
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


Thesis

Erofili Grapsa

December, 2010



University of Southampton

Faculty of Social and Human Sciences

School of Mathematics

Bayesian analysis for categorical survey data

by

Erofili Grapsa

Thesis for the degree of Doctor of Philosophy

December, 2010



UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES

SCHOOL OF MATHEMATICS

Doctor of Philosophy

BAYESIAN ANALYSIS FOR CATEGORICAL SURVEY DATA

Erofili Grapsa

In this thesis, we develop Bayesian methodology for univariate and multivari-

ate categorical survey data. The Multinomial model is used and the following

problems are addressed. Limited information about the design variables leads

us to model the unknown design variables taking into account the sampling

scheme. Random effects are incorporated in the model to deal with the effect

of sampling design, that produces the Multinomial GLMM and issues such as

model comparison and model averaging are also discussed. The methodology

is applied in a true dataset and estimates for population counts are obtained.

i



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Bayesian Theory . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Inference and Prediction . . . . . . . . . . . . . . . . . 2

1.2.3 Hierarchical models . . . . . . . . . . . . . . . . . . . . 3

1.2.4 Model comparison . . . . . . . . . . . . . . . . . . . . 4

1.3 Generalised Linear Models . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Bayesian inference for GLMMs . . . . . . . . . . . . . 8

1.4 Simulation methods . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 The Metropolis-Hastings algorithm . . . . . . . . . . . 9

1.4.2 The Gibbs sampler . . . . . . . . . . . . . . . . . . . . 10

1.4.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Survey sampling theory . . . . . . . . . . . . . . . . . . . . . . 12

ii



1.6 Bayesian Inference for surveys . . . . . . . . . . . . . . . . . . 15

1.7 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Previous work 21

2.1 Design based inference for surveys . . . . . . . . . . . . . . . . 21

2.2 Bayesian inference for surveys . . . . . . . . . . . . . . . . . . 25

2.2.1 Models for stratified and cluster samples . . . . . . . . 26

2.2.2 Models for PPS samples . . . . . . . . . . . . . . . . . 28

2.2.3 Regression models for surveys . . . . . . . . . . . . . . 30

2.3 Inference for polytomous variables . . . . . . . . . . . . . . . . 33

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 The Multinomial logit model . . . . . . . . . . . . . . . 34

2.3.3 Bayesian Multinomial logit model . . . . . . . . . . . . 37

2.4 Inference for contingency tables . . . . . . . . . . . . . . . . . 39

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Models for the size variable 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Stratified random sampling . . . . . . . . . . . . . . . . . . . . 47

3.3 One stage cluster sampling with SRS . . . . . . . . . . . . . . 48

3.3.1 Zero-truncated Poisson model . . . . . . . . . . . . . . 49

iii



3.4 Two-stage cluster sampling with SRS . . . . . . . . . . . . . . 53

3.5 One stage cluster sampling with PPS . . . . . . . . . . . . . . 54

3.5.1 Zero-Truncated Negative Binomial model. . . . . . . . 55

3.6 Comparing with the Bayesian Bootstrap model . . . . . . . . 62

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Modelling the polytomous response 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Examples under different sampling designs . . . . . . . . . . . 72

4.3.1 Stratified random sampling . . . . . . . . . . . . . . . 72

4.3.2 Cluster sampling with SRS. . . . . . . . . . . . . . . . 82

4.3.3 Two stage cluster sampling with PPS . . . . . . . . . . 87

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Modelling contingency tables 94

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Model comparison for GLMMs . . . . . . . . . . . . . . . . . . 95

5.3 Two way contingency tables . . . . . . . . . . . . . . . . . . . 99

5.3.1 Model description . . . . . . . . . . . . . . . . . . . . . 99

5.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.3 Bridge sampling in practice . . . . . . . . . . . . . . . 105

iv



5.3.4 Inference for the contingency tables counts . . . . . . . 108

5.4 Three way contingency tables . . . . . . . . . . . . . . . . . . 111

5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.2 Model description . . . . . . . . . . . . . . . . . . . . . 112

5.4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.4 Classical analysis . . . . . . . . . . . . . . . . . . . . . 120

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Examples 124

6.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Discussion 128

v



List of Figures

3.1 Trace plot for λ in the zero-truncated Poisson model . . . . . 51

3.2 Posterior predictive density for non-sampled z̃ and true mean

of the non-sampled cluster sizes . . . . . . . . . . . . . . . . . 53

3.3 Histogram of sampled sizes in one stage PPS sampling . . . . 56

3.4 Histogram of non-sampled sizes in one stage PPS sampling . . 56

3.5 Different prior (solid line) and posterior distributions (his-

togram) plotted together with the true value for φ (black ver-

tical line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Trace plots for parameters φ, p, ξ in PPS sampling . . . . . . . 61

3.7 Histogram of true population sizes and and posterior predic-

tive distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Posterior predictive histograms for Neg.Bin. Model for 7 new

samples of non-sampled sizes-Poisson sampling . . . . . . . . . 64

3.9 Posterior predictive histograms for BB Model for 7 new sam-

ples of non-sampled sizes-Poisson sampling . . . . . . . . . . . 65

4.1 Trace plots for µ4 and µ5 for a stratified sample when a) non-

reparameterisation b) hierarchical centering . . . . . . . . . . . 74

vi



4.2 Trace plots for µ under stratified sampling . . . . . . . . . . . 78

4.3 Posterior densities of population counts under stratified sampling 81

4.4 Trace plots for u1 under cluster sampling with SRS . . . . . . 86

4.5 Trace plots for Σ under cluster sampling with PPS . . . . . . 89

4.6 Posterior densities for population counts in two stage PPS

sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Trace plots for β assuming independence in contingency table 105

5.2 Distribution of posterior predictive counts for two way contin-

gency tables under the independence model . . . . . . . . . . 108

5.3 Distribution of posterior predictive counts for two way contin-

gency tables under the independence model . . . . . . . . . . 109

5.4 a) Distribution of posterior predictive counts for three way

contingency tables under the independence model . . . . . . . 118

5.5 b) Distribution of posterior predictive counts for three way

contingency tables under the independence model (continued) 119

7.1 Graphical representation for survey models . . . . . . . . . . . 130

vii



List of Tables

1.1 Variables in the dataset . . . . . . . . . . . . . . . . . . . . . 20

2.1 Contingency table example . . . . . . . . . . . . . . . . . . . . 40

3.1 Summary statistics for area, district . . . . . . . . . . . . . . . 49

3.2 Posterior inference for λ under different prior distributions . . 51

3.3 Posterior inference for λ and non-sampled z̃ in the zero-truncated

Poisson model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Summary statistics for district sizes after PPS sampling . . . . 55

3.5 Posterior inference for φ under different prior distributions . . 59

3.6 Summary of posterior inference for parameters in PPS sampling 60

3.7 Predictive inference for non-sampled sizes for the Neg.Bin.

model, BB and true values . . . . . . . . . . . . . . . . . . . . 63

3.8 BB and Neg.Bin. model predictive inference for different PPS

samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Distribution of health status in age-sex strata . . . . . . . . . 73

4.2 Posterior inference for µ . . . . . . . . . . . . . . . . . . . . . 77

viii



4.3 Posterior inference for Σ . . . . . . . . . . . . . . . . . . . . . 77

4.4 Estimates of health status responses in age-sex strata . . . . . 80

4.5 Distribution of health status in sampled clusters . . . . . . . . 82

4.6 Posterior inference for µ in cluster sampling with SRS . . . . 83

4.7 Posterior inference for Σ in cluster sampling with SRS . . . . 84

4.8 Estimated population counts for health status in cluster sam-

pling with SRS . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.9 Posterior inference for µ in two stage cluster sampling with PPS 88

4.10 Posterior inference for Σ in two stage cluster sampling with

PPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.11 Estimated population counts for health status in two stage

cluster sampling with PPS . . . . . . . . . . . . . . . . . . . . 92

5.1 Health status for single, married/couple, divorced/widowed/separated

in districts 11 and 18 . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Posterior inference for β under independence model . . . . . . 104

5.3 Posterior inference for β under interaction model . . . . . . . 104

5.4 Approximated log marginal likelihoods by bridge sampling . . 108

5.5 Models of interest in a three-way contingency table . . . . . . 114

5.6 Approximated log marginal likelihoods by bridge sampling and

posterior model probabilities . . . . . . . . . . . . . . . . . . . 116

5.7 Posterior mean and standard deviation for population counts

under model averaging . . . . . . . . . . . . . . . . . . . . . . 117

ix



5.8 Table of health status, marital status and sex weighted fre-

quencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.9 Deviance and p-value for all models under the three classical

methods of analysis . . . . . . . . . . . . . . . . . . . . . . . . 121

5.10 Estimated cell counts using sampling weights . . . . . . . . . . 121

5.11 MSE under different methods of estimation . . . . . . . . . . . 122

6.1 Numerical results for Example 1 . . . . . . . . . . . . . . . . . 125

6.2 Approximated log marginal likelihoods and posterior proba-

bilities for Example 2 . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 MSE for Example 2 . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Numerical results for Example 3 . . . . . . . . . . . . . . . . . 127

x



Author’s Declaration

I, Erofili Grapsa, declare that the thesis entitled

Bayesian Analysis for Categorical Survey Data

and the work presented in the thesis are both my own, and have been gen-

erated by me as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research

degree at this University;

• where any part of this thesis has previously been submitted for a degree

or any other qualification at this University or any other institution,

this has been clearly stated;

• where I have consulted the published work of others, this is always

clearly attributed;

• where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own

work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others,

I have made clear exactly what was done by others and what I have

contributed myself;

xi





Acknowledgements

I would like to thank my supervisor Professor Jon Forster for his help with

completing this thesis and my friends Carlo, Vasthi, Renato, Alinne, Vasiliki

for their support during these three years of my PhD.

xiii



Chapter 1

Introduction

1.1 Motivation

Sample surveys are an essential tool for obtaining information on populations.

Bayesian statistical methodology is increasingly being used to obtain infer-

ences and associated measures of uncertainty in complex practical problems.

However, for categorical survey data Bayesian analysis is unexplored and

there is a need for a unified approach for univariate and multivariate cases.

Our goal is to provide methodology to analyse finite population quantities

coming from categorical responses under different survey designs. Therefore,

we combine Bayesian and survey sampling theory to a unified theory that is

developed for categorical data. Little (2004); Little and Zheng (2007) have

discussed several Bayesian models for continuous variables, that we extend,

modify and apply to categorical variables assuming limited information about

the sampling scheme.

In this Chapter we introduce basic concepts of Bayesian and survey sampling

theory and describe how they are combined to give Bayesian inference for

surveys.
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1.2 Bayesian Theory

1.2.1 Bayes’ Theorem

Let y = (y1, ..., yn) be a vector of observations with sampling density (likeli-

hood) given by f(y|θ), where θ is the vector of unknown model parameters

(Forster and O’Hagan, 2004; Gelman et al., 2004). The set of possible values

of θ is the parameter space Θ. The likelihood together with the prior dis-

tribution f(θ) for θ give the joint probability mass or density function for y

and θ as

f(θ,y) = f(θ)f(y|θ)

Inference on the parameter is based on the posterior density which is com-

puted via Bayes’ theorem

f(θ|y) =
f(θ,y)

f(y)
=
f(θ)f(y|θ)

f(y)

where

f(y) =

∫
f(y|θ)f(θ)

is called marginal likelihood. The factor f(y) can then be omitted since it

does not depend on θ and can be considered as a constant. This yields

f(θ|y) ∝ f(θ)f(y|θ)

1.2.2 Inference and Prediction

Forecasting or predicting a future value of an observation ỹ is based on the

predictive distribution (Forster and O’Hagan, 2004; Gelman et al., 2004),

whose density is given by

f(ỹ|y) =

∫
f(ỹ|y,θ)f(θ|y)dθ

2



Since, y, ỹ are typically assumed conditionally independent given θ we usu-

ally have f(ỹ|y,θ) = f(ỹ|θ) and the predictive density becomes

f(ỹ|y) =

∫
f(ỹ|θ)f(θ|y)dθ

Often, we are interested in some feature of the posterior distribution which

takes the form of the posterior expectation of some function g(θ), such as

• g(θ) = θ, the posterior expectation of θ.

• g(θ) = θr for some r > 1, higher order posterior moments of θ.

• g(θ) = I[θ ∈ A] (the indicator function of a set A), the posterior

probability that θ lies in the set A

or we might be interested in marginal distributions of the parameters,

f(θ1|y) =

∫
f(θ|y)dθ2...dθp

Other features of interest may be quantiles and we can always plot the pos-

terior density to get a more general idea about it. As it is often hard to solve

the normalising integrals (the denominator in Bayes’ theorem), simulation

techniques are commonly used to draw samples from the posterior density.

Once we obtain a sample θ1, ....,θT we can approximate any quantity of the

posterior distribution using the simulated draws. For example, suppose θ is

one-dimensional, we can compute

E(g(θ)|y) ≈ 1

T

T∑
j=1

g(θj)

1.2.3 Hierarchical models

As mentioned previously, the joint probability distribution of the data y

depends on the parameters θ. The distribution of θ can also depend on

3



other parameters, often called hyperparameters φ as p(θ|φ). Then a prior

distribution p(φ) is required for φ. This process could go further defin-

ing hyper-hyperparameters and these models are called hierarchical models

(Forster and O’Hagan, 2004; Gelman et al., 2004). The joint distribution of

y, θ and φ can then be written as

f(y,θ,φ) = f(y|θ)f(θ|φ)f(φ)

The distribution of the parameters at any level depends on the parameters

at the higher level and conditional on these parameters, is independent of

parameters at levels above that. The joint posterior distribution of θ and φ

is

f(θ,φ|y) ∝ f(y|θ)f(θ|φ)f(φ)

Sometimes, we might be interested in the hyperparameters themselves. For

example inference about φ is made through its marginal posterior distribu-

tion

f(φ|y) =

∫
f(θ,φ|y)dθ ∝ f(φ)f(y|φ)

1.2.4 Model comparison

Sometimes, we have several models which we wish to compare in order to

choose one among them. This is a problem addressed in Chapter 5, where

there are different potential models for the contingency table of interest.

Thus, we wish to select one model and find a way to deal with the uncertainty

about the choice between alternative models.

To deal with this uncertainty, we consider all potential models and assign a

prior probability f(m) to each one of them. Assume there are M alternative

models and each model m consists of a likelihood f(y|θm,m) and a prior

distribution for θm. The joint distribution under model m is

f(y,m,θm) = f(y|θm,m)f(θm)f(m)

4



from which we can obtain the posterior distribution

f(m,θm|y) =
f(y|θm,m)f(θm|m)f(m)

f(y)

=
f(y|θm,m)f(θm,m)

f(y|m)
× f(m)f(y|m)

f(y)

where f(y|m) is the marginal distribution of the data under the model m

and is called the marginal likelihood for model m. It is given by

f(y|m) =

∫
f(y,θm|m)dθm =

∫
f(y|θm,m)f(θm|m)dθm

We also see that

f(y|θm,m)f(θm|m)

f(y|m)
=

f(y|θm,m)f(θm|m)∫
f(y|θm,m)f(θm|m)dθm

= f(θm|y,m)

and
f(m)f(y|m)

f(y)
=

f(m)f(y|m)∑M
m=1 f(m)f(y|m)

= f(m|y)

The last equation gives the marginal posterior probability of model m which

we need to calculate in the presence of model uncertainty. Posterior inference

requires evaluation of the marginal likelihood f(y|m) for each model as well

as of the posterior distribution f(θm|y,m) of the parameters θm of each

model m.

If we want to compare just two models we can use posterior odds to express

how one model is better comparing to another. For example, if the two

models have prior probabilities f(1) = p1 and f(2) = p2 = 1 − p1, then the

posterior odds in favour of model 1 is

f(1|y)

1− f(1|y)
=
f(1|y)

f(2|y)
=
f(1)f(y|1)

f(2)f(y|2)
=

p1

1− p1

f(y|1)

f(y|2)

The ratio of the marginal likelihoods is called Bayes factor and it updates

the prior odds to posterior odds after observing data y.

In the presence of uncertainty it is sometimes advisable to average over a

set of plausible models instead choosing one of them. This method is called

5



model averaging and it fully integrates uncertainty in inference rather than

condition on the “best” model. It is particularly useful for prediction or

estimation in the presence of uncertainty. Assume that Q is a quantity of

interest and its posterior distribution is

f(Q|y) =
M∑
m=1

f(Q|m,y)f(m|y) (1.1)

with m = 1, ...,M all the models considered. Then, the posterior mean and

variance of the quantity of interest are

E(Q|y) =
M∑
m=1

Q̂mf(m|y) (1.2)

Var(Q|y) =
M∑
m=1

(Var(Q|y,m) + Q̂2
m)f(m|y)− E(Q|y)2 (1.3)

where Q̂m = E(Q|y,m) (Hoeting et al., 1999). This method provides better

average predictive ability than using any single model and is used in Chapter

5 and 6 in order to obtain more accurate estimates than under one model.

1.3 Generalised Linear Models

Generalised linear models (GLMs) are widely used for regression analysis

and extend linear models to describe non-normal responses, like binary and

count data. GLMs are used in this thesis, since we wish to make inference and

prediction about categorical responses. The other important feature is that

the mean is not a linear combination of the parameters but some monotonic

function of the mean is.

In general, we can say that a GLM is defined by three points:

1. A probability density for y belonging to the exponential family

6



2. A linear predictor η = Xβ

3. A link function g that E(y) = µ = g−1(η)

Conditional on the θ, y are independent with probability density function

(pdf)

f(y; θ, ξ) = exp

(
yθ − b(θ)
α(ξ)

+ c(y; ξ)

)
(1.4)

where b and c are known functions and θ is the location parameter while ξ

the dispersion parameter. For example, the Normal distribution has θ = µ,

ξ = σ2, α(ξ) = ξ, β(θ) = θ2/2 and c(y; ξ) = −1/2(y2/σ2 + log(2πσ2)). Many

other distributions belong to the exponential family like Poisson, Binomial,

Beta, Gamma, Multinomial, etc. Common link functions are the log, logit,

probit and log− log link.

GLMs are models that assume that some monotonic function of the mean is

a linear combination of the unknown fixed parameters. When some of the

parameters are random variables and the function of the mean consists of

fixed and random terms, the model is called generalised linear mixed model

(GLMM). These random terms are usually assumed to have a Normal distri-

bution with zero mean. They are usually used when units are nested within

groups in order to express the group effect and they are called random ef-

fects. In surveys, the presence of groups in the population suggests stratified

or cluster sampling.

Assume that observations are nested within groups and let j = 1, ...,M

denote the groups and i = 1, ..., nj the units within groups. Let yij be the

value of the response variable for unit i in group j and E(yij|uj) = µij the

conditional mean of yij that is connected to the parameters through the link

function

g(µij) = ηij = xTijβ + zTijuj

where xij is the p× 1 column vector of explanatory variables for that obser-

vation, zij is the q× 1 design vector for the random effects and β and uj are

7



the p× 1 and q× 1 vector of fixed regression parameters and random effects

respectively. Usually, u ∼ N(0,Σ). The likelihood of this model is

f(y|β,u, ξ) =
M∏
j=1

nj∏
i=1

exp

(
yijθij − b(θij)

αij(ξ)
+ c(yij, ξ)

)
Classical inference for GLMMs requires integrating out the random effects

f(y|β,u,Σ, ξ) =

∫
f(y|β,u, ξ)f(u|Σ)du

and then maximising this new likelihood which is called integrated likelihood

or marginal likelihood. Calculating the maximum likelihood estimators can-

not be done analytically and needs numerical solutions.

1.3.1 Bayesian inference for GLMMs

Bayesian inference for GLMMs means that the model is built and analysed

hierarchically as mentioned in Section 1.2.3, where θ = (β,u) and φ = Σ. In

this thesis we examine cases where α(ξ) = 1, such as the Multinomial model.

Hence, for a Bayesian approach we need to specify a joint prior distribution

for the model parameters β, u and Σ.

f(β,u,Σ) = f(β)f(u|Σ)f(Σ)

where f(u|Σ) is the already specified N(0,Σ). The joint posterior distribu-

tion of the parameters is then given by

f(β,u,Σ|y) ∝ f(y|β,u)f(β)f(u|Σ)f(Σ)

1.4 Simulation methods

Bayesian applications require extensive computation which is important in

order to calculate summaries of the target posterior distribution f(θ|y).
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Sometimes, the prior distribution together with the likelihood are of a con-

venient form and then it is possible to get results by straightforward com-

putations. Nevertheless, it is often that the posterior distribution is very

complicated, especially when it is high dimensional. An important tool

to summarise posterior quantities is Markov Chain Monte Carlo simulation

(MCMC). This is a set of methods to draw sequentially a sample of dependent

observations from the normalised density

f(θ|y) = f(y|θ)f(θ)/

∫
f(y|θ)f(θ)dθ

The approach is based on constructing the the Markov chain in a way that

θi can be considered, at least approximately, a sample from f(θ). This

is feasible due to the Markov chain theory result that under appropriate

conditions, the distribution of θi converges to the invariant or stationary

distribution of that chain.

1.4.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm was described by Hastings (1970) gener-

alising the algorithm of Metropolis et al. (1953). It can draw samples from

any probability distribution f(θ) requiring only that a function proportional

to the density can be calculated. The normalization factor is often very hard

to compute, so the ability to generate a sample without knowing this con-

stant of proportionality is a major virtue of the algorithm. Suppose that

the current state of the chain is θi. Then a proposal θ∗ is generated from a

proposal density q(θi,θ∗). With probability

α(θi,θ∗) = min

{
f(θ∗)q(θ∗,θi)

f(θi)q(θi,θ∗)
, 1

}
the proposal is accepted and the next value of chain θi+1 is set to θ∗, and

with probability 1− α(θi,θ∗) the proposal is rejected and the next value of

the chain is set to the current value θi. An important point here is that the
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ratio f(θ∗)/f(θi) can be replaced by the equivalent ratio of the unnormalised

densities.

A common version of Metropolis-Hastings algorithm is to choose q(θi,θ∗) to

be such that θ∗ = θi + ε, where ε is random and its distribution does not

depend on θi. This is called random walk algorithm and if the distribution

of ε is symmetric about 0 then q(θi,θ∗) = q(θ∗,θi) and the acceptance

probability becomes

α(θi,θ∗) = min

{
f(θ∗)

f(θi)
, 1

}
It is common that the distribution of ε is Multivariate Normal with mean 0.

1.4.2 The Gibbs sampler

The Gibbs sampler obtains a sample from the joint posterior distribution

f(θ1, ...,θJ) by successively and repeatedly simulating from the conditional

distributions of each component given the other components. Hence, there

are J steps in iteration t and at each iteration each θ
(t)
j is sampled from

f(θj|θ(t−1)
−j , y)

where θ
(t−1)
−j represents all the components of θ, except θj, at their current

values

θ
(t−1)
−j = (θ

(t−1)
1 , ...,θ

(t−1)
j−1 ,θ

(t−1)
j+1 , ...,θ

(t−1)
J )

Gibbs sampling can be implemented either in univariate blocks where θj

contains just a single component, or in multivariate blocks that contain more

than one components. In any case, Gibbs sampler algorithm has the following

form:

• Initialise with θ = (θ
(0)
1 , ...,θ

(0)
J )

• Simulate θ
(1)
1 from the conditional distribution f(θ1|θ(0)

2 , ...,θ
(0)
J )
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• Simulate θ
(1)
2 from the conditional distribution f(θ2|θ(1)

1 ,θ
(0)
3 ...,θ

(0)
J )

• ...

• Simulate θ
(1)
J from the conditional distribution f(θJ |θ(1)

1 ,θ
(1)
2 ...,θ

(1)
J−1)

• Iterate this procedure

Over the next sections of this thesis, a Gibbs sampler is used to sample

from the posterior distributions. When some of the required conditional

distributions are analytically intractable, we use MCMC algorithms that

simulate certain blocks using Metropolis-Hastings updates and the standard

conditional distributions directly. These methods are often called Metropolis-

within-Gibbs algorithms.

1.4.3 Convergence

Various problems might appear when simulating from the posterior distribu-

tion of the parameters. First, the simulations may not be enough to describe

the target distribution or even when convergence is achieved, the early iter-

ations are still not a representative sample from this distribution. Then, the

within sequence correlation of the draws can cause inefficiency in estimation.

Moreover, dependence between components of θ can also create problems

when drawing from the posterior distribution. There are ways of dealing

with these problems, like discarding the early simulations, thinning the se-

quences, using multiple sequences or tuning the sampler, see Gelman et al.

(2004). A method to reduce dependence is reparameterising and/or incorpo-

rating in the same updating block all components of θ with high posterior

correlation, methods that are both used in this thesis.

In order to apply the above methods we need firstly to diagnose if convergence

is achieved or not. There are several suggested ways to do this with the most

popular being an informal approach which involves inspecting the time series
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plot or trace plot of components of θ. Through this plot we can often decide

on the burn-in number of simulations, whether convergence is achieved or

a larger number of draws is required and it is the way we choose to check

convergence in this thesis.

1.5 Survey sampling theory

The term sampling refers to the process of selecting a sample from a pop-

ulation and may also include the derivation of estimates and inference for

the population. Survey sampling refers to sampling from finite populations.

Different sampling methods have been developed with the aim to provide

unbiased, efficient and robust estimates of the quantities of interest (Fore-

man, 1991; Lohr, 1999). Probability sampling is sampling where every unit

in the population has a known probability of selection. The main probabil-

ity sampling designs are: simple random sampling, stratified sampling and

cluster sampling. Probability sampling can also be distinguished in equal

probability sampling and unequal probability sampling, with units sampled

respectively with equal or unequal probabilities. One method of unequal

probability sampling is sampling with probability proportional to size, a sam-

pling design which presents particular difficulties and is discussed in Chapter

3 of this thesis. In the following sections, we make inference for different sam-

pling designs for finite populations. Although one may be interested in many

different population quantities, the main target when developing theory for

sample surveys is usually estimating population means or totals.

Simple random sampling (SRS)

It is the simplest form of probability sample and the foundation for more

complex designs. Each unit is chosen randomly and each subset of n units
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has the same probability of being chosen in the sample as any other subset

of n units.

Stratified sampling

Stratification is the process of grouping members of the population into rel-

atively homogeneous subgroups (strata) before sampling. The strata should

be mutually exclusive (every element in the population must be assigned to

only one stratum) and collectively exhaustive (no population element can

be excluded). Then a simple random sample is selected from each stratum.

Since the strata are homogeneous, elements in the same stratum are more

similar than other elements in the population and variance within stratum is

lower than variance in the whole population. This means that stratification

often increases precision.

Sometimes there is a desirable stratification variable the distribution of which

could be known from previous surveys, but the sampling frame does not

include information on it and the design of a stratified sample is not possible.

In this case, an SRS sample can be taken, then create the post-strata by

classifying the sampled elements according to the stratification variable. This

procedure is called post-stratification. Problems appear when the sample

size is small and results in very small or even zero stratum sizes. Thus, the

calculation of the stratified estimator becomes hard and its variance can be

infinite or undefined (Little, 2004). In this case, the classical approach is to

re-sample until the desirable stratum sizes are obtained.

Cluster sampling

Cluster sampling is a technique used when natural groupings are evident in

a population, like schools, households, dwellings and a sample of them is se-

lected. Then, only units from the selected groups are included in the sample.
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The technique works best when most of the variation in the population is

within the groups and not between. In a single stage cluster sampling, all the

units from each of the selected clusters are used, while in two stage cluster

sampling a random sample of the units within the selected clusters is taken.

The clusters are the primary sampling units (PSU) and the units within the

clusters the secondary sampling units (SSU).

Weights

Sampling weights are used to correct for known discrepancies between the

sample and the population. These are caused by imperfections in the sample

like unequal selection probabilities, non-coverage of the population and non-

response. Usually the construction of weights starts with a base weight for

each sampled unit to correct for unequal probabilities of selection and it is

exactly the inverse of the probability of selection pi. Thus,

wi = 1/pi

For multistage designs the weights reflect the probabilities of selection in each

stage. Suppose that two stage cluster sampling is performed. If there are

M clusters in the population from which m are sampled, then clusters are

selected first with probability:

pj = m/M

and then units within clusters are selected with probabilities

pi|j = nj/Nj

where nj is the number of sampled units within cluster j and Nj the total

number of units in cluster j. Finally, the overall probability of selection of a

unit within a cluster is

pij = pjpi|j

and the weight for this unit is the reciprocal of the probability

wij = 1/pij

14



1.6 Bayesian Inference for surveys

Suppose we have a population that consists of N units and after sampling

there are two parts: the sampled n units and the non-sampled N − n units.

Let YS denote the sampled part and YS̄ the non-sampled part. A model

for the survey outcome Y is required, which is then used to predict the

non-sampled values of the population and hence finite population quantities

Q. We begin from the joint prior distribution p(Y ) for all the population

values. Then, inference for finite population quantities Q(Y ) is based on

the posterior predictive distribution P (YS̄|YS) of the non-sampled values,

given the sampled. The specification of the joint prior distribution is done

through a parametric model p(Y |θ) (where θ is an unknown hyperparameter)

combined with a prior for θ

p(Y ) =

∫
p(Y |θ)p(θ)dθ

The posterior predictive distribution of YS̄ is then

p(YS̄|YS) ∝
∫
p(YS̄|YS, θ)p(θ|YS)dθ

where p(θ|YS) is the posterior distribution of the parameters. This posterior

produces the posterior distribution p(Q|YS) for any finite population quan-

tity.

A brief example is given here from Forster and O’Hagan (2004) to describe

finite population inference. Suppose we have yi, i = 1, ..., N , independently

and identically distributed with common distribution f(y|θ) and a prior dis-

tribution for parameters θ, f(θ). Then, the joint distribution of yi is

f(y1, ..., yN) =

∫ N∏
i=1

f(yi|θ)f(θ)dθ

and conditioning on the observed yi, i = 1, ..., n, gives

f(yn+1, ..., yN |y1, ...yn) =

∫ N∏
i=n+1

f(yi|θ)f(θ|y1, ..., yn)dθ
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which is the posterior predictive distribution of N − n new observations.

Now, if we assume that f(y|θ, τ) is N(θ, τ) and the prior distribution of θ is

N(µ, ω), then the posterior of θ is N(µ1, ω1) where µ1 = (nωȳ+τµ)/(nω+τ),

ω1 = τω/(nω+ τ). The predictive distribution of each unobserved yi is then

N(µ1, τ + ω1). For inference about a quantity like Q =
∑N

i yi we need the

posterior predictive distribution of the sum of N − n unobserved yis, which

is N((N − n)µ1, (N − n)τ + (N − n)2ω1). Finally, the posterior distribution

of t is Normal with mean

E(t|y1, ..., yn) = nȳ + (N − n)µ1

and with variance

var(t|y1, ..., yn) = (N − n)τ + (N − n)2ω1

In general, inferences about any population quantity of interest Q are ob-

tained by first conditioning on the parameters θ and then averaging over

posterior of θ. Hence, the posterior predictive mean is

E(Q|YS) = E(E(Q|YS,θ)|YS) (1.5)

and the posterior predictive variance is

V ar(Q|YS) = E(V ar(Q|YS,θ)|YS) + V ar(E(Q|YS,θ)|YS) (1.6)

1.7 The Problem

In this thesis we are mainly interested in univariate and multivariate cat-

egorical responses (contingency tables). The majority of examples in the

literature describe regression models where explanatory variables are known

for the non-sampled cases or estimation of group totals/means where groups

sizes in the population are also available to the data analyst. Our approach to

the estimation of finite population quantities is from a different point of view.
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We make the distinction between two different type of statisticians, the data

analysts and the survey statisticians, see Breidt and Opsomer (2007). The

survey statisticians are the people who organise the surveys, collect the data

and thus have access to design variable values. On the other hand, data an-

alysts are the individuals who are interested to analyse the data and usually

have limited information about the sampling design. Moreover, confidential-

ity issues could restrict access to complete information which is available to

survey statisticians. We focus on addressing the problem of inference about

population totals or means from the data analyst point of view. Therefore,

design variables and other explanatory variables are not recorded for the

non-sampled cases.

Since the design variables are not recorded for non-sampled units, one cannot

use regression models to predict for them. Usually, the information given in

the documentation of the survey includes the type of the sampling, which

are the design variables, the number of units in the population N and the

number of the population strata/clusters. Details such as the population

stratum/cluster size is rarely given although it is essential for a finite pop-

ulation analysis. In Bayesian inference for surveys, design variable values

are usually assumed known Gelman (2007); Little (2004) but there are cases

where the problem is addressed. Gelman (2007) mentions that “in some

cases the cell populations are unknown and must be estimated” and Little

and Zheng (2007) discuss a model for probability proportional to size when

size variable is unknown for non-sampled cases.

Thus, we first address the problem of not knowing the design variable values

which we model and then predict for the non-sampled part. We emphasise

on the analysis of polytomous variables and contingency tables, where finite

population methodology is limited. This is evident from the literature review,

where one finds many references on Bayesian models for continuous finite

population responses but no examples are found for discrete responses. In

this thesis, polytomous variables and contingency tables are modelled using
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the Multinomial model and random effects are added to account for the

design variable effect.

Several issues appear, such as high dimensionality and parameter non-identifiability

problems that affect convergence of the chains. In addition, the absence of

design variable values for non-sampled cases makes prediction through re-

gression models impossible. Hence, we limit inference in obtaining point

estimates for population cell totals. Finally, we deal with the model selec-

tion problem by calculating posterior model probabilities, compare plausible

models and calculate model-averaged posterior distributions.

The software used in this thesis to sample, run MCMC algorithms, calculate

posterior summaries is R Development Core Team (2011) together with vari-

ous R packages like MCMCpack, (Martin et al., 2010) and Survey Sampling,

(Till and Matei, 2009).

1.8 The Data

We use the dataset of the Health Education Population Survey in Scot-

land in 2002 obtained from the Economic and Social Data Service (http:

//www.esds.ac.uk) which is a national data archiving in operation since

January 2003. The service is a jointly-funded initiative sponsored by the Eco-

nomic and Social Research Council (ESRC) and the Joint Information Sys-

tems Committee (JISC) . The Health Education Population Survey (HEPS)

monitored health-related knowledge, attitudes, behaviour and behavioural

motivations amongst adults (aged 16-74) in mainland Scotland. The sur-

vey ran from 1996 to 2007 with a nationally representative annual sample of

around 1800 individuals and a response rate around 70%. Further informa-

tion about the survey can be found in http://www.healthscotland.com.

We use the 2002 dataset collected in two waves and contained questions

about eneral health, diseases, nutrition, physical activity, alcohol, smoking,
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work-life balance, etc. The dataset is particularly suitable for the analysis in

this thesis since it consists of several categorical variables and also variables

that can be used as stratification or cluster variables. In order to be able to

check final results validity, we handle the sample taken from the survey as

the finite population for which we wish to make inference. This population

consists of N = 1742 units from which we resample under different sampling

designs. The following table shows some of the variables included in this

dataset. Some variables are used as stratification variables, such as age in

categories, sex, social status and some others are suitable for cluster sampling,

for example area and district. We use health status as the response variable

Y in Chapter 4. In Chapter 5 and 6 contingency tables are constructed using

health status and various of the other variables.
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Table 1.1: Variables in the dataset

Variable Description

Health status
1=very good, 2=good, 3=fair,

4=poor, 5=very poor

Longstanding illness 1=yes, 2=no

Lifestyle
1=very healthy, 2=fairly healthy,

3=fairly unhealthy, 4=very unhealthy

Social grade 4 categories

Marital status
1=single, 2=maried/living

as couple, 3=widowed/divorced/separated

Sex 1=male, 2=female

Age category
1=16-24, 2=25-34, 3=35-44,

4=45-54, 5=55-64, 6=65-74

Smoker 0=no, 1=yes

Alcohol consumption 0=no, 1=yes

Exercise 0=no, 1=yes

Diet with fruits & vegetables 0=no, 1=yes

Area 140 neibourhouds

District 43 districts

Health region 7 health regions
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Chapter 2

Previous work

This chapter is divided in two main parts: first, discussion on survey sampling

theory and already implemented Bayesian models for finite population quan-

tities and second, description of the existing methodology for multivariate

categorical responses. Both parts are important for the analysis conducted

in this thesis, since we implement models for categorical survey data and

in particular for responses with more than two categories and contingency

tables.

2.1 Design based inference for surveys

We start by describing design based inference for surveys and the problems

that this methodology presents. Assume a population with N units, Y =

(y1, ..., yN) where yi is a set of survey variables for unit i and let be I =

(I1, ..., IN) the set of inclusion indicator variables where

Ii =

{
1 if unit i is in the sample

0 otherwise

In design-based inference or randomisation theory, yis are considered to be

fixed and any probabilities used arise from the probabilities of selecting units
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to be in the sample. It is a non-parametric approach since no assumptions

are made about the distribution of yi. For example, if we have a simple

random sample of size n then the sample mean is

ȳ =
∑
i∈S

yi
n

=
N∑
i=1

Ii
yi
n

and Iis are the only random variables here and are identically distributed

Bernoulli random variables with

πi = P (Ii = 1) =
n

N

Now, suppose we want to estimate the finite population mean Ȳ from a strat-

ified random sample. The population is divided into J strata and Nj is the

known population count in stratum j. Assume also yij, j = 1, ..., J ; i = 1, ..., n

are the set of sampled Y in stratum j and nj the sum of sampled units in

stratum j. The quantity of interest is

Q = Ȳ =
J∑
j=1

PjȲj

where Pj = Nj/N is the proportion of the population in stratum j. The usual

estimator of Ȳ is the stratified mean

q̂ = ȳst =
J∑
j=1

Pj ȳj

where ȳj is the sample mean in stratum j. This estimator is also a weighted

mean of the sampled units, where units in stratum j are weighted by the

inverse of their selection probability πj = nj/Nj. The estimated variance of

the stratified mean is

v̂st =
J∑
j=1

P 2
j s

2
j(1/nj − 1/Nj)

where s2
j is the sample variance in stratum j.
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Next, we consider inference for a cluster sample where sampling is performed

in two stages. The primary sampling units (PSU) are the clusters while

the secondary sampling units (SSU) are the elements observed within the

clusters. Let M denote the number of clusters in the population with Nj

number if units within j cluster, N =
∑

j Nj the total number of units in

the population and m, nj, n the corresponding sample quantities. Then, the

estimator of the population total in cluster j is

t̂j =
∑
i

Nj

nj
yij = Nj ȳj

and an unbiased estimator of the population total is

t̂ =
M

m

∑
j

t̂j =
M

m

∑
j

Nj ȳj

An unbiased estimator of the variance of t̂ is

V̂ (t̂) = M2
(

1− m

M

) s2
t

m
+
M

m

∑
j

(
1− Nj

nj

)
N2
j

s2
j

nj

where

s2
t =

∑
j(t̂j −

t̂
M

)2

m− 1

and

s2
j =

∑
i(yij − ȳj)2

nj − 1

All the above discussion is about sampling with equal probabilities but some-

times it is useful to sample with unequal probabilities. When sampling with

unequal probabilities, we deliberately vary the probabilities of selection of

the PSU’s and compensate by providing suitable weights in the estimation.

One common way is sampling with probability proportional to size (PPS), in

which the probability that a particular sampling unit will be selected in the

sample is proportional to the population size of that sampling unit. Then a

large sampling unit has a greater chance of being in the sample than a small

one. Moreover, two ways of sampling with unequal probabilities exist, sam-

pling with replacement or without replacement (Lohr, 1999). Sampling with

23



replacement ensures that the probabilities of selection do not alter when

a unit is drawn but it is less efficient than sampling without replacement.

Although sampling without replacement is more complicated because the

probability of a unit selected is different for the first unit chosen than for the

second and subsequent units, it is the method we use to sample with PPS in

this thesis. In practice, there are many methods of sampling with unequal

probabilities and without replacement, some easier and some harder to im-

plement, see Hanif and Brewer (1980), but we are particularly interested in

PPS sampling methods.

Let πi = P (i unit selected first) be the inclusion probability of unit i in

without replacement sampling, where 0 < πi ≤ 1 and

N∑
i=1

πi = n

Then, πij is the probability that units i and j are both in the sample and

if we define the average probability that a unit i will be selected on one of

the draws as π/n, we get the Horvitz-Thompson estimator (HT) Horvitz and

Thompson (1952) of the population total as

t̂HT =
1

n

∑
i

t̂i
πi/n

=
∑
i

t̂i
πi

(2.1)

This estimator is unbiased and one unbiased estimator of its variance is

V̂ (t̂HT ) =
∑
i∈S

(1− πi)
t̂2i
π2
i

+
∑
i∈S

∑
k∈Sk 6=i

πik − πiπk
πik

t̂i
πi

t̂k
πk

+
∑
i∈S

V̂ (t̂i)

πi
(2.2)

which unfortunately can result in a negative estimate of the variance, Lohr

(1999). In general, calculating the estimator of the variance of t̂HT is trouble-

some and the use of the with-replacement variance is an alternative. Another

problem here is that in order to use the HT estimator for n > 1 the inclusion

probabilities must be known for every PSU, that is also hard to implement

when n > 2 and the population is large.
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2.2 Bayesian inference for surveys

Bayesian inference for surveys was briefly introduced in Section 1.6 and now

we focus more on existing Bayesian models for continuous responses as often

considered by Little (2004), Little and Zheng (2007), Gelman (2007). Little

(2004) argues in favour of Bayesian modelling that offers great advantages

such as:

• It provides a unified approach to survey inference which in large samples

and uninformative prior distributions can give results similar to design

based inference.

• It can handle for complex design features, when known in advance.

• It provides better inference for small sample problems where frequentist

solutions are not available.

• It can incorporate prior information when available.

• It satisfies the likelihood principle and can outperform the design based

inference if the model is well specified.

Before we start the discussion on Bayesian models for finite population

quantities, we need to define what ignorable design is. As already de-

fined I = (I1, ..., IN) are the inclusion indicators for N population units and

Y = (Y1, ..., YN) the variable of interest. Bayesian inference for a quantity

Q = Q(Y ) should be based on the joint distribution of I and Y . However,

inference can be based on the distribution of Y alone when the sampling

mechanism is non-informative or ignorable. This is the case with probability

sampling where the distribution of I given Y does not depend on the values of

I (Little, 2004; Gelman et al., 2004; Rubin, 1983). Hence, if Z = (Z1, ..., ZN)

is the set of the design variables, then the probability of inclusion in the

sample Pr(Ii = 1|Y, Z) is not dependent on Y and

Pr(Ii = 1|Y, Z) = Pr(Ii = 1|Z)
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In this thesis, we assume probability sampling and the probability of a unit

included in the sample depends on the design variables Z and not on Y .

Then inference can be made based on the distribution of Y alone.

2.2.1 Models for stratified and cluster samples

Assume again the population is divided in M strata and a simple random

sample is taken within stratum j for j = 1, ...,M . The variable of interest

Y is continuous and a common model for continuous outcomes assumes that

yij (value of Y for unit i in stratum j) is normal with mean µj and variance

σ2
j , Little (2004). A Bayesian model with noninformative prior distribution,

that Little (2004) mentions, is

p(yij|zij = j, µj, σ
2
j )

iid∼ N(µj, σ
2
j )

with

p(µj, log σ2
j ) = const.

Recall the notation for the sampled and non-sampled part of Y as YS for

the sampled and YS̄ for the unsampled. With known variances, the posterior

distribution of the population mean Ȳ given YS, I and σ2
j is normal with

E(Ȳ |YS, I, σ2
j ) = ȳst =

M∑
j=1

Pj ȳj

V ar(Ȳ |YS, I, σ2
j ) = vst =

M∑
j=1

P 2
j σ

2
j (1/nj − 1/Nj)

Hence, the posterior mean is the stratified mean from design based infer-

ence and if σ2
j s are replaced by estimates s2

j , the posterior variance equals

the design-based variance, a substitution that according to Little (2004) is

justified asymptotically. Note that the Pj = Nj/N are assumed known, that

means the size variable Nj for the population strata is known. Also, the fac-

tors (1− nj/Nj) are finite population corrections that emerge automatically

26



in Bayesian analysis. Stratification weights can help when the population

proportions Pj are not known and the estimator can be written

ˆ̄yst =
M∑
j=1

Pj ȳj =
M∑
j=1

wjnj ȳj/

J∑
j=1

wjnj

and the model-based approach replaces ȳj by prediction µ̂j from the model.

In general, it is advisable to take into account stratum effects when stratifi-

cation is present since strata construction is usually based on characteristics

likely to be related to the survey outcome. Gelman (2007) argues that analy-

sis should incorporate all variables affecting selection or nonresponse. Little

(2004) claims that modelling the differences across groups is important for

a well-specified model. Again, the proportions of groups in the population

Pjs are assumed to be known, otherwise a “supplemental model is needed to

allow estimation of these proportions from the sample” (Little, 2004).

A special case where Bayesian modelling can improve inference is when post-

stratification is applied. Sometimes, there is a desirable stratification variable

that the sampling frame does not include information on but its distribution

is known from previous surveys or census. Now, Pj = Nj/N is the proportion

of the population in post-stratum j. Then, a random sample of size n is taken

from the population and nj of the Nj units in post-stratum j are included in

the sample. The estimator here has the same form as the stratified estimator,

but inference now changes by the fact that njs are now random depending on

the sampling distribution. Thus, there is a non-zero probability that nj = 0

for some j that makes ȳ undefined. In this case the variance of the estimator

is also undefined or maybe infinite. A Bayesian model with random effects

can improve inference by allowing for borrowing strength for the prediction

in small post-strata. It is evident that adding random effects in the model

increases robustness, even in a stratified sample, especially when there are

many strata and small samples.

When natural clusters exist in the population it is common in surveys to
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sample clusters first and then units within clusters. To incorporate this

feature in the Bayesian analysis, random effects are introduced in the model.

Assume the population consists of M clusters, like geographical areas and we

sample a number m of these clusters. Next, we select a simple random sample

of nj units in each sample cluster j. The sampling mechanism is ignorable if

we condition on cluster information but the Bayesian model needs to account

for within-cluster correlation. A normal model that does this is

yij|θj, σ2 ∼ N(θj, σ
2)

θj|µ, τ 2 ∼ N(µ, τ 2)

p(µ, τ 2, σ2) = const.

Similar models with random effects are used in this thesis but for a multi-

variate categorical response variable. Therefore, we use a GLMM version of

the above models in Chapters 3 and 4.

2.2.2 Models for PPS samples

The Horvitz-Thompson estimator applies the idea of weighting the units

more generally but design based inference becomes more troublesome. One

of the major disadvantages of using this estimator is the complications when

calculating its variance estimator, as mentioned in Section 2.1. The other

disadvantage is that the HT estimator can have a high variance when an

outlier in the sample has a low selection probability and so it receives a large

weight. Little and Zheng (2003) consider alternatives to the HT estimator

that assume a smoothly-varying relationship between yj and the inclusion

probability πj using penalized splines. Their method is for PPS sampling

and continuous outcomes as following

yj = f(πj, β) + εm, εj
iid∼ N(0, π2k

j σ
2)
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where πj is the selection probability for unit j, k takes values 0, 1/2 or 1

to model error heteroskedasticity and the function f is a p-spline written

as a linear combination of truncated polynomials. They simulated different

artificial populations and calculate the root mean squared error of point

estimates in order to compare between different estimates. They conclude

that p-spline model based estimators are generally more efficient than HT

estimators.

More recently, Little and Zheng (2007) examined the case where the size

measure Z is not recorded for the non-sampled units. While this information

is essential to implement PPS sampling, it is usually not available in public

use data files. Here the full Bayesian approach requires a supplemental model

for the design variables in order to predict their values for the non-selected

cases. Little and Zheng (2007) conclude by showing how this can be done

through a Bayesian Bootstrap (BB) model for the size variable, modified to

account for PPS sampling. We next describe how the BB model works and

the theory behind it.

Assume PPS sampling where the selection probabilities πj (or the size vari-

able zj) are only available for sampled j but the total number of non-sampled

cases M −m is known. In the BB model, predictions of the sizes z̃j for non-

sampled cases have to be drawn from the posterior distribution given the

data and that these units are not selected. Then, Little and Zheng (2007)

use the same penalized spline model as before to draw yj from the poste-

rior distribution of y given the drawn value of zj. The problem appears

during the first part, since sample design becomes informative when sizes

are unknown for the non-sampled units. The posterior distribution of the

sizes given non-selection is related to the posterior distribution of sizes given

selection as

p(z|data, i = 0) = cp(z|data, i = 1)p(i = 0|z, data)/p(i = 1|z, data)

= cp(z|data, i = 1)(1− π(z))/π(z)

where c is a normalising constant. Then, this predictive distribution is de-
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scribed through a BB model. Let {x1, ..., xK} be the set of distinct sizes

for the sampled units and vk the number of sampled clusters with size xk,∑K
k=1 vk = v. Assume that these counts are multinomial with probabilities

{ρ1, ..., ρK} which are assigned a Dirichlet(0, ..., 0) prior distribution.

(v1, ..., vK |ρ1, ..., ρK , i = 1) ∼ Multinomial(v; (ρ1, ..., ρK)p(ρ1, ..., ρK) ∝
K∏
k=1

ρ−1
k

This model makes the assumption that only the selection probabilities that

arise are those seen in the sampled clusters. Little and Zheng (2007) claim

that this assumption does not seriously impact the resulting inferences. The

posterior distribution of {ρ1, ..., ρK} is Dirichlet(v1, ..., vK)

p(ρ1, ..., ρK) ∝
K∏
k=1

ρvk−1
k

If v∗k is the number of non-sampled clusters with size xk,
∑K

k=1 v
∗
t = M −m,

then the posterior predictive distribution of these counts is Multinomial

(v∗1, ..., v
∗
K) ∼ Multinomial(M −m; (ρ∗1, ..., ρ

∗
K))

where ρ∗k = cρk(1− πk)/πk where πk = mxk/Mx̄ is the selection probability

for units with size xk and c is chosen so that
∑K

k=1 ρ
∗
k = 1. Thus, the model

suggests drawing values ρk and then drawing predicted counts v∗k using the

last two equations.

We compare this BB model with a parametric model suggested for PPS sam-

pling in Section 3.6 and test both models through different ways of sampling

with PPS.

2.2.3 Regression models for surveys

Many references in the literature review about modelling for surveys seem to

focus on regression modelling and how regression estimates can approximate
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design-based estimates. Often, sampling weights are used in modelling in a

way that is still controversial, as Pfeffermann (1993) comments while trying

to answer questions about the use of sampling weights in modelling. For

example, the estimator of the regression coefficient can be written as

β̂w = (XT
sWsXs)

−1XT
sWsYs =

(∑
i∈S

wixix
T
i

)−1∑
i∈S

wixiyi

where wi = 1/πi, xi is the vector of covariates for unit i, s denotes the sample,

Ws = diag(w1, ..., wn), Ys = (y1, ..., yn)T . Pfeffermann (1993) concludes

that weights can help to protect against nonignorable sampling and model

misspecification depending on the survey design and the form of the available

data. See Pfeffermann (1993) for a review of several approaches for including

the weights in the modelling procedure.

In this Section we describe briefly some Bayesian regression models, as they

are not the main interest in this thesis. Note that in all these models covari-

ates X are known for all the population units. Gelman (2007) reviews hierar-

chical regression together with post-stratification as a strategy for correcting

for differences between sample and population. The goal is to estimate the

population total or mean or the coefficients of a regression model for survey

data. He focuses on the relation between the model for survey response and

the corresponding weighted-average estimate. Also, Gelman (2007) aims to

have a model based procedure for constructing weights or create methodol-

ogy for regression modelling that gives efficient and approximately unbiased

estimates.

The notation used is y, z for variables that are observed in the sample only

and X for variables that are observed in the sample and are known in the

population. There are variables X whose joint distribution in the population

is known and an outcome y whose population distribution we are interested

in estimating. Gelman (2007) assumes X to be discrete and labels all the

possible categories of X as post-stratification cells j with population sizes Nj

and sample sizes nj. The population size is N =
∑J

j=1 Nj and the sample
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size is n =
∑J

j=1 nj. He assumes again that the population size Nj of each

class j is known and these categories include all the cross-classifications of

the predictors X. In the case where they are unknown, they have to be

estimated usually from previous surveys. Then the population mean of any

response can be written as a sum over post-strata

θ =

∑J
j=1 Njθj∑J
j=1Nj

and the estimate is

θ̂ =

∑J
j=1 Nj θ̂j∑J
j=1Nj

(2.3)

where θj the population mean in group j and θj the sample mean in group

j.

Gelman (2007) distinguishes between unit weights wi, i = 1, ..., n and cell

weights Wj = njwi for units i within cell j. Then the weighted average is

defined as

ȳ =

∑n
i=1wiyi∑n
i=1 wi

=

∑J
j=1Wj ȳj∑J
j=1Wj

Gelman (2007) then uses regression modelling to connect weighting and post-

stratification by applying the idea to work with the post-stratified estimator

which under certain conditions can be reinterpreted as a weighted average.

A regression model that includes information about the post-stratification

cells without including all the interactions is the following y ∼ N(Xβ,Σy)

with a prior distribution on β of the form N(0,Σβ). Also, X is the n × k
matrix of predictors in the data and Xpop the J × k matrix of predictors

for the J post-stratification cells. The vector of post-stratum populations is

Npop = (N1, ..., NJ) with N =
∑J

j=1 Nj. The estimated vector of regression

coefficients is then β̂ = (XTΣ−1X + Σ−1
β )−1XTΣ−1y and the post-stratified

estimator of the population is

θ̂ =
1

N

J∑
j=1

NT
popXpop(X

TΣ−1X + Σ−1
β )−1XTΣ−1y
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The vector of unit weights (renormalised to sum to 1) is written

w =
( n
N

(Npop)
TXpop(X

TΣ−1X + Σ−1
β )−1XTΣ−1

)T
which is a vector of n that takes at most J distinct values. The vector of J

possible unit weights (corresponding to units in each of the J post-strata) is

wpop =
( n
N

(Npop)
TXpop(X

TΣ−1X + Σ−1
β )XT

popΣ
−1
)T

Then, using an example of an exchangeable normal model for the J cell

means, writing the posterior means of the cell means θk as a linear com-

bination of the cell means ȳk and using some appropriate approximations,

Gelman (2007) manages to express the units weights as weighted average

of the full post-stratification unit weight
Nj/N

nj/n
and the completely smoothed

weight of 1.

2.3 Inference for polytomous variables

2.3.1 Introduction

In this thesis, we are mainly interested in analysing categorical responses

with many categories, where the Multinomial model is suitable. The Multino-

mial model is often encountered in social statistics problems, market surveys,

transportation and travel behaviour modelling, spatial or longitudinal data,

health services surveys, etc. The variable of interest has more that two cate-

gories and several explanatory variables may affect the response variable. It

also common that the subjects are observed within clusters or are repeatedly

measured. In this case, observations from the same cluster are usually cor-

related and a mixed effects regression model is necessary. There could also

be individual-specific covariates, group-specific and/or even choice-specific

covariates. A Multinomial model can also be used in contingency table anal-

ysis, as described in Chapter 5. We start by describing the Multinomial

distribution in general and then the Multinomial model as a GLMM.
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Consider random variables y1,
∗ ..., y∗n that may take one of several discrete

values called categories and indexed 1, 2, ..., C with probabilities pk for k =

1, ..., C and
∑

k pk = 1. The likelihood of the model is then

f(y∗|p) =
n∏
i=1

C∏
k=1

p
I[y∗i =k]

k

Let yk be the number of y∗i s that fall in category k and
∑

k yk = n. When

we only observe the yks the likelihood becomes

f(y|p) =

(
n

y1, y2, ..., yC

) C∏
k=1

pykk

and is known as the Multinomial distribution.

2.3.2 The Multinomial logit model

The Multinomial distribution belongs to the exponential family of distribu-

tions, hence to construct a GLMM we need to define the link function and

the linear predictor. Following the notation of Section 1.3, let j denote the

groups with j = 1, ...,M and i denotes the units nested within groups with

i = 1, ..., nj. The response variable yij can take k = 1, ..., C discrete values

with probabilities pij = (pijk, ..., pikC). Moreover,∑
k

yijk = 1,
∑
k

pijk = 1 and pijk ≥ 0

The likelihood of this model is

f(y|p) =
M∏
j=1

nj∏
i=1

C∏
k=1

p
yijk
ijk (2.4)

and

yij ∼ Multinomial(pij; 1)

If yij takes k = 1, ..., C discrete values with probabilities pj = (pjk, ..., pkC),

which means that all units within groups have same probability of falling
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into a category, then the likelihood is

f(y|p) ∝
M∏
j=1

C∏
k=1

p
yjk
jk (2.5)

where yjk is the number of units in group j that fall into category k and∑
i

∑
k yijk = nj the number of units in group j. Hence, in this case

yj ∼ Multinomial(pj;nj)

Now consider the probabilities

pijk = Pr(yij = k)

and models where these probabilities depend on a vector xij of fixed covari-

ates and group-specified random effects uj. To create the Multinomial logit

model we nominate one category as the baseline or reference category cal-

culate log-odds for all other categories relative to that one. Then, let the

log-odds be a linear function of the predictors and/or the random effects.

For the following analysis we use the first category as the baseline category.

Hence, we have

ηijk ≡ log
pijk
pij1

= xTijβk + zTijujk

The Multinomial logit model presents an extra difficulty when comparing

it with the general description of GLMMs in Section 1.3 because this is a

multivariate model and parameters βk and ujk depend on k. Thus, xij is

the p× 1 covariate vector and zij the design vector for the q random effects.

Correspondingly, βk is p× 1 vector of unknown fixed regression parameters

and ujk is an q×1 vector of unknown random effects for the group j. Writing

the same in vector form we get

ηij =

(
log

pij2
pij1

, ..., log
pijk
pij1

)
= Xijβ +Zijuj (2.6)

where βT = (βT2 , ...,β
T
C−1) is the vector of coefficients for every category,

Xij and Zij are model matrices for the fixed and random effects and uTj =
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(uTj2, ...,u
T
jC−1) the random effects. The fixed effects matrix for each unit is

a (C − 1)× p(C − 1) matrix with non-zero elements

Xij =


1 xTij

1 xTij
. . .

1 xTij


The Multinomial logit model may also be written in terms of the original

probabilities pijk rather than the log-odds as

pijk =
exp(ηijk)

1 +
∑C

l=2 exp(ηijl)
for k = 2, 3, ..., C

pij1 =
1

1 +
∑C

l=2 exp(ηijl)

The likelihood of the model is then

f(y|β,u,Σ) =
M∏
j=1

nj∏
i=1

C∏
j=2

 exp(ηijk)

1 +
C∑
j=2

exp(ηijk)


yijk

(2.7)

To complete the GLMM description, we assume uj are independent multi-

variate normal with covariance matrix Σ. In Chapter 3 we deal with a simpler

version of the multinomial random effects model that has only a fixed and a

random intercept since we do not include any covariates in the model.

Classical inference for this model is made through the integrated likelihood,

where random effects are integrated out

f(y|β,Σ) =

∫
f(y,u|β,Σ)du

=

∫
f(y|β,u,Σ)f(u|Σ)du

Although many applications of the Multinomial logit model with random

effects appear in the classical literature, most of them implement this model

by approximating the likelihood with the equivalent likelihoods of Poisson
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model. The connection between Multinomial and Poisson random variables

is based on the fact that Multinomial distribution can be derived from a set of

independent Poisson random variables conditionally on their total being fixed

McCullach and Nelder (1989). Thus, the model is transformed to a Poisson

log-linear model which is easier to work with. Also, a variety of other combi-

nations of methods are used, like penalized quasi-likelihood (PQL) method

that was introduced by Breslow and Clayton (1993) for the estimation of the

fixed and random effects and maximum likelihood (ML) or restricted maxi-

mum likelihood (REML) for the estimation of the variance of random effects

Mollina et al. (2007). Hedeker (2003) uses a full maximum marginal like-

lihood together with multi-dimensional quadrature to numerically integrate

over the random effects and an iterative Fisher scoring algorithm to solve the

likelihood equations. Hartzel et al. (2001) also present a general approach

for logit random effects modelling. Their maximum likelihood estimation

uses adaptive Gauss-Hermite quadrature within a quasi-Newton maximiza-

tion algorithm. When this is computationally infeasible, they apply a Monte

Carlo EM algorithm and they also compare the pseudo-likelihood with a

semi-parametric approach.

2.3.3 Bayesian Multinomial logit model

On the other hand, Bayesian approach seems more efficient when dealing

with random effects and easier to implement. Assigning a prior distribu-

tion to the parameters, fixed and random, and using MCMC techniques we

can simulate directly from their posterior distributions. However, examples

in the literature on the Bayesian Multinomial model with random effects

are limited. Kazembe and Namangale (2007) model child co-morbidity of

fever, diarrhoea and pneumonia in Malawi with a Multinomial logit model

with random effects. The data are clustered within two geographical levels,

subdistricts and districts. The response variable Yijk is the sickness status

and πijk the probability of multiple morbidity of the above diseases, with

37



j = 1, ..., ni defining the j child in area i, i = 1, ..., I and k the various

combinations of co-morbidity. Assuming

Yijk ∼ Multinomial(πijk, 1)

and adding some covariates xij, the probability of co-morbidity is modelled

πijk =
exp(ηijk)

1 +
∑C

l=1 exp(ηijl)

with

ηijk = xTijβk + sik

The random effects sik correspond to spatial effects and are modelled using

conditional autoregressive (CAR) models, where i = 1, ..., I the areas and k =

1, ..., C the multinomial categories. They are district or subdistrict specific

factors and are separated into spatially structured variation and unstructured

multinomial heterogeneity, sik = θik +φik. Moreover, distinguishing between

subdistrict and district levels produces

ηhijk = xThijβk + shik + dhk

where i refers to subdistrict and h to district and both terms can also be split

in spatially structured variation and unstructured heterogeneity. For the

spatially structured random effects a CAR prior distribution was assigned,

θi|{θl; l ∼ i} ∼ N

(
1

mi

∑
l∼i

θl,
σ2
θ

mi

)
that assumes the mean of each area θi conditional on the neighbouring areas,

has a normal distribution with mean equal to the average of neighbouring

areas and variance inversely proportional to the number of neighbours mi

and where l ∼ i denotes areas l and i are neighbouring. Then, σ2
θ is further

assigned a non-informative Inverse Gamma prior distribution with hyper-

parameters a = b = 0.001. The unstructured heterogeneity is given an ex-

changeable normal prior φi ∼ N(0, σ2
φ) and σ2

φ an Inverse Gamma hyperprior.

Finally, the fixed regression coefficients have diffuse priors p(βk) ∝ constant.
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Kazembe and Namangale (2007) consider several models with various combi-

nations of random effects and compare them using the deviance information

criterion (DIC) which is an information criterior for model comparison pro-

posed by Spiegelhalter et al. (2002). Also, a sensitivity analysis is performed

in order to check the choice of hyperprior distributions. We notice that uni-

variate prior distributions are used for the random effects across different

categories. In this thesis, we adopt multivariate normal distributions for the

group specific random effects uTj = (uj1, ..., ujC)

uj ∼ N(0,Σ)

for group j. This means that uj are category dependent and helps accounting

for correlation between categories.

2.4 Inference for contingency tables

In this Section we describe briefly existing methods for analysing contingency

tables from surveys and the way the Multinomial model can also be used in

this case. Let Y1 and Y2 denote two categorical variables with R and C cat-

egories respectively. A table with R rows for categories of Y1 and C columns

for categories of Y2 gives the frequency counts of outcomes for a sample and

is called contingency table. Let pij denote the probability that (Y1, Y2) occur

in cell of row i and column j that defines the joint distribution of Y1 and

Y2. There are various models describing cell counts in contingency tables,

like Poisson sampling model, Multinomial sampling and product Multino-

mial sampling model (Agresti, 2002). Usually, testing if the two variables

are independent or not is one of the important questions. Classical infer-

ence for contingency tables consists of chi-square tests for independence, like

Pearson’s chi-square test and likelihood chi-square test which are asymptoti-

cally equivalent. Assume we have a table with M cells with Oi the observed

count in cell i and Eij the expected count in the same cell, then the Pearson’s
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chi-square test is

X2 =
∑
i

(Oi − Ei)2

Ei

and the Likelihood chi-square test is

G2 = 2
∑
i

Oiln

(
Oi

Ei

)
Both approximately follow a chi-square distribution with 1 degree of freedom

under the hypothesis of independence. This is an asymptotic approximation

the equivalency of which is questioned for small samples.

The table of probabilities from two cross-classifying variables can be displayed

as

Table 2.1: Contingency table example

Y2

1 2 · · · C

Y1

1 p11 p12 · · · p1C p1+

2 p21 p22 · · · p2C p2+

...
...

...
...

...

R pR1 pR2 · · · pRC pR+

p+1 p+2 · · · p+C 1
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where pi+ =
∑C

j=1 pij, p+j =
∑R

i=1 pij. The observed count in cell (i, j) is

yij.

Both chi-square statistic tests are highly influenced by the survey design. Es-

pecially when cluster sampling is performed, the within clusters correlation

might have an effect on the p-value of these tests. Also, their distribution

is not anymore a x2
1 distribution since the sampling is not anymore multino-

mial. More examples are given in Lohr (1999) about the effect of ignoring

the sampling design in inference for contingency tables. One solution is to

take into account any weights given in the sample (Lohr, 1999; Clogg and

Eliason, 1987). Sampling weights can be used to estimate cell counts or cell

proportions as

p̂ij =

∑
l∈S wlyijl∑
l∈S wl

where

yijl =

{
1 if unit l falls in cell (ij)

0 otherwise

and wl the weight for unit l. A new table can be created replacing pij

in Table 2.1 with the estimated p̂ij. Significant differences when compar-

ing the odds ratios pijpkl/pilpkj with the estimated odds ratios p̂ij p̂kl/p̂ilp̂kj

might mean that other factors affect the relation between these two variables.

Lohr (1999) also comments on the influence of stratification and clustering

in hypothesis tests and confidence intervals. The conclusion is that ignoring

stratification results in conservative tests and large confidence intervals. One

case where stratification presents no problems is when the strata are the cat-

egories of one of the cross-classified variables. On the other hand, clustering

has the opposite effect and ignoring it in chi-square tests can be critical,

since it tends to yield significant associations between the cross-classifying

variables when they are not. Lohr (1999) then suggests some corrections to

chi-square tests when clustering is present, such as Wald tests, Bonferroni

tests, or correcting the test statistics X2 and G2 by matching their moments

to chi-square distribution moments. Rao and Scott (1981) also examine the
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effect of stratification and clustering on chi-squared test statistic for good-

ness of fit and independence, provide their asymptotical distributions and

corrections, suitable for two way contingency tables.

Finally, log-linear models have been suggested to analyse relationships be-

tween two or more classification variables. Let µij denote the expected fre-

quency in cell (ij) and n the number of units. If the two cross-classified

variables are independent, then

µij = npij = npi+p+j

and taking logarithms produces

log(µij) = log(n) + log(pi+) + log(p+j)

which can then be written

log(µij) = β + βri + βcj

where βri refers to the row effect and βcj to the column effect. Also, for

identifiability reasons we typically impose constraints such as βr1 = βc1 = 0.

This model is known as log-linear model and a more complicated version is

the saturated model including interactions:

log(µij) = β + βri + βcj + βrcij

The latter model implies dependence between the two variables. Again for

identifiability it is common to constrain βrci1 = βrc1j = 0. In this type of models,

βri and βcj can be thought of as coefficients of dummy variables and βrcij as

the coefficient of the product of dummy variables for βri and βcj . The number

of parameters in the model is 1 + (R− 1) + (C − 1) + (R− 1)(C − 1) = RC.

Classical tests for independence check if the βrcij parameters equal zero.

In order to analyse contingency tables with Multinomial models, we need to

condition on the sum of the cell counts n. Then, the Poisson log-linear model

becomes Multinomial for the cell probabilities. The saturated model is

pij =
exp(β + βri + βcj + βrcij )∑

l

∑
m exp(β + βrl + βcm + βrclm)

42



which assumes pij ≥ 0 and
∑

i

∑
j pij = 1 and β parameter actually can-

cels here. It corresponds the total sample size which is random in Poisson

model but fixed here. The Bayesian version of this Multinomial model for

contingency tables is examined analytically in Chapter 5 under survey design

influence.

2.5 Conclusions

Through this Chapter we described first how design based inference for sur-

veys is made for different sampling designs and its weaknesses. Next, we

discussed Bayesian inference for surveys for continuous variables of interest.

It is evident that the models have to incorporate information on the sam-

pling design in order to be well specified. Then, Bayesian models can provide

estimates that are design consistent. Nevertheless, we see from the above re-

view that Bayesian modelling for surveys has been restricted to continuous

response variables. Also, the design variables are almost always assumed

known for all the population units. For example, the population cluster sizes

are assumed to be known for sampled and non-sampled clusters with only ex-

emption the work of Little and Zheng (2007). This is particularly important

when predicting for the non-sampled cases.

To summarise the above discussion, we make the following comments. Re-

gression models assume the covariates X known for all population units

which allows for prediction for non-sampled cases. Little and Zheng (2007)

introduced the only example where the design variable (size variable) is

not recorded for the non-sampled cases in PPS sampling and suggested a

Bayesian Bootstrap model for the size variable. Moreover, the use of sam-

pling weights in modelling is not explicit but there are suggested models

(Little, 2004) where posterior estimates correspond to weighted averages.

We introduced the Multinomial model which is used in this thesis to model
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polytomous responses and contingency tables coming from surveys. Classical

methods for Multinomial data and contingency tables may not be efficient

in complex survey designs. Problems appear when the sample size is small

and there are zeros in the table and when the sampling design effect is not

considered.

These conclusions reveal that there is a need for Bayesian inference for cat-

egorical response outcomes, in particular when information about survey

design variables is limited or non-available. In these cases regression models

are inadequate because prediction is not possible. We also have to note that

our goal is to use sampling weights when possible but not in modelling, where

their use is controversial.
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Chapter 3

Models for the size variable

3.1 Introduction

We mentioned in the previous Chapter that design variables are known to the

survey statisticians but not to the data analysts. Therefore, as data analysts

we only have the sampled values of the design variables. Since, the design

variables are typically variables used for stratified or cluster sampling, their

values in the sample are the stratum or cluster indicators. We introduce the

term size variable to express the stratum or cluster sizes in the population

and in the sample. The problem of not knowing the population values of the

design variables equals to the problem of not knowing the group (strata or

clusters) sizes in the population.

To summarise, we address the problem of the unknown sizes of the groups in

the population during survey data analysis. As in finite population problems

the data analysts need to know the population size, they also need to know

the population group sizes. For example, in Section 2.2.1 we described a

model that Little (2004) suggested for stratified sampling and that gives the
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following posterior expectation of the population mean Ȳ

E(Ȳ |YS, I, σ2
j ) = ȳst =

M∑
j=1

Pj ȳj

where Pj = Nj/N are assumed known. In our analysis, we drop this assump-

tion and try to find methods to calculate or model the population group sizes

Nj. These quantities are then used in Chapter 4 and 5 to make inference for

the population counts of a variable of interest Y with many categories.

At this point we need to clarify the assumptions we make in our analysis. We

assume the population size and the number of groups in the population are

known. This has to be taken into account when modelling and predicting the

group sizes. We examine three sampling designs, stratified random sampling,

cluster sampling with SRS and cluster sampling with PPS. In our dataset,

possible stratification variables are the variables that present some kind of

categories, like sex, age, social grade, etc. Potential cluster variables are the

geographical variables such as the area, district or health region.

During the following analysis, we use two different notations for the sizes.

This is important when discussing different sampling schemes, such as strat-

ified and cluster sampling. First, we introduce the population size N and

sample size n, quantities that are known and also nj is the sample size in

group j. In a stratified sample, units from all strata are included in the

sample and so there are not any unsampled strata. Then, we use the nota-

tion Nj for the size of the group j in the population and Njs are calculated

deterministically. In a cluster sample, some of the clusters are included in

the sample, this means there are non-sampled clusters. Then, we define the

size variable Z and zj denotes the size for cluster j. In the latter case, Z is

a variable and is modelled appropriately. Also, we use the subscript S when

we want to define sampled units or groups and S̄ for the non-sampled.

In the following analysis, many different samples were obtained for every

sampling design but the results presented are all coming from a particular
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sample. This is decided for the sake of producing numerical results suitable

for comparison between methods and designs. However, inference is similar

when another sample is chosen and the choice of sample does not affect the

inference procedure, only the numbers deriving from it.

3.2 Stratified random sampling

As described in Section 2.2 during stratified sampling, units in stratum j are

weighted by the inverse of their selection probability, usually scaled to sum

up to the total sample size

wj = (Nj/nj)(n/N) (3.1)

for j = 1, ...,M , where M the total number of strata in the population. Dur-

ing stratified random sampling, all strata in the population are sampled and

hence there is no need to account for any non-sampled strata. Using the

dataset presented in Table 1.1, age or sex can be stratification variables. Of-

ten, survey statisticians create new stratification variables by cross-classifying

units according to both age and sex. The new strata coming from these two

variables have 2 × 6 = 12 categories with labels given from the combina-

tions of the original strata labels. Then, a random sample is taken from

each new stratum with some method of allocation and sampling weights are

constructed. Choosing amongst methods to obtain stratum sample sizes is

not our goal and we simply use proportional allocation (Lohr, 1999). Pro-

portional allocation means that the size of the sample for each stratum is

taken in proportion to the stratum size in the population.

Next, the data analysts obtain the dataset and can use Equation (3.1) to

calculate directly the strata sizes by solving it with respect to Nj

Nj = wjnjN/n (3.2)

In this case, the data analyst does not have to model the sizes, since all

strata are included in the sample and population sizes can be calculated
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easily. Strata size Nj for stratum j can then be used in predicting a response

variable Y within this stratum, as presented in Chapter 4.

3.3 One stage cluster sampling with SRS

During this sampling procedure, the survey statistician decides to sample a

certain number of clusters as the primary sampling units (PSU) and then

sample all the units within selected clusters. Cluster sampling with SRS is

usually performed when the sizes do not differ significantly in the population.

As data analysts, we do not have information about the sizes of the non-

sampled clusters and need to model the size variable Z. However, we have

information about the type of sampling design and which the cluster variable

is.

Let zj denote the observed cluster sizes, for j = 1, ...,m where m denotes the

number of sampled clusters from a total number M . If we know that cluster

sampling with SRS was performed, we can safely conclude that cluster sizes

do not vary significantly. Moreover, there are no clusters with size 0 in the

population and so we have to adjust our model of choice to be zero-truncated.

For the dataset described in Section 1.8, we observe that potential variables

to be used for cluster sampling are area and district. Both represent ge-

ographical variables and Table 3.1 gives population summaries for both of

them. We see that the population mean and variance are almost equal for

area that suggests a Poisson model is appropriate. On the other hand, the

variance of district is much larger than its mean and a Negative Binomial

model is assumed for this variable.
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Table 3.1: Summary statistics for area, district

Statistic area district

Mean 12.44 40.51

Variance 12.23 1407.49

Min 3.00 9.00

Max 20.00 200.00

3.3.1 Zero-truncated Poisson model

Area is the cluster variable assumed to be used for SRS cluster sampling. A

zero-truncated Poisson model is suggested for the area sizes or size variable

Z. First, we describe the zero-truncated Poisson model. The zero-truncated

Poisson distribution has probability mass function, corresponding to the un-

truncated distribution, defined by

f(z|λ) =
f(z|λ)

Pr(z > 0)
where z = 1, 2, ...

where

Pr(z > 0) = 1− Pr(z = 0) = 1− e−λ

which leads to

f(z|λ) =
e−λλz

z!

1

1− e−λ
=

λz

z!(eλ − 1)

Now, let zj be the size for area j for j = 1, ...,m. Then,

f(zj;λ) =
λzj

zj!(eλ − 1)

with likelihood

f(z|λ) =
m∏
j=1

λzj

zj!(eλ − 1)
(3.3)

We assign a Gamma(α, β) prior distribution for λ and its posterior distribu-

tion becomes

f(λ| z) ∝ λ
∑
zjλα−1e−λβ

(eλ − 1)m

=
λ
∑
zj+α−1

eλβ(eλ − 1)m
(3.4)
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A Metropolis-Hastings (M-H) algorithm is used to simulate from the poste-

rior distribution of λ. Then, we want to get simulations from the posterior

predictive distribution f(z̃|z) of new sizes z̃ and take into account the fixed

known population size which makes the sum of the non-sampled sizes to be

fixed and equal to N − n. Hence, after obtaining draws from f(λ|z), we use

again a M-H algorithm with the following steps:

1. Start from a random vector of z̃ = (z̃1, ..., z̃M−m) with
M−m∑
j=1

zj = N −n

2. Choose t (even number) elements from this vector

3. Increase t/2 of the chosen elements by step=s and decrease the remain-

ing t/2 elements by s

4. Set the new vector as the proposed vector z̃can

5. Calculate rate

α =

M−m∏
j=1

f(z̃canj |λ)

M−m∏
j=1

f(z̃j|λ)

where f(z|λ) is Equation 3.3.

6. Draw u ∼ Unif(0, 1)

7. If u < α then z̃ = z̃can else go to (2).

The numbers s, t are chosen to produce an acceptance rate between 20% and

30%.

Example

As mentioned above, area is used for one stage cluster sampling with SRS.

A sample of m = 30 areas from the M = 140 in the population is given to
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us for analysis. The sampled dataset includes n = 357 observations of the

N = 1742 population units. Size variable z has sample mean 11.9 and sample

variance 13.33. Different prior distributions were tried here by modifying the

hyperparameters for Gamma distribution. Our wish is to represent our weak

prior knowledge about the parameter and see how different prior distributions

affect inference about it (Gelman, 2006; Gelman et al., 2008). In particular,

Gamma(0.001,0.001), Gamma(1/2,0.001) and Gamma(1,0.001) were tested,

the last two corresponding to Jeffrey’s prior and positive Uniform distribu-

tion. All different produced similar results, shown in Table 3.2 that suggests

the data is enough to make the choice of prior distribution negligible during

inference.

Table 3.2: Posterior inference for λ under different prior distributions

Prior Mean s.e.

Gamma(0.001,0.001) 11.93571 0.63076

Gamma(1/2,0.001) 11.91546 0.63038

Gamma(1,0.001) 11.89298 0.62960

Figure 3.1: Trace plot for λ in the zero-truncated Poisson model

As mentioned before, we want to have an acceptance rate between 20% and
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30% and after having run different simulations and tuned the proposal dis-

tribution, s and t, we choose a Normal proposal with variance equal to 1,

s = 10 and t = 1. The positive Uniform is selected as the prior distribution

to make inference. A number of 100000 draws gives satisfying updating of

all the elements of the z̃ vector. Convergence diagnosis is made through the

trace plots observation and calculation of Gelman and Rubin’s convergence

diagnostic which is equal to 1 (Gelman and Rubin, 1992; Brooks and Gel-

man, 1997). Figure 3.1 shows the trace plot for λ and Table 3.3 summarises

λ and z̃ posterior distribution.

Table 3.3: Posterior inference for λ and non-sampled z̃ in the zero-truncated

Poisson model
Mean s.e. 95%C.I.

λ 11.89 0.629 (10.37, 12.81)

z̃ 12.69 3.551 (6, 21)

The histogram of the posterior predictive distribution for z̃, together with

the true mean (black vertical line) of the non-sampled cluster sizes is given

in Figure 3.2.
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Figure 3.2: Posterior predictive density for non-sampled z̃ and true mean of

the non-sampled cluster sizes

3.4 Two-stage cluster sampling with SRS

During this sampling procedure, a number of units within selected clusters

is sampled in a second stage sampling. This means that the sampled cluster

size nj for cluster j is not equal to the population cluster size Nj. Therefore,

we have first to calculate the population cluster sizes for sampled j in order to

model the sizes. We use the sampling weights to get the approximate size of

sampled clusters and then modelling becomes similar to the previous section.

Weights reflect the probabilities of selection in each stage and during the first

stage clusters are selected with probability m/M and the units within cluster

j are sampled with probability nj/Nj. Thus, the weight corresponding to

units within cluster j is

wj = w1w2 =
M

m

Nj

nj

and

Nj = wjnj
m

M
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where M , m, wj and nj are known. Having obtained the population sizes

of the sampled clusters, we model the size variable with a zero-truncated

Poisson model as described in previous sections.

3.5 One stage cluster sampling with PPS

Cluster sampling with probability proportional to size is common when the

cluster sizes vary significantly and we want to include larger clusters in the

sample. Thus, cluster j is selected with probability proportional to its size

zj. The sampling design becomes informative and we need to include this

in the modelling process by specifying a model both for the survey data and

the inclusion indicators. The following analysis is about Poisson sampling

which is a kind of PPS sampling.

Poisson Sampling

Poisson sampling is a sampling process where each element of the population

is subjected to an independent Bernoulli trial which determines whether the

element becomes part of the sample. The term element here corresponds to

clusters and each has a different probability of being included in the sample.

We consider a Negative Binomial model for the cluster sizes in the popula-

tion. This model is more realistic when it comes to PPS sampling where the

sizes are considered to differ significantly. Since the variance usually exceeds

the mean, the Negative Binomial model with one more parameter than the

Poisson can be used to adjust the variance independently of the mean. Let

z∗j denote the population values for j = 1, ...,M and zj denote the sampled

values.
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3.5.1 Zero-Truncated Negative Binomial model.

We use the variable district which is ideal for PPS sampling. It is again a

geographical variable but the sizes of the districts vary significantly compared

to areas. Poisson sampling is applied as described above and the a number

of m = 9 districts are sampled from the M = 43 in the population. Again,

one sample is chosen to present the results and inference for every sample

taken is similar to the one descibed here. We note that the largest size

district (Nj = 200) is always sampled and very few small size districts are

included in the sample. Summary statistics for the population district sizes,

the sampled and non-sampled are given in Table 3.4, where one can see the

differences between them. The sampled cluster sizes have a mean of 80.55 and

a variance of 3443.52 that make the Poisson model non-suitable as a model

for the population. One can also notice that the mean and variance of non-

observed sizes is 29.91 and 403.47 respectively that supports the assumption

that distributions of sampled and non-sampled sizes differ. Histograms of

both distributions in Figures 3.3 and 3.4 confirm this as well. We observe

that histogram of sampled sizes shows larger mean and variance comparing

to unsampled.

Table 3.4: Summary statistics for district sizes after PPS sampling

Statistic Population Sampled Non-sampled

Mean 40.51 80.55 29.91

Variance 1407.49 3443.52 403.47

Min 9.00 26.00 9.00

Max 200.00 200.00 86.00

The population size variable has a zero-truncated Negative Binomial distri-

bution

f(z; p, ξ) =
f(z)

P (z > 0)
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Figure 3.4: Histogram of non-sampled sizes in one stage PPS sampling
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where f(z) denotes the non-truncated density. Since

Pr(z > 0) = 1− Pr(z = 0) = 1− (1− p)ξ

the probability mass function is

f(z; p, ξ) =

(
z + ξ − 1

ξ − 1

)
pz(1− p)ξ

1− (1− p)ξ
(3.5)

Then sample

Ij ∼ Bernoulli(φz∗j )

and observe

zj∈S for Ij = 1

Sampling with PPS ensures that larger clusters are more likely to be included

in the sample than smaller clusters. The probabilities used in the Bernoulli

trials πj = φzj have to satisfy 0 < πj ≤ 1 and
∑M

j=1 πj = m, see Hanif

and Brewer (1980) and Lohr (1999). These probabilities are calculated using

the relation πj = mzj/N where N =
∑M

j=1 zj that yields that zmax ≤ N/m.

This generally holds for every type of PPS sampling. In our case, we use

φ = 1/zmax ≈ m/N . Otherwise, zmax would get inclusion probability more

than one, that is by definition impossible. Therefore, φ is set equal to the

inverse of the maximum of the sizes, φ = 1/200 = 0.005. It is known during

the sampling procedure but not available to the data analyst and so we

need to estimate it. The number of sampled clusters remains random during

Poisson sampling, and so after sampling we have m = 9 sampled clusters

from M = 43. Also, the number of selected units is n = 725 that leaves a

total number of N − n = 1017 non-selected units. The likelihood is

L(p, ξ, φ|z) =

∫
f(z|p, ξ, φ)dzS̄ =

∫
f(zS|p, ξ, φ)f(zS̄|p, ξ, φ)dzS̄

=
∏
j∈S

(
φzj

Γ(zj + ξ)

Γ(ξ)zj!

pzj(1− p)ξ

1− (1− p)ξ

)∑
j∈S̄

∏
j∈S̄

(
(1− φzj)

Γ(zj + ξ)

Γ(ξ)zj!

pzj(1− p)ξ

1− (1− p)ξ

)

=
∏
j∈S

(
φzj

Γ(zj + ξ)

Γ(ξ)zj!

pzj(1− p)ξ

1− (1− p)ξ

)∏
j∈S̄

∑
j∈S̄

(
(1− φzj)

Γ(zj + ξ)

Γ(ξ)zj!

pzj(1− p)ξ

1− (1− p)ξ

)
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=
∏
j∈S

(
φzj

Γ(zj + ξ)

Γ(ξ)zj!

pzj(1− p)ξ

1− (1− p)ξ

)∏
j∈S̄

∑
j∈S̄

(
Γ(zj + ξ)

Γ(ξ)zj!

pzj(1− p)ξ

1− (1− p)ξ

)

−
∑
j∈S̄

(
φzj

Γ(zj + ξ)

Γ(ξ)zj!

pzj(1− p)ξ

1− (1− p)ξ

)

=
∏
j∈S

(
Γ(zj + ξ)

Γ(ξ)Γ(zj)

)
φm

pmz̄(1− p)mξ

(1− (1− p)ξ)m
∏
j∈S̄

(
1− φ ξp

(1− p)(1− (1− p)ξ)

)

=
∏
j∈S

(
Γ(zj + ξ)

Γ(ξ)Γ(zj)

)
φm

pmz̄(1− p)mξ

(1− (1− p)ξ)m

(
1− φ ξp

(1− p)(1− (1− p)ξ)

)M−m
where we sum out the non-sampled values in the second line and 0 < p < 1,

ξ > 0, 0 < φ < 1. Suitable prior distributions for the parameters are

φ ∼ Beta(c1, d1)

p ∼ Beta(c2, d2)

and

ξ ∼ Exp(t)

the hyperparameters of which are discussed in the following example. The

joint posterior distribution is

f(p, φ, ξ|z) ∝
∏
S

(
Γ(zj + ξ)

Γ(ξ)Γ(zj)

)
φm

pmz̄(1− p)mξ

(1− (1− p)ξ)m

(
1− φ ξp

(1− p)(1− (1− p)ξ)

)M−m
φc1−1(1− φ)d1−1pc2−1(1− p)d2−1e−tξ

Let

A =

(
1− φ ξp

(1− p)(1− (1− p)ξ)

)M−m
Then the full conditional distributions are

f(φ|z, ξ, p) ∝ Aφmφc1−1(1− φ)d1−1 = Aφm+c1−1(1− φ)d1−1 (3.6)

f(p|z, ξ, φ) ∝ A
pmz̄(1− p)mξ

(1− (1− p)ξ)m
pc2−1(1− p)d2−1

= A
pmz̄+c2−1(1− p)mξ+d2−1

(1− (1− p)ξ)m
(3.7)

f(ξ|z, p, φ) ∝ A
(1− p)mξe−tξ

(1− (1− p)ξ)m
m∏
j=1

(
Γ(zj + ξ)

Γ(ξ)Γ(zj)

)
(3.8)
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Example

Again the choice of hyperparameters is made through testing different prior

distributions and perfoming sensitivity analysis. For p and ξ posterior infer-

ence is robust to different prior distributions, therefore non-informative priors

are selected. For φ we want to express weak prior information and include

the information described in page 57. Assuming we do not know whether

the largest cluster is sampled or not, we try different Beta and check how

robust inference is. We test Beta(1,1) (equivalent to Uniform(0,1)) and other

Beta that give high probability to numbers less than the observed 1/zmax.

This makes sense because otherwise the largest sampled cluster would have

inclusion probability more than 1. Figure 3.5 shows different prior distri-

butions for φ together with the posterior distributions. It is evident that

posterior inference is robust under suitable prior distributions that are vague

enough. The 95% credible interval (see Table 3.5) includes the true value

under all prior distributions. Also, the posterior density is consistent with

the assumption for φ that it must be under 1/zmax = 0.005.

Table 3.5: Posterior inference for φ under different prior distributions

Prior Mean s.e. 95%C.I.

Beta(1,1) 0.0028 0.0016 (0.0010, 0.0075)

Beta(1,50) 0.0028 0.0015 (0.0010, 0.0070)

Beta(1,100) 0.0027 0.0014 (0.0010, 0.0065)

Beta(1,200) 0.0025 0.0012 (0.0010, 0.0060)

Beta(0.1,1) 0.0023 0.0014 (0.0009, 0.0053)

Beta(0.1,20) 0.0023 0.0012 (0.0009, 0.0056)

Beta(0.1,50) 0.0023 0.0011 (0.0009, 0.0053)

Beta(0.1,100) 0.0022 0.0011 (0.0009, 0.0052)

For p and ξ we choose (c2 = 1, d2 = 1) and t = 0.001 respectively to produce

non-informative prior distributions and express weak prior knowledge. Again,

we use Normal proposals to update for each M-H step and reject the negative
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Figure 3.5: Different prior (solid line) and posterior distributions (histogram)

plotted together with the true value for φ (black vertical line)

values. After running the simulations we summarise posterior inference in

Table 3.6 and Figure 3.6 shows convergence of the three parameter chains.

Table 3.6: Summary of posterior inference for parameters in PPS sampling

Mean s.e. 95%C.I.

φ 0.0035 0.0028 (0.0021, 0.0132)

p 0.9639 0.0157 (0.9265, 0.9867)

ξ 1.7849 1.2335 (0.1382, 4.7559)

To check the validity of our model we can make predictive inference for new

population sizes. To do this, we use the draws from the posterior distributions
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Figure 3.6: Trace plots for parameters φ, p, ξ in PPS sampling

of the parameters and then use Equation 3.5 to draw new population sizes.

We implement the algorithm used in Section 3.3.1 and Figure 3.7 shows the

histogram of the actual district sizes in the population and the posterior

predictive distribution.
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Figure 3.7: Histogram of true population sizes and and posterior predictive

distribution

3.6 Comparing with the Bayesian Bootstrap

model

We use the Bayesian Bootstrap model implemented by Little and Zheng

(2007) and described in Section 2.2.2 to draw same number of samples from

the posterior predictive distribution of the non-sampled clusters. We run the

same number of simulations for the BB model and in Figures 3.8 and 3.9

we present graphical posterior predictive checks for the non-sampled cluster

sizes using 7 different samples for illustrative purposes. We see there that

the Negative Binomial model seems to predict better the non-sampled sizes

than the BB model. Also, posterior predictive mean and variance for the

Negative Binomial model are closer to the true values than the BB ones, as

shown in Table 3.7. Moreover, the BB model produces z̃S̄ that do not sum
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up to the total number of non-sampled units.

Table 3.7: Predictive inference for non-sampled sizes for the Neg.Bin. model,

BB and true values
Estimate Neg.Bin. BB True

Mean 29.91 57.08 29.91

Variance 517.02 1224.53 403.47

The advantage of the BB model is that there is no assumption about the

type of sampling used to achieve PPS sampling while during our analysis

we assumed Poisson sampling. We would like to test how strong this as-

sumption is and if our model can be used in other types of PPS sampling or

when the particular type of PPS sampling is unknown. Generally, sampling

with unequal probabilities is quite complicated, especially when one wants

to sample more than one primary sampling unit or to sample without re-

placement. Classical inference assumes knowing the inclusion probability for

each PSU, which means finding the probability of each pair of PSU being

in the sample and then the overall probability that the ith PSU would be

in the sample (Lohr, 1999). This procedure becomes troublesome for large

populations and sample sizes more than 2. Hanif and Brewer (1980) review

and compare different methods of unequal probabilities sampling. General

criteria are: the limitation in samples of size= 2, applicability, simplicity

in selection and variance, efficiency of HT estimator, etc. However, since

the conditions that the inclusion probabilities must satisfy are the same for

all sampling schemes we can assume that φ ≤ 1/zmax for any type of PPS

sampling.
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Figure 3.8: Posterior predictive histograms for Neg.Bin. Model for 7 new

samples of non-sampled sizes-Poisson sampling

In order to test our model performance in other sampling designs than Pois-

son, we choose the systematic sampling with unequal probabilities and the

sampling Brewer (1975) suggested. Our goal is to give evidence of our

model robustness in different PPS samplings when comparing with the non-

parametric BB. We use the R package Survey Sampling (Till and Matei,

2009) to draw these samples. Table 3.8 gives the mean and variance of the

true non-observed sizes and predicted non-observed sizes for the 2 different
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Figure 3.9: Posterior predictive histograms for BB Model for 7 new samples

of non-sampled sizes-Poisson sampling

using the Negative Binomial (NB) model and the BB model. It is evident

that the NB model performs better than the BB model when it comes to pre-

diction of the non-sampled sizes independently of the type of PPS sampling.

We note that the variance of the predicted z̃S̄ when applying the BB model

is higher than the true one. This suggests that large clusters are frequently

sampled when sampling from the posterior predictive distribution. The BB

model fails to account for the fact that non-sampled clusters usually vary
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less than the sampled and have smaller variance.

Table 3.8: BB and Neg.Bin. model predictive inference for different PPS

samples

Systematic Brewer

True
Mean 32.85 31.67

Variance 584.67 633.28

Neg.Bin.
Mean 32.85 31.67

Variance 541.19 543.84

BB
Mean 27.21 40.65

Variance 1226.64 1874.96

3.7 Discussion

In this Chapter we suggested models for the size of the design variables

when no information is available for the non-sampled part. This is usually

the case when we use datasets for analysis and have no access to details

about the survey. Therefore, the sizes of the various strata or clusters in

the population used to construct the survey are unknown to us. However,

data analysts are not completely disconnected with the survey statisticians

and some information about the survey design is usually easy to obtain, such

as the type of design, the design variables or the stages of sampling. This

information is used and explored wherever possible in this thesis.

In Section 3.2, we examined how the sizes of different strata can be calculated

when the sampling method is stratified sampling. As there are no unsampled

strata and the sampling weights are given, calculating the stratum sizes is

straightforward.

Section 3.3 and 3.4 are about cluster sampling with simple random sampling

(SRS). Cluster sampling complicates analysis, since there are non-sampled
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clusters for which we have to predict the sizes. We suggested a zero-truncated

Poisson model for data where is no evidence of overdispersion. We underline

the fact that we took into account the finite number of population units when

predicting new cluster sizes.

In Section 3.5, we discussed about probability proportional to size sampling

(PPS) and in particular about Poisson sampling. In this type of sampling

large clusters tend to be included in the sample more often than small clus-

ters and so the distribution of sampled and non-sampled clusters vary sig-

nificantly. Cluster sampling with PPS presents higher degree of difficulty

since we need to account for the sampling process. We proposed a model

for the population sizes that also accounts for PPS sampling. We imple-

mented a Negative Binomial model that accounts for this type of sampling

and predicts non-observed cluster sizes efficiently. Then, we also compared

our model with the non-parametric Bayesian Bootstrap model and concluded

in favour of the Negative Binomial model. Finally, we tested both models

in two other types of PPS sampling to check how strong the assumption of

Poisson sampling is. The conclusion is that the Negative Binomial model

works better than the BB in any kind of PPS sampling.

The methodology suggested in this Chapter is useful when the size variable

is the variable of interest in itself, but also when groups sizes are important

as part of inference for another finite population quantity of interest. In the

following analysis, we use inference derived in this Chapter in order to model

polytomous variables and contingency tables.
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Chapter 4

Modelling the polytomous

response

4.1 Introduction

In this Chapter we are interested in modelling the main response variable and

then use results from the previous chapter to make inference about a categor-

ical response during different sampling designs. Inference about population

quantities like totals is examined here which can be called descriptive infer-

ence. We briefly describe finite population inference for univariate categori-

cal responses with the following example taken from Little and Raghunathan

(2008). Suppose we have a binary response variable Yi that

Yi =

{
1 if something is present in ith unit

0 otherwise

and the quantity of interest is the the proportion Q =
∑N

i=1 Yi/N where N

is the population size. A simple random sample of size n is taken and since

Yi|θ ∼ Bernoulli(θ) then y∗ =
∑n

i=1 Yi is a sufficient statistic that has a
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Binomial distribution with

f(y∗|θ) =

(
n

y∗

)
θy

∗
(1− θ)n−y∗

Hence,

Q =
N∑
i=1

Yi/N = (y∗ +
N∑

i=n+1

Yi)/N

and assigning p(θ) = 1 we get that

θ|y∗ ∼ Beta(y∗ + 1, n− y∗ + 1)

and (
N∑

i=n+1

Yi|θ, y∗
)
∼ Bin(N − n, θ)

Finally, to get a point estimate

E(Q|y∗) = E(E(Q|y∗, θ)|y∗)

= E

[(
y∗ +

N∑
i=n+1

E(Yi|y∗, θ)

)
/N |y∗

]
= [y∗ + (N − n)E(θ|y∗)]/N

and the posterior variance is

V ar(Q|y∗) = E(V ar(Q|y∗, θ)) + V ar(E(Q|y∗, θ))

=
1

N2
E[(N − n)θ(1− θ)|y∗] + V ar(y∗ + (N − n)θ|y∗)

In the following analysis, we extend the previous example to multivariate re-

sponses and try to obtain posterior means and variances of population counts

in various categories. We assume the population is divided in groups (strata

or clusters), the presence of which affects the response variable. Therefore,

we want to include this effect in the modelling procedure. In our model, there

are no covariates since their values are not available for the non-sampled ele-

ments and this makes prediction impossible. However, we introduce random

effects corresponding to the groups as described in the following Sections.
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4.2 Model description

To provide a general description for the model we discuss in this Chapter,

we use in this Section the general term “group” when referring to design

variables like strata or clusters. In following Sections where we describe

several examples, we make the distinction between stratum and cluster. A

robust model for a population with groups should reflect the variation of the

variable of interest Y between them. A model that assigns different group

means and/or variances would be suitable for a sample from this population.

Moreover, the introduction of random effects helps when there are many

and small groups to borrow strength between them. Thus, a random effects

model represents differences between groups in terms of the proportions of

Y in the population. Therefore, we assume multivariate random effects with

respect to the categories of the response variable.

We are interested in estimating the cell counts in each category of the re-

sponse variable Qj = (Qj1, ..., QjC) for j = 1, ...,M groups and C categories

and the final population counts in each category Q = (Q1, ..., QC).

Assume the response variable is yjk is the number of units observed to take

the kth possible category, k = 1, ..., C, j = 1, ...,M and nj the number of

units in group j. The vector of probabilities in group j is

pj = (pj1, pj2, ..., pjC)

and the likelihood of the model is

f(y|p) ∝
M∏
j=1

C∏
k=1

p
yjk
jk (4.1)

Thus,

yj ∼ Multinomial(pj;nj)

As we suppose no individual or group specified covariates for the model, we

have only the fixed and the random intercept included. After choosing the
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first category as the baseline category, we get the log-odds

ηjk ≡ log
pjk
pj1

= µk + ujk

or

ηj = µ+ uj

where µ = (µ2, ..., µC) and uj = (uj2, ..., ujC) for stratum j. Also, we can

write the model in matrix-form

η = Xµ+ u

where

X = 1M ⊗ IC−1

1M is the M−vector of ones, ⊗ denotes the Kronecker product and uT =

(uT1 , ...,u
T
M). We continue assuming that

uj ∼ N(0,Σ)

and if we define Σ∗ = IM ⊗ Σ then we can write u ∼ N(0,Σ∗). The

likelihood of the model becomes

f(y|µ,u,Σ) =
M∏
j=1

C∏
k=2

 exp(ηjk)

1 +
C∑
l=2

exp(ηlk)


yjk

=
M∏
j=1


C∏
k=2

exp(ηjk)
yjk

(1 +
C∑
l=2

exp(ηlk))nj

 (4.2)

The prior distribution for µ is multivariate Normal

µ ∼ N(a0,D0)

and for Σ an Inverse Wishart distribution is assigned

Σ ∼ IW (d,S0)
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where d > C the degrees of freedom and S0 the inverse scale matrix is positive

definite. To sample from the Inverse Wishart distribution we used the R

package MCMCpack, (Martin et al., 2010). The full conditional distributions

are

f(µ|y,u,Σ) = f(y|η)f(µ|a0,D0)

∝
M∏
j=1


C∏
k=2

exp(ηjk)
yjk

(1 +
C∑
l=2

exp(ηlk))nj

 exp(−1

2
(µ− a0)T D−1

0 (µ− a0))

(4.3)

f(uj|y,µ,Σ) ∝ f(y|η)f(uj|Σ) ∝

C∏
k=2

exp(ηjk)
yjk

(1 +
C∑
l=2

exp(ηlk))nj
exp(−1

2
uTj Σ−1 uj)

(4.4)

Finally,

Σ|y,u,µ ∼ IW (M + d,S0 + uTu)

where u is the matrix M × (C − 1) with uj in row j.

4.3 Examples under different sampling designs

4.3.1 Stratified random sampling

As described in Section 3.2 stratified random sampling assumes sampling a

number of units within each stratum. This sampling design is ignorable if

we condition on the stratum variable. We assume that the sampling process

is the same as in Section 3.2, the strata are created by cross-classifying age

and sex and the number of selected units within strata is defined by pro-

portional allocation. We choose to sample half of the individuals in each
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population stratum. The final sample is of size n = 871. The stratum sizes

can be calculated straightforward using the sampling weights. The response

variable is the health status and we are interested in estimating the number

of individuals that fall into each category of health status for every stratum

and the total number of individuals in each of the 5 categories of health sta-

tus. Table 4.1 gives the distribution of health status in each stratum that is

created from age and sex.

Table 4.1: Distribution of health status in age-sex strata

Strata Health status Totals

1 2 3 4 5

1 49 61 18 12 3 143

2 85 74 26 7 3 195

3 64 76 17 4 1 162

4 57 68 40 19 3 187

5 52 56 51 23 7 189

6 53 51 12 5 1 122

7 55 55 21 4 0 135

8 35 67 18 4 0 124

9 28 42 38 14 5 127

10 39 71 17 9 0 136

11 47 49 26 7 3 132

12 32 36 19 3 0 90

Totals 596 706 303 111 26 1742

Following the general notation of Section 2.3.2, we have p = 1, q = 1, C = 5,

M = 12. We give hyperparameters the following values a0 = 0, C0 =

diag(105, ..., 105), d = 6, S0 = diag(1, ..., 1) to produce diffuse prior distri-

butions and this way express our weak prior knowledge. Sensitivity analy-

sis showed that d = 6, S0 = diag(1, ..., 1) as hyperparameters for the vari-

ance prior, result in desirable convergence. Different scale matrices S0, such

as S0 = diag(10, ..., 10), S0 = diag(102, ..., 102), andS0 = diag(103, ..., 103)
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were tried and rejected as they worsened convergence. Althought the possi-

bility of using different prior distributions from the Inverse Wishart distribu-

tion (Gelman, 2006; Gelman et al., 2008), this is not examined here. Since

it is not the purpose of this thesis, we are satisfied when the chain shows

evidence of convergence in the trace plot. Simulation from the posterior of

Σ is straightforward while for the rest we need to use Metropolis-Hastings

algorithm since they are analytically intractable. Trace plots for µ4 and µ5

are given in a) of Figure 4.1. There is some evidence that the chains are not

stable, especially for µ5 that corresponds to the less populated category.

Figure 4.1: Trace plots for µ4 and µ5 for a stratified sample when a) non-

reparameterisation b) hierarchical centering
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The same problem gets worse for cells with even lower frequencies, as during

cluster sampling in Section 4.3.2. This is a common problem appearing in

discrete data models with random effects and it happens mainly due to the

existence of high correlation in the posterior surface or weak identifiability of

some model parameters that make convergence slow (Gelfand et al., 1996).

There are methods to improve efficiency of MCMC techniques like reparam-

eterisations, orthogonalisation or data expansion. The parameter identifia-

bility problem appears when there are group specified covariates. Then, a

hierarchical centering reparameterisation can improve convergence. It uses

the fact that multilevel models contain a linear predictor consisting of vari-

ables with associated fixed effects and zero mean random effects, see Browne

et al. (2009). The covariate here is constant within clusters associated with

the random effects and the random effects can be centred around it. The

mean of the new random effects will be a function of the original cluster-

level predictors and fixed effects. However, hierarchical centering does not

work well when the random effect variance is small and Gelfand et al. (1996)

show this empirically for normal responses.

In our case, we can centre the random effects around the fixed intercept

to simplify the algorithm. Thus, instead of considering the parameters uj,

where uj ∼ N(0,Σ), we consider ηj|µ where ηj ∼ N(µ,Σ). Now, ηj are

centred about µ and the model can be written as

yj ∼Multinomial(pj;nj)

ηj ∼ N(µ,Σ)

µ ∼ N(a0,D0)

and

Σ ∼ IW (d,S0)

The advantage is that the full conditional of µ is now multivariate normal

which is easier to simulate from using Gibbs sampler and so one less Metropo-
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lis step is implemented.

µ|η,Σ ∼ N(a1,D1)

where

a1 = D1(D−1
0 a0 +XTΣ∗−1η)

and

D1 = (D−1
0 +XTΣ∗−1X)−1

Also,

f(ηj|y,µ,Σ) ∝ f(yj|ηj)f(ηj|µ,Σ)

and

Σ|u ∼ IW (M + d,S0 + (η −Xµ)T (η −Xµ))

Since the full conditional distribution for ηj remains analytically intractable,

Gibbs sampler cannot be used and a Metropolis step is added here to simulate

from it. Hierarchical centering is applied in this Chapter when simulating

from the full conditionals of a Multinomial logit model in order to improve

convergence.

The new trace plots for the same parameters after applying hierarchical cen-

tering are given in b) of Figure 4.1, where we see that convergence is signifi-

cantly improved. Moreover, the algorithm runs faster which saves substantial

computational time. It allows us to run more simulations in less time and

achieve desirable convergence as shown in Figures 4.2, 4.4 and 4.5.

The next step is to actually obtain new ỹ for the non-sampled values. As-

suming we obtained T simulations from the posterior distribution of the

parameters f(µ,u,Σ|y), we can produce T simulations from the posterior

predictive of ỹj with the following steps:

1. Calculate ηtjk = µtk + utjk for t = 1, ..., T simulations for µ and uj.
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2. Draw from the posterior distribution f(pj|yj) by calculating

ptjk =
exp(ηtjk)

1 +
∑C

l=2 exp(ηtjl)
for k = 2, 3, ..., C

ptj1 =
1

1 +
∑C

l=2 exp(ηtjl)
k = 1 (4.5)

for t = 1, ..., T obtained draws. Finally, we have T random matrices of

M × C containing the draws for pj for j = 1, ...,M .

3. Obtain the stratum sizes Nj as described in Section 3.2 and calculate

the Nj − nj sizes of non-sampled units for every stratum.

4. Get T simulations of new ỹtj from

ỹtj ∼Multinom(ptj;Nj − nj)

Table 4.2: Posterior inference for µ

Mean s.e. 95%C.I..

µ2 0.2050 1.1440 (-0.0772, 0.4898)

µ3 -0.8015 0.2009 (-1.2053, -0.4131)

µ4 -1.7968 0.2231 (-2.2503, -1.3720)

µ5 -3.0901 0.3277 (-3.7731, -2.4899)

Table 4.3: Posterior inference for Σ
Mean s.e. 95%C.I..

Σ11 0.1690 0.0864 (0.0671, 0.3878)

Σ22 0.3429 0.1958 (0.1163, 0.8426)

Σ33 0.2977 0.1924 (0.0912, 0.7982)

Σ44 0.3943 0.3040 (0.0973, 1.1846)
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Figure 4.2: Trace plots for µ under stratified sampling

As mentioned before, the quantity of interest Q = (Q1, Q2, ..., Q5) is the

vector of the population counts in each category which consists of the sum

of the sampled units belonging to each category in all strata plus the sum of

non-sampled units in all strata. It can be written as

Q = QS +QS̄

where S denotes the sampled part, S̄ the non sampled. Also,

QS =
M∑
j=1

∑
i∈S

yij
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and

QS̄ =
M∑
j=1

∑
i∈S̄

yij

Hence, to get the posterior mean of Q

E(Q|yS) = E[E(Q|yS,p)|yS]

= E

[
E

(
M∑
j=1

(∑
i∈S

yij +
∑
i∈S̄

yij

)
|yS,pj

)
|yS

]

= E

[(
M∑
j=1

∑
i∈S

yij +
M∑
j=1

E(ỹj|yS,pj)

)
|yS

]

=
M∑
j=1

yj +
M∑
j=1

(Nj − nj)E(pj|yS) (4.6)

Calculating the variance is a bit more complicated

V ar(Q|ys) = V ar(QS̄|yS)

= V ar

(
E

(
M∑
j=1

ỹj|yS,pj

))
+ E

(
V ar

(
M∑
j=1

ỹj|yS,pj

))

=
M∑
j=1

V ar(E(Qj|yS,pj)) +
M∑
j=1

E(V ar(Qj|yS,pj))

=
M∑
j=1

V ar((Nj − nj)pj|yS)

+
M∑
j=1

E((Nj − nj)(diag(pj)− pjpTj )|yS)

=
M∑
j=1

(Nj − nj)2V ar(pj|yS)

+
M∑
j=1

(Nj − nj)
[
E(diag(pj)|yS)− E(pjp

T
j |yS)

]
(4.7)

Posterior totals and their standard deviation are given in Table 4.4, together

with classical estimators for stratified sampling. The classical formulae used
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Table 4.4: Estimates of health status responses in age-sex strata

Strata Health status

1 2 3 4 5

1 58 50 19 11 5

2 77 80 25 9 4

3 62 76 16 7 2

4 61 72 35 15 4

5 56 60 52 15 5

6 51 51 13 5 2

7 55 56 18 5 1

8 37 71 11 5 1

9 27 47 37 11 5

10 38 71 18 8 1

11 47 53 20 9 2

12 27 36 20 6 1

Posterior Totals 596 723 284 107 33

Posterior st.dev. 13.93 14.44 10.79 6.99 3.95

Classical Estimators 598 724 286 106 32

Std error 19.50 20.26 15.11 9.89 5.54

True values 596 706 303 111 26

to calculate the stratified count estimates and estimates of their variance are:

q̂ =
Nj

nj
yj = Njpj

and

V̂ ar(q̂) =
∑
j

(N2
j −Njnj)(diag(pj)− pjpTj )

where yj and pj are the observed counts and observed probabilities for stra-

tum j. We see that Bayesian and frequentist estimators for population counts

are close to the true values. Bayesian estimators have smaller variance in four

out of five cases that suggests estimators closer to the true values. Bayesian
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approach has also the advantage of providing the whole posterior distribu-

tion of the population counts as plotted in Figure 4.3 together with the true

values.
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Figure 4.3: Posterior densities of population counts under stratified sampling
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4.3.2 Cluster sampling with SRS.

In the following example, variable area is the cluster variable and a sample

of m = 30 out of M = 140 areas is taken. According to one stage cluster

sampling process, all the units within selected clusters are sampled. A total

number of 366 units belonging to the 30 sampled clusters is included in the

sample. Total number of units and clusters in the population is assumed to

be known. Table 4.5 gives the distribution of the health status in 15 of the

sampled clusters, where we observe many zero counts for category 5. Let Z

denote the size variable corresponding to the cluster sizes in the population

and Y denote the response variable health status as previously.

Table 4.5: Distribution of health status in sampled clusters

Clusters Health status Totals

1 2 3 4 5

12 5 11 2 0 0 18

17 2 4 0 2 1 9

23 3 3 1 2 0 9

40 0 3 2 1 0 6

44 5 5 1 0 0 11

46 5 4 2 3 0 14

48 2 8 0 0 0 10

55 5 9 1 0 0 15

60 4 4 2 0 1 11

64 6 7 1 0 0 14

68 8 2 3 2 0 15

70 1 7 0 0 0 8

73 3 5 2 1 0 11

80 5 5 1 1 0 12

82 1 9 5 1 0 16

Totals 126 156 65 24 6 377
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Cluster sampling makes inference more complicated than stratified sampling

since there are non-sampled clusters in the population for which we need to

predict. We adopt random effects for the clusters as it allows the informa-

tion from the sampled clusters to be used to predict for the non-sampled.

In addition, we use the zero-truncated Poisson model described in Chap-

ter 3 to model the cluster sizes as we assume again that cluster indicators

are not given for the non-sampled units. As discussed in Section 3.3, the

zero-truncated Poisson model is suitable for variables that do not present

overdispersion, like area. The model for area is

f(z|λ) =
m∏
j=1

λzj

zj!(eλ − 1)

where zj be the size for area j for j = 1, ...,m. Inference for area is made

exactly as in Section 3.3.

The model for Y is the same Multinomial logit model as in the previous

section. The only difference that not all the clusters are sampled, thus we

have M − m non-sampled clusters. We actually have two different models

which we combine for inference, one for Z and one the response Y . Again

we use a Metropolis-within-Gibbs algorithm to draw from the joint posterior

distribution f(µ,u,Σ|y). Posterior inference for these parameters is given

below, while for the sizes we take the results directly from Section 3.3.1.

Convergence for the parameters is achieved by using a hierarchical centering

parameterisation similarly as before.

Table 4.6: Posterior inference for µ in cluster sampling with SRS

Mean s.e. 95%C.I.

µ2 0.1064 0.1611 (-0.2084, 0.4244)

µ3 -0.9042 0.2021 (-1.3145, -0.5200)

µ4 -2.2073 0.3269 (-2.9030, -1.6065)

µ5 -3.8374 0.6088 (-5.1374, -2.8030)

To make inference for the population counts for all clusters we need to obtain
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Table 4.7: Posterior inference for Σ in cluster sampling with SRS

Mean s.e. 95%C.I..

Σ11 0.3015 0.1613 (0.1015, 0.7128)

Σ22 0.3610 0.2372 (0.1019, 0.9909)

Σ33 0.5769 0.5057 (0.1159, 1.9920)

Σ44 0.6096 0.8470 (0.1090, 2.6111)

samples from the posterior predictive distribution of new ỹj for j = m +

1, ...,M . Hence, we first must draw new sizes z̃ for the unobserved clusters

and then use these draws to get counts. To obtain a draw from the posterior

predictive distribution of new data ỹj, we perform the following steps:

• Draw (µt,Σt) from their posterior distribution for t = 1, ..., T number

of simulations.

• Draw M −m new ũtj vectors as uj ∼ N(0,Σt).

• Draw p̃tj for the unsampled clusters as

p̃tjk =
exp(µtk + ũtjk)

1 +
∑C

l=2 exp(µtl + ũtjl)
for k = 2, ..., C

p̃tj1 =
1

1 +
∑C

l=2 exp(µtl + ũtjl)
for k = 1 (4.8)

for t = 1, ..., T and j = m+ 1, ...,M .

• Draw new z̃tj from their posterior predictive for cluster j = m+1, ...,M

as in Section 3.3.

• Draw ỹtj from their posterior predictive distribution

ỹtj ∼Multinom(p̃tj; z̃
t
j)

To obtain the posterior mean and variance for the population counts Q we

use again the conditional mean and variance formulae. For one stage cluster
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sampling, the non-sampled part QS̄ consists of the all the units within non

selected clusters:

QS̄ =
M∑

j=m+1

∑
i∈S̄

yij

Therefore,

E(Q|yS) = E

[(
m∑
j=1

yj + E(
M∑

j=m+1

ỹj|yS, p̃j)

)
|yS

]

=
m∑
j=1

yj +
M∑

j=m+1

E[(E(ỹj|yS, p̃j))|yS]

=
m∑
j=1

yj +
M∑

j=m+1

E(p̃j z̃j|yS)

=
m∑
j=1

yj +
M∑

j=m+1

E(z̃j|zS)E(p̃j|yS) (4.9)

The posterior variance consists only of the variance of the counts in non-

selected clusters:

V ar(Q̂) = V ar(Q|yS) =
M∑

j=m+1

V ar(ỹj|ys) + 2
∑
l<h

Cov(ỹl, ỹh|yS)

=
M∑

j=m+1

[E(V ar(ỹj|p̃j, yS)|yS) + V ar(E(ỹj|p̃j, yS)|yS)]

+ 2
∑
l<h

Cov[(E(ỹl|p̃l, yS), E(ỹh|p̃h, yS))|ys]

=
M∑

j=m+1

[
E(z̃j(diag(p̃j)− p̃jp̃Tj )|yS) + V ar(z̃jp̃j|yS)

]
+ 2

∑
l<h

Cov[(z̃lp̃l, z̃hp̃h)|yS] (4.10)

which can be calculated using the simulations drawn for z̃j and p̃j.

Classical estimators are also calculated using the following formulae taken

from Lohr (1999)

q̂ = M/m
∑
j

yj
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Figure 4.4: Trace plots for u1 under cluster sampling with SRS

and

se(q̂) =

√(
1− m

M

) s2
t

m

where

s2
t =

1

m− 1

∑
j

(
yj −

q̂

M

)2

and are presented in Table 4.8. We observe that Bayesian estimators for

health status 1-4 haver smaller standard deviation than classical estimators,

the difference is significantly higher for the first two categories. Thus, we

can argue that Bayesian estimators tend to be closer to the true values than

frequentist estimators.
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Table 4.8: Estimated population counts for health status in cluster sampling

with SRS
Category

1 2 3 4 5

Posterior totals 623 715 289 95 20

Posterior st. dev. 30.28 33.59 19.98 10.84 4.61

Classical estim. 540 600 232 76 16

Std Error 86.11 95.68 36.99 12.12 3.55

True values 596 706 303 111 26

4.3.3 Two stage cluster sampling with PPS

In this section we assume two stage cluster sampling where the PSU are

selected with PPS sampling and SSU with SRS. The cluster variable is district

and the first stage of sampling is already implemented in Section 3.5 through

Poisson sampling. Then, we assume that nj = Nj/2 units within district j

are selected and that the second stage sampling fraction f2 = 1/2 is given to

the data analyst. If it is not, it is impossible to calculate Nj for sampled j and

use them to model for the non-sampled. The reason is that weights here are

the inverse of pi = φ
Nj
N

nj
Nj

for i unit belonging to cluster j, where Nj cancels

out. Nevertheless, if f2 is known we can calculate Nj = nj/f2 for sampled

cluster j and use this information to model the size variable. From the first

stage we have 9 selected clusters out of 43 in the population, as described

in Section 3.5. During the second stage, with the assumed f2 = 1/2, 362

individuals out of the 725 belonging to the 9 sampled clusters are included

in the sample.

The model for the population counts of health status remains the same and

inferences for µ, uj and Σ are obtained as in previous sections. Moreover,

the model for district sizes is the zero-truncated Negative Binomial model

described in Section 3.5 that is suitable for PPS sampling. Posterior inference

about the multinomial model parameters is given in Tables 4.9, 4.10, while
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for the size variable Z results are taken directly from Section 3.5.

Table 4.9: Posterior inference for µ in two stage cluster sampling with PPS

Mean s.e. 95%C.I..

µ2 0.3442 0.2202 (-0.0892, 0.7809)

µ3 -0.6170 0.2540 (-1.1217, -0.1193)

µ4 -1.8152 0.3459 (-2.5148, -1.1551)

µ5 -3.0806 0.7242 (-4.8418, -1.9708)

Table 4.10: Posterior inference for Σ in two stage cluster sampling with PPS

Mean s.e. 95%C.I..

Σ11 0.2534 0.1658 (0.0813, 0.6796)

Σ22 0.2974 0.2092 (0.0877, 0.8417)

Σ33 0.4221 0.3793 (0.0977, 1.3928)

Σ44 1.4349 1.9534 (0.1488, 6.5364)

When it comes to prediction for non-sampled cases, we distinguish between

non-sampled units within selected clusters and completely non-sampled clus-

ters. In particular, we have m sampled clusters with sizes Nj for j = 1, ...,m,

from which nj units are selected. Moreover, there are M −m non-sampled

clusters, each with zj size, for j = m + 1, ...,M . The random variable Z is

used to denote non-sampled sizes. Therefore, a combination of steps used in

the two previous sections for drawing new data ỹ is applied as following:

• Draw (µt,Σt) from their posterior distribution for t = 1, ..., T number

of simulations.

• Draw M −m new ũtj vectors as uj ∼ N(0,Σt).

• Draw from the posterior distribution of pj given parameteres and data
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using

ptjk =
exp(ηtjk)

1 +
∑C

l=2 exp(ηtjl)
for k = 2, 3, ..., C

ptj1 =
1

1 +
∑C

l=2 exp(ηtjl)
k = 1

for j = 1, ...,m sampled clusters and t = 1, ..., T obtained draws.

• Draw p̃tj for j = m+ 1, ...,M unsampled clusters by using

p̃tjk =
exp(µtk + ũtjk)

1 +
∑C

l=2 exp(µtl + ũtjl)
for k = 2, ..., C

p̃tj1 =
1

1 +
∑C

l=2 exp(µtl + ũtjl)
for k = 1

Figure 4.5: Trace plots for Σ under cluster sampling with PPS
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for for j = m + 1, ...,M sampled clusters and t = 1, ..., T obtained

draws.

• Use Nj − nj as the number of non-selected units in sampled cluster

j for j = 1, ...,m and draw new z̃tj from their posterior predictive for

cluster j = m+ 1, ...,M as in Section 3.5.

• Draw ỹtj from their posterior predictive distribution

ỹtk ∼Multinom(ptj;Nj − nj) for j = 1, ...,m

and from

ỹtj ∼Multinom(p̃tj; z̃
t
j) for j = m+ 1, ...,M

There is an extra part of uncertainty that affects calculation of the posterior

variance of the population counts since it is added in the total variance. The

population counts for health status can be decomposed again as

Q = QS +QS̄

where now

QS̄ =
m∑
j=1

∑
i∈S̄

yij +
M∑

j=m+1

∑
i∈S̄

yij

and their posterior mean and variance are

E(Q|yS) = E

[(
m∑
j=1

yj + E

(
m∑
j=1

ỹj|yS,pj

)
+ E

(
M∑

j=m+1

ỹj|yS, p̃j

))
|yS

]

=
m∑
j=1

yj +
m∑
j=1

(Nj − nj)E(pj|yS) +
M∑

j=m+1

E(p̃j z̃j|yS)

=
m∑
j=1

yj +
m∑
j=1

(Nj − nj)E(pj|yS) +
M∑

j=m+1

E(z̃j|zS)E(p̃j|yS)

(4.11)
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The posterior variance is the variance of the non-sampled units in selected

clusters plus the variance of the non-sampled counts

V ar(Q|yS) =
M∑
j=1

V ar(ỹj|ys) + 2
∑
l<h

Cov(ỹl, ỹh|yS)

=
m∑
j=1

V ar(E(ỹj|yS,pj)) +
m∑
j=1

E(V ar(ỹj|yS,pj))

+
M∑

j=m+1

V ar(E(ỹj|p̃j, yS)|yS) +
M∑

j=m+1

E(V ar(ỹj|p̃j, yS)|yS)

+ 2
∑
l<h

Cov[(E(ỹl|p̃l, yS), E(ỹh|p̃h, yS))|yS]

=
m∑
j=1

(Nj − nj)2V ar(pj|yS) +
m∑
j=1

(Nj − nj)E((diag(pj)− pjpTj )|yS)

+
M∑

j=m+1

V ar(z̃jp̃j|yS) +
M∑

j=m+1

E(z̃j(diag(p̃j)− p̃jp̃Tj )|yS)

+ 2
∑
l<h

Cov[(z̃lp̃l, (Nh − nh)ph)|yS] (4.12)

which can be calculated using the simulations z̃j, pj and p̃j. Table 4.11 gives

the Bayesian estimates for the population counts in each category and the

classical HT estimators from Equation 2.1. The variance of HT estimators

(see Equation 2.2) is not calculated due to the complexity of the existing

formulae for sample size larger than 2. At this point, Bayesian inference also

provides a method to obtain posterior variances and the chance to visualise

the whole posterior distribution of the population counts.
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Table 4.11: Estimated population counts for health status in two stage cluster

sampling with PPS

Category

1 2 3 4 5

Estimators 554 744 303 101 42

Std error 44.82 59.61 29.70 13.79 10.51

Classical estim. 566 761 307 109 43

True 596 706 303 111 26
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Figure 4.6: Posterior densities for population counts in two stage PPS sam-

pling
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4.4 Discussion

In this Chapter we presented a unified approach for multivariate categorical

data coming from finite populations. The Bayesian Multinomial model to-

gether with modelling the size variable from Chapter 3, can provide estimates

close to the true values for population counts of a variable with many out-

comes. We assumed multivariate random effects that depend on the category,

modelled with multivariate Normal distributions. Moreover, we provided for-

mulae for calculating the posterior mean and variance of population counts

in different sampling designs.

Classical estimates for each sampling design were calculated too and com-

pared with the Bayesian results. The Bayesian approach as developed in this

Chapter offers advantages such as

• Posterior variance can always be calculated, no matter the sampling

design is or the sample size.

• It generally yields point estimates with smaller posterior variance than

the classical approach.

• It provides a simple way to model categorical outcomes that can be ex-

tended in more complicated models for contingency tables and generate

better estimates by accounting for model uncertainty (see Chapter 5).
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Chapter 5

Modelling contingency tables

5.1 Introduction

In this Chapter we use the previously described Multinomial model with

random effects to develop inference for contingency tables under sampling

design based on strata or clusters. Analysts are usually interested in con-

tingency tables with two or more dimensions and the relations between the

variables that construct the tables. Our approach provides a method for pre-

diction alternative to regression when the design variables are not available

for non-sampled units.

As discussed in Section 2.4, sampling design may have a significant effect on

classical methods of analysing contingency tables. We mentioned in Chap-

ter 2 when discussing classical methods for contingency tables that under

particular designs chi-square tests are not valid. When cluster sampling is

performed, the within-cluster correlation might have an effect on the p-value

of these tests. Chi-square tests under cluster sampling tend also to produce

significant associations between the cross-classifying variables when they are

not. This means that other factors affect the relation between these two

variables. On the other hand, ignoring stratification can give conservative
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tests and large confidence intervals. One case where stratification presents

no problems is when the strata are the categories of one of the cross-classified

variables. However, if there are many strata, tables with a large number of

cells are created that are hard to analyse. Another weak point of classical

methods is that chi-squared tests are affected by a small sample size that

produces many zeros in the table.

For these reasons we see there is a need for Bayesian analysis of contin-

gency tables that is robust under various sampling schemes. The Multino-

mial model with random effects is used and compared to classical methods of

analysing cross-classified data. One of the important aspects in this Chapter

is comparing between models and choosing the most suitable or averaging

over several models to obtain better estimates. Before we start describing

the models used in this Chapter, we need to explain how we approximate the

marginal likelihood of a model which is essential for model comparison and

model averaging in later Sections.

5.2 Model comparison for GLMMs

As already mentioned in Section 1.2.4, the marginal likelihood of a model is

used to evaluate its posterior model probability and the Bayes factor between

two models. If we have l = 1, ..., L potential models, we need to evaluate

f(y|l) =

∫
f(y|θl, l)f(θl)dθl (5.1)

for each model. In the following analysis, we focus on describing a general

methodology to approximate integrals, called bridge sampling and drop the

subscript l. Bridge sampling is a method of Monte Carlo integration that

was first proposed by Meng and Wong (1996) for approximating the ratio

of normalising constants. We use and explain the method as suggested by

Overstall and Forster (2010) and Overstall (2009).

95



Suppose we want to approximate the following general integral

I =

∫
Θ

g(θ)dθ

which is the normalising constant of a distribution π(θ) = g(θ)/
∫
g(θ)dθ

and if g(θ) = fl(y|θl)fl(θl) then I = fl(y), the marginal likelihood for model

l. Now suppose that h(θ) is a probability density function and γ(θ) is a

function for which the following expectations are non-zero and finite. Since∫
γ(θ)g(θ)h(θ)dθ∫
γ(θ)g(θ)h(θ)dθ

= 1

and

g(θ) = π(θ)

∫
g(θ)dθ

then ∫
γ(θ)g(θ)h(θ)dθ∫

γ(θ)h(θ)π(θ) · Idθ
= 1⇔∫

γ(θ)g(θ)h(θ)dθ∫
γ(θ)h(θ)π(θ)dθ

=
Eh[γ(θ)g(θ)]

Eπ[γ(θ)h(θ)]
= I

We approximate the nominator and denominator using Monte Carlo and so,

the bridge sampling approximation to I is

Î =
1
nh

∑nh
i=1 γ(θhi )g(θhi )

1
nπ

∑nπ
i=1 γ(θπi )h(θπi )

where {θh1 , ...,θhnh} and {θπ1 , ...,θπnh} are samples generated from h(θ) and

π(θ) respectively and nh, nπ the sample sizes.

Meng and Wong (1996) show that the optimal γ(θ) with respect to minimis-

ing the variance of the approximation is

γo(θ) = (nπg(θ) + nhIh(θ))−1

We see that that the optimal γ(θ) depends on the unknown I and to solve

this Meng and Wong (1996) suggest starting from an initial value and then

iterating the following scheme until convergence

Î(t+1) =

1
nh

∑nh
i=1

lhi
nπlhi+nhÎ(t)

1
nπ

∑nπ
i=1

1

nπlπi+nhÎ(t)

(5.2)
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where lki = g(θki )/h(θki ) for k = h, π.

To perform bridge sampling we have to define an initial value Î(0), the prob-

ability distribution h and the allocation of the sample sizes nh
nh+nπ

. Overstall

(2009) suggests that using any of Î(0) = 0 or Î(0) = ∞ seems sensible as

the iterative scheme (5.2) converges fast. Choosing a suitable h is more

complicated and in general, it is required that h mimics π as closely as pos-

sible. Here, we use directly the approach Overstall (2009) concludes as best.

This approach uses Warp bridge sampling (Meng and Shilling, 2002), where

h ≡ N(0, Ik) (or h ≡ tν(0, Ik)) and π is transformed or “warped” to π̃ so

that its properties match those of h.

To implement this, suppose θ ∼ π, where the location and spread of π are µ

and W = SST . We warp π to π̃ using the stochastic transformation

bS−1(θ − µ)

where b is Bernoulli(1
2
) on the sample space {−1, 1}. The probability density

function of π̃ is now

π̃(θ) =
1

2
|S|[π(µ− Sθ) + π(µ+ Sθ)]

=
1
2
|S|[g(µ− Sθ) + g(µ+ Sθ)]∫

g(θ)dθ

=
g̃(θ)∫
g(θ)dθ

If {θπ1 , ...,θπnπ} and {θh1 , ...,θhnh} are samples from π and h respectively then

the Warp III bridge sampling is obtained by iterating (5.2) until convergence,

where

lhi = |S|g(µ− Sθhi ) + g(µ+ Sθhi )

2h(θhi )
(5.3)

and

lπi = |S|g(θπi ) + g(2µ− θπi )

2h(S−1(θπi − µ))
(5.4)
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While there are methods to computationally find the optimum µ and S,

they get hard to implement for high dimensional problems. Overstall (2009)

proposes to take µ to be the mean or mode and W to be the variance of π.

Overstall (2009) also examines two strategies that investigate how to allocate

{θπ1 , ...,θπN} in order to find µ and S and to use in the bridge sampler, the

proportion strategy and the split strategy. The preferred strategy was the

split strategy and this is the one we adopt. Finally, we use Nh = Nπ and

nh = nπ = 1
2
Nh = 1

2
Nπ.

To summarise, we use the bridge sampling algorithm he suggested best ap-

proximates I with respect to minimising the mean squared error. The algo-

rithm is:

1. Generate a sample {θπ1 , ...,θπNπ} of size Nπ from the target distribution

π and a sample {θh1 , ...,θhNh} of size Nh from h ≡ N(0, Ik).

2. Let nπ = 1
2
Nπ and nh = 1

2
Nh.

3. Let µ andW = SST be the sample mean and variance of {θπ1 , ...,θπnπ}.

4. Compute lhi using (5.3) for i = nh + 1, ..., Nh and lπi using (5.4) for

i = nπ + 1, ..., Nπ

5. Let Î1 be the final value of the following converged iterative scheme

Î(t+1) =

1
nh

∑Nh
i=nh+1

lhi
nπlhi+nhÎ(t)

1
nπ

∑Nπ
i=nπ+1

1

nπlπi+nhÎ(t)

6. Let µ andW = SST be the sample mean and variance of {θπnπ+1, ...,θ
π
Nπ
}.

7. Compute lhi using (5.3) for i = 1, ..., nh and lπi using (5.4) for i =

1, ..., nπ

8. Let Î2 be the final value of the following converged iterative scheme

Î(t+1) =

1
nh

∑nh
i=1

lhi
nπlhi+nhÎ(t)

1
nπ

∑nπ
i=1

1

nπlπi+nhÎ(t)
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9. Let Î = 1
2
(Î1 + Î2).

5.3 Two way contingency tables

5.3.1 Model description

For a two way contingency table, let i = 1, ..., R and j = 1, ..., C denote the

categories for the two variables constructing the table. Let k be the group

indicator for k = 1, ...,M and ykl be the response l in cluster k that can take

one of the discrete values of the “row” variable indexed by i = 1, ..., R and

one of the discrete values of “column” variable indexed by j = 1, ..., C, with

probabilities pk = (p11k, p12k, ..., p21k, ..., pRCk) in cluster k. The likelihood of

the model is written

f(y|p) ∝
m∏
k=1

R∏
i=1

C∏
j=1

p
yijk
ijk (5.5)

where yijk is the number of units in cluster k that fall into category i of “row”

variable and j of “column” variable. Also,
∑

i

∑
j pijk = 1 and

∑
i

∑
j yijk =

nk which is the sample size of cluster k. The baseline cell is the first cell,

where both variable indexes take value 1. Now, βri and βcj can be thought of

as coefficients of dummy variables for the last R − 1 categories of the row-

variable and the C − 1 categories of the column variable in the table. Also,

βr1 = βc1 = 0. Hence, we have

βr = (βr2 , β
r
3)

and

βc = (βc2, β
c
3, β

c
4, β

c
5)

Assuming independence in the table, the number of parameters in the model

is R+C − 2 and the log-odds can be written as function of the parameters:

ηijk ≡ log
pijk
p11k

= logit(pijk) = βri + βcj + uijk
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where βr and βc are the fixed parameters and are constant across clusters

and cluster effects uk vary between clusters. All parameters depend on (i, j).

To generalise we can write the model in a vector form

ηk = xβ + uk

where assuming independence

x =



1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

1 0 0 0 0 0

0 1 1 0 0 0

0 1 0 1 0 0

0 1 0 0 1 0

0 1 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


β =

(
βr

βc

)
and uk a vector of length RC − 1 corresponding to the number of cells with

uk ∼ N(0,Σ). In general, matrix x is (RC − 1) × (R + C − 2) when no

interactions are included in the model.

Including the interactions between the two variables produces (R−1)(C−1)

extra terms βrcij that are the coefficients of the product of the dummy variables

for βri , β
c
j . Also here we have βrc1j = βrci1 = 0 and the number of parameters

in the model is now (R− 1) + (C − 1) + (R− 1)(C − 1) = RC − 1. The fixed

parameters are now

βr = (βr2 , β
r
3)
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βc = (βc2, β
c
3, β

c
4, β

c
5)

βrc = (βrc22, β
rc
23, β

rc
24, β

rc
25, β

rc
32, β

rc
33, β

rc
34, β

rc
35)

The log-odds are written as

ηijk ≡ log
pijk
p11k

= logit(pijk) = βri + βcj + βrcij + uijk

Including the interactions, we have

β =


βr

βc

βrc


and x has (R − 1)(C − 1) extra columns that are constructed by multiply-

ing each of the existing r−columns with each of the c−columns from the

independence model x matrix.

The more general matrix-form is

η = Xβ + u

whereX = 1M⊗x, uT = (uT1 , ...,u
T
M) and u ∼ N(0,Σ∗) with Σ∗ = IM⊗Σ.

After assigning multivariate Normal prior distributions to fixed parameters

and an Inverse Wishart to the covariance matrix of random effects, we sum-

marise the model

yk ∼Multinomial(pk;nk)

β ∼ N(a0,D)

uk ∼ N(0,Σ)

Σ ∼ IW (d,S0)

In terms of the original probabilities we have

pijk =
exp(ηijk)

1 +
∑R

i=2

∑C
j=2 exp(ηijk)

for i = 2, ..., R and j = 2, ..., C

p11k =
1

1 +
∑R

i=2

∑C
j=2 exp(ηijk)

for i = j = 1
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and the likelihood becomes

f(y|β,u) ∝
M∏
k=1

R∏
i=2

C∏
j=2

(
exp(ηijk)

1 +
∑R

i=2

∑C
j=2 exp(ηijk)

)yijk

The full conditional distributions are written

f(β|y,u,Σ) ∝ f(y|β,u)f(β)

= f(y|β,u) exp(−1

2
(β − a0)TD−1(β − a0)) (5.6)

f(uk|y,β,Σ) ∝ f(yk|uk)f(uk|Σ)

=

∏R
i=2

∏C
j=2 exp(ηjk)

yjk

(1 +
∑R

i=2

∑C
j=2 exp(ηijk))nk

exp(−1

2
uTkΣ−1uk) (5.7)

and

Σ|u ∼ IW (M + d,S0 +UTU) (5.8)

Next, we give an example of fitting the above model to our dataset and

compare between independence and interaction model.

5.3.2 Example

We wish to examine our model under cluster sampling, therefore we use

the sample taken in Section 3.5, where cluster sampling with PPS was per-

formed. Health status and marital status are the two cross-classifying vari-

ables of the table. Marital status has 3 categories, single, married/couple

and divorced/widowed/separated. The response variable is the health status

for individuals in different marital statuses and we are also interested in the

relation between these two variables across districts. The whole contingency

table is modelled as one multinomial response and the first cell is chosen to

represent the baseline category.

102



In Table 5.1, we give the contingency tables created for district 11 and district

18 to illustrate the apparent differences between districts. Note that the

sample is the sample as Section 3.5 and see there the description of the

sampling procedure. The number of sampled districts is m = 9 out of M = 43

and the number of sampled individuals is n = 725 out of N = 1742.

Table 5.1: Health status for single, married/couple, di-

vorced/widowed/separated in districts 11 and 18

Health status

District Marital status 1 2 3 4 5

11

1 3 4 2 1 0

2 12 7 4 0 1

3 4 6 2 2 0

18

1 16 30 17 5 1

2 24 38 17 5 3

3 9 11 12 10 2

The prior distribution for β is assumed to be Normal with zero mean and

large variance-covariance matrix and the hyperparameters for Σ are d =

17 and S0 = diag(1, ..., 1). This way we reflect our ignorance about the

parameters. In Table 5.2 we present posterior inference for β and Figure 5.1

shows achieved convergence of the chains for the independence model. The

draws from the posterior distribution of the parameters are then used to

obtain inference about population cell counts in following Section.

Posterior inference for the fixed parameters of the model including interac-

tions is given in Table 5.3. Observing the Table 5.3, we can see that most of

the interactions parameter C.I. include zero which may suggest that they are

not significant. This gives some evidence in favour of the independence model

and before we proceed with estimating the population counts, we need to de-

termine which model fits best our data. In the following Section we develop

bridge sampling in practice in order to approximate the marginal likelihood
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Table 5.2: Posterior inference for β under independence model

Mean st.dev. 95%C.I..

βr2 0.7884 0.1762 (0.4450, 1.1415)

βr3 -0.0190 0.1770 (-0.3577, 0.3401)

βc2 0.1930 0.1626 (-0.1308, 0.5117)

βc3 -0.6286 0.1937 (-1.0283, -0.2585)

βc4 -1.7395 0.2589 (-2.280, -1.2560)

βc5 -2.9214 0.3479 (-3.6490, -2.2790)

of both models.

Table 5.3: Posterior inference for β under interaction model

Mean st.dev. 95%C.I..

βr2 0.9067 0.2240 (0.4713, 1.3543)

βr3 -0.4425 0.2748 (-0.9926, 0.0937)

βc2 0.3308 0.2418 (-0.1504, 0.8031)

βc3 -0.7608 0.2982 (-1.3613, -0.1843)

βc4 -2.0503 0.4171 (-2.9350, -1.2760)

βc5 -3.1983 0.6834 (-4.7010, -2.0350)

βrc22 -0.2201 0.3455 (-0.8960, 0.4845)

βrc23 0.0457 0.3953 (-0.7340, 0.8300)

βrc24 -0.3672 0.5513 (-1.4526, 0.7177)

βrc35 -0.1652 0.8502 (-1.7634, 1.5943)

βrc32 0.0379 0.4041 ( -0.7513, 0.8431)

βrc33 0.6502 0.4557 (-0.2421, 1.5534)

βrc34 1.5518 0.5535 (0.4713, 2.6538)

βrc35 1.1949 0.8670 (-0.4126, 2.9743)
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Figure 5.1: Trace plots for β assuming independence in contingency table

5.3.3 Bridge sampling in practice

In the previous Section we described both the independence and interactions

model. We call them Model 1 (M1) and Model 2 (M2) respectively during

the following analysis. To use the notation of Section 1.3 for GLMM, let

p1 = R+C − 1 be the fixed effects dimension for Model 1 and p2 = RC − 1
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for Model 2. The rest of the parameter dimensions are the same across the

two models, q = RC−1 = 14, M = 9. We see that only parameter β changes

between the two models while u and Σ remain the same and are assigned

the same prior distributions. Hence, we can write the marginal likelihood of

Model 1 as

f(y|M1) =

∫ ∫ ∫
f(y|β1,u,M1)f(u|Σ)f(Σ)f(β1)dβ1dudΣ

=

∫ ∫
f(y|β1,u,M1)f(β1)

∫
f(u|Σ)f(Σ)dΣdβ1du

and the marginal likelihood for Model 2 as

f(y|M2) =

∫ ∫ ∫
f(y|β2,u,M2)f(u|Σ)f(Σ)f(β1)dβ1dudΣ

=

∫ ∫
f(y|β2,u,M2)f(β2)

∫
f(u|Σ)f(Σ)dΣdβ2du

Since the prior distribution for Σ is Inverse Wishart, IW(d,S0) for both

models, the integral ∫
f(u|Σ)f(Σ)dΣ

is analytically tractable as∫
f(u|Σ)f(Σ)dΣ =

Γq(
d+M

2
)

Γq(
d
2
)

1

π(Mq)/2

|S0|d/2

|S0 +
∑M

k=1 uku
T
k |(d+M)/2

where

Γq(a) = π
1
4
q(q−1)

q∏
i=1

Γ

(
a+

1− i
2

)
is the multivariate Gamma function. Hence, the marginal likelihoods are

reduced to

f(y|M1) =

∫ ∫
f(y|β1,u,M1)f(β1)

Γq(
d+M

2
)

Γq(
d
2
)

1

π(Mq)/2

|S0|d/2

|S0 +
∑M

k=1 uku
T
k |(d+M)/2

dudβ1
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and

f(y|M2) =

∫
∫ f(y|β2,u,M2)f(β2)

Γq(
d+M

2
)

Γq(
d
2
)

1

π(Mq)/2

|S0|d/2

|S0 +
∑M

k=1 uku
T
k |(d+M)/2

dudβ2

Now, we have to approximate the two integrals with bridge sampling, where

g(β1,u) = f(y|M1) and g(β2,u) = f(y|M2). Hence, for Model 1 we have

g(β1,u) =

∏R
i=2

∏C
j=2 exp(βri + βcj + uijk)

yjk

(1 +
∑R

i=2

∑C
j=2 exp(βri + βcj + uijk))nk

(2π)−p1/2|D1|−1/2 exp(−1

2
(β1 − a0)TD−1

1 (β1 − a0))

Γq(
d+M

2
)

Γq(
d
2
)

1

π(Mq)/2

|S0|d/2

|S0 +
∑M

k=1 uku
T
k |(d+M)/2

and for Model 2

g(β2,u) =

∏R
i=2

∏C
j=2 exp(βri + βcj + βrcij + uijk)

yjk

(1 +
∑R

i=2

∑C
j=2 exp(βri + βcj + βrcij + uijk))nk

(2π)−p2/2|D2|−1/2 exp(−1

2
(β2 − a0)TD−1

2 (β2 − a0))

Γq(
d+M

2
)

Γq(
d
2
)

1

π(Mq)/2

|S0|d/2

|S0 +
∑M

k=1 uku
T
k |(d+M)/2

We have already a sample of size Nπ from the joint posterior distribution of

(u,β1) and (u,β2) for both models from Section 5.3.2. We also set Nh = Nπ

and nh = nπ = 1
2
Nπ. Then, we use the algorithm described in page 98 and we

get the values for the log marginal likelihoods shown in Table 5.4. Bayes fac-

tor for these two models gives strong evidence in favour of the independence

model. Therefore, we conclude that health status is independent of marital

status given district effect. However, classical chi-square test suggests inter-

actions between the two variables with X2
8 = 37.1 that rejects independence

model. Also when fitting and comparing classical log-linear models, indepen-

dence model has a deviance of 32.715 with 8 degrees of freedom that again

gives evidence in favour of the full model (interactions model).
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Table 5.4: Approximated log marginal likelihoods by bridge sampling

Model log Marginal likelihood

Independence -1645.341

Interactions -1654.882

5.3.4 Inference for the contingency tables counts

In this Section we return to the main interest of this thesis, estimating popu-

lation counts for categorical data. Hence, we want to estimate the population

cell counts for the contingency table of health status and marital status. As

the sample is obtained through one stage PPS sampling, we can use the al-

gorithm described in page 84 in order to draw from the posterior predictive

distribution of new data. Then, we use the the Equations (4.11)-(4.12) to

get the posterior mean and variance for the population counts.
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Figure 5.2: Distribution of posterior predictive counts for two way contin-

gency tables under the independence model

We select the independence model as it has the largest marginal distribution
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Figure 5.3: Distribution of posterior predictive counts for two way contin-

gency tables under the independence model

and gives a log Bayes factor of 9.541 in favour of the independence model and

its posterior probability almost equal to 1. This makes that model a strongly

dominant model and model averaging not useful in this case. The histograms

show the posterior predictive distribution for the population count in each

cell of the contingency table. The black line represents the true population

counts in each cell. We see that our model of choice tends to yield accurate
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predictions of the true values.
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5.4 Three way contingency tables

5.4.1 Introduction

The motivation for this Section is Clogg and Eliason (1987) approach where

three way contingency tables under stratification are analysed. They suggest

a method of analysis to take into account the survey design when fitting

a log-linear model. This analysis assumes that sampling weights exist for

the dataset. In general, when dealing with a weighted dataset the two com-

mon approaches are: use of the unweighted data and ignore completely the

weights, or use the weighted data as if they were unweighted. Clogg and

Eliason (1987) claim that both strategies can be incorrect since they may

give biased estimates, wrong standard errors and fit statistics. Their method

works effectively when we have equal probability selection or the stratifica-

tion variable is one of the variables in the table. However, it fails when we

have unequal probabilities of selection within cells, as Skinner and Vallet

(2010) investigate.

To describe Clogg and Eliason (1987) method, we introduce the log-linear

model for a contingency table with G cells, as described by Clogg and Eliason

(1987) and Skinner and Vallet (2010)

log(ys) = Xβs

where ys is the G× 1 vector with the expected frequencies of the cells of the

table, X is the G×p model matrix and βs is the p×1 vector of the parameters.

Now, ys and βs correspond to sample values and thus, the parameters of the

model depend on the sampling design. The corresponding population model

can be expressed as

log(Y ) = Xβ

Assuming all units within a specific cell have the same probability of inclusion

and that π denotes the G× 1 vector of these probabilities, then

log(ys) = log(π) + log(Y )
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that gives us

log(ys) = log(π) +Xβ (5.9)

The cell inclusion probabilities are assumed to be the inverse of the cell

weights, πg = 1/wg for a cell g. In the case where weights are different

within cells, Clogg and Eliason (1987) introduce the average cell weight. Let

yw be the weighted frequencies

ywg =
n∑
t=1

Igtwt (5.10)

where

Igt =

{
1 if unit t falls in cell g

0 otherwise

and wt is the weight of unit t. Note that wt here are normalised weights to

sum up to the sample size n. Then, the average cell weight is

wg = ywg /yg

and 1/wg is an estimator of the πg. Clogg and Eliason (1987) then fit this

model using log(1/wg) as an offset. Skinner and Vallet (2010) claim that this

method is appropriate only in the case where sampling weights are constant

within cells. Also, it is not valid for more complicated sampling schemes such

as cluster sampling.

5.4.2 Model description

To extend the notation from previous Section to three-way tables, we must

change the notation in order to introduce another index for the the third

variable. Let i = 1, ..., R, j = 1, ..., C and k = 1, ..., A denote the categories

for the three variables constructing the contingency table. Let m = 1, ...,M

denote the stratum indicator. Let ymt be the response t in stratum m that

can take one of the discrete values for each cross-classified variable, with
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probabilities pm = (p111m, p112m, ..., pRCAm) in stratum m. The likelihood of

the model is written

f(y|p) ∝
M∏
m=1

R∏
i=1

C∏
j=1

A∏
k=1

p
yijkm
ijkm (5.11)

where yijkm is the number of units in stratum m that fall into cell (i, j, k).

Also,
∑

i

∑
j

∑
k pijkm = 1 and

∑
i

∑
j

∑
k yijkm = nm which is the sample

size of stratum m. The baseline cell is the first cell, where all variable indexes

take value 1. Again, βri , β
c
j and βak can be thought of as coefficients of dummy

variables for the last R − 1, C − 1 and A − 1 categories of each variable

respectively.

In a three-way table we see main effects, first order interactions and sec-

ond order interactions. Different combinations of these parameters produce

different models. For the independence model the constraints are

βr1 = βc1 = βa1 = 0

for first order interactions

βrc1j = βrci1 = βrai1 = βra1k = βca1k = βcaj1 = 0

and for second order a final constraint is added to the previous

βrca1jk = βrcai1k = βrcaij1 = 0

Finally, we have 9 different models with various combinations of the contin-

gency table variables. These models are given in Table 5.5.

Assuming again a Multinomial model with random effects we can write the

general form of log-odds as

η = xβ + um

where vector β contains the fixed parameters corresponding to the model we

want to analyse. We summarise

ym ∼Multinomial(pm;nm)
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Table 5.5: Models of interest in a three-way contingency table

Model Number of parameters

1 [H][M ][S] R+C+A-3

2 [H][M ][S][HM ] A+RC-2

3 [H][M ][S][MS] C+RA-2

4 [H][M ][S][HS] R+CA-2

5 [H][M ][S][HM ][MS] RC+RA-R-1

6 [H][M ][S][HM ][HS] RC+CA-C-1

7 [H][M ][S][MS][HS] RA+CA-A-1

8 [H][M ][S][HM ][MS][HS] R(C-1)+A(R-1)+C(A-1)

9 [H][M ][S][HM ][MS][HS][HMS] ARC-1

β ∼ N(a0,D)

ul ∼ N(0,Σ)

Σ ∼ IW (d,S0)

At this point, we need to choose the hyper-parameter values and extra care

is required for β. The choice of prior distribution is important when it comes

to model comparison. Forster and O’Hagan (2004) discuss this effect when

comparing nested models. The marginal posterior probability of a model

is proportional to the product of the prior probability and the marginal

likelihood and marginal likelihood is sensitive to the prior distribution of

the parameters. Therefore, also model posterior probability is sensitive to

the prior distribution of the parameters, except the prior distribution of the

common parameters in all models. The parameters present in all models

here are the main effect parameters. Assume β0 is the parameters present

in all models, that are the main effects parameters and β1 the additional

parameters in any augmented model. Then, assigning a diffuse prior for

β1 can produce a large Bayes factor against the augmented model. This

is another example of Lindley’s paradox (Forster and O’Hagan, 2004). To

avoid this happening, we can assign less vague prior distributions when prior
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information about β1 is weak. Therefore, we assign

β0 ∼ N(0, diag(105, ..., 105)

and

β1 ∼ N(0, diag(25, ..., 25)

Next, we present an example for a three way contingency table under strat-

ified sampling, obtain posterior inference for the parameters and compare

with Clogg and Eliason (1987) approach.

5.4.3 Example

We wish to examine cases where the sample is obtained through stratified

sampling and the strata are not included as a variable in the contingency

table. Our method is to assign the random effects to strata and then make

inference as previously. Suppose age is the stratification variable and a num-

ber of units is sampled from each stratum. Then, we cross-classify the sam-

pled units according to health status, marital status and sex. The target is

to examine the relationships between these three variables, to decide which

model is appropriate and finally to predict for non-sampled units. Health sta-

tus, marital status and sex compose the three-way contingency table while

age is not one of the classifying variables but is assigned the random effects.

Inference is made then through the Multinomial model with random effects

as described in the previous Section.

All models shown in Table 5.5 are examined and posterior inference is ob-

tained as in the previous Section. Next, bridge sampling is applied for every

model and approximations of the marginal log likelihood are given in Ta-

ble 5.6 together with the posterior model probabilities. It is evident that

Model 1 (independence model) has the highest posterior probability and we

wish to examine if posterior inference for population counts is better under

this model or under model averaging. The model with the second higher
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posterior probability is Model 2 which includes the main effects plus the

interaction between health status and marital status.

Table 5.6: Approximated log marginal likelihoods by bridge sampling and

posterior model probabilities

Model log Marginal likelihood Posterior model probabilities

1 -1752.863 0.7037

2 -1753.596 0.2960

3 -1761.744 0.0001

4 -1760.727 0.0002

5 -1764.480 0.0000

6 -1775.161 0.0000

7 -1777.885 0.0000

8 -1779.671 0.0000

9 -1794.914 0.0000

In order to get estimators for the population counts, we draw new data ỹ from

their posterior predictive distribution, a process similar to the one described

in Section 4.3.1:

1. Use the draws from the joint posterior distribution of (β,u) to calculate

ηtm = βt+utm, for t = 1, ..., T number of draws and m = 1, ...,M strata.

2. Draw from the posterior distribution f(pm|bmym) by calculating

ptijkm =
exp(ηtijkm)

1 +
∑

i

∑
j

∑
k exp(ηtijkm)

for i = 2, ...R, j = 2, ..., C, k = 2, ..., A and

pt111ml =
1

1 +
∑

i

∑
j

∑
k exp(ηtijkm)

t = 1, ..., T obtained draws. Finally, we have T random arrays of

R× C × A containing the draws for pm for m = 1, ...,M strata.
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3. Obtain the stratum sizes Nm as described in Section 3.2 and calculate

the Nm − nm sizes of non-sampled units for every stratum.

4. Get T simulations of new ỹtm from

ỹtm ∼Multinom(ptm;Nm − nm)

We then plot the histograms of the posterior predictive distributions for each

cell of the contingency table (given in Figures 5.4 and 5.5) under Model 1.

True population counts are represented in the plots by the black vertical line.

Table 5.7 presents the posterior mean and standard deviation under model

averaging. In the following Section we implement classical approaches, eval-

uate and compare estimators under different models using the mean squared

error (MSE).

Table 5.7: Posterior mean and standard deviation for population counts

under model averaging

Posterior means Posterior st.dev.

Health status

Sex Marital status 1 2 3 4 5 1 2 3 4 5

1

1 66 104 43 5 1 6.885 10.586 5.112 2.904 1.490

2 154 190 52 12 6 9.431 10.383 6.541 3.606 2.617

3 33 33 34 14 4 4.941 5.385 4.816 3.742 1.467

2

1 75 126 42 5 2 7.213 10.747 5.209 2.347 1.591

2 220 184 70 22 12 11.406 10.450 7.409 4.300 3.212

3 69 80 52 35 1 6.673 8.393 5.870 4.857 1.141
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Figure 5.4: a) Distribution of posterior predictive counts for three way con-

tingency tables under the independence model

118



H=1,M=2,S=1

D
en

si
ty

150 250

0.
00

0
0.

02
0

H=1,M=3,S=1
D

en
si

ty

40 80 120

0.
00

0.
03

H=2,M=1,S=1

D
en

si
ty

80 120 180

0.
00

0
0.

02
5

H=2,M=2,S=1

D
en

si
ty

150 250

0.
00

0
0.

02
0

H=2,M=3,S=1

D
en

si
ty

40 80 120

0.
00

0.
03

H=3,M=1,S=1

D
en

si
ty

20 60

0.
00

0.
04

H=3,M=2,S=1
D

en
si

ty

40 80 120

0.
00

0.
03

H=3,M=3,S=1

D
en

si
ty

20 60 100

0.
00

0.
03

H=4,M=1,S=1

D
en

si
ty

5 15 25 35

0.
00

0.
10

H=4,M=2,S=1

D
en

si
ty

10 30 50

0.
00

0.
05

H=4,M=3,S=1

D
en

si
ty

10 30 50 70

0.
00

0.
04

H=5,M=1,S=1
D

en
si

ty

0 5 10 20

0.
0

0.
3

H=5,M=2,S=1

D
en

si
ty

10 30

0.
00

0.
08

H=5,M=3,S=1

D
en

si
ty

10 20

0.
0

0.
4

Figure 5.5: b) Distribution of posterior predictive counts for three way con-

tingency tables under the independence model (continued)
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5.4.4 Classical analysis

In order to compare Clogg and Eliason (1987) approach with our model for

contingency tables, we apply stratification, create the weights and obtain

unweighted frequencies. The contingency table of the weighted frequencies

is shown in Table 5.8.

Table 5.8: Table of health status, marital status and sex weighted frequencies

Health status

Sex Marital status 1 2 3 4 5

1

1 19 36 12 1 0

2 50 70 16 4 2

3 11 9 15 6 2

2

1 22 39 13 1 0

2 79 62 25 8 5

3 27 28 21 15 0

Next, we fit all models shown in Table 5.5 using the unweighted data, weighted

data and Clogg and Eliason (1987) method. Table 5.9 gives the deviances,

degrees of freedom and p-values for all three models and methods. We see

that although there are discrepancies between the three different methods,

all of them point to Model 5 (model with main effects plus marital -health

status and marital status-sex interactions) as the one that fits better.

In order to provide classical estimates for the population counts in the various

categories of health status, social status and sex we use two methods. The

first is simply the method described in Section 2.4, where the estimated cell

counts are

ŷijk =
n∑
t=1

wtIijkt

where

Iijkt =

{
1 if unit t falls in cell (ijk)

0 otherwise
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Table 5.9: Deviance and p-value for all models under the three classical

methods of analysis

Model Unweighted Weighted CE df

Deviance p-value Deviance p-value Deviance p-value

1 [M ][H][S] 79.512 0.000 79.841 0.000 73.178 0.000 22

2 [M ][H][S][MH] 22.205 0.074 22.861 0.063 20.582 0.113 14

3 [M ][H][S][MS] 71.882 0.000 71.852 0.000 65.309 0.000 20

4 [M ][H][S][HS] 75.204 0.000 74.492 0.000 68.231 0.000 18

5 [M ][H][S][MH][MS] 14.576 0.265 14.873 0.248 12.284 0.423 12

6 [M ][H][S][MH][HS] 17.898 0.057 17.513 0.064 15.410 0.118 10

7 [M ][H][S][MS][HS] 67.575 0.000 66.503 0.000 60.267 0.000 16

8 [M ][H][S][MH][MS][HS] 11.772 0.162 11.259 0.187 8.843 0.356 8

and which gives the following table of estimated counts.

Table 5.10: Estimated cell counts using sampling weights

Health status

Sex Marital status 1 2 3 4 5

1

1 56 104 35 3 0

2 145 203 47 13 6

3 32 27 43 18 6

2

1 64 113 38 2 0

2 230 179 72 25 16

3 78 83 60 44 0

Finally, in order to compare our model selection through bridge sampling

approximation of the marginal likelihood with the classical approaches, we

calculate posterior means of the population counts under Model 5. Model 5 is

the model including the main effects plus the health-marital and marital-sex

interactions and chosen by all classical methods.

Next, we compare the different estimates we obtained through different mod-
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els and model averaging as described in Section 1.2.4. Mean squared error

is used for this purpose and the results are given in Table 5.11, where we

observe that the independence model (Model 1) has the least MSE. This

was also the model with the highest posterior probability. Model selection

with all three classical approaches under stratified sampling seems to fail, as

Model 5 has the highest MSE. Since Bayesian model selection suggested the

independence model as the most suitable model, we can conclude that health

status, marital status and sex are independent given the age stratum.

Table 5.11: MSE under different methods of estimation
Model MSE

[H][M ][S] 2580

[H][M ][S][HM ][MS] 3491

Model averaging 2838

Weighted estimates 2746

5.5 Discussion

In this Chapter, we implemented the Multinomial model for contingency ta-

bles under cluster sampling and stratified sampling. The underlying problem

when analysing contingency tables coming from surveys is the effect of the

sampling design in inference. We try to address this problem with the use of

random effects corresponding to the design variables.

In Section 5.3, we examined a two way contingency table under cluster sam-

pling. In classical tests, cluster sampling might present associations when

they are not actually present and give high X2 values and small p-values.

We see this happening when analysing the sample in Section 5.3 with classical

methods, where X2 test rejects the hypothesis of independence. Using the

Bayesian Multinomial model, we fit the independence model and interaction

model, both including random effects to account for the cluster effect. We
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find that the independence model is the dominant model, hence we conclude

that health status is independent of marital status given the district effect.

In Section 5.4.1 we discussed three way contingency tables analysis under

stratified sampling. In this case, a stratified sample is taken and the strat-

ification variable age is not included as one of the variables in the table as

this would yield a high dimensional table of 180 cells. To incorporate the

stratification variable in analysis, we assign random effects to age strata.

Next, we implement all models that the contingency table produces and

compare them by calculating the posterior model probabilities. The model

with the highest posterior probability is the independence model. Sampling

weights are also calculated to be used when calculating weighted estimators

and when applying the Clogg and Eliason (1987) method. Three different

classical approaches are applied for model selection and suggest Model 5,

which is the model including the main effects plus the health-marital and

marital -sex interactions. Finally, we obtain posterior means for our model

of choice (Model 1), Model 5 and under model averaging. Using the mean

squared error, the independence model is the best when it comes to estimat-

ing the population counts. We conclude that Bayesian model selection does

a bit better than straight weighting and Bayesian model averaging and much

better than classical model selection.

Our approach offers a unified methodology to modelling contingency tables,

comparing between models, predicting for non-sampled units and finally ob-

taining efficient estimators for population counts. We use a Mulinomial gen-

eralised linear mixed model, for which we perform model selection and aver-

aging and apply for survey data. Incorporating random effects gives a way

to account for the effect of the design variables and can be used under any

sampling scheme. Various examples are presented in the following Chapter.
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Chapter 6

Examples

In this Chapter we examine the relations between various variables of our

dataset under stratification and post-stratification by performing two and

three way contingency table analysis as described in Chapter 5. Our es-

timators under the model of choice or under Bayesian model averaging are

then compared to classical weighted estimates and estimates under the model

chosen by Clogg and Eliason (1987) method.

6.1 Example 1

In the first example, health region represents the stratification variable and

a sample is taken from each stratum. Then, selected units are cross- clas-

sified according to health status, smoker and illness. We want to examine

the associations between these three variables and to select the appropriate

model under stratified sampling. The Multinomial model with random ef-

fects corresponding to health regions is applied and draws from the posterior

distribution of the parameters are obtained as described in Section 5.4.1.

Next, we approximate the marginal likelihood for all suggested models using

bridge sampling and we calculate the posterior model probabilities. Clogg
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and Eliason (1987) approach is used as the frequentist approach to choose

between models and all results are given in Table 6.1. There, we see that

Bayesian model selection suggests Model 4 (model including the main effects

plus health status-illness interaction) as the model with the highest poste-

rior probability. With the Clogg and Eliason (1987) approach, Model 6 is

preferred which is the model including the health status-illness and health

status-smoker interactions. Both models perform well as far as the MSE is

concerned, but Model 4 has the lowest MSE that suggests it predicts best the

population counts in each cell. Also, the weighted estimates do not perform

well in this example.

Table 6.1: Numerical results for Example 1

Model log-Marg. Post.model prob. p-values MSE

1 [H][S][I] -1076.441 0.000 0.000 4910

2 [H][S][I][HS] -1082.171 0.000 0.000 5001

3 [H][S][I][SI] -1077.251 0.0000 0.000 5026

4 [H][S][I][HI] -1056.587 0.9929 0.189 3379

5 [H][S][I][HS][SI] -1082.582 0.0000 0.000 5084

6 [H][S][I][HS][HI] -1067.788 0.0000 0.865 3689

7 [H][S][I][SI][HI] -1061.523 0.0071 0.136 4190

8 [H][S][I][HS][SI][HI] -1071.536 0.0000 0.933 4151

9 [H][S][I][HS][SI][HI][SHI] -1075.194 0.0000 0.000 4101

Weighted estimates - - - 4496

6.2 Example 2

This example involves post-stratification together with stratification. A

stratified sample is taken with marital status as the stratification variable

and then post-stratification is performed on social status. New post-strata

are created for all the combinations of the levels of marital status and social
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status. Next, two way contingency tables within each new post-stratum are

created according health status and exercise. We wish to examine the relation

between health status and exercise in every post-stratum. The Multinomial

model with random effects assigned to each post-stratum is applied again

and posterior model probabilities are obtained too.

Table 6.2: Approximated log marginal likelihoods and posterior probabilities

for Example 2

Model log Marginal likelihood posterior model probabilities

Independence -697.718 0.4314

Interactions -697.441 0.5686

The alternative models have posterior model probabilities very close to each

other and model averaging seems appropriate in this case. We can obtain

estimates of the population counts in each cell based not in a single model,

since it seems uncertain which one to choose, but averaging over both mod-

els. We see that, obtaining estimates under model averaging produces more

accurate estimates than any single model but not than weighted estimators,

as shown in Table 6.3.

Table 6.3: MSE for Example 2

Model MSE

Independence 11289

Interactions 11040

Model averaging 9976

Weighted estimates 9396

6.3 Example 3

This last example involves stratification according to social status and then

cross-classification of the sampled units according to health status, lifestyle
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and alcohol. The Multinomial model with random effects corresponding to

social statuses is fitted again. Similar methodology is applied in order to

get approximations of the marginal likelihoods, posterior model probabilities

and estimates for the population counts in each cell of the table. Finally,

the mean squared error is again calculated for all models, model averaging

and weighted estimates. In this Example, we note that model averaging

provides estimates with the least MSE. The model with the highest posterior

probability is the model with the main effects and the interaction between

lifestyle and health status. The model that is chosen through classical analysis

is the one with lifestyle-health status and lifestyle-alcohol interactions. Again,

Bayesian model selection method provides a model that performs better than

the one suggested by classical model selection. Moreover, Bayesian model

averaging gives more accurate estimators than any single model and weighted

estimators.

Table 6.4: Numerical results for Example 3

Model log-Marg. Post.model prob. p-values MSE

1 [H][L][A] -854.087 0.0000 0.000 5101

2 [H][L][A][LH] -842.892 0.6671 0.474 5050

3 [H][L][A][LA] -846.084 0.0274 0.001 5179

4 [H][L][A][HA] -849.434 0.0010 0.000 5093

5 [H][L][A][LH][LA] -843.676 0.3044 0.902 5123

6 [H][L][A][LH][HA] -851.644 0.0001 0.516 5608

7 [H][L][A][HA][LA] -854.855 0.0000 0.000 5363

8 [H][L][A][LH][LA][HA] -853.166 0.0000 0.953 5345

9 [H][L][A][LH][LA][HA][LHA] -857.613 0.0000 0.000 5795

Weighted estimates - - - 5823

Model averaging - - - 5047
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Chapter 7

Discussion

In this thesis we discussed and developed Bayesian methodology for finite

population categorical responses under limited information on the design

variables. We addressed the problem of not knowing the design variables in

stratification, post-stratification and cluster sampling.

In Chapter 3 we suggested ways of dealing with the unknown design variables

under stratification and cluster sampling. In the first case, strata sizes can be

calculated straightforwardly using the sampling weights. Cluster sampling

is more complicated since it requires predicting for non-sampled clusters.

Therefore, we proposed two different models, one for simple random cluster

sampling and the other for cluster sampling with probability proportional

to size. We also compared our model for probability proportional to size

cluster sampling with the existing non-parametric model proposed by Little

and Zheng (2007).

In Chapter 4 we dealt with the main interest of this thesis, estimation of

population counts for univariate and multivariate categorical variables. We

applied the Multinomial model with random effects to account for the effect

of the design variable in a categorical response with five categories (health

status). The model was used in three different sampling designs, stratified
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sampling, cluster sampling with SRS and cluster sampling with PPS. For

all the above designs, posterior means of the population counts were more

accurate than the classical estimators in real data applications.

In Chapter 5 we extended the model of Chapter 4 to both two and three way

contingency tables. We also addressed the problem of choosing between al-

ternative models for contingency tables by calculating their posterior model

probabilities. This was done through approximation of their marginal like-

lihoods using bridge sampling. In cases where averaging over all plausible

models may offer improvement in prediction, we applied this method to get

better estimates of population counts in the contingency table cells. Fi-

nally, we compare with the approach of Clogg and Eliason (1987) which is

a frequentist approach to account for the design effect on contingency table

inference.

We conclude that our methodology provides a unified approach for categor-

ical responses from finite populations. It takes into account survey design

and provides a method for prediction that classical approaches do not. Our

motivation was the lack of this methodology for categorical survey data and

the challenge of assuming unknown design variables for non-sampled cases.

Moreover, our approach incorporates model comparison or averaging if ap-

propriate that gives more efficient estimates than classical methods.

The work done in Chapter 5 can be extended to higher dimension contingency

tables and to a larger number of design variables. Naturally, this makes

analysis more difficult, MCMC slower to converge and may produce a model

which is hard to interpret. Moreover, modelling the design variable sizes

becomes troublesome when the weighting scheme is complex. In order to

model the size variable in these cases and be able to predict for the non-

sampled groups, we need to obtain first the population sizes for the sampled

groups. Gelman (2007) mentions that demographics from previous surveys

can be used in these cases or iterative proportional fitting, see Deming and

Stephan (1940). This is an issue to be adressed in the future.
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Another potential problem for future work is the role of sampling weights

in the modelling procedure. As mentioned previously this is a controver-

sial issue. So far, we assign random effects to the design variables used in

the weighting procedure and this helps to account for their effect. We also

used the weights to calculate group sizes, since weights were the inverse of

selection probabilities in the designs we examined. However, in more com-

plex surveys weights are not equal to inverse probabilities of selection. They

are constructed by multiplying a series of factors that depend on the design

variables and the sampling mechanism. Incorporating them in the modelling

process has always been a challenge.

To visualise a model for survey outcomes we provide the following graphical

model,

Figure 7.1: Graphical representation for survey models

where

• Y is the survey variable of interest
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• Ys are the sampled part of Y

• Z is the set of the design variables

• θ and φ are the parameters for Y and Z respectively

• I the inclusion indicators

• w represents the sampling weights

This graph shows that Y is independent of I given the design variables Z

and that the sampling weightsw are a product of the design variables and the

sampling mechanism. Therefore, the sampling weights can be thought of as

“surrogates” of the design variables (Pfeffermann, 1993). Their advantage is

that they provide information in a more compact way, since Z = (z1, ...,zN)

is a set of design variables and w = (w1, ..., wn) is just a vector of sampling

weights. Thus, sampling weights can be used as a summary of the design

variables, especially if modelling Y given Z is too complicated. Also, Ru-

bin (1985) proposes to use the inclusion probabilities (inverse of sampling

weights) to replace the design variables but this method requires knowledge

of the inclusion probabilites for all the population units. One can note that

the weights are only available for the sampled units and cannot be obtained

for the non-sampled ones if the design variables are not known for them.

Assuming design variables and hence weights unknown for non-sampled units

seems to make modelling impossible. One solution could be to model the

weights, then predict for the non-sampled units and finally, model Y condi-

tioning on w. This is another challenging problem we wish to investigate in

the future.

In general the Multinomial model with random effects can be used for many

applications, such as market surveys and transportation modelling where

Multinomial modelling is quite popular (Washington et al., 2009). Differ-

ent types of covariate can be added in the model, such as subject specific,
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group specific or choice specific covariates. Evidently, our approach seems

to produce estimators closer to the true ones than the classical estimators,

especially for small samples with low cell frequencies and despite its compu-

tational effort.
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