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ABSTRACT

UNIVERSITY OF SOUTHAMPTON
Abstract
FACULTY OF ENGINEERING AND APPLIED SCIENCES
AERONAUTICS AND ASTRONAUTICS
Doctor of Philosophy
AN OBJECT-BASED ANALYSIS OF CLOUD MOTION FROM
SEQUENCES OF METEOSAT SATELLITE IMAGERY
by Franz Thomas Newland

The need for wind and atmospheric dynamics data for weather modelling and
forecasting is well founded. Current texture-based techniques for tracking clouds
in sequences of satellite imagery are robust at generating global cloud motion
winds, but their use as wind data makes many simplifying assumptions on the
causal relationships between cloud dynamics and the underlying windfield. These
can be summarised under the single assumption that clouds must act as passive
tracers for the wind. The errors thus introduced are now significant in light of
the improvements made to weather models and forecasting techniques since the
first introduction of satellite—derived wind information in the late 1970s. In that
time, the algorithms used to track cloud in satellite imagery have not changed
fundamentally. There is therefore a need to address the simplifying assumptions

and to adapt the nature of the analyses applied accordingly.

A new approach to cloud motion analysis from satellite data is introduced in this
thesis which tracks the motion of clouds at different scales, making it possible

to identify and understand some of the different transport mechanisms present



in clouds and remove or reduce the dependence on the simplifying assumptions.
Initial work in this thesis examines the suitability of different motion analysis
tools for determining the motion of the cloud content in the imagery using a
fuzzy system. It then proposes tracking clouds as flexible structures to analyse
the motion of the clouds themselves, and using the nature of cloud edges to

identify the atmospheric flow around the structures.

To produce stable structural analyses, the cloud data are initially smoothed. A
novel approach using morphological operators is presented that maintains cloud
edge gradients whilst maximising coherence in the smoothed data. Clouds are
analysed as whole structures, providing a new measure of synoptic-scale motion.
Internal dynamics of the cloud structures are analysed using medial axis trans-
forms of the smoothed data. Tracks of medial axes provide a new measure of
cloud motion at a mesoscale. The sharpness in edge gradient is used as a new
measure to identify regions of atmospheric flow parallel to a cloud edge (jet flows,
which cause significant underestimation in atmospheric motion under the present
approach) and regions where the flow crosses the cloud boundary. The different
motion characteristics displayed by the medial axis tracks and edge information

provide an indication of the atmospheric flow at different scales.

In addition to generating new parameters for measuring cloud and atmospheric
dynamics, the approach enables weather modellers and forecasters to identify the
scale of flow captured by the currently used cloud tracers (both satellite-derived
and from other sources). This would allow them to select the most suitable
tracers for describing the atmospheric dynamics at the scale of their model or
forecast. This technique would also be suitable for any other fluid flow analyses
where coherent and stable gradients persist in the flow, and where it is useful to

analyse the flow dynamics at more than one scale.

KEYWORDS Meteorology, Clouds, Cloud Motion Winds, Atmospheric Dynam-
ics, Image Processing, Morphology, Skeletons, Shape Smoothing, Fuzzy Logic,
Feature Matching.
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PREFACE

This thesis provides the background, methods and results of the past four years’
work on analysis of cloud motion from sequences of satellite data using novel
image processing techniques. It is presented in three sections that serve very
different roles. The thesis itself does not represent a chronological progression of
the study undertaken. It is informative, however, to know by what route the work
came together, and to this end, a brief summary of the chronological progression

of the work is now provided.

Initial work concentrated on improving wind information from tracking clouds.
It was realised that different types of cloud motion could be identified in movie
loops of satellite data, and a mechanism for segmenting these motion types was
developed. This work is detailed in Newland et al [75], and used a fuzzy system
to identify the degree to which any region of cloud could be tracked using edge
information, textural content and whole cloud matching. This resulted in some
realisation of the multi-scale nature of cloud motion. Subsequent discussion with
the Meteorological Office in Bracknell led to the more fundamental issue that
different users of meteorological wind information have different interpretations
of the word wind. The term is equally used to describe small scale eddies at spatial
resolutions in the order of metres and large scale atmospheric motion over many
hundreds of kilometers. In order to make some distinction between these scales,
the more generic term of atmospheric dynamics has sometimes been used in the

literature for the scale of motion captured in geostationary satellite imagery.

As a result of this early work, study then focused on identifying motion mech-
anisms at different scales. Historically, the atmosphere is studied at synoptic

or large-scale (hundreds of kilometers), meso or medium scale (tens of kilome-
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ters) and local scale, and therefore as a first approximation it seemed appropriate
to capture the dynamics at these distinct orders of magnitude. The motion of
whole weather systems is indicative of the synoptic scale dynamics, whilst the
motion within a weather system as identifiable in satellite image data is better
for mesoscale analysis. Local-scale information is typically too small to be identi-
fied on satellite data, but by comparing the mesoscale motion with, for example,
other point sources of wind information (e.g. radiosonde data from weather bal-

loons), it is possible to determine the amount of correlation between local and

mesoscale motion.

Suitable parameters for tracking clouds at a synoptic and mesoscale were sought,
which shifted the emphasis of the study onto cloud objects. This shift of emphasis
to an object—based approach is detailed in Lewis et al [4]. Whole clouds, their
edges and their medial axes or skeletons were identified as suitable parameters to
capture these scales of motion. Due to the nature of clouds having vague edges,
a fuzzy approach to cloud object extraction was considered. This approach and
the initial work on edge and skeleton tracks are given in Newland et al [76].
The stability of these edge and skeleton tracks was limited, however, by the high
local variability in the raw data. Smoothing techniques were therefore sought to

remove some of the smaller-scale variation.

Having selected an object-based approach, and having identified suitable struc-
tures for tracking motion at different scales, other benefits of the approach began
to emerge, in particular the potential for skeletons to provide an indication of
cloud spread, e.g. for identifying the onset of vorticity through the various mech-
anisms of cyclogenesis, and the relationship between crisp cloud edges and the
location of jet flows, which are notoriously difficult to capture using current tech-
niques. It is hoped that other developments may arise with further maturity of

these new parameters of cloud motion.

The thesis is laid out in three sections to enable the reader to find the pertinent
information as easily as possible. Part 1 provides the background to the study,

detailing the current operational approach to cloud tracking, its limitations and
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some potential requirements for any improved technique. It highlights other areas
of active research in this field, and identifies which problems this work addresses.
An introduction to the research itself is also given, and the backgrounds to meth-
ods used are provided as necessary. Part 2 details the actual algorithms applied
to the data, and identifies the desired characteristics displayed by the selected
algorithms. It is split into data smoothing and object extraction, object param-
eterisation and parameter matching. Finally, part 3 discusses the methods and
results and highlights possible future directions of research, before summarising

the main conclusions of the work.
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1. INTRODUCTION

This thesis presents a novel approach to tracking cloud in sequences of geostation-
ary meteorological satellite imagery that provides new information regarding the
nature and ultimately the cause of the motion displayed by cloud. The approach
considers the cloud content of the image sequences as deformable objects, and
as such, interprets the image content early in the image analysis to determine
the location and nature of the clouds in the imagery. This early interpretation is
used to target subsequent motion analysis using the knowledge acquired. Novel
shape parameters that make use of morphological image processing techniques
and fuzzy logic are used to describe the cloud content such that the dynamics of

the cloud can be captured at different scales.

The work uses infrared geostationary satellite imagery due to the relative ease
with which the cloud content can be identified and interpreted. By contrast,
visible imagery requires careful consideration of the change in shadowing effects
on cloud texture as the relative solar angle changes. Water vapour imagery,
which represents a deep layer mean water content, is equally less suitable than
infrared as the motion mechanisms of water vapour per se are less well known
than those of clouds, and the deep layer averaging effects reduce the usefulness
of the data for analysing smaller scale phenomena. Infrared images are also
freely available in the public domain at useable spatial and temporal resolutions.
Geostationary satellites provide a fixed viewpoint for the data!l, avoiding the
need for any complex registration of the images against one—another, giving the
same viewing angle for any image region over a sequence of images and providing

a higher temporal update on the data, due to the satellite’s persistent view of

1 An approximation to a fixed viewpoint, at least.
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the same area of the globe. Whilst higher spatial resolution data are available
for polar orbiting satellites for example, their temporal resolution for a given
area on the ground is typically degraded by an order of 10-20 compared to the
geostationary data over the same region. In this time the cloud over the region

has typically changed and / or moved significantly.

The cloud component is first extracted from an image sequence by comparison
with dynamically created template image estimates of the radiances of the un-
derlying land and sea. Two smoothing algorithms are considered for removing
noise from the enhanced cloud data: for large-scale object—matching-based mo-
tion analysis, a simple median filter can be used to remove noise at the cost of
reducing precision in the data. For cloud parameterisation however, accuracy in
capturing edge strength and maximising the coherence of the cloud structure are
the overriding concerns, so a novel edge—preserving filter is applied. The filter is

based on a rolling ball algorithm.

The parameters extracted from the smoothed cloud objects are designed to iden-
tify the nature of the edge of the cloud (sharply defined or dissipated) and to
capture the overall structure of a cloud shape (the curvature, number of limbs,
etc). The selected parameters used to identify these are the cloud edge gradient
and the cloud skeleton or medial axis. In order to manage the imprecise nature
of clouds as structures, ways to adapt the standard techniques for generating
skeletons for crisp objects in binary images are discussed in this work. A novel
technique for determining cloud edge strength using a fuzzy system has also been
developed, to provide better identification of crisp and fuzzy edges than edge

gradient can offer alone.

These parameters are then matched across the sequence of satellite images to
produce sets of motion vectors. The result of this mixture of tracking methods
is a much richer description of the cloud dynamics, from which it is possible to
make better interpretations of the cause of the motion. In addition to identify-
ing cloud motion resulting from the wind driving it, it is possible to determine

sites of convection, locations of jet flows (where there is typically no cloud com-
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ponent) and atmospheric flows that act on a much larger scale than most users
typically interpret as wind. The whole process from cloud extraction through

parameterisation to matching is shown in Figure 1.1.

The dynamics of each motion type can be interpreted independently. Crisp cloud
edges, for example, do not have any local wind flow across them (and vice-versa
for dispersed edges), therefore the motion of a crisp cloud edge is typically the
result of a large scale atmospheric flow. The local wind acts (and many meteo-
rological phenomena result from flows that are) relative to this large scale flow,
thus a mechanism for identifying it is the first step towards identifying a number
of relative-flow phenomena. Skeletal motion allows some component of a cloud’s
internal dynamics to be captured. Between edge and skeleton motion types,
there is the potential to identify the cause of a particular cloud’s development.
Convective processes in clouds for example are driven by motion relative to the
atmospheric flow. If the atmospheric flow can be identified from the motion of a
crisp edge on the convective cell and the internal atmospheric motion is captured
by the skeleton vectors, the difference between the two will show convective-type

relative flows.

This highlights one of the main strengths of this new multiple motion analysis
approach, namely that the combined analysis of these different types of motion
offers a better understanding of each than is possible independently. This there-
fore offers a significant improvement over the single motion analysis currently
employed operationally, which itself has no meteorological context within which
to be interpreted. Unlike cloud edge and skeleton motion, which both relate di-
rectly to a meteorological concept (the cloud whose motion they describe), the

current texture—-based analyses track texture regions as a totally abstract concept.

The novel components of this work are therefore the consideration of cloud mo-
tion from a cloud object perspective and the use of multiple motion analyses to
build up a more complete picture of the motion, the novel edge—preserving image
filter that has been developed for this work, the adaptation and application of

morphological skeleton tools for analysis of cloud shape and the fuzzy system



1. Introduction 21

applied to cloud edge analysis. The potential benefits of the work for the meteo-
rological community are new parameters describing the synoptic scale dynamics
and cloud motion unassociated with the underlying windfield, better identifica-
tion of suitable wind tracers and a new method for identifying possible jet flow

locations for further scrutiny.

= | Segmentation by relevance of Motion Analysis

Parameter Generation (Section 4.1.2)
Fuzzy Segmentation (Section 4.3)

Preprocessing:

| Border Removal (Section 4.1.1)
| Data Projection (Section 5.1)

Data Smoothing (Section 5.2)

Cloud Object Extraction:
Multi-level Thresholding (Section 5.3.1)
o Core Extraction and Fuzzy Context
a5 Growth (Section 5.3.2)
75 /\l Cloud Parameterisation:
5 ‘l ol Skeletons (Section 6.1) L
4 £ i - Parameter
Cloud Edges (Sfcnon 6’.2) Suitability
Texture Analysis (Section 2.1)

Parameter Matching & Vector Generation:
Skeletal Vectors (Section 6.1.2)
Edge Vectors (Section 6.2.1) < —
Cross—correlation (Section 2.1) Ou a}:{;lm:.‘:zri

Figure 1.1: Pictorial Abstract of the Proposed Approach for Cloud Motion
Analysis: A sequence of satellite images is segmented based on the
suitability of different motion analysis tools. The raw images are
then enhanced, projected and smoothed, and the cloud objects are
extracted from them. Edge, skeleton and texture window param-
eter extraction routines are then run. Finally, the parameter sets
are matched across the sequence to generate a number of different
vector fields. The original motion suitability information can be
used to aid cloud extraction by providing a motion context, during
parameter generation to target parameter generation algorithms at
the relevant regions and during parameter matching to provide a
measure of vector quality based on motion relevance.



2. BACKGROUND

Satellite imagery has been an invaluable and consistent source of meteorological
information since the start of the Geostationary Meteorological satellite programs
in the early 1970s (Leese et al [62], Schmetz et al [87]), providing data for fore-
casters and weather modellers alike. The application of satellite-derived data
covers such diverse areas as short—term weather forecasting for otherwise data—
sparse areas of the globe or in areas of severe weather to climate modelling and
earth radiation budget analyses (Baker [6]) to numerical weather model inputs
(Kelly [53]) and model and forecast validation. Wind is potentially the most
significant input to any weather model (Hinsman [49]), and therefore a continu-
ous, global source of wind data is invaluable to modelling communities. Due to
the unique use of visible and infrared sensors on many of the earlier platforms
and subsequent refinement of these channels with satellite development, much of
the meteorological study of satellite imagery has concentrated on cloud content
and, using sequences of images, cloud dynamics. Trained forecasters are able
to identify large- and small-scale dynamics components from analysis of such
sequences, particularly with the new high spatial and temporal data resolutions
available. This knowledge of cloud motion has been invaluable for generating

global knowledge of the underlying wind field.

First analyses of cloud motion from satellite imagery consisted of manually match-
ing clouds and plotting motion vectors, providing reliable motion but requiring a
large amount of time. The primary use of cloud motion vectors is as an indication
of the local wind (Cloud Motion Winds or CMWs). Hubert and Whitney [50]
document the early use of cloud motion for wind field analysis, and list a num-

ber of important criteria against which cloud suitability as a tracer for the wind
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can be assessed. Primarily, clouds that are advected! by the ambient winds act
as good tracers (passive tracers), as opposed to clouds in convection?. There
are, however, other motion mechanisms for clouds that are nonadvective. A con-
densed set of the guidelines provided by Hubert and Whitney for determining

wind information from satellite image data is given in Table 2.1.

Cloud motion vectors have been derived using automatic techniques since the
early-1970s® using an image texture cross—correlation approach (Leese et al [62],
Smith and Phillips [93]). Numerical weather models currently use wind data
derived automatically from cloud motion as a significant source of knowledge of

atmospheric dynamics.

2.1 Automatic Derivation of Cloud Motion

Current automatic techniques for analysing cloud content make a number of sim-
plifying assumptions both about the nature of the cloud motion and its cause.
Principally, it is assumed (at least initially) that all cloud acts as a passive tracer
for the wind field. It is also assumed that using a single measure to track the
cloud (namely correlating tezture windows of the cloud images) captures the cloud

motion with both sufficient accuracy and at the scale most relevant for analysis

of the wind field.

Since 1979, the standard technique for determining global winds operationally
from satellite data has been a texture cross—correlation approach. This involves

correlating a window of the radiance data in the first available image with an area

! advection: a mechanism of horizontal energy transport in the troposphere, by the wind.
Any atmospheric property can be advected, but temperature and moisture advection are of
most interest to meteorologists (Nese et al [74]). A frontal system is a good example of a cloud
under advection.

2 convection: a mechanism of vertical energy transport. With regard to clouds, convection is
usually classified into shallow and deep, the distinction dependent on the vertical extent of the
cloud undergoing convection. A stratus or layered cloud would be a good example of shallow
convection, where the layer has resulted from a small upward motion of air over a large area.
Cumulonimbus or storm clouds are the most extreme example of deep convection.

3 Fujita [37] performed basic analyses of cloud motion from the U.S. Applications Technology
Satellites (ATS) as early as the mid—sixties, but operational computation started in the 1970s.
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1. Cyclones, fronts, jet streams and squall lines can be found from spirals,
large bands, abrupt cloud edges and lines or zones of bright cloudiness.

2. The stages of cyclone development can be determined from the character of
the cloud (see also Browning’s discussion of leaf to comma to vortex tran-
sitions [14]). High clouds in well-developed tropical cyclones move slowly
and both cyclonically and anti-cyclonically, whereas low and middle clouds
move rapidly in a cyclonic direction.

3. Interaction between air masses and underlying surfaces can be determined
by looking, for example, for cloud types of cold advection over warmer water
or warm advection over colder water. Clouds influenced by coastlines and

by ocean temperatures are low-level clouds.

4. Bright clouds with sharp edges usually are cumuliform and are easily
tracked.

. Thin clouds with diffuse edges tend to be cirriform and are less easily tracked
than cumuliform and middle clouds. Clouds associated with jetstreams are
often cirriform. Large masses of bright multilayered cloud associated with
jetstreams will often obscure the thin gray cirrus of jetstream level.

(S]]

6. Motions which appear to move through a pattern of cloud, alternately sup-
pressing and enhancing brightness, often conflict with motion of the indi-
vidual cloud elements in the same layer and are probably due to gravity
waves. The orientation of such waves and their direction of motion bear no
fixed relation to the ambient wind.

7. Clouds that appear to penetrate vertical shear layers should be tracked by
the upshear edge rather than the center of mass. For example, in areas
of active convection the cloud area grows rapidly because of anvil growth.
The origin of the anvil (the brightest area at the rear of the growth region)
moves with the middle- and low-level wind. The leading edge of the anvil,
while advancing with the high-level wind, may be moving more slowly than
the wind because of evaporation.

Table 2.1: Guidelines for satellite image analysis. Collated from Hubert and
Whitney [50]

of the second image and selecting the maximum cross—correlation between the two
image windows as the best match and correspondingly the best local estimate of
cloud motion (Figure 2.1). The assumption that clouds act as passive tracers for
the underlying windfield is then used to derive a global windfield estimate, at
least in the cloud-covered regions of the imagery. This has been a reliable and
successful approach to wind estimation both for the modelling and forecasting

communities for the past two decades. With no corrections, this approach can
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achieve accuracies of around 8-10 m/s RMS error averaged across all windspeeds

when compared to the standard source of wind information®.

A more detailed description of the current operational techniques applied by
NASA and NOAA to Geostationary Operational Environment Satellite 7 (GOES-
7) Infrared data, and EUMETSAT’s Meteorological Product Extraction Facility
(MPEF) to METEOSAT Infrared data processing is now given®.

Images are analysed in their raw (i.e. orthographic) projection, and the resul-
tant motion vectors are converted to a constant distance projection to determine
their magnitude and direction relative to an observer on the ground below the
cloud [88]. The image data are initially segmented into 32*32 pixel segments.
The region over which data are generated extends to the 55 degree arc about the
subsatellite point, although more recently, Purdom [81] has shown that the new
high-temporal-density data available with GOES-9 enable accurate texture cor-
relation well beyond this. Around 1/2 to 2/3 of segments have identifiable cloud
tracers for subsequent use [87]%. Image filtering is applied to enhance the highest
layer of cloud. Ounly the highest layer of cloud in any segment is tracked opera-
tionally. By setting all low-cloud clusters to a threshold greyscale and stretching
the histogram of mixed low- and high-cloud clusters away from the high cloud
radiometric range, the high cloud regions stand out from their background, thus
making the tracking correlation algorithms much more effective. Clusters are as-
signed a particular pressure level based on their IR brightness temperature and
forecast temperature profiles. The assignment of height to a CMW vector is crit-
ical to its usefulness, since the change in wind field with respect to height can be

significant, the most obvious example of this being shown by the jetstream.

Three successive IR images are used to determine a displacement vector: A given
segment at time t forms the target area to be correlated with segments at times
(t - 30) minutes and (t + 30) minutes (Figure 2.1). The search starts at the

cloud displacement suggested by a wind forecast. The correlation with the (t

4 Inertial radiosondes attached to weather balloons (Gray et al [43]).
5 For a complete description of the approach applied by EUMETSAT, see Schmetz et al. [87]
6 Wade et al [107] suggest an optimal clustering approach for multispectral vector extraction.
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- 30) and (t + 30) segments uses a search centred on the predicted location.
Within the search windows, every 6th correlation is performed, with a full search
being performed around the peak correlation coefficient. The correlation peak
is parabolically interpolated to the sub-pixel level. The (t + 30) correlation
is performed for each 3*3 matching template over a 19*19 grid centred at the

symmetry point of the (t - 30) correlation.

The two displacements have to agree with one-another to within a specified mag-
nitude and are curvature constrained. The corresponding cloud motion vector is
suppressed if it is smaller than 5ms~!. Considering that there is a 1.5 — 2ms™!
error from image registration, this is an acceptable lower threshold. Once dis-
placement vectors are calculated from correlation centres, the velocity vectors
are computed. A final manual quality check is performed, before the data are

disseminated to the NWP modelling communities and other users.

Globally, around 20,000 wind vectors are disseminated daily across the three
main image channels offered by the main meteorological satellite operators’. The

transmitted data are assumed valid for between 12 and 30 hours after generation.

2.2 Variations by operator

A comparison of texture tracking techniques applied operationally and used ex-
perimentally, and comparisons with some of the sources of ground truth, is given
in Wang et al[109]. The main variations in the analyses performed by the different

meteorological satellite operators are now listed for completion®. Hinsman [49]

7 Note also that NOAA has been disseminating a high-density wind product since March
1998, which alone can produce around 50,000 vectors per day for the GOES-8 and 9 satellites.
This has received mixed reviews from user communities, however, and its adoption at the time
of writing was still being fine-tuned. The discussion of wind generation approaches is therefore
limited to the low-density approach adopted by MPEF and GMS, and that used by NOAA prior
to the advent of the high-density product. In addition, EUMETSAT are now disseminating
high-resolution water-vapour winds as of the end of 1998

8 INSAT winds, and winds generated by agencies other than satellite operators (e.g. Aus-
tralia and China in the case of GMS-5 data) have not been included in this review: INSAT
winds have been blacklisted by many modelling communities awaiting a more stable product
(and INSAT imagery is not widely available), and the discussion provided is only intended
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Figure 2.1: 2-D cross—correlation applied to cloud texture tracking. A texture
template is cross—correlated with a window of texture from the
images before and after the template’s timestep. The peak of the
correlation surface (the mazimum cross-correlation) is taken as the
best match between the template and the window, and a vector is
drawn between the matching points.

expressed the desire of the World Meteorological Office for a standardised ap-
proach to cloud motion wind analysis: he reported that error analyses of the
current satellite operators’ techniques show sufficient deviations that some cloud
track winds are routinely discarded. The differences between the satellite plat-
forms currently in use limits the ability for a single tracking technique to be
achieved in practice, particularly in light of the differences between the satellite

sensor platforms.

to give an overview of the techniques in operation. Whilst there are differences between the
texture tracking techniques applied by the non-operator agencies and those described here, the
main technological advances and differences have been covered in the discussion of the satellite
operators listed.
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2.2.1 Japan Meteorological Agency

® The generic approach highlighted above assigns cloud motion vectors to the
cloud top height. In the case of low level cumulus cloud, the motion is generated
from winds driving the base of the cloud. In the operational Japanese Geosta-
tionary Meteorological Satellite (GMS) data analysis scheme, low-level winds!?
are assigned a fixed altitude of 850hPa. There are also two additional screening
steps during target selection, namely removal of targets that may be subject to
sun glint or those that may contain cumulonimbus. If the solar zenith angle is
greater than 85° (or 60° in the case of low-level targets), the target is excluded
from subsequent analysis as there is a high possibility of sunglint affecting it.
The difference in brightness temperature between the infrared and water-vapour
channels is calculated and the average difference over 2*2 pixel squares is used to
low—pass threshold cumulonimbus data (a small temperature difference between
the two channels signifies cumulonimbus). If more than 10 pixels are contami-

nated with cumulonimbus then the grid square is not used.

The quality checks applied fall into two categories, namely automatic assessment
of both the quality of the correlation surface and the degree of agreement between
vectors across an image triplet, and an objective quality control. The objective
- check ensures both horizontal and vertical consistency across neighbouring vec-
tors, and ehsures agreement with NWP model data. It is important to note
that these are quality checks, and are used to remove poor data only. They are
not used during vector generation to improve vectors. Hamill and Nehrkorn [99]
describe an approach where horizontal consistency can be used during vector
generation to select correlation surface maxima that provide locally consistent
vectors. Collocated radiosonde data are, in a similar vein, not used for quality

control, only for post-dissemination assessments of vector accuracy.

® As described in Tokuno [101]
10 For cloud tops below 700hPa.
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2.2.2 EUMETSAT

The EUMETSAT model takes into account the fact that low cloud is driven by
wind at its base by way of a variable height correction for low cloud vectors.
Quality control is mainly automatic, using similar tests to the JMA. The output
of each quality test is continuous in the interval 0 to 1 from which a final quality
measure is generated by means of a weighted average. A threshold for the final
quality measure is used to pass some vectors, fail others and mark the remainder
for manual assessment. During manual quality control, in addition to assessing
the vectors marked for manual sorting, rejected winds can be reinstated and
accepted winds deleted. It is worth noting that the use of continuous outputs
from the quality tests makes them suitable for combining using a fuzzy system,
e.g. to prototype new quality measures or determine the most appropriate weights

for each quality measure.

Gértner [39] discusses the moves towards full automation of CMW generation by
EUMETSAT, by making the consistency checks (spatial and temporal agreement
of vectors) more rigorous, and by combining winds generated from all channels
into a single winds product, thereby ensuring cross-spectral consistency also. The
new Satellite Applications Facility at EUMETSAT also aims to provide greater
levels of vector interpretation for METEOSAT Second Generation (MSG) data,
in terms of identifying zones of interest such as the onset of convection and shear

structures, although no proposed approaches for this have yet been identified.

2.2.3 NOAA / NESDIS

An additional significant source of error from the NOAA GOES platforms results
from their use of a 3-axis stabilised satellite, rather than the spin-stabilisation of
both GMS and METEQOSAT. 3-axis stabilised platforms are subject to differen-
tial heating, resulting in degraded image navigation, i.e. poorer co-registration
of images. An automatic image registration stage is applied to GOES data us-

ing landmark identification and matching. Cloud-free landmarks are able to be
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cross-correlated to a very high degree due to the prior knowledge of the landmark
shape and the spatial agreement necessary between all landmark correlations.
Brown [12] gives a thorough review of image registration techniques. The regis-
tration error is still significant in Southern Hemisphere GOES-9 data, however,
where there are few cloud-free landmarks available for registration. Instrument-
induced errors are not discussed any further in this thesis, but Diekmann [30]
provides a useful overview of the typical geometric and radiometric errors and

their treatment for METEQSAT satellites.

Quality control has been fully automated in the NOAA / NESDIS product since
1994 (Menzel et al [69]). Since late—-1997, a new high density wind product has
been generated operationally (Gray [43]), with about ten times as many vectors
as the standard approach. GOES-8 and -9 have also been collecting a number
of special imaging sequences at down to 30-second time resolution, mainly of
hurricane data, from which high temporal resolution cloud motion vectors have
been generated, aimed at improving wind information from hurricane regions
where the standard 30-minute temporal resolution is too crude for the cross—

correlation technique (Purdom [81]).

2.3 Need for Improvement

In light of improvements to numerical weather models, new sources of wind data
and new forecasting tools, the satellite wind community held its first independent
meeting in 1991 to identify and address the changing needs and uses for satellite
wind data (EUMETSAT [33]). Some of the needs for improvement highlighted
by the community (EUMETSAT [33] [34] [35]) are given in Table 2.2.

Butterworth [19] gives a similar review of the UK Meteorological Office’s recom-
mendations for changes to satellite winds. Much recent work has been targeted
at improving height assignment of cloud motion winds, with significant improve-
ments having been achieved for semitransparent and subpixel cloud using the

difference between infrared and either water vapour or CO, absorption channel
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1. Improved height assignment for cloud tracers (the major problem, especially
near jetstreams).

2. Reductions in RMS error of the vectors produced, to the WMO target of
1-2m/s.

3. The need to address the assumption of cloud as a passive tracer for the
wind: Cloud motion vectors are not always representative of the windfield.

4. Better and different validation techniques.
5. Better and different quality indicators.
6. Changes to current data collection schemes to include rapid scans.

7. More information about the meteorology local to tracers, to help identify
their cause or at least their usefulness.

8. Some discussion as to whether model data should be used as a first guess
for improving cross—correlations.

9. Better use of satellite winds by the user communities.

10. The need to develop other uses of cloud dynamics, many of which have
already been identified.

Table 2.2: Some of the requirements for change in satellite wind data as high-
lighted by the Satellite Wind Community in its past three workshops
(EUMETSAT [33] [34] [35])

data. In addition, a growing number of studies have used spatially and temporally
collocated geostationary and polar orbiting satellite image pairs to improve cloud
height assignment using stereographic matching techniques. The difficulty in col-
locating the different sources of image temporally and registering them to the
same projection is significant, however. More success has been achieved using
the overlapping regions of neighbouring geostationary satellites, whose projec-
tions are more easily co-registered due to the fixed view of the satellites, and

whose data collection cycles are temporally collocated.

Many of the remaining issues of concern relate to the lack of meteorology in the
current approach. Without some understanding of cloud dynamics incorporated
into the vector extraction technique, the suitability of any tracer for any specific

task cannot be assessed automatically. Unless the cause of cloud motion can be
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identified at least in part, no appropriate validation can be performed. If the
generated vectors are not compared to motion data of the same scale or do not
track the same meteorological phenomena then the comparison is at best difficult
and at worst not valid. The main source of ground truth is rawinsonde data from
weather balloons, which are generated from the change in horizontal position of
the balloon during its ascent, as reported by onboard inertial guidance or ground-
based tracking. This is effectively a point measurement of the windfield through
the atmosphere, and is indicative of the local winds about the balloon’s ascending
track only. In steady conditions, the data can be accepted as good estimates for
the windfield over a large area, but atmospheric turbulence can vary significantly,
both vertically and horizontally. Without any means of measuring this on the
radiosondes, the usefulness of these point measurements for assessing the accuracy

of much larger mean flow measurements must be limited.

Other sources of ground truth data include ASDAR! and ACARS'? aircraft

reports of winds, ground-based stereographic cameras and model data.

ASDAR and ACARS are a useful source of wind information, but have two signif-
icant limitations: wind data are only available along aircraft tracks, and aircraft
do not tend to fly through cloud for extended periods of time. Tracking clouds
from satellite images over land is complicated by the variability in the background
appearance and temperature, and satellite motion vectors over land are therefore
taken as less reliable, when they are used at all. Since the majority of flight time
through cloud is on ascent and descent from and to an airport, the usefulness of
ASDAR. / ACARS for verifying cloud track is limited. Morone [71] provides a
review of aircraft wind data and details the error sources and degree of spatial

and temporal data averaging from the technique.

Stereographic ground-based cameras provide local estimates of cloud motion.
Comparisons between these motion estimates and satellite data are potentially

simpler than for other validation sources in that both provide indications of cloud

11 Aircraft to Satellite Data Relay
12 ARINC [Aeronautical Radio, Incorporated] Communications Addressing and Reporting

System, which transmits data directly from aircraft to ground stations
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motion rather than wind. The main limitations are the amount of coverage possi-
ble with stereographic cameras, typically over land, and the necessary assumption
that the top and bottom of the cloud is showing the same type of motion, which

is not the case for many cloud dynamics.

Using predicted winds from numerical models to validate cloud motion winds
is controversial and causes concern due to the fact that the validated CMWs
are then fed to the model as inputs. This coupling between input and output
data would normally be unacceptable, but due to the lack of sources of ground
truth and the complexity of the atmospheric models, this is accepted practice.
Models reject data that are significantly different from their predictions in any
instance, however the differences between models both of different scales and
run by different communities globally can be significant. Any quality control of
vectors using one model prediction only may therefore bias other models using

the same vectors towards the same solution.

More serious, however, is the use of model data in generating cloud motion
vectors, as per the NOAA / NESDIS autoeditor (Schmetz [86]). The centre of
the cross-correlation template matching windows are selected based on model-
predicted wind vectors. Whilst this is a weak link between model input and
output, this approach could bias the correlation match incorrectly where the
model is incorrect. Since inputs are most critically needed when and where the

model is in error, this has potentially serious consequences.

At the first International Winds Workshop, Schmetz [85] reported that the nu-
merical modelling community had improved their models since the introduction
of CMWs to a stage where the impact of satellite wind data was not very signif-
icant, i.e. the forecast winds from the models showed little or no improvement
when supplied with the cloud motion winds. Forecasters similarly rely far less
on satellite derived wind observations due to their tendency to have clusters of
errors, incorrectly assign heights and underestimate fast moving airmasses (But-
terworth [19]). Kelly [53] has more recently shown the influence of each of the

different sources of wind information on the ECMWE model forecast, and has
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produced a mixed picture of the benefits of cloud motion winds in the presence of
other satellite and/or radiosonde data. Different quality indicators, independent

of validation sources, are still however needed to assist in good vector selection.

It is worth discussing briefly the nature of the measurements of wind listed above
for completion. The rawinsonde and ASDAR / ACARS data are a measure of
windspeed. The aircraft measurement is collected at the operating speed of the
aircraft, and is fairly immune to small-scale variations over hundreds of metres.
The rate of climb / descent of the aircraft is slow relative to the wind mea-
surement, therefore the data can be taken as a mean single-layer estimate of
wind for every point at which a measurement is taken. Rawinsonde data depend
on the weather balloon acting as a passive tracer for the wind. The balloon’s
buoyancy causes a strong vertical ascent, but the horizontal momentum of the
atmosphere at any level is able to be recorded by the degree of horizontal dis-
placement through the ascent. This involves averaging horizontal displacement
over some vertical extent, but this is of a much smaller scale than the equivalent
aircraft data. Ground-based stereographic cameras and Satellite-based cloud mo-
tion winds 12 track clouds. The conditions necessary for clouds to be good tracers
for wind have already been given (Table 2.1), but the motion of clouds is of in-
terest independently of the wind information it contains: cloud dynamics have
produced some significant impacts to hurricane forecasts and tropical weather
analyses (Velden [105] [106]), for example. Finally, model data provide a magni-

tude and direction for the dynamics of the atmosphere at every grid point.

Clearly grouping all of these motion types under the heading wind is not con-
structive, especially now that the issue of passivity for cloud tracers needs to

be addressed for further improvement of cloud motion wind data. Mahrt and

13 The use of the term Cloud Motion Wind is restricted to visible and infrared channels, where
the structure being tracked is able to be interpreted as a cloud. The newer Water Vapour
channel vectors are called Water Vapour Motion Winds, to signify their significant differences,
essentially acting as deep layer mean motions. More recently, the term Atmospheric Motion
Wind (AMW) has cropped up in the literature. The author believes that this still confuses
the scale of motion detected, and the concept of atmospheric motion at synoptic scales should
avoid use of the term wind, which is most commonly used for local and mesoscale phenomena,
and should be restricted to this use for clarity. This debate does not address the other types of
motion captured by these metrics (such as cloud motion not driven by the wind) that should

be described separately again.
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Sun [68] have considered the problems of scale-dependence of motion data for
modelling and comparing models of different spatial resolutions. For example, in
a region where average flows are weak at a large scale, there may be significant tur-
bulence disguised within the averaging at a mesoscale that reduces the usefulness
of the large scale analysis for local areas and vice—versa. Stohl et al [95] propose
a method for overcoming this to some extent by interpolating low-horizontal—
resolution vertical wind profiles using a high-resolution horizontal wind profile at
a single level as a seed to provide high resolution profiles at any height. This does
not address the issue of combining different descriptions of wind motion, however,
such as imprecise knowledge of the development of a weather system and an array
of anemometers providing small-scale details of wind motion. Ray [83] presents
a spatial and temporal definition of various meteorological phenomena ranging
from macro scales (of the order of tens of thousands of kilometres and months)

to micro scales (of the order of metres and seconds), including wind phenomena.

2.4 Active Research

A variety of changes and new techniques have been and are being explored to
overcome the problems of the current approaches to cloud and atmospheric mo-

tion analysis from satellite image sequences. A review of this current research is

given briefly, by field.

2.4.1 Water-Vapour Winds

Water vapour structures were first tracked over sequences of images using WV
images from the Temperature / Humidity Infrared Radiometer aboard NIMBUS-
5(Kastner et al [52]). Due to the complexity of water vapour motion, the devel-
opment and operational acceptance of a WV wind product has been a piecewise
process. Initial studies considered the cloud-like components of the imagery, and
high-level motion analyses. Mid-level motion was first discussed by Eigenwillig

and Fischer [32], where small-scale structures in cloud-free zones were success-
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fully tracked. Laurent [60][61] considers the specific properties of water-vapour
data and the requirements for preprocessing. The results of the first study led to
the use of the standard cross-correlation approach to cloud motion analysis being
applied to water-vapour motion too, as detailed in Laurent. Height assignment
techniques for water-vapour structure tracking are described in Biiche et al [16].
The main advantage of tracking water-vapour structures over the visible and in-
frared counterparts is that they exist in cloud-free regions. The main difficulty of
water vapour motion interpretation relates to the fact that water vapour struc-
tures are typically far deeper than clouds, and therefore their motion represents

a very deep mean layer motion.

2.4.2 New Sensors

Interest in high resolution visible data has increased, despite the difficulties con-
cerning changes in cloud representation with solar zenith angle, and the daytime-
limited collection period for visible data: The use of high resolution METEOSAT
imagery has provided significant improvement in the yield of low-level information

from satellite winds (Ottenbacher et al [78]).

An important improvement to reduce errors locally without changing current
wind analysis techniques is to change the satellite radiance data collection schemes
to include rapid scans at 15 minute temporal resolution or better over areas of
meteorological significance. This is particularly useful in light of the new plat-
forms and sensors that are now able to offer temporal resolutions at significantly
better than 15 minute resolution (indeed up to 30 second resolution for limited
area scans), at up to 1km spatial resolution. Stable methods able to handle this
resolution of analysis will be needed to process the quantity of data expected in
the next few years. Swadley [97] discusses a non-correlation-based approach to
analysis of GOES rapid-scan data, using template matching numbers, or the se-
quential similarity detection algorithm, where the absolute difference in greyscale
between pixel values in a template and possible matches within a search area

give good performance for 1km data. An ability to generate variable resolution
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vector fields may also be of interest, for example to analyse severe weather more
densely than the background weather pattern. Another major concern with the
new sensors, however, is management of the data collection to optimise the use

of rapid scans, particularly to meet the needs of many different end users.

2.4.3 Height assignment

An area of concern regarding height assignment of cloud tracers which has re-
ceived much attention is that of semitransparent or sub—pixel cloud. Typically in
the case of sub-pixel contamination of a low cloud from a thin higher-level cloud
input, the underlying cluster is assigned too high a pressure altitude. Conversely
semitransparent cloud is typically assigned too low an altitude. This has been
addressed to some degree by the C'O; slicing technique (Susko and Herman [96]),
which also helps identify regions of strong vertical shear. In the case of ME-
TEOSAT data, the difference between infrared and water vapour data is used
to identify where cloud may be semitransparent or subpixel, as opposed to IR
and CO2 data. This is also similar to the JMA application of the difference in

brightness temperature for identifying cumulonimbus.

On a slightly different issue, Kishtawal et al [57] apply complex empirical or-
thogonal functions (EOFs) to determine vertical wind profiles from cloud motion
vectors by analysing the vectors over dense radiosonde station areas. The use of
the EOFs gives reasonable performance where two or more levels of cloud mo-
tion wind vector are available in a small area. Clearly an improvement in height

assignment of cloud motion vectors would improve this performance further.

2.4.4 Smoother cross-correlation

Correlation-relaxation approaches provide smooth vector fields typically by ap-
plying spatial or temporal constraints on correlation peak selection, resulting in

the most appropriate correlation peak being selected, rather than the maximum.
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A good introduction to relaxation labelling techniques can be found in Hummel
and Zucker [51]. Wu et al [112] introduce a correlation relaxation approach for
analysing sea surface velocity vectors. In Wu [111], a fast relaxation algorithm
applied to cloud motion is demonstrated. Co6té [24] describes a new approach
to correlation relaxation using a Hopfield neural network to select the optimal

correlation surface peak to give locally smooth vectors.

2.4.5 4D Variational Assimilation

The newest techniques in numerical weather modelling involve direct assimilation
of satellite radiance imagery without any data preprocessing, allowing the models
to infer information as necessary, including dynamics information, from the raw
data. The data assimilation techniques can still make use of satellite winds how-
ever. In fact, according to Kelly et al [54] both more frequent production cycles
for satellite winds and greater knowledge of the nature of the motion measure-
ment (i.e. whether it is a deep layer mean motion or a shallow layer cloud wind)
would be particularly useful to the new approach. At their simplest, the varia-
tional assimilation techniques are optimal filters of weather data. Courtier [23]
and Lorenc [67] give a thorough introduction to the theory behind atmospheric
data assimilation, with the equations for 3— and 4—dimensional variational assim-
ilation (3-D and 4-D VAR) being provided by Courtier. Thépault [100] provides
details of the operational 4D-VAR. scheme as implemented at ECMWF, and
comparisons are drawn with the full extended Kalman filter. He argues that the
4D-VAR approach achieves similar results to the Kalman approach but at signif-
icantly less computational cost. He also justifies the use of linear approximation,
as perturbations at model resolution evolve approximately linearly over the 24

hours of the temporal assimilation. Andrews [2] provides similar detail for the

UKMO implementation.

Whilst it has been recognised by the modelling communities that satellite winds
still provide a useful separate input from the direct radiances, models are begin-

ning to address some of the more fundamental questions of cloud motion descrip-
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tion. It is increasingly necessary both to define the meteorology associated with
any particular cloud dynamic and to determine that component of cloud motion
independently of other motion components. In addition, radiance assimilation
has led to predicted radiance data. To determine the success of this to capture
the cloud dynamics at all the scales of meteorological analysis, some mechanism
to determine the dynamics at these different scales is required, both for validation

and as a potential new data source in itself.

2.4.6 Cloud Tracks

Work by Szantai and Desbois [98], and Raffaelli and Seze [82] has considered the
use of tracking clouds over longer time periods than the current image triplets
to produce more stable tracks of cloud motion. The current approach is subject
to greater error, but allows small-scale or turbulent flows to be captured. By
identifying the trends over longer series, different components of the cloud dy-
namics can be identified, however. Related to this is the determination of relative
motions, particularly storm-relative motion. For example, Kerr and Darkow [56]
have captured and removed the major motion component from thunderstorm
motion analyses, and have seen some pattern in tornado development locations
within the storm as a result. It is generally known that deformation zones, one of

the main mechanisms of cloud development, occur from flow relative to the mean

flow (Bader et al [5]).



3. PROPOSED CLOUD MOTION ANALYSIS

This thesis considers a number of the concerns of the cloud motion wind com-
munity given in Table 2.2. The principal topic of inquiry relates to the issue of
the suitability of cloud as a tracer for the wind. Rather than focussing on cloud
motion analysis with the sole aim of determining the underlying windfield, the
approach aims to describe the cloud motion itself as richly as possible, even the
components that are unrelated to the underlying wind. From this start point,
there is the possibility of determining the cause of any different motion behaviour
present, i.e. once a rich description of the cloud motion has been obtained, it is
easier to determine which if any of the components of that motion are due to the

underlying windfield.

New quality measures for wind data arise directly from this work, with an analy-
sis of the causality of cloud motion providing a suitability measure for using any
vector as descriptive of any particular type of dynamic, whether that be wind,
weather system motion or some other description of motion. In addition, by
providing a number of new measures of the motion of a cloud, the issue of data
validation is re-exposed. In itself, this is not of benefit, but by discriminating
between the different types of motion displayed by cloud, it is hoped that the
unsuitability of using point measurements of wind data for validating cloud mo-
tion winds in many instances will be highlighted. Clearly there is a need for a
greater number of independent validation tools, to validate each component of
the cloud motion identified. By suggesting spatial and temporal scales over which
the motion types act, and where possible identifying the meteorological cause of
the motion types, validation sources suitable for the scale and meteorology can

be developed.
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Whilst not proposing to offer any specific benefits for those charged with iden-
tifying suitable uses for rapid scans and novel data collecting schedules, it may
be possible to determine automatically which types of cloud motion have sig-
nificantly different dynamics components at different temporal scales, i.e. which

would benefit from greater temporal resolution, purely from a multi-scale analysis

point of view.

Any analysis of RMS error for the new motion vectors generated would require
careful scrutiny: In light of the previous discussion regarding validation sources,
it is not obvious what measure of error would be suitable. The potential for
identifying suitable and accurate vector representations of wind data from this
rich cloud motion analysis should result in a reduction in vector error, but such

work is beyond the scope of this thesis.

This thesis is therefore limited to introducing this cloud-centric analysis of mo-
tion in satellite imagery, and the mechanism by which the new measures of cloud
motion are obtained. The approach presented is justified with examples and
comparisons to other techniques where appropriate. Quantitative performance
analyses are generated for specific components of the approach. In addition, the
thesis introduces fundamentally new descriptors of cloud and parameters of cloud
motion, the benefits of which are discussed qualitatively. On more widespread
adoption of the fundamental concept of rich cloud motion description, it is pos-
sible that other techniques and methods will be identified as equally suitable for

each step of the analysis presented.

3.1 Motion-based Segmentation

The initial premise of this thesis is that fundamentally different types of informa-
tion regarding the motion of cloud in satellite image sequences can be obtained
from more than one set of motion analysis tools. The initial research in this
thesis considers the issue of segmenting the image data based on the suitability

of certain motion analysis tools to track any given region of image content.
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A top—down approach for processing the cloud imagery has been selected. Sonka
et al [94] describe top—down and bottom—up image understanding control strate-
gies in more detail. The main principle of top—down or model-based image pro-
cessing, however, is that it is goal-driven, imposing certain criteria on lower-level
processing. Intelligent computer vision systems are not restricted to top-down
analyses, and indeed there are good arguments for both approaches under dif-
ferent circumstances. Where a technique is applied to a variety of unknown or
widely differing problem spaces, bottom—up analyses allow hypotheses to be built
up from knowledge acquired directly from the raw data. Where the problem is
more fixed or known, as is the case here, using the available prior knowledge helps

remove spurious information and directs processing towards suitable values [7].

It is interesting to note that research into the mechanisms of Auman vision has
still to show conclusively whether our visual system uses a top—down or bottom-
up approach (or something in—-between, such as the feedback or heterarchical
approaches described in Banks [8]). Marr captures the contradiction by theorising
that human vision serves primarily to derive shape information, suggesting that
the edge, brightness, colour and texture etc. collected enroute are driven by
this high-level goal [42], yet the image filters he describes for the initial visual
field transform require little or no call on high-level knowledge [44]. Much active
research in the field of human vision follows the top—down analysis approach,
however, as it is widely believed that the wisual buffer! is left mainly unprocessed
until such time as information is required, when the data are processed according
to the task required (e.g. Kosslyn [58]). Whilst human vision systems should
not unduly affect the choice of approach for computer-based automatic image
processing, there is much active work on models of human vision processing that

provide inspiration for new computer algorithms.

Using form to derive motion information and vice-versa are both problems that
have a number of applications and coupling context / shape and motion informa-
tion is an area of active research. Weiss and Adelson [110] provide an introduction

to the types of problem with this coupling, and provide a framework within which

! The raw signal collected from the retina
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the two can be analysed simultaneously. In order to identify the different types of
motion in satellite image sequences, an automatic technique for segmenting the
image sequence by motion type has been developed. Two classes of algorithm
are of interest for this specific problem, namely fuzzy segmentation where regions
of imagery can be assigned a degree of association based on the degree to which
they display similar characteristics, and model based motion segmentation where
the motion displayed is matched to model motion types and successful matches
are used to segment the data. Multiresolution motion analyses provide a useful

starting point for this discussion also.

Dimitrova and Golshani [31] discuss the concept of a multiresolution hierarchy
for describing video content in spatial terms ranging from the pixel data through
objects and features to semantic descriptions of the image content, and in temporal
terms from pixel matching through to a semantic motion description. Given some
video data, a description of the motion in the data is built up across this known
hierarchy of analysis types. Any query is then mapped onto the most suitable
level of the hierarchy. For cloud motion analysis it is suggested that there is
a similar hierarchy relating to different types and scales of motion displayed by
cloud, from small local-scale phenomena to synoptic—scale atmospheric motion.
The nature of this hierarchy is not as clear, however. Dimitrova and Golshani
have effectively solved the reverse of the current problem: their system is used
to allow the known hierarchy of motion in video data to be mapped to a query
whose position in the hierarchy is unknown. For the cloud analysis problem,
the scale of the motion of interest is known (the query will typically request
knowledge about synoptic or mesoscale or local scale motion), but the nature
of the hierarchy of motion types in the data is not. Blostein and Ahuja [10]
provide a useful discussion of multiscale analysis for single image region detection,
where regions are segmented based on their textural uniformity. Uniformity is
determined relative to neighbouring regions or neighbourhoods to the identified
regions. The multiresolution aspect of the analysis is driven by the fact that small
uniform regions require comparison with correspondingly small neighbourhoods
with the analogous relationship for large uniform regions. In determining the

suitability of a motion analysis tool for tracking cloud, it is necessary to consider
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the spatial and temporal scales over which such an analysis is suitable. Indeed
the choice of parameters for discriminating between the suitability of the different

motion analysis tools is based on spatial and temporal variability in the data.

Multiresolution analyses are not suited to the analysis of cloud motion in two
fundamental ways, however. The analysis tool applied to cloud motion tracking
is different at each resolution, so, for example, where Blostein and Ahuja use the
same measure of uniformity over different sized neighbourhoods (see also Nam
et al [73], for example), in the case of cloud motion tracking a textural analysis
may be suitable for small scale tracking, but structure tracking is more suited
to lower—resolution analyses. Also the types of motion analysis to be applied to
the cloud data do not differ solely by resolution. For example, tracking small
cloud objects as structures and tracking texture windows are of approximately
similar scale, as are tracking the edges and medial axes of clouds, but each of
these techniques gives a fundamentally different viewpoint on the cloud motion,

providing different information.

The application of fuzzy logic for segmenting video data is a new area for re-
search and is novel in the field of satellite image analysis. Fuzzy logic has, how-
ever, been applied successfully to static image segmentation problems. Udupa
and Samarasekera discuss the fuzzy connectedness of image elements to define
fuzzy objects, a discussion which is revisited when considering extracting cloud
objects. Ghosh [41] similarly uses fuzzy sets on the output of a self organising
map for extracting objects from imagery. In addition, there have been a number
of applications of fuzzy systems for segmenting satellite data for describing land

use (an inherently vague concept), e.g. Lewis et al [65], [63].

Model based motion segmentation is an active area of interest primarily for movie
data analysis, where models of camera motion (pan, zoom etc.) are known. Torr
[102] uses three motion models? to segment features in a movie sequence where
the specific motion of the camera and the objects in the imagery is unknown.

Torr identifies limitations of vector clustering after image analysis and highlights

2 The correspondence between points in any two images conform to a fundamental matrix,
affine fundamental matrix or projectivity
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many more limitations specific to moving source and target problems.

In the case of cloud motion from geostationary satellite image sequences, the
viewing point is taken as fixed. This provides a much simpler starting condition
on which to base any motion analysis, as the motion of interest is confined to the
cloud data itself. In addition, whilst the suitability of the three different motion
analysis techniques to track different types of content in the image is not explicitly
known®, the nature of the motion analysis techniques themselves and the criteria
that affect their performance are known. The motion models therefore consist
of some representation of the abstract concept of the suitability of each motion

analysis techniques to track the phenomena under analysis.

Three complementary types of motion analysis tool were considered in this initial
research, all aimed at identifying the wind component of cloud motion. At this
stage of research, the accepted definition of wind was its widest possible defini-
tion, i.e. any atmospheric motion phenomenon from global scale to local eddy.
Object extraction and tracking applied to small open- or closed-cell cumulus (i.e.
small cellular cloud or cloud hole structures) gives details of the flow typically at
small to medium scales that is content—dependent (it requires knowledge of the
cloud content in the imagery to determine the location of small cloud cells and
cloud holes). Cloud edge tracking is most suitable for large cloud masses that
do not persist in a given region for a significant length of time (e.g. fronts that
translate across an image over a sequence), and uses extended content-dependent
features defined over a much larger scale than the other parameters. Texture-
based tracking, which provides knowledge of the flow in an image without using
any understanding of the scene under analysis, typically at small scales, is clearly
suited to regions where a strong texture gradient or variation is visible in the
imagery, but can also be used generically over cloud, where edge and object anal-
yses are inappropriate. It is uniquely suited, therefore, to regions where cloud
does persist in a given region for an extended amount of time. Many other mo-

tion analysis tools could have been selected for analysis, but these three capture

3 The selection of the three techniques was made using a binary decision on their suitability,
i.e. each is able to identify cloud motion to some useful extent, but the variation in that degree
of usefulness over the spatial and temporal extent of the image sequence is unknown
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different scales of motion and different dependencies on data interpretation, and
therefore provide an indication of how motion analysis algorithm suitability can
be used to segment image sequence data. Figure 3.1 illustrates the characteris-

tics of the three types of motion considered, and Figure 3.2 shows these in real

imagery.

(a) Textural (b) Frontal

(c) Small Objects

Figure 3.1: Sketch of motion types for segmentation (a) Texture tracking,
where for example the cloud sheet does not move significantly be-
tween timesteps, but the cloud tops within the sheet are buffetted
by the wind, (b) Frontal tracking where the cloud moves signifi-
cantly between timesteps and often changes shape and (c) Small
Object tracking, where individual small cloud structures can be
identified and matched.

For small object analysis, the strength of greyscale variation is an indication of
this suitability. In the case of texture-based motion analysis, the strength of
greyscale variation is important, but also the time—persistence of a high mean
greyscale (the presence of cloud). For frontal motion, a low time—persistence of a
cloud region is desired. Whilst these indicators of suitability do not capture the
complete requirements for successful application of any of the motion analyses
identified, they are indicative of the types of indicator that could be used for any

set of motion analysis tools.
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Due to the nature of the segmentation desired, a fuzzy output is almost essential
as any particular region of the imagery may be suitable for analysis by any of
the motion analysis tools under consideration. The suitability of applying any
tool to any given region of the imagery will similarly be a continuous rather
than discrete function. As motion is analysed at different scales by the different
motion algorithms, it is in fact likely that two or all three of the tools will be
suitable for analysing a given region of the image, though at their respective
scales. The motion types are clearly mixed, and there is no relevance in making
the suitability functions sum to unity, as there will be regions of the imagery
where none of the analyses are suitable and regions where more than one is
ideally suited. A fuzzy system with non-normalised outputs has been developed
to determine the suitability of these three motion analysis tools for generating

sensible cloud motion information.

Frontal Motion
Regions

Textural Motion
Regions

Small Object
Motion Regions

Figure 3.2: A sketch of a possible flowfield segmentation based on motion analy-
sis tool applicability for METEOSAT IR data (the particular satel-
lite image shown is from February 18th 1996 at 0030h).

The three tools selected are not the only possible ones for analysing the motion
of cloud, but are valid choices: texture analysis is uniquely used at present for
cloud motion analysis operationally, therefore has been selected by the operational

community as a suitable tool. Frontal analysis, or the analysis of large moving
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cloud bodies, is useful for studying significant weather phenomena and the onset
of vorticity / the formation of depressions. Their motion can be categorised as
that of a non-rigid body, and has a clearly identifiable whole body component
in addition to any smaller-scale internal components of interest. Small object
tracking again is useful for significant weather phenomena, although on a smaller
scale (e.g. storm cells), and tracking the feature can be directly related to the
meteorology in the region since the feature being tracked is a meteorological one
(as compared with the abstract concept of tracking tezture regions). Future work
in this field should, however, consider new parameterisations, e.g. in particular for
better description of frontal motion analysis. The skeletons generated later in this
study would provide one source of this information, and some work by Gamage
and Blumen [38] also suggests the potential for wavelet and fourier techniques
for such analyses. The concept of clustering or segmenting data based on their
suitability for analysis using specific motion analysis tools is new, however, and
the aim of this research is to prove the concept of such a segmentation. The
selected tools and indicators will be shown to have proved this concept later in

this thesis.

The questions raised by the concept of multiple motion analyses, identifying their
suitability in any particular instance and the mechanism for combining them gen-
erate a number of more immediate questions relating to the nature of cloud motion
at different scales. In particular, a careful examination of the term wind is nec-
essary once multi-scale analyses are embarked upon, and as a result of this early
study the term is redefined for the remainder of the research into the scale-specific
terms atmospheric dynamics for global and synoptic-scale phenomena and the
generic wind for local-scale motion. Whilst still unsatisfactory in many regards,
this initial recognition of the differences between atmospheric motion phenom-
ena at different scales is important. Ray [83] provides a very good definition of

spatial and temporal scales of many meteorological phenomena including some

wind-related phenomena.

In addition, the complexity of cloud motion itself as shown in satellite image se-

quences can be recognised as a direct consequence of this initial work. Subsequent
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discussion therefore focuses on mechanisms to capture this complexity in as much
detail as possible, and give some analysis of its causes from the perspective of the

different scales of atmospheric motion phenomena identified.

3.2 Cloud extraction

Identification of cloudy pixels and cloud objects is performed early in the process-
ing chain due to the potential gain from imposing such image knowledge. The
cloudy pixels contain all the information necessary to identify cloud motion, and
separating them from underlying data potentially reduces both computational
cost and errors from background noise by allowing analyses to be targeted at
the regions of motion (Banks [8] p234). In order to identify and track cloud
pixels and objects, prior knowledge of clouds can be used. This knowledge most
easily relates to large-scale information (likely dynamics of cloud structures, for

example) or image content (synoptic-scale cloud features).

In order analyse the motion of the cloud component, it is first enhanced. A
number of techniques are given in the literature for identifying cloud in satellite
imagery, ranging in complexity from simple thresholding techniques to radiance
modelling (e.g. Pankiewicz [79], Boekaerts [11] (the operational scheme applied by
EUMETSAT to METEOSAT data), Kelly [55]). Figure 3.3 shows the difficulties
with simple thresholding schemes for identifying the cloud content in an image.
A fast approximate identification of cloud regions can be obtained by comparing
the raw image data with a radiance template image of the underlying land and
sea, however, and this is sufficient for the purposes of an initial image filter. A
method for producing such a template using a simple persistence model of the
radiance of the land and sea over a few days prior to the image under analysis is

introduced later in the thesis.

Some smoothing of this initially filtered data is necessary to optimise the parame-

terisation of the cloud in a manner suitable for tracking its motion, both at differ-
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(a) High threshold (b) Low threshold (¢) Raw Image

Figure 3.3: Difficulty of single-layer thresholding for cloud extraction. Fig-
ure (a) shows the extracted cloud objects for a high single-level
greyscale threshold. The threshold has acceptably captured the
majority of cloud in the upper half of the image, but has missed
alot of cloud in the lower half. Figure (b) shows a lower greyscale
threshold, which has captured more of the cloud in the lower half
of the image, but results in non—cloud having been captured in the
upper half of the image. Figure (c¢) shows the raw projected data
for comparison. The imagery is METEOSAT D2 (infrared) from
August 27, 1997.
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ent scales and using different tracking mechanisms?. Clearly the appropriateness
of any given smoothing technique is driven by the selected parameterisations of
the cloud, beyond a certain level of smoothing appropriate for most parameteri-
sations of the data and for removing any noise in the data. Discussion of these

smoothing filters is therefore left until after the selection of parameterisations.

In order to parameterise the image cloud content®, it is first necessary to identify
and extract the clouds themselves. The methods for extracting clouds should
take into consideration the type of parameters to be used in analysing the cloud.
In particular, any smoothing or characterisation of the raw data performed in
object extraction should not be detrimental to the accuracy and performance of

the subsequent parameterisations, and indeed may be used to improve them.

As has previously been discussed in the context of motion-based image segmen-
tation, there has already been a large amount of research into image segmenta-
tion techniques. Reed and Hans du Buf [84] provide a good overview of texture
segmentation techniques and differences between region— and boundary-driven
segmentations®. Cloud analyses are often based on pixel—classifications of image
data into cloud type. Dewitte et al [28] provide a particularly interesting example
of this using greyscale morphology and various clustering and probabilistic tech-
niques to classify cloud data, which are combined using a fuzzy logic approach.
Other cluster analysis approaches to satellite data classification include Seddon
and Hunt [89] and Burrough [17]. Adaptations of image thresholding techniques
have been applied successfully to object extraction. In particular, Feher and
Zabusky [36] introduce a local filtering technique that allows coherent vortex

structures to be extracted from computational fluid dynamics flow analyses.

The most difficult aspect of image segmentation related to cloud extraction is
the ability to capture the imprecise edge of the cloud and the ability to identify

the vertical structure of the cloud to some extent. To generate any parametric

4 e.g. texture tracking and vector feature tracking

5i.e. content—dependent parameters such as cloud shape or size, as distinct from parameters
that do not require any prior interpretation of the imagery such as texture

6 Principally, looking for homogeneous regions then finding their boundaries, vs. looking for
the boundaries directly
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representation of the degree to which the edge of the cloud is dissipated, it is
necessary both to capture as much of the cloud edge as possible and to determine
the degree to which the edge is associated with the cloud core, where possible”.
Algorithms suitable for such analyses include snakes, clustering techniques and

multi-level thresholding.

Hashimoto et al [48] describe a sampled active contour model approach to seg-
menting images, where sample points along a contour line are moved by attractive
and repulsive forces towards the lowest energy state for each contour point. For
cloud analysis, the difference between weak and strong cloud edges is significant,
and the nature of a dissipated edge would require different active contour man-

agement to a crisp edge for successful cloud extraction.

Nichol and Fiebig [77] apply a multi-level thresholding approach to image seg-
mentation using a technique known as the binary object forest, where connected
regions are identified as objects and the change in objects with change of greyscale
at which the slice is taken vertically generates a connected tree of binary objects.
Nichol and Fiebig use the concept of a binary tree to analyse the motion in image
sequences by comparing the differences in the binary trees over time. Motion
is identified by areas of the image where the tree structure has changed. This
is particularly suitable for analysis of rigid body motion from a static camera,
where the rigid body moves a long distance between frames, but the background
does not change significantly. It is worth noting, however, that the binary object
forest provides a useful mechanism to describe the vertical variation of clouds, as

will be discussed later®.

Seddon and Hunt [89] use an unsupervised clustering approach for cloud segmen-
tation and highlight the need for good segmentation for cloud tracking problems.
Zhang and Postaire [113] propose an interesting addition to standard clustering
algorithms: to enhance the boundaries between clusters, they use morphological

erosion and dilation operators to enhance the modes and enlarge the valleys be-

7 A dissipated edge region is weakly associated with the cloud core, showing less association
across the region with distance from the core, and a crisp edge is strongly associated with it.
8 In particular with reference to the work of Peak and Tag [80]
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tween clusters in abstract data analysis problems. This concept has been adopted
in this work for prefiltering the cloud data. Meyer and Beucher [70] provide a
review of the direct application of mathematical morphology for image segmenta-
tion, using the watershed line. Such morphological segmentations are commonly
applied to geographical data, from which the approach has acquired its name.
Burrough and Frank [18] provide an excellent reference to geographical object
identification and handling, and many of the issues they discuss, related to vague
boundaries for geographical objects, are directly applicable to cloud objects too.
A number of approaches considered in Burrough and Frank for imprecise geo-

graphical objects use fuzzy logic and fuzzy system analyses to handle the inherent

vagueness.

Two approaches have been selected for this thesis, namely the use of a cloud
core extraction and fuzzy growth algorithm and a technique that analyses slices
through smoothed cloud data from the top down. This second approach doesn’t
identify clouds as structures, but provides vertical profiles of the cloud structure.
Peak and Tag [80] use a very similar approach to satellite image segmentation for

cloud feature interpretation.

3.3 Cloud Parameterisation

Cloud motion has been attributed with semi-rigid body motion characteristics
by human analysts to a much greater extent than other fluid motions: clouds are
identified as objects, the motion of collections of clouds are described as weather
system dynamics and even highly dynamic subcomponents of clouds, such as
storm cells, are identified and tracked as individual structures. Identifying an
appropriate representation to capture the semi-rigid motion characteristics for

each of these motion types is the domain of parameterisation.

The principal difference between each of these semi-rigid representations is the
precision with which they describe the cloud. Synoptic scale meteorology studies

atmospheric flows over thousands of kilometers, represented in cloud motion by
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the displacement of large cloud sheets. To determine such flows from the motion
of individual clouds requires stable centres for each cloudmass and a reduced
level of precision when describing the motion of those centres. This motion is
eztrinsic, i.e. it relates to the interaction between large cloud systems or between
a system and other global effects. Mesoscale meteorology in contrast concentrates
on phenomena that extend over hundreds of kilometers, such as cloud systems
displaying cyclogenesis®, and fronts. To analyse this scale of motion, time series of
shape and elongation information are necessary for each of the cloud structures.
This motion is intrinsic to the cloud in that it identifies the change within a
specific cloud object over time. It is important to distinguish mesoscale and local
scale phenomena, however. Mesoscale motion considers the development of a
whole cloud structure, where local scale motion captures change in a small portion
of the structure, at the order of a few pixels (tens of kilometers). Mesoscale
analyses must therefore be able to minimise the influence of truly local-scale
effects, whilst capturing the effects that grow large enough to affect the whole
structure. A related problem that is not tackled with current operational motion
analyses is that of motion underestimation near jet flows (e.g. the jetstream).
Here, the wind moves signiﬁca.ntly faster than the surrounding regions and any

cloud in the vicinity is cut by the fast flow.

Lewis et al [64] use shape characteristics such as area, edge eccentricity and
elongation to describe cloud shape for classifying the cloud. Chin et al [22] use
time series analysis (Autoregressive moving average) of morphological parameters
of clouds to determine properties such as cloud directionality, clustering and
cloud coverage, as well as to predict the trend of these parameters. Skeletons
or medial azis transforms are another standard technique for describing shape.
They provide a line representation of the shape under consideration, the lines
forming the skeleton of that shape (e.g. Meyer [91], Arcelli and di Baja [3],
Lam et al [59] (the comprehensive survey of thinning methodologies), di Baja

and Thiel [29] and Ge and Fitzpatrick [40]).

Analysis of the development of skeletons provides knowledge about likely develop-

9 In essence, the onset of a depression
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ment of large-scale systems: whether they are likely to develop, or to collapse on
themselves. Skeletons may also offer the potential to identify the onset of cyclo-
genesis: clouds in developing depressions typically undergo one of seven standard
shape changes, most typically from a leaf shape to a comma to a vortex (Bader
et al [5]). The skeleton of these three shapes is distinct, and the transition be-
tween states should be identifiable. This may require some analysis of skeletal
curvature to identify regions of increasing general curvature. In addition, fuzzy
skeletons can identify the degree of onset by the degree and direction of spread
of the skeleton through its transition. The development of a vortex from various

starting cloud configurations is described in Browning [14] and Bader et al [3].

It can be argued that human operators are very good at discriminating the dif-
ferent motion characteristics, and that an automatic system that is modelled on
a biological vision system may offer an optimal mechanism for identifying these
different characteristics. Many types of animal eye receptor cell axon respond to
spatial boundaries by an increase in pulse frequency on the lighter edge and an
inhibition of pulses on the darker edge, the pulse frequency therefore performing
a type of fourier transform of the visual input stimulus (e.g. Bruce and Green [15]
or Carterette and Friedman [20]). This in effect allows light gradient variations
both spatially and temporally to be analysed. The variation in light (greyscale)
gradient is of particular significance to the edge motion analysis problem. A crisp
edge to a cloud, where the gradient in greyscale is very steep, may signify a wind
flow parallel to the edge of the cloud, and thus crisp edges are good for identifying
jet flow locations. Similarly, dispersed edges with weak gradients must have some
component of wind flow across them, causing the dispersion effect. Cloud edges
and edge strengths (the gradient of the edge) provide lines suitable for tracking
cloud as structures. Crispness can be used as an indicator of the suitability of
edge motion for use as wind motion, and similarly crisp edge motion can be used

for describing weather systemn dynamics.

Due to the nature of cloud structures and the imprecision in defining an edge
to a cloud, a fuzzy system has been chosen to sign a degree of edgeness to the

cloudy pixels surrounding the core region of a cloud. The greyscale gradient for
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smoothed cloud data could be used directly as a measure of the association to
the cloud core. There are other factors, however, in identifying the degree of
association of a pixel to a cloud core. For example, the similarity in brightness
and the absolute greyscale of the pixel under scrutiny are all possible alternatives.
Combining these in a fuzzy system provides a measure of the degree to which the
pixels near the edge of the cloud are associated with the cloud core. A dissipated
edge region is loosely coupled to the core, whereas all cloudy pixels right up to a

crisp edge would be expected to have a high degree of association with the core

cloudy pixels.

3.4 Data Smoothing

The primary measure of structural stability for objects used in this study is co-
herence!®, as apparent from multiple greyscale thresholds of the objects. Two
smoothing algorithms are used to remove noise: a simple median filter removes
noise at the cost of reducing precision. For coherence and edge gradient preser-
vation, a novel filter based on the rolling ball algorithm has been developed.
Wang [108] describes a morphological-based filter for removal of small local min-
ima that uses some similar concepts. In contrast, Gupta and Knopf [46] describe
image enhancement algorithms for handling image imprecision by mapping the
raw pixel data onto an array of singletons on which the neighbourhood rela-
tionships can be analysed using a fuzzy system, prior to remapping the adapted

singletons back into a pixel array.

Cloud shape is arbitrary, therefore the skeleton of a cloud must capture the
significant structure (body and limbs) at the selected resolution under analysis.
It must similarly be stable to variation in cloud shape / content at smaller scales
and be robust enough to be trackable over time. The preprocessing performed
in object extraction assists in creating clean skeletons, and is seen as a necessary

component of skeleton generation, with particular regard to removing spurious

10 See Figure 5.5 for a description of coherence
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’holes’ in binary object representations (e.g. Arcelli [3]).

Although considerable work has been done in the field of grey-scale morphology,
the use of grey-scales in infrared satellite imagery primarily conveys height in-
formation'!. As such, 3-D morphological operations are more appropriate than
grey—scale algorithms. Fuzzy mathematical morphology allows the vagueness in-
trinsic in cloud structures to be captured and analysed, the primary difference
between this and grey-scale morphology being the fuzzification both of algo-
rithm and object. Fuzzy cloud objects have previously been described, but the
fuzzification of morphological algorithms is a new and subtle step (Sinha and
Dougherty [92]). It provides an approach for determining the degree of member-
ship of each standard morphological operator. The approach taken by Sinha and
Dougherty is that of finding a degree of subsethood. Chou et al [23] use morpho-

logical filtering (dilation / erosion) to remove small-scale variations in Landsat

data.

3.5 DMotion Analysis

Motion analyses can be split crudely into optical flow and related techniques and
feature matching. Optical flow approaches use a change-constrained algorithm
that considers a patch of image radiances as they are displaced a distance (éz, dy)
in time §¢, where it is assumed that the radiance patch does not change over the
timestep. Feature or parameter matching techniques, in contrast, use metadata
derived from the raw radiances and match the metadata over time. Vega—Riveros
and Jabbour [104] and Aggarwal and Nandhakumar [1] compare these two fun-
damentally different approaches to motion analysis and highlight the advantages

and disadvantages of each.

The constraint of consistency on the radiance patch under analysis over time in

11 Transforms between radiance grey-scale, temperature and height are possible via
temperature-pressure profiles from sources such as sounder measurements or numerical weather

models
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optical flow techniques typically limits its application to nonrotating rigid bodies
or imagery that is updated at a high temporal rate relative to the visible motion
and as a consequence is not ideally suited to cloud analyses. Parameter matching
requires suitable parameters, as previously described. A third class of algorithm
consists of approaches that combine segmentation and tracking. These are nu-
merous, for example active contour analyses are commonly applied across image
sequences. Leymarie and Levine [66] provide a thorough introduction to using
active contours for segmenting and tracking objects, and discuss their limitations
too. Delagnes et al [26] discuss their application on complex backgrounds, such

as would be encountered for cloud tracking in IR imagery.

To match the parameters selected in this thesis, distance measures and other
topological metrics can be used. The vector joining successive skeleton points
is determined using a nearest neighbour approach, where a circle centred at the
starting point or the point under consideration on the skeleton in the first frame
of the sequence is grown until it touches the skeleton in the next time frame
(Figure 3.4). The vector joining the circle centre to the touch—point then defines
the match. Where the circle from the starting point touches more than one next
position, the mean direction is selected for the touching vector. Cloud edges
are analysed similarly, only edges are matched based both on proximity to each
other and relative membership to the associated cloud core, so that crisp edges

are matched identically to skeletons, but dispersed edges are matched at each

level of dispersion.

This approach has a number of potential risks and causes of error (see also Fig-
ure 6.4), but its performance on sparse skeletons and edges is sufficient to provide
accurate matches in a majority of cases, and shows the potential of the selected
parameters for describing the motion of clouds. Since this aspect of the research
has been performed to allow the benefits of the rich parameterisation of the cloud
to be highlighted, this initial level of line matching algorithm suffices. A discus-

sion of the sources of error and simple enhancements to address these is given in

Section 6.2.
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Key to Skeletons:

Last Time-Frame

=~ This Time-Frame

Figure 3.4: A simple nearest neighbour approach to skeleton matching. A circle
centred on a point on the skeleton from the last time frame is grown
until it touches the skeleton in the current time frame. The line
joining the circle centre to the point on the circumference is the
match vector. See also Figure 6.4 and Section 6.1.2 for a discussion
of the limitations of this approach and methods to overcome them.
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By using the different parameters described, more of the cloud dynamics are
captured than any single parameterisation can offer. This allows the motion to

be described at different scales and is the starting point for analysing motion

causality.



Part II

METHODS



4. FUZZY MOTION SEGMENTATION

A number of simplifying assumptions have been made in segmenting a moving
scene according to the appropriateness of the motion analysis tools applied. Tex-
ture tracking, small cloud tracking and frontal analysis are assumed to capture,
or at least be indicative of, the main motion types present in the satellite im-
age sequences. Texture tracking algorithms have been assumed most appropriate
within cloud regions. Whilst the greyscale gradients are strongest at cloud edges
and strong gradients improve correlation, cloud edge motion is not indicative of
the wind flow in a cloud®. Small objects have been associated with regions of high
textural variation, and this has been taken as the only indicator of suitability for
small object tracking techniques. The appropriateness of frontal system motion
analysis has been determined by identifying cloud regions which do not persist
in one place over a prolonged period of time. Figure 3.2 provides an indication

of the types of region the segmentation should identify.

The image data used in this study have been obtained from Nottingham Univer-
sity’s METEOSAT data archive?. Current images are available in Graphics In-
terchange Format (GIF), whereas archived data are stored in Joint Photographic
Experts Group (JPEG) format at a lossy level of compression. In order to col-
locate imagery with other data sources, archived data have been used widely in
this work. Appendix B details the differences between the image formats and
gives examples of the degradation. The Nottingham data which are publicly dis-
seminated by EUMETSAT as their standard WEFAX format are also contrasted

1 At this stage, the distinction between the different scales of cloud motion is not being made,
therefore the requirement for tracking the wind component of the cloud motion is less restrictive
here than in subsequent chapters. It is used here to mean local scale phenomena and weather
system motion.

2 http://www.nottingham.ac.uk/meteosat
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against raw image data available intermittently from Dundee University’s Re-
mote Sensing Resource Centre®. National borders and latitude-longitude marks
are pre-superimposed on the Nottingham data. These have been removed using a
border mask template to identify the location of border pixels and mean filtering

across the border neighbours.

The underlying factor that remains in the approach is the necessity for different
motion analyses to be applicable in overlapping areas. For example, cloud in a
frontal system gives a good indication of the frontal dynamics in the region. Local
winds in the neighbourhood of fronts are typically prone to significant variation,
however, therefore strong textural markings related to convective structures on
the leading edge of the front may act as good wind tracers. The edge of the front
will therefore be a rich source of information for two distinct types of dynamic,
and as such will require both motion analyses to be applied. As a consequence, a
fuzzy motion region segmentation algorithm has been developed and applied to

sequences of satellite data.

4.1 Data Preparation

Due to the nature and source of the imagery, it is first necessary to remove the
country border and marker data added by EUMETSAT prior to dissemination.
Having removed the borders and markers, suitable parameterisations are used to
discriminate between the types of motion identified in the imagery, before passing

the parameters to a fuzzy system that determines the degree of suitability of each

analysis.

4.1.1 National Border Removal

In the case of METEOSAT, the data from the satellite are first received by

EUMETSAT in Darmstadt where national country borders and position crosses

8 http://www.sat.dundee.ac.uk/pdus.html
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are added prior to retransmission to the satellite for dissemination. Public data
archives store this disseminated data, requiring the borders etc. to be removed

prior to analysis.

A template of the location of the borders and markers was produced manually
from a METEOSAT D2 infrared image whose border regions were distinct. The
thickness of the border region was made one pixel wider than the identified bor-
der? to account for any border misregistration or border template alignment vari-
ation up to a magnitude of one pixel in any direction. This increases the number
of pixels in the edge region, but ensures that any possible pixels contaminated

with border or marker greyscales are suitably identified (Figure 4.1(b)).

The pixels in the border and marker region are replaced with the median value
of the immediate neighbours to the edge (Figure 4.1(d)). Whilst these pixels
do not contain valid data for analysis, larger-scale analyses that are unaffected

by pixel-scale errors are possible as a result of such smoothing. The smoothing

algorithm applied is given in Equation 4.1.

S(z,y) = Xn(z,y,0), the median of X(z,y, ) (4.1)
where
S(z,y) = smoothed border pixel value

X (z,y,d) = The set of non-border pixel values at a distance § from (z,y)

¢ = the minimum value for which X (z,y,d) # 0

The algorithm was coded in C++ and the border template accuracy and me-
dian filtering was validated against a number of different METEOSAT images

by checking for missed or inappropriately replaced border pixels. The compu-

4 In an 8—connected sense, 8—connected referring to the fact that all eight neighbours of an
identified marker point were similarly marked as marker points. This contrasts, for example,
to 4—connected regimes where only the pixels above / below and left / right of the pixel under
concern are analysed, or weighted schemes where the diagonally—connected pixels are marked

for partial smoothing only.
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tational cost of this algorithm was found to be negligible® for METEOSAT D2
images when run on a machine with a 150MHz processor with 64Mb of RAM
running Windows N'T 4.0.

(c) Border Removed (d) Border Smoothed

Figure 4.1: (a) Raw Image Data, (b) The border template image for ME-
TEOSAT D2 imagery, (c) The border region is marked in black
prior to (d) smoothing. The image shown is a METEOSAT D2 IR
image from 0500 on July 16th 1998.

5i.e. less than 5 seconds
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4.1.2 Parameter Generation

Three parameters were chosen to differentiate between the regions suitable for a
frontal motion analysis technique, those suitable for textural analysis and those
containing small objects. To identify the degree of texture in a region, a spatial
grey level difference vector was used. This indicates the degree of homogeneity
in greyscale across a region of pixels. In the case of small cloud objects, this
texture measure shows a lack of homogeneity, and within an extended cloud
sheet there is a high level of homogeneity. To determine the time-persistence of
cloud in a region, a temporal grey level difference measure was used, which rather
than comparing the greyscale of a pixel with its spatial neighbours, compares
its value over time. A thresholded measure of greyscale itself was also used for
easy identification of cloud core regions and more ambiguous cloud edges, low
cloud and thin cloud. The parameters used to generate this initial motion type

assignment were as follows:

Thresholded Raw Image Data: The image was high-level thresholded using
a context-dependent (underlying land / sea) threshold mask (see Figure 4.1(b)).
A threshold of 135 was found to be appropriate for most conditions over land.
Land temperature changes by a much greater degree over time than sea, and
since the complexity of the land data is much greater than sea data, a relatively
high threshold was selected to ensure that all the content classified as cloud over
land was correctly identified®. The sea is a significantly more stable background
against which to identify cloud, and as a result, a context-dependent threshold
over the sea was used to try to extract as much of the cloud content as possible.
The threshold is offset from the sea mean greyscale by an amount equal to the
difference between the land mean greyscale and the fixed land threshold. Due
to the large expanse of typically exposed land over North Africa, the land mean
was mostly lower than the sea mean: this resulted in a higher pass threshold
for cloud over the sea. At the hottest point in the day, the land mean is at

its most different relative to the sea mean, but also the sea surface is slightly

6 Although consequently some cloud may be missed.
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warmer than, for example, in the middle of the night. The greyscales of the
high-pass thresholded data are not subsequently stretched to enhance the cloud
data any further. It is important to note however that only a crude measure of
the location of cloud was required in this initial work, and significantly better
cloud extraction tools using background suppression and cloud enhancement are

presented in Chapter 5. The radiance data are on a greyscale of 0 to 255:

135 land
T hreshold = > over fan (4.2)
135 — (land pizel mean — sea pizel mean) over sea

Temporal Grey-Level Difference: The pixels immediately surrounding the
pixel under analysis over the twelve hours prior to the current frame are analysed,
providing a measure of the degree of temporal homogeneity in greyscale in the
region of the pixel. The probability distribution of the difference in greyscale
over a timestep, fss(k), is generated for the 20*20 pixel window around the pixel
under analysis over the twelve hour time period, giving a measure of the likelihood
that the pixel greyscales in that region will have changed over time. Clearly the
length of the time frame over which the temporal homogeneity of greyscale is
measured inﬂuences‘the result of the analysis. The intention of this parameter
is to differentiate between the motion of weather systems and convective cloud
sheets, therefore the time frame must be sufficient for significant motion of a
weather system within the spatial frame of view. In twelve hours, most weather

systems are able to travel a significant portion of the frame of a D2 METEOSAT

image.
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-1 9 255
t=—24 Lasi=—10 g_—wz kf&(z,y ()

24 % 400 * 256 (4.3)

TGLD =
where
(7,7) are pixel co-ordinates relative to the pixel concerned
k is the greyscale
t is the timestep in hours
fs(a),0(k) is the probability distribution of AGS(dt)
at spatial separation §(z,y) =0
i.e. the probability distribution of the change in greyscale over time ONLY

AGS(6t) is the difference in greyscales across 1 timestep

Spatial Grey-Level Difference: This is a standard measure of spatial greyscale
homogeneity

Z?:-m ]‘—-10 2255 kF&B( )
(4.4)
400 = 256

where all parameters are defined as per the time grey level difference except

SGLD =

Fisg(k) is the probability distribution of AGS(d%) at spatial separation é =1

and angular separations of 4 = 0°, 45°, 90° and 133°

As can be seen from comparison between Figures 4.2 and 3.2, the chosen pa-
rameters are able to discriminate between the three desired region types and the
background. The thresholded image is a crude measure for removing land and sea
pixels from an image selection. The time grey-level difference parameter shows
clearly the time persistence of the lower region of cloud, compared to the moving
frontal cloud. The spatial grey-level difference parameter enhances the regions
of strong texture, which are indicative of areas containing many small clouds in

close formation.

The parameter generation routines were written in C+-+ and run on a computer
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(a) Raw Data (b) TGLD

(c) SGLD

Figure 4.2: (a)Thresholded Raw Image Data, (b)Time Grey-level Difference
and (c)Spatial Grey-level Difference parameter sets.

with a 75MHz processor and 60Mb of RAM. The Time Grey-level Difference pa-
rameter took of the order of one hour to generate for the sequence of twenty—four
800 * 800 pixel METEOSAT D2 images. Newer processors and more memory
would enable this computational cost to be reduced to a level where the param-
eters could be generated well within thirty minutes, which would be required

operationally to make use of the full thirty minute temporal resolution of the

data.
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4.2 Fuzzy Systems for Motion—-Type Segmentation

The fuzzy systems for associating pixel regions with object motion types consist of
sets of if-then rules relating the input parameters to degrees of membership of the
motion types. Each rule has a confidence which defines its significance compared
to other rules relating to the same output. The output of such a system consists
of degrees of appropriateness of the chosen output labels to the data applied.
Four fuzzy systems were used, one for each flow type (frontal, textural, small
object and background). The algorithm used in the fuzzy systems in this thesis
is given in Table 4.17. In all cases a product operator was used for the T-norm,
a maximum operator for the S—norm and a sum operator for the aggregation.
The output memberships were taken as the centroid membership value(s) of the

resulting consequent(s).

To illustrate the function of the system, the generation of frontal motion mem-
bership for pixel regions will now be analysed more closely. The frontal motion
identification system used the time grey-level difference parameter and threshold
parameter. Three labels were defined for each of the system inputs and two for

the outputs, as shown in figure 4.3.

Having assigned any given data point to one or two labels for each parameter,
the rules relating to those labels were activated, and the association to output
membership was made. The output was generated from a combination of the
active rules, based on the degree of membership of the input labels in those
rules and the associated rule confidences. The rules for the fuzzy system for
frontal analysis is given in Table 4.2 as an example. The basis function greyscale

transition points and rule confidences were deduced empirically as optimal from

repeated testing.

7 For a more detailed discussion of fuzzy systems, T-norms, S-norms and other fuzzy system
operators, see Chi et al [21]
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1. For all inputs, work out which rules are active based on mapping inputs to
rule antecedents (the IF clauses). To do this, for each input z, determine
whether in any of the fuzzy sets A in the universe of discourse X there is
a non-zero membership function p4(x) in the ordered pair A = (z, pa(z))
indicating z has some degree of A-ness. The memberships of each rule

antecedent are the resulting values of pa 5, .().

2. If there are multiple antecedents in an active rule, apply the appropriate
fuzzy logic operator to combine antecedent membership functions into a
degree of support for the rule. For AND functions (IF A AND B...), typ-
ically combine the memberships of each antecedent using a minimum or
product operator, the T-norm. For OR functions (IF A OR B...), combine
memberships using a maximum or probabilistic OR operator, the S-norm
or T-conorm. If for example fuzzy sets A and B are active in a rule, the
combined rule antecedents would be:
panp(7) = T(pa(z), pa(2)) = pa(z) ® pp(z) or
ptaup(z) = S(pa(z), ue(2)) = pa(z) @ pa(2)

3. Use the degree of support for the rule antecedents to truncate the rule con-
sequents (The THEN statements). If the combined rule antecedent support
for example is 0.4 then the support function on the output space for the
consequent(s) in the active rule is (are) truncated at a value of 0.4.

4. Combine rules for each consequent using the selected aggregation method
(the maximum or sum of truncated outputs) and rule confidences.

5. Select the output class from the aggregated output for each consequent
using the selected defuzzification method (calculate the centroid, bisector
or other moment of the aggregated truncated support functions).

Table 4.1: Algorithm for a fuzzy system

4.3 System Qutput

Figure 4.4 shows the identified motion type applicability for the data, as generated

by the fuzzy systems. The lighter pixels depict greater relevance of that motion

type to the region.

The system has identified the weather system in the upper half of the image
as suitable for frontal analysis, although its performance is potentially the least
successful of the four outputs. The area of cloud identified as suitable for frontal
analysis within the extended cloud sheet over Africa, however, was a fast mov-

ing core that had clearly defined boundaries that would have been suitable for
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Figure 4.3: Frontal feature identification fuzzy system. To identify frontal fea-
tures, the Time Grey—level Difference (TGLD) and Cloud Thresh-
old parameters are used. Regions with a low TGLD and high

greyscale in the thresholded image are typical of frontal cloud.

Table 4.2: Fuzzy rule bases for motion—type image segmentation.

IF THEN Conf.
Threshold Parameter is Background | Frontal Output Parameter is Not | 100

Frontal
Threshold Parameter is Cloud AND | Frontal Output Parameter is Frontal | 100
Time GLD is Frontal
Threshold Parameter is Cloud AND | Frontal Output Parameter is Frontal | 10
Time GLD is Textural
Threshold Parameter is Cloud AND | Frontal Output Parameter is Not | 90
Time GLD is Textural Frontal
Threshold Parameter is Likely Cloud | Frontal Output Parameter is Frontal | 55
AND Time GLD is Uncertain
Threshold Parameter is Likely Cloud | Frontal Output Parameter is Not | 45
AND Time GLD is Uncertain Frontal

The first

and second column make the if-then statement pair, with the third
column giving the confidence in the particular rule.

tracking separately from the remainder of the cloud sheet.

The areas flagged as suitable for textural analysis were potentially most success-

fully identified. The region of frontal weather system in the upper half of the

image that has been flagged for textural analysis started as the leading edge of

the system and ended as the trailing edge at the end of the sequence of data
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analysed. As a result, there was a persistent portion of cloud over this region for

the duration of the analysis.

The small object regions correlate quite successfully with the edges of the ex-
tended cloud sheet and with the open and closed cell cumulus around the weather
system. The background data parameterisation was biased too high against cloud
regions, however, due to the thresholds selected. Section 5.3.2 discusses an im-

proved approach to cloud region identification that ameliorates this effect.

4.4 Discussion on Fuzzy Motion Segmentation

Approach

These results have significantly demonstrated the potential for a fuzzy system
with suitable input parameters to identify the degree of suitability of different
motion analysis techniques for analysing cloud motion. The issue of suitability
of timescale for analyses has been highlighted by the use of the time persis-
tence measure for identifying frontal motion. Unless large enough timescales are
used, time persistence of cloud is unsuitable for identifying frontal motion as
over short timescales any large body of cloud will mostly persist in the same
location. Texture-based analyses in contrast require small timesteps for optimal
texture matching: the textural make—up of a region must not have changed too

significantly over a timestep in order for a motion analysis to be successful.

Other issues of suitability relate to a greater or lesser extent to questions of
scale of motion, and the degree to which any motion at a particular scale can
be generalised across other scales. On considering the mechanisms for comparing
the results of a frontal analysis, textural analysis and small object matching for
analysing winds on a global scale, it was realised that the issue of scale and the
nature of cloud dynamics raise fundamental questions about the nature of wind
itself. Cloud in a front is a passive tracer for the weather system’s dynamics, and

cloud peaks driven by a local system-relative wind are similarly passive tracers
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for a local-scale wind component: in both of these instances, the passivity of the
cloud is not, to greater or lesser extent, in dispute. The motion captured by the
cloud motion, however, is of a fundamentally different scale in the two instances,
moving the problem domain from one of identifying where cloud acts as a passive
wind tracer to one of identifying the type of wind motion captured by the cloud.
As a consequence, this research now focuses on capturing the cloud motion at
different scales. This will then provide a starting point for future work to resolve

the complex question of causality of the motion.

The fuzzy systems used in this chapter were developed using MATLAB’s neuro-
fuzzy toolbox®. To determine the degrees of suitability of the three motion types
from the three input parameter images took of the order of five minutes on a
computer with a 150MHz processor and 64Mb of RAM running Windows NT.
The whole processing cycle from raw images through parameterisation to fuzzy
system output would therefore be possible within a potential operational con-
straint of thirty minutes with a faster processor and more memory. Identifying
the suitability of different motion analyses in different regions of an image could
be performed in parallel with the motion analyses, and used as a filter on the
resulting motion vectors. If the processing described were to be a precursor to
applying the motion analyses, however, different algorithms and parameters may

need to be considered.

The results from this chapter were presented at the Third International Winds
Workshop, as detailed in Newland et al[75].

8 http://www.mathworks.com
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(a) Frontal (b) Textural

(c) Small Objects (d) Background

0 0.25 0.5 0.75 10
Fuzey Membership

Figure 4.4: Fuzzy Region Memberships for the image: (a) Frontal, (b) Textural,
(¢c) Small Objects and (d) Background. Bright regions indicate high
memberships of the particular motion type.



5. CLOUD OBJECTS

Two approaches are used to extract the cloud component of satellite images in
this thesis. One focuses on analysing the vague nature of the edge of the cloud by
identifying the core regions of all the clouds in the image then growing them to
include the dispersed edges of cloud. The added edge regions are assigned a degree
of association with the core!, resulting in an extracted cloud shape with areas of
various degrees of association to a central cloud core. The second approach slices
smoothed cloud data vertically at a number of heights to identify some of the

characteristics of the vertical profile of the cloud.

To analyse the satellite data successfully, it is first necessary to prepare it suitably
for analysis. As previously, the overlaid national border and position markers
are first removed. In order to analyse cloud structures that can extend over a
considerable portion of the raw imagery, it is also necessary to project the data
onto a constant distance grid, to minimise the effects of viewing location and

hence distortion across the data.

The difficulties of identifying cloud over complex land and sea backgrounds are
addressed to some extent by suppressing the underlying data using prior knowl-
edge of its characteristics and stretching the remaining greyscale data to enhance
the cloud component. This enhancement of the cloud component is particularly
useful for analysing thin cloud and cloud edges, where the distinction between

the radiance of the cloud and the underlying land or sea is at its weakest.

There is some noise in the raw data, partly from artefacts of the compression

strategy applied in the data archive used for this study (see Appendix B). There

! Their fuzzy membership.
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is also a large amount of pixel-scale variability that makes analysis of larger—
scale phenomena more difficult. As a result, some smoothing filters are applied
to the cloud-enhanced data to improve the data characteristics for subsequent
feature extraction and tracking. Two schemes for smoothing have been applied,
each with different applications, namely median filtering and a derivative of the

rolling ball algorithm related to fuzzy morphological filtering.

Having cleaned up, projected and smoothed the data, it is ready for the object—

scale cloud extraction algorithms to be applied.

5.1 Data Preparation

The national border and marker data are initially removed from all images as
detailed in Section 4.1.1. The images are then projected from raw orthographic
view to a constant distance projection, where distances measured anywhere in
the image are to the same scale. The final phase of data preparation involves

suppressing the underlying land and sea data, to aid analysis of the cloud content.

5.1.1 Background Template Generation

To help identify the cloud content in images, an estimate for the underlying land
and sea radiances has been generated. Identifying any deviation between this
background radiance template and the corresponding current image provides a first
pass at identifying cloudy pixels. A simple persistence model for the background
radiance has been used from the non—cloudy pixels over the six days prior to
the data under analysis: the maximum radiance (minimum greyscale) per pixel
across the previous data for a given time of day is used as an approximation for
the clear sky radiance. This method has limitations where cloud has persisted in
a given location at a specific time for the previous six days, but is broadly stable
since such areas are rarely densely saturated. A high-pass greyscale threshold

is applied, however, to remove the majority of remaining cloudy pixels from the
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template images. A median filter is used to fill in any thresholded pixels, applied

as per the border and marker filter discussed previously.

An example of the resulting background radiance template is given in Figure 5.1.

5.1.2 Constant Distance Projection

The raw data (minus borders and markers) and background radiance templates
are then projected onto a constant distance grid, so that every pixel covers the

same spatial area on the ground (see Figures 5.2 and 5.3).

This differs from the current practice at the ECMWF and EUMETSAT, where
the data projection is postponed until motion analysis has been completed, at
which time the vectors generated from the raw imagery are projected onto a
constant distance space for ground-relative magnitude and direction. The small
spatial scale over which current cloud motion analyses are performed requires
this: radiance data projection necessitates padding pixels away from the sub-
satellite point, adding unacceptable levels of noise to these small-scale analyses.
In addition, distortion is not such a problem with small-scale analysis: Whilst
distortion is a factor of distance from the sub-satellite point globally, it affects
local-scale features less. Indeed, a small texture window in unprojected image
data is able to be tracked even at a considerable angle from the sub-satellite
point (e.g. Purdom [81]) where distortion is considerable, since the amount of
distortion does not change significantly over the distance covered by cloud in the

image sample interval of 30 minutes.

When analysing larger structures such as weather systems, the significance of
the distortion is greater and must be addressed. The use of a constant distance
projection early in the analysis process overcomes this problem, and is a necessary
starting point for cloud structure analysis. To make relative judgements of shape
change and relative motion along the extent of a cloud, the shape must be at the
same scale across its extent. The error introduced by data projection is therefore

less significant than the potential error from ignoring distortion. Larger-scale
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(a) 11th July 1998 (b) 12th July 1998
0500GMT 0500GMT

(c) 13th July 1998 (d) 14th July 1998
0500GMT 0500GMT

(e) 15th July 1998 (f) Generated template
0500GMT

Figure 5.1: (a)-(e) METEOSAT D2 (infrared) imagery from 0500 GM'T over
the period 11th-15th July 1998 and (f) the corresponding back-
ground template consisting of a maximum-radiance (minimum
greyscale) pixel composite from these five images. Some noise re-
mains in the background template over the Atlantic from long—term

cloud persistence in the region.
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analyses are also less sensitive to pixel-scale errors introduced by padding data
for projection, since they tend to average out across the extent of the structure.
Pixel enlargement is handled using the same median smoothing filter over new

data pixels that are required for the projection as has been used previously for

border removal and background template smoothing.

Initially, the latitude and longitude of every pixel in the original image is deter-

mined using the geometry of the satellite relative to the earth, which is taken as

an oblate spheroid for the projection, as per Equations 5.1, 5.2 and Figure 5.2.
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Having determined the equivalent latitude and longitude of all the pixels in the
unprojected image, the data of interest are projected onto a new grid (Equa-
tion 5.3). Pixels from the original image are placed in the new grid where ap-
propriate. Since each pixel is in effect projected to a different shape, the pixel

placing often leaves a number of holes in the projected data, especially at high
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latitudes. These are filled in using the usual median filter as applied in border re-
moval etc. (Equation 4.1). Figure 5.3 shows the effect of projection on a portion

of an image, and the result of smoothing.

Iproj(my y) = Irquw (Z,])V(.’L‘, y) S.t. Tmin < T £ Trag, Ymin <Y < Ymaz (53)
where
(¢,7) = unprojected image co-ordinates

(z,y) = projected image co-ordinates

2T RzLONmm
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27 By LON, s
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21 R E LATmaz

Ymez = 360« RES
_ 27R3LON(i, 5)
~ 360+ RES
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Ry = Rgcos(LAT in)
R3 = Rgcos(LAT(3,7))

The algorithms for projecting the imagery were written in C++ and were ini-
tially validated by projecting many different subsections of raw data that included
latitude-longitude markers. The latitude-longitude marker positions and sepa-

rations were then checked to ensure they were the correct distance apart in both

axes.

5.1.3 Cloud Data Enhancement

To reduce the impact of the complex and changing underlying radiance of the land

and sea, the underlying data is suppressed in the sequence under investigation
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Figure 5.2: Projection of satellite data from raw to constant—distance repre-
sentation. The distances shown are referred to in Equations 5.1

and 5.2

using the background templates to identify regions of cloud and non-cloud. Pixel
greyscale values in the background template are subtracted from pixel values in’
the image under analysis. Where the resulting pixel value is less than 10, or if
the pixel value in the image under analysis is less than a greyscale of 802 then the
output pixel is suppressed to zero. Pixels brighter than the background by more

than 10 greyscales and in the greyscale range 80-208 are stretched across the

2 An empirical minimum greyscale for a pixel to be considered as cloudy



5. Cloud Objects 84

greyscale range of 0255, and pixels of a greyscale higher than 208 are saturated

at 255 on the new scale (Equation 5.4).

(0, I(z,y) - B(z,y) < 10

or I(z,y) — GSrhresn <0

Lop(z,y) = 2(I(z,y) — GSrhrest), I(z,y) — B(z,y) > 10

and 0 < 2(I(z,y) — GSrhresn) < 255

| 235, otherwise
(5.4)
where
Iup(z,y) = image data with suppressed background
I(z,y) = unsuppressed image data
B(z,y) = background template data

G SThresh, = Lower greyscale threshold for cloud data = 80

Whilst this does not remove the entirety of the land / sea components, it is
easier to identify the cloud content in the resulting imagery, as is demonstrated

in Figure 5.4.

The national border removal, data projection and cloud enhancement code was
all written in C++. The computational overhead of all three steps was found
to be negligible® on a computer with a 150MHz processor and 64Mb of RAM
running Windows NT 4.0. The cost of generating background image templates
was equally negligible, but this would not necessarily form part of an operational
cycle for cloud analysis, as the templates could be generated up to 24 hours prior

to use.

8 i.e. less than 1 minute
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5.2 Cloud Data Smoothing

To analyse cloud structures at synoptic and mesoscale, some smoothing is re-
quired to remove the variation at smaller scales. Any smoothing degrades the
information content of data, however. For clouds, the gradient of the edge is of
particular importance, as is explained further in Section 6.2, thus any filtering
must be able to maintain or enhance object edge gradients. In addition, the struc-
ture is analysed using its medial azis or skeleton (Section 6.1), and therefore
filtering must not unduly change the medial axis except where the nature of the
medial axis algorithm is unduly affected by artefacts in the data. The principal
example of this is holes in a cloud sheet which may result from individual noisy
pixels in the cloud having been thresholded out of the cloud structure. In prac-
tice, the requirement this imposes on a smoothing algorithm is that of increasing
the coherence of a cloud shape. Figure 5.5 shows the difference between a coher-
ent and a fragmented object. The choice of image filter is therefore tied to some

tight constraints, which are listed again for completion in table 5.1.

Area of Concern - | Issues of Concern

Remove local variability

Variable precision in cloud structure

Generate coherent structures

Maintain Edge Gradients

Where there is no global component of
variation

Must be able to extract different param-
eters for object analysis at different lev-
els of precision by running the filter with
different conditions or iteratively for dif-
ferent lengths of iteration.

As depicted by multi-level thresholds of
the structure. In particular, it is neces-
sary to remove any ’holes’ from thresh-
olded slices where inappropriate.

And smooth where possible. Edges must
remain as sharp at a global scale, whilst
removing any local-scale gradient infor-
mation.

Table 5.1: Constraints for cloud smoothing filter

Two approaches have been applied to filtering the image data, namely median and

fuzzy morphological filtering. These are assessed using two data plot types: Edge
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plots are a 3—dimensional representation of the cloud data, where the vertical
axis is greyscale?. These show the effect of filtering on edge gradient. In order
to analyse the characteristics of the cloud edge, it is necessary to preserve the
edge gradient during smoothing as far as possible. Coherence plots show a high—
pass threshold of the filtered data at a greyscale of 170%, providing a single slice
indication of the effectiveness of the filter for increasing the coherence of the cloud

object. Coherence is of key importance for skeleton generation.

4 Figures 5.8 and 5.18
® Figures 5.7 and 5.17



5. Cloud Objects 87

(b) Projected Data Pre Smoothing (c¢) Projected Data Post Smoothing

Figure 5.3: (a) Raw data with the region to be projected cut out in black,
(b) Constant-distance projection, pre—smoothed and (c) post-
smoothing. The image is METEOSAT D2 (infra-red) from 0500
GMT, July 16th 1998. The projected data are from Latitudes 45-
60N, Longitudes 16 W-5F with a scaling of 1 pixel to 4km
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(a) Image with unsup- (b) Background template
pressed background

(c) Image with background
suppressed

Figure 5.4: (a) Constant—distance projection of METEOSAT D2 (infra-red)
image from 1000 GMT on June 19th 1998, (b) its corresponding
background template generated from the preceding six days’ 1000
GMT images and (c) the data after suppression of the background.
Some noise remains in the background template over the Atlantic
from long-term cloud persistence in the region, which may add
noise to the cloud data in the region.
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(e) Smoothed (f)  Smooth, (g) Smooth, (h)  Smooth,
T=128 T=150 T=180

Figure 5.5: A comparison between non—coherent and coherent cloud objects.
(a)Raw imagery, cloud enhanced, and thresholded at a greyscale T'
of (b)128, (c)150 and (d)180. (e)Filtered data (filtered using the
morphological approach described in Section 5.2.2) thresholded at
a greyscale of (f)128, (g)150 and (h)180. The data shown are from
the 1830 METEOSAT D2 image taken on the 10th May 1998. The
multiple thresholds show a greater degree of attachment between
pixels for the smoothed data, whilst maintaining the general content

of the raw data.



5. Cloud Qb jects 90

5.2.1 Median Filtering

A median filter replaces the pixel under analysis with the median value of the
pixels in the filtering window surrounding that pixel. The size and shape of me-
dian filter window changes its performance. A circular window has been applied
in this study, although potentially other shapes may give smoother results. Some
of the issues concerning circular filtering in digital spaces are discussed further in
Section 5.2.2. The choice of filter shape, whilst having an influence on the final
smoothness of the surface, should not unduly affect the degree of edge smooth-
ing. Seven sizes of median filter were tested, varying in radius from 1 to 10 pixels.

Figure 5.6 shows the results of applying each filter to a geocorrected image.

Coherence and edge gradient performance are shown in Figures 5.7 and 5.8 re-
spectively. As can be seen, the median filter smoothes edges significantly. Whilst
a coherent structure results from a fairly small median filter (3 or 4 pixel radius),
the edge gradient decays significantly too, even at a radius of three pixels. In
practice, the degree of edge smoothing is dependent on the ratio of feature width
to filter size. It may however be appropriate to use data smoothed using a small
median filter for generating skeletons, as the coherence of the resulting structures
is high, and maintaining the original edge gradient is not a critical factor for

skeleton algorithms®.

6 Unless a skeletonprofile is being constructed. For more information on skeleton profiles, see
Section 6.1.3
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(e) R4 () R5 (g) R6 (h) R10

Figure 5.6: (a) Raw imagery smoothed using a median filter of radius R equal
to (b) 1, (c) 2, (d) 3, (e) 4, (f) 5, (g) 6 and (h) 10 pixels. Data are
METEOSAT D2 images from 2200GMT on the 23rd of April 1998.
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(e) R4 () R5 (h) R10

Figure 5.7: Imagery thresholded at a greyscale of 170, showing the variation in
cloud object coherence: (a) Raw imagery smoothed using a median
filter of radius (b) 1, (c) 2, (d) 3, (e) 4, (f) 5, (g) 6 and (h) 10 pixels.
Data are METEOSAT D2 images from 2200GMT on the 23rd of
April 1998.
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(c) Median Radius 2 (d) Median Radius 3

(g) Median Radius 6 (h) Median Radius 10

Figure 5.8: Edge degradation with varying sizes of median filter: (a) Raw im-
agery smoothed using a median filter of radius (b) 1, (c) 2, (d) 3,
(e) 4, (f) 5, (g) 6 and (h) 10 pixels. Data are METEOSAT D2 im-
ages from 2200 GMT on the 23rs of April 1998. The vertical axis

is greyscale.
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5.2.2 Fuzzy Morphological Filtering

To capture cloud shape information at the scale of whole objects, it is necessary
to reduce the small-scale variation of cloud structure that is not relevant to
the larger shape analysis, effectively reducing the precision of the representation
of the contents of a cloud shape. A morphological filter has been developed
that preserves the nature and gradient of the cloud edges, whilst smoothing the
cloud tops. This is achieved using a variant of the rolling ball algorithm’. In
its simplest form, this consists of rolling a ball® of fixed radius alternately above
and below the surface under analysis for a number of iterations, and remapping
the surface to the locus of the lowest / highest point on the ball, respectively
(Figure 5.9). An iteration of this filter consists of rolling the ball both above and
below the surface. Whilst some difference may result from rolling the ball firstly
above, or firstly below the surface, this difference is typically negligible over a
few iterations of the filter. Nagao and Matsuyama [72] describe an alternative
to the morphological filter developed here based on filtering in the direction of

minimum data variance.

In order to smooth the centres of the cloud more than the edges, however, a
variable-sized structuring element must be used. Care must be taken, however,
with implementing a variable structuring element filter, as can be shown by con-
sidering a simple variable-size adaptation of the standard rolling ball filter. This
consists of fitting the largest ball possible between the surface and a lower or
upper plane. It is important to note that the selection of a spherical structuring
element itself must be made with care, since the variation in the data vertically
may be significantly different to the horizontal variation. Indeed with cloud data,
there is a significant difference between these two, and it is important to ensure
that the correct degree of smoothing occurs due to the variation in horizontal
and vertical components. In practice, the data are suitably preprocessed and
stretched so that the largest sphere considered corresponds both to the largest

sensible horizontal and vertical structuring element. By preprocessing the cloud

7 See for example Hashim et al [47].
8 Or so—called structuring element
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Original Surface

fa)

Original Surface
—— After lower-ball smoothing

(b) (:S:) O OF

After lower-ball smoothing
Surface after 1 iteration
(Lower and Upper ball)

(c)

Figure 5.9: A standard rolling ball algorithm: a ball of fixed radius is rolled
alternately below (a) and above (b) the surface to be smoothed.
The surface is replaced by the locus of the top / bottom of the ball.
One iteration of this filter consists of rolling the ball both above
and below the surface.

data to cover the greyscale range of 0 — 255, a lower plane of greyscale 0 and an

upper plane of greyscale 255 can be used.

As illustrated in Figure 5.10, large spheres fit under the middle of a cloud, and
smaller ones at the edges (and vice—versa for spheres above the cloud). The use
of a variable sized ball on its own presents problems, however, and does not result

in the desired greater smoothing in the middle of the cloud than at its edges and
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greater edge detail preservation.

Original Surface

(a)

(B}
Original Surface
—— After lower-ball smoothing

After lower-ball smoothing
Surface after 1 iteration
(Lower and Upper ball)

" W

Figure 5.10: A variable-size rolling ball algorithm. The largest ball to fit be-
tween a baseline and the surface, and a sensible upper line'® and
the surface, respectively. As per the standard rolling ball algo-
rithm, the surface is replaced by the locus of the top / bottom of
the ball. Large spheres fit under the middle of a cloud where most
smoothing is desired, whereas smaller spheres fit under the edges
resulting in better preservation of the edge information.

Implementing the variable ball size smoothing technique on discrete imagery is
difficult in light of the nature of digital representations of circles and spheres. If
sphere edges are caught on noisy low pixels near crisp discrete image data edges
then the resulting maximum sphere height can be altered considerably. This is
not just a problem for pixels near to edges either, since flat areas in the middle of

clouds may fit large spheres underneath them that are large enough to get caught
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by noisy low edge pixels (Figure 5.11). Also, whilst rolling variable-sized spheres
below the cloud surface results in more smoothing in the middle of the cloud
and subsequently rolling the spheres above the surface smoothes the non—cloud
regions, both stages also erode the gradients in the transition phase between cloud

and non-cloud, the very edge gradients the filter must preserve.

—— Original Surface

{a)

— Original Surface
—— - — After Lower-ball Smoothing

(b}

Figure 5.11: Some of the ways in which the variable size rolling ball filter can be
compromised: crisp edges are smoothed too strongly and multiple
layers of cloud result in the uppermost layer being smoothed out.

In order to overcome some of these problems, a new approach has been used,
whereby only a vertically sliced segment of the ball has to fit above / below the
surface. A two—dimensional representation of the approach is given in Figure 5.12.
The largest sphere segment that will fit under / over any image data region is
used, allowing crisp edges to be dealt with by fitting the segment under the cloud
pointing away from the cloud edge. This removes spikes in the data without
removing ridges or crisp transitions: there has to be some local coherence in the
data in at least one direction, over a horizontal distance equivalent to the segment

radius. The formula for the new filter is given in Equation 5.5.
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At each surface pixel location, the pixel is given an offset proportional to the
difference between the surface height relative to the lower (upper)'! plane and
the tallest sphere segment that fits between the pixel and the lower (upper)
plane. The sphere segment is a vertical segment of a sphere, and for the segment
to class as having fit, all points within the segment must be below (above) the
cloud surface, i.e. the neighbourhood of the pixel is also checked, in the direction
of the segment, to ensure the region of segment under (above) the neighbours
fits beneath (above) them. No sphere larger than 25 pixels’ radius is used'?, and
the amount of smoothing can be controlled over iterations of the filter using a
learning rate to adjust the proportion of the difference between surface height
and segment height that is used to adapt the data on each iteration. Because
the base (upper) plane has been taken as planar, and normal to the vertical, the
lower (upper) half of the sphere segments can be ignored in each iteration by
effectively moving the base (upper) plane closer to the surface by an offset equal

to the sphere radius.

11 Tower or upper, depending on whether the filter iteration is a lower or upper surface

smoothing step.
12 No smoothing is applied if a segment of a sphere of diameter 50 pixels fits under (over) the

surface, as this is taken as already sufficiently smooth.
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——— Original Surface

(b}

""""" Original Surface
——— After Smoothing
(Lower ball segment)
——— After Smoothing
ﬁe()} iteration, above
and below)

(c)

Figure 5.12: A 2-D representation of the new rolling ball algorithm using ball
segments rather than complete balls.

I(@,y) =1(z,5) + Mx(z,v) - I(z,1)) (5.5)
where
I(z,y) = raw image data surface
®I(z,y) = filtered image surface
A = learning rate = 1 by default
k(z,y) = vertical offset = Alrmas)s 0 Tmas < 25
@0  Tog = 25
Tmaee = Maximum sphere radius that fits under image data
A(Tmaz) = sphere offset
2  Tinae + miaz(min(I(r,6) — S(r,0))) st
= (min(I(r,6) - S(r,6)) > 0)
0 otherwise

r = sphere radius

f = radial sphere check position
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A discussion of how the approach determines the size and direction of the sphere
segment that fits is now given by considering the filter applied to a data point at
the end of the tail of a comma cloud (Figure 5.13). The greyscale data around the
point will fall off quite sharply in all directions except for the direction further into
the comma cloud towards its centre. A sphere segment will fit under the greyscale
data in the direction of the comma centre however, therefore the comma cloud’s
tail will not be smoothed away. This is illustrated in Figure 5.13(a) by the two
cloud cross—sections. In cross—section A (taken as indicative of all cross—sections
not directed info the comma), a sphere section is unable to fit exactly under
the cloud surface as the vertical variation in the data in this direction is much
greater than the horizontal. If this cross—section were considered in isolation,
the resulting smoothing would be significant, as illustrated by the heavy black
line in the cross—section data. In cross—section B, however, the horizontal and
vertical variations in the data are of a similar magnitude, and a sphere section
fits under the cloud easily, resulting in little smoothing. Figure 5.13(b) illustrates
how the horizontal variation in the cloud affects the directions in which a sphere
segment can fit. As the sphere radius is grown, the radial directions in which
a sphere segment may fit under the comma cloud’s surface, illustrated in black,
change. Figure (b) considers the horizontal extent of the cloud only, however.
By analysing cloud cross—sections similar to those in (a) in the angular directions
shaded in black, for a sphere segment of the given radius, the directions in which
the segment fits both horizontally and vertically can be determined. The sphere
radius is grown as per Figure (b) until a segment no longer fits in any direction

under the cloud surface.

In order to address the issue of assessing whether continuous sphere segments
fit under digitised surfaces, the sphere segment data are checked to ensure they
fit under (over) the satellite data surface at set points on the circumference of
circles at step radii of one pixel away from the pixel under test, and at angu-
lar separations so that the horizontal separation of neighbouring test locations
for the largest radius sphere segment (of 25 pixels) is approximately one pixel
(Figure 5.14). The surface pixel values surrounding the pixel under test are in-

terpolated to the sphere check locations, as per Equation 5.6 and Figure 5.15.
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Figure 5.13: Directional variation in a cloud surface. Figure (a) shows a comma
cloud. Two cross—sections of the cloud have been taken (lines A
and B) to show the effect of smoothing at their crossing point.
Figure (b) shows the possible directions in which a segment of
a sphere may fit under the cloud surface, with increasing sphere
radius, considering the horizontal variation of the cloud only.

1
Greyscale = -Zij;x;gz (5.6)
i=1 "1

where

1—-4;, 1-4,>0
T; =
0, otherwise

g; = greyscale of i pixel being interpolated

(4; is the distance between the centre of the i*" pixel and the circle test point

Figure 5.16 shows the effect of the filter on the same dataset as earlier analysed
using the median filter. As can be seen, significantly less of the original data is

lost. The edge plot (Figure 5.18) confirms that the edge gradients do not decay
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Figure 5.14: Definition of a discrete sphere for use in the adapted rolling ball
filtering algorithm. (a) Vertical profile of discrete sphere repre-
sentation. (b) Image data are tested at the ends of each radius of
each sphere, the image data having been interpolated as indicated
in Figure 5.15.

Figure 5.15: Pixel interpolation for correct assessment of the greyscale under
a sphere. See also Equation 5.6.

with further iterations of the filter, but the coherence of the cloud ridge increases

as desired, as illustrated in the coherence plots (Figure 5.17).

This has demonstrated the effectiveness of the filter for maintaining the struc-
ture of a ridge, improving its coherence and keeping its edge gradients. Applying
the filter to other types of cloud shows its effectiveness for cloud data smooth-
ing: Figure 5.5 was used to illustrate the nature of a coherent cloud structure
by analysing a vortex. The coherent image data have been filtered using this

morphological filter. Figure 5.19 contains a storm cell, which has sharp edges
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(a) Raw (b) 1 iteration (¢) 2 itera- (d) 3 itera-
tions tions

(e) 4 itera- (f) 5 iterations (g) 6 itera- (h) 10 itera-
tions tions tions

Figure 5.16: A raw image (a) and the result of applying a morphological filter
for (b) 1, (c) 2, (d) 3, (e) 4, (f) 5, (g) 6 and (h) 10 iterations. The
image data is METEOSAT D2 infrared imagery from 2200 GMT
on 23rd April 1998.

which again have been preserved, whilst reducing the internal noise which are
irrelevant to the analysis at the scale of the whole cell. Finally, Figure 5.20 shows
the performance of the filter on fine texture, as contained in an open-and closed—
cell cumulus field. This qualitative discussion of the filter’s characteristics has
shown it to provide a suitable type and degree of filtering for subsequent object
and edge analyses. It is broadly true that having defined the desired character-
istics of an image filter, there are many ways to construct such a filter. Whilst

this particular morphological filter may not be computationally the most effi-
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(a) Raw Co- (b) 1 iteration (c) 2 itera- (d) 3 itera-
herence Plot tions tions

(e) 4 itera- (f) 5 iterations (g) 6 itera- (h) 10 itera-
tions tions tions

Figure 5.17: The change in cloud coherence, based on a high—pass threshold
at a greyscale of 170, with morphological filtering: (a) Raw Data,
(b) 1, (c) 2, (d) 3, (e) 4, (£) 5, (8) 6, (h) 7, (1) & (j) 9 and (k) 10
iterations.

cient method for producing the desired smoothing characteristics, it has achieved

those characteristics nonetheless. The computational cost of this filter was not

excessive, however: the algorithm was implemented in C++, and took approxi-

mately twenty seconds per iteration (once below and above the cloud surface) on

a computer with a 150MHz processor and 120Mb of RAM, running Windows N'T

4.0. Approximately six iterations of the filter were typically necessary to obtain

sufficient smoothing for coherent cloud structures.



5. Cloud Objects 105

(g) 6 iterations (h) 10 iterations

Figure 5.18: The change in edge structure with morphological filtering: (a)
Raw Data, (b) 1, (c) 2, (d) 3, (e) 4, (f) 5, (g) 6, (h) 7, (i) 8, (j) 9
and (k) 10 iterations.
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(a) Raw Image (b) Section (c) Smoothed section

Figure 5.19: (a) Raw image: 1500 GMT METEOSAT D2 image from 18th June
1998, (b) Storm cell from image and (c) Storm cell smoothed after
7 iterations. Note that the crispness of the edge information in
the image has been preserved.

(a) Raw Data (b) Smoothed

Figure 5.20: (a) A section of cumulus cloud from METEOSAT D2 image from
15th June 1998 1600GMT, (b) smoothed after 7 iterations of the
morphological filter. Note the filter has preserved the cloud shapes
despite the high degree of texture in the image.
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5.3 Cloud Object Extraction

Having prepared and smoothed the cloud, two techniques are applied to extract
the cloud from the prepared images. These are the starting point for extended
feature extraction as discussed in the next chapter, but also provide objects that

can themselves be analysed and tracked.

5.3.1 Multi-level thresholding

To analyse cloud vertical structure to some degree, the smoothed data is sliced at
all greyscales from the maximum present in the data, the top of the cloud, to a
minimum value for the cloud content in the imagery!3. At each slice, independent
objects are extracted and their area and centroid calculated. Each independent
object is also assigned a unique colour. Objects in each subsequent slice are
matched with those in the slice above based on which higher objects are subsets of
the current object. Where a single higher object matches with one in the present
slice, the present object is assigned the same colour as the higher one. Where,
however, there are multiple unique objects in the slice above that are contained
within the boundaries of the current object, the current object is assigned a new
colour. In this way, a peak-unique contour map is built up, showing where the
tops of each coherent structure split. This is illustrated in Figure 5.21: the cloud
image projected on the base of the scene has been sliced vertically, and the objects
shown in any frame are colour coded according to the objects they match with

in slices above / below the current one. The black dots represent the centroids

of the objects at all slices.

This is similar to an approach applied by Peak and Tag [80] for cloud segmenta-
tion prior to classification: discrete cloud objects in consecutive greyscale slices
are extracted, although in Peak and Tag’s approach, the slices are taken with

increasing rather than decreasing cloud height. Where objects split into two or

13 Note this is not the cloud base, due to the fact that the cloud is only viewed from above,
but is effectively the largest cloud footprint.
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Figure 5.21: Objects extracted using a multi-layer thresholding technique (Per-
spective view). The centroids of each vertical slice are indicated
by the black dots. The respective frames show different slices
through the cloud, from top to bottom, from different viewing

angles.

more sub—-objects over a greyscale interval, an object hierarchy develops. By tak-
ing the lowest greyscale for any subsequently non-splitting object path, cloud

objects of a particular nature can be extracted.

From the knowledge of which cloud slices are attached to which others and knowl-
edge of the centroid location of each slice, it is possible to produce a type of

vertical skeleton of the structure. The dynamics of this skeleton show where any
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convective processes may be occurring within the cloud. Similarly, associating
the area of a slice with its centroid provides information regarding which levels

of cloud are growing over time.

5.3.2 Fuzzy Growth Approach

The second approach consists of identifying core regions of cloud content and
growing these to include areas that have some association with the cloud core,
capturing this degree of association by using a fuzzy measure of cloud membership.

Udupa and Samarasekera [103] discuss fuzzy connectedness in the context of

object generation.

The satellite imagery is initially differenced from background templates as has
been described previously (without the resulting stretch of greyscales), to provide
a first pass at identifying the cloud content. This is then high—pass thresholded
to leave pixels whose brightness is sufficient to ensure they only depict cloud.
Pixel clusters of less than fifty pixels are then removed. In the remaining bright

pixel clusters, cracks are propagated to obtain distinct core objects, as described

in Table 5.2.

Having obtained the cores, a fuzzy system is used to assign the pixels immediately
neighbouring the core a membership or degree of association to their core. The
pixels neighbouring these neighbours are also then analysed, provided the degree
of association of the previously assessed pixels is sufficiently high. This iterative
growth process continues until no more pixels have sufficient associativity to the
cloud core to warrant any further growth. This is similar to an approach by
Feher and Zabusky [36] for determining the associativity of flow regions to vortex

structures in vorticity fields in computational fluid dynamics.

The inputs to the fuzzy system used for growing these cloud regions are the pix-
els” absolute radiance (a global thresholding component), the relative difference
between their radiance and the nearest core pixel radiance (a local thresholding

component) and the gradient of radiance from the core to the pixel under analysis.



5. Cloud Objects 110

1. The mean greyscale p of each cluster is determined and pixels darker than
the mean are taken as possible starting points for cracks to propagate from,
forming a subset A from all the pixels in the cluster, £.

2. A subset B(z ) of Ais created for a member z 4 of A, such that the greyscale
of all pixels in B is equal to or darker than the greyscale of z4 and all pixels
in B touch z4 or a pixel already in B. This is an iterative process whereby
z 4 itself is first added to the subset B, then the immediate neighbours of
z 4 are initially examined and added to B if equal to or darker than z4.
The neighbours of each new member of B are themselves examined in turn,
and added to B if they are darker than the member of B under analysis,
until no more pixels can be added to B.

3. As long as the subset B C A includes a pixel at the edge of the initial pixel
cluster (neighbouring &) and one neighbouring a pixel equal to or lighter
than the mean (i.e. €N (A’)), the pixels in B are changed to background
pixels and removed from A.

4. This is repeated for all members of A and all clusters &.

Any resulting pixel clusters ¢ with fewer than fifty pixels are removed.

ot

Table 5.2: Algorithm for propagating cracks in cloud shapes, to leave homoge-
neous cloud cores.

This is illustrated in Figure 5.22. The fuzzy rule base used in this system is given
in Appendix A. The membership function transitions and rule confidences were
determined empirically by testing a number of different values. The membership
functions and rule confidences selected gave good performance for a number of
different cloud types. The transitions and rule confidences could be optimised
further by application of an adaptive learning technique applied to the fuzzy sys-
tem (such as the neurofuzzy methods described by Brown and Harris [13], for
example), but care would be required in selection of the training cases for such a

system to ensure good generalised performance.

Figure 5.23 gives an example of the cloud cores extracted from METEOSAT
infrared imagery and the effect of the fuzzy growth algorithm for adding edge
pixels. It can be seen clearly from this example that the algorithm has added few
edge pixels in the case of a crisp transition from a cloudy to a non—cloudy region,
and has added many more pixels in the case of a dispersed cloud edge (See also

Figure 6.9). Comparing this approach with the results shown in Figure 3.3, it can
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Figure 5.22: Fuzzy System for cloud edge growth. Relative and Absolute
greyscale and greyscale gradient measurements are passed to the
fuzzy system, which provides a cloud membership as an output.
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(a) (b) ()

Figure 5.23: Cloud Extraction and Enhancement. (a)Constant distance projec-
tion of METEOSAT D2 image from August 27, 1997. (b)Cloud
cores extracted using the background template differencing and
crack propagation technique. (c) Cloud grown to include the edge
regions using a fuzzy system.

be seen that it also offers much better performance than single-level thresholds
for cloud identification, capturing more of the cloud lower in the image than the
high threshold in Figure 3.3(a) without capturing too much of the background as
in Figure 3.3(b), i.e. effectively providing some degree of local thresholding.

The fuzzy system used in this section was developed from NeuFrame’s Neufuzzy
template'® integrated into some C++ code, and had negligible!® computational
cost when applied to 800 x 800 METEOSAT D2 images running on a computer
with a 150MHz processor and 128Mb of RAM under Windows NT 4.0.

This work was presented at the First AMS conference on Artificial Intelligence,

as detailed in Newland et al[76].

14 Jointly developed by the Department of Electronics and Computer Science, University of
Southampton and Neural Computer Sciences: http://www.ncs.co.uk
15 i e. less than ten seconds


http://www.iics.co.uk
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5.3.3 Discussion of Cloud Object Extraction Techniques

Clearly the applications of the two cloud object shape analysis techniques dis-
cussed here are very different, with the first approach concentrating on a mech-
anism for the vertical (and by implication also the temporal) variation in cloud
shape, as can be described by matching whole slices of smoothed cloud data. The

second approach produces whole cloud objects and captures the essence of the

cloud edge in doing so.

No further discussion of the first approach is given in this thesis, although the
resulting cloud slices could certainly be used as valid parameters to be matched,
much like the skeletons and edges discussed in the next chapter. There is also the
possibility of determining the vertical motion of the cloud structures by matching
cloud objects from different greyscale slices over time, not only with objects from
the same slice. This would require some constraint to ensure that the resulting

matches were also vertically consistent.

The fuzzy object growth approach for cloud object identification shows some
significant noise, whilst still achieving the main goal of providing differentiated
growth between crisp and dispersed cloud edges. The algorithm has been applied
to cloud data in Figure 5.23 that has not been subjected to any prior smoothing.
Applying the core and growth algorithm to smoothed data should produce cleaner

transitions from cloud cores to non—cloud regions in the case of dispersed cloud

edges.



6. CLOUD OBJECT PARAMETERISATION

Three new parameterisations of clouds have been generated in this thesis that
capture new information about the cloud content, namely skeletons, fuzzy edges
and whole cloud objects. Skeletons capture the major axis of the cloud shape,
fuzzy edge information describes the nature of dynamic processes across and in
the vicinity of the cloud edge and the whole cloud shape provides an indication
of the size and growth of the weather system. In addition, the motion of these
parameters has been used to describe the evolution of cloud at different scales,
and different components of the evolution. Whole objects have been discussed in

the previous chapter. A discussion of skeletons and edges follows.

6.1 Cloud Skeletons

The skeleton or medial axis transform of a 2-D shape is its mid-line or axis of
symmetry. It is defined using one of two root analogies in most literature (e.g.
Serra [90]), namely that of wave propagation, where the skeleton is defined as the
meeting points of a wavefront propagating inwards / outwards from an object’s
edge, or the set of centres of mazimal disks whose entirety is contained within /
outside the object edge, but whose circumference lies on the object boundary at

two or more different places (Figure 6.1).

Similarly, there are typically two types of algorithm used for skeleton generation,
namely thinning and skeletonization, the former being an iterative edge erosion
approach leaving a skeletal structure on completion, and the latter generating

the skeleton more directly. In practice, there are many ways to implement both
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Figure 6.1: Wavefront propagation (a) and Maximal disk (b) analogies for gen-
erating skeletons of shapes.

processes and the distinction between iterative and direct analysis is a little less
clear. It is sufficient to say that the desired outcome of any of the techniques
is the axis of symmetry, of single-pixel width, that is Aomotopic or without any

breaks for any given cloud object.

Generating skeletons for clouds is a novel application of medial axis transforms.
The results presented here have been generated using a maximal sphere approach
applied to thresholded binary representations of the smoothed cloud objects.
Other techniques for applying skeletons to the cloud data are also suitable, how-
ever. In particular a veinerization approach to skeleton generation is described
which offers the potential for much smoother and more coherent skeletons. A
greyscale—sliced vertical skeleton profile of cloud is also introduced and discussed
in this thesis, that provides a richer description of the cloud’s vertical structure.
This is achieved by applying the skeleton analysis to slices of cloud at many dif-
ferent heights or similarly at different degrees of cloud dissipation, and indicates

the variations in directions of cloud spread with height.

6.1.1 Maximal Disks

The approach used for generating skeletons in this thesis is not guaranteed to
be homotopic in digital space, but has a conceptually simple implementation
whilst still showing the benefits of the skeletal analysis for cloud data. A digital
representation of a circular disk is passed over each pixel of a binary thresholded

cloud object and the disk radius is increased until one or more points on the disk
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edge coincides with a cloud edge pixel. If two or more disparate sets of points
on the disk edge touch the cloud edge then the centre of the circle is a skeleton
point. The analysis of the next pixel in the cloud object then starts with a disk

of radius one-less than the current pixel’s maximum radius. This is illustrated

in Figure 6.2. The algorithm applied is given in Equation 6.1.

U =C(Xmaz)VXmaez € BT (6.1)
where
¥ = set of skeleton points
Xmez = maximal disk
=X, VX, €dt st X, NP = X,
and X, N (X, N®) is disjointed
X, = digital representation of a circle of radius r
C(Xmaz) = centre of maximal disk
®* = cloud object including border

® = cloud object excluding border

Using this algorithm in digital space has a number of problems related to the
representation of circles in digital space and the sensitivity of the approach to
any noise in the object representation! when determining whether two or more
sets of points touch the object’s edge. As a result, the homotopy of the skeleton is
broken, as discontinuities in the skeleton result from any variation or abberation
on the cloud edge. Despite these problems, the approach produces stable skeletons
when the image data are initially smoothed, or at least any noisy holes in the
binary representation of the cloud object are removed (this is the requirement of
skeletal analyses for coherent objects). Examples of this skeleton type are given in
Figure 6.3. Note that the results shown have not been generated using cloud data

pre-smoothed using the coherence—enhancing filter discussed in the last section.

! Either in terms of holes in the object or in individual pixel changes on the edges
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Figure 6.2: Maximal disk approach for skeleton generation. The circle shown
touches two different parts of the cloud edge, the necessary condi-
tion for its centre to be lying on the skeleton.
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Figure 6.3: Examples of maximal circle approach for skeleton generation.
(a)For a non—coherent cloud core and (b)for the same cloud once
grown using a fuzzy growth algorithm (this data has not been pre—
filtered using the coherence enhancing tool). The noise in the skele-
ton from non—coherent data is clearly evident in (a). The data is
taken from METEOSAT D2 imagery from 19 August 1997.

Such pre—smoothing would further improve the skeleton stability, however.

6.1.2 Skeletal Matching

Having generated skeletons for whole clouds in each frame of a satellite data
sequence, the skeletons can be matched using any line matching technique. In
this work, a simple nearest-neighbour approach has been used to match skeletal
points in one frame with their nearest skeletal point in the next frame. This
works acceptably for sparse skeleton sets, but has a number of problems that can
be addressed by suitable adaptations of the analysis. A major problem even for
sparse data is that of the so—called aperture problem, where a point on a line or
arc could potentially match to a number of points on that line / arc in the next
timestep if it lies at the centre of curvature of the matching line or the line has

many bends locally. This is illustrated more fully in Figure 6.4. For less sparse
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Figure 6.4: Aperture Problem. The first figure shows the ambiguity of a near-
est neighbour match. In this instance, the point on the first arc is
on the centre of curvature of the second arc, resulting in an indeter-
minate number of possible matches. In the typical case there may
be at least multiple possible matching points. The second figure
shows one approach to minimise this problem, where matches are
made between points that have the same local gradient.

data, a conceptually similar problem is often one of picking the correct match
from a number of nearest neighbours on different lines / arcs. A discussion of

workarounds to these problems is given later in this chapter.

The algorithms for generating and matching skeletons were coded in C+4 and
were validated using simple shapes whose skeletons and motion were known.
Figure 6.5 provides an example of this validation, where a simple shape has been
rotated in the first instance, and grown in the second. The skeletons matched
in this data were generated using the maximal sphere approach. Note that the
centre of rotation is clearly visible in the first set of skeleton vectors and the

growth has been captured in the second.

Figures 6.6 and 6.7 show the application of the skeleton tracking to sequences of
cloud data, using two different visualisation techniques. The first image shows
the cloud component of the first and last frames of the seven—frame sequence
analysed, with the skeletons overlaid, next to the skeleton vector tracks: the
vectors for frames 1-6 are shown in red, with the vectors for the last frame pair
shown in black. The second image shows the first frame of a sequence in the

lower diagonal of the image and the last frame in the upper diagonal, with the
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Figure 6.5: Skeleton tracking on a simple shape. The left-hand image triplet
(a) shows the first and last frames of a sequence of a rotating simu-
lated cloud shape. The skeleton vectors are shown between the two,
clearly indicating the nature and centre of rotation. The right-hand
image triplet (b) shows the first and last frames of the simulated
shape under growth, again with the resulting skeletal vectors shown
between the two frames.
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Figure 6.6: Example of skeleton matches: 1. This figure shows the first and last
frames of the extracted cloud objects with skeletons highlighted.
The skeletal vectors are shown next to the frames, with the track of
vectors across the first six timesteps shown in red and the skeletal
track for the last timestep shown in black. The data are from
METEOSAT D2 images from 18 February 1996.

vectors for the whole sequence overlaid on both halves of the image.

The approach has clearly shown its ability to track the different limbs of the
weather system and highlight the parts of the weather system that have not
moved significantly over the time sequence. It also identifies the rotation points
for the limbs, and the relative progression of the different branches on the leading

edge of the system can be seen.

There are also a number of places for improvement in both the skeleton generation
and matching that can be seen from the images: The lack of homogeneity of the
skeleton can be seen clearly, for example, in the black vector heads in the first

image in Figure 6.6, and a number of instances of many-to—one vector matches
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Figure 6.7: Example of skeleton matches: 2. This figure shows an alternative
method for displaying the information: the lower diagonal of the
image shows the first frame of cloud data and the upper diagonal
shows the last frame. The skeleton vector tracks are overlaid across
both halves of the image. The data are from METEOSAT D2
images from 18 February 1996.
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can be seen in both images. Despite these problems, the technique has shown the
potential for skeletal analysis to describe cloud motion in a new and rich way. A
discussion of methods to reduce the errors seen in these results is now provided,

however, along with further enhancements of the technique appropriate to cloud

analysis.

6.1.3 Alternative algorithms and applications for skeletons in

cloud analysis

A much more robust and stable algorithm for generating skeletons than the max-
imal disk approach has been suggested by Deseilligny et al [27] using a veineri-

sation approach. There are five stages to this approach, namely:

e Perform an edge-distance transform on a binary representation of the object
under analysis (Figure 6.8). In practice this can be achieved by a similar
approach to the maximal spheres technique previously described, using the

radius of the largest sphere touching an edge as the distance transform.

e Compute the veinerization graph of the distance transform. The details
of this are provided by Deseilligny et al., but in principal it provides an
indication of the primary directions of slope in the distance transform data.
Within this graph is the desired skeleton, plus a number of branches off
the skeleton which are not of interest. There are particular problems with
digital edge—distance transforms that cause difficulties in generating the
veinerization graph. These have been addressed by Deseilligny et al., by
careful selection of some arbitrary rules with which to choose the optimal

connectivity for ambiguous cases.

e Generate a homotopic extinction function from the graph. This is a measure
of the importance of any point on the skeleton, related to points downstream
of it (its so—called Zone of Influence). The simplest analogy is that of a
river flowing down the ridges on the veinerization graph: if any point on

that river is dammed, the homotopic extinction function for that point is
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Figure 6.8: A sketch of an edge—distance transform for an arbitrary shape, with
its skeleton overlaid. The greyscale indicates the distance from
the edge, with brighter greyscales indicating greater distance. In
practice, the greyscale change would be much smoother than the
step changes shown: this illustration shows the central protion of
the shape lying five distance—units from the edge of the shape,
whereas most shapes would be much larger.

the number of pixels on the veinerization graph downstream of the dam

point that would also be cut off.

e Select some anchor points for the veinerized graph from the extinction func-
tion or based on a combination of criteria, e.g. the local angular variation
in veinerization graph. These become in effect the dam points, and their

selection dictates the detail in the resulting skeleton.

e Prune the veins to include only anchor-point extremities.

(As per Deseilleigny et al [27])

This ensures homotopy in the skeleton, addresses the issues of representation of
continuous functions in digital space and is quite adaptable, both in selection
of distance—to—edge criteria and anchor point selection. An extension of this
approach for clouds is to perform a veinerized skeleton analysis on binary slices
through every layer of the smoothed greyscale representation of a cloud to build

a 3-D skeleton profile. Clearly this is computationally expensive, but provides a
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rich representation of the spread of the cloud through its height.

To improve on matching the generated skeletons over time, a simple mechanism
to overcome the aperture problem and many of the non-sparse match ambiguity
problems is to match points based both on distance and the gradient of the skeletal
arc through the points to be matched, so that a matching pair of points are close
over the timestep but also have the same local arc gradient relative to some global
direction, as this rarely changes significantly in any neighbourhood (Figure 6.4).
Guichard [45] uses the spatial gradient® as a constraint for matching points along
a contour or edge. Another mechanism for handling non—sparse data is to look at
the topology of the skeletons over time. Where the local topology of a region of
skeleton does not change significantly, the nodes of the skeleton can be matched
easily and points on the intermediate branches can then be matched proportion-
ally between nodes. Topology changes in the cloud skeleton may themselves be of
interest, and worth further investigation. Baroni et al [9] match curvature points
along edges, giving an example of an alternative type of point of interest that can
be matched along edge data. It is important to stress that any such topological /
curvature point analysis is critically dependent on the homogeneity and stability
of the skeleton generation technique, and would therefore require an approach like

that of Deseilligny et al., rather than the maximal disk technique shown earlier.

Finally, it is worth reiterating that the skeleton results shown in this chapter are
for data that have not been pre-smoothed using the coherence-enhancing filter
discussed in the previous section. This would improve the stability of all the

skeletons and skeletal matches shown.

6.2 Cloud Edges

Edges of clouds cannot be defined precisely within satellite images. To handle
this imprecision, edge regions are used to capture both the possible extent within

which any binary edge representation could be drawn, and to capture the degree

2 the gradient of the motion vector relative to the local contour direction
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of imprecision of the cloud edge around the cloud. This has been achieved in
practice using the output of the cloud core and edge growth object extraction

technique described in Section 5.3.2.

The pixels around the cores are associated with the core regions based on the
gradient of greyscale tangential to the core edge through the pixel under analysis
and the absolute value of the background-normalised greyscale. Having generated
a first pass at core associations, an adjustment is made to give local agreement
on core association. The adjustment is made by comparing neighbouring pixel
characteristics and their degrees of association. Where a neighbourhood has a
low core association, a pixel in the neighbourhood with a high core association is
suppressed if its greyscale characteristics are not significantly different from the

neighbours, and vice versa.

Figure 6.9 shows a cloud core, the core after the edge regions have been grown
using the fuzzy growth system and the resulting extracted edges. The edge data
clearly show the differences between a crisp transition from a cloudy to a non—
cloudy region, as is typical of cloud where the wind is blowing parallel to the
cloud edge, and a dispersed transition where typically there is a wind component

crossing the edge of the cloud causing the dispersion.

There is still a significant amount of noise in the edge map, as can be seen
from Figure 6.9, but the image data shown have not been subject to any prior
smoothing, and the fundamental difference between the crisp and dispersed edges
in the cloud content can clearly be seen: the crisp transitions are identifiable
by edges of single-pixel thickness, and the dispersed edges or more correctly
edge regions extend over a few pixels. Using the edge—preserving coherence—
enhancing filter described in Section 5.2.2 would result in less noise in the cloud

data, generating less noisy edge maps that would be easier to interpret.
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Figure 6.9: (a) Cloud Core, (b) Grown Edges added and (c¢) The edge regions
with the cores removed. The edge data were grown out of the core
regions using a fuzzy system assigning each grown pixel a degree
of association with the cloud core. The data shown are from ME-
TEOSAT D2 imagery from 27 August 1997.
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Figure 6.10: Edge Vector Matches. The lower half of the image shows the
first frame of a sequence of METEOSAT D2 imagery from 18
February 1996, and the upper diagonal the seventh frame (three
hours later). The black vectors are the cloud edge matches from
frames 1-2 and the red vectors from frames 6-7.

6.2.1 FEdge Matching

Edges, similarly to skeletons, can be matched using any line matching technique.
In this work, the nearest—neighbour approach used for skeletons was adapted
slightly to cope with the regional nature of the edges analysed (as compared to
the single—pixel thickness of the corresponding skeletons). Again, this works ac-
ceptably for sparse sets of edges (indeed, edges are typically easier to handle than
skeletons due to the lower number of branches requiring matching). The ability
of the approach to capture cloud motion has been demonstrated in Figure 6.10.
The same caveats for matching performance are applicable to these results as
were described earlier for the skeletal data. Again the ability to produce cleaner
edge data using presmoothed clouds, as discussed at the end of the last chapter,

would clearly also impact the quality of edge matches.



6. Cloud Object Parameterisation 129

The results from this chapter were presented at the First AMS conference on

Artificial Intelligence, as detailed in Newland et al[76], and in Lewis et al[4].



Part III

COMMENT AND CONCLUSIONS



7. DISCUSSION

The initial study in this thesis used a fuzzy system to segment spatial regions
in an image sequence based on the suitability of different motion analysis tools.
This proved the possibility for such segmentation. The ideas surrounding the
work identified the relevance of applying different motion analyses to the same
data to analyse different aspects of the motion therein. The fuzzy system was
applied to segment the data into regions suitable for three fundamentally different
types of motion analysis, namely textural analyses, frontal or extended moving
body analyses and small object matching. Simplifying assumptions were made for
determining suitability criteria for each analysis. This provided an understand-
ing of the nature of cloud motion in satellite images however, and significantly

highlighted two problem areas:

e An analysis of cloud motion at the finest scale possible does not scale up

to provide knowledge of the motion at larger scales.

e External causes of cloud motion at different scales, whilst currently at-
tributed to the imprecise concept of wind relate to very different types of
phenomena across the scales so that wind at synoptic scale is totally unre-

lated to some wind eddy at a local scale.

The new parameters developed for this research for capturing the structure of
cloud at the scale of a whole cloud object have been shown to provide significantly
different types of information to the current textural analyses. This has led to a
new way of treating motion in satellite data, from which a better understanding

of the dynamics and their relationship to scale can be identified.
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7.1 Combining Motion Analyses

Another benefit from the new motion analyses generated comes from comparing
the vectors from matching each different parameter. Analysing the vectors to-
gether provides a very different picture to that of any one of the vector sets on
its own. Figure 7.1 gives an example of more than one motion analysis applied
to a frontal weather system. The front was moving to the south—east. The local
wind effect in the frontal region, passing over the cloud, passed along the front,
to the north—east. A texture-based analysis alone gives a confusing picture of
the dynamics. The cross—correlation vectors shown in Figure 7.1 mostly cover the
core of the cloudy region, although some of the vectors near the edge of the cloud
illustrate the confusion in dynamics from using this parameter alone, where they
track the motion of the cloud edge. The edges of the cloud are easy to track due
to the strong greyscale gradient at the edge, but the motion of the edges is very
different to the motion of the cloud peaks within the front, which are blown along
with the local wind component. By overlaying the skeleton—derived vectors, the
two causes of cloud motion are much clearer, and the two different components of
the dynamic can be recognised as different. As a result of this, analyses requiring
knowledge of local-scale wind effects can be directed towards the texture vectors
within the cloud boundaries. Similarly, motion analyses concentrating on synop-
tic scale phenomena, or interested in the development of the weather system as

a whole, would be passed the skeleton and any edge vectors.

The difference between the motion captured by the skeleton and edge vectors is
similarly significant. Whilst they are at a different scale to the current cross-
correlation approaches, they are themselves in orthogonal spaces, so the motion
captured by analysing the evolution of a cloud skeleton differs from the motion

of the same cloud’s edges.
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Figure 7.1: Two vector types overlaid. The red vectors represent skeletal mo-
tion and indicate the transition of the front in the image in a south—
easterly direction. The blue vectors represent texture region motion

and indicate the south—westerly wind.
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7.2 Future Work

Operational trials of the analyses applied in this thesis would provide quantita-
tive measures of their possible impact to forecasting and modelling. A necessary
first step for this would be to address the robustness of the algorithms. In par-
ticular, the algorithms applied would require greater degrees of error and validity
checking and some optimisation to reduce computational overhead for such an
implementation, and a rigorous comparison between a suitable cross—section of
algorithms that provide the types of parameter used or identified in this thesis
would be recommended. Applying the techniques to data prior to having na-
tional borders and markers added and not subject to any compression techniques
is similarly linked to a larger scale test of the approach. The computational cost
of the algorithms applied in this thesis has been small enough however to prove
the feasibility of their operational application: whilst some of the results took
more than a potential half-hourly operational cycle to produce, code optimisa-
tions and hardware enhancements! would be able to reduce the results cycle to

within the necessary range.

There would also be much potential in a more detailed study comparing and
contrasting the different types of motion vector found, and automating the com-
parison of different data. Other types of parameter and further different scales
of motion could similarly be studied (e.g. the preliminary work into the use of
slices of greyscale data for providing another level of shape matching, matching
weather systems etc., and identifying smaller scale features to match). It is worth
noting that by identifying and subtracting any weather system motion from all
the vectors, internal cloud dynamics processes are likely to become clearer, since

internal cloud dynamics are driven by flow-relative atmospheric motion.

Multispectral analyses and incorporating more data into the analyses (e.g. height
information) would again provide more meteorological context for cloud extrac-

tion, smoothing and parameterisation, as well as aiding in parameter tracking

! The most powerful processing used during the course of this thesis was a 150MHz computer
with 128Mb of RAM, running Windows NT.
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and vector interpretation. Currently, visible, infrared and water vapour motion
vectors are all used as indicative of the windfield. Analysing each using the rich
descriptions described in this thesis will again provide more detailed characteris-
tics of the motion observed in each channel of data. It is recognised that water
vapour motion is significantly different to visible and infrared cloud motion, both
due to the fact that the motion represents a deep layer mean and that the struc-
tures being followed are less coherent. A comparison of the large-scale motion of
water-vapour structures could therefore reasonably be expected to differ slightly
from weather system dynamics as captured from cloud structure motion. Any
such differences may provide insights into weather system lifecycles, where the
difference between motions captures new information. CLOUDSAT data should
also soon be available, providing richer descriptions of cloud cross—sections and
verification data for cloud structure descriptions captured in current and future
cloud shape parameters. Tieing in radar data to identify where the rainfall is in

a cloud body may again correlate with cloud shape changes.

Determining the scale-dependence of each vector, i.e. over what range of scales
the vector is indicative of some motion, would have many applications, for ex-
ample for assessing whether point wind data at a given location within a cloud
are valid for analysing the synoptic scale motion at that point (which would be
true under very steady atmospheric conditions only.). An automatic scheme for
assessing this vagueness for vectors, and also for all other current wind data and
validation sources (e.g. radiosondes, wind radar etc) would allow models to use
the vagueness measures when accepting wind data sources, as well as greatly

assisting human operators in interpreting atmospheric motion data at different

scales.

Having obtained a much richer set of motion types with which to analyse cloud
motion, it would be useful to revisit the initial work looking at segmenting im-
agery based on the applicability of different motion techniques. Having a better
understanding of how atmospheric motion acts at different scales may allow the
approach to provide an indication of where in the imagery is suitable for any

particular scale of analysis. If there are no features suitable for analysis of local



7. Discussign 136

scale motion in a region, some measure of this should be possible.

Similarly, skeletal analyses could be enhanced by making use of the skeletal radii?
at each point along a skeleton as well as the skeleton itself. The variation in
cloud width along the skeleton and the change in this variation should give a
much richer description again of where a cloud system is developing. Similarly,
skeleton—relative motion analyses and skeleton-relative edge type analyses would

both be interesting to study further.

Further development of the analysis could provide novel validation techniques for
the modelling community. For example, the new motion vectors could be used
for checking predicted radiance images from 3- or 4-D variational assimilation
techniques, weather system motion information, local scale wind information and

cloud lifecycle knowledge.

The use of fuzzy systems in this work has shown the potential of the approach for
prototyping image segmentation algorithms. To apply these techniques to large
sets of data, it would be most sensible to allow the rules to adapt themselves
based on feedback on past performance. This would require suitable performance
measures to be identified. In the case of fuzzy segmentation based on motion
analysis applicability, initial feedback could be provided by using a dense set of
vectors of all types from which an expert could identify where each vector set has

provided some valid analysis.

The analyses would also be suitable for other non-rigid motion problems where
the motion can be described at multiple scales, e.g. analysis of ocean features
or Computational Fluid Dynamics data. In addition, the coherence-enhancing
smoothing technique introduced could be used for data preprocessing for video

data compression.

2 The radii of the maximal disks, or the distance to the nearest edge, for each point on the
skeleton.



8. CONCLUSIONS

The need for global wind information is widely recognised as critical for most
domains of meteorology, from modelling and climatology to forecasting. Whilst
cloud motion in satellite image sequences has been used as an indicator of wind
motion since the start of the geostationary meteorological satellite programs, the
limitations of current operational approaches have become increasingly apparent
in light of improvements in the user communities. In particular the assumption
that cloud acts as a passive tracer for the wind, and the generic use of the term
wind for atmospheric motion at a very broad range of scales has caused prob-
lems for satellite-based analyses. The lack of any meteorological context in the
current cross—correlation based motion analyses, and the difficulties of validating
identified cloud motion using validation data of a different scale! has hindered

the development of solutions to overcome these problems.

A novel approach for analysing cloud motion from a cloud object perspective
has been introduced in this thesis, providing a new starting point from which
to determine global wind data. The approach itself differs from the traditional
texture-based analyses by focussing on the cloud content in the imagery, and
applying multiple motion analyses to provide a much richer description of the
motion. This has allowed the standard assumption of cloud passivity as a wind
tracer to be removed, and other components of cloud dynamics, other than the
underlying windfield, have been identified in the results presented. By changing
the perspective of the analysis of satellite image sequences from one purely of

determining global wind data to one of providing a rich representation of the

1 Weather balloon measurements collected over tens of metres used for validating satellite—
derived winds collected over hundreds of kilometers



8. C’onclu_sions 138

dynamics of the cloud in the imagery from which any wind component can be
identified, this thesis creates a new area for the community to research to identify

a number of new or better meteorological satellite products.

In order to apply multiple motion analyses to the cloud content of the satellite
image sequences, new parameterisations of cloud have been developed. An adap-
tation of the rolling-ball algorithm has been developed to provide a coherence-
enhancing, edge-preserving image filter, to improve parameter extraction from
the raw cloud data. A novel use of morphological skeleton algorithms has been
generated for analysing the shape of the cloud content and its development over
time. Similarly, a fuzzy system has been applied to analyse the nature of the
edges of the cloud, to provide better identification of crisp and fuzzy edges than
edge gradient alone. The results have shown the ability of these parameters to
capture the larger—scale motion displayed by cloud systems, and an indication of
where clouds are being dissipated by the wind flow and where the wind is parallel

with the cloud edge (which is indicative of jet flow regions, for example).

This mixture of tracking methods has provided a much richer description of the
cloud dynamics. By comparing and contrasting the different vectors, it has been
shown that the cause of the cloud motion captured by a given motion vector can
be identified. The motion analysis algorithms described in this thesis provide the
framework within which such a measure of motion causality could be developed
and also show the types of motion necessary for making such discrimination. The
methods introduced have been applied to a number of different sets of sateliite
data as illustrated by the examples shown, and have been shown to provide
stable results in each of the meteorological conditions captured. The approaches

are therefore suitable for larger—scale studies.
The five key areas where improvements to the approach could be focussed are:

1. Large-scale testing on a much larger cross—section of meteorological situa-

tions.

2. Wider comparison of motion analysis outputs to identify the underlying
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meteorological characteristics of each type of motion analysis.

3. Applying the techniques to other channels of data and comparing the anal-

yses across different spectra.
4. Providing learning or feedback to the fuzzy systems used.

5. Addressing the initial problem of fuzzy segmentation based on motion type

in light of the subsequent analyses.

The work has principally demonstrated benefit to the meteorological community
in three regards: the new parameters used for describing the dynamics of cloud at
a synoptic scale, which capture motion unassociated with the underlying wind-
field, have application both for weather system tracking and analysis and cloud
lifecycle analysis. In particular, the use of skeletons may provide a much richer
analysis of vorticity than is currently available. The use of multiple motion anal-
yses provides better identification of the suitability of cloud motion vectors for
describing the wind or any other motion type captured, and the use of a multi-
scale analysis has shown the breadth of phenomena currently described under the
umbrella term of wind, as well as providing a possible approach for breaking down
the definition, and comparing motion types across this breadth of scale. Finally,
a new method for identifying possible jet flow locations based on the nature of
the cloud edge has resulted from the edge analysis of cloud structures: jet flow

regions are unreliably reported at present.

Future development of the approach could provide novel validation techniques
for the modelling community. For example, checking predicted radiance images
from 3- or 4-D variational assimilation techniques, weather system motion infor-
mation, local scale wind information and cloud lifecycle knowledge are all pos-
sible validation outputs of the approach. Similarly, the approach offers a means
to determine the degree to which any motion at one scale can be generalised
across other scales. The work would also be suitable for other non-rigid mo-
tion analysis problems where the motion can be described at multiple scales, e.g.

analysis of ocean features or Computational Fluid Dynamics data. In addition,
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the coherence—enhancing smoothing technique introduced could be used for data

preprocessing for video data compression.

This thesis has therefore provided a description of a new object-based approach
for analysing cloud dynamics in sequences of satellite imagery, which has been
shown to provide a much richer representation of motion than is available using
current approaches to satellite image analysis. New parametric representations
of cloud have been developed within this approach to show how cloud motion can
be captured in a number of different ways and at different scales. The parameters
in themselves would provide operational benefits over current analyses, however
the approach introduces the notion of multiple motion analyses for cloud analysis
providing many different types of motion information, which allows the possibility
for other motion capture techniques to be developed and contrasted with those
presented here. The work therefore advances the field of cloud motion and wind
analysis from satellite data and provides a new perspective on satellite motion

analysis for many other fields of meteorology.



A. OBJECT GROWTH FUZZY RULES

Table A.1: Fuzzy Rule Base for Cloud Growth

ENTIRE SYSTEM FUZZY RULES REPORT
INTERNAL NETWORK 1 WITH 1 SUBNETWORK
SubNetworkl with 3 Input Variables and the 75 following Fuzzy Rules

IF Relative

Greyscale is

AND Absolute

Greyscale is

AND Greyscale

Gradient is

THEN Cloud

Degree is

(Confidence)

Not Cloud
Close to cloud edge
Cloud Fringe
Cloud
Definite Cloud
Not Cloud
Close to cloud edge
Cloud Fringe
Cloud
Definite Cloud
Not Cloud
Close to cloud edge
Cloud Fringe
Cloud

Definite Cloud
Not Cloud

Close to cloud edge

Cloud Fringe

Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Lower Cloud
Lower Cloud
Lower Cloud
Lower Cloud
Lower Cloud
Cloud

Cloud

Cloud

Cloud

Cloud
Upper Cloud
Upper Cloud
Upper Cloud

Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge
Cloud Edge

Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud

continued on next page

(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(0.80)
(0.30)
(0.20)
(1.00)
(0.62)
(0.58)
(0.25)
(0.18)
(0.60)
(0.14)
(0.14)
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continued from previous page

IF Relative AND Absolute AND Greyscale THEN Cloud (Confidence)
Greyscale is Greyscale is Gradient is Membership is

Cloud Upper Cloud | Cloud Edge Not Cloud | (0.14)
Definite Cloud | Upper Cloud | Cloud Edge Cloud (1.00)
Not Cloud Definite Cloud | Cloud Edge Cloud (1.00)
Close to cloud edge | Definite Cloud | Cloud Edge Cloud (1.00)
Cloud Fringe | Definite Cloud | Cloud Edge Cloud (1.00)
Cloud Definite Cloud | Cloud Edge Cloud (1.00)
Definite Cloud | Definite Cloud | Cloud Edge Cloud (1.00)
Not Cloud Not Cloud Acceptable Gradiens | Not Cloud | (1.00)
Close to cloud edge | Not Cloud Acceptable Gradient | Not Cloud | (1.00)
Cloud Fringe | Not Cloud Acceptable Gradiens | Not Cloud | (1.00)
Cloud Not Cloud Acceptable Gradient | INot Cloud | (1.00)
Definite Cloud | Not Cloud Acceptable Gradiens | INOt Cloud | (1.00)
Not Cloud Lower Cloud | Acceptable Gradiens | Not Cloud | (1.00)
Close o cloud edge | Lower Cloud | acceptable Gragiens | Not Cloud | (0.80)
Cloud Fringe | Lower Cloud | Acceptable Gradiens | Not Cloud | (0.70)
Cloud Lower Cloud | Acceptable radgient | Not Cloud | (0.20)
Definite Cloud | Lower Cloud | Acceptable Gradiens | Not Cloud | (0.10)
Not Cloud Cloud Acceptable Gradient | INOt Cloud | (1.00)
Close to cloud edge | Cloud Acceptable Gradient | Not Cloud | (0.50)
Cloud Fringe | Cloud Acceptable Gradient | NoOt Cloud | (0.48)
Cloud Cloud Acceptable Gradient | INOt Cloud | (0.15)
Definite Cloud | Cloud Acceptable Gradient | NOt Cloud | (0.10)
Not Cloud Upper Cloud | Acceptable cradiens | Not Cloud | (0.50)
Glose to cloud edge | Upper Cloud | Acceptable Gragiens | Not Cloud | (0.08)
Cloud Fringe | Upper Cloud | Acceptable Gradiens | Not Cloud | (0.04)
Cloud Upper Cloud | Acceptable Gradient | Not Cloud | (0.02)
Definite Cloud | Upper Cloud | Acceptable Gragiens | Not Cloud | (0.02)
Not Cloud Definite Cloud | Acceptable Gradient | Cloud (1.00)

continued on next page
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IF Relative

Greyscale is

AND Absolute

Greyscale is

AND Greyscale

Gradient is

THEN Cloud (Confidence)

Membership is

Close to cloud edge

Cloud Fringe
Cloud

Definite Cloud
Not Cloud
Close to cloud edge
Cloud Fringe
Cloud

Definite Cloud
Not Cloud
Close to cloud edge
Cloud Fringe
Cloud

Definite Cloud
Not Cloud
Close to cloud edge
Cloud Fringe
Cloud

Definite Cloud
Not Cloud
Close to cloud edge
Cloud Fringe
Cloud

Definite Cloud
Not Cloud
Close to cloud edge
Cloud Fringe
Cloud

Definite Cloud
Definite Cloud
Definite Cloud
Definite Cloud
Not Cloud
Not Cloud
Not Cloud
NotCloud

Not Cloud
Lower Cloud
Lower Cloud
Lower Cloud
Lower Cloud
Lower Cloud
Cloud

Cloud

Cloud

Cloud

Cloud

Upper Cloud
Upper Cloud
Upper Cloud
Upper Cloud
Upper Cloud
Definite Cloud
Definite Cloud
Definite Cloud
Definite Cloud

Acceptable Gradient
Acceptable Gradient
Acceptable Gradient
Acceptable Gradien
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud
Cloud

Cloud
Cloud
Cloud
Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud
Not Cloud | (
Not Cloud | (0.44)
Not Cloud | (0.05)
Not Cloud | (0.03)

(

(

(

(

(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(0.70)
(0.60)
(0.10)
(0.05)
(0.73)
0.45)

Not Cloud | (0.40)
0.06)
0.05)
0.04)

(1.00)

(1.00)

(1.00)
(1.00)

(1.00)

Not Cloud
Not Cloud
Not Cloud
Cloud
Cloud
Cloud
Cloud
Cloud

continued on next page
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continued from previous page

IF Relative

Greyscale is

AND Absolute

Greyscale is

AND Greyscale

Gradient is

THEN Cloud

Membership is

(Confidence)

Definite Cloud

Definite Cloud

Cloud

Cloud

(1.00)




B. IMAGE FORMATS AND COMPRESSION
ARTEFACTS

Figure B.1(a) shows an example of the publicly disseminated WEFAX data that
has been preprocessed in Darmstadt to correct the radiance values and add coast-
line and lat-lon check marks. The image looks significantly different to the pre-
processed image shown in Figure B.1(b), which has not been subjected to the
radiance correction. Whilst the radiance correction is necessary, the difference
in image quality is of equal concern when analysing the imagery. Figure B.2
compares the shape of the surface for a small window of the data, and clearly
shows some artefacts in the publicly disseminated data that are not present in
the raw imagery. These are most probably due to the storage mechanism for the
publicly available images. Figure B.3 compares the format for the latest image
available at Nottingham’s METEOSAT archive site, stored in GIF format with
the archived data in JPEG format. The difference is again most noticeable in
3-D projection, as shown in Figure B.4. Clearly the use of radiance—corrected
data prior to national border addition and not subject to any data compression
techniques is the ideal source of data for meteorological satellite image analysis.
Practical constraints often result in the necessitated use of the degraded images

shown, however.
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A —— et &

METEOSAT-7 1R 18108 23/R67199% - S,

(b) RAW data downloaded at EUMETSAT prior to public dissemination

Figure B.1: Comparison of raw and retransmitted METEOSAT D2 data from
1800 on 23 June 1998
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(a) WEFAX data: projected region (b) WEFAX data: projection

(c) RAW data: projected region (d) RAW data: projection

Figure B.2: Comparison of projected raw and retransmitted data
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(a) Image in GIF format (b) Image in JPEG format

Figure B.3: Comparison of GIF and JPEG storage formats. Data are ME-
TEOSAT D2 imagery from September 19 1999 at 1030GMT.
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2000
150-
100.

50,
60

(¢) GIF: projection (d) JPEG: projection

Figure B.4: Comparison of projected GIF and JPEG data



C. MORPHOLOGICAL IMAGE PROCESSING

For cloud object analysis to be quantitative, it must follow certain constraints.
The first manifests itself due to the fact that the cloud is digitised, and therefore
its location is not certain, and must be independent of a one-pixel translation in
any direction. The second relates to the fact that different cloud structures of
different sizes should be smoothed in the same way as the vagueness in the cloud
shape is arguably scale-invariant. The third relates to local knowledge. We only
know about the cloud developments within our field of view from which we may
wish to make some comment about the meteorology beyond our field of view.
The fourth relates to partitioning of space into two or more known regions and
a boundary which always exists and is always unknown, e.g. between cloud /
non—cloud / edge regions or cloud details that can be distinguished, those that
cannot and those inbetween. There are four underlying principles of morphology
which every morphological transformation ¥ must satisfy (Table C.1) which map

onto these quantitative analysis requirements.
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1. Compatibility under translation.
O(Xn) = [(T™"(X)]4a (C.1)
i.e. applying ¥© to X" is equivalent to applying U~* to X then shifting

the result by vector h. ¥° means apply ¥ with respect to an origin O.
NB invarianceunder translation means the origin is irrelevant to ¥, i.e.

U (Xn) = [T(X)]n
2. Compatibility under change of scale.
U, (X) = AT (X)) (C.2)

We have a family of transformations, ¥,. The actual form of the relation-
ship is important to note, as any family of ¥, will not suffice. NB indepen-
dencewith respect to image magnification implies T(AX) = AV (X),A >0

3. Local Knowledge.
VboundedZ', FboundedZs.t.[¥(X NZ)|NZ =¥ (X)nZ' (C.3)

i.e. for a bounded set Z' in which we want to know ¥(X), we can find a
bounded set Z in which the knowledge of X is sufficient to locally (within
Z'") perform the transformation

4. Semi-continuity.

Table C.1: Underlying principles of morphology (Taken from Serra [90]).
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