Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress
Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress
Multi-coloured homologues of the green fluorescent protein generate some of the most striking visual phenomena in the ocean. Despite their natural prominence in reef-building corals and widespread use in biotechnology, their biological role remains obscure. Here, we experimented with larvae of Acropora millepora to determine what can be learned about a coral larva or recruit from its fluorescent colour. We performed 12 crosses between seven A. millepora colonies representing differing fluorescence phenotypes, the larvae of which were exposed to a natural settlement cue (crustose coralline algae) and heat–light stress. Parental effects explained 18 per cent of variation in colour and 47 per cent of variation in settlement. The colour of the larval family emerged as a predictor of the settlement success: redder families were significantly less responsive to the provided settlement cue (p = 0.006). This relationship was owing to a correlation between parental effects on settlement and colour (r2 = 0.587, p = 0.045). We also observed pronounced (16%) decline in settlement rate, as well as subtle (2%), but a statistically significant decrease in red fluorescence, as a consequence of heat–light stress exposure. Variation in settlement propensity in A. millepora is largely owing to additive genetic effects, and is thought to reflect variation in dispersal potential. Our results suggest an optical signature to discriminate between long- and short-range dispersing genotypes, as well as to evaluate stress. Further research in this direction may lead to the development of field applications to trace changes in coral life history and physiology caused by global warming.
genetics, recruitment, dispersal, heritability, GFP, metamorphosis
2691-2697
Kenkel, C.D.
6b77e240-7b66-4bd4-be55-e64b1052578b
Traylor, M.R.
5ca78635-3530-4288-95c5-c7fbb7fcafaf
Wiedenmann, J.
ad445af2-680f-4927-90b3-589ac9d538f7
Salih, A.
20176292-4829-4e28-bac4-b0e7e22ba64a
Matz, M.V.
c8e03eb9-ac39-455d-98ce-1f57f00c5596
7 September 2011
Kenkel, C.D.
6b77e240-7b66-4bd4-be55-e64b1052578b
Traylor, M.R.
5ca78635-3530-4288-95c5-c7fbb7fcafaf
Wiedenmann, J.
ad445af2-680f-4927-90b3-589ac9d538f7
Salih, A.
20176292-4829-4e28-bac4-b0e7e22ba64a
Matz, M.V.
c8e03eb9-ac39-455d-98ce-1f57f00c5596
Kenkel, C.D., Traylor, M.R., Wiedenmann, J., Salih, A. and Matz, M.V.
(2011)
Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress.
Proceedings of the Royal Society B: Biological Sciences, 278 (1718), .
(doi:10.1098/rspb.2010.2344).
Abstract
Multi-coloured homologues of the green fluorescent protein generate some of the most striking visual phenomena in the ocean. Despite their natural prominence in reef-building corals and widespread use in biotechnology, their biological role remains obscure. Here, we experimented with larvae of Acropora millepora to determine what can be learned about a coral larva or recruit from its fluorescent colour. We performed 12 crosses between seven A. millepora colonies representing differing fluorescence phenotypes, the larvae of which were exposed to a natural settlement cue (crustose coralline algae) and heat–light stress. Parental effects explained 18 per cent of variation in colour and 47 per cent of variation in settlement. The colour of the larval family emerged as a predictor of the settlement success: redder families were significantly less responsive to the provided settlement cue (p = 0.006). This relationship was owing to a correlation between parental effects on settlement and colour (r2 = 0.587, p = 0.045). We also observed pronounced (16%) decline in settlement rate, as well as subtle (2%), but a statistically significant decrease in red fluorescence, as a consequence of heat–light stress exposure. Variation in settlement propensity in A. millepora is largely owing to additive genetic effects, and is thought to reflect variation in dispersal potential. Our results suggest an optical signature to discriminate between long- and short-range dispersing genotypes, as well as to evaluate stress. Further research in this direction may lead to the development of field applications to trace changes in coral life history and physiology caused by global warming.
This record has no associated files available for download.
More information
Published date: 7 September 2011
Keywords:
genetics, recruitment, dispersal, heritability, GFP, metamorphosis
Organisations:
Ocean Biochemistry & Ecosystems
Identifiers
Local EPrints ID: 195591
URI: http://eprints.soton.ac.uk/id/eprint/195591
ISSN: 0962-8452
PURE UUID: 26f3412d-8295-454a-a0e4-59f375ab659d
Catalogue record
Date deposited: 23 Aug 2011 12:36
Last modified: 15 Mar 2024 03:28
Export record
Altmetrics
Contributors
Author:
C.D. Kenkel
Author:
M.R. Traylor
Author:
A. Salih
Author:
M.V. Matz
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics