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TURBULENT WAKES IN TURBULENT STREAMS

by Elad Rind

Direct numerical simulation and wind tunnel experiments have been used to study the effects

of free-stream turbulence on axisymmetric wakes. In both cases the wake was introduced to

various turbulent streams having various levels of turbulence intensity and length scales. It

was found that the presence of the free-stream turbulence changes the wake’s decay rate and

does not allow self-similarity to occur (unless maybe very far downstream and way beyond

the current measurements reached). Also, the free-stream turbulence was found to be causing

a significant transformation in the turbulence structure inside the wake, where the latter was

found to be gradually evolving towards the former. Last, the fact that the two approaches

were modelling two different problems led to some differences in their results emphasising the

importance of the flow structure around the wake generating body in shaping the far wake

region.
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Chapter 1

Introduction

Axisymmetric turbulent wakes have been studied for over half a century, especially because

in the far field (when the maximum wake deficit velocity is small in comparison to the free-

stream velocity) they are one of the classical free shear flows for which the equations of motion

suggest the possibility of self-similar behaviour. In practice many axisymmetric wakes develop

in the presence of free-stream turbulence, which for long time has been known to affect the

development of fully-turbulent shear layers. However, in almost all of the published work

those wakes were studied in quiescent streams (as is later discussed in chapter 2), and so a

thorough investigation of the effects of stream turbulence in needed.

The current work was partially motivated by the thought that if the free-stream turbulence

decays at about the same rate as the wake (in the absence of free-stream turbulence), then

the wake in the presence of free-stream turbulence may not initially be strongly effected by

the latter. Given that in at least some wind tunnel realisations of Homogeneous Isotropic

Turbulence (HIT), i.e. grid turbulence, u′ze/U0 (where u′ze is the rms of the axial velocity

fluctuations of the free-stream and U0 is the mean free-stream velocity) have been reported

to decay like z−p/2, where z is the axial coordinate and p ≈ 1.3, whereas the (high Reynolds

number) axisymmetric wake’s maximum velocity deficit Ud/U0 (where Ud is the maximum

mean deficit velocity) decays like z−2n = z−0.67, the parameter u′ze/Ud may remain roughly

constant. Likewise, with these decay power laws, it can be shown that the ratio of the free-

stream turbulence integral scale to the wake half width Lze/lh would also be approximately

constant. Thus the lowest-order governing parameters for a wake immersed in free-stream

turbulence might perhaps not change much along the wake, which might therefore initially

have the same decay behaviour as in the absence of external turbulence. In addition to wind

tunnel grid turbulence, Direct Numerical Simulations (DNS) of isotropic turbulence typically

show decay rates similar to those found in wind tunnels, so one might anticipate analogous

1



1. Introduction

behaviour for the time-dependent spatially homogeneous case.

In the current research two approaches were taken in order to investigate how the free-

stream turbulence affects the development of the far axisymmetric wake. First, a time devel-

oping axisymmetric wake, without the generating body, was studied in quiescent and several

turbulent streams using DNS. Second, the wake behind a disc in similar surroundings was

studied experimentally in the University of Southampton’s 3’x2’ wind tunnel.

In the following chapters a discussion about some of the previous work (and background

studies) that has been done is presented, followed by the results of the two approaches. The

results reveal that the free-stream turbulence does change the wake’s structure and decay

rate and that the classical self-similarity behaviour ceases to exist.
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Chapter 2

Literature review

Before presenting and discussing the current observations it would be best to present first

some background material. For simplicity, the summary will first start with axisymmetric far

wakes in a quiescent free-stream followed by a discussion of homogeneous isotropic turbulence

and grid turbulence and only afterwards a summary of the previous work that has been done

about axisymmetric wakes in turbulent surroundings. As will be noted in section 2.3, very

little work has been done on far axisymmetric wakes in turbulent surroundings; for that reason

the effects of free-stream turbulence on boundary layers, which is a well studied problem, is

also discussed, to obtain general understanding of the effects of free-stream turbulence on

turbulent shear flows.

2.1 Axisymmetric Far Wakes in Uniform Streams

In order to better understand the mean flow field and the similarity behaviour of far ax-

isymmetric wakes, a theoretical discussion is given first followed by a review of some relevant

published work.

2.1.1 Theoretical Considerations

In this section a summary of the equations describing the development of shear flows for in-

compressible axisymmetric far wakes is presented. In addition, a complete similarity analysis

is presented with a summary of all the assumptions that are made (the analysis follows the

general description given by Tennekes & Lumley, 1972).

The following similarity analysis is based on the governing equations of the problem, the
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2.1. Axisymmetric Far Wakes in Uniform Streams

Navier-Stokes equations - conservation of mass (2.1) and conservation of momentum (2.2):

∇ · û = 0, (2.1)

∂û

∂t
+ û · ∇û = −1

ρ
∇p+ ν∇2û, (2.2)

where ρ is the density, ν kinematic viscosity, p is the pressure and û = û (r, θ, z, t) is the

velocity field vector.

Since axisymmetric wakes are being studied it is convenient to use a cylindrical coordinate

system (r, θ, z), where the wake develops in its axial direction, z.

Since there is no known general analytical solution to the Navier-Stokes equations some

simplifications are made in order to reduce their complexity. The first simplification is that

the mean flow is axisymmetric and there is no mean swirl. The second simplification is

Townsend’s (1976) thin shear layer approximation that the wake develops much slower in its

axial direction than in its radial direction. I.e.

Uθ =
∂ ()

∂θ
= 0, (2.3)

∂ ()

∂z
≪ ∂ ()

∂r
. (2.4)

Scaling Analysis

The Scaling analysis starts by examining the continuity equation, (2.1), in its axisymmetric

Reynolds-averaged form. Under assumption (2.3) the continuity equation has the following

form:

1

r

∂

∂r
(rUr) +

∂

∂z
(Uz) = 0. (2.5)

Next we define the deficit velocity, Ud, as the maximum value of (U0 − Uz), where U0 is

the uniform mean free-stream velocity and Uz is the local axial mean velocity. Since Ud ≪ U0

in far wakes the axial velocity is scaled in the following way:

Uz = U0 + (Uz − U0) = O (U0 − Ud) = O (U0) , (2.6)
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2.1. Axisymmetric Far Wakes in Uniform Streams

where O () represents the order of what is inside the brackets.

By taking lh to be the cross-stream length scale, which is defined as the wake half-width –

the radial distance between the two points where (U0 − Uz) = 0.5Ud, and by defining L to be

the length scale of appreciable change in the axial direction, the second gradient in equation

(2.5) can be estimated using scaling analysis such that

∂Uz

∂z
= O

(
Ud

L

)
. (2.7)

Now, using the simplified continuity equation (2.5) and (2.7), the radial mean velocity

scales as:

O

(
lh
l2h

)
×O (Ur) = O

(
Ud

L

)
⇒ Ur ∼ O

(
lh Ud

L

)
. (2.8)

Finally we define the velocity scale of turbulence, ũ, which is also being used to scale the

Reynolds stress,

−uiuj = O
(
ũ2
)
, u2i = O

(
ũ2
)
, (2.9)

where the overbar represents the mean operator.

Next, we evaluate the momentum equation (2.2) in the radial direction which in its

axisymmetric Reynolds averaged form and under assumption (2.3) has the following form:

Ur
∂Ur

∂r
+
u2r
r

+
∂u2r
∂r

+ Uz
∂Ur

∂z
+
∂ (uruz)

∂z
− u2θ

r
=

− 1

ρ

∂P

∂r
+ ν

[
1

r

∂

∂r

(
r
∂Ur

∂r

)
+
∂2Ur

∂z
− Ur

r2

]
,

(2.10)

where P is the mean pressure.

By expressing each term of equation (2.10) using the previously defined scales of motion
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2.1. Axisymmetric Far Wakes in Uniform Streams

we identify their order of magnitude as demonstrated below:

Ur
∂Ur

∂r
:

lh Ud

L
× lh Ud

L lh
=

[(
Ud

ũ

)2( lh
L

)2
]
× ũ2

lh
,

u2r
r

: 1× ũ2

lh
,

∂u2r
∂r

: 1× ũ2

lh
,

Uz
∂Ur

∂z
: U0

lh Ud

L2
=

[(
Ud U0

ũ2

)(
lh
L

)2
]
× ũ2

lh
,

∂ (uruz)

∂z
:

ũ2

L
=
lh
L

× ũ2

lh
,

u2θ
r

: 1× ũ2

lh
,

1

ρ

∂P

∂r
: ?,

ν

[
1

r

∂

∂r

(
r
∂Ur

∂r

)]
:

ν Ud

lh L
=

[(
1

Relh

)(
Ud

ũ

)(
lh
L

)]
× ũ2

lh
,

ν
∂2Ur

∂z2
:

ν lh Ud

L3
=

[(
1

Relh

)(
Ud

ũ

)(
lh
L

)3
]
× ũ2

lh
,

ν
Ur

r2
:

ν lh Ud

L l2h
=

[(
1

Relh

)(
Ud

ũ

)(
lh
L

)]
× ũ2

lh
,

(2.11)

where Relh = ũlh/ν.

Since (lh/L)
2 → 0 and does so faster than ũ2/(U0 Ud) → 0, assuming large enough Relh ,

equation (2.10), based on the scaling analysis equation (2.11), is reduced to:

∂u2r
∂r

+
u2r
r

− u2θ
r

= −1

ρ

∂P

∂r
. (2.12)

It should be stated that equation (2.12) is an approximation which is only valid in the

limit lh/L → 0, such that

[(
Ud U0

ũ2

)(
lh
L

)2
]
→ 0 and

[(
1

Relh

)(
Ud

ũ

)(
lh
L

)]
→ 0. (2.13)

Finally we evaluate the momentum equation (2.2) in the axial direction, which in its
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2.1. Axisymmetric Far Wakes in Uniform Streams

axisymmetric Reynolds averaged form and under assumption (2.3), has the following form:

Ur
∂Uz

∂r
+
∂u2z
∂z

+
∂ur uz
∂r

+
ur uz
r

+Uz
∂Uz

∂z
=

ν

[
∂2Uz

∂z2
+

1

r

∂

∂r

(
r
∂Uz

∂r

)]
− 1

ρ

∂P

∂z
.

(2.14)

Again, by expressing each term of equation (2.14) using the previously defined scales of

motion we identify their order of magnitude as demonstrated below:

Ur
∂Uz

∂r
:

lh Ud

L

Ud

lh
=

[(
Ud

ũ

)2( lh
L

)]
× ũ2

lh
,

∂u2z
∂z

:
ũ2

L
=

[
lh
L

]
× ũ2

L
,

∂ur uz
∂r

:
ũ2

lh
,

ur uz
r

:
ũ2

lh
,

Uz
∂Uz

∂z
:

Ud Ud

L
=

[(
U0 Ud

ũ2

)(
lh
L

)]
× ũ2

lh
,

ν
∂2Uz

∂z2
: ν

U0

L2
=

[(
1

Relh

)(
Ud

ũ

)(
lh
L

)2
]
× ũ2

lh
,

ν
1

r

∂

∂r

(
r
∂Uz

∂r

)
:

ν U0

l2h
=

[(
1

Relh

)(
Ud

ũ

)]
× ũ2

lh
,

1

ρ

∂P

∂z
: ? .

(2.15)

In order to estimate the order of magnitude of the pressure gradient, the simplified mo-

mentum equation in the radial direction (2.12) can be used, with

−1

ρ

∂P

∂z
=

∂

∂z

[
u2r +

∫ r

0

(
u2r
r

− u2θ
r

)
dr

]
. (2.16)

Thus, the magnitude of the pressure gradient term is:

1

ρ

∂P

∂z
:

ũ2

L
=

[
lh
L

]
× ũ2

lh
. (2.17)

Assuming that Relh is large, the limit lh/L → 0 is valid and since U0 ≫ Ud the following
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2.1. Axisymmetric Far Wakes in Uniform Streams

must be true:

(
U0 Ud

ũ2

)(
lh
L

)
= O (1) . (2.18)

Using (2.18), the pressure gradient can be neglected compared to the other terms and

finally equation (2.14) is simplified to

Uz
∂Uz

∂z
+
∂ur uz
∂r

+
ur uz
r

= 0. (2.19)

(Note that the wake is assumed to be developing in the absence of any free-stream pressure

gradient.)

Based on many observations, for wakes Uz scales as U0 and ũ is of the same order as Ud

so the following may be written using (2.18)

U0 − Uz

U0
= O

(
Ud

U0

)
= O

(
lh
L

)
. (2.20)

Since lh/L → 0, Ud/U0 → 0, which implies that the undifferentiated Uz in equation (2.19)

may be replaced by U0. Thus, equation (2.19) may be approximated by:

U0
∂Uz

∂z
+
∂ur uz
∂r

+
ur uz
r

= 0. (2.21)

Self-Preservation

In the self-preservation analysis we assume that the evolution of the far axisymmetric wake

is determined solely by the local scales of length and velocity. In general, it is expected that

in far axisymmetric wakes mean velocity profiles behave as:

U0 − Uz

Ud
= f

(
r

lh
,
lh
L
,Relh ,

Ud

U0

)
. (2.22)

Since previously it was assumed that lh/L → 0, Relh → ∞ and Ud/U0 → 0, equation

(2.22) is reduced to

U0 − Uz

Ud
= f

(
r

lh

)
; lh = lh (z) and Ud = Ud (z) . (2.23)
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2.1. Axisymmetric Far Wakes in Uniform Streams

As mentioned above, in many published observations it was noticed that the scale of the

turbulent intensity, ũ, is of the same order of magnitude as the scale of the deficit velocity,

Ud. Knowing that, we could assume that the Reynolds stress may be described as:

−ur uz = U2
d × g

(
r

lh

)
(2.24)

(but see later).

Equations (2.23) and (2.24) are the basis of the self-preservation hypothesis: the velocity

deficit and the Reynolds stress are invariant with respect to z when they are expressed in

terms of the local velocity and length scales. Substituting those terms into the momentum

equation in the axial direction (2.21) and writing ξ = r/lh, leads to

−U0 lh
U2
d

dUd

dz
f +

U0

Ud

dlh
dz

ξ f ′ =
1

ξ
g + g′, (2.25)

where a prime denotes differentiation with respect to ξ.

Since f and g are assumed to have universal shapes, such that the normalised profiles of

the velocity deficit and the Reynolds stress are the same at all z, the coefficients of f and

ξ f ′ in (2.25) must be constants, thus:

U0 lh
U2
d

dUd

dz
= constant ,

U0

Ud

dlh
dz

= constant. (2.26)

Given that U0 is constant, these imply that lh ∼ zn and Ud ∼ zn−1. Now, in order

to evaluate the value of the power law constraint, n, the integral momentum flux in its

axisymmetric form will be considered,

ρ

∫ 2π

0

∫ ∞

0
r U0 (U0 − Uz) dr dθ =Mf , (2.27)

where Mf is the momentum flux.

Using equation (2.23) the momentum flux (2.27) is now written as:

2πρ l2h U0 Ud

∫ ∞

0
ξf dξ = −Mf . (2.28)

Since the momentum flux is independent of the location along the axial direction, z, the
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2.1. Axisymmetric Far Wakes in Uniform Streams

product Ud× l2h must be also independent of the axial location. Using the solution of equation

(2.26) the power law constraint therefore yields:

Ud × l2h ∝ zn−1 × z2n ∝ constant ⇒ (n− 1) + 2n = 0 ⇒ n =
1

3
. (2.29)

Thus, the wake’s half width and its velocity deficit have the following self-similar form:

lh = A× z
1
3 ,

Ud = B × z−
2
3 .

(2.30)

It should be noted that (2.30) implies that the wake’s local Reynolds number (defined as

Udlh/ν) falls as z−1/3. Thus, the viscous terms far enough downstream will eventually be

significant. In that case, equation (2.21) would need to include the viscous term. Johansson,

George & Gourlay (2003) who studied those two cases, generalised the above self-preservation

study by not assuming that the shear stress scales like U2
d but as an unknown scale Suv, as did

Townsend (1976). Then, by using the constant momentum flux, the simplified momentum

equation and assuming that Ud ∼ z−2n, lh ∼ zn and Suv ∼ zk it is only possible to show

the relationship between all the power law constants. In order to define the actual values

they showed that the individual Reynolds stress equations had to be investigated as well.

These, together with the constraint of continuity on the pressure-rate-strain terms, were used

to finally validate the classical result that for the infinite Reynolds number case the shear

stress does indeed scale like U2
d with n = 1/3. On the other hand, for the finite Reynolds

number case, where these viscous terms were included in the analysis, they showed that that

assumption was not valid anymore. Thus, including the viscous terms yields n = 1/2 (which

is similar to a laminar wake, Batchelor, 1967) but the shear stress in the finite Reynolds

number case had in order for the Reynolds stress equations to be consistent with that result

to follow zk with k = −3/2 and so does not scale with U2
d . (Note that this solution is only

true for the case where the production term in the turbulent shear stress transport equation

is much smaller than all the other terms in that equation).

2.1.2 Literature Review

A large amount of work has been published about axisymmetric far wakes. Among the first

was Carmody (1964), who measured mean velocity profiles downstream of a disc at a Reynolds
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2.1. Axisymmetric Far Wakes in Uniform Streams

number of approximately 7 × 104, based on the free-stream velocity and the disc diameter.

On the basis of the measured data the wake is axisymmetric and fully established, similarity

profiles of the flow characteristics are formed within 15 diameters downstream of the disc and

approximately 95% of the transfer of energy from the mean motion to the turbulence motion

takes place within the first 3 diameters downstream of the disc in the region of the mean

standing eddy. Later, far downstream measurements of an axisymmetric wake of a disc, up to

900 disc diameters downstream, were published by Hwang & Baldwin (1966). They reported

on three discernible regions in the wake:

• z/D < 50: the formation region of the wake where the turbulence is highly anisotropic

(the radial and angular turbulence intensities are 2.5 times as large as the axial turbu-

lence intensity),

• 50 < z/D < 400: where an approximate similarity region exists and “isotropic” turbu-

lence relations are adequate for estimating decay,

• z/D > 400: the far downstream wake region which is highly intermittent and the

turbulent kinetic energy decay rate is lower. This could be called the final period of

decay.

Later on Gibson, Chen & Lin (1968) studied a turbulent wake of a sphere. Their mea-

surements of temperature and velocity fluctuations in the wake led to the conclusion that the

dissipation rates of turbulent kinetic energy and temperature variance both decrease approx-

imately as z−2.4 for the first 60 diameters downstream from the sphere. Recall that from self-

similarity it is expected to follow z−7/3 (since ǫ, the dissipation rate, in the self-similar region

scales like U3
d/lh). They also observed that small-scale velocity and temperature fluctuations

are approximately homogeneous for the wake cross section. Their observations led them to

the conclusion that the wake is divided into two sections along its radial axis - a continuous

turbulence region in the centre and an intermittent one in the wake’s borders. Chevray (1968)

studied the wake behind a six-to-one spheroid. He reported that the wake is axisymmetric

in shape and that the mean flow behind the spheroid is established at 3 < z/D < 6, unlike

Carmody’s (1964) result (z/D = 15) for a disc, indicating a strong dependency on initial

conditions in the near-wake region. Uberoi & Freymuth (1970) also studied the axisymmet-

ric wake behind a sphere but at different low Reynolds numbers, 0.4× 104 < Re < 1.5× 104,

and at various downstream positions, 50 < z/D < 300. In agreement with Hwang & Baldwin

(1966) they also noticed that the wake becomes fully self-similar in the region z/D > 50
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and that the turbulence is ”isotropic” in that region as well. Later, Riddhagni, Bevilaqua &

Lykoudis (1971) studied the wake of a sphere at much higher Reynolds number, Re = 78000,

and in the region z/D ≤ 200. They reported, in agreement with Chevray’s (1968) results,

that the mean velocity becomes self-similar at z/D = 5. Bevilaqua & Lykoudis (1978) also

studied the wake of a sphere but in addition compared it to the wake of a porous disc sharing

the same drag. They reported that self preservation in length and velocity scales was noticed

10D downstream of the sphere and 20D downstream of the disc. One of their most important

conclusions was that self preservation is a process which develops gradually with downstream

distance. First to ’self preserve’ is the mean velocity profile, next are the Reynolds stresses

and only later higher-order turbulence moments (based on downstream location), leading

eventually to full self preservation of the wake. Even more importantly they also reported

that the two wakes reached different states of similarity in velocity and Reynolds-stress pro-

files, which contradicts Townsend’s hypothesis, Townsend (1970, 1976), that the structure of

the turbulence in all self-preserving axisymmetric wakes is the same - that the turbulence

forgets how it was created. Cannon (1991) continued Bevilaqua & Lykoudis’ (1978) study by

comparing the wakes behind a variety of axisymmetric bodies (disc, sphere and three porous

discs with varying porosity) all sharing the same drag and Reynolds number of 3500, based on

the free-stream velocity and the momentum thickness. Unlike Bevilaqua & Lykoudis (1978),

Cannon (1991) could not reach any conclusion about the self-similarity of the wakes even

though the wakes were mapped quite far downstream. In addition, by examining his results

it is not clear if the turbulence intensities ever reach a self-similar state. Ostowari & Page

(1989), who also noticed the self-similarity of the mean velocity in the near axisymmetric

wake, proposed a cosine function as a representation of its profile and found it to be in good

agreement with their and some other experimental results.

The initial evolution of a turbulent axisymmetric wake at Reynolds number 1500 was

numerically simulated by Basu, Narasimha & Sinha (1992) using DNS. The simulation, which

didn’t resolve the generating body, showed a complete sequence of events from formation

of vortex rings through generation of azimuthal instability and appearance of streamwise

structures to eventual breakdown into turbulent flow, and revealed explicitly the features of

the development of streamwise vorticity. Sadly in their simulation the wake did not reach

a self-similar state, but they did notice that the simulation was approaching such a state,

albeit slowly.

12



2.1. Axisymmetric Far Wakes in Uniform Streams

Later on, Birch (1996) reported that axisymmetric wakes appear to show no tendency

to approach a unique self-similar state. Even very far downstream measurements of mixing

rates and even the shapes of the mean velocity profiles showed a strong dependency on details

of the wake’s generating body (initial conditions), as was previously noticed by Bevilaqua

& Lykoudis (1978). He didn’t find any explanation as to why axisymmetric wakes are so

sensitive to initial conditions in comparison to other free shear flows, but that result led to

the conclusion that turbulence models in computational simulations cannot properly predict

axisymmetric dependency on initial conditions.

With the advancement in computers DNS became more affordable. Gourlay, Arendt,

Fritts & Werne (2001) reported DNS studies of an axisymmetric far wake at Re = 10000 -

much higher than Basu et al. (1992), 1500. The simulation did not resolve a wake generator,

like Basu et al. (1992), but was initiated using a super-position of an initially axisymmetric

mean streamwise velocity profile and a spectrally specified fluctuation velocity field with

initially incoherent phases to model the initial turbulence. Comparison of their results with

laboratory flow experiments showed good agreement both with statistical quantities and

vortex structures and evolutions. In addition, since their simulation ran for sufficient enough

time, unlike Basu et al. (1992), they noticed the self-similarity of the wake in agreement with

previously reported experimental data and with theory (see section 2.1.1).

Johansson, George & Woodward (2002) preformed a Proper Orthogonal Decomposition

(POD) study of the axisymmetric wake behind a disc at a Reynolds number of 28000. Their

measurements were done using multi-point hot wires (15 hot wires along the wake radius)

located in the near downstream region, 10 < z/D < 50, behind the disc. For all downstream

positions in that region two distinct peaks were found in the first eigenspectrum: one at

azimuthal mode 2 at near zero frequency and another at azimuthal mode 1 at a fixed Strouhal

number of 0.126 which decreases more rapidly than the one at the near zero frequency leaving

the latter to eventually dominate. They explained those results in the following way: at

z/D = 10 the second mode is the dominant one and at z/D = 50 the first mode is the

dominant one, with the first peak associated with a structure of frozen turbulence that

is convected downstream, while the second peak was not observed to convect downstream.

Later on, Johansson et al. (2003) studied axisymmetric far wakes using equilibrium similarity

considerations, without the arbitrary assumptions of earlier theoretical studies – that the

self-similar velocity and turbulence profiles are unique – using Gourlay et al.’s (2001) DNS

results and previously published experimental data. Two similarity solutions were noticed
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for the turbulent axisymmetric far wake: one for large local Reynolds number where the

wake grows spatially as z1/3 and another for small local Reynolds number where the wake

grows as z1/2. They confirmed Bevilaqua & Lykoudis’ (1978) conclusion that both similarity

solutions depend on the upstream conditions. Moreover, they showed that the effect of the

initial conditions does not appear in the normalised velocity profiles, but in the growth rate

and the higher velocity moments. Also, for both solutions the local Reynolds number of the

flow diminishes with increasing time, and as a consequence even when the initial Reynolds

number is large the flow evolves towards a low Reynolds number state, meaning that viscous

effects continuously become more important, until eventually they may dominate. Note that

in that case the shear stress decays slower than the mean wake (as z−3/2 unlike U2
d ∼ z−2)

which suggests that the turbulent shear stress will never be sufficiently small compared to the

mean velocity scales to allow a genuine laminar wake to emerge. And so, if the wake starts

as being fully turbulent it will remain so forever. Also, it should be mentioned here that the

low Reynolds number similarity form has not been noticed in any wind tunnel experiment,

but only in Gourlay et al.’s (2001) DNS results.

Later, Johansson & George (2006a,b) studied an axisymmetric far wake. Mean velocity

profiles were found to be in excellent agreement with the high Reynolds number equilibrium

similarity theoretical solution. In addition, the turbulence intensity, u′/U0, reached a con-

stant value far downstream; using POD they also found that the energetic structure of the

axisymmetric wake could be described efficiently in terms of a few POD modes, with the

first radial POD mode containing approximately 56% of the energy in the near wake, while

farther downstream just before the self-similar region the second radial POD mode becomes

the dominant one as the first one dies out quicker. More recently Tutkun, Johansson &

George (2008) reported that first, second and third component POD of the far axisymmetric

wake behind a disc give similar results in terms of the azimuthal modal distribution of the

eigenvalues of Turbulence Kinetic Energy (TKE). The second azimuthal mode was found to

be the dominant one, as was found by Johansson & George (2006a,b), when the streamwise

fluctuations are included in the analysis. They concluded that the similarity between the

eigenvalue distribution of the one, two and three component POD for the far axisymmetric

wake is attributed to the production of turbulence in the wake, such that as long as the

streamwise fluctuations are included in the analysis no significant differences are expected

between the different approaches (due to the fact that there is only one production term in

the TKE balance, which involves the normal stress term; Johansson et al., 2003).
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In summary, the axisymmetric wake develops during its first 50D to its self-similar state,

where that development is progressive from the lower moments to the higher. In addition,

while all wakes share the same decay rate, the self-similar profiles of the various velocity and

length parameters are fully controlled by initial conditions.

2.2 Homogeneous Isotropic Turbulence

2.2.1 Theoretical Considerations

During the last century a number of analyses, based on various assumptions, have been

developed to theoretically treat the decay of Homogeneous Isotropic Turbulence (HIT). In

the following summary, a short review of some of the key studies is given.

The problem of energy decay of incompressible turbulent flow is governed by the Navier-

Stokes equations, (2.1) and (2.2). Due to homogeneity, isotropy and incompressibility, the

two-point second-order moment tensors of the velocity can be expressed in terms of a single

scalar function, h (r1, t), representing the longitudinal velocity correlation coefficient, which

is defined as

h (r1, t) =
u (x, t)u (x+ r1, t)

q (t)2
, (2.31)

where r1 is the separation of the two points, t is time, u is the velocity fluctuation in the

separation direction and 3
2q

2 (where q =
√
u2) is the turbulence kinetic energy K.

In a similar way the triple-velocity correlation coefficient, b (r1, t), is defined as

b (r1, t) =
u (x, t)2 u (x+ r1, t)

q (t)3
. (2.32)

Karman & Howarth (1938) derived from (2.1) and (2.2) the following dynamical equation,

which connects those two scalar quantities:

∂
(
q2h
)

∂t
= q3

(
∂b

∂r1
+

4

r1
b

)
+ 2νq2

(
∂2h

∂r21
+

4

r1

∂h

∂r1

)
. (2.33)

In addition, they showed that if any self-similar solution of the above equation exists, it
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2.2. Homogeneous Isotropic Turbulence

must be of the form:

h (r1, t) = h̃ (r1/λ (t)) ,

b (r1, t) = b̃ (r1/λ (t)) ,
(2.34)

and they also gave two constraints:

q × λ = constant,

λ
∂λ

∂t
= constant,

(2.35)

where λ is the Taylor microscale (i.e. Taylor, 1935). Note that those constrains arise from

equation (2.33) by assuming large enough Reynolds number, i.e. neglecting the viscous term

in that equation, and noting that the equation can only be satisfied if the coefficients, which

are function of t without being function of r1/λ (t), are proportional.

The power-law decay of the turbulence kinetic energy is then consequently obtained as

K =
3

2
q2 ∼ t−1. (2.36)

Although some early experiments, for example Batchelor & Townsend (1948a), seemed

to be consistent with Karman & Howarth’s (1938) power law decay, many later studies (see

section 2.2.2) showed that the exponent is approximately in the range from 1.1 to 1.4.

Another way to examine the decay of HIT is by considering the relationship between the

two-point velocity correlation to the energy spectrum, E(κ), where κ is the wavenumber.

Assuming high enough turbulence Reynolds number and self-similarity of the large and the

small scales, the following can be written,

E(κ) =
1

π

∫ ∞

0
q(t)2h(r, t)κrsin(κr)dr. (2.37)

Expanding equation (2.37) for small wavenumbers yields

E(κ→ 0) =
Lκ2

4π
+

Iκ4

24π2
+ · · · (2.38)

provided that q(t)2h(r, t) decays sufficiently rapidly (q(t)2h(r, t) ∼ O(r−6) or smaller) for the
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2.2. Homogeneous Isotropic Turbulence

expansion to be valid, where L and I are the integrals

L =

∫ ∞

0
q(t)2h(r, t)dr (2.39)

and

I = −
∫ ∞

0
r2q(t)2h(r, t)dr, (2.40)

which are known as the Saffman and Loitsyansky integrals respectively.

This suggests that there are two important cases: when L 6= 0 we have E(κ→ 0) ∼ Lκ2,

which is called the Saffman (1967) spectrum (or turbulence), and when L = 0 we obtain

E(κ→ 0) ∼ Iκ4, which is known as the Batchelor (1953) spectrum (or turbulence).

Kolmogorov (1941c) predicted that isotropic turbulence should decay as u2 ∼ t−10/7 using

three assumptions: (i) the energy decays as du2/dt = −Au3/l, where l is the integral scale

and A is independent of time, (ii) the large scales (but not the whole spectrum) evolve in a

self-similar manner when r is normalised by the integral scale and (iii) Loitsyansky’s integral

is constant with time. Combining (ii) and (iii) gives I ∼ u2l5 = constant which, when

substituted into the energy equation (i), yields K ∼ t−10/7 and l ∼ t2/7.

While assumptions (i) and (ii) have been verified experimentally, the third has been

heavily criticised. Especially since the Karman-Howarth equation integrates to give

∂I

∂t
= 8π

[
q3r4b(r, t)

]
∞
, (2.41)

where the subscript ∞ indicates r → ∞, and it is expected that the long-range pressure

forces will establish long-range triple correlations of the form b(r, t)∞ ∼ cr−4, where c is

some pre-factor, which implies that I is time dependent and casts doubt on the 10/7 decay

law. Nevertheless, recent simulations by Ishida, Davidson & Kaneda (2006) have shown that

I could be constant in HIT depending on initial conditions.

On the other hand, Saffman (1967) showed that L could be a non-zero constant in the case

where the turbulence contains a sufficiently large amount of linear momentum, P =
∫
V udV ,

where V is some large control volume. In particular it is required that P 2 grows with V

as P 2 ∼ V , such that L remains finite and non-zero as V → ∞. (Note that if P 2 grows

slower than V Batchelor turbulence is obtained). Thus, combining the conservation of L
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2.2. Homogeneous Isotropic Turbulence

with assumptions (i) and (ii) leads K ∼ t−6/5 and l ∼ t2/5

Some years later George (1992) proposed a new theory for the decay of HIT in which truly

self-preserving solutions to the spectral energy equation were found to be valid at all scales

of motion. Unlike Karman & Howarth (1938), who assumed self-similarity of correlation

coefficients, George’s method assumes self-similarity of the spectrum, E (k, t), and the energy

transfer spectrum, T (k, t), in the following way:

E (k, t) = Es (t, ∗) Ẽ (φ, ∗) ,

T (k, t) = Ts (t, ∗) T̃ (φ, ∗) ,
(2.42)

where k is the magnitude of the wave vector, φ = kL1, L1 = L1 (t, ∗) and the argument ∗
was included to indicate a possible dependency on initial conditions.

By substituting these into the spectral energy equation for isotropic turbulence and en-

forcing consistency he found that

L1 = λ,

E (k, t)

q2λ
= Ẽ (kλ) ,

T (k, t)

q3
= Re−1

λ T̃ (kλ) ,

K =
3

2
q2 ∼ tn,

(2.43)

where n is a constant and Reλ = qλ/ν is the Reynolds number based on the turbulence

velocity, q, and the Taylor microscale, λ.

With the Re−1
λ modification any decay law exponent is now possible, which implies a

dependency on initial conditions such that the decay rate constants cannot be universal,

except possibly in the limit of an infinite Reynolds number. Another consequence of his

theory is that the velocity-derivative skewness increases during decay at least until a limiting

value is reached, after which possibly another self-similar state, which includes the proper

decay of the nonlinear terms, is entered.

Later on, Huang & Leonard (1994) proposed a new self-similar solution to the Karman-
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Howarth equation of the form:

h (r1, t) = h1 (r1/λ) +Reβλh2 (r1/λ) ,

b (r1, t) = Reβ−1
λ b2 (r1/λ) .

(2.44)

Their solution, unlike the previous one, can predict decreasing nonlinear interaction during

the decay with β > 1, and thus might be applied to the final period of decay. They tested

their solution using DNS at low Reλ. Those DNS results were found to be consistent with

their solution and the power-law decay was found to be about 1.5 for 10 < Reλ < 20 and

1.25 for 30 < Reλ < 40. Although their proposed similarity is valid for the final period of

decay they have reported that such decay was not observed in their simulations.

2.2.2 Grid Turbulence

Grid turbulence has been the subject of much research in the last century. The reason is that

the generated turbulence behind a grid is very close to HIT and therefore is often used for

comparison with theoretical studies.

Early in the last century, Taylor (1935) examined different properties and flow character-

istics of isotropic turbulence theoretically and compared his findings with previously reported

measurements of grid and honeycomb turbulence. Among the examined properties are the

average size of an eddy, the similarity rule of the turbulent velocity fluctuation decay, rate of

energy dissipation and smallest size of an eddy. His theory predicts a linear similarity rule

which varies with different grid configurations and honeycombs, characterised by M , d/M

and the shape of the bars / slats, where M is the mesh spacing and d is each bar’s width.

Also, using the correlation function the length scale of the average eddy was defined and

found to be related to M . Due to the simplicity and usefulness in the understanding of the

fundamental properties of turbulent flows his work was the foundation for all later studies of

HIT.

As noted earlier, Karman & Howarth (1938) developed a general theory of isotropic

turbulence. They proposed a solution for large Reynolds numbers which was applied to

Taylor’s (1935) problem of the decay of turbulence behind a grid. In addition, they confirmed

his fundamental relation between the width of the correlation function and the size of the

small eddies. They derived a general form for the fluctuating velocity, u2 = a1 (t− t0)
−n,
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with a power law decay n = 1. Later, Kolmogorov (1941c) conducted a similar theoretical

study, but even though he found the same form of power-law decay, his predicted value for

the decay exponent was found to be different, n = 10/7.

Batchelor & Townsend (1948a,b) conducted an experimental validation of Karman &

Howarth’s (1938) theoretical study of isotropic turbulence using experimental measurements

of turbulence behind different grids with M/d = 5.33. Their measurements of u2 and λ

indicate, as predicted by the theory, that they are both proportional to time (or distance from

the grid) with a decay exponent similar to that found by Karman & Howarth (1938), n = 1, in

the initial period of decay, and as a result the turbulence Reynolds number (Reλ =
√
u2λ/ν)

is approximately constant. In addition, they noticed that the correlation functions maintain

their form in the initial period of decay, implying self-preserving behaviour. In addition to

the initial period of decay they studied the final period of isotropic turbulence decay, where

the effects of inertia forces are negligible and the instantaneous velocity distribution may be

solved as an initial value problem. Their measurements validated the existence of a final

period of decay of isotropic turbulence for z/M > 400 at a mesh Reynolds number of 650 and

the theoretical prediction of decay, n = −5/2, in that regime. Based on their findings, an

empirical condition for the beginning of the final period is given as Rλ ≈ 5. They concluded

their study by stating that homogeneous turbulence tends to an asymptotic statistical state

which is independent of initial conditions.

Batchelor & Stewart (1950), using a theoretical study, showed that the large-scale compo-

nents of turbulence behind a grid in a uniform stream are anisotropic, even though the total

turbulence energy may be distributed with approximate spherical symmetry. They confirmed

their result using previously reported experimental data in the initial period of decay as well

as in the final period of decay. Later on, Stewart & Townsend (1951) reported that grid tur-

bulence is not isotropic in the very close region behind a grid (z/M < 1), and only later does

it tend towards an isotropic state. In addition, they showed that at any mesh Reynolds num-

ber the self-preservation of the spectrum shape is valid for all but the smallest wave numbers

and that the appropriate length scale is the Taylor dissipation length scale, λ. Afterwards,

Grant & Nisbet (1957), who studied the turbulence intensity behind square mesh grids of

bars, reported, as found by Batchelor & Stewart (1950), that the turbulence downstream of

a grid is not only anisotropic but also inhomogeneous. They found that the anisotropy and

inhomogeneity diminish very slowly with distance downstream from the grid. They could not

give any physical reason for this but suggested that it has to do with the grid’s geometry or
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surface roughness. This was later confirmed by Corrsin (1963), who showed that the shape

of the grid elements and its solidity ratio have a great effect on homogeneity, intensity level

and the stability of the wake system generated by the grid.

Later, Uberoi (1963), who studied the energy transfer from large to small eddies in tur-

bulence behind a square mesh, reported that the large eddies for which viscous dissipation is

negligible satisfy a similarity relation which agrees with the fact that the total energy decays

as some negative power of time. On the other hand, the small eddies which are in approxi-

mate spectral equilibrium satisfy a local similarity in agreement with Kolmogorov’s (1941c)

hypothesis.

With the ambition to generate isotropic turbulence behind grids, in which turbulence

intensity ratio were equal in all directions, Comte-Bellot & Corrsin (1966) used a contrac-

tion downstream of the grid. This technique was chosen because contraction amplifies the

transverse-velocity fluctuations - consistant with Taylor’s (1935) observation that the turbu-

lent motion is subjected to gross strain by passage through an area change and will undergo

selective changes in its axial and transverse turbulent energy levels due to the directionally

selective vortex-line distortions. They tested a few different grids and concluded that each

grid needs its own specially designed contraction. Later, with the same idea in mind, gen-

erating more precise isotropic turbulence, Uberoi & Wallis (1967) measured the longitudinal

and lateral turbulence intensities behind homogeneous grids of various geometries looking

for the optimal geometry for that purpose. For all grids the ratio u2/v2 was found to be

constant during the decay and was between 1.2 and 1.35 depending on the grid geometry.

The turbulence intensity decay was found to follow a power law with the power exponent

constant during the decay but it was found that it depended on the grid geometry and var-

ied between 1.22 to 1.48, unlike in previously reported data (see above). That result led to

their conclusion that the rate of decay depends on the initial energy spectrum and the large

energy-containing eddies maintain a similarity form during the decay. Later on, Uberoi &

Wallis (1969) reported, based on their measurements of spectra in different directions, that

the energy-dissipating eddies are closer to isotropy and less dependent on the grid geome-

try, in contrast to the energy containing-eddies in grid generated turbulence. These findings

are consistent with their previous finding (Uberoi & Wallis, 1967) that the deviation from

isotropy of the energy-containing eddies and their spectra depend on the grid geometry.

Portfors & Keffer (1969) were the pioneers in the sense of correcting the measured turbu-
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lent intensities by taking into account the wind tunnel’s boundary-layer effects on the wake

of a grid made out of parallel rods. Their measurements showed that the ratio u2/v2 con-

verges downstream to the approximate value 1.1, which is lower than Uberoi & Wallis’ (1967)

measurements, while their corrected results showed that the turbulence becomes isotropic by

a distance of approximately 30 mesh lengths downstream from the grid, indicating that the

wind tunnel boundary layer has a strong effect on the grid’s wake.

Bennett & Corrsin (1978) reported on more low Reynolds number grid-generated tur-

bulence measurements. Their decay results agree with the predictions of the final period

isotropic turbulence decay by the linear approximation of Karman & Howarth (1938) and

Batchelor & Townsend (1948b). Also, in that region, they noticed that the previously nearly

isotropic turbulence becomes less isotropic. In their investigation the effect of the wind tunnel

walls was taken into account in the analysis of their measurements, as was done by Bennett

& Corrsin (1978), and was noticed to affect the free-stream velocity fluctuation in addition

to the centerline mean velocity. A decade later Maxey (1987) explained the anisotropy in the

turbulence far downstream of a grid using the the slow decay of the turbulence kinetic energy

in that region, which he found contributed to the skewness of the velocity fluctuations.

Mohamed & Larue (1990) studied the effect of initial conditions on the power-law decay

of the variance of the turbulence velocity fluctuations downstream of bi-planar grids. In their

investigation new measurements, in addition to previously published ones, were compared.

They showed that the choice of the virtual origin and the use of data in the non-homogeneous

portion of the flow can have a significant influence on the value of the parameters deduced for

the power-law decay. They defined a specific criterion to identify the nearly homogeneous and

isotropic portion of the flow for that purpose. Their results, based on that criteria, showed

that the decay exponent and the virtual origin are 1.3 and 0 respectively, independently of

the initial conditions (Reynolds number, mesh size, solidity, rod shape, rod surface roughness

etc). On the other hand, they found that the decay coefficient (in other words the α in

u′ = αx−1.3, where u′ is the rms of the fluctuating velocity) is a function of the initial

conditions due to the variation in the drag coefficient of the grids.

Recently Lavoie, Djenidi & Antonia (2007) reported that initial conditions set by the

shape of the grid have a persistent impact on the large-scale organisation of the flow over the

entire length of the wind tunnel, and that that effect does not disappear with downstream

distance. In addition, they also noticed that the use of a contraction, which was previously
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proposed by Comte-Bellot & Corrsin (1966), leads to more isotropy of the larger scales of

motion. Later, in order to answer whether the large scales in grid turbulence should be clas-

sified as Batchelor (1953) or Saffman (1967) type, Krogstad & Davidson (2010) conducted

high-resolution measurements of grid turbulence in a relatively large wind tunnel. The partic-

ularly large test section allowed them to measure energy decay exponents with high accuracy

(recall the wind tunnel boundary-layer effect reported by Bennett & Corrsin, 1978). They

found that the turbulence behind a grid is almost certainly of the Saffman type, with the

integral scales satisfying u2L3 = constant. Their measured energy decay exponent, however,

was found to lie slightly below the theoretical prediction of u2 ∼ tn, with n = −1.2. Rather

they found the power law constant to be n = −1.13. They showed that that divergence arises

from a weak temporal decay of the dimensionless energy dissipation coefficient, ǫL/u3, where

ǫ is the dissipation rate, which is normally taken to be constant in strictly homogeneous

turbulence, but in their grid turbulence experiments varied very slowly.

2.2.3 Direct Numerical Simulation of Homogeneous Isotropic Turbulence

In the past three decades the increase in computational resources have made DNS of HIT

feasible. The real advantage behind such simulations is that all special and temporal scales

are resolved and the physical understanding of even the smallest scales of motion is therefore

possible.

Yeung & Brasseur (1991) used DNS of stationary HIT in order to explore the nature of

the direct triadic couplings between the large and small scales in homogenous turbulence.

The idea behind their study was the well-established concept in turbulence dynamics that

in the high-Reynolds-number limit, the smallest, more dissipative, scales are structurally

independent of the larger, more energetic, scales which ultimately determine the rate of

viscous dissipation. They found that isotropically forced turbulence remains isotropic at all

wave numbers and is most receptive to a forcing term with spectral content concentrated in

the energy-containing range. In addition, they applied anisotropic forcing by adding vorticity

at constant rate through an array of counter rotating rectilinear vortices which by a suitable

choice of parameter produced a single spike in the radial forcing spectrum. The most striking

consequence was the fact that the anisotropy was not only noticeable at the large scales but

was also present at the small scales. They thought this might be evidence for a departure

from the classical hypothesis of statistical independence between the large and small scales
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and local isotropy in the high Reynolds number limit. Jimenez, Wray, Saffman & Rogallo

(1993) have also studied stationary HIT. They reported that the intense vorticity region

is organised in coherent, cylindrical or ribbon-like vortices (worm like). They showed that

these vortices are natural features of the flow and that they are independent of the particular

forcing scheme used. In addition, they reported that the vortices’ Reynolds number, based

on their circulation, increased monotonically with Reλ (raising the question - what happens

at the limit of Reλ → ∞), while on the other hand their average rate of stretching increased

only slowly with their peak vorticity, suggesting that self-stretching is not important in the

evolution.

In many reported studies of stationary HIT there seem to be inconsistency between the

simulated three-dimensional turbulence kinetic energy spectra and the experimentally deter-

mined Kolmogorov coefficient. That inconsistency tends to vary with choice of forcing scheme

(even though the flow structure seems independent of the latter, Jimenez et al., 1993). That

inconsistency was later minimised by Sullivan, Mahalingam & Kerr (1994) who proposed that

the forcing scheme should only maintain the energy at the low-wave-numbers (by “insertion”,

which is a relatively simple process), thereby taking advantage of the energy cascade in order

to keep the flow stationary.

More recently, Keneda, Ishihara, Yokokawa, Itakura & Uno (2003) performed DNS of

stationary HIT at Reλ = 167, 257, 471 and 965. Their database suggest that the normalised

mean energy dissipation rate per unit mass tends to a constant, independent of the fluid

kinematic viscosity, ν, as ν → 0. In addition, their results suggest that the energy spectrum

in the inertial sub-range almost follows the Kolmogorov’s κ−5/3 scaling law, where κ is the

wave number, although the exponent is slightly steeper than −5/3 by about 6%.

While the great advantage of stationary flows is that they are homogeneous in time, un-

derstanding the decaying process of HIT is also needed. Huang & Leonard (1994) examined

the decay rates of HIT. They found that the turbulent energy decays with a power law expo-

nent approximately equal to 1.5 and 1.25, apparently depending on the turbulence Reynolds

number, Reλ = u′λ/ν, which in their simulations was relatively low. More recently, Ishida

et al. (2006) investigated the decay rate of HIT at higher Reynolds numbers. They found

that the turbulence evolves to a state in which the Loitsyansky’s integral I (section 2.2.1) is

approximately constant, and that Kolmogorov’s classical decay law, u2 ∼ t−10/7, holds true.

In summary, HIT has been studied for many years. Both DNS and wind tunnel ex-
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periments have been proven to be effective for generating such flows. Nevertheless, while

grid-generated turbulence seems to be Saffman-like, it is possible to use DNS and different

initial conditions to create both Bachelor and Saffman turbulence fields. Consequently, the

decay rate of HIT is not universal and it varies with initial conditions.

2.3 Axisymmetric Wakes in Turbulent Surroundings

Raithby & Echert (1968) were perhaps the first researchers to investigate the influence of free-

stream turbulence on the wake of a sphere behind different grids. They were mainly interested

in the influence of the turbulence intensity, the scale of turbulence, and the position of the

support of the sphere, on the average heat transfer from spheres to an air stream. They

reported that the average Nusselt number increases with the turbulence intensity and with

the ratio of the sphere diameter to the scale of turbulence for values up to at least five. In

addition, Nusselt numbers which were obtained using a cross-flow support were found to be

about 10 per cent higher than those obtained using a rear support. Later on, Mujumdar &

Douglas (1970) reviewed Raithby & Echert’s (1968) results, particulary regarding the effect

of the free-stream turbulence on the vortex shedding from the sphere. They noticed that

when the free-stream was made turbulent by introducing turbulence-generating grids the

auto-correlation for the sphere decayed without oscillation, thus indicating suppression of

vortex shedding. They, in addition, conducted similar experiments for circular and square

cylinders which led to the different result that the vortex shedding is not suppressed and that

the Strouhal number stays the same even for highly turbulent free-streams.

Wu & Faeth (1994), more than two decades later, conducted measurements of sphere

wakes in turbulent environments with an ambient turbulence intensity of 4% at low to mod-

erate Reynolds numbers (125 < Re < 1560). Unlike Raithby & Echert (1968), who used

grids to generate the surrounding turbulence, they used a turbulent pipe flow with the sphere

mounted at the downstream end of the pipe. In comparison to non-turbulent environments

they noticed a higher decay rate of the self-preserving region of the wake. While the wake was

turbulent, its mean streamwise velocities scaled like a self-preserving laminar wakes (under

uniform flow conditions the centerline velocity deficit in far laminar axisymmetric wakes is

known to decrease as z−1; Batchelor, 1967) but with enhanced eddy viscosity due to the

turbulence. On the other hand in the light of the earlier discussion in section 2.1.1, the

wake might have been similar to a finite Reynolds number turbulent wake. Later, Wu &
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Feath (1995) widened the research and looked at the effect of different ambient turbulence

intensities, from 2% − 9.5%, on the sphere’s wakes at similar Reynolds numbers. This time,

each different ambient turbulence intensity was generated in a different way (which could

have affected their results quantitatively, especially when different cases are compared). In

addition to their previous findings, they noticed that the effective turbulent viscosities are

relatively independent of position and ratios of ambient integral and Kolmogorov length

scales to the sphere’s diameter; however, they varied with both the Reynolds number and

the ambient turbulene intensity in the low-Reynolds-number regime (Re < 300) and only

with the Reynolds number in a higher regime (Re > 600). The transition regime between

the two (300 < Re < 600) was found to be strongly affected by the vortex shedding from

the sphere. Moreover, the laminar-like turbulent wake region (also previously reported by

them; Wu & Faeth 1994) was followed by a final decay region, beginning when the wake’s

centre-line turbulence intensity was approximately equal to the ambient one. In that region

faster decay rates were noticed but unfortunately no quantitative values were given.

Mittal (2000) used DNS to investigate the response of a sphere’s wake to free-stream

fluctuations. Since his research was directed towards particulate flows only low Reynolds

numbers were simulated. He conducted several simulations with different amplitudes of free-

stream fluctuations and different sphere Reynolds numbers (100 < Re < 350). He found that

in the presence of free-stream fluctuations the wake behaves like an oscillator and returns a

large amount of kinetic energy to the surrounding fluid at resonance. With the same idea

in mind, Bagchi & Balachander (2004) also used DNS to investigate the wake of a particle.

Unlike Mittal (2000) who used sinusoidally oscillated uniform flow for the inlet condition, they

used a frozen isotropic turbulence field superimposed on a uniform flow. In their simulations

the particle Reynolds number varied between 50 to 600 and the particle diameter varied

between 1.5 to 10 times the Kolmogorov length scale. They found that the presence of the

free-stream turbulence reduces the mean velocity profile and that the wake becomes flatter.

In addition, they reported that the mean velocity profile in the particle wake with a turbulent

free-stream behaves like a self-preserving laminar wake, as was previously reported by Wu &

Faeth (1994; 1995). They also noticed that by increasing the free-stream turbulence intensity

the process of vortex shedding is suppressed, as was previously reported by Mujumdar &

Douglas (1970), and it only marginally increases the wake’s oscillation.

Tyagi, Liu, Ting & Johnston (2005) measured the effect of free-stream turbulence gen-

erated by a perforated plate on the wake of a sphere at different Reynolds numbers. They
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noticed that in the presence of the perforated plate a spectral peak could not be observed,

indicating that the vortex shedding is attenuated by the free-stream turbulence, as was also

noticed by Mujumdar & Douglas (1970) and Bagchi & Balachander (2004). Later, Tyagi,

Liu, Ting & Johnston (2006) reported that the presence of free-stream turbulence reduces

the size of the integral length scale, which was also reported by several authors in the context

of free-stream turbulence on boundary layers (e.g. Section 2.4), as well as the intensity of

the velocity fluctuations, which are associated with the destruction of horseshoe-like vortices

in the wake by the free-stream turbulence.

More recently Legendre, Merle & Magnaudet (2006) used Large-Eddy Simulation (LES)

to simulate a wake of a spherical bubble and of a solid sphere in a turbulent pipe flow. They

reported that the centre-line velocity deficit decreased as z−2 after a short regime where the

centre-line velocity deficit decreased as z−1; the latter is similar to what was reported by Wu

& Faeth (1994; 1995). Moreover, they noticed that the z−2 decay rate regime starts when

the centre-line deficit velocity is of the same order as the free-stream rms velocity, unlike

what was reported by Wu & Feath (1995) - the faster decay rate regime starts when the rms

velocity fluctuations in the free-stream are of the same order as those on the wake’s centre-line.

Later, Redford & Coleman (2007) reported on a time-developing far axisymmetric wake in

turbulent surroundings using DNS. In their simulation the generating body was not modelled

and an initial wake was created using a series of ring vortices, which with time broke down

and developed into a turbulent axisymmetric wake, which was later combined with the free-

stream turbulence. They found that the stronger the background turbulence, the shorter was

the time required for the wake to decay and merge with the surrounding turbulence.

Unfortunately, no additional work, as far as the author is aware of, is available for tur-

bulent axisymmetric wakes in turbulent background flows. But before presenting and dis-

cussing the present results, a background summary of the effects free-stream turbulence have

on boundary layers is given in the following section.

2.4 Boundary Layers in Turbulent Surroundings

Kline, Lisin & Waitman (1960) presented, in quite a lot of detail, experimental results of

the effect of free-stream turbulence on a flat-plate boundary layer. They noticed that when

the free-stream turbulence levels are equal to or greater than the ones in the self-generated
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turbulence of the shear layer considerable alterations in the boundary layer characteristics

occur. The high values of the free-stream turbulence intensity increase the boundary layer,

momentum and displacement thicknesses, create more uniform velocity profiles and raise the

value of the wall shear stress. In addition, the distributions of the intensity of the velocity

fluctuations through the boundary layer are grossly altered and are no longer in line with the

(nominally) universal profiles in both the inner and outer regions.

A decade later Charnay, Comte-Bellot & Mathieu (1971) also reported on the develop-

ment of a turbulent boundary layer on a flat plate in the presence of a turbulent free-stream.

They noticed similar physical phenomena as were reported by Kline et al. (1960) but added

that the TKE production becomes larger in the boundary layer and that it is associated with

the increase of the turbulence shear stress. Later, Huffman, Zimmerman & Bennett (1972)

reported that the increase in the boundary-layer thickness with an increase in the turbulence

intensity is due to the enhanced entrainment brought about by the highly excited state of

the boundary between the shear layer and the free-stream. In addition, they noticed that the

skin friction increases while the shape factor on the other hand decreases with an increase in

the free-stream turbulence intensity. Tsuji & Iida (1972) reported that the turbulent back-

ground also increases the mixing length and the eddy viscosity. They proposed an analytical

mean velocity distribution obtained by an eddy-viscosity hypothesis which shows good agree-

ment when compared to experimental results. McDonald & Kreskovsky (1974) also gave a

theoretical prediction of the effect of free-stream turbulence on a flat-plate boundary layer.

By allowing for the entrainment of the free-stream turbulence into the boundary layer and

performing a TKE balance, they were able to show satisfactory quantitative predictions in

comparison to previously reported experimental data. Furthermore, their theoretical pre-

diction indicated a 30% increase in heat transfer arising from a free-stream turbulence level

of only 5% at high enough Reynolds numbers. But, due to lack of high Reynolds number

experimental results, that prediction was not confirmed. Later Charnay, Mathieu & Comte-

Bellot (1976) noticed that in the TKE balance the direction of the largest turbulent diffusion

appears to coincide with that of the greatest principal stress. In addition, they noticed that

the motion of the free edge of the boundary-layer is governed by structures of the overall flow

with a characteristic length of the same order as of the boundary layer thickness.

Hancock (1980) was the first to really fully draw attention to the relationship between

the free-stream’s and the boundary layer’s length scales. That relationship was found to have

a large effect on the boundary-layer development, mostly when the ratio is of order one. He
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2.4. Boundary Layers in Turbulent Surroundings

also found that the turbulence background decreased the strength of Coles’ wake component

(Coles, 1956). Finally, using flow visualisation, he revealed that the free-stream turbulence

causes the interface to be more irregular and to extend well beyond the edge of the mean

velocity profile.

Pal (1981) reported on the effect of the wake behind a flat plate on another flat plate’s

boundary layer (which is a common issue in turbomachinery). He found that the total velocity

defects in the axial, lateral and normal components of the mean velocity decrease towards the

inner region of the boundary-layer. He also showed the existence of self-similarity, to some

extent, of the axial mean velocity when normalised with respect to his proposed analytical

turbulence interaction parameters. As for the turbulent quantities, he reported that they

increase towards the inner region and decrease towards the outer edge of the boundary layer

with increase in spacing between the two plates. Later on, Castro (1984) reported on the

effect of free-stream turbulence on a turbulent boundary layer in zero pressure gradient. The

momentum-thickness Reynolds number was less than 2000 and low Reynolds-number effects

were thus expected to be significant. Nevertheless, it was found that those reduced as the level

of the free-stream turbulence increased. Moreover, the range of length scales in the boundary

layer were noticed to significantly decrease with decrease of the Reynolds number, thus the

larger scales become increasingly emphasised. Finally, he proposed an empirical modification

to Hancock’s (1980) free-stream turbulence parameter, fstp = (u′/U0) / (λe/δ + 2), where

λe is the external Taylor microscale and δ is the boundary layer thickness, at low Reynolds

numbers, in the form of fstpc = 100 (u′/U0) / (0.5λe/δ + 2.5).

Evans (1985) took Pal’s (1981) turbomachinery work further by studying the effect of

free-stream turbulence on a cascade compressor’s blade. He found that even under adverse

pressure gradient and turbulence free-stream, Coles’ (1956) boundary-layer profile was valid.

Later, Hancock & Bradshaw (1989) showed that free-stream turbulence increases the standard

deviation of the interface between the boundary-layer and the free-stream turbulence as a

proportion of the boundary-layer thickness, whilst the average position is mainly dependent

upon the length-scale in the free-stream. The shear correlation coefficient of the boundary-

layer fluid decreases, and the change in structure is directly related to the fluctuating strain

rate. In addition, while the dissipation length-scale based on the turbulence shear stress

was found to be little affected, the corresponding parameter based on the turbulence energy

instead was noticed to be strongly affected.
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2.4. Boundary Layers in Turbulent Surroundings

Bandyopadhyay (1992) tested Hancock’s (1980) free-stream turbulence parameter on low-

Reynolds-numbers boundary layers under free-stream turbulence and proposed a modification

to it (different to the one proposed by Castro, 1984). The modification is mainly associated

with the parameter’s Reynolds-number dependency at low Reynolds numbers and is in the

form of fstpb = fstp × ϕ for fstp > 0.01 and fstpb = fstp/ϕ for fstp < 0.01, where

ϕ = 1 + 3e−(Reθ/425) is a correction function and Reθ = U0θ/ν is the momentum thickness

Reynolds number. Later on Thole & Bogard (1996) confirmed another of Hancock’s (1980)

findings about the importance of the order of the integral length scale of the turbulent free-

stream relative to the boundary-layer thickness, and in addition, they confirmed the validity

of the log-law under such conditions. Finally, based on their observations, they concluded

that the velocity defect in the outer region of the boundary layer is significantly decreased

when the free-stream turbulence levels exceed those in the boundary layer.

Recently, Ustinov (2006) conducted DNS of a flat plate set suddenly in motion in turbu-

lent surroundings. His data made it possible to estimate the effect of different factors such

as the characteristics of the free-stream velocity fluctuation spectrum on laminar-turbulent

transition in the boundary layers.

In summary, based on the many observations discussed above, an increase in the ratio

u′fs/U0, where u
′
fs is the rms velocity fluctuations in the free-stream, affects the different

boundary-layer properties in the following way:

• Boundary-layer thickness - increases

• Mean velocity profile - flattens

• Displacement thickness - increases

• Momentum thickness - increases

• Skin-friction coefficient - increases

• Shape factor - decreases

• Heat transfer - increases

• Production of turbulent kinetic energy - increases

• Reynolds shear stress - increases
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• Mixing length - increases

• Eddy viscosity - increases

2.4.1 Expectations

Based on the studies presented above, the intensity levels (or the amount of energy) in the

free-stream will most likely be the source of strongest influence on the wake. Note though that

it is not expected that any particular level will be able to influence any axisymmetric wake

in the same way since the turbulence levels inside different wakes or even for the same wake

at different downstream positions might be different. Thus, the ratio between the intensity

levels in the free-stream to the ones inside the wake or even the wake’s centre deficit velocity

will perhaps be a more likely control parameter for determining the free-stream turbulence

impact on the far wake. In addition, since it was also noticed that the length scales in the

free-stream play an important role in defining that influence, it is expected, in a similar way,

that the ratio between the integral scale to the wake’s half width will have an important role

here as well.

In summary, since a boundary layer is one form of a shear layer it is expected that similar

influences may be noticed for the axisymmetric wake. Note though that some differences

are expected as well, mainly due to the presence of the wall in defining the flow structure

close to it. Nevertheless, some of the similar influences where already reported by previous

researchers presented in section 2.3. However two very interesting questions are still left open

– at what rate the wake decays and whether it is in any sense self-similar in the presence of

free-stream turbulence.
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Chapter 3

Direct Numerical Simulation

3.1 Methodology

3.1.1 The DNS Solver

The computational study in this research was done using the University of Southampton’s

in-house triply periodic pseudo-spectral DNS code (which was already used by Redford &

Coleman, 2007; Redford, Castro & Coleman, in preparation) and is based on the method

described by Kim, Moin & Moser (1987). The main advantage of using such a method to

numerically solve the Navier-Stokes equations is in its accuracy. The flow field is transformed

from real space into spectral space such that all the derivatives are calculated using their exact

expressions. This means that the solution does not suffer from numerical dissipation, unlike

other numerical methods. Yet, the method suffers from two major limitations: the boundary

conditions can only be periodic and the code’s current parallelization scheme reduces the

maximum number of processors that may be used compared with the number of processors

possible for the same grid arrangement but using a finite difference code.

The Mathematics Behind the Solver

Here a short mathematical description of the solver is given, based on the one given by Kim

et al. (1987). The governing equations for an incompressible flow (Equations 2.1 and 2.2) can

be written in the following non-dimensional cartesian form:

∂ui
∂t

= − ∂p

∂xi
+Hi +

1

Re
∇2ui,

∂ui
∂xi

= 0,

(3.1)
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where ui is the velocity component in the xi direction, Hi includes the convective terms and

the mean pressure gradient in the xi direction and Re denotes the Reynolds number defined

as Re = UrefLref/ν, i.e. in terms of the reference velocity and length scales, Uref and Lref

respectively.

Equation (3.1) is re-written as a fourth-order equation for v, and a second-order equation

for the corresponding component of vorticity, g, as follows:

∂

∂t
∇2v = hv +

1

Re
∇4v, (3.2)

∂

∂t
g = hg +

1

Re
∇2g, (3.3)

f1 +
∂v

∂y
= 0, (3.4)

where the velocity components (u, v, w) corresponds to the (x, y, z) directions respectively,

f1 = ∂u/∂x+∂w/∂z, g = ∂u/∂z−∂w/∂x, hv = −∂/∂y (∂H1/∂x+ ∂H3/∂z)+
(
∂2/∂x2 + ∂2/∂z2

)
H2

and hg = ∂H1/∂z − ∂H3/∂x. The main advantage in this form is the fact that the pressure

is no longer a variable so only three equations are left in the system.

The spatial derivatives are found using a Fast Fourier Transform (FFT) of the problem

in each of the (x, y, z) directions. Once the problem is transformed, the velocity derivatives

are calculated using the following analytical, exact, relationship.

ui (x̂) =
∑

κ̂

ũi (κ̂) e
iκ̂·x̂ =⇒ ∂ui

∂xj
=
∑

κ̂

iκj ũie
iκ̂·x̂ (3.5)

where ũi is Fourier coefficient of the velocity component in the xi direction, i =
√
−1 and κj

is the wavenumber component in the xj direction.

From a computational point of view, evaluation of the non-linear term, Hi, is potentially

extremely expensive. Considering a three-dimensional mesh (with N3 mesh points), it would

require of the order of N2 operations in each direction to calculate the non-linear terms in

spectral space, such that in total the order of N4 would be required . The exorbitant cost of

this fully spectral approach is clear, especially since a similar calculation for a finite-difference

algorithm would require only N3 operations in three dimensions. The solution to this prob-

lem, and the motivation for the pseudo-spectral method, is a combination of approaches. The

linear terms are evaluated in Fourier space and the non-linear terms are evaluated in real

space. To achieve this combined approach, velocity information is transformed from spec-
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tral space to real space. Then the non-linear terms are evaluated, and finally, transformed

back to spectral space, all of that using only only N3log2N operations in three-dimensions

(Orszag, 1980). Evaluation of those non-linear terms can introduce errors known as aliasing

errors, which come from the transformation between the spectral and the real spaces. These

errors can be removed via the ‘3/2-rule’, which involves using extra spatial resolution/modes

for the projection from spectral to real space and back again, by interpolating the N data

points onto a grid of size M ≥ 3N/2− 1 in each direction, with the extra Fourier coefficients,

between |N/2| and |M/2|, set to zero (Canuto, Hussaini, Quarteroni & Zang, 1988).

Equations (3.2), (3.3) and (3.4) are integrated in time using a third-order Runge-Kutta

method for the non-linear terms, Hi, as was successfully used by Spalart, Moser & Rogers

(1991). The viscous terms are integrated in time using an integration factor, which was used

by Rogallo (1981) in his DNS. That integration factor is the three-dimensional equivalent of

the analytical methods used to solve the one-dimensional heat equation. That means that

the solution in time is exact for the viscous terms (i.e. Kreyszig, 1988).

Data extraction for the post-processing was also done in the Fourier space. That way of

calculating mean and fluctuating velocity components is more trivial and less computationally

expensive. (For example, the first mode is the mean.) In addition, since the calculation

of velocity derivatives is done using exact analytical expressions in Fourier space (as was

demonstrated above) it is much more accurate.

3.1.2 The Computational Domain

The domain for the wake simulations (both with and without turbulent free-streams) was

4πlh0 × 4πlh0 × 16πlh0 , where lh0 is the wake’s half width at t = 0, with 512 × 512 × 2048

Fourier modes. Each time step typically took 50 seconds when using 512 processors of the

UK’s HPCx facility. Since up to 40000 time steps were required for the initial HIT simulations

to achieve a stationary state (see section 3.2.2) a cheaper approach was required in order to

reduce the computational cost. First the domain size was chosen to be 4πlh0 × 4πlh0 × 4πlh0 ,

i.e. only one quarter the axial length of the wake’s domain. Moreover, for the first 95%

of those initial simulations the domain had only 256 × 256 × 512 Fourier modes (with each

time step typically taking 5 seconds when using 256 processors) and for the final 5% it was

increased to 512× 512× 512 (with each time step typically requiring 21 seconds when using

256 processors). Note that further discussion about the method used to combine the wake

35



3.1. Methodology

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

κη

(κ
η
)5

/
3
E

3
3
/
( ǫν

5
) 1

/
4

(a)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.94

0.96

0.98

1

1.02

1.04

1.06

lw/Λw

(b)

0 0.1 0.2 0.3 0.4 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

lh/Λz

R
z
(∆

)
=

u
z
(
z
/
Λ
z
)
u
z
(
(
z
+

∆
)
/
Λ
z
)

u
z
(
z
/
Λ
z
)
2 Λz

2Lz
≈ 43

(c)

Figure 3.1: (a) Example of comparison between a DNS one-dimensional energy spectrum,
E11, and its universal form in the inertial subrange, dotted line. Solid, dashed and dashed-dot
lines are self-similar profiles at r/lh = 0.25, 0.5 and 0.75, respectively. (b) Results from the
domain width test case; (◦), (�), (△), (⊳) and (⊲) are the values of the centre deficit velocity,
the turbulence axial, radial, angular and shear stresses (at the wake half width) of the wake in
the small domain over those values in the wake in the larger domain, respectively.(c) Example
of the (axial velocity) spatial correlation function, Rz(lh), at the wake’s half width point;
Re ≈ 4000. Λz is the axial length of the domain.

with the free-stream turbulence is given in section 3.1.4.

In all computations, local Kolmogorov length scales, η =
(
ν3/ǫ

)1/4
, where ǫ is the mean

local TKE dissipation rate, varied between 20%−110% of the computational grid resolution.

As an example of the satisfactory nature of both resolution and statistical convergence in

all the simulations, figure 3.1(a) shows an axial self-similar kinetic energy (compensated)

spectrum in the pure wake averaged over times corresponding to 3000 < Re = Udlh/ν <

4000. The spectrum is compared with the universal result expected in the inertial subrange

(E33 = Cǫ2/3κ−5/3 where κ is the wavenumber and C is proportional to the the Kolmogorov

constant and has the value of 27/55, e.g. Pope, 2000). The properties E33 and ǫ, where

E33 is the one-dimensional spectrum of the axial velocity, were directly calculated from the

simulation data using the exact relationship, ǫ = 2νSijSij where Sij is the usual fluctuating
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strain rate tensor. The agreement is very satisfactory, and it may be noted that a significant

inertial subrange is present, where the compensated spectrum is constant (although recall

that Wang, Chen, Brasseur & Wyngaard (1996), among others, suggest that the Kolmogorov

constant might be slightly larger than 27/55; small differences would not be apparent on such

a plot).

As the wakes grow, there will eventually come a time when the cross-stream domain

size, Λw, is too small. In order to evaluate what wake width would still be adequate, a

test simulation was made. In that test simulation a wake (in quiescent surroundings) was

initiated and allowed to develop until its diameter (measured at the point inside the wake

where U = 0.01Ud) was about 40% of the domain width. At that point, the domain width

was doubled by adding cells at its edges, where the velocity values entered to those added

cells were copied from the ones at the edges of the original domain. Note that since periodic

boundary conditions were used in the simulations, the “new” flow field was still satisfying the

conservation equations. (Note as well that the wake width at that point was only 20% of the

extended domain width.) Once the new domain was available, the wake in the original and

larger domains were both allowed to continue developing and the values of mean velocities

and Reynolds stresses were compared. It was found that up to about lw/Λw = 0.65, where lw

is the wake width and Λw is the domain width, the differences between the two wakes were

less than about 1.5% (for both the mean velocity and the Reynolds stress), as illustrated in

figure 3.1(b). However, beyond that point those differences increased dramatically, as also

illustrated in figure 3.1(b), where at lw/Λw ≈ 0.68 about 4% difference was noticed for the

turbulence shear stress suggesting that the domain was no longer large enough to contain

the wake without affecting it. And so, in the results presented here the wake was always

smaller than that limit (i.e. lw/Λw ≤ 0.65). In addition, it was important to ensure a domain

length sufficient to allow development of the largest axial structures. Figure 3.1(c) provides

an example of the two-point spatial correlation function of the axial velocity component at

the wake’s half-width point (r = lh), when the local Re was about 4000. It is clear that

the domain is more than adequate in that respect; its half-length is some 43 times the axial

integral scale, computed as the area under the spatial correlation up to the first zero-crossing

point. It was chosen to be long in order to improve quality of statistics - recall the wake is

axially homogeneous, so axial averaging could be employed to enhance statistical convergence.
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Figure 3.2: Illustration of the analogue between the specially developing wake (a) to the
time developing one (b).

3.1.3 Initial Conditions

Far Axisymmetric Wake

Since this research concentrates on far axisymmetric wakes and resolving the flow around

the generating body and the one in the far downstream regime using DNS would be very

expensive, a different approach was taken.

As mentioned earlier, researchers in the past have used DNS with periodic boundary

conditions to simulate time-developing (small-deficit) parallel wakes, as an analogue of the

spatially developing wake. An exact Galilean transformation between the two cases is not

possible so the two cases are not identical; not least, the transverse velocity implied by the

periodic boundary conditions is zero, whereas in the spatial case it is the transverse gradient

of this velocity which is zero. Also, formally, different integral constraints are satisfied in the

two cases. But provided the deficit velocity in the spatial case is sufficiently small compared

with the free-stream velocity, viewing the wake in a reference frame moving with that free-

stream velocity provides a reasonable time-developing analogue. The mean radial velocity in

a spatially developing wake is in fact very small and other authors have shown the similarity

between time-developing (parallel) and spatially-developing wakes, so the present author

believes that the fundamental differences between the two cases should not greatly influence

the comparisons between them in a very significant manner. (For clarity an illustration of

this analogue is given in figure 3.2.)

Gourlay et al. (2001) were the first to achieve, using DNS, a time developing far self-
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Figure 3.3: An illustration of the wake’s initial mean flow field.

similar axisymmetric wake. Their initial condition field was based on previously reported

experimental evidence. A cylindrical Gaussian mean streamwise velocity profile was imposed

and, based on experimental evidence, scaled random numbers were added to it, simulating

the velocity fluctuations. They mentioned that those initial conditions were known to be

not physically correct so that the initial stage of the simulation is a so called correction

stage which repairs the non-physicality in the flow field. Later, Redford & Coleman (2007)

tried to reproduce their results using similar initial conditions but reported that the so-called

correction stage was found to be very expensive and for that reason proposed a different

approach using a series of ring vortices. A more thorough comparison between the two

methods was later given by Redford et al. (in preparation), where no significant advantage

in computational cost was noticed.

For that reason, it was decided to use a similar approach to the one used by Gourlay

et al. (2001) but with some improvements in order to try to reduce the computational cost

of the correction stage. The first change was to the chosen mean velocity profile. The profile

used was extracted from Chevray’s (1968) experimental prolate-spheroid data at z/D = 1,

which was scaled such that the initial Reynolds number of the wake would be 10000. The

second modification was to impose a digital filter on the generated random numbers in order

to create a certain correlation between the fluctuations and, thereby introduce the desired

length-scale information. The initial field is therefore more physically correct (but yet does

not precisely satisfy the governing equations). The digital filter chosen is a modified version

of the one developed by Xie & Castro (2008). The filter was modified, converted from a

two-dimensional model to a three-dimensional one, to create appropriate structures in a

three-dimensional initial turbulent flow field. For clarity, an illustration of the computational

domain with the wake’s mean profiles is presented in figure 3.3.

39



3.1. Methodology

Even though the use of the filter was noticed to abbreviate the correction stage (for a test

case it was found that the correction stage was 15% shorter using the digital filter), some

disadvantages were still noticeable and are listed below.

1. For the correlation process a random number domain was used. It was found that

generating a large number of normally distributed random numbers is computationally

very expensive.

2. Once the random numbers were generated a large number of computational operations

were still needed in order to deform the correlations (see below).

3. The digital filter, in total, was found to be very expensive computationally for the

initialisation stage, but yet more efficient when the actual simulation time was taken

into account (recall that 15% reduction in the duration of the correlation stage was

noticed).

Digital Filter Description

Here a short description of the digital filter, including the current modifications, is given

based on the detailed description of the filter given by Xie & Castro (2008).

First, a normally distributed three component random field, R, is generated with standard

deviation 1 and mean 0. Then, the one-dimensional filter’s coefficients are calculated using

the following relationship,

bk =
b̃k√√√√

Nk∑

k=−Nk

e
−

π|k|
nk

, (3.6)

where nk is the number of grid points representing the length scale of the problem in the

k̂ direction (where in the current simulation it is defined equal in all three direction and is

equal to the wake’s half width), Nk ≥ 2nk and b̃k = e
−π|k|

nk . Then the three-dimensional filter

coefficients are calculated using the following relationship,

bijk = bi × bj × bk, (3.7)

where here the modification to the model takes place - the model is now three-dimensional,
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unlike the original one reported by Xie & Castro (2008).

Once all the required information is generated the random field that was previously cre-

ated, R, is correlated using the three-dimensional filter, bijk, in the following way,

ū(x, y, z) =

Nk∑

k=−Nk

Nj∑

j=−Nj

Ni∑

i=−Ni

bijk × R̄ (i+ x, j + y, k + z) . (3.8)

When the random field is correlated, it requires appropriate scaling. This is done by multi-

plying it by the following transformation matrix,

As =




√
R̂11 0 0

R̂21
A11

√
R̂22 − (A21)

2 0

R̂31
A11

R̂32−A21A31
A22

√
R̂33 − (A31)

2 − (A32)
2


 , (3.9)

where R̂ij is the Reynolds stress tensor, which is a function of the location and in our case is

based on Chevray’s (1968) experimental data. Now that the field is correlated and scaled it

is added to the mean velocity profile and the initial flow field is ready to run.

Free-stream Turbulence

In addition to the wake, three homogeneous isotropic turbulence (HIT) fields were generated

separately. Recall that the major parameters affecting the wake’s development in a turbulent

field are expected to include u′ze1/Ud1 , the ‘relative strength’ of the external turbulence, and

the length-scale ratio Lze1/lh1 , where the subscripts e and 1 denote the external turbulence

and the time at which the wake was embedded within the external turbulence, respectively,

and u′ze1 and Lze1 are the initial rms velocity fluctuations and integral length scale of the

external turbulence, respectively. In order to achieve a specific strength a weaker field was

first generated and prevented from decaying by using the forcing scheme of Sullivan et al.

(1994) (which is described below). Then, knowing the initial value of Ud1 from the preceding

wake computation, the forcing constant (the turbulent kinetic energy) was increased gradually

until the required u′ze1/Ud1 was achieved. Note that the integral length scale is actually an

output of the simulation and cannot be controlled á priori. Also note that the forcing was

only used during the development process of the free-stream and was removed when the wake

was embedded within the turbulent flow.
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Figure 3.4: An illustration of the artificial combination of the wake with HIT.

Forcing Scheme Description

In order to generate the external turbulence Sullivan et al.’s (1994) forcing scheme was used.

Its concept is to keep the turbulent flow field stationary by confining forcing to the lowest

wavenumber shells |κ| ≤ κf , where κf is the maximum wavenumber subjected to forcing.

Thus, the forcing scheme maintains the kinetic energy in a wavenumber band κ ≤ κf constant.

This is accomplished by multiplying all the Fourier coefficients of all three velocity components

for κ ≤ κf by a real number that may be readily evaluated by using the current value of

E(κ ≤ κf ), where E is the energy spectra of the velocity, at time t and its estimated value at

t+∆t (which is available at the end of the first Runga-Kutta step, section 3.1.1). Note that

the physical picture that emerges is that energy is put back at the large scales of motion (in

order to keep them stationary), without destroying either the homogeneity or isotropy of the

flow field at both the large and small scales.

3.1.4 Combining The Wake and The Free-Stream Turbulence

Before presenting the basic data for both the self-similar wake (without stream turbulence)

and the HIT fields, a description is first given of how the former was artificially combined

with each of the latter. Each combination was implemented at a time when the pure wake

had achieved its self-similar state. Two constraints were used: the free-stream turbulence

was inserted into the domain at all locations outside the mean wake (defined by the region in

which the velocity was below 1% of the centre-line value) and at all places inside the mean

wake where the turbulence kinetic energy (TKE) was smaller than 5% of the maximum TKE
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Figure 3.5: An example of the non-dimensional vorticity magnitude contours, ω̃ = ωlh/Ud,
after the wake was artificially combined with the external turbulence; grey: ω̃ = 12.8 (the
wake region) and black: ω̃ = 0.6 (the free-stream turbulence region).

inside the wake. Since the external turbulence flow fields were one quarter the length of the

wake’s domain, and axially periodic, four identical turbulence fields were stacked axially, as

illustrated in figure 3.4. The whole flow field (wake plus external turbulence, illustrated in

figure 3.5) was then allowed to develop and decay with time and its features were analysed.

Because the initial combined flow field did not satisfy the conservation equations, a relatively

short correction stage took place, as discussed in section 3.2.3.

3.2 Results and Discussion

3.2.1 The pure axisymmetric wake

Johansson et al. (2003) suggested that the high Reynolds number similarity solution would

not be expected to appear if the local Reynolds number (Re = Udlh/ν) is below about 500.

It will also require a clear inertial subrange in the energy spectrum. Figure 3.1(a) shows

that the latter does occur in the present computations and figure 3.6(a) shows the variation

of Re with time t. Here t has been non-dimensionalised using the initial values of wake

half-width lh0 and maximum velocity deficit Ud0 . Each variable was obtained at every time

step by circumferential and axial averaging. After an initial development period (prior to

t = 50, where the numerical correction followed by the development and creation of genuine

turbulence structure takes place) Re remains above 2000 for the entire computation. Likewise,

the turbulence Reynolds number, defined by Ret = k2/ǫν, where k is the turbulent kinetic

43



3.2. Results and Discussion

0 50 100 150 200 250
0

3000

6000

9000

12000

0

300

600

900

1200

t

R
e

R
e t

=
k
2
/
ǫν

(a)

25 100 175 250
0

500

1000

1500

2000

2500

t

u
′ z
,u

′ r
,u

′−
3
/
2

θ

(b)
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θ and the lines are fits to the u′
r and u′

z data, with a virtual origin of t0 = 25.

energy per unit mass, remains higher than 300. In view of these relatively high Reynolds

numbers, the usual solution having n = 1/3 (see section 2.1.1) would be expected to appear.

This would have turbulence stress values at fixed r/lh varying like t−4/3. The three fluctuating

(rms) velocities at the wake half-width (r = lh) are appropriately plotted in figure 3.6(b) and

it is clear that they demonstrate quite a good fit to the expected behaviour, suggesting a

virtual origin of about t0 = 25.

The n = 1/3 solution predicts that both Re and Ret will fall like t−1/3. Taking the

virtual origin to be t0 = 25 and choosing appropriate amplitudes yields the solid and dashed

lines shown in figure 3.6(a). Both Re and Ret behave largely as expected throughout the

computation, although the Ret data show small divergences for t > 125. The expected

similarity solution also has approximately constant u′z/Ud at fixed r/lh, as illustrated in

figure 3.15(b) (and similarly for the other normal and shear stresses) and the computed data

agrees with that expectation only within the 50 < t < 125 period, drifting somewhat at later

times, as might be anticipated from figure 3.6(a).

The variations of the wake half-width and centreline velocity are shown in figure 3.7(a),

where values have been normalised by the initial values at t = 0. It is evident that good fits

to the expected slopes in these log-log plots are observed at least over the restricted period

noted above (25 < t− t0 < 100) and perhaps for somewhat longer. Note that the necessary

constraint l2hUd is also closely satisfied at least until t− t0 ≈ 100. The velocity profile shown

in figure 3.7(b) was obtained by assuming similarity and averaging over the restricted time

period. It is quite close to the cosinusoidal variation suggested to provide a reasonable fit

by Ostowari & Page (1989), but there is no fundamental reason why one should expect a
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Figure 3.7: (a) Variation of wake half-width (◦) and maximum deficit velocity (△) with
time; (×): l2hUd/l

2
h0
Ud0 . (b) the computed mean velocity profile (solid line) compared with a

cosinusoidal variation (dashed line).

cosinusoidal velocity variation – this would, for example, require a rather special variation of

eddy viscosity if it were to arise naturally from the similarity form of the equations.

As mentioned above, the self-similar behaviour of the higher moments deviates in some

respects from its expected form once t > 125. Before discussing the reason for that the reader

should be aware that some deviation was also evident, after some period, in Gourlay et al.’s

(2001) and Redford et al.’s (in preparation) data, but unfortunately was never explained. In

the author’s opinion, the most probable reason for that deviation is associated with the ratio

Λz/2Lz which defines whether enough non-correlated data is available for the averaging to

converge. A comparison between the two edges of the 50 < t < 125 period were made and

it was found that the ratio fell from Λz/2Lz ≈ 49 at t = 50 by about 35%. In other words,

during the duration of that period the number of non-correlated sets of data was effectively

reduced by about 35%. In addition, figure 3.6 shows that the higher moments (i.e. k and

ǫ) are the ones which are affected the most, which is expected since the higher moments

require more sets of non-correlated data for their average to converge. Finally, since for all

the subsequent computations with external turbulence (which are presented in section 3.2.3)

the external turbulence was imposed at the start of the closely self-similar region (at t ≈ 66)

and the distortions imposed on the subsequent self-similarity development of the wake by the

external turbulence became very quickly significant, as illustrated in figure 3.15(b), this issue

was not pursued further.

Turbulence quantities were also computed and the dimensionless Reynolds stress profiles

are presented in figure 3.8(a). Note that the individual time-dependant profiles presented

there were obtained at about equally separated time segments within the self-similar period,
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Figure 3.8: Profiles of the various dimensionless turbulent stresses in the self-similar wake
(a) Present DNS. (b) Uberoi & Freymuth (1970). Note that the black lines in (a) are the
self-similar profiles of the various turbulent stresses which were collapsed from their individual
time-dependant profiles (grey lines).

50 < t < 125, by appropriate circumferential and axial averaging and that their corresponding

self-similar profiles were obtained by collapsing those time-dependant dimensionless profiles

within the self-similar period, so the self-similar profiles shown are those resulting from time-

averaging over that period. Note that the larger scatter evident closer to the centre of

the wake was unfortunately unavoidable and is associated with the ineffectiveness of the

circumferential averaging in that region. Near r = 0 the individual grid points used for

the circumferential averaging are physically closer one to the other and so the variables are

more correlated. The only possible way to avoid that problem would be to use a longer

domain with more grid points in that direction, which was unfortunately not feasible under

the available resources. Nevertheless, the self-similar profile shapes agree qualitatively with

previously reported data. For example, the Reynolds-stress profiles measured by Uberoi &

Freymuth (1970) in the far wake of a prolate spheroid are presented in figure 3.8(b). It is clear

that there is about an order of magnitude difference between the two. However, quantitative

agreement is not expected since different initial conditions generally produce different profiles

(i.e. Bevilaqua & Lykoudis, 1978; Redford et al., in preparation). Nevertheless, note that it

was found that the current stress values are very similar to the ones Cannon (1991) measured

behind a porous disc (with 49% blockage), where in his measurements u2z/U
2
d ≈ 0.09. In

addition, in the current DNS the wake’s spreading parameter, S = (dlh/dt)/Ud, is about 0.18

which is quite similar to Cannon’s (1991) S ≈ 0.13. However, it should also be noted for

the completion of the comparison that in Uberoi & Freymuth’s (1970) measurements S ≈ 1.

Thus, the current wake might be a representative of a wake behind some kind of a porous disc

(since the generating body was never modelled), and so the importance of initial conditions

in shaping the far wake region is clearly emphasised.
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Finally, once all the wake properties were extracted, the turbulence kinetic energy (TKE)

balance was calculated using the following equation:

Rate of Change :
lh
U3
d

∂
[
1
2
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∂z

)2

= 0.

(3.10)

Note that the boundary-layer approximation has been used and, in computing the dissipation

term (ǫ), local isotropy of the smallest scales of motion has been assumed. The difference

between the resulting value of ǫ and that obtained by using the exact expression was found to

be negligible at a few test points along the wake’s profile. Each term is normalised using the

characteristic scales, Ud and lh. The data for the transport term were found not to collapse

in a satisfactory manner; an example of the scatter noticed in the triple product over the

self-similar period is illustrated in figure 3.9(b). Note that in order to reduce the scatter in

the triple-velocity product terms an even longer domain would have been required (which was

unfortunately not feasible). The transport term was therefore deduced as the balance from

the other terms (as was also done by Uberoi & Freymuth, 1970, for example). Figure 3.9(a)

shows the resulting TKE balance. Again, only qualitative agreement with previously reported

balances is expected. Nevertheless, the absolute value of the ratios between the maximum

production to all the maxima of the other terms are of order one, which is similar to what

Redford et al. (in preparation) reported for one of their wakes – the one that was initiated by

a series of ring vortices. On the other hand, in their other wake the ratio was much smaller,

about 0.2, in Uberoi & Freymuth’s (1970) wake it was about 0.1. Note that the dimensionless

production term in the current DNS is of about the same magnitude as was found by Uberoi

& Freymuth (1970). That, combined with the fact that the magnitude of the convection

term is directly associated to the wake’s spreading parameter (which, as discussed earlier,

varies with the different initial conditions), explains the variations in the ratios between the

different maxima in the different experiments. And so again the importance of the initial

conditions in defining the far-wake flow field is clearly demonstrated.

In summary, the computed wake, at least during the 50 < t < 125 period, is satisfactorily
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Figure 3.9: (a) Profiles of the various dimensionless components of the TKE balance in the
self-similar wake. (b) An example of the scatter noticed in the triple product term .

self-similar with n = 1/3, yielding mean velocity, stress and TKE profiles qualitatively similar

to those previously reported. The Reynolds number is sufficiently high to yield isotropy of

the smallest scales and around a decade of inertial sub-range. At the end of this period

t = 125, Re = 2800 and the Taylor microscale Reynolds number Reλ = u′zλ/ν = 120, where

λ2 = 2u2z/(∂uz/∂z)
2 (i.e. Pope, 2000).

3.2.2 Free-stream Turbulence

Three different turbulent flow fields were generated. Since there have been many examples of

HIT generated within a box by DNS, as was presented in section 2.2.3, only a brief discussion

along with the basic data for the three cases is presented here.

As was mentioned above, to achieve a certain value of u′ze1/Ud1 Sullivan et al.’s (1994)

forcing scheme was used and the computation proceeded until a fully quasi-stationary state

was reached (as explained by Keneda et al., 2003, for example). Figure 3.10(a) shows the

time variation of Reλe and its running average for the u′ze1/Ud1 = 0.36 case. Recall that

here Ud1 is the base-line wake’s deficit velocity at t1, the time when it will have the external

turbulence field combined with it. Note that the running average converges gradually to

an approximately constant value such that additional simulations for t/T > 30, where T =

Lze/u
′
ze is one eddy turnover time, showed little further change. Table 3.1 provides a summary

of the turbulent characteristics of the three different HIT flow fields at t1.

As soon as the free-stream turbulence was artificially combined with the wake, the Sullivan

et al. (1994) forcing was removed, so that it was allowed to decay in the usual way. The nature
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Symbol u′ze1/Ud1 Lze1/lh1 λze1/λlh1 ηe1/ηlh1 Tze1/Tlh1 λze1/Lze1 ηe1/Lze1 Reλe

△ 0.09 0.75 3.34 3.39 7.33 0.5 0.0187 133
� 0.17 0.52 1.9 1.84 2.6 0.41 0.0147 146
◦ 0.36 0.60 2.06 1.3 1.5 0.35 0.0085 314

Table 3.1: Defining parameters of the different free-stream turbulence flow fields at t1; Suffix
‘e’ denotes values in the external stream and suffix ‘lh’ denotes wake values at the half-width
location. λ is the Taylor micro-length scale, Reλe = u′

zeλe/ν is the microscale Reynolds
number in the free-stream and Lz is the axial integral scale.

of this decay was determined by interrogating the turbulence field well outside the wake, so

that it would not be affected by the latter. As was noticed by Ishida et al. (2006), isotropic

turbulence can decay either like Saffman’s turbulence, Ke ∼ t−6/5, or Batchelor’s turbulence,

Ke ∼ t−10/7, depending on initial conditions. In the current simulations it was noticed that

the respectively corresponding constraints KeL
3
e = constant or KeL

5
e = constant both had a

temporal decay (recall that this was also noticed for grid turbulence by Krogstad & Davidson,

2010). But the former showed a slightly weaker decay than the latter, suggesting that the

DNS turbulence is more Saffman-like, as illustrated in figure 3.10(b). Krogstad & Davidson

argue that if the constant A in the empirical decay law

∂u2z
∂t

= −Au
3
z

Lz
(3.11)

falls with t like A ∼ t−q Saffman turbulence would yield a decay exponent for u2 ∼ tn of

n = 1.2(1 − q) (q ≪ 1). The current data do indeed show a slow fall in A with t and

fits to the turbulence energy history with n = 1.15 are reasonable, as shown in figure 3.11,

and consistent with expectations. Note, however, that the strongest case requires a slightly

smaller value of n which is consistent with the slightly faster drop in A.
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Figure 3.10: (a) Taylor microscale Reynolds number vs. t/T . Solid line: DNS result; dashed
line: trace of Reλe ’s mean. (b) Saffman and Batchelor’s turbulence constrains; Weak (△),
medium (�) and strong (◦) turbulence cases. Open symbols α = 3 and close symbols α = 5.
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Figure 3.12 shows axial velocity compensated spectra, averaged in space over the entire

domain, for all three cases at various times throughout their decay, plotted in the usual way
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Figure 3.12: Axial velocity one-dimensional compensated energy spectrum of the (a) weak,
(b) medium and (c) strong external turbulence cases at different times; Solid lines: t = t1,
dashed lines: t ≈ 148, 113 and 97 in (a), (b) and (c) respectively, dashed-dot lines: 260, 178
and 131 in (a), (b) and (c) respectively. Dotted horizontal lines: the universal value in the
inertial sub-range.
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to emphasise collapse in the inertial subrange and the extent of this range. In all three cases

the latter is comparable with the extent of the inertial range in the pure wake spectrum (see

figure 3.1(a)). Note that the range of the (normalised) scales captured by the simulation is

rather smaller for the higher energy cases, since Kolmogorov scales are larger in those cases

(see table 3.1). Note also that the low-wavenumber region in which one expects the regular

spectral values to flatten out and the compensated spectral values to fall towards zero is not

captured; this is a result of the finite length domain. Recall that the domain used for creating

the external turbulence was only a quarter in length of that for the pure wake (see sections

3.1.2 and 3.1.4).

To conclude, the three HIT flows show reasonable consistency and agreement with pre-

viously reported ones, but it is emphasised again that the influence of initial conditions can

undoubtedly lead to different behaviour.

3.2.3 Wake Embedded in External Turbulence

Once the pure wake and the turbulent flows were achieved separately they were artificially

combined (as was explained in section 3.1) and the whole field – wake plus external turbulence,

was then allowed to develop and decay with time.

In the light of the discussion in section 2.3, the first anticipated feature was that the

presence of external turbulence will enhance the decay rate of the wake. Figure 3.13 shows the

wake growth and the corresponding decay of the centreline velocity. The external turbulence

was in each case imposed at t ≈ 66. It is immediately obvious that increasing levels of

external turbulence cause substantial changes, although these appear to be small for the

weakest turbulence case. Since it is not known á priori whether similarity is possible nor,

even if it is, what the virtual origin would be for that region of the wake, it is not sensible

to use log-log plots like these to deduce decay rates. Figure 3.14(a) shows the deficit velocity

plotted as AU
−1/2n
d , where is A is a constant, vs. t for the three cases, compared with the

pure wake case. The value of n has been chosen in each case to yield reasonable straight

lines after an initial adjustment region; these values are 0.33, 0.4 and 0.5 in the order of

increasing u′ze1/Ud1 (which are presented in table 3.1), compared with 1/3 for the pure wake

case. Clearly, as deduced from figure 3.13, although the decay rate for the weakest external

turbulence case is not noticeably different from that of the pure wake, the rate of decay

thereafter increases with the strength of the external turbulence. This is unlike the behaviour
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Figure 3.13: Decay of the deficit velocity (a) and the growth of wake half-width (b); (◦)
u′
ze1/Ud1 ≈ 0, (⊲) u′

ze1/Ud1 = 0.09, (�) u′
ze1/Ud1 = 0.17 and (△) u′

ze1/Ud1 = 0.36 (for more
turbulence parameters refer to table 3.1).

reported by Wu & Faeth (1994) and Legendre et al. (2006) who each noticed only one decay

rate (Ud ≈ x−1 and Ud ≈ x−2, respectively). Yet, the present trend is in agreement with the

initial work of Redford & Coleman (2007). It is also clear that the effect of the free-stream

turbulence does not take place instantaneously but is delayed by a time that decreases with

increasing u′ze1/Ud1 . By examining truncation errors and energy spectra it was found that

the stronger the external turbulence, the longer the correction stage was but in all three cases

it was shorter than 13.8 (non-dimensionalised) time units. Therefore, the correction stage

presumably has little influence on the time taken to affect the decay rate.

Although a reasonable power law fit to Ud ∼ t−2n seems possible in every case, figure

3.14(b) demonstrates that self-similarity does not hold, even approximately, at least for the

two stronger turbulence cases, since Udl
2
h does not remain even approximately constant.

Moreover, neither mean velocity nor turbulence profiles can be collapsed in self-similar form
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Figure 3.14: Variations of AU
−1/2n
d (a) and Udl

2
h (b); (◦) u′

ze1/Ud1 ≈ 0, (⊲) u′
ze1/Ud1 = 0.09,

(�) u′
ze1/Ud1 = 0.17, (△) u′

ze1/Ud1 = 0.36 and the dotted lines in (a) are linear fits.
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Figure 3.15: (a) Illustration of dimensionless deficit velocity profile with time in the case
where u′

ze1/Ud1 = 0.09; Solid line t = 150, dashed line t = 169, dash-dot line t = 193 and
dotted line t = 210. (b) u′

zlh
/Ud vs. time; (◦) u′

ze1/Ud1 ≈ 0, (⊲) u′
ze1/Ud1 = 0.09, (�)

u′
ze1/Ud1 = 0.17 and (△) u′

ze1/Ud1 = 0.36.

(as discussed below). Assuming such collapse, so that U = Udf(η) where η = r/lh, is what

leads to Udl
2
h = constant (as was discussed in section 2.1.1). Figure 3.14(b) suggests, however,

that in the weakest external turbulence case, the wake may in fact revert to the usual self-

similar form since, after an initial variation, Udl
2
h becomes closely constant again – beyond

about t = 150. However, careful examination of the non-dimensional mean velocity profiles

at various times in the t > 150 regime revealed that they are only partly self-similar – only

their inner regime collapses, in a roughly satisfactory manner, while their edge does not due

to a gradual increase with time in the mean shear there, such that the non-dimensional profile

gets slightly narrower, as illustrated in figure 3.15(a).

The time-variation of the ratio u′zlh
/Ud, where u

′
zlh

is the rms axial velocity fluctuations

at the wake’s half-width location, is shown in figure 3.15(b). Notice again that the divergence

from the pure wake data (for which the ratio is approximately constant) is increasingly more

rapid and larger as u′ze1/Ud1 increases. In addition, the fact that its value did not converge

to a new constant value suggests that the wake does not reach a new self-similar state for the

times considered.

The non-dimensional profiles of the different normal turbulence stresses were also exam-

ined. They change with time, each from its original self-similar profile into one which is more

closely uniform and clearly determined by the external turbulence intensity – higher values

of u′ze1/Ud1 lead to more rapid and larger effects, as noted earlier; examples are presented

in figure 3.16. On the other hand the non-dimensional turbulence shear stress was found to

increase with u′ze1/Ud1 and not become approximately zero as it is does the free-stream, as
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Figure 3.16: Profiles of (a) u2
z/U

2
d , (b) u2

r/U
2
d , (c) u

2
θ/U

2
d and (d) uzur/U

2
d at different times

in the case where u′
ze1/Ud1 = 0.17.

if the free-stream turbulence increased the turbulence shear stress production. In order to

confirm that finding the shear-stress transport equation was evaluated, with

Rate of Change :
lh
U3
d

∂uzur
∂t

Transport : +
1

r/lh

∂

∂ (r/lh)

(
r

lh

uzurur
U3
d

)
− lh
r

uzuθuθ
U3
d

− lh
U3
d

p

ρ

(
∂uz
∂r

+
∂ur
∂z

)

+
lh
U3
d

1

ρ

(
∂puz
∂r

+
∂pur
∂z

)

− ν

Udlh

∂

∂ (r/lh)

[
lh
r

∂

∂ (r/lh)

(
r

2lh

uzur
U2
d

)]

Production : +
urur
U2
d

∂ (Uz/Ud)

∂ (r/lh)

Dissipation : + ǫuv = 0.

(3.12)

Note that the production of shear stress is the product of normal Reynolds stress and mean

shear. Thus, the fact the urur/U
2
d increases with time (as illustrated in figure 3.16(b)) com-
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Figure 3.17: Dimensionless profiles of the different TKE balance components: (a) produc-
tion, (b) rate of change, (c) dissipation and (d) transport, at different times for the case where
u′
ze1/Ud1 = 0.17.

bined with the presence of the mean shear (which hardly varies) increases the shear stress

production and is the reason for the increase in the non-dimensional turbulence shear stress.

Figure 3.17 shows the corresponding development of the dimensionless TKE balance (see

equation 3.10). It was found (and can also be noticed in figure 3.17) that the dimensionless

convection, dissipation and transport terms of the TKE balance increase in value and their

profiles become more uniform, as was noticed for the normal turbulent stresses. The pro-

duction term, on the other hand, keeps its form but increases in value, as would have been

expected from the shear stress profile. Thus, the form of the turbulent production relates

directly to the mean shear profile while the form of the other terms develop with time and

becomes uniform. Note that in HIT the rate of change is determined solely by the dissipation

while the other terms are zero (and was noticed in all the external turbulence cases to be

true). Here, on the other hand, the presence of the mean shear with the enhanced transport

of turbulence from the external turbulence into the wake did not allow this state to occur (at

least within the scope of the current simulations).
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Figure 3.18: (a) The change in u′
ze/Ud vs. time for the different wake-background combi-

nations; (⊲) u′
ze1/Ud1 = 0.09, (�) u′

ze1/Ud1 = 0.17 and (△) u′
ze1/Ud1 = 0.36. (b) Variation

with time of the ratio of axial intensity at lh to free-stream intensity; (⊲) u′
ze1/Ud1 = 0.09,

(�) u′
ze1/Ud1 = 0.17 and (△) u′

ze1/Ud1 = 0.36.

Figure 3.18(a) shows why self-similarity is not achieved: the natural decay in the free-

stream turbulence intensity is significantly less rapid than the decay of the wake centre-line

deficit velocity, so u′ze/Ud (the major controlling parameter) continually rises with time. This

point is emphasised in figure 3.18(b), which shows that the ratio of the half-width intensity,

u′zlh
, to the free-stream intensity, u′ze, continually falls (or, in the case of u′ze1/Ud1 = 0.37,

rises) towards what must be the eventual state in which u′zlh
= u′ze. Thus, since the wake’s

rms velocity profiles must eventually be determined by the background, which is decaying

relatively slower, no self-similar state can be achieved.

As mentioned earlier, the non-dimensional rms velocity fluctuations profiles develop with

time to ones which are eventually determined by their values in the (isotropic) free-stream, so

one might predict that at least for the two stronger backgrounds the turbulence normal stress

profiles inside the wake will eventually become both isotropic and uniform. They do indeed

tend to be more isotropic and uniform, as illustrated in figure 3.16. But careful examination

of the turbulent shear stress profiles inside the wake reveals that uzur does not decay to zero

as rapidly as the fluctuating profiles change towards uniformity, as can be noticed in figure

3.16(d). That behaviour, as was discussed above, is associated with the continuing presence

of shear in the mean flow and the increase in urur/U
2
d , and it shows that the wake turbulence

does not become strictly isotropic.

Nevertheless, by using Lumley’s triangle (i.e. Pope, 2000; Simonsen & Krogstad, 2005)

one can characterise the local anisotropy/isotropy of the turbulence inside and outside the

wake and compare them. The method is based on the analysis of the normalised Reynolds
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stress anisotropy tensor:

bij =
uiuj
2K

− 1

3
δij , (3.13)

where δij is the Kronecker delta. This tensor has real eigenvalues (λ1, λ2, λ3) and in incom-

pressible flow (since the first invariant, I1, is always zero) it can be characterised by only the

second (I2) and the third (I3) invariants:

I1 = bkk = 0,

I2 = −1

2
bijbji = −3η2,

I3 = det (bij) = 2ξ3.

(3.14)

Lumley showed that each realisable state in a turbulent flow corresponds to a point that

is located inside a “triangle” on the anisotropy invariant plane (ξ, η). Figure 3.19(a) shows

Lumley’s triangle. The three bounding curves of the triangle correspond to special states:

isotropic turbulence is found at the origin (ξ = η = 0). The two lines leaving from the

origin correspond to axisymmetric turbulence, for which two components have the same

energy content. Each of these lines have a limiting value. In the first case the two identical

diagonal terms are smaller than the third element and tend to zero. This leads to a one-

component state of turbulence (point 1C in figure 3.19(a)). The other possibility is that the

two identical elements dominate so that the third component is negligible. This leads to the

two-component axisymmetric limit (point 2C in figure 3.19(a)). The curve joining one- and

two-component axisymmetric turbulence states represents all the other possible states where

only two diagonal components exist. Figure 3.19(b) shows that the turbulence penetrates

progressively with time such that the turbulence inside the wake is evolving (with time) from

its self-similar far wake state, where one velocity component was more dominant than the

other two, towards the one in the free-stream, a state which is close to isotropic turbulence.

In summary, the external turbulence clearly impacts the structure and development of

the far axisymmetric wake, such that it increases the entrainment rate of fluid into the wake,

which consequently increases the decay rate of the wake. It should be stressed that the wake’s

mean axial mass flux,

ṁf =

∫ 2π

0

∫ ∞

0
ρUzrdrdθ, (3.15)

is constant both at each streamwise station and in time in the simulation (as a result of
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Figure 3.19: The Lumely triangle (black lines) on the plane of the invariants ξ and η of
the Reynolds-stress anisotropy tensor; (a) The anisotropy invariant map. (b) Development
of the turbulence at the wake half-width with time for the wake embedded in free-stream
turbulence with initial u′

ze1/Ud1 = 0.36, where (�), t = t1, (⋄), t = 94, (▽), t = 112 and (△),
t = 130, black dashed circle – the free-stream turbulence regime and black dashed ellipse –
the self-similar pure wake regime.

the fact that the time-dependent parallel axisymmetric wake is homogeneous in both the

circumferential and axial directions which leads, using the continuity equation, to a zero

mean radial velocity). Finally, the fact that the mean wake and the external turbulence

decay at different rates leads to the unavoidable breakdown of the wake’s self-similarity.
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Chapter 4

Wind Tunnel Experiments

4.1 Methodology

The University of Southampton’s open circuit 3′×2′ wind tunnel was used for the experimental

part of the research. The wind tunnel’s test section dimensions are 0.6m×0.9m×4.5m and

its measured free-stream intensity is below about 0.2% which from now on will be referred

to as a uniform free-stream. The wind tunnel has a two-dimensional traverse system which

can be placed in different locations along the test section and is controlled by a computer. A

few parts of the wind tunnel had to be redesigned such that they would better fit the current

study. Among them are a new slots system for the wind tunnel’s traverse system, mounting

support and wire stretching mechanism for the disc (see below) and cross hot-wire angle

calibration device. Moreover, a computer-controllable speed control system was added to the

wind tunnel and was implemented in the wind tunnel’s EnFlo software (from the University

of Surrey, UK) to increase productivity.

The wake’s generating body was a 90◦ conical disc with base diameter of D = 10mm.

The disc was mounted in the centre of the test section using a set of Berkley Whiplash Braid

Moss Green fishing lines with a diameter of 0.06mm and with its base facing upstream and

perpendicular to the flow (note that the wire’s Reynolds number is about 166 times smaller

than the disc’s). The disc’s Reynolds number based on its diameter, D, and the free-stream

velocity, U0, was about ReD = 15000 for far-wake measurements and about ReD = 5600 for

near wake measurements. Higher turbulence levels (than the wind tunnel’s empty free-stream

levels) were generated using two bi-planar grids. One was made from square aluminium bars

with solidity d/M ∼= 0.27, where d = 6.35mm is the square bar’s diameter andM is the mesh

spacing, and one from stainless steel round bars with d/M ∼= 0.15, where d = 1.63mm. For

clarity, figure 4.1 shows an illustration of the experimental setup inside the wind tunnel.
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Figure 4.1: Illustration of the experimental setup.

4.1.1 Measurement Techniques and Uncertainty

Measurements in the far-wake region were done using a standard constant temperature Hot

Wire Anemometry (HWA) system (both AALab AN-1005 and Newcastle NSW bridges were

used with low-pass filters set at 2800Hz and 3200Hz, respectively). The hot-wire used in

this work was a Dantec standard 45◦ cross wire with a 2.5 µm wire diameter mounted on a

Dantec 6mm diameter 55H24 probe support. Each measurement consisted of 147 blocks each

containing 16384 samples obtained at 10000Hz. In addition, two pitot-static tubes (connected

to two Furness Controls FCO12 micromanometers) were used to measure the mean free-

stream velocity, one far upstream (used as the wind-tunnel reference velocity) and one at

the same cross-section as the hot-wire (used to measure the local free-stream velocity during

measurements and for reference while calibrating the hot-wire). All analogue signals (both

from the hot-wire and the pitot-static tubes) were digitised using a National Instruments

USB-9162 Analog - Digital Converter and recorded by the EnFlo software. The software was

used for simultaneously controlling, calibrating and recording all the wind tunnel’s devices

and instrumentation.

In addition to the far-wake measurements, near-wake measurements were obtained using

LaVision’s high-frequency 2D Particle Image Velocimetry (PIV) system. The system was

controlled using LaVision’s DaVis Imaging Software, with each measurement composed of

2700 double frame digital photos taken at 50Hz, where the time between each pair was 15µs.

The camera was a 1024 × 1024 pixel device showing an area of about 3.8D × 3.8D at the

cross-section running through the middle of the disc.

The repeatability errors in any of the hot-wire and pitot-tube measurements were less
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than 0.2%. Maximum error estimations for the PIV measurements were done using the finite

sample size errors technique described by Castro (1989). For the mean values the technique

states that the standard error of the mean is the standard deviation of the error in the sample

mean,

x̂ =
1

N

N∑

i=1

xi, (4.1)

where N is the number of uncorrelated samples, relative to the true mean, x, since the sample

mean is an unbiased estimator. Now using x̂ and recognising that the resulting z, defined by:

z =

(
x̂− x

)

σ/
√
N

, (4.2)

where σ2 is the variance of the signal, is normally distributed (for large N), it can be stated

with a probability of (1− α) that

−zα/2 <

(
x̂− x

)

σ/
√
N

< zα/2, (4.3)

where zα/2 is the value of z which gives

1√
2π

∫ ∞

z
e−t2/2dt =

α

2
. (4.4)

In other words, an estimate of the mean value from an uncorrelated sample of size N will

have an error εx less than zα/2σ/
√
N with a probability of (1− α). This means that with a

probability (or confidence) of (1−α) the interval from x̂−zα/2σ/
√
N to x̂+zα/2σ/

√
N contains

the true mean value x. Confidence statements regarding the likely error in σ estimates can

(for the case where N is large enough) be made in a similar way to those for x estimates, such

that with a probability of (1−α) the interval from σ2
(
1− zα/2

√
2/N

)
to σ2

(
1 + zα/2

√
2/N

)

contains the true variance σ2. Error estimations for the PIV measurements (with N = 2700)

based on the method described above showed that the maximum error in the mean velocity

was 1.3% and in the mean-square velocity fluctuations was 5.3% with a probability of 95%.

Note that all the samples were assumed to be uncorrelated since they were taken at 50Hz,

which is more than five times smaller than the vortex shedding frequency.

Last, Reynolds number variations throughout any set of measurements (using any of the

measurement techniques) was less than 0.1%.
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Pitot-Static Tube Calibration

As indicated above, the mean free-stream velocity was measured far upstream and in the

same cross section as the HWA measurements were taken using two pitot-static tubes. They

were each connected to a different FCO12 micromanometer. Each micromanometer needed

its own analogue/voltage output calibration (which varies linearly with the pressure). Such

calibration was carried out once every few weeks (during which they showed insignificant

variation in their voltage output).

Hot-Wire Calibration Process

The hot-wire calibrations were carried out against a Pitot-static probe (while both were

located in the free-stream at the same cross-section) before each set of measurements (taking

approximately an hour each, such that the drift throughout each set was less than 1%. Note

that the largest source of error was due to variations in the ambient temperature in the

laboratory. And so for each set of measurement it was verified that the ambient temperature

in the laboratory did not vary by more than one degree Kelvin). Nevertheless, drift evaluation

and correction were carried out, assuming a linear drift during the measurement period. The

velocity calibration process involved sampling several values at different air speeds and then

a curve fitting was made according to a slightly modified version of King’s law,

V 2
HWA = A+B × Un, (4.5)

where VHWA is the voltage applied to the wire and A and B are calibration coefficients. The

velocity exponent was allowed to vary to improve the curve-fit (unlike in King’s law where

n = 0.5).

Since cross hot wires were used, yaw calibration was also needed. That was carried out

once every few weeks (since the cross hot wires showed insignificant variation in yaw over this

time). The process utilised a cosine law fit for the variation in the measured velocity with

onset flow angle. A single value for the effective angle is used for each wire together with

the constants from Equation 4.5. Throughout the yaw calibration the wind tunnel’s velocity,

U , was held constant and the probe was rotated to different angles, −20◦ ≤ ∆Γ ≤ 20◦ with

increments of 5◦. The voltage, maintaining constant temperature in each yawing wire, was
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assumed to follow,

V 2
HWA = A+B × [U cos (Γref )]

n , (4.6)

where Γref is the wire’s effective angle. Note that an initial velocity calibration was needed

before conducting the yaw calibration (since A,B and n are needed). It follows that for a

wire rotated through ∆Γ,

V 2
HWA∆Γ

= A+B × [U cos (Γref +∆Γ)]n , (4.7)

thus the following could be written and used to find Γref ,

{
V 2
HWA∆Γ

−A

V 2
HWA0

−A

}1/n

− cos (∆Γ) = −tan (Γref ) sin (∆Γ) . (4.8)

This was all programmed within the EnFlo software calibration routines.

PIV Vector Field Computation

Before extracting the vector field from each frame pair, some work was done on each of the

images in order to increase the accuracy of the vector calculation process. First, the large-scale

background reflections were removed in order to achieve images with constant background

level (without affecting the particles’ signal). The large-scale background reflection length

was chosen to be at least eight pixels, which is more than twice the particles’ diameter of

less than three pixels (as was recommended in the system’s manual). Second, due to the

fact that the particles were not precisely mono-disperse their intensity varies as well. Thus,

smaller particles would potentially contribute less in the correlation process. For that reason,

the Davis’ MINMAX-filter was applied in order to achieve homogeneous particle intensities

such that all particles will contribute the same in the correlation process. Third, the area of

the disc and the supporting wires were masked out and were not taken into account in the

correlation process.

Once the pair of images were ‘improved’ it was possible to start the vector calculation

process. Since two single-exposed images were taken, the cross-correlation method was used.

That technique was used in three passes with a decreasing interrogation window size (64×64

pixels, 32 × 32 pixels and 16 × 16 pixels, which in physical length units are 0.24D × 0.24D,
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0.12D×0.12D and 0.06D×0.06D), where the smallest interrogation window captured about

five particles on average. The two larger ones were calculated in one iteration with no

overlapping while the smallest one was calculated in two iterations with 50% overlapping.

The correlation function used was the normalised correlation function where the first two

passes were calculated in second-order correlation mode and the last pass was calculated using

Whittaker reconstruction mode. Note that even though those high-order schemes increased

the vector calculation time by more than 200%, they have proven to be more accurate in a

test case made in order to find the best correlation scheme for a shear layer. (In the test

experiment PIV measurements were compared to a pitot tube measurement inside a flat-plate

boundary layer). Each calculated vector was validated against its eight neighbouring vectors

before being used, using a four-pass regional median filter. Once the spurious vectors were

removed, empty spaces were filled using iterative interpolation of the neighbouring vectors.

And finally, a 3× 3 smoothing function was used to reduce noise.

Further details about the software and the vector calculation process can be found in

LaVision’s FlowMaster manual.

4.2 Results and Discussion

4.2.1 The Pure Axisymmetric Wake

As was mentioned above, in the present experiments the disc’s Reynolds number was 15000.

Based on previously reported measurements of far axisymmetric wakes (section 2.1) the wake

was expected to be fully developed and to have the high Reynolds number similarity solution

in the z/D > 50 regime. As a consequence, the current far-wake hot-wire measurements were

taken at six different downstream positions (z/D = 65, 75, 85, 95, 105, 115) along the wake’s

axis. In that regime, the wake’s local Reynolds number (Re = Udlh/ν) remains above 1600,

the turbulence Reynolds number (Ret = k2/ǫν) stays higher than 480 (at the centre of the

wake) and a clear inertial subrange in the energy spectrum exists, as illustrated in figure 4.2.

(Note that the clear peaks in those spectra are due to the vortex shedding; further discussion

about the vortex shedding can be found in section 4.2.3). Thus, the high Reynolds number

solution having n = 1/3 would be expected. This would have turbulence stress values at

fixed r/lh varying like z−4/3. The maximum values of the three fluctuating (rms) velocities

(which were achieved using extrapolation of the point measurements profiles) are plotted in
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Figure 4.2: Example of comparison between the hot-wire one-dimensional energy spectrum,
E11, measured at about the wake half width and its universal form in the inertial subrange,
dotted line. Solid, dashed and dashed-dot lines are the profiles at z/D = 65, 85 and 115,
respectively.

figure 4.3(a) and it is clear that they demonstrate quite a good fit to the expected behaviour,

suggesting a virtual origin of about z0/D = −2.7.

The n = 1/3 solution predicts that both Re and Ret will fall like z
−1/3. Taking the virtual

origin to be z0/D = −2.7 and choosing appropriate amplitudes yields the solid and dashed

lines shown in figure 4.3(b). (Note that Ret was calculated along the axis of the wake). It

is clear from that figure that both Re and Ret behave as expected in the measured region

(65 < z/D < 115). Moreover, the growth of the wake’s half-width, lh, and the decay of

its centerline deficit velocity, Ud, follow the expected power law as well. Consequently, the

self-similar momentum conservation constrain, Udl
2
h = constant, is satisfied as well.

Since the combination of the relative size of the deficit velocity in the far wake regime

(which was measured to be less than 4.5%) with the hot-wire repeatability error (which was

less than 0.2%) gives about 5% scatter in the middle of the wake and even more at its edge

a different scaling parameter was needed. Uberoi & Freymuth (1970) suggested dimensional

scalings which vary like z−2/3 and z1/3 for the velocity and length, respectively. However,

since the decay rate of the wake in a turbulent stream was not known á priori, different scaling

parameters were needed in order to be able to evaluate the wake’s self-similarity. Because

much smaller scatter was noticed in the normal stress profiles and since self-similarity requires

u′zmax
to vary like the deficit velocity and always be found at the same r/lh location, u′zmax

and its r/lh location, rref , were found to be more appropriate choices for the velocity and

length scaling parameters. An example of the difference in the scatter between the mean

deficit velocity measurements and the axial fluctuating velocity measurements is presented

in figure 4.4.
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Figure 4.3: (a) Variations of the maximum rms velocities with z/D; (▽) u′
z, (�) u′

r, (◦) u
′
θ

and the dashed lines are linear fits to u′
z,u

′
r and u′

θ (b) Variations of Re and Ret with z/D. (c)
Variation of wake half-width (◦), maximum deficit velocity (△) and Udl

2
h/(Udl

2
h)65 (⊲) with

time, where subscript 65 means at z/D = 65.

The solid line shown in figure 4.4(a) was obtained by assuming similarity – by collaps-

ing/averaging the normalised deficit velocity point measurements at the different z/D loca-

tions into one profile – and it fits quite reasonably to the cosinusoidal variation suggested

by Ostowari & Page (1989) (which is the dashed line in that figure). Nevertheless, and as

was mentioned earlier, there is no fundamental reason for a cosinusoidal or any other unique

velocity variation. The self-similar turbulence profiles were also calculated using the same

scaling and are shown in figure 4.4(b). They agree qualitatively with previously reported data

(for example Uberoi & Freymuth, 1970) but, quantitative agreement is not expected since

different initial conditions generally produce different profiles (see Bevilaqua & Lykoudis,

1978 and Redford et al., in preparation, for example). However it should be mentioned that

the current results are quantitatively much more similar to the ones reported by Uberoi &

Freymuth (1970) (which are presented in figure 3.8(b)) than the DNS results. Nevertheless,

the reader should remember that the DNS results were found to be quite comparable to a

wake behind a porous disc which explains why the dimensionless turbulence levels there were
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Figure 4.4: (a) Dependence of the normalised velocity deficit profiles, (U0 − U)/u′
zmax

, on
z/D; Solid line Curve fitting interpolation, dashed line Ostowari & Page’s (1989) cosinusoidal
variation and (+),(◦),(∗),(×),(�) and (♦) are measured data at z/D = 65, 75, 85, 95, 105, 115
respectively. (b) Profiles of the dimensionless turbulent velocity fluctuations in the self-similar
wake; Solid line uzur/u

′2
zmax

, dashed line uθuθ/u
′2
zmax

, dotted line urur/u
′2
zmax

, dashed-dot
line uzuz/u

′2
zmax

and (+), (◦), (∗), (×), (�) and (♦) are measured uzuz/u
′2
zmax

data at z/D =
65, 75, 85, 95, 105, 115 respectively.

about an order of magnitude lower than in the current measurements behind a solid disc.

One way to evaluate the accuracy of the above self-similar profiles (or the validity of the

theoretical study; see Section 2.1.1) is to look at the relationship between the mean velocity

deficit and the turbulent shear stress non-dimensional self-similar profiles which can be easily

derived using Equation 2.25 and the fact that the product Ud× l2 is constant (shown in detail

in Appendix A). As can be seen in figure 4.5(a) the measured turbulent shear stress and the

one deduced from the mean velocity profile only satisfactorily agree in trend but with values

deviating by less than about 15%. However, since the derived expression (see Appendix A)

makes some simplifications to the governing equations (for example the neglectable pressure

gradient; see section 2.1.1) and the self-similar mean velocity profile contains errors due to

scatter (which was noticed to affect the calculated profile, excessively, when differentiated),

the calculated profile is not expected to agree precisely with the measured one so that the

current agreement does actually give confidence in the results.

Once all the wake’s properties were extracted, the TKE balance was calculated using

Equation 4.9. Note that in this equation the boundary-layer approximation has been used and

that the convection term is expressed in terms of r/rref using self-similarity (see Appendix B).

While the production and the convection terms were calculated directly from the measured

self-similar profiles, the dissipation was extracted from the local energy spectrum using the

energy spectrum’s universal form and Taylor’s hypothesis. Note that since the turbulence

levels in the far wake are relatively small (only a few percent) Taylor’s hypothesis can be
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Figure 4.5: (a) Comparison between the measured turbulent shear stress profile and the
one extrapolated from the mean velocity profile. (+), (◦), (∗), (×), (�) and (♦) are mea-
sured uzuz/u

′2
zmax

data at z/D = 65, 75, 85, 95, 105, 115 respectively.(b) The non-dimensional
turbulent kinetic energy budget of the self similar wake.

used (Pope, 2000). The transport term was calculated from the balance since the fluctuating

pressure and some of the triple product terms were not measured. (This was also done by

Uberoi & Freymuth, 1970, for example). Since the balancing transport term should integrate

to zero across the wake, the dissipation rate (which is assumed to contain the largest source of

error) was factored by about 1.04 (e.g. ǫ = 1.04ǫin, where ǫin is the dissipation rate deduced

from the spectrum) to ensure that. Figure 4.5(b) shows the resulting TKE balance, which

qualitatively agrees with previously reported TKE balances of such wakes (e.g. Uberoi &

Freymuth, 1970).

Convection : − r

6rref

∂

∂ (r/rref )

(
u2r + u2θ + u2z

u′2zmax

)
− 2

3

(
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u′2zmax

)

Transport : +
1

r/rref

∂

∂ (r/rref )
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ur

[
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ρ
+

1
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(
u2r + u2θ + u2z

)
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]


Production : − uzur
u′2zmax

∂

∂ (r/rref )

(
U0 − Uz

u′zmax

)

Dissipation : + ǫ = 0

(4.9)

In summary, based on the wake’s measured properties, the wake’s local Reynolds number

(in the measured regime, 65 < z/D < 115) varies between 2000 to 1600 and its turbulent

Reynolds number varies between 600 to 480. In addition, as expected, the wake in that

regime is self-similar with n = 1/3 and its mean velocity, turbulent stresses and TKE profiles

agree with those previously reported.

68



4.2. Results and Discussion

0 0.5 1 1.5 2 2.5 3 3.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

r/rref

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
−1.5

−1

−0.5

0

0.5

1

1.5

 

 

r/rref

(b)

Figure 4.6: (a) Comparison between the various dimensionless Reynolds stress profiles of
the self-similar wakes measured in the wind tunnel (black) and in the DNS (grey); Solid line
uzur/u

′2
zmax

, dashed line uθuθ/u
′2
zmax

, dotted line urur/u
′2
zmax

and dashed-dot line uzuz/u
′2
zmax

.
(b) Comparison between the various non-dimensional (using u′

zmax
and rref ) TKE balance

profiles of the self-similar wakes measured in the wind tunnel (black) and in the DNS (grey);
Solid, dashed, dashed-dot and dotted lines are production, convection for the experiments and
rate of change for the DNS, dissipation and transport respectively.

Self-Similar Wake – Wind tunnel vs. DNS

Before presenting the rest of the wind tunnel measurements, it would be wise to discuss first

some of the similarities and differences between the self-similar wakes created in the wind

tunnel and by the DNS, especially since different initial conditions generally produce different

profiles (e.g. Bevilaqua & Lykoudis, 1978; Redford et al., in preparation).

The two wakes were found to be fully self-similar with centre deficit velocity and wake half-

width developing with the same power laws, with n = 1/3 as theory predicts. Yet, when the

various non-dimensional turbulent stress profiles are compared it was found that they are not

identical but only qualitatively similar, as illustrated in figure 4.6(a). The wake generated by

the DNS has higher (dimensionless) turbulence levels at its edge region and the ratios u′z/u
′
r

and u′z/u
′
θ across that wake are closer to one but with a minimum (dimensionless) turbulent

shear stress similar to the wake generated in the wind tunnel. When the TKE balances were

compared between the two wakes they were found to be different as well (as was expected from

the previous finding) as is illustrated in figure 4.6(b). It was found that while the two wakes

have the same minimum (dimensionless) turbulent shear stress the turbulent production rate

in the DNS is much higher. Moreover, the wake generated by the DNS has lower dissipation

rate and higher rate of change. Last, the ratios between the maximum production to the

maximums of the other terms were found to be different as well. While for the DNS wake

they are of O(1) (which is of the same order one of the cases Redford et al., in preparation,
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Grid Case Rod shape M [mm] d/M u′ze/U0[%] L11/D λ/D Reλ

A 1 Square 23.5 0.27 4.3 11 0.21 138
A 2 Square 23.5 0.27 3.7 12.9 0.23 137
A 3 Square 23.5 0.27 3.3 13.7 0.25 134
B 4 Round 11.07 0.15 2.1 3.1 0.15 50
B 5 Round 11.07 0.15 1.2 4.8 0.24 44
B 6 Round 11.07 0.15 0.8 4.8 0.32 43

Table 4.1: The defining parameters of the different turbulent streams at z/D = 0.

reported), for the wake generated in the wind tunnel they are of O(0.1 − 0.25) (which is of

the same order Uberoi & Freymuth, 1970, had reported for their wake), suggesting that the

TKE inside the DNS wake is approximately dissipated (around the wake half-width) at the

same rate it is produced, while for the wind tunnel wake it is dissipated much quicker than

it is produced.

To conclude, the two wakes are self-similar with similar mean-flow power law decay rates.

However, while the two share the same decay rate, the structure and development of the

turbulence inside them is different (as was expected). Nevertheless, the fact that both wakes

show similarities to previously reported far axisymmetric wakes gives confidence in generating

such wakes using both techniques.

4.2.2 The Turbulent Streams

For this study two different bi-planar grids were used to generate the turbulent streams.

Each grid was located at three different positions upstream of the disc’s location, z/D =

0. Thus, the wake was influenced by six different turbulent streams, such that each had

different turbulence parameters at z/D = 0, all presented in table 4.1. Note that the length

scales in table 4.1 were evaluated from the energy spectrum, presented in figure 4.7(a), using

Taylor’s hypothesis. The integral length scale and Taylor’s microscale were evaluated using:

L11 = πE11 (κ = 0) /2u2 and λ =

√
15νu2/ǫ respectively, where ǫ was estimated using the

spectrum’s universal shape in the inertial subrange, E11 = 27/55ǫ2/3κ−5/3 (Pope, 2000).

The decay rate exponent of each of the grids was found by fitting the measured velocity

fluctuations into the following expression: u2/U2
0 = B (z/M − z0/M)−n, where B is a con-

stant and z0 is the grid’s false origin. Figure 4.7(b) shows that the two flows decay slightly

differently (as was previously reported by many researchers, see section 2.2.2). Krogstad &

Davidson’s (2010) study on grid turbulence suggests that grid turbulence is more Saffman-like

70



4.2. Results and Discussion

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

κ

E
3
3

Case

?

κ−5/3

��	

(a)

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8
x 10

−3

(z − z0)/M

u
2
/
U

2 0

(b)

Figure 4.7: (a) Energy spectrum of each of the grid turbulence cases at z/D = 0. (b) Grid
turbulence decay; (◦) grid A’s data factored by 3, (�) grid B’s data factored by 10 and the
lines are the corresponding best fits with n = 1.28, 1.22.

with n = 1.2 (1− q), where q ≪ 1 and rises from a slow fall in A, in equation (3.11), with z.

The current fits to the measurements do not seem to be consistent with their power exponent.

However, Saffman’s turbulence requires that u2L3
11 = const which in the current measure-

ments is better satisfied than Batchelor’s requirement that u2L5
11 = const, as illustrated in

figure 4.8(a). In addition, the fact that A falls slightly with z/D, as illustrated in figure

4.8(b), suggests that n should be lower than 1.2, as Krogstad & Davidson (2010) suggested.

Thus, it is believed that a greater z/D range is required, especially more data points in the

z/M > 50 regime (as was also suggested by Krogstad & Davidson, 2010), before n can be

determined precisely and that the current grids produce turbulence which is, nevertheless,

Saffman-like. (Notice that n is about 5% closer to 1.2 for grid B, where a much larger z/M

regime was used, in comparison to grid A).
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Figure 4.8: (a) Saffman and Batchelor’s turbulence constrains; Free-stream turbulence gen-
erated by grid A (◦) and grid B (�). Open symbols α = 3, Closed symbols α = 5 and
(KeL

α
e )first refers to the least downstream point measured. (b) Variations of A with z/M ;

Free-stream turbulence generated by grid A (◦) and grid B (�)
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In summary, the two bi-planner grids generate turbulent streams. Those streams show

consistency and agreement with previously reported grid turbulence studies by being Saffman-

like and in their decay rate exponent.

Free-Stream Turbulence – Wind tunnel vs. DNS

Before presenting further results, the author would like to highlight some of the differences

and similarities between the external turbulent fields generated in the wind tunnel and in the

DNS.

Both in the wind tunnel and in the DNS the turbulence that was created is Saffman-like

quasi-HIT, where all fields share about the same power law decay rate with n ≈ 1.2. As

for the turbulence levels, in the wind tunnel relatively lower turbulence levels were achieved

(with 43 < Reλ < 138), where the strongest free-stream turbulence generated in the wind

tunnel is of the same order as the weakest one generated in the DNS. (Recall that in the DNS

133 < Reλ < 314). On the other hand, while higher turbulence levels would be expected

to contain a larger range of length scales (for example it would be expected that the ratio

Lze/λze would be higher), it was found that that ratio is much larger for the weaker turbulence

generated in the wind tunnel than for the stronger turbulence generated in the DNS. That

unexpected result was found to be associated with the limited size of the computational

domain (due to limited computational resources) which limited the size the largest length

scales could reach. Nevertheless, since such a problem was noticed in the the energy spectra of

many previous publications of forced HIT using DNS (see Jimenez et al., 1993, for example)

and was not reported to affect the turbulent structure dramatically it was ignored here.

To conclude, all the turbulent fields generated both in the wind tunnel and in the DNS

are quasi HIT Saffman-like and they all agree with previous reports on HIT turbulence. Note

that a full comparison between the external turbulence to the wind tunnel pure wake at a

certain z/D was not done since it is not appropriate, as will be revealed below.

4.2.3 Wakes in Turbulent Streams

Once both the wake and turbulent streams were created and showed consistency with previous

work they were combined such that the wake was created in the different turbulent streams
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Figure 4.9: Profiles of the dimensionless normal turbulent velocity fluctuations across the
wake for case one, where profiles on the right are expended versions of the profiles on the left.
Solid line is the self-similar profile for the pure wake case and (+), (◦), (∗), (×), (�) and (♦)
are case one measurements at z/D = 65, 75, 85, 95, 105, 115 respectively.

by placing the disc, the wake generating body, in the wake of the grids. Recall that two

different grids were used and that each grid was placed at three different locations upstream

of the disc (section 4.2.2). Profile measurements were taken at z/D = 65, 75, 85, 95, 105, 115

as for the pure wake case and are compared to the pure wake case below.

First to be examined was the axial turbulent stress, u′z. Recall that for the pure wake
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Figure 4.10: Profiles of the dimensionless normal turbulent velocity fluctuations across the
wake for case three, where profiles on the right are expended versions of the profiles on the
left. Solid line is the self-similar profile for the pure wake case and (+), (◦), (∗), (×), (�) and
(♦) are case three measurements at z/D = 65, 75, 85, 95, 105, 115 respectively.

study u′zmax
and rref = r

(
u′ = u′zmax

)
were used as the wake characteristic velocity and

length scales respectively (section 4.2.1) and so we examine these first. The results show that

the classical self-similar behaviour (where the mean velocity and all the turbulent stresses

decay at the same rate across the whole wake) no longer exists. Now, on the other hand,

the axial turbulent stress, u′z, decays differently in two distinct regimes across the wake. In

the middle part of the wake, u′z decays at one rate while at the edge of the wake it decays
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Figure 4.11: Profiles of the dimensionless normal turbulent velocity fluctuations across the
wake for case five, where profiles on the right are expended versions of the profiles on the left.
Solid line is the self-similar profile for the pure wake case and (+), (◦), (∗), (×), (�) and (♦)
are case five measurements at z/D = 65, 75, 85, 95, 105, 115 respectively.

at a rate similar to the one for the turbulent stream. Those two regimes are separated by a

narrow transition regime which moves inwards with distance downstream. In addition, the

two decaying regimes were also noticed for the radial and the angular turbulent stresses, u′r

and u′θ, respectively. Moreover, for these two turbulent stresses, the inner regime decays

at the same rate as u′zmax
and the narrow transition regime moves inwards with distance

downstream, as was also noticed in the axial turbulent stress profiles. Figures 4.9, 4.10 and
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4.11 show examples of that behaviour for cases one, three and five respectively. Notice in

these figures that the turbulence in the wake inner part decays quicker than the free-stream

turbulence does, behaviour that was also noticed in the other three cases. Thus, further

downstream u′ze would reach the point where it is equal to u′zmax
, u′rmax

and u′θmax
. That

point was unfortunately never reached, since in all cases the free-stream’s turbulence levels

were not high enough (in comparison with u′zmax
) over the measured regime, 65 ≤ z/D ≤ 115.

Note that further downstream measurements were not pursued due to the large size of the

wake relatively to the test section’s width.

In addition, figures 4.9, 4.10 and 4.11 also suggest that the turbulence inside the wake

becomes more isotropic (based on the simple measure u′1/u
′
2) with an increase in the ratio

u′ze/U0. Thus, the turbulence inside the wake becomes more similar to that in the free-stream.

Remember that grid turbulence is very similar to HIT (as was discussed in section 2.2.2) and

note as well that measurements for the current grids showed that u′1/u
′
2 ≈ 1.1 − 1.2. In

addition, it was noticed that the turbulence shear stress peak values are reduced with an

increase in the ratio u′ze/U0, which further strengthens the statement that the turbulence

inside the wake develops to become more like that in the free-stream (HIT in the current

experiments) when the ratio u′ze/U0 increases. Figure 4.12(a) illustrates a summary of all

those findings for all cases. Note however that the shape of the turbulence shear stress profile

(where examples for cases one, three and five are illustrated in figures 4.12(b), (c) and (d),

respectively) suggests that it is still driven by the mean shear and so would only fully cease

to exist when the mean shear (or in other words the wake) does. Thus, the turbulence inside

the wake could never fully be similar to that in the free-stream (for example HIT, like the

grid turbulence in the current experiments), even at the limit u′ze/U0 → ∞, but could only

approach to it to within a certain limit.

Since in the central part of the wake the various turbulent stresses seem to decay at the

same rate, it is of interest to know what that rate is. In all previous studies of axisymmetric

wakes in turbulent streams it was noticed that the wake’s decay rate is changed. Yet, it is not

clear to what rate, since different researchers have reported on different decay rates. In the

current measurements u′zmax
varies as in the pure wake case (as z−2/3); Figure 4.13 illustrates

that behaviour, where for comparison the free-stream turbulence decay in all turbulent cases

are presented in figures 4.13(c) and 4.13(d). Notice that the main distinguishing differences

between the various cases are the wakes’ false origins, z0, and the constant, A, in the following
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Figure 4.12: (a) The ratio between the various turbulence stresses at z/D = 65. (b), (c) and
(d) are profiles of the dimensionless normal turbulent velocity fluctuations across the wake for
cases one, three and five, respectively; Solid line is the profile for the pure wake case and (+),
(◦), (∗), (×), (�) and (♦) are measurements at z/D = 65, 75, 85, 95, 105, 115 respectively.

equation,

u′zmax

U0
= A (z − z0)

−n . (4.10)

Those variations are not a surprise since both the false origin and the coefficient are functions

of the initial conditions. However, the current measurements suggest that the false origin

varies with the different cases while the constant only varies with the different grids. As

clearly evident in table 4.13(e), grid A generates integral length scales which are about three

to four times larger at z/D = 0 than the integral length scales created by grid B there. And

so, one might assume that the coefficient A in equation (4.10) is mainly influenced by the

ratio L11/D at z/D = 0. However, since (1) the constant does not seem to be affected very

significantly by the variations in the integral length scale between the three cases of each grid

at z/D = 0, (2) at z/D = 85 L11/2rref is of order one in all six cases (see table 4.13(e))

and (3) the turbulence levels inside the wake does not seem to be affected significantly by

77



4.2. Results and Discussion

60 70 80 90 100 110 120
100

150

200

250

300

350

400

450

500

 

 

z/D

( u
′ z
m

a
x
/
U
0
) (

−
3
/
2
)

(a)

60 70 80 90 100 110 120
100

150

200

250

300

350

400

450

500

z/D

(U
d
/
U
0
)(

−
3
/
2
)

(b)

60 70 80 90 100 110 120
100

150

200

250

300

350

400

450

500

z/D

(u
′ z
e
/
U
0
)(

−
3
/
2
)

(c)

60 70 80 90 100 110 120
1000

1500

2000

2500

3000

3500

z/D

(u
′ z
e
/
U
0
)(

−
3
/
2
)

(d)

Grid Case Symbol u′ze/U0|z/D=0 L11/D|z/D=0 u′ze/Ud|z/D=85 L11/2rref |z/d=85

A 1 ⊲ 0.043 11 0.277 0.91
A 2 ⊳ 0.037 12.9 0.283 0.9
A 3 ◦ 0.033 13.7 0.245 0.84
B 4 � 0.021 3.1 0.408 0.91
B 5 × 0.012 4.8 0.413 0.97
B 6 + 0.008 4.8 0.427 0.94

(e)

Figure 4.13: (a) and (b) Variations of u′
zmax

and Ud with z/D, respectively; (⊲) case one,
(⊳) case two, (◦) case three, (�) case four, (×) case five, (+) case six, (∗) pure wake and the
solid lines are linear slope examples. (c) and (d) are variations of u′

ze with z/D in grid A
and B, respectively, where the symbols are similar to (a). (e) The defining parameters of the
different turbulent streams at z/D = 0 and 85. (Note that 2rref was used instead of lh due
high scatter in lh, as was explained above).

the presence of the free-stream turbulence in cases four, five and six, the author believes that

that coefficient is actually only influenced by the free-stream turbulence dimensional decay

(i.e. not only its decay rate but its actual decay) which is the only parameter of the free-

stream turbulence that was kept the same between the two groups of three turbulent streams

generated by the two grids. On the other hand, while the coefficient did only vary with the

different grids, the false origin varied with the different cases suggesting that it was influenced

in addition to the free-stream turbulence decay, by the other various turbulence parameters,
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Figure 4.14: (a), (c) and (d) are examples of the scaling of the mean deficit velocity profile
with u′

zmax
for cases one, three and five respectively and all compared with the pure wake

case (solid line) and (b) is an example of the scaling of the mean deficit velocity profile
with u′

ze for case one; (+), (◦), (∗), (×), (�) and (♦) are the appropriate measurements at
z/D = 65, 75, 85, 95, 105, 115 respectively.

like the free-stream turbulence intensity level and length scales, for example. In addition,

unlike the pure wake case where the mean and fluctuating velocity parameters decay at the

same rate, the mean deficit velocity decayed at about the same rate as u′zmax
only in cases

five and six. In the other four cases, the mean wake was noticed to be decaying slightly slower

than u′zmax
. That is clearly noticed when figures 4.13 and 4.13(b) and compared. (Recall

that there is about 5% scatter in Ud arising from the repeatability error; see above). In

addtion, figures 4.14(a), (c) and (d) illustrate how the mean deficit profile scales with u′zmax

for cases one, three and five respectively. Note that it was observed that the mean deficit

velocity decay rate reduces when u′ze/U0 increases (as can be noticed in figure 4.13(b)) until

the point where it seems to have reached the rate at which the turbulence in the free-stream

decays in cases one and two. Thus, in those two cases the mean wake decays at about the

same rate as the free-stream turbulence does, such that it scales with the local free-stream’s

rms velocity, as illustrated in figure 4.14(b) for case one. Notice there that when the scatter

in the dimensionless centre deficit velocity profiles in figures 4.14(a) and (b) is compared, a
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Figure 4.15: (a) Comparison of the deficit velocity profiles at z/D = 65 for the various cases;
Solid line is the pure wake deficit velocity profile and (⊲), (⊳), (◦), (�), (×), (+) are the deficit
velocity measurements for cases one, two, three, four, five and six respectively. (b) Variations
of the recirculation length, Rl, with u′

ze/U0, where Rl0 is the pure wake recirculation length.

reduction of about 50% is noticed when u′ze is used as the velocity scaling parameter.

Along with the decrease in the decay rate of the centre velocity (since −n becomes less

negative), another clear trend is noticed when mean deficit velocity profiles are compared

between the various cases at a certain z/D. The wake’s centre deficit velocity and its width

increase as u′ze/U0 increases, as illustrated in figure 4.15(a) for z/D = 65. Thus it seems that

the disc’s drag coefficient is increased due to the presence of the free-stream turbulence. Since

the disc’s drag coefficient was not measured directly an attempt was made to estimate it using

the integral momentum equation. However, it was found that due to the large scatter (arising

mainly from the hot-wire measurements) in those estimates it was impossible to notice any

clear trend between them. (For example, for the pure wake case the estimate of the drag

coefficient varied by about 40% between the different locations downstream and similarly

for the various turbulent free-stream cases). Nevertheless, support for the increase in the

disc’s drag coefficient was found in the near-wake PIV measurements, where it was noticed

that the recirculation length decreased (as illustrated in figure 4.15) due to the increased

entrainment in the separated shear layer (see section 4.2.4). Recall that it has been found

by both Bearman (1965) and Bearman & Trueman (1972) that the nearer to the body the

vortices form the lower the base pressure is (and the higher the drag). Note although that

while it is reported here that the turbulence in the free-stream appears to increase the drag

of the disc, Tyagi (2005) found that the opposite occurs for a sphere. However, there is a

fundamental difference between the two experiments. Unlike the fixed separation point at

the edge of the disc the separation point around a sphere is not fixed and so in Tyagi’s (2005)

case the free-stream turbulence acts to delay separation and thus reduces the wake size and

80



4.2. Results and Discussion

10
−1

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

f

E
3
3

(a)

10
−1

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

f

E
1
1

(b)

0.05 0.1 0.15 0.2 0.25 0.3
10

−4

10
−3

10
−2

10
−1

10
0

St

E
3
3

(c)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10

−3

10
−2

St

E
3
3

(d)

Figure 4.16: (a) and (b) are examples of E11 and E33 vs. f , respectively, at z/D = 65
for the pure wake and cases one three and five; solid, dashed, dash-dot and dotted lines are
spectral measurements for the pure wake and cases one, three and five respectively. (c) and (d)
are examples of the independency of dimensionless vortex shedding frequency (grey solid line)
with the Reynolds number for cases five and one respectively; in (c) the black solid, dashed
and dashed-dot lines are energy spectrum measurements at z/D ≈ 4 − 5 at Re ≈ 5400, 7200
and 8900, respectively, and the black dotted line is energy spectral measurement at z/D = 65
at Re ≈ 15000. In (d) the black solid, dashed and dashed-dot lines are energy spectral
measurements at z/D ≈ 4− 5 at Re ≈ 5500, 10100 and 13500, respectively

as a consequence the sphere’s drag is reduced.

Last to be examined was the energy spectrum (measured in the far-wake regime). One of

the clear differences that was noticed (when compared to the pure-wake case) was that the

vortex shedding frequency was no longer noticeable in the spectrum of the axial and radial

velocity when the disc was surrounded by the turbulent streams generated by grid A. Note

that in the pure-wake case the vortex shedding frequency was easily noticeable in both the

axial and radial energy spectra. Figures 4.16(a) and (b) show examples of the axial and radial

spectrum (E33 and E11 respectively) around the wake half width at z/D = 65 for the pure

wake and cases one, three and five. Before continuing the discussion about the disappearance

of the vortex shedding frequency from the spectrum, the other clear difference between the

various cases will be discussed – the rms value of the normal fluctuating velocities is increased
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Figure 4.17: (a) Variations of the dimensionless vortex shedding frequency with u′
ze/U0

compared with the pure wake case, St0. (b) Variations of the relative energy the shedding
process contributes to the spectrum with u′

ze/U0 compared with the pure wake case, Υ0. (c)
is an example clarifying the definitions of Ewith and Ewithout.

by about a factor of three when the disc was surrounded by the turbulence streams created

by grid A, in comparison to ones created by grid B, as also illustrated in figures 4.16(a) and

(b). Recall that the relationship between the Reynolds stresses and the spectrum is,

uiui =

∫
Eiidf, (4.11)

where there is no sum on repeated indices. Thus, since the free-stream turbulence levels at

z/D = 0 varied about monotonically with the different cases at z/D = 0 (see table 4.1),

one might think that it is the ratio L11/D at z/D = 0 which imposes that great difference.

However, since in the far-wake region the ratio u′ze/u
′
zmax

is much larger for the cases where

the free-stream turbulence was created by grid A compared to grid B (as illustrated in figures

4.9, 4.10 and 4.11) the author believes it is the actual value of the ratio u′ze/u
′
zmax

in the far

wake region which cause this difference. In other words, it is the free-stream turbulence

intensity level in the far-wake region which imposed that great difference.
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In order to understand better the disappearance of the vortex shedding signal, near-wake

flow field measurements (using PIV) and spectral measurements (at a fixed location, about

4−5D downstream of the disc) were made. Before discussing the results, it should be clarified

that the near-wake flow field and spectral measurements were made at Re = 6500, due to

hot-wire mounting limitations at high speeds in the near-wake region and PIV experimental

limitations at high speeds. Note also that the dimensionless vortex shedding frequency (St =

fD/U0, where f is the dimensional vortex shedding frequency) was found to be Reynolds

number independent in the 5000 < Re < 15000 regime in the pure-wake case and in the

turbulent cases four, five and six, as illustrated in figure 4.16(c) for case five. For the other

three cases it was only possible to verify the independency of dimensionless vortex shedding

frequency in the 5000 < Re < 13500 range, as illustrated in figure 4.16(d) for case one, since

it was only traceable in the near-wake spectral measurements.

Figure 4.17(a) shows that the vortex-shedding frequency only slightly rises when the

free-stream’s turbulence intensity is increased, as was also noticed by Castro (1995) when

studying wakes downstream of a ring. Castro (1995) suggested that the increase in the

rate vortices are shed is associated with the reduction in length of the recirculating region

(which, as was reported above, becomes shorter with increasing u′ze/U0), and reduces the

distance to formation of those vortices. On the other hand, figure 4.17(b) shows that while

the addition of turbulence increases the vortex shedding frequency, it weakens the relative

energy the shedding process contributes to the spectrum. This strength is defined using

Υ, where Υ = (Ewith − Ewithout) /Ewithout, E =
∫ b
a E33df , [a, b] is the range of frequencies

bounding the vortex shedding peak and the subscripts with and without specify, respectively,

whether the peak was included or removed before the integral was calculated. Figure 4.17(c)

shows an example clarifying this. Note that the weakening of the vortex-shedding process

has also been noticed by several other researchers in the context of several different objects

in turbulent streams, e.g. Gerrard (1966) and Tyagi et al. (2005). Thus, the fact that the

vortex-shedding energy is reduced (already at the creation process) combined with the fact

that it is being continuously reduced with distance downstream (as illustrated in figure 4.2)

explains why it is harder to trace, or even in some cases is completely untraceable, in the

far-wake spectral measurements.

In addition, since in the near wake regime the turbulence levels inside the wake gradually

increase with u′ze/U0 (i.e. section 4.2.4) whilst the vortex-shedding strength is reduced due to

the increased entrainment in the separated shear layer (see section 4.2.4 and Gerrard, 1966),
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the relative contribution to the spectrum would necessarily be reduced. Thus, there would be

a point (at high enough u′ze/U0) where the spectral peak would not be easily traceable even

in the near-wake regime, as Mujumdar & Douglas (1970) noticed two diameters downstream

of a sphere in turbulent streams. Yet, while they suggested that in their experiment the

vortex shedding is suppressed, based on auto-correlation measurements, it is suggested here

that other techniques should be used in order to be able to identify whether or not the vortex

shedding is actually suppressed, since it may just not have sufficient energy to be visible in

the spectrum. Nevertheless, in that case, whether the vortex shedding is present or not, its

contribution to the wake’s turbulence structure would be insignificant.

In summary, the turbulence in the free-stream clearly impacts the far axisymmetric wake

structure and development. Moreover, those effects are not only associated with the inter-

action the wake has with the free-stream turbulence in the far-wake region but also at its

creation in the near field. Thus, the initiation of the wake clearly defines some of its specifying

properties in the far-wake region.

4.2.4 The Near-Wake Flow Field

Even though the main purpose of this research was to examine the effects free-stream tur-

bulence have on the far axisymmetric wake, near-wake flow field measurements were made

as well. The original motivation was to understand better the weakening mechanism of the

vortex shedding process (as discussed above). However, since it was found (and shown above)

that the interaction of the turbulent stream with the wake-generating body defines some of

its far wake properties, the differences between the different wakes at their formation region

are presented here also.

As was presented above, the recirculation region was reduced in length due to the presence

of the turbulence in the free-stream. However, the form of the mean velocity profiles in that

region (when compared at different stations of z/Rl) remains the same. Figure 4.18 shows

the streamlines in the recirculation region deduced from the two extreme cases – the pure

wake and the wake in case one. Notice that the minimum value of the stream function, which

in cylindrical coordinates is defined by

ψ =

∫ ∞

0

U

U0
rdr, (4.12)
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Figure 4.18: Mean streamlines; (a) pure wake (b) case one.

increases, i.e. becomes more positive, when u′ze/U0 is introduced. It should be clarified that

in the other turbulent cases the minimum value decreased gradually with u′ze/U0, suggesting

that the amount of fluid recirculated is reduced when the intensity level in the free-stream is

increased (recall that the definitions of the stream function and the mass flux are similar).

Figure 4.19(a) shows the growth of the vorticity thickness, Λ, defined by:

Λ =

[
∂ (U/∆U)

∂r

]−1

max

, (4.13)

where ∆U is the total velocity difference across the shear layer. The vorticity thickness is

clearly higher when u′ze/U0 is increased. Moreover, its growth rate is slightly increased as well,

which is especially noticeable in figure 4.19(a) before the end of the formation region, where

0.7 < Rl < 1, because of the increased entrainment rate into the separated shear layer from

the free-stream. Further evidence of the increase in the entrainment rate from the free-stream

to the separated shear layer is noticeable in the mean streamlines (e.g. figure 4.18), where

a slight increase in the absolute value of the separated shear layer bounding streamline’s

gradient is noticeable as well. Note that since the shear layer is entraining more fluid bearing

zero vorticity from the free-stream, the forming vortices would have to be weaker, which

accounts for the gradual reduction in the peak vorticity levels in the separated shear layer by

up to about 30% between the two extreme cases – the pure wake case and case one, and the

gradual reduction in length of the formation region (i.e. Gerrard, 1966), which was presented

in section 4.2.3, and the reduction in the amount of fluid recirculated.

Similarly to the mean velocity, the form of the various Reynolds stress profiles was not ef-

fected by the presence of the turbulence in the free-stream. Examples of the various Reynolds

stress profiles of the pure wake and case one at z/Rl = 1 are presented in figure 4.19(b). Al-
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Figure 4.19: (a) Growth of the vorticity thickness; (−−◦−), (−−▽−), (−−⊲−), (−−⊳−), (−−△−),
(−−�−) and (−−♦−) are measurements of the pure wake and cases one, two, three, four, five and
six, respectively. (b) Reynolds stress profiles at z/Rl = 1; (−−◦−) and (−−▽−) are measurements
of the pure wake and case one, respectively.

though their form did not change, their values were increased with an increase u′ze/U0, as

can be noticed figure 4.19(b). In addition, it was noticed that the axial development of the

various stresses’ maximum values is slightly different as well, as illustrated in figure 4.20. The

maximum values of u2z and |uzur| were found to increase gradually with u′ze/U0 with their

peak values being reached at about the same relative location, z/Rl = 0.72 and z/Rl = 0.8,

respectively. However, the maximum value of u2r was found to vary with u′ze/U0 in no par-

ticular direction while its peak value is gradually reached further downstream from about

z/Rl = 1.1, in the pure wake, to about z/Rl = 1.3, in case one. Hence, these results sug-

gest that the transition to turbulence of the separated shear layer probably occurred earlier.

Moreover, since the turbulent shear stress was found to be increased in the separated shear

layer while the mean shear is about kept the same, the production of turbulent kinetic energy

must increase as well there. (Note that similar findings were also reported on boundary layers

in turbulent streams, in section 2.4).

Even though the different turbulent stresses change in value due to the presence of the

turbulence in the free-stream, the profile of the efficiency with which the eddies produce

turbulent shear stress for a given amount of turbulent kinetic energy was found to be hardly

altered, neither in form nor in value, when compared at different z/Rl stations inside the

formation region as illustrated in figure 4.21(a). (Note that efficiency is reflected in the

structure parameter which is the ratio of the shear stress to the turbulent kinetic energy –

uzur/q
2 (see Townsend (1976)), where 0.5q2 is the turbulent kinetic energy per unit mass,

which was estimated, since a two-dimensional PIV system was used, by (3/4)
(
u2z + u2r

)
).

In addition, the profile of the isotropy measure, u2r/u
2
z, was found to be barely modified,
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Figure 4.20: Axial development of the maximum Reynolds stresses; (−−◦−), (−−▽−), (−−⊲−),
(−−⊳−), (−−△−), (−−�−) and (−−♦−) are measurements of the pure wake and cases one, two, three,
four, five and six, respectively. Note that the maximum values of the Reynolds stresses in case
six, which are presented in the figure, show inconsistency in compare to the other experiments
which is associated to a measurement error of the turbulent stresses in that specific experiment.

especially inside the separated shear layer, either in form or in value, by the presence of the

turbulence in the free-stream, when compared at different z/Rl stations inside the formation

region, as illustrated in figure 4.21(b). Note that even though Castro & Haque (1988) have

shown the opposite – that the form of those two structure functions in a two-dimensional

reversed flow region changes due to the presence of the turbulence in the free-stream – the

author believes that the presence of a splitter in their measurements (which they used in

order to prevent the vortex shedding and thus achieve a longer recirculation region) is the

reason for the difference between the two findings. The presence of the splitter affects the

structure of the eddies close to it. Note that support for this statement is clearly evident

in Castro & Haque’s (1988) turbulence structure function profiles (presented in figure 13 in

their paper), where it is evident that the largest (and so the source) of deviation from their
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Figure 4.21: Development of the turbulence structure functions – uzuv/q
2, (a), and

uvuv/uzuz, (b); (−−◦−), (−−▽−), (−−⊲−), (−−⊳−), (−−△−), (−−�−) and (−−♦−) are measurements
of the pure wake and cases one, two, three, four, five and six, respectively. Note that the
turbulence structure measurements in case six, which are presented in the figure, show incon-
sistency in compare to the other experiments which is associated to a measurement error of
the turbulent stresses in that specific experiment.

form in uniform free-stream is located in the near splitter/wall regime.

In summary, the turbulent streams clearly impact the values of the various mean and

turbulence parameters inside the vortex formation region. However, while those change in

value they do not change in form. Last, once more the importance of the role of initial

conditions on the far wake regime is demonstrated.
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Chapter 5

Final Discussion

In chapters 3 and 4 the computational and experimental approaches that were used to explore

the effects free-stream turbulence have on an axisymmetric wake were discussed separately.

Before concluding this study it is important to examine the fundamental difference between

the two approaches and to discuss some of the differences and similarities in the findings.

In the experimental part, the wake was introduced to the free-stream turbulence already

in its creation stage. On the other hand, in the computational part, in order to make the

simulation feasible using DNS, the wake generating body was never modelled and the wake

was artificially combined with the external turbulence only after it was created in quiescent

surroundings. Thus, if one would have wanted to conduct an experiment which is similar to

the simulation one would have had to make sure the free-stream is only turbulent away from

the generating body such that the wake would be created inside a uniform stream. That way,

the wake would only reach, after developing for some downstream distance, the turbulent

part of the free-stream and only then it would start to be affected by it. That fundamental

difference would be mainly noticeable when the drag coefficient would be examined. In the

current wind-tunnel experiments the disc’s drag coefficient was increased by the presence of

the free-stream turbulence as a direct result of the impact of the free-stream turbulence on the

near-wake region, while in an experiment similar to the simulation the disc’s drag coefficient

would not be affected since the flow surrounding the disc would always be (quiescent, and

so) similar. In addition, other differences would be noticeable in the near wake region as

well. For example the vortex shedding frequency and strength and the entire near wake flow

field would not be affected either, for the same reason. Thus, it is clear the near-wake flow

field has a great role in shaping the far-wake region and that the difference between the two

experiments is critical.

Nevertheless, despite that significant effect of the wake’s initial conditions, in both the
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DNS and in the wind-tunnel experiments, the impact of the free-stream turbulence intensity

levels were obvious in both cases and in many cases similar. For example, both in the wind

tunnel experiments and in the DNS the external turbulence gradually penetrated and took

over the turbulence structure inside the wake. Moreover, both in the wind tunnel experiments

and in the DNS the rate of that penetration process was found to be higher as the turbulence

levels in the free-stream were increased. Note however that while in the DNS the leading

parameter was the ratio u′ze/Ud at the moment the wake and the external turbulence were

combined, in the wind tunnel the initial leading parameter was ratio u′ze/U0 at z/D = 0,

introducing the free-stream turbulence on the near wake region (and nevertheless affecting

some of the far wake features like the wake strength, and the vortex shedding strength and

frequency) but further downstream u′ze/u
′
zmax

becomes more important and defined how much

the external turbulence influenced the far-wake region, as can be noticed when figures 4.9,

4.10 and 4.11 (pages 73, 74 and 75, respectively) are compared. It is obvious there that

when u′ze/u
′
zmax

≪ 1 the level at which the free-stream turbulence penetrates the wake in the

far-wake region is much smaller than when u′ze/u
′
zmax

> 0.5, even though the mean wake is

much larger and stronger there (due to the increased drag). Recall that Wu & Feath (1995)

had noticed in their measurements that when u′ze/u
′
zcl

≈ 1, where u′cl is the rms value of the

axial fluctuating velocity at the wake centreline, the mean wake decay rate increased signif-

icantly for their low-Reynolds-number wake downstream of a sphere in turbulent streams.

Unfortunately, that point was never reached in the wind-tunnel experiments. However, that

point was reached and crossed in the DNS, where the decay rate of the wake was noticed to

be increasing significantly.

In addition, the process, by which the external turbulence penetrates into the wake in

the far-wake region and gradually takes over the turbulence structure there was found to

be the main reason for ending the wake’s self-similarity state in the DNS – the turbulence

in the free-stream was moving inwards changing the values of the turbulent stresses inside

the wake until the point where they were identical to the ones in the free-stream (except

the turbulent shear stress), as illustrated in figure 3.16 (in page 54). Also, in the DNS the

free-stream turbulence completely took over the turbulence structure inside the wake, as

illustrated for case three in figure 3.19(b) (in page 58). Then, since the external turbulence

decayed slower than the wake, the commonly used definition of self-similarity (where all the

velocity parameters scale the same) broke down and ceased to exist. On the other hand, in

the wind-tunnel experiments, although a similar process was clearly evident, the point where

the turbulence inside the wake is similar to the turbulence in the free-stream was never fully
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reached. Nevertheless, the fact that the profiles of the normal turbulence stresses evolved

towards uniformity suggests that a similar take over was in process, and that the point at

which it would have finished was located further downstream (at z/D > 115). It should be

mentioned here that different approaches were tried in order to take measurements beyond

that point but they all failed, mainly due to the limited size of the wind-tunnel cross section.

(Further downstream measurements were not perused mainly due to the ratio between the

wake and test section widths. Also, a different approach that was tried in order to witness the

end of the take over was to increase the turbulence levels already upstream using a different

grid and thus to move the take over point upstream. Unfortunately that method was found

to be not suitable either since the wake that was created was too big for the wind tunnel

even by z/D = 65 as a direct result of the increase in the disc’s drag coefficient).

While the importance of the free-stream turbulence intensity in shaping the near- and far-

wake turbulence and mean structures were clearly captured by both techniques, the impact

of the ratio between the external turbulence integral scale and the wake width, in the far

wake region for example, was unfortunately never fully captured, as presented in table 3.1

and figure 4.13(e) (pages 49 and 78, respectively). In the DNS this ratio was more or less the

same (0.6− 0.7), while in the wind-tunnel experiments two groups of ratios were available in

the near-wake region (3 − 4) and (11 − 14) and only one in the far-wake region (0.85 − 1).

However, since the intensity levels were different between all the wind tunnel experiments it is

hard to fully determine in what way that ratio influences the mean and turbulence structure

of the wake in the far-wake region. Nevertheless, in the near-wake region it does seem that the

integral scale did not influence the recirculation region by much, since the recirculation length

varied quite linearly with u′ze/U0 without any noticeable impact of the free-stream turbulence

integral length scale, even though the integral scale was about four times larger (at z/D = 0)

in cases one two and three compared to cases four, five and six. Note that this is quite

a surprise since Hancock (1980), Hancock & Bradshaw (1989) and Castro (1995) reported

that the integral length scale does influence the level of impact free-stream turbulence has

on shear layers, where integral length scale of the same order of the boundary-layer thickness

was suggested to lead to the strongest impact.

In summary, even though the wind tunnel experiments and the DNS modelled two dif-

ferent scenarios, both sets of results lead to the same conclusion that a far-wake in turbulent

surroundings is not self-similar due to the take over of the turbulence structure inside the

wake by the one in the free-stream.
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Chapter 6

Conclusions

Wind-tunnel and numerical experiments were undertaken in order to study the influence free-

stream turbulence has on axisymmetric wakes. As expected, it was found that the free-stream

turbulence affects the wake’s mean and turbulent structure and their development. It was

also found that the level at which the free-stream turbulence affects the wake is related to

the ratio between the turbulence levels inside and outside the wake. However, no empirical

relationship was derived since it is believed that there are more parameters which might

have influenced the wake’s mean and turbulence structure as well, like the length scales. In

addition, for the first time it has been shown that the classical self-similar solution is no longer

valid under those conditions, due to the gradual take over of the turbulence structure inside

the wake (which starts at the wake’s edge and moves inwards towards its centre) by the one

in the free-stream. While in the DNS the mean wake always decayed faster than the external

turbulence does, in the wind-tunnel experiments the mean wake decayed in some cases at

the same rate the free-stream turbulence does, which suggests that far enough downstream

self-similarity might be expected (where the turbulence levels inside and outside the far wake

would be similar) since then the mean velocity and turbulence all across the wake would

be decaying at the same rate. Finally, the importance of the boundary/initial conditions in

shaping the far wake region were clearly emphasised by the different findings revealed by the

two approaches.

6.1 Future Work Proposal

Even though the work that has been done answers some very important questions about

the free-stream turbulence impact on the far axisymmetric wake self-similarity, it opens the

door to many more questions: what happens beyond the point where u′ze = uzmax , how
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do the length scales in the free-stream turbulence influence that whole process and now

that it is known that the free-stream turbulence is penetrating the wake and taking over

its structure, it would also be interesting to know at what rate it does this and what is

influencing this rate. Each of those questions would require a different type of experiments

to be conducted. For example, in order to reach beyond the point where u′ze = uzmax a

much larger wind tunnel would be required in order to avoid blockage effects. Or for the

length-scales impact, experiments with a much larger variety of length scale variations in the

free-stream would be needed. And last, in order to determine the rate at which the free-

stream turbulence penetrates the wake and takes over its structure, two-point correlation

maps could be measured at different downstream positions and compared.

While the questions above are very fundamental one might want to look at some of this

study’s applications. For example, one might want to look at the effect free-stream turbulence

has on porous discs which are a very simplified version of a wind turbine, or even take it further

and examine what is the influence of one porous disc’s wake on another. Another interesting

question is whether the free-stream turbulence reduces the aero-acoustic sound generated by

the disc, which could be useful for detecting or avoiding detection of submarines.
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Appendix A

Relationship Between the Mean

Velocity and the Turbulent Shear

Stress Profiles

Since the product Ud × l2h is constant the following can be written:

0 =
d
(
l2h Ud

)

dz

= 2lhUd
dlh
dz

+ l2h
dUd

dz
.

(A.1)

Equation A.1 leads to the following relationship

dUd

dz
= −2Ud

lh

dlh
dz

. (A.2)

Using this relationship, Equation 2.25 is simplified in the following way:

1

ξ
g + g′ =

U0

Ud

dlh
dz

f +
U0

Ud

dlh
dz

ξ f ′,

1

ξ
g + g′ =

U0

Ud

dlh
dz

(
ξ f ′ + 2f

)
,

(ξ g)′ =
U0

Ud

dlh
dz

(
ξ2 f

)′
,

g =
U0

Ud

dlh
dz

ξ f.

(A.3)

Given the self-similar mean velocity profile and its parameters (f (η) , Ud and lh) the shear

stress (g (η)) can thus be computed.
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Appendix B

Convection Term in Equation 4.9

The aim here is to prove that

lh
U3
d

U0
dK

dz
= −1

3

r

lh

d
(
K/U2

d

)

d (r/lh)
− 4

3

K

Ud
, (B.1)

where K = 1
2

(
u2 + v2 + w2

)
and the wake is self-preserving with lh ∼ z1/3 and Ud ∼ z−2/3.

Since lh = lh (z) the following can be written

d

d (r/lh)
=

d
dz

d(r/lh)
dz

, (B.2)

so that

d

dz
=

d

d (r/lh)

d (r/lh)

dz
. (B.3)

But

d (r/lh)

dz
= − r

l2h

dlh
dz

= − r

l2h

1

3
D2/3z−2/3 = −1

3
rD−2/3z−4/3. (B.4)

Hence

d

dz
= −1

3
rD−2/3z−4/3 d

d (r/lh)
. (B.5)

Thus dK
dz can be written in terms of

d(K/U2
d)

d(r/lh)
.
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Using Equation B.5 and that

d

dz

(
K

U2
d

)
=

1

U2
d

dK

dz
− 2K

U3
d

dUd

dz
(B.6)

so that

dK

dz
= U2

d

d

dz

(
K

U2
d

)
+

2K

Ud

dUd

dz
(B.7)

the following can be written

lh
U3
d

U0
dK

dz
=

lh
Ud
U0

d

dz

(
K

U2
d

)
+

2KU0lh
U4
d
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= − lhU0

Ud

1

3
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(
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d

)
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U4
c

2

3
U0D

2/3z−5/3

= −1

3

r

lh

d
(
K/U2

d

)

d (r/lh)
− 4

3

K

U2
d

(B.8)

which was to be proven.
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