and polarisations, particularly LHV. The strong relationship between some texture
measures and the log of biomass means that textural information is required if

biomass is to be estimated accurately from SAR data.
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Conclusions

Research is needed to assess the performance of neural networks and fuzzy
classifiers in the classification of regenerating forest stages (as defined by the
biophysical properties of vegetation). The successional paths proposed by Foody et
al. (1996) and Lucas et al. (2000) could provide the land cover classes whose
characteristics might be more related to backscatter than stage/age of regenerating

forests.

The synergy between SAR and optical sensor data stands to enhance the
discrimination of regenerating forest stages and ultimately tropical forest biomass
and carbon content estimation. Further studies using combined SAR and optical

sensor data for the study of regenerating tropical forests are needed.

An operational biomass mapping scheme for Amazonia would require the production
of high-spatial resolution SAR image mosaics and the derivation of texture measures.
To refine the Amazon basin land cover map produced by Saatchi et al. (2000) with
regenerating forest stage classes, optical sensor images could be integrated with the
SAR data, at least on the critical deforestation and regrowth areas defined by
PRODES (Deforestation Project - INPE 2000). Monitoring and mapping of
regenerating tropical forest stages using such a methodology could be operational,
using for example multipolarisation L band SAR data from ALOS (Advanced Land

Observing Satellite) once it has been launched.

Earth observation with SAR systems is a valuable tool for increasing our
understanding of environmental processes and the management of human activities
that result in environmental disturbance. This thesis has provided an insight into the
possibilities offered by SAR data for helping to fill some of the gaps in specific areas

of knowledge about tropical forest ecosystems and their local scale assessment.
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