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AN OBJECT-BASED ANALYSIS OF CLOUD MOTION FROM 

SEQUENCES OF METEOSAT SATELLITE IMAGERY 

by Franz Thomas Newland 

The need for wind and atmospheric dynamics data for weather modelling and 

forecasting is well founded. Current texture-based techniques for tracking clouds 

in sequences of satellite imagery are robust at generating global cloud motion 

winds, but their use as wind data makes many simplifying assumptions on the 

causal relationships between cloud dynamics and the underlying windfield. These 

can be summarised under the single assumption that clouds must act as passive 

tracers for the wind. The errors thus introduced are now significant in light of 

the improvements made to weather models and forecasting techniques since the 

first introduction of satellite-derived wind information in the late 1970s. In that 

time, the algorithms used to track cloud in satellite imagery have not changed 

fundamentally. There is therefore a need to address the simplifying assumptions 

and to adapt the nature of the analyses applied accordingly. 

A new approach to cloud motion analysis from satellite data is introduced in this 

thesis which tracks the motion of clouds at different scales, making it possible 

to identify and understand some of the different transport mechanisms present 



in clouds and remove or reduce the dependence on the simplifying assumptions. 

Initial work in this thesis examines the suitability of different motion analysis 

tools for determining the motion of the cloud content in the imagery using a 

fuzzy system. It then proposes tracking clouds as flexible structures to analyse 

the motion of the clouds themselves, and using the nature of cloud edges to 

identify the atmospheric flow around the structures. 

To produce stable structural analyses, the cloud da ta are initially smoothed. A 

novel approach using morphological operators is presented that maintains cloud 

edge gradients whilst maximising coherence in the smoothed data. Clouds are 

analysed as whole structures, providing a new measure of synoptic-scale motion. 

Internal dynamics of the cloud structures are analysed using medial axis trans-

forms of the smoothed data. Tracks of medial axes provide a new measure of 

cloud motion at a mesoscale. The sharpness in edge gradient is used as a new 

measure to identify regions of atmospheric flow parallel to a cloud edge (jet flows, 

which cause significant underestimation in atmospheric motion under the present 

approach) and regions where the flow crosses the cloud boundary. The different 

motion characteristics displayed by the medial axis tracks and edge information 

provide an indication of the atmospheric flow at different scales. 

In addition to generating new parameters for measuring cloud and atmospheric 

dynamics, the approach enables weather modellers and forecasters to identify the 

scale of flow captured by the currently used cloud tracers (both satellite-derived 

and from other sources). This would allow them to select the most suitable 

tracers for describing the atmospheric dynamics at the scale of their model or 

forecast. This technique would also be suitable for any other fluid flow analyses 

where coherent and stable gradients persist in the flow, and where it is useful to 

analyse the flow dynamics at more than one scale. 

KEYWORDS Meteorology, Clouds, Cloud Motion Winds, Atmospheric Dynam-

ics, Image Processing, Morphology, Skeletons, Shape Smoothing, Fuzzy Logic, 

Feature Matching. 
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PREFACE 

This thesis provides the background, methods and results of the past four years' 

work on analysis of cloud motion from sequences of satellite data using novel 

image processing techniques. It is presented in three sections that serve very 

different roles. The thesis itself does not represent a chronological progression of 

the study undertaken. It is informative, however, to know by what route the work 

came together, and to this end, a brief summary of the chronological progression 

of the work is now provided. 

Initial work concentrated on improving wind information from tracking clouds. 

It was realised that different types of cloud motion could be identified in movie 

loops of satellite data, and a mechanism for segmenting these motion types was 

developed. This work is detailed in Newland et al [75], and used a fuzzy system 

to identify the degree to which any region of cloud could be tracked using edge 

information, textural content and whole cloud matching. This resulted in some 

realisation of the multi-scale nature of cloud motion. Subsequent discussion with 

the Meteorological Office in Bracknell led to the more fundamental issue that 

different users of meteorological wind information have different interpretations 

of the word wind. The term is equally used to describe small scale eddies at spatial 

resolutions in the order of metres and large scale atmospheric motion over many 

hundreds of kilometers. In order to make some distinction between these scales, 

the more generic term of atmospheric dynamics has sometimes been used in the 

literature for the scale of motion captured in geostationary satellite imagery. 

As a result of this early work, study then focused on identifying motion mech-

anisms at different scales. Historically, the atmosphere is studied at synoptic 

or large-scale (hundreds of kilometers), meso or medium scale (tens of kilome-
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ters) and local scale, and therefore as a first approximation it seemed appropriate 

to capture the dynamics at these distinct orders of magnitude. The motion of 

whole weather systems is indicative of the synoptic scale dynamics, whilst the 

motion within a weather system as identifiable in satellite image data is better 

for mesoscale analysis. Local-scale information is typically too small to be identi-

fied on satellite data, but by comparing the mesoscale motion with, for example, 

other point sources of wind information (e.g. radiosonde data from weather bal-

loons), it is possible to determine the amount of correlation between local and 

mesoscale motion. 

Suitable parameters for tracking clouds at a synoptic and mesoscale were sought, 

which shifted the emphasis of the study onto cloud objects. This shift of emphasis 

to an object-based approach is detailed in Lewis et al [4]. Whole clouds, their 

edges and their medial axes or skeletons were identified as suitable parameters to 

capture these scales of motion. Due to the nature of clouds having vague edges, 

a fuzzy approach to cloud object extraction was considered. This approach and 

the initial work on edge and skeleton tracks are given in Newland et al [76]. 

The stability of these edge and skeleton tracks was limited, however, by the high 

local variability in the raw data. Smoothing techniques were therefore sought to 

remove some of the smaller-scale variation. 

Having selected an object-based approach, and having identified suitable struc-

tures for tracking motion at different scales, other benefits of the approach began 

to emerge, in particular the potential for skeletons to provide an indication of 

cloud spread, e.g. for identifying the onset of vorticity through the various mech-

anisms of cyclogenesis, and the relationship between crisp cloud edges and the 

location of jet flows, which are notoriously difficult to capture using current tech-

niques. It is hoped that other developments may arise with further maturity of 

these new parameters of cloud motion. 

The thesis is laid out in three sections to enable the reader to find the pertinent 

information as easily as possible. Part 1 provides the background to the study, 

detailing the current operational approach to cloud tracking, its limitations and 
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some potential requirements for any improved technique. It highlights other areas 

of active research in this field, and identifies which problems this work addresses. 

An introduction to the research itself is also given, and the backgrounds to meth-

ods used are provided as necessary. Part 2 details the actual algorithms applied 

to the data, and identifies the desired characteristics displayed by the selected 

algorithms. It is split into data smoothing and object extraction, object param-

eterisation and parameter matching. Finally, part 3 discusses the methods and 

results and highlights possible future directions of research, before summarising 

the main conclusions of the work. 
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1. INTRODUCTION 

This thesis presents a novel approach to tracking cloud in sequences of geostation-

ary meteorological satellite imagery that provides new information regarding the 

nature and ultimately the cause of the motion displayed by cloud. The approach 

considers the cloud content of the image sequences as deformable objects, and 

as such, interprets the image content early in the image analysis to determine 

the location and nature of the clouds in the imagery. This early interpretation is 

used to target subsequent motion analysis using the knowledge acquired. Novel 

shape parameters that make use of morphological image processing techniques 

and fuzzy logic are used to describe the cloud content such that the dynamics of 

the cloud can be captured at different scales. 

The work uses infrared geostationary satellite imagery due to the relative ease 

with which the cloud content can be identified and interpreted. By contrast, 

visible imagery requires careful consideration of the change in shadowing effects 

on cloud texture as the relative solar angle changes. Water vapour imagery, 

which represents a deep layer mean water content, is equally less suitable than 

infrared as the motion mechanisms of water vapour per se are less well known 

than those of clouds, and the deep layer averaging effects reduce the usefulness 

of the data for analysing smaller scale phenomena. Infrared images are also 

freely available in the public domain at useable spatial and temporal resolutions. 

Geostationary satellites provide a fixed viewpoint for the d a t a \ avoiding the 

need for any complex registration of the images against one-another, giving the 

same viewing angle for any image region over a sequence of images and providing 

a higher temporal update on the data, due to the satellite's persistent view of 

^ An approximation to a fixed viewpoint, at least. 



1. Introduction 19 

the same area of the globe. Whilst higher spatial resolution data are available 

for polar orbiting satellites for example, their temporal resolution for a given 

area on the ground is typically degraded by an order of 10-20 compared to the 

geostationary data over the same region. In this t ime the cloud over the region 

has typically changed and / or moved significantly. 

The cloud component is first extracted from an image sequence by comparison 

with dynamically created template image estimates of the radiances of the un-

derlying land and sea. Two smoothing algorithms are considered for removing 

noise from the enhanced cloud data: for large-scale object-matching-based mo-

tion analysis, a simple median filter can be used to remove noise at the cost of 

reducing precision in the data. For cloud parameterisation however, accuracy in 

capturing edge strength and maximising the coherence of the cloud structure are 

the overriding concerns, so a novel edge-preserving filter is applied. The filter is 

based on a rolling ball algorithm. 

The parameters extracted from the smoothed cloud objects are designed to iden-

tify the nature of the edge of the cloud (sharply defined or dissipated) and to 

capture the overall structure of a cloud shape (the curvature, number of limbs, 

etc). The selected parameters used to identify these are the cloud edge gradient 

and the cloud skeleton or medial axis. In order to manage the imprecise nature 

of clouds as structures, ways to adapt the standard techniques for generating 

skeletons for crisp objects in binary images are discussed in this work. A novel 

technique for determining cloud edge strength using a fuzzy system has also been 

developed, to provide better identification of crisp and fuzzy edges than edge 

gradient can offer alone. 

These parameters are then matched across the sequence of satellite images to 

produce sets of motion vectors. The result of this mixture of tracking methods 

is a much richer description of the cloud dynamics, from which it is possible to 

make better interpretations of the cause of the motion. In addition to identify-

ing cloud motion resulting from the wind driving it, it is possible to determine 

sites of convection, locations of jet fiows (where there is typically no cloud com-
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ponent) and atmospheric flows that act on a much larger scale than most users 

typically interpret as wind. The whole process from cloud extraction through 

parameterisation to matching is shown in Figure 1.1. 

The dynamics of each motion type can be interpreted independently. Crisp cloud 

edges, for example, do not have any local wind flow across them (and vice-versa 

for dispersed edges), therefore the motion of a crisp cloud edge is typically the 

result of a large scale atmospheric flow. The local wind acts (and many meteo-

rological phenomena result from flows that are) relative to this large scale flow, 

thus a mechanism for identifying it is the flrst step towards identifying a number 

of relative-flow phenomena. Skeletal motion allows some component of a cloud's 

internal dynamics to be captured. Between edge and skeleton motion types, 

there is the potential to identify the cause of a particular cloud's development. 

Convective processes in clouds for example are driven by motion relative to the 

atmospheric flow. If the atmospheric flow can be identified from the motion of a 

crisp edge on the convective cell and the internal atmospheric motion is captured 

by the skeleton vectors, the difference between the two will show convective-type 

relative flows. 

This highlights one of the main strengths of this new multiple motion analysis 

approach, namely that the combined analysis of these different types of motion 

offers a better understanding of each than is possible independently. This there-

fore offers a significant improvement over the single motion analysis currently 

employed operationally, which itself has no meteorological context within which 

to be interpreted. Unlike cloud edge and skeleton motion, which both relate di-

rectly to a meteorological concept (the cloud whose motion they describe), the 

current texture-based analyses track texture regions as a totally abstract concept. 

The novel components of this work are therefore the consideration of cloud mo-

tion from a cloud object perspective and the use of multiple motion analyses to 

build up a more complete picture of the motion, the novel edge-preserving image 

filter that has been developed for this work, the adaptation and application of 

morphological skeleton tools for analysis of cloud shape and the fuzzy system 
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applied to cloud edge analysis. The potential benefits of the work for the meteo-

rological community are new parameters describing the synoptic scale dynamics 

and cloud motion unassociated with the underlying windfield, better identifica-

tion of suitable wind tracers and a new method for identifying possible jet flow 

locations for further scrutiny. 

Sequence of tmagies 

J 

..V 

Segmentation by relevance of Motion Analysis 

Parameter Generation (Section 4.1.2) 
Fuz^y Segmentation (Section 4.3) 

Preprocessing: 

Border Removal (Section 4.1.1) 
Data Projection (Section S.1) 
Data Smoothing (Section 5.2) 

<r 

Cloud Object Extraction: 

Multi-level Thresholding (Section 5.3.1) 
Core Extraction and Fuzzy Context 

Growth (Section 5.3.2) 

Cloud Parameterisation: 

Skeletons (Section 6.1) 

Cloud Edges (Section 6.2) 

Texture Analysis (Section 2.1) 

Parameter 
Suitability 

Parameter Matching & Vector Generation: 
Skeletal Vectors (Section 6.1.2) 
Edge Vectors (Section 6.2.1) < —— 
^ /c Validation & 
Cross-correlation (Section 2.1) Measures 

Figure 1.1: Pictorial Abstract of the Proposed Approach for Cloud Motion 
Analysis: A sequence of satellite images is segmented based on the 
suitability of different motion analysis tools. The raw images are 
then enhanced, projected and smoothed, and the cloud objects are 
extracted from them. Edge, skeleton and texture window param-
eter extraction routines are then run. Finally, the parameter sets 
are matched across the sequence to generate a number of different 
vector fields. The original motion suitability information can be 
used to aid cloud extraction by providing a motion context, during 
parameter generation to target parameter generation algorithms at 
the relevant regions and during parameter matching to provide a 
measure of vector quality based on motion relevance. 
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Satellite imagery has been an invaluable and consistent source of meteorological 

information since the start of the Geostationary Meteorological satellite programs 

in the early 1970s (Leese et al [62], Schmetz et al [87]), providing data for fore-

casters and weather modellers alike. The application of satellite-derived data 

covers such diverse areas as short-term weather forecasting for otherwise da ta -

sparse areas of the globe or in areas of severe weather to climate modelling and 

earth radiation budget analyses (Baker [6]) to numerical weather model inputs 

(Kelly [53]) and model and forecast validation. Wind is potentially the most 

significant input to any weather model (Hinsman [49]), and therefore a continu-

ous, global source of wind data is invaluable to modelling communities. Due to 

the unique use of visible and infrared sensors on many of the earlier platforms 

and subsequent refinement of these channels with satellite development, much of 

the meteorological study of satellite imagery has concentrated on cloud content 

and, using sequences of images, cloud dynamics. Trained forecasters are able 

to identify large- and small-scale dynamics components from analysis of such 

sequences, particularly with the new high spatial and temporal data resolutions 

available. This knowledge of cloud motion has been invaluable for generating 

global knowledge of the underlying wind field. 

First analyses of cloud motion from satellite imagery consisted of manually match-

ing clouds and plotting motion vectors, providing reliable motion but requiring a 

large amount of time. The primary use of cloud motion vectors is as an indication 

of the local wind {Cloud Motion Winds or CMWs). Hubert and Whitney [50] 

document the early use of cloud motion for wind field analysis, and list a num-

ber of important criteria against which cloud suitability as a tracer for the wind 
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can be assessed. Primarily, clouds that are advected^ by the ambient winds act 

as good tracers (passive tracers), as opposed to clouds in convection^. There 

are, however, other motion mechanisms for clouds tha t are nonadvective. A con-

densed set of the guidelines provided by Hubert and Whitney for determining 

wind information from satellite image data is given in Table 2.1. 

Cloud motion vectors have been derived using automatic techniques since the 

early-1970s^ using an image texture cross-correlation approach (Leese et al [62], 

Smith and Phillips [93]). Numerical weather models currently use wind data 

derived automatically from cloud motion as a significant source of knowledge of 

atmospheric dynamics. 

2.1 Automate Derivation of Cioucf Motion 

Current automatic techniques for analysing cloud content make a number of sim-

plifying assumptions both about the nature of the cloud motion and its cause. 

Principally, it is assumed (at least initially) that all cloud acts as a passive tracer 

for the wind field. It is also assumed that using a single measure to track the 

cloud (namely correlating texture windows of the cloud images) captures the cloud 

motion with both sufficient accuracy and at the scale most relevant for analysis 

of the wind field. 

Since 1979, the standard technique for determining global winds operationally 

from satellite data has been a texture cross-correlation approach. This involves 

correlating a window of the radiance data in the first available image with an area 

^ advection; a mechanism of horizontal energy transport in the troposphere, by the wind. 
Any atmospheric property can be advected, but temperature and moisture advection are of 
most interest to meteorologists (Nese et al [74]). A frontal system is a good example of a cloud 
under advection. 

^ convection: a mechanism of vertical energy transport. With regard to clouds, convection is 
usually classified into shallow and deep, the distinction dependent on the vertical extent of the 
cloud undergoing convection. A stratus or layered cloud would be a good example of shallow 
convection, where the layer has resulted from a small upward motion of air over a large area. 
Cumulonimbus or storm clouds are the most extreme example of deep convection. 

^ Fujita [37] performed basic analyses of cloud motion from the U.S. Applications Technology 
Satellites (ATS) as early as the mid-sixties, but operational computation started in the 1970s. 
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1. Cyclones, fronts, jet streams and squall lines can be found from spirals, 
large bands, abrupt cloud edges and lines or zones of bright cloudiness. 

2. The stages of cyclone development can be determined from the character of 
the cloud (see also Browning's discussion of leaf to comma to vortex tran-
sitions [14]). High clouds in well-developed tropical cyclones move slowly 
and both cyclonically and anti-cyclonically, whereas low and middle clouds 
move rapidly in a cyclonic direction. 

3. Interaction between air masses and underlying surfaces can be determined 
by looking, for example, for cloud types of cold advection over warmer water 
or warm advection over colder water. Clouds influenced by coastlines and 
by ocean temperatures are low-level clouds. 

4. Bright clouds with sharp edges usually are cumuliform and are easily 
tracked. 

5. Thin clouds with diffuse edges tend to be cirriform and are less easily tracked 
than cumuliform and middle clouds. Clouds associated with jetstreams are 
often cirriform. Large masses of bright multilayered cloud associated with 
jetstreams will often obscure the thin gray cirrus of Jetstream level. 

6. Motions which appear to move through a pattern of cloud, alternately sup-
pressing and enhancing brightness, often conflict with motion of the indi-
vidual cloud elements in the same layer and are probably due to gravity 
waves. The orientation of such waves and their direction of motion bear no 
fixed relation to the ambient wind. 

7. Clouds that appear to penetrate vertical shear layers should be tracked by 
the upshear edge rather than the center of mass. For example, in areas 
of active convection the cloud area grows rapidly because of anvil growth. 
The origin of the anvil (the brightest area at the rear of the growth region) 
moves with the middle- and low-level wind. The leading edge of the anvil, 
while advancing with the high-level wind, may be moving more slowly than 
the wind because of evaporation. 

Table 2.1: Guidelines for satellite image analysis. Collated from Hubert and 
Whitney [50] 

of the second image and selecting the maximum cross-correlation between the two 

image windows as the best match and correspondingly the best local estimate of 

cloud motion (Figure 2.1). The assumption that clouds act as passive tracers for 

the underlying windfleld is then used to derive a global windfleld estimate, at 

least in the cloud-covered regions of the imagery. This has been a reliable and 

successful approach to wind estimation both for the modelling and forecasting 

communities for the past two decades. With no corrections, this approach can 
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achieve accuracies of around 8-10 m/s RMS error averaged across all windspeeds 

when compared to the standard source of wind information^. 

A more detailed description of the current operational techniques applied by 

NASA and NOAA to Geostationary Operational Environment SatelHte 7 (GOES-

7) Infrared data, and EUMETSAT's Meteorological Product Extraction Facility 

(MPEF) to METEOSAT Infrared data processing is now given®. 

Images are analysed in their raw (i.e. orthographic) projection, and the resul-

tant motion vectors are converted to a constant distance projection to determine 

their magnitude and direction relative to an observer on the ground below the 

cloud [88]. The image data are initially segmented into 32*32 pixel segments. 

The region over which data are generated extends to the 55 degree arc about the 

subsatellite point, although more recently, Purdom [81] has shown that the new 

high-temporal-density data available with GOES-9 enable accurate texture cor-

relation well beyond this. Around 1/2 to 2/3 of segments have identifiable cloud 

tracers for subsequent use [87]®. Image filtering is applied to enhance the highest 

layer of cloud. Only the highest layer of cloud in any segment is tracked opera-

tionally. By setting all low-cloud clusters to a threshold greyscale and stretching 

the histogram of mixed low- and high-cloud clusters away from the high cloud 

radiometric range, the high cloud regions stand out from their background, thus 

making the tracking correlation algorithms much more effective. Clusters are as-

signed a particular pressure level based on their IR brightness temperature and 

forecast temperature profiles. The assignment of height to a CMW vector is crit-

ical to its usefulness, since the change in wind field with respect to height can be 

significant, the most obvious example of this being shown by the jetstream. 

Three successive IR images are used to determine a displacement vector: A given 

segment at time t forms the target area to be correlated with segments at times 

(t - 30) minutes and (t 4- 30) minutes (Figure 2.1). The search starts at the 

cloud displacement suggested by a wind forecast. The correlation with the (t 

^ Inertial radiosondes attached to weather balloons (Gray et al [43]). 
® For a complete description of the approach applied by EUMETSAT, see Schmetz et al. [87] 
® Wade et al [107] suggest an optimal clustering approach for multispectral vector extraction. 
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- 30) and (t + 30) segments uses a search centred on the predicted location. 

Within the search windows, every 6th correlation is performed, with a full search 

being performed around the peak correlation coefficient. The correlation peak 

is parabolically interpolated to the sub-pixel level. The (t + 30) correlation 

is performed for each 3*3 matching template over a 19*19 grid centred at the 

symmetry point of the (t - 30) correlation. 

The two displacements have to agree with one-another to within a specified mag-

nitude and are curvature constrained. The corresponding cloud motion vector is 

suppressed if it is smaller than 5ms~^. Considering that there is a 1.5 — 2ms~^ 

error from image registration, this is an acceptable lower threshold. Once dis-

placement vectors are calculated from correlation centres, the velocity vectors 

are computed. A final manual quality check is performed, before the data are 

disseminated to the NWP modelling communities and other users. 

Globally, around 20,000 wind vectors are disseminated daily across the three 

main image channels ofi'ered by the main meteorological satellite operators^. The 

transmitted data are assumed valid for between 12 and 30 hours after generation. 

2.2 Variations by operator 

A comparison of texture tracking techniques applied operationally and used ex-

perimentally, and comparisons with some of the sources of ground truth, is given 

in Wang et al[109]. The main variations in the analyses performed by the different 

meteorological satellite operators are now listed for completion®. Hinsman [49] 

^ Note also that NOAA has been disseminating a high-density wind product since March 
1998, which alone can produce around 50,000 vectors per day for the GOES-8 and 9 satellites. 
This has received mixed reviews from user communities, however, and its adoption at the time 
of writing was still being fine-tuned. The discussion of wind generation approaches is therefore 
limited to the low-density approach adopted by MPEF and GMS, and that used by NOAA prior 
to the advent of the high-density product. In addition, EUMETSAT are now disseminating 
high-resolution water-vapour winds as of the end of 1998 

^ INSAT winds, and winds generated by agencies other than satellite operators (e.g. Aus-
tralia and China in the case of GMS-5 data) have not been included in this review: INSAT 
winds have been blacklisted by many modelling communities awaiting a more stable product 
(and INSAT imagery is not widely available), and the discussion provided is only intended 
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Figure 2.1: 2-D cross-correlation applied to cloud texture tracking. A texture 
template is cross-correlated with a window of texture from the 
images before and after the template's timestep. The peak of the 
correlation surface (the maximum cross-correlation) is taken as the 
best match between the template and the window, and a vector is 
drawn between the matching points. 

expressed the desire of the World Meteorological Office for a standardised ap-

proach to cloud motion wind analysis: he reported that error analyses of the 

current satellite operators' techniques show sufficient deviations that some cloud 

track winds are routinely discarded. The differences between the satellite plat-

forms currently in use limits the ability for a single tracking technique to be 

achieved in practice, particularly in light of the differences between the satellite 

sensor platforms. 

to give an overview of the techniques in operation. Whilst there are differences between the 
texture tracking techniques applied by the non-operator agencies and those described here, the 
main technological advances and differences have been covered in the discussion of the satellite 
operators listed. 
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2 . 2 . ] J a p a n Meteoro7ogfca7 A g e n c y 

® The generic approach highlighted above assigns cloud motion vectors to the 

cloud top height. In the case of low level cumulus cloud, the motion is generated 

from winds driving the base of the cloud. In the operational Japanese Geosta-

tionary Meteorological Satellite (GMS) data analysis scheme, low-level winds^° 

are assigned a fixed altitude of 850hPa. There are also two additional screening 

steps during target selection, namely removal of targets that may be subject to 

sun glint or those that may contain cumulonimbus. If the solar zenith angle is 

greater than 85° (or 60° in the case of low-level targets), the target is excluded 

from subsequent analysis as there is a high possibility of sunglint affecting it. 

The difference in brightness temperature between the infrared and water-vapour 

channels is calculated and the average difference over 2*2 pixel squares is used to 

low-pass threshold cumulonimbus data (a small temperature difference between 

the two channels signifies cumulonimbus). If more than 10 pixels are contami-

nated with cumulonimbus then the grid square is not used. 

The quality checks applied fall into two categories, namely automatic assessment 

of both the quality of the correlation surface and the degree of agreement between 

vectors across an image triplet, and an objective quality control. The objective 

check ensures both horizontal and vertical consistency across neighbouring vec-

tors, and ensures agreement with NWP model data. It is important to note 

that these are quality checks, and are used to remove poor data only. They are 

not used during vector generation to improve vectors. Hamill and Nehrkorn [99] 

describe an approach where horizontal consistency can be used during vector 

generation to select correlation surface maxima tha t provide locally consistent 

vectors. Collocated radiosonde data are, in a similar vein, not used for quality 

control, only for post-dissemination assessments of vector accuracy. 

® As described in Tokuno [101] 
For cloud tops below 700hPa. 
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The EUMETSAT model takes into account the fact that low cloud is driven by 

wind at its base by way of a variable height correction for low cloud vectors. 

Quality control is mainly automatic, using similar tests to the JMA. The output 

of each quality test is continuous in the interval 0 to 1 from which a final quality 

measure is generated by means of a weighted average. A threshold for the final 

quality measure is used to pass some vectors, fail others and mark the remainder 

for manual assessment. During manual quality control, in addition to assessing 

the vectors marked for manual sorting, rejected winds can be reinstated and 

accepted winds deleted. It is worth noting that the use of continuous outputs 

from the quality tests makes them suitable for combining using a fuzzy system, 

e.g. to prototype new quality measures or determine the most appropriate weights 

for each quality measure. 

Gartner [39] discusses the moves towards full automation of CMW generation by 

EUMETSAT, by making the consistency checks (spatial and temporal agreement 

of vectors) more rigorous, and by combining winds generated from all channels 

into a single winds product, thereby ensuring cross-spectral consistency also. The 

new Satellite Applications Facility at EUMETSAT also aims to provide greater 

levels of vector interpretation for METEOSAT Second Generation (MSG) data, 

in terms of identifying zones of interest such as the onset of convection and shear 

structures, although no proposed approaches for this have yet been identified. 

An additional significant source of error from the NOAA GOES platforms results 

from their use of a 3-axis stabilised satellite, rather than the spin-stabilisation of 

both GMS and METEOSAT. 3-axis stabilised platforms are subject to differen-

tial heating, resulting in degraded image navigation, i.e. poorer co-registration 

of images. An automatic image registration stage is applied to GOES data us-

ing landmark identification and matching. Cloud-free landmarks are able to be 
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cross-correlated to a very high degree due to the prior knowledge of the landmark 

shape and the spatial agreement necessary between all landmark correlations. 

Brown [12] gives a thorough review of image registration techniques. The regis-

tration error is still significant in Southern Hemisphere GOES-9 data, however, 

where there are few cloud-free landmarks available for registration. Instrument-

induced errors are not discussed any further in this thesis, but Diekmann [30] 

provides a useful overview of the typical geometric and radiometric errors and 

their treatment for METEOSAT satellites. 

Quality control has been fully automated in the NOAA / NESDIS product since 

1994 (Menzel et al [69]). Since late-1997, a new high density wind product has 

been generated operationally (Gray [43]), with about ten times as many vectors 

as the standard approach. GOES-8 and - 9 have also been collecting a number 

of special imaging sequences at down to 30-second time resolution, mainly of 

hurricane data, from which high temporal resolution cloud motion vectors have 

been generated, aimed at improving wind information from hurricane regions 

where the standard 30-minute temporal resolution is too crude for the cross-

correlation technique (Purdom [81]). 

2.3 Need for Improvement 

In light of improvements to numerical weather models, new sources of wind data 

and new forecasting tools, the satellite wind community held its first independent 

meeting in 1991 to identify and address the changing needs and uses for satellite 

wind data (EUMETSAT [33]). Some of the needs for improvement highlighted 

by the community (EUMETSAT [33] [34] [35]) are given in Table 2.2. 

Butterworth [19] gives a similar review of the UK Meteorological Office's recom-

mendations for changes to satellite winds. Much recent work has been targeted 

at improving height assignment of cloud motion winds, with significant improve-

ments having been achieved for semitransparent and subpixel cloud using the 

difference between infrared and either water vapour or CO2 absorption channel 
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1. Improved height assignment for cloud tracers (the major problem, especially 
near jetstreams). 

2. Reductions in RMS error of the vectors produced, to the WMO target of 
l-2m/s. 

3. The need to address the assumption of cloud as a passive tracer for the 
wind; Cloud motion vectors are not always representative of the windfield. 

4. Better and different validation techniques. 

5. Better and different quality indicators. 

6. Changes to current data collection schemes to include rapid scans. 

7. More information about the meteorology local to tracers, to help identify 
their cause or at least their usefulness. 

8. Some discussion as to whether model data should be used as a first guess 
for improving cross-correlations. 

9. Better use of satellite winds by the user communities. 

10. The need to develop other uses of cloud dynamics, many of which have 

already been identified. 

Table 2.2: Some of the requirements for change in satellite wind data as high-
lighted by the Satellite Wind Community in its past three workshops 

data. In addition, a growing number of studies have used spatially and temporally 

collocated geostationary and polar orbiting satellite image pairs to improve cloud 

height assignment using stereographic matching techniques. The difficulty in col-

locating the different sources of image temporally and registering them to the 

same projection is significant, however. More success has been achieved using 

the overlapping regions of neighbouring geostationary satellites, whose projec-

tions are more easily co-registered due to the fixed view of the satellites, and 

whose data collection cycles are temporally collocated. 

Many of the remaining issues of concern relate to the lack of meteorology in the 

current approach. Without some understanding of cloud dynamics incorporated 

into the vector extraction technique, the suitability of any tracer for any specific 

task cannot be assessed automatically. Unless the cause of cloud motion can be 
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identified at least in part, no appropriate validation can be performed. If the 

generated vectors are not compared to motion data of the same scale or do not 

track the same meteorological phenomena then the comparison is at best difficult 

and at worst not valid. The main source of ground truth is rawinsonde data from 

weather balloons, which are generated from the change in horizontal position of 

the balloon during its ascent, as reported by onboard inertial guidance or ground-

based tracking. This is effectively a point measurement of the windfield through 

the atmosphere, and is indicative of the local winds about the balloon's ascending 

track only. In steady conditions, the data can be accepted as good estimates for 

the windfield over a large area, but atmospheric turbulence can vary significantly, 

both vertically and horizontally. Without any means of measuring this on the 

radiosondes, the usefulness of these point measurements for assessing the accuracy 

of much larger mean flow measurements must be limited. 

Other sources of ground truth data include ASDAR^^ and ACARS^^ aircraft 

reports of winds, ground-based stereographic cameras and model data. 

ASDAR and ACARS are a useful source of wind information, but have two signif-

icant limitations: wind data are only available along aircraft tracks, and aircraft 

do not tend to fly through cloud for extended periods of time. Tracking clouds 

from satellite images over land is complicated by the variability in the background 

appearance and temperature, and satellite motion vectors over land are therefore 

taken as less reliable, when they are used at all. Since the majority of flight time 

through cloud is on ascent and descent from and to an airport, the usefulness of 

ASDAR / ACARS for verifying cloud track is limited. Morone [71] provides a 

review of aircraft wind data and details the error sources and degree of spatial 

and temporal data averaging from the technique. 

Stereographic ground-based cameras provide local estimates of cloud motion. 

Comparisons between these motion estimates and satellite data are potentially 

simpler than for other validation sources in that both provide indications of cloud 

Aircraft to Satellite Data Relay 
ARINC [Aeronautical Radio, Incorporated] Communications Addressing and Reporting 

System, which transmits data directly from aircraft to ground stations 
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motion rather than wind. The main limitations are the amount of coverage possi-

ble with stereographic cameras, typically over land, and the necessary assumption 

that the top and bottom of the cloud is showing the same type of motion, which 

is not the case for many cloud dynamics. 

Using predicted winds from numerical models to validate cloud motion winds 

is controversial and causes concern due to the fact that the validated CMWs 

are then fed to the model as inputs. This coupling between input and output 

data would normally be unacceptable, but due to the lack of sources of ground 

truth and the complexity of the atmospheric models, this is accepted practice. 

Models reject data that are significantly different from their predictions in any 

instance, however the differences between models both of different scales and 

run by different communities globally can be significant. Any quality control of 

vectors using one model prediction only may therefore bias other models using 

the same vectors towards the same solution. 

More serious, however, is the use of model data in generating cloud motion 

vectors, as per the NO A A / NESDIS autoeditor {Schmeiz [86]). The centre of 

the cross-correlation template matching windows are selected based on model-

predicted wind vectors. Whilst this is a weak link between model input and 

output, this approach could bias the correlation match incorrectly where the 

model is incorrect. Since inputs are most critically needed when and where the 

model is in error, this has potentially serious consequences. 

At the first International Winds Workshop, Schmetz [85] reported that the nu-

merical modelling community had improved their models since the introduction 

of CMWs to a stage where the impact of satellite wind data was not very signif-

icant, i.e. the forecast winds from the models showed little or no improvement 

when supplied with the cloud motion winds. Forecasters similarly rely far less 

on satellite derived wind observations due to their tendency to have clusters of 

errors, incorrectly assign heights and underestimate fast moving airmasses (But-

terworth [19]). Kelly [53] has more recently shown the influence of each of the 

different sources of wind information on the ECMWF model forecast, and has 



2. Background 34 

produced a mixed picture of the benefits of cloud motion winds in the presence of 

other satellite and/or radiosonde data. Different quality indicators, independent 

of validation sources, are still however needed to assist in good vector selection. 

It is worth discussing briefly the nature of the measurements of wind listed above 

for completion. The rawinsonde and ASDAR / ACARS data are a measure of 

windspeed. The aircraft measurement is collected at the operating speed of the 

aircraft, and is fairly immune to small-scale variations over hundreds of metres. 

The rate of climb / descent of the aircraft is slow relative to the wind mea-

surement, therefore the data can be taken as a mean single-layer estimate of 

wind for every point at which a measurement is taken. Rawinsonde data depend 

on the weather balloon acting as a passive tracer for the wind. The balloon's 

buoyancy causes a strong vertical ascent, but the horizontal momentum of the 

atmosphere at any level is able to be recorded by the degree of horizontal dis-

placement through the ascent. This involves averaging horizontal displacement 

over some vertical extent, but this is of a much smaller scale than the equivalent 

aircraft data. Ground-based stereographic cameras and Satellite-based cloud mo-

tion winds track clouds. The conditions necessary for clouds to be good tracers 

for wind have already been given (Table 2.1), but the motion of clouds is of in-

terest independently of the wind information it contains: cloud dynamics have 

produced some significant impacts to hurricane forecasts and tropical weather 

analyses (Velden [105] [106]), for example. Finally, model data provide a magni-

tude and direction for the dynamics of the atmosphere at every grid point. 

Clearly grouping all of these motion types under the heading wind is not con-

structive, especially now that the issue of passivity for cloud tracers needs to 

be addressed for further improvement of cloud motion wind data. Mahrt and 

The use of the term Cloud Motion Wind is restricted to visible and infrared channels, where 
the structure being tracked is able to be interpreted as a cloud. The newer Water Vapour 
channel vectors are called Water Vapour Motion Winds, to signify their significant differences, 
essentially acting as deep layer mean motions. More recently, the term Atmospheric Motion 
Wind (AMW) has cropped up in the literature. The author believes that this still confuses 
the scale of motion detected, and the concept of atmospheric motion at synoptic scales should 
avoid use of the term wind, which is most commonly used for local and mesoscale phenomena, 
and should be restricted to this use for clarity. This debate does not address the other types of 
motion captured by these metrics (such as cloud motion not driven by the wind) that should 
be described separately again. 
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Sun [68] have considered the problems of scale-dependence of motion data for 

modelling and comparing models of different spatial resolutions. For example, in 

a region where average flows are weak at a large scale, there may be significant tur-

bulence disguised within the averaging at a mesoscale that reduces the usefulness 

of the large scale analysis for local areas and vice-versa. Stohl et al [95] propose 

a method for overcoming this to some extent by interpolating low-horizontal-

resolution vertical wind profiles using a high-resolution horizontal wind profile at 

a single level as a seed to provide high resolution profiles at any height. This does 

not address the issue of combining different descriptions of wind motion, however, 

such as imprecise knowledge of the development of a weather system and an array 

of anemometers providing small-scale details of wind motion. Ray [83] presents 

a spatial and temporal definition of various meteorological phenomena ranging 

from macro scales (of the order of tens of thousands of kilometres and months) 

to micro scales (of the order of metres and seconds), including wind phenomena. 

2.4 Active Research 

A variety of changes and new techniques have been and are being explored to 

overcome the problems of the current approaches to cloud and atmospheric mo-

tion analysis from satellite image sequences. A review of this current research is 

given briefly, by field. 

2.4.1 Water-Vapour Winds 

Water vapour structures were first tracked over sequences of images using WV 

images from the Temperature / Humidity Infrared Radiometer aboard NIMBUS-

5(Kastner et al [52]). Due to the complexity of water vapour motion, the devel-

opment and operational acceptance of a WV wind product has been a piecewise 

process. Initial studies considered the cloud-like components of the imagery, and 

high-level motion analyses. Mid-level motion was first discussed by Eigenwillig 

and Fischer [32], where small-scale structures in cloud-free zones were success-
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fully tracked. Laurent [60] [61] considers the specific properties of water-vapour 

data and the requirements for preprocessing. The results of the first study led to 

the use of the standard cross-correlation approach to cloud motion analysis being 

applied to water-vapour motion too, as detailed in Laurent. Height assignment 

techniques for water-vapour structure tracking are described in Biiche et al [16]. 

The main advantage of tracking water-vapour structures over the visible and in-

frared counterparts is that they exist in cloud-free regions. The main difficulty of 

water vapour motion interpretation relates to the fact that water vapour struc-

tures are typically far deeper than clouds, and therefore their motion represents 

a very deep mean layer motion. 

2 .4 .2 N e w SeiLSors 

Interest in high resolution visible data has increased, despite the difficulties con-

cerning changes in cloud representation with solar zenith angle, and the daytime-

limited collection period for visible data; The use of high resolution METEOSAT 

imagery has provided significant improvement in the yield of low-level information 

from satellite winds (Ottenbacher et al [78]). 

An important improvement to reduce errors locally without changing current 

wind analysis techniques is to change the satellite radiance data collection schemes 

to include rapid scans at 15 minute temporal resolution or better over areas of 

meteorological significance. This is particularly useful in light of the new plat-

forms and sensors that are now able to offer temporal resolutions at significantly 

better than 15 minute resolution (indeed up to 30 second resolution for limited 

area scans), at up to 1km spatial resolution. Stable methods able to handle this 

resolution of analysis will be needed to process the quantity of data expected in 

the next few years. Swadley [97] discusses a non-correlation-based approach to 

analysis of GOES rapid-scan data, using template matching numbers, or the se-

quential similarity detection algorithm, where the absolute difference in greyscale 

between pixel values in a template and possible matches within a search area 

give good performance for 1km data. An ability to generate variable resolution 



2. Background 37 

vector fields may also be of interest, for example to analyse severe weather more 

densely than the background weather pattern. Another major concern with the 

new sensors, however, is management of the data collection to optimise the use 

of rapid scans, particularly to meet the needs of many different end users. 

2.4.3 Height assignment 

An area of concern regarding height assignment of cloud tracers which has re-

ceived much attention is that of semitransparent or sub-pixel cloud. Typically in 

the case of sub-pixel contamination of a low cloud from a thin higher-level cloud 

input, the underlying cluster is assigned too high a pressure altitude. Conversely 

semitransparent cloud is typically assigned too low an altitude. This has been 

addressed to some degree by the CO2 slicing technique (Susko and Herman [96]), 

which also helps identify regions of strong vertical shear. In the case of ME-

TEOSAT data, the difference between infrared and water vapour data is used 

to identify where cloud may be semitransparent or subpixel, as opposed to IR 

and CO2 data. This is also similar to the JMA application of the difference in 

brightness temperature for identifying cumulonimbus. 

On a slightly different issue, Kishtawal et al [57] apply complex empirical or-

thogonal functions (EOFs) to determine vertical wind profiles from cloud motion 

vectors by analysing the vectors over dense radiosonde station areas. The use of 

the EOFs gives reasonable performance where two or more levels of cloud mo-

tion wind vector are available in a small area. Clearly an improvement in height 

assignment of cloud motion vectors would improve this performance further. 

2.4.4 Smoother cross-correlation 

Correlation-relaxation approaches provide smooth vector fields typically by ap-

plying spatial or temporal constraints on correlation peak selection, resulting in 

the most appropriate correlation peak being selected, rather than the maximum. 
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A good introduction to relaxation labelling techniques can be found in Hummel 

and Zucker [51]. Wu et al [112] introduce a correlation relaxation approach for 

analysing sea surface velocity vectors. In Wu [111], a fast relaxation algorithm 

applied to cloud motion is demonstrated. Cote [24] describes a new approach 

to correlation relaxation using a Hopfield neural network to select the optimal 

correlation surface peak to give locally smooth vectors. 

2.4.5 4D Variational Assimilation 

The newest techniques in numerical weather modelling involve direct assimilation 

of satellite radiance imagery without any data preprocessing, allowing the models 

to infer information as necessary, including dynamics information, from the raw 

data. The data assimilation techniques can still make use of satellite winds how-

ever. In fact, according to Kelly et al [54] both more frequent production cycles 

for satellite winds and greater knowledge of the nature of the motion measure-

ment (i.e. whether it is a deep layer mean motion or a shallow layer cloud wind) 

would be particularly useful to the new approach. At their simplest, the varia-

tional assimilation techniques are optimal filters of weather data. Courtier [25] 

and Lorenc [67] give a thorough introduction to the theory behind atmospheric 

data assimilation, with the equations for 3 - and 4-dimensional variational assim-

ilation (3-D and 4-D VAR) being provided by Courtier. Thepault [100] provides 

details of the operational 4D-VAR scheme as implemented at ECMWF, and 

comparisons are drawn with the full extended Kalman filter. He argues that the 

4D-VAR approach achieves similar results to the Kalman approach but at signif-

icantly less computational cost. He also justifies the use of linear approximation, 

as perturbations at model resolution evolve approximately linearly over the 24 

hours of the temporal assimilation. Andrews [2] provides similar detail for the 

UKMO implementation. 

Whilst it has been recognised by the modelling communities that satellite winds 

still provide a useful separate input from the direct radiances, models are begin-

ning to address some of the more fundamental questions of cloud motion descrip-
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tion. It is increasingly necessary both to define the meteorology associated with 

any particular cloud dynamic and to determine tha t component of cloud motion 

independently of other motion components. In addition, radiance assimilation 

has led to predicted radiance data. To determine the success of this to capture 

the cloud dynamics at all the scales of meteorological analysis, some mechanism 

to determine the dynamics at these different scales is required, both for validation 

and as a potential new data source in itself. 

2.4.6 Cloud Tracks 

Work by Szantai and Desbois [98], and Raffaelli and Seze [82] has considered the 

use of tracking clouds over longer time periods than the current image triplets 

to produce more stable tracks of cloud motion. The current approach is subject 

to greater error, but allows small-scale or turbulent flows to be captured. By 

identifying the trends over longer series, difi'erent components of the cloud dy-

namics can be identified, however. Related to this is the determination of relative 

motions, particularly storm-relative motion. For example, Kerr and Darkow [56] 

have captured and removed the major motion component from thunderstorm 

motion analyses, and have seen some pattern in tornado development locations 

within the storm as a result. It is generally known tha t deformation zones, one of 

the main mechanisms of cloud development, occur from flow relative to the mean 

flow (Bader et al [5]). 



21. ]:>iiu:)F)(:)s;]si) (Jijczyui:) iv[(:)T̂ K]iN ÛNL/tLLiYisis; 

This thesis considers a number of the concerns of the cloud motion wind com-

munity given in Table 2.2. The principal topic of inquiry relates to the issue of 

the suitability of cloud as a tracer for the wind. Rather than focussing on cloud 

motion analysis with the sole aim of determining the underlying windfield, the 

approach aims to describe the cloud motion itself as richly as possible, even the 

components that are unrelated to the underlying wind. Prom this start point, 

there is the possibility of determining the cause of any different motion behaviour 

present, i.e. once a rich description of the cloud motion has been obtained, it is 

easier to determine which if any of the components of that motion are due to the 

underlying windfield. 

New quality measures for wind data arise directly from this work, with an analy-

sis of the causality of cloud motion providing a suitability measure for using any 

vector as descriptive of any particular type of dynamic, whether that be wind, 

weather system motion or some other description of motion. In addition, by 

providing a number of new measures of the motion of a cloud, the issue of data 

validation is re-exposed. In itself, this is not of benefit, but by discriminating 

between the different types of motion displayed by cloud, it is hoped that the 

unsuitability of using point measurements of wind data for validating cloud mo-

tion winds in many instances will be highlighted. Clearly there is a need for a 

greater number of independent validation tools, to validate each component of 

the cloud motion identified. By suggesting spatial and temporal scales over which 

the motion types act, and where possible identifying the meteorological cause of 

the motion types, validation sources suitable for the scale and meteorology can 

be developed. 
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Whilst not proposing to offer any specific benefits for those charged with iden-

tifying suitable uses for rapid scans and novel data collecting schedules, it may 

be possible to determine automatically which types of cloud motion have sig-

nificantly different dynamics components at different temporal scales, i.e. which 

would benefit from greater temporal resolution, purely from a multi-scale analysis 

point of view. 

Any analysis of RMS error for the new motion vectors generated would require 

careful scrutiny; In light of the previous discussion regarding validation sources, 

it is not obvious what measure of error would be suitable. The potential for 

identifying suitable and accurate vector representations of wind data from this 

rich cloud motion analysis should result in a reduction in vector error, but such 

work is beyond the scope of this thesis. 

This thesis is therefore limited to introducing this cloud-centric analysis of mo-

tion in satellite imagery, and the mechanism by which the new measures of cloud 

motion are obtained. The approach presented is justified with examples and 

comparisons to other techniques where appropriate. Quantitative performance 

analyses are generated for specific components of the approach. In addition, the 

thesis introduces fundamentally new descriptors of cloud and parameters of cloud 

motion, the benefits of which are discussed qualitatively. On more widespread 

adoption of the fundamental concept of rich cloud motion description, it is pos-

sible that other techniques and methods will be identified as equally suitable for 

each step of the analysis presented. 

M o d o j i - b a s e d S e g m e n t a t j o n 

The initial premise of this thesis is that fundamentally different types of informa-

tion regarding the motion of cloud in satellite image sequences can be obtained 

from more than one set of motion analysis tools. The initial research in this 

thesis considers the issue of segmenting the image data based on the suitability 

of certain motion analysis tools to track any given region of image content. 
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A top-down approach for processing the cloud imagery has been selected. Sonka 

et al [94] describe top-down and bottom-up image understanding control strate-

gies in more detail. The main principle of top-down or model-based image pro-

cessing, however, is that it is goal-driven, imposing certain criteria on lower-level 

processing. Intelligent computer vision systems are not restricted to top-down 

analyses, and indeed there are good arguments for both approaches under dif-

ferent circumstances. Where a technique is applied to a variety of unknown or 

widely differing problem spaces, bottom-up analyses allow hypotheses to be built 

up from knowledge acquired directly from the raw data. Where the problem is 

more fixed or known, as is the case here, using the available prior knowledge helps 

remove spurious information and directs processing towards suitable values [7]. 

It is interesting to note that research into the mechanisms of human vision has 

still to show conclusively whether our visual system uses a top-down or bottom-

up approach (or something in-between, such as the feedback or heterarchical 

approaches described in Banks [8]). Marr captures the contradiction by theorising 

that human vision serves primarily to derive shape information, suggesting that 

the edge, brightness, colour and texture etc. collected enroute are driven by 

this high-level goal [42], yet the image filters he describes for the initial visual 

field transform require little or no call on high-level knowledge [44]. Much active 

research in the field of human vision follows the top-down analysis approach, 

however, as it is widely believed that the visual buffer^ is left mainly unprocessed 

until such time as information is required, when the data are processed according 

to the task required (e.g. Kosslyn [58]). Whilst human vision systems should 

not unduly affect the choice of approach for computer-based automatic image 

processing, there is much active work on models of human vision processing that 

provide inspiration for new computer algorithms. 

Using form to derive motion information and vice-versa are both problems that 

have a number of applications and coupling context / shape and motion informa-

tion is an area of active research. Weiss and Adelson [110] provide an introduction 

to the types of problem with this coupling, and provide a framework within which 

^ The raw signal collected from the retina 
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the two can be analysed simultaneously. In order to identify the different types of 

motion in satellite image sequences, an automatic technique for segmenting the 

image sequence by motion type has been developed. Two classes of algorithm 

are of interest for this specific problem, namely fuzzy segmentation where regions 

of imagery can be assigned a degree of association based on the degree to which 

they display similar characteristics, and model based motion segmentation where 

the motion displayed is matched to model motion types and successful matches 

are used to segment the data. Multiresolution motion analyses provide a useful 

starting point for this discussion also. 

Dimitrova and Golshani [31] discuss the concept of a multiresolution hierarchy 

for describing video content in spatial terms ranging from the pixel data through 

objects and features to semantic descriptions of the image content, and in temporal 

terms from pixel matching through to a semantic motion description. Given some 

video data, a description of the motion in the data is built up across this known 

hierarchy of analysis types. Any query is then mapped onto the most suitable 

level of the hierarchy. For cloud motion analysis it is suggested that there is 

a similar hierarchy relating to different types and scales of motion displayed by 

cloud, from small local-scale phenomena to synoptic-scale atmospheric motion. 

The nature of this hierarchy is not as clear, however. Dimitrova and Golshani 

have effectively solved the reverse of the current problem: their system is used 

to allow the known hierarchy of motion in video da t a to be mapped to a query 

whose position in the hierarchy is unknown. For the cloud analysis problem, 

the scale of the motion of interest is known (the query will typically request 

knowledge about synoptic or mesoscale or local scale motion), but the nature 

of the hierarchy of motion types in the data is not. Blostein and Ahuja [10] 

provide a useful discussion of multiscale analysis for single image region detection, 

where regions are segmented based on their textural uniformity. Uniformity is 

determined relative to neighbouring regions or neighbourhoods to the identified 

regions. The multiresolution aspect of the analysis is driven by the fact that small 

uniform regions require comparison with correspondingly small neighbourhoods 

with the analogous relationship for large uniform regions. In determining the 

suitability of a motion analysis tool for tracking cloud, it is necessary to consider 
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the spatial and temporal scales over which such an analysis is suitable. Indeed 

the choice of parameters for discriminating between the suitability of the different 

motion analysis tools is based on spatial and temporal variability in the data. 

Multiresolution analyses are not suited to the analysis of cloud motion in two 

fundamental ways, however. The analysis tool applied to cloud motion tracking 

is different at each resolution, so, for example, where Blostein and Ahuja use the 

same measure of uniformity over different sized neighbourhoods (see also Nam 

et al [73], for example), in the case of cloud motion tracking a textural analysis 

may be suitable for small scale tracking, but structure tracking is more suited 

to lower-resolution analyses. Also the types of motion analysis to be applied to 

the cloud data do not differ solely by resolution. For example, tracking small 

cloud objects as structures and tracking texture windows are of approximately 

similar scale, as are tracking the edges and medial axes of clouds, but each of 

these techniques gives a fundamentally different viewpoint on the cloud motion, 

providing different information. 

The application of fuzzy logic for segmenting video data is a new area for re-

search and is novel in the field of satellite image analysis. Fuzzy logic has, how-

ever, been applied successfully to static image segmentation problems. Udupa 

and Samarasekera discuss the fuzzy connectedness of image elements to define 

fuzzy objects, a discussion which is revisited when considering extracting cloud 

objects. Ghosh [41] similarly uses fuzzy sets on the output of a self organising 

map for extracting objects from imagery. In addition, there have been a number 

of applications of fuzzy systems for segmenting satellite data for describing land 

use (an inherently vague concept), e.g. Lewis et al [65], [63]. 

Model based motion segmentation is an active area of interest primarily for movie 

data analysis, where models of camera motion (pan, zoom etc.) are known. Torr 

[102] uses three motion models^ to segment features in a movie sequence where 

the specific motion of the camera and the objects in the imagery is unknown. 

Torr identifies limitations of vector clustering after image analysis and highlights 

^ The correspondence between points in any two images conform to a fundamental matrix, 
affine fundamental matrix or projectivity 
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many more limitations specific to moving source and target problems. 

In the case of cloud motion from geostationary satellite image sequences, the 

viewing point is taken as fixed. This provides a much simpler starting condition 

on which to base any motion analysis, as the motion of interest is confined to the 

cloud data itself. In addition, whilst the suitability of the three different motion 

analysis techniques to track different types of content in the image is not explicitly 

known^, the nature of the motion analysis techniques themselves and the criteria 

that affect their performance are known. The motion models therefore consist 

of some representation of the abstract concept of the suitability of each motion 

analysis techniques to track the phenomena under analysis. 

Three complementary types of motion analysis tool were considered in this initial 

research, all aimed at identifying the wind component of cloud motion. At this 

stage of research, the accepted definition of wind was its widest possible defini-

tion, i.e. any atmospheric motion phenomenon from global scale to local eddy. 

Object extraction and tracking applied to small open- or closed-cell cumulus (i.e. 

small cellular cloud or cloud hole structures) gives details of the flow typically at 

small to medium scales that is content-dependent (it requires knowledge of the 

cloud content in the imagery to determine the location of small cloud cells and 

cloud holes). Cloud edge tracking is most suitable for large cloud masses that 

do not persist in a given region for a significant length of time (e.g. fronts that 

translate across an image over a sequence), and uses extended content-dependent 

features defined over a much larger scale than the other parameters. Texture-

based tracking, which provides knowledge of the flow in an image without using 

any understanding of the scene under analysis, typically at small scales, is clearly 

suited to regions where a strong texture gradient or variation is visible in the 

imagery, but can also be used generically over cloud, where edge and object anal-

yses are inappropriate. It is uniquely suited, therefore, to regions where cloud 

does persist in a given region for an extended amount of time. Many other mo-

tion analysis tools could have been selected for analysis, but these three capture 

® The selection of the three techniques was made using a binary decision on their suitability, 
i.e. each is able to identify cloud motion to some useful extent, but the variation in that degree 
of usefulness over the spatial and temporal extent of the image sequence is unknown 
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different scales of motion and different dependencies on data interpretation, and 

therefore provide an indication of how motion analysis algorithm suitability can 

be used to segment image sequence data. Figure 3.1 illustrates the characteris-

tics of the three types of motion considered, and Figure 3.2 shows these in real 

imagery. 

(a) Textural (b) Frontal 

(c) Small Objects 

Figure 3.1: Sketch of motion types for segmentation (a) Texture tracking, 
where for example the cloud sheet does not move signiGcantly be-
tween timesteps, but the cloud tops within the sheet are buffetted 
by the wind, (b) Frontal tracking where the cloud moves signiR-
cantly between timesteps and often changes shape and (c) Small 
Object tracking, where individual small cloud structures can be 
identi&ed and matched. 

For small object analysis, the strength of greyscale variation is an indication of 

this suitability. In the case of texture-based motion analysis, the strength of 

greyscale variation is important, but also the time-persistence of a high mean 

greyscale (the presence of cloud). For frontal motion, a low time-persistence of a 

cloud region is desired. Whilst these indicators of suitability do not capture the 

complete requirements for successful application of any of the motion analyses 

identified, they are indicative of the types of indicator that could be used for any 

set of motion analysis tools. 
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Due to the nature of the segmentation desired, a fuzzy output is almost essential 

as any particular region of the imagery may be suitable for analysis by any of 

the motion analysis tools under consideration. The suitability of applying any 

tool to any given region of the imagery will similarly be a continuous rather 

than discrete function. As motion is analysed at different scales by the different 

motion algorithms, it is in fact likely that two or all three of the tools will be 

suitable for analysing a given region of the image, though at their respective 

scales. The motion types are clearly mixed, and there is no relevance in making 

the suitability functions sum to unity, as there will be regions of the imagery 

where none of the analyses are suitable and regions where more than one is 

ideally suited. A fuzzy system with non-normalised outputs has been developed 

to determine the suitability of these three motion analysis tools for generating 

sensible cloud motion information. 

Frontal Motion 
Regions 

Textural Motion 
Regions 

f - i t * Small Object 
Motion Regions 

Figure 3.2: A sketch of a possible fiow&eld segmentation based on motion analy-
sis tool applicability for METEOSATIR data (the particular satel-
lite image shown is from February 18th 1996 at 0030h). 

The three tools selected are not the only possible ones for analysing the motion 

of cloud, but are valid choices: texture analysis is uniquely used at present for 

cloud motion analysis operationally, therefore has been selected by the operational 

community as a suitable tool. Frontal analysis, or the analysis of large moving 



3. Proposed Cloud Motion Analysis 48 

cloud bodies, is useful for studying significant weather phenomena and the onset 

of vorticity / the formation of depressions. Their motion can be categorised as 

that of a non-rigid body, and has a clearly identifiable whole body component 

in addition to any smaller-scale internal components of interest. Small object 

tracking again is useful for significant weather phenomena, although on a smaller 

scale (e.g. storm cells), and tracking the feature can be directly related to the 

meteorology in the region since the feature being tracked is a meteorological one 

(as compared with the abstract concept of tracking texture regions). Future work 

in this field should, however, consider new parameterisations, e.g. in particular for 

better description of frontal motion analysis. The skeletons generated later in this 

study would provide one source of this information, and some work by Gamage 

and Blumen [38] also suggests the potential for wavelet and fourier techniques 

for such analyses. The concept of clustering or segmenting data based on their 

suitability for analysis using specific motion analysis tools is new, however, and 

the aim of this research is to prove the concept of such a segmentation. The 

selected tools and indicators will be shown to have proved this concept later in 

this thesis. 

The questions raised by the concept of multiple motion analyses, identifying their 

suitability in any particular instance and the mechanism for combining them gen-

erate a number of more immediate questions relating to the nature of cloud motion 

at different scales. In particular, a careful examination of the term wind is nec-

essary once multi-scale analyses are embarked upon, and as a result of this early 

study the term is redefined for the remainder of the research into the scale-specific 

terms atmospheric dynamics for global and synoptic-scale phenomena and the 

generic wind for local-scale motion. Whilst still unsatisfactory in many regards, 

this initial recognition of the differences between atmospheric motion phenom-

ena at different scales is important. Ray [83] provides a very good definition of 

spatial and temporal scales of many meteorological phenomena including some 

wind-related phenomena. 

In addition, the complexity of cloud motion itself as shown in satellite image se-

quences can be recognised as a direct consequence of this initial work. Subsequent 
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discussion therefore focuses on mechanisms to capture this complexity in as much 

detail as possible, and give some analysis of its causes from the perspective of the 

different scales of atmospheric motion phenomena identified. 

3.2 Cloud extraction 

Identification of cloudy pixels and cloud objects is performed early in the process-

ing chain due to the potential gain from imposing such image knowledge. The 

cloudy pixels contain all the information necessary to identify cloud motion, and 

separating them from underlying data potentially reduces both computational 

cost and errors from background noise by allowing analyses to be targeted at 

the regions of motion (Banks [8] p234). In order to identify and track cloud 

pixels and objects, prior knowledge of clouds can be used. This knowledge most 

easily relates to large-scale information (likely dynamics of cloud structures, for 

example) or image content (synoptic-scale cloud features). 

In order analyse the motion of the cloud component, it is first enhanced. A 

number of techniques are given in the literature for identifying cloud in satellite 

imagery, ranging in complexity from simple thresholding techniques to radiance 

modelling (e.g. Pankiewicz [79], Boekaerts [11] (the operational scheme applied by 

EUMETSAT to METEOSAT data), Kelly [55]). Figure 3.3 shows the dimculties 

with simple thresholding schemes for identifying the cloud content in an image. 

A fast approximate identification of cloud regions can be obtained by comparing 

the raw image data with a radiance template image of the underlying land and 

sea, however, and this is sufficient for the purposes of an initial image filter. A 

method for producing such a template using a simple persistence model of the 

radiance of the land and sea over a few days prior to the image under analysis is 

introduced later in the thesis. 

Some smoothing of this initially filtered data is necessary to optimise the parame-

terisation of the cloud in a manner suitable for tracking its motion, both at differ-
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(a) High threshold (b) Low threshold (c) Raw Image 

Figure 3.3: DifEculty of single-layer thresholding for cloud extraction. Fig-
ure (a) shows the extracted cloud objects for a high single-level 
greyscale threshold. The threshold has acceptably captured the 
majority of cloud in the upper half of the image, but has missed 
alot of cloud in the lower half. Figure (b) shows a lower greyscale 
threshold, which has captured more of the cloud in the lower half 
of the image, but results in non-cloud having been captured in the 
upper half of the image. Figure (c) shows the raw projected data 
for comparison. The imagery is METEOSAT D2 (infrared) from 
August 27, 1997. 
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ent scales and using different tracking mechanisms^. Clearly the appropriateness 

of any given smoothing technique is driven by the selected parameterisations of 

the cloud, beyond a certain level of smoothing appropriate for most parameteri-

sations of the data and for removing any noise in the data. Discussion of these 

smoothing filters is therefore left until after the selection of parameterisations. 

In order to parameterise the image cloud content^, it is first necessary to identify 

and extract the clouds themselves. The methods for extracting clouds should 

take into consideration the type of parameters to be used in analysing the cloud. 

In particular, any smoothing or characterisation of the raw data performed in 

object extraction should not be detrimental to the accuracy and performance of 

the subsequent parameterisations, and indeed may be used to improve them. 

As has previously been discussed in the context of motion-based image segmen-

tation, there has already been a large amount of research into image segmenta-

tion techniques. Reed and Hans du Buf [84] provide a good overview of texture 

segmentation techniques and differences between region- and boundary-driven 

segmentations®. Cloud analyses are often based on pixel-classifications of image 

data into cloud type. Dewitte et al [28] provide a particularly interesting example 

of this using greyscale morphology and various clustering and probabilistic tech-

niques to classify cloud data, which are combined using a fuzzy logic approach. 

Other cluster analysis approaches to satellite data classification include Seddon 

and Hunt [89] and Burrough [17]. Adaptations of image thresholding techniques 

have been applied successfully to object extraction. In particular, Feher and 

Zabusky [36] introduce a local filtering technique that allows coherent vortex 

structures to be extracted from computational fluid dynamics flow analyses. 

The most difficult aspect of image segmentation related to cloud extraction is 

the ability to capture the imprecise edge of the cloud and the ability to identify 

the vertical structure of the cloud to some extent. To generate any parametric 

e.g. texture tracking and vector feature tracking 
® i.e. content-dependent parameters such as cloud shape or size, as distinct from parameters 

that do not require any prior interpretation of the imagery such as texture 
® Principally, looking for homogeneous regions then finding their boundaries, vs. looking for 

the boundaries directly 
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representation of the degree to which the edge of the cloud is dissipated, it is 

necessary both to capture as much of the cloud edge as possible and to determine 

the degree to which the edge is associated with the cloud core, where possible^. 

Algorithms suitable for such analyses include snakes, clustering techniques and 

multi-level thresholding. 

Hashimoto et al [48] describe a sampled active contour model approach to seg-

menting images, where sample points along a contour line are moved by attractive 

and repulsive forces towards the lowest energy state for each contour point. For 

cloud analysis, the difference between weak and strong cloud edges is significant, 

and the nature of a dissipated edge would require different active contour man-

agement to a crisp edge for successful cloud extraction. 

Nichol and Fiebig [77] apply a multi-level thresholding approach to image seg-

mentation using a technique known as the binary object forest, where connected 

regions are identified as objects and the change in objects with change of greyscale 

at which the slice is taken vertically generates a connected tree of binary objects. 

Nichol and Fiebig use the concept of a binary tree to analyse the motion in image 

sequences by comparing the difference in the binary trees over time. Motion 

is identified by areas of the image where the tree structure has changed. This 

is particularly suitable for analysis of rigid body motion from a static camera, 

where the rigid body moves a long distance between frames, but the background 

does not change significantly. It is worth noting, however, that the binary object 

forest provides a useful mechanism to describe the vertical variation of clouds, as 

will be discussed later®. 

Seddon and Hunt [89] use an unsupervised clustering approach for cloud segmen-

tation and highlight the need for good segmentation for cloud tracking problems. 

Zhang and Postaire [113] propose an interesting addition to standard clustering 

algorithms: to enhance the boundaries between clusters, they use morphological 

erosion and dilation operators to enhance the modes and enlarge the valleys be-

^ A dissipated edge region is weakly associated with the cloud core, showing less association 
across the region with distance from the core, and a crisp edge is strongly associated with it. 

® In particular with reference to the work of Peak and Tag [80] 
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tween clusters in abstract data analysis problems. This concept has been adopted 

in this work for prefiltering the cloud data. Meyer and Bencher [70] provide a 

review of the direct application of mathematical morphology for image segmenta-

tion, using the watershed line. Such morphological segmentations are commonly 

applied to geographical data, from which the approach has acquired its name. 

Burrough and Frank [18] provide an excellent reference to geographical object 

identification and handling, and many of the issues they discuss, related to vague 

boundaries for geographical objects, are directly applicable to cloud objects too. 

A number of approaches considered in Burrough and Frank for imprecise geo-

graphical objects use fuzzy logic and fuzzy system analyses to handle the inherent 

vagueness. 

Two approaches have been selected for this thesis, namely the use of a cloud 

core extraction and fuzzy growth algorithm and a technique that analyses slices 

through smoothed cloud data from the top down. This second approach doesn't 

identify clouds as structures, but provides vertical profiles of the cloud structure. 

Peak and Tag [80] use a very similar approach to satellite image segmentation for 

cloud feature interpretation. 

3.3 Cloud Parameterisation 

Cloud motion has been attributed with semi-rigid body motion characteristics 

by human analysts to a much greater extent than other fluid motions: clouds are 

identified as objects, the motion of collections of clouds are described as weather 

system dynamics and even highly dynamic subcomponents of clouds, such as 

storm cells, are identified and tracked as individual structures. Identifying an 

appropriate representation to capture the semi-rigid motion characteristics for 

each of these motion types is the domain of parameterisation. 

The principal difference between each of these semi-rigid representations is the 

precision with which they describe the cloud. Synoptic scale meteorology studies 

atmospheric flows over thousands of kilometers, represented in cloud motion by 
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the displacement of large cloud sheets. To determine such flows from the motion 

of individual clouds requires stable centres for each cloudmass and a reduced 

level of precision when describing the motion of those centres. This motion is 

extrinsic, i.e. it relates to the interaction between large cloud systems or between 

a system and other global effects. Mesoscale meteorology in contrast concentrates 

on phenomena that extend over hundreds of kilometers, such as cloud systems 

displaying cyclogenesis®, and fronts. To analyse this scale of motion, time series of 

shape and elongation information are necessary for each of the cloud structures. 

This motion is intrinsic to the cloud in that it identifies the change within a 

specific cloud object over time. It is important to distinguish mesoscale and local 

scale phenomena, however. Mesoscale motion considers the development of a 

whole cloud structure, where local scale motion captures change in a small portion 

of the structure, at the order of a few pixels (tens of kilometers). Mesoscale 

analyses must therefore be able to minimise the influence of truly local-scale 

effects, whilst capturing the effects that grow large enough to affect the whole 

structure. A related problem that is not tackled with current operational motion 

analyses is that of motion underestimation near jet flows (e.g. the jetstream). 

Here, the wind moves significantly faster than the surrounding regions and any 

cloud in the vicinity is cut by the fast flow. 

Lewis et al [64] use shape characteristics such as area, edge eccentricity and 

elongation to describe cloud shape for classifying the cloud. Chin et al [22] use 

time series analysis (Autoregressive moving average) of morphological parameters 

of clouds to determine properties such as cloud directionality, clustering and 

cloud coverage, as well as to predict the trend of these parameters. Skeletons 

or medial axis transforms are another standard technique for describing shape. 

They provide a line representation of the shape under consideration, the lines 

forming the skeleton of that shape (e.g. Meyer [91], Arcelli and di Baja [3], 

Lam et al [59] (the comprehensive survey of thinning methodologies), di Baja 

and Thiel [29] and Ge and Fitzpatrick [40]). 

Analysis of the development of skeletons provides knowledge about likely develop-

In essence, the onset of a depression 
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ment of large-scale systems: whether they are likely to develop, or to collapse on 

themselves. Skeletons may also offer the potential to identify the onset of cyclo-

genesis: clouds in developing depressions typically undergo one of seven standard 

shape changes, most typically from a leaf shape to a comma to a vortex (Bader 

et al [5]). The skeleton of these three shapes is distinct, and the transition be-

tween states should be identifiable. This may require some analysis of skeletal 

curvature to identify regions of increasing general curvature. In addition, fuzzy 

skeletons can identify the degree of onset by the degree and direction of spread 

of the skeleton through its transition. The development of a vortex from various 

starting cloud configurations is described in Browning [14] and Bader et al [5]. 

It can be argued that human operators are very good at discriminating the dif-

ferent motion characteristics, and that an automatic system that is modelled on 

a biological vision system may offer an optimal mechanism for identifying these 

different characteristics. Many types of animal eye receptor cell axon respond to 

spatial boundaries by an increase in pulse frequency on the lighter edge and an 

inhibition of pulses on the darker edge, the pulse frequency therefore performing 

a type of fourier transform of the visual input stimulus (e.g. Bruce and Green [15] 

or Carterette and Friedman [20]). This in effect allows light gradient variations 

both spatially and temporally to be analysed. The variation in light (greyscale) 

gradient is of particular significance to the edge motion analysis problem. A crisp 

edge to a cloud, where the gradient in greyscale is very steep, may signify a wind 

flow parallel to the edge of the cloud, and thus crisp edges are good for identifying 

jet flow locations. Similarly, dispersed edges with weak gradients must have some 

component of wind flow across them, causing the dispersion effect. Cloud edges 

and edge strengths (the gradient of the edge) provide lines suitable for tracking 

cloud as structures. Crispness can be used as an indicator of the suitability of 

edge motion for use as wind motion, and similarly crisp edge motion can be used 

for describing weather system dynamics. 

Due to the nature of cloud structures and the imprecision in defining an edge 

to a cloud, a fuzzy system has been chosen to sign a degree of edgeness to the 

cloudy pixels surrounding the core region of a cloud. The greyscale gradient for 
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smoothed cloud data could be used directly as a measure of the association to 

the cloud core. There are other factors, however, in identifying the degree of 

association of a pixel to a cloud core. For example, the similarity in brightness 

and the absolute greyscale of the pixel under scrutiny are all possible alternatives. 

Combining these in a fuzzy system provides a measure of the degree to which the 

pixels near the edge of the cloud are associated with the cloud core. A dissipated 

edge region is loosely coupled to the core, whereas all cloudy pixels right up to a 

crisp edge would be expected to have a high degree of association with the core 

cloudy pixels. 

3 . 4 D a t a S m o o t h i n g 

The primary measure of structural stability for objects used in this study is co-

herence^'^, as apparent from multiple greyscale thresholds of the objects. Two 

smoothing algorithms are used to remove noise: a simple median filter removes 

noise at the cost of reducing precision. For coherence and edge gradient preser-

vation, a novel filter based on the rolling ball algorithm has been developed. 

Wang [108] describes a morphological-based filter for removal of small local min-

ima that uses some similar concepts. In contrast, Gupta and Knopf [46] describe 

image enhancement algorithms for handling image imprecision by mapping the 

raw pixel data onto an array of singletons on which the neighbourhood rela-

tionships can be analysed using a fuzzy system, prior to remapping the adapted 

singletons back into a pixel array. 

Cloud shape is arbitrary, therefore the skeleton of a cloud must capture the 

significant structure (body and limbs) at the selected resolution under analysis. 

It must similarly be stable to variation in cloud shape / content at smaller scales 

and be robust enough to be trackable over time. The preprocessing performed 

in object extraction assists in creating clean skeletons, and is seen as a necessary 

component of skeleton generation, with particular regard to removing spurious 

10 See Figure 5.5 for a description of coherence 



3. Proposed Cloud Motion Analysis 57 

'holes' in binary object representations (e.g. Arcelli [3]). 

Although considerable work has been done in the field of grey-scale morphology, 

the use of grey-scales in infrared satellite imagery primarily conveys height in-

formation^\ As such, 3-D morphological operations are more appropriate than 

grey-scale algorithms. Fuzzy mathematical morphology allows the vagueness in-

trinsic in cloud structures to be captured and analysed, the primary difference 

between this and grey-scale morphology being the fuzzification both of algo-

rithm and object. Fuzzy cloud objects have previously been described, but the 

fuzzification of morphological algorithms is a new and subtle step (Sinha and 

Dougherty [92]). It provides an approach for determining the degree of member-

ship of each standard morphological operator. The approach taken by Sinha and 

Dougherty is that of finding a degree of subsethood. Chou et al [23] use morpho-

logical filtering (dilation / erosion) to remove small-scale variations in Landsat 

data. 

3.5 Motion Analysig 

Motion analyses can be split crudely into optical flow and related techniques and 

feature matching. Optical flow approaches use a change-constrained algorithm 

that considers a patch of image radiances as they are displaced a distance {5x, 5y) 

in time 5t, where it is assumed that the radiance patch does not change over the 

timestep. Feature or parameter matching techniques, in contrast, use metadata 

derived from the raw radiances and match the metadata over time. Vega-Riveros 

and Jabbour [104] and Aggarwal and Nandhakumar [1] compare these two fun-

damentally different approaches to motion analysis and highlight the advantages 

and disadvantages of each. 

The constraint of consistency on the radiance patch under analysis over time in 

Transforms between radiance grey-scale, temperature and height are possible via 
temperature-pressure profiles from sources such as sounder measurements or numerical weather 
models 
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optical flow techniques typically limits its application to nonrotating rigid bodies 

or imagery that is updated at a high temporal rate relative to the visible motion 

and as a consequence is not ideally suited to cloud analyses. Parameter matching 

requires suitable parameters, as previously described. A third class of algorithm 

consists of approaches that combine segmentation and tracking. These are nu-

merous, for example active contour analyses are commonly applied across image 

sequences. Leymarie and Levine [66] provide a thorough introduction to using 

active contours for segmenting and tracking objects, and discuss their limitations 

too. Delagnes et al [26] discuss their application on complex backgrounds, such 

as would be encountered for cloud tracking in IR imagery. 

To match the parameters selected in this thesis, distance measures and other 

topological metrics can be used. The vector joining successive skeleton points 

is determined using a nearest neighbour approach, where a circle centred at the 

starting point or the point under consideration on the skeleton in the first frame 

of the sequence is grown until it touches the skeleton in the next time frame 

(Figure 3.4). The vector joining the circle centre to the touch-point then defines 

the match. Where the circle from the starting point touches more than one next 

position, the mean direction is selected for the touching vector. Cloud edges 

are analysed similarly, only edges are matched based both on proximity to each 

other and relative membership to the associated cloud core, so that crisp edges 

are matched identically to skeletons, but dispersed edges are matched at each 

level of dispersion. 

This approach has a number of potential risks and causes of error (see also Fig-

ure 6.4), but its performance on sparse skeletons and edges is sufficient to provide 

accurate matches in a majority of cases, and shows the potential of the selected 

parameters for describing the motion of clouds. Since this aspect of the research 

has been performed to allow the benefits of the rich parameterisation of the cloud 

to be highlighted, this initial level of line matching algorithm suffices. A discus-

sion of the sources of error and simple enhancements to address these is given in 

Section 6.2. 
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Key to Skeletons: 

Last Time-Frame 

This Time-Frame 

Figure 3.4: A simple nearest neighbour approach to skeleton matching. A circle 
centred on a point on the skeleton from the last time frame is grown 
until it touches the skeleton in the current time frame. The line 
joining the circle centre to the point on the circumference is the 
match vector. See also Figure 6.4 and Section 6.1.2 for a discussion 
of the limitations of this approach and methods to overcome them. 
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By using the different parameters described, more of the cloud dynamics are 

captured than any single parameterisation can offer. This allows the motion to 

be described at different scales and is the starting point for analysing motion 

causality. 



Part II 

METHODS 



A number of simplifying assumptions have been made in segmenting a moving 

scene according to the appropriateness of the motion analysis tools apphed. Tex-

ture tracking, small cloud tracking and frontal analysis are assumed to capture, 

or at least be indicative of, the main motion types present in the satellite im-

age sequences. Texture tracking algorithms have been assumed most appropriate 

within cloud regions. Whilst the greyscaJe gradients are strongest at cloud edges 

and strong gradients improve correlation, cloud edge motion is not indicative of 

the wind flow in a c l o u d S m a l l objects have been associated with regions of high 

textural variation, and this has been taken as the only indicator of suitability for 

small object tracking techniques. The appropriateness of frontal system motion 

analysis has been determined by identifying cloud regions which do not persist 

in one place over a prolonged period of time. Figure 3.2 provides an indication 

of the types of region the segmentation should identify. 

The image data used in this study have been obtained from Nottingham Univer-

sity's METEOSAT data archive^. Current images are available in Graphics In-

terchange Format (GIF), whereas archived data are stored in Joint Photographic 

Experts Group (JPEG) format at a lossy level of compression. In order to col-

locate imagery with other data sources, archived data have been used widely in 

this work. Appendix B details the differences between the image formats and 

gives examples of the degradation. The Nottingham data which are publicly dis-

seminated by EUMETSAT as their standard WEFAX format are also contrasted 

^ At this stage, the distinction between the different scales of cloud motion is not being made, 
therefore the requirement for tracking the wind component of the cloud motion is less restrictive 
here than in subsequent chapters. It is used here to mean local scale phenomena and weather 
system motion. 

^ http://www.nottingham.ac.uk/meteosat 

http://www.nottingham.ac.uk/meteosat
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against raw image data available intermittently from Dundee University's Re-

mote Sensing Resource Centre^. National borders and latitude-longitude marks 

are pre-superimposed on the Nottingham data. These have been removed using a 

border mask template to identify the location of border pixels and mean filtering 

across the border neighbours. 

The underlying factor that remains in the approach is the necessity for different 

motion analyses to be applicable in overlapping areas. For example, cloud in a 

frontal system gives a good indication of the frontal dynamics in the region. Local 

winds in the neighbourhood of fronts are typically prone to significant variation, 

however, therefore strong text oral markings related to convective structures on 

the leading edge of the front may act as good wind tracers. The edge of the front 

will therefore be a rich source of information for two distinct types of dynamic, 

and as such will require both motion analyses to be applied. As a consequence, a 

fuzzy motion region segmentation algorithm has been developed and applied to 

sequences of satellite data. 

4.1 Data Preparation 

Due to the nature and source of the imagery, it is first necessary to remove the 

country border and marker data added by EUMETSAT prior to dissemination. 

Having removed the borders and markers, suitable parameterisations are used to 

discriminate between the types of motion identified in the imagery, before passing 

the parameters to a fuzzy system that determines the degree of suitability of each 

analysis. 

4.1.1 National Border Removal 

In the case of METEOSAT, the data from the satellite are first received by 

EUMETSAT in Darmstadt where national country borders and position crosses 

http://www.sat.dundee.ac.uk/pdus.htinl 

http://www.sat.dundee.ac.uk/pdus.htinl
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are added prior to retransmission to the satellite for dissemination. Public da ta 

archives store this disseminated data, requiring the borders etc. to be removed 

prior to analysis. 

A template of the location of the borders and markers was produced manually 

from a METEOSAT D2 infrared image whose border regions were distinct. The 

thickness of the border region was made one pixel wider than the identified bor-

der^ to account for any border misregistration or border template alignment vari-

ation up to a magnitude of one pixel in any direction. This increases the number 

of pixels in the edge region, but ensures that any possible pixels contaminated 

with border or marker greyscales are suitably identified (Figure 4.1(b)). 

The pixels in the border and marker region are replaced with the median value 

of the immediate neighbours to the edge (Figure 4.1(d)). Whilst these pixels 

do not contain valid data for analysis, larger-scale analyses that are unaffected 

by pixel-scale errors are possible as a result of such smoothing. The smoothing 

algorithm applied is given in Equation 4.1. 

2/) = the median of ^"(2;, ?/, (̂ ) (4.1) 

where 

S{x,y) = smoothed border pixel value 

X{x, y, S) = The set of non-border pixel values at a distance 6 from {x, y) 

5 = the minimum value for which A'(a;, y, 5) ^ 0 

The algorithm was coded in C-1-+ and the border template accuracy and me-

dian filtering was validated against a number of different METEOSAT images 

by checking for missed or inappropriately replaced border pixels. The compu-

In an 8-connected sense, 8-connected referring to the fact that all eight neighbours of an 
identified marker point were similarly marked as marker points. This contrasts, for example, 
to 4-connected regimes where only the pixels above / below and left / right of the pixel under 
concern are analysed, or weighted schemes where the diagonally-connected pixels are marked 
for partial smoothing only. 
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tational cost of this algorithm was found to be negligible® for METEOSAT D2 

images when run on a machine with a 150MHz processor with 64Mb of RAM 

running Windows NT 4.0. 

8500 IR2 D2 

(a) Raw Data (b) Border Template 

ftr/ 16 JUL lyyy waw Uz IR2 D2 

(c) Border Removed (d) Border Smoothed 

Figure 4.1: (a) Raw Image Data, (b) The border template image for ME-
TEOSAT D2 imagery, (c) The border region is marked in black 
prior to (d) smoothing. The image shown is a METEOSAT D2 IR 
image from 0500 on July 16th 1998. 

® i.e. less than 5 seconds 
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4.1.2 Parameter Generation 

Three parameters were chosen to differentiate between the regions suitable for a 

frontal motion analysis technique, those suitable for textural analysis and those 

containing small objects. To identify the degree of texture in a region, a spatial 

grey level difference vector was used. This indicates the degree of homogeneity 

in greyscale across a region of pixels. In the case of small cloud objects, this 

texture measure shows a lack of homogeneity, and within an extended cloud 

sheet there is a high level of homogeneity. To determine the time-persistence of 

cloud in a region, a temporal grey level difference measure was used, which rather 

than comparing the greyscale of a pixel with its spatial neighbours, compares 

its value over time. A thresholded measure of greyscale itself was also used for 

easy identification of cloud core regions and more ambiguous cloud edges, low 

cloud and thin cloud. The parameters used to generate this initial motion type 

assignment were as follows: 

Thresholded Raw Image Data: The image was high-level thresholded using 

a context-dependent (underlying land / sea) threshold mask (see Figure 4.1(b)). 

A threshold of 135 was found to be appropriate for most conditions over land. 

Land temperature changes by a much greater degree over time than sea, and 

since the complexity of the land data is much greater than sea data, a relatively 

high threshold was selected to ensure that all the content classified as cloud over 

land was correctly identified®. The sea is a significantly more stable background 

against which to identify cloud, and as a result, a context-dependent threshold 

over the sea was used to try to extract as much of the cloud content as possible. 

The threshold is offset from the sea mean greyscale by an amount equal to the 

difference between the land mean greyscale and the fixed land threshold. Due 

to the large expanse of typically exposed land over North Africa, the land mean 

was mostly lower than the sea mean: this resulted in a higher pass threshold 

for cloud over the sea. At the hottest point in the day, the land mean is at 

its most different relative to the sea mean, but also the sea surface is slightly 

® Although consequently some cloud may be missed. 
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warmer than, for example, in the middle of the night. The greyscales of the 

high-pass thresholded data are not subsequently stretched to enhance the cloud 

data any further. It is important to note however that only a crude measure of 

the location of cloud was required in this initial work, and significantly better 

cloud extraction tools using background suppression and cloud enhancement are 

presented in Chapter 5. The radiance data are on a greyscale of 0 to 255: 

rr., , , , , 135 over land 
Threshold = ^ (4.2) 

135 — {land pixel mean — sea pixel mean) over sea 

Temporal Grey-Level Difference: The pixels immediately surrounding the 

pixel under analysis over the twelve hours prior to the current frame are analysed, 

providing a measure of the degree of temporal homogeneity in greyscale in the 

region of the pixel. The probability distribution of the difference in greyscale 

over a timestep, fseik), is generated for the 20*20 pixel window around the pixel 

under analysis over the twelve hour time period, giving a measure of the likelihood 

that the pixel greyscales in that region will have changed over time. Clearly the 

length of the time frame over which the temporal homogeneity of greyscale is 

measured influences the result of the analysis. The intention of this parameter 

is to differentiate between the motion of weather systems and convective cloud 

sheets, therefore the time frame must be sufficient for significant motion of a 

weather system within the spatial frame of view. In twelve hours, most weather 

systems are able to travel a significant portion of the frame of a D2 METEOSAT 

image. 
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rp^Ti-) Ylt=-24 Z^i=-10 X)j=-10 11k=Q ^f5{x,y),e{k) 
2 4 . 4 0 0 . 2 5 6 

where 

(i, j) are pixel co-ordinates relative to the pixel concerned 

k is the greyscale 

t is the timestep in hours 

fs{x,y),e{k) is the probability distribution of AG5(5t) 

at spatial separation 5 {x, y) = 0 

i.e. the probability distribution of the change in greyscale over time ONLY 

^GS{5t) is the difference in greyscales across 1 timestep 

Spatial Grey-Level Difference: This is a standard measure of spatial greyscale 

homogeneity 

= ioo^^^se 

where all parameters are defined as per the time grey level difference except 

Fseik) is the probability distribution of A(?5'(5t) at spatial separation 5 = 1 

and angular separations of 0 = 0°, 45°, 90° and 135° 

As can be seen from comparison between Figures 4.2 and 3.2, the chosen pa-

rameters are able to discriminate between the three desired region types and the 

background. The thresholded image is a crude measure for removing land and sea 

pixels from an image selection. The time grey-level difference parameter shows 

clearly the time persistence of the lower region of cloud, compared to the moving 

frontal cloud. The spatial grey-level difference parameter enhances the regions 

of strong texture, which are indicative of areas containing many small clouds in 

close formation. 

The parameter generation routines were written in C-t-+ and run on a computer 
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(a) Raw Data (b) TGLD 

(c) SOLD 

Figure 4.2: (a)Thresholded Raw Image Data, (h)Time Grey-level Difference 
and (c)Spatial Grey-level Difference parameter sets. 

with a 75MHz processor and 60Mb of RAM. The Time Grey-level Difference pa-

rameter took of the order of one hour to generate for the sequence of twenty-four 

800 * 800 pixel METEOSAT D2 images. Newer processors and more memory 

would enable this computational cost to be reduced to a level where the param-

eters could be generated well within thirty minutes, which would be required 

operationally to make use of the full thirty minute temporal resolution of the 

data. 
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The fuzzy systems for associating pixel regions with object motion types consist of 

sets of if-then rules relating the input parameters to degrees of membership of the 

motion types. Each rule has a confidence which defines its significance compared 

to other rules relating to the same output. The output of such a system consists 

of degrees of appropriateness of the chosen output labels to the data applied. 

Four fuzzy systems were used, one for each flow type (frontal, textural, small 

object and background). The algorithm used in the fuzzy systems in this thesis 

is given in Table 4.1^. In all cases a product operator was used for the T-norm, 

a maximum operator for the S-norm and a sum operator for the aggregation. 

The output memberships were taken as the centroid membership value(s) of the 

resulting consequent (s). 

To illustrate the function of the system, the generation of frontal motion mem-

bership for pixel regions will now be analysed more closely. The frontal motion 

identification system used the time grey-level difference parameter and threshold 

parameter. Three labels were defined for each of the system inputs and two for 

the outputs, as shown in figure 4.3. 

Having assigned any given data point to one or two labels for each parameter, 

the rules relating to those labels were activated, and the association to output 

membership was made. The output was generated from a combination of the 

active rules, based on the degree of membership of the input labels in those 

rules and the associated rule confidences. The rules for the fuzzy system for 

frontal analysis is given in Table 4.2 as an example. The basis function greyscale 

transition points and rule confidences were deduced empirically as optimal from 

repeated testing. 

^ For a more detailed discussion of fuzzy systems, T-norms, S-norms and other fuzzy system 
operators, see Chi et al [21] 
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1. For all inputs, work out which rules are active based on mapping inputs to 
rule antecedents (the IF clauses). To do this, for each input x, determine 
whether in any of the fuzzy sets A in the universe of discourse X there is 
a non-zero membership function ij,a{x) in the ordered pair A = {x,ima{x)) 
indicating x has some degree of yl-ness. The memberships of each rule 
antecedent are the resulting values of 

2. If there are multiple antecedents in an active rule, apply the appropriate 
fuzzy logic operator to combine antecedent membership functions into a 
degree of support for the rule. For AND functions (IF A AND B...), typ-
ically combine the memberships of each antecedent using a minimum or 
product operator, the T-norm. For OR functions (IF A OR B...), combine 
memberships using a maximum or probabilistic OR operator, the S-norm 
or T-conorm. If for example fuzzy sets A and B are active in a rule, the 
combined rule antecedents would be; 
///ingW = ® or 

3. Use the degree of support for the rule antecedents to truncate the rule con-
sequents (The THEN statements). If the combined rule antecedent support 
for example is 0.4 then the support function on the output space for the 
consequent(s) in the active rule is (are) truncated at a value of 0.4. 

4. Combine rules for each consequent using the selected aggregation method 
(the maximum or sum of truncated outputs) and rule conjfidences. 

5. Select the output class from the aggregated output for each consequent 
using the selected defuzzification method (calculate the centroid, bisector 
or other moment of the aggregated truncated support functions). 

Table 4.1: Algontbm for a fuzzy system 

4.3 System Output 

Figure 4.4 shows the identified motion type applicability for the data, as generated 

by the fuzzy systems. The lighter pixels depict greater relevance of that motion 

type to the region. 

The system has identified the weather system in the upper half of the image 

as suitable for frontal analysis, although its performance is potentially the least 

successful of the four outputs. The area of cloud identified as suitable for frontal 

analysis within the extended cloud sheet over Africa, however, was a fast mov-

ing core that had clearly defined boundaries that would have been suitable for 
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Time GLD 
Fronlal Unterlain 

6 Fuzzy Rules 
Fuzzy System 0.6 

0.4 

130 200 100 

Threshold Parameter 
/vUooalain 

Output Fuzzy Membership 
1.0 ĉkground 

0.4 

100 200 

0.4 

1.0 Not Frontal 

120 

Frontal Membership 
I'rontal 

160 300 240 

Input Fuzzy Memberships 

Figure 4.3: Frontal feature identification fuzzy system. To identify frontal fea-
tures, the Time Grey-level Difference (TGLD) and Cloud Thresh-
old parameters are used. Regions with a low TGLD and high 
greyscale in the thresholded image are typical of frontal cloud. 

IF THEN Conf. 
Threshold Parameter is Background Frontal Output Parameter is Not 100 

Frontal 
Threshold Parameter is Cloud AND Frontal Output Parameter is Frontal 100 
Time GLD is Frontal 
Threshold Parameter is Cloud AND Frontal Output Parameter is Frontal 10 
Time GLD is Textural 
Threshold Parameter is Cloud AND Frontal Output Parameter is Not 90 
Time GLD is Textural Frontal 
Threshold Parameter is Likely Cloud Frontal Output Parameter is Frontal 55 
AND Time GLD is Uncertain 
Threshold Parameter is Likely Cloud Frontal Output Parameter is Not 45 
AND Time GLD is Uncertain Frontal 

Table 4.2: Fuzzy rule bases for motion-type image segmentation. The first 
and second column make the if-then statement pair, with the third 
column giving the confidence in the particular rule. 

tracking separately from the remainder of the cloud sheet. 

The areas flagged as suitable for textural analysis were potentially most success-

fully identified. The region of frontal weather system in the upper half of the 

image that has been flagged for textural analysis started as the leading edge of 

the system and ended as the trailing edge at the end of the sequence of data 
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analysed. As a result, there was a persistent portion of cloud over this region for 

the duration of the analysis. 

The small object regions correlate quite successfully with the edges of the ex-

tended cloud sheet and with the open and closed cell cumulus around the weather 

system. The background data parameterisation was biased too high against cloud 

regions, however, due to the thresholds selected. Section 5.3.2 discusses an im-

proved approach to cloud region identification that ameliorates this effect. 

4.4 Discussion on Fuzzy Motion Segmentation 

A p p r o a c h 

These results have significantly demonstrated the potential for a fuzzy system 

with suitable input parameters to identify the degree of suitability of different 

motion analysis techniques for analysing cloud motion. The issue of suitability 

of timescale for analyses has been highlighted by the use of the time persis-

tence measure for identifying frontal motion. Unless large enough timescales are 

used, time persistence of cloud is unsuitable for identifying frontal motion as 

over short timescales any large body of cloud will mostly persist in the same 

location. Texture-based analyses in contrast require small timesteps for optimal 

texture matching: the textural make-up of a region must not have changed too 

significantly over a timestep in order for a motion analysis to be successful. 

Other issues of suitability relate to a greater or lesser extent to questions of 

scale of motion, and the degree to which any motion at a particular scale can 

be generalised across other scales. On considering the mechanisms for comparing 

the results of a frontal analysis, textural analysis and small object matching for 

analysing winds on a global scale, it was realised that the issue of scale and the 

nature of cloud dynamics raise fundamental questions about the nature of wind 

itself. Cloud in a front is a passive tracer for the weather system's dynamics, and 

cloud peaks driven by a local system-relative wind are similarly passive tracers 
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for a local-scale wind component: in both of these instances, the passivity of the 

cloud is not, to greater or lesser extent, in dispute. The motion captured by the 

cloud motion, however, is of a fundamentally different scale in the two instances, 

moving the problem domain from one of identifying where cloud acts as a passive 

wind tracer to one of identifying the type of wind motion captured by the cloud. 

As a consequence, this research now focuses on capturing the cloud motion at 

different scales. This will then provide a starting point for future work to resolve 

the complex question of causality of the motion. 

The fuzzy systems used in this chapter were developed using MATLAB's neuro-

fuzzy toolbox®. To determine the degrees of suitability of the three motion types 

from the three input parameter images took of the order of five minutes on a 

computer with a 150MHz processor and 64Mb of RAM running Windows NT. 

The whole processing cycle from raw images through parameterisation to fuzzy 

system output would therefore be possible within a potential operational con-

straint of thirty minutes with a faster processor and more memory. Identifying 

the suitability of different motion analyses in different regions of an image could 

be performed in parallel with the motion analyses, and used as a filter on the 

resulting motion vectors. If the processing described were to be a precursor to 

applying the motion analyses, however, different algorithms and parameters may 

need to be considered. 

The results from this chapter were presented at the Third International Winds 

Workshop, as detailed in Newland et al[75]. 

http://www.mathworks.com 

http://www.mathworks.com
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(a) Frontal (b) Textural 

(c) Small Objects (d) Background 

0.5 0.75 
Fcczzy Membership 

1.0 

Figure 4.4: Fuzzy Region Memberships for the image: (a) Frontal, (b) Textural, 
(c) Small Objects and (d) Background. Bright regions indicate high 
memberships of the particular motion type. 



5. CLOUD OBJECTS 

Two approaches are used to extract the cloud component of satellite images in 

this thesis. One focuses on analysing the vague nature of the edge of the cloud by 

identifying the core regions of all the clouds in the image then growing them to 

include the dispersed edges of cloud. The added edge regions are assigned a degree 

of association with the core\ resulting in an extracted cloud shape with areas of 

various degrees of association to a central cloud core. The second approach slices 

smoothed cloud data vertically at a number of heights to identify some of the 

characteristics of the vertical profile of the cloud. 

To analyse the satellite data successfully, it is first necessary to prepare it suitably 

for analysis. As previously, the overlaid national border and position markers 

are first removed. In order to analyse cloud structures that can extend over a 

considerable portion of the raw imagery, it is also necessary to project the data 

onto a constant distance grid, to minimise the effects of viewing location and 

hence distortion across the data. 

The difficulties of identifying cloud over complex land and sea backgrounds are 

addressed to some extent by suppressing the underlying data using prior knowl-

edge of its characteristics and stretching the remaining greyscale data to enhance 

the cloud component. This enhancement of the cloud component is particularly 

useful for analysing thin cloud and cloud edges, where the distinction between 

the radiance of the cloud and the underlying land or sea is at its weakest. 

There is some noise in the raw data, partly from artefacts of the compression 

strategy applied in the data archive used for this study (see Appendix B). There 

^ Their fazzy membership. 
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is also a large amount of pixel-scale variability t ha t makes analysis of larger-

scale phenomena more difficult. As a result, some smoothing filters are applied 

to the cloud-enhanced data to improve the data characteristics for subsequent 

feature extraction and tracking. Two schemes for smoothing have been applied, 

each with different applications, namely median filtering and a derivative of the 

rolling ball algorithm related to fuzzy morphological filtering. 

Having cleaned up, projected and smoothed the data , it is ready for the object-

scale cloud extraction algorithms to be applied. 

5.1 Data Preparation 

The national border and marker data are initially removed from all images as 

detailed in Section 4.1.1. The images are then projected from raw orthographic 

view to a constant distance projection, where distances measured anywhere in 

the image are to the same scale. The final phase of data preparation involves 

suppressing the underlying land and sea data, to aid analysis of the cloud content. 

5.1.1 Background Template Generation 

To help identify the cloud content in images, an estimate for the underlying land 

and sea radiances has been generated. Identifying any deviation between this 

background radiance template and the corresponding current image provides a first 

pass at identifying cloudy pixels. A simple persistence model for the background 

radiance has been used from the non-cloudy pixels over the six days prior to 

the data under analysis: the maximum radiance (minimum greyscale) per pixel 

across the previous data for a given time of day is used as an approximation for 

the clear sky radiance. This method has limitations where cloud has persisted in 

a given location at a specific time for the previous six days, but is broadly stable 

since such areas are rarely densely saturated. A high-pass greyscale threshold 

is applied, however, to remove the majority of remaining cloudy pixels from the 
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template images. A median filter is used to fill in any thresholded pixels, applied 

as per the border and marker filter discussed previously. 

An example of the resulting background radiance template is given in Figure 5.1. 

5.1.2 Constant Distance Projection 

The raw data (minus borders and markers) and background radiance templates 

are then projected onto a constant distance grid, so that every pixel covers the 

same spatial area on the ground (see Figures 5.2 and 5.3). 

This differs from the current practice at the ECMWF and EUMETSAT, where 

the data projection is postponed until motion analysis has been completed, at 

which time the vectors generated from the raw imagery are projected onto a 

constant distance space for ground-relative magnitude and direction. The small 

spatial scale over which current cloud motion analyses are performed requires 

this: radiance data projection necessitates padding pixels away from the sub-

satellite point, adding unacceptable levels of noise to these small-scale analyses. 

In addition, distortion is not such a problem with small-scale analysis: Whilst 

distortion is a factor of distance from the sub-satellite point globally, it affects 

local-scale features less. Indeed, a small texture window in unprojected image 

data is able to be tracked even at a considerable angle from the sub-satellite 

point (e.g. Purdom [81]) where distortion is considerable, since the amount of 

distortion does not change significantly over the distance covered by cloud in the 

image sample interval of 30 minutes. 

When analysing larger structures such as weather systems, the significance of 

the distortion is greater and must be addressed. The use of a constant distance 

projection early in the analysis process overcomes this problem, and is a necessary 

starting point for cloud structure analysis. To make relative judgements of shape 

change and relative motion along the extent of a cloud, the shape must be at the 

same scale across its extent. The error introduced by data projection is therefore 

less significant than the potential error from ignoring distortion. Larger-scale 
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(a) 11th July 1998 
0500GMT 

(b ) 1 2 t h 1 9 9 8 

0500GMT 

1 3 t h J W y 1 9 9 8 

0500GMT 
(d) 14th July 1998 
0500GMT 

(e) 15th July 1998 
0500GMT 

(f) Generated template 

Figure 5.1: (a)-(e) METEOSAT D2 (infrared) imagery from 0500 GMT over 
the period llth-15th July 1998 and ( f ) the corresponding back-
ground template consisting of a maximum-radiance (minimum 
greyscale) pixel composite from these five images. Some noise re-
mains in the background template over the Atlantic from long-term 
cloud persistence in the region. 
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analyses are also less sensitive to pixel-scale errors introduced by padding data 

for projection, since they tend to average out across the extent of the structure. 

Pixel enlargement is handled using the same median smoothing filter over new 

data pixels that are required for the projection as has been used previously for 

border removal and background template smoothing. 

Initially, the latitude and longitude of every pixel in the original image is deter-

mined using the geometry of the satellite relative to the earth, which is taken as 

an oblate spheroid for the projection, as per Equations 5.1, 5.2 and Figure 5.2. 
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180, otherwise 
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180, otherwise 
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Rs 

Having determined the equivalent latitude and longitude of all the pixels in the 

unprojected image, the data of interest are projected onto a new grid (Equa-

tion 5.3). Pixels from the original image are placed in the new grid where ap-

propriate. Since each pixel is in effect projected to a different shape, the pixel 

placing often leaves a number of holes in the projected data, especially at high 



5. Cloud Objects 82 

latitudes. These are filled in using the usual median filter as applied in border re-

moval etc. (Equation 4.1). Figure 5.3 shows the effect of projection on a portion 

of an image, and the result of smoothing. 

iproji^i y} — Irawij") jy^ip^^y) S.t. Xmin ^ ^maxjVmin ^ Vmax (5-3) 

where 

(i, j) = unprojected image co-ordinates 

(x, y) = projected image co-ordinates 

2'KR2LONmin 
X., 360 * TiLBg 

_ 2'KR2LONmax 

_ 2'KRELATmin 

Vmax 

X 

y = 

360 * 

360 * 

360 * RES 

i?2 — -Rg C05 ) 

Rz = RECos{LAT{i,j)) 

The algorithms for projecting the imagery were written in C + + and were ini-

tially validated by projecting many different subsections of raw data that included 

latitude-longitude markers. The latitude-longitude marker positions and sepa-

rations were then checked to ensure they were the correct distance apart in both 

axes. 

5.1.3 Cloud Data Enhancement 

To reduce the impact of the complex and changing underlying radiance of the land 

and sea, the underlying data is suppressed in the sequence under investigation 
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Figure 5.2: Projection of satellite data from raw to constant-distance repre-
sentation. The distances shown are referred to in Equations 5.1 
and 5.2 

using the background templates to identify regions of cloud and non-cloud. Pixel 

greyscale values in the background template are subtracted from pixel values in' 

the image under analysis. Where the resulting pixel value is less than 10, or if 

the pixel value in the image under analysis is less than a greyscale of SCP then the 

output pixel is suppressed to zero. Pixels brighter than the background by more 

than 10 greyscales and in the greyscale range 80-208 are stretched across the 

' An empirical minimum greyscaie for a pixel to be considered as cloudy 
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grayscale range of 0-255, and pixels of a greyscale higher than 208 are saturated 

at 255 on the new scale (Equation 5.4). 

z/) = ' 

0, / ( a ; , 2 / ) - B ( z , y ) < 1 0 

or /(z,2/) - GSTAreaA < 0 

2(7(r, %/) - /(:r, %/) - ^(a;, y) >' 10 

and 0 < 2(7(a;,;/) - < 255 

255, otherwise 

(5.4) 

where 

Isup{x,y) = image data with suppressed background 

I{x,y) = unsuppressed image data 

B{x,y) = background template data 

GSrhresh = Lower greyscale threshold for cloud data = 80 

Whilst this does not remove the entirety of the land / sea components, it is 

easier to identify the cloud content in the resulting imagery, as is demonstrated 

in Figure 5.4. 

The national border removal, data projection and cloud enhancement code was 

all written in C + + . The computational overhead of all three steps was found 

to be negligible^ on a computer with a 150MHz processor and 64Mb of RAM 

running Windows NT 4.0. The cost of generating background image templates 

was equally negligible, but this would not necessarily form part of an operational 

cycle for cloud analysis, as the templates could be generated up to 24 hours prior 

to use. 

^ i.e. less than 1 minute 
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5.2 GZoud Data SmootMng 

To analyse cloud structures at synoptic and mesoscale, some smoothing is re-

quired to remove the variation at smaller scales. Any smoothing degrades the 

information content of data, however. For clouds, the gradient of the edge is of 

particular importance, as is explained further in Section 6.2, thus any filtering 

must be able to maintain or enhance object edge gradients. In addition, the struc-

ture is analysed using its medial axis or skeleton (Section 6.1), and therefore 

filtering must not unduly change the medial axis except where the nature of the 

medial axis algorithm is unduly affected by artefacts in the data. The principal 

example of this is holes in a cloud sheet which may result from individual noisy 

pixels in the cloud having been thresholded out of the cloud structure. In prac-

tice, the requirement this imposes on a smoothing algorithm is that of increasing 

the coherence of a cloud shape. Figure 5.5 shows the difference between a coher-

ent and a fragmented object. The choice of image filter is therefore tied to some 

tight constraints, which are listed again for completion in table 5.1. 

Area of Concern Issues of Concern 
Remove local variability 

Variable precision in cloud structure 

Generate coherent structures 

Maintain Edge Gradients 

Where there is no global component of 
variation 
Must be able to extract different param-
eters for object analysis at different lev-
els of precision by running the filter with 
different conditions or iteratively for dif-
ferent lengths of iteration. 
As depicted by multi-level thresholds of 
the structure. In particular, it is neces-
sary to remove any 'holes' from thresh-
olded slices where inappropriate. 
And smooth where possible. Edges must 
remain as sharp at a global scale, whilst 
removing any local-scale gradient infor-
mation. 

Table 5.1: Constraints for cloud smoothing Glter 

Two approaches have been applied to filtering the image data, namely median and 

fuzzy morphological filtering. These are assessed using two data plot types: Edge 
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plots are a 3-dimensional representation of the cloud data, where the vertical 

axis is greyscale^. These show the effect of filtering on edge gradient. In order 

to analyse the characteristics of the cloud edge, it is necessary to preserve the 

edge gradient during smoothing as far as possible. Coherence plots show a high-

pass threshold of the filtered data at a grayscale of 170^, providing a single slice 

indication of the effectiveness of the filter for increasing the coherence of the cloud 

object. Coherence is of key importance for skeleton generation. 

^ Figures 5.8 and 5.18 
° Figures 5.7 and 5.17 
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•̂ >wWiTJ-1ET7 .16 JUL. 1998 0500 IR2 D2 

(a) Raw Data 

(b) Projected Data Pre Smoothing (c) Projected Data Post Smoothing 

Figure 5.3: (a) Raw data with the region to be projected cut out in black, 
(b) Constant-distance projection, presmoothed and (c) post-
smoothing. The image is METEOSAT D2 (infra-red) from 0500 
GMT, July 16th 1998. The projected data are from Latitudes 45-
60N, Longitudes 16W-5E with a scaling of 1 pixel to 4km 
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(a) Image with unsup-
pressed background 

(b) Background template 

I 

(c) Image with background 
suppressed 

Figure 5.4: (a) Constant-distance projection of METEOSAT D2 (infra-red) 
image from 1000 GMT on June 19th 1998, (b) its corresponding 
background template generated from the preceding six days' 1000 
GMT images and (c) the data after suppression of the background. 
Some noise remains in the background template over the Atlantic 
from long-term cloud persistence in the region, which may add 
noise to the cloud data in the region. 
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(a) Raw (b) Raw, 
T=128 

(c) Raw, 
T=150 

fe) Smoothed (f) Smooth, 
T=128 

5 
(g) Smooth, 
7=150 

(d) Raw, 
T=180 

(h) Smooth, 
T=180 

Figure 5.5: A comparison between non-coherent and coherent cloud objects. 
(a)Raw imagery, cloud enhanced, and thresholded at a greyscale T 
of (b)128, (c)150 and (d)180. (e)Filtered data (filtered using the 
morphological approach described in Section 5.2.2) thresholded at 
a greyscale of (f)128, (g)150 and (h)180. The data shown are from 
the 1830 METEOSAT D2 image taken on the 10th May 1998. The 
multiple thresholds show a greater degree of attachment between 
pixels for the smoothed data, whilst maintaining the general content 
of the raw data. 
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5.2.1 Median Filtering 

A median filter replaces the pixel under analysis with the median value of the 

pixels in the filtering window surrounding that pixel. The size and shape of me-

dian filter window changes its performance. A circular window has been applied 

in this study, although potentially other shapes may give smoother results. Some 

of the issues concerning circular filtering in digital spaces are discussed further in 

Section 5.2.2. The choice of filter shape, whilst having an influence on the final 

smoothness of the surface, should not unduly affect the degree of edge smooth-

ing. Seven sizes of median filter were tested, varying in radius from 1 to 10 pixels. 

Figure 5.6 shows the results of applying each filter to a geocorrected image. 

Coherence and edge gradient performance are shown in Figures 5.7 and 5.8 re-

spectively. As can be seen, the median filter smoothes edges significantly. Whilst 

a coherent structure results from a fairly small median filter (3 or 4 pixel radius), 

the edge gradient decays significantly too, even at a radius of three pixels. In 

practice, the degree of edge smoothing is dependent on the ratio of feature width 

to filter size. It may however be appropriate to use data smoothed using a small 

median filter for generating skeletons, as the coherence of the resulting structures 

is high, and maintaining the original edge gradient is not a critical factor for 

skeleton algorithms®. 

® Unless a skeletonprofile is being constructed. For more information on skeleton profiles, see 
Section 6.1.3 
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(a) Raw (b)Rl ^0R2 (d) Its 

^3R5 (g) R6 (h) RIO 

Figure 5.6: (a) Raw imagery smoothed using a median filter of radius R equal 
to (bj i, (cj 2, 3, (ej 4, (f) 5, (gj G and (A) iO pixels. Data are 
METEOSAT D2 images A-om 2200GMT on the 23rd of Aprij 1998. 
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(a) Raw (b) R1 ^0R2 (cQ R3 

^0R4 ^3R5 (g)R6 (h) RIO 

Figure 5.7: Imagery thresholded at a greyscale of 170, showing the variation in 
cloud object coherence: (a) Raw imagery smoothed using a median 
filter of radius (b) 1, (c) 2, (d) 3, (e) 4, ( f ) 5, (g) 6 and (h) 10 pixels. 

aj-e AdJSjTjEXCKZ/igr Z):? uiiafpas j?200(3]VfT cm tiie :%3rcf of 

April 1998. 
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(a) Raw Edge Plot (b) Median Radius 1 

(c) Median Radius 2 (d) Median Radius 3 

^ z z a' 

(e) Median Radius 4 (f) Median Radius 5 

16 z a a 

(g) Median Radius 6 (h) Median Radius 10 

Figure 5.8: Edge degradation with varying sizes of median Glter: (a) Raw im-
agery smoothed using a median filter of radius (b) 1, (c) 2, (d) 3, 
(e) 4, ( f ) 5, (g) 6 and (h) 10 pixels. Data are METEOSAT D2 im-
ages from 2200 GMT on the 23rs of April 1998. The vertical axis 
is greyscale. 
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To capture cloud shape information at the scale of whole objects, it is necessary 

to reduce the small-scale variation of cloud structure that is not relevant to 

the larger shape analysis, effectively reducing the precision of the representation 

of the contents of a cloud shape. A morphological filter has been developed 

that preserves the nature and gradient of the cloud edges, whilst smoothing the 

cloud tops. This is achieved using a variant of the rolling hall algorithm^. In 

its simplest form, this consists of rolling a ball® of fixed radius alternately above 

and below the surface under analysis for a number of iterations, and remapping 

the surface to the locus of the lowest / highest point on the ball, respectively 

(Figure 5.9). An iteration of this filter consists of rolling the ball both above and 

below the surface. Whilst some difference may result from rolling the ball firstly 

above, or firstly below the surface, this difi'erence is typically negligible over a 

few iterations of the filter. Nagao and Matsuyaraa [72] describe an alternative 

to the morphological filter developed here based on filtering in the direction of 

minimum data variance. 

In order to smooth the centres of the cloud more than the edges, however, a 

variable-sized structuring element must be used. Care must be taken, however, 

with implementing a variable structuring element filter, as can be shown by con-

sidering a simple variable-size adaptation of the standard rolling ball filter. This 

consists of fitting the largest ball possible between the surface and a lower or 

upper plane. It is important to note that the selection of a spherical structuring 

element itself must be made with care, since the variation in the data vertically 

may be significantly different to the horizontal variation. Indeed with cloud data, 

there is a significant difference between these two, and it is important to ensure 

that the correct degree of smoothing occurs due to the variation in horizontal 

and vertical components. In practice, the data are suitably preprocessed and 

stretched so that the largest sphere considered corresponds both to the largest 

sensible horizontal and vertical structuring element. By preprocessing the cloud 

^ See for example Hashim et al [47]. 
® Or so-called structuring element 
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Original Surface 

(b) 

Original Surface 
After lower-bcdl smoothing 

(c) 

After lower-ball smoothing 
Surface after 1 iteration 

(Lower and Upper baU) 

Figure 5.9: A standard rolling ball algorithm: a ball of fixed radius is rolled 
alternately below (a) and above (b) the surface to be smoothed. 
The surface is replaced by the locus of the top / bottom of the ball. 
One iteration of this filter consists of rolling the ball both above 
and below the surface. 

data to cover the greyscale range of 0 — 255, a lower plane of greyscale 0 and an 

upper plane of greyscale 255 can be used. 

As illustrated in Figure 5.10, large spheres fit under the middle of a cloud, and 

smaller ones at the edges (and vice-versa for spheres above the cloud). The use 

of a variable sized ball on its own presents problems, however, and does not result 

in the desired greater smoothing in the middle of the cloud than at its edges and 
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greater edge detail preservation. 

Origmal Surface 

Origmal Surface 
After lower-ball smoothing 

fe> 

After lower-bail smoothing 
Surface after 1 iteration 

(Lower and Upper bail) 

Figure 5.10: A variable-size rolling ball algorithm. The largest ball to fit be-
tween a baseline and the surface, and a sensible upper line^° and 
the surface, respectively. As per the standard rolling ball algo-
rithm, the surface is replaced by the locus of the top / bottom of 
the ball. Large spheres fit under the middle of a cloud where most 
smoothing is desired, whereas smaller spheres fit under the edges 
resulting in better preservation of the edge information. 

Implementing the variable ball size smoothing technique on discrete imagery is 

difficult in light of the nature of digital representations of circles and spheres. If 

sphere edges are caught on noisy low pixels near crisp discrete image data edges 

then the resulting maximum sphere height can be altered considerably. This is 

not just a problem for pixels near to edges either, since fiat areas in the middle of 

clouds may fit large spheres underneath them that are large enough to get caught 
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by noisy low edge pixels (Figure 5.11). Also, whilst rolling variable-sized spheres 

below the cloud surface results in more smoothing in the middle of the cloud 

and subsequently rolling the spheres above the surface smoothes the non-cloud 

regions, both stages also erode the gradients in the transition phase between cloud 

and non-cloud, the very edge gradients the filter must preserve. 

Original Surface 

(b) 

Original Surface 
• After Lower-ball Smoothing 

Figure 5.11: Some of the ways in which the vaxiable size rolling ball Glter can be 
compromised: crisp edges are smoothed too strongly and multiple 
layers of cloud result in the uppermost layer being smoothed out. 

In order to overcome some of these problems, a new approach has been used, 

whereby only a vertically sliced segment of the ball has to fit above / below the 

surface. A two-dimensional representation of the approach is given in Figure 5.12. 

The largest sphere segment that will fit under / over any image data region is 

used, allowing crisp edges to be dealt with by fitting the segment under the cloud 

pointing away from the cloud edge. This removes spikes in the data without 

removing ridges or crisp transitions: there has to be some local coherence in the 

data in at least one direction, over a horizontal distance equivalent to the segment 

radius. The formula for the new filter is given in Equation 5.5. 
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At each surface pixel location, the pixel is given an offset proportional to the 

difference between the surface height relative to the lower (upper) plane and 

the tallest sphere segment that fits between the pixel and the lower (upper) 

plane. The sphere segment is a vertical segment of a sphere, and for the segment 

to class as having fit, all points within the segment must be below (above) the 

cloud surface, i.e. the neighbourhood of the pixel is also checked, in the direction 

of the segment, to ensure the region of segment under (above) the neighbours 

fits beneath (above) them. No sphere larger than 25 pixels' radius is used^^, and 

the amount of smoothing can be controlled over iterations of the filter using a 

learning rate to adjust the proportion of the difference between surface height 

and segment height that is used to adapt the data on each iteration. Because 

the base (upper) plane has been taken as planar, and normal to the vertical, the 

lower (upper) half of the sphere segments can be ignored in each iteration by 

effectively moving the base (upper) plane closer to the surface by an offset equal 

to the sphere radius. 

Lower or upper, depending on whether the filter iteration is a lower or upper surface 
smoothing step. 

No smoothing is applied if a segment of a sphere of diameter 50 pixels fits under (over) the 
surface, as this is taken as already sufficiently smooth. 
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Original Surfaxx 

\ Original 
•.Surface 

j After 
/ Smoothing 

^' (Lower bM 
semnent) 

Original Surface 
After Smoothing 

(Lower ball segtnent) 
Aft^ Snwothing 

(1 iteration, above 
and below) 

Figure 5.12: A 2-D representation of the new rolling ball algorithm using ball 
segments rather than complete balls. 

/(a;, ?/) =7(3;,!/) + A(K(z, ?/) - ;/)) 

where 

I(x, y) = raw image data surface 

^I{x, y) = filtered image surface 

A = learning rate = 1 by default 

^ij'max)'! 0 ^ '^m.ax ^ 25 
K{X, y) = vertical offset = < 

^(3:, 2/), > 25 

(5.5) 

r„iax = maximum sphere radius that fits under image data 

^{'^max) = sphere offset 

2 * rfMoi + maz(77im(7(r, - 5'(r, ^))) 
6=0 r=0 

{min{I{r,9) — S{r,9)) > 0) 
r=0 

0 

r = sphere radius 

9 = radial sphere check position 

otherwise 
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A discussion of how the approach determines the size and direction of the sphere 

segment that fits is now given by considering the filter applied to a data point at 

the end of the tail of a comma cloud (Figure 5.13). The greyscale data around the 

point will fall off quite sharply in all directions except for the direction further into 

the comma cloud towards its centre. A sphere segment will fit under the greyscale 

data in the direction of the comma centre however, therefore the comma cloud's 

tail will not be smoothed away. This is illustrated in Figure 5.13(a) by the two 

cloud cross-sections. In cross-section A (taken as indicative of all cross-sections 

not directed into the comma), a sphere section is unable to fit exactly under 

the cloud surface as the vertical variation in the da t a in this direction is much 

greater than the horizontal. If this cross-section were considered in isolation, 

the resulting smoothing would be significant, as illustrated by the heavy black 

line in the cross-section data. In cross-section B, however, the horizontal and 

vertical variations in the data are of a similar magnitude, and a sphere section 

fits under the cloud easily, resulting in little smoothing. Figure 5.13(b) illustrates 

how the horizontal variation in the cloud affects the directions in which a sphere 

segment can fit. As the sphere radius is grown, the radial directions in which 

a sphere segment may fit under the comma cloud's surface, illustrated in black, 

change. Figure (b) considers the horizontal extent of the cloud only, however. 

By analysing cloud cross-sections similar to those in (a) in the angular directions 

shaded in black, for a sphere segment of the given radius, the directions in which 

the segment fits both horizontally and vertically can be determined. The sphere 

radius is grown as per Figure (b) until a segment no longer fits in any direction 

under the cloud surface. 

In order to address the issue of assessing whether continuous sphere segments 

fit under digitised surfaces, the sphere segment data are checked to ensure they 

fit under (over) the satellite data surface at set points on the circumference of 

circles at step radii of one pixel away from the pixel under test, and at angu-

lar separations so that the horizontal separation of neighbouring test locations 

for the largest radius sphere segment (of 25 pixels) is approximately one pixel 

(Figure 5.14). The surface pixel values surrounding the pixel under test are in-

terpolated to the sphere check locations, as per Equation 5.6 and Figure 5.15. 
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(a) 

/ ->s 

(b) 

Figure 5.13: Directional variation in a cloud surface. Figure (a) shows a comma 
cloud. Two cross-sections of the cloud have been taken (lines A 
and B) to show the effect of smoothing at their crossing point. 
Figure (b) shows the possible directions in which a segment of 
a sphere may fit under the cloud surface, with increasing sphere 
radius, considering the horizontal variation of the cloud only. 

Greyscale = ^i9i 

where 

(5.6) 

X 
1 — A-i > 0 

otherwise 

gi = greyscale of pixel being interpolated 

(Ai is the distance between the centre of the pixel and the circle test point 

Figure 5.16 shows the effect of the filter on the same dataset as earlier analysed 

using the median filter. As can be seen, significantly less of the original data is 

lost. The edge plot (Figure 5.18) confirms that the edge gradients do not decay 
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I ptxtl 

I pad 

Figure 5.14: Definition of a discrete sphere for use in the adapted roUing ball 
filtering algorithm, (a) Vertical profile of discrete sphere repre-
sentation. (b) Image data are tested at the ends of each radius of 
each sphere, the image data having been interpolated as indicated 
in Figure 5.15. 

Figure 5.15: Pixel interpolation for correct assessment of the greyscale under 
a sphere. See also Equation 5.6. 

with further iterations of the filter, but the coherence of the cloud ridge increases 

as desired, as illustrated in the coherence plots (Figure 5.17). 

This has demonstrated the effectiveness of the filter for maintaining the struc-

ture of a ridge, improving its coherence and keeping its edge gradients. Applying 

the filter to other types of cloud shows its effectiveness for cloud data smooth-

ing: Figure 5.5 was used to illustrate the nature of a coherent cloud structure 

by analysing a vortex. The coherent image data have been filtered using this 

morphological filter. Figure 5.19 contains a storm cell, which has sharp edges 
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(a) Raw (b) 1 iteration (c) 2 itera-
tions 

(d) 3 itera-
tions 

(e) 4 itera-
tions 

(f) 5 iterations (g) 6 itera-
tions 

(h) 10 itera-
tions 

Figure 5.16: A raw image (a) and the result of applying a morphological filter 
for (b) 1, (c) 2, (d) 3, (e) 4, ( f ) 5, (g) 6 and (h) 10 iterations. The 
image data is METEOSAT D2 infrared imagery from 2200 GMT 
on 23rd April 1998. 

which again have been preserved, whilst reducing the internal noise which are 

irrelevant to the analysis at the scale of the whole cell. Finally, Figure 5.20 shows 

the performance of the filter on fine texture, as contained in an open-and closed-

cell cumulus field. This qualitative discussion of the filter's characteristics has 

shown it to provide a suitable type and degree of filtering for subsequent object 

and edge analyses. It is broadly true that having defined the desired character-

istics of an image filter, there are many ways to construct such a filter. Whilst 

this particular morphological filter may not be computationally the most effi-
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(a) Raw Co-
herence Plot 

(b) 1 iteration (c) 2 itera-
tions 

(d) 3 itera-
tions 

(e) 4 itera-
tions 

(f) 5 iterations (g) 6 itera-
tions 

(h) 10 itera-
tions 

Figure 5.17: The change in cloud coherence, based on a high-pass threshold 
at a greyscale of 170, with morphological filtering: (a) Raw Data, 
(bj J, (cj 2, rdj J, rej 4, ro w e, ^ and i o 
iterations. 

cient method for producing the desired smoothing characteristics, it has achieved 

those characteristics nonetheless. The computational cost of this filter was not 

excessive, however; the algorithm was implemented in C + + , and took approxi-

mately twenty seconds per iteration (once below and above the cloud surface) on 

a computer with a 150MHz processor and 120Mb of RAM, running Windows NT 

4.0. Approximately six iterations of the filter were typically necessary to obtain 

sufficient smoothing for coherent cloud structures. 
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0 5 10 16 

(a) Raw Edge Plot (b) 1 iteration 

0 6 10 IS 

(c) 2 iterations (d) 3 iterations 

0 5 10 ,5' Z Z 30 g 0 5 10 IS 

(e) 4 iterations (f) 5 iterations 

* z a a' 16 20 25 30 

(g) 6 iterations (h) 10 iterations 

Figure 5.18: The change in edge structure with morphological Gltering: (a) 
Raw Data, (b) 1, (c) 2, (d) 3, (e) 4, ( f ) 5, (g) 6, (h) 7, (i) 8, (j) 9 
and (k) 10 iterations. 
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(a) Raw Image (b) Section (c) Smoothed section 

Figure 5.19: (a) Raw image: 1500 GMT METEOSAT D2 image from 18th June 
1998, (b) Storm cell from image and (c) Storm cell smoothed after 
7 iterations. Note that the crispness of the edge information in 
the image has been preserved. 

(a) Raw Data (b) Smoothed 

Figure 5.20: (a) A section of cumulus cloud from METEOSAT D2 image from 
15th June 1998 1600GMT, (b) smoothed after 7 iterations of the 
morphological Glter. Note the Alter has preserved the cloud shapes 
despite the high degree of texture in the image. 
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Having prepared and smoothed the cloud, two techniques are applied to extract 

the cloud from the prepared images. These are the starting point for extended 

feature extraction as discussed in the next chapter, but also provide objects tha t 

can themselves be analysed and tracked. 

5.3.1 Multi-level thresholding 

To analyse cloud vertical structure to some degree, the smoothed data is sliced at 

all greyscales from the maximum present in the data, the top of the cloud, to a 

minimum value for the cloud content in the i m a g e r y A t each slice, independent 

objects are extracted and their area and centroid calculated. Each independent 

object is also assigned a unique colour. Objects in each subsequent slice are 

matched with those in the slice above based on which higher objects are subsets of 

the current object. Where a single higher object matches with one in the present 

slice, the present object is assigned the same colour as the higher one. Where, 

however, there are multiple unique objects in the slice above that are contained 

within the boundaries of the current object, the current object is assigned a new 

colour. In this way, a peak-unique contour map is built up, showing where the 

tops of each coherent structure split. This is illustrated in Figure 5.21: the cloud 

image projected on the base of the scene has been sliced vertically, and the objects 

shown in any frame are colour coded according to the objects they match with 

in slices above / below the current one. The black dots represent the centroids 

of the objects at all slices. 

This is similar to an approach applied by Peak and Tag [80] for cloud segmenta-

tion prior to classification; discrete cloud objects in consecutive greyscale slices 

are extracted, although in Peak and Tag's approach, the slices are taken with 

increasing rather than decreasing cloud height. Where objects split into two or 

Note this is not the cloud base, due to the fact that the cloud is only viewed from above, 
but is effectively the largest cloud footprint. 
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Figure 5.21: Objects extracted using a multi-layer thresholding technique (Per-
spective view). The centroids of each vertical slice are indicated 
by the black dots. The respective frames show different slices 
through the cloud, from top to bottom, from different viewing 
angles. 

more sub-objects over a greyscale interval, an object hierarchy develops. By tak-

ing the lowest greyscale for any subsequently non-splitting object path, cloud 

objects of a particular nature can be extracted. 

From the knowledge of which cloud slices are attached to which others and knowl-

edge of the centroid location of each slice, it is possible to produce a type of 

vertical skeleton of the structure. The dynamics of this skeleton show where any 
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convective processes may be occurring within the cloud. Similarly, associating 

the area of a slice with its centroid provides information regarding which levels 

of cloud are growing over time. 

5.3.2 Fuzzy Growth Approach 

The second approach consists of identifying core regions of cloud content and 

growing these to include areas that have some association with the cloud core, 

capturing this degree of association by using a fuzzy measure of cloud membership. 

Udupa and Samarasekera [103] discuss fuzzy connectedness in the context of 

object generation. 

The satellite imagery is initially differenced from background templates as has 

been described previously (without the resulting stretch of greyscales), to provide 

a first pass at identifying the cloud content. This is then high-pass thresholded 

to leave pixels whose brightness is sufficient to ensure they only depict cloud. 

Pixel clusters of less than fifty pixels are then removed. In the remaining bright 

pixel clusters, cracks are propagated to obtain distinct core objects, as described 

in Table 5.2. 

Having obtained the cores, a fuzzy system is used to assign the pixels immediately 

neighbouring the core a membership or degree of association to their core. The 

pixels neighbouring these neighbours are also then analysed, provided the degree 

of association of the previously assessed pixels is sufficiently high. This iterative 

growth process continues until no more pixels have sufficient associativity to the 

cloud core to warrant any further growth. This is similar to an approach by 

Feher and Zabusky [36] for determining the associativity of flow regions to vortex 

structures in vorticity fields in computational fluid dynamics. 

The inputs to the fuzzy system used for growing these cloud regions are the pix-

els' absolute radiance (a global thresholding component), the relative difference 

between their radiance and the nearest core pixel radiance (a local thresholding 

component) and the gradient of radiance from the core to the pixel under analysis. 
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1. The mean greyscale jj, of each cluster is determined and pixels darker than 
the mean are taken as possible starting points for cracks to propagate from, 
forming a subset A from all the pixels in the cluster, 

2. A subset B{x^ of A is created for a member xa of A, such that the greyscale 
of all pixels in B is equal to or darker than the greyscale of Xa and all pixels 
in B touch xa or a pixel already in B. This is an iterative process whereby 
Xa itself is first added to the subset B, then the immediate neighbours of 
Xa are initially examined and added to B if equal to or darker than xa-
The neighbours of each new member of B are themselves examined in turn, 
and added to B if they are darker than the member of B under analysis, 
until no more pixels can be added to B. 

3. As long as the subset B C A includes a pixel at the edge of the initial pixel 
cluster (neighbouring ^') and one neighbouring a pixel equal to or lighter 
than the mean (i.e. ^ fl (A')), the pixels in B are changed to background 
pixels and removed from A. 

4. This is repeated for all members of A and all clusters 

5. Any resulting pixel clusters ^ with fewer than fifty pixels are removed. 

Table 5.2: Algorithm for propagating cracks in cloud shapes, to leave homoge-
neous cloud cores. 

This is illustrated in Figure 5.22. The fuzzy rule base used in this system is given 

in Appendix A. The membership function transitions and rule confidences were 

determined empirically by testing a number of different values. The membership 

functions and rule confidences selected gave good performance for a number of 

different cloud types. The transitions and rule confidences could be optimised 

further by application of an adaptive learning technique applied to the fuzzy sys-

tem (such as the neurofuzzy methods described by Brown and Harris [13], for 

example), but care would be required in selection of the training cases for such a 

system to ensure good generalised performance. 

Figure 5.23 gives an example of the cloud cores extracted from METEOSAT 

infrared imagery and the effect of the fuzzy growth algorithm for adding edge 

pixels. It can be seen clearly from this example that the algorithm has added few 

edge pixels in the case of a crisp transition from a cloudy to a non-cloudy region, 

and has added many more pixels in the case of a dispersed cloud edge (See also 

Figure 6.9). Comparing this approach with the results shown in Figure 3.3, it can 
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Figure 5.22: Fuzzy System for cloud edge growth. Relative and Absolute 
greyscale and greyscale gradient measurements are passed to the 
fuzzy system, which provides a cloud membership as an output. 
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(a) (b) (c) 

Figure 5.23: Cloud Extraction and Enhancement, (a) Constant distance projec-
tion of METEOSAT D2 image from August 27, 1997. (b)Cloud 
cores extracted using the background template differencing and 
crack propagation technique, (c) Cloud grown to include the edge 
regions using a fuzzy system. 

be seen that it also offers much better performance than single-level thresholds 

for cloud identification, capturing more of the cloud lower in the image than the 

high threshold in Figure 3.3(a) without capturing too much of the background as 

in Figure 3.3(b), i.e. effectively providing some degree of local thresholding. 

The fuzzy system used in this section was developed from NeuFrame's Neufuzzy 

template^'^ integrated into some C+4- code, and had negligible^® computational 

cost when applied to 800 * 800 METEOSAT D2 images running on a computer 

with a 150MHz processor and 128Mb of RAM under Windows NT 4.0. 

This work was presented at the First AMS conference on Artificial Intelligence, 

as detailed in Newland et al[76]. 

Jointly developed by the Department of Electronics and Computer Science, University of 
Southampton and Neural Computer Sciences; http://www.iics.co.uk 

i.e. less than ten seconds 

http://www.iics.co.uk
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5.3.3 Discussion of Cloud Object Extraction Techniques 

Clearly the applications of the two cloud object shape analysis techniques dis-

cussed here are very different, with the first approach concentrating on a mech-

anism for the vertical (and by implication also the temporal) variation in cloud 

shape, as can be described by matching whole slices of smoothed cloud data. The 

second approach produces whole cloud objects and captures the essence of the 

cloud edge in doing so. 

No further discussion of the first approach is given in this thesis, although the 

resulting cloud slices could certainly be used as valid parameters to be matched, 

much like the skeletons and edges discussed in the next chapter. There is also the 

possibility of determining the vertical motion of the cloud structures by matching 

cloud objects from different greyscale slices over time, not only with objects from 

the same slice. This would require some constraint to ensure that the resulting 

matches were also vertically consistent. 

The fuzzy object growth approach for cloud object identification shows some 

significant noise, whilst still achieving the main goal of providing differentiated 

growth between crisp and dispersed cloud edges. The algorithm has been applied 

to cloud data in Figure 5.23 that has not been subjected to any prior smoothing. 

Applying the core and growth algorithm to smoothed data should produce cleaner 

transitions from cloud cores to non-cloud regions in the case of dispersed cloud 

edges. 
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Three new paxameterisations of clouds have been generated in this thesis that 

capture new information about the cloud content, namely skeletons, fuzzy edges 

and whole cloud objects. Skeletons capture the major axis of the cloud shape, 

fuzzy edge information describes the nature of dynamic processes across and in 

the vicinity of the cloud edge and the whole cloud shape provides an indication 

of the size and growth of the weather system. In addition, the motion of these 

parameters has been used to describe the evolution of cloud at different scales, 

and different components of the evolution. Whole objects have been discussed in 

the previous chapter. A discussion of skeletons and edges follows. 

6.1 Cloud Skeletons 

The skeleton or medial axis transform of a 2-D shape is its mid-line or axis of 

symmetry. It is defined using one of two root analogies in most literature (e.g. 

Serra [90]), namely that of wave propagation, where the skeleton is defined as the 

meeting points of a wavefront propagating inwards / outwards from an object's 

edge, or the set of centres of maximal disks whose entirety is contained within / 

outside the object edge, but whose circumference lies on the object boundary at 

two or more different places (Figure 6.1). 

Similarly, there are typically two types of algorithm used for skeleton generation, 

namely thinning and skeletonization, the former being an iterative edge erosion 

approach leaving a skeletal structure on completion, and the latter generating 

the skeleton more directly. In practice, there are many ways to implement both 
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Figure 6.1: Wavefront propagation (a) and Maximal disk (b) analogies for gen-
erating skeletons of shapes. 

processes and the distinction between iterative and direct analysis is a little less 

clear. It is sufficient to say that the desired outcome of any of the techniques 

is the axis of symmetry, of single-pixel width, that is homotopic or without any 

breaks for any given cloud object. 

Generating skeletons for clouds is a novel application of medial axis transforms. 

The results presented here have been generated using a maximal sphere approach 

applied to thresholded binary representations of the smoothed cloud objects. 

Other techniques for applying skeletons to the cloud da ta are also suitable, how-

ever. In particular a veinerization approach to skeleton generation is described 

which offers the potential for much smoother and more coherent skeletons. A 

greyscale-sliced vertical skeleton profile of cloud is also introduced and discussed 

in this thesis, that provides a richer description of the cloud's vertical structure. 

This is achieved by applying the skeleton analysis to slices of cloud at many dif-

ferent heights or similarly at difierent degrees of cloud dissipation, and indicates 

the variations in directions of cloud spread with height. 

6.1.1 Maximal Disks 

The approach used for generating skeletons in this thesis is not guaranteed to 

be homotopic in digital space, but has a conceptually simple implementation 

whilst still showing the benefits of the skeletal analysis for cloud data. A digital 

representation of a circular disk is passed over each pixel of a binary thresholded 

cloud object and the disk radius is increased until one or more points on the disk 
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edge coincides with a cloud edge pixel. If two or more disparate sets of points 

on the disk edge touch the cloud edge then the centre of the circle is a skeleton 

point. The analysis of the next pixel in the cloud object then starts with a disk 

of radius one-less than the current pixel's maximum radius. This is illustrated 

in Figure 6.2. The algorithm applied is given in Equation 6.1. 

tP e (5+ (6.1) 

where 

$ = set of skeleton points 

Xmax = maximal disk 

== ;Cr,\/;Cr (E 3"+ S.t JCr == .ATr 

and Xr n {Xr n $) ' is disjointed 

Xr = digital representation of a circle of radius r 

C{Xmax) = centre of maximal disk 

$+ = cloud object including border 

$ = cloud object excluding border 

Using this algorithm in digital space has a number of problems related to the 

representation of circles in digital space and the sensitivity of the approach to 

any noise in the object representation^ when determining whether two or more 

sets of points touch the object's edge. As a result, the homotopy of the skeleton is 

broken, as discontinuities in the skeleton result from any variation or abberation 

on the cloud edge. Despite these problems, the approach produces stable skeletons 

when the image data are initially smoothed, or at least any noisy holes in the 

binary representation of the cloud object are removed (this is the requirement of 

skeletal analyses for coherent objects). Examples of this skeleton type are given in 

Figure 6.3. Note that the results shown have not been generated using cloud data 

pre-smoothed using the coherence-enhancing filter discussed in the last section. 

Either in terms of holes in the object or in individual pixel changes on the edges 
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Figure 6.2: Maximal disk approach for skeleton generation. The circle shown 
touches two different parts of the cloud edge, the necessary condi-
tion for its centre to be lying on the skeleton. 
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Figure 6.3: Examples of maximal circle approach for skeleton generation. 
(a)For a non-coherent cloud core and (b)for the same cloud once 
grown using a fuzzy growth algorithm (this data has not been pre-
filtered using the coherence enhancing tool). The noise in the skele-
ton from non-coherent data is clearly evident in (a). The data is 
taken from METEOSAT D2 imagery from 19 August 1997. 

Such pre-smoothing would further improve the skeleton stability, however. 

6.1.2 Skeletal Matching 

Having generated skeletons for whole clouds in each frame of a satellite data 

sequence, the skeletons can be matched using any line matching technique. In 

this work, a simple nearest-neighbour approach has been used to match skeletal 

points in one frame with their nearest skeletal point in the next frame. This 

works acceptably for sparse skeleton sets, but has a number of problems that can 

be addressed by suitable adaptations of the analysis. A major problem even for 

sparse data is that of the so-called aperture problem, where a point on a line or 

arc could potentially match to a number of points on that line / arc in the next 

timestep if it lies at the centre of curvature of the matching line or the line has 

many bends locally. This is illustrated more fully in Figure 6.4. For less sparse 
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Figure 6.4: Aperture Problem. The first figure shows the ambiguity of a near-
est neighbour match. In this instance, the point on the first arc is 
on the centre of curvature of the second arc, resulting in an indeter-
minate number of possible matches. In the typical case there may 
be at least multiple possible matching points. The second figure 
shows one approach to minimise this problem, where matches are 
made between points that have the same local gradient. 

data, a conceptually similar problem is often one of picking the correct match 

from a number of nearest neighbours on different lines / arcs. A discussion of 

workarounds to these problems is given later in this chapter. 

The algorithms for generating and matching skeletons were coded in C + + and 

were validated using simple shapes whose skeletons and motion were known. 

Figure 6.5 provides an example of this validation, where a simple shape has been 

rotated in the first instance, and grown in the second. The skeletons matched 

in this data were generated using the maximal sphere approach. Note that the 

centre of rotation is clearly visible in the first set of skeleton vectors and the 

growth has been captured in the second. 

Figures 6.6 and 6.7 show the application of the skeleton tracking to sequences of 

cloud data, using two different visualisation techniques. The first image shows 

the cloud component of the first and last frames of the seven-frame sequence 

analysed, with the skeletons overlaid, next to the skeleton vector tracks: the 

vectors for frames 1-6 are shown in red, with the vectors for the last frame pair 

shown in black. The second image shows the first frame of a sequence in the 

lower diagonal of the image and the last frame in the upper diagonal, with the 
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Figure 6.5: Skeleton tracking on a simple shape. The left-hand image triplet 
(a) shows the Srst and last frames of a sequence of a rotating simu-
lated cloud shape. The skeleton vectors are shown between the two, 
clearly indicating the nature and centre of rotation. The right-hand 
image triplet (b) shows the hrst and last frames of the simulated 
shape under growth, again with the resulting skeletal vectors shown 
between the two frames. 
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Figure 6.6: Example of skeleton matches: 1. This figure shows the 6rst and last 
frames of the extracted cloud objects with skeletons highlighted. 
The skeletal vectors are shown next to the frames, with the track of 
vectors across the Rrst six timesteps shown in red and the skeletal 
track for the last timestep shown in black. The data are from 
METEOSAT D2 images from 18 February 1996. 

vectors for the whole sequence overlaid on both halves of the image. 

The approach has clearly shown its ability to track the different limbs of the 

weather system and highlight the parts of the weather system that have not 

moved significantly over the time sequence. It also identifies the rotation points 

for the limbs, and the relative progression of the different branches on the leading 

edge of the system can be seen. 

There are also a number of places for improvement in both the skeleton generation 

and matching that can be seen from the images: The lack of homogeneity of the 

skeleton can be seen clearly, for example, in the black vector heads in the first 

image in Figure 6.6, and a number of instances of many-to~one vector matches 
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Figure 6.7: Example of skeleton matches: 2. This Ggure shows an alternative 
method for displaying the information: the lower diagonal of the 
image shows the first frame of cloud data and the upper diagonal 
shows the last frame. The skeleton vector tracks are overlaid across 
both halves of the image. The data are from METEOSAT D2 
images from 18 February 1996. 
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can be seen in both images. Despite these problems, the technique has shown the 

potential for skeletal analysis to describe cloud motion in a new and rich way. A 

discussion of methods to reduce the errors seen in these results is now provided, 

however, along with further enhancements of the technique appropriate to cloud 

analysis. 

6.1.3 Alternative algorithms and applications for skeletons in 

cloud analysis 

A much more robust and stable algorithm for generating skeletons than the max-

imal disk approach has been suggested by Deseilligny et al [27] using a veineri-

sation approach. There are five stages to this approach, namely: 

® Perform an edge-distance transform on a binary representation of the object 

under analysis (Figure 6.8). In practice this can be achieved by a similar 

approach to the maximal spheres technique previously described, using the 

radius of the largest sphere touching an edge as the distance transform. 

• Compute the veinerization graph of the distance transform. The details 

of this are provided by Deseilligny et al., but in principal it provides an 

indication of the primary directions of slope in the distance transform data. 

Within this graph is the desired skeleton, plus a number of branches off 

the skeleton which are not of interest. There are particular problems with 

digital edge-distance transforms that cause difficulties in generating the 

veinerization graph. These have been addressed by Deseilligny et al., by 

careful selection of some arbitrary rules with which to choose the optimal 

connectivity for ambiguous cases. 

• Generate a homotopic extinction function from the graph. This is a measure 

of the importance of any point on the skeleton, related to points downstream 

of it (its so-called Zone of Influence). The simplest analogy is that of a 

river flowing down the ridges on the veinerization graph: if any point on 

that river is dammed, the homotopic extinction function for that point is 
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Figure 6.8: A sketch of an edge-distance transform for an arbitrary shape, with 
its skeleton overlaid. The greyscale indicates the distance from 
the edge, with brighter greyscales indicating greater distance. In 
practice, the greyscale change would be much smoother than the 
step changes shown: this illustration shows the central protion of 
the shape lying five distance-units from the edge of the shape, 
whereas most shapes would be much larger. 

the number of pixels on the veinerization graph downstream of the dam 

point that would also be cut off. 

• Select some anchor points for the veinerized graph from the extinction func-

tion or based on a combination of criteria, e.g. the local angular variation 

in veinerization graph. These become in effect the dam points, and their 

selection dictates the detail in the resulting skeleton. 

• Prune the veins to include only anchor-point extremities. 

(As per Deseilleigny et al [27]) 

This ensures homotopy in the skeleton, addresses the issues of representation of 

continuous functions in digital space and is quite adaptable, both in selection 

of distance-to-edge criteria and anchor point selection. An extension of this 

approach for clouds is to perform a veinerized skeleton analysis on binary slices 

through every layer of the smoothed greyscale representation of a cloud to build 

a 3-D skeleton profile. Clearly this is computationally expensive, but provides a 
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rich representation of the spread of the cloud through its height. 

To improve on matching the generated skeletons over time, a simple mechanism 

to overcome the aperture problem and many of the non-sparse match ambiguity 

problems is to match points based both on distance and the gradient of the skeletal 

arc through the points to be matched, so that a matching pair of points are close 

over the timestep but also have the same local arc gradient relative to some global 

direction, as this rarely changes significantly in any neighbourhood (Figure 6.4). 

Guichard [45] uses the spatial gradient^ as a constraint for matching points along 

a contour or edge. Another mechanism for handling non-sparse data is to look at 

the topology of the skeletons over time. Where the local topology of a region of 

skeleton does not change significantly, the nodes of the skeleton can be matched 

easily and points on the intermediate branches can then be matched proportion-

ally between nodes. Topology changes in the cloud skeleton may themselves be of 

interest, and worth further investigation. Baroni et al [9] match curvature points 

along edges, giving an example of an alternative type of point of interest that can 

be matched along edge data. It is important to stress that any such topological / 

curvature point analysis is critically dependent on the homogeneity and stability 

of the skeleton generation technique, and would therefore require an approach like 

that of Deseilligny et al., rather than the maximal disk technique shown earlier. 

Finally, it is worth reiterating that the skeleton results shown in this chapter are 

for data that have not been pre-smoothed using the coherence-enhancing filter 

discussed in the previous section. This would improve the stability of all the 

skeletons and skeletal matches shown. 

6 . 2 C J o u d E d g e s 

Edges of clouds cannot be defined precisely within satellite images. To handle 

this imprecision, edge regions are used to capture both the possible extent within 

which any binary edge representation could be drawn, and to capture the degree 

the gradient of the motion vector relative to the local contour direction 
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of imprecision of the cloud edge around the cloud. This has been achieved in 

practice using the output of the cloud core and edge growth object extraction 

technique described in Section 5.3.2. 

The pixels around the cores are associated with the core regions based on the 

gradient of greyscale tangential to the core edge through the pixel under analysis 

and the absolute value of the background-normalised greyscale. Having generated 

a first pass at core associations, an adjustment is made to give local agreement 

on core association. The adjustment is made by comparing neighbouring pixel 

characteristics and their degrees of association. Where a neighbourhood has a 

low core association, a pixel in the neighbourhood with a high core association is 

suppressed if its greyscale characteristics are not significantly different from the 

neighbours, and vice versa. 

Figure 6.9 shows a cloud core, the core after the edge regions have been grown 

using the fuzzy growth system and the resulting extracted edges. The edge data 

clearly show the differences between a crisp transition from a cloudy to a non-

cloudy region, as is typical of cloud where the wind is blowing parallel to the 

cloud edge, and a dispersed transition where typically there is a wind component 

crossing the edge of the cloud causing the dispersion. 

There is still a significant amount of noise in the edge map, as can be seen 

from Figure 6.9, but the image data shown have not been subject to any prior 

smoothing, and the fundamental difference between the crisp and dispersed edges 

in the cloud content can clearly be seen: the crisp transitions are identifiable 

by edges of single-pixel thickness, and the dispersed edges or more correctly 

edge regions extend over a few pixels. Using the edge-preserving coherence-

enhancing filter described in Section 5.2.2 would result in less noise in the cloud 

data, generating less noisy edge maps that would be easier to interpret. 
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(a) Cloud Core (b) Grown Cloud Region 
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Figure 6.9: (a) Cloud Core, (b) Grown Edges added and (c) The edge regions 
with the cores removed. The edge data were grown out of the core 
regions using a fuzzy system assigning each grown pixel a degree 
of association with the cloud core. The data shown are from ME-
TEOSAT D2 imagery from 27 August 1997. 
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Figure 6.10: Edge Vector Matches. The lower half of the image shows the 
first frame of a sequence of METEOSAT D2 imagery from 18 
February 1996, and the upper diagonal the seventh frame (three 
hours later). The black vectors are the cloud edge matches from 
frames 1-2 and the red vectors from frames 6-7. 

6.2.1 Edge Matching 

Edges, similarly to skeletons, can be matched using any line matching technique. 

In this work, the nearest-neighbour approach used for skeletons was adapted 

slightly to cope with the regional nature of the edges analysed (as compared to 

the single-pixel thickness of the corresponding skeletons). Again, this works ac-

ceptably for sparse sets of edges (indeed, edges are typically easier to handle than 

skeletons due to the lower number of branches requiring matching). The ability 

of the approach to capture cloud motion has been demonstrated in Figure 6.10. 

The same caveats for matching performance are applicable to these results as 

were described earlier for the skeletal data. Again the ability to produce cleaner 

edge data using presmoothed clouds, as discussed at the end of the last chapter, 

would clearly also impact the quality of edge matches. 
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The results from this chapter were presented at the First AMS conference on 

Artificial Intelligence, as detailed in Newland et al[76], and in Lewis et al[4]. 



Part III 

COMMENT AND CONCLUSIONS 



7. DISCUSSION 

The initial study in this thesis used a fuzzy system to segment spatial regions 

in an image sequence based on the suitability of different motion analysis tools. 

This proved the possibility for such segmentation. The ideas surrounding the 

work identified the relevance of applying difierent motion analyses to the same 

data to analyse different aspects of the motion therein. The fuzzy system was 

applied to segment the data into regions suitable for three fundamentally different 

types of motion analysis, namely textural analyses, frontal or extended moving 

body analyses and small object matching. Simplifying assumptions were made for 

determining suitability criteria for each analysis. This provided an understand-

ing of the nature of cloud motion in satellite images however, and significantly 

highlighted two problem areas: 

• An analysis of cloud motion at the finest scale possible does not scale up 

to provide knowledge of the motion at larger scales. 

® External causes of cloud motion at different scales, whilst currently at-

tributed to the imprecise concept of wind relate to very different types of 

phenomena across the scales so that wind at synoptic scale is totally unre-

lated to some wind eddy at a local scale. 

The new parameters developed for this research for capturing the structure of 

cloud at the scale of a whole cloud object have been shown to provide significantly 

different types of information to the current textural analyses. This has led to a 

new way of treating motion in satellite data, from which a better understanding 

of the dynamics and their relationship to scale can be identified. 
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Another benefit from the new motion analyses generated comes from comparing 

the vectors from matching each different parameter. Analysing the vectors to-

gether provides a very different picture to that of any one of the vector sets on 

its own. Figure 7.1 gives an example of more than one motion analysis applied 

to a frontal weather system. The front was moving to the south-east. The local 

wind effect in the frontal region, passing over the cloud, passed along the front, 

to the north-east. A texture-based analysis alone gives a confusing picture of 

the dynamics. The cross-correlation vectors shown in Figure 7.1 mostly cover the 

core of the cloudy region, although some of the vectors near the edge of the cloud 

illustrate the confusion in dynamics from using this parameter alone, where they 

track the motion of the cloud edge. The edges of the cloud are easy to track due 

to the strong greyscale gradient at the edge, but the motion of the edges is very 

different to the motion of the cloud peaks within the front, which are blown along 

with the local wind component. By overlaying the skeleton-derived vectors, the 

two causes of cloud motion are much clearer, and the two different components of 

the dynamic can be recognised as different. As a result of this, analyses requiring 

knowledge of local-scale wind effects can be directed towards the texture vectors 

within the cloud boundaries. Similarly, motion analyses concentrating on synop-

tic scale phenomena, or interested in the development of the weather system as 

a whole, would be passed the skeleton and any edge vectors. 

The difference between the motion captured by the skeleton and edge vectors is 

similarly significant. Whilst they are at a different scale to the current cross-

correlation approaches, they are themselves in orthogonal spaces, so the motion 

captured by analysing the evolution of a cloud skeleton differs from the motion 

of the same cloud's edges. 
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Figure 7.1: Two vector types overlaid. The red vectors represent skeletal mo-
tion and indicate the transition of the front in the image in a south-
easterly direction. The blue vectors represent texture region motion 
and indicate the south-westerly wind. 
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7 . 2 F u t u r e W b r A : 

Operational trials of the analyses applied in this thesis would provide quantita-

tive measures of their possible impact to forecasting and modelling. A necessary 

first step for this would be to address the robustness of the algorithms. In par-

ticular, the algorithms applied would require greater degrees of error and validity 

checking and some optimisation to reduce computational overhead for such an 

implementation, and a rigorous comparison between a suitable cross-section of 

algorithms that provide the types of parameter used or identified in this thesis 

would be recommended. Applying the techniques to data prior to having na-

tional borders and markers added and not subject to any compression techniques 

is similarly linked to a larger scale test of the approach. The computational cost 

of the algorithms applied in this thesis has been small enough however to prove 

the feasibility of their operational application: whilst some of the results took 

more than a potential half-hourly operational cycle to produce, code optimisa-

tions and hardware enhancements^ would be able to reduce the results cycle to 

within the necessary range. 

There would also be much potential in a more detailed study comparing and 

contrasting the difi'erent types of motion vector found, and automating the com-

parison of different data. Other types of parameter and further different scales 

of motion could similarly be studied (e.g. the preliminary work into the use of 

slices of greyscale data for providing another level of shape matching, matching 

weather systems etc., and identifying smaller scale features to match). It is worth 

noting that by identifying and subtracting any weather system motion from all 

the vectors, internal cloud dynamics processes are likely to become clearer, since 

internal cloud dynamics are driven by flow-relative atmospheric motion. 

Multispectral analyses and incorporating more data into the analyses (e.g. height 

information) would again provide more meteorological context for cloud extrac-

tion, smoothing and parameterisation, as well as aiding in parameter tracking 

^ The most powerful processing used during the course of this thesis was a 150MHz computer 
with 128Mb of RAM, running Windows NT. 
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and vector interpretation. Currently, visible, infrared and water vapour motion 

vectors are all used as indicative of the windfield. Analysing each using the rich 

descriptions described in this thesis will again provide more detailed characteris-

tics of the motion observed in each channel of data. It is recognised that water 

vapour motion is significantly different to visible and infrared cloud motion, both 

due to the fact that the motion represents a deep layer mean and that the struc-

tures being followed are less coherent. A comparison of the large-scale motion of 

water-vapour structures could therefore reasonably be expected to differ slightly 

from weather system dynamics as captured from cloud structure motion. Any 

such differences may provide insights into weather system lifecycles, where the 

difference between motions captures new information. CLOUDSAT data should 

also soon be available, providing richer descriptions of cloud cross-sections and 

verification data for cloud structure descriptions captured in current and future 

cloud shape parameters. Tieing in radar data to identify where the rainfall is in 

a cloud body may again correlate with cloud shape changes. 

Determining the scale-dependence of each vector, i.e. over what range of scales 

the vector is indicative of some motion, would have many applications, for ex-

ample for assessing whether point wind data at a given location within a cloud 

are valid for analysing the synoptic scale motion at that point (which would be 

true under very steady atmospheric conditions only.). An automatic scheme for 

assessing this vagueness for vectors, and also for all other current wind data and 

validation sources (e.g. radiosondes, wind radar etc) would allow models to use 

the vagueness measures when accepting wind da ta sources, as well as greatly 

assisting human operators in interpreting atmospheric motion data at different 

scales. 

Having obtained a much richer set of motion types with which to analyse cloud 

motion, it would be useful to revisit the initial work looking at segmenting im-

agery based on the applicability of different motion techniques. Having a better 

understanding of how atmospheric motion acts at different scales may allow the 

approach to provide an indication of where in the imagery is suitable for any 

particular scale of analysis. If there are no features suitable for analysis of local 
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scale motion in a region, some measure of this should be possible. 

Similarly, skeletal analyses could be enhanced by making use of the skeletal radii^ 

at each point along a skeleton as well as the skeleton itself. The variation in 

cloud width along the skeleton and the change in this variation should give a 

much richer description again of where a cloud system is developing. Similarly, 

skeleton-relative motion analyses and skeleton-relative edge type analyses would 

both be interesting to study further. 

Further development of the analysis could provide novel validation techniques for 

the modelling community. For example, the new motion vectors could be used 

for checking predicted radiance images from 3 - or 4 -D variational assimilation 

techniques, weather system motion information, local scale wind information and 

cloud lifecycle knowledge. 

The use of fuzzy systems in this work has shown the potential of the approach for 

prototyping image segmentation algorithms. To apply these techniques to large 

sets of data, it would be most sensible to allow the rules to adapt themselves 

based on feedback on past performance. This would require suitable performance 

measures to be identified. In the case of fuzzy segmentation based on motion 

analysis applicability, initial feedback could be provided by using a dense set of 

vectors of all types from which an expert could identify where each vector set has 

provided some valid analysis. 

The analyses would also be suitable for other non-rigid motion problems where 

the motion can be described at multiple scales, e.g. analysis of ocean features 

or Computational Fluid Dynamics data. In addition, the coherence-enhancing 

smoothing technique introduced could be used for da ta preprocessing for video 

data compression. 

^ The radii of the maximal disks, or the distance to the nearest edge, for each point on the 
skeleton. 



The need for global wind information is widely recognised as critical for most 

domains of meteorology, from modelling and climatology to forecasting. Whilst 

cloud motion in satellite image sequences has been used as an indicator of wind 

motion since the start of the geostationary meteorological satellite programs, the 

limitations of current operational approaches have become increasingly apparent 

in light of improvements in the user communities. In particular the assumption 

that cloud acts as a passive tracer for the wind, and the generic use of the term 

wind for atmospheric motion at a very broad range of scales has caused prob-

lems for satellite-based analyses. The lack of any meteorological context in the 

current cross-correlation based motion analyses, and the difficulties of validating 

identified cloud motion using validation data of a different scale^ has hindered 

the development of solutions to overcome these problems. 

A novel approach for analysing cloud motion from a cloud object perspective 

has been introduced in this thesis, providing a new starting point from which 

to determine global wind data. The approach itself differs from the traditional 

texture-based analyses by focussing on the cloud content in the imagery, and 

applying multiple motion analyses to provide a much richer description of the 

motion. This has allowed the standard assumption of cloud passivity as a wind 

tracer to be removed, and other components of cloud dynamics, other than the 

underlying windfield, have been identified in the results presented. By changing 

the perspective of the analysis of satellite image sequences from one purely of 

determining global wind data to one of providing a rich representation of the 

^ Weather balloon measurements collected over tens of metres used for validating satellite-
derived winds collected over hundreds of kilometers 
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dynamics of the cloud in the imagery from which any wind component can be 

identified, this thesis creates a new area for the community to research to identify 

a number of new or better meteorological satellite products. 

In order to apply multiple motion analyses to the cloud content of the satellite 

image sequences, new parameterisations of cloud have been developed. An adap-

tation of the rolling-ball algorithm has been developed to provide a coherence-

enhancing, edge-preserving image filter, to improve parameter extraction from 

the raw cloud data. A novel use of morphological skeleton algorithms has been 

generated for analysing the shape of the cloud content and its development over 

time. Similarly, a fuzzy system has been applied to analyse the nature of the 

edges of the cloud, to provide better identification of crisp and fuzzy edges than 

edge gradient alone. The results have shown the ability of these parameters to 

capture the larger-scale motion displayed by cloud systems, and an indication of 

where clouds are being dissipated by the wind flow and where the wind is parallel 

with the cloud edge (which is indicative of jet flow regions, for example). 

This mixture of tracking methods has provided a much richer description of the 

cloud dynamics. By comparing and contrasting the different vectors, it has been 

shown that the cause of the cloud motion captured by a given motion vector can 

be identified. The motion analysis algorithms described in this thesis provide the 

framework within which such a measure of motion causality could be developed 

and also show the types of motion necessary for making such discrimination. The 

methods introduced have been applied to a number of different sets of satellite 

data as illustrated by the examples shown, and have been shown to provide 

stable results in each of the meteorological conditions captured. The approaches 

are therefore suitable for larger-scale studies. 

The five key areas where improvements to the approach could be focussed are: 

1. Large-scale testing on a much larger cross-section of meteorological situa-

tions. 

2. Wider comparison of motion analysis outputs to identify the underlying 
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meteorological characteristics of each type of motion analysis. 

3. Applying the techniques to other channels of data and comparing the anal-

yses across different spectra. 

4. Providing learning or feedback to the fuzzy systems used. 

5. Addressing the initial problem of fuzzy segmentation based on motion type 

in light of the subsequent analyses. 

The work has principally demonstrated benefit to the meteorological community 

in three regards: the new parameters used for describing the dynamics of cloud at 

a synoptic scale, which capture motion unassociated with the underlying wind-

field, have application both for weather system tracking and analysis and cloud 

lifecycle analysis. In particular, the use of skeletons may provide a much richer 

analysis of vorticity than is currently available. The use of multiple motion anal-

yses provides better identification of the suitability of cloud motion vectors for 

describing the wind or any other motion type captured, and the use of a multi-

scale analysis has shown the breadth of phenomena currently described under the 

umbrella term of wind, as well as providing a possible approach for breaking down 

the definition, and comparing motion types across this breadth of scale. Finally, 

a new method for identifying possible jet flow locations based on the nature of 

the cloud edge has resulted from the edge analysis of cloud structures; jet flow 

regions are unreliably reported at present. 

Future development of the approach could provide novel validation techniques 

for the modelling community. For example, checking predicted radiance images 

from 3 - or 4-D variational assimilation techniques, weather system motion infor-

mation, local scale wind information and cloud lifecycle knowledge are all pos-

sible validation outputs of the approach. Similarly, the approach offers a means 

to determine the degree to which any motion at one scale can be generalised 

across other scales. The work would also be suitable for other non-rigid mo-

tion analysis problems where the motion can be described at multiple scales, e.g. 

analysis of ocean features or Computational Fluid Dynamics data. In addition. 
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the coherence-enhancing smoothing technique introduced could be used for data 

preprocessing for video data compression. 

This thesis has therefore provided a description of a new object-based approach 

for analysing cloud dynamics in sequences of satellite imagery, which has been 

shown to provide a much richer representation of motion than is available using 

current approaches to satellite image analysis. New parametric representations 

of cloud have been developed within this approach to show how cloud motion can 

be captured in a number of different ways and at different scales. The parameters 

in themselves would provide operational benefits over current analyses, however 

the approach introduces the notion of multiple motion analyses for cloud analysis 

providing many different types of motion information, which allows the possibility 

for other motion capture techniques to be developed and contrasted with those 

presented here. The work therefore advances the field of cloud motion and wind 

analysis from satellite data and provides a new perspective on satellite motion 

analysis for many other fields of meteorology. 



A. OBJECT GROWTH FUZZY RULES 

Table A.l: Fuzzy Rule Base for Cloud Growth 

ENTIRE SYSTEM FUZZY RULES REPORT 

I]%TI3IU<V\JL NICTTWnORK 1 T/yTTTII 1 ESUISrMSTTTAnOFlK 

SubNetworkl with 3 Input Variables and the 75 following Fuzzy Rules 

IF Relative 

Greysc&le ia 

AND Absolute 

Greyscale is 

AND Greyscale 

Gradient is 

THEN Cloud 

Degree ia 

(ConHdence) 

Not Cloud 

Close to cloud edge 

Cloud Fringe 

Cloud 

Definite Cloud 

Not Cloud 

Close to cloud edge 

Cloud Fringe 

Cloud 

Definite Cloud 

Not Cloud 

Close to cloud edge 

Cloud Fringe 

Cloud 

Definite Cloud 

Not Cloud 

C&M*t#<domiedge 

Cloud Fringe 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Lower Cloud 

Lower Cloud 

Lower Cloud 

Lower Cloud 

Lower Cloud 

Cloud 

Cloud 

Cloud 

Cloud 

Cloud 

Upper Cloud 

Upper Cloud 

Upper Cloud 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Cloud Edge 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

Not Cloud 

continued 

(1.00) 

(1.00) 

(1.00) 

(1.00) 

(1.00) 

(l.CK)) 

(1.00) 

(0.80) 

(0.30) 

(0.20) 

(1.00) 

(0.62) 

(0.58) 

(0.25) 

(0.18) 

(0.60) 

(0.14) 

(0.14) 

on next page 
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continued from previous page 

IF Relative AND Absolute AND Greyscale T H E N Cloud (Confidence) 

Greyscale is Greyscale is Gradient is Membership is 

Cloud Upper Cloud Cloud Edge Not Cloud (0.14) 

Definite Cloud Upper Cloud Cloud Edge Cloud (1.00) 

Not Cloud Definite Cloud Cloud Edge Cloud (1.00) 

Glow to cloud edge Definite Cloud Cloud Edge Cloud (1.00) 

Cloud Fringe Definite Cloud Cloud Edge Cloud (1.00) 

Cloud Definite Cloud Cloud Edge Cloud (1.00) 

Definite Cloud Definite Cloud Cloud Edge Cloud (1.00) 

Not Cloud Not Cloud Acceptable Gradient Not Cloud (1.00) 

Close to cioud edge Not Cloud Acceptable Gradient Not Cloud (1.00) 

Cloud Fringe Not Cloud Acceptable Gradient Not Cloud (1.00) 

Cloud Not Cloud Acceptable Gradient Not Cloud (1.00) 

Definite Cloud Not Cloud Acceptable Gradient Not Cloud (1.00) 

Not Cloud Lower Cloud Acceptable Gradient Not Cloud (1.00) 

Close to cloud edge Lower Cloud Acceptable Gradient Not Cloud (0.80) 

Cloud Fringe Lower Cloud Acceptable Gradient Not Cloud (0.70) 

Cloud Lower Cloud Acceptable Gradient Not Cloud (0.20) 

Definite Cloud Lower Cloud Acceptable Gradient Not Cloud (0.10) 

Not Cloud Cloud Acceptable Gradient Not Cloud (1.00) 

Close to cloud edge Cloud Acceptable Gradient Not Cloud (0.50) 

Cloud Fringe Cloud Acceptable Gradient Not Cloud (0.48) 

Cloud Cloud Acceptable Gradient Not Cloud (0.15) 

Definite Cloud Cloud Acceptable Gradient Not Cloud (0.10) 

Not Cloud Upper Cloud Acceptable Gradient Not Cloud (0.50) 

Close to cloud edge Upper Cloud Acceptable Gradient Not Cloud (0.08) 

Cloud Fringe Upper Cloud Acceptable Gradient Not Cloud (0.04) 

Cloud Upper Cloud Acceptable Gradient Not Cloud (0.02) 

Definite Cloud Upper Cloud Accq)table Gradient Not Cloud (0.02) 

Not Cloud Definite Cloud Acceptable Gradient Cloud (1.00) 

continued on next page 
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continued from previous page 

IF Relative AND Abeolute AND Greyscale THEN Cloud (ConHdence) 

Greyscale is Greyacale is Gradient is Membership is 

Cl(»e to cloud edge Definite Cloud Acceptable Gradient Cloud (1.00) 

Cloud Fringe Definite Cloud Acceptable Gradient Cloud (1.00) 

Cloud Definite Cloud Acceptable Gradient Cloud (1.00) 

Definite Cloud Definite Cloud Acceptable Gradient Cloud (1.00) 

Not Cloud Not Cloud Cloud Not Cloud (1.00) 

Cloee to cloud edge Not Cloud Cloud Not Cloud (1.00) 

Cloud Fringe Not Cloud Cloud Not Cloud (1.00) 

Cloud NotCloud Cloud Not Cloud (1.00) 

Definite Cloud Not Cloud Cloud Not Cloud (1.00) 

Not Cloud Lower Cloud Cloud Not Cloud (1.00) 

Close to cloud edge Lower Cloud Cloud Not Cloud (0.70) 

Cloud Fringe Lower Cloud Cloud Not Cloud (0.60) 

Cloud Lower Cloud Cloud Not Cloud (0.10) 

Definite Cloud Lower Cloud Cloud Not Cloud (0.05) 

Not Cloud Cloud Cloud Not Cloud (0.73) 

Close to cloud edge Cloud Cloud Not Cloud (0.45) 

Cloud Fringe Cloud Cloud Not Cloud (0.44) 

Cloud Cloud Cloud Not Cloud (0.05) 

Definite Cloud Cloud Cloud Not Cloud (0.03) 

Not Cloud Upper Cloud Cloud Not Cloud (0.40) 

Close to cloud edge Upper Cloud Cloud Not Cloud (0.06) 

Cloud Fringe Upper Cloud Cloud Not Cloud (0.05) 

Cloud Upper Cloud Cloud Not Cloud (0.04) 

Definite Cloud Upper Cloud Cloud Cloud (1.00) 

Not Cloud Definite Cloud Cloud Cloud (1.00) 

Close to cloud edge Definite Cloud Cloud Cloud (1.00) 

Cloud Fringe Definite Cloud Cloud Cloud (1.00) 

Cloud Definite Cloud Cloud Cloud (1.00) 

continued on next page 
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continued from previous page 

IF Relative 

Greyacale is 

AND Absolute 

Greysc&le is 

AND Greyscal* 

Gradient ia 

T H E N Cloud 

Membership is 

(ConAdence) 

Definite Cloud Definite Cloud Cloud Cloud ( 1 . 0 0 ) 



B. IMAGE FORMATS AND COMPRESSION 

ARTEFACTS 

Figure B.l(a) shows an example of the publicly disseminated WEFAX data that 

has been preprocessed in Darmstadt to correct the radiance values and add coast-

line and lat-lon check marks. The image looks significantly different to the pre-

processed image shown in Figure B.l(b), which has not been subjected to the 

radiance correction. Whilst the radiance correction is necessary, the difference 

in image quality is of equal concern when analysing the imagery. Figure B.2 

compares the shape of the surface for a small window of the data, and clearly 

shows some artefacts in the publicly disseminated data that are not present in 

the raw imagery. These are most probably due to the storage mechanism for the 

publicly available images. Figure B.3 compares the format for the latest image 

available at Nottingham's METEOSAT archive site, stored in GIF format with 

the archived data in JPEG format. The difference is again most noticeable in 

3-D projection, as shown in Figure B.4. Clearly the use of radiance-corrected 

data prior to national border addition and not subject to any data compression 

techniques is the ideal source of data for meteorological satellite image analysis. 

Practical constraints often result in the necessitated use of the degraded images 

shown, however. 
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(a) WEFAX data publicly available, transmitted from EUMETSAT 

(b) RAW data downloaded at EUMETSAT prior to public dissemination 

Figure B.l: Comparison of raw and retransmitted METEOSAT D2 data from 
1800 on 23 June 1998 



Image formats and Compression Artefacts 

-• 

(a) WEFAX data: projected region (b) WEFAX data; projection 

(c) RAW data: projected region (d) RAW data: projection 

Figure B.2: Comparison of projected raw and retransmitted data 
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1999 1038 IR2 D2 MET? 19 SpP 1999 1030 IR2 D2 

(a) Image in GIF format (b) Image in JPEG format 

Figure B.3: Comparison of GIF and JPEG storage formats. Data are ME-
TEOSAT D2 imagery from September 19 1999 at 1030GMT. 
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£ 

(a) GIF: projected region (b) JPEG: projected region 

50^. 

200-

(c) GIF: projection (d) JPEG: projection 

Figure B.4: Comparison of projected GIF and JPEG data 



For cloud object analysis to be quantitative, it must follow certain constraints. 

The Grst manifests itself due to the fact that the cloud is digitised, and therefore 

its location is not certain, and must be independent of a one-pixel translation in 

any direction. The second relates to the fact that different cloud structures of 

different sizes should be smoothed in the same way as the vagueness in the cloud 

shape is arguably scale-invariant. The third relates to local knowledge. We only 

know about the cloud developments within our field of view from which we may 

wish to make some comment about the meteorology beyond our field of view. 

The fourth relates to partitioning of space into two or more known regions and 

a boundary which always exists and is always unknown, e.g. between cloud / 

non-cloud / edge regions or cloud details that can be distinguished, those that 

cannot and those inbetween. There are four underlying principles of morphology 

which every morphological transformation W must satisfy (Table C.l) which map 

onto these quantitative analysis requirements. 
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1. Compatibility under translation. 

= [{4'-''(X)]+i (C.l) 

i.e. applying to is equivalent to applying to X then shifting 
the result by vector h. means apply ^ with respect to an origin O. 
NB invariancewndex translation means the origin is irrelevant to i.e. 

2. Compatibility under change of scale. 

(A"A) (C.2) 

We have a family of transformations, The actual form of the relation-
ship is important to note, as any family of will not suffice. NB indepen-
dencewith respect to image magnification implies ^(AX) = A > 0 

3. Local Knowledge. 

n Z)] n Z' = ^(X) H Z' (C.3) 

i.e. for a bounded set Z' in which we want to know we can find a 
bounded set Z in which the knowledge of X is sufficient to locally (within 
Z') perform the transformation 

4. Semi-continuity. 

Table C.l: Underlying principles of morphology (Taken from Serra [90]). 
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