The University of Southampton
University of Southampton Institutional Repository
Warning ePrints Soton is experiencing an issue with some file downloads not being available. We are working hard to fix this. Please bear with us.

The accretion of lower oceanic crust

The accretion of lower oceanic crust
The accretion of lower oceanic crust
The formation of new ocean lithosphere at mid-ocean ridges is a fundamental component of the plate tectonic cycle, and through hydrothermal interactions with seawater is a major control on the composition of the oceans, ocean crust, and upper mantle. Two complementary approaches are used to investigate the thermal implications of endmember theoretical models that describe the accretion of the lower oceanic crust at fast spreading rates. The first approach uses the record of hydrothermal alteration of the ocean crust, including Sr and O-isotopes, to investigate and quantify the role of hydrothermal circulation during the accretion of the ocean crust. The second method uses diffusion based geospeedometry techniques to determine cooling rates in the ocean crust. Samples from two locations of ocean crust formed at fast spreading rates at the East Pacific Rise are used in these investigations, ODP Hole 1256D and Hess Deep. Hole 1256D provides the first intact sampling of a complete section of upper oceanic crust formed at a fast spreading rate and recovered the first in situ sampling of the dike/-gabbro boundary. Hess Deep is a tectonic window where the westward propagation of the Cocos-Naza Ridge has rifted ocean crust formed at the EPR and exposed the lower ocean crust at the seafloor.

The whole rock profile for Hole 1256D reveals Sr isotopes in the volcanic sequence to be only slightly shifted from primary MORB values (0.70284-0.703814 compared to 1256 MORB of 0.70283). In contrast, Sr isotopes in the sheeted dike complex (0.70294-0.70536) are strongly elevated towards hydrothermal fluid compositions (0.70505-0.70525). Rocks of the plutonic complex are characterised by elevated Sr ratios along igneous contacts (up to 0.70524) but only limited increases in Sr isotopes relative to MORB in the centres of the gabbro bodies (0.70290-0.70396). The complementary oxygen isotope profile records the downwards transition from low temperature to high temperature hydrothermal alteration but contains small scale variation associated with changes in secondary mineral abundances and local fluid/rock ratios. Both the detailed Sr and O isotope profiles document the importance of dike margins and other igneous contacts as focussed pathways for fluid flow through the crust. The time-integrated fluid flux required to cause the observed Sr isotope profile through the sheeted dike complex is 2.0 - 2.6 x 106 kg/m2 and is consistent with fluid fluxes calculated for other crustal locations (e.g, Hole 504B, Pito Deep, Hess Deep). The heat flux required to sustain this fluid flux is equivalent to half of the latent heat released during the crystallisation of the lower ocean crust. At Hole 1256D the removal of heat by hydrothermal fluids was efficient and demonstrates that the fluid flux in the sheeted dikes must have removed some portion of the heat flux out of the lower ocean crust. In order to remove all of the latent heat of crystallisation from the lower crust, there must be significant hydrothermal circulation in the lower ocean crust.
Harris, Michelle
2ea5985e-614c-4d8a-9cb0-82d9590d4ebc
Harris, Michelle
2ea5985e-614c-4d8a-9cb0-82d9590d4ebc
Teagle, Damon
396539c5-acbe-4dfa-bb9b-94af878fe286

Harris, Michelle (2011) The accretion of lower oceanic crust. University of Southampton, School of Ocean and Earth Science, Doctoral Thesis, 294pp.

Record type: Thesis (Doctoral)

Abstract

The formation of new ocean lithosphere at mid-ocean ridges is a fundamental component of the plate tectonic cycle, and through hydrothermal interactions with seawater is a major control on the composition of the oceans, ocean crust, and upper mantle. Two complementary approaches are used to investigate the thermal implications of endmember theoretical models that describe the accretion of the lower oceanic crust at fast spreading rates. The first approach uses the record of hydrothermal alteration of the ocean crust, including Sr and O-isotopes, to investigate and quantify the role of hydrothermal circulation during the accretion of the ocean crust. The second method uses diffusion based geospeedometry techniques to determine cooling rates in the ocean crust. Samples from two locations of ocean crust formed at fast spreading rates at the East Pacific Rise are used in these investigations, ODP Hole 1256D and Hess Deep. Hole 1256D provides the first intact sampling of a complete section of upper oceanic crust formed at a fast spreading rate and recovered the first in situ sampling of the dike/-gabbro boundary. Hess Deep is a tectonic window where the westward propagation of the Cocos-Naza Ridge has rifted ocean crust formed at the EPR and exposed the lower ocean crust at the seafloor.

The whole rock profile for Hole 1256D reveals Sr isotopes in the volcanic sequence to be only slightly shifted from primary MORB values (0.70284-0.703814 compared to 1256 MORB of 0.70283). In contrast, Sr isotopes in the sheeted dike complex (0.70294-0.70536) are strongly elevated towards hydrothermal fluid compositions (0.70505-0.70525). Rocks of the plutonic complex are characterised by elevated Sr ratios along igneous contacts (up to 0.70524) but only limited increases in Sr isotopes relative to MORB in the centres of the gabbro bodies (0.70290-0.70396). The complementary oxygen isotope profile records the downwards transition from low temperature to high temperature hydrothermal alteration but contains small scale variation associated with changes in secondary mineral abundances and local fluid/rock ratios. Both the detailed Sr and O isotope profiles document the importance of dike margins and other igneous contacts as focussed pathways for fluid flow through the crust. The time-integrated fluid flux required to cause the observed Sr isotope profile through the sheeted dike complex is 2.0 - 2.6 x 106 kg/m2 and is consistent with fluid fluxes calculated for other crustal locations (e.g, Hole 504B, Pito Deep, Hess Deep). The heat flux required to sustain this fluid flux is equivalent to half of the latent heat released during the crystallisation of the lower ocean crust. At Hole 1256D the removal of heat by hydrothermal fluids was efficient and demonstrates that the fluid flux in the sheeted dikes must have removed some portion of the heat flux out of the lower ocean crust. In order to remove all of the latent heat of crystallisation from the lower crust, there must be significant hydrothermal circulation in the lower ocean crust.

Text
Harris_2011_PhD.pdf - Other
Available under License University of Southampton Thesis Licence.
Download (1GB)
Archive
Harris_2011_PhD_appendices.zip - Other
Available under License University of Southampton Thesis Licence.
Download (768MB)

More information

Published date: April 2011
Additional Information: 294pp. & appendices
Organisations: University of Southampton, Ocean and Earth Science

Identifiers

Local EPrints ID: 195039
URI: http://eprints.soton.ac.uk/id/eprint/195039
PURE UUID: ff54ba7e-c382-46a8-b19f-0d3e1e446c28
ORCID for Damon Teagle: ORCID iD orcid.org/0000-0002-4416-8409

Catalogue record

Date deposited: 15 Aug 2011 16:14
Last modified: 21 Nov 2021 02:49

Export record

Contributors

Author: Michelle Harris
Thesis advisor: Damon Teagle ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×