Anniversary Scientific Conference

40 YEARS DEPARTMENT OF INDUSTRIAL
AUTOMATION”, University of Chemical
Technology and Metallurgy, Sofia, 18 March 2011

MULTI-OBJECTIVE OPTIMIZATION USING GRAMMATICAL EVOLUTION

A. Nasuf, A. Bhaskar, A. J. Keane #

Computational Engineering and Design Group, School of Engineering Sciences, University of Southampton.
1 University Road, Southampton, SO17 1BJ, e-mail: alkin.nasuf@soron.ac.uk

Abstract: Grammatical Evolution is a multidisciplinary tool for evolving grammar sentences. A Grammar formalism to generate
optimization variables using Grammatical Evolution is presented. The use of this formalism in single and multi objective parametric
optimization is demonstrated. Multi-objective grammatical evolution is achieved by replacing the Genetic Algorithm with the Non-
dominated Genetic Algorithm II method. Optimization results with some non-trivial single and multi-objective test functions are

presented.

Key words: optimization, genetic programming, grammar, evolutionary computation, artificial intelligence, BNF

INTRODUCTION ..

Grammars are effective means of synthesizing all sorts of
complex structures. Every grammar contains a set of rules.
The rules are applied to predefined groups of primitives in
order to select some and arrange those selected in a logical
order. In general, each stand-alone primitive is meaningless,
but when combined with other primitives following certain
grammar rules it plays an essential role in the final complex
structure.

The use of grammar to describe complex structures dates back
to the work of Panini who creates 3,959 linguistic rules to
formalise Sanskrit grammar around the 4th century BC.
Seminal contributions towards the development of automated
grammar formalisms lie in the work of Chomsky [1] who
developed three natural language grammar formalisms. One of
the formalisms is named “a phrase-structure grammar”. This
formalism can construct grammatically correct sentences as
combinations of “terminal” and “non-terminal” natural
language words following certain rules. In phrase-structure
(context-free) grammar all non-terminal primitives are
enclosed within angular brackets (< >). The role of terminal
primitives is to terminate the addition of new primitives to the
sentence, while non-terminal primitives are used to assist the
rule selection process.

In the late 1960s. Backus and Naur [2] transformed the phrase-
structure grammar formalism into syntax to express context-
free grammar in programming languages, known as Backus-
Naur Form (BNF). When used in a program code, the BNF
syntax provides choice, e.g..
<select> = choice 1 | choice 2 |... | choice n

The intelligence behind rule selection in grammar is common
for everyone familiar with grammar rules. Recently, in pattern
learning and machine intelligence, it has been of interest to
study how such intelligence can be transferred into computers.
The good thing about BNF syntax, context-free grammar in
particular, is that it provides a simple mechanism to represent
grammar rules in a computer code. If a machine can decide
which rules to select from the BNF syntax it will be able to
construct logical sentences just as humans do.

One of the proposals to implant intelligence into a machine is
to develop an evolutionary intelligence algorithm, where

137

through evolution, the best sequence of the selected primitives
survives. Genetic Programming (GP) is an algorithmic
methodology for automated programming, where the program
primitives are selected and arranged in a logical order by an
evolutionary intelligence [3]. The intelligent selection of rules
in GP is inspired by the natural selection of living organisms
based on fitness calculations.

Grammatical Evolution (GE) is a branch of GP and as such is
classified, as an evolutionary automatic programming method
(4]. In GE. an automated programming is achieved by
applying grammar rules to building blocks of the potential
program i.e. program primitives. These primitives can be
operands, variables, constants, functions. classes, objects,
modules, etc. GE provides an intelligent selection of rules: this
is achieved by the BNF syntax and the Genetic Algorithm
(GA).

As in every evolutionary algorithmic methodology, the GA is
inspired by the natural selection of living organisms [5]. In the
GA, the genotype of two parents is paired in order to produce
an “offspring” with unique characteristics. In natural selection,
species strive to select their partner based on an estimate of
their survival probability. In this way the chances of survival
of the genes carried by their offspring in the following
generations is increased significantly. This is the driving
mechanism of evolution, where the search for the best and the
fittest is continuous.

GE is a multidisciplinary tool for evolving grammar sentences.
Initially it was developed as an automatic programming
method [4, 6, 7, and 8], but since then has been successfully
applied to solve a variety of complex problems [9]. Some
interesting applications of GE include automatic composition
of music [10], evolving financial predicting models and
market index trading rules [11, 12], automatic programming of
robots [13], evolutionary design [14, 15], and numerical
parametric optimization [16].

This paper focuses on numerical optimization aspects of GE.
In the next section a technical implementation of GE for single
and multi objective optimization is presented. This is followed
by experimental results using several non-trivial optimization
test functions. Finally conclusions are presented.

TECHNICAL IMPLEMENTATION

Grammatical Evolution. An innovative feature of GE is its
ability to separate search and solution spaces by the genotype
— phenotype mapping. Where, the genotype (binary code)
generated by the GA is mapped on to phenotype (urammar
rules) by the following sequence:

L. The genotype is generated by the GA as a bmary string
with certain length u=ix8 e.g 0011011,11110100, ...
00001011, where A is the number of variables in the
search space.

. This string is then split into smaller 8 bit strings know
as “codons”. The number of codons in the string is A=
u/8

. Each 8 bit codon is then decoded into an integer e.g.
for an 8 bit binary string, the integer is between 0 and »
255.

. The rule to be selected from each BNF expression is -
determined as the modulus of the sequential decoded
integer by the number of possible rules in that BNF«
expression.

sentence is still incomplete (due to the presence of non-

. If, at the end of the integer sequence, the grammare

terminals), the selection continues from the beginning#:

of the integer sequence until the sentence is complete

or a certain number of loops is reached. This is known -

as the “wrapping” process.

The grammar rule selection process may be illustrated by an
example to generate a real number. Suppose a genotype with
length u=5x8 is produced by the GA as a binary string
(11011110,00101110,01101001,11010001,00011011). The
decoded integers for each sequential set of 8 bits from this
string are: 11011110, 00101110, 01101001, (1010001,
00011011 = 22, 46, 105, 209, and 27. In order to generate a
real number using the grammar this sequence of integers is
applied to the following BNF: :

<int>:=<int><int>| 1 [2|3|4]|5}6]78 l9!0
<var> = <int>.<int>

The number of possible rules in the expression “<int>:=
<int><int>| 1 |2]3]4]516]7]8]9]0”is Il — each rule is
separated by “/”. The initial sentence in this BNF is “<var> =
<int>.<int>". The modulus of the first value in the decoded
integer sequence given the number of available rules is (22
mod 11=0). Thus the first selected rule is “<int> =>
<int><int>" (the rule count starts from 0). The second selected
ruleis “<int> => 2" (46 mod 11=2), the third rule is “<int>
=> <int><int>" (105 mod 11=6), and so on. The rule selection
continues until all primitives are of terminal type or a
threshold for the number of wraps is reached.

The applied genotype selects 8 out of Ll unique rules to
generate a value of 26.526 from the initial sentence “<var> =
<int>.<int>", shown in Table (l). In this example the
“wrapping” occurred once after the application of the fifth
rule.

Table 1

modulus applied rule

1. |22mod 11 =0 | <int> => <int><int>.<int>

2. |46mod 11 =2 | <int><int>.<int> => 2<int>.<int>

3.1 105mod Il =6 | 2<int>.<int> => 26.<int>

4. 209 mod 11 =0 | 26.<int> => 26.<int><int>

5.127mod 11 =5 | 26.<int><int> => 26.3<int>
wrapping wrapping

6. |22mod 11 =0 | 26.5<int> => 26.5<int><int>

7. |46 mod 11 =2 | 26.5<int><int> => 26.52<int>

8. | 105mod I1 =6 | 26.52<int> => 26.526

138

Single-objective optimization. Single-objective optimization of -
functions with GE is straightforward. The GA is used to
generate binary strings with the length w representing the
members in the population. Each binary string is used to select
rules form a given BNF producing one or more variables.
These variables are then used to evaluate the objective
function in order to obtain the fitness values. The population
members are then paired in order to produce the offspring
population. The definition of BNF syntax—the initial grammar
sentence in particular—plays an important role in improving
the convergence speed of the optimization. Another important
parameter is the length of the binary string . Basically, it
defines the size of the search space (the number of 8 bit strings
decoded into integers known as “codons™). The value of u is

-determined by taking into account the number of optimization

variables plus the desired accuracy of generated real numbers.
A shorter length of binary string limits the search space, while
longer length may increase it unnecessarily. In general, the
length of the binary string strongly depends on the BNF
syntax used.

To illustrate a single-objective optimization with GE consider
the non-trivial “bump” function

JE™, cos? () =2 [T% , cos2(x;)]
i=1 =1
VI i ’
subject to:
T xi > 0.75 'md Yy xi < 15;1/2

where 0<xi<10,i=1,2,---,n and n is the number of
variables, see [17].

{

The number of variables in this example is set to n=2. Suppose
that the required accuracy of the generated variable is four
digits after the decimal point. The following BNF 1is to be
used:

<int>:= 1]2}3]415]16(7]8]9]0
<vars>= X1,X2 .

where Xi = <int>.<int><int><int><int> and 0 < X; < 10,

The search completion criterion is set to 25,000 evaluations.
The crossover probability is set to pc=0.2 with one point
crossover. The binary string length is set to u=10x8=80. The
mutation type is selected as multiple with probability p»=0.05.

Unlike single mutation, where a randomly selected bit from
the binary string mutates with the probability p» in multiple
mutations, each bit in the string with length p mutates with the
same probability. The use of multiple mutations with high
probability appears to be beneficial to GE optimization, when
the binary string length is relatively short. It introduces rather
random search behaviour. Some results supporting this
statement are presented here, but further investigation is
needed.

Best member by generation
0.40 T T T T

0.35

=
@
B

Fitness

=
[
&

0.15 1 L ’ L
0 100 200 300 100

Generations
Figure 1: Averaged results from 50 runs of the “bump”
function with 2 variables.

500

Also in this example the best member in the “parent”
rpopulation is directly copied to the offspring population
without applying any crossover or mutation operations
(elitism).

.The optimal solution in the maximization problem is 0.36485
located at X:1=1.5903, x:=0.4716, see [17]. The GE being a
| stochastic search method the average of 50 runs is taken. The
{results are shown in Figure (1). The average location of the
discovered optima is X1=1.5813, X:=0.4745.

‘Multi-objective optimization. In this implementation of a
: multi-objective GE, the multi-objectiveness is achieved using
the Non-dominated Sorting Genetic Algorithm II (NSGAII)
[18]. Here, the GA engine, which is basically the core of GE,
is replaced by NSGAIIL. The main difference between the GA
and the NSGAII is that the later uses a ranking selection
strategy. In NSGAII each member from the mating population
pool formed by parents and offsprings is ranked taking into
account the fitness of all objectives.

The ranking values are obtained by facing each member in
terms of its fitness values with other members from the mating
population pool. In this way the non-dominated members are
positioned on the same Pareto optimal front i.e. assigned the
same rank. The best performing members from the first Pareto
optimal front receive rank 1. The members on second Pareto
optimal front receive rank 2 and so on. This is illustrated in
Figure (2). The new offspring population is formed by
members with the lowest possible rank. NSGAII is known to
be an “elitist” reproduction strategy, since is keeps “alive”
only the best performing members. Detailed description on the
technical implementation of NSGAII is given in [18].

Pareto optimal fronts

0.035 T T T T I
7 a8A Rank 1
0030 - D0n Rank 2[]
002 | 000 Hank3
0.020 7
d
Q
0015 - .
0.010 .
0.005 \“M .
0.000 | | | | |
005 010 015 020 025 030 035

O
Figure 2: An example of ranked Pareto optimal fronts.

RESULTS AND DISCUSSION

Results. In the following single-objective optimization
conducted using the “bump” test function with n = 20
variables, the binary string length is set to u=100x8= 800. The
crossover rate is set to pc=0.5 with five point crossover. The
multiple mutation probability is pm=0.003. Also the best
member in the “parent” population is directly copied to the
offspring population without applying any crossover or
mutation operations. The search completion criterion is set to
60,000 evaluations.

The averaged results of 50 runs are shown in Figure (3). The
discovered optimum for the “bump” function with n=20
variables is 0.76077 located at (3.2373, 3.1054, 3.1172,
3.2016, 2.9362, 2.8992, 29273, 3.0574, 3.0692. 0.2927,
0.3766, 0.6960, 0.4900, 0.4631, 0.4247, 0.2768, 0.4468.
0.3423, 0.5804, 0.2556). During experimental runs it was
discovered that the true optima seems to be somewhere around
J.78.

The BNF used to generate these variables is

<int>:= 1]2]314|5|6]|7|8]9]|0
<vars>= X1,X2,°* ,X20 .

where Xi = <int>.<int><int><int><int> and 0 < X; < 10.

Best member by generation

0.3 T T T T T l
0.7

0.6
0.5

tness

& 04
0.3
0.2

1 | | l]]

0.1
0 30 100 150 200

Generations

250 300 330

Figure+3: Averaged results from 50 runs of “bump” function
with 20 variables.

The first multi-objective optimization is conducted using the
test functions,

fi(x) = 1 —exp(—4x,) sin(67x,)°
) =g(1-(fi/8))

0 0.25
glx)=1+9 (Z (xi/9)) :

=2

(2)

where 0 <x; < landi=1,2,---,10,

- The BNF used here is:

<int>:=1]2]314|5|6]718]9]0
<vars>= X1,X2, -, X10 ,

where Xi = 0.<int><int><int> and 0 < Xi < |.

The binary string length is u=30x8=240. The crossover rate is
pc=0.5 with five point crossover. The multiple mutation
probability is pm=0.003. The search completion criterion is
25,000 evaluations.

The averaged Pareto front from 50 runs is shown in the Figure
).

Parcto optimal front
1.2
t I 1 I
+

00 L x 1 !
0.2 0.4 0.6 0.8 1.0
O
Figure 4: Averaged Pareto optimal front from 30 runs of the
bi-objective optimization test function presented in Equation

).

The second multi-objective optimization experiment is

conducted using the test functions,
fitg =Y

—10exp (—0.2\ /2 —f—xi2))
= (i +1

70 = ¥ (bl + s ()°),

i=

n—1

3)

where —5 <x; <Sandi=1,2,3

The used BNF here is:

<int>::=l|2l3l4|5|6|7[8|9|0
<> ==1[2]3]4]0]-0]-1 [-2]-3]-4
<vars>= X],X2,X3

where Xi = <r> <int><int><int> and S5S<Xi<s,

The binary string length this time is 1=15x8=120. The »
crossover rate is pc=0.2
mutation probability is pm=0.003. The search
criterion is again 25,000 evaluations.

The averaged Pareto front from 50 runs is shown in Figure (3).

Pareto aptimal front
“ t ! f f I 1

++\
-+

++ +,

i

12 ! | | !] L
-0 -19 -18 -17 -6
()[

-5 -1
Figure 5: Averaged Pareto optimal front from 50 runs of the
bi-objective optimization test function presented in Equation
(3).

Discussion. There has been much discussion about the
efficacy of single point crossover operation in GP. One of the
studies introduces a new improved crossover operation [19],
while another study remarks on the importance of the
traditional single point crossover to GP [20]. In some of the
optimization experiments presented above a 5 point crossover
operation with probability pc=0.5 was used successfully. The
use of multiple point crossovers appears to be beneficial when
the binary string length is particularly long.

CONCLUSIONS

GE can be used as a numerical optimization tool. During our
experiments, it was noticed that the convergence speed in
optimization with GE strongly depends on the selected BNF
syntax, the crossover type, and the rate, Other important
parameters are the length of the binary string p and the
multiple mutation probability pm.

Our experimental finding was that the crossover is a rather
essential part of GE. In GE, the selection of crossover type and
rate strongly depend on binary string length and the BNF
syntax used , i.e. it is problem specific.

with one point crossover. The multiple«:
completion .

140

ACKNOWLEGMENTS

This work was supported by EPSRC grant EP/E004547/1: The
role of topology and shape in structural design.

REFERENCES

I. Chomsky N. Three models for the description of language.
IRE Transactions on Information Theory, 1956, 2(3):113-124

2. Backus J. W. The syntax and semantics of the proposed
international algebraic language of the Zurich ACM-GAMM
Conference, IFIP Congress, 1959, p.125-131

3. Koza J, Poli R. Genetic programming.
Methodologies, 2005, p.127-164

4. O'Neill, M. and Ryan, C. Grammatical Evolution:

Evolutionary automatic programming in an arbitrary language.

Springer Netherlands, 2003

5. Goldberg D.E. Genetic algorithms in search, optimization,

and machine learning. Addison-wesley, 1989

6. Ryan C., Collins J.J., O'Neill M. Grammatical Evolution:

Evolving Programs for an Arbitrary Language. Lecture Notes
in Computer Science [391. First European Workshop on
Genetic Programming 1998

7. O'Neill M., Ryan C. Grammatical Evolution: -A -Steady .
State approach. In Proceedings of the Second International
Workshop on Frontiers in Evolutionary Algorithms 1998,
p.419-423

8. O'Neill, M. and Ryan, C. Grammatical evolution. IEEE
Transactions on Evolutionary Computation, 2002, 5(4):349-
358

9. http://www.grammatical—evolution.org/gubs

10. de la Puente, A.O. Alfonso, R.S. Moreno, M.A.
Automatic composition of music by means of grammatical
evolution. Proceedings of the 2002 Conference on APL: array
processing languages: lore, problems, and applications, 2002,
p.148-155

L1. Brabazon, A. and O'Neill,
algorithms for financial modelling.
Inc., 2006

12. O'Neill, M. et al. Evolving market index trading rules
using grammatical evolution, Applications of evolutionary
computing. Springer, 2001, p.343-352

13. O'Neill M., Collins J.J., Ryan C. Automatic Generation of
Robot Behaviours using Grammatical Evolution in
Proceedings of AROB 2000. The Fifth International
Symposium on Artificial Life and Robotics, p.351-354

14. O'Neill, M. et al. Shape grammars and grammatical
evolution for evolutionary design. Proceedings of the 11th
Annual conference on Genetic and evolutionary computation,
2009, p.1035-1042

I5. O'Neill, M. et al. Evolutionary design using grammatical
evolution and shape grammars: Designing a shelter.
International Journal of Design Engineering, 2010, 3(1).4-24
16. Murphy, J. and O'Neill, M. and Carr, H. Exploring
grammatical evolution for horse gait optimization. Genetic
Programming, 2009, p.183-194

17. Keane A.J. and Nair P.B. Computational approaches for
aerospace design, the pursuit of Excellence. John Wiley &
Sons, 2005

18. Deb K. et al. A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimization: NSGA-II. Parallel
Problem Solving from Nature PPSN VI, 2000, p.849-858

19. Francone F.D. et al. Homologous crossover in genetic
programming Proceedings of the Genetic and Evolutionary
Computation Conference, 1999, p.1021-1026

20. O’Neill M. et al. Crossover in grammatical evolution: The
search continues. Genetic Programming, 2001, p.337-347

Search

[05 Feb. 2011]

M. Biologically inspired
Springer-Verlag New York

