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Heavy metals in air, soil and water are a global problem and present a growing threat to the 
environment.  These metals may have profound consequences for birds and can cause a number 
of sub-lethal effects, such as decreased reproductive success. The concentrations of selected 
heavy metals (As, Cd. Co, Cu, Fe, Pb, Mn, Ni, V, Zn) and Se in eggs and feathers from 
populations of black-headed gulls (Larus ridibundus L.) located on different colonies in the UK, 
which have different characteristics and are subject to different sources, types and degrees of 
pollution, were examined. 

Concentrations of As, Cu, Pb, Ni, Se and V measured in black-headed gull eggs were 
consistently high relative to those reported in previous field studies with other gull species. 
However, no significant effect was observed on the egg characteristics in terms of egg size and 
dimensions, shell thickness and index as a result of concentrations of metals measured in this 
study. Concentrations of Co, Fe and Ni were significantly negatively correlated with 
yolk:albumen ratio in the egg. The usefulness of sampling eggs to provide a reflection of local 
contamination has been demonstrated, with concentrations related to local sources of metal 
pollution and site differences reflected in sediment concentrations from previous studies. The 
importance of taking into account diffuse and historical pollution in addition to point source 
discharges has also been highlighted.   

As, Fe, Mn, Pb, Se, V and Zn were found at significantly higher concentrations in egg contents 
than egg shell, and Cd, Co and Ni concentrations were higher in shell than contents. Cu was 
distributed approximately equally. Within the egg contents, concentrations of As, Cu, Se and V 
were higher in the albumen than in the yolk, and Co, Fe, Mn, Ni, Pb and Zn concentrations were 
higher in the yolk than the albumen. Cd was found mainly in the shell and concentrations in egg 
contents were largely undetectable. 

Comparisons were made between a colony subject to high-level commercial egg harvesting and 
an un-harvested site, and between pre- and post-harvesting eggs on the harvested site. Post-
collection eggs were found to be of significantly lower quality than the pre-collection eggs and 
the eggs from the uncollected site, as indicated by yolk:albumen ratio. Concentration of metals 
in eggs as a result of relaying forced by commercial harvesting has been demonstrated, with 
concentrations of Co, Fe and Ni significantly higher in post-collection eggs compared to pre-
collection eggs. Average nesting density was significantly lower on the collected colony than 
the uncollected colony. No effect on egg size was found as a result of changes in nesting 
density. 

Concentrations of metals in black-headed gull chick down were measured and compared to egg 
data in order to assess the usefulness of feathers as a tool for non-destructive monitoring of 
metal pollution. The results suggest that feathers may be good indicators for As and Zn, and 
possibly also for Mn and Ni.  However, the sample masses were very small and for a number of 
metals concentrations were largely undetectable using the analytical equipment available in this 
study. Future work with larger samples of down would be prudent to further examine the use of 
chick down to provide an indication of the level of pollution to which birds are exposed. The 
importance of using appropriate washing procedures to remove exogenous contamination of 
feathers to assess internal concentrations has been demonstrated.   
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CHAPTER 1. GENERAL INTRODUCTION  

Metals are naturally occurring elements that become contaminants when human activity raises 

their environmental concentration above natural levels.  Toxic heavy metals in air, soil, and 

water are global problems that are a growing threat to the environment. Whether in the 

terrestrial or aquatic environment, metals can be transported by several processes, governed by 

the chemical nature of metals, soil and sediment particles, and the pH of the surrounding 

environment. 

Although heavy metal pollution is associated with areas of intensive industry, pollution from 

diffuse sources such as agricultural land and urban areas is also a significant source of heavy 

metals to the environment, and pollution arising from roadways and automobiles is now 

considered to be one of the largest sources (Cicchella et al., 2008).  Zinc, copper and lead are 

three of the most common heavy metals released from road travel, accounting for at least 90% 

of the total metals in road runoff (NVSWC, 2005). Lead concentrations, however, have 

consistently decreased since the use of leaded petrol was discontinued.  Smaller amounts of 

many other metals, such as nickel and cadmium, are also found in road runoff and exhaust. 

Metals can also enter the environment via natural sources, such as weathering of rocks and soils.  

Table 1-1 provides and overview of sources of metals and the environments affected.  A more 

in-depth analysis of the sources, transport and fate of heavy metals and selenium is provided in 

Chapters 4 and 5.   

Table 1-1 Common sources of metal pollution 

Source Particular metals associated Environment affected

Natural weathering of rocks and soils As, Cd, Fe, Pb, Ni, Se, V, Zn All

Runoff from agricultural land As, Cd, Co, Cu, Fe, Mn, Se, V, Zn All

Runoff from urban areas and roads Cd, Cu, Pb, Ni, V, Zn All

Industry
Numerous - commonly Cd, Cu,Hg, Pb; specific 

metals dependant on industry type
All

Boats and shipping Cu, Sn, Zn Aquatic
 

 

The metals examined in this study are arsenic, cadmium, cobalt, copper, iron, lead, manganese, 

nickel, selenium, vanadium and zinc, based on those that are perceived to be environmentally 
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and toxicologically significant (included on the EU Dangerous Substances Directive 

(76/464/EEC) and the EU Water Framework Directive (2000/60/EC)), and those for which data 

regarding the effects on avian breeding ecology is limited.  Although selenium is a semi-metal 

rather than a heavy metal, it is included on the EU Directives above and is often considered 

alongside heavy metals because it has many metal-like characteristics and is released from many 

of the same sources as heavy metals (Eisler, 1985b; WHO, 1986; see also Table 1-1).   

It is widely recognised that coastal areas are among the most sensitive zones around the world, 

and the marine environment is faced with a number of increasingly severe threats, including loss 

or degradation of biodiversity and changes in its structures, loss of habitats and the impacts of 

climate change (EC, 2006).  Contamination of the marine ecosystem with dangerous substances 

has been one of the main threats and concerns in recent years, and the volume of literature now 

available on various aspects of marine pollution is extensive (for example: Law et al., 1997; 

Hall & Anderson, 1999; Boxall et al., 2000; Tanabe, 2002; Braune & Simon, 2004).  World-

wide use of chemicals is constantly increasing, be it in industry, on farms or in homes, and 

pollution may be considered as the main, most widespread and most dangerous manifestation of 

anthropogenic impact on the aquatic environment.  Marine pollution frequently originates on 

land, entering the sea via rivers and pipelines, and it is estimated that land-based activities 

account for around 80% of marine pollution (EC, 2006).  However, inputs from sources at sea 

such as ships and offshore platforms, and from atmospheric sources, also contribute to the 

pollution of marine waters (Spencer & MacLeod, 2002).  Pollutants enter the marine 

environment in three main ways: 1. direct discharge of effluents and solid wastes into the seas 

and oceans, from point sources such as industrial discharge, municipal waste discharge, coastal 

sewage, sewage outfalls and so on, 2. from non-point sources (diffuse pollution, arising from 

many locations) such as land runoff in the coastal zone, mainly with rivers, and 3. long-range 

atmospheric transport and wet and dry deposition.  The latter type of pollution has increased in 

recent decades as many chemicals from power plants and industries are transported to all 

regions, including the Arctic and the Antarctic (Houghton et al., 1992).  The relative 

contribution of each of these pathways into the combined pollution input into a system will be 

different for different substances, and in different situations (Patin, 1999).   

Because the main origins of marine pollution are on land, coastal waters tend to be more 

polluted than open seas, with estuaries and harbours being among the worst affected.  The 

aquatic environment is particularly at risk because pollutants can spread rapidly from the source 

of the pollution, and over large distances, in the water environment (Patin, 1999; Burger & 

Gochfeld, 2002).  After entering the marine environment, contaminants are usually diluted and 
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widely dispersed; however, many contaminants are adsorbed onto particulate matter, which 

leads to elevated concentrations in areas where this material settles and, consequently, sediments 

may act as long-term stores for pollutants in the environment  (Spencer & MacLeod, 2002).  

1.1 Seabirds as monitors of pollution 

Marine birds may be defined as those birds living in and utilising resources from the marine 

environment, which includes coastal areas, islands, estuaries, wetlands and oceanic islands.  

Seabirds are a subset of marine birds and include those that feed at sea, either nearshore or 

offshore, although not always exclusively, and are equally at home on land, in the air, and in the 

water (Schreiber & Burger, 2002).  As one of the ultimate examples of colonial living, over 95% 

of seabirds are colonial, with colonies often consisting of several species and ranging from a few 

pairs to many thousands or even millions (Schreiber & Burger, 2002).  Colonial species tend to 

have easily detected, visible, and long-established breeding sites at which large amounts of data 

may be gathered, making them particularly easy to study (Furness et al., 1993). 

Because they spend most of their time in aquatic environments where they are exposed to 

pollutants by external contact, inhalation, and ingestion of food and water, seabirds are exposed 

to a wide range of chemicals and other forms of pollution (Burger & Gochfeld, 2002; see Figure 

1-1).  The major groups of pollutants of concern are metals, chlorinated hydrocarbons, 

petroleum products, plastic particles, and artefacts (man-made debris such as plastics, 

polystyrene and so on), although more recently attention has focused on a much wider range of 

industrial and agricultural compounds which may be bioactive, including endocrine-disrupting 

chemicals.  Birds are exposed to metals mainly via their food, water, respiratory exposure to 

airborne contaminants and through the cleaning of their feathers (Goede & de Bruin, 1984; 

Dauwe et al., 2004).  For seabirds, ingestion of food and water are the main routes of exposure 

(Burger & Gochfeld, 2004).  
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Figure 1-1 Pathways of exposure for seabirds in air, soil, water and food (adapted from 

Burger & Gochfeld, 2002) 

 

The effects of certain pollutants (particularly organochlorines and mercury) on avian population 

ecology have been widely documented (for example: Blus et al., 1979; Custer et al., 1983; Pain 

et al., 1999; Thyen et al., 2000; Connell et al., 2003); however, the impacts of some metals and 

organic contaminants have received far less attention.  Heavy metals may have profound 

consequences for birds, even at concentrations insufficient to cause death or other acute effects, 

and cause increased susceptibility to disease or other stresses, changes to normal behaviour 

patterns and decreased reproductive success (Heinz, 1974; Scheuhammer, 1987; Burger & 

Gochfeld, 1995b; Heinz et al., 1999).  Table 1-2 provides a summary of the sub-lethal effects 

associated with elevated concentrations of metals in birds. 
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Table 1-2 Sub-lethal effects of metals on birds 

Metal Toxicological effects

As
Suppression of immune system; paralysis; embryo deformities and 

abnormalities.

Cd
Growth retardation and weight loss; anaemia; suppression of immune 

system; reduced egg production.

Co Growth retardation and weight loss; suppression of immune system.

Cu
Growth retardation and weight loss; anaemia; lesions; gizzard damage; 

reduced egg production; embryo deformities and abnormalities.

Fe Growth retardation and weight loss.

Pb

Growth retardation and weight loss; anaemia; suppression of immune 

system; decreased bone density; damage to nervous system; paralysis; 

abnormal skeletal development; reduced egg production and 

hatchability.

Mn
Growth retardation; damage to nervous system; decreased fertility; 

embryo deformities and abnormalities.

Ni Growth retardation and weight loss; decreased bone density.

Se
Growth retardation and weight loss; anaemia; lesions; reduced egg 

production and hatchability; embryo deformities and abnormalities.

V Growth retardation and weight loss; reduced egg production.

Zn
Growth retardation and weight loss; reduced egg production and 

hatchability.
 

The exposure and specific nature of a pollutant determines whether it causes an effect; since 

different families of seabirds, and different species within these families, have different life-

cycles, behaviour, ecologies, and habitat uses, their respective vulnerability also varies (Burger 

& Gochfeld, 2002).  Susceptibility may also vary with age, reproductive stage and gender.  As 

well as exhibiting direct effects, heavy metal pollution may also affect bird populations through 

effects on the abundance of prey organisms (Bryan & Langston, 1992).  Birds, particularly those 

species at the top of their food chain, are extremely valuable as biological monitors of 

environmental change, and may act as ‘sentinel’ species for the harmful effects of specific 

pollutants.  Sentinel species are usually chosen because they are particularly sensitive to a 

specific pollutant and thus provide the earliest warning of pollution in an ecosystem (Furness et 

al., 1993).  Concentrations of contaminants in seabirds can be examined both as an indication of 

potential harm to the seabirds themselves, and as an indication of coastal and marine pollution in 

general (Walsh, 1990; Peakall, 1992; Furness, 1993; Furness & Camphuysen, 1997).  Seabirds 

have been used to assess pollution over local, regional or wide-scale geographical areas as well 

as to determine whether concentrations of contaminants have changed over time (Walsh, 1990).  

For example, seabirds have been used as biomonitors of serious organochlorine pollution in the 
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North Sea, the effects of which were first noticed as a result of the effect on local seabird 

populations (Furness & Camphuysen, 1997). 

There are a number of particular advantages to using birds as monitors of pollution, the main 

benefits being simply that they are relatively easy to study and large amounts of data have 

already been gathered for bird populations, and much research carried out into their ecology and 

behaviour (Furness et al., 1993).  With the ecology of most bird species being quite well known 

and their classification and systematics well established, there is little risk of monitoring being 

confounded by uncertainties regarding the identities of, or relationships between, the species 

being studied (Furness et al., 1993).  Seabirds, in particular, make excellent bioindicators 

because they are sensitive to chemical and radiological hazards and are widespread over the 

world in coastal and marine habitats, where pollution is often significant and where 

contaminants are transported rapidly through aquatic systems and within food chains (Burger & 

Gochfeld, 2002).  Seabirds also feed at the upper trophic levels of ecosystems where they can be 

exposed to relatively high concentrations of contaminants in their prey (Burger & Gochfeld, 

2002) and so can provide information on the extent of contamination in the whole food chain.  

This, combined with the fact that they are long-lived, makes seabirds particularly vulnerable to 

contaminants and susceptible to the effects of bioaccumulation.  In addition, being at the top of 

the food chain means seabirds may reflect pollutant hazards to humans better than most 

invertebrates and other organisms lower in the food chain, but also means that they may be 

sensitive to many diverse factors affecting the food chain (Furness et al., 1993), such as seasonal 

temperature and weather conditions. 

Although the mobility of birds can allow monitoring over a broad spatial scale (the breadth 

depending on the species chosen), migratory habits can render birds much less suitable as 

biomonitors because individuals may differ in their migrations to an uncertain extent, and thus it 

can be difficult to determine the spatial scale they represent (Furness et al., 1993) and exactly 

when and where exposure occurred.  Populations of different origins pass through the same 

place at different times of year, and, in the case of pollutant monitoring, pollutants will be 

picked up from a wide and often ill-defined area (Furness, 1993).  This problem can be 

minimised by using sedentary species or young birds that have not yet fledged and have 

obtained all their food from their parents which, in most cases, have obtained it from the local 

area prior to breeding (Burger & Gochfeld, 2004).  Most birds in tropical and temperate regions 

spend many weeks on the breeding grounds before laying, with the breeding females acquiring 

sufficient resources locally to produce eggs (Burger, 2002).  In a study with black-headed gulls 

(Larus ridibundus) - the species of interest in this study - it has been demonstrated that the 



Kirsty Pickard 

PhD thesis - May 2010 

 

 7 

maximum foraging distance during breeding is 18.5 km (Gorke & Brandl, 1986).  The flight 

radius in this study was less than 5 km from the nesting site when the nest contained eggs or 

newly hatched chicks, with the parent foraging only one or two times a day and spending less 

than one hour (per flight) away from the nest.  This behaviour appears to be induced by eggs or 

nestlings, with one gull in the study, having lost its clutch, immediately flying greater distances 

to forage (between 9 and 14 km).  It is suggested by Gorke & Brandl (1986) that the constraints 

to the foraging radius of parent birds are relaxed as the nestlings grow and the foraging radius 

can be increased as time required to guard the nest is decreased.  This is attributed to the fact 

that, as the chicks grow, they are more capable of regulating heat themselves, and are less likely 

to be killed by neighbouring birds.  These studies demonstrate that breeding birds feed in a 

reasonably localised area prior to and during breeding and raising chicks, and are unlikely to 

have obtained resources from a distance greater than 18.5 km from the nesting site during this 

period.  

Although some seabird populations are threatened or endangered through habitat loss, 

exploitation, overfishing and other anthropogenic impacts (Croxall et al., 1984), populations of 

many species are robust and the collecting of limited individuals does not pose a conservation 

problem (Burger & Gochfeld, 2002).   However, some species, top predators in particular, are 

extremely scarce and thus it is not usually possible to take large samples of birds or eggs.  In the 

case of tissue sampling, this means that tissues of adults are often obtained from birds found 

dead, including those that have starved.  Starvation causes mobilisation of fat reserves, which 

often contain the highest concentrations of a contaminant (for example organochlorines which, 

being lipophilic, readily partition to the body fat) and hence the depletion of fat reserves in a 

starving bird may lead to an increase in the concentration of contaminants in soft tissues 

(Furness & Camphuysen, 1997), particularly the liver (Bogan & Newton, 1977).  This can lead 

to a great deal of variability between samples, and it is important to bear this in mind when 

interpreting and comparing results of different studies.  It is also important to take into account 

the season and the age, sex and diet of the birds, as the lipid store varies with all these factors, 

and hence concentrations of some contaminants may also be variable (Anderson & Hickey, 

1976; Clark et al., 1987).     

Practical and ethical reasons inhibit the sacrifice of free-living animals; as a result, new methods 

for non-destructive biomonitoring are always being developed (Furness, 1993).  Avian 

biomonitors have been successfully used with the following aims: to indicate temporal and 

spatial trends in chemical pollution in terrestrial and aquatic ecosystems; to monitor marine 

pollution; to detect diverse environmental changes such as habitat alteration or fragmentation, 
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and climate change by monitoring bird populations (such as abundance, distribution and 

demography; Becker, 2003).  However, despite their undoubted advantages as biomonitors, 

birds are not used as often or as effectively as they could be.  Birds have several methods of 

ridding the body of contaminants, including normal excretion via faeces and through transfer to 

eggs (Burger, 1994), deposition in the uropygial gland, salt gland (Burger & Gochfeld, 1985; 

Goede & de Bruin, 1986), and feathers (Braune, 1987; Braune & Gaskin, 1987a; Braune & 

Gaskin, 1987b; Lewis & Furness, 1991; Burger et al., 1992).  The use of eggs or feathers as 

indicators is a potentially very useful non-invasive method of obtaining an indication of tissue 

concentrations of a number of contaminants in birds.  However, while many biomonitoring 

studies with birds have focused on organic pollutants and certain heavy metals, such as mercury, 

in eggs (Parslow & Jeffries, 1977; Barrett et al., 1985; Burger & Gochfeld, 1991; Burger & 

Gochfeld, 1993; Burger & Gochfeld, 1995a; Burger & Gochfeld, 1996), investigation into the 

use of eggs to provide an indication of local pollution for other metals has been limited, and 

further research is required in this area.  Feathers may also be used as effective biomonitoring 

tools, and have the advantage that they can be collected irrespective of season, age or sex.  In 

addition, feathers provide a truly non-destructive method of sampling, and this technique could 

therefore be valuable as a non-destructive biomonitoring tool for endangered species. Studies 

have been carried out to investigate the link between heavy metal concentrations in feathers and 

the concentrations in internal tissues (Goede & de Bruin, 1986; Burger, 1993; Lewis et al., 

1993); however results have been inconclusive and, in some cases, conflicting, and further study 

is required to assess the suitability of feathers as biomonitors of metals. 

1.2 Eggs as indicators of pollution 

The egg supplies the embryo with all the necessary nutrients for growth, and provides the 

optimum environment for development (Perrins, 1996).  Each of the three main egg components 

has an important role in the development of the embryo: the yolk provides the majority of the 

necessary nutrients for the developing embryo, the albumen also provides nourishment, as well 

as the structural support needed for the attachment of two shell membranes during development 

of the egg, and the shell provides protection, minerals (primarily calcium) and regulates gas and 

water exchange (Romanoff & Romanoff, 1949; Perrins, 1996; Karlsson & Lilja, 2008).   

Adult females can transfer pollutants to eggs as a method of eliminating them from the body 

(Wiemeyer et al., 1984; Tanabe et al., 1986; Burger, 1994; Bargar et al., 2001; Mora, 2003); 

thus determination of contaminants in eggs can give a good indication of adult exposure to those 



Kirsty Pickard 

PhD thesis - May 2010 

 

 9 

chemicals (Burger, 1994).  Eggs are a good indicator of local exposure to contaminants since, as 

previously mentioned, the breeding females of most bird species spend the weeks prior to laying 

acquiring resources to produce eggs (and thus any associated contaminants) from an area local 

to the breeding ground (Burger, 2002).  The use of eggs for contaminant analysis eliminates 

many of the problems associated with sampling tissues.  Eggs have a highly consistent 

composition, unlike the liver (the traditionally sampled tissue) which changes significantly in 

size and composition during both the day and the year (Furness et al., 1993).  In addition, eggs 

are produced by a clearly identified segment of the population - adult females – although in 

some ways this can be a disadvantage as it excludes a large proportion of a population.  Egg 

sampling takes very little time and the eggs themselves are easy to handle and easier to store 

than dead birds or tissues.  Eggs can also be taken with little disruption and egg sampling places 

less of a strain on the population than the sampling of adults, particularly if only one egg is 

sampled from each clutch (Potts, 1968).   

In spite of the advantages over internal tissues, as a monitoring unit the egg also comes with its 

own set of problems.  The fact that pollutants in eggs usually represent pollutant uptake in a 

short period before the egg is laid means that they cannot be used to examine pollutant burdens 

acquired at other times of the year (Furness et al., 1993); conversely, concentrations may 

sometimes be affected by pollutant burdens built up over the long term which can confound 

interpretation of results.  Concentrations of pollutants have also been shown to vary through the 

clutch sequence, with the general observation being that concentrations are higher in the last laid 

egg than in the first laid (Becker, 1989).  When sampling for monitoring studies, eggs should 

therefore be taken at the same position in the laying order from each of the clutches.  In this 

study, eggs were taken from nests containing only one egg which ensured that the eggs analysed 

were the first laid in the clutch.   

Regular egg collection from populations of many wild bird species is unacceptable (and often 

illegal) for conservation reasons and hence analyses are frequently carried out on deserted or 

addled eggs that remain in the nest after chicks have hatched (Burger, 1994; Gochfeld & Burger, 

1998; Pain et al., 1999; Ormerod et al., 2000; Burger et al., 2004; Herzke et al., 2005; Ikemoto 

et al., 2005; Jaspers et al., 2005).  Addled or deserted eggs may not have pollutant 

concentrations typical of the whole population as they are likely to have been produced by birds 

that are young, of poor quality or those that have been particularly affected by pollutants 

(Furness et al., 1993).  Eggs lose water during incubation and thus eggs collected from nests 

long after being due to hatch tend to be severely dehydrated and may be subject to bacterial 

infection (Furness et al., 1993).  Similarly, much water can be lost from eggs during storage, 
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including freezing, and contaminant concentrations may therefore be affected; this problem can 

be avoided if dry weights are used when presenting contaminant concentrations.  Wet-weight 

comparisons between eggs of different species are also questionable, as the water content tends 

to be highest in species hatching altricial (i.e. naked, poorly developed) chicks (Romanoff & 

Romanoff, 1949).   

Eggs can also be used as an indication of reproductive health and breeding success.   Studies 

have shown a positive relationship between egg size and posthatching survival and growth in 

birds (Parsons, 1970; Lundberg & Väisänen, 1979; Bolton, 1991; Hipfner & Gaston, 1999), 

demonstrating the developmental advantage of larger eggs. The size of eggs laid by a bird is 

variable among species, and egg size relative to body size has been suggested as a possible 

reason for interspecies variability in excretion of contaminants (Lemmetyinen et al., 1982).  In 

addition, the number of eggs laid in a clutch may also affect the excretion of a chemical, as a 

smaller clutch provides less opportunity to excrete chemicals, and thus a greater percentage of 

maternal body burdens may be excreted into the eggs (Bargar et al., 2001).  The quality of the 

parents can contribute as much to the quality of the offspring as the habitat (Blomqvist et al., 

1997); however, where eggs produced in an area are consistently small, this could be an 

indication of poor habitat (Fair & Myers, 2002).   

1.2.1 Effects of pollution on eggshell thickness 

The shell of an egg contributes to successful embryogenesis in many ways: through protection 

from crushing during incubation, providing resistance to entry of pathogens, controlling gas and 

water exchange, and providing the embryo with minerals, primarily calcium, which is required 

for the development of the skeleton, muscles and brain (Tuan et al., 1991; Blom & Lilja, 2004; 

Karlsson & Lilja, 2008).  The impacts of eggshell thickness on breeding success are discussed in 

detail in Chapter 2, Section 2.1.2. 

Eggshell thinning as a result of organochlorine pollution is well-documented, and the effects of 

thinner shells on the reproductive success of birds are well known.  Thinning of the shells of 

bird eggs was first documented just over 40 years ago (Ratcliffe, 1967).  By comparing fresh 

samples of eggs with museum specimens, Ratcliffe demonstrated that shell thinning in British 

birds of prey had begun at the same time as the first widespread use of the pesticide 

dichlorodiphenyltrichloroethane (DDT) in 1947 (Ratcliffe, 1967; Ratcliffe, 1970).  Figure 1-2 

illustrates the sudden and unprecedented decrease in the eggshell index of the sparrowhawk 

(Accipiter nisus) during 1946-1950. 
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Figure 1-2 Shell thickness index of British sparrowhawks, 1870-1980 (Furness, 1993, 

after Newton, 1986) 

It later became clear that the degree of shell thinning in birds could be related to residues of 

dichlorodiphenyldichloroethylene (DDE), a metabolite of DDT, in the egg contents and laying 

female; however, other organochlorines such as polychlorinated biphenyls (PCBs; Forsyth et al., 

1994) have also been suggested as having the same effect, as well as some heavy metals 

(Lundholm, 1987; Lundholm, 1995). 

In general, the impacts of metals on eggshell thickness have received far less attention than 

organic substances such as organochlorines and pesticides.  While the impacts of some metals 

on eggshell thickness have been reported, no information is available for others.  Of the metals 

investigated in this study, literature data have been found suggesting that arsenic, cadmium, lead 

and zinc may lead to shell thinning in bird eggs (Haegele & Tucker, 1974; Edens et al., 1976; 

Hussein et al., 1988; Furness, 1996).  However, studies are few and, in some cases, offer 

conflicting results, and it is therefore difficult to draw definite conclusions.  No studies reporting 

the effects of cobalt, copper, iron, manganese, nickel, selenium and vanadium on eggshell 

thickness could be found.  The lack of conclusive data or, in some cases, any data at all, 

regarding the impacts of heavy metals and selenium on shell thickness means that this is an area 

of research that requires further investigation.  Chapter 5 of this thesis attempts to relate 

concentrations of heavy metals and the associated semi-metal selenium in black-headed gull 

eggs to effects on the quality of the shells.   
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1.2.2 Partitioning of metals in the egg 

The partitioning of different metals between eggshells and egg contents has been examined by a 

number of authors (Burger, 1994; Morera et al., 1997; Mora, 2003; Agusa et al., 2005; Ikemoto 

et al., 2005; Lam et al., 2005).  Results for most metals are conflicting, with some authors 

reporting a metal to be partitioned more in the eggshell than contents, others reporting the 

reverse, and yet more studies describing a fairly even distribution between shell and contents.  

Detail of the studies can be found in Chapter 5, Section 5.1.3.  In all of these studies a 

proportion of most metals was found to accumulate in the eggshell.  In addition to differences in 

concentrations between eggshells and egg contents, different metals may bind to different 

components of the egg contents.  However, only one study could be found reporting partitioning 

of metals between egg yolk and albumen: Magat and Sell (1979) found that selenium binds 

preferentially to albumen, rather than yolk.  No studies could be found reporting partitioning of 

any of the other metals of interest in this study between egg yolk and albumen.  Many previous 

studies examining metal concentrations in eggs have analysed only the egg contents and 

neglected to analyse the eggshell (for example: Hernández et al., 1988; González & Hiraldo, 

1988; Burger & Gochfeld, 1991; Baranowska et al., 2005), and analysis of egg contents has 

examined homogenised contents rather than separate components.  For metals such as cadmium, 

for which there is evidence that it partitioning may be mainly to the eggshell and concentrations 

in egg contents negligible (Dauwe et al., 2005), previous studies that have reported low or 

undetectable concentrations in eggs may have done so because the authors analysed only the egg 

contents and did not analyse the eggshell (for example: Sell, 1975; Scheuhammer, 1987; Burger 

& Gochfeld, 1993; Braune & Simon, 2004).  It may be prudent for future studies examining 

metals in egg contents to adopt a more targeted approach, focusing analysis on a particular 

component of the egg.  For example, if a metal is present almost entirely in the yolk, when 

looking at low concentrations analysis of homogenised egg contents will only serve to dilute the 

concentrations of these metals in the sample, and analysis of yolk rather than homogenised egg 

contents might provide the best assessment of concentrations on the egg contents.  Ideally, in 

order to obtain accurate results for total concentrations in the egg, all three egg components 

should be examined separately, and the results combined to provide an accurate ‘total’ egg 

concentration. 

The present study aims to address the gaps in the knowledge regarding metal partitioning in 

eggs, and will examine partitioning of arsenic, cadmium, cobalt, copper, iron, lead, manganese, 

nickel, selenium, vanadium and zinc between egg shell, yolk and albumen (Chapter 5).   
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1.3 Feathers as indicators of pollution 

Birds use feathers as a means of both storing essential elements and eliminating contaminants, 

incorporating substances in the keratin structure during the short period of feather growth when 

the feather is connected with the blood stream through small blood vessels (Goede & de Bruin, 

1984; Burger, 1993; Dauwe et al., 2000).  Thus, feathers can be effective indicators of 

contamination in internal tissues, and indeed have been used in many studies as an indication of 

contamination of a number of metals, in particular mercury (see Section 6.1).  Samples of 

feathers can be taken from dead specimens but also from live birds with virtually no effect on 

the birds sampled (Burger, 1993), especially if body feathers are taken rather than flight 

feathers, enabling a much larger sample of feathers to be taken.  In addition, feathers can be 

easily stored without being frozen, meaning sampling from remote populations is much simpler 

than with tissue collections (Furness et al., 1993).  In many ways, feathers are thus an ideal non-

destructive method for measuring contaminant load in birds.   

However, there are a number of potential disadvantages to the use of feathers as a measure of 

contaminant load in birds.  Variations in the age composition of a sample of seabirds could 

potentially contribute to apparent differences in concentrations of contaminants in feathers (and 

other tissues) between species, populations or years (Gochfeld et al., 1996; Burger & Gochfeld, 

2000b).  In a review of studies of metals in feathers, Burger (1993) reports that adults had 

significantly higher concentrations than young for mercury (20 of 21 studies), lead (4 of 7), 

cadmium (3 of 5) and manganese (5 of 5).  The same author conducted investigations into 

concentrations of metals in the feathers of adult and juvenile Franklin’s gulls (Larus pipixcan; 

Burger, 1996).  For most comparisons where age differences were observed, feathers taken from 

adults had significantly higher concentrations of heavy metals than those taken from young.  

Several other studies also report a similar link between age and feather concentrations of metals 

(Gochfeld et al., 1996; Burger & Gochfeld, 2000b).  Concentrations in adult feathers might be 

expected to be higher than those of fledglings because the adults have had several years to 

bioaccumulate metals in their internal tissues. In addition, fledgling feathers represent 

contamination acquired almost entirely on the breeding grounds and from development in the 

egg, while adult feathers collected on the breeding ground were grown on the wintering grounds 

and reflect contamination also obtained there.  Chicks are continually exposed to metals 

acquired from the food brought by the parents, in addition to exposure from contact with the 

mother prior to hatching, contact with parents and other birds after hatching, exposure to 

excrement, and from external sources via wet or dry deposition.  As a result, nearly fully-grown 
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chicks, which have had several months to sequester metals in down feathers, may have higher 

concentrations of metals in tissues than recently-hatched chicks.  Variation might also arise as a 

result of the differences in foods consumed by adults during the breeding season, or different-

sized food items.  In order to reduce variation due to age, it would be most sensible to take 

feathers from birds of a known similar age (Burger, 1995). 

The limited data for the relationship between gender and metal concentrations in feathers are 

conflicting, and overall would suggest that gender differences in metal concentrations in 

feathers are not significant.  For mercury, a review of studies by Burger (1993) reports that 

significant differences in mercury concentrations with gender were found in only two of eight 

studies.  The results from the two studies were conflicting, with higher concentrations found in 

females for great blue herons (Ardea herodias; Hoffman & Curnow, 1979), and higher 

concentrations in males for Bonaparte’s gull (Larus philadelphia; Braune & Gaskin, 1987a).  

The latter difference was found only in post-moult (i.e. post-laying) feathers, suggesting that the 

lower concentrations in the females at this stage may be a result of elimination of mercury via 

egg laying.  Gender-related differences in concentrations of lead, cadmium, mercury, 

manganese, chromium and selenium in the feathers (and other tissues) of laughing gulls (Larus 

atricilla) were examined by Gochfeld et al. (1996).  Higher concentrations of lead were found in 

the feathers of males than in females.  No differences were observed for cadmium, mercury, 

manganese, chromium or selenium in feathers.  Burger and Gochfeld (1992b) examined gender 

differences in cadmium, lead, selenium, chromium, manganese and copper in feathers of black 

skimmers (Rynchops niger).  The authors found that females had higher concentrations of lead 

and cadmium than males, but no differences were observed for selenium, chromium, manganese 

or copper.  It would seem that, in general, gender differences are unlikely to affect the 

concentrations of metals in seabird feathers, and thus it would not be considered necessary to 

sex individual birds from which feathers are to be sampled.   

When considering contaminant loads in feathers from fledged birds, it is important to sample the 

same feather type, and to understand both the timing and pattern of moult and where birds were 

at the time of moult.  During the moult, concentrations of some heavy metals in internal tissues 

drop as they are sequestered into feathers (Dauwe et al., 2003) and, when the moult is 

completed, concentrations of some heavy metals rise in internal tissues until the next moult, 

when the process is repeated (Braune & Gaskin, 1987a).  As a result, the internal concentration 

during the moult may not be constant, and may be high at the beginning and lower at the end of 

the moult (Dauwe et al., 2003).  This effect has been noted for mercury by a number of authors  

(Appelquist et al., 1984; Furness et al., 1986; Braune, 1987; Burger & Gochfeld, 2000b; Dauwe 
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et al., 2003), with mercury concentrations tending to decrease linearly along such feather 

sequences as the primaries, corresponding to the order in which feathers have been dropped and 

renewed.  This effect suggests that mercury concentrations in feathers adequately reflect 

concentrations in the blood during feather growth and are only slightly, if at all, affected by 

external contamination (Dauwe et al., 2003).  For metals other than mercury, results are 

conflicting.  Dauwe et al. (2003) found copper and zinc concentrations were significantly 

positively correlated with the moulting sequence in the little owl (Athene noctua); in the same 

study, however, copper and zinc concentrations were significantly negatively correlated or not 

correlated with the moult in the sparrowhawk (A. nisus).  For most other elements the 

concentration in the primaries was either significantly negatively correlated or not correlated.  

Metal concentrations in feathers have also shown variation with the body location and type of 

feathers sampled (Goede & de Bruin, 1984; Walsh, 1990; Altmeyer et al., 1991; Lewis & 

Furness, 1991; Burger & Gochfeld, 1997; Dauwe et al., 2003; Muralidharan et al., 2004).  

However, it would appear that, in most cases, a large part of the metal concentration differences 

measured between different feathers results from external deposition.  Thus the relationship is 

not as simple as previous suggestions that newer feathers should have lower metal 

concentrations than older feathers.  If nestlings are used, little variation due to growth sequence 

can be expected; however, as mentioned above, part-grown feathers can over- or under-estimate 

the body burdens of certain metals (Walsh, 1988; Burger & Gochfeld, 1992a), and results 

should therefore be assessed with this in mind.  

Contaminants may be deposited exogenously onto the surfaces of feathers as well as sequestered 

endogenously from the blood into growing feathers, and thus the use of feathers as indicators of 

internal concentrations may be confounded by a combination of these two processes.  

Contamination from secretions of the uropygial gland smeared onto feathers during preening 

may also occur (Dauwe et al., 2002b).  In nestlings exogenous contamination onto the feather 

surface may be limited, and the growing feathers of nestling birds may thus represent the body 

load of contaminants better than those of adults (Dauwe et al., 2004), although again it must 

also be borne in mind that these part-grown feathers are still connected to the blood supply and 

thus may not reflect the full extent of body-burden of contaminants.   

Although feather concentrations of metals are reported in a number of studies and a number of 

experiments have been undertaken to investigate the potential use of feathers as a method of 

assessing the internal tissue concentrations of mercury in birds, relatively few published data are 

available reporting the relationship between feather and tissue concentrations for other metals.  

It has been demonstrated experimentally that mercury in feathers is strongly bonded and 
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concentrations are not affected by storage or vigorous treatments (Appelquist et al., 1984).  

However, this may not be the case for other contaminants, including other metals, and the 

usefulness of feathers as tools for monitoring internal heavy metal contamination requires 

further investigation.  This study aims to further investigate the potential use of feathers as a 

means of monitoring contamination of heavy metals and selenium (Chapter 6). 

1.4 Nesting density and breeding success 

The selection of a suitable nesting site that provides optimal conditions for the successful 

production and survival of young is of prime importance to individual and species survival.  

Breeding site selection has been shown to have a direct effect on reproductive success in a 

number of studies, with many different nest site characteristics monitored, including level of 

vegetation cover (Burger & Gochfeld, 1981; Saliva & Burger, 1989; Yorio et al., 1995; 

Miyazaki, 1996; Bosch & Sol, 1998; Confer, 2003; García-Borboroglu & Yorio, 2004), 

vegetation type (Burger, 1976; Mermoz & Reboreda, 1998; García-Borboroglu & Yorio, 2004), 

substrate type (Burger & Gochfeld, 1981; Burger & Gochfeld, 1987) and topography 

(Nettleship, 1972; Burger & Gochfeld, 1981; Sanz, 1998; García-Borboroglu & Yorio, 2004).  

The physical and biotic features of an area will affect the degree of exposure to the elements and 

to predators and pathogens (Partridge, 1978; Best & Stauffer, 1980; Cody, 1985; Martin & 

Roper, 1988). 

Seabirds typically nest at high density in large colonies, and this close proximity of nesting birds 

to each other has resulted in adaptations which allow successful breeding at high density, such 

as changes in behaviour towards other individuals (Coulson et al., 1982).  Most models of 

habitat selection assume that the value of a habitat to an organism is negatively correlated with 

the density of individuals of the same species (conspecifics) in that area (Morris, 1989; 

Rosenzweig, 1991), because of increased intraspecific interference, local competition, parasite 

load, disease, and many other factors (Rosenzweig, 1991; Krause & Ruxton, 2002).  However, 

colonial organisms such as seabirds choose to live at high densities and several recognised 

advantages of this high-density colonial lifestyle have been suggested as outweighing the costs 

(Stokes & Boersma, 2000).  Such advantages include the use of limited high-quality habitat 

(Lack, 1967; Shields et al., 1988), optimal location (Horn, 1968), foraging success (Ward & 

Zahavi, 1973) and predation avoidance (Kruuk, 1964; Siegel-Causey & Kharitonov, 1990; 

Krause & Ruxton, 2002).  The documented positive effects on breeding success in colonial 

seabirds gave rise to the concept of ‘social stimulation’, where it is claimed that increased 
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colony size gives rise to more efficient breeding, rather than the depressive effects associated 

with high density in many organisms (Darling, 1938).   

In colonial seabirds, individuals breeding in certain areas of the colony have shown marked 

differences in breeding success compared to those in other areas (Nettleship, 1972; Hudson, 

1982; Pierotti, 1982; Bosch & Sol, 1998), and individuals placing nests in optimal microhabitats 

are more successful in fledging young than those occupying less favourable locations (Gochfeld, 

1978; Yahner, 1983).  However, competition for the best breeding sites may result in a positive 

association between individual quality and habitat quality, with higher quality birds tending to 

secure better habitat (Kim & Monaghan, 2005).  Various studies have shown a positive relation 

between breeding performance and parental quality, as reflected in egg size, age and breeding 

experience (Ollason & Dunnet, 1978; Pugesek, 1981; Coulson & Porter, 1985; Bolton, 1991; 

Sydeman et al., 1991; Ratcliffe et al., 1998; Daunt et al., 1999; Risch & Rohwer, 2000).  Thus, 

when looking at breeding success, habitat quality and individual quality are often confounded 

and it is difficult to separate the effects of individual quality on breeding performance from 

effects that are attributable to physical components of the breeding areas (Kim & Monaghan, 

2005).  Although the effects of nest location and nesting density on reproductive success have 

been examined to some extent, results are conflicting and the relationship warrants further 

study.  The effects of commercial egg harvesting on nest density have not previously been 

examined. 

1.5 Black-headed gulls (Larus ridibundus L.) 

The black-headed gull (Larus ridibundus L.) is the most common breeding gull in the British 

Isles and the most widely distributed breeding seabird in Britain and Ireland (Mitchell et al., 

2004).  In Europe, many colonies occur along the north-western coasts as well as a few areas 

around the Mediterranean.  The largest coastal colonies are found in Sweden, Denmark, The 

Netherlands and Britain (Cramp, 1983); in Britain, coastal colonies are largest in South and 

Southeast England and along the Irish Sea (Lloyd et al., 1991). Black-headed Gulls also have an 

extensive inland breeding distribution, occurring in most European countries.  In the UK, 

numbers breeding inland are similar to those on the coast, and the majority of the  breeding 

population are resident throughout the year, with numbers increasing in the winter months with 

birds migrating from northern and eastern Europe, especially in the east and southeast of 

England (Mitchell et al., 2004).  Some migration does occur west to Ireland and south to North 
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and West Africa, although this is minimal compared to the numbers that remain resident in the 

UK (Malling Olsen & Larsson, 2004). 

 
Like most gulls, black-headed gulls are omnivorous and feed on a wide variety of animal and 

vegetable matter.  Feeding methods and diet vary considerably with location, season, food 

availability and individual (Cramp, 1983).  Natural food sources include animal material, 

particularly insects and earthworms (particularly Lumbriculus spp.), and plant material, but 

feeding is frequently supplemented by household and industrial waste, with birds often seen 

scavenging in parks, gardens and campsites, where they will scavenge for bread, fish scraps and 

so on, on refuse tips, waste grounds, and at sewage works and sewage outlets (Cramp, 1983).  

Fish from lakes and rivers are a particularly important food source in early spring and in the 

autumn and winter months when insects are less frequent, and ground bait left by fishermen on 

the edges of lakes, gravel pits or reservoirs will also be scavenged (Vernon, 1972).  Black–

headed gulls have been observed to take frogs and field-mice, and during the nesting season 

both eggs and young birds of several species are preyed upon.   Both intra- and interspecific 

kleptoparasitism (i.e. theft of food from other individuals) is frequently practised.  On salt marsh 

and mudflats, black-headed gulls feed on the surface fauna of estuarine mudflats exposed at low 

tide and in the shallow water in a narrow zone below the tide line, including polychaete worms, 

various molluscs and small crabs, shrimps, sandhoppers and shore fly larvae and adults (Vernon, 

1972). 

Black-headed gulls produce semi-altricial young (Cramp & Simmons, 1983), i.e. chicks 

hatching covered with down and with eyes open, but incapable of departing from the nest and 

are therefore entirely reliant on parental feeding (Nice, 1962).  Nesting tends to be in dense 

colonies often of several thousands on open ground or in low vegetation, with habitats such as 

wetlands, bogs, marshes and artificial ponds favoured, (Malling Olsen & Larsson, 2004; 

Mitchell et al., 2004).  Salt marsh islands are popular nesting sites, although high tides may 

flood nests and birds then have to either relay or abandon breeding.  However, salt marsh islands 

also provide the benefit of decreased predation, with relative freedom from mammalian 

predators (Tubbs, 1999).   

In spite of being relatively common in the British Isles, black-headed gulls are on the ‘Amber’ 

list of the British Trust for Ornithology (BTO) Birds of Conservation Concern 2002-2007 (BTO, 

2007), indicating that this species are of medium conservation concern.  This BTO classification 

means that there has been a moderate (25-49%) decline in UK breeding populations over the last 

25 years and that greater than or equal to 50% of the UK breeding population are located in ten 
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or fewer sites.  Figure 1-3 provides a comparison of black-headed gull breeding occurrence in 

10 km OS squares in Britain and Ireland during the Seabird 2000 census (1998-2002; Mitchell 

et al., 2004) and the New Atlas of Breeding Birds (1989-1991; Gibbons et al., 1993). 

 

Figure 1-3 Black headed gull breeding status 1998-2002 and 1989-1991 (Mitchell et al., 

2004) 
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As can be seen in Figure 1-3, there are some populations that are new in the 1998-2002 census 

and were not present in 1989-1991 census (represented by the green dots).  However, these new 

populations are far outweighed by the number of breeding populations that have disappeared 

since the 1989-1991 survey (represented by the red dots), indicating an overall decline in the 

UK breeding populations of black-headed gulls over approximately a 10 year period. 

Although there are relatively few sites supporting black-headed gull colonies, the colonies 

generally support large numbers of birds, making them easy to sample and also meaning that a 

license to enter the colonies for sampling purposes may be obtained, which may not be possible 

for many other species of conservation concern.  Black-headed gulls can also be used as an 

indicator species to provide information on the degree of pollution in other, rarer seabird 

species, for example the Mediterranean gull (Larus melanocephalus), a rare species in the UK 

which breeds in small numbers at the Lymington and Poole sites. 

1.5.1 Egg laying and commercial egg collecting 

Black-headed gull eggs are collected at a number of sites across the UK, for personal and 

commercial consumption.  Since the Wildlife and Countryside Act 1981, it has been necessary 

to obtain a license to collect black-headed gull eggs.  Licensing is through the UK Department 

of the Environment, Food and Rural Affairs (Defra), in collaboration with Natural England.  

The marsh sites between Lymington and Hurst Spit are harvested for black-headed gull eggs for 

commercial purposes under license.  The license allows collection from the start of the laying 

period until the 15th May, and all eggs are collected daily from the harvested site.  Egg-

collecting begins at the very start of the breeding season, and the gulls continue to lay new eggs 

every time they are collected. By the end of the collecting period females have been laying 

continuously for several weeks.  The Raby colony is also collected under Defra/Natural England 

license, but collection is undertaken by the estate manager at a very low level, for non-

commercial purposes.   

A typical clutch of black-headed gull eggs contains three eggs and, like most Laridae, if eggs are 

lost within a few hours of the first being laid, the gulls will add another egg to the same clutch, 

or if the entire clutch is lost, the whole clutch may be replaced.  The former is known as 

‘protracted’ laying, the latter as ‘replacement’ laying.  Black-headed gulls will stop protracted 

laying after losing up to seven eggs consecutively, and replacement of entire clutches is also 

dependant on the time of season and the number of clutches previously laid (Weidmann, 1956).  

Although gulls will relay quite late in the breeding season, the 8-13 days of follicle growth 
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needed to produce a clutch requires high energy reserves, and forcing females to lay 

replacement eggs means that late breeders delayed by commercial collection must incur the 

costs of laying and incubating those extra eggs (Verhulst & Timbergen, 1991).  The 

phenomenon of replacement laying is an adaptation to unpredictable factors such as nest wash-

out due to flood, and predation (Brown & Morris, 1996).  Studies of egg harvesting have 

reported reduced breeding success in some seabird populations at concentrations considered to 

pose a potential threat to viability (Feare, 1976a; Haynes, 1987; Vermeer et al., 1991; Burger & 

Gochfeld, 1994; González, 1999; Zador et al., 2005; Wood et al., 2009) or to cause decline 

(Ainley & Lewis, 1974; de Juana, 1984; Shannon & Crawford, 1999); although some gull 

populations have also been successfully managed with egg harvesting (Wanless et al., 1996; 

Ickes et al., 1998).   

Egg size has been reported to be reduced in replacement clutches (Feare, 1976b; Parsons, 1976a; 

Brown & Morris, 1996; Nager et al., 2000; Hipfner et al., 2003) and replacement clutches may 

contain fewer eggs (Brown & Morris, 1996) and show more abnormalities such as white or half-

white eggs, small eggs, or eggs that took on a ‘corroded’, dried-out appearance, characterised by 

a cracked and partially collapsed shell and apparently thickened membrane  (Wood, 2007).  

Increased egg production has been shown to reduce endogenous proteins in breeding females 

(Bolton et al., 1993; Cooke et al., 1995), which are used to form eggs and limit the production 

of replacement clutches and reduce egg size and egg quality, measured by yolk:albumen ratio 

and protein content (Robbins, 1981; Houston et al., 1983; Bolton et al., 1992; Monaghan et al., 

1998; Hipfner et al., 2003; Wood et al., 2009).  Most of these endogenous proteins come from 

pectoral muscles (Houston et al., 1995), depletion of which reduces flight performance and, as a 

result, reduces foraging efficiency and predator avoidance (Veasey et al., 2000; Veasey et al., 

2001; Kullberg et al., 2005).  Muscle recovery during incubation is slow (Houston et al., 1983) 

and thus the trade-off birds have to make between foraging to maintain their own body 

condition, and incubation and providing for the chick, is influenced (Monaghan et al., 1998).  

The capacity for egg laying has been shown to be influenced by food supply (Oro et al., 1999), 

so relaying may be more common in females in better feeding condition (Houston et al., 1983; 

McNamara & Houston, 1996).   

As a result of egg harvesting, the appearance of hatchlings on the Lymington colony is delayed 

by approximately three weeks.  A number of authors report significantly reduced breeding 

success with late-laying birds, as opposed to early or peak layers (Patterson, 1965; Parsons, 

1975; Becker, 1995).  One explanation offered for this phenomenon is that synchronised 

breeding has an anti-predator function (Kruuk, 1964) and minimises the age-difference between 
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chicks on a colony, which in turn reduces the amount of food-robbing by larger chicks from 

their smaller counterparts (Perrins, 1970).  On a collected colony breeding would still be 

synchronised as collecting ceases completely at a set time, and thus hatching would also be 

synchronised.  However, the delay in hatching as a result of egg harvesting may have a 

detrimental effect on the reproductive success of birds in this colony for other reasons such as 

changes in weather conditions, temperature, and so on.  For example, high spring tides occur 

annually at the start of the breeding season (during the second week in April) and again in mid- 

to late May (Wood, 2007), and these high waters can flood the marsh and wash-out nests, 

resulting in loss of chicks and eggs.  The delay in hatching means that, in late May, eggs and 

young chicks are present which may be lost in these floods, from which older chicks would be 

better equipped to escape (Aspinall et al., 1993).  

Concentrations of pollutants have also been shown to vary through the clutch sequence, with the 

general observation being that concentrations are higher in the last laid egg than in the first laid 

(Becker, 1989).  It has been suggested that this phenomenon occurs because birds produce their 

first eggs mainly from recent dietary uptake, whereas body reserves contribute more to later 

eggs (Mineau, 1982).  If female birds lose a substantial portion of their body burden of 

pollutants during egg laying, concentrations in internal tissues might drop as they are 

sequestered in the eggs (Van den Steen et al., 2006).  Relaying a new clutch requires mobilising 

body reserves and increased feeding, both of which may lead to increased blood concentration 

of lipid-soluble pollutants (Helberg et al., 2005). This last point may be particularly relevant in 

the case of the heavily collected Lymington colony, where females have laid continuously until 

collecting ceases and the last clutch is finally allowed to incubate and ultimately hatch.  

The possible effect of laying order on the concentrations of contaminants in eggs within a clutch 

has been examined by several authors, and studies have shown that, with certain pollutants, 

there is a pattern of increasing concentration within the clutch related to the order of egg laying, 

with the third (usually final) egg containing the greatest concentration of pollutants.  For 

example, concentrations of DDT have been reported as lowest in the first-laid egg compared 

with subsequently laid eggs within clutches of common terns (Sterna hirundo; Nisbet, 1982), 

herring gulls (Larus argentatus; Mineau, 1982) and great crested grebes (Podiceps cristatus; 

Lukowski, 1978).  If birds are constantly relaying it is possible that the concentration of 

pollutants will be increased with each newly laid egg, and for birds on collected colonies, the 

difference between the contaminant load of first laid eggs at the true start of breeding and that of 

the first laid eggs after collection (i.e. the egg that will actually be allowed to develop and hatch) 

could be significant and may have implications for the fitness of the clutch.  However, it is 
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important to note that, for metals, no clear relationship between laying order and egg 

concentrations of pollutants is reported (Becker et al., 1989; Dauwe et al., 2005), and for 

mercury a decrease in concentration through the laying sequence has been documented (Becker, 

1992).  Any relationship between contaminant concentration and laying order is far from clear, 

and concentration of metals has been examined in very few studies.  This area therefore 

warrants further investigation. 

1.6 Study areas 

The sites sampled in this study are the Pylewell marshes at Lymington (Hampshire) and marshes 

at Poole Harbour (Dorset), both on the South coast of England.  Eggs were also obtained from a 

small inland black-headed gull colony in the North of England (Raby Estate, North Pennines).  

A map of England, Scotland and Wales showing site locations is provided in Figure 1-4 and the 

site characteristics are summarised in Table 1-3.  More detailed site maps are provided in 

Figures 1-5, 1-6 and 1-7.  Detailed information regarding the potential sources of pollution at 

each of the sites is provided in Chapter 4. 
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Figure 1-4 Map of England, Scotland and Wales showing location of sampling sites 
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Table 1-3 Characteristics of Lymington, Poole and Raby sites 

Site Location
Grid   

reference

Colony 

size

Approx. no. 

breeding pairs
Colony type Height

Average annual 

temperature*
Collection regime

Lymington      

(Pylewell colony)

Hampshire, South 

coast of England
SZ345942 Large 4300 Salt marsh island Sea-level 10.6 - 11.6°C

High-level, 

commercial 

collection

Poole
Dorset, South coast 

of England
SY964902 Large 10000 Salt marsh island Sea-level 10.6 - 11.6°C Uncollected

Raby
County Durham, 

North East England
NY822291 Small <500

Inland, nesting on 

wavy hair/cotton 

grass heather mix

ca . 500 m    

above sea-level
6.5 - 7.5°C

Low-level, non-

commercial 

collection  

* average annual temperature data from Met Office UK (Met Office UK, 2009). 

 

Referring to the black-headed gull breeding status represented in Figure 1-3, the sites examined 

in this study support black-headed gull populations that were present in both the 1998-2002 

census and the 1989-1991 census (represented by the yellow dots).  However, a number of 

black-headed gull colonies were present in the 1989-1991 census in the area around all three 

sites examined in this study, that disappeared by the time of the 1998-2002 census (represented 

by the red dots); thus there has been an overall decline in the breeding populations of black-

headed gulls in these areas. 

The sites were chosen to provide comparisons between colonies exposed to different sources of 

pollution and different pressures to the colonies themselves.  Whilst the Lymington and Poole 

colonies are both located on the South coast of England and both support relatively large 

populations, the two sites are impacted by different potential sources of pollution and, most 

notably, the Lymington colony is subject to commercial egg collecting while the Poole colony is 

undisturbed.  The fact that the Lymington site is commercially collected adds an interesting 

extra dimension to the study, allowing comparisons to be made with pollutant loads and 

reproductive parameters such as egg size/quality between a collected and an uncollected colony.  

Collection of samples from the Lymington colony at both the start and the end of the egg 

collecting period will enable comparisons to be made not only with samples from the 

uncollected Poole colony, but also with differences between the first laid eggs at the start of the 

season and the first eggs in the final clutches laid after egg-collecting has ceased.   

The Raby colony is very different to the Poole and Lymington South coast colonies.  It is a 

small colony in the North of England and, being located inland, the birds will have very 

different feeding strategies to those nesting on the coast, and will thus be exposed to different 

sources and types of pollution.  In addition, the colony is located on old lead mining dams, 
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which could provide a potential source of heavy metal exposure to the birds feeding and nesting 

in the area.  Comparison of this colony with the South coast colonies will provide some insight 

into the differences between inland and coastal colonies and, owing to the very different climate 

in North East England compared to the South, may also provide information regarding any 

potential differences and adaptations of a black-headed gull colony to location in a cooler, 

upland climate.  The Raby colony is subjected to a very low level of non-commercial collection. 

1.6.1 Lymington 

The Lymington marshes are located in the Lymington estuary, within the Solent (see Figure 1-

5).  The Solent is the drowned valley of a river which flowed between what are now the Isle of 

Wight and the mainland of Hampshire and West Sussex, on the south coast of England (Tubbs, 

1999); it is one of the few major sheltered channel systems in European waters, and has a two-

way flow separated by defined periods of slack water.  The Solent experiences a ‘double high 

water’, i.e. there are two high tides in each cycle, which is a phenomenon unique to this area in 

Europe.  Encompassing a major estuarine system, the Solent has the largest number of small 

estuaries in a tight cluster in Great Britain, and includes very important and complex marine and 

estuarine habitats, with unusual examples of natural transitions from marine to coastal and 

terrestrial habitats (English Nature, 1998).  The deposition of sediment in the shallow, sheltered 

waters has resulted in the formation of mud and sand flats, and the marine sediment habitats are 

influenced by a range of salinities, exposures to wind and wave action and intensity of tidal 

streams.  The higher parts of these mud and sand flats have been colonised by salt marsh 

vegetation.  The extensive intertidal mudflats, salt marshes and shingle habitats within the 

Solent support nationally and internationally important numbers of nesting, roosting and feeding 

sea- and shorebirds, and the Solent constitutes one of the top five sites in the UK in terms of 

ornithological importance (Burges, 2000).   

The marshes at Lymington are large salt marsh areas lying on opposite sides of the Lymington 

estuary.  These sites are protected as part of the Solent Maritime Special Area of Conservation 

(SAC; under the EU Habitats Directive 92/43/EEC) and also lie within a Site of Special 

Scientific Interest (SSSI) and in the Solent and Southampton Water Ramsar Site (under the 

International Convention on Wetlands of International Importance) and Special Protection Area 

for birds (SPA; under the EU Birds Directive 79/409/EEC).  These salt marshes are important 

breeding areas for black-headed gulls, and support a total of approximately 7600 breeding pairs, 

of which the specific colony sampled in this study - the salt marsh island at Pylewell - comprises 
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over 4300 pairs (Wood, 2007).  The eggs of black-headed gulls are harvested from these sites, 

and all salt marshes between Lymington and Hurst Spit, for consumption and market, under 

license through the UK Department of the Environment Food and Rural Affairs (Defra) in 

collaboration with Natural England (see Section 1.5.1).   

 

Figure 1-5 Map of Lymington showing sampling site (from www.magic.gov.uk) 

1.6.2 Poole Harbour 

Poole Harbour occupies a flooded shallow depression towards the south-western extremity of 

the Hampshire Basin (see Figure 1-6).  The Harbour is a bar-built estuary (i.e. formed from the 

build-up of sandbars along the coastline); it is one of the largest natural harbours in the world 

and is of national and international importance for nature conservation.  The narrow opening at 

Poole Bay means that a significant body of water may be retained throughout the tidal cycle, 

resulting in relatively low tidal energy in the Harbour and lagoon-type characteristics.  The 

Harbour is one of 37 natural saline lagoons in England and Wales, and occupies three-quarters 

of the total area of 3300 hectares represented by this habitat (Langston et al., 2003).  As in the 

Solent, Poole Harbour experiences a double high water. 

The range of estuarine, wetland and heathland habitats and the animals and plants they support, 

together with the large variety and number of birds, means that Poole Harbour is an area 



Kirsty Pickard 

PhD thesis - May 2010 

 

 28 

recognised as being of international importance and holds a number of statutory designations 

which serve to protect the natural environment.  Sites around the Harbour are designated as 

Areas of Outstanding Natural Beauty (AONBs) and the southern shores have Heritage Coast 

status.  Parts of Poole Harbour are designated as SSSI and a SPA, and the Harbour and 

surrounding areas are recognised under the International Convention on Wetlands of 

International Importance as a Ramsar site.  There are three National Nature Reserves (NNRs) 

and three Local Nature Reserves (LNRs), as well as reserves managed by the Dorset Wildlife 

Trust and the Royal Society for the Protection of Birds (RSPB).  The wetland habitats bordering 

the Harbour support large numbers of wintering, migrating and breeding birds along with many 

rare plants and invertebrates.  In particular, the mudflats and salt marshes are of great ecological 

value for feeding and roosting birds. 

The main population of black-headed gulls in Poole Harbour is situated in colonies on three 

islands: a larger island bordered closely on either side by two smaller islands of approximately 

half the size.  These salt marshes support a total of approximately 10000 breeding pairs of 

black-headed gulls. Although black-headed gull eggs were commercially harvested historically, 

this practise was prohibited in the early 1990’s and since then eggs from the Poole Harbour 

colonies have not been harvested.   
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Figure 1-6 Map of Poole Harbour showing Poole sampling site (from www.magic. 

gov.uk) 

1.6.3 Raby Estate 

The Raby Estate is located in the North Pennines, which is classified as an AONB.  A 

population of less than 500 pairs of black-headed gulls nest around a collection of small water 

bodies within the Estate, to the east of Cow Green Reservoir, south of Widdybank Fell and north 

of the River Tees, approximately 500 m above sea-level (Visit Cumbria, 2008). The land here is 

primarily blanket bog, typified by heather, wavy hair/cotton grass and bog moss, with some 

flushed areas dominated by rushes and sedges.  The area around Widdybank Fell is of 

international importance for its acid grassland, moorland and blanket bog habitats, which 

support a variety of upland birds and, most notably, breeding waders.  The site is also important 

for its rare arctic alpine plants, which are unique to Great Britain.  As a result, this area is a 

NNR (the Moor House-Upper Teesdale NNR) and a SSSI, as well as being designated a SAC 

and a SPA.   The Moor House-Upper Teesdale NNR is one of the largest (ca. 7400 ha) and most 

remote nature reserves in England, with some of the areas of the Raby Estate having restricted 

access due to the sensitive habitats they support.   
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The climate in the region is very different to the climate of the south coast sites.  The moorland 

where the black-headed gulls nest lies at an altitude of around 500 m above sea level, and the 

region is strongly influenced by the prevailing Atlantic climate with cool summers and mild 

winters, and experiences high average wind speeds (24 km/hour), low average annual 

temperatures (ca. 5ºC; average monthly temperature minimum 0.1ºC in February, maximum 

12.3ºC in July) and high average rainfall (1800mm; Turner et al., 2003; Armitage, 2006).  A 

map of the area and sample site is provided in Figure 1-7. 

 

Figure 1-7 Map of Widdybank Fell area showing Raby Estate sample site (from 

www.magic.gov.uk) 

The Raby Estate black-headed gull colony is collected at a very low level on behalf of the Estate 

Manager, for personal consumption.  The eggs are not sold commercially and a very small 

number - between 18 and 40 annually - are taken (Waddell, pers. comm.).  This practise is 

licensed through the UK Department of the Environment Food and Rural Affairs (Defra) in 

collaboration with Natural England.  
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1.7 Project aims and objectives 

1.7.1 Aims 

The principal aim of this project is to assess the concentrations of heavy metals and selenium in 

populations of black-headed gulls (L. ridibundus) from different breeding colonies in the UK 

which have different general characteristics and are subject to different sources, types and 

degrees of pollution, and to assess the suitability of eggs and feathers to provide an indication of 

local pollution. 

The following questions will be addressed: 

o What are the concentrations of heavy metals and the related semi-metal selenium in the 

eggs and feathers of black-headed gulls at the sites investigated? 

o How are the metals partitioned between the different egg components (yolk, albumen 

and shell)? 

o Do the concentrations of the metals investigated have any significant impact on the shell 

thickness, composition and quality of black-headed gull eggs? 

o Does commercial collection of black-headed gull eggs have an impact on the 

concentration of the metals investigated in eggs? 

o Are feathers a useful tool for non-destructive monitoring of heavy metals and selenium? 

o What differences can be observed between the degree and specific type of pollution 

between the sites investigated in this study? 

o Does nesting density affect the egg size of the black-headed gull, and could it be a 

confounding factor for other elements of study? 

1.7.2 Objectives 

In order to achieve the aims and answer the questions outlined above, the following research 

objectives have been identified: 

1) Take measurements of eggshell thickness, egg size and the weights of egg components 

(i.e. yolk, albumen and shell) from three colonies: an uncollected colony on the South 
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coast of England (Poole), a colony on the South coast of England from which black-

headed gull eggs are collected for commercial purposes (Lymington), and an inland 

colony in the North of England (Raby Estate), which is collected at a very low level and 

for non-commercial purposes.  Test the following null hypotheses: commercial egg 

collecting has no significant effect on the quality of black-headed gull eggs; and there 

are no significant differences between the physical characteristics of black-headed gull 

eggs from colonies located on the South coast of England and an inland colony in the 

North of England. 

2) Examine the concentrations of heavy metals and selenium in black-headed gull eggs 

(both total egg concentration and concentrations in yolk, albumen and shell) from the 

three colonies outlined in Objective 1.  Test the following null hypothesis: commercial 

egg collecting has no significant effect on the concentrations of heavy metals and 

selenium in black-headed gull eggs. 

3) Assess relationships between egg measurements from Objective 1 and metal 

concentrations in eggs from Objective 2 to investigate any trends or significant 

relationships.  Test the following null hypothesis: there are no significant interactions 

between concentrations of heavy metals and selenium measured in black-headed gull 

eggs and the physical characteristics and quality of the eggs. 

4) Use the results from Objective 2 to provide an indication of the extent of pollution at 

each of the sites and to make comparisons between sites according to the potential 

pollution sources in the surrounding area.  Test the following null hypothesis: 

concentrations of heavy metals and selenium in black-headed gull eggs do not provide 

an indication of local pollution. 

5) Relate the information on egg size, egg quality and concentrations of heavy metals and 

selenium in eggs gained from Objectives 1 and 2 to ecological outcomes, particularly 

effects on reproduction.  Use the knowledge gained to examine the possible effects of 

commercial egg collecting on the reproductive success of black-headed gulls.  Test the 

following null hypothesis: commercial egg collecting has no significant effect on the 

breeding success of black-headed gulls. 

6) Investigate the variation in egg sizes in nests from different areas of salt marsh island 

colonies (areas densely populated with nests versus less densely nested areas).  Use the 

data to make an assessment of which conditions are preferable for nesting for black-
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headed gulls on salt marsh islands, and to provide information on the general fitness of 

the birds in the colony.  In addition, the sampling strategy employed for egg collection 

may be validated by the results.  Test the following null hypotheses: nest density has no 

significant effect on egg size; and commercial egg collecting has no significant effect on 

nest density. 

7) Examine the concentrations of heavy metals and selenium in black-headed gull chick 

down from two colonies on the South coast of England, one subjected to commercial 

egg collection and one uncollected (Lymington and Poole).  Examine the suitability of 

feathers as a tool for measuring heavy metal contamination.  Test the following null 

hypotheses: concentrations of heavy metals and selenium in black-headed gull chick 

down do not reflect concentrations in black-headed gull eggs and local pollution 

sources.   

1.8 Thesis outline 

Chapter 2 provides details of the sampling strategy for the eggs examined in both Chapter 2 

and Chapter 5, and investigates variations in the size, dimensions and composition of black-

headed gull eggs between the sites examined in this study (Objective 1).  The differences in egg 

size, dimensions and composition between a site on which black-headed gull eggs are harvested 

for commercial purposes (Lymington), an unharvested site (Poole) and a site subject to low-

level non-commercial collection (Raby) are assessed, and comparisons are be made between 

eggs of black-headed gull colonies breeding on salt-marsh islands off the South coast of 

England (Poole and Lymington) and those from a colony nesting inland on blanket bog (Raby).  

The wet weight of the whole egg and of each of the components (yolk, albumen and shell), egg 

volume, yolk:albumen ratio, egg length and breadth, shell thickness and shell index are 

examined.  Data from this chapter will be further examined in Chapter 5 in order to assess the 

relationship between metal concentrations in eggs and potential impacts on the breeding success 

of black-headed gulls (Objectives 3 and 5), as indicated by the physical attributes of the egg. 

Chapter 3 examines the impacts of nesting density on the size of black-headed gull eggs 

nesting on two South coast colonies in England, one subject to commercial egg harvesting 

(Lymington), and one unharvested site (Poole).  Two separate areas of the colony are examined: 

a central, densely nested area of the colony, and a less densely nested area towards the edge of 

the colony.  Comparisons are made between the size of eggs (length, breadth and volume) from 
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each of these colony areas, and the relationship between nesting density and egg size is 

investigated (Objective 6).  This chapter will also test the validity of the sampling strategy used, 

as described in Chapter 2. 

Chapter 4 provides an assessment of the potential sources of pollution around each of the study 

sites, within the foraging radius of breeding black-headed gulls.  Potential sources of pollution 

discussed include industry (including fuel and power, metal, mineral and chemical industries), 

waste (landfill, sewage and waste treatment), boats and shipping, local land use (including 

roads, agricultural land and urban areas).  The information from this chapter will be used to link 

in with the metal concentrations in black-headed gull eggs in Chapter 5, in order to identify 

possible sources of exposure to metal pollution impacting on the colonies (Objective 4). 

Chapter 5 assesses the concentrations of heavy metals and selenium in black-headed gull eggs.  

Differences in the concentrations of heavy metals and selenium in eggs from a commercially 

harvested site (Lymington), an unharvested site (Poole) on the South coast of England and an 

inland site in the North East of England subject to low-level, non-commercial harvesting (Raby) 

are compared (Objective 2).  Data for egg size, dimensions and composition from Chapter 2 are 

assessed alongside the metals data, to examine the effect of heavy metals and selenium on 

physical attributes of the egg Objectives 3 and 5).  Information for potential pollution sources 

around each of the sites, discussed in Chapter 4, is examined alongside the metals data, in order 

to identify potential sources of the metal concentrations reported in the eggs. 

Chapter 6 assesses the concentrations of heavy metals and selenium in black-headed gull 

feathers, specifically chick down.  Differences in the concentrations of heavy metals and 

selenium in feathers from chicks on a commercially harvested site (Lymington) and an 

unharvested site (Poole) are compared to assess potential impacts of commercial egg harvesting 

on metal concentrations in the down of chicks.  The correlations between metal concentrations 

measured in chick down and concentrations measured in eggs is examined (Objective 7), and 

the effectiveness of feathers as a tool for non-destructive monitoring of metal pollution is 

discussed.  
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CHAPTER 2. HOW DO THE SIZE, DIMENSIONS AND 

COMPOSITION OF BLACK-HEADED GULL EGGS VARY 

BETWEEN SITES? 

2.1 Introduction 

Egg size and composition (weight/volume of components and yolk:albumen ratio) have been 

shown to have a significant effect on the reproductive success of birds, with larger eggs 

producing larger chicks with an increased chance of survival (Parsons, 1970; Smith, 1974; 

Parsons, 1975; Nisbet, 1978; Lundberg & Väisänen, 1979; Moss et al., 1981; Birkhead & 

Nettleship, 1982; Furness, 1983; Bolton, 1991; Styrsky et al., 1999) and eggs with large yolks 

producing larger hatchlings (Carey, 1996; Finkler et al., 1998; see Section 2.1.1).  Eggshell 

quality has also been demonstrated to have a significant effect on breeding success; thinner 

shells lead to increased eggshell breakage and hatching failure (Hickey & Anderson, 1968; 

Enderson & Berger, 1970; Ratcliffe, 1970; Newton, 1973; Newton et al., 1978; Newton et al., 

1983), and shell thickness affects the regulation of water loss from the egg (Booth & Seymour, 

1987; Davis & Ackerman, 1987; Eeva & Lehikoinen, 1995; Nybø et al., 1997; Helander et al., 

2002).  Both of these factors have an impact on the overall breeding success of birds (see 

Section 2.1.2).  The size, dimensions and composition of eggs may therefore be used as an 

indicator of the reproductive success of birds, and this chapter aims to assess the differences 

between black-headed gull egg size, dimensions and composition and relate these to the 

differences between the sites in terms of the impacts of the collection regimes, notwithstanding 

the concentrations of heavy metals and selenium in the egg.  Data for metal concentrations will 

be analysed in conjunction with the data for egg characteristics in this chapter in Chapter 5, in 

order to assess the impacts of metals on black-headed gull egg size and structure.   

2.1.1 Egg size and composition  

Egg size can be measured easily, non-destructively and causes less disturbance than taking 

measurements of hatchlings.  Size of egg (measured as total egg mass or egg volume in most 

studies) can be used as a measure of reproductive fitness for a number of bird species, and has 

been shown to reflect the intrinsic quality of the laying female and hence provide an indication 

of the quality of the colony as a whole (Parsons, 1970; Davis, 1975; Lundberg & Väisänen, 
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1979; Houston et al., 1983; Wood, 2007).  Increased egg production, for example as a result of 

birds forced to relay following egg harvesting, has been shown to reduce the condition of the 

laying female and the ability to rear young (Heaney & Monaghan, 1995; Monaghan et al., 

1998).  If the quality of the laying bird is poor, foraging efficiency may be compromised and 

this may go some way towards explaining the connection between quality of the laying female 

and the size of the eggs laid: laying smaller eggs might be advantageous to the bird’s individual 

breeding success, with smaller chicks hatching from smaller eggs requiring less food and, where 

large chicks might starve, smaller ones with a slower growth rate might survive (Perrins, 1996).  

Equally, good quality, healthy birds may produce larger chicks from larger eggs, as they are 

healthy enough to forage and provide for their chicks effectively.   

Many studies have shown that larger eggs tend to produce larger, heavier chicks at hatching and 

chicks which have a growth advantage early in the nestling period over those hatching from 

smaller eggs (Smith, 1974, black-capped chickadee (Poecile atricapillus); Parsons, 1975, 

herring gull (L. argentatus); Nisbet, 1978, tern species; Lundberg & Väisänen, 1979, black-

headed gull;  Moss et al., 1981, red grouse (Lagopus lagopus scotias); Birkhead & Nettleship, 

1982, thick-billed murre (Uria lomvia); Furness, 1983, great skua (Catharacta skua); Bolton, 

1991, lesser black-backed gull (Larus fuscus); Styrsky et al., 1999, house wren (Troglodytes 

aedon)).  An increased chance of survival for chicks from larger eggs has also been 

demonstrated with the herring gull (L. argentatus; Parsons, 1970).  Large eggs are generally 

thought to be more successful because they provide the embryo with more and higher quality 

nutrients (Parsons, 1970); however, large eggs also confer some physiological advantages and 

provide a thermoregulatory advantage (Rhymer, 1988; Wiebe & Bortolotti, 1995).  As egg size 

increases, the surface area:volume ratio decreases, meaning that the larger eggs retain heat more 

effectively and lose proportionately less water through evaporation (Drent 1970) and at a 

relatively lower rate (Carey et al. 1983). If the parent has to be away from the nest, larger eggs 

will therefore cool more slowly than smaller ones (Perrins, 1996).  Birkhead and Nettleship 

(1982) suggest that female seabirds that lay late owing to the loss of the first clutch may be more 

successful (in terms of fledging mass of chicks) if they minimise the delay in laying by 

producing a small egg earlier, rather than further delay laying in order to develop and produce a 

larger egg.  This would suggest that birds that have been forced to relay, either following natural 

egg loss or egg loss due to commercial egg harvesting, may lay smaller eggs in order that the 

time taken to reproduce the clutch is reduced. 

It is also suggested that egg size reflects the quantity of yolk reserves available to the chick 

(Bolton, 1991), with some authors reporting that larger eggs contain more yolk (Ricklefs et al., 
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1978).  As yolk is the food reserve for the developing embryo, large-yolked eggs that carry more 

lipid energy for the chick during the embryonic stage may result in larger hatchlings, both in 

terms of skeletal size and in terms of mass (Carey, 1996; Finkler et al., 1998).  In a review by 

Williams (1994), egg size was found to explain on average 66% of the variation in chick mass at 

hatching, but only 30% of the variation in chick body size.  When effects of hatching body size 

were controlled for, chick mass remained significantly correlated with egg size, but the reverse 

is not true (Williams, 1994). This suggests that large eggs give rise to heavier chicks at hatching, 

rather than structurally larger chicks.  It has been demonstrated by other authors that chicks from 

large-yolked eggs hatch with more residual yolk reserves, that is, yolk which is unused at 

hatching and is withdrawn into the yolk sac of the chick and used to provide energy after 

hatching (Perrins, 1996).  This residual yolk is crucial for survival during the first few days of 

life (Parsons, 1970; Lundberg & Väisänen, 1979).  Lundberg and Väisänen (1979) observed 

that, for black-headed gulls, chick mortality in the first week depended strongly upon egg size 

and on the weight of the newly hatched chicks.  If yolk reserves are a key factor in chick 

survival, yolk mass would influence chick growth for only the first few days, after which 

parental feeding would compensate for any differences in egg size (O'Connor, 1975).  However, 

these first few days of life are critical, and it is during this period where high mortality often 

occurs (Parsons, 1970).   

In contrast to the theory that a larger egg means greater yolk reserves, studies have also shown 

that, particularly for seabirds (Williams, 1994), although larger eggs contain absolutely greater 

quantities of all constituents, they contain relatively less yolk and more albumen than their 

smaller counterparts in terms of yolk:albumen ratio (Romanoff & Romanoff, 1949; Parsons, 

1976a; Nisbet, 1978; Ricklefs et al., 1978; Finkler et al., 1998; Lessells et al., 2002).  As 

albumen is composed almost entirely of protein and water, these latter studies suggest that the 

differences between large and small eggs lie mainly in the protein and/or water content, rather 

than the lipid, which is considered by most to be the better indicator of egg ‘quality’ (Bolton, 

1991; Williams, 1994).  This would suggest that the yolk:albumen ratio in the egg provides a 

more accurate reflection of egg quality than individual measurements of albumen and yolk 

without compensating for differences in egg size.  In contrast, some authors suggest that it is the 

albumen that is the primary determinant of hatchling size and hatchling success, either due to 

being the primary source of water in the egg (Simkiss, 1980; Finkler et al., 1998), or through 

being a major source of protein in the egg, which is important for embryonic development 

(Nisbet, 1978). 
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It is important to consider the fact that egg size is often a reflection of age and quality of the 

parents (Coulson & White, 1958; Davis, 1975; Ricklefs, 1984; Bolton, 1991; Sydeman & 

Emslie, 1992; Williams, 1994) and this may therefore be a confounding factor in studies that 

assume increased chick weight, size, survival and so on are entirely a product of the size of the 

egg from which they hatched.  Parents of higher quality and with greater breeding experience 

may also have better chick-rearing abilities (Birkhead & Nettleship, 1982; Bolton, 1991), which 

could also be a confounding variable in the egg size/chick survival relationship.  In spite of this, 

data in a study by Bolton (1991), examining chick survival in the lesser black-backed gull (L. 

fuscus) in relation to egg size and parental quality, indicate that the advantages of large egg size 

are real and can act independently of parental quality.  A number of studies have attempted to 

separate the effects of parental quality and egg size by exchanging eggs between nests (meaning 

birds that laid large eggs raise chicks from small eggs, and vice versa; Schifferli, 1973; Parsons, 

1975; Nisbet, 1978; Reid & Boersma, 1990; Amundsen et al., 1996; Hipfner & Gaston, 1999).  

These studies suggest that egg size does indeed influence chick success, particularly in the early 

stages of development, irrespective of parental quality. 

The size of the eggs in a clutch has been shown to vary with clutch sequence, with the first laid 

‘a’ egg being the largest, followed by the second ‘b’ egg, and the third  (usually final in gulls) 

‘c’ egg being smallest (Parsons, 1972).  In herring gulls (L. argentatus), the c-egg is an average 

of 11% smaller than the a-egg, and the b-egg rarely more than 2% smaller than the a-egg 

(Parsons, 1972).  This phenomenon has been reported for other species, with differences 

reported between a- and c-eggs of 9.4% for the lesser black-backed gull (L. fuscus; Paludan, 

1951), 7.0% for the laughing gull (L. atricilla; Preston & Preston, 1953), and 7.3% for the 

black-legged kittiwake (Rissa tridactyla; Coulson, 1963).  For black-headed gulls, Wood et al. 

(2009) report the c-egg to be significantly smaller than the a- and b-eggs.  In this study eggs 

were sampled from nests containing only one egg, assuming this to be the first egg laid (i.e. the 

‘a’ egg) and therefore eliminating any confounding influence of the position of the egg in the 

sequence of the clutch sampled in the investigations into differences in egg size between sites.  

2.1.2 Eggshell thickness and shell index 

The impacts of eggshell thinning are widely documented and include increased eggshell 

breakage and hatching failure, which can lead to a dramatic reduction in reproductive success 

(Hickey & Anderson, 1968; Enderson & Berger, 1970; Ratcliffe, 1970; Newton, 1973; Newton 

et al., 1978; Newton et al., 1983).  Aside from breaking and cracking more easily, thin shells are 
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associated with increased water vapour conductance and hence desiccation.  The pores and 

underlying shell membranes of the egg form a resistance to gas exchange and therefore regulate 

water loss; the diffusion capacity of eggshells is a compromise between the need for sufficient 

exchange of respiratory gases and the need to minimise water loss (Nybø et al., 1997).  Eggshell 

thinning has been shown to result in increased water loss  (Booth & Seymour, 1987; Helander et 

al., 2002), which can result in excess desiccation of the egg and the embryo and have a strong 

negative effect on hatching success (Davis & Ackerman, 1987; Eeva & Lehikoinen, 1995; Nybø 

et al., 1997).  On the other hand, shells which are too thick could also be problematic as they 

may limit the exchange of respiratory gases, or cause problems during hatching (Perrins, 1996).  

However, no reports were found that documented problems associated with overly thick shells 

and, in a study with commercial breeders, at no time did the eggs appear too thick to hatch 

properly, with eggs with thicker-than-average shells causing no apparent problems (Bennett, 

1992).  Unfortunately, no data could be found providing an indication of an ‘optimum’ shell 

thickness for black-headed gulls. 

Eggshell thickness may depend on the amount of calcium that the birds can acquire (Pierotti & 

Annett, 1990; Perrins, 1996).  The female has to obtain calcium in large quantities for the 

production of eggshells during the laying process; female gulls mobilise up to 10% of their 

skeletal mass per day for egg formation (Houston et al., 1983), and feeding on calcium-rich 

foods may facilitate more rapid recovery of the breeding period, improving their capacity to rear 

their brood (Monaghan et al., 1998).  Birds of inferior quality and health are likely to have a 

reduced capacity for foraging in general, and may therefore struggle to access sufficient 

calcium-rich foods (as well as foods rich in other nutrients); as a result, lower quality birds may 

lay eggs with lower quality, thinner shells.   

Although direct measurements of shell thickness can be made using a micrometer, the surface 

area:volume ratio decreases as egg size increases, and it is therefore also beneficial to measure 

some kind of index of thickness based on the egg dimensions.  The most commonly used is the 

Shell Index devised by Ratcliffe (also known as the Ratcliffe Index; Ratcliffe, 1967), which is 

described below in Section 2.2.2.  By calculating an index of shell thickness based on shell 

mass, egg length and breadth a thickness based on the entire surface area of the shell can be 

obtained. 
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2.1.3 Impacts of egg harvesting on egg quality 

As previously mentioned, reduction in egg size in replacement clutches has been reported by a 

number of authors, both for gulls (Parsons, 1976a; Brown & Morris, 1996; Nager et al., 2000), 

and for other seabird species (Feare, 1976b; Hipfner et al., 2003).  Only one previous study 

could be found examining the effects of egg harvesting on egg quality: Wood et al. (2009), 

studied several black-headed gull colonies in Dorset and Hampshire, including the colonies 

examined in this study.   The study found that the quality of eggs taken from the commercially 

harvested colonies was inferior to those from the unharvested colonies in several respects.  Egg 

size in terms of volume was significantly greater and ratio of yolk:albumen was significantly 

higher in eggs from the uncollected colonies compared to the collected colonies.  However, it 

should be noted that, in the case of the Wood et al. (2009) study, yolk:albumen ratios were 

calculated based on volume, whereas in this study the ratio is based on mass, which is the more 

widely used method of calculating yolk:albumen ratio (Scott & Warren, 1941; Ricklefs, 1977; 

Meathrel & Ryder, 1987; Hussein et al., 1988; Harms & Hussein, 1993; Yannakopoulos et al., 

1998; Kuchida et al., 1999; Kilpi et al., 2008) and allows comparison with ratios reported in 

other studies.  Eggshell thickness was also measured, and results showed that the eggs from the 

uncollected colonies had significantly thicker shells than those from the collected colonies.  The 

study also examined the numbers of abnormal and failed eggs on each of the different colonies, 

and found that the collected colonies had a significantly higher proportion of failed eggs, and a 

significantly higher proportion of white eggs (i.e. shells without pigmentation), half-white eggs, 

abnormally small and yolkless eggs, and eggs with corroded shells (see also Section 1.5.1).   

2.2 Methods 

2.2.1 Egg collection: 2005 & 2006 

Under appropriate English Nature (now Natural England) permits (‘License to Kill, Take or 

Have in Possession Wild Birds’ Eggs’ and ‘License to Disturb Schedule 1 Birds for Science, 

Research or Conservation’; License numbers 20051226 and 20061003) and permission from the 

land owners, black-headed gull eggs were collected at Lymington and Poole during April/May 

2005 and 2006 (for site details, refer to Section 1.6).  From the Lymington site, ten eggs were 

collected at the start of the breeding season, prior to the commencement of the commercial egg 

harvesting period in 2005 and 2006; these eggs are referred to as ‘Lymington Early’ eggs.  A 

further ten eggs were collected from the Lymington site from the first clutches laid after the 
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commercial egg harvesting period had ceased, also in 2005 and 2006; these are termed 

‘Lymington Late’ eggs.  In Poole ten eggs were collected from the breeding site during the peak 

of the laying period in both 2005 and 2006.  In 2006 only, ten eggs were obtained from the Raby 

Estate in the North Pennines.  Again, eggs were collected during the peak laying period.  In the 

post-collection samples from the Lymington colony in 2005, one of the eggs was damaged 

during transit to such an extent that it was not fit for examination, and thus only nine eggs were 

examined in the 2005 ‘Lymington Late’ sample set. 

In accordance with recommendations in the Seabird Monitoring Handbook (Walsh et al., 1995), 

each visit to a colony was kept to one hour or less in order to reduce chilling of chicks and eggs, 

and colonies were not entered during rainfall or strong cold winds.  At each of the sites, eggs 

were sampled from nests containing only one egg, assuming these to be the first laid, in order to 

ensure that eggs were fresh and would not have started to develop.  Where eggs were found to 

be cold they were assume to be abandoned/addled and were not sampled.  Sampling of eggs 

from nests containing only one egg - likely to be the first laid - also meant that the eggs sampled 

were from birds at approximately the same laying stage.  The majority of nests on the colonies 

at the time of sampling contained only one egg, and as such this was assumed to be the start of 

the peak laying period.  Eggs were also sampled from nests located in the centre of the colony 

where nesting was most dense, assuming this to be the most desirable nesting area and thus 

secured by the birds in the best condition.  This method was employed in order to ensure eggs of 

birds of similar ‘typical’ quality were sampled, as it has been demonstrated that birds nesting 

outside of the main colony areas are often of lower quality in terms of reproductive success 

(Patterson, 1965; Gochfeld, 1978; Yahner, 1983).  Nest site selection, breeding bird quality and 

impacts on breeding success are discussed in detail in Chapter 3. 

Eggs were stored frozen, intact, pending analysis.  Freezing eggs as a whole unit minimises 

water loss and any potential loss of volatile contaminants from the egg contents (Mora et al., 

2008).  All egg samples were treated in the same way in order to maintain uniformity in the 

study. 

2.2.2 Egg measurements 

The outer dimensions (maximum width and length) of each egg were measured using vernier 

callipers (accurate to ±0.1 mm) and the egg volume estimated using the following calculation  
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(from Hoyt, 1979):  

     V = Kv·L·B
2              (Equation 2.1) 

Where V = volume, Kv = volume coefficient, L = length and B = maximum diameter. 

Although species-specific volume coefficients have been developed for a number of species, 

Hoyt (1979) suggests that volume can be estimated with a common volume coefficient of 0.51 

that is applicable to eggs of most species (with the exception of species in which eggs are very 

pointed); thus a value of 0.51 was used for Kv in calculating the volume of the eggs in this study.  

This method has been previously used for the measurement of black-headed gull eggs by Wood 

et al. (2009). 

Shell index (SI; also known as Ratcliffe Index) was calculated as follows (from Ratcliffe, 1967): 

     SI = m/lb       (Equation 2.2)  

Where m = wet weight of the eggshell, l = egg length, and b = egg breadth. 

This calculation for shell index has been used by a number of authors as a measure of eggshell 

thinning, (Peakall & Lincer, 1996; Nybø et al., 1997; Pain et al., 1999; Helander et al., 2002) 

and enables comparison of the results from this study with a range of others.  By calculating an 

index of shell thickness based on shell mass, egg length and breadth, a thickness based on the 

entire surface area of the shell is obtained.  Eggshell thickness was also measured directly (see 

below), to enable comparisons with literature data where this measurement was made. 

Prior to analysis, eggs were thawed, weighed whole to obtain a total egg mass and then carefully 

cut open with a scalpel.  The egg contents were removed and separated, and the weights of the 

yolk and albumen recorded.  Egg yolks were rolled on a clean sheet of lab roll, in order to 

remove any excess albumen. Eggshells were washed in Milli-Q® water and dried, before 

measurement of the eggshell thickness at four points around the equator of the egg, using an 

adapted spring closing micrometer (±0.01 mm) with a rounded tip at the point of contact to fit 

the curvature of the shell.   

The variables/parameters measured/calculated were as follows:  wet weight of the total egg, wet 

weight of albumen (direct measurement), wet weight of albumen (calculated from total egg 

weight less weight of yolk and shell), wet weight of yolk, wet weight of shell, yolk:albumen 

ratio, maximum egg length, maximum egg width, total egg volume, shell thickness and shell 



Kirsty Pickard 

PhD thesis - May 2010 

 

 43 

index.  All weights were measured in grams or milligrams and length, width and shell 

thicknesses measured in millimetres.  Egg volume was calculated using the Hoyt (1979) 

equation (Equation 2.1) and shell index calculated using the Ratcliffe (1967) calculation 

(Equation 2.2), previously described.  Some loss of albumen occurred during egg separation as, 

owing to its attachment to the yolk, it was not always possible to remove the albumen 

completely and the yolk needed to be gently rolled on a sheet of lab paper to remove the excess, 

which it was not possible to recover.  Thus two measurements of wet albumen mass were 

recorded - one measured and one calculated from the subtraction of the wet weights of the yolk 

and shell from the wet weight of the whole egg, to obtain a calculated albumen wet weight.  

Owing to the loss of albumen during the separation process, the calculated mass of albumen is 

assumed to be the more accurate measure, and thus the yolk:albumen ratio was computed using 

the calculated wet weight of albumen, and the calculated mass of albumen was used in all 

further examination of the results. 

2.3 Results 

Figures 2-1 to 2-7 provide bar charts of the means for each of the sites (mean of combined 2005 

and 2006 data for Lymington and Poole, mean of 2006 data for Raby).  Note: ‘Lym Early’ and 

‘Lym Late’ refer to Lymington Early and Lymington Late eggs, as described in Section 2.2.1.  

N = 69: n = 20, 19, 20 and 10 for Lymington Early, Lymington Late, Poole and Raby sample 

sets, respectively. 
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Figure 2-1 Mean (± standard error) yolk wet weight for black-headed gull eggs from 

different sites, 2005-2006 (N = 69) 

 

 

Figure 2-2 Mean (± standard error) albumen wet weight for black-headed gull eggs 

from different sites, 2005-2006 (N = 69) 
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Figure 2-3 Mean (± standard error) yolk:albumen ratio for black-headed gull eggs from 

different sites, 2005-2006 (N = 69) 

 

Figure 2-4 Mean (± standard error) maximum egg length for black-headed gull eggs 

from different sites, 2005-2006 (N = 69) 
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Figure 2-5 Mean (± standard error) maximum egg width for black-headed gull eggs 

from different sites, 2005-2006 (N = 69) 

 

Figure 2-6 Mean (± standard error) shell thickness for black-headed gull eggs from 

different sites, 2005-2006 (N = 69) 
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Figure 2-7 Mean (± standard error) shell index for black-headed gull eggs from 

different sites, 2005-2006 (N = 69) 

 

Statistical analysis was carried out on the whole dataset, i.e. combined 2005 and 2006 data, for 

the Lymington and Poole samples.  Data were pooled in this way to increase the sample sizes 

for analysis and to provide a general overview of the differences between the sites in terms of 

the physical characteristics of the eggs.  In addition, no eggs were sampled at the Raby site in 

2005 and egg data were therefore only for 2006 for this site.   

In order to meet the requirements of parametric tests, data must be independent, normally 

distributed and have equal variance (Townend, 2002).  In this dataset not all data were 

independent as in some cases a parameter was calculated using a measured variable; for 

example, the wet weight of albumen was calculated from the wet weight of the whole egg less 

the yolk and shell wet weights, the total egg volume was calculated using the length and breadth 

of the egg, and the shell index was calculated using the wet weight of the shell divided by the 

length and breadth of the egg.  To maintain independence of the data, total wet weight of the 

egg, total egg volume and wet weight of the eggshell were not included in further statistical 

analysis.  The total wet weight of the egg is reflected in the wet weights of the individual egg 

components and it was therefore not considered necessary for this measurement to be included 

in the subsequent statistical analysis.  The total egg volume was removed from the dataset in 

preference to retaining the measured variables of egg length and breadth.  Shell index was 

retained in the analysis in place of the wet weight of the shell, as the shell mass is included in 
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the shell index calculation, and shell index is considered to be the better measure of shell quality 

as it takes into account the thickness based on the entire surface area of the shell (see Section 

2.2.2). 

Normal distribution of the data was assessed using the Kolmogorov-Smirnov (K-S) test, which  

acts as a goodness-of-fit test, comparing the distribution in the data set being tested with the 

distribution of normally distributed data (Townend, 2002).   If p ≤0.05 the data are not normally 

distributed and may need to be transformed for the purposes of further statistical tests, or 

analysed using non-parametric tests.  K-S test, which revealed that all data were normally 

distributed (p >0.05), with the exception of the data for maximum egg width (p = 0.02).  From 

the raw data there appears to be very little variation in the measurements of maximum egg 

width, and transforming the data (logarithmic, reciprocal, squared, cubed, square root, inverse 

square root, cube root and inverse cube root) did not result in a normal distribution.  The raw 

data were therefore used in the subsequent statistical tests, but any significant difference in 

maximum egg width between sites should be treated with caution and subjected to further tests, 

owing to the lack of normal distribution. 

Equal variance in the data can be examined using Levene’s test of homogeneity of variance, 

which examines the variance across multiple samples (Field, 2005).  Levene’s test for 

homogeneity of variances revealed that all variances were equal (p >0.05). 

The differences between the sites were then investigated using a one-way analysis of variance 

(ANOVA) test to compare the means of the samples.  ANOVA demonstrates that, for the 

variables/parameters where there are significant differences between the means for the different 

sites (populations), it can be concluded that at least two of the population means are 

significantly different.  Table 2-1 provides a summary of the ANOVA data. 
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Table 2-1 ANOVA results for comparison of characteristics of black-headed gull eggs 

between sites, 2005-2006 

n F value p Significance

Wet weight yolk 

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Wet weight albumen 

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Yolk:Albumen ratio 

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Egg length

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Egg width

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Mean shell thickness

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Shell index

Lym Early 20

Lym Late 19

Poole 20

Raby 10

*

**

**

2.818

10.14

7.724 <0.001

<0.001

0.046

5.214

1.247

2.59

5.179 0.003

0.060

0.300

0.003 **

NS

NS

**

 

* = significant (p ≤0.05); ** = highly significant (p ≤0.01); NS = not significant. 
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ANOVA shows that there is a significant difference between the sites for wet weight of the yolk 

(p = 0.046), wet weight of the albumen (p <0.001), the yolk:albumen ratio (p <0.001), the 

maximum egg length (p = 0.003) and the shell index (p = 0.003).  No significant differences 

between sample sites were found for maximum egg width or mean eggshell thickness.  

Although ANOVA identifies significant differences between the different populations for each 

of the variables, it does not provide information as to exactly which populations are significantly 

different.  In order to establish which of the sites differ for the variables, a post-hoc test is 

required.  In this case, a Tukey test was used to compare all possible pairs of means and identify 

where the difference between two means is greater than the standard error would be expected to 

allow (Townend, 2002).  The significant results from the Tukey test are presented in Table 2-2. 

Table 2-2 Tukey test results for comparison of characteristics of black-headed gull 

eggs between sites, 2005-2006 

Significant site differences n
Mean 

difference
S.E. p Significance 

Wet weight yolk Raby > Lym Late 19 1.09 0.380 0.028 *

Lym Late > Lym Early 39 2.92 0.730 0.001 **

Lym Late > Poole 39 3.28 0.730 <0.001 **

Raby > Lym Early 30 2.77 0.882 0.013 *

Raby > Poole 30 3.13 0.882 0.004 **

Lym Early > Lym Late 39 0.09 0.226 0.001 **

Poole > Lym Late 39 0.1 0.226 <0.001 **

Max egg length Raby > Poole 30 3.46 0.924 0.002 **

Max egg width None - - - - NS

Eggshell 

thickness
None - - - - NS

Raby > Lym Late 19 0.21 0.072 0.025 *

Raby > Poole 30 0.27 0.071 0.002 **

Wet weight 

albumen 

Y:A ratio

Shell index

 

* = significant (p ≤0.05); ** = highly significant (p ≤0.01); NS = not significant.  S.E. = standard error. 

The data from Figures 2-1 to 2-7 and the post-hoc Tukey test (Table 2-2) provide information as 

to which sites differ from one another and how.  The results show that the ‘Lymington Late’ 

eggs - those taken from the Lymington colony after the commercial egg collecting period had 
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ceased - had a significantly greater mass of albumen than the Poole and the ‘Lymington Early’ 

(eggs taken at the start of the breeding season, as commercial egg collecting began) sample sets 

(p = <0.001 and 0.001, respectively).  In terms of yolk:albumen ratio, however, the Poole and 

Lymington Early samples had a significantly greater yolk:albumen ratio than the Lymington 

Late eggs (p = <0.001 and 0.001, respectively).  Eggs from the Raby site had a significantly 

greater yolk mass than those taken from Lymington after the collection period (p = 0.028), and 

were significantly longer than those from the Poole colony (p = 0.002).  Although no significant 

differences were found between sites for eggshell thickness, the shell index for the Raby eggs 

was significantly higher than for both the Lymington Late and the Poole eggs (p = 0.025 and 

0.002, respectively). 

2.4 Discussion 

Differences were observed between the Lymington eggs collected before the commercial egg 

harvesting period (Lymington Early) and those collected at the end of the commercial 

harvesting period (Lymington Late), i.e. those eggs that would have been allowed to develop 

and ultimately hatch.  The Lymington Late eggs had a significantly greater mass of albumen 

than the Lymington Early eggs; however, in terms of yolk:albumen ratio, the Lymington Early 

eggs contained more yolk relative to egg size than the Lymington Late eggs.  Egg size has been 

reported to be reduced in replacement clutches (Feare, 1976b; Parsons, 1976a; Brown & Morris, 

1996; Nager et al., 2000; Hipfner et al., 2003) and increased egg production has been shown to 

reduce endogenous proteins (Bolton et al., 1993; Cooke et al., 1995), which are used to form 

eggs and limit the production of replacement clutches, reducing egg size and egg quality, 

measured by yolk:albumen ratio (Robbins, 1981; Houston et al., 1983; Bolton et al., 1992; 

Monaghan et al., 1998; Hipfner et al., 2003).  The results for yolk:albumen ratio in this study 

indicate that the eggs of the Lymington colony laid prior to commercial egg collecting are of a 

greater intrinsic quality than those collected after the commercial egg harvesting period, as they 

contain greater relative yolk reserves for the developing embryo and newly-hatched chick.   

The eggs from the uncollected Poole colony and the commercially collected Lymington colony 

exhibited some differences in terms of egg contents.  Eggs from the Poole colony contained less 

albumen than those from the post-collection Lymington Late sample set, but in terms of 

yolk:albumen ratio the Poole eggs were significantly greater than the Lymington Late eggs.  

There was no statistically significant difference between the Poole and the Lymington Early 

eggs for either of these characteristics.  Again, this would suggest that the eggs from the 
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uncollected Poole colony are of higher quality than those eggs sampled from Lymington at the 

end of the commercial collecting period.  

In a previous study carried out on a number of colonies on the Dorset and Hampshire coast, 

including those colonies discussed in this study, the results also showed an adverse effect of 

commercial egg harvesting on eggshell thickness in black-headed gull eggs (Wood, 2007; Wood 

et al., 2009), with eggs from collected colonies reported to have thinner shells than those from 

uncollected colonies.  In the present study, although the eggs from the collected Lymington 

colony prior to the commercial collection period had thicker shells and a higher shell index than 

eggs from the same colony post-collection, this difference was not statistically significant. There 

were no significant differences between the Poole and Lymington colonies in terms of shell 

thickness or shell index.  In fact, the pre-collection Lymington eggs had thicker shells and a 

higher mean shell index than the Poole eggs, although this was not statistically significant, and 

post-collection Lymington eggs had similar shell thicknesses, and a slightly higher (not 

statistically significant) mean shell index, compared to the Poole eggs.  Therefore, the results of 

this study provide no indication that egg collection has a significant effect on eggshell quality.   

Significant differences were observed between the small, inland Raby colony in North East 

England and the larger, coastal colonies on the South coast.  Firstly, the Raby eggs were 

significantly longer than the eggs from the uncollected Poole colony.  However, it should be 

noted that egg length has been shown to be a poor predictor of chick weight, and in fact chicks 

from broad short eggs have been found to be more successful than those from long narrow ones 

(Lundberg & Väisänen, 1979).  Egg width is therefore considered to be more important than egg 

length in terms of breeding success, and no significant differences were observed between the 

Raby and Poole sites in terms of egg width in this study (p = 0.30), nor were any significant 

differences observed between eggs in term of egg width for any of the sites studied. 

Eggs from the Raby site, which is subject to very low-level non-commercial harvesting, had a 

significantly greater mass of albumen than the pre-collection (Lymington Early) eggs and the 

Poole eggs, and a significantly greater wet weight of yolk than the eggs taken from the 

Lymington colony, post-collection (Lymington Late; Figure 2-1); no significant difference was 

found between the Raby colony and the pre-collection Lymington eggs (Lymington Early).  The 

greater mass of yolk in the Raby eggs might also suggest that these eggs are higher quality than 

the Lymington Late eggs; however, no difference was observed between the two sites in terms 

of yolk:albumen ratio between eggs from the Raby site and any of South coast site eggs (Poole, 

Lymington Early, Lymington Late).  The yolk:albumen ratio is thought to provide a more 
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accurate indication of egg quality than individual measurements of either yolk or albumen, as it 

takes into account the total egg mass (Bolton, 1991; Williams, 1994).   

Although no significant differences were found between the shell thicknesses of the Raby eggs 

and the eggs from either Lymington (pre- or post-collection) or Poole, significant differences 

were found between eggshells in terms of shell index.  Many authors consider shell index to be a 

more reliable measure of shell quality than simple measurements of shell thickness (Peakall & 

Lincer, 1996; Nybø et al., 1997; Pain et al., 1999; Helander et al., 2002), as calculating an index 

of shell thickness based on shell mass, egg length and breadth, means that a thickness based on 

the entire surface area of the shell is obtained.  The Raby eggs had a significantly higher average 

shell index than both the Poole eggs and the Lymington Late eggs (p = 0.002 and 0.025, 

respectively).  No significant difference was found between the Raby eggs and the Lymington 

Early eggs.   

As previously mentioned, eggshell thickness may depend on the amount of calcium that the 

birds can acquire (Pierotti & Annett, 1990; Perrins, 1996).  Laying females that have been 

forced to relay several times owing to commercial harvesting of their eggs have been 

demonstrated to have reduced endogenous reserves and consequently reduced foraging 

efficiency (Monaghan & Nager, 1997).  A reduced capacity for foraging may lead to difficulties 

in accessing sufficient calcium-rich foods (as well as foods rich in other nutrients) and, as a 

result, birds that have been forced to relay and are subsequently of a lower quality may lay eggs 

with lower quality, thinner shells.  However, despite the relatively large mass of their eggshells, 

seabirds are not considered to be among those birds that selectively ingest calcium rich items 

before egg laying (Boersma et al., 2004; Diller, 2004), most likely as a result of their varied diet 

consisting of a large proportion of invertebrates, fish and shellfish, which are foods rich in 

calcium.  The results of the comparisons made in this study between two similar colonies in 

terms of size, type and location, but one commercially harvested and one unharvested 

(Lymington and Poole, respectively), suggest that commercial egg harvesting does not have a 

significant effect on shell thickness.   

The eggshell has an extremely important role in the health of the developing embryo and must 

be protective and permeable to allow for successful embryonic growth and hatching. As a result, 

many authors suggest that eggshell thickness does not vary greatly within a species, rather the 

properties of the shell may be different in response to different environments (Rahn et al., 1977; 

Carey, 1980; Visschedijka & Rahn, 1981).  This may explain the fact the eggshell 

thickness/shell index was not found to vary significantly between the two colonies located on 
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the South coast of England, in spite of commercial collection on one of the sites, but the shell 

index was significantly higher for eggs from the North East Raby colony than those from the 

Poole and Lymington colonies (post-collection Lymington eggs significantly different, pre-

collection Lymington eggs lower but not statistically significantly different).  It may be that the 

black-headed gulls of the Raby colony have adapted according to the cooler climate of the North 

Pennines compared to the South coast of England, producing eggs with thicker shells to provide 

the eggs more protection against cooling too rapidly.   The difference in shell index may also be 

attributable to a lower level of competition at the small Raby site than the large Poole colony 

(Raby colony comprises <500 pairs, Poole ca. 10000 pairs), or may be associated with the 

pollutant load of the eggs, which will be examined in Chapter 5.  

The dimensions of black-headed gull eggs in this study appear to be very similar to those 

measured by other authors examining black-headed gull eggs.  Table 2-3 shows measurements 

of length, breadth and volume for black-headed gull eggs from a number of studies (Rosenius, 

1942; Ytreberg, 1956; Van Bree, 1957; Lundberg & Väisänen, 1979; Glutz von Blotzenheim & 

Bauer, 1982; Holz & Starke, 1984; Guthová, 1993; Svensson, 2002; Karlsson, 2005), in 

comparison with measurements made in this study.  For uniformity in order to make 

comparisons, the egg volumes presented in this table were calculated from the length and 

breadth data provided by the authors, using the Hoyt (1979) method (Equation 2.1, Section 

2.2.2) that is used throughout this study to calculate total egg volume. 
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Table 2-3 Comparison of egg length, breadth and volume in black-headed gull eggs 

from various sites worldwide 

Site N
Mean egg 

length (mm)

Mean egg 

breadth (mm)
Volume (cm³)*           Reference

Sweden 205 52.48 37.29 37.22    Rosenius, 1942

Norway 624 51.40 36.31 34.56    Ytreberg, 1956

Texel, Netherlands 1246 51.50 36.72 35.41    Van Bree, 1957

Germany 1428 52.02 36.69 35.71    Glutz & Bauer, 1982

Croatia 1000 51.10 35.70 33.21    Glutz & Bauer, 1982

Germany 196 51.13 36.41 34.57    Holz & Starke, 1984

Finland 468 52.07 36.76 35.88    Lundberg & Väisänen, 1979

Czech and Slovak Republics 360 51.18 36.22 34.24    Guthová, 1993

Sweden 319 51.92 36.66 35.59    Svensson, 2002

Sweden 688 51.94 36.57 35.43    Karlsson, 2005

England 69 51.64 36.55 35.19    This study

     Lymington - pre-collection (n = 20) 51.27 36.36 34.57    This study

     Lymington - post-collection (n = 19) 51.79 36.74 35.65    This study

     Poole (n = 20) 51.60 36.46 34.97    This study

     Raby Estate (n = 10) 51.92 36.66 35.59    This study  

* Egg volume calculated using the original authors’ data for mean length and breadth from each study (as 

provided in the table), using the Hoyt (1979) calculation described previously (Equation 2.1, Section 

2.2.2). 

There is very little difference between the data from the sites in this study and datasets that 

come from a range of sites and from a range of years, suggesting that the eggs collected on the 

Poole, Lymington (both pre- and post-collection) and Raby sites are fairly representative of the 

typical black-headed gull egg, being neither particularly long or short, wide or narrow, large or 

small (in terms of total egg volume).  Unfortunately, literature data for individual weights of 

yolk, albumen and shell, yolk:albumen ratio, eggshell thickness and shell index could not be 

found for black-headed gull eggs, and thus no comparisons could be made between the eggs of 

black-headed gulls in this study and those from other areas for these measurements. 

2.5 Summary 

The results from this study suggest that the eggs from the uncollected Poole colony, and eggs 

from the Lymington colony prior to collection, are of a higher quality than those from the 

Lymington colony after collection, i.e. after the birds have been forced to relay several times, in 
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terms of yolk:albumen ratio.  As previously mentioned (Section 2.1.3), a study has been carried 

out on a number of colonies on the Dorset and Hampshire coast (Wood, 2007; Wood et al., 

2009), including those colonies discussed in this study, to examine the effects of commercial 

collection.  The study found eggs from collected colonies to be smaller (in terms of volume) and 

to have reduced yolk:albumen volumes, compared to those from uncollected colonies.  Although 

in the present study the eggs from Poole and the pre-collection Lymington eggs were not 

significantly larger than those from Lymington after collection (either in terms of volume or wet 

weight), the post-collection Lymington eggs had a significantly higher wet weight of albumen, 

and a lower yolk:albumen ratio than the eggs from the uncollected site, similar to the Wood 

(2007; 2009) study, and the pre-collection eggs.  As previously mentioned, larger eggs often 

contain relatively more albumen rather than a larger yolk (Romanoff & Romanoff, 1949; 

Parsons, 1976a; Nisbet, 1978; Ricklefs et al., 1978; Finkler et al., 1998; Lessells et al., 2002), 

which is considered to play the most important part in determining the health of the embryo and 

hatchling (Parsons, 1970; Lundberg & Väisänen, 1979; Carey, 1996; Finkler et al., 1998).   

The general trend in yolk:albumen ratios indicates that the Poole and pre-collection Lymington 

eggs had higher average ratios than the Raby eggs, with the post-collection Lymington eggs 

having the lowest average yolk:albumen ratio.  The trend of yolk:albumen ratio decreasing  

Poole/Lymington Early > Raby > Lymington Late (although not all of these differences are 

significantly different, statistically), i.e. uncollected/pre-collection > low level collection > high 

level collection indicates that egg harvesting is having an impact on the intrinsic quality of the 

eggs.   These results are consistent with previous studies in suggesting that the physiological 

condition of laying female birds is being depleted on commercially harvested sites to a level that 

affects the size and quality of the eggs produced (Wood, 2007; Wood et al., 2009).  However, 

there are a number of potential confounding factors to consider that may affect the relationship 

between the site and the egg characteristics, such as the differences between the sites in terms of 

climate, colony size, level of predation and competition (particularly between the two south 

coast sites and the northeast inland Raby site), and exposure to pollution.  The concentrations of 

heavy metals and selenium in the egg has the potential to affect the quality of the egg (see 

Chapter 5), and could be a confounding influence in comparing data from different sites.  

However, in addition to comparing different sites with different collection regimes, this study 

has also examined eggs from the same site pre- and post-collection, and has found significant 

differences between pre- and post-collection eggs in terms of yolk:albumen ratio.  The results 

from this study therefore suggest that the commercial collection of black-headed gull eggs 

carried out on the Lymington colony is having an adverse effect on the quality of the black-
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headed gull eggs, which in turn may have an adverse effect on the breeding success of the birds.  

This may be attributable to the energy-consuming process of relaying itself, and the effect this 

may be having on the health of the laying bird, or may be due to an increase in the concentration 

of pollutants in the egg with relaying.  The differences between pre- and post-collection eggs in 

terms of metals concentrations will be examined in Chapter 5. 
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CHAPTER 3. IMPACTS OF NESTING DENSITY ON EGG 

SIZE IN BLACK-HEADED GULLS 

3.1 Introduction 

Studies were carried out to assess the relationship, if any, between the density of nests in areas 

of the colony and the size and dimensions of black-headed gull eggs.   Data from this 

investigation provide details as to which areas and conditions are preferable for nesting for 

black-headed gulls on salt marsh islands, in addition to providing information on the general 

fitness of the birds in the colony.  Eggs collected for contaminant analysis in this project were 

taken from central, dense areas of the colonies (Section 2.2.1), based on the assumption that the 

birds nesting in these areas would be of good quality in order to have secured good nesting 

habitat.  This assumption was in turn based on suggestions that black-headed gulls breeding 

outside the main central colony have reduced breeding success (Patterson, 1965).  The sampling 

strategy employed for egg collection in this study may be validated by the results of this 

investigation into nesting density and egg size.  The fact that one site is commercially collected 

and the other uncollected could potentially be a confounding influence in determining the 

effects of nesting density on egg size; however, the sites will be examined separately and the 

results compared in order to assess the effects of commercial egg collecting on both egg size and 

dimensions, and on the nesting density.  In addition, the results from Chapter 2 show no 

significant difference between eggs from the collected and uncollected sites in terms of egg size 

and dimensions, and it is therefore unlikely that the collection regime at the sites would be a 

significant confounding influence in the assessment of the effects of nesting density on these 

egg characteristics.  However, egg collection may have an effect on the nesting density, and the 

collection of data from two similar colonies with the major difference being that one colony is 

commercially harvested enables investigations into the effects of egg harvesting on the nesting 

density of black-headed gulls, an area of research which has not previously been examined.   

3.1.1 Nest density 

A number of studies have been undertaken investigating the possible links between nesting 

density and breeding success in several different species and types of colonially nesting bird.  

For the purposes of this review, the studies discussed will be limited to those regarding colonial 



Kirsty Pickard 

PhD thesis - May 2010 

 

 59 

seabirds, in particular the gulls (Larus spp.), which are the genus of concern in this study and are 

also the birds for which much of the research in this area has been conducted. 

The potential complexity of investigating density effects in colonial organisms is reflected in the 

wide range of results of field studies for seabirds.  Studies have produced mixed results, with 

some reporting no correlation between nesting density and breeding success, others a positive 

correlation, others a negative correlation, and some reporting a median nesting density as 

optimal.  For example, Birkhead (1977) observed a positive correlation between nesting density 

and breeding success (indicated by the number of pairs rearing a chick to fledging) with 

common guillemots (Uria aalge), and Becker (1995) investigated breeding success of common 

terns (S. hirundo) in terms of number of eggs in the nest, hatching and fledging success, and 

found both hatching and fledging rate to be positively correlated with nesting density.  In 

contrast, Houde (1983), also with common terns, found no relationship between nest density and 

chick survival after accounting for habitat type.  Similarly, nest density was not found to be 

related to chick survival for black-headed gulls (Patterson, 1965), ring-billed gulls (Larus 

delawarensis; Dexheimer & Southern, 1974), Caspian tern (Sterna caspia; Antolos et al., 2006) 

or Western gulls (Larus occidentalis; Hunt & Hunt, 1975).  A negative correlation between nest 

density and egg size was found for herring gulls (L. argentatus; Becker & Erdelen, 1986), 

however, once vegetation variables were included in the analysis (nest density was found to 

increase with increasing vegetation cover) a significant relationship no longer existed, and the 

authors concluded that the significance of nest density/egg size correlations was an indirect one 

mediated mainly by the influence of the vegetation variables.  For the great black-backed gull 

(Larus marinus), Butler and Trivelpiece (1981) found egg production and hatching success to be 

similar in areas of high and low density, but report that gulls in high density areas fledged 

significantly fewer chicks than those in low density areas.  Adults breeding in high density areas 

were more combative and engaged in significantly more chick-orientated vocalisations than 

low-density adults, and although the frequency of chick-feeding bouts did not differ, high-

density adults regurgitated significantly more food than low-density adults.  Parsons (1971; 

1976b) observed breeding success in herring gulls (L. argentatus) to be highest at median 

nesting densities.  Patterson (1965) studied signs of aggression in black-headed gulls, and found 

that birds outside the main colony were less aggressive towards a person walking towards their 

nest, they flew up at greater distances, stayed further away and attacked less.  However, the 

same behaviour was observed in the less dense areas of the main colony and in the main colony 

on days when fewer birds were present.   
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In his study with black-headed gulls, Patterson (1965) notes that birds breeding outside the main 

colony did not produce any young over a two-year study period, and nests towards the edges of 

the main colony were less successful than those in the centre.  However, the relationship 

between breeding success and location within the colony could not be proven statistically, and 

studies into nest density effects on breeding success revealed no relationship between the two 

factors.  The study was carried out on a large (8000 pairs) colony nesting on sand dunes on the 

North coast of England.  This type of colony is somewhat atypical, with the majority of black-

headed gull colonies nesting on coastal marshes and in pools and reservoirs (Cramp, 1983; 

Aspinall et al., 1993; Malling Olsen & Larsson, 2004).  The sand dune colony studied by 

Patterson was far more accessible to land predators than the more typical types of colony, and 

had an exceptionally high mortality rate when compared to ‘island’ colonies such as marshes.  

The author himself makes the point that repeat observations in a more typical marsh colony 

which has lower mortality, and that mainly due to avian predators, would be beneficial before 

drawing conclusions on the function of nest density in breeding success (Patterson, 1965). 

Hunt and Hunt (1975) explain that with colonial nesting comes conflicting needs for protection 

against nest predation and avoidance of intraspecific aggression. In the absence of interspecific 

predation, larger territories may confer a reproductive advantage on some laridae due to a 

decrease in conspecific interference.  Indeed, in species nesting where high-quality nest sites are 

limited (e.g. shags Phalacrocorax aristotelis; Potts et al., 1980) and species in which 

cannibalism is a major cause of egg and chick loss (e.g. great black-backed gulls L. marinus; 

Butler & Trivelpiece, 1981), breeding success tends to be negatively correlated with nesting 

density.  For species where suitable habitat is less limited and cannibalism is uncommon, such 

as guillemots (U. aalge; Birkhead, 1977) and common terns (S. hirundo; Becker, 1995), high 

density generally results in higher breeding success because of reduced predation.   

The complex relationship between nest density effects and breeding success in colonial seabirds 

is reflected in the range of different results previously described.  Potential explanations for the 

variety of effects observed on reproductive success with high- and low-density nesting include 

asynchrony in the seasonal timing of egg laying and hatching: late breeders have been shown in 

a number of studies to be less successful than early or peak layers (Paynter, 1949; Patterson, 

1965; Antolos et al., 2006), peripheral versus central nesting position in the colony: central 

breeders tend to be more successful than those on the periphery of a colony (Dexheimer & 

Southern, 1974; Ryder et al., 1977; Montevecchi, 1978; Brunton, 1997), and age differences 

between the two groups: some studies have shown immature birds to be less successful breeders 

and also less able to secure optimal breeding sites (Davis, 1975; Becker & Erdelen, 1986).  Such 
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effects make investigating the effect of nesting density alone on breeding success more difficult 

and, as previously stated, habitat quality and individual quality are often confounded, making it 

difficult to separate the effects of individual quality on breeding performance from effects that 

are attributable to physical components of the breeding areas (Kim & Monaghan, 2005).   

Although one study with the herring gull (L. argentatus; Davis, 1975)  has demonstrated that 

young birds tend to breed later in the season than older birds, potentially making them less 

successful breeders, other studies have demonstrated that nesting position in stable colonies is 

generally unrelated to age (Tenaza, 1971; Nelson, 1978).  Provided the colonies studied are 

long-established and stable it does not therefore appear necessary to determine the ages of the 

parent birds.  Separating out the effects of nest density from nest location in the colony is more 

difficult: by definition the majority of low-density nesters are found more towards the colony 

edge (Hutson, 1977).   

The variability in the reported results for the relationship (or lack of) between nesting density 

and reproductive success may be due to methodological, environmental and/or species-specific 

differences.  As mentioned above, only one previous study has been carried out examining the 

effects of nest density on breeding success of black-headed gulls, and the author reported no 

significant relationship (Patterson, 1965); more recent studies with this species could not be 

found, and certain aspects of the Patterson study suggest that the results may not be typical of 

black-headed gull colonies in general.  It is clear that additional data is necessary for 

clarification, particularly as nesting density can be a confounding factor in scientific studies 

regarding other aspects of breeding behaviour.  This chapter attempts to assess whether or not a 

relationship exists between nesting density and egg size (which can provide an indication of 

potential breeding success) in two separate black-headed gull colonies on the South coast of 

England. 

In the context of this study, the eggs and chicks sampled and analysed in Chapters 2, 5 and 6 

were taken from nests in the central, most dense part of the colony.  This chapter will test the 

assumption these samples would be those from eggs/chicks produced by birds of comparable 

fitness, thus eliminating a potential key confounding factor in the analysis in other areas of this 

study, as well as addressing a controversial issue in avian ecology. 
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3.1.2 Egg size 

Egg size can be used as a measure of reproductive fitness and studies have shown that larger 

eggs tend to produce larger, heavier chicks with an increased chance of survival over those 

hatching from smaller eggs (see Section 2.1.1).   

As previously mentioned (Section 2.1.1), the size of the eggs in a clutch has been shown to vary 

with clutch sequence, with the first laid egg being the largest, followed by the second egg, and 

the third  (usually final in gulls) egg being smallest (Paludan, 1951; Preston & Preston, 1953; 

Parsons, 1972).  In this study, therefore, the largest egg will be assumed to be the first laid, 

followed by the second largest, and the smallest will be assumed to be the third (and final) laid. 

3.1.3 Effects of commercial egg harvesting 

No literature could be found regarding the impacts of egg harvesting on nest density.  The 

impacts of harvesting on egg size have been discussed previously, with replacement clutches 

(for example those clutches replaced following harvesting of eggs) reported to contain smaller 

eggs of lower quality (Feare, 1976b; Parsons, 1976a; Brown & Morris, 1996; Nager et al., 2000; 

Hipfner et al., 2003; Wood et al., 2009); see Section 1.5.1.  This study examined a 

commercially collected site and an uncollected site, and investigated any effects of egg 

harvesting on nesting density of black-headed gulls. 

3.2 Methods 

During the 2007 breeding season, fieldwork was undertaken to examine the relationship 

between nest density and egg size of black-headed gulls at Lymington and Poole.  The 

Lymington and Poole colonies were chosen for the nest density analysis as they are similar sites 

in terms of overall colony size and are both salt marsh island colonies located on the South 

coast, but have the major difference in that the Lymington colony is subjected to commercial 

egg collection, whereas the Poole colony is not (see Section 1.6).  The Raby site was not 

included in the nest density studies as the site is very different to Poole and Lymington, being 

inland and a much smaller colony than either of the coastal sites.  The Raby colony is not 

commercially collected, but is subjected to low-level collection for personal consumption on 

behalf of the estate owner.  By comparing the Poole and Lymington sites alone, conclusions 

may be drawn not only as to the impacts of nest density on egg quality, but also as to the impact 

of commercial egg collecting. 



Kirsty Pickard 

PhD thesis - May 2010 

 

 63 

Work was undertaken to examine nests in two discrete zones of each colony: the most densely 

nested zone at the centre of the colony (termed ‘centre’ nests) and a zone at the edge of the 

colony where nests were further apart (termed ‘edge’ nests), determined by eye and confirmed 

by field measurements.  Within each zone 20 nests, each containing a clutch of three eggs, were 

chosen and marked with a bamboo cane.  In order to minimise the effects of timing of breeding 

and asynchrony of hatching, the reference nests chosen in this study were those containing only 

complete three-egg clutches, which had therefore been laid within the same time period (rather 

than those early layers which had chicks or late breeders still with incomplete clutches).  These 

nests were also considered to be from birds laying during the ‘peak’ laying period, as the 

majority of nests in the colony contained complete clutches at the time of sampling.  For each of 

the 20 reference nests chosen, nest density ratings were determined by counting the number of 

active nests (i.e. those containing eggs or chicks) within a two metre and a five metre radius of 

each of the marked reference nests (see Figure 3-1).  Nests on the borderlines of the radii were 

counted if 50% or more of the nest area was included in the measured radius.  Within the 

reference nest itself, the maximum length and maximum breadth of each egg was measured 

using vernier callipers (accurate to ±0.1 mm).  This method was based on that used in the only 

previous study that could be found examining nest density and breeding success (Patterson, 

1965), in which the authors obtained a nest density rating by counting the number of active nests 

within a two metre radius of a reference nest.  However, in this study a larger five metre radius 

was examined in addition to the two metre radius in order to assess if any relationship could be 

found between egg size and nesting density when also assessing a larger area.  The nest counts 

within the radii were converted to nests/m2 in order to be able to make comparisons between 

both measurements. 

Egg volume was calculated using the formula detailed in Section 2.2.2  (Equation 2.1; Hoyt, 

1979), and the relationship between egg size (volume, maximum length and breadth) and 

nesting density were examined, with the two metre radius, and again for the five metre radius.  

Results were plotted to examine the relationship between egg size and nest density. 

Comparisons were made between the two sites in order to assess whether there were any 

differences for nest density or egg size with site and for egg size with nest location.  
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Figure 3-1 Nest density measurement method showing reference nest and two and five 

metre radii    

3.3 Results 

Results of the nest density studies carried out in May-June 2007 are presented below.  The 

number of nests per metre squared within the radii of each reference nest was calculated by 

dividing the number of nests by the area of the circle (12.6 m2 for the two metre radius and 78.5 

m2 for the five metre radius).   

3.3.1 Egg length and breadth 

Maximum egg length and maximum egg breadth were compared with nest densities (nests/m2) 

in both the two and five metre radii for the Lymington and Poole sites.  The plots in Figure 3-2 

to 3-5 show the distribution of egg size in terms of maximum length and breadth, with nest 

density in a two metre and a five metre radius of the reference nest for the Lymington and Poole 

sites.  No significant trend was observed in this data, as confirmed by correlation analysis (see 

Appendix A).     

5 m 

2 m Note: Larger dark 
brown circle 
represents the 
reference nest, 
smaller light brown 
circles represent 
surrounding nests 
within the two or 
five metre radii 
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Figure 3-2 Maximum length of black-headed gull eggs compared with nesting density: 

Lymington site, 2007 (N = 20) 
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Figure 3-3 Maximum breadth of black-headed gull eggs compared with nesting density: 

Lymington site, 2007 (N = 20) 
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Figure 3-4 Maximum length of black-headed gull eggs compared with nesting density: 

Poole site, 2007 (N = 20) 
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Figure 3-5 Maximum breadth of black-headed gull eggs compared with nesting density: 

Poole site, 2007 (N = 20) 



Kirsty Pickard 

PhD thesis - May 2010 

 

 69 

3.3.2 Egg volume 

Egg volume was calculated and compared with the nest density counts (nests/m2) in both the 

two and the five metre radius.  Figures 3-6 and 3-7 show the distribution of egg volume with 

nest density in both a two metre and a five metre radius of the reference nest for the Lymington 

and Poole sites.  No significant trends were observed in this data, again confirmed by correlation 

analysis (see Appendix A). 
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Figure 3-6 Volume of black-headed gull eggs compared with nesting density: 

Lymington site, 2007 (N =20) 
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Figure 3-7 Volume of black-headed gull eggs compared with nesting density: Poole site, 

2007 (N = 20) 
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3.3.3 Comparison of nest density and egg size between sites 

Pearson’s correlation was carried out to examine the relationships between the datasets.   No 

significant relationship (p >0.05) between any of the measurements made/calculated was found 

for either site, with either the two or five metre densities (see Appendix A), confirming the lack 

of any apparent relationship in Figures 3-2 to 3-7.   

To test for normality, a K-S test was carried out.  The K-S test revealed that all data for egg 

measurements were normally distributed (p >0.05), but the data for nest density in the two and 

five metre radii were not normally distributed, with the exception of the Lymington data for nest 

density in the five metre radius, which was marginally above the 5% threshold for significance 

(p = 0.024 and 0.059 for Lymington nest density in the two and five metre radii, respectively; p 

= 0.012 and 0.041 for Poole nest density in the two and five metre radii, respectively).  As the 

distribution of the nest density data is not normal, the criteria for parametric tests are not met 

and data for nest density will be examined using non-parametric tests.  Levene’s test for equality 

of variances was carried out in order to establish that variances were equal.   

Comparisons were made between the Lymington and Poole sites to examine any differences 

between the sites in terms of nest density and egg size.  An independent t-test was used to 

compare data for the two sites and identify any significant difference between the means of the 

two populations (Townend, 2002), and error plots were produced to examine any significantly 

different means as indicated by the t-test.  However, as the distribution of the nest density data is 

not normal, the data cannot be reliably tested using the parametric t-test, and was assessed using 

a non-parametric test - the Mann-Whitney test is a non-parametric test used to test differences 

between two conditions (Townend, 2002), in this case the two different sites.  Results of these 

tests are provided in Table 3-1.   
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Table 3-1 Test results for comparison of Lymington and Poole nesting densities and 

egg size characteristics for black-headed gulls, 2007 

Measurement Mean S.E. p Significance

Nests/m², 2m radius 0.305 0.042 <0.001 **

Nests/m², 5m radius 0.293 0.029 <0.001 **

Egg 1 length (mm) 51.47 0.459 0.650 NS

Egg 1 breadth (mm) 36.74 0.297 0.114 NS

Egg 1 volume (mm
3
) 36445 723.7 0.236 NS

Egg 2 length (mm) 50.88 0.472 0.253 NS

Egg 2 breadth (mm) 36.54 0.280 0.366 NS

Egg 2 volume (mm
3
) 34746 669.8 0.990 NS

Egg 3 length (mm) 50.38 0.453 0.335 NS

Egg 3 breadth (mm) 36.29 0.343 0.143 NS

Egg 3 volume (mm
3
) 32909 694.1 0.353 NS

 

N = 40. ** = highly significant (p ≤0.01); NS = not significant.  S.E. = standard error.  Highlighted area 

indicates results from non-parametric, Mann-Whitney test. 

The t-test shows that there is no significant difference between sites for egg length, breadth or 

volume.  The Mann-Whitney test indicates that there are significant differences between the two 

sites in terms of nest density, within both the two and five metre radii.  Error plots were 

produced in order to examine this relationship further; these are provided in Figures 3-8 and 3-9, 

below. 
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Figure 3-8 Black-headed gull nest density within a two metre radius for Lymington and 

Poole sites, 2007 (N = 20); error bars show 95% confidence interval (CI) of 

mean 

 

 

Figure 3-9 Black-headed gull nest density within a five metre radius for Lymington and 

Poole sites, 2007 (N = 20); error bars show 95% confidence interval (CI) of 

mean 
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Figure 3-8 and 3-9, combined with the results of the statistical tests, show that the average nest 

density (taking into account dense, central areas of the colony and less dense, outer areas) within 

the Poole colony is significantly higher than the average nest density within the Lymington 

colony, for both the two and five metre radius measurements. 

3.3.4 Comparison of egg size with nest location 

Comparisons were made between the nests located in the centre of the colony and those located 

on the outer edge of the colony (see Section 3.2) to examine any differences in terms of egg 

size.  Figures 3-10 to 3-12 provide a comparison of the mean egg length, breadth and volume for 

eggs in nests located in the centre of the colony with eggs in nests located at the colony edge.  

Data from both the Poole and Lymington sites were pooled for this analysis to increase the 

sample size for statistical analysis.  As shown in Section 3.3.3, there are no significant 

differences in any of the egg measurements between sample sites, and thus pooling samples in 

this way should not affect comparisons of egg size between eggs from central nests and those 

from edge nests. 

 

Figure 3-10 Mean length of black-headed gull eggs (mm), ± standard error, from nests 

located in the colony centre and colony edge, Lymington and Poole sites, 

2007 (N = 20) 
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Figure 3-11 Mean breadth of black-headed gull eggs (mm), ± standard error, from nests 

located in the colony centre and colony edge, Lymington and Poole sites, 

2007   (N = 20) 

 

 

Figure 3-12 Mean volume of black-headed gull eggs (cm
3
), ± standard error, nests 

located in the colony centre and colony edge the colony centre and colony 

edge, Lymington and Poole sites, 2007 (N = 20) 
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As all the egg measurement data meet the requirements of parametric tests, an independent t-test 

is appropriate for examining differences in the data with nest location; results of this test are 

provided in Table 3-2.    

Table 3-2 Independent t-test results for comparison of egg size with nest location 

(centre of colony vs edge of colony) for black-headed gulls, Lymington and 

Poole sites, 2007 

Measurement Mean S.E. p Significance

Egg 1 length (mm) 51.46 0.317 0.080 NS

Egg 1 breadth (mm) 36.74 0.213 0.761 NS

Egg 1 volume (mm
3
) 36445 513.2 0.625 NS

Egg 2 length (mm) 50.88 0.336 0.463 NS

Egg 2 breadth (mm) 36.53 0.198 0.534 NS

Egg 2 volume (mm
3
) 34746 472.3 0.679 NS

Egg 3 length (mm) 50.38 0.320 0.240 NS

Egg 3 breadth (mm) 36.27 0.247 0.978 NS

Egg 3 volume (mm
3
) 32909 493.0 0.696 NS

 

N = 20. NS = not significant.  S.E. = Standard error. 

The t-test confirms that suggested by Figures 3-10 to 3-12, showing that there are no significant 

differences with egg size for any of the measurements made/calculated between nest located in 

the centre of the colony and those located at the outer edge of the colony.   

3.4 Discussion 

3.4.1 Nest density, nest location and egg size 

In a previous study with black-headed gulls, Patterson (1965) investigated the relationship 

between nest location and breeding success and, based on observations and counts during the 

course of his study, found that nests outside the main colony failed to rear any young.  This 

observation had also been made by previous workers on the same colony.  In the present study, 

no statistically significant difference was found between nest location and egg size (maximum 

length, breadth and volume).  However, in this study all nests examined were within the main 

colony and comparisons were made between nests in the centre and those on the outer edges of 

the main colony, rather than nests actually outside the colony as in the first part of the Patterson 
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study. The results from the present study are more comparable with the second part of the 

Patterson study, where the author compared the breeding success, as indicated by number of 

eggs laid and percentage of chicks fledged, of nests at the edge of the main colony with those at 

the centre.  Patterson (1965) reports reduced breeding success in nests located at the edge of the 

main colony compared with those in the centre; however, the results were not statistically 

significant.  In the present study, there was no evidence of any pattern in differing egg sizes with 

nest location (Figures 3-10 to 3-12; lack of relationship confirmed by independent t-test, Table 

3-2), and the results from this study suggest that nest location had no effect on the breeding 

success of black-headed gulls, as indicated by egg size.  The results of this study are contrary to 

those of Patterson (1965); however, although Patterson observed a pattern, the results were not 

statistically significant.  In addition, in the present study egg size was the only indicator of 

reproductive success measured in this study, whereas Patterson examined fledging success.  

Breeding success can be measured in a number of different ways, including number of eggs in a 

clutch, hatching rate, fledging rate, measures of fledgling size and fledgling survival past a set 

point.  In the present study, egg size (maximum length, maximum breadth and volume) was the 

only indicator of reproductive success measured.  Although egg size has been shown to be a 

good indicator of reproductive success, with larger eggs generally producing larger, heavier 

chicks at hatching and chicks which have a growth advantage over those hatching from smaller 

eggs (Parsons, 1975; Nisbet, 1978; Lundberg & Väisänen, 1979; Moss et al., 1981; Birkhead & 

Nettleship, 1982; Bolton, 1991; Styrsky et al., 1999, and others; see also Section 2.1.1), no 

evidence was obtained in this study as to the success of hatching, fledging and survival of 

chicks, and it cannot therefore be concluded that nesting location has no effect on the 

reproductive success of black-headed gulls at these sites.  It can, however, be said that no 

relationship could be found between egg size and nest location for black-headed gulls nesting on 

these colonies. 

In another part of his nest density study, Patterson (1965) investigated the relationship between 

nest density and breeding success, making measurements of nest density by counting the 

number of active nests within a two metre radius of reference nests, within which the number of 

eggs laid and the percentage of young fledged were recorded, over a time period encompassing 

two breeding seasons (1962 and 1963 breeding seasons).  No correlation was found between 

density and success in the data from 1962.  There did appear to be a positive correlation between 

the two variables on examination of data from 1963; however, when data were further examined 

taking into account the correlation between density and laying date, using a partial correlation 

analysis, the correlation between density and success was reduced and was no longer significant.  
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Patterson (1965) concludes that the apparent positive correlation between density and breeding 

success in 1963 was entirely due to the correlation between laying date and density in that year.  

In the present study, the possible confounding effect of laying date on the results was minimised 

by selecting reference nests that contained a complete clutch of three eggs.  Nests with 

incomplete clutches were considered to be those of late breeders, and those with chicks already 

hatched those of early breeders; the majority of nests in the colony contained clutches of three 

eggs and these were therefore considered to be the nests of birds breeding synchronously at the 

optimum time.  The present study examined a different indicator, and only one indicator, of 

reproductive success (egg size, versus Patterson’s number of eggs and percentage hatching), this 

study was carried out on more typical salt marsh island colonies (as opposed to a more predator-

accessible colony nesting on sand dunes), and examined a wider radius around the reference 

nest (five metre radius in addition to the two metre radius).  However, the findings were the 

same: no relationship was found between nest density and the indicators of breeding success that 

were examined. 

Species nesting where high-quality nest sites are limited and in which cannibalism is a major 

cause of egg and chick loss tend to show a negative correlation of breeding success with 

increasing nest density (Potts et al., 1980; Butler & Trivelpiece, 1981), whereas species for 

which availability of suitable habitat is less limited and cannibalism uncommon, a positive 

correlation between nesting density and breeding success has been observed (Birkhead, 1977; 

Becker, 1995), as a result of reduced predation.  Whilst some cannibalism does occur in black-

headed gulls - they have been known to take eggs and small chicks of other pairs (Patterson, 

1965) and have been noted to “egg-suck”, destroying eggs by sucking out the contents 

(Kirkman, 1937) - intra-specific predation does not appear to be particularly common in 

comparison to some other species.  On the colonies examined in this study, predation is limited 

owing to their location on marsh islands and therefore fairly inaccessible to mammalian 

predators such as foxes, rats and so on (Aspinall & Tasker, 1992).  However, colonies are still 

subject to avian predation, for example from great black-backed gulls (L. marinus), buzzards 

(Buteo buteo) and peregrine falcons (Falco peregrinus).  One of the main advantages of 

breeding in dense areas is the avoidance of predation.  The fact that the need for very dense 

nesting to protect against predation is probably minimised on these colonies, combined with the 

fact that the need for large distances between nests (i.e. low density nesting) is minimised due to 

the relatively low level of intra-specific parasitism in this species, may go some way towards 

explaining why neither a positive nor a negative relationship between nest density and breeding 

success was apparent.  In addition, it should again be noted that only one indicator of breeding 
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success was measured in this study and therefore it cannot be conclusively stated that nesting 

location has no effect on the reproductive success of black-headed gulls at these sites, rather that 

no relationship could be found between egg size and nest location. 

Separating out the effects of nest density from nest location in the colony is complicated as the 

majority of low-density nesters are found more towards the colony edge.  A number of authors 

report reduced breeding success in birds nesting at the far edges of the main colony, and outside 

of the main colony (Kruuk, 1964; Patterson, 1965; Ryder et al., 1977; Montevecchi, 1978; 

Spear, 1993).  For black-headed gulls, Patterson (1965) observed that nests outside of the main 

colony failed to rear any young, with few eggs surviving more than 7-10 days and none reaching 

hatching.  Breeding success in areas on the edge of the main colony was also lower than in the 

colony centre, although these differences were not statistically significant.  In the current study, 

geographical colony edge and colony centre were not defined, although the less-dense areas 

were almost exclusively located nearer the colony edge and the water’s edge than the dense 

areas, which were more central both geographically and in terms of the colony.  Thus it was not 

possible to eliminate the effects of any potential centre/edge relationship in this experiment.  

Further study would be prudent, examining not only the eggs in nests from different locations 

within the colony, but also following up with investigation into hatching success, chick survival 

and fledging, to provide a more in-depth assessment of the effects of nest location on breeding 

success. 

3.4.2 Effect of commercial egg harvesting on egg size and nest density  

The results of this study show that egg size did not significantly differ between the uncollected 

Poole colony and the collected Lymington colony, which is consistent with the results from the 

egg dimensions work on different samples from the same colonies (see Chapter 2, Section 2.3).  

As previously mentioned (see Section 1.5.1), black-headed gulls will relay individual eggs or 

entire clutches if lost (Weidmann, 1956); however, replacement laying requires high energy 

reserves and delays breeding (Verhulst & Timbergen, 1991).  Studies of egg harvesting have 

reported reduced breeding success in some seabird populations (Ainley & Lewis, 1974; Feare, 

1976a; de Juana, 1984; Haynes, 1987; Vermeer et al., 1991; Burger & Gochfeld, 1994; 

González, 1999; Shannon & Crawford, 1999; Zador et al., 2005), and egg size has been reported 

to be reduced in replacement clutches (Feare, 1976b; Parsons, 1976a; Brown & Morris, 1996; 

Nager et al., 2000; Hipfner et al., 2003).  However, it should be noted that this result does not 

mean that commercial collection is not having an effect on the breeding success of black-headed 

gulls, rather that egg size does not appear to be affected.  Egg size is only one measure of 
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reproductive success, and no observations were made as to the hatching success of the eggs in 

the present study, nor the fledging/survival of chicks.  Further examination into the hatching and 

post-hatching survival of chicks would be prudent, in order to further assess the effects of 

commercial collection on breeding success. 

Nest density within the uncollected Poole colony was found to be significantly higher than the 

nest density within the collected Lymington colony, for both the two and five metre radius 

measurements.  No studies could be found in the literature reporting changes in nest density 

between harvested and un-harvested colonies.  The Poole island colony examined in this study 

is over twice the size of the Pylewell island colony at Lymington (ca. 10000 and ca. 4300 pairs, 

respectively), and the results from this study also show that the Poole colony is more densely 

populated.  The lower nesting densities at the Lymington site may be an indication that this area 

is less desirable for nesting than the uncollected, undisturbed Poole site, due to the disturbance 

of the colony by egg collectors, and the heavy collecting of the gulls eggs requiring them to 

relay several times in order to successfully raise any chicks.  In addition to the pressure on the 

black-headed gull populations nesting on the Lymington marshes as a result of commercial egg 

collecting, the Lymington islands are far more prone to flooding (Wood, 2007) than the islands 

located in the much more sheltered Poole Harbour; flooding leads to loss of eggs and young 

chicks, which may make the Lymington salt marshes less desirable habitat that the Poole salt 

marshes.  Loss of habitat due to the rapid erosion of the salt marsh islands that the gulls nest on 

may also be a contributing factor; both the Poole and Lymington marshes are eroding, however, 

the salt marsh at Lymington is eroding more rapidly than the salt marsh at Poole, with studies on 

the loss of salt marsh suggesting that the marsh at Lymington is eroding at almost twice the rate 

of the marsh at Poole (SCOPAC, 2004a; SCOPAC, 2004b).  This loss of habitat may also make 

the Lymington salt marshes a less desirable nesting location than the salt marshes at Poole. 

3.5 Summary 

This chapter has shown that nesting density and nest location (centre of the colony vs colony 

edge) do not significantly affect the size and dimensions of black-headed gulls on the colonies 

examined.  Although the fact that one site is commercially collected and the other uncollected 

could potentially be a confounding factor in determining the effects of nesting density on egg 

size, the results from this chapter have confirmed the findings of Chapter 2, with no significant 

effect on egg size and dimensions as a result of commercial egg collecting.  However, the results 
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have shown that the overall density of nests on the commercially collected Lymington site is 

significantly lower than the density of nests on the undisturbed Poole site.   

In assessing the results of this study, it is important to note that only one measure of breeding 

success was examined in this study - egg size - and it cannot therefore be conclusively said that 

nesting density, nest location and commercial egg collection do not have a significant impact on 

the breeding success of black-headed gulls, rather that these factors do not appear to have a 

significant impact on egg size.  Indeed, the present study has shown that the intrinsic quality of 

the eggs (indicated by yolk:albumen ratio) on the collected Lymington site is significantly lower 

that those from the uncollected site (Chapter 2), and previous studies on the same colonies by 

Wood et al. (2009) have shown the number of failed eggs to be significantly higher for the 

collected Lymington colony, compared with the uncollected Poole colony.   
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CHAPTER 4. POTENTIAL SOURCES OF POLLUTION 

AROUND THE LYMINGTON, POOLE AND RABY SITES 

This chapter provides information regarding the main potential sources of pollution in the area 

around the Lymington, Poole and Raby sites, to which the black-headed gull populations 

examined in this study may be exposed.  Birds are exposed to metals in a number of ways: via 

their food and water, through the cleaning of their feathers, respiratory exposure to airborne 

contaminants, dermal absorption while swimming and through contact with excrement of other 

birds, and direct contact with anthropogenic waste products such as landfill waste, chemical, oil 

and fuel spills (see Section 1.1).  Ingestion of food and water the main routes of exposure for 

seabirds and, because seabirds feed at the upper trophic levels of ecosystems, they can be 

exposed to relatively high concentrations of contaminants in their prey and can provide 

information on the extent of contamination in the whole food chain.  However, bird behaviour, 

in particular their mobility and migratory habits, can render birds much less suitable as 

biomonitors of local pollution as it can be difficult to determine the spatial scale they represent 

(Furness et al., 1993) and exactly when and where exposure occurred.  As previously 

mentioned, breeding females spend many weeks on the breeding grounds before laying, 

acquiring sufficient resources (and contaminants) locally to produce eggs (Burger, 2002), thus 

the body reserves of breeding gulls, and any associated contaminants, are likely to have been 

acquired from within a reasonably localised area.  In this review, the ‘local area’ within which 

potential sources of pollution are examined is taken as the area within an 18.5 km radius of the 

sampling sites, in accordance with a study with black-headed gulls that found the maximum 

foraging distance during breeding to be 18.5 km (Gorke & Brandl, 1986; see Section 1.1).  

Basing the review of potential pollution sources within this ‘local area’ works on the assumption 

that.  However, although black-headed gulls usually feed at distances no greater than 18.5 km 

from the nesting site immediately prior to and during breeding, there is still potential for body 

reserves built up over the long-term to be used in the production of eggs, and it is important to 

note that the potential sources of pollution reviewed in this chapter may not represent a 

complete assessment of all sources of pollution to which the birds may have been exposed.    

The sources and release of metals as a result of local geological influences, land use (roads, 

agricultural land, urban areas and so on) industry and waste (landfill and sewage), and boats and 

shipping activities are covered in this chapter, encompassing the main sources of metal pollution 

to the environment.  Inputs to each area from rivers and streams will also be considered.  The 
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environmental fate of each of the individual metals will be discussed, and the impacts of the 

emissions highlighted in this chapter will be further examined and related to the metal 

concentrations found in black-headed gull eggs in Chapter 5. 

4.1 Geology 

Local geological influences in an area can be important in terms of natural sources of metals.  

Because of the enrichment of trace metals and intensive weathering, the influence of the parent 

rock on the total content of trace elements in surface soils is related to the processes of soil 

formation, which may lead to the mobilization and redistribution of metals within the 

neighbouring soil types (Thornton & John, 1980).  Thus, the parent material is the most 

important factor in determining heavy metals naturally occurring in soils (Zhanga et al., 2008).   

Granite (a hard igneous rock) is the parent material that tends to be most associated with high 

concentrations of heavy metals including arsenic (Peters & Blum, 2003), copper (Ahmad, 1977), 

lead (Bjorlykke & Thorpe, 1982), nickel (McGrath, 1995), vanadium (Lide, 2008) and zinc 

(Kiekens, 1995).  Owing to the association with heavy metals, areas with underlying granite 

have been heavily mined for metals in the UK in the 19th century, particularly in the north of 

England.  The erosion, transport and deposition of historically contaminated material is a very 

important source of sediment-borne metals in all mining-affected river systems in England and 

Wales (Macklin, 1992).  Particular metals of concern resulting from historic mining activities 

are arsenic, copper, lead manganese, selenium and zinc (WHO, 1981; Hudson-Edwards et al., 

1997; Johnson & Younger, 2005; Environment Agency, 2008).  

Metals associated with sedimentary rock parent materials such as sandstone, limestone and 

shale, include cadmium (Page et al., 1987), copper, selenium and zinc (Alloway, 1995), with 

selenium and zinc more abundant in shales and clay than in limestone or sandstone (Alloway, 

1995; Zhu & Zheng, 2001).  Iron, being the second most abundant metal on earth, is associated 

with all soil, rocks and minerals (Cotton et al., 1999). 

4.2 Land use  

Diffuse pollution is closely linked to land use.  Natural waters are impacted by runoff from 

agricultural land following rain or land drainage, which may lead to pollution of waters with 

pesticide residues, fertilisers and farm animal waste (Drake, 2007).  Fertilisers commonly used 
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in agriculture may contain cadmium, copper, manganese, vanadium and zinc, and pesticides, 

herbicides and fungicides used to treat crops and animal stock commonly contain arsenic, 

copper and selenium (Denton et al., 1997).  Animal waste can also be a significant source of 

heavy metals to groundwaters and agricultural runoff, with faeces containing nickel (Moriyama 

et al., 1989), and the use of veterinary medicines, dietary and growth supplements in livestock 

farming leading to release of arsenic, cobalt, copper, iron, manganese and selenium in animal 

waste (Denton et al., 1997).  Urban developments also create diffuse pollution through increased 

surface runoff, and have potential to contaminate watercourses with heavy metals.  Runoff from 

urban areas is extensive owing to the impaired drainage in built-up areas, and commonly 

contains heavy metals such as cadmium, copper, lead and zinc (Sea Grant, 2009), the majority 

of which originates from the use of motor vehicles.   

It has been well documented that vehicles are a major contributor to heavy metals in vehicle 

dust and hence urban and road runoff (Comber & Gunn, 1996; Legret & Pagotto, 1999; Rule et 

al., 2006) and evidence for higher metal concentrations in runoff associated with roads used by 

commercial traffic has also been reported (Dannecker et al., 1990).  Roads, road bridges, 

parking areas and other impervious surfaces create diffuse pollution through increased surface 

runoff, and are subject to small spills, leaks and other emissions from automobiles and other 

equipment (Hewett, 2003). On the road surface, most heavy metals become bound to the 

surfaces of road dust or other particulates, and the bound metals will either become dissolved or 

be swept off the roadway with the dust when it rains.  In either case, the metals enter the soil, 

local water bodies or are channelled into a storm drain, which usually discharge into a nearby 

water body (Sea Grant, 2009).  The main vehicle-related emissions of metals are through 

particles from exhausts as a result of fuel combustion (cadmium and vanadium), fuelling 

processes and leaks (lead and nickel), wear of brake linings (copper, nickel and zinc), and tyre 

wear (cadmium and zinc; Legret & Pagotto, 1999).  Although the use of leaded petrol has 

steadily declined since the 1980s, it should be noted that ‘unleaded’ fuel is actually fuel without 

lead additives, and petrol still contains lead as an impurity; thus lead emissions still result from 

fuel combustion, although to a lesser degree than from previously used ‘leaded’ fuel (Pacyna et 

al., 2007).  Car washing has also been implicated as a major source of heavy metals entering the 

surface water system, particularly for zinc, lead and cadmium (Sörme & Lagerkvist, 2002).  

Motor oil and grease accumulate metals as they come into contact with surrounding parts as the 

engine runs, and thus oil leaks become another pathway by which metals enter the environment, 

particularly zinc and nickel (Makepeace et al., 1995).  Wear of bearings and other engine parts 
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is a source of copper, iron and lead, rust and corrosion of galvanised parts are sources of iron 

and zinc, respectively (Sörme & Lagerkvist, 2002). 

4.3 Industry and waste 

Metals are released as a result of many industrial processes and may be released directly to 

natural waters or via surface water runoff.  Metals such as mercury, cadmium, lead, and copper 

from industrial sources are common contaminants of salt marshes and estuaries (Sanger et al., 

1999), although the specific contaminants released are dependant on the industry type.  Many 

industries also produce wastewater which goes to sewage treatment works for treatment prior to 

release to natural waters, in addition to solid waste which is sent to landfill.  Sewage treatment 

works receive wastewater from commercial and urban areas and industry, which is treated prior 

to release to natural waters.  Although this wastewater is treated to remove chemical 

contaminants and other harmful substances, release from sewage treatment works can still be a 

significant source of metals and other contaminants to natural waters.  In addition, black-headed 

gulls are frequently found scavenging at sewage treatment works, as well as sewage outlets 

(Cramp, 1983), and thus sewage treatment works can provide a direct source of metals to the 

diet through contamination of food sources exploited on the site. 

As well as ongoing discharges from industry, it is important to consider the historical industry in 

an area.  Although no longer active, past industrial releases can leave a legacy of historical 

pollution in sediments and soils for many years.  Heavy metals have been shown to accumulate 

in sediments and soils (Humphreys & May, 2005; Drake, 2007); these metals can accumulate in 

organisms that live within the sediment and soil, which are an important food source for black-

headed gulls (see Section 1.5), and may then be bioaccumulated up the food chain (Langston et 

al., 2003).  Many metals in sediments may also be remobilised, and thus become bioavailable, 

as they are oxygenated through disturbance during dredging, strong tides or storm events, 

bioturbation by benthic organisms or erosion. 

Landfills can be significant sources of metals to natural waters via surface runoff: waste 

decomposition and percolation of rain water through waste stored in the landfill results in 

contaminated liquid known as landfill ‘leachate’ (Taulis, 2005).  As water passes through the 

landfill, it may ‘leach’ pollutants from the disposed waste to areas deeper in the soil (Saleem, 

1999).  However, in recent years landfill technology has evolved from open, uncontrolled 

dumps to highly engineered facilities designed to eliminate or minimise the potential adverse 
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impact of the waste on the surrounding environment and, particularly since the introduction of 

the Landfill Regulations in 2003, leachate is contained and treated before release to the sewer or 

natural waters and discharges are regulated (Environment Agency, 2010).  Perhaps more 

significant, in the case of this study, is the fact that landfill sites are frequently exploited by gulls 

as a source of food.   

Depending on the type of waste received, landfills may hold many waste items containing heavy 

metals and selenium.  The Environment Agency classify landfills by the type of waste they 

receive, with categories including ‘Household, Commercial and Industrial Waste’, ‘Industrial 

Waste’, ‘Non-biodegradable Wastes (non construction)’, and ‘Inert Waste (construction and 

demolition)’ (Environment Agency, 2009a).  Household, commercial and industrial waste, and 

inert construction and demolition waste, may contain many materials with the potential to leach 

heavy metals and selenium into surrounding ground and surface waters.  Old paint cans and 

other containers made of metal, as well as remnants of paint with pigments are usually 

composed of metal compounds and are a major source of lead and zinc (Comber & Gunn, 1996; 

Davis & Burns, 1999; Davis et al., 2001).  Stainless steel and other metal alloys and protective 

coatings have numerous uses in domestic appliances such as washing machines, kitchen sinks 

and so are an important source of metals, including cadmium, iron, lead, nickel, selenium, 

vanadium (Comber & Gunn, 1996; Denton et al., 1997; Rule et al., 2006).  Metals also have 

many uses in electronics, wiring and electroplating, thus discarded electrical items such as 

televisions, radios and so on are potential sources of cadmium, cobalt, copper, selenium and zinc 

(Comber & Gunn, 1996; Denton et al., 1997; HSDB, 2009d).  Discarded batteries are another 

potential source of cadmium, lead and manganese (Eisler, 1985a; HSDB, 2009a; HSDB, 2009e).  

Arsenic, copper and zinc are used in wood preservatives, and cobalt, iron, manganese, selenium 

and zinc in pigments, inks and varnishes (Denton et al., 1997); thus, any waste materials 

comprising treated wood or inks and pigments is a potential source of these metals.  Remnants 

of discarded fuel oil or petrol are a source of manganese, nickel and zinc, and discarded tyres 

and synthetic rubber-containing products are an important source of vanadium and zinc (NAS, 

1979; HSDB, 2008c).  Glass and ceramics contain arsenic and cadmium (Denton et al., 1997).  

Of particular importance in household waste is the presence of zinc in numerous personal care 

products such as cosmetics, sun blocks, deodorants, shampoos and many other products 

(Comber & Gunn, 1996; Rule et al., 2006).   

Industry, sewage treatment works and landfill all potentially release heavy metals and other 

contaminants to air as well as to water.  Although initially released to air, heavy metals and 

other pollutants are removed from the atmosphere by dry deposition and wet deposition.  Wet 
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deposition occurs mainly in upland areas where rainfall is highest, and pollutants are deposited 

in rain, snow and fog; dry deposition is greater than wet deposition in many parts of the UK, and 

is the term for when ‘dry’ gases and particles are deposited directly on to the land (Environment 

Agency, 2009b). 

4.4 Boats and shipping 

Recreational boating, port operations and commercial shipping all have the potential to impact 

harbour waters in a number of ways, and metals and metal-containing compounds have many 

functions in boat operation, maintenance and repair.  Potential sources of metal pollution arising 

from boats and marinas include sewage (pumped treated or untreated directly from boats) and 

contaminated bilgewater; metal-containing paint particles from sandblasting, boat washing and 

general erosion (cadmium, copper, lead and zinc; Comber & Gunn, 1996; Davis & Burns, 1999; 

Davis et al., 2001); metal shavings from engine oils and worn metal parts; fuel combustion (lead 

and vanadium; Legret & Pagotto, 1999; Laden et al., 2000); spillage, leaks or incorrect disposal 

of chemical cleaners, pesticides, fungicides, algicides and wood preservatives and varnishes 

(arsenic, cobalt, copper, iron, manganese, selenium and zinc) applied to the hulls of boats 

(Scheuhammer, 1987; OhioEPA, 1995; NOAA, 2007).  Exhaust emissions from ship funnels 

contain lead, nickel, vanadium and zinc (Tillman, 1994; Isakson et al., 2001), which are released 

to atmosphere and subsequently deposited onto land and into water by wet and dry deposition.  

Small amounts of fuel and oil also enter the marine environment directly as a result of both 

commercial shipping and recreational boat use and, although amounts are small and release 

sporadic, this incremental pollution adds up to hundreds of thousands of gallons globally every 

year (Olsson, 1999) and is a potential source of lead, nickel and vanadium (Al-Swaidan, 1996; 

Legret & Pagotto, 1999; Laden et al., 2000).  Fuelling operations and the repair and 

maintenance of engines have the greatest potential of contributing to fuel and oil pollution, 

particularly if waste is not properly managed (Hewett, 2003).  Marinas, terminals and areas 

around fuelling/maintenance points may therefore be most susceptible to an accumulation of 

these small spills.   

Perhaps the most significant heavy metals associated with boats and shipping are copper, tin and 

zinc, owing to the use of anti-foulant paints and sacrificial zinc anodes.  Most paints used on 

boat hulls and other underwater structures are made with chemicals and biocides designed to 

leach out and prevent fouling of the portion of the hull below the waterline by marine animals 

and plants that would otherwise adhere to it.  The biocides in these anti-foulant paints include 
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inorganic substances, organometallics and organic compounds (Comber et al., 2002).  

Historically, one of the principal components in these products was organotin; however, 

following restrictions on the use of organotin-based antifoulants, paint manufacturers have 

produced products using copper and copper oxide, and many antifoulant paints also contain zinc 

compounds used as ‘booster biocides’ to optimise the efficacy of the standard antifoulant paints.  

Although copper and zinc are generally believed to be less toxic than the previously used 

organotin compounds, high levels can still cause harmful effects to marine life and copper 

becomes toxic at concentrations only 10-50 times the concentrations required for normal growth 

and survival of organisms (Hall & Anderson, 1999).  As the harmful substances in these paints 

are designed to leach out over time, they will enter the aquatic environment on a constant basis.  

In addition, concentrated amounts of these substances may be released during hull maintenance 

and repair areas.  A survey of chandlers, paint manufacturers and boat owners showed that up to 

300 tonnes of copper and 0.5 tonnes of zinc pyrithione are used each year in the UK (Boxall et 

al., 2000).  Despite measures to control waste from boatyards and associated activities, a 

proportion of this waste will inevitably enter the aquatic environment.  Zinc is also commonly 

used in sacrificial anodes to provide corrosion protection for a number of marine applications 

such as fishing and leisure boats, rudders, outboards, offshore platforms and oil pipelines, 

resulting in local water contamination by the solubilised zinc (Bird et al., 1996; Rousseau et al., 

2009). In harbours, the increasing numbers of ships using zinc sacrificial anodes, combined with 

the lower renewal of the water from tidal inputs, contributes to an increase of the water zinc 

level (Bird et al., 1996). 

A further important source of metal contamination associated with boats and shipping is the 

practice of dredging.  Concentrations of heavy metals in sediments usually exceed those in 

overlying water by between three and five orders of magnitude (Bryan & Langston, 1992), and 

sediment-bound metals can become remobilised, and thus bioavailable, as a result of dredging 

activities.  Oxygenation of sediments during dredging will result in certain metals becoming 

oxidised and solubilised, initially, before becoming bound to sediment again (Langston et al., 

2003).  In most ports, maintenance dredging (i.e. removal of sediment that has built up in 

existing channels or basins that have previously been dredged) is necessary to keep navigational 

channels open and maintain access to marinas (Drake, 2007).   
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4.5 Lymington Estuary 

4.5.1 Geology 

Gravel, sand and clay predominate in Lymington and the surrounding area, with underlying 

chalk and some limestone also present (Barnes, 2009; Natural England, 2009; New Forest NPA, 

2008); the rocks and soils of the area are unlikely to be a significant source of heavy metals to 

the environment when compared with anthropogenic sources in the area. 

4.5.2 Land use  

Urban areas and roads 

The largest urban areas around Lymington are the city of Southampton (population ca. 322000) 

and its suburbs, and the towns of Christchurch (population ca. 40000), Ringwood (population 

ca. 15000) and Lymington itself (population ca. 14000) on the mainland, and Newport 

(population ca. 24000) and Cowes (population less than 10000) on the Isle of Wight, in addition 

to many small villages (Information Britain, 2009). 

The major roadway in the area around the Lymington site is the M27 motorway to the north, 

which becomes the A31 dual carriageway.  A number of smaller A-roads run through the New 

Forest and around the Isle of Wight, in addition to many connecting B-roads, all of which will 

contribute to the heavy metal pollution of soils, groundwater, rivers and estuaries through road 

runoff (see Section 4.2).  There are also many car parks around the area, 16 of which are 

situated on the coast; however, most notably there are two large public car parks situated right 

alongside Lymington Estuary, to provide parking for visitors to the Seawater Baths and The 

Quay (New Forest District Council, 2004a), where black-headed gulls can be observed 

scavenging for scraps of food left by tourists (personal observation).  

The British Petroleum (BP) oil terminal at Hamble-le-Rice (Map ref. 20, Figure 4-1. below) is a 

fuels storage and distribution terminal which receives fuel from refineries, including crude oil 

from the Wytch Farm oilfield at Wareham, Dorset via an underground pipeline (Drake, 2007).  

A major part of the terminal's operations is road tanker deliveries, which take place on a round 

the clock basis with petrol and other products being supplied to petrol stations, industrial, 

commercial and domestic customers across southern England (Hamble Interactive, 2009).  

Although no direct emissions of heavy metals to the environment as a result of the operation of 
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this terminal have been reported in recent years (Environment Agency, 2009a), the increased 

traffic as a result of tankers going to and from the facility, combined with the potential for minor 

fuel and oil spills, is likely to lead to increased concentrations of heavy metals in runoff (see 

Section 4.2). 

Southampton international airport is located just outside the city of Southampton.  The airport 

has one runway of just over 1.7 km in length, and handles an average of just under two million 

passengers per year (CAA, 2009).  Although no point source emissions are reported from the 

airport (Environment Agency, 2009a), emissions to air as a result of fuel combustion in plane 

engines and runoff from the runway are likely to be a source of heavy metals, and there is 

potential for minor fuel and oil spills during refuelling operations (see Section 4.2).  In addition, 

the airport generates increased traffic in the area. 

Farming and agriculture 

The main rural area within the area of interest around the Lymington site is the New Forest, 

which is dominated by woodland (both managed and natural) and heathland (Environment 

Agency, 2006).  Around a quarter of the New Forest National Park is farmland, with nearly 60% 

of this being permanent grassland reserved for grazing livestock and around 20% used for 

growing arable crops (New Forest District Council, 2010).  The water around the New Forest 

coast is not considered to be at particular risk from agricultural runoff (New Forest District 

Council, 2004a). 

Rivers and riverine inputs 

The only river draining directly into Lymington estuary is the Lymington River.  The 

Lymington River and its three main tributaries - the Highland Water, Blackwater and Oberwater 

- all originate in the New Forest.  The rivers join together and then flow south-eastwards 

through some small villages, the largest of which is Brockenhurst, with a population of 

approximately 6000 (Information Britain, 2009).  The river then flows through the small town of 

Lymington and continues south to enter Lymington Estuary.  As the catchment is largely 

National Park woodland and heathland with some agricultural land, Lymington River and its 

tributaries are more likely to be impacted by runoff primarily from agricultural land, rather than 

urban runoff.  
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Beaulieu Estuary, Christchurch Bay and Southampton Water are also within the feeding radius 

of a breeding black-headed gull.  The main rivers draining into these areas are the Beaulieu 

River into Beaulieu Estuary, the River Avon into Christchurch Bay, and the Rivers Test, Itchen 

and Hamble into Southampton Water.  The River Medina also enters the Solent at Cowes on the 

Isle of Wight.  In terms of input from runoff, Southampton Water is likely to be most 

significantly affected by urban runoff, due to its proximity to the city of Southampton and its 

suburbs.   

4.5.3 Industry and waste 

Figure 4-1 shows the potential sources of industrial pollution within an 18.5 km radius of the 

Lymington site (shown by the black circle).  The pollution sources marked include waste 

(landfill, sewage and waste treatment) and industry (including fuel and power, metal, mineral 

and chemical industries) operations.  The map and information therein have been compiled from 

information on the Environment Agency ‘What’s in Your Backyard?’ website (Environment 

Agency, 2009a).  A full list of the sites marked on this map is provided in Appendix B, Table 

B.1.  For the purpose of this review, only those sites reported to release the metals of concern in 

this study to air or natural waters will be discussed in detail.     
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Figure 4-1 Potential sources of industrial pollution around the Lymington site showing 

18.5 km radius (see Appendix B.1 for key to map reference numbers) 

Industry 

There are a number of industrial sites around the Lymington site.  Of particular note for this site 

is the fact that the feeding radius of the breeding black-headed gull extends into the city of 

Southampton, where industry dominates the waterfront.  Indeed, black-headed gulls in breeding 

plumage can be observed feeding on Southampton Common and in the city centre, confirming 

that these birds forage in this area during the breeding period (personal observation).  As the 

Lymington colonies are the only active breeding colonies of black-headed gulls in this area 
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today, it is a reasonably safe assumption that, if these birds are breeding, they are likely to be 

from the Lymington colonies.  

Perhaps the most notable industrial site in the area is at Fawley, where the ExxonMobil oil 

refinery and associated petrochemical complex, and RWE npower oil-fired power station are 

located side by side.  The largest oil refinery in the UK, the Fawley refinery covers 

approximately 13 km2, supplies 15% of the UK's oil products and has a capacity of about 16 

million tonnes per year, producing over 11 million gallons of petrol, diesel, jet fuel and 

petrochemical feedstock every day (UKPIA, 2008).  Of the refinery output, the majority (about 

85%) leaves the refinery by pipeline, 10% by sea and 5% by road or rail (UKPIA, 2008). A 

chemical manufacturing plant on the site is closely integrated with the refinery, producing a 

wide range of products for the plastics, synthetic rubber and solvents industries, as well as 

speciality chemicals, lubricating base oils and additives (UKPIA, 2008).   The oil-fired power 

station was built in the 1960s and historically operated as a 2000MW power station with four 

500MW generating units, up until the 1990s (RWE npower, 2004a).  Two generating units were 

subsequently closed during the 1990s and one is now dormant (RWE npower, 2004b).  

Although the Fawley power station now has the potential to generate 500MW of electricity for 

the National Grid system, in recent years it has only been used infrequently and is reserved for 

times of high electricity demand (Dyke et al., 2003; New Forest District Council, 2004b).  The 

station’s emissions are dependant largely on the amount of generation at the site (New Forest 

District Council, 2004b) and although it has only been operated sporadically in recent times, the 

emissions to air and to Southampton Water would have been much greater in the past when the 

power station was in constant use.  It is likely that the operation of Fawley power station in the 

past has left a legacy of historical pollution, particularly for heavy metals discharged (see Tables 

4-1 and 4-2), which are accumulated in sediments and remain for many years.  As previously 

discussed (Section 4.3), heavy metals may be remobilised into the water column and rendered 

bioavailable through disturbance of the sediment, for example by dredging activities, strong 

tides or storm events.  Heavy metals may also be accumulated by sediment-dwelling organisms, 

which are important prey items for many bird species, including black-headed gulls, and may 

bioaccumulate in the food chain.  

The average total annual emissions from industry in the Lymington site area, based on data in 

Tables 4-1 and 4-2 for the sampling years of 2005 and 2006, are: arsenic: <10 kg to estuary and 

63.1 kg to air; cadmium: <3 kg to estuary and 32 kg to air; copper 240 kg to estuary and 92 kg 

to air; lead: <60 kg to estuary and <500 kg to air; manganese: no reported emissions to estuary 

and 185 kg to air; nickel: 235 kg to estuary and 3040 kg to air; selenium: no reported emissions 
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to estuary and 700 kg to air; vanadium: no reported emissions to estuary and 1158 kg to air; 

zinc: 455 kg to estuary and 1258 kg to air.  There are no reported emissions to either estuary or 

air for cobalt and iron; however, it does not appear that either of these metals is monitored.  

Note: these calculations for total emissions are based on a ‘worst-case scenario’ with emissions 

of less than ‘x’ being taken as ‘x’. Where data are available for both 2005 and 2006, a mean of 

the two values is taken. 
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Table 4-1 Metals released to water (kg/year) from industry around the Lymington site (map references refer to Figure 4-1) 

As Cd Co Cu Fe Pb Mn Ni Se V Zn

13
Fawley Power Station                                       

Fuel and Power
Estuary -

2005: < 1            

2006: < 1 
-

2005: < 20           

2006: < 20
-

2005: < 20             

2006: < 20
-

2005: < 20            

2006: < 20
- -

2005: < 100   

2006: < 100

14
ExxonMobil Refinery                                                  

Fuel and Power, Waste Processes
Estuary

2005: < 5              

2006: < 5

2005: < 1            

2006: < 1
-

2005: 220          

2006: 180
-

2005: < 20             

2006: < 20
-

2005: 100             

2006: 290
- -

2005: < 100     

2006: 210

16
Cognis UK Ltd.                                               

Chemical Industry
Estuary

2005: < 5              

2006: < 5

2005: < 1            

2006: < 1
-

2005: < 20            

2006: < 20
-

2005: < 20            

2006: < 20
-

2005: < 20             

2006: < 20
- -

2005: < 100          

2006: < 100

29
A & P Southampton                                       

'Other' Industry - Coating, Printing and Textiles
Estuary - - - - - - - - - - 2005: < 100

Map 

ref.

Amount released (kg) and year
Site Name and Industry Type

Release 

Environment

 

Table 4-2 Metals released to air (kg/year) from industry around the Lymington site (map references refer to Figure 4-1) 

As Cd Co Cu Fe Pb Mn Ni Se V Zn

13
Fawley Power Station                                       

Fuel and Power
Air

2005: 17.7 

2006: 17.9

2005: 17.7    

2006: 17.9
-

2005: 17.7   

2006: 17.9
-

2005: < 100     

2006: < 100 

2005: < 50    

2006: < 10

2005: 283     

2006: 237 

2005: < 200   

2006: < 100 

2005: 478     

2006: 380 

2005: < 100  

2006: < 100

14
ExxonMobil Refinery                                                  

Fuel and Power; Waste Processes
Air

2005: 40    

2006: 44.6

2005: 10    

2006: 14.4
-

2005: 50 

2006: 58.5
-

2005: < 100    

2006: < 100

2005: 90  

2006: 100 

2005: 2710    

2006: 2810

2005: < 200  

2006: < 100

2005: 1002     

2006: 1060

 2005: 940     

2006: 975

23
Veolia Environmental Services Ltd.                  

Waste Incineration
Air

2005: < 1 

2006: < 1

2005: < 1 

2006: < 1
-

2005: < 10 

2006: < 10 
-

2005: < 100 

2006: < 100

2005: < 50 

2006: < 50

2005: < 10 

2006: < 10 

2005: < 200 

2006: < 200

2005: < 50 

2006: < 50

2005: < 100 

2006: < 100

27
Selex Sensors & Airbourne Systems Ltd.                       

Chemical Industry
Air

2005: < 1       

2006: < 1
- - - - - - - 2005: < 200 - -

34
Morgan Advanced Ceramics Ltd.                       

Chemical Industry
Air - - - - -

2005: < 100     

2006: < 100
- - - - -

43
White Rose Environmental Ltd.                              

Waste Incineration
Air

2005: < 1       

2006: < 1

2005: < 1       

2006: < 1
-

2005: < 10       

2006: < 10
-

2005: < 100       

2006: < 100

2005: < 10       

2006: < 10

2005: < 10       

2006: < 10
-

2005: < 10       

2006: < 10

2005: < 100       

2006: < 100

Map 

ref.

Amount released (kg) and year
Site Name and Industry Type

Release 

Environment
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Landfill 

Currently there are three landfills actively receiving waste within an 18.5 km radius of the 

Lymington nesting site.  Table 4-3 provides the names and map references (as on Figure 4-1) of 

active landfill sites within the feeding range of black-headed gulls breeding on the Lymington 

marshes, and the types of waste they receive (Environment Agency, 2009a). 

Table 4-3 Active landfill sites within an 18.5 km radius of the Lymington site (map 

references refer to Figure 4-1)  

Map ref. Site Name License Type

2 Holmsley Pit Landfill   Inert Waste 

4 Efford Landfill   Household, Commercial and Industrial Waste

9 Lyn Bottom Landfill   Household, Commercial and Industrial Waste
 

Holmsley Pit Landfill is classified by the Environment Agency as receiving inert waste, such as 

construction materials, sand and gravel.  Efford Landfill, although now closed, was active was 

during the sampling period of this study (2005-2006); the large site received household, 

commercial and industrial waste and was situated very near to the sampling site in this study 

(see Figure 4-1).  Lyn Bottom Landfill also receives household, commercial and industrial 

waste.   

Of the active landfill sites in the area, none reported emissions for metals to either air or 

river/estuary during 2005-2006.  However, black-headed gulls frequently forage on landfill 

sites, and sites containing household, commercial and industrial waste are likely to contain a 

number of waste items that are potential sources of heavy metals and selenium (see Section 4.3). 

Sewage  

Several sewage treatment works are located within the area around the Lymington site (Table 4-

4).  Pennington is the only sewage treatment works (STW) in the area that discharges to the 

Lymington estuary; Fairlee, Woolston, Milbrook and Portswood STWs all discharge direct to 

Southampton Water (or, in the case of Fairlee STW on the Isle of Wight, direct to the Solent) 

and Slowhill Copse discharges to the River Test, which drains into Southampton Water.  

Slowhill Copse is one of the main outfalls in the area and is a sludge reception site, taking 

sludge from all New Forest treatment works except Pennington (which goes to Millbrook STW) 



Kirsty Pickard 

PhD thesis - May 2010 

 

 98 

and sludge barged across Southampton Water from Woolston and Portswood (New Forest 

District Council, 2004a).   Bournemouth and Christchurch STW discharge directly to 

Christchurch Bay, and Ringwood STW discharges to Bickerley Mill Stream, a tributary of the 

River Avon, which subsequently drains into Christchurch Harbour.   

In addition to considering the STWs in the local area in terms of the inputs to natural waters as a 

result of the effluent discharged, it is also important to consider the STWs themselves as a 

potential source of heavy metal exposure, as black-headed gulls can frequently be found feeding 

at the sewage works themselves, as well as at sewage outfalls. 

Table 4-4 provides data for the major inputs to river/estuary  from sewage treatment works in 

the Lymington site area, using emissions data measured and reported by the Environment 

Agency (2009a).  The average total annual emissions from sewage treatment works in the 

Lymington site area to river/estuary, for the sampling years of 2005 and 2006, are: arsenic: 99 

kg; cadmium: 18 kg; copper: 895 kg; lead: 235 kg to 220 kg; nickel: 267 kg; zinc: 2229 kg.  

There are no reported emissions for any of the metals of concern in this study to air, and no 

reported emissions to river/estuary for cobalt, iron, manganese, selenium and vanadium; 

however, it does not appear that emissions of cobalt and iron are monitored.  Note: these 

calculations for total emissions are based on a ‘worst-case scenario’ with emissions of less than 

‘x’ being taken as ‘x’.  Where data are available for both 2005 and 2006, a mean of the two 

values is taken. 
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Table 4-4 Metals released to water (kg/year) from sewage treatment works in around the Lymington site (map references refer to Figure   

4-1) 

As Cd Co Cu Fe Pb Mn Ni Se V Zn

1 Christchurch STW Estuary 2002: 21 2002: 9.7 - 2002: 64 - 2002: 33 - 2002: 30 - - 2002: 340

3 Pennington STW Estuary
2005: 11             

2006: 11.2

2005: <1            

2006: <1
-

2005: 80          

2006: 80.6
-

2005: 24           

2006: 24.2
-

2005: 33              

2006: 32.6
- -

2005: 180    

2006: 146

8 Fairlee STW Estuary
2002: < 6               

2007: < 5

2002: < 1             

2007: < 1
-

2002: 46               

2007: 45.5
-

2002: < 20               

2007: < 20
-

2002: < 20              

2007: < 20
- -

2002: 75     

2007: < 100

22 Slowhill Copse STW River
2005: 6.6           

2006: 6.71

2005: < 1            

2006: < 1
-

2005: 92           

2006: 94.6
-

2005: < 20              

2006: < 20
-

2005: 40           

2006: 30
- -

2005: 140    

2006: 135

25 Woolston STW Estuary
2005: 6.7              

2006: 6.7 

2005: < 1               

2006: < 1
-

2005: 95            

2006: 94
-

2005: < 20            

2006: < 20
-

2005: 30             

2006: 29.9
- -

2005: 140            

2006: 135

28 Millbrook STW Estuary
2005: 16            

2006: 16.2

2005: < 1             

2006: < 1
-

2005: 180        

2006: 187
-

2005: 40            

2006: 40.2
-

2005: 63            

2006: 63.1
- -

2005: 280          

2006: 284

37 Portswood STW Estuary 2002: 10 2002: < 1 - 2002: 110 - 2002: 33 - - - - 2002: 480

41 Ringwood STW River
2002: 6.1 

2006: < 5 

2002: 1.2 

2006: < 1
-

2002: 61 

2006: 27.2
-

2002: < 20 

2006: < 20
-

2002: < 20 

2006: < 20
- -

2002: 73 

2006: < 100

42 Bournemouth STW Estuary
2005: 17              

2006: 14.6

2005: 1.3              

2006: 1.26 
-

2005: 180            

2006: 179
-

2005: 29           

2006: 20.8
-

2005: 37            

2006: 41.7
- -

2005: 510            

2006: 520

Amount released (kg) and yearMap  

ref.
Site Name

Release 

Environment
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4.5.4 Boats and shipping 

Commercial shipping  

Commercial shipping takes place in the Solent all year round, 24 hours per day.  Figure 4-2 

shows the major shipping routes in the Solent (Solent Forum, 2005b). 

 

Figure 4-2 Major Solent shipping routes (Solent Forum, 2005b)  

Southampton is one of the largest and busiest commercial ports in the country; in excess of 42 

million tonnes of cargo is handled annually (ABP, 2007), and Southampton is the UK’s number 

one car import/export port and number two container port (second to Felixstowe; Solent Forum, 

2005a).  The major port for commercial shipping on the Isle of Wight is Cowes, which handles 

around 400000 tonnes of cargo annually (Solent Forum, 2005a).  The oil terminal for the 

ExxonMobil refinery at Fawley is the largest independently owned terminal in Europe; it is 

approximately 1.5 kilometres long and has up to 9 berths, able to accommodate coasters or part-

laden tankers up to 350000 tons deadweight and handling some 2000 ship movements each 

year (UKPIA, 2008).  The BP oil terminal at Hamble-le-Rice is used both for the storage and 

export of crude oil from the Wytch Farm oilfield in tankers up to 110000 tons deadweight and 
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for the import of products including aviation fuels in tankers up to 20000 tons deadweight, 

supplying major industry and airports (Mott MacDonald, 2010).  Marchwood military port is 

situated on the western side of Southampton Water and consists of three main jetties, the largest 

of which is 220 m long and 33 m wide and capable of accepting vessels up to 16000 tonnes (UK 

Ports, 2010).  The facility is used for shipping in support of military administration, training 

exercises and operations, and for the loading and unloading of approximately 100000 tonnes of 

military material annually (UK Ports, 2010).   

 

The port of Lymington offers the shortest crossing from the mainland to the Isle of Wight.  The 

Wightlink ferry operating from Lymington carries foot passengers, private cars and a relatively 

high proportion of commercial vehicles, including around 80% of the tourist coaches that arrive 

in the Isle of Wight (New Forest District Council, 2004a). 

Recreational boating 

The Solent is an important area for marine-based recreation, particularly yachting.  Much of the 

recreational boating activity along the New Forest coastline is centred on the Lymington 

Estuary, and the water-borne recreational pressures within the small river estuary are high, with 

one craft entering or leaving the river every 30 seconds at the height of the summer season (New 

Forest District Council, 2004a).  Lymington River and Estuary provide moorings for 

approximately 1600 leisure craft, including 875 at the Lymington and Yacht Haven marinas 

(New Forest District Council, 2004a).  In addition to the permanent moorings the river receives 

approximately 9000 visiting yachts per annum, and there are on-shore facilities for the storage 

of approximately 250 craft, and the launching of trailer yachts from two public slipways (New 

Forest District Council, 2004a).  Activities such as boat building and repair and sail making are 

all carried out in Lymington, which has a long history of coastal trading and shipbuilding (New 

Forest District Council, 2004a).  

Recreational boating is also an important activity around the Beaulieu Estuary, with moorings in 

much of the Beaulieu River, including a large marina at Buckler’s Hard, and between Beaulieu 

and the estuary.  The River Hamble, Hamble Estuary and the area of Southampton Water around 

the estuary has an international reputation for marine-based recreation, and has moorings for 

around 1200 vessels for public use, local boat clubs and yards (Crown Estate, 2004).  Water-

based recreational activities are also carried out in some other areas of Southampton Water and 

the Solent, with marinas and moorings for recreational craft located along Southampton Water 
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and on the coast of the Isle of Wight.  Cowes Harbour on the Isle of Wight is known as the 

world’s premier yachting centre, hosting numerous yacht races and regattas, including the 

prestigious annual sailing event, Cowes Week. The Harbour is home to four marinas with 

extensive mooring facilities, dry storage facilities and visitor pontoons (Cowes Harbour 

Authority, 2008). 

Dredging activities 

Maintenance dredging is carried out annually in January-February within the Lymington River 

and marinas, undertaken by the Harbour Commissioners (New Forest District Council, 2009).  

Dredging for harbour maintenance at Beaulieu, Hamble and Cowes is only occasional (Solent 

Protection Society, 2006).  Routine maintenance dredging of berths and channels in 

Southampton Water is also carried out regularly to remove accreting sediment from the 

Southampton Water system and keep navigational channels open, including dredging at Fawley 

to maintain access to the oil terminal, amounting to around 100000 m3/year (Townend, 2008).  

This regular dredging will lead to remobilisation of metals bound in sediment, rendering them 

more bioavailable to aquatic organisms (see Section 4.4).  

4.6 Poole Harbour 

4.6.1 Geology 

The geology of Poole Harbour and the surrounding area is similar to that of Lymington, 

comprising mainly sedimentary rocks, sandstone, gravel and clay, with some chalk (JNCC, 

1999).  The rocks and soils of the area are unlikely to be a significant source of heavy metals to 

the environment when compared with anthropogenic sources in the area. 

4.6.2 Land use  

Urban areas and roads 

The area around the Poole site is a mixture of rural and urban areas, with many small villages, 

few towns and no cities.  The north-eastern part of the area (defined in Figure 4-3, below) is 

extensively urbanised, housing the largest towns in the area - Bournemouth and Poole, with 

populations of approximately 376000 and 142000, respectively.  Of the smaller towns in the 

area, the market town of Wimbourne Minster (population ca. 7000) is also in the north-eastern 
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part, and the seaside town of Swanage (population ca. 11000) and small market towns of 

Blandford Forum (population ca. 3000) and Wareham (population ca. 8000) are located to the 

southeast, northwest and near the centre of the area, respectively.  Note: population figures are 

taken from the Information Britain website (2009). 

There are no motorways within the area around the Poole site (in fact, there are no motorways in 

the whole county of Dorset); however, a network of A-roads runs through the area, including the 

A31, A35, A338, A348, A350, A3049 and A354, along with a number of other smaller A- and 

B-roads, and these roads will contribute to the metal pollution of soils, groundwater, rivers and 

estuaries through road runoff.  

There are 39 public car parks in Poole, with eight large car parks located near Poole Quay and 

the beaches of Sandbanks and Branksome, along with other smaller car parks around the town 

and several large parking facilities, including some multi-storey, for the town centre shops and 

shopping centres (Poole Tourism, 2009).  As previously mentioned (Section 4.2), car parks 

create diffuse pollution through increased surface runoff, which has the potential to contaminate 

the estuary, and such areas are also often exploited by black-headed gulls for scraps of food. 

Bournemouth international airport is located just outside the town of Bournemouth; the airport 

has one runway of around 2 km in length, and handles around one million passengers per year 

(CAA, 2009).  Although no point source emissions are reported from the airport (Environment 

Agency, 2009a), emissions to air as a result of fuel combustion in plane engines and runoff from 

the runway are a likely source of heavy metals, and there is potential for minor fuel and oil spills 

during refuelling operations (see Section 4.2).  In addition, the airport generates increased traffic 

in the area. 

Farming and agriculture 

The area around the Poole site is largely rural, with a mixture of heathland and woodland 

alongside arable land and grassland; around 40% of the Green Belt area in the South East Dorset 

region is currently in agricultural use, amounting to just under 320 km2 (CPRE & Natural 

England, 2010).  Agriculture in the area is a mixture of livestock farming and arable; although 

once known for sheep and cattle farming, the pressures faced by livestock farming in recent 

years mean that much of the farmland has now been converted to arable (Dorset AONB, 2009) 
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Rivers and riverine inputs 

The major rivers draining into Poole Harbour estuary are the Rivers Frome and Piddle (Trent), 

together with much smaller inputs from the River Sherford, Corfe River and a number of much 

smaller tributaries (Murdoch & Randall, 2001).  However, freshwater contribution to the 

Harbour is relatively small (Cundy & Croudace, 1995).   

The Frome rises in West Dorset and flows east towards the town of Dorchester and on to Poole 

Harbour; it is joined by a number of tributaries including the Cerne, Sydling Water and Hooke 

Stream (Langston et al., 2003). The Piddle rises near the village of Buckland Newton and flows 

south-east towards Poole Harbour; major tributaries include the Devil’s Brook and the Bere 

Stream (Langston et al., 2003).  The Corfe and Sherford Rivers have a much smaller input to the 

Harbour, and their catchments are largely rural. As the catchment of the rivers entering Poole 

Harbour is mainly rural, the rivers and their tributaries are impacted by runoff from agricultural 

land, which may lead to pollution from pesticide residues, fertilisers and farm animal waste 

(Drake, 2007). In addition, urban developments create diffuse pollution through increased 

surface runoff, and have potential to contaminate watercourses with heavy metals (Comber & 

Gunn, 1996).  Within the catchment of the rivers that enter Poole Harbour the main urban 

influences are the towns of Dorchester and Wareham, and the town of Poole and suburbs of 

Bournemouth also provide potentially more direct sources of urban and industrial contamination 

to Poole Harbour and Poole Bay.   

The River Stour and River Allen (a tributary of the Stour) are also located within the area 

(defined in Figure 4-3, below), and may therefore be used as feeding sites by black-headed gulls 

breeding at Poole.  The Stour rises in Stourhead, an estate near the small town of Mere in 

Wiltshire, from where it flows south into Dorset. At Wimbourne Minster, the Stour and the 

Allen join together and subsequently flow southeast, ultimately draining into Christchurch 

Estuary.  The catchments of the Stour and the Allen are rural, with both rivers flowing through 

agricultural land and small countryside towns and villages. 

4.6.3 Industry and waste 

Figure 4-3 shows the potential sources of industrial pollution within an 18.5 km radius of the 

Poole site (shown by the black circle; Environment Agency, 2009a).  A full list of the sites 

marked on this map is provided in Appendix B, Table B.2.  For the purpose of this review, only 

those sites reported to release the metals of concern in this study to air or natural waters will be 

discussed in detail.     
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Figure 4-3 Potential sources of industrial pollution around the Poole site showing 18.5 

km radius (see Appendix B.2 for key to map reference numbers) 

Industry 

Historical inputs into the Harbour waters from chemical industries in Poole have meant that 

pollution studies in the area have focused heavily on metals.  Metal concentrations are 

particularly high in the sediment, waters and biota of the Holes Bay area, where decades of toxic 

metal discharges have occurred.  In the 1970s, dissolved metal concentrations in Holes Bay 

often exceeded values considered typical for the English Channel by 30-40 fold for copper, 

nickel and zinc (average concentrations: copper 18 µg/l, nickel 8 µg/l, zinc 68 µg/l), and more 

than 100 fold for cadmium and lead (cadmium 7.4 µg/l, lead 2.5 µg/l; Boyden, 1975).  The 

majority of trade discharges to Holes Bay have now ceased and the above data for dissolved 
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concentrations are over 30 years old, indicating historic concentration of metals in water.  

However, sediments have accumulated these metals and, as a result, metals in sediments in 

Poole Harbour and particularly in Holes Bay in recent studies still exceeded sediment quality 

guidelines widely (Langston et al., 2003).  The legacy of historic pollution will remain in the 

Harbour for many years as metals do not break down in the environment and the enclosed nature 

and poor flushing of Poole Harbour means that the distribution of contaminated sediment is 

limited.  Metals can accumulate in the organisms that live within the sediment and may be 

bioaccumulated up the food chain, and species such as worms and clams, again particularly in 

Holes Bay, have demonstrated significant bioaccumulation of a number of metals, including 

cadmium, copper, zinc and selenium, above normal concentrations (Langston et al., 2003). 

Today, the Harbour still supports many industries of differing scales, such as boat building, 

factories and sail lofts (Drake, 2007).  One significant industry located in the south of the 

Harbour is the onshore oilfield, Wytch Farm.  Wytch Farm is Europe’s largest onshore oilfield, 

with extended reach drilling techniques used to exploit oil deposits under Poole Bay, which are 

then distributed from the Harbour via underground pipes to the BP oil terminal in Hamble-le-

Rice on Southampton Water (Drake, 2007).  Production in 2006 stood at between 20-30000 

barrels per day; however, there are no effluent outputs from the operation of Wytch Farm as 

discharges are collected and returned to the oil-bearing strata to aid extraction, and Wytch Farm 

has won numerous awards for environmental achievement (IPIECA, 2003). 

 In terms of reported emissions from industry in the area around the Poole site to natural waters, 

the only reported emissions during the study period are for cadmium, with an average <1 kg 

cadmium per annum being released to the River Frome (Table 4-5), which drains into Poole 

Harbour.  The average total annual emissions to air from industry in the area around the Poole 

site, based on data in Table 4-6 for the sampling years of 2005 and 2006, are: arsenic: <1 kg; 

cadmium: <3 kg; copper: <10 kg; lead: <100 kg; manganese: <10 kg; nickel: <30 kg; vanadium: 

<10 kg; zinc: <200 kg.  There are no reported emissions to air for cobalt, iron and selenium; 

however, it does not appear that emissions of cobalt or iron are monitored.
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Table 4-5 Metals released to water (kg/year) from industry around the Poole site (map references refer to Figure 4-3) 

As Cd Co Cu Fe Pb Mn Ni Se V Zn

49
Faccenda Group                                                    

Animal, Vegetable and Food Industry
River -

2005: < 1               

2006: < 1 
- - - - - - - -

Map 

ref.

Amount released (kg) and year
Site Name and Industry Type

Release 

Environment

 

Table 4-6 Metals released to air (kg/year) from industry around the Poole site (map references refer to Figure 4-3) 

As Cd Co Cu Fe Pb Mn Ni Se V Zn

15
Poole Technical Plating Services                  

Metal Production and Processing
Air - - - - - - -

2005: < 10     

2006: < 10
- - -

29
Sigma-Aldrich, Inorganic Chemicals             

Chemical Industry
Air - 2005: < 1    - - - - - - - - 2005: < 100  

32
White Rose Environmental                                

Waste Incineration
Air 2006: < 1 2006: < 1 - 2006: < 10 - 2006: < 100 2006: < 10 2006: < 10 - 2006: < 10 2006: < 100

36
Flight Refuelling, Inorganic Chemicals                    

Chemical Industry
Air - - - - - - -

2005: < 10  

2006: < 10
- - -

41
Portsmouth Aviation, Inorganic Chemicals               

Chemical Industry
Air -

2005: < 1    

2006: < 1 
- - - - - - - - -

Map 

ref.

Amount released (kg) and year
Site Name and Industry Type

Release 

Environment
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Landfill 

There are a number of active landfill sites around the Poole site; Table 4-7 provides the names 

and map references (as on Figure 4-3) of active landfill sites within the feeding range of black-

headed gulls breeding on the Poole marshes, and the types of waste they receive (Environment 

Agency, 2009a). 

Table 4-7 Active landfill sites within an 18.5 km radius of the Poole site (map 

references refer to Figure 4-3) 

Map ref. Site Name License Type

2 Warmwell Landfill   Inert Waste

12/13 Tatchells Landfill   Household, Commercial and Industrial Waste

20 Henbury Pit Landfill   Inert Waste

22 Beacon Hill Landfill   Household, Commercial and Industrial Waste

23 White's Pit Landfill   Household, Commercial and Industrial Waste

38 Pound Bottom Landfill   Household, Commercial and Industrial Waste

40 Squabb Wood Landfill   Household, Commercial and Industrial Waste

44 Homefield Pit Landfill   Inert Waste

45/47 Somerley Landfill   Household, Commercial and Industrial Waste

46 Hemitage Farm Landfill   Household, Commercial and Industrial Waste
 

Only one landfill reports emissions direct to natural waters; all the other landfills reported 

emissions to the sewer system (Environment Agency, 2009a) and are therefore treated before 

discharge via sewage treatment works.  However, black-headed gulls frequently forage on 

landfill sites, and sites containing household, commercial and industrial waste, thus seven of the 

sites above in Table 4-7 are likely to contain a number of waste items that are potential sources 

of heavy metals and selenium (see Section 4.3).  The other three landfills in the area -Warmwell, 

Henbury Pit and Homefield Pit - are classified by the Environment Agency as receiving inert 

waste, which may include metal, wood, bricks, asphalt or cement concrete, and other building 

construction materials such as plaster, drywall, siding, shingles, insulation, and glass, which 

may also be significant sources of metals (see Section 4.3).   

Table 4-8 provides data for the inputs to river/estuary from landfill in the Poole site area, using 

emissions data measured and reported by the Environment Agency (2009a).  The average annual 
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emissions to natural waters from landfill in the Poole site area come only from the Henbury Pit 

landfill, with emissions of cadmium (<1 kg), copper and lead (both <20 kg) reported in 2002.  

Unfortunately, no data were available for emissions during 2005-2006, the period of this study.  

Henbury Pit landfill releases to the River Stour, which in turn drains into Christchurch Harbour.  

Although the emissions from this landfill will not ultimately reach Poole Harbour, the gulls 

breeding on the Poole marshes may well feed in and around parts of the River Stour, as well as 

foraging on the landfill site itself. There are no reported emissions for any of the metals of 

concern in this study to air, and no reported emissions to natural waters for cobalt, iron, 

manganese, selenium and vanadium; however, it does not appear that emissions of cobalt or iron 

are monitored. 

Sewage 

Poole Harbour directly receives treated discharges from Poole STW, which is perhaps one of the 

most significant and sensitive discharges in the area, particularly because of the enclosed and 

sheltered nature of the receiving environment in the northeast corner of Holes Bay (Langston et 

al., 2003).  The STWs at Bournemouth (both Kinson and Holdenhurst), Wimbourne and 

Palmersford all discharge to the River Stour, which ultimately drains into Christchurch Harbour, 

where the Christchurch STW discharges directly.  Although all these STWs and the rivers they 

discharge to are within (or in close proximity of) the feeding radius of the black-headed gulls 

nesting at Poole, the ultimate receiving area of Christchurch Harbour is outside of this radius 

and is an area unlikely to be exploited by the Poole gulls during breeding.  However, the gulls 

may well feed in and around the rivers to which treated wastewater is discharged.  Swanage 

STW discharges directly into the English Channel, approximately 400m from the shore, via an 

existing Victorian pipeline (watertreatment.com, 2006).  As previously mentioned, black-headed 

gulls can frequently be found feeding at the sewage works themselves, and it is important to 

consider the STWs themselves, as well as the outfalls and discharges to natural waters, as a 

potential source of heavy metal exposure. 

Table 4-9 provides data for the major inputs to river, estuary and sea from STWs within the 

feeding radius of a breeding black-headed gull nesting on the Poole marshes, using emissions 

data measured and reported by the Environment Agency (2009a).  The average annual emissions 

from sewage treatment works entering Poole Harbour are those from Poole STW, amounting to: 

14.8 kg arsenic; 1.19 kg cadmium; 153 kg copper; 42.1 kg lead; 308 kg nickel; and 334.5 kg 

zinc.  There are no reported emissions to air from any of the STWs in Table 4-9 for any of the 

metals of concern in this study, and no reported emissions to river, sea or estuary for cobalt, 
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iron, manganese, selenium and vanadium; however, it does not appear that emissions of cobalt 

or iron are monitored.  Note: where data are available for both 2005 and 2006, a mean of the 

two values is taken. 
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Table 4-8 Metals released (kg/year) from landfill around the Poole site (map references refer to Figure 4-3) 

As Cd Co Cu Fe Pb Mn Ni Se V Zn

18 Henbury Pit Landfill River - 2002: < 1 - 2002: < 20 - 2002: < 20 - - - - -

Amount released (kg) and yearRelease 

Environment
Site Name

Map 

ref.

 

Table 4-9 Metals released to water (kg/year) from sewage treatment works around the Poole site (map references refer to Figure 4-3) 

As Cd Co Cu Fe Pb Mn Ni Se V Zn

9 Swanage STW Sea
2005: < 5                

2006: < 5 

2005: < 1             

2006: < 1 
-

2005: < 20           

2006: < 20
-

2005: < 20              

2006: < 20
-

2005: < 20              

2006: < 20
- -

2005: < 100    

2006: < 100

26 Poole STW Estuary
2005: 15         

2006: 14.6 

2005: 1.2         

2006: 1.18
-

2005: 180     

2006: 126 
-

2005: 42         

2006: 42.2 
-

2005: 330       

2006: 286 
- -

2005: 330     

2006: 339 

33 Christchurch STW Estuary 2002: 21 2002: 9.7 - 2002: 64  - 2002: 33  - 2002: 28 - - 2002: 340 

34
Bournemouth 

(Holdenhurst) STW
River

2005: 17              

2006: 14.6

2005: 1.3              

2006: 1.26 
-

2005: 180             

2006: 179 
-

2005: 29             

2006: 20.8
-

2005: 37             

2006: 41.7
- -

2005: 510           

2006: 520 

35
Bournemouth (Kinson) 

STW
River 2002: 10 2002: 2.1 - 2002: 97 - 2002: 23 - 2002: 21 - - 2002: 100 

37 Wimborne STW River
2005: < 5              

2006: < 5 

2005: < 1               

2006: < 1 
-

2005: 29                

2006: 28.9
-

2005: < 20             

2006: < 20
-

2005: < 20           

2006: < 20
- -

2005: < 100    

2006: < 100

42 Palmersford STW River 2002: 16 2002: 35 - 2002: 72 - 2002: 170 - 2002: 64 - - 2002: 310 

Amount released (kg) and yearMap 

ref.
Site Name

Release 

Environment
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4.6.4 Boats and shipping 

Recreational boating 

Poole Harbour is renowned for its yachting, with eight clubs providing over 7500 members with 

racing and cruising activities all year round, in addition to around 5000 yachts visiting each year 

(PHC, 2007).  There are seven main marinas in Poole Harbour, with approximately 2500 

swinging moorings within the Harbour, 2300 sheltered marine and pontoon berths and a further 

100+ moorings occupied by the Environment Agency, in addition to dry boat storage facilities 

with a capacity for approximately 2000 boats to be stored (Drake, 2007).  The largest marina in 

Poole Harbour is Holes Bay, with berths for around 800 craft (Drake, 2007).   

Commercial shipping  

Approximately 0.2 km2 of Poole Harbour are devoted to commercial port operations (Langston 

et al., 2003) with a variety of different cargoes are handled and stored, including bulk cargo 

imports of steel, timber, bricks, fertiliser, grain, aggregates and palletised traffic, and exports 

including clay, sand, fragmented steel and grain (Drake, 2007).  Regular ferry services operate 

between Poole and Cherbourg, St. Malo and the Channel Islands, with both passenger and 

freight services and a chain ferry operates a regular, year-round car and foot passenger ferry 

service across the Harbour to the Studland peninsular (PHC, 2007).  Sightseeing vessels also 

operate from Poole Harbour to Brownsea and other islands around the Harbour during tourist 

season (PHC, 2007).      

Dredging activities 

In a busy commercial port such as Poole Harbour, maintenance dredging is necessary to keep 

navigational channels open, and is carried out routinely by Poole Harbour Commissioners and 

by third party operators to maintain access (Drake, 2007).  Maintenance dredging in Poole 

Harbour amounts to an average displacement of 70000m3 sediment per year, with additional 

smaller quantities dredged for access to marinas (Langston et al., 2003).  As previously 

mentioned (Section 4.4), regular dredging will lead to remobilisation of metals bound in 

sediment, rendering them more bioavailable to aquatic organisms. 
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4.7 Raby Estate  

4.7.1 Geology 

The deep strata of the North Pennines are slates and volcanic rocks, comprising a large granite 

body and repeating layers of limestone, shale and sandstone (North Pennines AONB 

Partnership, 2010).  Owing to the large body of granite underlying the area, lead and zinc have 

been mined in the past (see Section 4.6.3 ‘Industry’), and there may be a significant contribution 

of arsenic, copper, lead, nickel, vanadium and zinc from natural weathering of rocks and soils in 

the area of the Raby site.   

4.7.2 Land use  

Urban areas and roads 

The area surrounding the Raby site is one of the most remote nature reserves in England; as a 

result, there is very little in the way of domestic areas in the vicinity. In fact, within the feeding 

area of a breeding black-headed gull (as shown in Figure 4-4 below, taking 18.5 km as the 

foraging radius) around the Raby site there is only one small town, Appleby-in-Westmorland, 

which has a population of less than 3000 (Eden District Council, 2008).  The village of Brough 

also lies within the area, with a population of around 800 (Eden District Council, 2008).   

 There are no roads directly linked to the Raby site.  The closest main road to the site is the 

B6277, from which a smaller, unnamed road leads to the Cow Green reservoir and the car park 

located there (see Figure 4-4, below), which is the only car park in the area (English Nature, 

2004).  The nearest point of the B6277 to the site is approximately 4 km northeast, and the 

unnamed road leading to Cow Green reservoir is approximately 2 km north.  While both of 

these roads run at a ground height sufficient that runoff from the road could potentially reach the 

Cow Green reservoir, there is likely to be very little traffic on these roads as they lead only to 

and from the reservoir, and pollution from vehicles is therefore likely to be low.  The other 

roads in the area (the A66, A689, B6276 and various smaller roads) are all located on land lower 

than the reservoir and runoff water from these roads will not therefore impact on the reservoir 

directly.  However, all of the roads mentioned here are within the feeding radius of breeding 

black-headed gulls, and the gulls may therefore be impacted by runoff and pollution arising as a 

result of the roads, through foraging in the areas surrounding them that have been contaminated 
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as a result of road runoff, and also via atmospheric pollution arising from vehicle emissions and 

resultant wet and dry deposition. 

Farming and agriculture 

The land around the Raby site is predominantly heather moorland and the only type of farming 

carried out in the area is traditional upland farming with land managed by grazing sheep.  The 

land is poor in terms of agriculture, owing to poor soils and climate for growth of crops, and is 

classified by English Nature’s Agricultural Land Classification as Grade 4/5,  Poor/Very Poor, 

and as a ‘Less Favoured Area’ (Durham County Council, 2004).  Runoff and contamination 

from agricultural practices is therefore not an issue of concern in this area. 

Military firing range 

Parts of the Ministry of Defence Warcop military training area and firing range are located to 

the south of the Raby site, in parts of Mickel and Cronkley Fells.  Military firing ranges have 

been shown to give rise to metal pollution as a result of the use of incendiary devices and spent 

bullets (NC DPPEA, 1998).  Lead is the primary contaminant of concern at military ranges, in 

addition to copper and zinc, which are the primary components in shell casings and jackets and, 

to a lesser extent, nickel and arsenic (NC DPPEA, 1998).  On average, new bullets and pellets 

consist of over 90% lead, less than 2% arsenic and less than 0.5% nickel (Robinson et al., 2008).  

Tracer and incendiary bullets also contain zinc (Robinson et al., 2008).  Once in the soil, bullets 

and bullet fragments gradually oxidise through weathering by air and water, organic acids and 

microbial activity (Lin et al., 1995; Johnson et al., 2005).  The most important factor governing 

the rate of bullet oxidation is the pH of the soil, with lower pH soils leading to greater oxidation 

rates than those of higher pH (Labare et al., 2004).  The Warcop military training area 

comprises acid heath and grassland, mixed with some calcareous grassland (Turner et al., 2003), 

thus the soils in the area will be mainly acidic, and the rate of bullet oxidation will be reasonably 

rapid.  Indeed, it has been demonstrated with field experiments that concentrations of lead, 

copper and nickel are significantly elevated in soil samples taken from a military firing range 

(NC DPPEA, 1998; Robinson et al., 2008).  Robinson et al. (2008) found lead, copper and 

nickel at mean concentrations of 10171 mg/kg, 4125 mg/kg and 917 mg/kg, respectively; in the 

case of lead the highest concentration measured in the firing range soils in this study was 160 

times higher than the soil quality standard (over 85000 mg/kg, compared to a quality standard of 

530 mg/kg).  Elevated concentrations of lead in invertebrates on firing ranges has also been 

reported (Migliorini et al., 2003).   
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Although metals released as a result of bullet oxidation will mainly remain in the soil, they may 

migrate with surface runoff and erosion (Craig et al., 1999).  In addition, soil-dwelling 

organisms will accumulate heavy metals from contaminated soils, and these metals can then be 

bioaccumulated by higher organisms through the diet, for example by black-headed gulls 

feeding on earthworms. 

Rivers and riverine inputs 

The black-headed gulls breeding at the Raby site nest near Cow Green Reservoir, a two-mile 

long reservoir built in the late 1960s.  The River Tees rises at Cross Fell and flows southeast to 

feed into Cow Green Reservoir, before flowing further eastwards through the small market town 

of Middleton-in-Teesdale (population ca. 1500; Teesdale.co.uk, 2009) to eventually drain into 

the North Sea between Hartlepool and Redcar, on the northeast coast of England.  The River 

Balder, a small tributary of the River Tees, flows into the Balderhead Reservoir which in turn 

feeds the Blackston Reservoir and subsequently the Hury Reservoir, all of which are located to 

the southeast of the Raby site.  Two other reservoirs are located just north of these - Selset 

Reservoir and Grassholme Reservoir - both of which control the flow of the River Lune, another 

small tributary of the River Tees.  The area of the Tees catchment relevant to the site of interest 

in this study is entirely rural and largely unpopulated, with the river flowing through unmanaged 

heathland, acid and calcareous grassland and blanket bog. 

4.7.3 Industry and waste 

Figure 4-4 shows the potential sources of industrial pollution within an 18.5 km radius of the 

Raby site (shown by the black circle; Environment Agency, 2009a).  A full list of the sites 

marked on this map is provided in Appendix B, Table B.3.  For the purpose of this review, only 

those sites reported to release the metals of concern in this study to air or natural waters will be 

discussed in detail.     
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Figure 4-4 Potential sources of industrial pollution around the Raby site showing 18.5 

km radius (see Appendix B.3 for key to map reference numbers) 

Industry 

There is no active industry reporting releases of metals to either water or air within an 18.5 km 

radius of the Raby site.  Although the British Gypsum processing plant (map ref. 1), which is 

involved in the production and processing of plaster and plasterboard, is active and was 

operating during the sampling period, there were no reported emissions of metals to the 

environment (Environment Agency, 2009a).     

Although there is no current active industry in the Raby site area, the area has a long history of 

mining activity.  Discharges of metals were at their greatest during the peak period of active 
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mining, however, significant inputs of dissolved and particulate metals still occur through 

erosion of soil heaps and tailings deposited adjacent to water channels, and past discharges have 

left a substantial reservoir of contaminated sediments which can be remobilised during flood 

events (Environment Agency, 2008).  In the North Pennines, a hydraulic form of mining known 

as ‘hushing’ was carried out, involving the construction of dams upslope of mineral veins, then 

opening sluices to release water, with the resulting torrent exposing underlying bedrock and 

mineral veins, which were worked using simple quarrying techniques (Environment Agency, 

2008).  Hushing was repeated periodically to remove debris from the workings.  All of these 

methods involved water, and led to the transfer of significant quantities of metal-rich, fine 

grained sediment to river systems (Environment Agency, 2008).  At abandoned mines, such as 

the lead mines at the Raby site, wastes from ore processing were commonly deposited next to or 

in rivers, and lead-, zinc-, cadmium- and copper-bearing sulphides and carbonates occur in ore 

bodies and mine waste-tips in the Tees Basin (Dunham, 1948; Ixer et al., 1979; Vaughan & Ixer, 

1980; Young et al., 1985; Dunham, 1990).  The river catchments of the Northern Pennines, 

particularly the upper Tees (Hudson-Edwards et al., 1997), which drains into Cow Green 

reservoir alongside which the Raby black-headed gull colony breeds, are among the most 

affected by mining-related metal contamination in England and Wales, with total metal outputs 

to the river system from mining activities amounting to 4064000 tonnes of lead and 271000 

tonnes of zinc (Manning, 1959; Schnellman & Scott, 1970; Lewin & Macklin, 1987).  Studies 

have shown that sediment metal concentrations on the Tees catchment are highest in the areas 

where mining was carried out in the past (up to 6880 mg/kg lead, 1920 mg/kg zinc and 5.95 

mg/kg cadmium), such as Raby, and show an overall decrease downstream of mining areas 

(Hudson-Edwards et al., 1997).  These sediment concentrations are up to ten times greater than 

the baseline values defined for the Tees pre-mining (Lee, 1989) and for median values 

determined for upstream sediment from the British Geological Survey’s Geochemical Baseline 

Survey of the Environment (G-BASE; British Geological Survey, unpublished data).  

In natural waters a large proportion of metals is associated with sediment (Hudson-Edwards et 

al., 1997), and whilst river channels can be regarded as temporary stores of metal-rich 

sediments, floodplains, wetlands, reservoirs, lakes and estuaries are the long-term sinks for 

metal storage in river basins and large quantities of metal contaminants can be stored in 

sediments of these environments.  As previously mentioned (Section 4.3), metals in sediments 

can be remobilised and made bioavailable (Lewin et al., 1977; Macklin, 1985; Macklin et al., 

1992; Hudson-Edwards et al., 1999; Brewer et al., 2005; Cave et al., 2005).  These highly 

contaminated materials can be mobilised during disruption of the sediment and weathering of 
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contaminated soils, alluvium and mining wastes, for example during floods and periods of high 

river flow (Environment Agency, 2008), during which a large total surface area of metal-

contaminated sediment is brought into contact with water, causing desorption of metals from 

sediment surfaces to the aqueous phase (Nagorski et al., 2003; Neal & Davies, 2003; Gozzard et 

al., 2006), rendering them bioavailable to organisms living and feeding in the river.  Conditions 

of low pH (below pH 5) can accelerate weathering processes and cause dissolution of metal-

bearing minerals and release of their metals to the solute phase.  The soils and stream, river and 

reservoir waters and sediments of the area around the Raby site vary in pH from blanket peat 

bogs and streams and rivers fed by acidic drainage from them (pH ca. 4.0) to calcareous springs 

and associated soils and streams and rivers fed by alkaline drainage (pH ca. 8.3; Turner et al., 

2003), and thus the rate of weathering will be dependant on the specific area and the sources 

feeding the rivers and streams. 

Landfill 

There is one landfill site within an 18.5 km radius of the Raby site, and one further landfill site 

just outside of this radius (map references 1 and 4, Figure 4-4).  Details of the types of waste 

received by landfills in the Raby area are provided in Table 4-10.  

Table 4-10 Active landfill sites within an 18.5 km radius of the Raby site (map 

references refer to Figure 4-4) 

Map ref. Site Name Type of waste received

1 Kirkby Thore Landfill   Gypsum waste from plasterboard manufacture

4 Cotherstone Moor Landfill   Sludge disposal
 

 

The Kirkby Thore landfill was operated by British Gypsum, and although it has subsequently 

closed, the landfill site was in operation during the period of sampling in this study, and 

afterwards, until closure in June 2007 (British Gypsum, 2009a).  Kirkby Thore landfill received 

waste from the plaster and plasterboard manufacture carried out at the Kirkby Thore industrial 

site (see previous section ‘Industry’); however, owing to the fact that 100% of gypsum produced 

as a result of the industrial site is now recycled, there is no longer a requirement for landfill 

(British Gypsum, 2009b).  Gypsum is a soft mineral composed of calcium sulphate dihydrate 

(CaSO4.2H2O) and a by-product of the production of plaster and plasterboard (Euro Gypsum, 
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2007); there is no metal content and no metals seem to be associated with gypsum.  However, 

some emissions of metals to the river environment have been documented as a result of waste 

processes carried out at Kirkby Thore landfill (Environment Agency, 2009a), and are detailed in 

Table 4-11.  No emissions to air were reported from this landfill.  

The landfill at Cotherstone Moor is a water treatment sludge disposal area operated by 

Northumbrian Water Ltd., receiving sludge pumped from Lartington Sewage Treatment  Works 

(Environment Agency, 2009a).  Emissions of metals from the Cotherstone Moor landfill have 

been reported to both air and the river environment (Environment Agency, 2009a).  Data for 

these emissions are provided in Table 4-11.  Data for this landfill relate to 2004; unfortunately, 

emissions data were not available for 2005 or 2006. 

The average total annual emissions from landfill in the Raby site area, based on data in Table 4-

11 for the sampling years of 2005 and 2006, are: arsenic: <10 kg to river and <1 kg to air; 

cadmium: <1 kg to river and <1 kg to air; copper <40 kg to river and <1 kg to air; lead: <40 kg 

to river and <100 kg to air; manganese: no reported emissions to river and <50 kg to air; nickel: 

<40 kg to river and <10 kg to air; zinc: <200 kg to river and <100 kg to air.  There are no 

reported emissions to either river or air for cobalt, iron, selenium and vanadium; however, it 

does not appear that emissions of cobalt or iron are monitored. 

Sewage  

There is one sewage treatment works located within the area surrounding the Raby site: the 

Appleby sewage treatment works, operated by United Utilities Water plc.  Emissions data for 

this site (Environment Agency, 2009a) are provided in Table 4-12.  The average annual 

emissions to the river environment from sewage treatment works in the area of the Raby site, 

during the 2005-2006 period, are: arsenic <5 kg; cadmium <1 kg: copper <200 kg: lead: <20 kg; 

nickel <20 kg; and zinc: <100 kg.  No emissions for cobalt, iron, manganese or nickel were 

reported from sewage treatment works to water, and no emissions of any metal were reported to 

air. 
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Table 4-11 Metals released (kg/year) from landfill sites the Raby site (map references refer to Figure 4-4) 

As Cd Co Cu Fe Pb Mn Ni Se V Zn

1
Kirkby Thore, Waste 

Landfilling
River

2005: < 5 

2006: < 5
- -

2005: < 20 

2006: < 20
-

2005: < 20 

2006: < 20
-

2005: < 20 

2006: < 20
- -

2005: < 100 

2006: < 100

4
Cotherstone Moor, 

Waste Landfilling
River 2004: < 5 2004: < 1 - 2004: < 20 - 2004: < 20 - 2004: < 20 - - 2004: < 100

4
Cotherstone Moor, 

Waste Landfilling
Air 2004: < 1 2004: < 1 - 2004: < 1 - 2004: < 100 2004: < 50 2004: < 10 - - 2004: < 100

Amount released (kg) and yearRelease 

Environment
Site Name

Map 

ref.

 

Table 4-12 Metals released (kg/year) from sewage treatment works around the Raby site (map references refer to Figure 4-4) 

As Cd Co Cu Fe Pb Mn Ni Se V Zn

2
Appleby Sewage 

Treatment Works
River

2005: < 5 

2006: ND

2005: < 1 

2006: < 1
-

2005: < 20 

2006: < 20
-

2005: < 20 

2006: < 20
-

2005: < 20       

2006: ND
- -

2005: < 100 

2006: < 100

Amount released (kg) and yearMap 

ref.
Site Name

Release 

Environment

 

ND = no data  
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4.8 Summary of sources 

The following section provides a summary of the point-source inputs to air and natural waters 

from industry and waste processes, and the key non-point (diffuse) sources in the area of each of 

the sampling sites, based on the information provided in this chapter. 

4.8.1 Point sources 

Table 4-13 provides a summary of the average total discharges of metals from industrial sites, 

sewage treatment works and landfills within the feeding range of breeding black-headed gulls 

for each of the sampling areas, from Environment Agency data (2009a) provided in Sections 

4.5.3, 4.6.3 and 4.7.3.  No data were available regarding discharges of cobalt and iron. 

Table 4-13 Point source discharges of metals (kg/year) from industry and waste to 

natural waters and air around the Lymington, Poole and Raby sites, average 

for 2005 and 2006 

WATER AIR WATER AIR WATER AIR

As 109 63 15 1 15 1

Cd 21 32 3 3 2 1

Cu 1135 90 173 10 240 1

Pb 295 500 62 100 60 100

Mn 0 185 0 10 0 50

Ni 502 3040 308 30 60 10

Se 0 700 0 0 0 0

V 0 1158 0 10 0 0

Zn 2684 1258 335 200 300 100

LYMINGTON POOLE RABY

 

 

The data in Table 4-13 show that, in terms of point discharges to the environment monitored and 

consented by the Environment Agency, the releases to both air and natural waters during the 

sampling period (2005-2006) were higher in the area around the Lymington site than either the 

Poole or Raby areas for all metals.  Point-source discharges to natural waters and air around the 

Poole site for the period of this study were of a similar order to those around the Raby site for 

arsenic, cadmium and lead; no discharges of selenium were reported for either site.  For nickel 

and zinc, releases to both air and water were higher around the Poole site than the Raby site.  
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Overall, discharges of copper and manganese to the environment were higher for the Raby area 

than the Poole area.  For vanadium, no discharges were reported to either air or water around the 

Raby site, and only a small amount (10 kg/year average) of vanadium was discharged to air in 

the area around the Poole site.   

4.8.2 Non-point sources 

Diffuse pollution is now more evident since the quality of point source discharges has been 

improved and is carefully monitored and controlled (CIWEM, 2004).  Diffuse pollution 

originates from hundreds or thousands of small sources, or is washed off land with rainfall, 

making it extremely difficult to quantify inputs to the environment from diffuse sources.  

However, most diffuse pollutants stem from the use of land for agriculture, industry and from 

urban land and roadways; thus, examination of these potential sources can provide some insight 

into the level and types of diffuse pollution a site may be subject to.   

In addition to current pollution from both point sources and diffuse sources, it is important to 

consider the legacy of pollution in an area that may have been left as a result of historical 

industrial activity.  Most metals tend to partition to the sediment and soils, where they do not 

break down and will remain for many years.  Sediment- and soil-dwelling organisms, and those 

that prey on them, will be exposed to these metals.  Sediment-bound metals can also become 

remobilised into the water column as a result of dredging activities.  Maintenance dredging is 

carried out regularly in the harbours around both the Lymington and Poole sites, potentially 

remobilising sediment-bound metals, making them more bioavailable to organisms living in the 

water, and in turn to organisms feeding on them.   

Table 4-14 provides a summary of the key non-point sources influencing each of the sites.   

Table 4-14 Non-point source influences around the Lymington, Poole and Raby sites 

Site Major non-point source influences

Lymington
Urban and road runoff; Commercial shipping; Recreational 

boating.

Poole
Urban and road runoff; Agricultural runoff; Recreational 

boating; Historical industrial pollution.

Raby
Granite geology; Military firing range; Historical mining 

activity.
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In terms of diffuse pollution from roads and urban areas, both the Poole and Lymington sites are 

likely to be fairly similar.  Although the M27 motorway is located in the region of the 

Lymington site (Section 4.5.2) and there are no motorways in the region of the Poole site, the 

Poole area has a network of large A-roads, many of which are part dual-carriageway, which are 

likely to carry a great deal of traffic as they provide links to the coast, and between West 

Hampshire and East Dorset (Section 4.6.2).  The large urban area of the city of Southampton 

and its suburbs are located within the area round the Lymington site, along with several towns 

such as Christchurch, Ringwood, Lymington, Newport and Cowes.  Around the Poole site, the 

large towns of Poole and Bournemouth are the main urban areas (for population figures see 

Sections 4.5.2 and 4.6.2).  The Raby site, being very remote, is not subject to a significant level 

of runoff from urban areas or roads (Section 4.7.2). 

The Poole site is more likely to be impacted by agricultural runoff than the Lymington site, as 

there is more agricultural land around the Poole site and the riverine inputs to the area are also 

from largely rural catchments, impacted by runoff from agricultural land (Section 4.6.2).  For 

Lymington, the rivers entering the estuary all originate in the New Forest, in which the majority 

of the land is natural and plantation woodland and heathland, with some agriculture (Section 

4.5.2).  There is very little agricultural land around the Raby site, thus inputs from agricultural 

runoff to the area are minimal (Section 4.7.2). 

Both Lymington and Poole are important areas with regard to boating and shipping activities, 

both commercial and recreational (Sections 4.5.4 and 4.6.4).  The level of commercial shipping 

is very high around the Lymington site, particularly in Southampton Water.  Poole Harbour has 

larger, more extensive marina facilities for recreational boating than Lymington; however, there 

are a large number of smaller marinas within the area of the Lymington site, which may 

contribute just as much collective pollution to the estuary waters as the fewer, more extensive 

facilities at Poole.  Historically, parts of Poole Harbour were subject to heavy metal pollution as 

a result of heavy industry in the area, and these industrial activities have left a legacy of heavy 

metal pollution in the sediments of Poole Harbour (see Section 4.6.3). 

The Raby site is likely to be most influenced by natural sources of heavy metals owing to the 

numerous mineral veins associated with the granite underlying the North Pennines (see Section 

4.1), and metal concentrations in the area may be elevated as a result of the historical mining 

activity.  The nearby military firing range may also result in increased concentrations of metals 

in the local environment and biota (see Section 4.7.3).   Runoff from urban areas, roads and 
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agricultural land is much less significant at the remote Raby site than in the Lymington and 

Poole areas. 

The information provided in this chapter is reviewed alongside the data for concentrations of 

heavy metals and selenium in black-headed gull eggs in Chapter 5 (Section 5.3.2), in order to 

assess the potential sources of metal pollution in each area with the concentrations measured in 

black-headed gull eggs from the Lymington, Poole and Raby sites.  
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CHAPTER 5. HEAVY METALS AND SELENIUM IN 

BLACK-HEADED GULL EGGS  

5.1 Introduction 

Heavy metals are chemical elements that have a specific gravity (a measure of density) at least 

five times that of water, i.e. 5.0 kg/l or higher (USEPA, 1993). The heavy metals most often 

implicated in human poisoning are lead, mercury, arsenic, and cadmium.  Some heavy metals, 

such as zinc, copper, iron, and manganese, are required by the body in small amounts (and 

therefore termed essential metals), but these same elements can be toxic in larger quantities.  In 

the environment, exposure to heavy metals and selenium may occur as a result of a number of 

anthropogenic activities (see Chapter 4), and these contaminants may be accumulated in the 

body and become concentrated through food chains, having a direct effect on priority species or 

habitats.  Heavy metals may affect bird populations in a number of ways.  Effects may be direct, 

resulting in increased susceptibility to disease or stress, behavioural effects and decreased 

reproductive success, or even death (Heinz, 1974; Scheuhammer, 1987; Burger & Gochfeld, 

1995b; Heinz et al., 1999).  Heavy metal exposure has been shown to affect the reproductive 

success of birds in a number of field and laboratory tests (Grandjean, 1976; Miles et al., 1993; 

Eeva & Lehikoinen, 1995), and eggs and young birds are often the most vulnerable to the effects 

of heavy metals (Burger, 1994). As well as exhibiting direct effects on bird populations, heavy 

metal pollution may also affect bird populations through effects on the abundance of prey 

organisms (Bryan & Langston, 1992).      

The choice of metals included in this review is not intended to be comprehensive and is based 

on those elements perceived to be the most environmentally and toxicologically significant (see 

Chapter 1) and those for which little or no data is available regarding concentrations in bird eggs 

and feathers, and the effects on reproductive success.  This study therefore focuses on the non-

essential heavy metals arsenic, cadmium and lead, and the essential metals cobalt, copper, iron, 

manganese, nickel (essential for some species), vanadium, zinc and the essential semi-metal 

selenium.   

As the toxicological effects of mercury are so well-known, there is an abundance of field data 

for a wide variety of bird species and the concentrations of mercury in various bird tissues, 

including eggs and feathers, and the effects of mercury on the breeding success of birds have 
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been researched extensively.  Mercury is also difficult to determine accurately by the analytical 

technique used in this study - inductively coupled plasma-mass spectrometry (ICP-MS) - as 

mercury deposits in the sample introduction system and is then released during subsequent 

analyses (i.e. carry-over).  Tin is an important heavy metal in terms of marine pollution, 

particularly because of its former use in anti-foulant paints applied to the hulls of boats.  

Although tin was originally included in the suite of metals analysed for in this study, there were 

issues with the analysis and it was not possible to obtain accurate results for tin concentrations 

with analysis by ICP-MS.  Unfortunately, separate analysis of tin using a different analytical 

technique was not possible with the limited resources of this project. 

The environmental fate and toxicity to birds of the metals covered in this study is dealt with in 

Section 5.1.1, and the transfer to eggs, fate and behaviour in eggs and toxicity to embryo and 

chick health is dealt with in Section 5.1.2. 

5.1.1 Environmental fate and toxicity 

Arsenic 

Arsenic is a relatively common element that occurs in air, water, soil and all living tissues 

(Eisler, 1988b); it is found in the Earth’s crust and in nature most often occurs as a compound 

with sulphide in a variety of complex minerals (Woolson, 1975).  Arsenic enters natural waters 

through weathering and erosion of rocks and soil, through waste streams from industrial 

processes such as production of alloys and semiconductors, glass and textiles, and from surface 

runoff from agricultural land or areas where wood preservatives have been used (see also 

Chapter 4).  Entry may also occur as a result of mining, metal smelting and burning of fossil 

fuels, where arsenic compounds in the atmosphere may be removed from air by wet and dry 

deposition (HSDB, 2009c), and hence enter natural waters.  In water, arsenic occurs in both 

inorganic and organic forms, with the form depending on a number of variables including pH, 

organic content, suspended solids and dissolved oxygen concentration (USEPA, 1985).  Organic 

arsenic compounds are mainly found in marine organisms and are much less common in 

terrestrial species; the majority of organic arsenic in marine animals is present as water-soluble 

arsenobetaine, and other organisms may be exposed to organic arsenic compounds through a 

diet containing marine animals (EHC, 2001).  Studies have shown that marine organisms such 

as fish rapidly convert inorganic arsenic administered orally to organic forms in the body 
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(Penrose, 1975; Oladimeji et al., 1979), with organic arsenicals formed including arsenobetaine 

and related compounds, di- and trimethylated forms (Oladimeji et al., 1979; Maeda et al., 1990).   

The most common forms of arsenic in natural waters are the inorganic dissolved ionic species 

arsenite (trivalent, As3+) and arsenate (pentavalent, As5+), and the organic methylated forms 

monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) (Braman & Foreback, 1973).  

Soluble inorganic arsenate predominates under normal conditions (USEPA, 1980b; Seyler & 

Martin, 1989; Pettine et al., 1992); in well-oxygenated water and sediments, nearly all arsenic is 

present as arsenate, As5+ (EHC, 2001).  Soluble forms of arsenic move with water and may be 

carried long distances; however, some forms of arsenic may adsorb onto sediments, depending 

on the water conditions.  In neutral or acidic waters, arsenate partitions to sediments extensively, 

while arsenite is relatively weakly adsorbed; in waters with high pH, both forms of arsenic are 

relatively weakly adsorbed (HSDB, 2009c).  However, this is not always the case, as 

partitioning of arsenic is a complex process and depends not only on the form of arsenic and the 

pH conditions, but also on the type of sediment and interactions with the other materials present 

(EHC, 2001).  Adsorbed arsenic may become remobilised as a result of disruption and mixing 

through tidal activity, burrowing of benthic organisms or other disruption of sediments (EHC, 

2001).  Remobilisation from sediments may also occur if conditions become sufficiently 

reduced for arsenate to form arsenite, or through microbial reduction and methylation.   

Although arsenic may be bioaccumulated by organisms, bioaccumulation primarily occurs in 

algae and, in particular, lower invertebrates, not in higher organisms (EHC, 2001).  Arsenic does 

not tend to increase with trophic level (LeBlanc & Jackson, 1973; Wagemann et al., 1978; 

Callahan, 1979; Klumpp & Peterson, 1979; Bernhard & Andreae, 1984; Eisler, 1994; Farag et 

al., 1998; Mason et al., 2000; USEPA, 2003; Williams et al., 2006).  For example, an extensive 

study of the factors affecting bioaccumulation of arsenic found no evidence of bioamplification, 

and in fact found an overall trend of decreasing arsenic concentrations in organisms with 

increasing tropic level (Mason et al., 2000).   Thus, in general, bioamplification of arsenic in 

aquatic food chains does not appear to be important in ecological terms. 

Arsenic toxicity varies significantly with numerous factors, including form of arsenic, dose, 

route of administration and species; in general, inorganic arsenic compounds are more toxic than 

organic compounds, and arsenates are less toxic than arsenites (Gosselin et al., 1984; Eisler, 

1988b).  Episodes of arsenic poisoning are either acute or subacute, with chronic cases rarely 

encountered in any species except humans, and early developmental stages of most organisms 

are more sensitive to arsenic than later stages (Eisler, 1988b).   
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Arsenic residues in birds tend to be low, with little accumulation reported in tissues of birds 

even at sites with high environmental concentrations (Martin & Nickerson, 1973; Blus et al., 

1977; White et al., 1980; Ohlendorf et al., 1991; Pain et al., 1992; Vermeer & Thompson, 1992; 

Custer & Hohman, 1994; Guitart et al., 1994; Hothem & Welsh, 1994).  For example, Erry et al. 

(1999) examined tissues of raptors from an area in the south west of England with elevated 

arsenic levels and, although tissue concentrations of arsenic were around three times higher than 

those of birds from an uncontaminated area, the average concentration of arsenic in the tissues 

of kestrels (Falco tinnunculus) was still relatively low at 0.278, 0.346 and 0.187 mg/kg dry 

weight for kidney, liver and muscle, respectively (compared to 0.094, 0.121 and 0.057 mg/kg at 

the uncontaminated site).  Arsenic levels were not elevated in the tissues of another two raptor 

species (sparrowhawk A. nisus and barn owl Tyto alba) from the same area; the authors suggest 

that the difference could be attributed to differences in diet and arsenic metabolism between the 

species.  It has been suggested by other authors that the low concentrations measured in birds 

may be as a result of the ability to rapidly excrete arsenic (Woolson, 1975; Morrissey et al., 

2007).  In laboratory animals, excrement has been shown to be the primary route of elimination 

of arsenic (Yamauchi et al., 1990; Hughes et al., 1994; Hughes & Kenyon, 1998), and studies 

have shown that arsenic is rapidly excreted by chickens, with only 2% of dietary sodium 

arsenite remaining 60 hours after administration (NAS, 1977a), and 50% of arsenate excreted 

within 60-63 hours after administration (NRCC, 1978).   

Hudson et al. (1984) report LD50 concentrations for a number of bird species dosed with sodium 

arsenite through the diet.  Data are summarised below in Table 5-1. 

Table 5-1 LD50 concentration for arsenic as arsenite in bird species (data summarised 

from Hudson et al., 1984) 

Species Age
LD50 concentration                           

mg As/kg body weight

Mallard                                                  

Anas platyryhnchos
3-4 months

323                                                            

(range 149-699)

Pheasant                                                          

Phasianus colchicus
3-4 months

386                                                                      

(range 221-671)

California quail                                                      

Callipepla californica
9-12 months

47.6                                                           

(range 34.3-66.0)  

In the mallard, Hudson et al. (1984) report an LD50 of 323 mg/kg body weight for sodium 

arsenite (As3+).  In the same species, another study also administered arsenic through the diet, as 

both lead arsenate and sodium arsenite (NAS, 1977a).  After 11 days a concentration of 5000 
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mg As5+/kg in the diet resulted in no mortalities; whereas 50% mortality was observed after only 

six days at a concentration of 1000 mg As3+.  In another study with mallards, ducklings were fed 

a diet containing 200 mg As5+/kg body weight (as sodium arsenate) for four weeks, and no 

significant effect on either growth or survival was observed (Hoffman et al., 1992).  In a study 

by Stanley et al. (1994), a diet containing 400 mg/kg body weight sodium arsenate significantly 

reduced mallard duckling growth, but did not affect survival.  The results from these studies are 

in agreement with the general opinion that arsenates are less toxic than arsenites.   

Cadmium 

Cadmium is found on land, in air and in waters, and transfer between these compartments may 

be considerable after initial deposition.  Entry of cadmium to surface waters occurs as a result of 

atmospheric fallout, for example from anthropogenic activities such as smelting, refining, 

burning coals and oils and disposal of sewage sludge (Nriagu & Pacyna, 1988; Furness, 1996), 

and from surface water runoff and wastewater (HSDB, 2009a; see also Chapter 4).  In natural 

waters, cadmium is found as Cd2+ or its hydrates, and as organic and inorganic complexes 

(Callahan, 1979).  As a result, a large fraction of cadmium in the aquatic environment is 

associated with particulate matter and sediment.  However, cadmium can be remobilised and 

reintroduced into the water column by resuspension of the sediment due to tidal activity or 

disruption of the estuary bed (for example by storms, flooding or dredging) and with 

bioturbation by benthic organisms (Zoumis et al., 2001). 

Exposure of animals, including birds, to elevated concentrations of the non-essential element 

cadmium may induce intracellular production of metallothionein, a low molecular-weight 

protein to which cadmium, and other heavy metals, can be bound and thus rendered less toxic 

(Furness, 1996).  A high accumulation of cadmium can lead to bioamplification, because 

metallothionein-bound cadmium has a long biological half-life in animals and concentrations 

tend to increase with age.  However, that is not to say that bioamplification always occurs, 

particularly as cadmium is not lipid soluble, meaning that concentrations will not necessarily 

increase up the food chain (Furness et al., 1993).  Many studies report cadmium concentrations 

as higher in adults than in juveniles, often ten times and up to as much as 100 times higher in 

adults than in chicks (Hulse et al., 1980; Stoneburner et al., 1980; Mayack et al., 1981; Stock et 

al., 1989; Lock et al., 1992).   

Although cadmium is accumulated by most organisms, molluscs in particular have been shown 

to accumulate particularly large amounts (Furness & Rainbow, 1990; Vermeer & Castilla, 
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1991), and cadmium pollution could be expected to have the greatest effect on those birds 

feeding on molluscs in enclosed coastal areas with high inputs of cadmium in sewage sludge or 

from smelter or refinery discharges (Vermeer & Castilla, 1991).  The acute toxicity of cadmium 

to a number of bird species has been examined by Hill et al. (1975) and Hill & Camardese 

(1986).  In these studies, the LD50 values for cadmium chloride were 2440, 767 and >5000 mg 

Cd/kg feed for Japanese quail (Coturnix coturnix japonica), pheasant (Phasianus colchicus) and 

mallard duck (Anas platyrhynchos), respectively.  For cadmium succinate, LD50 concentrations 

of 2052, 1411 and >5000 mg Cd/kg feed were reported for Japanese quail, pheasant and mallard 

duck, respectively.  All birds used in these studies were between 10 and 14 days old and were 

fed the cadmium-dosed diet for five days.  In a study by Pritzl et al. (1974), domestic chicken 

(Gallus spp.) chicks were fed diets containing 400, 600, 800 or 1000 mg Cd/kg feed.  Food 

consumption and weight gain were decreased at all dose levels, and at concentrations in excess 

of 400 mg/kg chicks began to lose weight.  At the 800 and 1000 mg/kg dose level 100% chick 

mortality occurred within 20 days; the LD50 was calculated to be 565 mg Cd/kg feed.   

Cobalt 

Traces of cobalt are found in all rocks, minerals and soils and cobalt may be released from these 

sources by natural weathering (HSDB, 2009d).  Anthropogenic sources of cobalt derive mainly 

from its use as a catalyst in the petrochemical and plastics industries, and in electroplating and 

alloys (HSDB, 2009d; see also Chapter 4).  A large amount of cobalt entering the environment 

from both natural and anthropogenic sources is released to the atmosphere in association with 

particulate matter; this cobalt is removed from the atmosphere by wet and dry deposition 

(WHO, 1998; WHO, 2006), and as a result enter terrestrial and aquatic systems.  In nature, 

cobalt is found as Co2+ and Co3+, with Co2+ likely to predominate under most normal 

environmental conditions as it is more stable (Richardson, 1993; HSDB, 2009d).  In freshwater 

the predominant species are Co2+ as carbonate, hydroxide and sulphate, and as adsorbed forms, 

oxide coatings and crystalline sediments; in seawater cobalt is present as cobalt chloride CoCl+ 

and Co2+ as carbonate and sulphate (Smith & Carson, 1981).  Ultimately, cobalt will partition to 

sediment, either adsorbing to particles and settling into the sediment, or adsorbing directly to 

sediment (WHO, 2006).  The exact fate of cobalt in natural waters and sediments is complicated 

by many factors.  Partitioning depends on pH, organic matter content and presence of hydrous 

metal oxides and complexing ligands; a higher pH and greater organic content increase the 

partitioning of cobalt to soils and sediments (Smith & Carson, 1981).  Complexation of cobalt to 

dissolved organic substances can reduce sediment sorption (Albrecht, 2003), and polluted 



Kirsty Pickard 

PhD thesis - May 2010 

 

 131 

waters with higher concentrations of organic pollutants may result in higher concentrations of 

soluble organic cobalt complexes (Nriagu & Coker, 1980; Smith & Carson, 1981; Szefer et al., 

1996; Bargagli, 2000). 

As a component of vitamin B12, cobalt is essential for all higher plants and animals (HSDB, 

2009d) and adverse effects of cobalt on birds would appear unlikely at concentrations likely to 

be encountered in the environment (WHO, 2006), which are generally <10 µg/l in surface water 

and groundwater in populated areas, and <1 µg/l in pristine areas (Smith & Carson, 1981; 

Hamilton, 1994).  Some toxicity studies have been carried out with domestic bird species, for 

example Diaz et al. (1994) administered dietary cobalt at concentrations of 125, 250 and 500 

mg/kg feed to one-day old chicks (Gallus spp.) for 14 days and found all concentrations to 

reduce feed intake and weight gain, and a dose-dependant increase in mortality was observed.  

At a concentration of 100 mg/kg cobalt chloride in the diet of two-week old chicks, a significant 

adverse effect on growth has been reported (Hill, 1974a); no effect was observed at 50 mg/kg 

cobalt chloride, but a significant mortality rate was observed in chicks fed 200 mg/kg cobalt 

chloride for five weeks.  In ducklings (Anas spp.), a dietary concentration of 200 mg/kg cobalt 

chloride resulted in lesions but no mortality, and a significant mortality occurred at a dietary 

concentration of 500 mg/kg cobalt chloride fed for 28 days (Van Vleet et al., 1981).   

Copper 

Copper is widely distributed in the environment and is essential for the normal growth and 

metabolism of all living organisms (Schroeder et al., 1966; Carbonell & Tarazona, 1994).  

Although abnormally low concentrations of copper may induce a nutritional deficiency, at 

abnormally high concentrations copper is among the most toxic of the heavy metals to 

freshwater and marine biota (Schroeder et al., 1966).  The largest sources of copper are 

anthropogenic in origin, such as emissions from mining and smelting activities, industrial 

emissions and effluents, municipal wastes, sewage sludge, coal burning and use in antifoulant 

paints (Nriagu, 1989; Eisler, 1998b; see also Chapter 4).  A large amount of copper entering the 

environment from both natural and anthropogenic sources is released to the atmosphere in 

association with particulate matter (WHO, 1998); this copper is removed from the atmosphere 

by wet and dry deposition (WHO, 1998), and as a result enters terrestrial and aquatic systems.  

The fate of copper in the aquatic environment is influenced by several processes including 

formation of complexes, sorption to hydrous metal oxides, clays and organic materials, and 

bioaccumulation (Stiff, 1971; Callahan, 1979).  Much of the copper discharged to water is in 
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particulate form and tends to settle out or be adsorbed by organic matter, hydrous iron, 

manganese oxides and clay in the sediment or water column (WHO, 1998).   

In the natural environment, copper occurs in three oxidation states: as elemental copper, Cu0, 

and as Cu+ and Cu2+ in sulphides, arsenites, chlorides and carbonates (ATSDR, 1990).  In 

aquatic systems, copper is expected to exist in the dissociated form as ions or as insoluble salts 

(Sharma & Millero, 1988).  The speciation and bioavailability of copper in aquatic systems 

depends on a number of factors, including water hardness and alkalinity, ionic strength, pH, 

redox potential, complexing ligands and suspended particulate matter (Callahan, 1979; WHO, 

1998).  However, in general, copper may be found as elemental copper or the cuprous ion, Cu+ 

in anaerobic waters, and in aerobic waters most copper is present as the cupric ion, Cu2+ 

(Sharma & Millero, 1988); thus, the cupric ion is the one generally encountered in natural 

waters (Eisler, 1998b).  The free cupric ion is the most readily available and toxic inorganic 

species of copper; however, in natural waters only a very small percentage of the copper present 

will exist as the free aquo ion, Cu(H2O)6
2+, and most copper is adsorbed on suspended particles 

or complexed with various ligands (Florence & Batley, 1980; Bryan & Langston, 1992).  The 

major chemical species of copper in seawater are copper hydroxychloride, copper hydroxide and 

copper carbonate (USEPA, 1980c). 

In comparison to lower organisms, birds and mammals are relatively resistant to copper (Eisler, 

1998b) and, in general, birds retain a very small portion of copper ingested (Bryan & Langston, 

1992).  Experiments with domestic poultry show that 350 mg/kg Cu in the diet leads to a 

reduction in weight gain of chicken (Gallus spp.) chicks (NAS, 1977b), and in two separate 

studies growth impairment was observed at a 500 mg/kg dose and damage to the gizzard lining 

was evident in chicken (Poupoulis & Jensen, 1976) and turkey (Meleagris gallopava; Kashani et 

al., 1986) poults.  In the latter study, a dietary dose of 120 mg/kg Cu inhibited growth of turkey 

poults for the first eight weeks, but not during the following 16 weeks.  In another study with 

turkey poults fed diets containing 100-800 mg/kg Cu, no adverse effects on survival were 

observed at any concentration and growth reduction occurred only at the highest dose of 800 

mg/kg diet (Supplee, 1964).   

Iron 

Iron is the second most abundant metal on earth and is found in all soil, rocks and minerals 

(Cotton et al., 1999).  Elemental iron is rarely found in nature due to its high reactivity 

(Huebers, 1991), but iron compounds are released through natural weathering of soil and rocks 
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(HSDB, 2008b).  Iron compounds may also be released as a result of the mining and processing 

of iron ores, via emissions from iron and steel industries, industrial and domestic sewage 

effluents, and vehicle exhausts (Kirk-Othmer, 1995; see also Chapter 4).  Iron compounds 

emitted as particles in the atmosphere may reach terrestrial and aquatic systems via wet or dry 

deposition, and runoff from highways will also result in inputs of iron compounds to aquatic 

systems.  As previously mentioned, elemental iron (Fe0) is rarely found in nature due to its high 

reactivity (Huebers, 1991); the most common oxidation states of iron are Fe2+ and Fe3+, with 

Fe3+ expected to be the form of iron present under most aerobic environmental conditions (Kirk-

Othmer, 1995).  In water, Fe3+ is expected to hydrolyse or form complexes with organic matter 

and ligands (Cotton et al., 1999); adsorption of iron depends on the amount of organic matter 

present and pH, with an increase in either factor leading to increased adsorption of iron 

(Gerritse, 1981). 

Iron is an essential element required by all forms of life and is present in all foods of plant or 

animal origin (WHO, 2004b).  Iron toxicosis is not a common problem in most animals, most 

likely because of its limited absorption and uptake when intakes are high (NAS, 1980).   

However, if intakes are sufficiently high, particularly if over a sustained period, signs of iron 

toxicity can occur as tissues become overloaded and free (reactive) iron levels become high 

enough to cause peroxidative damage (i.e. iron toxicosis results in the formation of reactive 

oxygen which causes cell damage; Underwood & Suttle, 1999).  Although extremely large 

doses of iron can be fatal, in most animals iron toxicosis requires very high concentrations of 

iron along with intakes of cobalt, zinc, manganese or copper (Abdel-Mageed & Oehme, 1990).  

Studies with birds are few and appear to be limited to domestic species.  No mortality nor sub-

lethal effects such as lesions were observed in 2-day old domestic chicken chicks (Gallus spp.) 

fed ferrous sulphate orally up to 100 mg (Wallner-Pendleton et al., 1986).  However, in a study 

with 3-day old chicks of the same species, 180, 240 and 300 mg ferrous sulphate (36, 48 or 60 

mg iron) administered orally resulted in 6.6, 16.1 and 26.5% mortality, respectively, within 24 

hours (Pescatore & Harter-Dennis, 1989).  An LD50 of 357 mg ferrous sulphate for chicks of 

domestic chicken species has been reported (NAS, 1980).   

Lead 

Lead is a naturally occurring element, found in combination with other elements as lead 

compounds in rocks and soils; minor natural sources of lead emissions include silicate dusts, 

volcanic emissions, forest fires and the decay of radon (EA, 2007).  As a result of its extensive 

use in iron, steel and non-ferrous metal production, coal-fired power stations, the chemical 
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industry and as an additive in fuels (EA, 2007), as well as lead mining, ore-processing, smelting, 

manufacture of lead compounds and use of lead metals, alloys and compounds, lead is 

ubiquitous in air, water and soil, and in both rural and urban environments (Lide, 2008).   

Lead reaches the aquatic environment through industrial and municipal discharge, in 

atmospheric deposition, in road runoff and from weathering processes in areas of natural lead 

mineralisation (USEPA, 1980a; Harrison & Laxen, 1981; see also Chapter 4).  Sorption is an 

important process in removing lead from the water column: Pb2+ is the stable ionic species of 

lead and in the environment forms complexes of low solubility with major anions such as 

hydroxide, carbonate, sulphide and sulphate ions, which limit solubility (HSDB, 2009a).  As a 

result, a large fraction of lead in the aquatic environment is associated with particulate matter 

and sediment.  However, lead can be remobilised and reintroduced into the water column by 

tidal activity or disruption of the estuary bed (for example, by dredging) and by bioturbation by 

benthic organisms (Morel et al., 1975; Schulz-Baldes et al., 1983).   

Lead is a highly toxic, non-essential heavy metal that acts as a non-specific poison affecting all 

body systems (Pain, 1996).  It enters the food chain through air, water and soil, and can 

bioaccumulate to some extent in organisms that are high in the food chain (Burger & Gochfeld, 

2000c), with older organisms usually containing the greatest body burdens (Eisler, 1988a).  In 

general, lead does not bioamplify up the food chain (Eisler, 1988a).  Exposure to lead can cause 

neurobehavioural, hematologic, nephrotoxic and reproductive effects in humans and other 

animals (Cory-Slechta et al., 1983; Needleman et al., 1990; Rice, 1996).   

In a review of lead concentrations measured in birds, Eisler (1988a) reports that concentrations 

were highest in birds from urban locations and those near mining and smelting facilities.  Lead 

residues were also greatest in older birds, in sexually mature females and in waterfowl that had 

ingested lead shot pellets.  In birds, lead accumulates primarily in the bones and, of the soft 

tissues, the kidneys accumulate the highest concentrations (Custer et al., 1984).  The results of 

studies on the chronic toxicity of dietary lead in birds indicate that young altricial birds (i.e. 

chicks that hatch with little or no down, eyes closed, incapable of departing the nest and fed by 

the parents; Nice, 1962) have a greater susceptibility to lead than adults (Scheuhammer, 1987).  

For example, 448 mg/kg metallic lead administered to adult kestrels (F. sparverius) through the 

diet did not affect survival or body weight, however, nestling kestrels fed comparable 

concentrations of lead exhibited decreased growth rates and increased mortality compared to 

controls (Hoffman et al., 1985).  Growth impairment of nestlings was associated with kidney 
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lead concentrations of greater than 6 mg/kg wet weight, and survival impairment was associated 

with kidney lead concentrations of greater than 15 mg/kg.   

Toxic and sublethal effects of lead and its compounds on birds vary widely with species, age, 

sex, form of lead and the dose administered (Eisler, 1988a).  Metallic lead is not toxic to birds 

except at very high doses when administered in the form of powder, although it is highly toxic 

to birds when given as lead shot (EHC, 1989); however, the use of lead shot is now restricted in 

many countries, including the UK.  Inorganic lead is only toxic to birds at a high dietary dosage.  

In a study investigating the effects of metallic and inorganic lead, Hill and Camardese (1986) 

fed Japanese quail (C. coturnix japonica) diets containing different forms of lead and saw no 

effect on survival, food consumption or other signs of toxicity in birds fed 5000 mg/kg lead as 

lead nitrate, lead subacetate or metallic lead.  However, in the same study an LD50 of 2761 

mg/kg lead as lead arsenate was reported, indicating that lead in the form of lead arsenate is 

more toxic than metallic lead, lead nitrate or lead subacetate. 

Information on the effects of organolead compounds is limited and, as previously mentioned, 

effects vary greatly with age, sex, dose and form.  Organic forms of lead are more toxic than 

inorganic forms as they are more bioavailable and lipid-soluble, and as a result are more readily 

absorbed by the body (WHO, 1989; ATSDR, 2007).  Tetraethyl- and tetramethyllead are well-

known organolead compounds, owing to their extensive use as fuel additives, both historically 

in leaded petrol for motor vehicles (EHC, 1989), and currently in aviation and premium grade 

fuels (Proctor et al., 2004).  Tetraethyl- and tetramethyllead are readily converted to triethyl- 

and trimethyllead in water and in animals (Howell et al., 1986; EHC, 1989; Cukrowska et al., 

2007).  Trialkyllead salts are ten to 100 times more toxic to birds than inorganic lead salts 

(Forsyth et al., 1985).  The LD50 for a single oral dose of tetraethyllead administered to mallards 

(A. platyrynchos) is reported as 107 mg/kg body weight (Bellrose, 1951); in Japanese quail (C. 

coturnix japonica) the LD50 for a single dose of tetraethyllead has been reported as around a 

quarter of the concentration in mallards - 24.6 mg/kg body weight (Hudson et al., 1984).   A 

dose of 28 mg triethyllead per kg body weight fed to starlings (Sturnus vulgaris) over a period 

of 11 days resulted in 100% mortality by the sixth day, and the same was observed for birds 

dosed with an equal concentration of trimethyllead (Osborn et al., 1983).  A recurring incident 

of massive bird kills in estuaries near to industrial plants manufacturing leaded compounds was 

reported in the late 1970s and early 1980s; affected birds contained elevated lead levels, mostly 

in the form of alkyllead (EHC, 1989). 
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Manganese 

Manganese occurs naturally in the environment in the form of numerous minerals, and enters 

the environment through natural weathering of rocks and soil, via windblown dust and through 

volcanic emissions (HSDB, 2009e).  The major anthropogenic sources of environmental 

manganese result from the use of manganese compounds in the manufacture of alloys, steel and 

iron products, burning of fossil fuels and incineration of sewage sludge (WHO, 2004a; see also 

Chapter 4).  If released to air, manganese compounds will exist in the particulate phase and may 

be removed from the air by wet and dry deposition (HSDB, 2009e), and as a result enter 

terrestrial and aquatic systems.  Manganese may also enter natural waters via mine wastes, 

sewage, industrial discharges and run-off from agricultural land, landfill and highways 

(Lagerwerff, 1967).    

Manganese is multi-valent and can exist in 11 oxidation states ranging from -3 to +7, the most 

common being Mn2+, Mn 4+ and Mn7+ (WHO, 2004a).  Under environmental conditions,  Mn2+ is 

the most stable oxidation state and, in this oxidation state, manganese does not form strong 

complexes with organic matter and ligands and is therefore mainly present as soluble, 

bioavailable Mn2+ in the water column (Bodek et al., 1988). However, manganese is readily 

transferable between solution and the solid phase (both sediment and suspended particulates) in 

response to changes in redox conditions (Spencer & Brewer, 1971; Emerson et al., 1979).  

Insoluble Mn3+ and Mn4+ compounds may be formed, but in natural waters in the presence of 

organic matter, Mn3+ and Mn4+ compounds will usually reduce to soluble manganous (Mn2+) 

compounds (Bodek et al., 1988).  In freshwater, soluble Mn2+ is the major species, and in 

seawater manganese is present mostly in the particulate form as Mn4+ precipitated to manganese 

dioxide, with manganous salts such as manganese chloride, manganese sulphate, manganese 

carbonate and manganese hydrogen carbonate also present in appreciable quantities (WHO, 

1981; Bodek et al., 1988).  Manganese dioxide is poorly soluble in water and exists in the 

suspended particulate form, while most of the manganous salts present are soluble, with the 

exception of manganese carbonate which has a relatively low solubility in water (WHO, 1981; 

WHO, 2004a).  In estuarine waters where resuspension of sediment occurs as a result of tides, 

storm events, commercial and recreational boating and sometimes dredging activities, levels of 

particulate manganese are higher than in oceanic waters (WHO, 1981) as manganese in the 

sediments is oxidised to form Mn4+.  

Manganese is an essential trace element and is necessary for the formation of connective tissue 

and bone, for growth, carbohydrate and lipid metabolism and reproductive functions 
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(Underwood, 1971; NAS, 1973).  The importance of manganese for birds has been recognised 

since 1936, when it was demonstrated experimentally that manganese could prevent the bone-

deforming disease perosis in chickens (Gallus spp.; Wilgus et al., 1936).  Subsequent research 

with birds has shown that manganese is essential for the activation of numerous enzymes and 

vital for growth, egg production and embryo development (Underwood, 1971). 

The toxicity of manganese varies according to the chemical form to which the organism is 

exposed, with Mn2+ being between two and a half and three times more toxic than Mn3+ (WHO, 

1981).  Manganese toxicity studies with birds are extremely limited.  Burger and Gochfeld 

(1995b) observed significant adverse effects on growth and behaviour of herring gull (L. 

argentatus) chicks following a single intraperitoneal injection of manganese acetate at 25 mg 

Mn/kg body weight.  Sierra et al. (1998) exposed feral pigeons (Columba livia) to manganese 

tetroxide dust at 239 µg Mn/m3 for seven hours a day, five days a week for 13 weeks and report 

no significant toxic effects at this exposure level. 

Nickel 

In addition to natural weathering of rock and soils, nickel from various industrial processes may 

enter natural waters.  Industrial waste streams, residues and effluents from waste water 

treatment plants, wet and dry deposition of atmospheric nickel and runoff from landfill areas 

and highways will all contribute to nickel entering the aquatic environment (WHO, 1991; see 

also Chapter 4).  Nickel can exist in a number of oxidation states ranging from -1 to +4, but 

normally occurs in the elemental state Ni0 and as Ni2+ (Eisler, 1998a).  In natural waters the Ni2+ 

species is the most common, and is most commonly present as the aquo ion (Ni(H2O)6)
2+ (WHO, 

1991).  Nickel is one of the most mobile heavy metals in the aquatic environment and occurs as 

soluble salts adsorbed onto or associated with clay particles, organic matter and other substances 

(Callahan, 1979; Eisler, 1998a).  The fate of nickel in water is affected by pH, type and 

concentration of ligands and the presence and availability of organic matter (Eisler, 1998a); in 

general, in pristine environments more nickel is adsorbed to sediment, but in polluted waters 

with more prevalent organic matter more nickel will be in the soluble phase (Callahan, 1979). 

Nickel is essential for the normal growth of many species of microorganisms and plants (WHO, 

1991) and several vertebrate species including chickens, cows, goats, pigs, rats and sheep (NAS, 

1975; WHO, 1991).  Adverse effects of excess nickel have been reported in a number of 

organisms, including birds.  Newly hatched domestic chickens (Gallus spp.) fed more than 300 

mg/kg nickel in the diet exhibited reduced growth rates, and with dietary doses in excess of 500 
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mg/kg Ni mortality occurred (Outridge & Scheuhammer, 1993).  Young birds appear to be more 

sensitive than adults: dietary doses of nickel in excess of 800 mg/kg resulted in significant 

mortality in newly hatched mallard (A. platyrhynchos) ducklings, but no mortality, nor evidence 

of systemic or reproductive toxicity, was observed in adults fed at the same dose level (Eastin & 

O'Shea, 1981).  In another study with mallard ducklings, nickel was administered through the 

diet as nickel sulphate for 90 days (Cain & Pafford, 1981).  No effects on growth or survival 

were observed in the 200 or 800 mg/kg dose groups, although a lower bone density was 

measured in females at day 60 in the 800 mg/kg group.  The birds fed 1200 mg/kg exhibited 

significant weight loss and reduced bone densities, and 71% mortality occurred by day 60. 

Selenium 

Although it is not a heavy metal, selenium is commonly considered alongside heavy metals 

because it has many metal-like characteristics and is often released from the same sources as 

heavy metals (Eisler, 1985b; WHO, 1986).  Selenium has been shown to have a detrimental 

effect on the breeding success of birds (see below and Section 5.1.2), further warranting its 

inclusion in this study. 

The major source of environmental selenium is weathering of natural rock.  The largest 

anthropogenic source of selenium is coal combustion, with other sources including waste and 

emissions from mining and milling operations, base metal smelting and refining, selenium 

refining, burning of coal, oil and solid waste (HSDB, 2008a; see also Chapter 4).  In nature, 

selenium is found in the selenide (Se2-), elemental selenium (Se0), selenite (Se4+) and selenate 

(Se6+) oxidation states (HSDB, 2008a).  Selenium found in natural waters is mostly the result of 

weathering of seleniferous rock (Callahan et al., 1979).  Selenide exists as hydrogen selenide 

and in a number of metallic selenides.  Hydrogen selenide is a gas at room temperature and 

decomposes rapidly in air to form elemental selenium and water, while selenides of heavy 

metals, such as iron selenide, occur naturally in many minerals and tend to be insoluble 

(Johnson, 1976; NAS, 1976).  Elemental selenium is virtually insoluble in water (Heinz, 1996), 

and thus is not present in water in any appreciable amount.  Selenite is soluble in water, but will 

bind tightly to iron and aluminium oxides, and thus will be partitioned to sediments and, like 

elemental selenium, is not present in the water column in any appreciable amount (WHO, 1986).  

However, tightly bound selenium in sediments may be remobilised into the water column if the 

sediment conditions become sufficiently oxidised for selenite to oxidise to selenate (Alemi et 

al., 1988), for example through bioturbation by benthic organisms, or disruption/mixing of the 

sediment through dredging processes, storms and strong tides.  Selenate is soluble and stable in 
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water and is the most common form of selenium found in natural waters, particularly in alkaline 

waters, and is thus the most bioavailable and potentially environmentally dangerous form of the 

element (WHO, 1986). Biomethylation of both inorganic and organic selenium compounds by 

microorganisms may also occur, producing methylated compounds such as gaseous dimethyl 

selenide and dimethyl diselenide (Callahan et al., 1979).   

Selenium is essential in small amounts for birds and other wildlife to maintain good health; it is 

part of the body’s antioxidant defence system, playing an important role in boosting the immune 

system, and is important in thyroid hormone metabolism and in reproduction.  However, the 

range of dietary selenium that provides adequate but non-toxic amounts is narrow compared to 

the ranges for some other essential elements (Heinz, 1996).  At high concentrations selenium 

has been shown to cause behavioural abnormalities, reduced reproductive success and even 

mortality (Eisler, 1985b; Ohlendorf et al., 1986; Ohlendorf et al., 1988; Ohlendorf, 1989; Heinz, 

1996).   

The toxicity of selenium depends largely on its chemical form; organoselenium compounds are 

believed to be major forms in plants and animals (Heinz, 1996).  In general, most plants convert 

most of the inorganic selenium to which they are exposed into organic selenium, in particular 

the protein amino acid, selenomethionine, in non-Se accumulating plants, and non-

proteinaceous amino acids such as selenocysteine in Se-accumulating plants (Spallholz & 

Hoffman, 2002).  Animals such as insects and fish that feed on these plants will deposit 

selenomethionine in their proteins in place of methionine, and may also make selenocysteine 

(Ohlendorf, 1989).   Aquatic birds that feed on a mixed diet of plant foods, insects, small 

crustaceans and fish, such as black-headed gulls, are therefore expected to ingest selenium 

mainly in its organic form, as selenomethionine, as well as lesser amounts of selenium as 

selenocysteine (Spallholz & Hoffman, 2002).  Of the inorganic ions, selenite (Se4+) and selenate 

(Se6+) are toxic to birds, but organic selenides pose the greatest hazard (Heinz, 1996).  Most 

laboratory toxicity data for selenium looks at the highly toxic organic form of selenium, 

selenomethionine, which, as previously mentioned, is believed to be the major form of selenium 

in the diet of aquatic birds (Heinz, 1996; Spallholz & Hoffman, 2002).   

In birds, the egg and embryo stages of development are more sensitive to selenium toxicity than 

the health and survival of young and adult birds (Heinz et al., 1987; Heinz et al., 1988; Hoffman 

& Heinz, 1988); for example, selenomethionine becomes particularly embryotoxic and 

teratogenic at dietary levels of over 4 mg/kg in mallards, but higher concentrations are needed 

before toxicity to other mallard life stages will occur (Hoffman, 2002).  Adult mallards (A. 
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platyrhynchos) fed a diet containing selenium as selenomethionine for 14 weeks readily 

accumulated selenium in the liver in a dose-dependant manner, and dietary selenium at the 

highest concentration of 32 mg/kg diet (wet weight) resulted in 10% mortality (Hoffman et al., 

1991).  Adult American coots (Fulica americana) from Kesterson Reservoir in California were 

found to be emaciated and had severe lesions, leading to an investigation into the possible 

causes (Ohlendorf et al., 1988).  The reservoir was used as a hydrologic sink for drainage from a 

large agricultural area, with several ponds serving as evaporation and holding basins for this 

agricultural drainage water (Freedman, 1995).  Inflow waters to the reservoir had average 

concentrations of 0.3 mg/l (compared to 0.05 mg/l selenium in water furthest downstream of the 

inflow), and mean selenium concentrations in the livers of adult coots collected at the site were 

28 and 29 mg/kg wet weight, respectively, which were about ten times greater than those of 

adults sampled from a nearby control area.  This comparison would suggest that the effects 

observed in the Kesterton Reservoir birds can be attributed to selenium toxicosis.   

Owing to the sensitivity of embryonic stages of birds to selenium toxicity, and the resulting 

impacts of selenium on reproductive success, the majority of studies concentrate on the effects 

of selenium toxicity on eggs and embryos.  This area of selenium toxicity will be dealt with in 

Section 5.1.2, ‘Selenium’.   

Vanadium 

Vanadium compounds are widely distributed in the earth’s crust and are present in numerous 

minerals and in association with fossil fuels, although elemental vanadium does not occur in 

nature (ATSDR, 2004).  Vanadium compounds are released to the environment as a result of 

natural weathering of rocks and soils, volcanic emissions and wind-blown dust (ATSDR, 2004), 

and are also released to the atmosphere as a result of the combustion of fossil fuels and solid 

waste, then entering the environment via wet and dry deposition (WHO, 2001a).  In addition, 

vanadium may enter surface waters via industrial and wastewater effluents and runoff from 

landfill, agricultural land and highways (see also Chapter 4).  Although vanadium can exist in a 

number of oxidation states ranging from -1 to +5, in the environment vanadium exists as V3+, 

V4+ and V5+ (WHO, 2001a).  In most natural waters V3+ and V4+ are rapidly oxidised to 

pentavalent forms of vanadium (V5+) and, under oxidising conditions, most vanadium will be 

present as V5+; under reducing conditions, most vanadium will be present as V4+ (HSDB, 

2008c).  Both V4+ and V5+ compounds are expected to adsorb strongly to organic matter and 

form complexes, and only about 0.001% of vanadium entering marine waters is estimated to 

persist in soluble form (HSDB, 2008c), with the majority in suspension or adsorbed (WHO, 
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2001a).  The most commonly used form of vanadium is vanadium pentoxide (V2O5), in which 

vanadium is in the +5 oxidation state (WHO, 2001a); following entry into water, vanadium 

pentoxide is likely to convert to vanadium oxides such as metavanadate, tetravanadate and 

pyrovanadate sodium salts (Crans et al., 1998). 

Studies with laboratory rodents suggest that pentavalent forms of vanadium are the most potent 

and the most readily bioaccumulated in the body (Parker & Sharma, 1978; Llobet & Domingo, 

1984).  Although vanadium is an essential element for chicks with effects of vanadium 

deficiency including reduced growth, impairment of reproduction and disturbance of the lipid 

metabolism (WHO, 2001a), exposure to excess concentrations of vanadium can lead to toxic 

effects.  Data on vanadium toxicity on birds are limited and largely confined to domestic bird 

species.  In newly hatched chickens (Gallus spp.), dietary exposure to 100 mg/kg body weight 

vanadium as ammonia metavanadate for 4 weeks impaired growth, and 200 mg/kg resulted in 

20% mortality (Hafez & Kratzer, 1976).  In mallards (A. platyrhynchos) fed 100 mg/kg body 

weight vanadium as vanadyl sulphate over a 12 week period concentrations of vanadium 

accumulated in tissues was low and no signs of toxicity were observed (White & Dieter, 1978).  

This is most likely due to the lower potency and uptake of trivalent forms of vanadium such as 

vanadyl sulphate compared to pentavalent forms such as metavanadate.  Rattner et al. (2006) 

examined the toxicity of vanadium compounds to mallard ducks and Canada geese (Branta 

canadensis).  Following a seven day single oral dose trial with mallards, an LD50 of 113 mg/kg 

body weight is reported for vanadium pentoxide.  Sodium metavanadate was more potent, with 

an LD50 of 75.5 mg/kg body weight reported for mallards, and Canada geese were more 

sensitive than mallards with an LD50 of 37.2 mg/kg body weight for sodium metavanadate.  The 

same authors also conducted chronic exposure experiments with the same species and found that 

exposure of mallards to increasing dietary concentrations of sodium metavanadate (38.5 to 2651 

mg/kg) over 67 days resulted in mild intestinal haemorrhage, food avoidance and weight loss.  

Zinc 

Zinc is found in almost all minerals in the earth’s crust and is an essential trace element for life 

that is found in all living organisms (Ohnesorge & Wilhelm, 1991).  Natural weathering of rocks 

and soils leads to the natural release of zinc to the environment (NAS, 1979).  Zinc also enters 

the environment from anthropogenic sources as a result of its many uses (see Chapter 4).  In the 

environment, zinc is present exclusively as the Zn2+ ion, and may be found in several chemical 

forms in the aquatic environment, the most common of which is a mixture of the toxic aquo ion 

- (Zn(H2O)6)
2+ - and various metal-inorganic and metal-organic complexes (Eisler, 1993).  The 
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majority of zinc in the marine and estuarine environment will eventually become partitioned 

into the sediments and suspended solids as metal complexes (Eisler, 1993; HSDB, 2009b).  

However, zinc can be remobilised into the water column by bioturbation and resuspension of the 

sediment due to tidal activity or disruption of the estuary bed, for example by storm events, 

flooding or dredging (Zoumis et al., 2001; UK Marine SAC, 2009).  Soluble chemical species of 

zinc are the most bioavailable and the most toxic and, as previously mentioned, the aquo ion 

predominates over most other dissolved species in the aquatic environment and is thought to be 

the most toxic (Eisler, 1993).   

Zinc poisoning has been documented in a number of different animal species, but is of particular 

importance in the aquatic environment because the gills of fish are physically damaged by high 

concentrations of zinc (NAS, 1979), and aquatic populations are frequently devastated as a 

result of zinc pollution.  Significant adverse effects on growth, reproduction and survival have 

been documented for sensitive species of aquatic plants, invertebrates and vertebrates at water 

concentrations of between 10 and 25 µg/l zinc (Eisler, 1993).  Exposure of animals to acutely 

high, or chronically low, concentrations of zinc may induce intracellular production of 

metallothionein, binding zinc and rendering it less toxic (Richards, 1989; Eriksen et al., 1990).   

Ducks (Anas spp.) have shown reduced survival when fed diets containing in excess of 3000 mg 

Zn/kg feed (Gasaway & Buss, 1972; NAS, 1979).  Domestic chickens (Gallus spp.) appear to be 

more resistant than ducks, with no mortality observed in laying hens fed diets containing 10000, 

20000 and 30000 mg Zn/kg feed (Decuypere et al., 1988; Verheyen et al., 1990).  Adults also 

appear to be more resistant than chicks: domestic chicken chicks showed slight reduction in 

growth after being fed 2000 mg Zn/kg feed, and significant growth reduction, but no mortality, 

at 3000 mg Zn/kg feed (NAS, 1979).  A dose of 4000 mg Zn/kg diet fed to day-old chicks had 

no effects on growth or survival (Oh et al., 1979); at a dose of 8000 mg/kg feed zinc 80% 

mortality occurred, with the survivors’ growth significantly reduced, and 100% mortality 

occurred at 16000 mg/kg dose.  

5.1.2 Heavy metals and selenium in eggs 

Concentrations in seabird eggs have been reported for many different metals, by several authors 

(Anderlini et al., 1972; Parslow et al., 1972; Blus et al., 1977; Parslow & Jeffries, 1977; Hulse 

et al., 1980; King et al., 1983; Honda et al., 1986; Renzoni et al., 1986).  However, fewer 

studies are available which examine the concentrations of metals other than lead, cadmium, 

mercury and selenium in eggs and relate these to tissue concentrations or environmental 
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exposure.  Dauwe et al. (2005) report higher concentrations of a number of essential elements 

including cobalt, copper, nickel and zinc in eggs, compared to concentrations in the ovary and 

other tissues of female birds.  Of the other metals studied, arsenic and mercury concentrations 

were relatively high in eggs compared with those in internal tissues, while silver, cadmium and 

lead concentrations were relatively low compared with those in internal tissues.  In a study 

examining concentrations of 17 trace elements in the eggs of waterbirds, eggs were found to be 

good bioindicators of arsenic, lead, zinc, copper, vanadium and zinc (Lam et al., 2005) due to 

consistent correlations between the concentrations of these elements in eggs and in marine 

sediments.   

Although eggs often represent heavy metal exposure of the adults that have laid them, metals are 

not sequestered equally in eggs and, for many metals, concentrations in the egg contents do not 

adequately reflect body burdens or dietary intakes (Becker, 1989).  For example cadmium 

appears not to be transferred by the female to the eggs in easily measurable quantities (Burger, 

1993; Burger, 1994).  However, this is not to say that transfer does not occur, just that it is often 

found to be very low (Sell, 1975; Furness et al., 1993).  Eggs have been used in monitoring 

pollution by a number of authors as a means of providing a reflection of metal uptake from local 

exposure, and transfer from the laying female to eggs has been demonstrated in a number of 

studies (Burger & Gochfeld, 1991; Burger & Gochfeld, 1993; Burger & Gochfeld, 1995a; 

Burger & Gochfeld, 1996), with eggs shown to represent local exposure of the adults that have 

laid them for a number of metals.  Mercury concentrations in eggs have been widely reported 

and eggs have been shown to reflect the uptake of mercury from local foraging more closely 

than internal tissues from adult birds (Parslow & Jeffries, 1977; Barrett et al., 1985).  It has 

proved difficult to assess toxic effects of metals on bird populations and some birds may have 

high metal burdens for reasons of natural accumulation or detoxification processes unrelated to 

pollution (Furness et al., 1993); thus high metal concentrations in birds do not necessarily 

indicate pollution (Murton et al., 1978; Muirhead & Furness, 1988).  The concentrations of 

some metals in eggs have been examined in a very limited number of studies, if at all, and 

further research is required in this area given the evidence available that such pollutants may 

have harmful effects. 

The following section examines the transfer of arsenic, cadmium, cobalt, copper, iron, lead, 

manganese, nickel, vanadium, zinc and selenium to eggs and the effects of these metals on 

reproductive success, including egg laying, embryo and chick health, development and survival. 
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Arsenic 

Table 5-2 provides a summary of literature data for arsenic concentrations in seabird eggs.  Data 

are for dry weight concentrations from studies worldwide, undertaken from 1990 onwards; ‘egg 

contents’ refers to combined yolk and albumen. 

Table 5-2 Summary of literature data for arsenic concentrations in seabird eggs 

Species Location
Mean concentration 

ppm (dry weight)
Study year Reference

Herring gull                        

Larus argenatatus
New Jersey, USA 0.126 2000 Burger, 2002

Great black-backed gull   

Larus marinus
New Jersey, USA 0.1 2000 Burger, 2002

Common tern               

Sterna hirundo
New Jersey, USA 0.195 2000 Burger, 2002

Forster's tern                   

Sterna forsterii
New Jersey, USA 0.19 2000 Burger, 2002

Bridled tern                  

Sterna anaethetus
Hong Kong 1.384 2000-2002 Lam et al., 2005

Black skimmer           

Rynchops niger
New Jersey, USA 0.529 2000 Burger, 2002

 

Transfer of arsenic from the laying bird to eggs has been demonstrated in a number of studies.  

Holcman and Stibilj (1997) fed hens diets containing 7.5, 15 or 30 mg As3+/kg (as arsenic oxide) 

for a period of 19 days.  Eggs collected and analysed contained mean concentrations of 0.2, 0.42 

and 0.96 mg As/kg dry weight in egg yolk, and 0.06, 0.14 and 0.3 mg As/kg dry weight 

albumen, for the three exposure concentrations, respectively.  Stanley et al. (1994) also report 

arsenic to be accumulated in a dose-dependant manner in a number of samples, including eggs, 

taken from mallard ducks fed a diet containing 25, 100 and 400 mg As5+/kg, as sodium arsenate, 

with concentrations in whole eggs ranging from 0.46 to 3.6 mg/kg.   

In a field study comparing concentrations of heavy metals in eggs of passerine species between 

polluted and unpolluted sites, Dauwe et al. (1999) found significantly higher arsenic 

concentrations in eggs from the polluted site, with nine eggs collected at the polluted site and 

five eggs at the reference site.  This report suggests that laying birds exposed to high levels of 

arsenic excrete excess arsenic into eggs.  In another study with passerines, Dauwe et al. (2005) 

found arsenic concentrations in the eggshell to be high compared with internal tissue 

concentrations for the ten birds sampled, although concentrations in the egg contents and 

eggshell were poorly correlated with concentrations in both internal tissues and feathers.  Lam et 

al. (2005) found significant correlations between arsenic concentrations measured in sediment 

and in the eggs of waterbird species in the same area (nine eggs from each of three species 

sampled; p <0.001), suggesting eggs to be good indicators for monitoring arsenic.  
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Data regarding the effects of arsenic on reproductive success in birds is limited.  Domestic 

chickens (Gallus spp.) fed a diet containing up to 30 mg As3+/kg body weight (as arsenic oxide) 

for 19 days showed no significant change in feed consumption, body weight, egg production and 

average egg weight (Holcman & Stibilj, 1997).  Following a single oral dose of 100 mg As3+/kg 

body weight (as sodium arsenite) to female mallards (A. platyrhynchos), eggshell thickness was 

reduced within three days but recovered to normal after five days (Haegele & Tucker, 1974).  

However, the authors suggest that this temporary reduction in eggshell thickness may be 

accounted for by decreased food consumption during this period, although food consumption 

was not measured.  In chicken embryos, a mortality rate for arsenite of 34% is reported at a dose 

range of 0.01-1.0 mg As3+/embryo, whereas the mortality rate for arsenate administered at the 

same concentration is much lower, at only 8% (NRCC, 1978).  As previously mentioned 

(Section 5.1.2), the evidence from this study would suggest that arsenic as arsenite is more toxic 

to birds, including embryonic stages, than arsenate.  Birge and Roberts (1976) report survival 

rates of embryos of domestic chicken eggs treated by yolk injection with a number of metals at 

various concentrations.  Arsenic as arsenite resulted in 35% mortality at the lowest dose of 

0.001 mg/kg egg; at 0.01 mg/kg 46% mortality was observed, and of the surviving embryos a 

further 2% exhibited gross malformations.  At doses of 1.0 mg/kg and above, no embryos 

survived. 

Cadmium 

In birds, cadmium accumulates in the kidneys and concentrations in other tissues tend to be very 

much lower (Thompson, 1990); thus, the only routine means of accurately measuring cadmium 

in bird populations is considered to be the sampling of tissues from the adults (Furness et al., 

1993).   Eggs have been used as a means of monitoring cadmium pollution (Furness et al., 1993; 

Burger & Gochfeld, 1995a), providing a reflection of uptake from local foraging; however, 

concentrations in eggs are usually very low (Burger & Gochfeld, 1991), and embryotoxic effects 

unlikely (Furness, 1996).  Despite high concentrations of cadmium in the kidneys of many 

seabirds, concentrations reported in eggs are usually less than 0.7 µg/g wet weight (Osborn et 

al., 1979; Honda et al., 1986; Renzoni et al., 1986).  Table 5-3 provides a summary of literature 

data for cadmium concentrations in seabird eggs.  Data are for dry weight concentrations from 

studies worldwide, undertaken from 1990 onwards; ‘egg contents’ refers to combined yolk and 

albumen. 
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Table 5-3 Summary of literature data for cadmium concentrations in seabird eggs 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Herring gull                        

Larus argenatatus
Long Island, USA 0.01 1992 egg contents Burger, 1994

Long Island, USA 0.05 1992 eggshell Burger, 1994

New Jersey, USA 0.005 2000 Burger, 2002

Great black-backed gull   

Larus marinus
New Jersey, USA 0.005 2000 Burger, 2002

Black-tailed gull         

Larus crassirostris
Japan 0.021 1999-2001 egg contents Agusa et al ., 2005

Japan 0.013 1999-2001 eggshell Agusa et al., 2005

Common tern               

Sterna hirundo
New Jersey, USA 0.004 2000 Burger, 2002

Roseate tern                  

Sterna dougallii
Long Island, USA 0.2 1992 egg contents Burger, 1994

Long Island, USA 0.1 1992 eggshell Burger, 1994

Forster's tern                   

Sterna forsterii
New Jersey, USA 0.002 2000 Burger, 2002

Bridled tern                  

Sterna anaethetus
Hong Kong 0.002 2000-2002 Lam et al ., 2005

Black skimmer           

Rynchops niger
New Jersey, USA 0.002 2000 Burger, 2002

Short-tailed albatross     

Phoebastria albatrus
Japan 0.007 2002 egg contents Ikemoto et al ., 2005

Japan 0.013 2002 eggshell Ikemoto et al ., 2005

Black-footed albatross   

Phoebastria nigripes
Japan 0.007 2002 egg contents Ikemoto et al ., 2005

Japan 0.097 2002 eggshell Ikemoto et al ., 2005
 

Anomalously high concentrations of cadmium in eggs, for example a concentration of 75.0 µg/g 

found in sooty tern (S. fuscata) eggs from Hawaii (Stoneburner & Harrison, 1981), are thought 

to be a possible result of the breakdown of the apparent cadmium transfer barrier to the eggs if 

other tissues become overloaded (Hutton, 1981).  Laboratory experiments have shown  transfer 

of cadmium to eggs to be very low, regardless of the amount consumed (Sell, 1975; Furness et 

al., 1993), and thus low concentrations of these metals in eggs of wild birds do not necessarily 

reflect a low dietary intake.  On the other hand, a number of studies have demonstrated transfer 

of cadmium from laying female to eggs (Burger & Gochfeld, 1991; Burger & Gochfeld, 1993; 

Burger & Gochfeld, 1995a; Burger & Gochfeld, 1996), and evidence from both field and 

laboratory studies is conflicting. 

Some evidence exists suggesting that cadmium concentrations in eggshells may be high, and 

concentrations of cadmium have been reported to be higher in the eggshell than egg contents 

(Dauwe et al., 2005).  As cadmium is not lipid soluble, eggshells might provide a means of 

monitoring cadmium concentrations which cannot be adequately measured using egg contents 

(Furness et al., 1993); many studies look only at concentrations in egg contents, and this may go 

some way towards explaining the fact that most studies find concentration in eggs (referring to 

egg contents) to be very low.  In a field study comparing concentrations of heavy metals in eggs 

of passerine species between polluted and unpolluted sites, Dauwe et al.  (1999) found 
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significantly higher cadmium concentrations in eggs from the polluted site - in both eggshells 

and egg contents - suggesting that laying birds exposed to high levels of cadmium excrete 

excess cadmium into eggs.  In a later study with passerines, Dauwe et al. (2005) found cadmium 

concentrations in the eggshell to be correlated with concentrations in tail feathers, back feathers 

and liver.  Cadmium concentrations in egg contents were not correlated with any of the internal 

tissues or other feathers examined.  Data for partitioning of cadmium, and other metals, between 

eggshell and contents is provided in Table 5-12. 

There is no evidence from field studies of pelagic seabird species, many of which have been 

reported to contain high kidney cadmium concentrations (100 mg/kg or more) that eggshell 

thinning occurs as a result of exposure to high levels of cadmium.  In laboratory tests, eggshell 

thinning has been demonstrated in chickens as a result of dietary exposure to cadmium (Furness, 

1996), although the transfer of dietary cadmium to eggs is considered to be very low (Sell, 1975; 

Burger & Gochfeld, 1991; Burger, 1993; Gochfeld, 1997; Mora, 2003).  Leach et al. (1979) 

found that, at the 48 mg/kg dose given to hens through the diet, approximately 90 mg/kg 

cadmium was accumulated in the kidney but an increase of cadmium in the egg was also 

observed, egg production was halved and egg shell thickness decreased in comparison to hens 

fed the control diet.  However, when the authors replicated the study no differences in eggshell 

quality between the control and cadmium-dosed birds were found.  Dietary cadmium has been 

demonstrated to suppress egg production in mallards at a concentration of 48 mg/kg (Leach et 

al., 1979); however, in another study cadmium fed to adult mallards at concentrations up to 200 

mg/kg for 90 days had no effect on egg production (White & Finley, 1978).  Sell (1975) fed 

chickens a diet containing 60 mg/kg cadmium as CdCl2 and found that the hens fed this diet ate 

less and laid fewer eggs than hens given the control diet.  Conversely, White and Finley (1978) 

found dietary cadmium fed to laying hens at a concentration of 200 mg/kg to suppress egg 

production, but found no effect on egg laying in hens fed dosed at cadmium concentrations 

lower than 200 mg/kg.  In terms of embryotoxicity, Birge and Roberts (1976) report survival 

rates of embryos of domestic chicken eggs treated by yolk injection with a number of metals at 

various concentrations.  At the lowest dose of 0.001 mg cadmium/kg egg, 34% mortality 

occurred; at 0.05 mg/kg 52% mortality occurred, and at doses of 5.0 mg/kg and above, no 

embryos survived. 
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Cobalt 

Table 5-4 provides a summary of literature data for cobalt concentrations in seabird eggs.  Data 

are for dry weight concentrations from studies worldwide, undertaken from 1990 onwards; ‘egg 

contents’ refers to combined yolk and albumen. 

Table 5-4 Summary of literature data for cobalt concentrations in seabird eggs 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Black-tailed gull               

Larus crassirostris
Japan 0.043 1999-2001 egg contents Agusa et al ., 2005

Japan 0.74 1999-2001 eggshell Agusa et al ., 2005

Bridled tern                  

Sterna anaethetus
Hong Kong 0.026 2000-2002 egg contents Lam et al ., 2005

Hong Kong 0.398 2000-2002 eggshell Lam et al ., 2005

Short-tailed albatross     

Phoebastria albatrus
Japan 0.007 2002 egg contents Ikemoto et al ., 2005

Japan 0.26 2002 eggshell Ikemoto et al ., 2005

Black-footed albatross   

Phoebastria nigripes
Japan 0.007 2002 egg contents Ikemoto et al ., 2005

Japan 0.205 2002 eggshell Ikemoto et al ., 2005
 

There are very few studies examining the transfer of cobalt from the laying bird to the egg.  

Agusa et al. (2005)  calculated maternal transfer rates for a number of trace elements, defined as 

the percentage of a trace element burden in eggs to the whole body burden (internal tissues, 

feathers and eggs).  The transfer rate of cobalt to eggs was calculated as 30%.  In a field study 

with passerines, Dauwe et al. (2005) found cobalt concentrations in both the eggshell and 

contents to be high compared with internal tissue concentrations for the 10 birds sampled (p = 

0.004), suggesting cobalt is sequestered into eggs.  However, concentrations in the egg contents 

and eggshell were poorly correlated with concentrations in both internal tissues and feathers. 

No data could be found regarding the reproductive effects, embryotoxicity or teratogenicity of 

cobalt or cobalt compounds. 

Copper 

Table 5-5 provides a summary of literature data for copper concentrations in seabird eggs.  Data 

are for dry weight concentrations from studies worldwide, undertaken from 1990 onwards; ‘egg 

contents’ refers to combined yolk and albumen. 
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Table 5-5 Summary of literature data for copper concentrations in seabird eggs 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Black-tailed gull         

Larus crassirostris
Japan 4.14 1999-2001 egg contents Agusa et al ., 2005

Japan 0.535 1999-2001 eggshell Agusa et al ., 2005

Audouin's gull               

Larus audouinii
Spain 2.58 1992 egg contents Morera et al ., 1997

Spain 2.14 1992 eggshell Morera et al ., 1997

Bridled tern                  

Sterna anaethetus
Hong Kong 3.92 2000-2002 egg contents Lam et al ., 2005

Short-tailed albatross     

Phoebastria albatrus
Japan 4.84 2002 egg contents Ikemoto et al ., 2005

Japan 0.766 2002 eggshell Ikemoto et al ., 2005

Black-footed albatross   

Phoebastria nigripes
Japan 4.66 2002 egg contents Ikemoto et al ., 2005

Japan 0.784 2002 eggshell Ikemoto et al ., 2005
 

Literature regarding the sequestering of copper into eggs is conflicting.  In a field study of 

American peregrine falcon (F. peregrinus anatum) eggs, copper concentrations were 

significantly greater in eggs from unsuccessful nests compared to successful nests (sample sizes 

of 31, 26 and 32 over three separate years; Ambrose et al., 2000).  However, concentrations of 

iron and mercury were also significantly higher in eggs from unsuccessful nests and thus it 

cannot be concluded that elevated copper concentrations in the eggs were solely responsible for 

the lack of success of the nests.  Indeed, in another study Dauwe et al. (1999) report no 

difference in copper concentrations between eggs of passerine species taken from a polluted site 

compared to those from a non-polluted site (sample size: nine eggs from polluted site, five eggs 

from reference site), while concentrations of other metals were significantly higher in eggs from 

the polluted site.  The authors suggest that the concentrations of essential elements such as 

copper do not differ between polluted and unpolluted sites because, being essential elements, 

their levels are controlled homeostatically (i.e. regulated internally to maintain a stable, constant 

condition).  However, in a later study with passerines, Dauwe et al. (2005) found copper 

concentrations in egg contents to be high compared with internal tissue concentrations for the 

ten birds sampled, although concentrations in the egg were poorly correlated with 

concentrations in both internal tissues and feathers.  Lam et al. (2005) found significant 

correlations between copper concentrations measured in sediment and in the eggs of waterbird 

species in the same area (nine eggs from each of three species sampled), suggesting eggs to be 

good indicators for monitoring copper.  In a laboratory study with domestic chickens (Gallus 

spp.), laying hens were fed diets supplemented with various concentrations of copper, up to 800 

mg/kg body weight (Chiou et al., 1997).  Copper concentration in the egg contents increased 

with increasing dietary dose, up to 400 mg/kg copper, and after a normal diet was resumed 
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copper concentrations in eggs declined significantly.  This would suggest that copper is indeed 

excreted into eggs by the laying hen. 

Studies investigating the effects of copper and copper compounds on the reproductive success of 

birds are scarce.  The embryotoxic and teratogenic potential of copper gluconate and cupric 

chloride has been investigated in the developing chick embryo by Verrett (1973; 1974; 1976).  

The author found that copper gluconate was embryotoxic even at the lowest levels tested of 1 

mg/kg (1973) and a teratogenic effect also occurred in the developing chick embryo (1974).  In 

a later study (1976), cupric chloride at concentrations as low as 0.25 mg/kg was shown to have 

an embryotoxic effect, but not a teratogenic effect.  Jackson (1977) observed no effects on feed 

intake, water consumption and egg production in hens fed 480 mg/kg copper in the diet; 

however, a 50% reduction in egg production was observed at 960 mg/kg.  In a later study, 

Jackson et al. (1979) report a decrease in weight gain and egg production at a dose of 600 

mg/kg, a 50% reduction in egg production at 800 mg/kg, and a complete halt to egg production 

after 14 days at the highest dose rate of 1920 mg/kg copper.  No literature data could be found 

regarding the impacts of copper on eggshell thickness. 

Iron 

No studies were found reporting concentrations of iron in seabird eggs from field studies, and no 

data was found regarding maternal transfer of iron to eggs from the laying bird.  In a field study 

of American peregrine falcon (F. peregrinus anatum) eggs, iron concentrations were 

significantly greater in eggs from unsuccessful nests compared to successful nests (mean egg 

concentrations 115 and 85 mg/kg dry weight, respectively), with samples of 31, 26 and 32 eggs 

taken over three separate years (Ambrose et al., 2000).  However, concentrations of copper and 

mercury were also significantly greater in eggs from unsuccessful nests and thus it cannot be 

concluded that elevated iron concentrations in the eggs were solely responsible for the lack of 

success of the nests.  No differences were found between eggs sampled in terms of eggshell 

thickness. 

No literature data could be found reporting the sequestering of iron to eggs, nor the impacts of 

elevated iron concentrations reproductive success. 
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Lead 

Eggs have been used as a means of monitoring lead pollution (Furness et al., 1993; Burger, 

1994; Burger & Gochfeld, 1995a; Burger, 2002; Ikemoto et al., 2005; Lam et al., 2005), 

providing a reflection of uptake from local foraging.  Table 5-6 provides a summary of literature 

data for lead concentrations in seabird eggs.  Data are for dry weight concentrations from studies 

worldwide, undertaken from 1990 onwards; ‘egg contents’ refers to combined yolk and 

albumen. 

Table 5-6 Summary of literature data for lead concentrations in seabird eggs 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Herring gull                        

Larus argenatatus
New Jersey, USA 0.273 2000 Burger, 2002

Great black-backed gull   

Larus marinus
New Jersey, USA 0.227 2000 Burger, 2002

Common tern               

Sterna hirundo
New Jersey, USA 0.164 2000 Burger, 2002

Roseate tern                  

Sterna dougallii
Long Island, USA 2.3 1992 egg contents Burger, 1994

Long Island, USA 1.2 1992 eggshell Burger, 1994

Forster's tern                   

Sterna forsterii
New Jersey, USA 0.056 2000 Burger, 2002

Bridled tern                  

Sterna anaethetus
Hong Kong 0.01 2000-2002 egg contents Lam et al ., 2005

Black skimmer           

Rynchops niger
New Jersey, USA 0.334 2000 Burger, 2002

Short-tailed albatross     

Phoebastria albatrus
Japan 0.011 2002 eggshell Ikemoto et al ., 2005

Black-footed albatross   

Phoebastria nigripes
Japan 0.01 2002 egg contents Ikemoto et al ., 2005

Japan 0.039 2002 eggshell Ikemoto et al ., 2005
 

In spite of being used as a means of monitoring lead pollution, the degree to which birds can 

sequester lead in eggs is unclear (Pattee, 1984; Burger & Gochfeld, 1988; Burger & Gochfeld, 

1991; Burger & Gochfeld, 1993).  Some authors have failed to detect elevated concentrations of 

lead in the eggs of experimentally dosed birds (Pattee, 1984) or birds exposed to high 

concentrations in the environment (Spahn & Sherry, 1999), while others have shown elevated 

concentrations (Haegele et al., 1974; Maedgen et al., 1982), and transfer of lead in bird eggs has 

been demonstrated in various studies by Burger and Gochfeld (1991; 1993; 1995a; 1996).  For 

example, these authors found correlations between the concentrations of lead in egg contents 

and tissues of the females that produced them (p = 0.02) in a sample of 24 pairs of common 

terns (S. hirundo) and an egg from each of their nests (Burger & Gochfeld, 1991).  Dauwe et al. 

(1999) found significantly higher lead concentrations in eggs of great tits (Parus major) from 

polluted sites (nine eggs sampled) in comparison with unpolluted sites (five eggs sampled) - in 

both eggshells and egg contents (egg contents: polluted site 2.0 µg/g lead dry weight, unpolluted 

site 0.13 µg/g (p = 0.001); eggshell: polluted site 15 µg/g; unpolluted site 0.37 µg/g (p = 0.007)).  
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These results suggest that laying birds exposed to high levels of lead excrete excess lead into 

eggs.  In a later study with passerines, Dauwe et al. (2005) found lead concentrations in the egg 

contents and shell were correlated with concentrations in tail feathers and concentrations in the 

egg contents were correlated with concentrations in the liver and the stomach contents, from a 

sample of 10 female great tits (P. major; p-values not reported).  Lam et al. (2005) found 

significant correlations between lead concentrations measured in sediment and in the eggs of 

waterbird species in the same area (three species, nine eggs sampled from each species; p 

<0.001), suggesting eggs are good indicators for monitoring lead.  

The failure of some studies to detect elevated concentrations of lead in the eggs of lead-dosed 

birds may be due to the lead concentrations often being below detection limits (usually less than 

0.4 µg/g; Reid and Hacker, 1982; Renzoni et al., 1986), or in some cases studies have examined 

egg contents only, and as lead concentrations have been reported to be higher in eggshell than 

egg contents (Mora, 2003; Dauwe et al., 2005), possibly as a result of interaction of lead with 

calcium metabolism (Scheuhammer, 1987), this may not provide an accurate reflection of lead 

concentration in the egg.  However, other studies have reported lead concentrations to be higher 

in egg contents (Burger, 1994), so this relationship is unclear.  Data for partitioning of lead, and 

other metals, between eggshell and contents is provided in Table 5-12. 

In general, concentrations of inorganic lead salts below 100 mg/kg in the diet cause few 

significant reproductive effects in birds (Scheuhammer, 1987).  For example, a dose of 50 

mg/kg metallic lead fed to American kestrels (Falco sparverius) for a period of six months 

produced no adverse effects on egg laying, fertility or eggshell thickness (Pattee, 1984).  Haegle 

et al. (1974) dosed female mallards (A. platyrhynchos) with 100 mg/kg lead as a mixture of lead 

carbonate, lead oxide and lead sulphate, via the diet.  No significant effect on eggshell thickness 

was found after 85 days of treatment.  Edens et al. (1976) investigated the effects of dietary lead 

acetate on reproductive success in Japanese quail (C. coturnix japonica).  In the study, chicks 

were reared from hatching on diets containing lead acetate and growth rate and egg production 

were examined.  No effect was observed on the growth rate of the chicks with the exception of 

the highest dose rate of 1000 mg/kg lead acetate. Egg production was suppressed even at the 

lowest dose of 1 mg/kg lead acetate in the diet and suppression of egg production increased with 

increasing lead dose; at the highest dose level of 1000 mg/kg lead in the diet, egg production 

was almost completely suppressed and the few eggs that were produced were soft-shelled or 

shell-less.  The hatch rate of eggs laid by birds fed 100 or 1000 mg/kg was significantly 

reduced.   
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Tetraethyllead administered via the diet has been shown to have no effect on eggshell thickness 

in mallard ducks (A. platyrhynchos) or Japanese quail (C. coturnix japonica) at a dose of 6 

mg/kg body weight over six days (Haegele & Tucker, 1974).  As previously mentioned, 

tetraethyllead may also be converted to trialkyllead, the salts of which are ten to 100 times more 

toxic to birds than inorganic lead salts, and tend to accumulate in lipophilic soft tissues in the 

yolk and developing embryo (Forsyth et al., 1985).  Although results suggest that trialkyllead 

compounds are very toxic to young and adult birds (Osborn et al., 1983), no studies could be 

found examining the effects of trialkyllead compounds on eggs and embryo development. 

Manganese 

Table 5-7 provides a summary of literature data for manganese concentrations in seabird eggs.  

Data are for dry weight concentrations from studies worldwide, undertaken from 1990 onwards; 

‘egg contents’ refers to combined yolk and albumen. 

Table 5-7 Summary of literature data for manganese concentrations in seabird eggs 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Herring gull                        

Larus argenatatus
Long Island, USA 5.5 1992 egg contents Burger, 1994

Long Island, USA 8.2 1992 eggshell Burger, 1994

New Jersey, USA 1.622 2000 Burger, 2002

Great black-backed gull   

Larus marinus
New Jersey, USA 1.651 2000 Burger, 2002

Black-tailed gull         

Larus crassirostris
Japan 1.82 1999-2001 egg contents Agusa et al ., 2005

Japan 1.13 1999-2001 eggshell Agusa et al ., 2005

Audouin's gull               

Larus audouinii
Spain 1.69 1992 egg contents Morera et al ., 1997

Spain 0.29 1992 eggshell Morera et al ., 1997

Common tern               

Sterna hirundo
New Jersey, USA 2.29 2000 Burger, 2002

Roseate tern                  

Sterna dougallii
Long Island, USA 4.2 1992 egg contents Burger, 1994

Long Island, USA 4.3 1992 eggshell Burger, 1994

Forster's tern                   

Sterna forsterii
New Jersey, USA 1.702 2000 Burger, 2002

Bridled tern                  

Sterna anaethetus
Hong Kong 2.636 2000-2002 Lam et al ., 2005

Black skimmer           

Rynchops niger
New Jersey, USA 1.282 2000 Burger, 2002

Short-tailed albatross     

Phoebastria albatrus
Japan 0.405 2002 egg contents Ikemoto et al ., 2005

Japan 0.552 2002 eggshell Ikemoto et al ., 2005

Black-footed albatross   

Phoebastria nigripes
Japan 0.865 2002 egg contents Ikemoto et al ., 2005

Japan 0.533 2002 eggshell Ikemoto et al ., 2005
 

Very few studies have examined the transfer of manganese from the laying bird to the egg; 

however, the limited evidence suggests that manganese is excreted into eggs (Burger, 1994).  In 
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a field study with passerines, Dauwe et al. (2005) found manganese concentrations in egg 

contents to be relatively high compared with some internal tissue concentrations (concentration 

in egg contents 2.48 µg/g dry weight, concentration in muscle tissue 0.94 µg/g, heart 1.65 µg/g).  

However, egg concentrations were low compared to other tissues (bone 5.08 µg/g, kidney 4.85 

µg/g, stomach 3.86 µg/g), and egg concentrations were poorly correlated with concentrations in 

both internal tissues and feathers. Concentrations of manganese in egg contents were 

consistently higher than those in shells (means 2.48 µg/g and 0.67 µg/g, respectively). 

In laboratory studies with mammals, excess manganese exposure causes mortality and decreased 

fertility (Grey & Laskey, 1980; Laskey et al., 1982), decreases in motor activity (Ingersoll et al., 

1995) and nervous system dysfunction (Mergler, 1986).  Studies with birds are much fewer, but 

manganese has been demonstrated to cause neurobehavioural effects (Burger & Gochfeld, 

1995b; Burger & Gochfeld, 2002) and sublethal exposure of avian embryos to manganese 

causes teratogenic effects such as abnormally small, poorly developed or twisted limbs, 

haemorrhage and neck defects; an LD50 of 765 µg/egg has been determined for manganese 

(Gilani & Alibhai, 1990).  

Nickel 

Literature data for nickel concentrations in seabird eggs is very limited, and concentrations were 

found only for eggshell; from one study.  Table 5-8 provides a summary of this data.   

Table 5-8 Summary of literature data for nickel concentrations in seabird eggs 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Curlew                       

Numenius arquata
Vammala, Finland 1.14 1996 eggshell Currie and Valkama, 1998

Kauhava, Finland 1.14 1996 eggshell Currie and Valkama, 1998
 

In a study with female laying great tits, Dauwe et al. (2005) found nickel concentrations in both 

egg contents and eggshells to be high compared with internal tissue concentrations in a sample 

of 10 female great tits (p = 0.004), suggesting maternal transfer of nickel to eggs does occur.  

However, concentrations in the egg and shell were poorly correlated with concentrations in both 

internal tissues and feathers, so the degree to which nickel is sequestered into eggs by laying 

birds is still unclear. 

Only one study could be found reporting the toxicity of nickel to bird embryos.  For chick 

embryos injected with a single dose of nickel as nickel chloride, 50% mortality occurred within 
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18 days at a dose of 3.6 mg Ni/kg embryo (Ridgway & Karnofsky, 1952).  No studies could be 

found reporting the effects of nickel on eggshell thickness. 

Selenium 

The concentration of selenium in wild birds eggs has been examined by a number of authors 

(Ohlendorf et al., 1986; Ohlendorf, 1989; Williams et al., 1989a; Burger, 1994; Braune et al., 

2001; Braune et al., 2002; Burger, 2002; Ikemoto et al., 2005; Lam et al., 2005).  A summary of 

literature data for selenium concentrations in seabird eggs is provided in Table 5-9.  Data in this 

table are for dry weight concentrations from studies worldwide, undertaken from 1990 onwards; 

‘egg contents’ refers to combined yolk and albumen. 

Table 5-9 Summary of literature data for selenium concentrations in seabird eggs 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Herring gull                        

Larus argenatatus
Long Island, USA 2.9 1992 egg contents Burger, 1994

Long Island, USA 0.4 1992 eggshell Burger, 1994

New Jersey, USA 1.836 2000 Burger, 2002

Glaucous gull                  

Larus hyperboreus

Prince Leopold Island, 

Canadian Arctic
2.7 1993 Braune et al ., 2002

Browne Island, Canadian 

Arctic
2.2 1993 Braune et al ., 2002

Richardson River, 

Canadian Arctic
1.1 1993 Braune et al ., 2002

Anderson River, Canadian 

Arctic
2.6 1993 Braune et al ., 2002

Great black-backed gull   

Larus marinus
New Jersey, USA 1.543 2000 Burger, 2002

Black-tailed gull         

Larus crassirostris
Japan 3.3 1999-2001 egg contents Agusa et al ., 2005

Japan 0.42 1999-2001 eggshell Agusa et al ., 2005

Black-legged kittiwake   

Rissa tridactyla
Canadian Arctic 4.38 1993 Braune et al ., 2001

Canadian Arctic 2.43 1998 Braune et al ., 2001

Prince Leopold Island, 

Canadian Arctic
4.4 1993 Braune et al ., 2002

Coburg Island, Canadian 

Arctic
4.4 1993 Braune et al ., 2002

Common tern               

Sterna hirundo
New Jersey, USA 2.046 2000 Burger, 2002

Roseate tern                  

Sterna dougallii
Long Island, USA 4.2 1992 egg contents Burger, 1994

Long Island, USA 0.005 1992 eggshell Burger, 1994

Forster's tern                   

Sterna forsterii
New Jersey, USA 1.688 2000 Burger, 2002

Bridled tern                  

Sterna anaethetus
Hong Kong 4.386 2000-2002 Lam et al ., 2005

Black skimmer           

Rynchops niger
New Jersey, USA 1.834 2000 Burger, 2002

Northern fulmar         

Fulmarus glacialis
Canadian Arctic 4.01 1993 Braune et al ., 2001

Canadian Arctic 3.34 1998 Braune et al ., 2001
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Table 5-9 cont. 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Thick-billed murre        

Uria lomvia
Canadian Arctic 2.57 1993 Braune et al ., 2001

Canadian Arctic 2.2 1998 Braune et al ., 2001

Prince Leopold Island, 

Canadian Arctic
2.6 1993 Braune et al ., 2002

Coburg Island, Canadian 

Arctic
2.1 1993 Braune et al ., 2002

Digges Island, Canadian 

Arctic
2.3 1993 Braune et al ., 2002

Coats Island, Canadian 

Arctic
2.4 1993 Braune et al ., 2002

Prince Leopold Island, 

Canadian Arctic
2.2 1998 Braune et al ., 2002

Coats Island, Canadian 

Arctic
2.3 1998 Braune et al ., 2002

Black guillemot             

Cepphus grylle

Prince Leopold Island, 

Canadian Arctic
2.2 1993 Braune et al ., 2002

Nuvuk Island, Canadian 

Arctic
2.2 1993 Braune et al ., 2002

Walrus Island, Canadian 

Arctic
2.7 1993 Braune et al ., 2002

Short-tailed albatross     

Phoebastria albatrus
Japan 2.7 2002 egg contents Ikemoto et al ., 2005

Japan 0.08 2002 eggshell Ikemoto et al ., 2005

Black-footed albatross   

Phoebastria nigripes
Japan 4.5 2002 egg contents Ikemoto et al ., 2005

Japan 0.15 2002 eggshell Ikemoto et al ., 2005
 

The transfer of selenium to eggs is considerable (Focardi et al., 1988), and the main form of 

dietary selenium to which aquatic birds are exposed - selenomethionine - readily accumulates in 

the protein of egg albumen (Spallholz & Hoffman, 2002).   

Studies suggest that reproductive success is more sensitive to selenium toxicity than the health 

and survival of young and adult birds.  Numerous studies have investigated the effects of 

embryonic exposure to selenium; embryo deformities and hatching failure occur when selenium 

concentrations in egg contents exceed ca. 3 ppm on a wet-weight basis and eggs provide a 

sensitive measure for evaluating hazards to birds (Heinz, 1996).  Birge and Roberts (1976) 

report survival rates of embryos of domestic chicken (Gallus spp.) eggs treated by yolk injection 

with a number of metals at various concentrations.  At the lowest dose of 0.001 mg/kg egg, 

selenium as selenate caused 36% mortality; at 0.01 mg/kg 57% mortality was observed, and at 

doses of 1.0 mg/kg and above no embryos survived.  Exposure to excess dietary selenium 

concentrations has been associated with decreased egg weight, decreased egg production and 

hatchability and a high incidence of deformed embryos with missing or distorted eyes, beaks, 

wings and feet (Harr, 1978; Ort & Latshaw, 1978).  As previously mentioned, although selenite 

(Se4+) and selenate (Se6+) are toxic to birds, organic selenides pose the greatest hazard (Heinz, 

1996), and selenomethionine has been demonstrated to be more effective than sodium selenite at 

raising the selenium content of tissues and eggs (Moksnes, 1983).  Reduced hatching of eggs 
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was recorded in Japanese quail (C. coturnix japonica) fed between 6 and 12 mg/kg dietary 

selenite (El-Begearmi et al., 1977), and in mallards (A. platyrhynchos) fed 10 mg/kg selenium as 

selenomethionine or 25 mg/kg as sodium selenite a 40-44% decrease in the total number of eggs 

hatching has been reported (Heinz et al., 1987; Hoffman & Heinz, 1988).   

In wild birds, severe reproductive effects have been reported in ducks (Anas spp.), American 

coot (F. americana) and other species of aquatic birds nesting at irrigation drain water ponds in 

the Kesterton National Wildlife Refuge in the San Joaquin Valley, California (Ohlendorf et al., 

1986; Ohlendorf, 1989; Williams et al., 1989a).  The concentration of selenium in the water of 

these ponds was abnormally high - around 300 µg/l - while concentrations of other metals 

(silver, chromium, arsenic, cadmium, mercury, lead and zinc) were low (Ohlendorf et al., 1986).  

A number of field studies were carried out and these indicated a high frequency (up to 65%) of 

deformities in embryos and hatchlings of the nesting aquatic birds, including missing or 

abnormal beaks, eyes, wings, legs or feet, and multiple deformities were observed in many cases 

(Ohlendorf et al., 1986; Ohlendorf, 1989; Williams et al., 1989a).  Selenium concentrations 

were 2-110 mg/kg in egg contents and 19-130 g/kg in livers of birds, which equated to between 

7 and 130 times higher than concentrations measured in nearby control areas, and several 

pathological and biochemical symptoms of selenium toxicosis were observed in the adult wild 

birds (Ohlendorf et al., 1988).  It was concluded that selenium was the probable cause of poor 

reproduction and developmental abnormalities in the aquatic nesting birds, due to interference 

with the reproductive process. 

Vanadium 

Table 5-10 provides a summary of literature data for vanadium concentrations in seabird eggs.  

Note: data provided are for dry weight concentrations from studies worldwide, undertaken from 

1990 onwards; ‘egg contents’ refers to combined yolk and albumen. 
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Table 5-10 Summary of literature data for vanadium concentrations in seabird eggs 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Black-tailed gull         

Larus crassirostris
Japan 0.041 1999-2001 egg contents Agusa et al ., 2005

Japan 0.011 1999-2001 eggshell Agusa et al ., 2005

Bridled tern                  

Sterna anaethetus
Hong Kong 0.096 2000-2002 Lam et al ., 2005

Short-tailed albatross     

Phoebastria albatrus
Japan 0.013 2002 egg contents Ikemoto et al ., 2005

Japan 0.008 2002 eggshell Ikemoto et al ., 2005

Black-footed albatross   

Phoebastria nigripes
Japan 0.023 2002 egg contents Ikemoto et al ., 2005

Japan 0.008 2002 eggshell Ikemoto et al ., 2005
 

Only one study could be found regarding the transfer of vanadium to bird eggs.  Lam et al. 

(2005) found a strong pattern linking concentrations of vanadium measured in sediment with 

concentrations in the eggs of waterbird species in the same area (three species, nine eggs 

sampled for each species), suggesting eggs to be good indicators for monitoring vanadium.  

Vanadium is an essential element for birds and vanadium deficiency causes reduced growth, 

impairment of reproduction and disturbance of the lipid metabolism (WHO, 2001a).  In general, 

it would seem that vanadium deficiency is more likely to have an adverse effect on reproductive 

success than vanadium toxicosis.  However, some studies with domestic chickens (Gallus spp.) 

report adverse effects of excess vanadium on reproductive success of birds.  A reduction in egg 

production, decreased egg weight and decreased eggshell weight has been observed for hens fed 

vanadium at a dose of 30-40 mg/kg diet (Ousterhout & Berg, 1981; Davis et al., 1995; 

Bressman et al., 2002).  Conversely, in another study with hens fed vanadium supplemented 

feed up to 100 mg/kg diet, egg weight and shell thickness were unaffected, even at the highest 

concentration of 100 mg/kg feed.  It should also be noted that the effects on the egg may be, at 

least in part, due to the significant reduction in feed consumption of the laying hen during the 

experimental period.   

Excess vanadium in the diet of laying hens (Gallus spp.) has also been shown to significantly 

reduce hatchability, at doses of 25 mg/kg diet (Kubena et al., 1980) and 40 mg/kg diet 

(Bressman et al., 2002).   An increase in embryo mortality has also been reported as a result of 

laying hens fed vanadium-supplemented feed at a dose of 60 mg/kg diet (Bressman et al., 2002). 
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Zinc 

Table 5-11 provides a summary of literature data for zinc concentrations in seabird eggs.  Data 

are for dry weight concentrations from studies worldwide, undertaken from 1990 onwards; ‘egg 

contents’ refers to combined yolk and albumen. 

Table 5-11 Summary of literature data for zinc concentrations in seabird eggs 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Black-tailed gull         

Larus crassirostris
Japan 65.3 1999-2001 egg contents Agusa et al ., 2005

Japan 0.778 1999-2001 eggshell Agusa et al ., 2005

Audouin's gull               

Larus audouinii
Spain 58.3 1992 egg contents Morera et al ., 1997

Spain 6.58 1992 eggshell Morera et al ., 1997

Bridled tern                  

Sterna anaethetus
Hong Kong 47.6 2000-2002 Lam et al ., 2005

Short-tailed albatross     

Phoebastria albatrus
Japan 62.6 2002 egg contents Ikemoto et al ., 2005

Japan 5.61 2002 eggshell Ikemoto et al ., 2005

Black-footed albatross   

Phoebastria nigripes
Japan 71 2002 egg contents Ikemoto et al ., 2005

Japan 3.39 2002 eggshell Ikemoto et al ., 2005
 

A number of studies have demonstrated maternal transfer of zinc to eggs (Williams et al., 

1989b; Bryan et al., 2003), and eggs have been used for monitoring zinc pollution to provide a 

reflection of uptake and exposure.  Lam et al. (2005) found significant correlations between zinc 

concentrations measured in sediment and in the eggs of waterbird species in the same area (nine 

eggs sampled from each of three species; p <0.001), suggesting eggs to be good indicators for 

monitoring zinc. In a field study with passerines, Dauwe et al. (2005) found zinc concentrations 

in egg contents to be high compared with internal tissue concentrations in a sample of ten 

female great tits, although concentrations in the egg were poorly correlated with concentrations 

in both internal tissues and feathers.  In a laboratory-based study, Williams et al. (1989b) found 

egg yolk zinc concentrations to be three times higher than controls in eggs produced by hens fed 

a diet containing 20000 mg/kg zinc for a period of four days.   

Excess concentrations of zinc have been shown to have an adverse effect on egg production, and 

high dietary concentrations of zinc are routinely fed to laying domestic chickens (Gallus spp.) 

by poultry managers to force moulting and to reduce egg deposition, thus improving long-term 

egg production (Lu & Combs Jr., 1988; WHO, 2001b).  In a study by Decuypere et al. (1988), 

laying hens fed 10000, 20000 and 30000 mg Zn/kg feed ceased laying completely.  Palafox & 

Ho-A (1980) fed laying hens a diet containing 20000 mg Zn/kg feed and, although egg-laying 

did not completely cease, egg production was significantly lowered and eggs collected 14-28 
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days after the five day study period had reduced fertility and hatchability, with normal egg 

production, fertility and hatchability resuming during weeks 4-12, post-treatment. A significant 

reduction in body weight and egg production was observed in Japanese quail hens fed a diet 

containing 15000 mg/kg zinc for seven days, with thinner eggshells, reduced eggshell breaking 

strength and near-zero egg production by day three of treatment (Hussein et al., 1988). 

In terms of embryotoxicity, Birge and Roberts (1976)  report survival rates of embryos of 

domestic chicken (Gallus spp.) eggs treated by yolk injection with a number of metals at various 

concentrations.  Zinc injection to the egg resulted in 17% mortality at the lowest dose of 0.001 

mg/kg egg; at 1.0 mg/kg 51% mortality was observed, and of the surviving embryos a further 

8% exhibited gross malformations.  At a dose of 50 mg/kg no embryos survived. 

5.1.3 Partitioning of metals in eggs 

The partitioning of different metals between eggshells and egg contents (combined yolk and 

albumen) has been examined by a number of authors.  In a study looking at metal concentrations 

in eggshells and contents of the yellow-breasted chat (Icteria virens) and willow flycatcher 

(Empidonax traillii extimus), Mora (2003) found selenium and zinc primarily in egg contents; 

arsenic, nickel, lead and vanadium were detected mainly in eggshells.  Manganese 

concentrations were slightly higher in eggshells, and results for zinc were conflicting between 

the two different species, with higher concentrations measured in egg contents than in shells for 

the yellow-breasted chat, and higher concentrations in the eggshell than the contents for the 

willow flycatcher.  In another study with the short-tailed albatross (Phoebastria albatrus) and 

black-footed albatross (Phoebastria nigripes), Ikemoto et al. (2005) found cadmium and lead 

mainly in eggshells, and copper, manganese, selenium, vanadium and zinc mainly in egg 

contents.  Burger (1994) reports higher concentrations of lead and selenium in egg contents than 

in eggshell, with manganese concentrations being fairly evenly spilt between the two (although 

slightly higher in eggshell).  Results for cadmium were conflicting between the two species 

examined, with concentrations in herring gull (L. argentatus) eggs higher in the eggshell than in 

the egg contents, whereas for roseate terns (Sterna dougallii) concentrations were higher in the 

egg contents.  In all studies a proportion of most metals analysed for was found to accumulate in 

the eggshell.  Data of eggshell:egg contents (combined yolk and albumen) ratios reported in 

these studies are summarised below in Table 5-12. 

 



Kirsty Pickard 

PhD thesis - May 2010 

 

 161 

Table 5-12 Eggshell:egg contents ratios of metals in different bird species  

Metal

Yellow-

breasted 

chat        

(a)

Willow 

flycatcher 

(a)

Short-

tailed 

albatross 

(b)

Black-

footed 

albatross 

(b)

Black-

crowned 

night 

heron    

(d)

Little 

egret      

(d)

Roseate 

tern                

(c)

Bridled 

tern        

(d)

Herring 

gull             

(c)

Black-

tailed gull          

(e) 

Audouin's 

gull         

(f)

Arsenic 8.4 5.2 - - - - - 0.22 - - -

Cadmium - - 18.6 13.9 - 6.0 0.5 1.0 5.0 0.62 -

Cobalt - - - - 9.59 12.7 - 15.3 - 17.2 -

Copper 1.9 1.2 0.16 0.17 0.18 0.24 - 0.32 - 0.13 0.83

Iron - - - - - - - - - - -

Lead 2.4 3.6 11.0 3.9 4.29 10.86 0.5 6.0 0.1 2.65 -

Manganese 1.1 2.1 1.4 0.62 0.60 2.79 1.02 0.42 1.5 0.62 0.17

Nickel 16.4 26.0 - - - - - - - - -

Selenium 0.17 0.35 0.03 0.03 2.49 2.27 0.001 3.55 0.13 0.13 -

Vanadium 20.8 19.2 0.62 0.35 1.38 3.57 - - - 0.27 -

Zinc 0.18 1.2 0.09 0.05 0.14 0.19 - 0.05 - 0.01 0.11  
 
(a) Mora, 2003  (d) Lam et al., 2005  
(b) Ikemoto et al., 2005 (e) Agusa et al., 2005  
(c) Burger, 1994  (f) Morera et al., 1997 
 

Clearly the evidence for the partitioning of many metals between eggshells and egg contents is 

conflicting.  In addition to differences in concentrations between eggshells and egg contents, 

different metals have been found to bind to different components of the egg contents, with 

selenium and mercury binding preferentially to albumen and yolk, respectively (Magat & Sell, 

1979).  However, no data are available regarding the partitioning of any other metals between 

yolk and albumen.  Knowledge of the partitioning of metals within the egg contents would 

enable a more targeted approach to metal analysis in eggs; for example, if a metal is found 

entirely in the yolk analysis of homogenised egg contents will only serve to dilute the 

concentrations of these metals in the sample.  This is particularly important when concentrations 

are very low, and in this case it would be more prudent to analyse the egg yolk rather than 

contents as a whole.   Ideally, all egg components (separated yolk, albumen and shell) should be 

analysed separately to gain some insight into where metals are partitioned in the egg and to 

obtain accurate results for total concentrations in the egg. 

5.2 Methods 

Details of egg collection procedures in 2005 and 2006 are provided in Section 2.2.1. 

Samples of egg shell, yolk and albumen were analysed individually for arsenic, cadmium, 

cobalt, copper, iron, lead, manganese, nickel, selenium, vanadium and zinc.   

Eggs were surface-cleaned with Milli-Q® water in order to remove any excrement, mud, plant 

debris etc., and measurements of the maximum length, width and weight of the whole egg were 
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recorded.  Eggs were then opened using a clean, sterile scalpel, separated, the wet-weight of the 

individual egg components (yolk, albumen and shell) was recorded, and the eggshell thickness 

measured (See Section 2.2 for further details).  Samples were then dried at 60ºC to a constant 

weight, dry weights were taken and the water content of each individual sample calculated.  

Each sample was ground and homogenised using a pestle and mortar, and approximately 0.2 g 

of each sample weighed out into a microwave digestion vessel as described below (exact 

weights recorded), with 10 ml of concentrated nitric acid added to each vessel.   

Contamination was minimised at all stages by acid-washing all glassware prior to rinsing with 

Milli-Q® water, and rinsing any metal equipment with ultra high purity (BDH Chemicals 

ARISTAR®) grade acetone before bringing it into contact with samples.  In addition, all 

procedures were carried out in a laminar-flow cabinet . 

A CEM Microwave Accelerated Reaction System 5 (MARS 5TM) was used to digest all of the 

samples prior to metals analysis.  XP-1500 digestion vessels were used, which consist of a 

fluoropolymer liner (TFM®, a thermally resistant form of Teflon®) and a perfluoroalkoxy 

(PFA) resin cap.  Vessels were assembled according to the manufacturer’s instructions, placed 

in the microwave and heated over a 20 minute period until the temperature reached 230ºC.  This 

temperature was then maintained for 10 minutes, after which the vessels were allowed to cool.  

Once cooled to a temperature below 50ºC, vessels were vented in a fume cupboard to release 

any remaining pressure, and a 1 ml aliquot of the digestate added to 9 ml of Milli-Q® water in a 

separate container (making a 10% nitric acid solution).  This digestion technique is based on 

United States Environmental Protection Agency (USEPA) Method 3051.  The method liberates 

virtually all bioavailable metals from their matrix and is an established technique for 

environmental samples (USEPA, 1996). 

Once digested, samples were further diluted to approximately 2% nitric acid solution, prior to 

analysis by ICP-MS, which is a sensitive analytical technique capable of multi-elemental 

analysis.  With each batch of samples determined, a calibration graph was constructed to check 

for linearity and to calculate concentrations in the samples.  The calibration samples contained 

all of the elements of interest.  In addition to a calibration, blank samples of 2% nitric acid were 

analysed to assess contamination.  Measured samples were blank-corrected to provide reportable 

data.   

To determine if any bias exists in the environmental media compared with the Milli-Q® water 

calibrant samples (used to construct a calibration curve and hence calculate concentrations), 
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spike-and-recovery tests were carried out for each different matrix (i.e. eggshell, yolk and 

albumen), for all the elements analysed for. This was achieved by spiking samples with varying 

concentrations of metal standards and constructing individual calibration curves. If the slope of 

the standard addition is less or greater than that for deionised water, this suggests an interferent 

is present in the sample that is either enhancing or suppressing the signal from the ICP-MS 

compared with deionised water.  Accordingly, all calculations of metal concentrations in the 

samples were calculated using slopes derived from calibrations established in their own 

biological matrix.  

These spike-recovery trials enabled assessment of the losses/gains made during the sample 

preparation method.  Trials were carried out for all the metals investigated in this study.    

5.2.1 Results of initial trials 

For each trial, domestic chicken (Gallus spp.) eggs were separated into yolk, albumen and shell.  

Each egg was carefully opened and the albumen separated into a glass beaker.  The yolk was 

gently rolled on a clean sheet of laboratory paper in order to remove any excess albumen.  The 

egg shell was rinsed carefully with Milli-Q® water in order to remove any residual albumen, 

leaving membranes intact.  Yolk, albumen and shell samples were then divided roughly in half 

and placed in pre-weighed glass jars before obtaining the wet weight of the samples.  One half 

of each component from each egg was spiked with standard solutions of metals, while the 

corresponding half was left unspiked as a control sample. 

Egg samples were spiked with varying amounts of a multi-element standard (Fisher Scientific, 

WP-15) containing 100 mg/l arsenic, copper, iron, manganese, nickel, lead and zinc, 25 mg/l 

cadmium and selenium and 250 mg/l vanadium, in a matrix of 5% nitric acid.  Egg 1 yolk and 

albumen were spiked with 0.1 ml of this standard, Egg 2 samples with 0.5 ml, Egg 3 samples 

with 1 ml, Egg 4 samples with 2.5 ml and Egg 5 samples with 5 ml. 

Spiked samples were mixed thoroughly with a glass rod.  All samples (spiked and unspiked) 

were then dried in an oven at 60ºC to constant mass, after which dry weights were recorded and 

the water content of each sample calculated.  The dried contents of each jar were then ground 

with a pestle and mortar, and an accurately weighed portion (ca. 0.2g) of the dried, 

homogenised sample was transferred to a microwave extraction vessel, as described in Section 

5.2.  The samples were microwave digested following the procedure outlined in Section 5.2, 
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after which analysis was carried out by ICP-MS.  Table 5-13 provides recovery data from these 

trials. 

Table 5-13 Mean recoveries for metals in chicken (Gallus spp.) egg components 

Metal Egg component
Recovery range                

(%)
Mean recovery (%)

As Yolk 78.2 - 92.5 88.2

Albumen 62.5 - 94.8 85.1

Shell 66.9 - 83.1 73.9

Cd Yolk 83.0 - 107.7 96.2

Albumen 63.3 - 97.1 87.5

Shell 67.5 - 79.7 74.1

Co Yolk 87.0 - 116.7 102.7

Albumen 70.6 - 103.6 94.6

Shell 76.0 - 99.3 86.1

Cu Yolk 88.9 - 133.2 108.3

Albumen 66.0 - 100.5 85.9

Shell 70.5 - 93.6 79.9

Fe Yolk 104.6 - 158.7 138.4

Albumen 65.4 - 79.1 73.8

Shell 60.0 - 129.8 82.5

Pb Yolk 96.8 - 118.5 106.9

Albumen 66.4 - 103.9 91.5

Shell 77.3 - 93.3 85.1

Mn Yolk 88.2 - 116.6 106.4

Albumen 68.9 - 103.6 94.0

Shell 73.1 - 90.9 82.9

Ni Yolk 88.2 - 120.8 105.7

Albumen 67.9 - 102.1 90.7

Shell 69.9 - 109.6 87.6

Se Yolk 77.8 - 111.7 93.1

Albumen 59.4 - 93.7 78.6

Shell 68.2 - 78.2 73.6

V Yolk 91.1 - 111.0 103.9

Albumen 67.5 - 102.6 92.2

Shell 76.6 - 96.0 83.8

Zn Yolk 50.3 - 130.0 100.6

Albumen 72.5 - 127.9 83.2

Shell 59.1 - 80.0 68.4  

 

Recovery data were good for all metals, with between 73 and 109% average recovery.  The only 

exception is iron in egg yolk, for which the average recovery was 138.4%.  The concentration of 

iron measured in egg yolk was consistently higher than the concentration than the expected 
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concentration in the spiked sample.  This may be due to some external contamination, or 

polyatomic interference (i.e. molecular ions in the sample matrix with the same mass/charge 

ratio as the analyte of interest) in the yolk leading to an artificial increase in the iron 

concentration measured.  The most commonly reported interferents with iron analysis by ICP-

MS are argon and calcium (May & Wiedmeyer, 1998; Segura et al., 2003); interference due to 

argon oxide would arise as a result of argon gas in the ICP-MS and would therefore lead to an 

artificial increase in the iron concentrations for all samples.  However, in this study the 

recoveries indicate an artificial increase in iron concentration measured only for yolk samples, 

and thus it is more likely that the polyatomic interference in this case is due to the high calcium 

content of egg yolk.  As the recoveries for iron measured in yolk samples were fairly consistent 

at around 130-150% (with the exception of the lowest spiked sample), data could be adjusted 

accordingly to account for the over-estimation of the iron concentration. 

Overall, the recovery data using the method outlined above suggests that this method is suitable 

for the analysis of the above metals in egg yolk, albumen and shell, although iron concentrations 

in yolk may be over-estimated.  In order to avoid over- or under-estimates of the concentrations 

measured in the eggs using the method outlined above, all of the raw analytical results were 

corrected according to the recoveries in Table 5-13.  For example, for arsenic in egg yolk the 

recovery data suggests that only 88.2% of the total concentration of arsenic in each sample will 

be recovered using this method.  Thus the actual arsenic concentration in a yolk sample 

measured at 10 µg/g, for example, would be 10*(100/88.2) = 11.34 µg/g. 

A full set of recovery data with individual concentrations of each metal in egg components is 

provided in Appendix C. 

5.3 Results 

5.3.1 Relationship between metal concentrations and egg characteristics 

Pearson’s correlation was carried out for the egg characteristics (as analysed in Chapter 2) and 

total metal concentration in the egg (the combined sum of the concentration measured in yolk, 

albumen and shell) to identify any relationships between total egg metal concentrations and egg 

characteristics.   
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Table 5-14 provides values for Pearson’s correlation (r) between the total metal concentrations 

and characteristics of black-headed gull eggs. 

Table 5-14 Pearson’s correlations between total metal concentrations and 

characteristics of black-headed gull eggs for all sites studied, 2005 and 2006 

Measurement
Total As 

conc.

Total Cd 

conc.

Total Co 

conc.

Total Cu 

conc.

Total  

Fe 

conc.

Total Pb 

conc.

Total 

Mn 

conc.

Total    

Ni   

conc.

Total Se 

conc.

Total    

V   

conc.

Total Zn 

conc.

Yolk wet weight 0.416 0.251 0.364 0.051 0.088 0.060 0.116 0.559 0.617 0.388 0.138

Albumen wet 

weight
0.626 0.716 0.010 0.663 0.033 0.005 0.337 0.008 0.236 0.964 0.456

Y:A ratio 0.822 0.619 0.015 0.433 0.008 0.353 0.922 0.015 0.420 0.643 0.192

Egg length 0.416 0.729 0.483 0.397 0.804 0.054 0.092 0.133 0.156 0.237 0.426

Egg width 0.104 0.484 0.122 0.923 0.188 0.139 0.294 0.408 0.660 0.776 0.444

Shell thickness 0.308 0.991 0.145 0.136 0.503 0.242 0.808 0.124 0.996 0.973 0.166

Shell index 0.640 0.360 0.675 0.796 0.087 0.589 0.640 0.289 0.441 0.084 0.511

 

 

The correlation matrix revealed a significant interaction between metal concentration and wet 

weight of albumen and yolk:albumen ratio for cobalt (Pearson’s correlation r = 0.306, p = 0.010 

for wet weight albumen and r = -0.292, p = 0.015 for yolk:albumen ratio), iron (r = 0.257, p = 

0.033 for wet weight albumen and r = -0.316, p = 0.008 for yolk:albumen ratio) and nickel (r = 

0.327, p = 0.010 for wet weight albumen and r = -0.293, p = 0.015 for yolk:albumen ratio).  

Concentrations of lead were also significantly correlated with wet weight of albumen (r = 0.334, 

p = 0.005), but not with yolk:albumen ratio (r = -0.133, p = 0.353).  No other significant 

interactions between metal concentration and egg parameters were found.   

5.3.2 Total metal concentrations in the egg 

Figures 5-1 to 5-11 show mean concentrations (with standard error bars) of each of the metals 

analysed in eggs from each of the sample sets.  N = 69: n = 20, 19, 20 and 10 for Lymington 

Early, Lymington Late, Poole and Raby sample sets, respectively. 
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For comparison, a mean concentration calculated from values reported in the literature for 

Laridae on a global scale is presented (for actual concentrations reported in the literature, see 

Section 5.1.2, Tables 5-2 to 5-11).  

 

Figure 5-1 Mean total arsenic concentrations (µg/g dry weight), ± standard error, in 

black-headed gull eggs from sampling sites in this study (N = 69), compared 

with literature data for gull eggs worldwide (N = 2) 
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Figure 5-2 Mean total cadmium concentrations (µg/g dry weight), ± standard error, in 

black-headed gull eggs from sampling sites in this study (N = 69), compared 

with literature data for gull eggs worldwide (N = 4) 

 

Figure 5-3 Mean total cobalt concentrations (µg/g dry weight), ± standard error, in 

black-headed gull eggs from sampling sites in this study (N = 69), compared 

with literature data for gull eggs worldwide (N = 1) 
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Figure 5-4 Mean total copper concentrations (µg/g dry weight), ± standard error, in 

black-headed gull eggs from sampling sites in this study (N = 69), compared 

with literature data for gull eggs worldwide (N = 2) 

 

Figure 5-5 Mean total iron concentrations (µg/g dry weight), ± standard error, in black-

headed gull eggs from sampling sites in this study (N = 69) 
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Figure 5-6 Mean total lead concentrations (µg/g dry weight), ± standard error, in black-

headed gull eggs from sampling sites in this study (N = 69), compared with 

literature data for gull eggs worldwide (N = 2) 

 

Figure 5-7 Mean total manganese concentrations (µg/g dry weight), ± standard error, in 

black-headed gull eggs from sampling sites in this study (N = 69), compared 

with literature data for gull eggs worldwide (N = 5) 
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Figure 5-8 Mean total nickel concentrations (µg/g dry weight), ± standard error, in 

black-headed gull eggs from sampling sites in this study (N = 69) 

 

Figure 5-9 Mean total selenium concentrations (µg/g dry weight), ± standard error, in 

black-headed gull eggs from sampling sites in this study (N = 69), compared 

with literature data for gull eggs worldwide (N = 8) 
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Figure 5-10 Mean total vanadium concentrations (µg/g dry weight), ± standard error, in 

black-headed gull eggs from sampling sites in this study (N = 69), compared 

with literature data for gull eggs worldwide (N = 1) 

 

Figure 5-11 Mean total zinc concentrations (µg/g dry weight), ± standard error, in black-

headed gull eggs from sampling sites in this study (N = 69), compared with 

literature data for gull eggs worldwide (N = 2) 
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Statistical analysis 

To check that data were normally distributed, a K-S test was carried out; this test revealed that 

data were normally distributed for arsenic, copper, iron, manganese, selenium, vanadium and 

zinc.  The distributions of cadmium (K-S statistic D = 0.177, p <0.001), cobalt (D = 0.130, p = 

0.05), lead (D = 0.220, p <0.001) and nickel (D = 0.203, p <0.001) were not normal.  Various 

transformations were tried in order to attempt to normalise the data, including logarithmic, 

reciprocal, squared, cubed, square root, inverse square root, cube root and inverse cube root.  

Logarithmic transformation produced a normalised distribution of the lead data (K-S statistic D 

= 0.099; p = 0.089).  However, the data for cadmium, cobalt and nickel could not be normalised 

with any of the transformations attempted.  Data for cadmium, cobalt and nickel do not 

therefore meet the requirements for parametric tests, and must therefore be explored via non-

parametric tests.  Variance was examined using Levene’s test for equality of variance. 

In order to assess whether any significant differences existed between the site sample sets 

(Lymington Early, Lymington Late, Poole and Raby) in terms of metal concentrations, a one-

way ANOVA was carried out.  A summary of the ANOVA data is provided in Table 5-15.  

ANOVA data provided in the table is based on the raw, untransformed data for all metals except 

lead, data for which was log transformed prior to running ANOVA, and then calculated back to 

the original scale for the purposes of reporting.  For cadmium, cobalt and nickel a non-

parametric Kruskal-Wallis test was used as an alternative to one-way ANOVA (Townend, 

2002).  The test requires the distributions of the values in the datasets being tested to be the 

same shape, although not necessarily normal.  As the datasets for cadmium, cobalt and nickel 

are all similarly skewed to the left, the requirements for this test are met.   

Table 5-15 provides a summary of the results from these tests.  The results show that there are 

significant differences between sample sets for the total egg concentrations of arsenic, cadmium, 

cobalt, copper, iron, lead, selenium and zinc.  There are no significant differences between 

sample sets for the total egg concentrations of vanadium.   
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Table 5-15 Test results for differences in total metal concentrations in black-headed gull 

eggs between sites, 2005-2006  

Measurement n F value p Significance

Arsenic

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Cadmium

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Cobalt

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Copper

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Iron

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Lead

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Manganese

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Nickel

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Selenium

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Vanadium

Lym Early 20

Lym Late 19

Poole 20

Raby 10

Zinc

Lym Early 20

Lym Late 19

Poole 20

Raby 10

**

NS

**

**

**

**

0.136

<0.005

<0.005

<0.005

<0.001

<0.005

20.759 <0.005 **

<0.001

25.592

1.916

14.681

9.763

Chi square 

38.416

8.924

3.864 0.013 *

Chi sqare 

12.425
0.006 **

**

10.196 <0.005 **

Chi sqare 

48.844

 

Bold indicates a 

significant difference 

between sample sets   

for that variable;                                         

* = significant              

(p ≤0.05);                     

** = highly significant  

(p ≤0.001);                              

NS = not significant     

(p > 0.05). 

Data are for one-way 

ANOVA with the 

exception of highlighted 

areas , which indicate 

results from non-

parametric Kruskal-

Wallis test. 
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Having established significant differences between sample sites, post-hoc tests were used to 

identify which groups were significantly different from one another for each of the metals.  A 

Tukey test was used to examine the differences between groups for the metals.  However, the 

Tukey test is a parametric post-hoc test and is therefore unsuitable for examination of the metals 

which are not normally distributed; thus cadmium, cobalt and nickel are not included in the 

Tukey test.   

A summary of the data from the Tukey test is provided in Table 5-16. 
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Table 5-16 Tukey test results for differences between sites: total metal concentrations in 

black-headed gull eggs, 2005-2006 

Metal Significant site differences n S.E. p Significance level

Arsenic Poole > Lym Early 40 0.049 0.009 **

Poole > Lym Early 40 0.663 0.020 *

Poole > Lym Late 39 0.672 <0.001 **

Raby > Lym Early 30 0.813 0.005 **

Raby > Lym Late 29 0.820 <0.001 **

Lym Late > Lym Early 39 8.605 <0.001 **

Lym Late > Poole 39 8.605 <0.001 **

Lym Late > Raby 29 10.494 <0.001 **

Lym Late > Poole 39 0.113 0.012 *

Raby > Lym Early 30 0.136 <0.001 **

Raby > Lym Late 29 0.138 0.006 **

Raby > Poole 30 0.136 <0.005 **

Poole > Lym Early 40 0.389 <0.001 **

Poole > Lym Late 39 0.394 0.005 **

Raby > Lym Early 30 0.476 0.003 **

Raby > Lym Late 29 0.480 0.044 *

Poole > Lym Early 40 0.495 <0.001 **

Raby > Lym Early 30 0.607 0.001 **

Raby > Lym Late 29 0.612 0.040 *

Vanadium None - - - -

Poole > Lym Early 40 3.251 <0.001 **

Poole > Lym Late 39 3.294 <0.001 **

Raby > Lym Early 30 3.982 <0.001 **

Raby > Lym Late 29 4.016 <0.001 **

Zinc

Lead

Selenium

Copper

Iron

Manganese

 

* = significant (p ≤0.05); ** = highly significant (p ≤0.01).  S.E. = standard error. 

The results show that the eggs from the Poole colony have significantly higher mean 

concentrations of arsenic, copper, manganese, selenium and zinc than those from the Lymington 
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Early sample set (i.e. those eggs collected before the period of commercial egg harvesting 

commenced).  The Poole eggs also showed higher mean concentrations than the Lymington Late 

eggs (i.e. those collected at the end of the commercial egg harvesting period) for copper, 

manganese and zinc.   

The Lymington Late eggs exhibited higher mean concentrations of iron than any of the other 

three sample sets, and higher lead concentrations than the Poole eggs.  Eggs from the Raby site 

had a significantly higher concentration of lead than the eggs from any of the other sample sets.  

The Raby eggs also had higher concentrations of copper, selenium and zinc than either 

Lymington Early or Lymington Late eggs; however, there was no significant difference between 

the Raby and the Poole sites for these metals. 

Cadmium, cobalt and nickel, the data not being normally distributed, were examined with a non-

parametric post-hoc test.  A series of Mann-Whitney tests were used to examine the differences 

between groups for these metals.  This method requires conducting separate tests comparing 

each group with each of the other groups, which, in this case, requires six different Mann-

Whitney tests to examine the six different group combinations.  However, the use of multiple 

tests will inflate the Type I error rate (i.e. the chance of falsely rejecting the null hypothesis), 

and thus an adjustment of some kind should be made to ensure that the Type I errors don’t 

amount to more than 0.05 (Field, 2005). The method employed to do this the Bonferroni 

correction, where the critical value of 0.05 is divided by the number of tests conducted (Field, 

2005).  In this case, six tests were conducted and the significance level is therefore taken as 

0.05/6, i.e. 0.0083.  Therefore, in order for a result to be considered significant, the p-value 

generated by the Mann-Whitney test must be ≤0.0083.  The significant differences between 

groups highlighted by these tests are provided in Table 5-17. 
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Table 5-17 Significant Mann-Whitney test results for differences in total metal 

concentrations in black-headed gull eggs between sites, 2005-2006: Cd, Co 

and Ni 

Metal Significant site differences n
Mann-

Whitney U
P

Cadmium Poole > Lym Late 39 90.0 0.004

Lym Late > Lym Early 39 0.00 <0.001

Lym Late > Poole 39 1.00 <0.001

Lym Late > Raby 29 1.00 0.001

Poole > Lym Early 40 57.5 <0.001

Lym Late > Lym Early 39 9.00 <0.001

Lym Late > Poole 39 48.0 <0.001

Lym Late > Raby 29 33.0 0.003

Poole > Lym Early 40 69.0 <0.001

Raby > Lym Early 30 29.0 0.001

Cobalt

Nickel

 

              Note: significant result P ≤0.0083. 

The results from the Mann-Whitney tests show that the Lymington Late eggs have significantly 

higher mean concentrations than any of the other sample groups for both cobalt and nickel.  

Poole eggs have significantly higher mean concentrations than the Lymington Early eggs for 

cobalt and nickel, and significantly higher mean concentrations of cadmium than Lymington 

Late eggs.  Raby eggs also had significantly higher mean concentrations of nickel than the 

Lymington Early eggs. 

5.3.3 Metal partitioning in the egg 

Concentrations of heavy metals in each of the different egg components (yolk, albumen and 

shell) are shown in Figures 5-12 to 5-22.  Data in the following figures were derived using 

combined data from all of the sites to provide a mean metal concentration in each egg 

component.  Data from all sites were pooled to increase the sample size for statistical analysis, 

and to provide an overview of the general partitioning of each metal in the egg. 
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Figure 5-12 Mean arsenic concentrations (µg/g dry weight), ± standard error, in 

components of black-headed gull eggs, 2005-2006 (N = 69) 

 

Figure 5-13 Mean cadmium concentrations (µg/g dry weight), ± standard error, in 

components of black-headed gull eggs, 2005-2006 (N = 69) 
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Figure 5-14 Mean cobalt concentrations (µg/g dry weight), ± standard error, in 

components of black-headed gull eggs, 2005-2006 (N = 69) 

 

Figure 5-15 Mean copper concentrations (µg/g dry weight), ± standard error, in 

components of black-headed gull eggs, 2005-2006 (N = 69) 
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Figure 5-16 Mean iron concentrations (µg/g dry weight), ± standard error, in 

components of black-headed gull eggs, 2005-2006 (N = 69) 

 

Figure 5-17 Mean lead concentrations (µg/g dry weight), ± standard error, in 

components of black-headed gull eggs, 2005-2006 (N = 69) 
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Figure 5-18 Mean manganese concentrations (µg/g dry weight), ± standard error, in 

components of black-headed gull eggs, 2005-2006 (N = 69) 

 

Figure 5-19 Mean nickel concentrations (µg/g dry weight), ± standard error, in 

components of black-headed gull eggs, 2005-2006 (N = 69) 



Kirsty Pickard 

PhD thesis - May 2010 

 

 183 

 

Figure 5-20 Mean selenium concentrations (µg/g dry weight), ± standard error, in 

components of black-headed gull eggs, 2005-2006 (N = 69) 

 

Figure 5-21 Mean vanadium concentrations (µg/g dry weight), ± standard error, in 

components of black-headed gull eggs, 2005-2006 (N = 69) 
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Figure 5-22 Mean zinc concentrations (µg/g dry weight), ± standard error, in 

components of black-headed gull eggs, 2005-2006 (N = 69) 

Statistical analysis 

A K-S test was carried out to check that data were normally distributed; this test revealed that 

data were normally distributed for copper, but not for any other metal.  Various transformations 

were attempted to try to normalise the data (as detailed in Section 5.3.2); however, none of the 

data for any of the metals could be normalised with any of the transformations attempted.  Data 

for arsenic, cadmium, cobalt, iron, manganese, nickel, lead, selenium, vanadium and zinc do not 

therefore meet the requirements for parametric tests, and must therefore be explored via non-

parametric tests.  Variance was examined using Levene’s test for equality of variance. 

In order to assess whether any significant differences existed between the sample sets in terms 

of copper concentrations, a one-way ANOVA was carried out.  ANOVA revealed that there was 

a significant difference between the egg components for copper (F = 40.81; p <0.001; n = 69).  

Note: ANOVA also suggested a significant difference between egg components for 

concentrations of all other metals (p ≤0.001 for all), although these results cannot be considered 

reliable as the criteria for parametric testing were not met. 

As the datasets for arsenic, cadmium, cobalt, iron, lead, manganese, nickel, selenium, vanadium 

and zinc are of similar shape, all being skewed to the left, the Kruskal-Wallis test was 

considered an appropriate non-parametric alternative to ANOVA for examining this data.  Table 

5-18 provides a summary of the data from the Kruskal-Wallis test. 
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Table 5-18 Kruskal-Wallis test results for differences in metal concentrations in black-

headed gull eggs between yolk, albumen and shell, 2005-2006 

Chi-square p Significance

Arsenic 129.76 <0.001 **
Cadmium 26.60 <0.001 **
Cobalt 177.48 <0.001 **
Iron 155.46 <0.001 **
Lead 85.76 <0.001 **
Manganese 148.79 <0.001 **
Nickel 148.11 <0.001 **
Selenium 147.09 <0.001 **
Vanadium 142.09 <0.001 **
Zinc 140.65 <0.001 **  

      ** = highly significant  (p ≤0.001); 0.05); n = 69. 

The Kruskal-Wallis test confirms the suggestions made by the ANOVA that there are significant 

differences between the egg components for all metals analysed.   

Having established significant differences between sample sites, post-hoc tests were used to 

identify which groups were significantly different from one another for each of the metals.  A 

Tukey test was used to examine the differences between egg components for copper, the results 

of which, combined with Figures 5-12 to 5-22, show that the concentrations of copper were 

significantly higher in albumen than in yolk (p <0.001, n = 69), and significantly higher in shell 

than yolk (p <0.001, n = 69) and albumen (p 0.041, n = 69).   

As the Tukey test is a parametric post-hoc test it is unsuitable for examination of the metals 

which are not normally distributed, and a non-parametric post-hoc test must be used for arsenic, 

cadmium, cobalt, iron, lead, manganese, nickel, selenium, vanadium and zinc.  A series of 

Mann-Whitney tests were used to examine the differences in the concentrations of these metals 

between egg components.  As described above (Section 5.3.2), conducting a series of tests 

necessitates an adjustment to the significance level; in this case, three tests were conducted and 

the significance level is therefore taken as 0.05/3, i.e. 0.017, and a p-value generated by of 

≤0.017 therefore indicates a significant result.  The significant differences between groups 

highlighted by these tests are provided in Table 5-19. 
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Table 5-19 Significant Mann-Whitney test results for differences in metal 

concentrations in black-headed gull eggs between yolk, albumen and shell, 

2005-2006 

Metal Significant difference
Mann-

Whitney U
p

Albumen > Yolk 736.0 <0.001

Yolk > Shell 639.0 <0.001

Albumen > Shell 74.0 <0.001

Shell > Yolk 1656.0 0.001

Shell > Albumen 1245.5 <0.001

Yolk > Albumen 43.0 <0.001

Shell > Yolk 69.0 <0.001

Shell > Albumen 20.0 <0.001

Yolk > Albumen 0.0 <0.001

Yolk > Shell 1016.0 <0.001

Shell > Albumen 0.0 <0.001

Yolk > Albumen 193.0 <0.001

Yolk > Shell 1464.0 <0.001

Shell > Albumen 1275.5 <0.001

Yolk > Albumen 0.0 <0.001

Yolk > Shell 41.0 <0.001

Shell > Albumen 1093.5 <0.001

Yolk > Albumen 1376.5 <0.001

Shell > Yolk 0.0 <0.001

Shell > Albumen 0.0 <0.001

Albumen > Yolk 288.0 <0.001

Yolk > Shell 570.0 <0.001

Albumen > Shell 72.0 <0.001

Albumen > Yolk 4.0 <0.001

Shell > Yolk 413.0 <0.001

Albumen > Shell 731.5 <0.001

Yolk > Albumen 0.0 <0.001

Yolk > Shell 0.0 <0.001

Arsenic

Cadmium

Cobalt

Iron

Lead

Manganese

Nickel

Selenium

Vanadium

Zinc

 

Note: significant 
result P ≤0.017. 
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The results of the Mann-Whitney tests, combined with Figures 5-12 to 5-22, show that arsenic is 

consistently found at the highest concentrations in the albumen, which contains significantly 

higher concentrations than both the yolk and the shell.  Concentrations of arsenic in the yolk are 

around 50% of those in the albumen, and shell concentrations are significantly lower in the shell 

than either yolk or albumen.  Cadmium concentrations were low in all samples (Figure 5-13; all 

<0.01 µg/g dry weight), and in many samples cadmium was below the limit of detection (<0.001 

µg/g).  As a result, the standard errors for the mean cadmium concentration data are very high in 

the majority of cases and, although the results of the Mann-Whitney tests show cadmium 

concentrations to be significantly higher in the shell than either the yolk or albumen, the data 

should be treated with caution on account of the large margin of error associated.  Both cobalt 

and nickel were detected mainly in the eggshell, with concentrations significantly higher than in 

either the yolk or albumen for both. The post-hoc tests also show that the yolk contains 

significantly higher concentrations of both cobalt and nickel than the albumen.  However, it 

should be noted that for nickel the concentrations in the yolk and albumen were largely 

undetectable and thus the standard errors associated with this data are very high.  Iron, lead, 

manganese and zinc were all partitioned mainly in the yolk, with significantly higher 

concentrations found in the yolk than both albumen and shell.  Iron, lead and manganese 

concentrations were also significantly higher in shell than in albumen.  Selenium concentrations 

were highest in the egg contents, with significantly higher concentrations in the albumen and 

yolk than in the shell; in terms of partitioning between the egg contents, selenium was found at 

significantly higher concentrations in the albumen than in the yolk.  Concentrations of vanadium 

were significantly higher in the albumen than either yolk or shell, and significantly higher in the 

shell than the yolk.  

Table 5-20 provides ratios for the partitioning of the metals analysed in this study between yolk 

and albumen.  Data from all the sites in this study were pooled in order to provide an overview 

of the partitioning of metals in the contents of black-headed gull eggs. 

 

 

 

 

 



Kirsty Pickard 

PhD thesis - May 2010 

 

 188 

Table 5-20 Yolk:albumen ratios of metals in black-headed gull eggs (combined data for 

all sites, 2005 and 2006)  

Metal

Mean yolk conc.           

µg/g

Mean albumen conc.                           

µg/g Yolk/albumen ratio

Arsenic 0.118 0.221 0.53

Cadmium 0.002 0.001 2.00

Cobalt 0.048 0.006 8.00

Copper 2.072 3.083 0.67

Iron 123.7 0.738 167.5

Lead 0.562 0.018 31.2

Manganese 3.694 0.216 17.10

Nickel 0.457 0.067 6.82

Selenium 1.887 3.315 0.57

Vanadium 0.852 4.151 0.21

Zinc 72.10 1.487 48.5  

 

The data from Table 5-20, combined with Figures 5-12 to 5-22 and the results of the statistical 

tests summarised in Table 5-19, provide information on the partitioning of heavy metals and 

selenium between egg yolk and albumen.  Arsenic, selenium and vanadium were detected at 

significantly higher concentrations in the albumen than in the yolk (p <0.001 for all), while 

cobalt, iron, lead, manganese, nickel and zinc concentrations were significantly higher in the 

yolk (p <0.001 for all).  However, it should be noted that cobalt and nickel were found almost 

entirely in the egg shell and concentrations in the egg yolk and albumen were comparatively 

low; therefore the results for partitioning of cobalt and nickel within egg contents should be 

treated with caution.  

5.4 Discussion 

5.4.1 Impacts of metal concentrations on egg parameters 

Previous studies have shown that exposure of the laying bird to some metals can have a negative 

effect on the physical characteristics of the egg, with reports of reduced eggshell thickness 

associated with exposure to lead, vanadium and zinc, and decreased egg weight and size with 

excess concentrations of selenium and vanadium (see Section 5.1.2).  No data regarding the 

effects of arsenic, cadmium, cobalt, copper, iron, manganese and nickel on the physical 

characteristics of the egg could be found.  The present study suggests that increasing 

concentrations of cobalt, iron and nickel are associated with an increase in the wet weight of 
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albumen and a decrease in the ratio of yolk:albumen in the egg.  No significant correlation was 

found between concentrations of these metals and wet weight of yolk, egg size, shell thickness 

or shell index.  These results would suggest that cobalt, iron and nickel may have an impact on 

the intrinsic quality of the egg, as indicated by yolk:albumen ratio, at increased concentrations. 

Although the concentrations of lead in the egg have been shown to be positively correlated with 

the wet weight of the albumen in this study (Section 5.3.1), lead concentration was not 

significantly correlated with yolk:albumen ratio, wet weight of yolk, egg size, shell thickness or 

shell index.  The concentrations of lead measured in the eggs in this study do not therefore 

appear to be associated with any negative impacts on the physical characteristics of the egg.  

The majority of studies investigating the effects of lead on the egg report no reduction in shell 

thickness for a number of forms of lead (both organic and inorganic, at various concentrations 

(Haegele & Tucker, 1974; Haegele et al., 1974; Pattee, 1984)), which is reflected in the results 

of this study.  Dauwe et al. (2005) measured metal concentrations in the eggs of passerine 

species, as well as egg width, length, mass and volume, and eggshell thickness.  There did not 

appear to be any decrease in eggshell thickness associated with lead even at the highest 

concentration of 3.21 µg/g dry weight in the egg, with shell thickness remaining relatively 

uniform in each of the eggs examined, although it should be noted that the study was conducted 

with passerine species and not seabirds.  Total lead concentrations measured in the present study 

were all <1.6 µg/g dry weight.  The concentrations of lead measured in the eggs in the present 

study are around half of those measured in passerine eggs and, as the concentrations measured 

in the passerine eggs did not negatively impact on the shell thickness, this may explain why an 

effect on eggshell thickness was not observed in this study - the lead concentrations seem 

unlikely to be of a high enough order to cause a reduction in eggshell thickness. 

There were no significant relationships between the concentrations of the arsenic, cadmium, 

copper, manganese, vanadium and zinc in black-headed gull eggs measured in this study and the 

egg characteristics (wet weight of yolk, wet weight of albumen, yolk:albumen ratio, egg size, 

shell thickness or shell index).  These results confirm the data found in the literature for arsenic 

and cadmium, which suggests that there is no significant relationship between these metals and 

the physical characteristics of the egg at the concentrations measured in this study.  No literature 

data could be found regarding the effects of excess copper or manganese on the physical 

characteristics of the egg; the present study suggests that there is no significant relationship 

between these metals at the concentrations measured in this study and weight of components in 

the egg, egg size, shell thickness or shell index.   
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As an essential element, supplementation of the diet of laying birds with zinc has been shown to 

improve egg and eggshell quality (Moreng et al., 1992; Sahin et al., 2002).  However, dietary 

exposure to excess zinc has been demonstrated to result in decreased egg shell thickness in one 

study, which reports a decrease in shell thickness of eggs laid by Japanese quail (C. coturnix 

japonica) after dosing of 15000 mg/kg body weight zinc for three days (Hussein et al., 1988).  

Unfortunately, the study did not measure the amount of zinc that was sequestered to the eggs as 

a result of the dietary administration, and thus the amount of zinc measured in the egg in the 

present study cannot be compared directly with the dietary study.  In another study, Dauwe et al. 

(2005) measured metal concentrations in the eggs of passerine species, as well as egg width, 

length, mass and volume, and eggshell thickness.  The concentrations of zinc measured in egg 

contents in this study ranged from 31.5 µg/g to 286.1 µg/g dry weight and no decrease in 

eggshell thickness (or indeed any of the other egg parameters measured) was associated with 

these concentrations.  These results would suggest that concentrations of up to 286 µg/g zinc dry 

weight do not have any significant impact on the eggshell thickness, although the study was 

conducted with passerine species and not seabirds.  Total zinc concentrations measured in eggs 

in the present study were all <90 µg/g dry weight, and concentrations in egg contents all <75 

µg/g.  The comparatively low concentrations of zinc measured in the eggs in the present study 

may explain why an effect on eggshell thickness was not observed.   

Transfer of selenium to eggs is considerable and dietary exposure to excess selenium has been 

associated with decreased egg weight in birds fed concentrations of selenium over 7 mg/kg body 

weight (Arnold et al., 1973; Harr, 1978; Ort & Latshaw, 1978).   In the studies reporting 

decreased egg weight after dietary exposure of the laying bird to selenium, no data for the 

amount of selenium sequestered into the eggs as a result of dietary exposure was reported.  

Unfortunately, this means that the amount of selenium measured in the egg in the present study 

cannot be directly equated to the amount that the birds are likely to have been exposed via the 

diet.  The selenium concentrations measured in eggs in this study are considerably higher than 

those reported for seabird eggs in the literature, including those for other Laridae, and it would 

seem that the black-headed gulls examined in this study were exposed to relatively high levels 

of selenium (see Section 5.3.2).  It should be noted, however, that a great deal of variation 

between wild bird species exists in terms of sensitivity to the teratogenic effects of selenium 

and, unfortunately, there is no data for the toxicity of selenium to the developing embryo 

specific to black-headed gulls.  In addition, the majority of studies on the effects of selenium on 

breeding success of birds report embryo mortality and deformities as a result of exposure to 

excess selenium, rather than impacts on the physical characteristics of the egg.  In the present 



Kirsty Pickard 

PhD thesis - May 2010 

 

 191 

study, the hatching success and embryo and chick development was not examined and thus, 

although no relationship was found between selenium concentration in the egg and the physical 

egg characteristics, including egg weight, that is not to say that the selenium concentrations in 

the eggs examined here had no effect on the breeding success of the black-headed gulls.  Future 

study would therefore be prudent, examining embryo development and hatching success in 

relation to selenium concentrations in eggs of black-headed gulls in these locations. 

A reduction in egg production, decreased egg weight and decreased eggshell weight has been 

observed for domestic chickens (Gallus spp.) fed vanadium at a dose of 30-40 mg/kg feed 

(Ousterhout & Berg, 1981; Davis et al., 1995; Bressman et al., 2002).  However, in another 

study with hens fed vanadium supplemented feed up to 100 mg/kg diet, egg weight and shell 

thickness were unaffected, even at the highest concentration.  None of the studies measured the 

amount of vanadium that was sequestered to the eggs as a result of the dietary administration, 

and thus the amount of vanadium measured in the egg in the present study cannot be compared 

directly with the dietary studies.  The vanadium concentrations measured in eggs in this study 

are over 150 times higher than those reported for gull eggs in the literature (see Section 5.4.3); 

however, these concentrations did not have a significant effect on egg weight, size or shell 

thickness.  In the previous studies described, a significant reduction in feed consumption of the 

laying hen was observed during the experimental period, and it is possible that the effects on the 

egg may be due to this reduced feeding, rather than direct effects of vanadium.  In the study in 

which egg weight and shell thickness were unaffected even at 100 mg/kg vanadium in the diet, 

no reduction in feed consumption was noted.  Although the vanadium concentrations in eggs are 

relatively high in the present study, these concentrations are likely to have built up in the adult 

bird over time rather than the acute exposure to high vanadium doses in the diet as in the 

laboratory studies, and would be less likely to affect feeding.  If the effects observed in some of 

the previous studies in the literature are attributable to reduction in feeding, this may explain 

why the concentrations measured in this study did not have an effect on the egg parameters. 

5.4.2 Comparison of metal concentrations in eggs between sites  

For the purposes of this section, metal concentrations in the eggs from the Poole and Raby sites 

will be compared with concentrations in the Lymington eggs pre-commercial harvesting 

(‘Lymington Early’ eggs), as these are more relevant for comparison with the Poole and Raby 

eggs, being from the first clutch laid and the colony as yet undisturbed by commercial 
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harvesting.  The differences between pre- and post-collection eggs are dealt with in Section 

5.4.4.  

Differences between the Lymington and Poole sites 

The results from this study show that black-headed gull eggs from the Poole colony have 

significantly higher average concentrations of arsenic, cobalt, copper, manganese, nickel, 

selenium and zinc than the eggs from the Lymington colony (Section 5.3.2), indicating that the 

black-headed gulls nesting at Poole are exposed to a higher levels of these metals than those 

nesting at Lymington.  As this is not reflected by the point-source data (for which emissions of 

these metals are all higher at Lymington than Poole; Section 4.8.1, Table 4-13), it can be 

assumed that the majority of the heavy metal pollution around the Poole site comes from diffuse 

sources or historical pollution.  The differences observed in the egg data in this study also reflect 

available literature data regarding sediment concentrations of metals in the Lymington and 

Poole areas (Bryan & Langston, 1992; Cundy & Croudace, 1995), with Poole sediment 

concentrations higher than Lymington sediment concentrations for copper (50 mg/kg in the 

Poole area compared with 24.5 mg/kg in the Lymington area), selenium (1.51 mg/kg compared 

with 0.41 mg/kg) and zinc (165 mg/kg compared with 93 mg/kg).  Data for arsenic, cobalt and 

nickel concentrations in sediments of the Poole and Lymington areas are similar (14.1 mg/kg 

and 15.9 mg/kg, respectively for arsenic; 10 mg/kg and 11 mg/kg for cobalt; and 27 mg/kg for 

nickel at both sites).  In contrast to the data for gull eggs in this study, concentrations of 

manganese reported in the literature are higher in sediments from the Lymington area than those 

from the Poole area (241 mg/kg and 185 mg/kg, respectively).  However, it should be noted that 

the literature data for sediment concentrations are over 15 years old, and more up-to-date 

sediment concentrations of heavy metals would be beneficial to assessing the differences 

between metal contamination at the sites in this study. 

In terms of runoff from urban areas and roads, the two sites are likely to be impacted to a similar 

degree; however, the Poole site is more likely to be impacted by agricultural runoff than the 

Lymington site (Section 4.8.2).  Agricultural runoff has been demonstrated to contain elevated 

levels of arsenic, cobalt, copper, manganese, selenium and zinc from the application of 

fertilisers, pesticides and herbicides to arable land, and the administration of veterinary 

medicines and growth supplements, which are excreted in the waste products of livestock, along 

with nickel which is present in livestock faeces (see Section 4.2).  The level of agricultural 
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runoff may therefore be a contributing factor to the fact that concentrations of these metals are 

all significantly higher in the Poole eggs than the Lymington eggs.   

Both Lymington and Poole are important areas with regard to boating and shipping activities, 

both commercial and recreational (Sections 4.5.4 and 4.6.4).  Based on the high level of 

shipping activity around the Lymington site (particularly in Southampton Water), there would 

be potential for the waters of the area to be more heavily polluted with metals such as copper 

and zinc as a result of the use of sacrificial zinc anodes and copper- and zinc-based antifoulant 

paints (Section 4.4).  However, the fact that both copper and zinc concentrations in black-

headed gull eggs in this study were higher in eggs from Poole than those from Lymington 

suggests that the gulls at the Poole site are exposed to higher levels of zinc and copper than 

those at the Lymington site.  Poole Harbour has larger, more extensive marina facilities than 

Lymington Harbour, with moorings for a number of recreational craft and associated on-shore 

facilities for boat cleaning, painting, application of algicides, wood preservatives and varnishes, 

refuelling, engine repair and maintenance application.  All of these marina-based activities have 

the potential to contribute significantly to metal pollution in estuary waters, which could explain 

why the waters in and around Poole may be more heavily contaminated with metals than those 

of Lymington and why the eggs of the black-headed gulls at Poole contained significantly 

higher mean concentrations of arsenic, cobalt, copper, manganese, nickel, selenium and zinc 

than the eggs of the black-headed gulls at Lymington.  However, there are a large number of 

smaller marinas within the area of the Lymington site, which may contribute just as much 

collective pollution to the estuary waters as the fewer, more extensive facilities at Poole. 

The historical pollution of Holes Bay in Poole Harbour with toxic metals discharges from 

industry in the 1970s and 80s is well documented (see Section 4.6.3), and metal concentrations 

in the waters and sediments of Holes Bay are still significantly higher than those in the rest of 

the Harbour, particularly for copper, lead, nickel and zinc (Boyden, 1975; Langston et al., 

2003).  The enclosed and sheltered nature of Poole Harbour means that tidal exchange is 

restricted, leaving the Harbour poorly flushed and the dispersal of contaminants slow, making it 

particularly vulnerable to the effects of pollution (Langston et al., 2003; Drake, 2007).  In 

contrast, Lymington Estuary is hydraulically well-flushed.  The combination of the heavy 

industrial activity carried out in Poole Harbour in the past, combined with the poor flushing of 

the estuary, is likely to have resulted in greater concentrations of metals (particularly copper, 

lead, nickel and zinc) in the sediment and waters of the area (see Section 4.6.3), and increased 

exposure of the black-headed gull nesting and feeding in the Poole area to metals in comparison 

to those nesting and feeding in the Lymington area. 
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Differences between the Raby site and the Lymington and Poole sites 

Concentrations of copper, lead, manganese, nickel, selenium and zinc are significantly higher in 

black-headed gull eggs from the Raby colony than eggs from the Lymington colony (but not 

those from Poole; Section 5.3.2).  The Raby site is very different to the Poole and Lymington 

sites in a number of ways (see Section 1.6), and the black-headed gulls nesting on the Raby 

Estate are exposed to very different types and degrees of metal pollution.  There is little 

pollution in the area from current industrial and waste practices (Section 4.7.3) and emissions 

from point-sources are low (Table 4-13), neither is the site significantly impacted by diffuse 

pollution from road, urban or agricultural sources (Section 4.7.2).  However, there are potential 

sources of metal pollution as a result of the geology of the area and its mining history.   

The large granite body underlying the area may contribute copper, lead, nickel and zinc through 

natural weathering of rocks and soils (see Section 4.1).  Owing to the granite base and mineral 

ores, the area of the Raby was mined extensively in the past for lead and, to a lesser degree, 

zinc.  In fact, the black-headed gull colony examined in this study actually nest on old lead 

mining dams, near a reservoir.  Selenium is also associated with waste and emissions from 

mining operations, being commonly produced as a by-product from mining and processing of 

many sulphide ores, such as those of lead, and manganese is a common contaminant in many 

mine waters (see Section 4.1) including those from lead mines in the North Pennines (Johnson 

& Younger, 2002).  Copper, lead, nickel and zinc pollution in the Raby area may also be 

augmented by elevated concentrations in the soil and groundwater of the military firing range to 

the southwest of the site, as these metals are associated with bullets, pellets and incendiary 

devices (Section 4.7.2).  The gulls are likely to feed from this area, and runoff could impact on 

adjacent areas and natural waters.  

The geology of the area, its lead-mining past and the nearby military firing range, combined 

with the largely acidic soil conditions which allow for more rapid weathering and dissolution of 

metal-bearing minerals, means that the gulls nesting in the Raby area are likely to be exposed to 

elevated levels of copper, manganese, nickel, selenium, zinc and, most notably, lead.  This 

supports the findings of this study, where all these metals were significantly higher in the eggs 

of gulls from the Raby colony in comparison to those from the gulls of the Lymington colony.  

The higher level of copper, lead, manganese and zinc pollution in the area is also reflected in 

literature data for metal concentrations in sediments of the River Tees, which runs through the 

area are feeds the reservoir which the colony nests alongside.  Reported sediment concentrations 

in the Raby area are higher than those of sediments in the Lymington area for copper (120 
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mg/kg in the Raby area compared with 24.5 mg/kg in the Lymington area), lead (247 mg/kg 

compared with 45 mg/kg), manganese (396 mg/kg compared with 241 mg/kg) and zinc (472 

mg/kg compared with 93 mg/kg; Davies et al., 1991; Bryan & Langston, 1992; Cundy & 

Croudace, 1995).  Conversely, nickel sediment concentrations reported for the two areas are 

similar (27 mg/kg for Raby and 26 mg/kg for Lymington).  No data are available regarding the 

selenium concentration in sediments in the Raby area.  

5.4.3 Potential impacts of metal concentrations in eggs on the breeding success 

of black-headed gulls 

Comparisons are made with the concentrations of each metal measured in the eggs of black-

headed gulls in this study and concentrations reported in the literature for eggs of other Laridae.  

The potential effects of the metal concentrations measured in this study on the breeding success 

of the black-headed gulls are assessed, utilising data from toxicity studies in the literature, 

reviewed in Section 5.1.2. 

Arsenic 

Mean concentrations of arsenic measured in the eggs of gulls in this study were higher for all 

sites than those reported for other gull species in the literature, with averages of 0.36-0.52 µg/g 

egg, compared to an average of 0.15 µg/g in the literature.  The effects of arsenic on the 

breeding success of birds is dependant on the speciation as arsenic as arsenite (As3+) is more 

toxic to embryos than arsenate (As5+).  Only one dietary study could be found regarding the 

effects of arsenic on breeding success, with no effect on egg parameters observed in eggs of 

domestic chickens fed up to 30 mg/kg body weight arsenite for 19 days (Holcman & Stibilj, 

1997); no other indicators of breeding success were measured.  The concentrations of arsenic 

measured in the egg as a result of this dietary dosing were 0.96 mg/kg dry weight in yolk and 

0.3 mg/kg dry weight in albumen.  Arsenic speciation was not examined in the present study; 

however, even assuming a worst-case scenario of all arsenic in the egg being present as arsenite, 

the concentrations of arsenic measured in black-headed gull eggs in this study are below those 

measured in the chicken eggs after the dietary administration.  Thus, although the arsenic 

concentrations measured in eggs in this study are high relative to previous field studies with gull 

eggs, the concentrations measured are unlikely to have any negative effect on the egg.  

However, further study regarding the impacts of egg concentrations of arsenic on breeding 
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success, particularly with regard to effects on the developing embryo, is required in order to 

clarify the effects of arsenic on the breeding success of birds. 

Cadmium 

Concentrations of cadmium measured in black-headed gull eggs in this study were consistently 

lower than those reported in the literature for the eggs of other gull species, with averages of 

0.009-0.012 µg/g egg dry weight in this study, compared to an average 0.026 µg/g in the 

literature.  Other than suppression of egg production at very high concentrations of cadmium 

administered through the diet (over 200 mg/kg diet), there is no evidence in studies reported in 

the literature that cadmium has a negative effect on the breeding success of birds. The results 

from the present study reflect the low transfer of cadmium to eggs (Section 5.3.2), with 

concentrations below the limit of detection in many egg samples (<0.001 µg/g).  The very 

limited transfer of cadmium to eggs and the subsequent low levels of cadmium measured in the 

black-headed eggs means that negative effects on the egg and embryo are highly unlikely. 

Cobalt 

Concentrations of cobalt measured in black-headed gull eggs in this study were slightly lower 

than those reported in the literature for the eggs of other gull species, with averages of 0.48-0.65 

µg/g egg dry weight in this study, compared to an average 0.78 µg/g in the literature.  Studies 

have demonstrated the transfer of cobalt from the laying bird to the egg (Agusa et al., 2005; 

Dauwe et al., 2005), but only one study could be found regarding the reproductive effects of 

cobalt in birds, reporting an LD50 of 38 µg/egg for embryos (Gilani & Alibhai, 1990) based on 

injection of cobalt direct into the egg.  The effects of metals on reproductive success are less 

pronounced with dietary exposure than with direct injection into the egg (Section 5.1.2).  

Unfortunately, no data could be found in the literature reporting dietary or egg cobalt 

concentrations that have a negative impact on egg quality or embryo health and survival, and it 

is difficult to make an assessment as to the potential effects of the egg concentrations measured 

in black-headed gull eggs in the present study on breeding success.  In this study, cobalt 

concentration in the egg was found to be significantly negatively correlated with yolk:albumen 

ratio (Section 5.3.1), indicating that increased concentration of cobalt may have a negative 

impact in the intrinsic quality of the egg.  Further study regarding the impacts of egg 

concentrations of cobalt on egg production, egg quality and the developing embryo would be 
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prudent in order to make an accurate assessment of the effect of cobalt on the breeding success 

of birds. 

Copper 

Mean concentrations of copper measured in the eggs of gulls in this study are higher for all sites 

than those reported for other gull species in the literature, with averages of 7.9-11.6 µg/g egg dry 

weight in this study, compared to an average 4.7 µg/g in the literature.  Very few studies have 

been carried out investigating the effects of copper on the reproductive success of birds.  Copper 

injected into the yolk of domestic chicken (Gallus spp.) eggs has been demonstrated to have a 

negative impact on embryo development and lead to increased embryo mortality, at 

concentrations as low as 0.25 mg/kg egg for certain copper salts (Verrett, 1973; Verrett, 1974; 

Verrett, 1976).  However, this study was based on direct administration of copper via egg 

injection, and dietary studies with copper concentrations of up to 480 mg/kg diet report no effect 

on egg production in the same species (Jackson, 1977).  Unfortunately, the study did not 

measure the amount of copper sequestered to the eggs as a result of the dietary administration, 

and thus the amount of copper measured in the egg in the present study cannot be compared 

directly with the dietary studies.  No dietary studies could be found in the literature reporting the 

effects of copper on egg parameters nor embryotoxicity and teratogenicity.  It is therefore 

difficult to make inferences as to the potential of the copper concentrations measured in the 

present study to have a negative effect on reproductive success.  Further study into the transfer 

of copper from the laying bird to the egg, and the impacts of egg concentrations of copper on 

egg quality and the developing embryo would be prudent. 

Iron 

In the present study, the concentrations of iron measured in eggs range from 117-199 µg/g egg 

dry weight.  Unfortunately, no data for concentrations of iron in gull eggs, nor any other seabird 

species, from other field studies could be found in the literature.  In other bird species, iron 

concentrations measured in eggs are variable with an average 85 µg/g in the eggs of  birds of 

prey (Ambrose et al., 2000) in a field study, and  26-47 µg/g egg in Japanese quail (C. coturnix 

japonica) in a laboratory study (Sanchez et al., 1987).  It would therefore seem that egg iron 

concentrations are variable between bird species and/or family.  This phenomenon may occur as 

a result of diet, owing to the higher iron concentrations measured in eggs of birds of prey 

feeding on iron-rich meat than quail feeding mainly on seeds and berries, which are lower in 
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iron content.  If diet is the main factor, this may explain why black-headed gull eggs have a high 

iron content, with the adult bird’s iron-rich diet including shellfish and fish.  Unfortunately, 

without any other data for iron concentrations in seabird eggs, nor any data regarding the 

sequestering of iron into eggs from the laying bird, it is difficult to put the concentrations 

measured in the present study into context.  There are no studies in the literature examining the 

effects of elevated iron levels on the reproductive success of birds.   

Lead 

Mean concentrations of lead measured in the eggs of gulls in this study are higher for all sites 

than those reported for other gull species in the literature, with an average 0.23-0.52 µg/g egg in 

this study for Lymington and Poole eggs and 1.52 µg/g egg for Raby eggs, compared to an 

average of 0.25 µg/g in the literature.  The toxicity of lead to adult birds depends on the form of 

lead and the species, age and sex of the bird.  Based on dietary studies, lead can suppress egg 

production from concentrations as low as 1 mg/kg diet, and may cause reduced egg quality and 

a decrease in hatching rate at dietary concentrations of over 100 mg/kg.  Unfortunately, none of 

the dietary studies measured the amount of lead sequestered to the eggs as a result of the dietary 

administration, and thus the amount of lead measured in the egg in the present study cannot be 

compared directly with the dietary studies.  It is therefore difficult to make inferences as to the 

potential of the lead concentrations measured in the present study to have a negative effect on 

reproductive success.  With the vast majority of studies focusing on the toxicity of lead to adult 

birds, further investigation into the impacts of egg concentrations of lead on the egg and the 

developing embryo is required to assess the effects on the breeding success of birds. 

Manganese  

Mean concentrations of manganese in the eggs of gulls in this study are of a similar order to 

those reported for other gull species in the literature, with an average 3.36-5.19 µg/g egg in this 

study, compared to an average of 4.38 µg/g in the literature.  Exposure to excess manganese has 

been demonstrated to cause teratogenic effects such as abnormally small, poorly developed and 

deformed embryos.  An LD50 of 765 µg/egg has been determined (Gilani & Alibhai, 1990), 

however this is based on injection of manganese direct into the egg, and there is no data in the 

literature reporting dietary or egg manganese concentrations that have a negative impact on egg 

quality or embryo health and survival.  Based on the limited data available, the concentrations of 
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manganese measured in the black-headed gull eggs in this study do not seem likely to be of a 

level to have an adverse effect on breeding success. 

Nickel  

Nickel concentrations in the eggs of gulls in this study average between 8.1 and 11.9 µg/g egg.  

Unfortunately, no data for dry weight concentrations of nickel in gull eggs from other field 

studies could be found in the literature.  However, concentrations in the eggs of other seabird 

species have been reported, with a mean concentration of 1.14 µg/g dry weight reported in 

eggshells.  The concentrations of nickel measured in eggshells in this study were all higher than 

this literature value.  Data regarding the effects of nickel on breeding birds was found in only 

one study, which reports an LD50 of 3.6 µg/g embryo for nickel injected into chick embryos 

(Ridgway & Karnofsky, 1952).  However, the effects of metals on reproductive success are 

usually less pronounced with dietary exposure than direct injection into the egg or embryo, and 

no data could be found in the literature reporting dietary or egg nickel concentrations that have a 

negative impact on egg quality or embryo health and survival.  In toxicity studies with newly 

hatched and adult birds, young birds appear to be more sensitive than adults, with dietary doses 

in excess of 800 mg/kg diet resulting in significant mortality of young birds, but having no 

effect on the health or reproductive success of adult birds.  Based on this limited data, the 

concentrations of nickel measured in the black-headed gull eggs in this study do not seem to be 

of a level to have an adverse effect on breeding success.  However, further study regarding the 

impacts of egg concentrations of nickel on egg production, egg quality and the developing 

embryo is required to make an accurate assessment of the effect of nickel on the breeding 

success of birds.   

Selenium 

Mean concentrations of selenium measured in the eggs of gulls in this study were higher for all 

sites than those reported for other gull species in the literature, with an average 5.5-8.1 µg/g egg 

dry weight in this study, compared to an average of 2.4 µg/g dry weight in the literature.  

Reproductive success is more sensitive to selenium toxicity than survival of young and adult 

birds and, in general, embryo deformities and hatching failure occur when the selenium 

concentration in the egg exceeds 3 µg/g wet weight (Section 5.1.2).  The metal concentrations in 

the present study are calculated on a dry weight basis and, as metals will be more concentrated 

in dry weight samples, the threshold for dry weight egg concentrations will be higher than the 
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wet weight value.  In the present study, the average water content of the black-headed gull eggs 

was 75%; thus the metal concentrations will be around four times higher in the dry content than 

the wet content, and an approximate threshold for selenium concentrations in eggs on a dry 

weight basis can therefore be taken as approximately 12 µg/g.   The concentrations of selenium 

in black-headed gull eggs measured in the present study, although consistently higher than those 

reported in the literature for other seabird species, are therefore unlikely to be of a sufficient 

level to pose a threat to the reproductive success of the birds. 

Vanadium 

Concentrations of vanadium measured in this study were over 150 times higher than those 

reported in the literature for other gull species, with an average 64-86 µg/g egg in this study, 

compared to an average of 0.052 µg/g egg in the literature; however, this literature value is 

based on only one study, as only one previous field study has reported vanadium concentrations 

in gull eggs.  Other literature data for vanadium the eggs of other seabird species are also over 

80 times lower, even for the highest concentration recorded.  The only data regarding the effects 

of excess vanadium on reproductive success are for commercial laying chickens (Gallus spp.), 

with reduced egg production, decreased egg weight, decreased eggshell weight and reduced 

hatchability of eggs observed for hens fed vanadium at a dose of 30-40 mg/kg diet (Kubena et 

al., 1980; Ousterhout & Berg, 1981; Davis et al., 1995; Bressman et al., 2002).  An increase in 

embryo mortality has also been reported as a result of laying hens fed vanadium-supplemented 

feed at a dose of 60 mg/kg diet (Bressman et al., 2002).  Unfortunately, the study did not 

measure the amount of vanadium that was sequestered to the eggs as a result of the dietary 

administration, and thus the amount of vanadium measured in the egg in the present study 

cannot be compared directly with the dietary study.  It is therefore difficult to assess the 

potential effects of the level of vanadium measured in the gull eggs in this study on reproductive 

success.  As the vanadium concentrations in the eggs examined in this study were of a similar 

order, irrespective of the site sampled and the associated potential sources of pollution, the 

results would suggest that the concentrations of vanadium measured in the eggs in this study 

may be considered to be ‘normal’ for black-headed gull eggs.  In addition, the vanadium 

concentrations measured in eggs in this study did not have a negative effect on any of the 

physical characteristics of the egg (see Section 5.4.1).  Shellfish are a major source of vanadium 

in the diet of seabirds; however, most seabirds have a diet consisting of a proportion of shellfish, 

and there is nothing to suggest why the black-headed gull should be exposed to an increased 

amount of vanadium through the amount of shellfish consumed compared to the other seabirds 
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looked at in the literature.  However, black-headed gulls spend much more time on land than 

other seabird species, and it may be the case that these birds are exposed to vanadium as a result 

of the amount of time they spend foraging on land.  Major sources of vanadium in the 

environment are burning of fossil fuels and the use in mineral fertilisers applied to agricultural 

land (see Section 4.2).  It may be the case that black-headed gulls feeding on land as well as at 

sea are exposed to more anthropogenic sources of vanadium than other seabirds, as they are 

frequently found foraging in urban areas and on farmland (Section 1.5).  Further investigation 

into the concentration of vanadium in black-headed gulls from a variety of different locations 

would be prudent, as would study into the transfer of vanadium from the laying bird to the egg, 

and the effects of egg concentrations of vanadium of the breeding success of seabirds. 

Zinc  

Zinc concentrations measured in the eggs of gulls in this study are similar or slightly higher than 

those reported for other gull species in the literature, with an average 64.3-85.5 µg/g egg in this 

study, compared to an average of 65.5 µg/g in the literature.  Exposure to excess zinc has been 

shown to decrease egg production in birds, and zinc is often added to the diet by commercial 

poultry managers to reduce egg deposition and improve long-term egg production.  When 

injected into the yolk of domestic chicken (Gallus spp.) eggs, zinc has been demonstrated to 

impair embryo development and lead to increased embryo mortality, with an LD50 of 1.0 µg/g 

egg (Birge & Roberts, 1976). However, the effects of metals on reproductive success are usually 

less pronounced with dietary exposure than direct injection into the egg or embryo (Section 

5.1.2).  In dietary studies, concentrations of 10000 mg/kg feed and above have been shown to 

significantly decrease or completely halt laying, with the eggs produced having lower quality 

shells and decreased hatchability (Palafox & Ho-A, 1980; Decuypere et al., 1988; Hussein et al., 

1988).  None of the studies measured the amount of zinc sequestered to the eggs as a result of 

the dietary administration, and thus the amount of zinc measured in the egg in the present study 

cannot be compared directly with the dietary studies.  Based on the limited data in the literature, 

combined with the fact that the zinc concentrations measured in eggs in this study are of a 

similar order to those measured in previous field studies, it seems unlikely that the 

concentrations of zinc measured in the black-headed gull eggs in this study are of a level that 

would have an adverse effect on breeding success.  However, further study into the impacts of 

egg concentrations of zinc on egg quality and the developing embryo would be prudent. 
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5.4.4 Differences in metal concentrations in black-headed gull eggs pre- and 

post-harvesting 

Comparison of eggs from the Lymington site collected before the commercial harvesting period 

(‘Lymington Early’) with those collected after the harvesting period (‘Lymington Late’; i.e. 

those eggs that would be allowed to develop and hatch) was made to assess whether heavy 

metals and selenium become concentrated in the egg as the female continues to lay.  

Concentrations of organic pollutants have been shown to increase through the laying sequence, 

with higher concentrations reported in the last-laid egg compared with the first-laid (Becker, 

1989); however, few studies have examined the effects of laying sequence on the concentrations 

of heavy metals in the eggs.  The two studies that have examined the impact of laying order on 

metal concentrations in the egg have reported no clear relationship between laying order and egg 

concentrations of any of the metals examined in the present study (Becker et al., 1989; Dauwe et 

al., 2005).  The effect of commercial egg harvesting and subsequent replacement laying on the 

concentrations of heavy metals and selenium in eggs has not been previously examined.  

The results of this study reveal a significantly higher mean concentration in the post-collection 

‘Lymington Late’ eggs than the pre-collection ‘Lymington Early’ eggs for cobalt, iron and 

nickel.  Concentrations of arsenic, lead, manganese and selenium were also higher in post-

collection eggs than pre-collection eggs from Lymington, although the differences were not 

statistically significant.  There were no metals for which the concentrations in the pre-collection 

eggs were significantly higher than the post-collection eggs.  The results suggest that cobalt, 

iron and nickel concentrations increase with laying, when replacement laying is necessary as a 

result of commercial egg harvesting.  As suggested by previous authors regarding increase of 

organic pollutants through the laying sequence, it is likely that the increase in these metals with 

laying occurs because birds produce their first-laid egg or eggs mainly from recent dietary 

uptake, whereas body reserves contribute more to later eggs (Mineau, 1982).  In the case of the 

black-headed gulls nesting at Lymington, the female birds will lose a substantial portion of their 

body burden of pollutants through repeated laying, which requires mobilising body reserves and 

increased feeding, both of which may lead to increased concentration of metals in the laying 

bird, which will subsequently be sequestered into eggs.  In addition, continued relaying may 

require the laying female to mobilise body reserves and contaminants that have been obtained 

prior to breeding, and may therefore have been acquired from an entirely different area in which 

the bird may have been exposed to different types and degrees of pollution to those around the 

breeding site (see Chapter 4).   
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Previous studies have not found an increase in heavy metal concentration with laying order.  

However, these studies examined only a limited number of eggs: in the case of the study with 

seabirds (Becker, 1989) an average clutch of three eggs was examined, and in the case of the 

passerine study (Dauwe et al., 2005), the first eggs of each clutch were examined.  As 

previously mentioned, the present study is the first to examine the phenomenon of changing 

concentrations of metals with repeated replacement laying, as is induced by commercial 

harvesting of eggs, and the limited number of eggs examined in previous studies may explain 

why they did not find a significant increase in the concentrations of these metals with laying 

order. 

The post-collection Lymington eggs have been demonstrated to have significantly higher 

concentrations of cobalt, iron and nickel compared to pre-collection eggs, and the concentrations 

of these metals in the egg have been shown to be significantly negatively correlated with 

yolk:albumen ratio (Section 5.3.1).  The concentrations of the other metals examined in this 

study have been shown to have no significant effect on the physical characteristics of the egg, 

and are not of a level thought to have a negative impact on breeding success (Section 5.4.3).  

However, the concentration of these metals in eggs as a result of commercial egg harvesting 

could have profound consequences for black-headed gulls nesting in areas with higher levels of 

exposure to pollution, or following a pollution incident, as the concentration of metals in the egg 

could then result in egg concentrations sufficient to have a negative impact on the egg or the 

developing embryo.   

5.4.5 Metal partitioning in the egg 

Eggshell:egg contents 

As previously discussed (Section 5.1.3, Table 5-12), the eggshell:egg ratios of heavy metals in 

bird eggs have been reported by a number of authors.  Table 5-21 provides ratios generated by 

other authors for different species of gull, along with data for the black-headed gull in this study.  
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Table 5-21 Eggshell:egg ratios of metals in gull species, including data from this study 

Metal

Herring gull             

(a)

Black-tailed gull          

(b) 

Audouin's gull         

(c)

Black-headed gull                  

(this study)

Arsenic - - - 0.16

Cadmium 5.0 0.62 - 2.5

Cobalt - 17.2 - 15.4

Copper - 0.13 0.83 1.3

Iron - - - 0.80

Lead 0.1 2.65 - 0.88

Manganese 1.5 0.62 0.17 0.28

Nickel - - - 33.2

Selenium 0.13 0.13 - 0.35

Vanadium - 0.27 - 0.91

Zinc - 0.01 0.11 0.02  

(a) Burger, 1994     (b) Agusa et al., 2005     (c) Morera et al., 1997 

 

The data in Table 5-21 allow for comparison of the eggshell:egg ratios found in this study with 

the ratios of metals in eggs of other gull species reported by previous authors.  Cadmium ratios 

reported by previous authors are variable, with higher concentrations reported in the eggshell 

than the contents for the herring gull (L. argentatus; Burger, 1994), and higher concentrations 

reported in the egg contents than the shell for the black-tailed gull (L. crassirostris; Agusa et al., 

2005).  In this study, the eggshell:egg ratio of 2.5 and the results of the statistical tests show that, 

for the black-headed gull, cadmium concentrations were significantly higher in the egg shell 

than egg contents.  However, the concentrations of cadmium were low in general, and the data 

should be treated with some caution as the concentration of cadmium was below the limit of 

detection (<0.001 µg/g) in many of the samples, with just one or two measurable concentrations 

biasing the mean concentration (as reflected in the standard errors). 

Concentrations of cobalt were found to be higher in eggshell than egg contents for the black-

tailed gull (L. crassirostris; Agusa et al., 2005), as was also found for the black-headed gull in 

this study (eggshell:egg ratio 15.4).  For copper, the data from this study reports an almost 1:1 

ratio and no significant difference between copper concentrations in the egg shell and contents.  

Conversely, the ratios reported for other gull species reflect lower concentrations in the shell 

than the contents (ratios of 0.13 and 0.83).  Manganese eggshell:egg ratios from previous studies 

with gull species differ, with higher concentrations of manganese found in the egg shell 

compared to the egg contents for the herring gull (L. argentatus; Burger, 1994), but higher 

concentrations in the egg contents compared to the shell for the black-tailed gull (L. 
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crassirostris; Agusa et al., 2005) and Audouin’s gull (L. audouinii; Morera et al., 1997).  For 

the black-headed gull in this study, manganese was present more in the egg contents than in the 

eggshell overall (eggshell:egg ratio = 0.28), with concentrations in yolk significantly higher than 

those in both albumen and shell.  However, concentrations in albumen were less than those in 

eggshell, indicating that the most significant part of the egg in terms of manganese partitioning 

is the yolk (see also ‘Yolk:albumen ratio’, below) .   

Eggshell:egg ratios for zinc in this study are similar to those ratios reported for gull eggs in 

other studies, with zinc partitioned mainly in the egg contents (ratio 0.02), with the highest 

concentrations of zinc found in the egg yolk.  Selenium is reported to be detected mainly in the 

egg contents in previous studies with gulls, which is reflected in this study, with black-headed 

gull eggs exhibiting a eggshell:egg ratio of 0.35 for selenium and a significantly higher mean 

concentration of selenium in egg contents than eggshell.   

Results from previous studies with gulls regarding the partitioning of lead are conflicting, with 

lead concentrations reported to be higher in the shell for the black-tailed gull (L. crassirostris; 

Agusa et al., 2005), and higher in the contents for the herring gull (L. argentatus; Burger, 1994).  

In the present study, lead concentrations were higher in the egg contents overall (eggshell:egg 

ratio 0.88), although specifically concentrations were significantly higher in the yolk than either 

the albumen or the shell, and concentrations in the shell were actually higher than those in the 

albumen.  Thus the results from this study with black-headed gulls show that the yolk is the 

most important part of the egg with respect to lead concentration. 

Vanadium is partitioned mainly in the egg contents in the black-tailed gull (L. crassirostris; 

Agusa et al., 2005).  In this study, concentrations of vanadium were found to be slightly higher 

in the egg contents compared to the shell (eggshell:egg ratio 0.91), and were significantly higher 

in albumen than any other part of the egg, although shell concentrations were higher than those 

in yolk.  Thus, the albumen would seem to be the most important part of the egg with respect to 

vanadium partitioning (see ‘Yolk:albumen ratio’, below). 

Unfortunately no previous data could be found for eggshell:egg ratios of arsenic, iron or nickel 

in gull eggs.  In this study, arsenic and iron were detected mainly in the egg contents 

(eggshell:egg ratios 0.16 and 0.80, respectively, with iron being found mainly in the yolk), and 

nickel was detected mainly in the eggshell (eggshell:egg ratio 33.2). 
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Yolk:albumen ratio 

Although the eggshell:egg ratios of heavy metals in bird eggs have been reported by a number 

of authors, only one study could be found reporting partitioning of metals between egg yolk and 

albumen: Magat and Sell (1979) found that selenium binds preferentially to albumen, rather than 

yolk.  No further studies with metals could be found in the literature where the authors separated 

the egg contents to allow for separate analysis of yolk and albumen.  Separation of the two egg 

components allows for the examination of the partitioning of heavy metals within the egg 

contents, as opposed to only between the shell and the contents as a whole.   

This study has shown that, within the egg, arsenic, selenium and vanadium are partitioned 

mainly in the albumen, and cobalt, iron, lead, manganese, nickel and zinc partitioned mainly in 

the yolk.  However, it should be noted that, as cobalt and nickel were found almost entirely in 

the egg shell, the concentrations of these metals in the egg contents were very low and the 

results for their partitioning within the egg contents should be treated with caution. The results 

for selenium partitioning in egg contents in the present study reflect those reported by previous 

authors (Magat & Sell, 1979). 

5.5 Summary 

This study has shown black-headed gull eggs to provide a good indication of local sources of 

pollution for a number of metals, with concentrations of lead and zinc particularly high in eggs 

from the Raby site, where mining for lead and zinc has been carried out in the past, and 

concentrations of most metals higher in eggs from the Poole site, most likely owing to diffuse 

pollution from local agricultural land, historical pollution of Poole Bay and the enclosed, 

sheltered nature of the harbour, which limits the dispersion of contaminants. 

The concentrations of arsenic, copper, lead, selenium and, most notably, vanadium, measured in 

black-headed gull eggs in this study are consistently high compared to concentrations measured 

in eggs of other gull species in previous studies.  In spite of the relatively high concentrations of 

these metals, there are no significant correlations between the concentrations of these metals and 

the quality of the eggs, as indicated by egg size, yolk:albumen ratio, shell thickness and shell 

index.  Data regarding the effects of many heavy metals on the breeding success of birds are 

limited, and the review of the literature has highlighted the need for more information regarding 

the sequestering of heavy metals into eggs and the impacts on breeding success. 
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Increasing concentrations of cobalt, iron and nickel in the egg are significantly correlated with a 

decrease in the intrinsic quality of black-headed gull eggs, as indicated by yolk:albumen ratio, 

and both the concentrations of these metals and the yolk:albumen ratio are impacted by 

commercial egg collection, with eggs from the uncollected site and pre-collection eggs from the 

collected site containing significantly lower concentrations of cobalt, iron and nickel and 

significantly higher ratio of yolk:albumen than post-collection eggs from the collected site.  The 

relative amount of yolk in the egg is considered to provide a good indication of the quality of the 

egg, as the yolk is the food reserve for the developing embryo.  In addition to providing the 

majority of the necessary nutrients for the developing embryo, large-yolked eggs provided the 

newly hatched chick with more residual yolk reserves, which is crucial for survival during the 

first few days of life (Parsons, 1970; Lundberg & Väisänen, 1979).  The results of this study 

therefore suggest that the commercial collection of black-headed gull eggs is having a negative 

impact on the potential breeding success of the gulls, as eggs are of a lower quality and likely to 

produce smaller hatchlings with less yolk reserves, and the concentrations of the potentially 

toxic heavy metals cobalt, iron and nickel are also increased as a result of repeated relaying. 

Information has been provided regarding the partitioning of heavy metals and selenium, both 

between egg shell and contents and within the egg contents themselves.  The difference in 

concentrations of heavy metals and selenium between different parts of the egg has highlighted 

the importance of analysing all components of the egg in order to provide a true indication of 

the total concentration of metals in eggs.  
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CHAPTER 6. HEAVY METALS AND SELENIUM IN 

BLACK-HEADED GULL FEATHERS 

6.1 Introduction 

General information regarding the environmental fate and toxicity to birds of the metals covered 

in this study is dealt with in Section 5.1.1. 

The proportion of the body burden that is in feathers is relatively constant for any metal (Burger, 

1993) and for some metals, for example mercury, concentrations in feathers can be higher, and 

hence easier to detect and quantify, than the metals present in blood or other tissue samples 

(Cahill et al., 1998; Dauwe et al., 2002a).  Although a number of experiments have been 

undertaken to investigate the potential use of feathers as a method of assessing the internal 

tissue concentrations of mercury in birds, relatively few published data are available for other 

metals.  In particular, there is a need to discriminate between the quantities of metal in feathers 

from the diet and from atmospheric deposition.  It has been demonstrated experimentally that 

mercury in feathers is strongly bonded and concentrations are not affected by storage or 

vigorous treatments (Appelquist et al., 1984), and Weyers et al. (1988) demonstrated with 

electromicroscopic photos that, for lead and cadmium, various small metal particles remained on 

the surface of feathers even after vigorous washing with propanon or Triton-X-100 in an 

ultrasonic bath.  However, the case may be different for other metals that enter feathers from the 

blood stream during feather growth, and further research is needed to assess the potential of 

feathers as tools for monitoring internal metal contamination.   

Studies have been carried out to investigate the link between heavy metal concentrations in 

feathers and the concentrations in internal tissues (Goede & de Bruin, 1986; Burger, 1993; 

Lewis et al., 1993); however results have been inconclusive and, in some cases, conflicting.  For 

metals other than mercury, lead and cadmium, feather concentrations are poorly documented 

and further study is required to assess the suitability of feathers as biomonitors of these metals. 

Tables 6-1 to 6-11 below provide a summary of concentrations of heavy metals and selenium 

measured in seabird feathers in previous field studies reported in the literature. Unfortunately, 

no data are available for cobalt concentrations in seabird feathers. Data provided are for dry 

weight concentrations from studies worldwide, undertaken from 1990 onwards.  



Kirsty Pickard 

PhD thesis - May 2010 

 

 209 

Table 6-1 Summary of literature data for arsenic concentrations in seabird feathers 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Franklin's gull             

Larus pipixcan
Minnesota, USA 0.103 1994 Adult Burger and Gochfeld, 1999

Minnesota, USA 0.0546 1994 Juvenile Burger and Gochfeld, 1999

Sooty tern                      

Sterna fuscata
Midway Atoll, Pacific 0.124 1997 Adult Burger and Gochfeld, 2000a

Grey-backed tern    

Sterna lunata
Midway Atoll, Pacific 0.146 1997 Adult Burger and Gochfeld, 2000a

White tern                        

Gygis alba
Midway Atoll, Pacific 0.459 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.668 1997 Juvenile Burger and Gochfeld, 2000a

Brown noddy                      

Anous stolidus
Midway Atoll, Pacific 0.332 1997 Adult Burger and Gochfeld, 2000a

Bonin petrel               

Pterodroma hypoleuca
Midway Atoll, Pacific 0.0595 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.107 1997 Juvenile Burger and Gochfeld, 2000a

Christmas shearwater 

Puffinus nativitatis
Midway Atoll, Pacific 0.36 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 1.56 1997 Juvenile Burger and Gochfeld, 2000a

Wedge-tailed shearwater        

Puffinus pacificus Midway Atoll, Pacific 0.0881 1997 Adult Burger and Gochfeld, 2000a

Laysan albatross     

Diomedea immutabilis
Midway Atoll, Pacific 0.11 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.182 1997 Juvenile Burger and Gochfeld, 2000a

Black-footed albatross   

Diomedea nigripes
Midway Atoll, Pacific 0.208 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 1.014 1997 Juvenile Burger and Gochfeld, 2000a

Red-footed booby              

Sula sula
Midway Atoll, Pacific 0.125 1997 Adult Burger and Gochfeld, 2000a

Red-tailed tropicbird 

Phaethon rubricauda
Midway Atoll, Pacific 0.0567 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.198 1997 Juvenile Burger and Gochfeld, 2000a

Great frigatebird           

Fregata minor
Midway Atoll, Pacific 0.158 1997 Adult Burger and Gochfeld, 2000a

Osprey                     

Pandion haliaetus
Florida, USA 0.136 200-2001 Adult Lounsbury-Billie et al ., 2008

Gentoo penguin                 

Pygoscelis papua
Antarctica 0.88 2002 Adult Metcheva et al ., 2006

Chinstrap penguin     

Pygoscelis antarctica
Antarctica 0.45 2002 Adult Metcheva et al ., 2006
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Table 6-2 Summary of literature data for cadmium concentrations in seabird feathers 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Herring gull                        

Larus argenatatus
Northeast Siberia 0.57 1993 Adult Kim et al ., 1996

Franklin's gull           

Larus pipixcan
Interior North America 0.568 1994 Adult Burger, 1996

Interior North America 0.413 1994 Juvenile Burger, 1996

Minnesota, USA 0.409 1994 Adult Burger and Gochfeld, 1999

Minnesota, USA 0.117 1994 Juvenile Burger and Gochfeld, 1999

Laughing gull            

Larus atricilla
New York, USA 0.197 1992 Adult Gochfeld et al ., 1996

Black-tailed gull              

Larus crassirostris
Japan 0.044 1999-2001 Adult Agusa et al ., 2005

Parasitic jaeger     

Stercorarius parasiticus
Northeast Siberia 0.48 1993 Adult Kim et al ., 1996

Common tern            

Sterna hirundo
New York, USA 0.2 1990 Adult Gochfeld et al ., 1991

New York, USA 0.12 1991 Adult Burger et al ., 1992a

Massachusesetts, USA 0.42 1991 Adult Burger et al ., 1992a

New York, USA 0.11 1991 Juvenile Burger and Gochfeld, 1992a

Sooty tern                     

Sterna fuscata
Puerto Rico 0.22 1990 Adult Gochfeld et al ., 1991

Hawaii 0.147 1990 Adult Burger et al ., 1992c

Johnston Atoll, Pacific 0.131 1990 Adult Burger et al ., 1992c

Midway Atoll, Pacific 0.0734 1997 Adult Burger and Gochfeld, 2000a

Roseate tern                   

Sterna dougallii
New York, USA 0.16 1991 Adult Burger et al ., 1992a

Grey-backed tern    

Sterna lunata
Midway Atoll, Pacific 0.095 1997 Adult Burger and Gochfeld, 2000a

White tern                 

Gygis alba
Midway Atoll, Pacific 0.216 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.382 1997 Juvenile Burger and Gochfeld, 2000a

Black skimmer          

Rynchops niger
New York, USA 0.11 1990 Adult Gochfeld et al ., 1991

New York, USA 0.06 1991 Adult Burger and Gochfeld, 1992b

Brown noddy                     

Anous stolidus
Hawaii 0.2 1990 Adult Burger, 1993b

Hawaii 0.08 1990 Juvenile Burger, 1993b

Midway Atoll, Pacific 0.274 1997 Adult Burger and Gochfeld, 2000a

Bonin petrel              

Pterodroma hypoleuca
Midway Atoll, Pacific 0.129 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.103 1997 Juvenile Burger and Gochfeld, 2000a

Christmas shearwater 

Puffinus nativitatis
Midway Atoll, Pacific 0.95 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.404 1997 Juvenile Burger and Gochfeld, 2000a

Wedge-tailed shearwater          Hawaii 0.29 1990 Adult Burger et al ., 1992c

Puffinus pacificus
Johnston Atoll, Pacific 0.32 1990 Adult Burger et al ., 1992c

Midway Atoll, Pacific 0.0709 1997 Adult Burger and Gochfeld, 2000a

Laysan albatross             

Diomedea immutabilis
Midway Atoll, Pacific 0.364 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.496 1997 Juvenile Burger and Gochfeld, 2000a

Black-footed albatross   

Diomedea nigripes
Midway Atoll, Pacific 0.152 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 1.58 1997 Juvenile Burger and Gochfeld, 2000a
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Table 6-2 cont. 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Red-footed booby             

Sula sula
Johnston Atoll, Pacific 0.13 1990 Adult Burger and Gochfeld, 1991b

Johnston Atoll, Pacific 0.14 1990 Adult Burger and Gochfeld, 1991b

Midway Atoll, Pacific 0.0513 1997 Adult Burger and Gochfeld, 2000a

Red-tailed tropicbird 

Phaethon rubricauda
Midway Atoll, Pacific 0.0552 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.115 1997 Juvenile Burger and Gochfeld, 2000a

Great frigatebird       

Fregata minor
Midway Atoll, Pacific 0.204 1997 Adult Burger and Gochfeld, 2000a

Arctic loon                      

Gavia arctica
Northeast Siberia 0.42 1993 Adult Kim et al ., 1996

Gentoo penguin                 

Pygoscelis papua
Antarctica 0.21 2002 Adult Metcheva et al ., 2006

Chinstrap penguin     

Pygoscelis antarctica
Antarctica 0.3 2002 Adult Metcheva et al ., 2006

 

Table 6-3 Summary of literature data for cobalt concentrations in seabird feathers 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Osprey                     

Pandion haliaetus
Florida, USA 0.094 200-2001 Adult Lounsbury-Billie et al ., 2008

 

Table 6-4 Summary of literature data for copper concentrations in seabird feathers 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Herring gull                

Larus argenatatus
Northeast Siberia 12.2 1993 Adult Kim et al ., 1996

Black-tailed Gull        

Larus crassirostris
Japan 5.6 1999-2001 Adult Agusa et al ., 2005

Glaucous gull            

Larus hyperboreus
Northeast Siberia 12 1993 Adult Kim et al ., 1996

Sabine's gull             

Xema sabin
Northeast Siberia 17.1 1993 Adult Kim et al ., 1996

Parasitic jaeger     

Stercorarius parasiticus
Northeast Siberia 13.9 1993 Adult Kim et al ., 1996

Long-tailed jaeger     

Stercorarius longicaudus
Northeast Siberia 18.1 1993 Adult Kim et al ., 1996

Arctic tern                    

Sterna paradisaea
Northeast Siberia 17.5 1993 Adult Kim et al ., 1996

Black skimmer     

Rynchops niger
New York, USA 27.4 1991 Adult Burger and Gochfeld, 1992b

Arctic loon                

Gavia arctica
Northeast Siberia 41.5 1993 Adult Kim et al ., 1996

Osprey                     

Pandion haliaetus
Florida, USA 8.05 200-2001 Adult Lounsbury-Billie et al ., 2008

Gentoo penguin                 

Pygoscelis papua
Antarctica 17 2002 Adult Metcheva et al ., 2006

Antarctica 16 2003 Adult Metcheva et al ., 2006

Chinstrap penguin     

Pygoscelis antarctica
Antarctica 19 2002 Adult Metcheva et al ., 2006

Antarctica 18 2003 Adult Metcheva et al ., 2006
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Table 6-5 Summary of literature data for iron concentrations in seabird feathers 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Herring gull                   

Larus argenatatus
Northeast Siberia 18.6 1993 Adult Kim et al ., 1996

Glaucous gull              

Larus hyperboreus
Northeast Siberia 13.4 1993 Adult Kim et al ., 1996

Sabine's gull                   

Xema sabin
Northeast Siberia 81.8 1993 Adult Kim et al ., 1996

Parasitic jaeger     

Stercorarius parasiticus
Northeast Siberia 17.8 1993 Adult Kim et al ., 1996

Long-tailed jaeger     

Stercorarius longicaudus Northeast Siberia 35.7 1993 Adult Kim et al ., 1996

Arctic tern                 

Sterna paradisaea
Northeast Siberia 35.6 1993 Adult Kim et al ., 1996

Arctic loon                  

Gavia arctica
Northeast Siberia 53 1993 Adult Kim et al ., 1996

Osprey                     

Pandion haliaetus
California, USA 424 1992-1996 Adult Cahill et al ., 1998

Gentoo penguin                 

Pygoscelis papua
Antarctica 56 2002 Adult Metcheva et al ., 2006

Antarctica 46 2003 Adult Metcheva et al ., 2006

Chinstrap penguin     

Pygoscelis antarctica
Antarctica 53 2002 Adult Metcheva et al ., 2006

Antarctica 42 2003 Adult Metcheva et al ., 2006
 

Table 6-6 Summary of literature data for lead concentrations in seabird feathers 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Herring gull                   

Larus argentatus
New Jersey, USA 0.81 1991 Juvenile Burger et al ., 1992d

Franklin's gull           

Larus pipixcan
Interior North America 2.868 1994 Adult Burger, 1996

Interior North America 0.961 1994 Juvenile Burger, 1996

Minnesota, USA 2.67 1994 Adult Burger and Gochfeld, 1999

Minnesota, USA 0.427 1994 Juvenile Burger and Gochfeld, 1999

Laughing gull              

Larus atricilla
New York, USA 2.824 1992 Adult male Gochfeld et al ., 1996

New York, USA 2.377 1992 Adult female Gochfeld et al ., 1996

Black-tailed gull        

Larus crassirostris
Japan 0.754 1999-2001 Adult Agusa et al ., 2005

Common tern            

Sterna hirundo
New York, USA 1.62 1990 Adult Gochfeld et al ., 1991

New York, USA 3.6 1991 Adult Burger et al ., 1992a

Massachusesetts, USA 0.1 1991 Adult Burger et al ., 1992a

New York, USA 1.4 1991 Juvenile Burger and Gochfeld, 1992a

Sooty tern                 

Sterna fuscata
Puerto Rico 0.78 1990 Adult Gochfeld et al ., 1991

Johnston Atoll, Pacific 1.38 1990 Adult Burger et al ., 1992c

Hawaii 2.71 1990 Adult Burger et al ., 1992c

Midway Atoll, Pacific 0.519 1997 Adult Burger and Gochfeld, 2000a

Roseate tern             

Sterna dougallii
New York, USA 1.5 1991 Adult Burger et al ., 1992a

Grey-backed tern    

Sterna lunata
Midway Atoll, Pacific 0.942 1997 Adult Burger and Gochfeld, 2000a

White tern                  

Gygis alba
Midway Atoll, Pacific 1.38 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.947 1997 Juvenile Burger and Gochfeld, 2000a

Black skimmer            

Rynchops niger
New York, USA 1.39 1991 Adult Burger and Gochfeld, 1992b

New York, USA 2.7 1990 Adult Gochfeld et al ., 1991
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Table 6-6 cont. 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Brown noddy             

Anous stolidus
Hawaii 1.96 1990 Adult Burger et al ., 1992c

Johnston Atoll, Pacific 1.75 1990 Adult Burger et al ., 1992c

Hawaii 1.9 1990 Adult Burger, 1993b

Hawaii 0.88 1990 Juvenile Burger, 1993b

Midway Atoll, Pacific 0.289 1997 Adult Burger and Gochfeld, 2000a

Bonin petrel              

Pterodroma hypoleuca
Midway Atoll, Pacific 1.35 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.802 1997 Juvenile Burger and Gochfeld, 2000a

Christmas shearwater 

Puffinus nativitatis
Midway Atoll, Pacific 2.38 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 1.29 1997 Juvenile Burger and Gochfeld, 2000a

Wedge-tailed shearwater      Hawaii 1.6 1990 Adult Burger et al ., 1992c

Puffinus pacificus
Johnston Atoll, Pacific 2.75 1990 Adult Burger et al ., 1992c

Midway Atoll, Pacific 0.478 1997 Adult Burger and Gochfeld, 2000a

Laysan albatross     

Diomedea immutabilis
Midway Atoll, Pacific 0.799 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.734 1997 Juvenile Burger and Gochfeld, 2000a

Black-footed albatross   

Diomedea nigripes
Midway Atoll, Pacific 0.973 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 1.11 1997 Juvenile Burger and Gochfeld, 2000a

Brown booby               

Sula leucogaster
Johnston Atoll, Pacific 2.33 1990 Adult Burger et al ., 1992c

Red-footed booby           

Sula sula
Johnston Atoll, Pacific 2.08 1990 Adult Burger et al ., 1992c

Midway Atoll, Pacific 0.975 1997 Adult Burger and Gochfeld, 2000a

Red-tailed tropicbird 

Phaethon rubricauda
Midway Atoll, Pacific 0.684 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.637 1997 Juvenile Burger and Gochfeld, 2000a

Great frigatebird         

Fregata minor
Midway Atoll, Pacific 1.5 1997 Adult Burger and Gochfeld, 2000a

Osprey                     

Pandion haliaetus
California, USA 0.87 1992-1996 Adult Cahill et al ., 1998

Osprey                     

Pandion haliaetus
Florida, USA 0.802 200-2001 Adult Lounsbury-Billie et al ., 2008

Laggar falcon              

Falco biarmicus jugger
Pakistan 1.56 1996 Adult Movalli, 2000

Gentoo penguin                 

Pygoscelis papua
Antarctica 1.7 2002 Adult Metcheva et al ., 2006

 Antarctica 1.57 2003 Adult Metcheva et al ., 2006

Chinstrap penguin     

Pygoscelis antarctica
Antarctica 1.8 2002 Adult Metcheva et al ., 2006

Antarctica 1.66 2003 Adult Metcheva et al ., 2006
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Table 6-7 Summary of literature data for manganese concentrations in seabird 

feathers 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Herring gull                  

Larus argenatatus
Northeast Siberia 2.35 1993 Adult Kim et al ., 1996

Franklin's gull           

Larus pipixcan
Interior North America 8.108 1994 Adult Burger, 1996

Interior North America 6.827 1994 Juvenile Burger, 1996

Minnesota, USA 3.73 1994 Adult Burger and Gochfeld, 1999

Minnesota, USA 3.42 1994 Juvenile Burger and Gochfeld, 1999

Laughing gull             

Larus atricilla
New York, USA 3.444 1992 Adult male Gochfeld et al ., 1996

New York, USA 4.649 1992 Adult female Gochfeld et al ., 1996

Black-tailed gull         

Larus crassirostris
Japan 0.32 1999-2001 Adult Agusa et al ., 2005

Glaucous gull                 

Larus hyperboreus
Northeast Siberia 1.98 1993 Adult Kim et al ., 1996

Sabine's gull                    

Xema sabin
Northeast Siberia 2.32 1993 Adult Kim et al ., 1996

Parasitic jaeger     

Stercorarius parasiticus
Northeast Siberia 4.4 1993 Adult Kim et al ., 1996

Long-tailed jaeger     

Stercorarius longicaudus
Northeast Siberia 4.2 1993 Adult Kim et al ., 1996

Sooty tern                 

Sterna fuscata
Midway Atoll, Pacific 0.3 1997 Adult Burger and Gochfeld, 2000a

Grey-backed tern    

Sterna lunata
Midway Atoll, Pacific 1.12 1997 Adult Burger and Gochfeld, 2000a

White tern                    

Gygis alba
Midway Atoll, Pacific 0.41 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 1.19 1997 Juvenile Burger and Gochfeld, 2000a

Arctic tern                  

Sterna paradisaea
Northeast Siberia 5.1 1993 Adult Kim et al ., 1996

Black skimmer        

Rynchops niger
New York, USA 2.5 1991 Adult Burger and Gochfeld, 1992a

Brown noddy                

Anous stolidus
Midway Atoll, Pacific 0.424 1997 Adult Burger and Gochfeld, 2000a

Bonin petrel             

Pterodroma hypoleuca
Midway Atoll, Pacific 0.561 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 1.14 1997 Juvenile Burger and Gochfeld, 2000a

Christmas shearwater 

Puffinus nativitatis
Midway Atoll, Pacific 2.05 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 2.07 1997 Juvenile Burger and Gochfeld, 2000a

Wedge-tailed shearwater         

Puffinus pacificus
Midway Atoll, Pacific 0.718 1997 Adult Burger and Gochfeld, 2000a

Laysan albatross     

Diomedea immutabilis
Midway Atoll, Pacific 1.72 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 1.63 1997 Juvenile Burger and Gochfeld, 2000a

Black-footed albatross       

Diomedea nigripes
Midway Atoll, Pacific 1.78 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 2.03 1997 Juvenile Burger and Gochfeld, 2000a

Red-footed booby            

Sula sula
Midway Atoll, Pacific 1.46 1997 Adult Burger and Gochfeld, 2000a

Red-tailed tropicbird 

Phaethon rubricauda
Midway Atoll, Pacific 0.678 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.603 1997 Juvenile Burger and Gochfeld, 2000a

Great frigatebird          

Fregata minor
Midway Atoll, Pacific 0.59 1997 Adult Burger and Gochfeld, 2000a

Arctic loon                 

Gavia arctica
Northeast Siberia 4.68 1993 Adult Kim et al ., 1996

Gentoo penguin                 

Pygoscelis papua
Antarctica 1.5 2002 Adult Metcheva et al ., 2006

Antarctica 2.6 2003 Adult Metcheva et al ., 2006

Chinstrap penguin     

Pygoscelis antarctica
Antarctica 1.4 2002 Adult Metcheva et al ., 2006

Antarctica 1.6 2003 Adult Metcheva et al ., 2006
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Table 6-8 Summary of literature data for nickel concentrations in seabird feathers 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Osprey                     

Pandion haliaetus
Florida, USA 0.967 200-2001 Adult Lounsbury-Billie et al ., 2008

Gentoo penguin                 

Pygoscelis papua
Antarctica 0.84 2002 Adult Metcheva et al ., 2006

Antarctica 2.2 2003 Adult Metcheva et al ., 2006

Chinstrap penguin     

Pygoscelis antarctica
Antarctica 0.65 2002 Adult Metcheva et al ., 2006

Antarctica 0.75 2003 Adult Metcheva et al ., 2006
 

Table 6-9 Summary of literature data for selenium concentrations in seabird feathers 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Franklin's gull           

Larus pipixcan
Interior North America 2.040 1994 Adult Burger, 1996

Interior North America 0.965 1994 Juvenile Burger, 1996

Minnesota, USA 1.56 1994 Adult Burger and Gochfeld, 1999

Minnesota, USA 0.927 1994 Juvenile Burger and Gochfeld, 1999

Laughing gull               

Larus atricilla
New York, USA 1.437 1992 Adult male Gochfeld et al ., 1996

New York, USA 1.859 1992 Adult female Gochfeld et al ., 1996

Black-tailed gull        

Larus crassirostris
Japan 1.1 1999-2001 Adult Agusa et al ., 2005

Common tern            

Sterna hirundo
New York, USA 2.1 1991 Adult Burger et al ., 1992a

Massachusesetts, USA 2 1991 Adult Burger et al ., 1992a

New York, USA 1.2 1991 Juvenile Burger and Gochfeld, 1992a

Sooty tern               

Sterna fuscata
Hawaii 4.4 1990 Adult Burger et al ., 1992c

Johnston Atoll 3.79 1990 Adult Burger et al ., 1992c

Midway Atoll, Pacific 3.42 1997 Adult Burger and Gochfeld, 2000a

Roseate tern              

Sterna dougallii
New York, USA 3.900 1991 Adult Burger et al ., 1992a

Grey-backed tern    

Sterna lunata
Midway Atoll, Pacific 2.87 1997 Adult Burger and Gochfeld, 2000a

White tern                       

Gygis alba
Midway Atoll, Pacific 1.29 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 0.63 1997 Juvenile Burger and Gochfeld, 2000a

Black skimmer           

Rynchops niger
New York, USA 1.2 1991 Adult Burger and Gochfeld, 1992b

Brown noddy              

Anous stolidus
Hawaii 7.59 1990 Adult Burger et al ., 1992c

Johnston Atoll 11.15 1990 Adult Burger et al ., 1992c

Hawaii 7.5 1990 Adult Burger, 1993b

Hawaii 1.4 1990 Juvenile Burger, 1993b

Midway Atoll, Pacific 3.99 1997 Adult Burger and Gochfeld, 2000a

Bonin petrel           

Pterodroma hypoleuca
Midway Atoll, Pacific 7.85 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 4.86 1997 Juvenile Burger and Gochfeld, 2000a
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Table 6-9 cont. 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Christmas shearwater 

Puffinus nativitatis
Midway Atoll, Pacific 10.1 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 4.98 1997 Juvenile Burger and Gochfeld, 2000a

Wedge-tailed shearwater    
Hawaii 3.23 1990 Adult Burger et al ., 1992c

Puffinus pacificus
Johnston Atoll 4.06 1990 Adult Burger et al ., 1992c

Midway Atoll, Pacific 4.06 1997 Adult Burger and Gochfeld, 2000a

Laysan albatross     

Diomedea immutabilis
Midway Atoll, Pacific 2.29 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 1.7 1997 Juvenile Burger and Gochfeld, 2000a

Black-footed albatross   

Diomedea nigripes
Midway Atoll, Pacific 3.26 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 2.33 1997 Juvenile Burger and Gochfeld, 2000a

Brown booby                 

Sula leucogaster
Johnston Atoll 3.69 1990 Adult Burger et al ., 1992c

Red-footed booby            

Sula sula
Johnston Atoll 2.28 1990 Adult Burger et al ., 1992c

Midway Atoll, Pacific 2.34 1997 Adult Burger and Gochfeld, 2000a

Red-tailed tropicbird 

Phaethon rubricauda
Midway Atoll, Pacific 3.99 1997 Adult Burger and Gochfeld, 2000a

Midway Atoll, Pacific 3.94 1997 Juvenile Burger and Gochfeld, 2000a

Great frigatebird          

Fregata minor
Midway Atoll, Pacific 4.54 1997 Adult Burger and Gochfeld, 2000a

Osprey                     

Pandion haliaetus
California, USA 3.2 1992-1996 Adult Cahill et al ., 1998

Laggar falcon              

Falco biarmicus jugger
Pakistan 2.76 1996 Adult Movalli, 2000

Gentoo penguin                 

Pygoscelis papua
Antarctica 2 2002 Adult Metcheva et al ., 2006

Antarctica 1.8 2003 Adult Metcheva et al ., 2006

Chinstrap penguin     

Pygoscelis antarctica
Antarctica <0.80 2002 Adult Metcheva et al ., 2006

Antarctica <0.80 2003 Adult Metcheva et al ., 2006
 

 

Table 6-10 Summary of literature data for vanadium concentrations in seabird feathers 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Black-tailed Gull        

Larus crassirostris
Japan 0.076 1999-2001 Adult Agusa et al ., 2005

Osprey                     

Pandion haliaetus
Florida, USA 1.06 200-2001 Adult Lounsbury-Billie et al ., 2008
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Table 6-11 Summary of literature data for zinc concentrations in seabird feathers 

Species Location
Mean concentration 

ppm (dry weight)
Study year Notes Reference

Herring gull                 

Larus argenatatus
Northeast Siberia 74.5 1993 Adult Kim et al ., 1996

Black-tailed Gull        

Larus crassirostris
Japan 43.9 1999-2001 Adult Agusa et al ., 2005

Glaucous gull             

Larus hyperboreus
Northeast Siberia 78.4 1993 Adult Kim et al ., 1996

Sabine's gull                 

Xema sabin
Northeast Siberia 142 1993 Adult Kim et al ., 1996

Parasitic jaeger     

Stercorarius parasiticus
Northeast Siberia 91 1993 Adult Kim et al ., 1996

Long-tailed jaeger     

Stercorarius longicaudus
Northeast Siberia 88.9 1993 Adult Kim et al ., 1996

Arctic tern               

Sterna paradisaea
Northeast Siberia 130 1993 Adult Kim et al ., 1996

Arctic loon                   

Gavia arctica
Northeast Siberia 88.4 1993 Adult Kim et al ., 1996

Osprey                     

Pandion haliaetus
California, USA 173 1992-1996 Adult Cahill et al ., 1998

Laggar falcon              

Falco biarmicus jugger
Pakistan 107.4 1996 Adult Movalli, 2000

Gentoo penguin                 

Pygoscelis papua
Antarctica 106 2002 Adult Metcheva et al ., 2006

Antarctica 89 2003 Adult Metcheva et al ., 2006

Chinstrap penguin     

Pygoscelis antarctica
Antarctica 99 2002 Adult Metcheva et al ., 2006

Antarctica 75 2003 Adult Metcheva et al ., 2006
 

6.1.1 Lead and cadmium in feathers 

Gochfeld et al. (1996) examined concentrations of lead and cadmium in the feathers (and other 

tissues) of laughing gulls (L. atricilla).  The overall conclusion of this study was that feathers 

gave an indication of concentrations of lead in other tissues, but, conversely, no significant 

correlation was found between cadmium in feathers and concentrations in other tissues.  Dauwe 

et al. (2004) determined concentrations of metals in feathers of great tits (P. major) and 

compared these with metal concentrations in food samples.  Lead concentrations in feathers 

were found to be significantly positively correlated with concentrations in the great tits’ main 

invertebrate food source.  No significant relationship was found for cadmium.  These results 

were consistent with those of an earlier study investigating the potential use of excrement and 

feathers of nestling great (P. major) and blue tits (Parus caeruleus) to reflect internal heavy 

metal contamination (Dauwe et al., 2000).  A significant correlation was found between the lead 

concentration in the excrement and feathers for great tits (p <0.0005).  A significant correlation 

was also found between excrement and feathers for blue tits (p <0.05), although this correlation 

was strongly influenced by a single point and when this point was removed the correlation was 

no longer significant (p >0.1).  No significant correlation was found for cadmium for either of 

the species studied.  These results indicate that lead accumulates in feathers, and that feathers 

may be suitable as a biomonitor for lead pollution.  
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For cadmium, there is controversy surrounding whether feathers actually accumulate it; some 

authors have found high concentrations (Mayack et al., 1981) while others have not (Osborn et 

al., 1979).  Information on cadmium concentrations in seabird feathers is conflicting, and whilst 

some authors suggest that there is little evidence of a relationship to other tissue concentrations 

(Osborn et al., 1979; Howarth et al., 1981; Dauwe et al., 2000; Dauwe et al., 2004), some 

studies have demonstrated a significant relationship between cadmium concentrations in 

feathers and those in other tissues.  For example, Battaglia et al. (2005) investigated lead and 

cadmium concentrations in the common buzzard (B. buteo) and little owl (A. noctua), using 

liver, kidneys, pectoral muscle, sternum bone and feathers.  Significant correlations were 

observed for cadmium between liver and feathers and between kidney and feathers in buzzards, 

and between kidney and feathers in little owls, indicating that cadmium accumulated from the 

diet could be excreted through the feathers.  For lead, a significant correlation was found 

between bone and feathers in little owls; however, no relationship was found between feathers 

and any other tissues for lead in buzzards.  

Interpretation of both lead and cadmium concentrations in feathers is difficult as there is 

evidence of heavy contamination by secretory products and atmospheric deposition.  

Concentrations of lead have been found to be higher in feathers than other tissues (Gochfeld et 

al., 1996), and it has been proposed that the concentration of lead in feathers is a good predictor 

of internal dose (Burger, 1993; Burger & Gochfeld, 2004).  However, a number of authors 

suggest that the majority of cadmium and lead originates from direct atmospheric deposition 

onto feather surfaces, with ingested cadmium and lead becoming firmly bound in kidney and 

bone, only entering feathers in trace amounts (Goede & de Bruin, 1986; Walsh, 1990; Furness et 

al., 1993; Stewart et al., 1994).  Experimental studies with starlings (Sturnus vulgaris; Pilastro 

et al., 1993) and zebra finches (Taeniopygia guttata; Dauwe et al., 2002b) have also 

demonstrated that lead and cadmium are deposited onto the surface of the feather in secretions 

during preening.  Thus, whilst reported concentrations of lead and cadmium illustrate the use of 

feathers as a general monitor of metal contamination, if the majority of lead and cadmium in 

feathers originates from external exposure, the results say little about food chain contamination.   

As previously mentioned, washing of feathers has been carried out in some studies in an attempt 

to remove surface deposits of heavy metals (Goede & de Bruin, 1986); however the 

effectiveness of this for lead and cadmium is yet to be demonstrated and some authors have 

demonstrated experimentally that the exogenous fraction of both cadmium and lead cannot be 

completely removed by washing procedures (Weyers et al., 1988).  Another way to minimise 

the effects of exogenous contamination is to use feathers (down) of nestlings.  Young nestlings 
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will have had little exposure to the environment, meaning that exogenous contamination onto 

the feather surface is limited and the growing feathers of nestling birds may thus represent the 

body load of contaminants better than those of adults (Dauwe et al., 2004). 

6.1.2 Other metals in feathers 

There has been very little research investigating the potential use of feathers as indicators for 

non-essential metals other than mercury, lead and cadmium, and the limited results are 

conflicting.  However, although not related back to tissue concentrations, concentrations of 

heavy metals and selenium in feathers have been measured in a number of field studies (see 

Tables 6-1 to 6-11, above).    

Burger (1993) reviews the ratios of metal concentrations in other tissues to concentrations in 

feathers of gull species reported in a number of studies.  Table 6-12 summarises some of this 

data. 

Table 6-12 Ratio of metal concentrations in other tissues to concentrations in feathers 

for gull species (after Burger, 1993a) 

Metal Liver Kidney Muscle Bone Brain

Cadmium 2.75 8.67 0.53 0.96 0.31

Iron 25.6 4.18 1.99 0.48 0.07

Lead 0.42 0.33 0.14 3.72 0.13

Manganese 1.17 0.69 0.09 2.92 0.13

Nickel 0.25 0.2 0.23 0.29 0.11

Selenium 1.2 2.2 0.4 0.3 0.25

Zinc 0.38 0.39 0.24 1.16 -  

Gochfeld et al. (1996) examined the tissue relationships between feather and other tissues in 

laughing gulls (L. atricilla) and found similar ratios to those described in other studies (as 

summarised in Burger, 1993a) for lead, mercury, selenium and manganese, but not for 

cadmium.  This suggests that the concentrations of some metals in feathers can be used to 

predict the relative concentrations in other tissues. 

 In a study investigating the potential use of excrement and feathers of nestling great tits (P. 

major) and blue tits (P. caeruleus) to reflect internal heavy metal contamination, Dauwe et al. 

(2000) found no significant correlation between the arsenic concentration in the excrement and 

feathers of the birds studied.  However, in a later study comparing concentrations of arsenic in 

feathers of great tits (P. major) with concentrations in food samples, Dauwe et al. (2004) found 
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arsenic concentrations in feathers to be significantly positively correlated with concentrations in 

the great tits’ main invertebrate food source.  A significant feather/liver correlation of arsenic 

concentrations has also been noted for estuarine gulls in New Zealand (Turner et al., 1978). As 

with lead and cadmium, arsenic concentrations can originate from exogenous deposition as well 

as endogenous (Goede & de Bruin, 1984).  

Dauwe et al. (2000) found no significant correlation between zinc or copper concentrations in 

the excrement and feathers of great tits (P. major) and blue tits (P. caeruleus).  The same 

authors report no relationship between concentrations of copper, nickel and zinc in the feathers 

of great tits and concentrations in food samples (Dauwe et al., 2004).  It has been suggested that 

the accumulation of essential trace elements such as zinc, manganese, copper and iron (the latter 

of which is required in large amounts for feather formation) may be regulated in the body to 

keep concentrations in internal tissues physiologically adequate (Clarkson, 1986; Burger, 1993), 

and indeed the above studies would suggest that feathers may not be suitable as a biomonitor for 

these metals.  However, other studies have shown that this is not the case (Goede & de Bruin, 

1986; Burger, 1993; Burger & Gochfeld, 1993; Gochfeld et al., 1996).  It has been reported that 

30-40% of the body burden of copper is sequestered into feathers (Burger, 1993), and nickel has 

been shown to be sequestered in the feathers of dietary-exposed birds (Eastin & O'Shea, 1981).  

Goede and de Bruin (1986) found that, for zinc, external contamination of the feather did not 

appear to be occurring, and thus the concentrations of zinc found in feathers could be said to 

reflect internal concentrations.  Detectable concentrations of selenium have been reported in 

feathers (Stoneburner et al., 1980; Burger & Gochfeld, 1992a; Burger & Gochfeld, 1992b), but 

contamination of feathers with selenium via excretions from the uropygial gland during 

preening (Goede & de Bruin, 1984) can confound assessments of the degree to which selenium 

is sequestered into feathers as a result of internal tissue burdens.  

Clearly there is scope for more investigation into the use of feathers as biomonitors for metals 

other than mercury, lead and cadmium. 

6.2 Methods 

Samples of down feathers were obtained from chicks less than 48 hours post-hatching at 

Lymington and Poole.  Down of newly hatched chicks was sampled as the chicks will have had 

little exposure to the environment, thus exogenous contamination limited and feathers represent 
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contamination acquired almost entirely on the breeding grounds and from development in the 

egg. 

Chicks less than 48 hours old were identified by being largely immobile (black-headed gull 

chicks are semi-altricial and largely immobile after hatching (see Section 1.5)), and sampling 

was also carried out on single chicks sharing a nest with eggs, as the entire clutch hatches over a 

48 hour period (Eising et al., 2001) and thus a chick in a nest with unhatched eggs is likely to be 

less than 48 hours old.  As down was cut from chicks rather than plucked, this non-invasive 

sampling method was included on and thus covered by the English Nature/Natural England 

license mentioned above (Section 2.2.1).  Ten chicks were chosen at random from each site, 

with only one chick per nest being sampled.  A pair of small dissecting scissors was rinsed with 

acetone prior to each new chick to be sampled, in order to minimise any potential 

contamination.  Down was snipped from the body of each chick (the general torso area) and 

placed in sealable polythene bags; the chick was then replaced in the nest where it was found.   

Down was washed alternately with Milli-Q® water and 1 mol/l Aristar grade acetone to remove 

any loosely adhered external contamination (Appelquist et al., 1984; Walsh, 1990; Burger, 

1993), and then air dried.  A fresh weight was then obtained from the air-dry feathers, which 

were then placed in an oven at 60ºC and dried to a constant weight.  Samples were weighed into 

microwave digestion vessels and 5 ml of concentrated nitric acid added.  Contamination was 

minimised at all stages by acid-washing all glassware prior to rinsing with Milli-Q® water, and 

rinsing any metal equipment with ultra high purity (BDH Chemicals ARISTAR®) grade 

acetone before bringing it into contact with samples.  In addition, all procedures were carried 

out in a laminar-flow cabinet. 

Samples of down were analysed individually for arsenic, cadmium, cobalt, copper, iron, lead, 

manganese, nickel, selenium, vanadium and zinc.  The microwave digestion and analytical 

method (USEPA Method 3051, analysis by ICP-MS) used for the down samples was as 

described for the egg samples in Chapter 5, Section 5.2.  Again, with each batch of samples 

determined, a calibration graph was constructed to check for linearity and to calculate 

concentrations in the samples, and blank samples of 2% nitric acid were analysed to assess 

contamination.  Measured samples were blank-corrected to provide reportable data.   

To determine if any bias exists in the environmental media compared with the Milli-Q® water 

calibrant samples (used to construct a calibration curve and hence calculate concentrations), 

spike-and-recovery tests were carried out for feather samples, achieved by spiking samples with 
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varying concentrations of metal standards and constructing individual calibration curves.  

Accordingly, all calculations of metal concentrations in the feathers were calculated using 

slopes derived from calibrations established in the same biological matrix.   

6.2.1 Results of initial trials 

Initial trials were carried out in order to assess losses made during the sample preparation 

method.  Trials were carried out for all the metals investigated in this study.   

Washed vs unwashed feathers 

Prior to carrying out the spike-recovery trials for the feathers, a trial was carried out in order to 

assess the effectiveness of washing the feathers to remove external contamination.  Duck 

feathers were collected, taking care to use downy feathers in the trial in order to be as 

representative of the gull feather samples as possible.  The washing procedure was as follows: 

feathers were washed once with acetone and then rinsed three times with Milli-Q® water.  This 

method of washing feathers with acetone and distilled water to remove external contamination 

has been used by a number of authors (Burger et al., 1993; Burger, 1996; Gochfeld et al., 1996; 

Burger & Gochfeld, 1997; Burger & Gochfeld, 1999; Eens et al., 1999; Burger & Gochfeld, 

2000a; Burger & Gochfeld, 2000b; Dauwe et al., 2000; Janssens et al., 2001; Janssens et al., 

2002; Dauwe et al., 2003; Dauwe et al., 2004; Dauwe et al., 2005).   

Each of six duck feather samples were divided into two, with one half of the sample to be 

analysed unwashed, and the other half to be washed as described above, prior to analysis.  

Feathers were placed into pre-weighed jars and the ‘unwashed’ feather samples weighed to 

obtain the fresh weight.  Jars were then covered with a nylon mesh secured with an elastic band 

at the neck of the jar.  Acetone was poured through the mesh of the ‘washed’ feather samples 

and the contents shaken for a few minutes.  The acetone was then poured out of the jar through 

the mesh, allowing for the acetone and any small particles of debris to be removed from the jar, 

whilst leaving the feathers inside.  The procedure was then repeated three times using Milli-Q® 

water rather than acetone.  The washed feathers were then left to air dry, after which they were 

weighed to obtain the fresh weight.  All samples were then placed in an oven at 60ºC overnight, 

and the dry weight obtained.  Finally, the dried samples were weighed into microwave 

extraction vessels, 5 ml of concentrated nitric acid was added, and microwave digestion carried 
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out following the procedure outlined in Chapter 5, Section 5.2.  Analysis was carried out using 

ICP-MS. 

Data for the metal concentrations measured in this trial are provided in Appendix D.  The data 

show that, for a number of metals, the concentrations measured in the washed feathers were 

considerably lower than for the unwashed feathers.  This was the case for arsenic, cobalt, iron, 

manganese, nickel, lead and vanadium, indicating that the washing procedure is useful for 

removing external contamination which could contain these metals.  Of the remaining metals, 

copper, selenium and zinc concentrations were also lower in washed feathers than unwashed, 

although the differences in concentrations were not as great as for the metals mentioned above.  

Cadmium concentrations were low in both sets of samples, although very slightly lower in the 

washed samples than the unwashed. 

Overall, the trial would suggest that washing feather samples using the method described above 

is effective in removing at least some of the external contamination, which would likely lead to 

the measurement of inaccurately high concentrations of metals in the samples, particularly for 

arsenic, cobalt, iron, manganese, nickel, lead and vanadium.  The washing procedure outlined 

above was therefore employed prior to digestion and analysis of the gull feather samples in this 

study. 

Multi-element trials 

As for the previous test, duck feathers were collected and downy feathers used in order to be as 

representative of the gull feather samples as possible.  Each feather sample was divided 

approximately in half and the separate samples placed into clean acid-washed, pre-weighed 

glass jars.  A thin nylon mesh was then placed over the opening of each jar and secured with an 

elastic band around the neck.  This enabled the feathers to be washed without any loss of 

sample.  Each jar was then rinsed through with acetone, followed by three further rinses with 

Milli-Q® water, and then left to air dry.  The jars were then weighed and the sample weight 

calculated.  Of the two samples from each feather, one was spiked with a known concentration 

of a standard solution of metals (as used in the egg multi-element trials; Section 5.2.1) and the 

corresponding sample was left unspiked.  This was repeated with varying concentrations of 

metals.  All samples were then placed in an oven at 60ºC and left to dry to a constant mass, after 

which they were re-weighed to obtain the dry weight and enable calculation of the water 

content.  The dried contents of each jar were then accurately weighed into microwave extraction 
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vessels.  The samples were microwave digested following the procedure outlined in Chapter 5, 

Section 5.2, after which analysis was carried out. 

Feathers were spiked with varying amounts of a multi-element standard (Fisher Scientific, WP-

15) containing 100 mg/l arsenic, copper, iron, manganese, nickel, lead and zinc, 25 mg/l 

cadmium and selenium and 250 mg/l vanadium, in a matrix of 5 % nitric acid.  Feather 1 was 

spiked with 0.1 ml of this standard, Feather 2 with 0.5 ml, Feather 3 samples with 1 ml, Feather 

4 samples with 2.5 ml and Feather 5 samples with 5 ml. 

Table 6-13 provides average recoveries for each metal. 

Table 6-13 Mean recoveries for metals in duck feather samples 

Metal Recovery range (%) Mean recovery (%)

As 54.6 - 90.9 71.7

Cd 58.9 - 99.3 77.4

Co 55.1 - 92.3 74.9

Cu 59.8 - 97.8 77.8

Fe 58.2 - 99.0 80.4

Pb 64.8 - 110.0 84.1

Mn 61.3 - 103.2 81.4

Ni 58.5 - 99.4 77.8

Se 53.3 - 87.7 69.3

V 58.7 - 99.5 77.7

Zn 52.6 - 86.9 68.2  

Recovery data were good for all metals, with between 68 and 85% average recovery, and the 

method used in this study is therefore considered suitable for the analysis of the above metals in 

bird feathers.  As with the egg data, analytical results for the black-headed gull feather samples 

were corrected according to the recovery data.  A full set of recovery data with individual 

concentrations of each metal in feathers is provided in Appendix E. 

6.3 Results 

Figures 6-1 to 6-11 show mean concentrations (with standard error bars) of each of the metals 

analysed in feathers from chicks at the Lymington and Poole sites.  In addition, a mean 

concentration calculated from values reported in the literature for juvenile seabird feathers on a 
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global scale is presented (for actual concentrations reported in the literature, see Section 6.1, 

Tables 6-1 to 6-11).  

 

Figure 6-1 Mean arsenic concentrations (µg/g dry weight), ± standard error, in black-

headed gull chick down from Lymington and Poole colonies (N = 24), 

compared with literature data for juvenile seabird feathers (N = 7) 

Figure 6-2 Mean cadmium concentrations (µg/g dry weight), ± standard error, in black-

headed gull chick down from Lymington and Poole colonies (N = 24), 

compared with literature data for juvenile seabird feathers (N = 10)  
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Figure 6-3 Mean cobalt concentrations (µg/g dry weight), ± standard error, in black-

headed gull chick down from Lymington and Poole colonies (N = 24) 

 

Figure 6-4 Mean copper concentrations (µg/g dry weight), ± standard error, in black-

headed gull chick down from Lymington and Poole colonies (N = 24) 
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Figure 6-5 Mean iron concentrations (µg/g dry weight), ± standard error, in black-

headed gull chick down from Lymington and Poole colonies (N = 24) 

 

Figure 6-6 Mean lead concentrations (µg/g dry weight), ± standard error, in black-

headed gull chick down from Lymington and Poole colonies (N = 24), 

compared with literature data for juvenile seabird feathers (N = 11) 
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Figure 6-7 Mean manganese concentrations (µg/g dry weight), ± standard error, in 

black-headed gull chick down from Lymington and Poole colonies (N = 24), 

compared with literature data for juvenile seabird feathers (N = 8) 

 

Figure 6-8 Mean nickel concentrations (µg/g dry weight), ± standard error, in black-

headed gull chick down from Lymington and Poole colonies (N = 24) 
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Figure 6-9 Mean selenium concentrations (µg/g dry weight), ± standard error, in black-

headed gull chick down from Lymington and Poole colonies (N = 24), 

compared with literature data for juvenile seabird feathers (N = 10) 

 

Figure 6-10 Mean total vanadium concentrations (µg/g dry weight), ± standard error, in 

black-headed gull chick down from Lymington and Poole colonies (N = 24) 
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Figure 6-11 Mean total zinc concentrations (µg/g dry weight), ± standard error, in black-

headed gull chick down from Lymington and Poole colonies (N = 24) 

Statistical analysis 

A K-S test was used to check that data were normally distributed, and revealed that data for 

copper, iron, selenium and vanadium were normally distributed, while distributions of all other 

metals analysed were not normal.  Various transformations were carried out in order to attempt 

to normalise the data (as detailed in Section 5.3.2).  Logarithmic transformation produced a 

normalised distribution for manganese, lead and zinc.  However, data for arsenic, cadmium, 

cobalt and nickel could not be normalised with any of the transformations attempted.  The 

concentrations of arsenic, cadmium, cobalt and nickel in the down samples were largely below 

the limit of detection (<0.001 µg/g) and, as can be seen in Figures 6-1, 6-2, 6-3 and 6-8, above, 

the errors associated with the results for these metals are very large.  As the requirements for 

parametric tests were not met, the results for arsenic, cadmium, cobalt and nickel in chick down 

must be analysed using non-parametric tests.  Variance was examined using Levene’s test for 

equality of variance.   

An independent t-test was used to assess whether there were any significant differences between 

the metal concentrations measured in chick down from the Lymington and Poole sites for 

copper, iron, lead, manganese, selenium, vanadium and zinc.  As the data for arsenic, cadmium, 

cobalt and nickel were not normally distributed, a non-parametric Mann-Whitney test was used 

to examine the data.  The results of these statistical tests are provided in Table 6-14.  Data 
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provided in the table are based on untransformed data for arsenic, cadmium, cobalt, copper, 

iron, nickel, selenium and vanadium, and log transformed data for manganese, lead and zinc 

(data log transformed prior to running independent t-test, and then calculated back to the 

original scale for the purposes of reporting).   

Table 6-14 Test results for differences in metal concentrations in black-headed gull 

chick down between Lymington and Poole colonies, 2006 

Measurement S.E. p Significance

Arsenic 0.162 0.019 *

Cadmium 0.034 0.051 NS

Cobalt 0.014 0.001 **

Copper 1.478 0.901 NS

Iron 12.682 0.327 NS

Lead † 1.251 0.232 NS

Manganese † 1.391 0.602 NS

Nickel 0.156 0.481 NS

Selenium 0.615 0.901 NS

Vanadium 4.517 0.428 NS

Zinc † 1.114 0.003 **  

Bold indicates a significant difference between sample sets; ** = highly significant  (p ≤0.001); NS = not 

significant (p >0.05).  Data are for independent t-test with the exception of highlighted areas, which 

indicate results from non-parametric Mann-Whitney test. † data log transformed prior to running test, 

reported as per original scale. 

 

The test results show that there are significant differences between sample sets for arsenic, 

cobalt and zinc concentrations in chick down, with down from the chicks on the Poole colony 

containing significantly higher concentrations of arsenic, cobalt and zinc than down from chicks 

on the Lymington colony.  There are no significant differences between Lymington and Poole 

feather samples for cadmium, copper, iron, lead, manganese, nickel, selenium or vanadium.  
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6.4 Discussion 

6.4.1 Comparison between sites and with egg concentration data 

The statistical tests carried out in Section 6.3 revealed significant differences between the 

feather samples from the Lymington and Poole sites, with the down of chicks from the Poole 

site containing significantly greater concentrations than down of chicks from the Lymington site 

for arsenic (mean concentrations 0.06 µg/g and 0.69 µg/g dry weight, respectively; p = 0.019), 

cobalt (mean concentrations 0.005 µg/g and 0.08 µg/g dry weight, respectively; p = 0.001) and 

zinc (mean concentrations 106.7 µg/g and 168.5 µg/g dry weight, respectively; p = 0.003).   

The results for arsenic in chick down reflect the site differences found in the egg results, with 

concentrations significantly higher in the samples from the Poole site than those from the 

Lymington site. These results indicate that arsenic concentrations in feathers may provide a 

good indication of concentrations in eggs and of local pollution.  However, it is important to 

consider the very small sample size analysed for feathers in this study and the fact that the 

concentration of arsenic in many of the Lymington feather samples was below the limit of 

detection.  The usefulness of feathers to provide a good indication of arsenic concentrations in 

concentrations in internal tissues is an area that would benefit from future research. 

The limited amount of data in the literature regarding the relationship between zinc 

concentrations in feathers and internal tissues suggests that feather concentrations may be a poor 

indicator of tissue concentrations.  Zinc is an essential element required for feather formation, 

and it is suggested that metals that are essential for feather formation may be regulated 

homeostatically (i.e. the transport and uptake of the metal is controlled in the body by the 

nervous system) to maintain adequate concentrations for feather production and growth 

(Clarkson, 1986; Burger, 1993).  As concentrations of essential elements such as zinc are 

carefully regulated in the body, changes in the level of exposure to zinc do not affect all tissues 

uniformly.  The majority of the body burden of zinc is deposited in muscle and bone (Jackson, 

1989) and some tissues are therefore considered to be poor indicators of the zinc concentration 

in the body; feathers are generally thought to fall into this category (see Section 6.1.2).  

However, one of the ways in which birds regulate the body levels of metals, including zinc, is 

by sequestration into eggs, and eggs are believed to provide a good indication of tissue levels of 

zinc.  The fact that the difference between sites in zinc feather concentrations is in agreement 

with the difference found for egg samples suggests that feathers, like eggs, may provide a good 
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indication of tissue concentrations.  This is also supported by literature data for sediment zinc 

concentrations from previous studies, which have also shown concentrations in the Poole area to 

be higher than those in sediments from the Lymington area (see Section 5.4.2).  Further research 

into the regulation of zinc in the body and relative tissue contents of zinc in birds is required to 

clarify the relationship between dietary zinc exposure, tissue concentrations and feather 

concentrations. 

Cobalt concentrations were found to be significantly higher in the down sampled from chicks on 

the Poole colony than those on the Lymington colony (mean feather concentrations 0.082 µg/g 

and 0.005 µg/g dry weight, respectively; p = 0.001).  No previous studies could be found 

examining the sequestering of cobalt in feathers, or comparison of feather concentrations with 

concentrations in other tissues.  Egg concentration data in this study showed cobalt 

concentrations to be significantly higher in the post-collection Lymington eggs than the Poole 

eggs, in contrast to the feather data, indicating that feathers may not be a good indicator of 

cobalt concentrations as they do not reflect the differences between sites found for cobalt 

concentrations in eggs.  However, it is again important to consider the very small sample size 

analysed for feathers, and the fact that data obtained in this study were for eggs only; sediment 

data for cobalt concentrations in the Poole and Lymington sediments from previous studies have 

shown very little difference between the two sites (Section 5.4.2).  As no other tissues were 

sampled, it is impossible to make inferences as to whether cobalt concentrations in feathers 

provide a good indication of concentrations in internal tissues, and this is an area that would 

benefit from future research.  

There was no significant difference between the down from chicks nesting on the Lymington 

and Poole colonies in terms of cadmium concentration, and concentrations in nearly all samples 

were undetectable.  Previous studies have found that cadmium is not sequestered in appreciable 

amounts to feathers, and correlations between tissue concentrations and feather concentrations 

are generally reported to be poor (see Section 6.1.1).  The fact that concentrations of cadmium 

in chick down were largely undetectable in the present study supports the findings of previous 

studies that cadmium is not sequestered into feathers in appreciable amounts.   

Although iron concentrations in feathers are usually high (iron being required in large amounts 

for feather formation), feather concentrations are usually poorly correlated with tissue 

concentrations and concentrations of iron are thought to be regulated homeostatically (Clarkson, 

1986; Burger, 1993).  Again, in the present study the concentrations of iron in gull eggs were 

found to be significantly different between the sites, with significantly greater concentrations of 
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iron measured in the eggs from the Lymington site (post-collection) compared to those from the 

Poole site.  This difference between sites is not reflected in the data for chick down, with mean 

iron concentrations slightly higher in down from Lymington chicks than Poole chicks (35.6 µg/g 

and 22.9 µg/g dry weight, respectively) but no significant difference between sites.  These data 

suggest that feather concentrations of iron may not provide a good reflection of tissue 

concentrations, as the site differences found in the egg concentration data in this study are not 

reflected in the feather data.  However, again it is important to consider the fact that data 

obtained in this study were for eggs only, and data for iron concentrations in sediments from the 

Lymington and Poole areas from previous studies have shown very little difference between the 

two sites (28132 µg/g and 29290 µg/g for Lymington and Poole, respectively; Bryan & 

Langston, 1992).  As no other bird tissues were sampled or current sediment data obtained, it is 

not possible to draw a firm conclusion as to whether iron concentrations in feathers provide a 

good indication of concentrations in internal tissues, and this is an area that would benefit from 

future research. 

No previous studies could be found regarding the relationship between feather concentrations of 

vanadium with those in tissues.  Like zinc, vanadium is an essential element for feather 

formation and the amount sequestered into feathers is thought to be regulated to maintain 

adequate concentrations; feathers are thus generally considered to be poor indicators of the 

vanadium concentration in the body (Clarkson, 1986; Burger, 1993).  In the present study, 

vanadium concentrations were similar in feathers from both the Lymington and Poole chicks 

(mean concentrations 25.8 µg/g and 29.5 µg/g dry weight, respectively), which reflects the 

results for egg concentrations.  On the other hand, if concentrations of vanadium in feathers are 

regulated internally, concentrations in feathers would be expected to be similar, regardless of the 

site and the dietary exposure of the bird to vanadium.  Based on the limited data, it is difficult to 

assess whether feathers can be used as indicators of tissue concentrations of vanadium, and 

further investigation into the regulation in the body and relative tissue contents of vanadium in 

birds is required to clarify the relationship between dietary exposure, tissue concentrations and 

feather concentrations. 

Information regarding the sequestering of copper, manganese, nickel and selenium into feathers 

is conflicting, with some authors reporting correlations between feathers and other tissues 

(Burger, 1993; Gochfeld et al., 1996), and others reporting no correlation (Dauwe et al., 2000; 

Dauwe et al., 2004).  Copper and manganese are essential elements in feather formation and the 

concentrations of these metals are thought to be regulated internally to maintain relatively stable 

concentrations in all tissues, including feathers (Clarkson, 1986; Burger, 1993).  In the present 
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study, concentrations of copper, manganese and selenium were significantly higher in the eggs 

from the Poole site than those from the Lymington site.  Feather data for copper and selenium 

show concentrations to be similar for chick down from both the Lymington and Poole sites 

(respective mean concentrations of 3.79 µg/g and 3.61 µg/g dry weight for copper, and 1.76 

µg/g and 1.84 µg/g dry weight for selenium).  The mean concentration of manganese in feather 

samples from Poole chicks is higher than that of the feathers from Lymington chicks (2.36 µg/g 

and 1.24 µg/g dry weight, respectively), and the mean concentration of nickel in feather samples 

from Lymington chicks is slightly higher than that of the feathers from Poole chicks (0.47 µg/g 

and 0.30 µg/g dry weight, respectively); however, neither difference is statistically significant.  

As the differences in manganese and nickel concentrations in feather samples between the sites 

reflect the differences in the egg samples, it is possible that feathers may provide a good 

indication of manganese and nickel concentrations in other tissues, such as eggs, and of local 

pollution.  However, differences between sites for manganese or nickel concentrations in 

feathers are not statistically significant, unlike the differences in the egg data, and further 

research in to the correlation of feather concentrations of these metals with concentrations in 

other tissues would be beneficial to further investigate this relationship.  The lack of correlation 

between the patterns observed in the egg and feather concentrations of these metals suggests that 

feathers may not be good indicators of tissue concentrations for copper and selenium. 

Lead concentrations in feathers are generally thought to provide a good indication of 

concentrations in other tissues, and a number of authors report correlations between 

concentrations in feathers and tissues, excrement and food samples (Gochfeld et al., 1996; 

Dauwe et al., 2000; Dauwe et al., 2004).  However, other studies have shown little or no 

correlation between tissue and feather concentrations of lead (Battaglia et al., 2005) and 

concentrations of lead in feathers may be confounded by external contamination, for example 

atmospheric deposition.  Feather washing can be used to minimise the amount of external 

contamination of lead and other metals, and chick feathers can also be examined to minimise the 

amount exogenous contamination that birds have been exposed to.  A number of different 

feather-washing methods have been employed in studies, whilst other studies have not 

attempted to wash feathers in any way; all of these different approaches to feather analysis make 

it difficult to compare the results reported in the literature, and no studies have examined the 

relationship between lead concentrations in chick down and those in tissues; thus, the usefulness 

of feathers as indicators of the body burden of lead is far from clear.  In the present study, down 

from chicks less than 48 hours old was analysed in an attempt to minimise the external 

contamination of feathers, and feathers were washed using the method employed most 
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frequently by authors analysing metal concentrations in feathers (see Section 6.2.1).  The 

concentrations of lead in feathers in this study were similar for each of the sites, in contrast to 

the data for egg samples, for which lead concentrations were higher in the post-collection 

Lymington eggs (Lymington Late eggs, i.e. those which were laid after commercial harvesting 

had ceased and were able to develop and hatch) than the Poole eggs.  Based on the results of this 

study, it seems that feathers may not provide a good indication of egg concentrations of lead and 

perhaps, as suggested by previous authors that have also found no correlation between lead 

concentrations in feathers and other samples, some of the reports of relatively high lead 

concentrations in feathers and correlations with those in tissues may be attributable to external 

lead contamination.  The results from the feather washing trials in this study confirm that 

external concentrations of lead (and other metals) contribute significantly to the concentrations 

measured in feathers, with unwashed feathers containing nearly twice the amount of lead as 

those that have been washed (see Section 6.2.1 and Appendix D).  

As previously mentioned, it is important to note that the mass of the feather samples in this 

study was very low - all samples less than 30 mg fresh weight - due to the fact that down was 

obtained by cutting a small amount from the bodies of chicks, and this may have limited the 

results, particularly in the case of those metals for which concentrations in many of the samples 

were undetectable, for example cadmium, cobalt and nickel.  Chick down was sampled in this 

study as it is considered to be more reflective of metal concentrations obtained from the egg and 

diet, and metal concentrations in down are likely to be largely from internal metal loads as 

chicks have had little exposure to the environment (Section 1.3).  When sampling down from 

live chicks only a small sample can be taken, to ensure that the chick is left with an adequate 

cover of feathers for warmth, and the only other way to sample larger samples of chick down 

would be by using a destructive method, or by sampling feathers from chicks that have died of 

natural causes.  The problems with the former option are obvious - non-destructive sampling is 

always preferable, where possible - and the latter option risks biasing the results as chicks that 

have died naturally may have been unhealthy and have a greater body burden of contaminants 

than those chicks that survived.  The small mass of feathers analysed in this study means that the 

concentrations of a number of metals were undetectable in some cases, and it is likely that, had 

larger samples been obtained, some of these metals would have been present at measurable 

concentrations.   
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6.4.2 Comparison with literature data 

Concentrations of arsenic, cadmium, lead, manganese and selenium measured in chick down 

samples in this study are all similar or less than those reported in the literature for feathers of 

young seabirds of various species in previous studies, with the exception of lead for which 

concentrations in the present study were slightly higher than those reported in the literature.  

Unfortunately, no data are available for concentrations of cobalt, copper, iron, nickel, vanadium 

and zinc in feathers of young seabirds from other studies.  Data for adult birds are available for 

cobalt, copper, iron, nickel and zinc, and concentrations reported in previous studies are of 

similar order, or higher than, the concentrations measured in this study.  However, metal 

concentrations in feathers have been shown to vary with age and feather type (see Section 1.3), 

and comparison of the results for concentrations in chick down from the present study with 

results from studies with adult birds examining various feather types is far from ideal. 

Although data were not available for concentrations of vanadium in feathers of juvenile 

seabirds, the concentrations measured in chick down in this study are around 50 times higher 

than those reported in field studies examining vanadium concentrations in adult seabird feathers 

(mean concentration 0.57 µg/g dry weight in literature studies compared to 27.6 µg/g in this 

study).  The vanadium concentrations in eggs in the present study were also 80-150 times higher 

than those reported for seabirds in field studies in the literature, and this similarity between 

sample types suggests that feathers may provide a good indication of vanadium concentrations 

in other tissues, such as eggs.  Unfortunately, no data are available in the literature relating the 

concentrations of metals in chick down to concentrations in internal tissues or negative effects 

on health and survival of birds; thus it is not possible to make an assessment of the potential 

impacts of elevated concentrations of lead and vanadium in black-headed gull chick down on 

the birds themselves. 

6.5 Summary 

This chapter has demonstrated that feathers may provide a good indication of local pollution and 

concentrations of arsenic and zinc in black-headed gull chick down, with the patterns in the 

feather data reflecting the egg data and the potential sources of local pollution.  Although the 

patterns in the feather data for manganese and nickel concentrations reflect those differences 

found in the egg data, the differences between sites in the feather data were not statistically 

significant, whereas the egg data revealed statistically differences between the sites for 
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concentrations of these metals.  Cadmium concentrations on feathers were largely below the 

limit of detection, indicating that cadmium may not be sequestered into feathers in appreciable 

amounts.  Feather concentrations of cobalt, copper, iron, lead and selenium did not reflect the 

patterns observed in the concentrations in eggs.  However, the very small sample size analysed 

for feathers, and the fact that data obtained in this study were for eggs only, means that it is not 

possible to conclude that feather concentrations of these metals do not provide a good indication 

of local pollution or concentrations in eggs, and this area would benefit from future research.  
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CHAPTER 7.  GENERAL DISCUSSION 

This thesis has examined the concentrations of heavy metals and selenium in populations of 

black-headed gulls from different colonies in the UK which have different characteristics and 

are subject to different sources, types and degrees of pollution.  The potential sources of heavy 

metal and selenium pollution around each of the sites have been examined (Chapter 4), the 

concentrations of heavy metals and selenium in black-headed gull eggs measured and the 

potential effects of these contaminants on breeding success assessed (Chapter 5).  The 

partitioning of heavy metals and selenium in the egg has also been investigated.  Concentrations 

of heavy metals and selenium in black-headed gull feathers, specifically chick down, have been 

measured and the usefulness of feathers as a tool for non-destructive monitoring of metal 

pollution discussed (Chapter 6).  Comparisons were also made between a site on which the 

black-headed gull colony is subject to high-level commercial harvesting of eggs and an 

unharvested site, and the impacts of commercial egg collecting on reproductive success and 

contaminant concentrations in eggs investigated (Chapters 2 and 5).  Differences in the nesting 

density of black-headed gulls between the collected and uncollected sites have been explored, 

and the effects of nesting density on egg size assessed (Chapter 3).   

Heavy metals in air, soil, and water are a global problem and present a growing threat to the 

environment.  Even at concentrations insufficient to cause death or other acute effects,  these 

metals may have profound consequences for birds, causing increased susceptibility to disease or 

other stresses, changes to normal behaviour patterns and decreased reproductive success (Heinz, 

1974; Scheuhammer, 1987; Burger & Gochfeld, 1995b; Heinz et al., 1999; see also Section 1.1).  

As well as exhibiting direct effects, heavy metal pollution may also affect bird populations 

through effects on the abundance of prey organisms (Bryan & Langston, 1992).  Seabirds 

feeding at upper trophic levels are exposed to relatively high concentrations of contaminants in 

their prey, making them particularly vulnerable to pollution and susceptible to the effects of 

bioaccumulation, and thus able to provide information on the extent of contamination in the 

whole food chain.  In addition, sampling during the breeding season provides a reflection of 

local pollution, as breeding gulls obtain all food locally prior to and during breeding (Gorke & 

Brandl, 1986).   

Black-headed gulls are on the ‘Amber’ list of the British Trust for Ornithology (BTO) Birds of 

Conservation Concern 2002-2007, indicating that they are of ‘medium’ conservation concern 

(BTO, 2007).  The licensed commercial collection of their eggs for culinary purposes means that 
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black-headed gulls face a unique pressure amongst UK seabirds and enables interesting 

comparisons between collected and uncollected colonies, in addition to comparisons between 

breeding sites in different parts of the UK with differing climates and influenced by different 

types and levels of pollution.  Comparisons have been made between colonies on the south coast 

of England, one subject to commercial collection (Lymington) and one uncollected (Poole) and 

a smaller colony in the northeast of England that is subject to very low-level non-commercial 

collection (Raby). 

This study has been the first to report on a number of aspects of heavy metal pollution and avian 

reproduction, including: 

• the effect of commercial egg harvesting on the physical characteristics of the egg, 

comparing pre- and post-collection eggs from the same site; 

• the relationship between nesting density and egg size and dimensions on a typical 

black-headed gull colony; 

• the effect of commercial egg harvesting on nesting density;  

• the impacts of concentrations of heavy metals and selenium on the intrinsic quality of 

the egg, as reflected by yolk:albumen ratio, and the effects of cobalt, copper, iron, 

manganese, nickel, selenium and vanadium on eggshell thickness and shell index; 

• the partitioning of heavy metals between the egg contents (yolk and albumen); 

• the effect of commercial egg harvesting on metal concentrations in eggs; and 

• concentrations of heavy metals and selenium in the down feathers of young chicks. 

The following discussion will bring together and evaluate some of the key findings from the 

data chapters of this study, point out some likely implications of these findings and suggest 

areas of study that would benefit from future research. 

7.1 Heavy metals in black-headed gull eggs and feathers 

This study has provided general information regarding the level of heavy metal and selenium 

exposure of black-headed gulls on three different UK colonies, and identified some potential 

sources of metal contamination in these areas.  The concentrations of arsenic, copper, nickel, 
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selenium and vanadium measured in black-headed gull eggs in this study were consistently high 

relative to those reported in previous field studies with other seabird species, for all sites 

examined.  The elevated concentrations of these metals in black-headed gull eggs compared 

with those of other gull and seabird species may be associated with  the  considerable amount of 

time spent foraging on land, in comparison.  Black-headed gulls may therefore be exposed to 

more land-based sources of metals than most other species of seabird.  Arsenic, copper, nickel, 

selenium and vanadium are all metals associated with urban and agricultural runoff (see Section 

4.2), and thus birds feeding on farmland and in urban areas might be exposed to more elevated 

levels of these pollutants  than seabirds that spend little time on land.  Mean concentrations were 

particularly high at all sites compared to those reported in the literature for vanadium, with 

concentrations in this study over 80 times higher than the concentrations reported in the eggs of 

other seabird species.  The concentrations of vanadium in black-headed gull eggs in this study 

were consistently high, regardless of the site and the potential sources of pollution.  In addition, 

vanadium concentrations in down from chicks from the Poole and Lymington colonies were 

also considerably higher than those reported in the literature for feathers of other seabirds.  As 

the concentrations of vanadium were consistently high for all the sites sampled in this study, it 

seems that the concentrations of vanadium measured in the eggs and feathers of black-headed 

gulls in this study might be considered representative of the species.  As previously mentioned, 

black-headed gulls are exposed to more land-based sources of contaminants than most other 

seabird species; increased exposure to vanadium may result from foraging in urban areas and on 

farmland where elevated levels of vanadium may be encountered owing to its release from 

vehicle emissions and use in mineral fertilisers (Denton et al., 1997; Legret & Pagotto, 1999).  

No previous studies have examined the concentrations of vanadium in the eggs or feathers of 

black-headed gulls, and further research would be required to assess whether the vanadium 

concentrations measured in the present study can be considered ‘normal’ for this species.   

The analysis of heavy metals and selenium in this study has highlighted the importance of 

considering diffuse and historical pollution in addition to current industrial discharges, with the 

Poole samples having higher concentrations of the majority of metals than the Lymington 

samples, in spite of the larger scale of industrial and other point-source discharges around the 

Lymington site.  Diffuse pollution is defined as pollution arising from many sources, which may 

be small individually, but the collective impact of which can be damaging.  This confirms the 

general opinion in the scientific community that, with point source discharges carefully 

monitored and subject to tight consents, diffuse pollution, which by its very nature is extremely 

difficult to quantify and control, has become increasingly important in terms of environmental 
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pollution (CIWEM, 2004).  As heavy metals do not break down in the environment, historical 

pollution is also very important.  Poole Harbour, particularly the Holes Bay area, has been 

historically subject to heavy pollution as a result of a number of industrial releases of heavy 

metals, most notably discharges from a large chemical manufacturing plant, that have left a 

legacy of heavy metal pollution in the sediments of the Harbour.  The impact of historical 

pollution as a result of anthropogenic activities is also reflected in the egg samples taken from 

the gulls nesting on the Raby estate in this study.  The area of the Raby site was historically 

mined for lead, with the gull colony itself being located on old lead mining dams.  In this study, 

concentrations of lead in eggs from the Raby colony were significantly higher than eggs from 

any other colony and approximately six times higher than those reported in literature for eggs of 

other gull species, reflecting the elevated levels of lead in the area.    

Very few studies have examined the effects of metals on the physical characteristics of the egg.  

Some authors have examined the impacts of certain metals on eggshell thickness, namely for 

arsenic, cadmium, lead, vanadium and zinc (Haegele & Tucker, 1974; Leach et al., 1979; 

Ousterhout & Berg, 1981; Hussein et al., 1988; Davis et al., 1995; Bressman et al., 2002); there 

is no information regarding the impacts of cobalt, copper, iron, manganese, nickel, or selenium 

on eggshell thickness, and this study is the first to examine the effects of any of these metals on 

other egg characteristics, such as the relative amounts of yolk and albumen.  Concentrations of 

cobalt, iron and nickel in black-headed gull eggs in this study were significantly correlated with 

the wet weight of albumen and the yolk:albumen ratio (Section 5.4.1), with the wet weight of 

albumen increasing and the yolk:albumen ratio decreasing with increasing metal concentration.  

Concentrations of cobalt, iron and nickel were also found to increase with relaying, with 

concentrations in post-collection eggs significantly higher than pre-collection eggs from the 

same site (see also Section 7.2).    

Concentrations of arsenic, cadmium, copper, lead, manganese, selenium, vanadium and zinc 

measured in this study do not appear to have any significant effect on the physical 

characteristics of the egg in terms of shell thickness, shell index, mass of yolk, albumen, shell or 

total egg, egg volume, egg length and breadth or yolk:albumen ratio (Section 5.4.1).  Although 

the concentrations of these metals in this study have no significant effect on the physical 

characteristics of the egg, even for those which were measured at concentrations far higher than 

those in gull and seabird eggs in previous studies, it cannot be conclusively said that the metals 

examined in this study have no significant effect on the breeding success of black-headed gulls, 

as no investigation was made into the hatching success, fledging or survival of the chicks on the 

sites.  Further study examining the hatching and post-hatching success of chicks on sites subject 
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to high levels of metal pollution compared with less polluted sites would go a step further 

towards clarifying the relationship between metals concentrations and breeding success of 

black-headed gulls (see Section 7.3). 

Although some authors have examined metal partitioning between eggshell and contents, only 

one previous study has examined partitioning between the egg contents themselves, and only for 

selenium (Magat & Sell, 1979).  This thesis has addressed some of the gaps in the knowledge 

regarding the partitioning of heavy metals and selenium in eggs, providing information on the 

partitioning of metals not only between egg contents and shell, but also between yolk and 

albumen (Section 5.3.3).  The results have shown that, in black-headed gull eggs, arsenic, iron, 

manganese, lead, selenium, vanadium and zinc are partitioned more to egg contents than shell, 

and cadmium, cobalt and nickel are found at higher concentrations in the shell than egg 

contents.  Copper is partitioned roughly equally between contents and shell.  In terms of 

partitioning within the egg contents, the results of this study show that arsenic, copper, 

vanadium and selenium concentrations are higher in the albumen than the yolk, and cobalt, iron, 

manganese, nickel, lead and zinc concentrations are higher in the yolk than the albumen.  For 

cadmium, which is partitioned mainly to eggshell, the concentrations in egg contents were 

largely undetectable, and thus partitioning in contents is insignificant.  The information 

provided in this study with regard to partitioning of heavy metals and selenium in the egg will 

allow future studies to adopt a more targeted approach to the analysis of metals in eggs.  

Previous studies have often focused on egg contents and have neglected to analyse eggshell at 

all (for example: Hernández et al., 1988; González & Hiraldo, 1988; Burger & Gochfeld, 1991; 

Baranowska et al., 2005), and analysis of egg contents has examined homogenised contents 

rather than separate components.  For some metals, namely cadmium, cobalt and nickel, 

previous studies that have reported low or undetectable concentrations in eggs (for example: 

Sell, 1975; Scheuhammer, 1987; Burger & Gochfeld, 1993; Braune & Simon, 2004) may have 

done so because the authors neglected to analyse the egg shell.  In addition, it may be prudent 

for future studies examining metals in egg contents to focus the analysis on one particular 

component of the egg; for example, in terms of egg contents, iron, lead, manganese and zinc are 

present almost entirely in the yolk and, when looking at low concentrations, analysis of 

homogenised egg contents will only serve to dilute the concentrations of these metals in the 

sample.  For these metals, particularly when concentrations are very low, it may be argued that 

analysis of yolk rather than egg contents as a whole would provide the best assessment of 

concentrations on the egg contents.  Ideally, in order to obtain accurate results for total 

concentrations in the egg, all three egg components should be examined separately. 
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A number of authors have measured concentrations of heavy metals and selenium in seabird 

feathers.  However, studies have shown that metal concentrations in feathers vary greatly 

according to the type of feather sampled and the age and sex of the bird, and exogenous 

contamination means that metal concentrations measured in feathers in many studies may not 

provide an accurate reflection of the body burden.  This study has demonstrated that washing 

feathers removes at least some of this external contamination and, combined with the sampling 

of down of very young chicks (less than 48-hours old), the level of external contamination was 

minimised.  Although some studies have examined metal concentrations in the feathers of 

juvenile birds, this study is the first to examine metal concentrations in chick down.  In addition, 

very few studies have investigated the relationship between feather concentrations and those in 

other tissues for metals other than mercury, lead and cadmium.  This study has compared the 

trends observed in metal concentrations in eggs between sites with those observed for feathers, 

in order to provide some indication of the usefulness of feathers as indicators of heavy metal 

and selenium contamination.  The results suggest that feathers may be good indicators of arsenic 

and zinc contamination, with the significant site differences observed in the egg data reflected in 

the feather data.  The patterns in the egg data were also reflected in the feather data for 

manganese and nickel, indicating that feathers may also provide a reflection of concentrations in 

eggs and of local pollution for these metals.  However, the differences between sites for the 

feather data for these metals were not statistically different, while the differences in the egg data 

were significant.  In line with the egg data, concentrations of vanadium in the feather samples 

were similar for each of the sites.  However, vanadium concentrations in eggs were considerably 

higher than those reported in previous studies with seabirds, and concentrations measured in 

feathers were also considerably higher than those measured in previous studies; thus it is 

possible that sequestering of vanadium into feathers may be significant, and feathers may 

provide a good indication of vanadium contamination.  The differences observed between sites 

in the egg data are not reflected by the feather data for cobalt, copper, iron, lead and selenium, 

suggesting that feathers may not provide a good indication of contamination for these metals.  

However, the nature of the sampling technique used in this study meant that the down samples 

taken were very small and concentrations measured were very low and, in some cases, largely 

undetectable.  The small sample mass and low metal concentrations in the samples have 

unfortunately limited the conclusions that can be drawn from the feather data reported in this 

study, and it would be beneficial to analyse larger samples to make a more accurate assessment 

of metal concentrations in chick down (see Section 7.3). 
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7.2 Impacts of commercial egg harvesting 

Black-headed gull eggs have been harvested on the Lymington colonies for centuries, a practice 

which has been licensed since the implementation of the Wildlife and Countryside Act (1981).   

Data regarding the effects of commercial harvesting on reproductive success are limited, and no 

previous studies have examined the effects of commercial egg collecting on the concentrations 

of metals in eggs, nor the impacts on nesting density.  In addition to the concentration of metals 

in eggs as a result of relaying forced by commercial egg collection, this study is also the first to 

analyse differences between pre- and post-collection eggs from the same commercially 

harvested colony in terms of the physical characteristics. 

The results from the investigations into the differences in size, dimensions and composition of 

black headed gull eggs have shown the post-collection Lymington eggs to be of a lower quality 

than the first-laid, pre-collection eggs and the eggs from the uncollected Poole site, as indicated 

by the decreased yolk:albumen ratio.  Although no difference in egg size and dimensions 

(length and breadth) was observed between pre- and post-collection eggs, the post-collection 

eggs contained a significantly greater mass of albumen and a significantly lower ratio of 

yolk:albumen.  The ratio of yolk to albumen is generally considered to provide a better 

reflection of the intrinsic quality of the egg than egg size, as larger eggs often contain relatively 

more albumen and less yolk (Romanoff & Romanoff, 1949; Parsons, 1976a; Nisbet, 1978; 

Ricklefs et al., 1978; Finkler et al., 1998; Lessells et al., 2002) and, as yolk is the food reserve 

for the developing chick, large-yolked eggs provide more lipid energy and hatch larger chicks 

(Carey, 1996; Finkler et al., 1998).  In the one previous study examining the effects of 

commercial egg harvesting on black-headed gull eggs, the eggs from collected colonies had 

significantly thinner shells than those from uncollected colonies (Wood et al., 2009).  In the 

present study no significant difference was found for eggshell thickness or shell index between 

eggs from the collected Lymington colony and the uncollected Poole colony.  Eggshell 

thickness and shell index were higher in the Lymington eggs sampled prior to commercial 

collection than those sampled at the end of the collection period; however, neither difference 

was statistically significant.  Eggs with thinner shells are more likely to break and thinner shells 

may lead to increased water loss, possibly leading to desiccation of the egg and embryo and thus 

resulting in decreased hatching success (Davis & Ackerman, 1987; Eeva & Lehikoinen, 1995; 

Nybø et al., 1997).  Indeed, in a previous study Wood et al. (2009) report a significantly higher 

proportion of desiccated and un-hatched eggs on the collected Lymington colony compared 

with the uncollected Poole colony. 
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One of the principal difficulties with gauging the impact of egg harvesting is to find sufficient 

replicate sites to avoid confounding influences such as colony size and nest position, and the 

reduced geographical range of black-headed gulls means that insufficient colonies exist within 

the same geographical area to estimate interactions between all potential effects (Wood, 2007).  

In order to minimise variation, this study has compared collected and uncollected colonies of 

similar size, both off the south coast of England, and nests from similar positions within the 

colony.  To validate this strategy, the effect of nest position and nesting density on egg size and 

dimensions was examined.  The relationship of nest position and nesting density with breeding 

success of black-headed gulls has only been examined in one previous study, which was carried 

out nearly 50 years ago and examined an atypical colony nesting on sand dunes and, being far 

more accessible to land predators than the more typical ‘island’ colonies, with an exceptionally 

high mortality rate (Patterson, 1965).  This study is the first to examine the relationship between 

nest density and breeding success on a typical black-headed gull colony.  The results show that, 

within the main colony, there was no variation in egg size with nest location or with nesting 

density, which is in agreement with the findings of the Patterson (1965) study.  However, this 

study examined only egg size and dimensions, and future studies examining hatching and 

survival of chicks would be beneficial to further examine the relationship between nest location, 

nesting density and breeding success (see Section 7.3).  

The average nesting density on the Lymington colony was found to be significantly lower than 

on the Poole colony (Chapter 3), which could be an indication that nesting on the Lymington 

colony is less desirable than nesting on the Poole colony, owing to the fact that the gulls nesting 

on the Lymington colony are forced to relay several times as a result of the egg collecting.  In 

addition,  the Lymington islands are far more prone to flooding (Wood, 2007) than the islands 

located in the much more sheltered Poole Harbour; this flooding leads to loss of eggs and young 

chicks, which may make the Lymington salt marshes less desirable habitat that the Poole salt 

marshes. Loss of habitat due to the rapid erosion of the salt marsh islands that the gulls nest on 

may also be a contributing factor; both the Poole and Lymington marshes are eroding, however, 

the salt marsh at Lymington is eroding at twice the rate of the salt marsh at Poole, with the 

seaward edge of the salt marsh eroding at a rate of around three metres per year (SCOPAC, 

2004a; SCOPAC, 2004b) and 81% of the marsh lost between 1921 and the early 2000s as a 

result of this erosion (New Forest District Council, 2004a).   

This study is the first to examine the concentration of metals in the egg as a result of forced 

relaying due to commercial egg harvesting.  The results have demonstrated the concentration of 

metals through the laying sequence, with the first-laid eggs of the birds on the collected 
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Lymington colony containing lower concentrations of a number of metals than those eggs laid 

at the end of the collection period (Chapter 5).  As a result of harvesting, the gulls will have laid 

several clutches prior to this clutch of ‘late’ eggs, and these eggs (which are those that would 

finally be left undisturbed and allowed to develop and hatch) have been shown by this study to 

contain significantly higher concentrations of cobalt, iron and nickel than the first laid eggs, and 

a significantly lower yolk:albumen ratio.  Thus, continued relaying as a result of loss of eggs 

through commercial egg harvesting has been shown to lead to concentration of the heavy metals 

cobalt, iron and nickel, which in turn are associated with a decrease in egg quality, as indicated 

by the relative amount of yolk.   

Although the average concentrations of arsenic, lead, manganese and selenium were higher in 

post-collection eggs compared to pre-collection eggs, the differences were not statistically 

significant, and the concentrations of metals other than cobalt, iron and nickel in the post-

collection eggs were not associated with any effect on the physical characteristics of the egg 

(Section 5.4.1), and are not of a level thought to have a negative impact on breeding success 

(Section 5.4.3).   However, the increased concentration of these metals in eggs as a result of 

commercial egg harvesting could have consequences for black-headed gulls nesting in areas 

with higher levels of metal pollution, or following a pollution incident, as the concentration of 

metals in the egg could then result in levels in the egg sufficient to have a negative impact on 

the egg or the developing embryo.   

7.3 Future work 

This thesis has examined a number of aspects of heavy metal and selenium pollution and avian 

reproduction that have not previously been investigated.  The results presented have also 

generated a number of interesting ideas and questions which provide a strong foundation for 

future work, and highlighted some areas where information is sorely lacking.  

It is clear that toxicity studies with heavy metals and selenium, particularly chronic dietary 

studies (i.e. long term, repeated exposure), examining the amount of metals sequestered into the 

eggs of breeding female birds as a result of dietary exposure, and impacts of these 

concentrations on reproductive success such as egg quality, hatching success, fledging success, 

and survival, are required to increase understanding into the ecotoxicological effects of metals.  

Studies regarding the effects of metals on reproductive success are extremely limited, 

particularly for metals other than cadmium, lead and selenium, and most have been carried out 
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only with domestic bird species.  Although the present study has shown that the concentrations 

of metals measured at the sites examined have not had a significant impact on the eggs of black-

headed gulls, the hatching success and chick fledging and survival have not been examined, and 

thus no definite conclusion can be drawn regarding the effects of heavy metals and selenium on 

the breeding success of the birds.  Further study examining the hatching and post-hatching 

success of chick on sites subject to high levels of metal pollution compared with less polluted 

sites would go a step further towards clarifying the relationship between metals concentrations 

and breeding success of black-headed gulls.  As the egg must be destroyed in order to perform 

metal analysis, the metal concentrations in the egg and the resultant chick cannot possibly be 

examined.  However, it may be possible to examine metal concentrations in one egg of the 

clutch and then monitor the hatching and fledging success of the chicks hatching in the same 

nest, and relate these to metal concentrations in the sampled egg.   

Given the importance of speciation in terms of the toxicity of some metals (for example arsenic, 

lead, selenium and vanadium), studies examining the speciation of metals in the egg would be 

beneficial, and may also provide further insight into the sources of the metals.   

For some metals, particularly iron, nickel and vanadium, further field studies examining the 

concentrations in seabird eggs would be extremely valuable with regard to making comparisons 

between different species and providing an indication of general concentrations of these metals 

in eggs.  It would also be beneficial to examine the metal concentrations in the environment 

(water, sediments and so on) and in prey organisms at each of the sites, and relate these to the 

concentrations of metals measured in black-headed gull eggs and feathers.  This would further 

clarify the relationship between exposure of the gulls to heavy metals and how this is reflected 

in egg and feather samples, and would also provide information as to whether concentrations of 

metals are of an order likely to have a detrimental effect on prey organisms such as shellfish, 

worms, insects and fish, resulting in a prey shortage and potentially having a negative effect on 

the gulls and other bird species in the area.  Examination of failed eggs and chicks found dead 

through no obvious cause would also be useful to assess whether these chicks have abnormally 

high body burdens of metals.  The human health effects of consuming wild birds eggs, which 

may contain elevated levels of contaminants, is also an area of research worthy of investigation. 

The results from this study have shown that nesting density does not have a significant effect on 

egg size.  Again, these results do not provide a conclusive answer to the question of whether 

nest density has an effect on reproductive success, and further study examining hatching 

success, fledging and survival of chicks would  provide a more accurate indication of the 
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relationship between breeding success and nest density.  This area of research would also 

benefit from extension of the range of nests examined, to include those birds nesting outside the 

main colony as well as those in the centre and at the edges of the main colony.   

Data regarding metal concentrations in seabird feathers are limited or non-existent, particularly 

for juvenile birds.  Further study regarding the concentrations of heavy metals and selenium in 

seabird feathers would be useful for future research, and future studies concentrating on chick 

down and using appropriate feather washing techniques, therefore eliminating much of the 

exogenous contamination and allowing comparison between studies, would be particularly 

valuable.  In addition there is very little information in the literature regarding concentrations of 

metals in feathers compared to those in tissues, and the limited data are often conflicting.  

Further research into the regulation of essential metals in the body and relative tissue 

concentrations of heavy metals and selenium in birds is required to clarify the relationship 

between dietary exposure, tissue concentrations and feather concentrations.  Dietary studies 

with young chicks exposed to heavy metals and selenium and the resulting concentrations in 

down feathers would be particularly useful in order to clarify the relationship between dietary 

exposure and sequestration into growing feathers. 

One of the key problems with the feather analysis in this study was the amount of sample that 

was able to be collected.  The advantage of using chick down for metal analysis in feathers is 

that, combined with an appropriate washing technique, contamination from external sources can 

be minimised and the metals in the feathers can be considered to represent the chick’s body load 

of contaminants.  However, the sampling of down from live chicks in this study meant that the 

mass of feathers that could be sampled was limited, as it would have been detrimental to the 

chicks to take a large amount of down and leave them exposed to cold conditions and with little 

protection against the elements.  Unfortunately, the small amount of feathers analysed in this 

study meant that a number of metals were undetectable in the vast majority of the samples, and 

it is likely that concentrations of these metals, namely arsenic, cadmium, cobalt and nickel, may 

have been detectable under different circumstances.  Although this study is the first to examine 

the concentrations of heavy metals and selenium in chick down, the small sample mass and low 

metal concentrations therein have limited the conclusions that can be drawn from the data 

reported here.  It would be beneficial to analyse larger samples or use a more sensitive 

analytical method to make a more accurate assessment of the concentrations in chick down and 

to better examine the usefulness of feathers as indicators of heavy metals and selenium 

concentrations in the body.  One way of overcoming this issue would be to use a high-resolution 

ICP-MS (HR ICP-MS), which has a higher sensitivity than standard ICP-MS and is capable of 
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measuring concentrations of trace elements at parts-per-trillion (ppt), or even parts-per-

quadrillion (ppq) level (EAI, 2010).  Larger down samples could also be obtained, either by 

pooling small samples taken from a number of chicks, by examining down and tissues of dead 

chicks, or by destructive sampling.  The latter two options allow for direct comparison to be 

made between heavy metal and selenium concentrations in the tissues and those in the down, 

which would provide much-needed clarification regarding the sequestering of metals into 

feathers.  However, the risk with sampling feathers and tissues from chicks that have died of 

natural causes is that those chicks could have an unrepresentative body burden of contaminants 

as they may have been produced by birds that have been particularly affected by pollutants 

(Furness et al., 1993); thus sampling of tissues from dead chicks may not provide a true 

reflection of metal levels in the colony as a whole.  Destructive sampling, although not always 

desirable, would be the most accurate method of assessing the metal levels in the chicks of the 

colony as a whole, and relating the concentrations in chick down to concentrations in body 

tissues.  If chicks found dead were sampled alongside healthy chicks, this would also enable 

comparison between the metals in tissues of apparently healthy chicks and those that died as a 

result of unknown causes. 

7.4 Concluding remarks 

This study has provided information regarding the concentrations of heavy metals and selenium 

in black-headed gull eggs and feathers, and has demonstrated the ability of metal concentrations 

in eggs to provide a reflection of local pollution.  The partitioning of metals in eggs has been 

investigated, and the findings will enable future studies to adopt a more targeted approach to 

metal analysis in eggs; this is particularly important as the concentrations of many heavy metals 

in eggs are very low.  The usefulness of feathers in providing an indication of local pollution 

and concentrations in eggs has been demonstrated for cadmium and zinc.  However, there were 

a number of limitations to this study, particularly in terms of the mass of feather samples 

analysed, and further investigation into the potential of feathers to provide an indication of local 

pollution and metal concentrations in other tissues would be a useful and interesting topic for 

future studies.   

Nesting density and nest location (centre of colony vs colony edge) has been demonstrated to 

have no significant effect on the size and dimensions of black-headed gull eggs.  However, only 

one measure of reproductive success was investigated (egg size), and investigations into the 

relationship between nesting density, nest location and reproductive success in black-headed 
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gulls would benefit from examining other measures of breeding success, beyond the size of the 

egg. 

The licensed collection of black-headed gull eggs on the South coast of England has been 

carried out for centuries and, although the gulls will replace lost eggs, the production of eggs 

demands high energy and requires mobilisation of body reserves.  This study has shown that the 

licensed collection of black-headed gull eggs is having a negative impact on egg quality (in 

terms of yolk:albumen ratio and possibly shell thickness and shell index) and leads to an 

increase in the concentration of some metals, particularly cobalt, iron and nickel, in the egg as a 

result of repeated relaying.  The increased concentrations of cobalt, iron and nickel in black-

headed gull eggs after gulls have been forced to relay several times following commercial egg 

harvesting are significantly correlated with a decrease in the intrinsic quality of the eggs, 

indicated by yolk:albumen ratio.  In light of these results, the level of commercial egg collecting 

carried out on black-headed gull colonies may need to be reviewed, especially considering their 

conservation status.  This would particularly apply to breeding colonies located on coastal 

islands, as these gulls are also threatened by destruction of habitat associated with sea level rise, 

climate change and salt marsh erosion and dieback (Colenutt, 2005; Wood, 2007; Williams et 

al., 2009; Williams, in preparation). 
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APPENDIX A: PEARSON’S CORRELATION ANALYSIS 

FOR NEST DENSITY STUDY 

Table A.1 Pearson’s correlation analysis for egg size with nest density: Lymington site 

(n = 20) 

Egg Measurement
Radius 

(m)
r p Relationship

Egg 1 Length 2 0.290 0.070 none

Breadth 2 0.003 0.986 none

Volume 2 0.129 0.427 none

Length 5 0.273 0.088 none

Breadth 5 -0.013 0.937 none

Volume 5 0.111 0.494 none

Egg 2 Length 2 0.257 0.110 none

Breadth 2 -0.056 0.730 none

Volume 2 0.084 0.605 none

Length 5 0.270 0.092 none

Breadth 5 -0.041 0.799 none

Volume 5 0.103 0.526 none

Egg 3 Length 2 0.020 0.904 none

Breadth 2 -0.020 0.901 none

Volume 2 0.000 0.998 none

Length 5 0.118 0.467 none

Breadth 5 -0.032 0.843 none

Volume 5 0.027 0.870 none  

Table A.2 Pearson’s correlation analysis for egg size with nest density: Poole site        

(n = 20) 

Egg Measurement
Radius 

(m)
r p Relationship

Egg 1 Length 2 0.068 0.678 none

Breadth 2 -0.142 0.383 none

Volume 2 0.028 0.866 none

Length 5 0.292 0.068 none

Breadth 5 0.023 0.889 none

Volume 5 0.091 0.575 none

Egg 2 Length 2 -0.160 0.324 none

Breadth 2 -0.103 0.527 none

Volume 2 -0.122 0.455 none

Length 5 0.029 0.861 none

Breadth 5 -0.001 0.997 none

Volume 5 0.020 0.902 none

Egg 3 Length 2 0.004 0.981 none

Breadth 2 0.005 0.978 none

Volume 2 -0.128 0.432 none

Length 5 0.037 0.82 none

Breadth 5 -0.017 0.917 none

Volume 5 0.040 0.809 none    
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APPENDIX B: INDUSTRY AND WASTE AROUND THE 

LYMINGTON, POOLE AND RABY SITES 

 

Water Industry Chemical Industry Mineral Industry

Waste Processes Metal Production and Processing Other Industry

Fuel and Power Production Radioactive Substance Sites  

 

Table B.1 Industry and waste sites around the Lymington colony 

Map Ref 

no.
Company/site name

1 Christchurch STW

2 Pennington STW

3, 4, 5 Efford Landfill

6 Contract Heat and Power Ltd.

7 SP Systems

8 Fairlee STW

9 Lyn Bottom Landfill

10 Cowes Power (Gas Turbine) Station

11 GKN Westland Aerospace (Holdings) Ltd.

12 Poligrat UK Ltd.

13 Fawley Power Station

14 NPower Cogen Ltd., Esso Refinery

15 EXXON Mobil Chemical Ltd.

16 Cognis UK Ltd.

17 BP CHP (UK) Ltd.

18 Ondeo Nalco Ltd.

19 Polimeri Europe UK Ltd.

20 BP Oil (UK) Ltd., Hamble Oil Terminal

21 Aerostructures Hamble Ltd.

22 Woolston STW

23 Marchwood Industrial Estate

24 University of Southampton National Oceanography Centre

25 Slowhill Copse STW

26 Holmsley Pit Landfill

27 Selex Sensors and Airbourne Systems Infrared Ltd.

28 Millbrook STW

29 A and P Southampton Ltd., Coating, Printing, Textiles

30 Bacardi Martini Ltd., Animal, Vegetable and Food

31 Royal Bournemouth and Christchurch NHS Hospitals

32 Koppers UK Ltd.

33 Rank Hovis Ltd., Solent Flour Mills

34 Morgan Advanced Ceramics Ltd.

35 SPI Lasers

36 Ryvan Chemical Co. Ltd.

37 Portswood STW

38 University of Southampton, Boldrewood Campus

39 Southampton University Hospitals NHS Trust

40 BUPA Hospitals

41 Ringwood STW

42 Bournemouth (Holdenhurst) STW

44 HMS Daedalus

Industry 

type
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Table B.2 Industry and waste sites around the Poole colony 

Map Ref 

no.
Company/site name

1 AEA Technology Plc.

2 Viridor Waste Management Ltd.

3 AMEC Nuclear UK Ltd.

4 Centre for Ecology and Hydrology

5 Ministry of Defence

6 UKAEA and NUVIA Ltd.

7, 8 BP Exploration Operating Co. Ltd.

9 Swanage STW

10, 11 BP Exploration Operating Co. Ltd., Wytch Farm

12, 13 Tatchells Landfill

14 Merck Ltd.

15 Poole Technical Plating Systems Ltd.

16 Bowmill Metal Treatments Ltd.

17 Poole Hospital NHS Trust

18 SITA Products and Service Ltd.

19 SITA UK Ltd.

20 Corfe Mullen Landfill

21 OSS Group Ltd.

22 Solvwaste Environmental Ltd.

23 W H White Plc.

24 Siemens Power Generation Radiation Monitoring

25 Poole Real Estate Ltd.

26 Poole STW

27 Iracroft Ltd.

28, 29 Sigma-Aldrich Co. Ltd.

30 Magellan Aerospace Bournemouth Ltd.

31 University of Bournemouth, Talbot Campus

32 Royal Bournemouth and Christchurch Hospital

33 Christchurch STW

34 Bournemouth (Holdenhurst) STW

35 Bournemouth (Kinson) STW

36 Flight Refuelling Ltd.

37 Wimbourne STW

38 Cleansing Service Group Ltd.

39 Goldenfuels Ltd.

40 Viridor Waste (Exeter) Ltd.

41 Portsmouth Aviation Ltd.

42 Palmersford STW

43 Ringwood STW

44 Chambers Runfold Plc.

45 Onyx Landfiill Ltd.

46 Heritage Farm Landfill

47 Veolia ES Landfill Ltd.

48 J & G Environmental Ltd.

49 Faccenda Group Ltd., Brook Mill

Industry 

type

 

Table B.3 Industry and waste sites around the Raby colony 

Map Ref 

no.
Company/site name

1 British Gypsum Ltd.

2 Appleby STW

3 Blue Circle Cement

4 Cotherstone Moor

Industry 

type
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APPENDIX C: RECOVERY DATA FOR METALS IN EGG 

COMPONENTS  

Note: recovery data highlighted in grey was not included in the calculation of average recovery 

Table C.1 Recovery data for multi-element-spiked eggs: arsenic 

Sample As spiked (µg)

Spiked [As] in 

sample after 

treatment (µg/g)

[As] blank-

corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 2.762 2.557 92.5

2 50 12.46 9.741 78.2

Yolk - spiked 3 100 29.45 26.04 88.4 88.2
4 250 71.45 65.36 91.5

5 500 125.3 113.3 90.4

1 10 4.562 4.327 94.8

2 50 21.87 18.97 86.8

Albumen - spiked 3 100 41.31 38.97 94.3 85.1
4 250 96.04 83.65 87.1

5 500 242.6 151.7 62.5

1 10 2.793 2.132 76.3

2 50 13.21 10.98 83.1

Shell - spiked 3 100 39.62 26.49 66.9 73.9
4 250 64.32 45.64 71.0

5 500 128.8 93.24 72.4  

Table C.2 Recovery data for multi-element-spiked eggs: cadmium 

Sample Cd spiked (µg)

Spiked [Cd] in 

sample after 

treatment (µg/g)

[Cd] blank-

corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 2.5 0.691 0.661 95.7

2 12.5 3.114 2.584 83.0

Yolk - spiked 3 25 7.362 7.084 96.2 96.2
4 62.5 17.86 19.24 107.7

5 125 31.33 30.76 98.2

1 2.5 1.141 1.062 93.1

2 12.5 5.468 4.936 90.3

Albumen - spiked 3 25 10.33 10.02 97.1 87.5
4 62.5 24.01 22.55 93.9

5 125 60.65 38.42 63.3

1 2.5 0.698 0.471 67.5

2 12.5 3.303 2.634 79.7

Shell - spiked 3 25 9.905 6.792 68.6 74.1
4 62.5 16.08 12.63 78.6

5 125 32.20 24.54 76.2  
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Table C.3 Recovery data for multi-element-spiked eggs: cobalt 

Sample Co spiked (µg)

Spiked [Co] in 

sample after 

treatment (µg/g)

[Co] blank-

corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 2.762 2.860 103.5

2 50 12.46 10.84 87.0

Yolk - spiked 3 100 29.45 29.60 100.5 102.7
4 250 71.45 83.35 116.7

5 500 125.3 132.6 105.8

1 10 4.562 4.724 103.6

2 50 21.87 20.77 95.0

Albumen - spiked 3 100 41.31 42.76 103.5 94.6
4 250 96.04 96.52 100.5

5 500 242.6 171.3 70.6

1 10 2.793 2.122 76.0

2 50 13.21 13.12 99.3

Shell - spiked 3 100 39.62 32.24 81.4 86.1
4 250 64.32 58.91 91.6

5 500 128.8 105.6 82.0  

Table C.4 Recovery data for multi-element-spiked eggs: copper 

Sample Cu spiked (µg)

Spiked [Cu] in 

sample after 

treatment (µg/g)

[Cu] blank-

corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 2.762 3.679 133.2

2 50 12.46 11.07 88.9

Yolk - spiked 3 100 29.45 31.09 105.6 108.3
4 250 71.45 78.80 110.3

5 500 125.3 129.6 103.4

1 10 4.562 3.974 87.1

2 50 21.87 18.70 85.5

Albumen - spiked 3 100 41.31 41.51 100.5 85.9
4 250 96.04 86.69 90.3

5 500 242.6 160.1 66.0

1 10 2.793 1.971 70.5

2 50 13.21 12.37 93.6

Shell - spiked 3 100 39.62 29.55 74.6 79.9

4 250 64.32 51.46 80.0

5 500 128.8 103.9 80.7  

Table C.5 Recovery data for multi-element-spiked eggs: iron 

Sample Fe spiked (µg)
Spiked [Fe] in sample 

after treatment (µg/g)

[Fe] blank-

corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 2.762 19.39 701.9

2 50 12.46 13.03 104.6

Yolk - spiked 3 100 29.45 46.72 158.7 138.4
4 250 71.45 111.9 156.6

5 500 125.3 167.3 133.5

1 10 4.562 ND -

2 50 21.87 8.273 37.8

Albumen - spiked 3 100 41.31 31.82 77.0 73.8
4 250 96.04 75.97 79.1

5 500 242.6 158.7 65.4

1 10 2.793 5.715 204.6

2 50 13.21 17.16 129.8

Shell - spiked 3 100 39.62 27.12 68.4 82.5
4 250 64.32 38.59 60.0

5 500 128.8 92.60 71.9  
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Table C.6 Recovery data for multi-element-spiked eggs: lead 

Sample Pb spiked (µg)

Spiked [Pb] in 

sample after 

treatment (µg/g)

[Pb] blank-

corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 2.762 2.980 107.9

2 50 12.46 12.06 96.8

Yolk - spiked 3 100 29.45 31.39 106.6 106.9
4 250 71.45 84.69 118.5

5 500 125.3 131.1 104.6

1 10 4.562 4.231 92.7

2 50 21.87 20.26 92.6

Albumen - spiked 3 100 41.31 42.93 103.9 91.5
4 250 96.04 97.99 102.0

5 500 242.6 161.1 66.4

1 10 2.793 13.53 484.4

2 50 13.21 12.32 93.3

Shell - spiked 3 100 39.62 30.61 77.3 85.1
4 250 64.32 52.42 81.5

5 500 128.8 113.6 88.2  

Table C.7 Recovery data for multi-element-spiked eggs: manganese 

Sample Mn spiked (µg)

Spiked [Mn] in 

sample after 

treatment (µg/g)

[Mn] blank-

corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 2.762 3.154 114.2

2 50 12.46 10.98 88.2

Yolk - spiked 3 100 29.45 31.03 105.4 106.4
4 250 71.45 83.30 116.6

5 500 125.3 135.1 107.8

1 10 4.562 4.541 99.5

2 50 21.87 21.07 96.3

Albumen - spiked 3 100 41.31 42.80 103.6 94.0
4 250 96.04 97.41 101.4

5 500 242.6 167.2 68.9

1 10 2.793 2.042 73.1

2 50 13.21 11.82 89.4

Shell - spiked 3 100 39.62 31.00 78.2 82.9
4 250 64.32 58.45 90.9

5 500 128.8 106.5 82.7  

Table C.8 Recovery data for multi-element-spiked eggs: nickel 

Sample Ni spiked (µg)
Spiked [Ni] in sample 

after treatment (µg/g)

[Ni] blank-

corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 2.762 3.337 120.8

2 50 12.46 10.99 88.2

Yolk - spiked 3 100 29.45 29.70 100.9 105.7
4 250 71.45 82.63 115.6

5 500 125.3 128.8 102.8

1 10 4.562 4.173 91.5

2 50 21.87 20.50 93.7

Albumen - spiked 3 100 41.31 42.18 102.1 90.7
4 250 96.04 94.46 98.4

5 500 242.6 164.8 67.9

1 10 2.793 1.952 69.9

2 50 13.21 14.48 109.6

Shell - spiked 3 100 39.62 33.26 84.0 87.6
4 250 64.32 60.18 93.6

5 500 128.8 104.3 81.0  
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Table C.9 Recovery data for multi-element-spiked eggs: selenium 

Sample Se spiked (µg)

Spiked [Se] in 

sample after 

treatment (µg/g)

[Se] blank-

corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 2.5 0.691 0.771 111.7

2 12.5 3.114 2.422 77.8

Yolk - spiked 3 25 7.362 6.278 85.3 93.1
4 62.5 17.86 16.27 91.1

5 125 31.33 31.15 99.4

1 2.5 1.141 1.068 93.7

2 12.5 5.468 4.379 80.1

Albumen - spiked 3 25 10.33 8.562 82.9 78.6
4 62.5 24.01 18.43 76.8

5 125 60.65 36.05 59.4

1 2.5 0.698 0.537 76.9

2 12.5 3.303 2.277 68.9

Shell - spiked 3 25 9.905 6.750 68.2 73.6
4 62.5 16.08 12.57 78.2

5 125 32.20 24.45 75.9  

Table C.10 Recovery data for multi-element-spiked eggs: vanadium 

Sample V spiked (µg)
Spiked [V] in sample 

after treatment (µg/g)

[V] blank-

corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 25 6.906 8.475 122.7

2 125 31.14 28.37 91.1

Yolk - spiked 3 250 73.62 76.73 104.2 103.9
4 625 178.6 195.4 109.4

5 1250 313.3 347.6 111.0

1 25 11.41 11.41 100.1

2 125 54.68 52.23 95.5

Albumen - spiked 3 250 103.3 106.0 102.6 92.2
4 625 240.1 228.4 95.1

5 1250 606.5 409.3 67.5

1 25 6.983 10.95 156.9

2 125 33.03 31.71 96.0

Shell - spiked 3 250 99.05 75.82 76.6 83.8
4 625 160.8 129.3 80.4

5 1250 322.0 264.2 82.1  

Table C.11 Recovery data for multi-element-spiked eggs: zinc 

Sample Zn spiked (µg)

Spiked [Zn] in 

sample after 

treatment (µg/g)

[Zn] blank-

corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 2.762 13.44 486.5

2 50 12.46 6.268 50.3

Yolk - spiked 3 100 29.45 37.24 126.5 100.6
4 250 71.45 92.85 130.0

5 500 125.3 120.0 95.7

1 10 4.562 2.041 44.7

2 50 21.87 27.97 127.9

Albumen - spiked 3 100 41.31 37.63 91.1 83.2
4 250 96.04 82.59 86.0

5 500 242.6 176.0 72.5

1 10 2.793 1.651 59.1

2 50 13.21 10.58 80.0

Shell - spiked 3 100 39.62 23.74 59.9 68.4
4 250 64.32 46.96 73.0

5 500 128.8 90.16 70.0  
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APPENDIX D: METAL CONCENTRATIONS IN WASHED 

VS UNWASHED FEATHERS 

Table D.1 Arsenic concentrations in washed and unwashed feathers 

Treatment [As] µg/g dry wt Mean [As] µg/g dry wt

1 1.05

2 0.00

Unwashed 3 0.28

4 0.00

5 0.00

6 0.55

1 0.17

2 0.25

Washed 3 0.09

4 0.00

5 0.00

6 0.00

0.31

0.08

 

Table D.2 Cadmium concentrations in washed and unwashed feathers 

Treatment [Cd] µg/g dry wt Mean [Cd] µg/g dry wt

1 0.32

2 0.10

Unwashed 3 0.10

4 0.00

5 0.00

6 0.00

1 0.16

2 0.11

Washed 3 0.13

4 0.00

5 0.00

6 0.00

0.09

0.07

 

Table D.3 Cobalt concentrations in washed and unwashed feathers 

Treatment [Co] µg/g dry wt Mean [Co] µg/g dry wt

1 0.97

2 0.06

Unwashed 3 0.19

4 0.00

5 0.00

6 0.12

1 0.27

2 0.17

Washed 3 0.00

4 0.00

5 0.00

6 0.00

0.22

0.07
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Table D.4 Copper concentrations in washed and unwashed feathers 

Treatment [Cu] µg/g dry wt Mean [Cu] µg/g dry wt

1 14.0

2 9.31

Unwashed 3 10.9

4 22.12

5 13.53

6 17.64

1 15.4

2 13.3

Washed 3 65.2*

4 14.91

5 13.01

6 13.00

14.0

14.6

 

Table D.5 Iron concentrations in washed and unwashed feathers 

Treatment [Fe] µg/g dry wt Mean [Fe] µg/g dry wt

1 112

2 279

Unwashed 3 665

4 330

5 164

6 578

1 14.7

2 55.3

Washed 3 0.00

4 158

5 88.8

6 155

355

78.6

 

Table D.6 Lead concentrations in washed and unwashed feathers 

Treatment [Pb] µg/g dry wt Mean [Pb] µg/g dry wt

1 5.48

2 5.89

Unwashed 3 6.30

4 12.59

5 4.23

6 11.00

1 3.38

2 3.68

Washed 3 1.56

4 9.96

5 2.78

6 4.29

7.58

4.27
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Table D.7 Manganese concentrations in washed and unwashed feathers 

Treatment [Mn] µg/g dry wt Mean [Mn] µg/g dry wt

1 22.3

2 29.8

Unwashed 3 65.4

4 26.9

5 12.8

6 67.0

1 5.67

2 9.37

Washed 3 1.32

4 17.23

5 4.95

6 18.41

37.4

9.49

 

Table D.8 Nickel concentrations in washed and unwashed feathers 

Treatment [Ni] µg/g dry wt Mean [Ni] µg/g dry wt

1 1.51

2 0.00

Unwashed 3 0.57

4 0.76

5 0.19

6 0.55

1 0.50

2 0.27

Washed 3 0.28

4 0.00

5 0.00

6 0.00

0.60

0.18

 

Table D.9 Selenium concentrations in washed and unwashed feathers 

Treatment [Se] µg/g dry wt Mean [Se] µg/g dry wt

1 0.58

2 0.83

Unwashed 3 0.57

4 0.00

5 0.00

6 0.26

1 0.00

2 0.78

Washed 3 0.70

4 0.00

5 0.00

6 0.00

0.37

0.25
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Table D.10 Vanadium concentrations in washed and unwashed feathers 

Treatment [V] µg/g dry wt Mean [V] µg/g dry wt

1 25.8

2 38.1

Unwashed 3 41.1

4 53.0

5 37.3

6 61.5

1 29.5

2 23.7

Washed 3 26.2

4 20.4

5 29.0

6 15.5

42.8

24.1

 

Table D.11 Zinc concentrations in washed and unwashed feathers 

Treatment [Zn] µg/g dry wt Mean [Zn] µg/g dry wt

1 67.3

2 74.4

Unwashed 3 78.8

4 111

5 83.9

6 106

1 51.3

2 79.4

Washed 3 83.5

4 105

5 62.8

6 119

86.9

83.5
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APPENDIX E: RECOVERY DATA FOR METALS IN 

FEATHERS  

Table E.1 Recovery data for multi-element-spiked feathers: arsenic 

Sample
As spiked 

(µg)

Spiked [As] in sample 

after treatment (µg/g)

[As] blank-corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 1333.3 885.3 66.4

2 50 2193.0 1425.2 65.0

3 100 6250.0 3411.4 54.6 71.7

4 250 8992.8 8176.6 90.9

5 500 9881.4 8052.8 81.5  

Table E.2 Recovery data for multi-element-spiked feathers: cadmium 

Sample
Cd spiked 

(µg)

Spiked [Cd] in sample 

after treatment (µg/g)

[Cd] blank-corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 2.5 333.3 238.508 71.6

2 12.5 548.2 378.519 69.0

3 25 1562.5 919.690 58.9 77.4

4 62.5 2248.2 2232.535 99.3

5 125 2470.4 2185.275 88.5  

Table E.3 Recovery data for multi-element-spiked feathers: cobalt 

Sample
Co spiked 

(µg)

Spiked [Co] in sample 

after treatment (µg/g)

[Co] blank-corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 1333.3 968.3 72.6

2 50 2193.0 1581.7 72.1

3 100 6250.0 3445.2 55.1 74.9

4 250 8992.8 8298.6 92.3

5 500 9881.4 8128.4 82.3  

Table E.4 Recovery data for multi-element-spiked feathers: copper 

Sample
Cu spiked 

(µg)

Spiked [Cu] in sample 

after treatment (µg/g)

[Cu] blank-corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 1333.3 948.9 71.2

2 50 2193.0 1535.6 70.0

3 100 6250.0 3739.2 59.8 77.8

4 250 8992.8 8797.6 97.8

5 500 9881.4 8890.4 90.0  

Table E.5 Recovery data for multi-element-spiked feathers: iron 

Sample
Fe spiked 

(µg)

Spiked [Fe] in sample 

after treatment (µg/g)

[Fe] blank-corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 1333.3 1126.3 84.5

2 50 2193.0 1605.0 73.2

3 100 6250.0 3636.5 58.2 80.4

4 250 8992.8 8906.3 99.0

5 500 9881.4 8607.1 87.1  
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Table E.6 Recovery data for multi-element-spiked feathers: lead 

Sample
Pb spiked 

(µg)

Spiked [Pb] in sample 

after treatment (µg/g)

[Pb] blank-corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 1333.3 1083.6 81.3

2 50 2193.0 1656.6 75.5

3 100 6250.0 4049.6 64.8 84.1

4 250 8992.8 9892.3 110.0

5 500 9881.4 9796.5 99.1  

Table E.7 Recovery data for multi-element-spiked feathers: manganese 

Sample
Mn spiked 

(µg)

Spiked [Mn] in sample 

after treatment (µg/g)

[Mn] blank-corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 1333.3 1057.9 79.3

2 50 2193.0 1560.6 71.2

3 100 6250.0 3833.3 61.3 81.4

4 250 8992.8 9281.8 103.2

5 500 9881.4 9087.4 92.0  

Table E.8 Recovery data for multi-element-spiked feathers: nickel 

Sample
Ni spiked 

(µg)

Spiked [Ni] in sample 

after treatment (µg/g)

[Ni] blank-corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 1333.3 961.7 72.1

2 50 2193.0 1515.4 69.1

3 100 6250.0 3656.9 58.5 77.8

4 250 8992.8 8937.9 99.4

5 500 9881.4 8862.7 89.7  

Table E.9 Recovery data for multi-element-spiked feathers: selenium 

Sample
Se spiked 

(µg)

Spiked [Se] in sample 

after treatment (µg/g)

[Se] blank-corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 2.5 333.3 208.550 62.6

2 12.5 548.2 357.192 65.2

3 25 1562.5 833.571 53.3 69.3

4 62.5 2248.2 1971.250 87.7

5 125 2470.4 1922.477 77.8  

Table E.10 Recovery data for multi-element-spiked feathers: vanadium 

Sample
V spiked 

(µg)

Spiked [V] in sample after 

treatment (µg/g)

[V] blank-corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 25 3333.3 2405.750 72.2

2 125 5482.5 3843.033 70.1

3 250 15625.0 9174.000 58.7 77.7

4 625 22482.0 22364.757 99.5

5 1250 24703.6 21806.537 88.3  

Table E.11 Recovery data for multi-element-spiked feathers: zinc 

Sample
Zn spiked 

(µg)

Spiked [Zn] in sample 

after treatment (µg/g)

[Zn] blank-corrected 

(µg/g)

Recovery     

(%)

Average 

recovery (%)

1 10 1333.3 769.3 57.7

2 50 2193.0 1354.2 61.8

3 100 6250.0 3286.9 52.6 68.2

4 250 8992.8 7818.6 86.9

5 500 9881.4 8102.8 82.0  

 


