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Abstract 

The first tool presented in this paper is a generic factory cost model that can estimate various costs at multiple 

levels of any manufacturing plant. The model is activity-based which means that the cost of each 

manufacturing operation is calculated and then summed up so that the true £-per-hour factory cost rate as well 

as the exact unit cost (i.e. manufacturing cost) of an unlimited number of different components can be 

estimated. 

The second tool is a scalable cost model that estimates the unit cost of future integrally bladed disc (blisk) 

designs which are used by the aerospace industry in gas turbine compressors. The tool multiplies the machine 

cost rates, calculated by the factory cost model, by the operation times derived from blisk scaling rules. As the 

operation times often depend on the number of blades, the disc diameter and other design variables, many 

scaling rules are based on the correlation between operation times and certain design parameters. Conversely, 

the remaining process times are constant because they are independent of the blisk geometry. As future 

process times can only be estimated and the correlation between operation times and design parameters is 

never perfect, all operation times have uncertainty distributions. These are cascaded through the model to 

generate a probability distribution of the unit cost. 

Through the interactive exchange of detailed cost information at the manufacturing operation level as well as 

extrapolated operation times, the two cost models facilitate design and manufacturing engineering to 

concurrently optimise blisk designs and manufacturing processes in terms of cost. 
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1. Relevance of work 

There is limited literature on models that estimate the manufacturing cost of a design, also referred to as unit 

cost, using parametric process time estimation in combination with a bottom-up calculation of the resources 

consumed by every manufacturing process. While the bottom-up costing element of the model determines the 

£-per-hour cost rate of every manufacturing operation, the parametric tool uses the correlation between 

historical operation times and design data to estimate the operation times of a future product based on its 

design parameters. The unit cost of the new design is then predicted by multiplying the regressed operation 

times by the respective cost rates and adding up the resulting costs. 

A similar hybrid cost model that combines bottom-up and parametric costing is described by Qian and Ben-

Arieh (2008). They estimate the machining times by multiplying the volume of material removed by the 

machine's material removal rate. Unfortunately, their approach is restricted to simple cylindrical parts as they 

depend on volumetric equations to calculate the amount of material removed. These equations would have to 

be changed manually in order to predict the cost of other geometries. 

The scalable blisk model presented in this paper is also confined to a limited range of integrally bladed disc 

designs which the aerospace industry uses in gas turbine compressors. However, the model accounts for 

uncertainty and is based on a more complex method of manufacture where more than half of the operations 

are only carried out under certain design conditions. Furthermore, the number of extra features, such as holes 

and seals, is not restricted. The factory cost model framework itself has the flexibility to determine the costs of 

any factory or manufacturing cell. 

 

2. Introduction 

2.1 Cost modelling 

Cost estimating is the process of predicting the cost of a work activity or output by interpreting historical data 

or knowledge, which is usually done by creating a cost model (Curran et al., 2004). Cost modelling, as 

practised in industry, is nevertheless largely based on experience rather than science, because it lacks a 

consolidating theory (Curran et al., 2004; Scanlan et al., 2002). Cost estimation is also information intensive, 

as it requires knowledge capture from various disciplines and it is affected by unpredictable factors outside 

design, such as inflation and market conditions (Curran et al., 2004; Scanlan et al., 2002). Unfortunately, the 

aerospace industry is a typical example of high-tech but low-volume manufacturing, where it is very 

challenging to obtain well documented and comprehensible costing information (Curran et al., 2004). Often 

sparse and inaccurate data increases the challenge of creating objective cost estimates and validating these 

(Collopy and Curran, 2005; Smith and Mason, 1997). 

Parametric tools use historical data to unravel patterns and probabilistic relationships between product 

features and cost without having to understand the details of fabrication processes, materials and their 

interactions (Smith and Mason, 1997). Activity-Based Costing (ABC), on the other hand, is based on the laws 

of physics and fundamental manufacturing knowledge, such as production operations (Scanlan et al., 2006). 

Few quantitative cost models exist between the two ends of this spectrum because no suitable method has 

been found that can deal with multi-fidelity data from multiple levels of product definition (Scanlan et al., 2006). 

This project aimed to bridge the gap by making use of the synergy effects from using an ABC and a parametric 

model in conjunction. 

 



2.1.1 Costing within the aerospace industry 

In the past, aerospace product prices were simply based on cost plus profit plus contingency, as the market 

was not very competitive (Curran et al., 2006). The aerospace industry was therefore not forced to fully 

understand and reduce its cost base. Consequently, only a few cost experts dealt with cost estimation for high-

level bidding processes or detailed process-time-based models (Curran et al., 2006).  

Within the last 15 years, however, market pressure from low cost airlines and reduced government defence 

budgets have forced aerospace companies to adapt to the conventional rule of profit which is price minus total 

cost (Curran et al., 2006). This, and the emergence of long-term ‘power by the hour’ service contracts provided 

by companies such as Rolls-Royce (R-R), has increased the interest of gas turbine manufacturers in reducing 

and controlling their manufacturing costs (Scanlan et al., 2006). 

 

2.2 Blisks 

Integrally bladed discs, commonly known as blisks, are currently found in axial-flow compressors of gas 

turbine engines. Fig. 1 shows that blisks require significantly less material because the dead weight from the 

blade roots, disc lugs, and the disc structure required to support these features, is no longer required. This 

leads to a weight saving of up to 30% (Rolls-Royce, 2005), permitting higher blade speeds and consequently 

higher pressure ratios per stage (Steffens, 2001). A blisk compressor therefore requires one third fewer rotor 

stages to achieve the same total pressure ratio as a conventional design (Steffens, 2001). 

 

Blisks first appeared in the 1960s in small helicopter engines and gradually grew in size and production 

volume (Bussmann et al., 2005; Chan, 2009; Ford et al., 2008). They are now common in military gas turbines 

and are starting to be included in commercial aircraft engines (Bussmann et al., 2005; Ford et al., 2008). 

Currently, turbine blisks are still in development because the high temperatures caused by the combusted gas 

can only be withstood by materials that are difficult to machine and weld (Zhan et al., 2000). 

The three techniques currently used for manufacturing blisks are: Electro-Chemical Machining (ECM) for blisks 

with small blades, Machining From Solid (MFS) for medium sized blades and Linear Friction Welding (LFW) for 

large blades (Bussmann et al., 2005). Fig. 2 demonstrates where each blisk type is typically found in the 

compressor of a gas turbine. 

 
 

Fig. 1. Blisk weight saving. 



 

 

2.2.1 Linear friction welding 

During the LFW process, the blade is held against the disc with an equivalent force of many tonnes while 

oscillating the blade on a linear path. The resulting friction causes the metal in the surrounding area to heat up 

until it becomes viscoplastic and is gradually squeezed out of the interface area as flash. Once the oscillation 

of the blade is stopped in the right location, the disc and blade material in the friction welded zone cools down 

to form a very high quality bond. Fig. 3c illustrates the adaptive milling operation that follows the welding 

process to remove the flash and create the final blade foot geometry. 

 

Linear friction welding is primarily used to manufacture titanium blisks with a low blade count for the low-

pressure compressor (Bussmann et al., 2005). While ECM and MFS blisks can only have solid blades, LFW 

also permits the use of lighter hollow blades that could be made of a different alloy to the disc (Bussmann et 

al., 2005; Bussmann and Bayer, 2009; Rolls-Royce, 2005). Smaller blisks are usually not linear friction welded 

because MFS and ECM tend to be more cost effective. The blades on smaller blisks are also more closely 

stacked which can make LFW impractical due to tooling access problems. 

 

2.2.2 Pros and cons 

In addition to weight reduction, blisks have the following advantages: 

• They require less space which reduces the weight of the supporting engine structure, thus maximising the 

engine’s power density and power-to-weight ratio (Bussmann et al., 2005; Rolls-Royce, 2005). 

 
 

Fig. 3. (a) Disc and blade before LFW, (b) LFW process, and (c) adaptive milling. 
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Fig. 2. Axial-flow gas turbine compressor with LFW, MFS and ECM blisks. 



• The elimination of the blade-disc joint reduces leakage flows and fatigue, the former increasing 

aerodynamic efficiency and stability, the latter permitting a longer service life (Bussmann et al., 2005; 

Kosing et al., 2001).  

Blisks also have several drawbacks, however, which currently preclude their use throughout the entire 

compressor: 

• Blisks are more expensive to manufacture because the advanced technology requires more expensive 

machinery, increased machining time and more elaborate quality assurance measures (Bussmann et al., 

2005). 

• If a blade on a blisk is badly damaged, it is likely that the entire blisk will have to be scrapped because 

individual blades cannot be substituted at the moment, although a blade replacement process is currently 

being developed (Bussmann and Bayer, 2009). Standard repairs such as blade tip blending and patching 

are already carried out, however (Bussmann and Bayer, 2009). The latter process involves cutting off the 

damaged blade area, welding on a replacement section and restoring the original contour using adaptive 

milling (Coppinger, 2008). 

Consequently, every compressor stage in a new gas turbine requires an in-depth trade-off study between the 

cheaper disc and blade assembly and the lighter, more compact and more efficient blisk. This requires 

performance analysis tools as well as cost and weight models. 

 

2.3 Cost estimation of blisks 

To gain a better understanding of the trade-offs involved in blisk design, R-R needed a scalable cost model for 

LFW blisks to be able to quantify the impact on the blisk's unit cost caused by changing design variables, 

including the blisk's dimensions, the number of blades and special features such as holes and seals.  

At the same time, a factory cost model was required to be able to predict the cost rate of a future LFW blisk 

manufacturing facility, including all the manufacturing cells within it. Such a detailed cost breakdown was 

needed in order to support the optimisation of the method of manufacture and the factory layout in terms of 

cost, quality and lead time. 

While the factory cost model is covered in the next section, the scalable blisk cost model is described in more 

detail in Section 4. Due to confidentiality, the data presented in both the text and the figures had to be 

simplified, normalised or removed. All models were set up in Vanguard StudioTM, a software package that, 

unlike a spreadsheet, generates hierarchical trees which forces the model builder to decompose a problem 

into a logical sequence of steps (Scanlan et al., 2006). 

 

3. Factory cost modelling 

Before the automation of production lines, the direct costs, including labour and material, dominated the 

expenses of running a factory (Curran et al., 2004; Xu, 2006). Many factory cost models therefore allocated 

machine depreciation and other indirect costs to a product according to the labour hours spent on the item 

(Curran et al., 2004; Xu, 2006). 

Since the introduction of industrial robots in the 1960s, however, machine depreciation costs have increased 

dramatically, while labour time has decreased in relation to the total production hours (Curran et al., 2004). 

This means that the indirect costs, also known as factory overheads, now constitute the major part of the total 

production costs (Cooper and Kaplan, 1987; Curran et al., 2004; Xu, 2006). As overheads are almost 



independent of factory utilisation and therefore labour time, many companies are discovering that traditional 

accounting methods are too aggregated and distorted to support decision making in costing (Cooper and 

Kaplan, 1987; Qian and Ben-Arieh, 2008; Spedding and Sun, 1999). If production volume is used to allocate 

overheads for example, then high-volume products are likely to receive an excessively high fraction of the 

overheads and will therefore subsidise the low-volume products (Cooper and Kaplan, 1987). 

 

3.1 Activity-based costing 

Kaplan and Cooper consequently introduced activity-based costing in the 1980s as an alternative to the 

classic costing techniques (Spedding and Sun, 1999). ABC can account for indirect costs more realistically by 

costing the time and resources spent on each activity in the manufacture of a product (Qian and Ben-Arieh, 

2008; Spedding and Sun, 1999). This means that the depreciation cost of a machine is converted into a £-per-

hour cost rate that is allocated to the individual products the machine processes, while the setup costs of a 

production batch will be distributed across the batch (Cooper and Kaplan, 1987). 

Fig. 4 is a simple example of how much the unit costs of two parts, derived from an average factory cost rate 

for the depreciation of two machines, can diverge from the true unit costs calculated using ABC. The 

advantages of ABC, also known as bottom-up costing, therefore are: 

• ABC provides more logical, detailed and hence more comprehensive and accurate estimates of cost, 

especially when overhead costs are significant or when the product range is very diverse (Qian and Ben-

Arieh, 2008; Xu, 2006; Younossi et al., 2003). 

• The cause and effect of every activity is understood, which allows the identification of value and non-value 

added manufacturing operations and how resources are consumed (Cooper and Kaplan, 1991; Curran et 

al., 2004; Qian and Ben-Arieh, 2008; Spedding and Sun, 1999; Xu, 2006; Younossi et al., 2003). 

The drawbacks of such an in-depth breakdown of cost are: 

• A significant amount of very specific and accurate data is required (Curran et al., 2004; Qian and Ben-

Arieh, 2008; Scanlan et al., 2002). This means that a detailed design definition is needed that is usually not 

available during the conceptual design phase (Scanlan et al., 2002). 

• Developing and implementing such an accounting system is time consuming and requires expert 

knowledge (Curran et al., 2004). 
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Fig. 4. Conventional vs. activity-based costing. 



3.2 Model schematics 

Fig. 5 illustrates how the factory cost model replicates the structure of a real production facility by containing 

various manufacturing cell cost models. Machines are allocated to these cell models as indicated by the ‘Fixed 

Costs’ branch in Fig. 6. Each part type can then ‘flow’ through the factory according to the sequence of 

manufacturing operations, also known as Method of Manufacture (MoM). The ‘Variable Costs’ branch in Fig. 6 

shows that each manufacturing operation has to be assigned to a specific machine within a specific 

manufacturing cell. Finally, the cell model outputs are added up in the factory cost model, together with the 

factory overheads and the external material costs, as illustrated in Fig. 5. In order to handle the large amount 

of generic input data listed in Fig. 6 efficiently, the factory cost model is based on code written in Vanguard 

Studio’s inbuilt scripting language, DScriptTM, that creates the cell models and all hierarchical trees 

automatically. 
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Fig. 5. Factory cost model structure. 



 

Fig. 7 demonstrates how the factory cost model was broken down into five levels that comply with the general 

rule that activities in an ABC model should be separated into four categories: facility-sustaining, product-

sustaining, batch-level and unit-level activities (Cooper and Kaplan, 1991; Spedding and Sun, 1999; Takakuwa, 

1997). 

 

 
 

Fig. 6. Factory cost model inputs. 

 
 

Fig. 7. Factory cost model hierarchy. 



The factory cost model's tree structure does not include a batch level, however, because the bulkiness of LFW 

blisks and their low production volumes make automatic batch setup and handling ineffective. Consequently, 

batch size does not have a significant effect on the machine setup times and costs of LFW blisks. 

 

4. Scalable blisk cost model 

Fig. 8 represents the interaction between the activity-based factory cost model and the parametric scalable 

blisk cost model. The main purpose of the scalable cost model is to estimate the operation times required to 

manufacture a future blisk, based on design parameters that drive the operation times and hence cost. These 

times are then passed to the factory cost model together with the planned production volume, in order to 

calculate the machine cost rates and the other outputs mentioned in Fig. 8. The machine cost rates can then 

be fed back into the scalable model in order to generate uncertainty distributions of the blisk unit cost. The 

details of how the operation times and the uncertainty distributions are generated are discussed in the 

following sub-sections. 

 

 

4.1 Blisk design variability 

Each LFW blisk has a highly unique design with several hundred features and many thousand measured 

points. Consequently, the method of manufacture and the duration of its operations vary significantly. The unit 
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Fig. 8. Scalable blisk and factory cost model interaction. 



cost of a LFW blisk with hollow blades and a disc with many complex features can cost several times more in 

a full-production environment than a simpler LFW blisk with solid blades.  

The scalable cost model therefore had to be able to automatically modify the MoM and the operation times 

based on the design inputs. An additional challenge arose as the authors only had access to sparse and 

inaccurate data of five pre-production blisk designs. 

 

4.2 Model structure 

The disguised MoM in Fig. 9 reflects the uniqueness of each blisk design considering that only 28 operations 

are common to each blisk, while the remaining 37 operations only apply under certain conditions. Only 53 of 

the total 65 operations and sub-operations are unique, however, because several operations in the method 

appear more than once. Rather than modelling the complex machining and inspection operations in their 

entirety, they were broken down into the 14 sub-operations shown in the top right table in Fig. 9, including 

rough turning, finish turning, hole machining and tight tolerance inspection for example. 

 

 

Fig. 9. Scaling rules for the generic LFW method of manufacture. 



For the 15 processes identified as R1 to R15 in Fig. 9, linear regression analysis was used to determine an 

approximate relationship between the varying operation times and the design parameters because simple and 

intuitive scaling rules, such as material volume removed multiplied by the material removal rate, could not 

capture the complexity of these operations. While the regression analysis methodology is described in more 

detail in the next sub-section, the Gaussian uncertainty distribution that was applied to these 15 scaling rules 

is covered in Section 4.4.3. 

While regression or intuitive linear relationships were used to derive the scaling rules for operations L1 to L13, 

C1 to C25 have constant times. As the manufacturing engineers estimated the error bounds of the scaling 

rules for L1 to L13 and C1 to C25, the predicted operation times have triangular uncertainty distributions, 

which are further discussed in Section 4.4.2. 

When the scalable blisk cost model is run, the input windows illustrated in Fig. 10a-d are successively 

presented to the user. The blade, disc and blisk input screens list both the design parameters required to drive 

the scaling rules and the conditions that determine which optional operations apply. Instead of specifying the 

values of the parameters listed in Fig. 10b-d every time the model is run, the values of an unlimited number of 

blisks can be stored in a table within the model. By typing the name of the blisk into Fig. 10a, the relevant data 

can then be loaded when required. 



 

A common pitfall with regression that can lead to an incorrect cost forecast is to predict outside the existing 

data range or to apply it to a new technology that is radically different from those the relationship is based on 

(Curran et al., 2004; Younossi et al., 2003). If the user therefore chooses design parameter settings that lead 

to an extrapolation beyond the dataset that define the scaling rules, then one or more warning messages will 

appear, such as the example in Fig. 10e. 

Many of the design parameters, including the blade surface area and the disc perimeter, can only be obtained 

from Computer Aided Design (CAD) models. As these are usually not available at the preliminary design stage, 

the user has the option of using a Microsoft Excel® interface that approximates the blade surface area and the 

disc perimeter using a simplistic cross-sectional blisk model defined by 24 grid points, the number of blades 

and the blade root stagger angle, i.e. the angle between the chord line at the blade root and the blisk's axis of 

b) Blisk Blade Parameters

a) Optional Loading of Blisk Data

c) Blisk Disc Parameters d) Blisk Parameters

e) Extrapolation Warning

?

 
 

Fig. 10. Scalable blisk cost model user interface. (a) Optional loading of blisk data, (b) blisk blade 

parameters, (c) blisk disc parameters, (d) blisk parameters, and (e) extrapolation warning.  



rotation. As special features, such as the number of holes and seals, might also be unknown during the 

conceptual design phase, the user could apply uncertainty distributions to those inputs in addition to the ones 

that already exist for the scaling rules. 

Due to time constraints and limited access to data, the scalable blisk cost model does not account for the disc 

and blade manufacturing costs. It is critical that these costs are eventually included in the model considering 

that they account for approximately half of the total unit costs of a solid-bladed blisk and significantly more of a 

blisk with hollow blades. 

 

4.3 Regression analysis 

4.3.1 Cost estimating relationship 

A parametric Cost Estimating Relationship (CER) establishes a relationship between cost and one or more 

input parameters that affect cost, often defined using a regression model based on historical data (Curran et 

al., 2005; Curran et al., 2004; Qian and Ben-Arieh, 2008; Younossi et al., 2003). The following criteria are 

important in selecting the right cost drivers: 

• They have to be statistically independent of one another and logically related to cost (Birkler et al., 1982; 

Curran et al., 2004). 

• The parameters have to be known with a reasonable level of confidence at whatever stage of the product's 

lifecycle a cost estimate is needed (Birkler et al., 1982; Curran et al., 2004). 

• Only those variables that best explain cost should be selected to minimise correlation effects and reduce 

the impact of the cumulative ambiguity of these parameters on the uncertainty of the cost prediction 

(Birkler et al., 1982; Younossi et al., 2003). 

Parametric models are generally better suited to estimate recurring costs, i.e. unit costs, than non-recurring 

research and development costs because the former are less sensitive to programme peculiarities (Dryden 

and Large, 1977). 

 

4.3.2 Advantages 

Parametric cost estimation was first used by the U.S. government during the Second World War to quickly 

agree on unit prices for military aircraft based on their weight (Kwak and Watson, 2005; Scanlan et al., 2006). 

Since then, associative cost models have become very common within aerospace because they require few 

inputs to achieve reasonable accuracy (Birkler et al., 1982). The advent of statistical methods, such as 

regression, have contributed to the popularity of the CER because regression analysis also allows the 

statistical accuracy of the correlation between cost and the cost-driving parameters to be determined (Curran 

et al., 2004). Regression therefore enables the cost model to be used as both an analytical and a predictive 

tool (Kim et al., 2004), and can also highlight data outliers which is ideal for validating scaling rules and the 

underlying data (Finnie et al., 1997). 

While the ABC approach requires detailed knowledge of the manufacturing processes involved, this is not the 

case for parametric cost models (Birkler et al., 1982). The latter treats historical costs as facts and the 

manufacturing detail that generates the costs does not have to be considered (Collopy and Curran, 2005; 

Scanlan et al., 2002). Other advantages are that CERs are quick and easy to implement and that non-

technical experts can apply the method, even during the early stages of design when resources are limited 

(Birkler et al., 1982; Curran et al., 2004; Qian and Ben-Arieh, 2008; Younossi et al., 2003). In addition, 



parametric cost models allow the inclusion of cost as a variable in system design tools and also enable the 

uncertainty of the predictions to be quantified (Bearden, 2001; Curran et al., 2004; Muia et al., 2009; Younossi 

et al., 2003). 

 

4.3.3 Resolving the disadvantages 

A major drawback of the CER is that historical cost data has to be carefully normalised to eliminate the effects 

of inflation, exchange rates, technology levels, market forces, production volumes and varying manufacturing 

performance (Curran et al., 2005; Curran et al., 2004; Scanlan et al., 2002; Younossi et al., 2003). As the 

scalable blisk cost model is based on the data from a single generation of one component family where only 

the design of each blisk differs, the data did not have to be normalised. The cost of a new LFW blisk design 

can be predicted without having to alter the scaling rules as long as it belongs to the same generation, i.e. is 

made of the same material and does not require different manufacturing processes. Any changes in the 

machine cost rates due to inflation, capacity adjustments in existing production lines or the creation of a new 

factory can be accounted for by modifying the factory cost model accordingly. 

If a CER is required for design optimisation, then one has to ensure that the design parameters are causally 

related to cost and not just correlated (Collopy and Eames, 2001; Younossi et al., 2003). As there is no need 

to model individual manufacturing activities and justify cost variability, there is a significantly higher risk that 

parametric methods do not identify the true cause-and-effect relationships of cost, unlike ABC (Curran et al., 

2004; Qian and Ben-Arieh, 2008; Younossi et al., 2003). It was therefore decided to make the scalable cost 

model an activity-based-parametric hybrid that combines the simplicity of the CER with the accuracy of 

estimating costs at the activity level. 

Several sources (Finnie et al., 1997; Scanlan et al., 2002; Smith and Mason, 1997) state that regression 

models normally require a relatively large dataset in order to identify statistically meaningful relationships. 

Other parametric techniques, such as artificial neural networks, also require a significant amount of data, 

however (Curran et al., 2004). As this project suffers from a lack of data to validate the scaling rules, the 

inherent uncertainty is built into the model which is discussed in more detail in Section 4.4. Although Kim et al. 

(2004) state that regression analysis cannot be applied to non-linear relationships and multiple outputs, the 

next sub-section explains why this project is not affected by these restrictions. 

 

4.3.4 Application 

The blisk design variables that affect the operation times, and hence the unit cost, were identified by 

questioning R-R manufacturing engineers. A trial and error approach was then used to find the combination of 

design parameters that best explained the variability in the operation times. In order to predict the inspection 

operation time of a future blisk using the scaling rule shown in Fig. 11 for example, the Blade Parameter 1 and 

Blade Parameter 2 values of that blisk simply have to be inserted into the regression line equation shown in 

Fig. 11. 

While the coefficient of determination, R2, measures how well the regression line describes the variability in the 

data, the p-value is the probability that the variability is better explained by chance rather than by the 

regression model.  In order to be a good fit, the R2 value should be close to 100% and the p-value below 5% 

(Stat-Ease, 2010). One of the best fits found is displayed in Fig. 11, which has a R2 value of 99.2% and a p-

value of 0.03%. Here, the data points of the five blisks lie very close to the regression line. The fitted line in Fig. 



12, on the other hand, only has a R2 value of 62.1% and a p-value of 11.3% because the five data points are 

scattered far from the regression line. This is the most inaccurate scaling rule in the model, not only because it 

is a bad fit but also because it accounts for a significant proportion of the total manufacturing operation time of 

a blisk. 

 

 

 

4.4 Uncertainty 

4.4.1 Background 

Although more complicated to implement, estimate ranges have the following advantages in comparison to 

single point predictions: 

• They are more realistic because mathematical theory states that the summation of ‘most likely’ point 

estimates tends to underestimate costs by a large margin (Book, 2001). 

• The sensitivity of product costs to manufacturing process variability and other uncertainties can be 

determined (Von Beck and Nowak, 2000). 

• Single point estimates ignore the fact that cost drivers are often correlated which increases the cost 

uncertainty (Book, 2001). 

Knowing the probability distribution of cost can help to mitigate the risk of a project if the variability is 

addressed through avoidance, adjustment and contingency (Curran et al., 2004). By not only comparing and 

 
 

Fig. 12. A scaling rule with a bad fit. 

 
 

Fig. 11. A scaling rule with a good fit. 



optimising product designs in terms of their expected cost but also their cost uncertainty, robust designs can 

be formed (Curran et al., 2004). 

Monte Carlo Simulation is a simple and widely used method for cascading uncertainty through a computer 

model. In cost models, one application of Monte Carlo Simulation is to determine the impact of design 

parameter variability on the product’s cost uncertainty. The Monte Carlo Simulation Add-In for Vanguard 

Studio (Vanguard, 2010) can model various input uncertainty distributions to generate the Gaussian-type 

Probability Density Function (PDF) and the S-shaped Cumulative Distribution Function (CDF) in both Figs. 14 

and 15. While the PDF shows the relative likelihood of meeting a specific cost target, the CDF accrues the 

probabilities of all costs less or equal to the target value. Being able to predict costs at the 50%, 70% or 85% 

confidence level are much more valuable to decision makers than ‘most likely’ estimates (Book, 2001). 

Vanguard Studio’s Monte Carlo simulation package therefore enables cost model builders to meet the 

requirement of providing a cost prediction together with its associated probability of occurrence (Curran et al., 

2004). 

 

4.4.2 Triangular uncertainty distribution 

In addition to the expected blisk operation times, their uncertainty ranges were collected because the 

predictability of the operation times varied significantly, depending on the maturity of each process. Accounting 

for the uncertainty also ensured that the manufacturing engineers agreed to formally sign off the scaling rules 

created. The scaling rules with triangular uncertainty distributions are simply described by a maximum, a most 

likely and a minimum operation time that define the shape of the triangle displayed in Fig. 13. 

 

 

4.4.3 Prediction interval 

The scaling rules for operations R1 to R15 in Fig. 9 have Gaussian uncertainty distributions which are based 

on the prediction intervals derived from the regression analysis described in Section 4.3.4. The prediction 

interval represents the range in which a single new prediction is likely to fall, usually with 95% confidence 

(Minitab, 2007). This analytical method is statistically more accurate than the subjective triangular distribution 

because, according to Montgomery and Runger (2003), it is a reasonable assumption that even for a small 

sample size the underlying distribution is normal, i.e. Gaussian. The prediction interval also takes the fit of the 

regression line into account as well as the number of data points (Curran et al., 2004). Unlike the triangular 

distributions provided by the manufacturing engineers, the prediction intervals cannot take the uncertainty in 

the underlying data into account, however. Nonetheless, the scaling rules for R1 to R15 are based on the 

prediction intervals because they produced greater and therefore more conservative uncertainty ranges than 

the triangular distributions.  

The dashed lines in Figs. 11 and 12 indicate the outer boundaries of the 95% confidence Prediction Interval 

(PI). They illustrate how significant the impact of the goodness of the regression line fit is on the prediction 

Minimum Most Likely Maximum
 

 

Fig. 13. Triangular distribution. 



interval. While the limits of the prediction interval in Fig. 11 only deviate from the mean by 5 to 10%, it is 

around 100 to 200% in Fig. 12. The lower prediction interval limit in Fig. 12 was not capped at zero, even 

though it extends into negative operation time, in order not to falsify the unit cost distribution. 

The prediction interval is based on the t-distribution, which is identical to the normal distribution when the 

number of data samples, k, is infinite. If only a finite number of data points is available, however, the tails of 

the t-distribution become larger, which increases the prediction interval. 

Eq. (1), adapted from Montgomery and Runger (2003), shows how the prediction interval limits, Y, of the 

dependent variable, y, are calculated based on the value of the independent variable, x. 
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here: 

• ŷ is the value of the regression model's dependent variable 

• 
να ,2

t  is the percentage point of the t-distribution based on a confidence limit of α and ν degrees of freedom 

• σ̂  is the standard deviation of the data points with respect to the regression model 

• x is the mean value of the independent variable of the n data points 

• Sxx is the sum of squares of the independent variable x of the n data points 

• 
0
β̂  is the intercept of the regression line 

• 
1
β̂  is the slope of the regression line 

• yi is the value of the dependent variable of the i
th data point and 

i
ŷ  is its regressed value 

• xi is the value of the independent variable of the i
th data point 

 

The prediction interval limits of R1 to R15 were converted into Gaussian uncertainty distributions, with 

mean ŷ and standard deviation σ, by inserting Eq. (1) into the formula for the standard normal random variable, 

Z, given in Eq. (2), also adapted from Montgomery and Runger (2003). For a 95% confidence prediction 

interval limit, α has to equal 5%. The cumulative probability at 
να ,2

t  therefore has to be 97.5% at which Z 

equals 1.96. 
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4.5 Results and discussion 

The scaling rules created can predict the total operation times of the five blisk designs within 4%, using the 

expected values of the triangular distributions and the mean of the prediction intervals. This level of accuracy 



is not surprising, however, considering that the scaling rules are based on these operation times. Hence, this 

value only reflects the lack of fit of the regression lines. In order to validate the scaling rules, the operation 

times of a new blisk design were forecasted and the prediction was within 2.7% of the expectation of the 

manufacturing engineers. 

 

4.5.1 Unit cost prediction 

Figs. 14 and 15 display the scalable cost model’s unit cost uncertainty distribution of a complex blisk with 

many features and a simple blisk with fewer features, respectively. Both figures, normalised with respect to the 

complex blisk's mean unit cost, also show a table that summarises statistical information related to the 

corresponding PDF and CDF graphs. As the error of the Monte Carlo Simulation is inversely proportional to 

the square root of the sample number, 100,000 samples were generated for each cost distribution in order to 

maximise the accuracy of the results. Despite the large uncertainty distribution of some of the scaling rules, 

including the one shown in Fig. 12, their impact is not significant considering that the 5th and 95th percentiles 

are within 8% and 13% of the complex and the simple blisk's average unit cost, respectively. 

 

 

 

Figs. 16 and 17 provide information at feature level based on the 14 sub-operations listed in Fig. 9. Although 

the scalable cost model cannot show all the bar charts simultaneously, the purpose of Figs. 16 and 17 is to 

highlight how much insight an activity-based-parametric hybrid can provide about how the resource 

consumption varies, depending on the design. 

 

 
 

Fig. 14. Unit cost uncertainty distribution of the complex blisk. 

 
 

Fig. 15. Unit cost uncertainty distribution of the simple blisk. 



 

 

 

 

 

Fig. 16. Operation and feature unit costs of the complex blisk. 

 
 

Fig. 17. Operation and feature unit costs of the simple blisk. 



4.5.2 Blisk design space 

In order to explore how the blisk design parameters affect unit cost, a sensitivity study was carried out. This 

was done by generating a Design of Experiments (DoE) in Design-Expert®, a commercial DoE program. In 

these computational experiments the number of blades, the root and the average blade stagger angle rates 

(i.e. the rate at which the blade twists at its root and over its entire length, respectively), the disc rim diameter 

and the disc surface area were varied independently over the ranges recorded for the five blisks. The blisk 

design data indicated that the number of blades and the blade surface area had a Pearson correlation 

coefficient of -0.917, meaning that the blades got smaller as the number of blades increased. Throughout the 

DoE study, the number of blades therefore controlled the blade height and chord length accordingly. The 

remaining design parameters, such as the number of holes and seals, were first set at the complex blisk's and 

then the simple blisk's values, in order to plot a Pareto Chart and a response surface for both types as shown 

in Figs. 18 and 19, respectively. 

 

 

 
 

Fig. 18. Unit cost sensitivity of the complex blisk. 

 

 
 

Fig. 19. Unit cost sensitivity of the simple blisk. 



The advantage of using Design Expert instead of conducting experiments randomly is that the software 

minimises the number of experiments required while also minimising statistical error. For this study that meant 

that Design Expert only needed 61 'design-optimally’ distributed points in order to generate a third order 

surrogate model for the complex blisk. As the Pareto Chart in Fig. 18 indicates that the number of blades and 

the average blade stagger angle rate are the biggest cost drivers, the unit cost response surface of the 

complex blisk was plotted against those two parameters, while the remaining three cost drivers were set at 

their mean. Although the DoE is capable of detecting third order effects, the response surface is only second 

order because the Pareto Chart shows that only first order effects (like the blade number) and second order 

interaction effects (between the disc rim diameter and the disc surface area for example) are above the 5% 

significance threshold labelled “t-value Limit”. No insignificant effects are shown in the Pareto Chart because 

Design Expert removes these automatically. Since the scalable cost model has no discontinuities, the 

response surface has a R2 value of 99.6% for the 61 design-optimally distributed points. Considering that unit 

cost increases as the number of blades is reduced means that the cost saving from the lower blade count 

does not compensate for the cost increase from the larger blades. 

Unlike its counterpart, the Pareto Chart in Fig. 19 shows that the biggest cost drivers of the simple blisk are the 

disc surface area and the disc rim diameter, while the average blade stagger angle rate has no impact at all. 

These large changes can be explained by the fact that the simple blisk uses fewer and different scaling rules 

that do not depend on the average blade stagger angle rate. As the response surface therefore only had to 

model the variation of four design parameters, 40 instead of 61 design-optimally distributed points were 

needed in order to detect third order effects. Similar to Fig. 18, the Pareto Chart in Fig. 19 shows that only first 

and second order effects are significant. Just like before, a second order response surface was therefore 

plotted against the two biggest cost drivers, while the other two parameters were set at their mean. Although it 

makes sense that unit cost increases with disc surface area, it might seem counterintuitive that cost decreases 

with an increasing disc rim diameter. The explanation is that for a given disc surface area, a smaller rim 

diameter will increase the cross-sectional perimeter of the disc. As a blisk with a large perimeter tends to have 

more expensive features, a smaller rim diameter leads to a higher unit cost unless the disc surface area 

reduces proportionately. 

 

5. Conclusion and recommendations 

5.1 Factory cost model 

The factory cost model can aid manufacturing engineers optimise their methods of manufacture by indicating 

how cost can be minimised while meeting the required throughput and quality. Manufacturing costs can be 

reduced, for example, by trading inspection costs between machining operations against potential scrap costs 

resulting from removing these inspections (Marsh et al., 2007). If the model is loaded onto a global server, the 

latest methods of manufacture, operation times and cost estimates can also be viewed and updated by the 

rest of the organisation through Vanguard Studio’s standard web browser, facilitating design automation and 

the integration of cost into design optimisation frameworks (Scanlan et al., 2006). 

While the factory cost model was being built, R-R created a factory simulation for the future LFW blisk factory 

in WITNESS®, a commercial simulation package. Unlike the factory cost model, a factory simulation can model 

the stochastic nature of manufacturing that arises due to the dynamic effect of time (Spedding and Sun, 1999). 

As an event in a simulation occurs at the same level as an activity in an ABC model, the factory simulation 



should be linked to the factory cost model to enable ABC to move beyond the static framework (Spedding and 

Sun, 1999; Von Beck and Nowak, 2000). Finally, the creation of the factory cost model’s manufacturing cell 

files should be fully automated and the factory model adjusted so that uncertainty ranges can be applied to the 

inputs. This would enable the uncertainty in the operation times, calculated by the scalable blisk cost model or 

the WITNESS factory simulation for example, to be taken into account. 

 

5.2 Scalable blisk cost model 

Using the scalable cost model in conjunction with the factory cost model offers a step towards implementing 

Toyota's Set-Based Concurrent Engineering (SBCE) principles, where design engineering and manufacturing 

engineering define a large set of feasible design solutions from their respective areas of expertise and, through 

an interactive process, gradually converge on a final design (Sobek et al., 1999). Unlike traditional design 

practice, SBCE does not fix the final design early in the design process, resulting in a reduced risk of both 

time-consuming rework and sub-optimal product performance (Sobek et al., 1999). As it is difficult to explain 

why a particular combination of design parameters produced the best fit for the regressed scaling rules, it is 

not advisable to use the scalable cost model in optimisation routines without further validation. A sensitivity 

study such as the one in Section 4.5.2 can be beneficial, however, because it highlights the biggest cost 

drivers and how they affect cost. Such a study also allows the engineers to assess whether the cost model is 

realistic. 

Since Vanguard Studio can handle cumulative uncertainty distributions, ideally, the user should have the 

option of attributing uncertainty ranges to the inputs of the scalable cost model in addition to the uncertainty 

distributions that already exist for the scaling rules. In view of the fact that the LFW blisk operation times are 

likely to change as the processes mature and, with time, further blisk designs will be created, the scaling rules 

should be updated and validated at regular intervals. These updates could also help improve the scaling rule 

shown in Fig. 12. 

 

Role of the funding source 

This project is sponsored by Rolls-Royce plc, a power systems provider, and the United Kingdom's 

Engineering and Physical Sciences Research Council (EPSRC). Rolls-Royce also supplied the data that was 

used to build the cost models and ensured that no confidential information is published in this paper. 

 

Acknowledgements 

The authors are very grateful for the contributions many Rolls-Royce employees have made to this paper, 

including Simon Muschamp, Weiliang Lou, Andrew Tudge, David Reuss and Michael Rushe. Without their 

help the authors would not have been able to collect the required data and build the cost models presented in 

this paper. 

 

References 

Bearden, D.A., 2001. Small-satellite costs. Crosslink, 2 (1), 32-44. 

Birkler, J.L., Garfinkle, J.B., Marks, K.E., 1982. Development and production cost estimating relationships for 

aircraft turbine engines. RAND Corporation. <http://www.rand.org/pubs/notes/2005/N1882.pdf>. 

Book, S.A., 2001. Estimating probable system cost. Crosslink, 2 (1), 12-21. 



Bussmann, M., Bayer, E., 2009. Blisk production of the future - technological and logistical aspects of future-

oriented construction and manufacturing processes of integrally bladed rotors. In: Proceedings of the 19th 

International Symposium on Air Breathing Engines (ISABE), Montreal, Canada. 

Bussmann, M., Kraus, J., Bayer, E., 2005. An integrated cost-effective approach to blisk manufacturing. In: 

Proceedings of the 17th International Symposium on Air Breathing Engines (ISABE), Munich, Germany. 

Chan, Y.J., 2009. Variability of Blade Vibration in Mistuned Bladed Discs. Ph.D. Thesis, Imperial College 

London, United Kingdom. 

Collopy, P., Curran, R., 2005. The challenge of modeling cost: the problem. In: Proceedings of the 1st 

International Conference on Innovation and Integration in Aerospace Sciences, Belfast, United Kingdom. 

Collopy, P.D., Eames, D.J.H., 2001. Aerospace manufacturing cost prediction from a measure of part 

definition information. In: Proceedings of the SAE World Aviation Congress and Exposition, Seattle, USA. 

Cooper, R., Kaplan, R.S., 1987. How cost accounting systematically distorts product costs. In: Bruns, W.J., 

Kaplan, R.S., (Eds.), Accounting and management: field study perspectives. Harvard Business School, 204–

228. 

Cooper, R., Kaplan, R.S., 1991. Profit priorities from activity-based costing. Harvard Business Review, 69 (3), 

130-135. 

Coppinger, R., 2008. MTU Aero Engines claims blisk repair first. Flightglobal. 

Curran, R., Kundu, A.K., Wright, J.M., Crosby, S., Price, M., Raghunathan, S., Benard, E., 2006. Modelling of 

aircraft manufacturing cost at the concept stage. International Journal of Advanced Manufacturing Technology, 

31 (3), 407-420. 

Curran, R., Price, M., Raghunathan, S., Benard, E., Crosby, S., Castagne, S., Mawhinney, P., 2005. 

Integrating aircraft cost modeling into conceptual design. Concurrent Engineering, 13 (4), 321-330. 

Curran, R., Raghunathan, S., Price, M., 2004. Review of aerospace engineering cost modelling: the genetic 

causal approach. Progress in Aerospace Sciences, 40 (8), 487-534. 

Dryden, J.A., Large, J.P., 1977. A critique of spacecraft cost models. RAND Corporation. 

<http://www.rand.org/pubs/reports/2006/R2196-1.pdf>. 

Finnie, G.R., Wittig, G.E., Desharnais, J.M., 1997. A comparison of software effort estimation techniques: 

using function points with neural networks, case-based reasoning and regression models. Journal of Systems 

and Software, 39 (3), 281-289. 

Ford, S., Tao, L., Probert, D., 2008. Preparing for takeoff: breakthrough process innovation at Rolls-Royce. In: 

Proceedings of the Portland International Conference on Management of Engineering and Technology 

(PICMET) 2008, Cape Town, South Africa, 629-638. 

Kim, G.H., An, S.H., Kang, K.I., 2004. Comparison of construction cost estimating models based on regression 

analysis, neural networks, and case-based reasoning. Building and Environment, 39 (10), 1235-1242. 

Kosing, O.E., Scharl, R., Schmuhl, H.J., 2001. Design improvements of the EJ200 HP compressor - from 

design verification engine to a future all blisk version. In: Proceedings of the ASME Turbo Expo 2001: Land, 

Sea, and Air, New Orleans, USA. 

Kwak, Y.H., Watson, R.J., 2005. Conceptual estimating tool for technology-driven projects: exploring 

parametric estimating technique. Technovation, 25 (12), 1430-1436. 



Marsh, R., Cheung, W.M., Lanham, J., Newnes, L., Mileham, A., 2007. Modelling an assembly process using 

a close coupled generative cost model and a discrete event simulation. In: Proceedings of the 4th International 

Conference on Digital Enterprise Technology, Bath, United Kingdom, 339-346. 

Minitab, 2007. Minitab 15 Help. Minitab Inc. 

Montgomery, D.C., Runger, G.C., 2003. Applied Statistics and Probability for Engineers, 3rd ed. John Wiley & 

Sons. 

Muia, T., Salam, A., Bhuiyan, N.F., 2009. A comparative study to estimate costs at Bombarier Aerospace 

using regression analysis. In: Proceedings of the IEEE International Conference on Industrial Engineering and 

Engineering Management, Hong Kong, China, 1381-1385. 

Qian, L., Ben-Arieh, D., 2008. Parametric cost estimation based on activity-based costing: a case study for 

design and development of rotational parts. International Journal of Production Economics, 113 (2), 805-818. 

Rolls-Royce, 2005. The Jet Engine, 6th ed. Rolls-Royce plc. <http://www.rolls-

royce.com/about/publications/jet_engine_book/>. 

Scanlan, J., Hill, T., Marsh, R., Bru, C., Dunkley, M., Cleevely, P., 2002. Cost modelling for aircraft design 

optimization. Journal of Engineering Design, 13 (3), 261-269. 

Scanlan, J., Rao, A., Bru, C., Hale, P., Marsh, R., 2006. DATUM project: cost estimating environment for 

support of aerospace design decision making. Journal of Aircraft, 43 (4), 1022-1028. 

Smith, A.E., Mason, A.K., 1997. Cost estimation predictive modeling: regression versus neural network. The 

Engineering Economist, 42 (2), 137-161. 

Sobek, D.K., Ward, A.C., Liker, J.K., 1999. Toyota's principles of set-based concurrent engineering. Sloan 

Management Review, 40 (2), 67-83. 

Spedding, T.A., Sun, G.Q., 1999. Application of discrete event simulation to the activity based costing of 

manufacturing systems. International Journal of Production Economics, 58 (3), 289-301. 

Stat-Ease, 2010. Stat-Ease Help. Design-Expert 8.0.4. Stat-Ease Inc. 

Steffens, K., 2001. Advanced compressor technology - key success factor for competitiveness in modern aero 

engines. In: Proceedings of the 15th International Symposium on Air Breathing Engines (ISABE), Bangalore, 

India. 

Takakuwa, S., 1997. The use of simulation in activity-based costing for flexible manufacturing systems. In: 

Proceedings of the 1997 Winter Simulation Conference, Atlanta, USA, 793-800. 

Vanguard, 2010. Monte Carlo Simulation Add-In. Vanguard Software Corp. 

Von Beck, U., Nowak, J.W., 2000. The merger of discrete event simulation with activity based costing for cost 

estimation in manufacturing environments. In: Proceedings of the 2000 Winter Simulation Conference, 

Orlando, USA, 2048-2054. 

Xu, J.J., 2006. Combining Activity-Based Costing with Manufacturing Simulation. M.Sc. Thesis, Cranfield 

University, United Kingdom. 

Younossi, O., Arena, M.V., Moore, R.M., Lorell, M., Mason, J., Graser, J.C., 2003. Military jet engine 

acquisition - technology basics and cost-estimating methodology. RAND Corporation. 

<http://www.rand.org/content/dam/rand/pubs/monograph_reports/2005/MR1596.pdf>. 

Zhan, H., Zhao, W., Wang, G., 2000. Manufacturing turbine blisks. Aircraft Engineering and Aerospace 

Technology, 72 (3), 247-252. 


