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TEMPORAL, SPATIAL, SPECTRAL AND POLARISATION CHARACTERISTICS OF 
THE SAR BACKSCATTER FROM REGENERATING TROPICAL FORESTS 

by Tatiana Mora Kuplich 

The establishment of an accurate global carbon budget and the consequent ability to 
understand and predict future environmental change is dependent on knowing the 
strength of terrestrial sinks and sources of carbon. Regenerating tropical forests are 
one of the major terrestrial carbon sinks as they are found growing quickly and are 
sequestering carbon from the atmosphere. Total forest biomass (which includes 
above and below ground living mass of plants and litter) is a measure of terrestrial 
vegetation carbon content. It follows that to determine the strength of terrestrial 
carbon sinks we require information on the location, extent, biomass and biomass 
change of regenerating tropical forests. Near-constant cloud cover over the tropics 
and an insensitivity to biomass change at relatively low levels of biomass has limited 
the use of optical imagery but not Synthetic Aperture Radar (SAR) imagery for the 
provision of such information. The biophysical properties of regenerating tropical 
forests are related to the temporal, spatial, spectral and polarisation characteristics of 
SAR backscatter (a°) and this formed the framework for this thesis. The objectives 
were to (i) detect biomass accumulation using the temporal characteristics of 0°, (ii) 
use the spatial characteristics of a° (texture) to increase the strength of the 
a7biomass relationship and (ill) use the spectral and polarisation characteristics of 0° 
to classify a surrogate for biomass in regenerating tropical forests (optical Landsat 
TM data were also included to widen the spectral analysis). 
Although no biomass change was detectable using temporal 0°, a seasonal pattern 
in 0° for young regenerating forest was detected, as a result of changing water 
content in both vegetation and soil. The influence of recent rainfall was confirmed to 
be an important source of variation in a°, suggesting the use of SAR data from the 
dry season only. 
Using simulated data, seven texture measures showed potential for strengthening 
the a7biomass relationship. However, when applied to real SAR data only GLCM 
(Grey Level Co-occurrence Matrix) derived contrast strengthened the a7biomass 
relationship. The addition of GLCM-derived contrast to a° potentially increases the 
accuracy of biomass estimation and mapping. 
Neural networks can be used for the classification of land cover in tropical forest 
regions. Classification accuracy of around 80% was achieved using combined 
multiwavelength and multipolarisation SAR and Landsat TM bands for 4 land cover 
classes (pasture, mature forest, 0-5 years old regenerating forests and 6-18 years 
old regenerating forest). 
These results demonstrated that multiwavelength and multipolarisation SAR data 
could provide information on the location, and extent of regenerating tropical forests. 
However an increase in the accuracy of biomass estimation relies on the optimal use 
of additional information that resides within the spatial, spectral and polarisation 
domains of SAR data. 
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CHAPTER ONE 

Introduction 

Regenerating tropical forests are a major terrestrial sink of atmospheric carbon 

dioxide (CO2) that can be located, mapped and monitored using Synthetic Aperture 

Radar (SAR) data. In this thesis the temporal, spatial, spectral and polarisation 

characteristics of SAR backscatter were investigated for regenerating tropical forests 

in Brazilian Amazonia. This introductory chapter explains the rationale and objectives 

behind the research and gives a description of the thesis outline. 

1.1. Global carbon budget 

"Humans are altering the global environment, driving changes in crucial 

characteristics at rates largely unprecedented in the history of the Earth... 

C02 concentrations have varied widely over geological time, but current 

rates of change have not been matched" (Aber and MeiiUo 2001, p.533). 

Carbon (C) is a key element linked to the transfer of energy through ecosystems. 

Concentration of atmospheric CO2 in many environments and situations controls the 

rates of photosynthesis and thus ecosystem productivity (Aber and Melillo 2001). The 

link between rising atmospheric CO2 concentration and global climatic change is 

related to the role of CO2 as a greenhouse gas (GHG) as it traps thermal radiation 

and reduces Earth-space release of energy (Royal Society 2001). 

The establishment of an accurate global carbon budget and the consequent ability to 

predict future environmental change relies upon the identification and quantification 

of all sinks and sources of atmospheric CO2 (Tremberth et al. 1996). This is because 
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the relationship between emissions of CO2 and its atmospheric concentration is 

dependent upon the uptake and release of CO2 from the ocean and terrestrial 

ecosystems (Schimel et al. 2001). The partition of atmospheric CO2 uptake between 

oceans and land is made with increased confidence (Schimel eta/. 2001). 

The rise in atmospheric CO2 concentration from approximately 280 parts per million 

(ppm) in 1880 to a current value of around 370 ppm was caused mainly by burning of 

fossil fuels but also by deforestation (IPCC 2001). The warming of the global mean 

surface temperature by 0.6° C over the 19**̂  and 20^ centuries has led to an 

international effort aimed at reducing anthropogenic emissions of CO2 and other 

GHG. The 1997 Kyoto Protocol is the ultimate commitment of developed nations to 

reduce their emissions of GHG by 2008-2012 by 5.2% below their emissions in 1990 

(Royal Society 2001). At the present, the ratification of the Kyoto protocol is very 

close and delegates from more than 160 countries agreed an official rulebook in the 

10"" November meeting in Marrakech, Morocco (Schiermeier 2001). The ratification 

of the protocol is still dependent on the leading role played by the United States of 

America as the world's largest GO2 emitter, which refuses to ratify the protocol. The 

Kyoto Protocol is expected to come into force before the next World Summit on 

Sustainable development, to be held in September 2002 in South Africa (Schiermeier 

2001). 

Estimates of global carbon budgets with natural and human-induced fluxes for the 

1990s are shown in figure 1.1. Uncertainties associated with these budgets are 

related to differences in measurement methods. 1 PgC = 1 Gt of C (1 Gt = 1 million 

tonnes) (Royal Society 2001). 

Terrestrial ecosystems are currently acting as a major sink for carbon despite large 

releases of carbon due to fossil fuel combustion and deforestation (figure 1.1). The 

estimates in figure 1.1 show a land carbon sink of 3.2 PgC, although the partition of 

fluxes between natural and human-induced as well as between sinks in tropical and 

temperate regions is uncertain (IPCC 2001, Schimel eta/. 2001). The balance of the 

terrestrial carbon cycle requires detailed information on land use change and 

ecosystem processes, particularly for the tropics (Schimel eta/. 2001) 
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Direct carbon fluxes 

caused by human activity 

Fossil fuel combustion 

and cement production 

6.4+0.4 

Land use change 

(mainly deforestation) 

1.7+0.8 

atmosprieric 

Indirect carbon 

fluxes 

Carbon flux from 

atmosphere to oceans 

1.7+0.5 

Sink in tropical 

vegetation 

1.9+1.3 

Sink in temperate and 

boreal vegetation 

1.3+0.9 

Figure 1.1: Estimate of the carbon budget in the 1990s (in PgCyr"^). Error bars denote ±1 

standard deviation (Royal Society 2001). 

The role of land carbon sinks was highlighted by the Kyoto Protocol. Each country 

has to meet net emission targets to mitigate the warming threat and climate change. 

However, the gross carbon release can be reduced by a limited amount by taking 

into account forestry activities such as 'reforestation, afforestation and deforestation' 

carried out since 1990 (Grace and Malhi 1999). The operation of these land carbon 

sinks into the future, however, is likely to diminish as a result of, among other factors, 

forest maturation (Schimel etal. 2001). 

1.2. Tropical forests and the carbon budget 

Terrestrial carbon stocks are partitioned between vegetation (550 ± 1 0 0 PgC) and 

soils (1750 ± 250 PgC) and together they contain three times as much carbon as the 

atmosphere (which contains around 760 PgC) (Royal Society 2001). Figure 1.2 

shows the relative proportions of carbon in different terrestrial ecosystems and the 

clear dominance of forests as the main carbon pools. 
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Croplands 

Wet lands 

(241 ^ 

Tundra | 

Tropical forests 

(428) 

Deserts and 

semldeserts | 

(199) 

Temperate 1 

grasslands 

(304) A 
Savannas 

(330) 

Temperatm fb r#»b 

(159) 

Boreal forests 

Figure 1.2. Estimate of relative proportions of carbon in terrestrial ecosystems (carbon stock 

X total area of ecosystem). To note forests as the main carbon pools. In brackets are 

estimates of total carbon stock in PgC (Royal Society 2001). 

Forests cover around 31% of the Earth's land surface and of these around 42% are 

in low latitudes with more than half in South America. Forests contain around 80% of 

all aboveground carbon and around 40% of all belowground (soil, litter and roots) 

carbon (Dixon etal. 1994). 

The carbon content of forests can be derived directly from forest biomass estimates 

and this enables quantification of the amount of carbon released to the atmosphere 

(Brown and Lugo 1992). Forest biomass is defined as the total aboveground and 

belowground living mass of all vegetation components (as well as the dead mass of 

litter) and so integrates measures of volume and wood density (Brown and Lugo 

1990, 1992). 

Tropical forests are a major terrestrial carbon sink. There is much uncertainty and 

controversy about (i) the amount of carbon they currently hold (following different 

estimation methods and a poor global data base) and (ii) the balance in space and 

time between their joint roles as sources/sinks of carbon (Lugo and Brown 1992, 

Grace and Malhi 1999, Schimel et al. 2001). Nevertheless, climatic modelling 

experiments have shown evidence of climatic change following replacement of 

tropical forest by pasture in Brazilian Amazonia (Shukia et al. 1990, Gash et al. 

1996). 
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Tropical forest deforestation is responsible for the release of carbon to the 

atmosphere via burning of the vegetation, decay of biomass and from soils 

(Fearnside 2000). The timing of carbon release depends on the type of land use 

change. If burning follows deforestation, CO2 will be released immediately, while 

decay of remaining vegetation and organic matter in soils can be a source of CO2 for 

many years (Detwiller and Hall 1988). 

Brazil contained, in 1990, around 41% of all remaining areas of tropical forest in the 

world (Fearnside 2000). Agriculture, ranching, hydroelectric dams and selective 

logging (building of roads and forest clearance) are the main reasons for 

deforestation in that country. The dynamics of the deforestation in Brazil will be 

discussed in chapter 4. Annual deforestation rates in Brazilian Amazonia have been 

estimated by the Brazilian Institute for Space Research (INPE) since 1988 using 

Landsat MSS (Multi Spectral Scanner) and TM (Thematic Mapper) images (table 1.1) 

as part of the Deforestation Project (PRODES). 

Table 1.1. Mean rate of gross deforestation in Brazilian Amazonia (km^ y 

from 1978 to 2000 (INPE 2000). 

78/88 88/89 89/90 90/91 91/92 92/94 94/95 95/96 96/97 97/98 98/99 99/00* 

21130 17860 13810 11130 13786 14896 29059 18161 13227 17383 17259 19836 

*The mean rate for 1999/2000 was based on linear projection of data from 49 Landsat TM scenes. 

Estimating global carbon budgets requires detailed information about the net tropical 

forest flux, including deforestation rates and carbon sequestration (as a result of 

forest regrowth or growth by CO2 fertilisation) (Melillo etal. 1996). 

Regenerating tropical forests in Brazil increased in extent during the 1970s and 

1980s and are known to be sequestering CO2 from the atmosphere (Curran et al. 

1995, Houghton et al. 2000). Regenerating tropical forests are mainly a result of 

farming practices such as slash-and-burn of forest, shifting cultivation or pasture 

creation and eventually abandonment followed by forest regrowth (Fearnside 2000). 

To determine the total strength of terrestrial carbon sinks in Brazilian Amazonia 

information on the location, extent, biomass and biomass change of regenerating 

tropical forests is required. 
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1.3. The need for remotely sensed information about regenerating tropical 

forests 

Remote sensing is a tool used to collect information on and better understand the 

environment (Curran et al. 1998). Information from remote sensing can be used to 

map, estimate and monitor environmental variables (e.g. vegetation biomass, leaf 

area index - LAI) from the ecosystems they represent (e.g. tropical forest). 

Information on the location, extent, biomass and biomass change of regenerating 

tropical forests is needed for the global carbon budget (Curran and Foody 1994) and 

also to help in the struggle to maintain the biodiversity of the remaining forested 

areas (Viana 1998). 

Depending on the region, regenerating forests at different successional stages and 

biomass levels cover between around 6% to 60% of the deforested areas in Brazilian 

Amazonia (Batista 1999). Remote sensing data in optical wavelengths has been 

used for the assessment and quantification of deforestation in Amazonia (e.g. INPE 

2000) and for the characterisation of regenerating forest stages (Lucas et al. 1993, 

Curran and Foody 1994, Foody et al. 1996, Lucas et al. 2000). The major limitations 

of the use of optical data for regenerating tropical forest studies are (i) near-constant 

tropical cloud cover and (ii) an insensitivity of reflectance to biomass change at 

relatively low levels of biomass. 

The use of synthetic aperture radar (SAR) data can overcome these limitations as 

SAR data are independent of cloud cover and there is a known positive relationship 

between SAR backscatter and biomass up to relatively high levels of biomass. 

The framework for this research is based upon the influence of biophysical properties 

of regenerating tropical forests on the temporal, spatial, spectral and polarisation 

characteristics of SAR backscatter (a), represented as follows: 

a = f{t,xXp) [1.1] 

where f refers to the temporal, x to the spatial, X to the spectral and p to the 

polarisation characteristics of SAR backscatter. 
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1. 4. Research aim and thesis objectives 

Taking the known positive relationship between SAR backscatter and forest biomass 

as a starting point, the aim of this research was to: 

• Understand the information content of the temporal, spatial, spectral and 

polarisation domain of SAR backscatter as a precursor to determining the accuracy 

with which SAR backscatter can be used to derive biophysical properties of 

regenerating tropical forests. 

Inventory data from two study areas were used. These study areas were located 

close to Manaus City, Amazonas State and Tapajos National Forest, Para State, 

Brazil, where forest inventories had already been conducted as part of the Terrestrial 

Initiative in Global Environmental Research (TIGER) programme of the Natural 

Environment Research Council (NERC). These forest inventory data were used to 

describe, among other things, biomass and floristic composition of the regenerating 

forest plots and to relate them to SAR backscatter. The JERS-1 SAR dataset were 

made available to this research as part of the Global Rain Forest Mapping (GRFM) 

project of NASDA, the Japanese Space Agency. 

Within the framework discussed in section 1.3 the three specific objectives of this 

thesis were: 

• Detect biomass accumulation using the temporal characteristics of SAR 

backscatter. 

• Use the spatial characteristics of SAR backscatter to increase the strength of the 

backscatter/biomass relationship. 

• Use the spectral and polarisation characteristics of SAR backscatter to classify a 

surrogate for biomass of regenerating tropical forests. (Optical data were also 

included to widen the spectral analysis.) 

The first and second objectives were achieved by relating temporal and spatial 

(texture) SAR data of both study areas to regenerating tropical forest biomass. The 

third objective was achieved by classifying regenerating forest stages in 

multiwavelength and multipolarisation SAR data of the Manaus study area. 
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1.5. Thesis outline 

The outline of the thesis is illustrated in figure 1.3. In chapters 1, 2 and 3 the rationale 

behind the research and basic information that underpins the three objectives are 

covered. Chapter 2 and 3 present a review of radar fundamentals and the use of 

radar data for regenerating tropical forests studies, respectively, establishing the 

theoretical framework for the research. Chapter 4 presents the study areas along 

with general information about Brazilian Amazonia. The collection of forest inventory 

data and the forest regrowth map used as the ground data for chapter 7 are also 

described in chapter 4. The regenerating tropical forests are studied using temporal, 

spatial, spectral and polarisation characteristics of SAR backscatter in chapters 5, 6 

and 7, respectively. Research findings are discussed in each chapter. Finally, the 

conclusions for this research are drawn in chapter 8. 
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Figure 1.3. Structure of thesis by chapter. 



CHAPTER TWO 

Radar fundamentals 

RADAR, an acronym for "Radio Detection And Ranging", is an active device that 

transmits and receives electromagnetic energy in microwave wavelengths. The 

majority of current operational imaging radars use wavelengths between 1 mm to 1 

m. Two distinctive features characterise microwave wavelengths from a remote 

sensing point of view: (i) microwaves are capable of penetrating the atmosphere 

under virtually all conditions, and (ii) microwave reflections or emissions from surface 

materials bear no direct relationship to reflectance in the visible or thermal portions of 

the spectrum (Lillesand and Kiefer 2000). 

The launch of orbital civil radar systems since the 1970s made possible the 

acquisition of a unique view of natural resources over the Earth's surface. Although 

much progress has been made in the fields of both active and passive microwave 

remote sensing, they are still important research areas for the environmental 

sciences, engineering and the military (Lewis and Henderson 1998). 

This chapter introduces some of the concepts of imaging radar remote sensing 

considered important for understanding their applications to the study of regenerating 

tropical forests. 

2.1. Radar operation 

Radar remote sensing of the land is made possible by the high atmospheric 

transmission in the microwave region of the electromagnetic spectrum (figure 2.1). 
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As an active sensor, a radar transmits pulses of energy that illuminates the terrain. It 

then records the response returned from the objects or targets on the terrain towards 

the sensor (Lewis and Henderson 1998). In a radar system, a transmitter sends out 

an amplified pulse of energy (a signal), set by a frequency synthesiser and made a 

pulse by a modulator. The pulse is sent to the antenna via a transmit/receive switch, 

which also converts the antenna to receive the pulses back (for monostatic radars). 

When the pulse is received back (called an echo) after being reflected from the 

targets, it is amplified, converted to an intermediate frequency, detected and 

processed to generate the final radar product (Kingsley and Quegan 1992). 

0.2 iim 1.0 /xm 

- + - 4 1-
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Figure 2.1. Electromagnetic spectrum showing atmospheric windows in the visible, near, 

middle and thermal infrared and the microwave regions (Lewis and Henderson 1998). 

The signal strength and the time delay between transmission and reception are the 

main elements of the radar signal (Trevett 1986). The principles of image formation 

are assured by the motion of an aircraft or satellite and the recording of these 

incoming signals. 

The differences between the many imaging radars used in remote sensing are due 

primarily to the antenna which determines the spatial resolution in the azimuth (or 

travel) direction (Raney 1998). Imaging radars can be divided in two main categories, 

depending on the imaging technique used: Real Aperture Radar (RAR) also called 

Side Looking Airborne Radar (SLAR) and the Synthetic Aperture Radar (SAR). For 

both radar types the side-looking imaging geometry applies. The radar antenna 

illuminates a surface strip (footprint) to one side of the nadir track. 
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The area continuously imaged from the radar beam is called the swath and can be 

divided into near range (the part nearer to the ground track) and far range. Each 

transmitted wave front hits the target surface at near range and sweeps across the 

swath to far range. The spatial resolution of a radar system can be defined as the 

minimum distance between two targets for them to produce separate backscatter or 

to be resolved as individual features (Lewis and Anderson 1998). For imaging radars 

the spatial resolution is defined according to the flight direction. Azimuth spatial 

resolution is parallel to the flight direction and range spatial resolution is 

perpendicular to the flight direction. 

Real Aperture Radars transmit pulses from a side-looking antenna and are airborne 

rather than satellite borne. The azimuth spatial resolution is dependent on the 

antenna footprint and is linearly proportional to the distance between the sensor and 

the surface. For high spatial resolution requirements in spaceborne platforms this 

technique is not viable because the antenna would need to be impractically large 

(Elachi 1988). 

The synthetic aperture imaging technique in a SAR uses the movement of the sensor 

to simulate a much larger antenna than its actual size. A single antenna moving 

along the flight line acquires the data and the effect is similar to using an array of 

antennas. The target is illuminated several times from different locations generating 

numerous echoes that are recorded coherently (i.e., amplitude and phase as a 

function of time) and subsequently combined to synthesise a linear array. A higher 

spatial resolution is achieved independently of the distance between sensor and 

target and by a small antenna (Elachi 1988). SAR systems can be either airborne or 

spaceborne and are much more complex than the RAR systems. 

2.2. System parameters 

Interpreting radar data depends on an understanding of the interaction between 

system parameters and target characteristics. Both RAR and SAR systems have 

specific operational parameters which will influence the interaction between the 

pulses transmitted and the targets on the Earth's surface. System parameters are 

explained in the next section. 
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2.2.1. Wavelength 

The electromagnetic spectrum (figure 2.1) illustrates the wide range of microwave 

wavelengths/frequencies in comparison to visible wavelengths/frequencies. Most of 

imaging radars operate in a single band, defined either by its frequency (preferred by 

engineers) or wavelength (preferred by geoscientists) (Lewis and Anderson 1998). 

The main reason for a single band operation is the limiting power supply, as radar 

systems rely upon their own energy source. The antenna design must be specific for 

transmitting and receiving a defined wavelength, which can be a limitation for 

operation in multi-band mode. Short wavebands or high frequency transmission 

require a large amount of power, precluding their use in spaceborne systems (Trevett 

1986). Table 2.1 lists some of the common radar bands along with the equation that 

relates wavelength and frequency. 

Table 2.1: Common wavelength/frequency bands for radar systems 

(Modified from Trevett 1986). 

Radar Wavelength - X Frequency - f 

band (cm) (MHz) 

P 136-77 220-390 

UHF 100-30 300-1000 

L 30-15 1000-2000 

S 15-7.5 2000-4000 

C 7.5-3.75 4000-8000 

X 3.75-2.40 8000-12500 

Ku 2.40-1.67 12500-18000 

K 1.67-1.18 18000-26500 

Ka 1.18-0.75 26500-40000 

f 
30000 30 

1 Hertz = 1 cycle s"' 
1 MegaHertz = 10® Hertz 
1 GigaHertz= 10® Hertz f / (G / f z ) 

1 Hertz = 1 cycle s"' 
1 MegaHertz = 10® Hertz 
1 GigaHertz= 10® Hertz 
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The interaction of microwaves and targets on Earth's land surface is dependent on 

the wavelength used. Penetration depth increases with the wavelength (Elachi 1988). 

The roughness of a surface on a SAR image is also influenced by the wavelength 

used. 

2.2.2. Polarisation 

Microwaves are transversal waves, i.e., in the direction of propagation the electric 

and magnetic fields are mutually orthogonal. In addition, the electric field vector 

defines the polarisation component. Linear (or planar) polarisation refers to the 

vibration of the electric field vector in a parallel direction to the propagating wave. 

There are also elliptical and circular polarisations, characterised by the rotation of the 

electric field vector in corresponding fashions and these in turn define different 

polarisation planes (Lewis and Anderson 1988). 

Most of the radar systems use linear polarisation, operating using vertically or 

horizontally polarised microwave radiation. As the microwaves are transmitted and 

received, the polarisation is defined for the outgoing and incoming radiation and the 

antenna design must account for that. Table 2.2 lists the four polarisation types. 

Table 2.2: Linear polarisation options (Lewis and Anderson 1998). 

Like-polarised 

HH Horizontal transmit; Horizontal receive 

VV Vertical transmit; Vertical receive 

Cross-polarised 

VH Vertical transmit; Horizontal receive 

HV Horizontal transmit; Vertical receive 

Targets on the Earth's surface scatter microwave radiation differently depending on 

the polarisation of the wave transmitted. If the plane of polarisation of the transmitted 

wave is parallel to the main line of polarisation of the target being sensed the like-

polarised backscatter is stronger. For instance, a wheat field has a dominant vertical 
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component, so the interaction and backscatter with a VV polarised wave is much 

stronger than that with a HH wave (Lewis and Anderson 1998). 

The cross-polarisation or depolarisation of the transmitted wave is also a function of 

the amount of multiple volumetric scattering taking place at the targets. SAR systems 

with cross-polarised receiving capabilities can provide additional information for the 

image interpretation and understanding the target/wave interaction (Lewis and 

Anderson 1998). 

2.2.3. Incident angle 

The incident angle (6) is a major factor influencing the radar backscatter and the 

appearance of the targets in the images. This angle is defined between the radar 

pulse and a line perpendicular to the Earth's land surface. Figure 2.2 illustrates the 

system and local incident angles. In a flat surface, 6 is the complement of the 

depression angle (y) (Jensen 2000). 
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Figure 2.2. Schematic diagrams of system (A) and local (B) incident angles (Lewis and 

Anderson 1998). 
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In general, smaller 9 results in more backscatter, although for very rough surfaces 

the backscatter is independent of 6. Surface roughness, as discussed later in this 

chapter, changes as a function of the local incident angle (Lewis and Anderson 

1998). This parameter can be used to emphasise the roughness of particular 

features on the Earth's surface. 

2.3. Target characteristics 

Radar backscatter is the result of the interaction between system parameters and the 

characteristics of the target, such as geometry (and associated roughness) and 

moisture content (and associated dielectric constant). First the backscattering 

coefficient is introduced, as it is a quantitative measure of backscatter intensity from 

a specific region on the Earth's land surface. Surface roughness and electrical 

characteristics of the targets are examined next. 

2.3.1. Backscatter coefficient 

The targets scatter the energy transmitted by the radar in all directions. The energy 

scattered in the backward direction is what the radar records. The intensity of each 

pixel in a radar image is proportional to the ratio between the density of energy 

scattered and the density of energy transmitted from the targets in the Earth's land 

surface (Waring etal. 1995). 

The energy backscattered is related to the variable to referred as radar cross-section 

(a), and is the amount of transmitted power absorbed and reflected by the target. The 

backscatter coefficient (a°) is the amount of radar cross-section per unit area (A) on 

the ground (Jensen 2000). a° is a characteristic of the scattering behaviour of all 

targets within a pixel and because it varies over several orders of magnitude is 

expressed as a logarithm with decibel units (Waring etal. 1995). 

Backscatter coefficient is a function of wavelength, polarisation and incidence angle, 

as well as target characteristics such as roughness, geometry and dielectric 
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properties. The targets will be distinguishable in radar images if their backscatter 

components are different and the radar spatial resolution is adequate to discriminate 

between targets (Trevett 1986). 

The backscatter is measured as a complex number, which contains information 

about the amplitude (easily converted to o° by specific equations) and the phase of 

the backscatter (Baltzer 2001). For SAR applications other than interferometry and 

polarimetry, however, the phase carries no useful information and can be discarded 

(Oliver and Quegan 1998). The information that remains when the phase is 

discarded is related to the amplitude of the backscatter. After linear detection and 

processing, amplitude SAR data are converted to an amplitude (or magnitude) 

image. After square-law detection and processing, amplitude SAR data are 

converted to an intensity (or power) image (Kingsley and Quegan 1992). 

All SAR images contain speckle, an interference phenomenon produced between 

backscatter coming from many random targets within a pixel. The speckle represents 

true electromagnetic scattering and influences the interpretation of SAR images 

(Oliver and Quegan 1998). In chapter 6 speckle will be discussed as part of spatial 

properties of backscatter. 

2.3.2. Surface roughness 

Surface roughness is one of the important target characteristics that influences the 

strength of backscatter and must be considered in relation to the scale at which the 

target is being observed. Three scales are often described: microscale roughness, 

mesoscale roughness and macroscale roughness, associated respectively with 

image tone, image texture and topographic effects (Lewis and Henderson 1998). 

Microscale roughness refers to the scale of small components (targets) within an 

individual pixel such as leaves and branches of trees or stones. Microscale is 

measured in centimetres and is a function of wavelength, the depression angle and 

the height of target or component of target. The modified Rayleigh criteria can be 

used to express this relationship (Jensen 2000): 
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h < — ^ [2.1] 
25 sin y 

where h is the local height of target or component of target, X is the wavelength in cm 

and y is the depression angle in degrees. Computing h using this criteria for 1 = 3 cm 

(X band) and y= 45°, results in /? < 0.17 cm. If the local height of target is < 0.17 cm 

the target's surface is considered smooth and a near-perfect specular reflector. 

Therefore it will produce a dark tone in the image as no radiation will be 

backscattered to the sensor. 

Table 2.3 shows the modified Rayleigh criteria for radars with different parameters. 

Owing to intrinsic variations of depression angle from far range to near range, the 

image tone will also vary across the image (Lewis and Henderson 1998). 

Table 2.3: Surface roughness categories and the local height (h) above which the 

surface appears rough on three different SAR systems (Jensen 2000). 

This is calculated using a modified Rayleigh criteria. 

Surface roughness Aircraft Kg band Aircraft X band Seasat L band 

category X = 0.86 cm, y= 45° X = 3 cm, y= 45° X = 23.5 cm, y= 70° 

Smooth, cm h < 0.048 /?< 0.17 h<^ 

Intermediate, cm h = 0.048 to 0.276 /J = 0.17 to 0.96 h=^to 5.68 

Rough, cm h > 0.276 /?> 0.96 h > 5.68 

Mesoscale surface roughness is related to image texture and is a function of the 

characteristics of numerous pixels covering a single target, for instance, an entire 

forest canopy. With the same X and y, a forest canopy will present a coarser 

roughness (texture) than a grassland (Jensen 2000). SAR image texture will be 

discussed in detail in chapter 6. 

Macroscale surface roughness is influenced by shadow caused by topographic slope 

and the aspect of the terrain. The macro-texture patterns created by shadow are 

often many times larger than an Individual pixel (Lewis and Henderson 1998). 
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Particular types of strong scattering occur when two or three smooth surfaces are 

adjacent, causing double or triple reflection. In this case the surfaces are known as 

dihedral or trihedral corner reflectors (Trevett 1986). 

2.3.3. Electrical characteristics 

The electrical characteristics of targets also determine the intensity of backscatter. 

The complex dielectric constant is a measure of the electrical characteristics of 

objects, indicating the reflectivity and conductivity of various materials (Lillesand and 

Kiefer 2000). The moisture content within materials has a direct influence on the 

dielectric constant and reflectivity. The more liquid water within a material the more 

reflectivity/backscatter is produced (Waring etal. 1995) 

Most materials have a dielectric constant ranging from 3 to 8 when dry, while water 

has a dielectric constant of around 80. Forest canopies are excellent reflectors 

because of the leaves high moisture content, while dry soils absorb the radar signal 

and produce very low (or no) backscatter (Jensen 2000). 

2.4. SAR images characteristics 

SAR images are configured in either slant range or ground range format. Slant range 

is the direct distance from the antenna to an object on the ground, measured using 

the time delay from transmission of the signal to the reception of its echo (Raney 

1998). The spacing between return signals on slant range imagery is directly 

proportional to the time interval between echoes from adjacent terrain features. The 

spacing between pixels on ground range imagery is approximately proportional to the 

horizontal ground distance between terrain features (Lillesand and Kiefer 2000). In 

this latter case, a correction at each data point for local terrain slope and elevation is 

required. 

Slant range data are the natural result of radar range measurements. Because of the 

side-looking geometry, radar images inherently contain geometric distortions, such 

as (i) layover or the reverse ordering of surface elements on the radar image as a 
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result of the tops of objects or slopes being imaged before their bases (most severe 

on the near range); (ii) shadow caused by a slope away from the radar illumination 

with an angle that is steeper than the radar depression angle and (iii) foreshortening, 

that is the effect by which foreslopes appear to be compressed (Trevett 1986). 

In general, images acquired at small incident angles (less than 30°) emphasise 

variations in surface slope, and geometric distortions due to layover and 

foreshortening in mountainous regions can be severe. Images with large incident 

angles have reduced geometric distortion and emphasise variations in surface 

roughness, although radar shadows increase (Lillesand and Kiefer 2000). 

2.5. A new trend: SAR interferometry 

SAR interferometry is a technique that uses information on phase derived by 

recording the phase difference between two SAR images acquired from slightly 

different sensor positions (Wegmuller and Werner 1995). Different sensor positions, 

called the baseline, can be achieved by a temporal shift (repeat-pass interferometry) 

or spatial shift (single-pass interferometry) (Baltzer 2001). The phases of the 

backscatter from the two positions interfere in a characteristic pattern and are 

sensitive to change in the scattering elements of targets. The phase difference 

between the two positions indicates the average three-dimensional position of the 

scattering elements (Baltzer 2001). The phase difference, under certain conditions, 

allows the height of scatterers to be inferred and a Digital Elevation Model (DEM) can 

be constructed (Oliver and Quegan 1998). 

The interferometric coherence/correlation is a measure of the phase properties of 

SAR image pairs and indicates displacement and change of the scattering elements 

within the scene (Wegmuller and Werner 1995). It also can be seen as the accuracy 

in the estimation of the interferometric phase: more accurate phase estimates means 

less phase interference and change. Coherence decreases with increasing time 

delay and temporal changes in the targets. For forested areas, coherence diminishes 

with increase in vegetation density, as the volumetric scattering increases with 

movement (wind) and forest growth (Luckman etal. 2000). 
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Interferometric data have been used recently to map water level changes in the 

Amazon River Basin (Alsdorf et al. 2000). In addition, interferometric data have been 

used to derive topographic maps and estimate forest height (Wegmuller and Werner 

1995). As tree biomass and age are a function of tree height, interferometric 

coherence has been related to tropical forest biomass and age of regenerating 

tropical forest plots (Luckman etal. 2000). 

SAR interferometry can provide information on the three-dimensional structure of 

vegetation and therefore support estimates of forest biophysical variables and forest 

mapping and monitoring, including deforestation assessment. 

2.6. Available and future SAR systems 

The SAR data used in this thesis come primarily from the SAR onboard the 

Japanese Earth Resources Satellite JERS-1, launched in February 1992 and 

operational until October 1998. More detailed information about JERS-1 

characteristics and parameters will be given in chapter 5, along with the analysis of a 

temporal series of JERS-1 SAR data. The Spaceborne Imaging Radar - C/X band 

Synthetic Aperture Radar (SIR-C/XSAR) onboard the U.S. Space Shuttle Endeavour 

that flew in 1994 provided data for the spectral analysis performed in chapter 7 and 

details about these sensors will be given there. This section gives some information 

about the satellite systems planned for launch in the near future, such as ASAR on 

Envisat-1, SAR on Radarsat-2 and PALSAR on ALOS. 

In January 2002, the European Space Agency will launch Envisat, a polar-orbiting 

Earth observation satellite, carrying an Advanced Synthetic Aperture Radar (ASAR). 

The ASAR sensor has been designed to provide continuity to the ERS SAR, but also 

to extend the range of measurements through exploitation of its various operating 

modes. These modes will enable varied capability in terms of swath width (58 to 405 

km), range of incidence angles (from 14° to 45°), spatial resolution (30 to 1000 m) 

and polarisation (HH, VV, VH and HV) (http://envisat.esa/int). 

Radarsat-2 satellite is scheduled for launch in 2003. It will carry a C-band SAR with 

multi-polarisation capability able of imaging at swath widths ranging from 10 to 500 
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km, spatial resolutions from 3 to 100 m and incidence angles from 10° to 59° 

(http://www.space.gc.ca/csa_sectors/earth_environment/radarsat2/). 

NASDA plans to launch an Advanced Land Observing Satellite (ALOS) in summer 

2004, following the JERS-1 mission. Among the systems onboard this satellite is a 

Phased Array L-band Synthetic Aperture Radar (PALSAR) system. PALSAR will be 

multi-polarised and include look angles ranging from 18° to 55°. In its fine spatial 

resolution mode, PALSAR will use an HH or VV single polarisation, although a dual 

polarisation of HH and HV or VV and VH can be used. Range spatial resolution will 

be 10 m for single polarisation operation and 20 m for dual polarisation mode (at a 

look angle of 35°) and an azimuth resolution of 10 to 20 m, depending on the number 

of looks. PALSAR will also have the ScanSAR mode, which will have a swath width 

of 250 to 350 km, with a spatial resolution of about 100 m in both azimuth and range 

directions, and a polarisation of either HH or VV (http://alos.nasda.go.jp). 

Some characteristics of past, present and future spaceborne imaging radar systems 

are shown in table 2.4. Additional information on the systems can be found in the 

web sites cited above. 

Table 2.4. Characteristics of spaceborne image SAR systems 
(modified from Lillesand and Kiefer 2000). 

Satellite/sensor Launch Band Polarisation Spatial resolution (m) 

Seasat/SAR 1978 L HH 25 

Shuttle/SIR-A 1981 L HH 40 

Shuttle/SIR-B 1984 L HH 17-58 

Almaz-1/SAR 1991 S HH 10-30 

ERS1/2/SAR 1991/95 C VV 30 

JERS-1/SAR 1992 L HH 18 

SIR-C/XSAR 1994 C-L-X multi 15-45 

Radarsat/SAR 1995 C HH 8-100 

Envisat/ASAR 2002 C multi 30-1000 

Radarsat-2/SAR 2003 C multi 3-100 

ALOS/PALSAR 2004 L multi 10-100 

Note: 1) The wide range of values of some parameters is because these systems all have 
several operating modes. Not all of the above values are available in every mode. 2) multi = 
multi-polarisation (HH, HV, VV, VH). 
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Radar fundamentals 

Besides reinforcing a global effort in increasing large-scale environmental research, 

these future satellites manifest the need for high quality SAR data. The SIR-C/X-SAR 

mission demonstrated the advantages of multi-parameter SAR systems in space. 

Although multi-band in a single SAR was not planned for the next orbital systems, the 

combination between data of different systems is common and means expanding the 

effective use of SAR data in scientific applications. 

2 3 



CHAPTER THREE 

Radar remote sensing of regenerating tropical forests 

The framework for the research presented in this thesis is the interaction of SAR 

backscatter, depending on Its temporal, spatial, spectral and polarisation characteristics, 

with regenerating tropical forests. This chapter reviews the use of SAR images to 

estimate forest properties (such as biomass) and classify forest types (such as 

regenerating forests) within this framework. 

This chapter outlines how SAR backscatter has been related successfully to forest 

biophysical variables and used for biomass estimation and classification, with emphasis 

on regenerating tropical forests. 

3.1. Radar remote sensing of forests 

Our current understanding of the interaction of microwave radiation with forest canopies 

has been obtained primarily from temperate and northern forest ecosystems (e.g. Sader 

1987, Le Toan et al. 1992). Limited species diversity coupled with spatially and 

structurally homogeneous stands made the backscatter from these formations easier to 

understand and model, therefore, a great amount of research has been devoted to them 

(Leckie and Ranson 1998). 
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Although there are major differences between temperate, northern and tropical forests, 

the main findings of radar remote sensing of temperate and northern forests also apply 

to tropical forests. 

Since the 1960s radar systems have been recognised as particularly useful for military 

applications in tropical regions (such as in Vietnam), where cloud cover is persistent. In 

the 1970s radar data were declassified and airborne high frequency radar systems were 

used for mapping natural resources at continental scales. For example, the Brazilian 

RADAM (Radar Amazon) Project, one of the largest accomplishments in resources 

surveys by SAR data (Azevedo 1971, Leckie and Ranson 1998). During 1980s and 

1990s there was a significant growth in research focused on developing approaches for 

using SAR in ecosystem studies (Kasischke et al. 1997). This was due to the launching 

of many spaceborne SAR systems (such as the SAR onboard the Japanese Earth 

Resources Satellite (JERS-1) in 1992) and the increasing need to understand global 

environmental processes. 

To date, the progress made in the study of SAR data from tropical forests has been in 

the assessment of the potential of radar sensors for the discrimination of land cover 

types. The ultimate aims being that of (i) monitoring tropical land cover change (Nezry et 

al. 1993, Saatchi et al. 1997, Grover et al. 1999, van der Sanden and Hoekman 1999) 

and (ii) mapping forest biomass (Luckman etal. 1997a, 1998). These aims are generally 

included in a broader context intended to assess the contribution of radar to global 

environmental monitoring and ecosystem modelling (Leckie and Ranson 1998). 

3.1.3. Forest backscatter 

The main components and scattering mechanisms of the total backscatter from forests 

comprise backscatter from (1) crown surface and volume, (2) trunks, (3) direct from the 

ground, (4) crown-ground scattering and (5) double-bounce scattering from trunk and 

ground (Leckie and Ranson 1998). Figure 3.1 shows these components and the 

interaction of the main wavelengths used in operational radar remote of forests. Le Toan 

et al. (1992) also included multiple scattering from the branches and canopy attenuated 

trunk-ground scattering as influencing the total forest backscatter. 
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Figure 3.1. Main components and scattering mechanisms that influence the total backscatter 

from forests: (1) backscatter from crown surface and volume, (2) backscatter from trunks, (3) 

backscatter direct from the ground, (4) crown-ground scattering and (5) double-bounce scattering 

from trunk and ground (Leckie and Ranson 1998). Also, the interaction of the main wavelengths 

(bands X, C, L and P) used in SAR remote sensing is shown. 

The magnitude of the scattering mechanisms and the importance of the different 

components are dependent on geometric factors (e.g., structural attributes of trees, 

canopy and soil surface roughness) and dielectric properties of vegetation and 

underlying surface (e.g., moisture content of vegetation and soil) (Dobson et al. 1995). 

Wavelength, polarisation and incidence angle of radiation control these scattering 

mechanisms (Leckie and Ranson 1998) and the final backscatter as a result of surface 

and/or volume scattering. 

At X band, which is a short wavelength, the backscatter results mainly from the upper 

part of the canopy (Le Toan et al. 1992) and the leaves, twigs and small branches 

(Leckie and Ranson 1998). There is little penetration of the radiation into the canopy, 

therefore, volumetric scattering and soil contribution to the final backscatter are weak. 
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At C band, which is a intermediate wavelength, greater penetration of the radiation into 

the canopy enables further sources of scattering to be active and so there is some 

volumetric scattering. Typical sources of scattering at C band are secondary branches 

and leaves (Ranson and Sun 1994, Leckie and Ranson 1998). The penetration of crown 

thickness by the radiation is normally not exceeded (Le Toan etal. 1992). 

At longer L and P band wavelengths, the penetration of the radiation into the canopy is 

deeper and components from the lower parts of the canopy are included in the 

scattering (Le Toan et al. 1992), as well as the major woody biomass components 

(trunks and branches) (Dobson et al. 1992). Trunk-ground and crown-ground 

interactions are important at these wavelengths (Leckie and Ranson 1998) and are 

mainly dependent on the canopy structure and openness. Foliage and small branches 

act as attenuators of the radiation at these wavelengths (Kasischke et al. 1997). 

The incidence angle of the SAR sensor determines the amount of vegetation illuminated 

by the radar beam. The angular dependence is stronger for surface scattering 

mechanisms, when higher scattering is observed for small incidence angles (Leckie and 

Ranson 1998). Volumetric scattering mechanisms in the canopy will dominate for high 

incidence angles, as a large amount of the canopy is illuminated. For incidence angles 

close to nadir, depending on the wavelength and forest type, the ground will contribute 

to the scattering mechanisms. 

The polarisation of the radiation determines the type of interaction with the forest 

components. Co-(or like) polarised radiation interact with structures with a similar 

orientation, so vertical stalks will interact strongly with VV (Vertical transmit and receive) 

polarisation. Horizontal branches or the soil surface interact strongly with HH (Horizontal 

transmit and receive) polarisation. HH can also be a result of trunk-ground scattering 

interactions (Dobson et al. 1992) and VV is more sensitive to canopy attributes (Dobson 

et al. 1995). Cross-polarised backscatter (HV - horizontal transmit and vertical receive 

and/or VH) is related to volumetric scattering, as the canopy is a medium capable of 

depolarisation (Saatchi and Rignot 1997). In general, double bounce trunk-ground, when 

not as a result of a perfect corner reflector situation (Leckie and Ranson 1998), is more 

likely to produce backscatter in a distinct polarisation than the received one (Waring et 

al. 1995). 
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3.2. Modelling forest baokscatter 

Interpretation of radar imagery relies on knowledge about backscatter process and the 

relative importance of various scattering mechanisms that contribute to the final 

backscatter (Richards 1990). When trying to establish links between backscatter, 

scattering mechanisms and vegetation components, energy-matter interaction models 

have been used. Many types of models are available to predict the backscatter for a 

given target and SAR parameters. Comparison with real SAR data allows various 

mechanisms and the contribution of each vegetation component in the final backscatter 

to be understood. For backscatter modelling purposes, the forest canopy has two main 

characteristics: the gross structure of the scattering medium and the geometry and 

electromagnetic properties of the individual vegetation components (Saatchi and 

McDonald 1997). 

There are several types of backscatter models. When based on electromagnetic theory 

and known expressions for backscatter coefficients, these models are called radiative 

transfer (RT) models, and their 'order' is determined by the complexity of scattering 

taken place at the target (Richards 1990). First order RT models take into account only 

volume, surface and double-bounce (from trunk and ground and foliage or branches and 

ground) scattering mechanisms. Backscatter involving two or more scattering events is 

thought to be attenuated inside the canopy and are considered in the second order RT 

models (Richards 1990). There are several examples of first order radiative transfer in 

the literature, but by far the most utilised is the Michigan microwave canopy scattering 

model (MIMICS) (Ulaby et al. 1990). This model considers the canopy as two distinct 

homogeneous layers over a ground surface. The first order solution consist of a sum of 

the scattering mechanisms occurring between these three layers (McDonald et al. 

1991). 

Other types of backscatter models are the index or regression models, which are based 

on preconceived mathematical expressions and the model parameters are found by 

regressions (Richards 1990). The disadvantages of these models are the dependence 

of model parameters (where a change would preclude application on other situation) 

and little information provided on the physics of the scattering events involved (Richards 

1990). A third type of model is called functional or conceptual, but could be called 
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phenomenological because of their ability to explain phenomena rather than energy-

matter interactions (Richards 1990). 

Few situations, such as the specular reflection from a water surface, can be modelled 

exactly. The complexity of a forest ecosystem may require a combination of different 

models (Richards 1990). Also, the straightforward inversion of the models to obtain the 

required output is unlikely and connecting models are often needed (Kasischke and 

Christensen 1990). 

Backscatter models are evolving to be more complex and realistic (Leckie and Hanson 

1998). Recently, Castel et al. (2001) presented the Architectural Plant Model (AMAP), 

which relies on both qualitative and quantitative architectural plant growth descriptions. 

The AMAP model provides a more realistic 3-D view of trees and allows differentiating 

vertical profiles of ageing canopies. A RT model was modified, fed by canopy 

parameters derived by using AMAP model and successfully tested using data from pine 

stands in Southern France (Castel etal. 2001). 

For tropical forest environments, the available current backscatter models would require 

adaptations to take into account a large number of vegetation variables. The difficulties 

in obtaining data required as input for the available models also hamper their application 

for such environments. However, some authors have used existing models such as 

MIMICS (Grover et al. 1999) and a model based on the one devised by Attema and 

Ulaby (1978) (Luckman et al. 1998) to try to understand scattering mechanisms over 

tropical forests. 

To date, few attempts have been made to construct backscatter models that are 

applicable exclusively to tropical ecosystem variables (Leysen, pers. comm. 1998). 

3.3. Biomass estimation and mapping 

The study of radar remote sensing of forests has been aided by theoretical models, 

which have helped researchers to understand the causative factors for the backscatter 

coming from forests (Dobson et al. 1995). The dependency of backscatter on above 

ground biomass was observed and related to the penetration of the radiation into the 
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canopy and interaction witli the trunk, where most of the volume, therefore, biomass of 

the vegetation is concentrated (Sader 1987, Le Toan etal. 1992, Dobson etal. 1992). 

HV polarisation in longer wavelengths (L or P band) is the most sensitive to biomass 

(Sader 1987, Le Toan et al. 1992, Ranson et al. 1997a) because it originates mainly 

from canopy volume scattering (Wang etal. 1995), trunk scattering (Le Toan etal. 1992) 

and is less affected by the ground surface (Ranson and Sun 1994). The sensitivity of 

backscatter to biomass is, however, limited by an asymptotic response of backscatter 

beyond certain levels of biomass, a phenomenon which is wavelength dependent 

(Dobson et al. 1995, Kasischke et a/.1997). This 'saturation' of the backscatter is 

considered the limit for an accurate estimation of biomass from SAR data (Imhoff 1995a) 

and normally corresponds to backscatter coming from biomass of mature forest or 

dense forest vegetation (table 3.1). 

Table 3.1. Saturation levels for backscatter/biomass relationship 

Author Type of forest Band Biomass (T ha )̂ 

Sader (1987) Temperate broadleaf L 100 

and pine 

Dobson et al. (1992) Two species of pine P 

L 

100-200 

Rauste et ai. (1994) Temperate coniferous L 100 

Imhoff (1995a) Combined data from C 20 

conifer and broadleaf L 40 

evergreen P 100 

Rignot etal. (1997) Tropical L Likely close to 100 

Luckman etal. (1997a) Tropical L 60 

Araujo etal. (1999) Tropical L 100 

The lack of a backscatter/biomass relationship does not necessarily indicate the lack of 

sensitivity of backscatter to vegetation. For example, a structural descriptor described as 

a ratio between vegetation surface area and volume (SA/V) was found by Imhoff 

(1995b) to have an influence on backscatter 
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Some approaches have been proposed to minimise the influence of the asymptote or 

extend the range of estimated biomass from SAR data. Most of these relate to 

polarisation and bands ratios, meant to isolate the contribution of biomass to the 

backscatter and reduce the effect of forest structure (Ranson and Sun 1994, Foody et 

al. 1997). As forest backscatter in different wavelengths and polarisations originate from 

separate layers of a canopy, the use of multiple channels or multistep approaches (e.g., 

Dobson et al. 1995) could be used to estimate total above-ground biomass (Kasischke 

et al. 1997). For example, the ratio Phv and Chv was used successfully by Ranson and 

Sun (1994) to estimate biomass up to 250 T ha"' in a mixed conifer/ deciduous 

temperate forest. 

Dobson et al. (1995) consider these band ratios too simplistic, although effective in 

extending the range of estimable biomass. Their argument is that the biomass estimate 

can hide a variety of structural factors, as same biomass values can represent few tall 

trees or many short trees. The corresponding backscatter will be much higher for the 

few tall trees than for the many short ones (Dobson et al. 1995). In spite of this, a 

combination of bands and polarisations in a multistep approach made possible the 

mapping of biomass in a mixed temperate forest up to 250 T ha"̂  (Dobson et al. 1995). 

Saatchi et al. (1997) found an early asymptote on the backscatter in regenerating 

tropical forest and attributed it to the lack of the contribution of fresh biomass 

components (like lianas and leafy vegetation understory and overstory) in the calculation 

of (woody) biomass. 

The backscatter/biomass issue must be treated with care, as a lot of variation exists not 

only on the ecosystems themselves, but also in the way their biomass are estimated. 

Establishing a strong link between backscatter and forest variables is an important part 

of the successful estimation of forest biomass from backscatter. As already mentioned, 

models are often used to explain the relationship between forest variables, scattering 

mechanisms and SAR configuration parameters (Richards 1990, Kasischke and 

Christensen 1990). Another approach is the use of statistical analysis, where forest 

variables are related to SAR backscatter by regression models (Sader 1987, Le Toan et 

al. 1992, Rauste et al. 1994). Some authors used the combination of the two 

approaches, in most cases to assess the results of the predicted biomass or backscatter 

via regression (Ranson and Sun 1994, Ferrazzoli et al. 1997, Franson and Israelson 

1999). Statistical procedures such as stepwise regression were also used to determine 
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the best set of bands and polarisations to discriminate biomass levels (Ranson et al. 

1997a). 

The mapping of biomass in Northern Michigan forest was achieved successfully by 

Dobson et al. (1995) using a three-step process: (1) forest classification into structural 

categories, (2) estimation of structural variables (basal area, height and crown biomass) 

from polarimetric SAR data and (3) estimation of total biomass based on a simple 

biophysical model. Accuracy assessment was performed based on available land cover 

maps and was accurate up to a biomass of at least 250 T ha'\ Modelled backscatter 

and ratio images of multitemporal polarimetric SAR data were also used successfully to 

map biomass in a Northern forest of Maine (Ranson and Sun 1994). PHV data were 

used for estimating stem volume of forests in Finland (Rauste et al. 1994), as were pine 

forests biomass estimated and mapped (Beaudoin et al. 1994). A procedure devised by 

Ranson et al. (1997a) combined simulated variables of a forest growth model to 

AIRSAR data based backscatter model and the result was a third model relating all 

variables. The final map underestimated biomass and the backscatter asymptote was at 

biomass levels of 150 T ha"' (Ranson etal. 1997a). For boreal forests, however, another 

procedure based on combined SAR and Landsat Thematic Mapper (TM) data allowed 

the estimation of biomass up to 150 T ha'\ with RMS (root mean square) errors around 

37 T ha"̂  (Ranson et a/.l 997b). 

The mapping of biomass for a large area in Brazilian Amazonia used JERS-1 SAR 

mosaic data (Luckman et al. 1998) and the biomass categories mapped were from 6 T 

ha"' to 13 T ha'\ 14 T ha"' to 31 T ha"' and above 31 T ha"'. The limitation of the role of 

SAR data on biomass estimation was attributed to the asymptote in the 

backscatter/biomass relationship (Imhoff 1995a, Luckman et al. 1998), although no 

alternatives were considered. 

3.4. Forest classification 

Classification of a remote sensing image is a process that recognises one or several 

categories of real-world objects in pixels (Mather 1999). Normally spectral patterns 

present within the images are used as a numerical basis for categorisation, due to 

objects inherent reflectance, omittance or scattering properties (Lillesand and Kiefer 

2000). 
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Classification can use also spatial and temporal information as a basis for 

categorisation. Spatial classifiers categorise image pixels based on their spatial 

relationships with the surrounding pixels and texture is a commonly used measure of 

these relationships (Lillesand and Kiefer 2000). The temporal domain can be used as an 

aid to the categorisation of spectral and spatial features present in remote sensing 

images. Some features can be identified only when, for instance, a particular season or 

phonological stage is reached. The classification process will then use combined 

information from the spectral and spatial domains in a temporal series of data (Lillesand 

and Kiefer 2000). 

The study of forest ecosystems usually requires their differentiation from the remaining 

land covers and the classification of specific vegetation communities (Kasischke et al. 

1997). Regenerating tropical forests, for instance, are normally found close to mature 

forest but also close to agricultural crops, pastures and urban settlements, making their 

differentiation from the remaining land cover very useful. 

Two main approaches used to classify SAR data have been (1) maximum likelihood 

classification (MLE) including supervised and unsupervised cluster analysis and (2) 

knowledge-based hierarchical decision trees (Kasischke et al. 1997). The extendibility of 

MLE classification results to global scales is usually impaired by the need for localised 

training (Kasischke et al. 1997). Knowledge-based approaches have been proposed to 

overcome this limitation by using explicit relationships between backscatter and 

vegetation structure and then reclassification based on these links and floristic 

community (Dobson et al. 1995, Kasischke etal. 1997, Bergen et al. 1998). 

Maximum-a-posteriori (MAP) Bayesian classifier was developed for the classification of 

multifrequency polarimetric SAR data and differed to the MLE approach because of the 

revisions on the decision rules about the classes nature (Saatchi and Rignot 1997). 

Recent research has shown promising results using segmentation methods (Oliver 

1998, Frery et al. 1999, Grover et al. 1999). These methods consist of aggregation of 

pixels with similar properties and limits defined by the borders of the segments (Yanasse 

etal. 1997). The segment labelling is performed afterwards in a classification procedure. 
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Artificial Neural Network (ANN) based classifiers are also a promising approach. Among 

ANN advantages are facilitated incorporation of different types of data which do not 

have to fit any particular statistical distribution (Atkinson and Tatnall 1997). 

The advantages of each approach depend on the suitability of the classification 

estimator to the available data set, which will determine a high accuracy on the 

classification process. Good field knowledge, field data and adequate maps make far 

easier algorithm training (when needed) and accuracy assessment of the final 

classification. 

Temperate and boreal forest types have been classified with radar data (Saatchi and 

Rignot 1997, Bergen et al. 1998, Williams et al. 1999). For management inventory 

purposes, however, radar data does not provide detailed enough information (Leckie 

and Ranson 1998). Nevertheless, radar data can provide complementary information to 

aerial photographs (Leckie and Ranson 1998) and forest biophysical parameters have 

been estimated (Ranson and Sun 1994, Dobson et al. 1995, Ranson et al. 1997b). 

When radar data are combined with optical data, forest mapping capabilities are usually 

increased. 

Manual interpretation of radar images played an important role on the mapping of 

tropical forest types in Brazil and Colombia (RADAM Project) (Kasischke et al. 1997) 

and today is still considered an important technique for discriminating forest types 

(Leckie and Ranson 1998, Kuntz and Siegert 1999). 

Accurate automatic classification of radar data for tropical forest is still under 

development and some of the achievements are showed in table 3.2. Merging 

classification techniques (Rignot et al. 1997), the use of estimators adapted to radar 

data (Nezry et al. 1993, Saatchi et al. 1997, Saatchi et al. 2000) and the use of texture 

measures derived from SAR images (Oliver 1998, Saatchi et al. 2000) seem to be the 

trends for the high classification accuracy of the vegetation on the tropics. Some 

authors, however, found the use of a minimum of two SAR C, L and/or P channels 

essential to discriminate between regenerating forest and selectively logged forest (van 

der Sanden and Hoekman 1999). Similarly to temperate forests, SAR for tropical forests 

has promising but yet complementary capabilities (van der Sanden and Hoekman 1999). 

Optical sensor data are commonly combined with SAR images when studying tropical 

forests (Nezry et al. 1993, Rignot et al. 1997, Araujo et al. 1999). Time series of optical 
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images have been used as a reference in the field or prior to field work to establish the 

age of clearings and land cover history (Foody et al. 1997, Luckman et al. 1997a, 

Yanasse et al. 1997, Salas and Skole 1998). Thematic maps reflecting age-related 

areas were created from classified TM images in a pixel-to-pixel Boolean basis 

(Sant'Anna et al. 1995). This procedure, however, is still not possible with SAR images, 

due to the much poorer classification performances in tropical forest classes. 

3.4.1. Spatial characteristics of bacf(scatter - texture 

Texture can be defined as the variation of the grey level of a single pixel (tone) within a 

neighbourhood (Mather 1999). This variability can be structured and reflects the spatial 

relationships among grey levels of pixels (Mather 1999). Texture is dependent on (i) the 

scale of the variation to be defined and (ii) on the scale of observation, limited by the 

spatial resolution of remotely sensed data (Mather 1999). For backscatter, textural 

attributes quantify the pattern of spatial variations in the strength of backscatter (van der 

Sanden and Hoekman 1999). An optimised texture measure depends on the statistical 

properties of the backscatter (Oliver and Quegan 1998) and is based on the statistical 

dependence between pixels within a region (Kurvonen and Hallikainen 1999). 

Many texture measures in remotely sensed data are referenced as important tools in 

vegetation and land cover classification. Local statistics texture measures are statistical 

moments (such as mean, skewness, kurtosis and coefficient of variation (CV)), of the 

window from which the texture of the image is extracted (Kurvonen and Hallikainen 

1999). Second-order texture measures (such as entropy, energy, contrast, etc.) relate to 

statistical dependence between pixels in a given distance and direction and are 

calculated from the grey-level co-occurrence matrix (GLCM) (Kurvonen and Hallikainen 

1999, Mather 1999). Another approach for texture analysis includes the variogram that 

provides a concise description of the scale and pattern of spatial variability in remotely 

sensed data (Curran et al. 1998). These texture measures will be discussed in detail in 

chapter 6. 

In general, there is an unclear utilisation of the spatial domain in the analysis of remotely 

sensed data (Curran etal. 1998). While recent forest discrimination research has shown 
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interest on tlie textural approach, results are difficult to extrapolate because of the 

variety of physical environments and techniques used. 

For temperate forests in Finland, texture measures (CV and four measures derived from 

GLCM) from a multitemporal set of SAR images were found to increase the accuracy of 

classification results, even though the final accuracy was around 65% (Kurvonen and 

Hallikainen 1999). 

Table 3.3 shows some recent results using SAR textural information for tropical forest 

discrimination. Low discrimination accuracy results and absence of a texture measure 

that works with all or certain forest types are the main conclusions that can be draw from 

table 3.3. Also, the use of a simple texture measure (such as the mean) can result in 

accurate discrimination between forest types (Yanasse et al. 1997, Podest and Saatchi 

1999). 

Despite low accuracy in the discrimination of forest types, some authors report 

encouraging representation of classes with distinctive texture signatures (Miranda et al. 

1996, 1998, van der Sanden and Hoekman 1999). Perhaps the gap in texture modelling 

(Oliver and Quegan 1998) will be resolved with a better understanding of the physics 

that governs backscatter and associated texture, given that texture is still a promising 

approach. 

3.4.2. Temporal characteristics of bacl<scatter 

The dielectric characteristics of vegetation and soils have a strong effect on backscatter 

and are important sources of variation in o°. Varying weather conditions are related to 

changes in water content of vegetation and soils, therefore, impact directly on 

backscatter (Gates 1991). In addition to rainfall, air temperature and wind speed can 

induce physiological and/or geometric changes in the vegetation components and 

influence backscatter (Leckie and Ranson 1998). The monitoring of seasonal 

phenological development is a substantial part of forest ecosystem studies and justifies 

the study of temporal backscatter. 
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Table 3.2. Examples of classification approaches using radar imagery in tropical ecosystems (adapted from Kasischke et al. 1997). 

Data No of classes Radar band/ 

Ecosystem Purpose Classifier® source and types'' Accuracy"^ polarisation Reference 

Tropical forest Vegetation mapping Supervised MLE SIR-B 6 and 8 Medium on SIR-B High Nezry et al. 

and adjacent areas adapted to radar SPOT-HRV W,B,A,F,U,Aru 

plus rP, C 

on SIR-B +HRV (8 

classes) 

Lhh 1993 

Subtropical forest Ecosystem mapping 7 P,L,C, all Pope et al. 

and wetlands MLE cluster AIRSAR W,B,A,H,S, 

F(2) 

Medium polarisations 1994 

Tropical f loodplain Map forest f looding Decision SIR-C 5 High Lhh.Lhv, Hess et al. 

forest tree W,fH,H,F,fF Chh 1995 

Tropical forest and Map deforestation Supervised on TM, SIR-C 6 and 7 High on SIR-C Lhh, Lhv, Rignot et al. 

adjacent areas and regeneration after MAP on SIR-C Landsat TM W,F,fdF,yrF,B, 

Ct 

Higher on SIR-C 

+TM (7 classes) 

Chh.Chv 1997 

Tropical forest and Map deforestation 5 Lhh, Lhv, Saatchi et al. 

adjacent areas and land use MAP supervised SIR-C F,rF.A,Ct,dF Medium Chh.Chv 1997 

Tropical forest and Map forest and non Annealed CCRS airborne 2 High with texture (from 

adjacent areas forest segmentation SAR F, nP parameters of K-

distribution) 

Chh Oliver 1998 

Amazon Basin Map land cover MAP and hierarchical JERS-1 SAR 14 Medium with first order Lhh Saatchi et al. 

types in the decision based on 100 m resolution W, r, F, nP and 10 texture measures 2000 

Amazon Basin texture measures image mosaic vegetation types 

Classification approacfies: Maximum lit<eliliood estimator (MLE), Maximum-a-posteriori Bayesian (MAP). 

""Agriculture (A), water (W), bare soil (B), clearings (c), urban (U), forest (F), flooded (f), young (y), regenerating (r), trunks (t), rubber (ru), disturbed (d), non(n), dead (d). 

•̂ High indicates >90% classification accuracy, medium indicates 70-90% classification accuracy. 
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Table 3.3. Examples of the use of texture measures in SAR imagery of tropical forests (adapted from Kasischke et al. 1997). 

Ecosystem Purpose Texture measure. Data No of classes Discrimination Band/ Reference 

Result assessment source and types'" accuracy"" polarisation 

Tropical forest Vegetation Semivariogram texture JERS-1 4 Low Lhh Miranda et al. 

and adjacent areas mapping classifier. Confusion 

matrix. 

W,F, oF, fF 1996 

Tropical forest Discriminate Tonal mean, CV SIR-C, 7 Good for t l ie mean in L L,C, all polari- Yanasse et al. 

and adjacent areas regenerating (Coefficient of Variation). Landsat TM age RA. (0,2], (2,4], band (Lhv better) sations 1997 

stages BD and ED. map (4,6], (6,8], >=9 

years old, F 

Poor with CV, better with 

L band 

Tropical forest Discriminate K-distribution a CCRS airborne 5 Low and only between F Chh.Cvv, Luckman etal. 

and adjacent areas regenerating parameter, CV, GLCM SAR, Landsat TM B, 1-3, 4-6, >6 and other classes 1997b 

stages contrast. CV. age map years old, F Better with CV 

Tropical forest Map major CV,mean,variance. JERS-1 SAR 8 Medium with mean. Lhh Podest and 

and adjacent areas land cover entropy,energy. 100 m spatial W, F, rF, nF, fF, variance and entropy. Saatchi 1999 

types sl<ewness,kurtosis, 

contrast. MLE and BD. 

resolution fnF, wS, nw/8 Mean best for overall 

separability 

Tropical forest and IVlap detailed GLCM derived texture CCRS airborne 8 Low, better measures X,C all van der Sanden 

adjacent areas land cover measures. TDij, MLE, SAR F (5 types), IF, contrast and correlation polari- and Hoekman 

types Kappa statistics. rF, nF sations 1999 

Result assessment approaches: Maximum likelihood estimator (MLE), Bhattacharyya distance (BD), Euclidean distance (ED), transformed divergence (TDij). 

''Agriculture (A), water (W), bare soil (B), clearings (C), forest (F), recent activities (RA), savanna (S), flooded (f), logged (I), regenerating (r), open (o), woody (w), disturbed (d), non(n). 

°High indicates >90% classification accuracy, medium indicates 70-90% classification accuracy, low indicates <70% classification accuracy.. 
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Results from studies on the seasonal forest backscatter indicated that soil frost and 

snow can reduce relative backscatter values and be detected at L and C bands 

(Pulliainen etal. 1999). Also, the absence of leaves in deciduous forest trees lowered 

the backscatter at C band, raising the assumption of leaves as highly forward 

scatterers (Ahern etal. 1993). Other authors, however, found a very weak correlation 

between ERS-1 SAR C band backscatter and seasonal changing variables, as 

foliage dynamics (Mougin etal. 1998). Weather related variables (rainfall, wind speed 

and air temperature) were reported as not being clearly related to backscatter from a 

deciduous-coniferous forest (Mougin etal. 1998). 

Seasonal effects were observed in a walnut orchard backscatter at X and L bands. 

Changes at X band backscatter were attributed to changing water content of 

branches and leaves, while at L band to both soil and vegetation water content 

variation (McDonald etal. 1991). 

For tropical environments, seasonal L band backscatter was detected by Rosenqvist 

(1996a) from oil palm stands. The seasonal behaviour corresponded to high 

backscatter coinciding with the two annual dry seasons in the area and was 

attributed to changing water content of leaves and fronds. For rubber tree 

plantations, however, even after shedding their leaves, little variation of backscatter 

with time was detected (Rosenqvist 1996a). In Brazilian Amazonia, a backscatter 

seasonal cycle, corresponding roughly with low backscatter for dry season and high 

backscatter for wet season, was detected in low biomass regenerating forest plots 

and attributed to the changing water content of vegetation and soils (Kuplich and 

Curran 1999). 

A general consensus among researchers is that data from the dry season in the 

tropics are the most useful when differentiating vegetation classes (Rignot et al. 

1997, Luckman etal. 1998, G rover et al. 1999, Kuntz and Siegert 1999). In addition, 

backscatter/biomass relationships are stronger during the dry season, because the 

influence of water and consequent increase on backscatter are minimised (Luckman 

etal. 1998, Kuplich and Curran 1999). 

For Amazonian forest, the influence of the season on the backscatter is not restricted 

to the effect of water, but also to land cover dynamics, which determines, in addition 

to the increased soil moisture in wet seasons, the availability of some temporary 
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crops (Saatchi et al. 1997). Moreover, the dry season is the preferable time for 

logging, forest clearing and pasture burning, thus care must be taken when analysing 

dynamic tropical environments (Saatchi et al. 1997). 

3.5. Summary 

The study of backscatter of regenerating tropical forests is a relatively new topic 

(Foody et al. 1997, Luckman et al. 1997a, 1998, Yanasse et al. 1997, Salas and 

Skole 1998). When describing tropical land cover types the diversity of logging and 

agricultural practices in areas surrounding tropical forest is revealed. Potential 

sources of forest regeneration are added to the ones following slash and burn cycles. 

Disturbed forests as a result of selective logging (by hand or machine) are also 

common land cover types described for the tropics (Saatchi et al. 1997, van der 

Sanden and Hoekman 1999, Kuntz and Siegert 1999, Kuplich et al. 2000b). Different 

practices trigger forest regeneration and most of the works concerning backscatter of 

tropical had at least one land cover type or class labelled either as regrowth forest 

(Nezry etal. 1993, Pope etal. 1994, Rignot et al. 1997), secondary forest (Kuntz and 

Siegert 1999, van der Sanden and Hoekman 1999) or regenerating forest (Foody et 

al. 1997, Yanasse etal. 1997, Luckman etal. 1997a,b, 1998, Grover etal. 1999). 

As part of the regenerating forest process, deforested areas are usually present in 

tropical environments and its discrimination from mature forest assessed. 

Discrimination between these areas is a function of the contrast offered by the 

backscatter of the deforested areas (Ribbes et al. 1997). The type of logging seems 

to determine the intensity of radar backscatter, as woody debris can be removed or 

not. If removed and the soil is left bare, the radar response will be of the soils, 

therefore, the rules about roughness and soil moisture apply, with stronger 

backscatter for rougher and wetter soils (Ulaby etal. 1974). 

The presence of residual biomass after logging produces high horizontally polarised 

returns, as this polarisation interacted strongly with the remaining trunks (Rignot etal. 

1997). When some trees are left standing, double-bounce scattering occurs between 

trees and clear forest floor and LHH returns are higher than others bands in SIR-C 

configuration (Saatchi et al. 1997). If the wavelength penetrates the forest canopy. 

4 0 



Radar remote sensing of regenerating tropical forests 

horizontal co-polarised radiation will also give information about the underlying soil 

and canopy- and trunk-ground interactions (Hess etal. 1995). 

Some recent studies have suggested limitations on the use of C band in tropical 

forest area discrimination (Pope et al. 1994, Luckman et al. 1997b, Rignot et al. 

1997, Saatchi etal. 1997, Yanasse etal. 1997, G rover et al. 1999). The reason for 

that is the backscatter asymptote at low levels of biomass and consequent C band 

insensitivity to even young regenerating forest areas (Saatchi et al. 1997). The 

shallow penetration of the C band into forest canopies restricts Its use for the 

differentiation between deforested areas and forest when the soil is dry and the 

influence of water is minimised (Luckman etal. 1997a, Grover etal. 1999). Kuntz and 

Siegert (1999), however, found some discrimination power on the texture extracted 

from ERS-1 BAR images (GVV band) for Indonesian forests. 

L band has proved some success in tropical vegetation studies, owing to its deeper 

penetration and volumetric interactions into the canopy (Grover et al. 1999). When 

configured as LHV its sensitivity to forest biomass and structure allowed some 

discrimination between regenerating stages (Yanasse et al. 1997) and between 

regenerating and mature forest (Saatchi etal. 1997). The backscatter asymptote was 

found to be the reason for the low separability between regenerating areas and L 

band with at least two different polarisations was suggested to perform this task 

(Rignot etal. 1997). 

Regenerating forest backscatter will approach that of the surrounding mature forest 

as the forest grows, so the differentiation between regenerating and mature forest 

can become difficult (Leckie and Ranson 1998, Salas and Skole 1998). 

Reliable assessment of various forest types including regenerating, selectively-

logged and mature tropical forest required SAR data on 0, L and/or P bands (van der 

Sanden and Hoekman 1999). Four biophysical indices derived from fully-polarimetric 

SAR data were used successfully to discriminate vegetation types (called landscape 

units) in the tropics (Pope etal. 1994). 

The great variety of tropical forest ecosystems still did not allow the finding of an 

ideal radar configuration capable of identification and discrimination at the desired 

level. A multitemporal approach along with texture analysis (Saatchi et al. 1997) can 

help clarify backscatter/tropical forest relationships. 
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The influence of regenerating tropical forest characteristics (e.g. species 

composition, their structures and canopy properties) on the backscatter is still not 

fully understood. An initial attempt to group regenerating forests by their dominant 

species (therefore, reducing structural variability) was made and some encouraging 

results obtained (Foody et al. 1997). Variation in biomass was secondary to canopy 

spatial variability (canopy closure and homogeneity) in the backscatter of tropical 

forest in Belize (Pope et al. 1994). These highlight the limitations of approaches used 

to study tropical regenerating forests until now and the amount of work still to do. 
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CHAPTER FOUR 

Study areas and ground data 

This chapter presents background information on the study areas and the ground 

data available for them. Brazilian Amazonia is introduced in the context of tropical 

rain forests, the Amazon Basin and the Legal Amazon, with general descriptions of 

climate, soil and vegetation. This is followed by an outline of the two study areas, 

Manaus and Tapajos, where details on the way biophysical properties were 

estimated are given. Finally, rainfall and cloudiness data are listed. 

4.1. Brazilian Amazonia 

American or neotropical rain forests of the permanently wet tropics are the most 

extensive block of tropical rain forests, covering one-sixth of the total broad-leaf 

forest of the world (Whitmore 1997). The Amazon Basin covers around 6.4 million 

km^ (7 million km^ including the Tocantins-Araguaia Basin) (Ribeiro et al. 1996) and it 

is where the Brazilian Amazonia lies. 'Brazil is the country with more rain forests than 

any other' (Whitmore 1997, p.10). 

The Legal Amazon, an administrative region created by the Brazilian government in 

1953, covers 9 Brazilian States: Acre, Amapa, Amazonas, Maranhao, Mato Grosso. 

Para, Rondonia, Roraima and Tocantins and comprises around 5 million km^ 

(Diegues 1992). 

The Amazon river's mouth was first reached from the Andes, in the Cinnamon 

expedition by Spanish Francisco de Orellana in 1542 (Gheerbrant 1992). 
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Since the 16'*̂  century, the exploration of Amazonia by European conquistadors had 

mainly a commercial character (Whitmore 1997). In the last 40 years, however, 

human disturbances in Amazonia have increased dramatically as a consequence of 

its opening for international exploitation and the failure of some Brazilian government 

policies (Diegues 1992, Ab'Saber 1996). Amazonia has a critical importance for 

Brazil and for the rest of the world, as the 'single richest region of the tropical biome' 

(Myers 1984) and as an ecosystem that is still not fully understood (Ab'Saber 1996). 

4.1.1. Climate 

Tropical rain forest climates are characterised by monthly mean temperatures of 

18°C or more and annual rainfall of at least 1700 mm (Walsh 1996). Variations of 

less than 5°C in the mean monthly temperatures are expected in the humid tropics 

(Sanchez et al. 1982) and average midday temperatures for the Amazon Basin are in 

the range 27°C - 32°C (Pearce and Smith 1993). 

Climatic types associated with tropical rain forests are based on, among other things, 

the presence or absence of a dry season or periods with a monthly rainfall less than 

100 mm (Walsh 1996). Table 4.1 shows these climatic types in general terms and its 

associated potential natural vegetation. Tropical montane climates and vegetation 

are not considered due to their small coverage in Brazilian Amazonia. 

Rainfall averages 2000 mm annually in the central Amazon Basin (Salati and Vose 

1984). Superwet climates occupy a small area in upper and western parts of the 

Amazon Basin, within Colombia and Peru. Both study areas in the Brazilian Amazon 

are typical of the tropical wet seasonal climatic type, with a long wet but also a 

significant dry season that lasts from 3 to 5 months (Walsh 1996). Vegetation types 

assigned to these climatic types will be discussed later. 

44 



study areas and ground data 

Table 4.1: Climatic types and associated potential natural vegetation for South 

American tropical rain forests. Adapted from Walsh (1996). 

Climatic Dry Annual Potential natural 

type periods rainfall (mm) vegetation 

Tropica! Periods> 1 month >3000 Lowland and Lower 

superwet absent or rare montane rain forest 

Relatively frequent short 

Tropical dry periods or very >2000 Lowland and Lower 

wet short dry season montane rain forest 

Significant dry season of 

Tropical wet up to 4 months > 1700 Evergreen seasonal 

seasonal <100 mm rainfall rain forest 

Evidence of past environmental conditions, deduced from palynology and direct 

physical traces, lead to the assumption that fluctuations in climate (associated with 

glacial and interglacial periods) were coupled with fluctuations in vegetation 

(Whitmore 1990, Ab'Saber 1996). Changes in rainfall and temperature patterns 

throughout the Quaternary are among the most important environmental factors to 

which tropical rain forests had to adapt (Richards 1996). 

4.1.2. Soils 

Most of the Amazon Basin lies below 300 meters with gentle topography (Ab'Saber 

1996). Tropical soil types normally have low fertility (Sanchez et al. 1982) as a result 

of intensive and prolonged leaching. Heavy rainfall, high temperatures and stability of 

land surfaces in the humid tropics have resulted in a high proportion of old and 

intensively weathered soils. These soils are deep (2 metres or more), porous and 

suffer from rapid water infiltration (Baillie 1996). 

Dominating around 75% of the Amazon Basin (Sanchez et al. 1982) are the main soil 

groups of Brazilian Amazonia (RADAMBRASIL 1976): the Latosols (Ferralsols (FAO 

1971), Oxisols (USDA 1975)) and the Podzols (Acrisol (FAO 1971), Ultisols (USDA 
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1975)). These soils are acid, infertile and normally well drained with colours varying 

from red to yellow, indicative of the presence of iron oxides (Sanchez et al. 1982). 

These soils have coarse to medium topsoil textures and subsoils of medium texture, 

as the clay content generally increases with depth (Baillie 1996). Next on the 

distribution of soils in the Amazon Basin are the poorly-drained alluvial soils (14%) 

followed by moderately fertile well-drained soils (8%) and finally, sandy infertile soils 

(3%) (Sanchez etal. 1982). 

The main constraints imposed by these types of soils are on agricultural cultivation. 

The constraints are chemical rather than physical, like phosphorus deficiency in 

around 90% and aluminium toxicity in around 73% of Amazonian soils (Sanchez et 

al. 1982). The logging of native vegetation and the consequent soil exposition alter 

the ecosystem equilibrium and induce physical and chemical soil change as well as 

an increase in the susceptibility to soil erosion (Baillie 1996). 

4.1.3. Vegetation 

In this section characteristics of mature and regenerating Amazonian forest are 

given, after general features of both forest types have been described. After that an 

overview of biomass (i.e., the carbon content) of tropical vegetation is presented, as 

this is a critical component of the global carbon cycle. 

4.1.3.1. Mature forests in Amazonia 

Around 94% of the Brazilian Amazon terra firme (i.e., areas not permanently or 

seasonally flooded) are covered with forests (Ab'Saber 1996). Distribution patterns of 

Amazon forests were a result of tropical humid climate generalisation allied with 

forest expansion from refugia (Ab'Saber 1996). As mentioned before, glacial and 

interglacial periods were associated with dry and wet periods, respectively. Refuge 

theory or the fragmentation of the vegetation in islands or refuges during dry periods 

in the late Pleistocene was first used to explain the diversity and endemism of animal 

species in Amazonian forests (Richards 1996). Evidence supporting this theory was 
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found when analysing distributional patterns of trees from certain families in 

Amazonia (Prance 1987). 

Even though no agreement was reached in the scientific community to support the 

refuge theory, the idea of continual adjustment of tropical rain forests in response to 

changing environmental conditions has been accepted (Whitmore 1990, Richards 

1996, Ab'Saber 1996). In this context, the concept of climax plant community as a 

final successional stage in a climatic climax (Hartshorn 1980) seems questionable. 

Budowsky (1965, p.42) defined a climax community as 'the end product of a 

successional sere when a relatively stable, although certainly not static, community 

has been reached and when changes of floristic composition, structure and 

physiognomy over the age span of the dominants become significant'. Jacobs (1988, 

p.97) related climax tropical vegetation to unchanging environmental conditions 

stating that 'climax vegetation is one which has reached its maximum development, 

i.e., it consists of the maximum number of species able to survive under the existing 

conditions, and one whose composition, if undisturbed, will not change if climate and 

soil conditions remain the same'. 

More recently it was found that undisturbed tropical forests increase biomass 

production under enhanced CO2 conditions (Chambers et al. 2001). For a 25% 

increase in atmospheric CO2 scenario, model simulations showed that carbon 

accumulation continue for over a century when the enhanced carbon availability 

finishes (Chambers etal. 2001). These authors calculated a new dynamic equilibrium 

in carbon storage once a tree has reached its full growth (around 175 years) under 

enhanced productivity conditions. 

Adjectives as undisturbed, old growth, primary, mature and virgin have been used to 

refer to climax communities (Hartshorn 1980). Nowadays, however, growing human 

pressure over forests made very unlikely the identity of undisturbed tropical forests. 

The term mature forest will be used in this work along with the concept of tropical 

mature forest as a mosaic of successional stages (Hartshorn 1980). 

The vegetation of tropical mature forests has a more elaborate structure and is richer 

in species than any other plant community. The majority of tropical plants are woody 

species and of the dimensions of trees. Mixed forests present numerous dominant 

tree species and are the mainly type of formation in the tropics (Richards 1996). 
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Terra firme dense forests are the dominant mature forest type formation in Amazonia 

and present an irregular canopy surface with 25-35 m high trees and emergent trees 

that can exceed 40 m. Generally there are 500-700 trees per hectare and 100-280 

different tree species per hectare (Nelson 1996). Four to five layers (or strata) are 

found and many tree species with small diameters are concentrated in the lower 

storeys. Tree trunks are slender and straight and branches appear near the top of the 

tree, barks are thin and smooth and vines and epiphytes are abundant. Most of the 

trees are evergreen but some large trees in seasonal forests (usually associated with 

a tropical wet seasonal climate) can be leafless for periods of few days or weeks. 

The amount of leaf-fall depends on the moisture conditions and varies from year to 

year, being also a response to severe droughts. For some classification schemes, 

leaf-fall is seen just as a leaf-exchange process, not as a part of a deciduous nature 

(Richards 1996). 

Forest types in Amazonia can be divided by climatic type and elevation (table 3.1) or 

based on geomorphological information (RADAMBRASIL 1976). Other approaches 

include physiognomic (as closed and open forests classes) and human induced 

features (as fragmented forest, deforested or forest converted classes) (Nelson 1996, 

Saatchi etal. 2000). The enormous diversity of plant forms and the huge variability in 

species composition of mixed Amazonian forests were reflected in the forest 

classification schemes proposed until today. 

4.1.3.2. Regenerating forests in Amazonia 

The germination of plant species in a newly formed forest gap, resulting from a large 

tree fall, for instance, is an initial stage of the succession process. These 'coloniser' 

or pioneer species can grow up together with older mature tree species, in a mosaic 

of successional stages. 

The impacts of human pressure in the tropics have altered some natural cycles and 

various areas of mature forest have been cleared completely, mainly for agricultural 

purposes. The vegetation communities that replace mature forests are called 

secondary forests, secondary growth or simply regenerating forests. In Brazil they 

are called capoeiras. 
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The structure and species richness of regenerating forests are dependent upon the 

type of disturbance and the history of the previous use (Uhl et at. 1987, Richards 

1996, Whitmore 1997). Common features to all regenerating forests are light-

demanding species with (i) a high leaf area index and total stem density, (ii) low 

density of trees having more than 10 cm diameter at breast height (dbh) and woody 

density and basal area (Brown and Lugo 1990). A canopy in regenerating forests has 

a tendency to be mono-layered with no emergent trees. 'After a few years, 

particularly on abandoned cultivated ground, even-aged stands of trees of 

remarkably regular structure often grow up. These may consist of a single fast-

growing species such as Cecropia sp. (American Tropics)...'(Richards 1996, p.460). 

Table 4.2 lists the main characteristics of tropical pioneer and mature ('climax') tree 

species, the latter ones are included for ease of comparison. 

Pioneer species are very aggressive, producing a large amount of low density wood 

in slender trunks rapidly (Whitmore 1997). The main differences between pioneer 

and mature species presented in table 4.2 refer to this strategy based on a fast life 

but 'unable to occupy any site permanently' (Richards 1996). Eventually, pioneer 

species create the environment for the establishment of mature forest tree species. 

The number of species in a regenerating forest is regulated by the type of 

disturbance to which the area has been subject and a rich species composition in the 

early phases of succession indicates high opportunities for species establishment 

(Brown and Lugo 1990). 

Changes in species composition, from pioneer to early and late regenerating species 

(Budowski 1965) and associated change in structure are a sign of growing and 

maturation of the forest. After 60-80 years regenerating forests are often 

indistinguishable from mature forests (Brown and Lugo 1990). 

Biomass allocation in tropical regenerating trees varies little in relation to mature 

trees, with large amount of biomass concentrated in woody components. The 

accumulation of biomass in the different components of trees is a function of age of 

the regenerating forest. Figure 4.1 shows the biomass accumulation in wood and 

leaves of tropical regenerating forest trees. Woody biomass increases rapidly in the 

first years, followed by a slower rate towards maturity. Leaves and roots present a 

different pattern, but in initial stages biomass is accumulated more rapidly (Brown 

and Lugo 1990). 
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Biomass accumulation rates for regenerating forests are dependent upon the history 

of previous use and vary in response to environmental conditions (Uhl et al. 1988, 

Alves et al. 1997, Lucas et al. 2000). These rates are not commonly reported due to 

a lack of comprehensive temporal biomass estimates for regenerating forests in 

Brazilian Amazonia (Lucas etal. 2000). 
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Figure 4.1. Biomass of leaves and wood (from twigs, branches and stems) of different aged 

tropical regenerating forests (modified from Brown and Lugo 1990). 

The more frequent pioneer species in Brazilian Amazonia are from Cecropia and 

Vismia genera. They differ in structure and in colonisation strategies, being 

characteristic of successional pathways dictated by the land use history of the site 

they colonise (Williamson etal. 1998, Lucas et al. 2000). Cecropia usually develop in 

sites with no heavy use prior to being left fallow. Conversely, Vismia frequently 

dominate sites where pastures were abandoned after heavy use, possibly including 

burning. Vismia have higher wood density than Cecropia, in shorter and stronger 

trunks (Williamson etal. 1998). 
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Table 4.2. Main characteristics of pioneer and mature tree species of tropical forests (adapted from Whitmore 1997). 

Pioneer Mature 

Common names Light-demander, (shade-)intolerant, secondary Shade-bearer, (shade-)tolerant, primary 

Germination Only in canopy gaps open to the sky with full sunlight Usually below canopy 

Seedlings Cannot survive below canopy in shade, never found there Can survive below canopy, forming a 'seedling bank' 

Seeds Small, produced copiously and more or less continuously and 

from early in life 

Often large, not copious, often produced annually or less 

frequently and only in trees that have (almost) reached full height 

Soil seed bank Many species Few species 

Dispersal By wind or animals, often for a considerable distance By diverse means, sometimes only a short distance 

Dormancy Capable of dormancy, commonly abundant in forest soils as a 

seed bank 

Often with no capacity for dormancy, seldom found in soil seed 

bank 

Growth rate Carbon fixation rate, unit leaf rate and relative growth rates high These rates lower 

Height growth Fast Often slow 

Branching Sparse, few orders Often copious, often several orders 

Leaf life Short, one generation present, viz. high turn-over rate Long, sometimes several generations present, slow turn-over rate 

Herbivory Leaves susceptible, soft, little chemical defence Leaves sometimes less susceptible due to mechanical toughness 

or toxic chemicals 

Wood Usually pale, low density, not siliceous Variable, pale to very dark, low to high density, sometimes 

siliceous 

Ecological range Wide Sometimes narrow 

Stand table Negative (no small individuals, no regeneration in situ) Positive (young individuals, regeneration in situ) 

Longevity Often short Sometimes very long 
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4.1.3.3. Biomass of tropical forests 

Biomass can be defined as tlie total aboveground and belowground living mass of all 

vegetation components as well as the dead mass of litter and integrates volume and 

wood density information (Brown and Lugo 1990, 1992). Recalling chapter 1, the 

carbon content of forests can be derived directly from forest biomass estimates (1 T 

biomass s 0.5 T carbon) (Brown and Lugo 1992). 

Different approaches can be used for biomass estimation in tropical forests. The first 

is the intensive weighing of all vegetation components, a very laborious approach 

particularly for roots and large trunks. The second approach is the use of allometric 

regression equations derived from the weighing of a subset of trees. These equations 

use measurements of diameter and sometimes height and wood densities of trees as 

independent variables (Brown etai. 1992). 

Considerable variation exists in estimates of tropical forest biomass, mainly due to (i) 

confusion about what fraction of total biomass is being considered, (ii) few biomass 

estimates derive from real intensive forest measurements and (iii) allometric 

equations consider forest variables which are often not available for all tree species 

involved (Brown et ai. 1992). The use of data derived from forest volume inventories 

are supposedly more accurate as they are generally collected from larger sample 

areas and 'the scale of sampling must match the scale of the subject to be measured' 

(Brown and Lugo 1992, p.9). The problem is the scarcity and the variability in such 

large tropical forest inventories. 

Accurate estimates of tropical forest biomass are essential parts of carbon flux 

models (Brown and Lugo 1992, Houghton et ai. 2000). The need for accuracy is 

emphasised today by the large amount of change that biomass and associated 

carbon have been subject to, whenever forest conversion and forest regeneration 

take place. 
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4.1.3.4. Deforestation dynamics in Brazilian Amazonia 

Many actors are behind Amazonian deforestation and it is difficult to draw a list of 

causes and factors involved. The only real consensus is that deforestation is a result 

of human disturbances. The first records of deforestation coincide with records of 

human occupation in the area, the indigenous population along the major river 

floodplains (varzeas) was believed to be around 6 million before contact with the first 

European colonisers in the 16'*̂  century (Anderson 1990). The Portuguese brought 

the first non-indian settlements along the varzeas for commercial purposes, as they 

looked for spices and drugs. In the 19*̂  century up to 1910, rubber (latex) extraction 

led to an economic boom in the region, migrating people from the drought-affected 

areas of the North-east of Brazil and increasing human-disturbance in the forest 

(Diegues 1992). 

Large-scale deforestation began in 1958 with the construction of the first Amazonian 

highway, the Belem-Brasilia (BR364). Large governmental projects of "national 

integration" started in the 1960s with the main objective of colonising the remote 

borders of Brazil and sustaining the national integrity over the very extense Brazilian 

territory. Although fewer people than initially intended were settled, roads were built 

(e.g. the Transamazonia) and government started financial incentives to agricultural 

and ranching activities (Moran et ai. 1994). Until the 1980s, however, deforestation 

rates were about 1.5 % of the Legal Amazon and the annual increase was a mere 

0.33 % (Tardin etai. 1980). 

Since 1980 deforestation rates increased mainly as a result of government supported 

projects, for example subsides for large cattle ranchers that converted forest to 

pasture (Anderson 1990, Moran et ai. 1994). Large-scale agricultural and cattle 

raising schemes were responsible for most of deforestation in despite of the removal 

of most fiscal incentives in 1987 (Diegues 1992). Currently pasture is the dominant 

land use in forest-converted areas (Ceccon and Miramontes 1999). 

Selective logging of commercial timber affected 50-90 % of the total area deforested 

in 1996 and is largely underestimated because of its difficult detection. Surface fires 

initiated by the logging process also increase forest loss (Nepstad etai. 1999). 
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In addition to agriculture, cattle ranching and logging, mineral exploitation is a major 

cause of deforestation. The world's largest iron deposits are extracted in the Carajas 

Province, southern Para State. The increasing demand for energy in the area has 

resulted in the building of hydroelectric dams and forest cut for charcoal production, 

with substantial environmental impact (Diegues 1992). 

More recently occupation and colonisation of the Brazilian Amazonia is under private 

control and new small-scale settlements are seldom responsible for large 

deforestation actions. Around 60 % of arable land is concentrated in the hands of 

around 2 % of agricultural landowners, a socially unstable land tenure system 

division that calls for agrarian reform (Diegues 1992). The "unequal distribution of 

resources" (Anderson 1990) highlights the social dimension of the deforestation 

problem. Brazil's external debt (and the use of forest to pay it), inflation and other 

economic factors promote land speculation also, indirectly, cause deforestation 

(Diegues 1992). 

International companies and multinational capital from, among others, Canada, 

Japan, Taiwan, United Kingdom and USA, associated with national corporations, 

own great expanses of land in Brazilian Amazonia also promoting deforestation 

through logging, cattle raising, agricultural and mining (Diegues 1992, Ceccon and 

Miramontes 1999). 

Alternative use of the forest, such as agroforestry and new-extractivism, can be 

combined with implementation of biodiversity reserves in an effort to decrease 

deforestation rates, whilst maintaining economic activities in the forest. The challenge 

for Brazil and developed nations is to manage forest exploitation and balance 

environmental concerns with economic development. 

4.2. Study areas 

Two areas in Brazilian Amazonia were studied near Manaus and Santarem cities 

(Amazonas and Para States, respectively). They were selected as part of British 

Terrestrial Initiative in Global Environmental Research (TIGER) project, part of the 

Natural Environment Research Council's (NERC) community program to study global 

environmental change. These were the study areas described next. 
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4.2.1. Manaus study area 

The Manaus study area is located around 70 km north of Manaus City, the capital of 

Amazonas State (figure 4.2). It comprises several experimental forest reserves that 

are part of the Biological Dynamics of Forest Fragments Project (BDFFP) of the 

Brazilian National Institute for Amazonian Research (INPA) and the Smithsonian 

Institute in Washington, D.C.. The BR-174 Highway linking Manaus to Boa Vista 

(capital of Roraima State) crosses the study area. 

The origins of the BDFFP go back to 1979, when INPA and WWF (World Wildlife 

Fund) agreed to study the effects of forest fragmentation on different species. Taking 

advantage of a Brazilian Law that required the land owners to leave undisturbed half 

of the land under development, mature forest reserves were delineated within cattle 

ranches. Clearcut areas were used as pastures for cattle grazing. With the Brazilian 

economic crisis of the 1980s and the removal of incentives for cattle ranching, most 

of the pastures were abandoned and colonised by secondary vegetation. These 

reserves have been the subject of several studies and forest regeneration is an 

important issue of the BDFFP (Bierregaard and Stouffer 1997). 

The Manaus study area is located in moderately rugged terrain, with a maximum 

elevation of 142 m above sea level. The main soils within this region are Latosols 

that are nutrient-poor and yellow with a high clay content and porosity 

(RADAMBRASIL 1976). 

The dry season is from June until the beginning of October. The annual rainfall is 

around 2290 mm and the mean temperature is around 27° C (data for Manaus station 

- coordinates 03.08° S, 60.01° W - and the climatological mean is from 1961-1990, 

DNM 1992). 
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In July and August 1993 and 1995 field data were collected at the Manaus study 

area. It was part of the NERC TIGER 1.4 Consortium, which involved the Universities 

of Wales, Swansea and Southampton (Honzak 1997). 

In 1993 fifteen 10x100 m plots and one 15x20 m plot were established in some of the 

BDFFP reserves. To locate the plots within a range of regenerating forests biomass, 

the approximate age of the plots was determined from a time-series of Landsat TM 

data following a post-classification comparison (Lucas et al. 1993). The inventory 

was conducted in structurally and floristically homogenous plots, ranging in age from 

4 to 16 years (Honzak et al. 1996). Within each plot, the diameter at breast height 

(dbh) for all trees greater than 3 cm in diameter were measured, along with the 

record of the tree's genus (and species, when possible). The height of a random 

sample of trees (270 individuals) was estimated using an inclinometer (Honzak et al. 

1996). The total height was estimated using allometric regressions relating dbh and 

height for all species measured in the plots (Honzak et al. 1996). Global Positioning 

System (GPS) readings were also taken at each plot. In 1995 some of the 1993 plots 

were resampled and fourteen additional plots were established in forests younger 

than 18 years (Lucas etal. 2000). 

These data were used to generate, via allometric equations, an estimate of total 

above-ground biomass (T ha '̂ ) and density (tree ha"'). 

Estimates of biomass of mature forest and pasture plots were required in order to 

provide an adequate biomass/backscatter range for this study. However, mature 

forest and pasture plots were not inventoried for Manaus study area and were 

located only in the satellite sensor imagery described later. 

4.2.2. Tapajos study area 

The Tapajos study area is located in the South of the Amazon River port/city of 

Santarem, Para State (figure 4.2). It comprises the Tapajos National Forest, a large 

reserve of dense tropical forest (around 200 km^). The Tapajos River is located at the 

west of the Tapajos National Forest. East of the Tapajos National Forest and the 

study area is the Cuiaba-Santarem highway (BR-163) and a mixture of mature and 
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regenerating forest covers. The regenerating forests found there are on abandoned 

farmlands and were formerly areas of pasture or crops. The usual agricultural 

practice in the area is block-logging, burning of forest, agriculture and a resting 

period of five years or more when the area is left to regenerate. Some of these 

cleared areas have since been abandoned thus they present regenerating forest at 

different successional stages (Shimabukuro et al. 1997). Whenever agricultural areas 

are still active, they are mainly used to grow pepper or manioc (cassava). 

Tapajos study area is also located in relatively flat terrain with maximum elevation at 

280 m above sea level (inside the Tapajos National Forest). The soils are also 

Latosol type that are deep, highly weathered and porous, with textures varying from 

sandy clay loam to heavy clay (Hernandez Filho etal. 1993). 

The dry season is from July until the beginning of December, the annual rainfall is 

around 1911.2 mm and the mean temperature 24.8° C (data for Belterra station -

coordinates 02.38° S, 54.57° W - DNM 1992). 

From 24^ August to 15'̂  September 1994 a field data collection campaign was 

carried out at the Tapajos study area. It was part of TIGER joint project between what 

was the Remote Sensing Applications Development Unit (RSADU) of the British 

National Space Centre (BNSC), the Brazilian Institute for Space Research (INPE), 

what was the Institute of Terrestrial Ecology (ITE) of the NERC and the Sheffield 

Centre for Earth Observation Science (SCEOS) of Sheffield University. 

With the aid of an age map, derived from a time-series of Landsat TM data in a post-

classification comparison (Luckman et al. 1995, Sant'Anna et al. 1995), fifteen 

10x50m plots in forest were selected. The age map indicated the regenerating stage 

and size of the area such as to give sufficiently large regions to be averaged within 

SAR images. Forest areas greater than one hectare were considered suitable for 

inventory (Luckman et al. 1995) and plots were established in forests aged between 

2 and around 25 years. The diameter at breast height (dbh) of each tree greater than 

3 cm in diameter for young regenerating plots and greater than 15 cm for mature 

forest plots were measured using a girth tape. Approximately every eighth tree was 

measured for height using an inclinometer and the remaining tree's height was 

estimated using a regression technique relating height and dbh (Luckman et al. 

1997a). Global Positioning System (GPS) readings were also taken at each plot. 

58 



study areas and ground data 

These data were used to generate, via allometric equations, an estimate of total 

above-ground biomass (T ha "̂ ) and density (tree ha"') as described below. 

Estimates of biomass of mature forest and pasture plots were required in order to 

provide an adequate biomass/backscatter range. Pasture plots were not inventoried 

and were located only in the satellite sensor imagery described later. 

4.3. Ground data 

In this section the study areas and forest plots described above are presented in 

relation to their biomass and rainfall data. 

4.3.1. Biomass estimates 

Total above-ground biomass (T ha '^), herein called biomass, was estimated for the 

plots inventoried in Manaus and Tapajos study areas. Allometric regression 

equations that use the relationship among dbh, height (h), in some cases wood 

density (S, g cm'^) and biomass (B) were used (Luckman et al. 1997a). When 

available, single species regressions were used, as for Vismia and Cecropia 

(equations (1) and (2)). General regressions were used for the rest of secondary and 

mature forest species (equations (3) and (4)). Wood density values were found for 

most species in Reyes et al. (1992). These equations are shown below, with the 

authors and for which genus/type of species they were applied to. 

Uhl etal. (1988) for Vismia: 

B = 0 . 0 2 9 0 X ( d b h ^ x ( 1 ) 
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Uhl etal. (1988) for Cecropia: 

B = 0.0298 x (dbh^P®°xh (2) 

Deans et al. (1995) for secondary species: 

B = 0 . 4 0 + 0 . 0 4 0 6 X ( d b h ^ ) x h x S ( 3 ) 

Brown et al. (1989) for mature species: 

B = 0 . 0 8 9 9 X ( d b h " x h x S ) " ( 4 ) 

All of the mature forest plots (10, 15, 16, 17, 18) for Tapajos study area were located 

inside the Tapajos National Forest, although only plots 10 and 15 were inventoried. 

For Manaus study area, inventory data from 1995 were considered. Biomass 

estimates for mature forest plots not visited in the field (plot 17 for Manaus and plots 

16,17 and 18 for Tapajos study area) were taken as those estimated for mature 

forest plot (15) in the Tapajos study area. Pasture plots (plot 18 for Manaus and 19 

and 20 for Tapajos study area) were located inside known cattle ranching areas, and 

the biomass assigned to them was the one associated with established pasture 

grasses (Eggers, pers. comm. 1999). 

Tables 4.3 and 4.4 show plot numbers and coordinates, land cover, biomass, density 

and basal area estimates for the Manaus and Tapajos study areas, respectively. 
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Table 4.3: Field data for the Manaus study area. NA refers to not available, 

NV refers to not visited. 

Plot 
number 

Long, Lat 
coordinates 

Land 
cover 

Biomass 
(T ha-1) 

Density 
(trees ha"̂ ) 

Basal area 

(m^ ha^) 

1 -59.964,-2.358 Regenerating forest 144.1 2580 25.8 

2 -59.953,-2.360 Regenerating forest 131.3 3270 23.9 

3 -59.999,-2.352 Regenerating forest 140.3 6880 26.5 

4 -59.857,-2.391 Regenerating forest 144.8 2520 26.9 

5 -59.888,-2.419 Regenerating forest 134.7 3820 24.3 

6 -60.049,-2.291 Regenerating forest 124.3 2590 21.4 

7 -60.051,-2.277 Regenerating forest 130.3 2960 24.8 

8 -60.0.3,-2.201 Regenerating forest 143.9 2940 24.4 

9 -60.041,-2.396 Regenerating forest 91 3460 20.1 

10 -60.042,-2.393 Regenerating forest 127 2850 22.6 

11 -60.048,-2.403 Regenerating forest 126.1 2680 24.6 

12 -60.018,-2.405 Regenerating forest 131.5 7140 27 

13 -60.020,-2.207 Regenerating forest 156.6 3830 25.8 

14 -60.080,-2.195 Regenerating forest 117.4 3660 20.7 

15 -60.174,-2.434 Regenerating forest 116.3 2630 20 

16 -60.171,-2.432 Regenerating forest 32.6 5140 15 

17 -59.898,-2.483 Mature forest (NV) 387 NA NA 

18 -59.979,-2.354 Pasture (NV) 2 NA NA 
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Table 4.4: Field data for the Tapajos study area. NA refers to not available, 

NV refers to not visited. 

Plot UTM Land Biomass Density Basal area 

number coordinates cover (Tha-^) (tree ha'̂ ) (m^ ha'̂ ) 

1 730017, 9632303 Regenerating forest 62 1120 16.8 

2 728753, 9637184 Regenerating forest 15 9720 9 

3 731555, 9626650 Regenerating forest 62 4400 17 

4 740214, 9635587 Regenerating forest 8 10400 4.8 

5 733267, 9618849 Regenerating forest 54 1580 11 

6 737409, 9605512 Regenerating forest 82 2440 18.3 

7 723404, 9693411 Regenerating forest 78 900 16.3 

8 734483, 9693376 Regenerating forest 104 1140 20.8 

9 735870, 9691362 Regenerating forest 75 1540 18.9 

10 731789, 9680134 Mature forest 181 560 17.9 

11 742950, 9682087 Regenerating forest 101 1920 17.5 

12 739006,9681246 Regenerating forest 42 3640 19.3 

13 729637, 9668093 Regenerating forest 89 2160 17.9 

14 729886, 9661866 Regenerating forest 25 3000 7.8 

15 733331, 9691809 Mature forest 387 720 37.5 

16 720838, 9646571 Mature forest (NV) 387 NA NA 

17 718826, 9636379 Mature forest (NV) 387 NA NA 

18 717528, 9621642 Mature forest (NV) 387 NA NA 

19 729889,9642786 Pasture (NV) 2 NA NA 

20 730614,9641298 Pasture (NV) 2 NA NA 

Biomass estimates for botln study areas present a considerable degree of variability, 

which was expected as the literature reports wide ranges for the biomass of tropical 

mature and regenerating forests. In addition, it is difficult to account for all potential 

sources of errors when measuring forest variables, starting with the selection and 
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assumption of homogeneity of a certain forest plot and as a result, no error 

assessment was performed. Moreover, there are no error margins associated with 

the allometric equations used for biomass estimates in this research (Luckman et at. 

1997a). 

Estimates of biomass for dense mature forests varied from 166 to 397 T ha as 

reported by Brown and Lugo (1992) in a comprehensive summary of biomass 

inventories in Brazilian Amazonia. This research found 387 T ha"̂  for mature forest in 

Tapajos, which was consistent with previous findings and suitable for assigning to 

further known mature forest plots in Tapajos and Manaus study areas. 

Regenerating tropical forests biomass values reported in the literature are difficult to 

extrapolate, as they are age-dependent and a function of previous use (Uhl et al. 

1988). Estimates of biomass for eight year old regenerating forests varied from 5 T 

ha to 87.1 T ha following light, moderate and heavy use of abandoned pastures 

(Uhl et al. 1988). This research found variation between 8 T ha and 156.6 T ha 

for regenerating forests in Manaus and Tapajos study areas. Although not 

considered here, the biomass variation between 8 T ha and 156.6 T ha reflects 

the variety of ages and previous land uses of the regenerating forest plots. 

4.3.2. Forest regrowth maps 

For both study areas, forest age maps were produced and used as a guide in the 

location of the regenerating forest plots in the ground (Lucas et al. 1993 for Manaus 

age map and Sant'Anna et al. 1995 for Tapajos age map). The method for the 

production of these maps included analysis and classification of TM sensor bands in 

broad classes such as mature forest, regenerating forest and agricultural land. With 

each temporal TM sensor band classified, the pixels were traced according to the 

classes they belonged and a model of changes in land cover was devised (Lucas et 

al. 1993). 

For Manaus study area seven classes were mapped: mature forest, pasture and five 

different ages of regenerating forest (i) <2 years, (ii) 2-3 years, (iii) 3-6 years 

regenerating from forest, (iv) 3-6 years regenerating from pasture and (v) 6-14 years. 
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This chronology of forest regrowth for Manaus study area is an additional source of 

information about the area. 

The updated Manaus forest regrowth map was used in chapter 7 as the ground data. 

Multifrequency and multipolarisation SAR data, along with the 1991 Landsat TM 

bands 3, 4 and 5, were tested for the discrimination of mature forest, pasture and age 

classes in a classification approach. 

4.3.3. Biomass accumulation simulation 

The remote sensing data described in the next chapter cover a period from 1992 to 

1997 and the ground data described above are from inventories that represent the 

biomass for a single date. That was the reason for a biomass accumulation 

simulation, which results were used later in conjunction with backscatter. 

Dividing biomass by the estimated age of the regenerating forest is usually how 

biomass accumulation rates are estimated (Alves et al. 1997, Lucas et al. 2000). This 

procedure, however, was not applicable in Tapajos data, as the age of the 

regenerating forest plots was not available. 

Seven plots in Manaus study area had their measurements taken in two field 

campaigns, in 1993 and in 1995. An increase in biomass was observed for all plots 

over the two years period, although rates were variable. The biomass estimates were 

grouped and subtracted (biomass data from 1995 minus biomass data from 1993), 

producing an averaged monthly rate of biomass of 0.6 T ha"' (annual increase of 7.2 

T ha"'). This value was added or subtracted from the biomass estimates for the 

regenerating forest plots depending on the dates of their inventory. 

Biomass accumulation rate of 7.2 T ha"' year is within the range already found for 

Manaus study area plots (Lucas et al. 2000). Assuming a linear rate of growth, 

however, may not be a valid assumption, mainly when dealing with forests younger 

than 10 years (Lucas et al. 2000). These authors also found different biomass 

accumulation rates depending on the successional pathway that regenerating forests 

follow, which was determined by, among other things, the differences in previous 

land use intensity. 
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4.3.4. Floristic composition 

When describing the nature of vegetation communities, some techniques are 

proposed to rank species in relation to others (Krebs 1978). The Importance Value 

Index (IVI) is used to define the relative dominance of species of a certain community 

and enables the comparison among different communities (Krebs 1978). IVI was 

derived for Manaus and Tapajos regenerating forest plots (tables 4.5 and 4.6). 

For Manaus study area a comprehensive study on the plots has been undertaken. 

With the help of IVI and historical data, the age of the plots and their successional 

pathway could be traced. The floristic composition of the regenerating forest plots 

was analysed using TWINSPAN classifier (Lucas et al. 2000). The plots were 

classified according to their species composition and tree basal area (m^ ha"^). Three 

levels and eight groups were defined, differing basically by the dominant species 

(table 4.7). 

Table 4.5: Dominant genera for the Manaus regenerating forest plots. 

Plot number Dominant genera 

1 Cecropia 

2 Vismia, Cecropia 

3 Vismia, Goupia 

4 Cecropia, Guatteria 

5 Vismia, Beilutia 

6 Vismia, Cecropia 

7 Cecropia, Laetia 

8 Cecropia 

9 Cecropia 

10 Cecropia 

11 Cecropia, Laetia 

12 Vismia 

13 Laetia, Vismia 

14 Vismia, Miconia 

15 Goupia, Vismia 

16 Goupia, Vismia 
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Table 4.6: Dominant genera for the Tapajos regenerating forest plots. 

NA refers to not available. 

Plot number Dominant genera 

1 Cecropia 

2 NA 

3 Poecilanthe, Cecropia 

4 Poecilanthe, Vismia 

5 Vismia 

6 Vismia 

7 Mangifera 

8 Guatteria 

9 Orbignya 

10 Couratari 

11 Sloanea 

12 Orbignya, Poecilanthe 

13 Vismia, Guatteria 

14 Vismia 

15 Orbignya 

Table 4.7: Classification of floristic composition of the Manaus 

regenerating forest plots (Lucas et al. 2000). 

Level Group Classification 

Wsm/a-dominated 1 Wsm/a-dominate (pasture) 

Cecropia 2 Cecrop/a-mixed 

3 Cecrop/a-dominated (<10 years) 

4 Cecrop/a-dominated (>10 years) 

5 Cecropia-Bellucia 

IVIixed species 6 Wsm/a-mixed (non-pasture) 

7 Goup/a-m ixed 

8 Mixed (>20 years) 
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All plots were dominated by pioneer species and the common genera Cecropia and 

Vismia were present in almost all forest regeneration categories in table 4.7. Vismia-

dominated forests occurred where pastures had been used previously for moderate 

to long periods. In contrast, Cecropia dominated both pasture and non-pasture sites 

that had been used for less than two years. Both levels could have been submitted to 

fire, although in some plots this was not certain. Mixed forests were found in smaller 

clearances and its history was uncertain with previous use ranging from short to long 

periods (Lucas et al. 2000). 

The forest plots inventoried at Manaus study area may be typical of regeneration 

following low intensity of previous use and therefore their biomass and succession 

pathways varied accordingly (Lucas etal. 2000). 

For the Tapajos study area, however, historical information was not fully available 

and the floristic composition of its regenerating forest plots did not seem to provide 

evidence of their successional pathway. Only two plots were dominated by Cecropia 

and four plots dominated by Vismia genera, which could lead to the assumption that 

the previous use of the regenerating forests plots were heavier that the plots at 

Manaus study area. Most of the plots were previously cleared and burned to be used 

as agricultural land for a variety of crops (excluding pasture) (Shimabukuro et al. 

1997). Floristic composition (table 4.6) varied in relation to Manaus plots, but was 

also representative of regenerating forests in Brazilian Amazonia. 

4.3.5. Rainfall and cloudiness data 

Rainfall data for both study areas were available on a daily basis, but for Tapajos the 

weather station from Brazilian Meteorological Office (Barragem Curua-Una Station, 

coordinates 2°47'00"S, 54°16'16"W) was situated around 50 km from the 

regenerating forest plots. As the rain in equatorial climates occurs in localised cells 

(convective type), these rainfall data may not be representative of the Tapajos study 

area. Therefore meteorological images such as from GOES (Geostationary 

Operational Environmental Satellite) and Meteosat sensor satellites were checked to 

confirm the cloudiness and rainfall. The meteorological images were chosen to be 

the closest possible to the time of the JERS-1 satellite overpass, which was usually 
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around 15:00 GMT. Figure 4.3 shows both study areas in a cloud-free GOES-8 

sensor image. 

. # 3 

Figure 4.3: GOES-8 image for 31/07/1997, showing no cloudiness for (M) Manaus and (T) 

Tapajos study areas. 

For the Manaus study area, data on rainfall were gathered from the LBA website 

(Large Scale Biosphere-Atmosphere Experiment in Amazonia, from Brazil). The 

actual site where the rainfall measurements were taken is Fazenda Dimona, one of 

the reserves of the BDFFP (coordinates 02°19'S, 60°19'W). The data were available 

on a daily basis for 1994, 1995 and for part of 1996. For 1993 rainfall data were from 

the Brazilian Meteorological Office (Balsa do Rio Urubu Station, coordinates 

2°54'47"S, 59°2'2"W) around 100 km away from the study area and without GOES 

sensor data available to confirm them. Table 4.8 and 4.9 show the rainfall totals for 

the day before the JERS-1 overpass, the total for ten days before the satellite 

overpass and cloudiness conditions when GOES or Meteosat sensor images were 

available. 
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Table 4.8: Rainfall totals (mm) and cloudiness conditions over the 

Manaus study area. NA refers to not available. 

JERS-1 overpass Day before Ten days before Cloudiness 

23/02/93 16.3 80.9 Yes 

01/10/93 0 25.4 No 

10/02/94 1.2 108.6* NA 

05/08/94 0 5.4 No 

28/01/95 10.6 102.2 Yes 

02/12/95 1.8 49.8 Yes 

12/04/96 NA NA Yes 

22/08/96 0 0 No 

* 7 days before the satellite overpass. 

Table 4.9: Rainfall totals (mm) and cloudiness conditions over the 

Tapajos study area. NA refers to not available. 

JERS-1 overpass Day before Ten days before Cloudiness 

22/08/92 0 29.4 NA 

14/02/93 0 44.8 NA 

30/03/93 83.8 154.1 Yes 

26/06/93 0 17 No 

27/07/94 0 11 No 

19/01/95 0 39.3 No 

10/10/95 0 0.2 No 

17/05/96 0 51.5 No 

13/08/96 0 2.2 No 

31/07/97 0 7.4 No 

There was a remarkable agreement between the rainfall totals and the cloud 

conditions in the meteorological satellite sensor images over the study areas. The 

rainfall data seemed to be suitable lor inferring the water content of the regenerating 

forest plots. 
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CHAPTER FIVE 

Temporal analysis of JERS-1 SAR data 

for regenerating tropical forests 

In this chapter, the temporal behaviour of regenerating tropical forests on JERS-1/SAR 

images was investigated. Following a phase of data pre-processing, which involved 

geometric correction and registration, the Digital Number (DN) of regenerating forest 

plots were collected. The regenerating forest plots are located in Manaus and Tapajos 

study areas, as described in the previous chapter. GPS coordinates taken at the plots 

on the ground and TM images from the study areas allowed the collection of the DN. 

The DN were later converted to backscatter coefficient (<t°), herein called backscatter. 

SAR images for both the wet and dry seasons and some rainfall data for the study 

areas were available for this research. That allowed an investigation of the influence of 

seasonally changing variables in G°. AS possible sources of temporal variation on A°, 

the variables investigated were biomass and rainfall. The objective of this analysis was 

to assess the utility of a temporal series of JERS-1/SAR images to detect changes in 

o° (or Ao°). The ultimate goal was to detect biomass accumulation in regenerating 

forests in two study areas in Brazilian Amazonia based on Aa°. 

5.1. JERS-1 satellite 

The NASDA (National Space Development Agency of Japan) and MITI (Ministry of 

International Trade and Industry of Japan) launched the Japanese Earth Resources 

(JERS-1) satellite in 11 February 1992. The satellite carried a Synthetic Aperture 

Radar (SAR) and an Optical Sensor (OPS). Despite its two years designed lifetime the 
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SAR and some of the bands of the optical sensor were able to observe the Earth for 

more than six years, until October 1998. Table 5.1 shows the main characteristics of 

the JERS-1 satellite and its SAR. 

Table 5.1. Main characteristics of JERS-1 and its SAR (RESTEC leaflet). 

Altitude 568 km 

Orbit Sun synchronous 

Recurrent period 44 days 

Antenna size 11.9 m X 2.4 m 

SAR frequency and wavelength 1.275 GHz, 23.5 cm (L band) 

SAR polarisation HH 

SAR incident angle 38.5° (to the centre of swath) 

SAR swath width 75 km 

SAR ground resolution 18 m X 18 m (3 looks) 

Of the SAR parameters cited above, the band and polarisation (L and HH) make this 

sensor suitable for the study of regenerating tropical forests. Lhh is able to penetrate 

into the vegetation canopy and discrimination between biomass levels is possible 

(Pope etal. 1994, Luckman et al. 1998). Coupled with that, the all-weather capabilities 

of a L band SAR sensor and the recurrent period of 44 days for the JERS-1 further 

increase its utility (Rosenqvist et al. 2000). 

5.2. The GRFM project 

The Global Rain Forest Mapping (GRFM) project is a joint effort led by NASDA to 

acquire a cloud-free data set of the major rain forest areas on Earth. The project, 

started in 1995, covered an area of about 40000 km^, from the Amazon Basin to 

South-East Asia (Rosenqvist et al. 2000). As a major aim of the project, SAR image 
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mosaics at 100 m resolution were generated for Africa, South America and South-East 

Asia (Rosenqvist etal. 2000). The GRFM project involved 29 technical studies at local 

to global scales, led by researchers in universities and scientific organisations 

worldwide. These studies were generally supported by ground campaigns and aimed 

the assessment of the state of forest and associated flood plains, as can be seen in 

Shimada (1999). 

As one of the British counterparts of the GRFM project, the present research was 

provided with a series of JERS-1/SAR images, enumerated in the next section. 

5.3. JERS-1 SAR data 

The original JERS-1/SAR images were processed by NASDA and available for this 

research at level 2.1. This level corresponds to standard georeferenced amplitude 

images resampled to Universal Transverse Mercator (UTM) projection and with pixel 

size of 12.5 m. The GRFM SAR data were corrected using corner reflectors deployed 

in non-forested areas in Japan, USA, Alaska and Brazil. For correcting the antenna 

pattern related radiometric errors (range and azimuth dependent), large areas of 

tropical rainforest were used as references. According to Chapman etal. (1999), multi-

temporal studies can be undertaken on JERS-1 SAR data. In equation (5.1) the 

"calibration" factor of (-68.5) is set to compensate for absolute errors and is accurate to 

around 1 dB. NASDA image products are quantified to 16 bits and the minimum DN 

(corresponding to low a° of around -20 dB) is around 265 (Chapman etal. 1999). 

The study areas in Manaus and Tapajos were extended over two JERS-1 SAR scenes 

hence two images were obtained for each of the dates. Data on eight dates were 

obtained for the Manaus study area, while the Tapajos study area was covered in ten 

dates. The overall period of study covered 60 months and for ease of analysis each of 

the dates was coded by month from August 1992 to July 1997. Tables 5.2 and 5.3 

present the characteristics of the SAR images for each study area. A total of 16 

images (8 dates) were obtained for the Manaus study area and 20 images (10 dates) 

were obtained for the Tapajos study area. Table 5.4 shows the SAR data for both 

study areas plus new codes for months used in a joint analysis in section 5.5.5. 
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Table 5.2. JERS-1/SAR images for the Manaus study area. 

Path/Row Path/Row Date Season Month 

414/304 414/305 23/02/93 wet 1 

414/304 414/305 01/10/93 dry 9 

414/304 414/305 10/02/94 wet 13 

414/304 414/305 05/08/94 dry 19 

414/304 414/305 28/01/95 wet 24 

414/304 414/305 02/12/95 wet 35 

414/304 414/305 12/04/96 wet 39 

414/304 414/305 22/08/96 dry 43 

Note: Approximate central coordinates for path/rows 414/304 

are 2°05'S, 59°4'W and for 414/305 are 2°41 'S, 59°50'W. 

Table 5.3. JERS-1/SAR data for the Tapajos study area 

Path/Row Path/Row Date Season Month 

405/305 405/306 22/08/92 dry 1 

405/305 405/306 14/02/93 wet 7 

405/305 405/306 30/03/93 wet 8 

405/305 405/306 26/06/93 dry 11 

405/305 405/306 27/07/94 dry 24 

405/305 405/306 19/01/95 wet 30 

405/305 405/306 10/10/95 dry 39 

405/305 405/306 17/05/96 wet 46 

405/305 405/306 13/08/96 dry 49 

405/305 405/306 31/07/97 dry 60 

Note: Approximate central coordinates for path/rows 405/305 

are 2°24'S, 54° 34'W and for 405/306 are 3°10'S, 55°03'W. 
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Table 5.4. JERS-1/SAR images dates for the Tapajos (T) and 

the Manaus (M) study areas and their month codes. 

Location-Date Season IVIonth Location-Date Season IVIonth 

T-22/08/92 dry 1 T-19/01/95 wet 30 

T-14/02/93 wet 7 M-28/01/95 wet 30 

M-23/02/93 wet 7 T-10/10/95 dry 39 

T-30/03/93 wet 8 M-02/12/95 wet 41 

T-26/06/93 wet 11 M-12/04/96 wet 45 

M-01/10/93 dry 15 T-17/05/96 wet 46 

M'10/02/94 wet 19 T-13/08/96 dry 49 

T-27/07/94 dry 24 M-22/08/96 dry 49 

M-05/08/94 dry 25 T-31/07/97 dry 60 

5.4. Methods 

The images were pre-processed using geometric corrections before the extraction of 

the pixel DNs and conversion to backscatter. These backscatter values were then 

analysed with the ground data by the steps described next. 

5.4.1. Geometric correction and registration 

Very often remotely sensed images need to be transformed to a product with 

properties similar to a map, with a known scale and projection. The sources of 

distortions in remotely sensed images are linked to sensor and satellite instabilities, as 

well as the Earth's rotation. The location of the study area, the overlay of temporal 

sequences and the generation of maps are some of the circumstances where the 

geometric correction of the images are required. The fitting of coordinates between 

two images of the same area is called registration (Mather 1999). The geometric 

correction process includes the determination of a common coordinate system 

between images and maps by the establishment of a set of ground control points. A 

map-to-image coordinate transformation is achieved using polynomial functions from 
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first to tliird-order. A first-order polynomial function can accomplish the geometric 

correction of images with no strong "bending" effects. A higher order polynomial 

function will be selected to achieve the correction of large distortions on satellite 

sensor imagery (Mather 1999). 

The assignment of the DN associated with the new corrected pixels is done by means 

of a resampling. The nearest neighbour resampling preserves the original DN, as it 

takes the closest pixel value to be the new output pixel value. Other methods of 

resampling such as bilinear and cubic convolution involve spatial interpolations that 

produce new DNs out of the original ones (Mather 1999). 

In the case of this research, both Manaus and Tapajos study areas contain few natural 

or anthropogenic features suitable for use as ground control points. The geographic 

position of those ground control points was taken from topographical maps of the 

study areas. However, the ground features chosen as control points were much easier 

to locate on optical than on SAR images. For that reason the SAR images were 

registered to geometrically corrected Landsat Thematic Mapper (TM) images of the 

same area. 

For the Manaus study area a Landsat TM image (orbit 231/62 of 08/08/1991) was 

geometrically corrected to a UTM projection using ground control points from a 

topographic map. A first-order polynomial was used for the mapping and a nearest 

neighbour resampling was performed. The final pixel size of the TM image was 25 

metres. The SAR image from February 1993 was registered to the TM image and the 

fifteen remaining SAR images were subsequently co-registered. The number of 

ground control points used for the registering between images was around 18 and the 

total RMS errors were of less than one pixel. 

Prior to the registration with the TM image, sets 2x2 pixels on the SAR images were 

averaged spatially, generating a nominal spatial resolution of 25 metres. Averaging the 

pixels before resampling reduced the speckle, but retained the statistical properties of 

the SAR images (Luckman etal. 1998). 

The procedure applied for the Tapajos study area was nearly the same as described 

above. A Landsat TM image (orbit 227/62 of 29/07/1992) was corrected geometrically 

to a UTM projection using ground control points from a topographic map. The SAR 

image from June 1993 was registered to the TM image and then the nineteen 
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remaining SAR images were co-registered. Tine number of ground control points used 

for the registering between images was around 18 and the total root-mean-square 

(RMS) errors of the registration were of less than one pixel. 

5.4.2. DN to cr° conversion 

Pixel Digital Numbers (DN) of the SAR images were converted to backscatter 

coefficient (0°) in decibels (dB) via equation: 

= 1 0 x l o g , o l X ( D N ) V n J + C F [5.1] 

where n is the number of pixels extracted from the images and CF is the "calibration" 

factor of -68.5 (Rosenqvist 1996a). 

Equation (5.1) was applied in two steps. Firstly, to obtain backscatter in linear units 

and prepare the data for the fitting of a model as explained in next section, the images 

were squared and divided by (10® ® )̂. To correlate backscatter with the ground data, a 

mean value of backscatter was derived from the plots located on the images. Twenty 

plots were located on the Tapajos images and eighteen plots on Manaus images, 

using their GPS coordinates, knowledge of the area and Landsat TM images. The 

smallest polygon used for the estimation of the mean backscatter was composed of 14 

pixels or 8750 m^, following the recommendation of Luckman et al. (1997a). The 

polygons were located in large homogeneous areas where the biomass was assumed 

to be the same as the one measured on the ground. Standard deviation of backscatter 

was also computed for each polygon representing the plots in the different images. 

Linear units of mean and standard deviation of backscatter were converted to decibels 

by multiplying by a 10 x log^o factor. 

The images from January 1995 (North portion) for Tapajos and from October 1995 for 

Manaus contained a stripe with noisy data in the North-South direction and these data 

were discarded. To replace the missing data for Manaus, NASDA provided a pair of 

images from December 1995 (table 5.2). 
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5.4.3. Principal Components Analysis (PCA) 

Principal Component (PC) analysis is a statistical technique used to (i) identify groups 

of interrelated variables, (ii) reduce the redundancy of variables by reducing the 

number of variables and (ill) rewrite the variables in an alternative form (Johnston 

1980). 

For remotely sensed data, PCA is used to generate new images which are often more 

interpretable than the original data. It is also used to compress the information content 

of a series of images (such as different bands of the same image or temporal 

sequences of images over the same scene) into a reduced number of images, called 

the principal component images (Jensen 1986). The PC transformation reduces the 

spectral redundancy of data and generates uncorrelated multispectral data that has 

ordered variance properties (Jensen 1986). PC translates the original data axes so 

that they are reprojected onto a new set of axes or dimensions. The first of this new 

set of axes is associated with the maximum amount of variance found in the original 

data set. This is the first principal component or eigenvalue (PCI) and represents the 

variance of the particular PC mode 1. The second principal component (PC2) is 

orthogonal to the first and comprises the second largest amount of variance found in 

the data set. The third, fourth, fifth, and so on, principal components contain 

decreasing amounts of variance. 

The eigenvectors are a set of coordinates defining the direction of the associated 

eigenvalue. The length and direction of the PCs are described by the eigenvalues and 

eigenvectors (Mather 1999). The eigenvectors can also be interpreted as the 

correlation between the original images and the new generated principal components 

(Mather 1999). In practical terms, this correlation (or factor loading) informs what 

image, out of the original set, contributed more to each of the PC modes. 

In this work PCA was used to provide additional information about the change in the 

spatial time series SAR data for both study areas. Standardised PCs were obtained 

based on the correlation matrices (Eastman and Fulk 1993) of 8 SAR images for the 

Manaus study area and 10 SAR images for the Tapajos study area 
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5.4.4. Exploratory statistical analysis 

An exploratory statistical analysis was undertaken on the mean backscatter for each 

plot and date. Normality tests were undertaken as normality is a pre-requisite for the 

Analysis of Variance (ANOVA) performed later. The objective of this statistical analysis 

was to detect significant differences in a° between SAR dates. 

For the Manaus study area, the distribution of the data were normal {Kolmogorov-

Smirnov test, p>0.0001) so the mean backscatter could be considered. ANOVA 

indicated that the differences in the mean backscatter values among the dates were 

statistically significant at the 95% level of confidence (F=5.61, d.f.=7, p<0.05). 

For the Tapajos study area, the distribution of the data were non-normal {Kolmogorov-

Smirnov test, p<0.0001). In this case, the median of the mean backscatter was 

considered. The median of the mean backscatter values for each SAR date differed 

significantly at the 95% level of confidence {Kruskall-Wallis ANOVA, H=20.4, d.f.=9, 

p<0.05). 

The variability in the mean backscatter for Manaus data and in the median of the mean 

backscatter for Tapajos data were a pointer to the temporal component explored. 

5.4.5. Modelling backscatter/biomass relationship 

From the trend observed in the data when plotting backscatter against biomass, it was 

observed that using a logarithmic (log) function of biomass would resulted in a 

stronger correlation between these data than if using a linear function (Dobson et al. 

1992; Ranson and Sun 1994). That was probably because of the log function used to 

convert DN to a°. Consequently, a model with a log fitting (equation 5.2) was applied 

to describe the relationship between backscatter and biomass. The model is as 

follows: 

a° = BQ + X log(biomass) [5.2] 
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where a° is the backscatter in dB and ao and are the coefficients of the log fitting. 

Biomass was in units of T ha"\ 

The log fitting, however, did not allow quantification of the asymptotic region where 

backscatter is insensitive to biomass (Le Toan etal. 1992, Dobson etal. 1992, Ranson 

and Sun 1994, Imhoff 1995a, Luckman etal. 1997a). 

To assess the asymptote in the backscatter/biomass relationship, a second model 

(equation 5.3) was fitted to the data (Luckman et al. 1998, Fransson and Israelsson 

1999). This model was based on a water cloud model designed by Attema and Ulaby 

(1978) which represents the extinction of microwaves as they pass through a layer of 

vegetation made up of elements containing water (Luckman et al. 1998). The 

parameter a corresponds to the saturation point of a° (in linear units) or when the 

asymptote in the relationship backscatter/biomass is reached. B refers to biomass in 

units of T ha'\ 

[5.3] 

To get a better fitting of the model, pasture plots in both study areas were included in 

the analysis. Although not visited on the ground, these plots were assigned a biomass 

of 2 T ha (Eggers, pers. communication, 2000). 

For the Manaus study area the fitting of equation (5.3) was compromised by the lack of 

low biomass values for regenerating forest plots. For this reason the data for the two 

study areas were combined. 

The relationship between backscatter and biomass was determined and subsequently 

the temporal behaviour of a° was examined. Different types of analyses allowed some 

potential sources of variation in a° to be investigated. The main points were: 

• The temporal behaviour of DN was assessed through PCA to provide information 

about change in the spatial time series of SAR data for both study areas. 
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• The temporal behaviour of (7° was assessed through plotting the mean a"°for each 

regenerating forest plot against time. Three-dimensional graphs were also produced to 

visualise the influence of different biomass levels in the long term distribution of o°. In 

addition to that, residuals from the mean backscatter for each plot were plotted to 

detect any existing anomaly in the data. 

• The influence of the biomass accumulation on the behaviour of 0° was also 

determined. Seven plots In Manaus study area had their measurements taken in two 

field campaigns, in 1993 an in 1995. Their biomass estimates were grouped and 

subtracted, producing an averaged monthly increase of biomass of 0.6 T ha'\ This 

value was added or subtracted from the biomass estimates for the regenerating forest 

plots depending on the dates of their inventory. This biomass accumulation was 

simulated regardless the history of disturbance and age of vegetation in the 

regenerating forest plots. 

• To investigate the influence of rainfall on SAR data, rainfall measurements were 

plotted alongside the mean backscatter of some regenerating and mature forest plots 

for both study areas. 

5.5. Results and discussion 

This section presents the results of investigations conducted on some of the possible 

sources of temporal variation in a°. Backscatter/biomass relationships for both study 

areas are presented, along with an attempt to describe the temporal behaviour of 0° 

for regenerating and mature forest plots. An investigation of a possible cyclical pattern 

of a° is presented as well as a simulation of the biomass accumulation during the time 

span studied. Finally, the potential influence of rainfall on SAR data is discussed. 
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5.5.1. PCA 

SAR images from 8 dates were used for tlie Manaus study area (table 5.5) and SAR 

images from 10 dates (referred as bands) were used for the Tapajos study area (table 

5.6). Month code was used to ease the identification of trends in the graphs. 

Generally the correlation between SAR bands was low. The maximum correlation 

coefficient of 0.55 was found between bands 4 (June 1993) and 8 (May 1996) for 

Tapajos study area data. The first four principal components of both study areas 

concentrated around 70 % of the variance of the original SAR bands (table 5.5 and 

5.6). As a result of decreasing information content of PCs with the decline in variance, 

the last PCs are likely to contain mainly the noise of the original SAR bands (Kuplich et 

al. 2000a). 

For both study areas, the first principal component image was the only to depict the 

land covers (e.g. pasture and regenerating forest plots) or features seen in the original 

SAR bands from where they were derived. In addition, those features were 

exceptionally enhanced and contrasted from the mature forest that is the major land 

cover for both study areas images. The remaining components did not depict any 

feature visually interpretable. They seemed to be variations around different levels of 

fine texture and tone. 

For the Manaus study area, band 1 (February 1993) and band 6 (December 1995) 

contributed with positive eigenvectors (table 5.5 and figure 5.1) suggesting positive 

correlation of these bands with the features seen in PCI. Similarly, those bands could 

contain unapparent spatial patterns very alike to the ones depicted in PCI (Eastman 

and Fulk 1993). 

For Tapajos study area band 1 (August 1992), band 2 (February 1993) and band 4 

(June 1993) presented significant positive eigenvectors (table 5.6 and figure 5.2) 

suggesting positive correlation of these bands with the features seen in PCI. 
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Table 5.5. Principal components coefficients (eigenvectors in columns and 
eigenvalues in bottom row as the percentage of variance) for the Manaus study 
area SAR images. Cum. Perc. refers to the cumulative percentage of variance. 

Date 
(Month) 

PCI PC2 PCS PC4 PCS PC6 PC7 PCS 

02/93 (1) 0.336 0.319 0.317 0.406 0.391 0.358 0.318 0.372 
10/93 (9) -0.386 -0.422 -0.375 0.065 0.410 0.139 0.576 -0.096 
02/94(13) -0.386 -0.438 0.486 -0.186 -0.184 0.319 -0.107 0.491 
08/94(19) -0.066 0.050 0.549 -0.217 0.095 -0.653 0.453 -0.073 
01/95(24) -0.578 0.715 -0.048 -0.243 -0.111 0.243 0.148 -0.029 
12/95(35) 0.461 -0.084 0.074 -0.570 -0.209 0.445 0.351 -0.293 
04/96(39) -0.195 -0.076 0.462 0.327 0.117 0.260 -0.189 -0.720 
08/96(43) -0.023 -0.044 -0.031 0.509 -0.753 -0.018 0.413 -0.015 

Percentage 
variance 34.04 12.84 11.34 9.37 8.66 8.55 7.99 7.21 

Cum.Perc.. 34.04 46.88 58.22 67.59 76.25 84.80 92.79 100 

Months from Feb'93 

Figure 5.1. Eigenvectors for the first and second principal component from Manaus study area 
SAR images. Dates corresponding to month codes are in table 5.5. 
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Table 5.6. Principal components coefficients (eigenvectors in columns and 
eigenvalues in bottom row as the percentage of variance) for the Tapajos study 
area SAR images. Cum. Perc. refers to the cumulative percentage of variance. 

Date 
(Month) 

PC1 PC2 PCS PC4 PCS PC6 PC7 PC8 PC9 PC10 

08/92(1) 
02/93(7) 
03/93(8) 
06/93(11) 
07/94(24) 
01/95(30) 
10/95(39) 
05/96(46) 
08/96(49) 
07/97(60) 

0.264 
0.640 

-0.254 
0.648 
0.023 

-0.052 
-0.040 
0.018 

-0.013 
-0.177 

0.327 
-0.217 
0.365 
0.266 
-0.139 
-0.095 
0.019 
0.256 
0.729 
0.130 

0.318 
0.214 
0.460 

-0.205 
-0.321 
-0.299 
-0.066 
-0.608 
-0.092 
-0.156 

0.315 
0.342 
0.164 
-0.499 
0.129 
0.385 
-0.036 
0.419 
0.061 
-0.405 

0.328 
-0.206 
0.370 
0.248 

•0.088 

0.000 
0.016 
0.390 
-0.673 
0.198 

0.316 
-0.203 
-0.478 
-0.171 
-0.345 
-0.347 
0.528 
0.152 

-0.035 
-0.242 

0.320 
-0.306 
-0.107 
0.192 
-0.023 
0.722 
0.204 
-0.431 
-0.002 

-0.075 

0.329 
0.307 

-0.221 

-0.294 
0.014 
0.067 
0.066 

-0.048 
0.045 
0.806 

0.317 
-0.281 
-0.371 
-0.071 
-0.104 
-0.072 
-0.810 
0.010 
-0.012 
-0.075 

0.323 
-0.175 
0.015 
-0.018 
0.850 
-0.316 
0.106 
-0.160 
-0.011 
-0.074 

Percentage 
variance 

0 800 

-0 400 

51.88 8.48 6.54 5.59 5.05 4.87 4.75 4.55 4.36 3.93 
Cum.Perc. 51.88 60.36 66.90 72.49 77.54 82.41 87.16 91.71 96.07 100 

0 600 -

0 400 

> 0 200 

0 000 

0 200 -

Months from Aug'92 

Figure 5.2. Eigenvectors for tlie first and second principal component from Tapajos study area 

SAR images. Dates corresponding to montti codes are in table 5.6. 
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SAR image time series can enable assessment of land cover variation whether due to 

seasonality or disturbance. For the images studied here, however, the main land cover 

- mature forest - has not been submitted to any dramatic change, either seasonal or 

as a result of disturbance. Therefore the results of PCA demonstrated that the DN 

variability in the SAR time series was high but not particularly spatially related. PC1 for 

both study areas summarised the features potential to change in a spatial/temporal 

perspective: the relative small areas covered by agricultural/pasture activities and the 

regenerating forests. The remaining PCs presented features not interpretable in terms 

of spatial variations. Nevertheless, the PCA did not show any particular temporal or 

sensor derived anomaly that could hinder the analysis to be performed next. In 

addition, the weather conditions during the dates of SAR images acquisition and 

biomass status of the vegetation may prove useful for understanding the variability 

shown during the PCA. 

5.5.2. Backscatter and biomass 

The relationship between backscatter and biomass was positive for both study areas. 

The resulting correlation coefficient (r) for Manaus data was 0.68 (figure 5.3) and 0.77 

for Tapajos data (figure 5.4). The biomass range was not so wide in Manaus as it was 

in Tapajos study area. Perhaps this was the reason why the correlation between 

backscatter and biomass was lower for Manaus data. 

Figures 5.5 and 5.6 display the results of regressions using the mean backscatter 

values for each of the plots in the Manaus and Tapajos study areas, respectively. Both 

regressions showed a stronger relationship between backscatter and biomass, with 

correlation coefficients of 0.8 (Manaus) and 0.87 (Tapajos). 
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Figure 5.3: Relationship between backscatter and biomass for pasture, regenerating and 

mature forest plots at the Manaus study area where all data for individual dates were plotted 

(r=0.68, a° = -9.99+0.47*log (biomass), 46% variance accounted for). 

160 200 

Biomass (Tha') 
400 

Figure 5.4. Relationship between backscatter and biomass for pasture, regenerating and 

mature forest plots at the Tapajos study area where all data for individual dates were plotted 

(r=0.77, a° = -11.38+0.703riog (biomass), 59% variance accounted for). 
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Figure 5.5: Relationship between backscatter and biomass for pasture, regenerating and 

mature forest plots at the Manaus study area where averaged data were plotted (r=0.80, a° = -

9.92+0.46*log (biomass), 64% variance accounted for). 
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Figure 5.6. Relationship between backscatter and biomass for pasture, regenerating and 

mature forest plots at the Tapajos study area where the mean backscatter for each plot was 

used. (r=0.87, o°=-11.12-(-0.65*log(biomass), 76% variance accounted for). 
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The log model (equation 5.2) utilised here indicated the strength of the 

backscatter/biomass relationship. It did not allow, however, to set a limit for the 

estimation of biomass from backscatter, as the log does not converge to an 

asymptote. Figure 5.7 shows the results of fitting the second model (equation 5.3), 

from which it was possible to predict the location of the asymptote and up to what 

extent backscatter is sensitive to biomass. 

o Q HQ n 

ofciO ° O 

80 120 160 200 240 280 320 360 400 

Biomass (Tha"') 

Figure 5.7: Relationship between backscatter/biomass for pasture, regenerating and mature 

forest plots at the Tapajos and Manaus study areas. The curve represents the fitted model 

(Luckman et al. 1998) with r=0.87 and 76% of the variance accounted for. The parameters of 

the fitted model were a=0.17, b=0.04 and c=2.4. 

Using equation (5.3) (figure 5.7), the relationship between backscatter and biomass 

was found to be stronger (r=0.87) than in the other fittings (figures 5.1 to 5.4). The 

asymptote was reached at backscatter of 0.17 (-7.70 dB), which corresponds to 

biomass of around 90 T ha"\ These values are consistent with previous works (Le 

Toan et al. 1992, Dobson et al. 1992, Imhoff 1995a, Wang et al. 1995). For tropical 

regenerating forests, it is reported that L band backscatter saturated at biomass levels 

of between 40 T ha'̂  and 100 T ha"̂  (Imhoff 1995a, Luckman etal. 1997a, Araujo etal. 

1999). These biomass saturation levels would limit the detection and estimation of 

biomass for regenerating forests under 13 years old (Uhl et al. 1987, Brown and Lugo 

1990). 
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5.5.3. Biomass accumulation simulation 

Considering the simulation of the biomass accumulation, the model described in 

equation (5.3) was applied to Manaus and Tapajos data. The resulting correlation 

coefficient (/) was 0.77 (figure 5.8). The parameter from which the asymptote can be 

defined was 0.17, corresponding to -7.64 dB or biomass values of around 100 T ha"\ 

The biomass accumulation was simulated in a simplistic way, but the correlation 

coefficient between backscatter and biomass indicated consistency in the new 

biomass values. Nevertheless, the correlation coefficient was lower than the one 

obtained with constant biomass values for the time span analysed (figure 5.7). The 

biomass simulation performed here might have created a variety of biomass values 

not actually present in the field and therefore not followed by comparable backscatter 

responses. The apparent backscatter saturation from biomass values around 100 T 

ha"' have probably limited the correlation analysis up to this biomass value. 

oOpo° 

0 40 80 120 160 200 240 280 320 360 400 

Biomass (Tha" ') 

Figure 5.8. Relationship between backscatter and simulated biomass for pasture, regenerating 

and mature forest plots at the Manaus and Tapajos and study areas. The curve represents the 

fitted model (Luckman et al. 1998) with r=0.77 and 59% of the variance accounted for. The 

parameters of the fitted model are a=0.17, b=0.03 and c=2.49. 
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5.5.4. Temporal behaviour of backscatter 

When analysing the backscatter/biomass behaviour with time, different responses 

were found for younger and intermediate regenerating forests. In most cases, younger 

regenerating forest plots (below the backscatter/biomass asymptote) had a 

backscatter that changed with seasons and over time. Intermediate and mature forest 

plots (above the backscatter/biomass asymptote) had a temporally stable a°. 

However, this behaviour was more evident for regenerating forest plots in the Tapajos 

study area, as they presented a wider range of biomass. A less dynamic a° behaviour 

for intermediate and old forest stages was also observed by Quegan et al. (2000) in 

pine forest plots in UK. 

For regenerating forest plots at the Manaus study area, a° ranged between -6.5 dB 

and -9 dB (figure 5.9). Most of the plots presented biomass around 130 T ha'̂  and the 

behaviour of a° did not show any marked trend. Figure 5.9 (a), (b) and (c) show the a° 

behaviour of plots ranging in biomass from 91 T ha'̂  to 156.6 T ha"V Some 

coincidence among troughs and peaks from different plots were noticed, but not 

consistently. In figure 5.9 (a), for instance, decreasing a° occurred from February 1993 

to October 1993 for all plots, except for plot 5, which exhibit a distinct behaviour. In 

some dates, as in April 1996 (figure 5.9 (b)), a° seem to be restricted to a narrow 

range of values. 

Plot 16, with low biomass (32 T ha ~̂ ) and the only plot below the backscatter/biomass 

asymptote, had few variations in 0° (figure 5.9(d)) if compared to plots with similar 

biomass in the Tapajos study area. The mature forest plot (figure 5.9(d) plot 17), with a 

biomass above the backscatter/biomass asymptote, presented a nearly stable a° of 

around -7.5 dB. 

For the Tapajos study area a° ranged between -7 and -9 dB (figure 5.10) for all plots in 

regenerating and mature forest. 

Plots 2,4,5 (biomass of 15, 8 and 54 T ha"'' respectively), illustrated in figure 5.10(a), 

had lower backscatter than plots 1 and 3 (both 62 T ha"'). Plot 4 (figure 5.10(a)) had 

the lowest biomass amongst all plots as well as the widest range of a°. The extremes 

values of a° for plot 4 corresponded to the wet season (March 1993) with the highest 
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backscatter and dry season (October 1995) with the lowest backscatter for the time 

span analysed here. Plot 14 (figure 5.10(c)), however, although presenting low 

biomass (25 T ha"^), had a very variable behaviour of a°, without correspondence 

between peaks and troughs and wet and dry season data, respectively. 

The temporal variation found in plots 4 and 14 may have been due to the large 

variability in the data arising from the calculation of mean 0° from relatively few pixels. 

With the exception of plot 6, the plots with biomass close or above the asymptote 

presented approximately the same trends of increasing and decreasing a° (figure 

5.10(b)). 

Mature forest plots (plots 10, 15, 16, 17 and 18) presented the more stable behaviour, 

with similar trends of increasing or decreasing backscatter (figure 5.10 (b) and (d)). 

The six mature forest plots were above the saturation on the sensitivity of radar to 

biomass. Mature tropical forest is known to have small variations in a°, being often 

chosen as a radiometric correction site (Hashimoto etal. 1996, Chapman etal. 1999). 

Although the backscatter/biomass relationship was showed in the previous section, it 

was not expected that it would explain all variation in 0°. The temporal analysis 

enabled the effect of biomass on 0° to be isolated as plots above the 

backscatter/biomass asymptote were considered and presented similar trends of 

increasing and decreasing 0° with time (Quegan etai 2000). High biomass plots such 

as mature forest presented a high 0° that indicated the contribution of another 

biophysical variables (McDonald etal. 1991, Imhoff 1995b, Dobson et al. 1995, Foody 

etal. 1997) and scattering mechanisms (Wang et al. 1995) rather than only biomass to 

the final backscatter values. 

When temporal variations in 0° coincided with dry (low backscatter) and rainy season 

(high backscatter), the importance of soil moisture contribution and the penetration of 

LHH band in young regenerating forest could have been demonstrated (Hess et al. 

1995, Saatchi et al. 1997). However, the small number of young regenerating forest 

plots that followed this behaviour did not seem to confirm this affirmation. 
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Figure 5.9.Temporal behaviour of a° from regenerating and mature forest plots in Manaus 

study area. 
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Figures 5.11 and 5.12 illustrate the residuals (or deviations from the mean) of the 

mean backscatter for selected plots in regenerating and mature forest plots in Manaus 

and Tapajos. The analysis of these residuals did not allow the observation of any 

particular anomaly of a° with time. The tendencies are similar to the ones noticed in 

figures 5.9 and 5.10. Young regenerating forest plots (54 T ha'\25 T ha"' and 33 T ha"'' 

- figures 5.11 and 5.12) had more variable backscatter behaviour, with higher 

deviations from the mean. Mature and intermediate regenerating forest plots residuals 

were much smaller than those of young regenerating forest plots, indicating a greater 

stability due to saturation of the backscatter/biomass relationship. 

Both the Manaus and Tapajos and study areas (figures 5.9 to 5.13) indicated no 

consistent trend of increasing a° with time. 
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Figure 5.11. Residuals from mean backscatter of regenerating and mature forest plots in 

Manaus study area. 
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Figure 5.12. Residuals from mean backscatter of regenerating and mature forest plots in 

Tapajos study area. 
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5.5.5. Temporal behaviour of backscatter and biomass 

For the Manaus data, the tri-dimensional relation of backscatter/biomass/time seen in 

figure 5.13 indicated a cyclical pattern. The peaks were concentrated on the region of 

intermediate biomass, where most of the data were from. The highest peaks in 

backscatter (months 1, 24, 35, 39) corresponded to wet seasons (December to June). 

The peak around month 9 (October 1993) corresponded to an unusual high 

backscatter in the dry season (July to November) and could not be explained. 

The low biomass region, represented only by data from plot 16 (32.6 T h a ' \ 

presented a trough around month 35 (December 1995) which was probably caused by 

the absence of data for months 24 and 39 (January 1995 and April 1996) and a low 

backscatter value in December 1995. 

i : 
s 

Figure 5.13. Biomass and backscatter as a function of time for Manaus data. The dates 

relating to months on the x-axis are in table 5.2. 
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For the Tapajos study area (figure 5.14) a cyclical pattern of backscatter for low 

biomass was observed. Except from month 24 (July 1994) the dry season was 

represented by sharp troughs. Similarly, the peaks corresponded roughly to wet 

season. 

Figure 5.14. Biomass and backscatter as a function of time for Tapajos data. The dates 

relating to months on the x-axis are in table 5.3. 

The water content of vegetation varies seasonally and diurnally (McDonald et al. 1991, 

Gates 1991). The saturation on the SAR response to biomass can hide, depending on 

a series of factors including vegetation and canopy structure, the water content 

influence on <j°. Forests above 90 T ha'̂  are certainly high and dense enough to 

prevent further penetration of L band. Therefore, if soil moisture contribution can not 

be accounted for, the varying water content of vegetation parts can play a role in the 

temporal behaviour of a° (Ahern efa/.1993). 

It has been noted by other authors that SAR imagery acquired during a dry season 

provides the backscatter range needed to develop robust backscatter/biomass 

relationships (Rignot et al. 1997, Luckman et al. 1997a, Saatchi et al. 1997, Grover et 
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al. 1999). In a temporal analysis, data from the dry season only would reduce the 

influence of water content of vegetation and soils in the backscatter/biomass 

relationship. 

Figure 5.15 presents a 3D plot of backscatter/biomass/time using simulated biomass 

values for Manaus data (see section 5.5.3). The fluctuations in a° over time for 

intermediate biomass remained, but less consistently. For the low biomass region 

there is a negative relationship of decreasing backscatter with time. 

Figure 5.15. Simulated biomass and backscatter as a function of time for Manaus data. The 

dates relating to months on the x-axis are in table 5.2. 

For Tapajos data, one of the effects of using simulated biomass accumulation was the 

fading of the cyclical pattern for low biomass (figure 5.16). In addition, the graph 

highlighted the absence of any increasing tendency for a°, even in the light of biomass 

accumulation. 

97 



Temporal analysis of SAR data for regenerating tropical forests 

The adequacy of simulating biomass accumulation needs to be assessed. However, 

the rate of biomass accumulation in regenerating tropical forests is still an object of 

investigation (Chapman and Chapman 1999). Errors could have been introduced by 

not accounting for the age and rapid biomass accumulation on the first years of 

development (Brown and Lugo 1990). 

Figure 5.16. Simulated biomass and backscatter as a function of time for Tapajos data. The 

dates relating to months on the x-axis are in table 5.3. 

When plotting Tapajos and Manaus data altogether (figure 5.17) no added features 

were present. However, there were more data points in the region of low and 

intermediate biomass. The seasonal cycle in low biomass was kept. Fluctuations of a° 

for plots with intermediate biomass were not always consistent and there was no 

single response for similar biomass levels. This was expected after the known 

saturation of SAR response to forest vegetation. Also, variables other than biomass 

and water content certainly play a role in the backscatter response of regenerating and 

mature tropical forests (Imhoff 1995b, Foody etal. 1997). 

It was not possible to detect biomass accumulation with temporal variation in a°. 
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Figure 5.17. Biomass and backscatter as a function of time for Tapajos and Manaus data. The 

dates relating to months on the x-axis are in table 5.4. 

5.5.6. Rainfall and backscatter 

The seasonality of the backscatter in radar images is a function of the water content in 

the vegetation components, the amount of water in the soil and the amount of rainfall 

intercepted by vegetation surfaces. The moisture holding capacities of the soils is a 

function of the topography and drainage characteristics of the study areas (Grover et 

al. 1999). 

The water content of soils, leaves and woody vegetation components was not 

measured in any of the regenerating and mature forest plots. Thus, the sensitivity of 

radar to water content and season was investigated by analysing rainfall data with 

support from GOES and Meteosat sensor's images used to infer cloud conditions and 

therefore rainfall occurring in the study areas. As rainfall is convective and occurs in 
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localised cells In the study areas, no comprehensive conclusions can be drawn from 

this research. 

Figures 5.18 and 5.19 display the total rainfall for the previous day and for the 

cumulative amount of rain for the ten previous days to the date of SAR image 

acquisition. Backscatter from three different biomass stages (young, intermediate and 

mature forest plots) were plotted alongside rainfall data, as they represent different 

behaviour in the backscatter/biomass relationship. 

Figure 5.18 indicated that there was not much coincidence between high rainfall and 

peaks in backscatter for the three forest plots in the Manaus study area. The expected 

higher backscatter for wetter periods did not occur for the three forest plots in all dates 

studied. The available regenerating forest plot with biomass below the 

backscatter/biomass asymptote was not included in all eight SAR scenes analysed, 

being missed in two dates (months 24 and 39). As a result, the backscatter/rainfall 

relationship could not be investigated for January 1995 and April 1996. The influence 

of the ten days cumulative rainfall was not remarkable in the Manaus study area data. 

Figure 5.19 indicated that there was some coincidence between high rainfall and 

peaks in backscatter for the three forest plots in Tapajos study area. The younger 

regenerating forest plot (54 T ha"^) appeared to parallel closer the rainfall values. This 

plot had a biomass below the backscatter/biomass asymptote. The two remaining 

plots in figure 5.17 showed a less marked coincidence between rainfall and 

backscatter distribution. These plots presented biomass values close or above the 

saturation point. Month 60 (July 1997) records showed no rainfall data whatsoever, but 

two plots had a high backscatter. The minimum backscatter occurred for the driest 

month (Month 60) and the maximum backscatter occurred for the wettest month 

(Month 8). 

An interesting feature to note in figure 5.19 is the importance of the rainfall records of 

up to ten days before the SAR image acquisition date. These 10 days rainfall values 

seemed to have an influence in backscatter from the three forest plots. Although 

Tapajos study area is in a relatively flat terrain and presenting soils well drained, the 

water from rainfall might be held in soils for days, depending on the local topography. 

Drainage characteristics of the Tapajos study area were already seen as a dramatic 

influence on temporal backscatter (Grover etal. 1999). 
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Figure 5.18. Rainfall data of one day before the JERS-1 satellite overpass, total cumulative 

rainfall data of ten days before the satellite overpass and backscatter over mature and two 

regenerating forest plots for the Manaus study area. The dates relating to months on the x-axis 

are table 5.2. 
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Figure 5.19. Rainfall data of one day before the JERS-1 satellite overpass, total cumulative 

rainfall data of ten days before the satellite overpass and backscatter over mature and two 

regenerating forest plots for the Tapajos study area. The dates relating to months on the x-axis 

are in table 5.3. 
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5.6. Summary 

The backscattering properties of thirty regenerating forest plots, six mature forest plots 

and three pasture plots were studied at Manaus and Tapajos study areas in Brazilian 

Amazonia using a time series of around four years of JERS-1 SAR images. 

There was a positive backscatter/biomass relationship at both study areas. The 

correlation between the mean backscatter (a°) and biomass for each plot over time 

were r=0.80 for Manaus and r=0.87 for Tapajos data. A model was fitted to the data in 

order to quantify the location of the asymptote in the a7biomass relationship. The 

resulting correlation was r around 0.87, with saturation in o° at biomass levels of 

around 90 T ha'\ That would limit the detection and estimation of biomass for 

regenerating forests under approximately 13 years old (Uhl et al. 1987, Brown and 

Lugo 1990). 

The 07biomass/time plots indicated a cyclical pattern in o° for young regenerating 

forest plots. The pattern was seasonal with the dry season corresponding to lower o° 

and the wet season corresponding to higher a°. This pattern pointed to the influence of 

water content in vegetation and soil on c°. Rainfall was another important source of 

vari^ibn in a° and regenerating forest plots below the cj°asymptote showed 

corresponding high rainfall rates and high a° and vice-versa. 

The o° varied most strongly with time for those regenerating forest plots that had 

biomass levels below the a° asymptote. A similar temporal 0° behaviour for 

intermediate biomass regenerating plots and mature forest plots indicated properties 

other than biomass (i.e. water) influenced the backscatter from tropical forests. 

Biomass accumulation was not detected by change in backscatter over time. The 

information in the 0° temporal domain was not related to biomass but primarily to 

water content of vegetation and soil. 

SAR data from the dry season is recommended for forest studies in order to eliminate 

the influence of varying water content of vegetation and soil in backscatter. 
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CHAPTER SIX 

Spatial analysis of JERS-1 SAR data 

for regenerating tropical forests 

As tropical forest matures, the structure of the canopy changes due to progressive 

replacement of pioneer species by early and late regenerating species. Some of the 

physical changes in the canopy through time are related to an increase in height (tree 

growth), a decrease in canopy surface homogeneity (as emergent trees start to break 

through the canopy) and an increase In canopy thickness (related to more branches 

in trees and differentiation into strata) (Richards 1996). All of these changes influence 

the spatial characteristics of SAR radiation and consequently the texture of SAR 

images. 

In this chapter, the texture of regenerating forests and mature forest canopies on 

JERS-1 SAR images was investigated. The objective was to assess if spatial 

(texture) information derived from SAR imagery could be used to increase the 

correlation between backscatter and the log of biomass (logbio). 

6.1. Spatial analysis and texture 

The spatial analysis of remotely sensed data exploits the relations between pixels in 

the images. Texture measures quantify relations between pixels and are therefore an 

important tool in the spatial analysis of remotely sensed data. 

Texture is an intrinsic property of virtually all surfaces and is visible in, for instance, a 

satellite sensor image of the Earth's surface and a microscopic image of cell cultures. 

It is related to the structural arrangements of surfaces and their relationship to the 
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surrounding environment as "...an organised area phenonnena" (Haralicl< 1979). 

Despite its importance in image data there is no precise definition or standard 

mathematical formulation for texture (Haralick 1979, Soares etal. 1997). 

When interpreting aerial photographs or satellite sensor images the tone and texture 

of objects are among the most important features in their visual recognition. While 

tone refers to the grey level of a resolution cell (pixel in digital images), texture refers 

to the spatial distribution of tonal variations at the neighbourhood of the resolution 

cell (Haralick etal. 1973, Mather 1999). 

Texture is dependent on the scale of observation and is a function of the spatial 

resolution (Mather 1999). Local and regional contrast along with scale and preferred 

orientation of the texture elements are the components of the texture of a digital 

image (Rubin 1990). 

6.2. Overview of texture models 

Texture analysis is based mainly on structural and statistical approaches (Haralick 

1979). The structural approach models texture as a set of primitives that repeat with 

a certain periodicity. A primitive is a connected set of pixels characterised, for 

instance, by a list of attributes such as its grey levels (Haralick 1979). Texture is 

determined by the selection of different types of primitives, the extraction of a set of 

features describing these primitives (e.g., size and shape) and the definition of a 

placement rule (He and Wang 1990). The identification of primitives and definition of 

a placement rule for land covers usually found in remote sensing images can hinder 

the application of the structural approach for textural analysis (He and Wang 1990). 

More commonly used for remote sensing data is the statistical approach, which 

describes texture as a set of local statistical measures based on the spatial 

distribution of grey levels of an image. First- and second-order statistical measures 

are computed over regions or distances of pixels within the images, respectively. 

Several methods and techniques for describing texture based in statistical models 

have been developed and these include the variogram, the grey level co-occurrence 

matrices (GLCM) and local statistics derivation, which were all used in this work and 

are described below. 
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6.3. Texture of radar images 

Visual interpretation of radar images is based largely on texture (Rubin 1990, Raney 

1998). Terms such as rough, smooth, coarse and fine are usually employed for 

describing radar image texture (Lewis and Henderson 1998). 

Texture analysis is relatively straightforward in images from optical sensor 

(incoherent) systems as they contain primarily scene texture. For radar images, 

however, texture comprises scene texture and image texture as a result of the 

dominating inherent image noise called speckle (Raney 1998). 

The presence of speckle in radar data increases the variability of both spatial and 

radiometric information. As a result, some image classifiers based on tone alone 

classify land cover with low accuracy in radar images (Ulaby et al. 1986). Speckle 

also hinders the visual discrimination of land cover in radar images. 

Speckle is commonly assumed to be a multiplicative factor to the SAR scene texture 

(Ulaby et al. 1986, Scares et al. 1997). The following model combines variability due 

to texture and speckle in SAR images (Ulaby etal. 1986): 

l,ij)=IJ i,T,U)F^{j) [6.1] 

where li(j)=lij is the intensity of pixel j in field /, ///, is the mean intensity of field /, Ti(j) 

represents texture as a random within-field variability and (j) represents speckle 

as a fading random variable with a normalised (chi-square) distribution. 

Image pre-processing techniques such as the use of speckle filters or multilook 

averaging of the data can increase the discrimination of land cover in SAR images. 

However, these techniques also reduce local variation and therefore partially remove 

image texture. Although speckle information is present in image texture, the spatial 

variability attributable to intrinsic scene texture is not related to the variability 

attributable to speckle (Ulaby et al. 1986). It follows that the intrinsic scene variability 

causing the image texture can be detected even in the presence of speckle. This 

hypothesis has been corroborated by recent results (as described in section 3.4.1). 
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Figure 6.1 sliows a subset of a JERS-1/SAR image of ttie Tapajos study area with 

the main land covers and types of texture indicated. Water can be considered 

"textureless". The remaining dark, small local contrast surfaces in the image subset 

are examples of recent human activity such as crops, pasture and forest clearings. 

Mature forest is characterised by a fine texture, where, at larger spatial resolutions, a 

close inspection would reveal bright and dark areas as a result of scattering from 

emergent trees and shadowing. Regenerating forests, depending on a series of 

factors (e.g., dominant species, regenerating stage, etc), exhibit less texture than 

mature forest and are generally darker, although are not always discriminated 

visually from mature forest. The absence of emergent trees and a thinner canopy 

(less volume scattering) would partially explain the darker appearance of 

regenerating forests in radar images. Speckle (although reduced by 3-look 

processing and pixel averaging) is also responsible for the fine texture exhibited over 

the image that is usually referred as grainy or "salt-and-pepper" (Lewis and 

Henderson 1998). 

6.4. Texture measures 

Image data recorded on the closest date to the fieldwork were used. JERS-1 SAR 

data from July 1994 (fieldwork August/September 1994) was chosen for the Tapajos 

study area and SAR data from December 1995 (fieldwork September 1995) were 

chosen for the Manaus study area. 

In chapter 5, the mean backscatter for regenerating forest, mature forest and pasture 

plots were estimated from within polygons located in the amplitude images. In this 

chapter, the same polygons were used but this time as subsets of the images. These 

subsets were used as input either as images or as text files for the implementation of 

texture methods described below. The images were not converted to linear units and 

backscatter and the information used was pixel DN. In this chapter, the designation 

GL (grey level) is also used for DN as most of the literature in texture analysis uses 

pixel values as tonal information. 

The statistical texture measures investigated are described next. 
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Figure 6.1. Subset of JERS-1/SAR image of Tapajos study area and its main land covers. 
Corners display UTM coordinates. 
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6.4.1. Texture measures derived from the variogram 

Geostatistics is a set of statistical techniques used to describe the spatial variation of 

variables within a region of interest (Atkinson 1999). These variables are assumed to 

be spatially correlated, that is, in a remote sensing context, pixels close together are 

more likely to have similar values of a property than pixels further apart (Curran and 

Atkinson 1998). The theory of regionalised variables is the framework within which 

geostatistical techniques are based (Matheron 1965). A regionalised variable has 

properties intermediate between a random and a deterministic variable, mainly 

because it presents continuity in space although this continuity is not easily described 

by a function (Davis 1986). 

The variogram (or semivariogram as it is also called) is a core geostatistical tool and 

was first described for remote sensing studies in the late 1980s (Curran 1988, 

Woodcock et al. 1988a, Curran and Atkinson 1998). Variograms were mainly used as 

pre-requisites for interpolation (or kriging) in mapping and cartographical modelling 

(Burrough 1996). Recently, however, the use of variograms for analysis of spatial 

information in remotely sensed images has been widely referenced (Miranda et al. 

1998, Berberoglu et al. 2000, Chica-Olmo and Hernandez 2000). 

The variogram relates the variance of pixels to its spatial location and describes the 

scale and patterns of spatial variability (Curran and Atkinson 1998). Pixel's GL can 

be interpreted as a regionalised variable and spatially characterised by a variogram 

function. 

The variogram is derived by calculating half the average squared difference -

semivariance - between pairs of pixels separated by a distance h - the lag distance 

(Curran 1988). An estimate of the average semivariance (y) is given by: 

H m(h) 

7(h) = — ^ l [ Z ( x , ) - Z(x, + h) f [6.1 ] 

where m is the number of pairs of pixels, x is a pixel location, h is the lag distance 

and Z(Xi) is the pixel value at location x. The larger y the less similar are the pixels 

(Curran 1988). 
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The resulting variogram is used for the fit of a model with known mathematical 

properties. These properties allow the variogram values and descriptors to be used 

for the estimation at unsampled locations (Wallace et ai 2000) or texture analysis 

(Chica-Olmo and Abarca-Hernandez 2000). 

The descriptors of a modelled variogram include information on (i) the distance over 

which pixels are correlated (the range), (ii) the level of random variation within pixels 

(the nugget variance) and (iii) the total variation present in the data (the sill) (Wallace 

et al. 2000). The sill is the summation of the spatially related (structured) and 

uncorrelated (nugget) variance. 

Uses of the variogram and its descriptors in spatial analysis also include their 

connection with scene class properties (for digital classification purposes) and with 

continuous scene variables (for understanding spatial relations between and within 

variables) (Atkinson and Lewis 2000). Figure 6.2 shows an example of a typical 

variogram and its main descriptors. 

range 

structured 
variance 

nugget 
variance 

Lag, h (m) 

Figure 6.2. A variogram and its main descriptors (from Curran and Atkinson 1998). 

The models more commonly fitted to experimental variograms are the spherical, 

exponential, Gaussian and power models (Atkinson 1999). The nugget and spherical 
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models have a defined sill, although the exponential and Gaussian models only 

approach the sill asymptotically. These types of model are called bounded. The 

power model (of which the linear is a special case) does not present a sill and is 

called unbounded (Atkinson 1999). 

Variograms were computed for each plot located within the SAR images using the 

software GSTAT (Pebesma and Wesseling 1998). Transects of pixels were used as 

the regenerating and mature forest plots presented different shapes and sizes. This 

software allows the definition of lag spacing and the maximum distance for which 

semivariance is calculated. The settings were 25 metres for lag spacing (equal to 

pixel size) and 250 m (or 10 pixels) for maximum distance. The plots were assumed 

to be isotropic (with the same variation for any direction) and so the transects were 

taken with the largest number possible of pixels in any direction. Subsequently 

variograms were fitted using nugget and spherical models. 

6.4.2. Texture measures derived from the grey level co-occurrence matrix 

(GLCM) and sum and difference histogram (SADH) 

The application of a set of textural measurements to remotely sensed data began 

with the second-order textural measures based on Haralick's grey level co-

occurrence matrix (GLCM) (Haralick et al. 1973). Distance and angular spatial 

relationships among grey levels are summarised in a GLCM, as it is a measure of the 

probability of occurrence of two grey levels separated by a given distance in a given 

direction (Mather 1999). GLCM has been used successfully in a variety of SAR 

applications, including land-cover mapping (Kurosu et al. 1999, van der Sanden and 

Hoekman 1999, Wu and Linders 1999), crop discrimination (Soares et al. 1997) and 

forest studies (Luckman et al. 1997, Kurvonen et al. 1999, van der Sanden and 

Hoekman 1999). 

To determine the spatial information present in a digital image, a co-occurrence 

matrix is computed on a pixel neighbourhood delimited by a moving window of a 

given size. Each element P(i,j,d,6) of the co-occurrence matrix represents the relative 

frequency with which two neighbouring pixels (separated by a distance d and having 

an angular relationship 9 ) occur on the image, one with grey level / and the other 

with grey level j. Subsequently, statistics are computed from the grey level co-
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occurrence matrix and they describe the spatial information according to the relative 

position of the matrix elements (Mather 1999). 

Figure 6.3 illustrates the construction of a four-directional co-occurrence matrix. 

Figure 6.3(a) displays a 3 x 3 window from an image ranging from 0 to 3 grey levels, 

(b) shows the general form of any grey level co-occurrence matrix obtained from (a). 

Pairs of neighbour pixels are considered in orientation and the grey level of these 

pixels forms the index for incrementing an entry of the matrix. Figures 6.3(c) to 6.3(f) 

represent the co-occurrence matrices derived for four angular orientations using 

distance of one pixel between two neighbouring pixels. 

0 1 3 
0 0 1 
2 0 1 

0 ° 

(a) 

Horizontal 
2 3 1 0 " 

3 0 0 1 

1 0 0 0 

0 1 0 0 

(c) 

Left diagonal 

P = 
135° 

Gr 0 1 2 3 
0 #(0,0) #(0,1) #(0,2) #(0,3) 
1 #(1.0) #(1.1) #(1,2) #(1,3) 
2 #(2,0) #(2,1) #(2,2) #(2,3) 
3 #(3,0) #(3,1) #(3,2) #(3,3) 

P — 
90" 

(b) 

Vertical 
4 1 1 0 

1 2 0 1 

1 0 0 0 

0 1 0 0 

(d) 

Right diagonal 
4 1 0 0" 0 2 1 1 

1 2 0 0 2 0 0 0 
p „ = 

0 0 0 0 45° 1 0 0 0 

0 0 0 0 1 0 0 0 

(e) (f) 

Figure 6.3. An example of the construction of the co-occurrence matrices, (a) 3 x 3 image 
quantised to four grey levels (0-3). (b) general form of any spatial co-occurrence matrix for an 
image quantised to four grey levels (0-3). #(i,j) represents the number of times grey levels / 
and j have been neighbours, (c)-(f) spatial co-occurrence matrices derived for four angular 
orientations using distance 1. 

\ 
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The greater the number found in the diagonal of the GLCM the more homogeneous 

is the texture for that part of the image. Several statistical measures can be extracted 

from the GLCM to describe specific texturai characteristics of the image (Haralick et 

al. 1973). 

The texture measures analysed in this work are presented below. A short description 

is included for the six best known. A more complete theoretical description of the 

most commonly used co-occurrence measures can be found elsewhere (Haralick et 

al. 1973, Baraldi and Parmiggiani 1995, Soares et al. 1997). Each element P(/,y)AxAy 

represents the relative frequency with which two neighbouring pixels separated by a 

distance of Ax columns and Ay lines occur (Soares etal. 1997). 

Entropy (enth): 

= - % % P(/, log P(/, [6.2] 
'• j 

Entropy is a measure of the degree of disorder in an image. Entropy is larger when 

the image is texturally non-uniform or heterogeneous and approaches its maximum 

when all GLCM entries have similar contents, indicating an image with completely 

random pixel values. Entropy and energy are inversely correlated. 

Energy (eneh): 

= Y ^ P ( / , y ) L y [6.3] 
'• J 

Also called angular second moment and uniformity, energy is a measure of texturai 

uniformity or pixels pairs repetitions. When the pixels of the image window under 

consideration have similar grey levels, energy reaches its maximum (equal or close 

to 1). Therefore, constant or periodic distribution of grey levels over the window will 

produce high values for energy. 
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Contrast (cont): 

' I 

Contrast is a measure of the degree of spread of the grey levels or the average grey 

level difference between neighbouring pixels. The contrast values will be higher for 

regions exhibiting large local variations. The GLCM associated with these regions will 

display more elements distant from the main diagonal, than regions with low contrast. 

Local statistics contrast and GLCM contrast are strongly correlated. 

Homogeneity (horn): 

H O M ^ , [6.5] 
/ j 1 + (/ - J) 

Also called inverse difference moment, homogeneity is a measure of lack of 

variability or the amount of local similarity in the scene. High homogeneity values 

suggest small grey tone differences in pair elements. In this case, the associated 

GLCM will present elements around the main diagonal. Contrast and homogeneity 

are inversely correlated. 

Correlation (cor): 

CO RAX. Ay = [6.6] 
aioc 

Correlation is a measure of grey level linear dependencies in the image. High 

correlation values denote a linear relationship between the grey levels of pixel pairs. 

A completely homogeneous area is a limiting case of linear-dependency, for which 

correlation reaches its maximum (equal to 1). Correlation is uncorrelated to entropy 

and energy, i.e., to pixel pair repetitions. 
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Chi-square (chi): 

Chi-square is a normalisation of the scene energy to the grey levels linear 

dependencies of the image. It is correlated to energy. 

An alternative to the GLCM method is the replacement of the co-occurrence matrix 

by estimates of first order probability functions in its principal axes, namely the sum 

and difference histograms (SADH) (Unser, 1986). New variables defining the sum 

and difference of grey levels / and y are created and from them a new reduced matrix. 

Each element of the sum vector is defined as 

P' {k)Ax. Ay = X S P('' V/ + y = /c 
I J 

and each element of the difference vector is defined as 

P ° (/)ax, A y = X E V | / - j \ = I . 

i j 

Although derived from a "reduced GLCM", the measures described next have the 

same characteristics as mean and variance (section 6.4.3) and as GLCM derived 

entropy and energy (shown above). The following measures were extracted using 

SADH technique (Scares etal. 1997): 

Mean of the sum vector (sme): 

SMEAX, Ay = ^ kP® (K)Ax, Ay [ 6 . 9 ] 
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Variance of the sum vector (sva): 

SIMax, Ay = ^ {K — MSAX, Ay) P® {I<)AX, Ay [6 .1 0 ] 

k 

Energy of the sum vector (sene): 

SENEAX, Ay = (k)^ AX, Ay [6.11] 

Entropy of the sum vector (sent): 

SENTAX, ay = % P® (/f)Ax, Ay log P® (/c)ax, Ay [6.12] 

Mean of the difference vector (dme): 

DMEAX, Ay = % IP^{I)AX, Ay [6 .1 3 ] 

Variance of the difference vector (dva): 

D VAAX, Ay = ^ (/ — DMEAX, Ay) ̂  P ̂  (I)Ax, Ay [6.14] 
/ 

Energy of the difference vector (dene): 

DENEAx.Ay = ^P'^{lfAx.Ay [6.15] 
I 

Entropy of the difference vector (dent): 

DENTAx.Ay = -^P°(/)Ax,AylogP°(/)Ax,Ay [6.16] 
I 
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The extraction of the texture measures based on the GLCM were performed using a 

code developed using IDL (Interactive Data Language) and ENVI (Environment for 

Visualising Images) functions (Renno et al. 1998). Regenerating and mature forest 

and pasture plots were used as image subsets and the GLCM measures were 

calculated within a moving window of a given size. 

An optimal window size for calculating GLCM texture measures is a compromise 

between providing enough spatial information to characterise the land cover and 

limiting overlapping textures between different land covers (Ulaby et al. 1986). 

Window sizes of 3 x 3 and 5 x 5 pixels (corresponding to areas of 75 m x 75 m and 

125 m x 125 m respectively) were chosen based on (i) the variogram for each plot 

and (ii) prior knowledge of the small size of some regenerating forest plots. 

One drawback of the GLCM approach is a requirement for relatively large 

computational resources and the production of a sparse matrix, depending on the 

quantisation level of the image studied. For a 256 grey level image (8-bit) the GLCM 

has 65536 entries, which can result in a very sparse matrix, depending on the region 

studied (Soares et al. 1997). Diminishing the quantisation levels of an image, as long 

as the textural properties of the image are preserved, can reduce GLCM complexity 

and sparseness (Dutra and Huber 1999). 

Methods for reducing the grey level range of an image include uniform and equal 

probability quantisation. In the uniform quantisation method grey levels are quantised 

into separate bins with uniform spaces, without taking into consideration the grey 

level distribution of the image. By contrast, in the equal probability quantisation 

method each bin has a similar probability, thus producing a near uniform histogram 

(Mather 1999). 

Although the equal probability quantisation method is generally recommended for 

texture analysis (Mather 1999), some authors found no difference when analysing 

texture in images reduced by both methods (li, pers. comm. 2000). Following Renno 

etal. (1998) this work used the method of uniform quantisation. 

Table 6.1 illustrates the window sizes and quantisation levels which were tested 

when deriving GLCM textures measures: 
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Table 6.1: Window sizes and quantisation levels used in the calculation of GLCM and 

SADH derived texture measures. 

Bits Grey levels Window si: 

2 4 5x5 pixels 

4 16 5x5 pixels 

6 64 5x5 pixels 

8 256 5x5 pixels 

2 4 3x3 pixels 

4 16 3x3 pixels 

6 64 3x3 pixels 

8 256 3x3 pixels 

6.4.3. Texture measures derived from local statistics 

Local statistics characterise the moments of a neighbourhood of individual pixels in a 

particular segment or region of an image. Local statistics have been used extensively 

to quantify texture in SAR images (Soares et al. 1997, Kurvonen and Hallikainen 

1999, Haack and Bechdol 2000, Saatchi etal. 2000). 

The local statistics measures derived from the regenerating forest, mature forest and 

pasture plots were analysed in this work. They are presented below: 

Notation: 
P(i) F(i)/n 
F(i) -- frequency for grey level (GL) / 
n - number of pixels 
M = M = ^ / P ( / ) (mean) 

/ 

V V - Mf P{i) (variance) 
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Mean Absolute Deviation (mad): 

I I ' 
MAD = ^ [6.17] 

n 

Mean absolute deviation is a measure of heterogeneity similar to the variance, 

increasing with greater DN differences from the mean. 

IVIedian (med): 

The median divides a frequency distribution into two halves: half the scores are 

above the median and half are below the median. When n is even, the median is 

calculated as the midpoint between the (n/2)th and the [{n/Z) + 1]th pixel. The median 

is less sensitive to extreme scores than the mean and this makes it a more suitable 

measure than the mean for image data with highly skewed distributions (Sokal and 

Rohlf 1995). 

Entropy (ent): 

ENT = -J^P(i)\og[P{i)] [6.18] 
/ 

The meaning of local entropy is the same as GLCM derived entropy; a measure of 

the amount of disorder in an image. 

Energy (ene): 

ENE = J^[P{i)f [6.19] 
I 

Correlated to GLCM energy as a measure of image homogeneity and is at a 

maximum when DNs are constant spatially (Saatchi etal. 2000). 
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Skewness (ske): 

£(/- /W)3p(/) 

SKE = ^ — [6.20] 

Skewness is a measure of the asymmetry of the DN distribution in an image. A 

normal DN distribution is symmetric and therefore has no skew (Lane 2000). 

Kurtosis (kur): 

KUR = ̂  — [6.21] 

Kurtosis is a measure of the relative peakedness (platykurtic) or flatness (leptokurtic) 

of the DN distribution. DN distribution with same kurtosis as the normal distribution is 

called "mesokurtic" (Saatchi etal. 2000, Lane 2000). 

Coefficient of Variation (CV): 

CV = ^ [6.22] 
M 

CV is also a measure used to characterise the inhomogeneity of a DN distribution 

and it is particularly useful to compare relative amounts of variation in distributions 

with different means (Sokal and Rohlf 1995). 

Local statistics texture measures were extracted using the same code IDL/ENVI 

(Renno et al. 1998). Regenerating forest, mature forest and pasture plots were used 

as image subsets and the texture measures were calculated for all whole subsets. 

119 



Spatial analysis of SAR data 

6.5. An experiment using simulated images 

Prior to analysing relationsliips between texture measures, logbio and backscaMer, 

an investigation of the texture measures reviewed in section 6.4 was performed. The 

objective was to identify those texture measures that maximised the discrimination of 

textural information independently of image contrast i.e., backscatter. Different levels 

of "contrast" (tonal information) and "dumpiness" (textural information) were created 

by means of nine matrices. These matrices were conceived as simulated digital 

"images", with DN varying from 1 to 9, representing areas covered with vegetation 

disposed in big clumps, small clumps and randomly. Inside these three basic types of 

spatial arrangement (or texture), the contrast of these images was simulated as high, 

medium and low. The controlling factors were (i) mean ( X ) , which was kept constant 

in the images and (ii) standard deviation (S), which was adjusted by changing DN 

according to the intended contrast. The design of simulated images is summarised in 

table 6.2. 

Table 6.2. Simulated images, with varying degrees of dumpiness and 

contrast. Standard deviations (S) defining contrast level are also shown: 

b refers to big clumps, s refers to small clumps and r refers to random, 

while contrast is defined as high, medium (med) and low. 

CLUMPINESS 

Big clumps Small clumps Random 

W) High (S>2.5) bhigh shigh rhigh 

^ Medium (Ss 1.5) bmed smed rmed 
z . 
O L o w ( S < 1 ) blow slow rlow 
o 

This experiment involved a small illustrative data set, which provided an indication of 

algorithm sensitivity to different textures and contrast but did not account for all 

possible textural variation in real SAR data. The simulation of real SAR images would 

include a wider DN range and the inclusion of noise (to account for speckle) although 

that was not contemplated here. The nine matrices along with their representation as 

simulated digital images (in which minimum and maximum DNs were represented as 

black and white, respectively), are shown in figure 6.4. The random arrangement 

(figures 6.4.g,h,i) of the simulated images is visually similar to the real SAR images of 

tropical vegetation (compare with figure 6.1). 
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9 

9 
9 

9 
9 

a. Big clumps, high contrast ( X = 3.56, S = 3.75). 

b. Big clumps, medium contrast ( X = 3.56, 5 = 1.51). 

4 4 4 3 3 3 4 4 4 4 
4 4 4 3 3 3 4 4 4 4 
4 4 4 3 3 3 4 4 4 4 
3 3 3 4 4 4 3 3 3 3 
3 3 3 4 4 4 3 3 3 3 
3 3 3 4 4 4 3 3 3 3 
4 4 4 3 3 3 4 4 4 4 
4 4 4 3 3 3 4 4 4 4 
4 4 4 3 3 3 4 4 4 4 
3 4 3 3 3 3 4 4 4 4 

c. Big clumps, low contrast ( X = 3.56, S = 0.5). 

Figure 6.4. Numerical matrices and corresponding simulated digital images. Mean ( X ) and 
standard deviation (S) are shown. 
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8 1 1 1 1 8 8 1 1 1 

1 1 8 8 1 1 1 1 8 8 
9 1 1 1 1 8 9 1 1 1 

1 1 9 9 1 1 1 1 9 9 
8 1 1 1 1 8 8 1 1 1 
1 1 8 8 1 1 1 1 8 8 
8 1 1 1 1 9 8 1 1 1 
1 1 9 9 1 1 1 1 9 9 
8 1 1 1 1 8 8 1 1 1 
1 1 8 8 1 1 1 1 8 8 

d. Small clumps, high contrast ( X =3.56, S = 3.52). 

e. Small clumps, medium contrast ( X =3.56, S = 1.66). 

f. Small clumps, low contrast ( X =3.56, S = 0.57). 

Figure 6.4 (cont). Numerical matrices and corresponding simulated digital images. Mean 

( X ) and standard deviation (S) are shown. 

122 



Spatial analysis of SAR data 

7 1 7 6 1 6 1 1 1 6 
6 1 6 1 6 2 6 1 6 1 
1 2 1 1 6 1 6 2 2 1 
6 7 7 1 6 1 6 7 6 6 
1 1 1 6 1 6 1 1 1 7 
6 2 1 1 6 1 6 2 6 1 
1 7 1 6 1 7 1 7 1 6 
7 1 6 1 6 1 1 1 6 1 
6 7 7 6 1 6 1 7 1 6 
7 1 2 6 1 6 1 1 1 6 

g. Random, high contrast ( X -3.56, S= 2.62). 

4 2 4 3 2 7 4 3 4 5 
2 3 4 3 3 3 2 3 2 4 
2 3 4 3 3 5 2 2 2 3 
4 7 2 7 3 3 4 5 4 2 
7 5 4 5 5 4 6 3 6 4 
4 3 5 5 3 6 4 3 4 5 
3 2 3 6 2 5 3 2 3 5 
2 3 4 3 3 3 2 3 2 4 
2 7 2 3 7 4 2 5 2 2 
2 3 4 3 3 3 2 3 2 4 

h. Random, medium contrast ( X =3.56, S = 1.4). 

w 

i. Random, low contrast ( X =3.56, S = 0.72). 

Figure 6.4 (cont). Numerical matrices and corresponding simulated digital images. Mean 

( X) and standard deviation (S) are shown. 
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In all 22 texture measures derived from the GLCM, SADH (using 3 x 3 pixel window 

and 256 grey levels) and local statistics were extracted from the simulated images 

and variograms were computed, fitted with spherical models and used to calculate a 

further five texture measures. 

The texture measures able to differentiate dumpiness levels regardless of contrast, 

and therefore texture in real data, were selected following analysis of variance (figure 

6.5). 

BIG CLUMPS 
high 
medium 
low 

CONTRAST 

SMALL CLUMPS 
high 
medium 
low 

CONTRAST 

RANDOM 
high 
medium 
low 

CONTRAST 

5 variogram 
derived 
texture 

measures 

simulated 
images 

14 GLCM 
and SADH 

derived 
texture 

measures 

8 local 
statistics 
texture 

measures 

ANOVA to identify significant differences in texture due 
to dumpiness independent of contrast 

Apply selected texture 
measures to SAR images 

Assess if textural information increases 
the correlation between 

backscatter and biomass of 
regenerating tropical forest 

Figure 6.5. An experiment using simulated images. 
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6.6. Statistical and analytical procedures for evaluating texture measures 

An evaluation of the ability of textural information to increase the correlation of 

backscatter and log of biomass (logbio) was performed using two data sets: first, 27 

texture measures derived from simulated images (as described above) and second, 

selected texture measures derived from "real" SAR images of both study areas. 

The evaluation involving simulated images aimed at selecting texture measures that 

recorded textural information independently of contrast (section 6.5). The mean DN 

of texture bands created from simulated images and descriptors from the modeled 

variograms were input to an Analysis of Variance (ANOVA), with differences 

assessed at 5% (a=0.05) significance levels. ANOVA highlighted the sensitivity of 

certain texture measures to particular textural features and allowed the selection of 

measures to be used on "real" SAR images (figure 6.5). 

The texture measures selected as described above were derived from SAR data. 

High image quantisation levels generate sparse GLCM (Dutra and Huber 1999), 

which may compromise the accuracy of the probability estimates for GLCM and 

SADH and thus derived texture measures (Bijisma 1993). The window size used for 

calculating GLCM texture measures determine the spatial characterisation of the 

study plots. Therefore, an additional investigation was undertaken using different 

quantisation levels and window sizes when deriving GLCM and SADH texture 

measures (table 6.1). 

The decision to consider and/or discard a texture measure was based on the 

correlation between the texture measure and logbio. The procedures were: 

(i) Scatterplots between texture measures and logbio were produced to identify 

trends in these relationships, (ii) These relationships were quantified by correlation 

analysis with Spearman's rank test. Quantisation levels and window sizes were 

tested and the ones that provided the strongest correlation with logbio were selected, 

(iii) All the texture measures that were correlated strongly with logbio were selected. 

More details of this procedure are provided in section 6.7.5. (iv) Data from the two 

study areas were combined and backscatter added to the analysis. Logbio was 

regressed against backscatter and the texture measures in a stepwise multiple 
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regression procedure. The texture measures that increased the correlation between 

backscatter and logbio were identified and models relating these three variables were 

proposed. 

6.7. Results 

The results were presented in two sections: 

• In section 6.7.1. simulated images and the utility of 27 texture measures were 

explored. The texture measures that maximised the discrimination of textural 

information independently of image contrast were selected for use in section 6.7.2. 

• In section 6.7.2. the measures selected were applied to real SAR data. The 

textural information was related to the log of biomass of the regenerating forest, 

mature forest and pasture plots in Manaus and Tapajos study areas. 

6.7.1. Texture measures in simulated images 

The 27 texture measures derived from the simulated images are discussed here. The 

main concern was to check the potential utility of those measures in discriminating 

texture regardless of contrast. The statistical significance of the differences in texture 

values for levels of dumpiness and contrast were assessed by ANOVA. Intuitive 

expectations about the performance of each texture measure were not always met, 

as human perception of texture is subjective. 

6.7.1.1. Texture measures derived from the variogram 

A summary of the variogram descriptors is presented in table 6.3. The modeled 

variograms indicated no nugget variance in any of the models as there was neither 

noise nor sub-pixel spatial variability. 
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Values of range tended to increase according to dumpiness and were indicative of 

the size of elements within the images. In big dumps images, range corresponded 

roughly to the size of the clumps (three pixels). For small clumps images ranges 

were smaller than in big clumps and were indicative of the average spacing of 

clumps (one pixel). Random images presented decreasing values of range for 

increasing contrast levels. Range was the only variogram-derived measure that 

seemed invariant to contrast (table 6.3) 

Table 6.3. Semivariance at lags 1, 2 and 3, sill and range of variograms 

produced from simulated images and fitted with spherical models. 

lagi Iag2 lags sill range 
High contrast 4.8 9.34 13.76 15.17 3.62 

Big Medium contrast 1.2 2.03 2.65 2.34 2.56 
clumps Low contrast 0.12 0.21 0.3 0.26 2.57 

High contrast 13.96 13.72 13.7 12.38 0.97 
Small Medium contrast 2.16 3.59 2.47 2.77 1.7 

clumps Low contrast 0.31 0.48 0.29 0.33 1.26 
High contrast 9.14 5.27 7.55 6.87 0.97 

Random Medium contrast 1.89 2.02 1.94 2.02 1.27 
Low contrast 0.45 0.58 0.49 0.51 1.42 

Semivariance showed increasing values with lag for big clumps images. For small 

clumps and random images no pattern was found and the semivariance either 

increased or decreased with lag. Decreasing values of semivariance occurred for 

decreasing contrast levels. 

Sill values were distinct according to contrast levels and operated as indicators of the 

total variance of the images, which was obviously high for high contrast and 

decreased for medium and low contrast. 

6.7.1.2. Texture measures derived from GLCM and SADH 

Although not always statistically significant, the different values of GLCM derived 

texture measures (x) were normalised ((x - x mm) / (x max - x mm)) for comparison. They 
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are plotted in figures 6.6 and 6.7. As tine normalisation process produced values 

ranging between 0 and 1, data trends must be interpreted with care. 

Values of GLCM contrast and entropy were very similar and both increased with 

decreasing dumpiness (figure 6.6). These measures contain information about DN 

disorder and scatter, they are, therefore, more likely to differentiate dumpiness than 

contrast. 

GLCM energy and homogeneity values were similar for big clumps and small clumps 

images (figures 6.6). In addition, for both measures random images exhibited 

minimum and maximum values for medium and low contrast, respectively, indicating 

their sensitivity to contrast. The theory underlying these measures is related to 

uniformity and local similarity of pixel values and therefore these measures are 

unlikely to be suitable for differentiating dumpiness. 

GLCM correlation and chi-square values varied with dumpiness (figure 6.6). Contrast 

levels were not distinct, as in big clumps images correlation mean values were very 

similar. High correlation values corresponded to low chi-square values and vice-

versa, denoting the diverse information contained in these two measures. 

The first two measures derived from sum of vector technique - mean and variance -

varied according to dumpiness and, to a less extent, to contrast (figure 6.7). Entropy 

of the sum vector values varied with contrast, especially for small clumps and 

random images. Energy of the sum vector values, however, did not differentiate 

either dumpiness or contrast (figure 6.7). 

The measures derived from the difference vector - mean and variance - did 

discriminate dumpiness and contrast (figure 6.7). For entropy and energy of 

difference vector, the discrimination of dumpiness and contrast was less apparent 

(figure 6.7). That made those measures less likely to discriminate texture in real SAR 

data. Values of entropy and energy of sum and difference vectors were similar with 

basically the same trends and magnitudes. 
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Figure 6.6. Normalised mean values of GLCM derived texture measures from simulated 

images. Codes for the simulated images are: b for big clumps, s for small clumps and r for 

random; high, med and low for high, medium and low contrast. 
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Figure 6.7. Normalised mean values of SADH derived texture measures from simulated 

images. Codes for the simulated images are: b for big clumps, s for small clumps and r for 

random; high, med and low for high, medium and low contrast. 
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6.7.1.3. Texture measures derived from local statistics 

The local statistics measures were not normalised due to the negative values for 

skewness and kurtosis (table 6.4). 

Table 6.4. Texture measures derived from local statistics for simulated images. 

mad med ent ene ske kur cv 
High contrast 1.98 1.53 0.09 0.34 0.12 -0.51 0.34 

Big Medium contrast 1.83 1.79 0.11 0.31 0.03 -0.69 0.18 
clumps Low contrast 1.72 1.72 0.11 0.30 0 -0.78 0.06 

High contrast 1.83 1.79 0.11 0.31 0.03 -0.69 0.18 
Small Medium contrast 1.65 1.52 0.15 0.25 0.11 -0.91 0.23 

clumps Low contrast 1.74 1.72 0.17 0.23 0.13 -0.82 0.08 
High contrast 1.68 1.31 0.22 0.20 0.10 -0.96 0.39 

Random Medium contrast 1.83 1.70 0.28 0.15 0.22 -0.50 0.18 
Low contrast 1.76 1.92 0.15 0.28 -0.56 -0.08 0.09 

The local statistics entropy was sensitive to dumpiness as it presented low values for 

big and small clumps images, opposing to the higher values found for random 

images (i.e., higher heterogeneity). Energy values, however, were less sensitive to 

dumpiness and contrast. Coefficient of variation decreased with image contrast for 

each dumpiness level making it unsuitable for quantifying texture in real data. The 

remaining measures, i.e., mean absolute deviation (mad), median, skewness and 

kurtosis, did not differentiate dumpiness. 

6.7.1.4. Statistically significant differences in texture for different levels of dumpiness 

and contrast 

Analysis of variance (ANOVA) was performed to test if differences in the values of 

texture measures identified above were statistically significant for different levels of 

contrast and different levels of dumpiness. The ANOVA results show p-values for 

testing those differences at a=0.05 (table 6.5). 
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None of the texture measures considered was able to discriminate contrast and 

dumpiness concomitantly. Contrast was differentiated by five texture measures; 

geostatistical measures such as semivariance at lags 1, 2 and 3 (Iag1, Iag2 and Iag3, 

respectively), variogram's sill and coefficient of variation (CV). Semivariance 

estimates have been used as "semivariogram signature" of tropical vegetation types 

and have been used successfully in their classification (Miranda et al. 1996, 1998). 

Sill is a measure of image contrast and was expected to vary accordingly (Cohen et 

al. 1990). CV was, as already pointed out, a useful measure for discriminating 

tropical forest regeneration stages (Luckman et al. 1997, Yanasse et al. 1997) and 

boreal forest types (Kurvonen and Hallikainen 1999). 

dumpiness (texture) was differentiated by range, a measure of the "coarseness" of 

the image (Rubin 1990) and also of the size of image elements (Treitz and Howarth 

2000). 

GLCM derived measures such as contrast (conh), entropy (enth), correlation (cor), 

chi-square (chi) and mean of the sum vector (sme) also differentiated dumpiness. 

Contrast, entropy and correlation are some of the more relevant measures that can 

be derived from the GLCM (Weszka et al. 1976, Haralick 1979, Baraldi and 

Parmigiani 1995). They have been used extensively for texture analysis in forest 

mapping (Ulaby et al. 1986, Kushwaha et al. 1994), land cover mapping (van der 

Sanden and Hoekman 1999, Korusu et al. 1999) and crop discrimination (Soares et 

al. 1997) with varied degree of success. The assumption that preceded initial 

computations of GLCM was that it contains all textural information of an image 

(Haralick et al. 1973) and justifies the inclusion of some of its derived measures for 

dumpiness differentiation. 

Local statistics entropy (ent) also differentiated dumpiness levels, despite the small 

DN range of the simulated images (1-9). 

The remaining 15 measures (out of 27) did not show any sensitivity either to 

dumpiness or contrast. 
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Table 6.5. P-values for differences in contrast and dumpiness levels. 

The values statistically significant at a =0.05 were indicated in bold. 

CONTRAST CLUMPINESS 

Iag1 0.013 0.736 

Iag2 0.011 0.734 

lags 0.001 0.886 

sill 0.003 0.855 

range 0.991 0.005 

conh 0.838 0.031 

enth 0.974 0.049 

eneh 0.627 0.664 

horn 0.105 0.485 

cor 0.904 0.006 

chi 0.943 0.012 

sme 0.942 0.029 

sva 0.546 0.524 

sent 0.083 0.314 

sane 0.248 0.759 

dme 0.070 0.612 

dva 0.082 0.617 

dent 0.269 0.196 

dene 0.519 0.198 

mad 0.595 0.462 

var 0.065 0.710 

ske 0.342 0.688 

kur 0.789 0.463 

cv 0.020 0.865 

med 0.300 0.973 

ent 0.753 0.044 

ene 0.733 0.078 

133 



Spatial analysis ofSAR data 

In summary, the seven measures identified as sensitive to dumpiness but not 

contrast were: 

variogram range (range). 

GLCM contrast (conh), 

GLCM entropy (enth), 

GLCM correlation (cor), 

GLCM chi-square (chi), 

SADH mean of sum vector (sme), 

local statistics entropy (ent) 

6.7.2. Texture measures in SAR images 

The above 7 measures derived from JERS-1 SAR images were used to determine 

the relationship between texture and log of biomass of regenerating forests, mature 

forests and pasture plots. 

6.7.2.1. Texture measure derived from variogram - range 

Variograms have been used to characterise the spatial structure of vegetation. These 

have been calculated using field transect data (Wallace et al. 2000) or from 

combined field and remotely sensed data (Cohen et al. 1990, Bijisma 1993, Lacaze 

et al. 1994, Treitz and Howarth 2000). Resulting trends of range and sill variation as 

a function of forest type, for example, were observed using variogram and modelled 

variogram descriptor analyses (Treitz and Howarth 2000). Such empirical studies 

have demonstrated that range is determined by the size of objects in the image 

(Woodcock etal. 1988b). 

Figure 6.8 shows a variogram for 3 selected plots in the Tapajos study area. 

Semivariance estimates did not provide a unique "signature" for regenerating and 

mature forest plot. The values shown in figure 6.8 were derived from pixel transects, 

where only a sample of data values was considered. Pixel transects were not as 
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representative of the vegetation types in the images as matrices of pixels would have 

been (Cohen et al. 1990). However transects were used here due to software 

limitations. 

The variograms (figure 6.8) had a multifrequency shape (Curran 1988) for the 

overlapping regenerating and mature forest plots and no pattern was recognised. 

The remaining plots in both study areas are not presented here as they showed 

variograms similar to the ones seen in figure 6.8 with no trend apparent. The range of 

influence was about three lags for the three plots, which can be a sign of the low 

spatial correlation in the data as a consequence of a random component in pixel DN 

introduced by speckle noise. The variogram results indicated the need for modelled 

variogram analysis to assess if the range would act as an indicator of vegetation 

structure in SAR images. 

387 T ha 

15Tha"' 

25 T ha"' 

200 300 
Distance (meters) 

- Regenerating forest —Regene ra t i ng forest -4* - Mature forest 

Figure 6.8. Variograms derived from three forest plots (with corresponding biomass 

estimates) in JERS-1/SAR images of Tapajos study area. 

The ranges of the modelled variograms for both study area plots are presented in 

table 6.6. The variograms for plots 3, 7 and 8 in Manaus study area could not be 

modelled using a spherical model and were therefore discarded. Biomass estimates 

and dominant genera for each plot are also included in table 6.6. 
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Comparison among relative values of range was performed with care, as no 

indication of goodness of model fit was available for the different variograms 

produced. 

Table 6.6. Range of variograms for pixel transects. Spherical models were 

fitted to the variograms. Plot number, biomass and dominant genera in 

Manaus (m) and Tapajos (t) study areas. NA refers to not available. 

Plot (biomass - T ha Dominant genera Range(m) 
m1 (144.1) Cecropia 185 
m2 (131.3) Vismia, Cecropia 119 
m4 (144.8) Cecropia, Guatteria 205 
m5 (134.7) Vismia, Beiiutia 49 
m6 (124.3) Vismia, Cecropia 113 

m9 (91) Cecropia 43 
mIO (127) Cecropia 164 

m i l (126.1) Cecropia, Laetia 93 
m12 (131.5) Vismia 181 
m l 3 (156.6) Laetia, Vismia 73 
m14 (117.4) Vismia, Miconia 39 
m15 (116.3) Goupia, Vismia 156 
m16 (32.6) Goupia, Vismia 129 
m l 7 (387) NA 50 

m l 8 (2) NA 170 
t1 (62) Cecropia 82 
t2(15) NA 232 
t3 (62) Poeciianthe, Cecropia 48 
t5 (54) Vismia 165 
16 (82) Vismia 176 
t7 (78) Mangifera 45 

t8 (104) Guatteria 131 
t9 (75) Orbignya 100 

tlO (181) NA 49 
t i l (101) Sioanea 93 
t12(42) Orbignya, Poeciianthe 45 
t13 (89) Vismia, Guatteria 90 
t14(25) Vismia 106 

t15 (387) NA 188 
t16 (387) NA 144 
t17(387) NA 93 
t18 (387) NA 93 

t19(2) NA 49 
t20 (2) NA 79 
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Dominant genera were included in table 6.6. to indicate upper canopy structure, 

which was smooth for Cecrap/a-dominated and rougher for V/sm/a-dominated 

regenerating forest plots (Lucas et al. 2000). Shadows of emergent trees provide the 

roughness of upper canopies of mature forest and older stages of forest regeneration 

(Grover et al. 1999). Range values in table 6.6 varied from 39 to 205 meters 

suggesting different canopy structure and roughness patterns, although no trend was 

evident. A relationship between range and logbio was not observable, probably due 

to the absence of a direct relation between logbio and structure of canopy, at least in 

the diverse regenerating tropical forests. 

Figure 6.9 illustrates variograms for 8 forest plots in Manaus and Tapajos study 

areas. The upper two variograms (ml and t1) are for plots dominated by Cecropia 

genera even though range values were distinct. For t1, the variogram suggested 

periodicity (i.e. a repetitive pattern) in the canopy (Curran 1988) and not the 

homogeneity of a smooth canopy. M2 and t6 plots were dominated by Vismia plus 

Cecropia and only by Vismia, respectively. These plots had ranges that varied by 

around 50 meters. The variograms in figure 6.9 for plots m5 and t13 were both 

dominated by Vismia plus Beiiutia and Guatteria genera, respectively. Because the 

ranges of both m5 and t13 plots varied by 40 meters, similar canopy structures could 

have been effectively captured by the variograms. The mature forest plots (ml7 and 

t18) displayed high sills, indicative of rough canopy surfaces and visually contrasted 

land covers in SAR images (Miranda et ai. 1998), with ranges of 50 and 93 meters, 

respectively. 

The image spatial resolution (18 meters) and an averaged pixel size of 25 meters 

prevented the quantification of tree crown diameters. Even though tree crowns are 

not always individualised in forest formations, the plots could have presented clumps 

or density patterns detected by variogram range at higher spatial resolutions. The 

inability to define the spatial characteristics of regenerating vegetation through 

modelled variogram descriptors could also be linked to the nature of the model used. 

Although being best suited for the overall set of different regenerating forest plots, the 

spherical model reaches an absolute sill. That implies that the vegetation has a 

clumpy canopy structure, which was not always true for the vegetation studied here 

(Wallace etai. 2000). 
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Figure 6.9. Variograms for eight forest plots in the Manaus (m) and Tapajos (t) study areas. 

Spherical models were fitted to the variograms, their descriptors and plot characteristics are in 

table 6.6. 
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The regenerating forest plots in Manaus and Tapajos study areas were located in 

relatively homogeneous areas that were probably not large enough to allow their 

spatial structure and physiognomy to be represented by variogram range (Lacaze et 

al. 1994). Detailed vegetation horizontal profiles and, in the case of larger 

homogeneous areas of regenerating forest plots, regularised variograms would help 

to reveal spatial variation in the data (Atkinson and Curran 1997). Furthermore, high-

spatial resolution sensors would provide more information on vegetation structure 

and status that could be linked potentially to the features seen in variograms 

(Wallace etal. 2000). 

Scatterplots of the range and log of biomass were produced for Manaus and Tapajos 

study area plots (figures 6.10 and 6.11). 
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Figure 6.10. Scatterplots for range and log of biomass of Manaus study area plots. 

Variograms estimated from a SAR image (December 1995). 
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Figure 6.11. Scatterplots for range and log of biomass of Tapajos study area plots. 

Variograms estimated from a SAR image (July 1994). 

139 



Spatial analysis of SAR data 

6.7.2.2. Texture measures derived from GLCM and SADH - contrast, entropy, 

correlation, chi-square and mean of sum vector 

Before the scatterplots between log of biomass and the five GLCM and SADH 

derived texture measures is presented, the effect of window size and quantisation 

level in these texture measures derivation is discussed. 

Effect of window size and quantisation ievei 

The choice of an optimal window size and quantisation level of the texture data had a 

major effect on the correlation analyses performed later. Figure 6.12 shows GLOM 

contrast values derived from different configurations of window size and quantisation 

level for the Tapajos study area plots. 

Figure 6.12 shows that, for the same window size, contrast values increased 

according to quantisation level for 4 GL, 16 GL and 64 GL. For 256 GL, contrast 

values were situated surprisingly between 4 GL and 16 GL. Contrast values carried 

similar textural information at the different quantisation levels. Increasing and 

decreasing trends were approximately the same for 16, 64 and 256 grey levels. 

Similar trends had been noticed in texture measures derived using GLCM for SPOT-

1 HRV (high resolution visible) data quantisised in 16 GL and 32 GL (Marceau et at. 

1990). Contrast values were very similar for 5 x 5 and 3 x 3 pixel windows at all 

quantisation levels. The range of contrast values for 4 GL was wider and the lower 

contrast values coincided with the lower biomass plots: plot 2 with 15 T ha'\ plot 14 

with 25 T ha"̂  and plots 19 and 20 with 2 T ha \ Although the quantisation in only 4 

GL will result in information loss (Haralick and Shanmugan 1974), a small number of 

GL reduces the complexity and sparseness of a GLCM (Dutra and Huber 1999). A 

smaller GLCM could have improved the spatial characterisation of land covers 

studied here. 

The resulting virtual invariance of contrast values with window size might have been 

a result of the small range of window sizes used here. Being an image sample from 

which texture measures were estimated, larger window sizes contain increased 

textural information (Kurvonen and Hallikainen 1999). A pnon knowledge about the 
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Manaus and Tapajos study areas prevented the choice of window sizes larger than 5 

X 5 pixels. The expected increase in contrast values with window size (and increase 

in information content) was not noticeable, also as a result of the small window sizes. 
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Figure 6.12. GLCM contrast derived from 5x5 pixel window (top), 3x3 pixel window (bottom) 

and 4, 16, 64 and 256 quantisation levels for Tapajos study area plots. 5x5 and 3x3 are the 

pixel window sizes and GL refers to grey levels. In X-axis 1 to 14 are regenerating forest 

plots, 15 to 18 are mature forest plots and 19 to 20 are pasture plots. 
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Scatterplots of texture measures and log of biomass 

Scatterplots of the relationships between texture measures and logbio were 

produced for Manaus and Tapajos study area data sets (figures 6.13 and 6.14). The 

first column of the figures shows the relationship between logbio (X-axis) and the 5 

texture measures (Y-axis) that were sensitive to dumpiness but not contrast (section 

6.7.1). The remaining columns showed the interrelationships between the 5 texture 

measures. 

Figure 6.13 shows a positive near-linear relationship for logbio of Manaus study area 

plots and GLCM contrast (conh) and entropy (enth). A negative relationship (only 

noticeable due to the pasture site - lowest biomass value), where an increase in 

logbio values was paralleled by a decline in Y values, was found for GLCM 

correlation (cor) and chi-square (chi). SADH mean of sum vector (sme) also showed 

a near linear-like positive relationship with logbio. 

In figure 6.14, where the scatterplots for Tapajos study area are displayed, the 

relationships between logbio and GLCM contrast and entropy were more pronounced 

than in Manaus plots. This was due to the wider range of logbio in the Tapajos study 

area. However, no apparent relationship was found between logbio and GLCM 

correlation and chi-square. SADH mean of the sum vector (sme) had a positive 

relationship with logbio (figure 6.14). 

When looking for relationships amongst GLCM measures, it was clear that some of 

them were highly interrelated (Ulaby et al. 1986), mainly GLCM contrast and entropy 

(figure 6.13 and 6.14). For the Manaus data, all GLCM measures were interrelated. 

That was not true for Tapajos data, where only contrast and entropy were 

interrelated. In the Manaus data, SADH mean of the sum vector seemed related to 

the four GLCM measures but for Tapajos data that relationship was present only with 

contrast and entropy. 
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Figure 6.13. Scatterplots for selected texture measures and log of biomass for the Manaus 

study area. For GLCM derived measures (conh, enth, cor, chi, sme) matrices were estimated 

using a 5x5 pixel window and a 2-bit (4 GL) SAR image (December 1995). 
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Figure 6.14. Scatterplots for selected texture measures and log of biomass for the Tapajos 

study area. For GLCM derived measures (conh, enth, cor, chi, sme) matrices were estimated 

using a 5x5 pixel window and a 4-bit (16 GL) SAR image (July 1994). 
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The relationship between the GLCM and SADH-derived texture measures and logbio 

was probably due to the increase in roughness and complexity of forest canopy that 

follows biomass accumulation during growth and maturation of forests. GLCM 

contrast and entropy are associated with the degree of spread and disorder of GL. 

The values of those measures increased with logbio due to increased scattering in a 

rough canopy/high biomass forest. Similarly, GLCM correlation and chi-square were 

associated with resemblance and repetition of GL. The values of those measures 

tended to decrease with biomass, following the lower backscattering (and therefore 

GL variations) from smoother and less layered young canopy. 

6.7.2.3. Texture measure derived from local statistics - entropy 

For the Manaus study area, no relationship was found between local statistics 

entropy and logbio (figure 6.15). For the Tapajos study area, however, some 

increase of entropy values with logbio was noticeable, although pasture plots and 

intermediate biomass regenerating forest plots did not follow this trend (figure 6.16). 

Ill 1.4 

1.0 1.5 2 .0 
Log of b iomass 

Figure 6.15. Scatterplots for texture measure entropy (estimated from a SAR image of 

December 1995) and log of biomass of Manaus study area. 
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Figure 6.16. Scatterplots for texture measure entropy (estimated from a SAR image of July 

1994) and log of biomass of Tapajos study area. 

6.7.2.4. Analysis of correlation between texture measures and log ofbiomass 

The strength of the relationships previously observed in the scatterplots was 

quantified using correlation analysis. In addition, the eight configurations (window 

sizes and quantisation levels) from which the texture measures derived from GLCM 

and SADH were computed and statistically assessed. 

The scatterplots in section 6.7.2.2 showed that for some measures the relationship 

between texture and logbio was not linear. Moreover, Kolmogorov-Smirnov 

goodness-of-fit tests showed that for the texture measures investigated the data were 

not normally distributed. Therefore a rank correlation coefficient (Spearman's t) was 

calculated, as it does not limit analysis to a particular statistical distribution or 

parameter (Isaaks and Srivastava 1989). 

The logbio and texture relationships with the highest r were the basis to further 

considering some of the texture measures previously studied. This procedure is 

described below: 
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i) For each study area, the correlation coefficient (A) between logbio and texture was 

computed. The highest rfor each GLCM and SADH texture measure derived in eight 

different configurations was highlighted and then the configuration with the maximum 

number of highest rwas selected. 

ii) The texture measures that were related most strongly to logbio were selected on 

the basis of data from both study areas. 

According to Spearman's r no correlation was found between range and logbio in 

both study areas. This result was already suggested by the scatterplots in section 

6.7.2.2. 

Many factors could be contributing to the weak relation between logbio and range. 

The small size of homogeneous areas and therefore transects used for deriving the 

variograms can be a limiting factor as the transects represent only a small portion of 

the regenerating forests plots (Cohen et al. 1990). In addition, range is a measure of 

dumpiness and biomass is a continuous variable related to the spatial structure of 

vegetation. When these variables are used jointly, they were not suitable for 

describing the spatial structure of the vegetation studied. Tree crowns and clumps, if 

present, were probably not detected by range at the spatial resolution of the JERS-1 

SAR images. 

The entropy was related to logbio for Tapajos study area plots (Spearman's r=0.73) 

but not for Manaus study area plots. This measure, therefore, was discarded. 

The correlation between logbio and the five texture measures extracted in eight 

different configurations is presented in table 6.7 (Manaus study area) and table 6.8 

(Tapajos study area). The distinct configurations (section 6.4.2) refer to window sizes 

and quantisation levels (GL) used for extracting GLCM and SADH derived texture 

measures. 

The results for the Spearman's correlation between logbio and the GLCM and SADH 

derived texture measures are presented in table 6.7 and 6.8. A 5 x 5 pixel window 

and 4 GL was the configuration most strongly related to logbio and therefore was 
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selected for extracting texture measures for Manaus study area plots. Generally, the 

rvalues were similar for both study areas. 

Table 6.7, Spearman's correlation coefficient between logbio and GLCM 

derived texture measures for Manaus study area. 

Texture 

measure 

5x5, 

4 G L 

5x5, 

16 GL 

5x5, 

64 GL 

5x5, 

256 GL 

3x3, 

4GL 

3x3, 

16 GL 

3x3, 

64 GL 

3x3, 

256 GL 

conh 0.68 0.24* -0.15* -0.47 0.45* 0.02* -0.34* -0.61 

enth 0.56 0.48 0.09* -0.03* 0.53 0.29* -0.07* -0.05* 

cor -0.21* -0.23* -0.24* -0.22* -0.14* -0.14* -0.24* -0.23* 

chi -0.44* -0.22* -0.07* -0.09* -0.36* -0.09* -0.001* 0.01* 

sme 0.48 0.45* 0.45* 0.44* 0.45* 0.46* 0.49 0.48 

Note: Correlation coefficients not significant at 95% confidence levels are signalled with an asterisk(*). 
The highest coefficients for each measure are in bold. 

Correlation (cor) and chi-square (chi) were not related to logbio in any configuration 

tested (table 6.7). 

The logbio of Tapajos study area plots and GLCM and SADH derived texture 

measures were highly correlated (table 6.8). Correlation (cor) was not significantly 

related with logbio. 

Table 6.8. Spearman's correlation coefficient between the logbio 

and GLCM derived texture measures for Tapajos study area. 

Texture 

measure 

5x5, 

4 GL 

5x5, 

16 GL 

5x5, 

64 GL 

5x5, 

256 GL 

3x3, 

4GL 

3x3, 

16 GL 

3x3, 

64 GL 

3x3, 

256 GL 

conh 0.87 0.79 -0.62 -0.79 0.75 0.69 -0.53 -0.81 

enth 0.85 0.94 0.85 0.76 0.86 0.91 0.78 0.71 

cor -0.06* 0.01* -0.02* 0.02* 0.13* -0.24* 0.14* 0.2* 

chi -0.16* -0.5 -0.49 -0.48 -0.04* -0.43* -0.51 -0.48 

sme 0.6 0.61 0.61 0.61 0.6 0.62 0.6 0.62 

Note: Correlation coefficients not significant at 95% confidence levels are signalled with an asterisk^ 
The highest coefficients for each measure are in bold. 
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On the basis of results in the two previous tables, three GLCM and SADH derived 

texture measures were selected, based on the results from 5 x 5 pixel window size 

and quantisation of 4 GL for Manaus study area and of 16 GL for Tapajos study area. 

The following measures were related significantly to logbio in both study areas: 

contrast, entropy and mean of sum vector. Measures discarded were correlation and 

chi-square due to absence of relationship with logbio in Manaus study area. 

6.7.2.4. Multiple regression analysis - Log of biomass, backscatter and the texture 

measures 

The association between the texture measures and logbio was assessed. Three 

texture measures - GLCM contrast, entropy and SADH mean of sum vector - were 

selected following their strong relation to the log of biomass. As this chapter aims to 

use textural information to increase the correlation between backscatter and logbio, 

backscatter was added to the analysis. 

The backscatter, log of biomass and texture measures values from Manaus and 

Tapajos study areas were merged and the analysis performed jointly. This was due 

to the strong relation of the texture measures to the logbio of both study areas and, 

additionally, to the stronger relationship between the variables when considering an 

increased range of biomass. Despite selecting different "suitable" configurations for 

extracting GLCM and SADH texture measures for each study area (section 6.7.2.2), 

the multiple regressions were performed using data collected under the same 

configuration: 5 x 5 pixel window and 4 GL. The magnitude of texture measures 

values was also a function of configuration settings, so it was not possible to combine 

values from the two study areas derived under different window sizes and 

quantisation levels. 5 x 5 pixel window and 4 GL was Manaus' study area most 

suitable configuration, but for Tapajos study area it still presented a strong correlation 

between logbio and the texture measures selected. 

Stepwise multiple regression was performed as it allowed simultaneous analysis of 

more than one variable. Regression analysis also allows prediction of one variable 

from another or others (Meter et al. 1996). 
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Scatterplots - loabio, backscatter and the texture measures 

Figure 6.17 shows the scatterplots produced with backscatter, logbio and texture 

measures GLCM derived contrast, entropy and SADH derived mean of sum vector 

data from the two study areas. 
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Figure 6.17. Scatterplots for backscatter, logbio and selected texture measures of Manaus 

and Tapajos study area plots. 

The scatterplots (figure 6.17) demonstrated that logbio and the three texture 

measures were correlated with backscatter. The biomass of the two study area plots 

combined showed a strong linear relationship with backscatter. 

The SADH derived mean of sum vector and backscatter scatterplot appeared to have 

highlighted DN differences between the two study areas, as they were grouped in 

two linear clusters. Different weather conditions, sensor settings, etc., were reflected 

in the images and were captured by sme. Even though SADH derived measures 

dealt with relationship in a neighbourhood and therefore were less affected by local 

DN or changing weather conditions, sme was derived following a local statistics 

measure - the mean - thus being more sensitive to variant scene conditions. 
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Multiple regression - loabio. backscatter and texture measures 

A simple linear regression was performed with backscatter as the independent 

variable and the log of biomass as the dependent variable. Then, backward stepwise 

multiple regression was performed with backscatter, GLCM contrast, GLCM entropy 

and SADH mean of the sum vector as the independent variables and the log of 

biomass as the dependent variable in the base model. Stepwise regression started 

with a base model and then variables were added or omitted depending on their 

ability to increase or decrease the strength of the relationship between the variables 

and log of biomass. Backward elimination of variables was chosen as there is less 

risk of omitting important variables in the model. 

Partial correlation was used to examine the relationship between two variables after 

removing the effect of other variables (Johnston 1980, Atkinson and Plummer 1993). 

The texture measures and backscatter were derived directly from DN values 

therefore some interrelationship between the variables was present. How much of 

the relationship between logbio and one variable would remain if the effect of the 

other variables was removed (controlled)? 

Table 6.9. Partial correlation coefficient between log of biomass (logbio) and a variable, 

after controlling for the effect of the remaining variables. 

Partial correlation coefficient 

backscatter 0.6 

contrast 0.52 

entropy -0.08* 

mean of sum vector 0.13* 

Note: Correlation coefficients not significant at 95% confidence 
levels are signalled witi i an asterisk (*). 

When controlling the effect of the texture measures on the backscatter/logbio 

relationship, it was clear that this relation was independent of the remaining variables 

(r = 0.6). Table 6.9 also shows that a significant partial correlation coefficient with 
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logbio was present when the effect of backscatter and texture measures was 

removed from the contrast/logbio relationship (r = 0.52). The entropy/logbio 

relationship however, virtually disappeared when the effect of backscatter, contrast 

and mean of sum vector was removed {r = -0.08). Similarly, for mean of sum 

vector/log bio relationship, a partial correlation coefficient of 0.13 showed no 

correlation remaining after backscatter, contrast and entropy removal. These results 

were expected following inspection of the scatterplots (figure 6.17). 

The correlation between contrast and logbio was independent of backscatter. For 

mean of sum vector, however, the relationship with backscatter seen in the 

scatterplot was determinant of its relationship with logbio. For entropy, the 

relationship with contrast seen in the scatterplot was determinant of its relationship 

with logbio. These last two measures did not add information on the 

backscatter/biomass relationship. 

Table 6.10 shows the results of simple linear regression and multiple regressions 

performed on the data. As suggested by the previous analyses, the texture measures 

derived from GLCM entropy and from SADH mean of sum vector were removed from 

the model relating logbio, backscatter and the texture measures (model 2). Table 

6.10 also presents the adjusted Ff {Ra^, which accounts for the inevitable increase in 

the coefficient of multiple determination (Ff) when another predictor variable X is 

included in the model (Neter etal. 1996). 

ANOVA results confirmed the significance of the coefficients to be included in the 

models. 

Table 6.10. Regression models and corresponding adjusted { R / ) and standard error 

of estimate (s). /stands for the log of biomass, b for backscatter and c for GLCM 

contrast. 

Model R/ s 

1. 6.29+ 0.54 6 0.74 0.29 

2. Y= 2.24 + 0.33 b + 0.0001 c 0.82 0.25 

3. y = 0.2 b+0.0002 c 0.98 0.26 
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P-values for the different coefficients suggested that model 2 could be built without 

an intercept (p>0.05) therefore model 3 was designed without it. However, 

comparison between of the model 3 with of the two remaining models is not 

possible. 

Comparing models 1 and 2 (table 6.10) the adjusted coefficients of determination R / 

increased from 0.74 to 0.82 and the standard errors of the estimates decreased from 

0.29 to 0.25 when GLCM contrast information was included in the model. That 

indicated the potential increase in the accuracy of biomass estimates from SAR data 

with the inclusion of textural information, in this case GLCM derived contrast. 

The analysis of appropriateness of the models was done following the diagnosis 

steps proposed by Meter et al. (1996). The residuals (difference between observed 

and predicted values) of the regressions were plotted against the different variables. 

The results of these diagnosis steps are not shown here, but they suggested no 

systematic variation in the data, particularly in the variance of the error terms (directly 

related to the residuals). The problems that could have arisen from these initial 

analyses would probably be related to the gaps in the range of biomass data and 

therefore gaps in all the plots produced from the variables studied. 

Figure 6.18 shows the regression line in the plot of observed versus predicted (fitted) 

values according to model 3. Although the standard error was slightly higher than 

when using model 2, model 3 was found more appropriate. The residuals of the 

model fitting are shown in figure 6.19 and are in accordance with the assumption of 

residual normality in the linear regression models. 

Understanding the association between textural measures of SAR images and the 

structural properties of vegetation/canopies is not straightforward. The interpretation 

of texture itself is pursued less often than the increase in classification accuracy 

provided by using a certain texture measure (Bijisma 1993). Previous studies, 

however, showed that spatial patterns such as canopy patchiness (forest areas 

intermixed with pasture) and large emergent trees were detected by GLCM contrast 

(Ulaby et al. 1986, van der Sanden and Hoekman 1999). Similarly, changes in 

canopy that occur during the regeneration of tropical forest was also captured by 

GLCM contrast in a study by Luckman et al. (1997), although the local statistics 

coefficient of variation (CV) discriminated a wider range of regenerating forest age 

classes. 
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y=0.2 b + 0.0002 c 
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Figure 6.18. Observed x predicted values according to the model where / is the log of 

biomass, b is backscatter and c is GLCM contrast. Dashed lines indicate 95% confidence 

limits. 
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Figure 6.19. Histogram of distribution of the residuals for model relating backscatter and 

GLCM contrast to the log of biomass (model 3 in table 6.10). 
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The range of vegetation/canopy structures likely to contribute to different 

backscattering properties and therefore texture, was certainly high. Tropical 

vegetation structure is very diverse and in particular, when different ages and 

successional stages of the forest are involved, their richness in terms of spatial 

structures is likely to be reflected in the textural information available from SAR 

images. The relationship between age/successional stage, biomass and canopy 

structure of the regenerating forest plots could not be established here. Nevertheless, 

this relationship has been observed by others (Budowski 1965, Brown and Lugo 

1990) and could account for the strong relationship between some texture measures 

and the log of biomass. As a measure of local DN variability, GLCM contrast was the 

texture measure that best captured the spatial variability of the vegetation/canopy. 

6.8. Summary 

In this chapter, the use of several texture measures to increase the correlation 

between backscatter and the log of biomass was investigated. One experiment using 

simulated images identified seven texture measures capable of discriminating image 

texture independently of image contrast. They were: GLCM derived contrast, entropy, 

correlation, chi-square, SADH derived mean of sum vector, local statistics derived 

entropy and variogram derived range. 

These seven texture measures were calculated for SAR images and related to the 

log of biomass. Only GLCM derived contrast increased the correlation between 

backscatter and log of biomass. It was concluded that the addition of GLCM derived 

contrast to backscatter potentially increases the accuracy of biomass prediction and 

mapping. 

Surprisingly, variogram derived range did not show any relationship with the log of 

biomass and upper canopy structure (as inferred by dominant species composition). 

This analysis might have been limited by the image spatial resolution, the use of pixel 

transects to derive the variograms and the bounds imposed by the models used to fit 

the data. 
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The information in the G° spatial domain, as represented by the strong relationship 

between some texture measures and log of biomass, was due to the increasing 

roughness of ageing forest canopies. 

155 



CHAPTER SEVEN 

Classifying regenerating tropical forest stages 

using multiwavelength and multipolarisation SAR data 

Relationships between tropical forest biomass and temporal and spatial characteristics 

of SAR backscatter were quantified in chapters 5 and 6. it is known that (i) the 

relationships between SAR data and biomass is dependent upon, among other things, 

wavelength and polarisation and (ii) older forest regeneration stages tend to have 

greater biomass than young forest regeneration stages. However, the combined use of 

both spectral and polarisation characteristics of SAR data for the mapping of forest 

regeneration stages has yet to be determined. This chapter addresses this issue. 

For the Manaus study area, the age of regenerating forests was a viable surrogate for 

biomass (Lucas et al. 2000) and multiwavelength and multipolarisation SAR data were 

available. Six SAR bands from different sensors with varied parameters, selected by 

discriminant function analysis, were used as input to a neural network based classifier. 

The synergy between wavelengths was investigated with the inclusion of visible 

wavelengths bands from Landsat TM sensor. Eight bands (5 SAR and 3 TM) were 

selected and classified with a neural network. 

The accurate classification of regenerating tropical forest stages is an important step in 

the estimation of forest biomass and mapping of forest carbon content. 
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7.1. Data 

The data used as input for discriminant analysis and, after feature selection, for the 

neural network based classifier, are described next. 

7.1.1. SIR-C/XSAR images 

The Spaceborne Imaging Radar - C/X band Synthetic Aperture Radar (SIR-C/XSAR) 

flew at an altitude of 225 km onboard the U.S. Space Shuttle Endeavor on April and 

October 1994. It was the first spaceborne radar system to provide multifrequency data 

(Jordan et al. 1995). The SIR-C was developed by the U.S. National Aeronautics and 

Space Administration (NASA) in order to obtain the full polarimetric scattering matrix -

HH, VV, HV and VH - in L and C bands (Evans et al. 1997). The XSAR was the 

German/Italian space agency instrument that operated at X band and VV polarisation. 

The SIR-C/XSAR system was the next step in a series of spaceborne imaging radars 

that started with Seasat (1978) and continued with SIR-A (1981), the Microwave 

Remote Sensing Experiment (MRSE, 1983) and SIR-B (1984) (Evans et al. 1997). 

The SIR-C/XSAR data were and still are, applied to issues in ecology, hydrology, 

geology and oceanography (Evans et al. 1997). The SIR-C/XSAR data were 

downloaded from the Shuttle in near-realtime and the first experimental results were 

made available in the following year (Dobson et al. 1995, Hess et al. 1995 and Ranson 

et al. 1995). The SIR-C/XSAR system has proved to be a key milestone in the recent 

history of imaging radars (Kasischke etal. 1997). 

The characteristics of the SIR-C/XSAR images used in this work are presented in table 

7.1. 
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Table 7.1. SIR-C/XSAR image characteristics. 

Frequency and wavelength) SIR-C: 1.275 GHz, 23.5 cm (L band) 

SIR-C: 5.3 GHz, 5.8 cm (C band) 

XSAR: 9.6 GHz, 3.1 cm (X band) 

Polarisation SIR-C: HH, HV and VV 

XSAR; VV 

Incident angle SIR-C: 33.3° 

(to the centre of swath) XSAR: 32.1° 

Acquisition date SIR-C/XSAR: 12/04/1994 

Spatial resolution 25 m X 25 m 

7.1.2. Additional bands 

In addition to the SIR-C/XSAR image, a JERS-1 SAR image of the Manaus study area 

was included in the analysis. The dry season date closest to the SIR-C/XSAR flight was 

selected (table 7.2). 

Cloud-free Landsat TM data were available in bands 3, 4 and 5 but for one year after 

the SIR-C/XSAR flight (table 7.2). The three TM bands were radiometrically corrected 

from DN to radiance using calibration coefficients derived from vicarious experiments 

(Bailey 1997). TM bands 3, 4 and 5 were converted to radiance by dividing the DN by 

calibration coefficients of 0.9, 1.08 and 7.07 respectively (Bailey 1997). These 

coefficients were obtained after the shift (offset) in 1995 Landsat TM calibration had 

been interpolated from the calibration coefficients (1984 - 1994) and applied to the DN 

(Thome etal. 1997). 

The SAR data were filtered with a median filter in a 3 x 3 window to reduce speckle. 
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Table 7.2. Remotely sensed data for Manaus study area. 

F in band codes refers to median filtered bands. 

Satellite/Sensor Band- Path/ Date Band 
Polarisation Row code 

JERS-1/SAR LHH 414/304 05/08/94 JERS andJERSF 

Landsat^M 3,4,5 231/62 20/09/95 TM3,TM4,TM5 

LHH LHH and LHHF 
LHV LHV and LHVF 

SIR-C/SAR LVV 46 70 12/04/94 LVV and LVVF 
CHH CHH and CHHF 
CHV CHV and CHVF 
CVV CVV and CVVF 

SIR-C/XSAR x w 46_70 12/04/94 XVV and XVVF 

In addition to this data set (and following the conclusions of chapter 6), a GLCM 

contrast texture band (called CONT) was derived from the JERS-1 SAR band in a 3 x 3 

window and 256 GL. In total, 20 bands were used: 17 SAR bands and 3 TM bands. 

7.2. Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANN) are an artificial intelligence technique inspired by 

research on the structure and learning mechanisms of the human brain. ANN are used 

to enable computers to learn directly from data and thereby assist in tasks such as 

pattern recognition, classification and data compression (Hammerstrom 1993). 

The starting point for the development of an ANN was the work by Rosenblatt (1958), 

who introduced the concept of perceptron as a processing unit able to receive weighted 

information and threshold the results according to a rule (Atkinson and Tatnall 1997). 

One of the requirements for input data in a perceptron was linearity, which sometimes 

limited its use for classification. Since the 1980s, with increased computer power and 

network topologies, ANN has been used for the classification of multi-spectral remotely 

sensed imagery (Atkinson and Tatnall 1997). ANN are an alternative to standard 

classification methods that require assumptions about the underlying statistics of the 

data (Paola and Schowengerdt 1995). In addition to the independence of statistical 
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distribution assumption, ANN (i) are adaptive and able to learn underlying relationships 

from data, (ii) can generalise and process noisy data and (iii) can be used for near real-

time processing (Hammerstrom 1993). Specifically to remote sensing, ANN can 

incorporate different data types and a priori knowledge about the data (Atkinson and 

Tatnall 1997). 

7.2.1. Structure of an ANN 

The basic structure of an ANN comprises a number of simple processing units (nodes) 

arranged in a set of connected layers (Foody 1995). The most commonly used ANN for 

image classification in remote sensing is based on the multi-layer perceptron (MLP) 

trained by the back-propagation algorithm (Atkinson and Tatnall 1997, Kanellopoulos 

and Wilkinson 1997). A typical back-propagation ANN has one input layer, a variable 

number of intermediate or hidden layers and one output layer (figure 7.1). 

Input layer Output layer 

Hidden layer 

Inputs • Y V ' • V A • Outputs 

Figure 7.1. Structure of a back-propagation ANN. 

The input layer is passive and distributes the data to all nodes in the hidden layer. For 

remotely sensed data the input layer usually contains DN from spectral bands and the 

number of nodes equals the number of bands. The hidden nodes calculate a weighted 

sum of inputs which are then passed through an activation function to produce the 

node's output value. These adjustable weight values contain the knowledge distribution 
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of the ANN (Paola and Schowengerdt 1995). The weighted sum of inputs to a node -

netj - is computed from: 

netj=Y,(i>ijOj [7.1] 
i 

where co,y are the weights between nodes / and j and o, is the output from node /. The 

output from a given node j is then computed from: 

Oj=f{netj) [7.2] 

where f is usually a non-linear sigmoid function which constraint the sums within fixed 

limits (Atkinson and Tatnall 1997). The output layer presents the network's results e.g., 

the classes of a classified image. The number of output nodes equals the number of 

classes. 

The input data are passed through the connections to the next layer in a feed-forward 

manner. The back-propagation algorithm refers to passing the errors back to the hidden 

layer, after subtraction of output node results from the previously-established results. 

Subsequently, the hidden nodes calculate the weighted sum of the back-propagated 

errors to find its contribution to the known output errors. The error values in a hidden 

node are weighted by a delta rule equation, which minimises the network's sum-

squared errors (Hammerstrom 1993). The generalised delta rule equation is as follows: 

A(£)ji{n +1) = ri(5yO/) + azlcoy/(n) [7.3] 

where Ao3ji(n + ̂ ) and A(t>ji{n) are the weight changes between connecting nodes / and 

j at iteration n+l and iteration n, respectively, r\ is the learning rate, 5y is the rate of 

change of the error and a is the momentum parameter (Atkinson and Tatnall 1997). 

The learning is achieved by iterative weight adjustment (Kanellopoulos and Wilkinson 

1997). If the error is still above some predetermined threshold when the training cycle is 

completed, the weights are adjusted and training continues (Paola and Schowengerdt 

1995). The adding of momentum term speeds the reduction in the error. An asymptotic 
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rate of decrease in the total network error can also be used to terminate the training 

cycle (Skidmore etal. 1997). 

7.2.2. Image classification using an ANN 

The process described above makes part of the network's training similar to the training 

for conventional supervised classifiers. The aim of the training phase is to build a model 

to define the data and this in turn enables the ANN to generalise and predict outputs 

from different input data (Atkinson and Tatnall 1997). The training data are used to 

adjust the network weights until the network can identify class membership correctly 

and allocate DN values to the class associated with the most 'highly activated' output 

unit (Foody etal. 1997). 

The most common structure of an ANN for image classification includes three fully 

interconnected layers (a single hidden layer) (Paola and Schowengerdt 1995). 

Many settings influence the ability of an ANN to generalise and classify data including 

the training time (Paola and Schowengerdt 1995, Atkinson and Tatnall 1997). If an ANN 

is overtrained it may be unable to generalise and classify new data. 

After the overall network structure has been determined (number of nodes and hidden 

layers, size and selection of training set), some specific settings are selected, usually 

following experimentation. The learning rate, learning momentum and number of 

training cycle (iterations) are examples of these settings that affect the accuracy of an 

ANN classification (Berberoglu et al. 2000). The learning rate is related to the distance 

that the values have to travel in a single iteration to change the network error. The 

smaller the learning rate, the smaller the changes in the weights at each iteration 

(Skidmore etal. 1997). if the learning rate is too big, the network can become unstable. 

The learning momentum is added to the learning rate in order to incorporate previous 

changes in weight with the direction of learning process (Skidmore etal. 1997). 

Finally, the accuracy of the trained network may be evaluated using testing data set. 

This is normally done by dividing the available data into a training and a testing data set 

and using the latter for testing independently the accuracy of the network. 
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7.3. Methods 

The methods for preparing the data set, analysing, selecting, classifying and assessing 

classification accuracy will be explained next. 

7.3.1. Building the data set 

7.3.1.1. Ground data - Forest regrowth map 

The 1991 forest regrowth map for the Manaus study area (section 4.3.2) included 5 

regenerating forest age classes, a mature forest class and a pasture class (Lucas et al. 

1993). This map was further refined by the addition of dominant species composition to 

the age classes (Lucas et al. 1996) and for the classification of successional pathways 

as determined by prior land use and forest dominating species (Palubinkas et al. 1995, 

Foody et. a/1996). 

The original 1991 forest regrowth map was updated with the aid of fieldwork and TM 

images acquired in 1992, 1994 and 1995 (Bailey 1997). The classes studied here were 

taken from the updated Manaus forest regrowth map: (1) pasture, (2) regenerating 

forest <3 years, (3) regenerating forest 3-5 years, (4) regenerating forest 6-10 years, (5) 

regenerating forest 11-18 years and (6) mature forest. Hereafter they will be called land 

use classes, as the pasture class prevents calling them age or regrowth classes. 

The forest regrowth map was not covered entirely by the images used in this work. As a 

result, an extract of the forest regrowth map common to all images was selected, 

making sure that all age classes were represented. The extract covered Fazenda Porto 

Alegre and Fazenda Esteio, two cattle ranches part of the BDFFP research areas 

(figure 7.2). 
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Figure 7.2: Extract from the Manaus forest regrowth map. The production of this map from 

multitemporal Landsat sensor data is discussed in Bailey (1997). 

7.3.1.2. Remotely sensed data - SAR and TM bands 

The SIR-C/XSAR images and the 1995 Landsat TM image were registered to the 

geometrically-corrected 1991 Landsat TM image of the same area (section 5.4.1). The 

final pixel size of all images was 25 metres. 

The extract of the forest regrowth map is shown in SIR-C SAR bands (figure 7.3), 

Landsat TM bands (figure 7.4) and in bands from both sensors combined (figure 7.5). In 

addition to the main land covers (mature forest, pasture and regenerating forest at 

different successional stages), the bands depict the topography of the area. The 

influence of slope aspect on backscatter and radiance for the discrimination of the land 

cover classes was out of the scope of this research. 

164 



Classifying regenerating forest using SAR data 

59̂ 6"* 

wsmm 
59̂52W 

(ii 

Figure 7.3: SIR-C SAR bands covering Fazenda Porto Alegre and Fazenda Esteio from the 

Manaus study area. Band LVVF on red, CHVF on green and LHVF on blue. 
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Figure 7.4: Landsat TM bands covering Fazenda Porto Alegre and Fazenda Esteio from the 

Manaus study area. Band TM5 on red, TM4 on green and TM3 on blue. 
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Figure 7.5: SIR-C SAR and Landsat TM bands covering Fazenda Porto Alegre and Fazenda 

Esteio from the Manaus study area. Band TM5 on red, CHVF on green and LHVF on blue. 

All 20 SAR and TM bands were reseated to the same 256 DN (8-bit format) range. This 

speeds the convergence of an ANN to a minimal error point as the weights of the nodes 

have approximately the same range (Skidmore et al. 1997). In addition a standardised 

DN range allowed the performance of discriminant function analysis. 

The location of the training and testing sites for the ANN and discriminant function 

classifications was based on the forest regrowth map. Pixel values were extracted for 

each class from each band, totalling 113 pixels/class/band. These data was used for 

DN statistics analysis, discriminant function feature selection and in the first training 

attempt in an ANN. 
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7.3.2. Exploratory analysis of the remotely sensed data 

Displaying the DN data from the different bands by each land cover class provides a 

visual summary of the DN distribution. The boxplot is a useful exploratory tool, 

particularly when plotted and analysed before the classification of DN data. The data 

are presented as a box whose top and bottom are drawn at the lower and upper 

quartiles (interquartile range) (Sokal and Rohlf 1995). The median is shown as a line 

across the box. Additionally, vertical lines are drawn from the top and bottom of the box 

to the largest and smallest value, respectively, that lie within up to 1.5 times the 

interquartile range. All values that are further than these lines are plotted individually 

(outliers) and values more than 3 interquartile ranges away from the box are given 

proeminence (Sokal and Rohlf 1995). 

7.3.3. Discriminant function analysis and feature selection 

The different bands were submitted to discriminant analysis (DA), in order to identify 

those variables able to discriminate the 6 land cover classes (section 7.2.1.1). DA is a 

technique used to determine which variables discriminate two or more groups. 

Functions that include the variables being analysed (e.g., bands) are built and 

predictions as to which class a case (e.g., pixel) belongs are made (Statsoft, Inc. 2001). 

The Wilks' lambda statistic is used for measuring the discrimination power of each 

band, based on their variance/covariance matrices. Wilks' lambda values range from 0 

(perfect discrimination) to 1 (no discrimination). The bands selected (also called 

canonical variables) will be given a coefficient in the discriminant functions. These 

coefficients show the contribution of each band in the discrimination between classes 

and, when plotted, which classes are discriminated by each function (Statsoft, Inc. 

2001). 

DA has been used in remote sensing as a feature selection technique to find the 

optimum input representation for neural network training data (Benediktsson and 

Sveinsson 1997), to identify bands that optimise discrimination amongst a set of land 

cover classes (Thomson et al. 1998) and to classify SAR data with added prior 

knowledge (Foody 1995). 
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Stepwise DA was performed on tlie data. Witliin tiiis approach, at each step, the band 

that minimised the overall Wilks' lambda was entered. Two sets of bands were used: (i) 

all 17 SAR bands (filtered and non-filtered data) and (ii) all 17 SAR bands plus 3 TM 

bands, a total of 20 bands. 

7.3.4. ANN architecture and classification accuracy assessment 

Several trials were made before selecting the settings of the ANN using ENVI 3.4 

software that provides ANN training and classification as part of the supervised 

classification module. The ANN architecture was set as input and output layers plus one 

or two hidden layers. The number of nodes was the same as the number of input bands 

for the input layer and hidden layer. For the output layer the number of nodes was equal 

to the number of classes (6). 

Recalling table 3.2 and 3.3, where classification approaches and the use of texture of 

radar imagery in tropical ecosystems was reviewed, the use of ANN for the 

classification of tropical land cover types remains new avenue for research. 

Several experiments were designed to quantify the influence of each ANN variable in 

the overall classification accuracy. One setting was varied while holding the other 

settings constant. The overall classification accuracy was verified in the training data 

set and independent testing data set. 

The selection of training and testing data sets was limited by classes coverage/extent. 

For instance, mature forest occupied a much larger area than the remaining classes 

and class 3 (regenerating forest 3-5 years) covered the smallest area. Training and 

testing data sets were changed following inaccurate results for initial ANN experiments. 

The results presented in section 7.3 were part of the more accurate achieved hence the 

training and testing data sets were considered adequate. The final figures for training 

and testing pixels were (training, testing): 

(1) Pasture (325, 172). 

(2) Regenerating forest <3 years (121,123). 

(3) Regenerating forest 3-5 years (30, 83). 

(4) Regenerating forest 6-10 years (100, 137). 
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(5) Regenerating forest 11-18 years (213, 284). 

(6) Mature forest (351, 303). 

The ANN was trained until the root mean square (RMS) error reached a constant, which 

was after approximately 2000 iterations. Experiments on the effect of the number of 

iterations and training accuracy were also performed. 

7.4.Results 

The results were presented in three sections: 

• In section 7.3.1 the DN statistics of the 6 land cover classes were explored in 

boxplots. 

• In section 7.3.2 the results of Discriminant Analysis were presented, showing 6 

bands selected from the 17 SAR bands data set and 8 bands selected from the data 

set containing the SAR bands plus 3 TM bands. 

• In section 7.3.3 the experiments for defining the settings to be used by the ANN 

were shown. ANN classification and accuracy assessment results were presented after 

that. 

7.4.1. Boxplots 

The graphic display of the SAR and TM data in boxplots showed land cover classes 

with similar DN medians. The range of rescaled intensity SIR-C L and C data values for 

the 6 land cover classes was narrow, especially for HH and VV polarisations (figure 

7.6). All classes overlapped, although in most cases the median for pasture class (class 

1) was lower than for the remaining classes. For HV data in both L and C bands the 

range of DN was wider. The median values for LHV band increased with land cover 

"age" (as from class 2 to 6 the "age" of regeneration forest increased until reaching 

maturity). LHV is a key band for discriminating between regenerating forest and mature 
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forest, because of its sensitivity to biomass and forest structure (Kasisclil<e et al. 1997, 

Saatclii efa/.1997) 

Median-filtered SIR-C data sets showed a slightly narrower DN range and still similar 

medians leading to a visually low separability between classes. Cross-polarised bands 

LHVF and to a lesser extent CHVF, demonstrated again a wider dynamic range when 

compared with non-filtered data. In HH and VV bands the medians were similar for the 

different land cover classes. For HV bands, however, some differentiation between 

classes seemed possible (figure 7.7). 

XSAR XVV and median-filtered XVVF bands showed a relatively wider DN range and 

also higher DN values when compared to the SIR-C bands (figure 7.8). Despite that, 

the discrimination was limited to pasture (class 1) and the remaining 5 forest classes. 

For JERS and JERSF (LHH bands) some differences in median values were present 

between pasture and the remaining 5 forest classes. The behavior of median values in 

JERS and JERSF bands was similar to the HH and VV SIR-C bands, although a 

relatively wider DN range was present (figure 7.8). GLCM derived contrast (CONT) 

median values were the higher from the data set, which could be interpreted as highly 

contrasted classes. Median values for the forest classes were very similar and 

discrimination between these and pasture class may be possible (figure 7.8). 

The TM bands showed distinct median values for the three main land cover classes: 

pasture (class 1), regenerating forest (classes 2, 3, 4 and 5) and mature forest (class 6) 

(figure 7.8). That result was expected since these classes were defined after the use of 

the multitemporal Landsat sensor data to produce the forest regrowth map (Lucas et al. 

1993, Bailey 1997). In addition, DN values were rescaled from radiance values which 

have strong spectral meaning. Median values of the land cover classes in TM bands 

followed the spectral behaviour described for forests and pasture. In TM3 (red channel) 

values of radiance were low due to pigment absorption of red wavelength (Moran et al. 

1994). For TM4 (near-infrared channel) radiance increased with forest age as within-

leaf scattering was greater due to increased number of leaves (Foody et al. 1996). After 

reaching a peak in near-infrared radiance, shadow of emergent trees in the canopy 

decreased radiance in both visible and near-infrared bands, and as a result mature 

forest (class 6) exhibited low radiance values in TM3, TM4 and TM5 (Foody et al. 

1996). Increased water absorption and shadowing effects associated with canopy 

development decreased radiance in TM5 (Foody et al. 1996). Pasture had higher 

radiance than mature forest and regenerating forests in TM3 and TM5. 
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Figure 7.6. Boxplots of DN for pixels in training samples by land cover class in non-filtered and 

median-filtered XSAR and JERS-1 bands. Upper and lower ends of boxes are upper and lower 

quartiles, small squares indicate median, 'whiskers' show the interquartile range and values 

outside - circles - indicate outliers. Classes are: (1) pasture, (2) regenerating forest <3 years, (3) 

regenerating forest 3-5 years, (4) regenerating forest 6-10 years, (5) regenerating forest 11-18 

years and (6) mature forest. 
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CLASS 

Figure 7.7. Boxplots of DN for pixels in training samples by land cover class in non-filtered and 

median-filtered XSAR and JERS-1 bands. Upper and lower ends of boxes are upper and lower 

quartiles, small squares indicate median, 'whiskers' show the interquartile range and values 

outside - circles - indicate outliers. Classes are: (1) pasture, (2) regenerating forest <3 years, (3) 

regenerating forest 3-5 years, (4) regenerating forest 6-10 years, (5) regenerating forest 11-18 

years and (6) mature forest. 
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O 120 

Figure 7.8. Boxplots of DN for pixels in training samples by land cover class in non-filtered and 

median-filtered XSAR and JERS-1 bands, plus TM bands. Upper and lower ends of boxes are 

upper and lower quartiles, small squares indicate median, 'whiskers' show the interquartile range 

and values outside - circles - indicate outliers. Classes are; (1) pasture, (2) regenerating forest 

<3 years, (3) regenerating forest 3-5 years, (4) regenerating forest 6-10 years, (5) regenerating 

forest 11-18 years and (6) mature forest. 
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The boxplots shown in previous 3 figures illustrated the difficulty of mapping the 6 land 

cover classes using a single band/wavelength and polarisation. The characterisation of 

land cover classes associated with regenerating tropical forests benefit from 

multiwavelength and multipolarisation data (Pope et al. 1994). The need for a feature 

selection procedure to reduce the dimensionality of the dataset was also highlighted. 

7.4.2. Discriminant analysis 

The overall discrimination of the 6 land cover classes in the 20 bands is discussed 

following presentation of Wilks' lambda for each band in the data set containing only 

SAR bands (7.3.2.1) and in the data set containing SAR plus TM bands (7.3.2.2). 

One drawback of the DA backward elimination procedure used here is that once one 

band has been removed in the set of discriminant variables, it will not be included again 

even if it became a class discriminator in a later stage (Sokal and Rohlf 1995). 

However, DA was used as a feature selection technique, where reduction of data 

dimensionality without information loss was sought (Mather 1999). 

7.4.2.1. SAR bands selected by DA 

The stepwise backward DA selected six bands - JERSF, CVVF, LHVF, XVVF, CHVF 

and LVVF - as discriminant variables for the 6 land cover classes (table 7.3). The 

selected bands are exhibited sequentially according to overall Wilks' lambda coefficient 

and their contribution in reducing the ratio within-classes to total class variation 

(Johnston 1980) 

Only SAR-filtered bands were selected, probably due to their smaller range of DN for 

the land cover classes as seen in the boxplots (table 7.3). Bands discarded include the 

non-filtered data (JERS, LHH, LHV, LVV, CHH, CHV, CVV and XVV), the median-

filtered bands in HH polarisation (LHHF and CHHF) and the GLCM contrast (CONT). 
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Table 7.3. Bands selected after stepwise discriminant analysis and respective Wilks' 

lambda. At each step, the band that minimised the overall Wilks' lambda was selected. 

Wilks' Lambda 

JERSF 0.467 
CVVF 0.286 
LHVF 0.204 

XVVF 0.151 
CHVF 0.135 

LVVF 0.124 

JERSF band was the first to be selected, demonstrating the importance of LHH data 

(acquired in a wider incidence angle range than SIR-C data) for discriminating between 

the 6 land cover classes (table 7.3). Previous researchers have shown that depending 

on the number of classes and the classification method used, JERS-1 SAR data can 

achieve accurate discrimination in tropical land cover classification (Saatchi et al. 2000, 

Simard et al. 2000). When used in combination with optical and/or SAR bands, ancillary 

data, multitemporal series or textural information, land cover mapping capabilities of 

JERS-1 data are usually increased (Rignot et al. 1997, Renno et al. 1998, Grover et al. 

1999). 

Discrimination for the 6 land cover classes was also offered by CVVF, the band and 

polarisation present in ERS-1 SAR. Kuntz and Siegert (1999) suggested the use of 

ERS-1 SAR CVV band to monitor forest conversion and land cover in tropical forest 

environments but with additional information derived from texture and multitemporal 

ERS-1 SAR data. 

The VV polarisation was selected in 3 bands: LVVF, CVVF and XVVF. That was 

probably due to the association of VV polarised backscatter with crown-layer attributes 

(Dobson et al. 1995). These attributes varied greatly from pasture (class 1) to a series 

of different canopy structures in regenerating forests (class 2 to 5) and mature forest 

(class 6). 

The HV polarised backscatter is related to total biomass which varied with land cover 

class, justifying the selection of LHVF and CHVF. HV polarised data were key to the 

differentiation of regenerating forest from mature forest and clearance/pasture in 

previous works (Rignot etal. 1997, Saatchi etal. 1997). 
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X band (selected as XVVF), although not associated with deep canopy penetration 

length and vegetation type discrimination, was used in the 1970s to map tropical 

vegetation (RADAM project). However, additional information on topography and 

drainage was needed to achieve vegetation type discrimination (Leckie and Ranson 

1998). 

7.4.2.2. SAR and TM bands selected by DA 

The stepwise backward DA selected 8 bands - TM5, TM4, JERSF, TM3, LHVF, CONT, 

CHVF and XVVF - as discriminant variables for the 6 land cover classes (table 7.4). 

Although the spectral information was spread over 20 bands, only 8 bands were 

necessary to define the 6 land cover classes. The selected bands comprised the three 

TM bands and only SAR median filtered data. Also, the SAR bands selected present no 

overlap in SAR wavelengths and polarisations, as they cover the range X, C and L 

bands, with VV, HH (for JERSF) and HV polarisations. Textural information was 

included with GLCM derived contrast (CONT). Bands discarded include the non-filtered 

data (JERS, LHH, LHV, LVV, CHH, CHV, CVV and XVV) and some of the median-

filtered bands (LHHF, LVVF, CHHF and CVVF). 

Table 7.4. Bands selected after stepwise discriminant analysis and respective Wilks' 

lambda. At each step, the band that minimises the overall Wilks' lambda was selected. 

Band Wilks' Lambda 

TM5 0.160 
TM4 0.050 
JERSF 0.031 
TM3 0.021 
LHVF 0.015 
CONT 0.012 
CHVF 0.010 
XVVF 0.009 

The overall Wilks' lambda coefficients were much lower when compared to the SAR 

only data set, indicating increased class discrimination (table 7.4). The rank of TM5 as 
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the band containing the higher discriminant ability of the data set agreed with the 

findings that middle infrared radiation has a strong relationship with those forest 

biophysical properties that are related to forest regeneration stage (Boyd et al. 1996). 

TM4 was the second band to be selected, followed by bands JERSF and TM3. The 

remaining four bands (LHVF, CONT, CHVF and XVVF) had a much lower drop in the 

overall Wilks' lambda coefficient, indicating less discrimination power. 

The inclusion of GLCM contrast textural information (band CONT in table 7.7) agreed 

with previous works that found that the combination of SAR tonal and textural 

information can provide increased tropical land use classification accuracy than using 

tonal information alone (Sant'Anna et al. 1998, van der Sanden and Hoekman 1999, 

Saatchi etal. 2000, Simard etal. 2000). 

The increase is class discrimination with the addition of optical sensor bands to SAR is 

reported widely (Nezry etal. 1993, Rignot et al. 1997, Saatchi et al. 1997, Kuplich et al. 

2000). The integration of SAR and optical sensor data in tropical land cover 

classification works in a synergistic basis with the classification of land covers 

previously unidentified in optical sensor data (e.g. clearances with residual, woody 

debris) (Rignot etal. 1997). 

The results above highlighted the need for multiwavelength and multipolarisation data 

to discriminate tropical land cover classes. While the bands that presented the greater 

discriminant ability were selected, the classes that were discriminated most effectively 

by any particular band were yet to be determined. 

7.4.3. ANN experiments 

Plots of classification accuracy for training data were produced to define the ANN 

settings that provide more accurate classifications. 
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7.4.3.1. ANN experiments with SAR bands 

Several experiments were performed in order to define the settings to be used when 

training and classifying the ANN. 

Training accuracy was controlled mainly by the number of land cover classes. Figure 

7.6. shows the dramatic decrease in the SAR bands training accuracy when the number 

of classes increased and comprised the 6 land cover classes of the forest regrowth 

map. This analysis forecast the problems of discriminating between regenerating forest 

stages, as these classes were the ones that were merged into a single regenerating 

forest class for the 3 class example in figure 7.9. 

The addition of a second hidden layer did not increase training accuracy. For 6 and 2 

land cover classes the accuracy was similar, but for the remaining classes the addition 

of a second layer decreased the training accuracy (figure 7.9). The final architecture for 

the SAR bands was set as three (input, hidden, output) layers with six nodes each 

(6:6:6). 

1 hidden layer , 

2 hidden layers 
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P 50 

C 40 -

3 4 6 
Number of classes 

Figure 7.9. The training accuracy of the SAR bands for a varying number of land cover classes 

and one and two hidden layers. Learning rate, learning momentum and number of iterations 

were 0.2, 0.2 and 2000, respectively. 
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The number of iterations changed significantly the training accuracy. The highest 

training accuracy was achieved around 2500 iterations. Figure 7.10 shows the training 

accuracy according to the number of iterations. 
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Figure 7.10. SAR bands training accuracy and number of iterations. Learning rate and learning 

momentum were set at 0.2. 

The training accuracy varied with learning rate, until reaching stability at a learning rate 

of 0.5 (figure 7.11). The peak in training accuracy was reached at a learning rate of 0.4 

and this setting was used for the remaining experiments and classifications. The 

training accuracy also varied with learning momentum and no stability was reached. A 

peak in training accuracy occurred at a learning momentum of 0.9 (figure 7.11). 
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Figure 7.11. SAR bands training accuracy, learning rate and learning momentum. The number 

of iterations was 2000. Either learning rate or momentum was held at 0.2 while the other varied 

from 0.1 to 1. 
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7.4.3.2. ANN experiments with SAR and TM bands 

For the experiments with the data set containing SAR and TM bands, the results varied 

less, due to a more stable training accuracy. 

The decrease in training accuracy following an increase in the number of land cover 

classes was as not marked as for SAR bands only (figure 7.12). The drop in accuracy 

from 2 to 6 land cover classes was from 100% to around 60%, compared to a decrease 

from 100 % to 40% with the SAR bands alone. 

The addition of a second hidden layer had a variable effect on the training accuracy 

(with no significant increase or decrease) (figure 7.12). The final architecture for the 

SAR and TM bands was also set as three (input, hidden, output) layers with six nodes 

each (6:6:6). 
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Figure 7.12. SAR and TM bands training accuracy and number of classes for one and two 

hidden layers. Learning rate, learning momentum and number of iterations were 0.2, 0.2 and 

2000, respectively. 

The number of iterations did not change significantly the training accuracy (figure 7.13). 

Although the highest training accuracy was achieved around 10000 iterations, the 

accuracy was almost as high as 2000 iterations. Therefore, most of the experiments 

used 2000 iterations. 
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Figure 7.13. SAR and TM bands training accuracy and number of iterations. Learning rate and 

learning momentum were set at 0.1. 

The training accuracy varied with learning rate, reaching stability at a learning rate of 

0.7 (figure 7.14). The peak in training accuracy was reached at a learning rate of 0.1 

and this setting was used for the remaining experiments and classifications. The 

training accuracy also varied with learning momentum and no stability was reached. In 

comparison with the SAR data only, training accuracy oscillated less between the 

different values for the two rates. A peak in training accuracy occurred at a learning 

momentum of 0.5 (figure 7.14) and this setting was used for the remaining experiments 

and classifications. 
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Figure 7.14. SAR and TM bands training accuracy and learning rate and learning momentum. 

The number of iterations was 2000. Either learning rate or momentum was held at 0.1 while the 

other varied from 0.1 to 1. 
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7.4.4. ANN classification and classification accuracy 

The experiments above enabled the influence of some ANN settings to be quantified in 

terms of the training accuracy. This provided a basis on which the settings likely to 

provide a more accurate classification could be chosen. In addition, the behaviour of the 

ANN was revealed (through each classification and corresponding confusion matrix), 

and the ability to discriminate each class was examined in detail. The confusion 

matrices also display the producer and user's accuracy. Producer's accuracy measures 

the omission error (error of exclusion) to a certain class and is the probability of a 

reference site being correctly classified. User's accuracy, on the other hand, is a 

measure of commission error (error of inclusion) or the probability that a pixel classified 

on the image actually represents that class on the ground. (Congalton 1991). 

In spite of careful analyses of the confusion matrices, the results were still "variable and 

unpredictable", using the words of Skidmore et al. (1997). When trying to understand 

the results generated by classifying the SAR bands, Principal Components Analysis 

(PCA), whose fundamentals were given in chapter 5, was performed. The objective was 

to compute the dimensionality of the SAR data and check their adequacy for such a 

detailed classification. 

7.4.4.1. Classification of SAR bands 

The overall training and testing accuracy of SAR band classifications were low. Two key 

classifications were selected to analyse the behaviour of each class, particularly the 

regenerating forest classes. These were the full 6 land cover classes and a 3 land cover 

classes classification, where all regenerating forest stages were merged into a single 

class. Unless otherwise stated, the settings were a learning rate of 0.4, learning 

momentum of 0.9 and 2500 iterations. 

Table 7.5 displays the confusion matrix for the ANN classification of training SAR data 

for the 6 land cover classes. The user and producer's accuracies were also shown. The 

matrix revealed low overall accuracy (46%). Pasture (class 1) and mature forest (class 

6) had accuracies of around 63% and 56% respectively, but low commission errors 

made user's accuracies of around 98% for both classes. Regenerating forests < 3 years 
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(class 2) although classified correctly in 97% of the reference (training) data, was 

commissioned to all other classes and only 16% was classified correctly. Classes 3 (3-5 

years) and 4 (6-10 years) were ignored on reference data and classified as class 2. 

Class 5(11-18 years) also was classified as class 2. 

Table 7.5. Confusion matrix for tiie ANN classification of SAR training data. Kappa 

coefficient was 0.34. UA and PA refer to user and producer's accuracies. 

Reference data 

Class 1 2 3 4 5 6 Total UA(%) 

1 206 1 0 0 0 3 210 98.1 

T3 

2 119 118 30 100 209 142 718 16.43 
T3 3 0 0 0 0 0 0 0 0 

0) 4 0 0 0 0 0 0 0 0 
(0 
U) 

5 0 0 0 0 2 9 11 18.18 
(0 
() 

6 0 2 0 0 2 197 201 98.01 

Total 325 121 30 100 213 351 1140 Overall 

PA(%) 63.38 97.52 0 0 0.94 56.13 accuracy 
45.88% 

Classes: 

(1) Pasture 

(2) Regenerat ing forest <3 years 

(3) Regenerat ing forest 3-5 years 

(4) Regenerat ing forest 6 -10 years 

(5) Regenerat ing forest 11-18 years 

(6) Mature forest. 

For the testing data (table 7.6), the results were very similar to the training data, 

although the overall accuracy was lower (31.4%). Pasture and regenerating forest <3 

years presented less omission, unlike mature forest class, that presented more 

omission errors than in the training data. Around 80% of the testing pixels were 

classified as regenerating forest <3 years, with commission to all classes, which made 

its classification inaccurate (around 14%). The classes regenerating forest 3-5 years 

and 6-10 years were omitted completely. 
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Table 7.6. Confusion matrix for the ANN classification of SAR testing data. Kappa 

coefficient was 0.21. UA and PA refer to user and producer's accuracies. 

Reference data 

Class 1 2 3 4 5 6 Total UA(%) 

1 128 0 2 0 0 0 130 98.46 

1 2 44 123 79 137 281 209 873 14.09 
•D 
Tl 

3 0 0 0 0 0 0 0 0 
V 4 0 0 0 0 0 0 0 0 
in 
0) 
CO 

O 

5 0 0 1 0 2 1 4 50 in 
0) 
CO 

O 
6 0 0 1 0 1 93 95 97.89 

Total 172 123 83 137 284 303 1102 Overall 

PA(%) 74.42 100 0 0 0.7 30.69 31.4% 

Classes: 

(1) Pasture 

(2) Regenerat ing forest <3 years 

(3) Regenerat ing forest 3-5 years 

(4) Regenerat ing forest 6 -10 years 

(5) Regenerat ing forest 11-18 years 

(6) Mature forest. 

Many factors could be behind these inaccurate classification results. The size and 

characteristics of training data were among the factors found by Foody and Arora 

(1997) to affect ANN classification results, although small training data sizes were 

satisfactory for the ANN used by Paola and Schowengerdt (1995). The size of training 

data sets was defined following the average class coverage and accuracy results. 

The characteristics of the training data, however, could have limited classification 

accuracy. Ideally, training data would have discriminatory characteristics shared with 

the classes in the Manaus regrowth map (based on multitemporal Landsat sensor 

data); however, this might not be true. Figure 7.3 showed SAR bands and the poor 

discrimination of forest regenerating stages within them. 

The number of bands or discriminatory variables also affects ANN classification 

accuracy. Class separability usually increases with increase in number of bands until 

the addition of new bands has no effect or even reduces the classification accuracy 

(Bishop 1995, Foody and Arora 1997). Although redundancy on the SAR data was 

avoided theoretically when selecting bands by discriminant analysis, the question of the 

intrinsic dimensionality of the bands selected still remained. 
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Principal components analysis provides information on data set dimensionality (Mather 

1999) and was performed on the SAR data. The first two components presented 

eigenvalues greater than 1 (Kaiser criterion, Statsoft, Inc. 2001) therefore the 

dimensionality of the data was defined as two. Table 7.7. shows the eigenvalues and 

the percentage of variance from the SAR data set. 

Table 7.7. Eigenvalues and percentage of variance for 

principal components extracted from SAR bands. 

Eigenvalues 

Component Total % of variance 

1 2.953 49.21 

2 1.012 16.83 

3 0.771 12.85 

4 0.592 9.86 

5 0.352 5.87 

6 0.320 5.34 

The implications of using a data set with only two dimensions were poor discrimination 

of classes and low classification accuracy. Despite the availability of 6 SAR bands 

selected by its discriminatory properties, the data were still inadequate for the 

representation of the land cover classes. The difficulties of discriminating forest 

regenerating stages with SAR data, has been documented elsewhere (Rignot et al. 

1997, Saatchi etal. 1997, Sant'Anna etal. 1998). 

Following that, the regenerating forest stages were merged into a single class and the 

data were classified into pasture, regenerating forest and mature forest. 

Table 7.8 shows the confusion matrix for training SAR data with only three classes and 

there was a high overall accuracy (81%). Pasture class was classified accurately in 

reference and classified data. However, 42% of reference data on regenerating forest 

was classified as mature forest while around 30% of classified mature forest were 

erroneously committed to regenerating forest. 
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Table 7.8. Confusion matrix for the ANN classification of training data in SAR bands. 

Kappa coefficient was 0. 7. UA and PA refer to user and producer's accuracies. 

Reference data 

Class Pasture Regenerating Mature Total UA (%) 

CO TJ 

% 
O 

forest forest 
Pasture 303 0 0 303 100 

Regenerating 
forest 

0 151 0 151 100 

Mature 
forest 

2 202 394 598 65.89 

Total 305 353 394 1052 Overall 

PA (%) 99.34 42.78 100 80.61% 

In table 7.9 the usual lower overall accuracy for testing data was shown, but the 

remaining classes behaved similarly as in table 7.22. Pasture class was classified 

accurately. Mature forest and regenerating forest were not separated completely. 

Table 7.9. Confusion matrix for the ANN classification of testing data in SAR bands. 

Kappa coefficient was 0. 57. UA and PA refer to user and producer's accuracies. 

Reference data 

Class Pasture Regenerating 
forest 

Mature 
forest 

Total UA (%) 

1 
T J 

Pasture 239 0 0 239 100 

•u 
(U 

Regenerating 
forest 

0 87 9 96 90.63 

UJ U) (0 
n 

Mature 
forest 

6 244 326 576 56.6 

Total 245 331 335 911 Overall 
PA (%) 97.55 26.28 97.31 71.57% 

Saatchi et al. (1997) achieved an accuracy of 87% when classifying the same three 

land cover classes in Amazonia with SIR-C LHH, LHV, CHH and CHV data. They used 

a Maximum a Posteriori (MAP) classifier, which provided a highly accurate classification 

of land cover. A similar result was reported by Rignot etal. (1997). 

The discrimination of land cover classes in SAR images is related to the type of class 

being considered. Saatchi et al. (2001) achieved an overall accuracy of 89% when 
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classifying 13 land cover classes in SIR-C SAR data. The classes included several 

types of crops and natural forest fragments, such as mature, flooded and regenerating 

forests in the Atlantic Forest in Brazil. Certainly the mapping of regenerating forest 

stages requires a very subtle discrimination of classes within the data based on a 

precise understanding of class characterisation on the part of the classifier. As the 

classes studied were defined following interpretation of multitemporal TM data a 

synergy of optical and SAR data with TM bands complementing the gaps left by the 

SAR discrimination of the classes is likely to be successful. 

7.4.4.2. Classification of SAR and TM bands 

The use of combined TM and SAR data provided higher classification accuracy for 

training and testing data than for SAR data alone. Figures 7.4 and 7.5 showed the 

higher discrimination of land cover classes in TM bands and in combined SAR and TM 

bands, respectively, in relation to SAR bands alone (figure 7.3). The two key 

classifications analysed were 6 and 4 land cover classes. On the 4 land cover classes 

the stages were grouped into a young (0-5 years) and an old (6-18 years) regenerating 

forest class. These classes were suggested also by the results below. 

Accuracy results of training and test data shared the same characteristics, although 

training data provided higher accuracy than testing data (table 7.10 and 7.11). Pasture 

and mature forest were classified successfully in both training and testing data. For the 

regenerating forest classes (class 2, 3, 4 and 5) the accuracy varied. 

Classes 2 and 5 were well discriminated in reference data and few omission errors 

were reported. Class 3 in training and testing data was ignored and its reference data 

was spread in other regenerating forest stage classes. That was not a surprise due to 

the small coverage of class 2 in the forest regrowth map, leading to a poor spectral 

characterisation of regenerating forest 3-5 years. Class 3 was mixed mainly with class 2 

and class 4 was mixed mainly with class 5 (table 7.10 and 7.11). 
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Table 7.10. Confusion matrix for the ANN classification of training data in SAR and TM 

bands. Kappa coefficient was 0.75. UA and PA refer to user and producer's accuracies. 

Reference data 

•D 
•D 

(0 
(0 
ro 

O 

Class 1 2 3 4 5 6 Total UA(%) 

1 323 2 0 0 0 0 325 99.38 

2 1 91 25 60 67 0 244 37.3 

3 0 1 0 0 0 0 1 0 

4 0 16 0 7 0 0 23 30.43 

5 1 4 5 31 146 0 187 78.07 

6 0 7 0 2 0 351 360 97.5 

Total 325 121 30 100 213 351 1140 Overall 

PA(%) 99.38 75.21 0 7 68.54 100 80.52% 

Classes: 

(1) Pasture 

(2) Regenerating forest <3 years 

(3) Regenerating forest 3-5 years 

(4) Regenerating forest 6-10 years 

(5) Regenerating forest 11-18 years 

(6) feature forest. 

Table 7.11. Confusion matrix for the ANN classification of testing data in SAR and TM 

bands. Kappa coefficient was 0.63. UA and PA refer to user and producer's accuracies. 

Reference data 

Class 1 2 3 4 5 6 Total UA(%) 

1 172 0 0 6 3 0 181 95.03 

2 0 111 56 43 91 3 304 36.51 
•a 
n 

3 0 0 1 4 0 0 5 20 
<u 
4— 4 0 2 5 6 4 0 17 35.29 
U) U) 
m 
O 

5 0 10 17 62 185 0 274 67.52 U) U) 
m 
O 

6 0 0 4 16 1 300 321 93.46 

Total 172 123 83 137 284 303 1102 Overall 

PA(%) 100 90.24 1.2 4.38 65.14 99.01 70.33% 

Classes: 

(1) Pasture 

(2) Regenerating forest <3 years 

(3) Regenerating forest 3-5 years 

(4) Regenerating forest 6-10 years 

(5) Regenerating forest 11-18 years 

(6) Mature forest 

The analysis below relates to the classification of SAR and TM bands trained for 4 land 

cover classes. As with 6 land cover classes, the characteristics of training and test data 

were similar (table 7.12 and 7.13). The overall classification accuracies were high (both 
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around 87%). Pasture and mature forest were well discriminated with few omission and 

commission errors (figure 7.15). 

For the training data, class 2 (regenerating forest 0-5 years) was omitted on the 

reference data, indicating, perhaps, a poor training (table 7.12). On the testing data 

most of the reference data for class 2 were omitted and misclassified as class 3 

(regenerating forest 6-18 years). Figure 7.15 shows the classified image with high 

omission for class 2 and high commission for class 3. Discrimination between mature 

forest (class 4) and regenerating forest 6-18 years (class 3) was achieved as a result of 

combined use of SAR and TM data. 

Table 7.12. Confusion matrix for the ANN classification of training data in SAR and TIVI 

bands. Kappa coefficient was 0.82. UA and PA refer to user and producer's accuracies. 

Reference data 

I •o 
"O 
0) (0 
(A 
CO 

Class 1 2 3 4 Total UA(%) 

1 304 0 0 0 304 100 

2 0 0 0 0 0 0 

3 1 144 210 0 355 59.15 

4 0 0 0 350 350 100 

Total 305 144 210 350 1009 Overall 

PA(%) 99.67 0 100 100 87.49% 

Classes: 

(1) Pasture 

(2) Regenerating forest 0-5 years 

(3) Regenerating forest 6-18 years 

(4) Mature forest 

Wilkinson et al. (1995) achieved around 80% accuracy when classifying 8 forest 

classes in a complex Mediterranean landscape using ANN and ERS-1 SAR and 

Landsat TM images. These authors considered the synergistic SAR-optical approach 

essential for the discrimination of highly-mixed forest classes. 

Regenerating forest up to 15 years old was discriminated from mature forest in TM 

bands (Steininger 1996). A limit of up to 10 years old was reported for the detection of 

regenerating forests in L band SAR data alone (Saatchi et al. 1997). The use of TM 

bands, coupled with SAR texture band (GLCM contrast) and different SAR bands and 
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polarisations made it possible to extend this age range up to 18 years and perhaps 

beyond. 

Table 7.13. Confusion matrix for the ANN classification of testing data in SAR and TM 

bands. Kappa coefficient was 0.82. UA and PA refer to user and producer's accuracies. 

Reference data 
Class 1 2 3 4 Total UA(%) 
1 244 0 0 1 245 99.59 

"U 
•n 2 0 33 0 11 44 75 

0) 3 1 108 239 1 348 68.68 

8 
o 

4 1 6 0 322 329 97.87 
8 
o Total 245 147 239 335 966 Overall 

PA{%) 99.59 22.45 100 96.12 86.75% 
Classes: 

(1) Pasture 

(2) Regenerating forest 0-5 years 

(3) Regenerating forest 6-18 years 

(4) Mature forest 

60°* se'SG'* 59''52'W 

60°W 59°56'W S9°52'W 
I Piwturv 

. Rag.lbrefit 0-S yeare 

I Rag.fonnt B-18 yam 

llwfcriurefawwt 

Figure 7.15. ANN classification using SAR and TM bands. Accuracy results were reported in 

tables 7.12 and 7.13. 
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7.4. Summary 

In this chapter multiwavelength and multipolarisation SAR bands and optical TM bands 

were used to classify regenerating forest stages. The six land cover classes used for 

training and testing the overall accuracy of the classification were from a forest regrowth 

map produced by the classification of a multitemporal series of Landsat TM bands. 

The remotely sensed data comprised 20 bands (SAR bands from JERS-1, SIR-C and 

XSAR and optical bands from TM) upon which a feature selection technique -

Discriminant Analysis (DA) - was used. The whole data set was submitted to an 

exploratory statistical analysis to investigate the discriminating ability of each band. The 

land cover classes were not discriminated clearly in most of the bands. However, (i) the 

discrimination between land cover classes was slightly higher for cross-polarised data 

(SIR-C bands HV and HVF), (ii) TM bands had greater discriminating ability than SAR 

bands and (iii) median-filtered SAR bands had greater discriminating ability than non-

filtered bands. Following DA, 6 out of 17 bands were selected in the set containing SAR 

bands only and 8 out of the 20 bands were selected in the set containing 7 SAR plus 3 

TM bands. A lower overall Wilks' lambda pointed to increased class discrimination for 

the set containing SAR and TM data in relation to SAR data only. 

Classification accuracy using SAR bands alone was around 30% for the 6 land cover 

classes. When regenerating forest stage classes were merged into a single class, the 

classification accuracy increased to around 80%. SAR data alone was unable to 

discriminate regenerating forest stages and RCA results demonstrated that the 

dimensionality of the 6 SAR bands was 2, limiting their ability to discriminate between 

the subtle tonal/textural characteristics of each regenerating stage. A data set 

comprising TM and SAR bands showed increased classification accuracy in relation to 

SAR data alone, although some confusion between regenerating forest stages was still 

present. Following merging of regenerating forest stages into young (0-5 years) and 

intermediate (6-18 years), the overall accuracy was around 87%. The combination of 

SAR and TM bands were essential for the discrimination between regenerating forest 

stages, however, pasture and mature forest were discriminated accurately in both SAR 

data alone and in the combined SAR and TM data. 
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CHAPTER EIGHT 

Conclusions 

This thesis has investigated the potential of temporal, spatial, spectral and 

polarisation characteristics of SAR backscatter for the study of biomass and land 

cover class of tropical forests in two study areas in Brazilian Amazonia. To conclude, 

the main findings are divided by subject and summarised, starting by underlining the 

answers to the questions posed within the objectives (section 1.4). Finally, the 

significance of findings and future work directions are suggested. 

8.1. Temporal analysis 

No biomass change was detectable with temporal JERS-1 LHH backscatter. 

• A positive backscatter/biomass relationship was found {r = 0.87) and indicated 

saturation in o° at biomass levels of around 90 T ha'\ 

• A cyclical pattern in for young regenerating forest plots was detected. The 

pattern was seasonal with the dry season corresponding to lower a° and the wet 

season corresponding to higher a°. This result indicated the influence of vegetation 

and soil water content on a°. 

• The behaviour of a° was more strongly time-dependent for plots below the a° 

asymptote (e.g., young regenerating forest plots). Although less temporally dynamic 

than these young regenerating forest plots, intermediate regenerating and mature 

forest plots presented a similar 0° behaviour. 
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• The influence of rainfall was assessed and was found to be an important source 

of variation in o°. The influence was clearer for young regenerating forest plots, 

where the change in the water content of vegetation and soil moisture were probably 

detected. 

• To eliminate the influence of varying vegetation and soil water content on 

backscatter, the use of SAR data from the dry season was recommended. 

8.2. Spatial analysis 

The addition of GLCM derived contrast to backscatter potentially increases the 

accuracy of biomass prediction and mapping. 

• Seven texture measures showed, in simulated images, discrimination of image 

texture independently of image contrast. They were: GLCM derived contrast, entropy, 

correlation, chi-square, SADH derived mean of sum vector, local statistics derived 

entropy and variogram derived range. 

• These seven texture measures were calculated for real SAR images and the 

correlation between them and the log of biomass estimated. Only GLCM derived 

contrast increased the correlation between backscatter and log of biomass. 

• Values of variogram derived range highlighted the diversity of vegetation/canopy 

structures found in the field. However, no relationship was found between range, log 

of biomass and dominant species (and therefore upper canopy structure). Image 

spatial resolution (18 m), pixel transects (as opposed to pixel matrices) used to 

derive the variograms and the models used to fit the data could have limited the 

analysis. 

• GLCM and SADH derived texture measures extracted using different window 

sizes and quantisation levels indicated that textural information was dependent on 

quantisation levels. Both window sizes contained the same amount of textural 

information. 

• The strong relationships between some texture measures, particularly the ones 

derived from the GLCM and log of biomass were related to the age-related 

roughness of the vegetation canopy. 
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8.3. Spectral and polarisation analysis 

Multiwavelenqth and multipolarisation SAR data only had limited utility for the 

classification of a surrogate for biomass in regenerating tropical forests. 

• Exploratory statistics and discriminant analysis showed that median-filtered SAR 

bands had increased discrimination ability of land coyer classes (as compared to 

non-filtered SAR bands). 

• Cross-polarised HV and HVF (median-filtered) bands presented increased 

discrimination of land coyer classes as compared to the other SAR bands. 

• Neural networks can be used for the classification of land cover in tropical forest. 

• The reduction of speckle was essential for land cover classification using SAR 

data, even if the data were previously averaged by multi-look processing. 

• Higher overall training and testing accuracies were achieved with SAR and TM 

bands in combination, as compared with SAR bands only. 

• Regenerating forest stages were discriminated in SAR and TM bands when 

merged into young (0-5 years) and intermediate (6-18 years) regenerating forest 

classes. 

• The use of TM bands, coupled with SAR texture band (GLCM contrast) and 

different SAR bands and polarisations made it possible to discriminate regenerating 

forest up to around 13 years old. 

• The overall accuracy for classification of mature forest, pasture, young (0-5 

years) and intermediate (6-18 years) regenerating forest classes was around 87%. 

• Pasture and mature forest were discriminated accurately in both SAR data and 

combined SAR and TM data. 

8.3. Summary 

The main findings of this thesis are: 

• The o° temporal characteristics were not related to biomass accumulation. Water 

content of vegetation and soil were the main cause of temporal a° change. 
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• The a° spectral and polarisation characteristics had some utility for the mapping 

of regenerating forest stages, but require the combination with optical sensor data. 

• The spatial characteristics of a° have shown a strong relationship with the 

biomass of tropical forests. The addition of GLCM contrast information to a° 

potentially increased the accuracy of biomass estimation from SAR data. 

The temporal, spatial, spectral and polarisation characteristics of c° present great 

potential for the study of regenerating tropical forests. However, this research is still 

hindered by the lack of specific knowledge about 0° mechanisms in tropical forests. 

For example, the 0° asymptote at biomass levels of around 90 T ha"̂  (for LHH band) 

is a real limitation that encourages future research into the use of other tropical forest 

biophysical properties as biomass surrogates when trying to estimate biomass and 

biomass change from SAR data. 

8.4. Significance of results and future directions 

The findings of this research supported the use of SAR data, particularly their spatial 

domain, for the study of regenerating tropical forests. However, to move further and 

achieve more accurate biomass estimates and mapping with SAR data, some 

avenues have yet to be fully explored. 

Analysis of temporal backscatter would benefit from knowledge of land cover 

changes, rainfall intensity and biomass accumulation rates of regenerating tropical 

forests. A change detection approach (as used by Quegan et al. 2000) could isolate 

sources of backscatter variation and allow their quantification. The quantification of 

all sources of backscatter variation is far from complete, but in this research the 

importance of water content in regenerating tropical forests and soils was revealed. 

A measure that best captured the spatial variability of vegetation/canopy structure 

was GLCM contrast calculated on a LHH band. The assessment of the use of GLCM 

contrast (and other texture measures) needs to be done using different SAR bands 

and polarisations, particularly LHV. The strong relationship between some texture 

measures and the log of biomass means that textural information is required if 

biomass is to be estimated accurately from SAR data. 
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Conclusions 

Research is needed to assess the performance of neural networks and fuzzy 

classifiers in the classification of regenerating forest stages (as defined by the 

biophysical properties of vegetation). The successional paths proposed by Foody et 

al. (1996) and Lucas et al. (2000) could provide the land cover classes whose 

characteristics might be more related to backscatter than stage/age of regenerating 

forests. 

The synergy between SAR and optical sensor data stands to enhance the 

discrimination of regenerating forest stages and ultimately tropical forest biomass 

and carbon content estimation. Further studies using combined SAR and optical 

sensor data for the study of regenerating tropical forests are needed. 

An operational biomass mapping scheme for Amazonia would require the production 

of high-spatial resolution SAR image mosaics and the derivation of texture measures. 

To refine the Amazon basin land cover map produced by Saatchi et al. (2000) with 

regenerating forest stage classes, optical sensor images could be integrated with the 

SAR data, at least on the critical deforestation and regrowth areas defined by 

PRODES (Deforestation Project - INPE 2000). Monitoring and mapping of 

regenerating tropical forest stages using such a methodology could be operational, 

using for example multipolarisation L band SAR data from ALOS (Advanced Land 

Observing Satellite) once it has been launched. 

Earth observation with SAR systems is a valuable tool for increasing our 

understanding of environmental processes and the management of human activities 

that result in environmental disturbance. This thesis has provided an insight into the 

possibilities offered by SAR data for helping to fill some of the gaps in specific areas 

of knowledge about tropical forest ecosystems and their local scale assessment. 

196 



REFERENCES 

Ab'Saber, A.N. (1996). Amazonia: Do Discurso a Praxis. Editora da Universidade de 

Sao Paulo, Sao Paulo. 320 p. 

Aber, J.D. and Melillo, J.M. (2001). Terrestrial ecosystems. Academic Press, San 

Diego. 556 p. 

Adams, J.B., Sabol, D.E., Kapos, V., Almeida Filho, R., Roberts, D.A., Smith, M.O. and 

Gillespie, A.R. (1995). Classification of multispectral images based on fractions 

of endmembers: application to land-cover change in the Brazilian Amazon. 

Remote Sensing of Environment, 52: 137-154. 

Ahern, F.J., Leckie, D.J. and Drieman, J.A. (1993). Seasonal changes in relative C-band 

backscatter of northern forest cover types. IEEE Transactions on Geoscience 

and Remote Sensing, 31: 668-680. 

Aisdorf, D.E., Melack, J.M., Dunne, T., Mertes, L.A.K., Hess, L. and Smith, L.C. (2000). 

Interferometric radar measurements of water level changes on the Amazon flood 

plain. Nature, 404: 174-176. 

Alves, D.S., Soares, J.V., Amaral, S., Mello, E.M.K., Almeida, S.A.S., Silva, O.F. and 

Silveira, A.M. (1997). Biomass of primary and secondary vegetation in Rondonia, 

Western Brazilian Amazon. Global Change Biology, 3: 451-461. 

Alves, D.S., Pereira, J.L.G., Souza, C.L., Soares, J.V. and Yamaguchi, F. (1999). 

Characterizing landscape changes in central Rondonia using Landsat TM 

imagery. International Journal of Remote Sensing, 20: 2877-2882. 

Anderson, A.B. (1990). Deforestation in Amazonia: Dynamics, Causes and Alternatives. 

In: A. B. Anderson (Ed.). Alternatives to Deforestation in Amazonia, Columbia 

University Press, New York, pp. 3-23. 

Araujo, L.S., Santos, J.R., Freitas, C.C. and Xaud, H.A.M. (1999). The use of 

microwave and optical data for estimating aerial biomass of the savanna and 

forest formations at Roraima State, Brazil. In: IGARSS'99, IEEE Piscataway, 

Hamburg, CDROM. 

Atkinson, P.M. and Plummer, S.E. (1993). The influence of percentage cover and 

biomass of clover on the reflectance of mixed pasture. International Journal of 

Remote Sensing, 14: 1439-1444. 

197 



Atkinson, P.M. and Curran, P.J. (1997). Choosing an appropriate spatial resolution for 

remote sensing investigation. Photogrammetric Engineering and Remote 

Sensing, 63: 1345-1351. 

Atkinson, P.M. and Tatnall, A.R.L. (1997). Neural networks in remote sensing. 

internationalJournai of Remote Sensing, 18: 699-709. 

Atkinson, P.M. (1999). Spatial Statistics. In: A. Stein, F. van der Meer and B. Gorte 

(Eds.). Spatial Statistics for Remote Sensing, Kluwer Academic, Dordrecht, pp. 

57-81. 

Atkinson, P.M. and Lewis, P. (2000). Geostatistical classification for remote sensing: an 

introduction. Computers and Geosciences, 26: 361-371. 

Attema, E.P.W. and Ulaby, F.T. (1978). Vegetation modeled as a water cloud. Radio 

Science, 13: 357-364. 

Azevedo, L.H.A. (1971). Radar in the Amazon. In: International Symposium on Remote 

Sensing of Environment, Environmental Research Institute of Michigan, Ann 

Arbor, Michigan, pp. 2303-2306. 

Bailey, P. (1997). Exploring remotely sensed shadow in Amazonian regrowth forests. 

Unpublished PhD. Thesis, University of Southampton, Southampton. 226 p. p. 

Baillie, I.C. (1996). Soils of the humid tropics. In: P. W. Richards (Ed.). The Tropical Rain 

Forest - An Ecological Study, Cambridge University Press, Cambridge, pp. 256-

285. 

Baltzer, H. (2001). Forest mapping and monitoring with interferometric synthetic aperture 

radar (InSAR). Progress in Physical Geography, 25: 159-177. 

Baraldi, A. and Parmiggiani, F. (1995). An investigation of the textural characteristics 

associated with gray level cooccurrence matrix statistical parameters. IEEE 

Transactions on Geoscience and Remote Sensing, 33: 293-304. 

Batista, G.T. (1999). Resultados do projeto sequestro e emissoes de carbono em fungao 

de mudangas no uso e cobertura da terra amazonica. In: Seminario de Avaiiagao 

dos Resultados do Programa Piloto para a Protegao das Florestas Tropicals do 

Brasil, Secretaria Tecnica do Ministerio da Ciencia e Tecnologia, Manaus, Brazil, 

pp. 127-156. 

Beaudoin, A., Le Toan, T., Goze, S., Nezry, E., Lopes, A., Mougin, E., Hsu, C.C., han, 

H.C., Kong, J.A. and Shin, R.T. (1994). Retrieval of forest biomass from SAR 

data. International Journal of Remote Sensing, 14: 2777-2796. 

198 



Benediktsson, J.A. and Sveinsson, J.R. (1997). Feature extraction for multisource data 

classification with artificial neural networks. International Journal of Remote 

Sensing, 18: 727-740. 

Benjamini, Y. (1988). Opening the box of a boxplot. The American Statistician, 42: 257-

262. 

Berberoglu, S., Lloyd, C.D., Atkinson, P.M. and Curran, P.J. (2000). The integration of 

spectral and texturai information using neural networks for land cover mapping in 

the Mediterranean. Computers and Geoscience, 26: 385-396. 

Bergen, K.M., Dobson, M.C., Pierce, L.E. and Ulaby, F.T. (1998). Characterizing carbon 

in a northern forest by using SIR-C/X-SAR imagery. Remote Sensing of 

Environment, 63: 24-39. 

Bierregaard, J., R.O. and Stouffer, P.C. (1997). Understory birds and dynamic habitat 

mosaics in Amazonian Rainforests. In: W. F. Laurance and J. Bierregaard, R.O. 

(Eds.). Tropical Forest Remnants- Ecology, Management and Conservation of 

Fragmented Communities, The University of Chicago Press, Chicago, pp. 138-

155. 

Bijisma, R.J. (1993). The characterisation of natural vegetation using first-order and 

texture measurements in digitized, color-infrared photography. International 

Journal of Remote Sensing, 14: 1547-1562. 

Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Clarendon Press, 

Oxford. 482 p. 

Boyd, D.S., Foody, G.M., Curran, P.J., Lucas, R.M. and Honzak, M. (1996). An 

assessment of radiance in Landsat TM middle and thermal infrared wavebands 

for the detection of tropical forest regeneration. International Journal of Remote 

Sensing, 17: 249-261. 

Brown, S., Gillespie, A.J.R. and Lugo, A.E. (1989). Biomass estimation methods for 

tropical forests with application to forest inventory data. Forest Science, 24: 881-

902. 

Brown, S. and Lugo, A.E. (1990). Tropical secondary forests. Journal of Tropical 

Forestry, 6: 1-32. 

Brown, S. and Lugo, A.E. (1992). Aboveground biomass estimates for tropical moist 

forests of the Brazilian Amazon. Interciencia, 17: 8-18. 

199 



Brown, I.F., Nepstad, D.C., Pires, I.O., Luz, LM. and Alechandre, A.S. (1992). Carbon 

storage and land use in extractive reserves, Acre, Brazil. Environmental 

Conservation, 19: 307-315. 

Budowski, G. (1965). Distribution of tropical American rain forest species in the light of 

Burrough, P.A. (1996). Methods of Spatial Interpolation. In: Principles of Geographical 

Information Systems for Land Resources Assessment, Clarendon Press, Oxford, 

pp. 147-166. 

Buschbacher, R., Uhl, C. and Serrao, E.A.S. (1988). Abandoned pastures in eastern 

Amazonia. II. Nutrient stocks in the soils and vegetation. Journal of Ecology, 76: 

682-699. 

Castel, T., Beaudoin, A., Floury, N., Le Toan, T., Caraglio, Y. and Barczi, J.F. (2001). 

Deriving forest canopy parameters for backscatter models using the AMAP 

architectural plant model. IEEE Transactions on Geoscience and Remote 

Sensing, 39: 571-583. 

Ceccon, E. and Miramontes, O. (1999). Mecanismos y actores sociales de la 

deforestation en la Amazonia Brasilena. Interciencia, 24: 112-119. 

Chambers, J.Q., Higuchi, N., Tribuzy, E.S. and Trumbore, S.E. (2001). Carbon sink for a 

century. Nature, 410 p. 429. 

Chapman, B., Freeman, A. and Siqueira, P. (1999). JERS-1 SAR Global Rain Forest 

Mapping (GRFM) project - data quality for multi-temporal studies. In: M. Shimada 

(Ed.). JERS-1 Science Program'99 - Pi reports, EORC/NASDA, Tokyo, pp. 13-

17. 

Chapman, C.A. and Chapman, L.J. (1999). Forest restoration in abandoned agricultural 

land: a case study from East Africa. Conservation Biology, 13: 1301-1311. 

Chen, K.S., Huang, W.P., Tsay, D.H. and Amar, F. (1996). Classification of 

multifrequency polarimetric SAR imagery using a dynamic learning neural 

network. IEEE Transactions on Geoscience and Remote Sensing, 34: 814-820. 

Chica-Olmo, M. and Abarca-Hernandez, F. (2000). Computing geostatistical image 

texture for remotely sensed data classification. Computers and Geoscience, 26: 

373-383. 

Cochrane, M.A., Alencar, A., Schuize, M.D., Souza Jr., C.M., Nepstad, D.C., Lefebvre, 

P. and Davidson, E.A. (1999). Positive feedbacks in the fire dynamic of closed 

canopy tropical forests. Science, 284: 1832-1835. 

200 



Cohen, W.B., Spies, T.A. and Bradshaw, G.A. (1990). Semivariograms of digital imagery 

for analysis of conifer canopy structure. Remote Sensing of Environment, 34: 

167-178. 

Congalton, R.G. (1991). A review of assessing the accuracy of classifications of 

remotely sensed data. Remote Sensing of Environment, 37: 35-46. 

Curran, P.J. (1988). The semi-variogram in remote sensing: an introduction. Remote 

Sensing of Environment, 3: 493-507. 

Curran, P.J. and Foody, G.M. (1994). the use of remote sensing to characterise the 

regenerative states of tropical forests. In: G. Foody and P. J. Curran (Eds.). 

Environmental Remote Sensing from Regional to Global Scales, Wiley & Sons, 

Chichester, pp. 44-83. 

Curran, P.J., Foody, G.M., Lucas, R.M. and Honzak, M. (1995). A methodology for 

remotely sensing the stage of regeneration in tropical forests. In: P. M. Mather 

(Ed.). TERRA 2 - Understanding the Terrestrial Environment. Remote Sensing 

Systems and Network, John Wiley and Sons, London, pp. 189-202. 

Curran, P.J. and Atkinson, P.M. (1998). Geostatistics and remote sensing. Progress in 

Physical Geography, 22: 61-78. 

Curran, P.J., Milton, E.J., Atkinson, P.M. and Foody, G.M. (1998). Remote sensing: from 

data to understanding. In: P. A. Longley, S. M. Brooks, R. McDonnell and B. 

Macmillan (Eds.). Geocomputation: A Primer, John Wiley and Sons, London, pp. 

33-59. 

Davis, J.C. (1986). Analysis of Sequences of Data. In: Statistical and Data Analysis in 

Geology, John Wiley, New York, pp. 239-248. 

Deans, J.C)., Moran, J. and Grace, J. (1996). Biomass relationships for tree species in 

regenerating semi-decidous tropical moist forest in Cameroon. Forest Ecology 

and Management, 88: 215-225. 

Delire, C., Calvet, J.C)., Noilhan, J., Wright, I., Manzi, A. and Nobre, C. (1997). Physical 

properties of Amazonian soils: a modeling study using the Anglo-Brazilian 

Amazonian Climate Observation Study area. Journal of Geophysical Research, 

102: 119-133. 

Detwiller, R.P. and Hall, C.A.S. (1988). Tropical forests and the global carbon cycle. 

Science, 239: 42-47. 

Diegues, A.C. (1992). The social dynamics of deforestation in the Brazilian Amazon: an 

overview, http://www.unsrid.org/engindex/publ/list/dp/dp36/toc.html. 

201 

http://www.unsrid.org/engindex/publ/list/dp/dp36/toc.html


Dixon, R.K., brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C. and Wisniewski, J. 

(1994). Carbon pools and flux of global forest ecosystems. Science, 263: 185-

190. 

DNM (Departamento Nacional de Meteorologia) (1992). Normais Climatologicas (1961-

1990). Ministerio da Agricultura e Reforma Agraria, Brasilia. 

Dobson, M.C., Ulaby, F.T., Le Toan, T., Beaudoin, A., Kasischke, E.S. and Christensen, 

N. (1992). Dependence of radar backscatter on coniferous forest biomass. IEEE 

Transactions on Geoscience and Remote Sensing, 30: 412-415. 

Dobson, M.C., Ulaby, F.T., Pierce, L.E., Sharik, T.L., Bergen, K.M., Kellndorfer, J., 

Kendra, J.R., Li, E., Lin, Y.C., Nashashibi, A., Sarabandi, K. and Siqueira, P. 

(1995). Estimation of forest biophysical characteristics in northern Michigan with 

SIR-C/X-SAR. IEEE Transactions on Geoscience and Remote Sensing, 33: 877-

894. 

Dutra, L.V. and Huber, R. (1999). Feature extraction and selection for ERS-1/2 InSAR 

classification. InternationalJournal of Remote Sensing, 20: 993-1016. 

Eastman, J.R. and Fulk, M. (1993). Long sequence time series evaluation using 

standardized principal components. Photogrammetric Engineering & Remote 

Sensing, 59: 1307-1312. 

Eden, M.J. (1990). Ecology and land management in Amazonia. Belhaven Press, UK. 

257 p. 

Elachi, C. (1988). Spaceborne radar remote sensing: applications and techniques. IEEE 

Press, New York. 255 p. 

Eggers, L. (1999). Pontificie Universidade Catolica (PUC), Porto Alegre, Brazil. 

Evans, D.L., Plaut, J.J. and Stofan, E.R. (1997). Overview of the spaceborne imaging 

radar-C/X-band synthetic aperture radar (SIR-C/X-SAR) missions. Remote 

Sensing of Environment, 59: 135-140. 

Ewe I, J. (1971). Biomass changes in early tropical succession. Turrialba, 21: 110-112. 

FAO. (1971). FAO/UNESCO Soil Map of the World. Volume 4. South America. United 

Nations Educational, Scientific and Cultural Organisation, Paris. 

FAO. (1971). FAO-UNESCO Soil Map of the World: 1:5 000 000. Volume 4, South 

America. United Nations Educational, Scientific and Cultural Organisation, Paris. 

193 p. 

Fearnside, P.M. and Guimaraes, W.M. (1996). Carbon uptake by secondary forests in 

Brazilian Amazonia. Forest Ecology and Management, 80: 35-46. 

202 



Fearnside, P.M. (2000). Global warming and tropical land use change: greenhouse gas 

emissions from biomass burning, decomposition and soils in forest conversion, 

shifting cultivation and secondary vegetation. Climatic Change, 46: 115-158. 

Ferrazzoli, P., Paloscia, S., Pampaloni, P., Schiavon, G., Sigismondi, S. and Solimini, D. 

(1997). The potential of multifrequency polarimetric SAR in assessing agricultural 

and arboreous biomass. IEEE Transactions on Geoscience and Remote 

Sensing, 35: 5-17. 

Foody, G.M. (1995). Using prior knowledge in artificial neural network classification with 

a minimal training set. International Journal of Remote Sensing, 16: 301-312. 

Foody, G.M. and Hill, R.A. (1996). Classification of tropical forest classes from Landsat 

TM data. International Journal of Remote Sensing, 17: 2353-2367. 

Foody, G.M., Green, R., Lucas, R.M., Curran, P.J., Honzak, M. and Amaral, I. (1997). 

Observations on the relationship between SIR-C radar backscatter and the 

biomass of regenerating tropical forests. International Journal of Remote 

Sensing, 18: 687-694. 

Foody, G.M. and Arora, M.K. (1997). An evaluation of some factors affecting the 

accuracy of classification by an artificial neural network. International Journal of 

Remote Sensing, 18: 799-810. 

Foody, G.M., Green, R.M., Lucas, R.M., Curran, P.J., Honzak, M. and Do Amaral, I. 

(1997a). Observations on the relationship between SIR-C radar backscatter and 

the biomass of regenerating tropical forests. International Journal of Remote 

Sensing, 18: 687-694. 

Foody, G.M., Lucas, R.M., Curran, P.J. and Honzak, M. (1997b). Non-linear mixture 

modelling without end-members using an artificial neural network. International 

Journal of Remote Sensing, 18: 937-953. 

Fransson, J.E.S. and Israelsson, H. (1999). Estimation of stem volume in boreal forests 

using ERS-1 C- and JERS-1 L-band SAR data. International Journal of Remote 

Sensing, 20: 123-137. 

Freitas, C.C., Sant'Anna, S.J.S. and Renno, C.D. (1999). The use of JERS-1 and 

RADARSAT images for land user classification in the Amazon region. In: 

IGARSS'99, IEEE Piscataway, Hamburg, CDROM. 

Gash, J.H.C., Nobre, C.A., Roberts, J.M. and Victoria, R.L. (1996). An overview of 

ABRACOS. In: J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria 

(Eds.). Amazonian Deforestation and Climate, Jonh Wiley, Chichester, pp. 1-14. 

203 



Gates, D.M. (1991). Water relations of forest trees. IEEE Transactions on Geoscience 

and Remote Sensing, 29; 836-842. 

Gheerbrant, A. (1992). The Amazon. Thames and Hudson, London. 192 p. 

Grace, J. and Malhi, Y. (1999). The role of rain forests in the global carbon cycle. 

Progress in Environmental Science, 1:177-193. 

Grover, K., Quegan, S. and Freitas, C.C. (1999). Quantitative estimation of tropical 

forest cover by SAR. IEEE Transactions on Geoscience and Remote Sensing, 

37: 479-490. 

Haack, B. and Bechdol, M. (2000). Integrating multisensor data and radar texture 

measures for land cover mapping. Computers and Geosciences, 26: 411-421. 

Hammerstrom, D. (1993). Neural networks at work. IEEE Spectrum, 30: 26-32. 

Haralick, R.M., Shaunmugam, K. and Dinstein, I. (1973). Textural features for image 

classification. IEEE Transactions on Systems, Man and Cybernetics, 3: 610-621. 

Haralick, R.M. and Shanmugam, K.S. (1974). Combined spectral and spatial processing 

of ERTS imagery data. Remote Sensing of Environment, 3: 3-13. 

Haralick, R.M. (1979). Statistical and structural approaches to texture. Proceedings of 

the IEEE, 67: 786-804. 

Hartshorn, G.S. (1980). Neotropical forest dynamics. Biotropica, 12: 23-30. 

Hashimoto, Y., Tsuchiya, K. and lijima, T. (1996). Normalized backscattering radar cross 

section of tropical rain forest in Rondonia, northern Brazil. Advances in Space 

Research, 19: 1425-1428. 

He, D. and Wang, L. (1990). Texture unit, texture spectrum and texture analysis. IEEE 

Transactions on Geoscience and Remote Sensing, 28: 509-512. 

Hernandez Filho, P., Shimabukuro, Y.E., Lee, D.C.L., Santos Filho, C.P. and Almeida, 

R.R. (1993). Final report on the forest inventory project at the Tapajos National 

Forest. Internal Report. INPE, Sao Jose dos Campos, SP, Brazil. 120 p. 

Hess, L.L., Melack, J.M., Filoso, S. and Yong, W. (1995). Delineation of inundated area 

and vegetation along the Amazon floodplain with the SIR-C Synthetic Aperture 

Radar. IEEE Transactions on Geoscience and Remote Sensing, 33: 896-904. 

Hoekman, D.H. and Quinones, M.J. (2000). Land cover type and biomass classification 

using AirSAR data for evaluation of monitoring scenarios in the Colombian 

Amazon. IEEE Transactions on Geoscience and Remote Sensing, 38: 685-696. 

204 



Honzak, M., Lucas, R.M., Amaral, I., Curran, P.J., Foody, G., M. and Amaral, S. (1996). 

Estimation of the leaf area index and total biomass of tropical regenerating 

forests: comparison of methodologies. In: J. H. C. Gash, C. A. Nobre, J. M. 

Roberts and R. L. Victoria (Eds.). Amazonian Deforestation and Climate, John 

Wiley and Sons Ltd., Chichester, pp. 365-381. 

Honzak, M., (1997). Mapping carbon pools in the regenerating forests of Brazil and 

Cameroon using remote sensing techniques. Unpublished PhD. Thesis. 

University of Wales, Swansea. 212 p. 

Houghton, R.A., Skole, D.L., Nobre, G.A., Hackler, J.L., Lawrence, K.T. and 

ChomentowskI, W.H. (2000). Annual fluxes of carbon from deforestation and 

regrowth in the Brazilian Amazon. Nature, 403: 301-304. 

li, F. A. M. (2000). Department of Geography, University of Reading, UK. 

Imhoff, M.L. (1995a). A theoretical analysis of the effect of forest structure on Synthetic 

Aperture Radar backscatter and the remote sensing of biomass. IEEE 

Transactions on Geoscience and Remote Sensing, 33: 341-352. 

Imhoff, M.L. (1995b). Radar backscatter and biomass saturation: ramifications for the 

global biomass inventory. IEEE Transactions on Geoscience and Remote 

Sensing, 33; 511 -518. 

INPE (Institute Nacional de Pesquisas Espaciais) (2000). Monitoring of the Brazilian 

Amazonian forest by satellite: 1999-2000. INPE, Sao Jose dos Campos. 

http://www.inpe.br/informacoes_Eventos/amz1999_2000/Prodes. 

IPCC. (2001). Climate Change 2001: The Scientific Basis. Contribution of Working 

Group I to the Third Assessment Report of the Intergovernmental Panel on 

Climate Change. J. T. Houghton, Y. Ding, D. J. Griggset. Cambridge University 

Press, Cambridge, http://www.ipcc.ch/pub/spm22-01.pdf. 

Isaacks, E.H. and Srivastava, R.M. (1989). Univariate Description. In: An Introduction to 

Applied Geostatistics, Oxford University Press, New York, pp. 10-39. 

Jacobs, M. (1988). Primary and secondary forest. In: R. Kruk (Ed.). The Tropical Rain 

Forest: A First Encounter, Springer-Verlag, Berlin, pp. 89-100. 

Jensen, J.R. (1996). Introductory Digital Image Processing: A Remote Sensing 

perspective. 2nd. Prentice-Hall, Saddle River, NJ. 

Jensen, J.R. (2000). Remote Sensing of the Environment: An Earth Resource 

Perspective. Prentice Hall, Saddle River. 544 p. 

205 

http://www.inpe.br/informacoes_Eventos/amz1999_2000/Prodes
http://www.ipcc.ch/pub/spm22-01.pdf


Johnston, R.J. (1980). Multivariate statistical analysis in geography. Longman, London. 

280 p. 

Jordan, R.L., Huneycutt, B.L. and Werner, M. (1995). The SIR-C/X-SAR Synthetic 

Aperture Radar System. IEEE Transactions on Geoscience and Remote 

Sensing, 33: 829-839. 

Kanellopoulos, I. and Wilkinson, G.G. (1997). Strategies and best practice for neural 

network image classification. International Journal of Remote Sensing, 18: 711-

725. 

Kasischke, E.S. and Christensen, N. (1990). Connecting forest ecosystem and 

backscatter models. International Journal of Remote Sensing, 11:1277-1298. 

Kasischke, E.S., Melack, J.M. and Dobson, M.C. (1997). The use of imaging radars for 

ecological applications - a review. Remote Sensing of Environment, 59: 141:156. 

Kingsiey, S. and Quegan, S. (1992). Understanding Radar Systems. McGraw-Hill Book 

Company, London. 375 p. 

Krebs, C.J. (1978). Ecology - The Experimental Analysis of Distribution and Abundance. 

2nd. Harper & Row, New York. 678 p. 

Kuntz, S. and Siegert, F. (1999). Monitoring of deforestation and land use in Indonesia 

with multitemporal ERS data. International Journal of Remote Sensing, 20; 2835-

2853. 

Kuplich, T.M. and Curran, P.J. (1999). Temporal analysis of JERS-1/SAR images over 

regenerating forests in Brazilian Amazonia, in: IGARSS'99, IEEE Piscataway, 

Hamburg, CDROM. 

Kuplich, T.M., Freitas, C.C. and Scares, J.V. (2000a). The study of ERS-1 SAR and 

Landsat TM synergism for land use classification. International Journal of 

Remote Sensing, 21:2101-2111. 

Kuplich, T.M., Salvatori, V. and Curran, P.J. (2000b). JERS-1/SAR backscatter and its 

relationship with biomass of regenerating forests. International Journal of Remote 

Sensing, 21: 2513-2518. 

Kurosu, T., Uratsuka, S., Maeno, H. and Kozu, T. (1999). Texture statistics for 

classification of land use with multitemporal JERS-1 SAR single-look imagery. 

IEEE Transactions on Geoscience and Remote Sensing, 37: 227-235. 

Kurvonen, L. and Hallikainen, M.T. (1999). Textural information of multitemporal ERS-1 

and JERS-1 SAR images for land and forest type classification in boreal zone. 

IEEE Transactions on Geoscience and Remote Sensing, 37: 680-689. 

206 



Kushwaha, S.P.S., Kuntz, S. and Oesten, G. (1994). Applications of image texture in 

forest classification. InternationalJournal of Remote Sensing, 15: 2273-2284. 

Lacaze, B., Rambal, S. and Winkel, T. (1994). Identifying spatial patterns of 

Mediterranean landscapes from geostatistical analysis of remotely-sensed data. 

International Journal of Remote Sensing, 15: 2437-2450. 

Lane, D.M. (2000). HyperStat Online Textbook. Rice University, Houston, TX. 

http://www.ruf.rice.edu/~lane/rvls.html. 

Le Toan, T., Beaudoin, A., Riom, J. and Guyon, D. (1992). Relating forest biomass to 

SAR data. IEEE Transactions on Geoscience and Remote Sensing, 30: 403-411. 

Leckie, D.G. and Ranson, K.J. (1998). Forestry applications using imaging radar. 

Principles and Applications of Imaging Radar. In: F. M. Henderson and A. J. 

Lewis (Eds.). Principles and Applications of Imaging Radar, John Wiley, New 

York, pp. 435-509. 

Leysen, M. (1998). Flemish Institute for Technological Research, Belgium. 

Lewis, A.J. and Henderson, F.M. (1998). Radar fundamentals: the geoscience 

perspective. In: F. M. a. Henderson and A. J. Lewis (Eds.). Principles and 

Applications of Imaging Radar, John Wiley, New York, pp. 131-181. 

Lillesand, T.M. and Kiefer, R.W. (2000). Remote Sensing and Image Interpretation. 

Fourth Edition. John Wiley, New York. 750 p. 

Lucas, R.M., Honzak, M., Foody, G.M., Curran, P.J. and Corves, C. (1993). 

Characterizing tropical secondary forests using multi-temporal Landsat sensor 

imagery. International Journal of Remote Sensing, 14: 3061-3067. 

Lucas, R.M., Curran, P.J., Honzak, M., Foody, G.M., Amaral, I. and Amaral, S. (1996). 

Disturbance and recovery of tropical forests: balancing the carbon account. In: J. 

H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria (Eds.). Amazonian 

Deforestation and Climate, John Wiley, Chichester, pp. 383-398. 

Lucas, R.M., Honzak, M., Curran, P.J., Foody, G.M., Milne, R., Brown, T. and Amaral, S. 

(2000). Mapping the regional extent of tropical forest regeneration in the Brazilian 

Legal Amazon using NOAA AVHRR data. International Journal of Remote 

Sensing, 21: 2855-2881. 

Luckman, A., Baker, J. and Groom, G., (1994). Radar remote sensing for tropical forest 

inventory and carbon balance investigation (TIGER 1.4.3). No. 94/1, Remote 

Sensing Applications Development Unit (RSADU) - British National Space 

Centre, Monks Wood. 

207 

http://www.ruf.rice.edu/~lane/rvls.html


Luckman, A.J., Baker, J., Lucas, R. and Kuplich, T.M. (1995). Retrieval of the biomass 

of regenerating tropical forest in Amazonia using spaceborne SAR data. In; 

International Symposium on Retrieval of Bio- and Geophysical Parametres from 

SAR Data for Land Applications, Toulouse, France, pp. 107-118. 

Luckman, A., Baker, J., Kuplich, T.M., Yanasse, C.C.F. and Frery, A. (1997a). A study of 

the relationship between radar backscatter and regenerating tropical forest 

biomass for spaceborne SAR instruments. Remote Sensing of Environment, 60: 

1-13. 

Luckman, A.J., Frery, A.C., Yanasse, C.C.F. and Groom, G.B. (1997b). Texture in 

airborne SAR imagery of tropical forest and its relationship to forest regeneration 

stage. InternationalJournal of Remote Sensing, 18: 1333-1349. 

Luckman, A., Baker, J., Honzak, M. and Lucas, R. (1998). Tropical forest biomass 

density estimation using JERS-1/SAR: seasonal variation, confidence limits and 

application to image mosaics. Remote Sensing of Environment, 63: 126-139. 

Luckman, A., Baker, J. and Wegmuller, U. (2000). Repeat-pass interferometric 

coherence measurements of disturbed tropical forest from JERS and ERS 

satellites. Remote Sensing of Environment, 73: 350-360. 

Lugo, A.E. and Brown, S. (1992). Tropical forests as sinks of atmospheric carbon. Forest 

Ecology and Management, 54: 239-255. 

Marceau, D.J., Howarth, P.J., Dubois, J.M. and Gratton, D.J. (1990). Evaluation of the 

grey-level co-occurrence matrix method for land-cover classification using SPOT 

imagery. IEEE Transactions on Geoscience and Remote Sensing, 28: 513-519. 

Mather, P.M. (1999). Computer Processing of Remotely-Sensed Images. Second 

edition. Jonh Wiley and Sons, Chichester. 292 p. 

Matheron, G. (1965). Les Variables Regionalisees et Leur Estimation. Masson, Paris. 

McDonald, K.C., Dobson, M.C. and Ulaby, F.T. (1990). Using MIMICS to model L-band 

multiangle and multitemporal backscatter from a walnut orchard. IEEE 

Transactions on Geoscience and Remote Sensing, 28: 477-491. 

McDonald, K.C., Dobson, M.C. and Ulaby, F.T. (1991). Modeling multi-frequency diurnal 

backscatter from a walnut orchard. IEEE Transactions on Geoscience and 

Remote Sensing, 29: 852-863. 

208 



Miranda, P.P., Ponseca, L.E.N., Carr, J.R. and Taranik, J.V. (1996). Analysis of JERS-1 

(Puyo-1) SAR data for vegetation discrimination in northwestern Brazil using the 

semivariogram textural classifier (STC). InternationalJournal of Remote Sensing, 

17: 3523-3529. 

Miranda, P.P., Ponseca, L.E.N, and Carr, J.R. (1998). Semivariogram textural 

classification of JERS-1 (Puyo-1) SAR data obtained over a flooded area of 

Amazon rainforest. International Joumai of Remote Sensing, 19: 549-556. 

Moran, E.P., Brondizio, E., Mausel, P. and Wu, Y. (1994). Integrating Amazonian 

vegetation, land-use, and satellite data. Bioscience, 44: 329-338. 

Myers, N. (1984). The Primary Source: Tropical Forests and Our Future. W.W.Norton, 

New York. 

Nelson, B.W. (1996). Caracterizacao da flora Amazonica por satelite. In: C. Pavan (Ed.). 

Uma Estrategia Latino-Americana para a Amazonia, 2, Memorial, UNESP, Sao 

Paulo, pp. 127-148. 

Nepstad, D.C., Ven'ssimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., 

Schlesinger, P., Potter, C., Moutinho, P., Mendoza, E., Cochrane, M. and 

Brooks, V. (1999). Large-scale impoverishment of Amazonian forests by logging 

and fire. Nature, 398; 505-508. 

Neter, J., Wasserman, W. and Kutner, M.H. (1996). Applied Linear Statistical Models. 

Irwin, Chicago. 

Nezry, E., Mougin, E., Lopes, A. and Gastellu-Etchegorry, J.P. (1993). Tropical 

vegetation mapping with combined visible and SAR spaceborne data. 

InternationalJournal of Remote Sensing, 14: 2165-2184. 

Oliver, C. and Quegan, S. (1998). Understanding Synthetic Aperture Radar Images. 

Artech House, London. 464 p. 

Oliver, C. (1998). The application of texture measures to classifying the rain forest. In; 

IX SBSR: Brazilian Remote Sensing Symposium, Santos, Brazil, CDROM. 

Palubinkas, G., Lucas, R.M., Poody, G.M. and Curran, P.J. (1995). An evaluation of 

fuzzy and texture-based classification approaches for mapping regenerating 

tropical forest classes from Landsat-TM data. International Journal of Remote 

Sensing, 16: 747-759. 

Paola, J.D. and Schowengerdt, R.A. (1995). A review and analysis of backpropagation 

neural networks for classification of remotely-sensed multi-spectral imagery. 

International Journal of Remote Sensing, 16: 3033-3058. 

209 



Pearce, E.A. and Smith, C.G. (1993). Brazil. In: The World Weather Guide, Helicon 

Publishing Ltd., Oxford, pp. 173-180. 

Pebesma, E.J. and Wesseling, C.G. (1998). GSTAT: a program for geostatistical 

modelling, prediction and simulation. Computers and Geosciences, 24: 17-31. 

Podest, E. and Saatchi, S. (1999). Application of texture to JERS-1 SAR imagery for 

tropical forest land cover classification. In: IGARSS'99, IEEE, Hamburg, CDROM. 

Pope, K.O., Rey-Benayas, J.M. and Paris, J.F. (1994). Radar remote sensing of forest 

and wetland ecosystems in the Central American Tropics. Remote Sensing of 

Environment, 48: 205-219. 

Prance, G.T. (1987). Vegetation. In: T. C. Whitmore and G. T. Prance (Eds.). 

Biogeography and Quaternary History in Tropical America, Clarendon Press, 

Oxford, pp. 46-65. 

Pulliainen, J.T., Kurvonen, L. and Hallikainen, M.T. (1999). Mutltitemporal behaviour of 

L- and C-band SAR observations of boreal forests. IEEE Transactions on 

Geoscience and Remote Sensing, 37: 927-937. 

Quegan, S., Le Toan, T., Yu, J.J., Ribbes, F. and Floury, N. (2000). Multitemporal ERS 

SAR analysis applied to forest mapping. IEEE Transactions on Geoscience and 

Remote Sensing, 38: 741 -753. 

RADAMBRASIL, (1976). Levantamento de Recursos Naturals. Folha SA.21 - Santarem, 

Vol. 10, DNPM/Projeto RADAMBRASIL, Rio de Janeiro, Brazil. 

Raney, R.K. (1998). Radar Fundamentals: Technical Perspective. In: F. M. Henderson 

and A. J. Lewis (Eds.). Principles and Applications of Imaging Radar, John Wiley, 

New York, pp. 9-130. 

Ranson, K.J. and Sun, G. (1994). Mapping biomass of a northern forest using 

multifrequency SAR data. IEEE Transactions on Geoscience and Remote 

Sensing, 32: 388-395. 

Ranson, K.J., Saatchi, S. and Sun, G. (1995). Boreal forest ecosystem characterization 

with SIR-C/XSAR. IEEE Transactions on Geoscience and Remote Sensing, 33: 

867-876. 

Ranson, K.J., Sun, G., Lang, R.H., Chauhan, S., Cacciola, R.J. and Kilic, O. (1997a). 

Mapping of boreal forest biomass from spaceborne synthetic aperture radar. 

Journal of Geophysical Research, 102: 29599-29610. 

210 



Ranson, K.J., Sun, G., J.F., W. and Knox, R.G. (1997b). Forest biomass from combined 

ecosystem and radar backscatter modeling. Remote Sensing of Environment, 59: 

118-133. 

Rauste, Y., Hame, T., Pulliainen, J., Heiska, K. and Hallikainen, M. (1994). Radar-based 

forest biomass estimation. Intemational Journal of Remote Sensing, 15: 2797-

2808. 

Renno, C.D., Freitas, C.C. and Sant'Anna, S.J.S. (1998). A system for region image 

classification based on textural measures. In: 2nd Latino-American Seminar on 

Radar Remote Sensing, ESA, Santos, Brazil, ESA SP-434, pp. 159-164. 

Reyes, G., Brown, S., Chapman, J. and Lugo, A.E., (1992). Wood Densities of Tropical 

Tree Species. 80-88, Department of Agriculture, Forest serrvice, New Orleans. 

Ribbes, F., LeToan, T., Bruniquel, J. and Floury, N. (1997). Deforestation monitoring in 

tropical regions using multitemporal ERS/JERS SAR and INSAR data. In: 

IGARSS'97, Singapore, IV, pp. 1560-1562. 

Richards, J.A. (1990). Radar backscatter modelling of forests: a review of current trends. 

International Journal of Remote Sensing, 11:1299-1312. 

Richards, P.W. (1996). The Tropical Rain Forest: an Ecological Study. 2nd. Cambridge 

University Press, Cambridge. 575 p. 

Rignot, E., Salas, W.A. and Skole, D.L. (1997). Mapping deforestation and secondary 

growth in Rondonia, Brazil, using imaging radar and Thematic Mapper data. 

Remote Sensing of Environment, 59: 167-179. 

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and 

organisation in the brain. Psychological Review, 65: 386-408. 

Rosenqvist, A. (1996a). Evaluation of JERS-1/SAR and Alamaz/SAR backscatter for 

rubber and oil palm stands in West Malaysia. International Journal of Remote 

Sensing, 17: 191-202. 

Rosenqvist, A. (1996b). The Global Rain Forest Project by JERS-1 SAR. In: 

International Society for Photogrammetry and Remote Sensing - ISPRS, Vienna, 

Austria. 

Rosenqvist, A., Shimada, M., Chapman, B., Freeman, A., De Grand!, G., Saatchi, S. and 

Rauste, Y. (2000). The Global Rain Forest Mapping project - a review. 

International Journal of Remote Sensing, 21: 1375-1387. 

211 



Royal Society, The (2001). The role of land carbon sinks in mitigating global climate 

change. Policy document 10/01, The Royal Society, London. 

Rubin, T. (1990). Analysis of radar texture with variograms and other simplified 

descriptors. In: Image Processing'89, American Society for Photogrammetry and 

Remote Sensing, Falls Church, pp. 185-195. 

Saatchi, S.S., Scares, J.V. and Alves, D.S. (1997). Mapping deforestation and land use 

in Amazon rainforest by using SIR-C imagery. Remote Sensing of Environment, 

59: 191-202. 

Saatchi, S.S. and Rignot, E. (1997). Classification of boreal forest cover types using 

SAR images. Remote Sensing of Environment, 60: 270-281. 

Saatchi, S.S. and McDonald, K.C. (1997). Coherent effects in microwave backscattering 

models for forest canopies. IEEE Transactions on Geoscience and Remote 

Sensing, 35: 1032-1044. 

Saatchi, S.S., Nelson, B., Podest, E. and Holt, J. (2000). Mapping land cover types in 

the Amazon Basin using 1 km JERS-1. International Journal of Remote Sensing, 

21: 1201-1234. 

Saatchi, S., Agosti, D., Alger, K., Delabie, J. and Musinsky, J. (2001). Examining 

fragmentation and loss of primary forest in the Southern Bahian Atlantic Forest of 

Brazil with radar imagery. Conservation Biology, 15: 867-875. 

Sader, S.A. (1987). Forest biomass, canopy structure and species composition 

relationships with mutlipoiarization L-band Synthetic Aperture Radar data. 

Photogrammetric Engineering and Remote Sensing, 53: 193-202. 

Salas, W. and Skole, D. (1998). Remote sensing of land cover change: secondary 

growth dynamics in Rondonia, Brazil. In: IGARSS'98, IEEE Geoscience and 

Remote Sensing Society, Seattle, CDROM. 

Salati, E. and Vose, P.B. (1984). Amazon Basin: a system in equilibrium. Science, 225: 

129-225. 

Saldarriaga, J.G., West, D.C., Tharp, M.L. and Uhl, C. (1988). Long-term 

chronosequence of forest succession in the upper Rio Negro of Colombia and 

Venezuela. Journal of Ecology, 76: 938-958. 

Sanchez, P.A., Bandy, D.E., Villachica, J.H. and Nicholaides, J.J. (1982). Amazon Basin 

soils: management for continuos crop production. Science, 216: 821-827. 

212 



Sant'Anna, S.J.S., Yanasse, C.C.F., Hernandez Filho, P., Kuplich, T.M., Dutra, L.V., 

Frery, A.C. and Santos, P.P. (1995). Secondary forest age mapping in 

Amazonia using multitemporal Landsat TM imagery. In: IGARSS'95, Firenze, 

Italy, 1, pp. 323-325. 

Sant'Anna, S.J.S., Freitas, C.C. and Renno, C.D. (1998). The use of textural features on 

the polarimetric SAR image classification. In: IX SBSR: Brazilian Remote 

Sensing Symposium, Santos, Brazil, CD-ROM. 

Schiermeier, Q. (2001). Accord in Morocco breathes fresh life into Kyoto Protocol. 

Nature, 414 p. 238. 

Schimel, D.S. et al. (2001). Recent patterns and mechanisms of carbon exchange by 

terrestrial ecosystems. Nature, 414:169-172. 

Shimabukuro, Y.E., Amaral, S., Ahern, F.J. and Pietsch, R.W. (1997). Classification and 

monitoring the Tapajos National Forest region using SAR (RADARSAT-Standard 

mode and SAREX-Wide swath mode) and Landsat Thematic Mapper data. In: 

GER'97 Geomatics in the era of RADARSAT, CCRS, Ottawa, pp. 103-115. 

Shimada, M. (1996). Radiometric and geometric calibration of JERS-1 SAR. Adv. Space 

Res., 17: 79-88. 

Shimada, M. (Ed.) (1999). JERS-1 Science Program. PI Reports. Tokyo, National Space 

Development Agency of Japan/Earth Observation Research Center. 189 p. 

Shukia, J., Nobre, C. and Sellers, P. (1990). Amazonian deforestation and climate 

change. Science, 247: 1322-1325. 

Simard, M., Saatchi, S. and de Grandi, G. (2000). The use of decision tree and 

multiscale texture for classification of JERS-1 SAR data over tropical forest. IEEE 

Transactions on Geosclence and Remote Sensing, 38: 2310-2321. 

Skidmore, A.K., Turner, B.J., Brinkhof, W. and Knowles, E. (1997). Performance of a 

neural network: mapping forests using GIS and remotely sensed data. 

Photogrammetric Engineering and Remote Sensing, 63: 501-514. 

Scares, J.V., Renno, C.D., Formaggio, A.R., Yanasse, C.C.F. and Frery, A.C. (1997). An 

investigation of the selection of texture features for crop discrimination using SAR 

imagery. Remote Sensing Environment, 59: 234-247. 

Sokal, R.R. and Rohlf, F.J. (1995). Biometry. 3rd. W.H.Freeman and Company, New 

York. 887 p. 

Statsoft, I. (2001). Electronic Statistics Textbook. Statsoft, Tulsa, OK. 

http://www.statsoft.com/textbook/stathome.html 

213 

http://www.statsoft.com/textbook/stathome.html


Steininger, M.K. (1996). Tropical secondary forest regrowth in the Amazon: age, area 

and change estimation with Thematic Mapper data. International Journal of 

Remote Sensing, 17: 9-27. 

Steininger, M.K. (2000). Satellite estimation of tropical secondary forest above-ground 

biomass: data from Brazil and Bolivia. International Journal of Remote Sensing, 

21: 1139-1157. 

Tardin, A.T., Lee, D.C.L., Santos, J.R., Assis, O.R., Barbosa, M.P.S., Moreira, M.L., 

Pereira, M.T., Silva, D. and Santos Filho, C.P., (1980). Subprojeto 

desmatamento: convenio IBDF/CNPq-INPE. INPE-1649-RPE/103, Institute 

Nacionai de Pesquisas Espaciais, Sao Jose dos Campos, Brazil. 

Thome, K., Markham, B., Barker, J., Slater, P. and Biggar, S. (1997). Radiomatric 

calibration of Landsat. Photogrammetric Engineering and Remote Sensing, 63: 

853-858. 

Thomson, A.G., Fuller, R.M., Sparks, T.H., Yates, M.G. and Eastwood, J.A. (1998). 

Ground and airborne radiometry over intertidal surfaces: waveband selection for 

cover classification. International Journal of Remote Sensing, 19: 1189-1205. 

Treitz, P. and Howarth, P. (2000). High spatial resolution remote sensing data for forest 

ecosystem classification: an examination of spatial scale. Remote Sensing of 

Environment, 72: 268-289. 

Tremberth, K.E., Houghton, J.T. and Meira Filho, L.G. (1996). The climate system: an 

overview. In: J. T. Houghton, L. G. Meira Filho, N. Callenderet (Eds.). Climate 

Change 1995, Cambridge University Press, Cambridge, pp. 1-59. 

Trevett, J.W. (1986). Imaging Radar for Resources Surveys. Chapman and Hall, 

London. 313 p. 

Uhl, C. (1987). Factors controlling succession following slash and burn agriculture in 

Amazonia. Journal of Ecology, 75: 377-407. 

Uhl, C., Busbacher, R. and Serrao, A.S. (1988). Abandoned pastures in eastern 

Amazonia. I. Patterns of plant succession. Journal of Ecology, 76: 663-681. 

Ulaby, F.T., Cihiar, J. and Moore, R.K. (1974). Active microwave measurement of soil 

water content. Remote Sensing of Environment, 31: 185-205. 

Ulaby, F.T., Kouyate, F., Brisco, B. and Williams, T.H.L. (1986). Textural information in 

SAR images. IEEE Transactions on Geoscience and Remote Sensing, GE-24: 

235-245. 

214 



Ulaby, FT., Sarabandi, K., McDonald, K., Whitt, M. and Dobson, M.C. (1990). Michigan 

microwave canopy scattering model. International Journal of Remote Sensing, 

11: 1223-1253. 

USDA. (1975). Soil Taxonomy: A Basic System of Soil Classification for Making and 

Interpreting Soil Surveys. U.S. Department of Agriculture, Washington, 754 p. 

van der Sanden, J.J. and Hoekman, D.H. (1999). Potential of airborne radar to support 

the assessment of land cover in a tropical rain forest environment. Remote 

Sensing of Environment, 68: 26-40. 

Viana, V. (1998). Introducao. In: C. Gascon and P. Moutinho (Eds.). Floresta 

Amazonica: Dinamica, Regeneracao e Manejo, Ministerio da Ciencia e 

Tecnologia, institute Nacional de Pesquisas da Amazonia, Manaus, pp. 15-24. 

Wallace, C.S.A., Watts, J.M. and Yool, S.R. (2000). Characterizing the spatial structure 

of vegetation communities in the Mojave Desert using geostatistical techniques. 

Computers and Geoscience, 26: 397-410. 

Walsh, R.P.D. (1996). Climate. In: P. W. Richards (Ed.). The Tropical Rain Forest - An 

Ecological Study, Cambridge University Press, Cambridge, pp. 159-202. 

Wang, Y., Davis, F.W., Melack, J.M., Kasischke, E.S. and Christensen, N.L. (1995). The 

effects of changes in forest biomass on radar backscatter from tree canopies. 

International Journal of Remote Sensing, 16: 503-513. 

Waring, R.H., Way, J., Hunt Jr., E.R., Morrissey, L., Ranson, K.J., Weishampel, J.F., 

Orem, R. and Franklin, S.E. (1995). Imaging radar for ecosystems studies. 

Bioscience, 45: 715-723. 

Wegmuller, U. and Werner, C.L. (1995). SAR interfere metric signatures of forest. IEEE 

Transactions on Geoscience and Remote Sensing, 33: 1153-1161. 

Weishampel, J.F., Sun, G., Ranson, K.J., Lejeune, K.D. and Shugart, H.H. (1994). 

Forest textural properties from simulated microwave backscatter: the influence of 

spatial resolution. Remote Sensing of Environment, 47: 120-131. 

Weszka, J.S., Dyer, C.R. and Rosenfeld, A. (1976). A comparative study of texture 

measures for terrain classification. IEEE Transactions on Systems, Man, and 

Cybernetics, SMC-6: 269-285. 

Whitmore, T.C. (1997). An Introduction to Tropical Rain Forests. Oxford University 

Press, Oxford. 226 p. 

215 



Wilkinson, G.G., Folving, S., Kannelopoulos, 1. and McCormick, N. (1995). Forest 

mapping from multisource satellite data using neural network classifiers - an 

experiment in Portugal. Remote Sensing Reviews, 12; 83-106. 

Williams, C.L., McDonald, K. and Chapman, B. (1999). Global boreal forest mapping 

with JERS-1: North America. In: IGARSS'99, IEEE, Hamburg, CDROM. 

Williamson, G.B., Mesquita, R.C.G., I ekes, K. and Ganade, G. (1998). Estrategias de 

colonizagao de arvores pioneiras nos Neotropicos. In: C. Gascon and P. 

Moutinho (Eds.). Floresta Amazdnica: Dinamica, Regeneragao e Manejo, INPA 

Press, Manaus, pp. 131-144 

Woodcock, C.E., Strahler, A.M. and Jupp, D.L.B. (1988a). The use of vasograms in 

remote sensing: I. Scene models and simulated images. Remote Sensing of 

Environment, 25: 323-348. 

Woodcock, G.E., Strahler, A.M. and Jupp, D.L.B. (1988b). The use of variograms in 

remote sensing: II. Real digital images. Remote Sensing of Environment, 25: 

349-379. 

Wu, D. and Linders, J. (1999). A new texture approach to discrimination of forest 

clearcut, canopy and burned area using airborne C-band SAR. IEEE 

Transactions on Geoscience and Remote Sensing, 37: 555-563. 

Yanasse, C.C.F., Sant'Anna, S.J.S., Frery, A., Renno, G.D., Scares, J.V. and Luckman, 

A. (1997). Exploratory study of the relationship between tropical forest 

regeneration stages and SIR-C L- and C-data. Remote Sensing of Environment, 

59; 180-190. 

216 


