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A spectral MHD code for the non-linear study of
magnetic neutron stars

by

Oliver Robertshaw

To study the ideal magnetohydrodynamic equations we present a spectral code that uses

finite differencing in radius and spherical harmonic expansions in the angles. Convolution

replaces spherical harmonic multiplication, giving us an infinite system of PDEs in radius and

time to solve; we truncate at some relatively low degree ` and may evolve with or without

non-zero m to simulate three dimensions or axisymmetry.

Our code crudely models the internal dynamics of a neutron star by placing a magnetized

fluid into a spherical shell of fixed radius, surrounded by vacuum. The spherical harmonic

decomposition makes it simple to both dynamically calculate the gravitational potential

and to use a magnetic vector potential to ensure a divergence-free evolution. A simple

friction method is effective at finding the equilibria of stratified stars in the absence of

exterior fields and/or rotation. We then investigate the stability of perturbed equilibria

by evolving non-linearly in time over many Alfvén time crossings, and briefly analyze the

resulting oscillation frequencies.
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Chapter 1

Anatomy of a neutron star

In 1932 Sir James Chadwick discovered an uncharged particle with approximately the same

mass as a proton, through his studies of the emissions of irradiated beryllium. Such particles

had earlier been predicted to exist as the binding of a proton and electron by Rutherford,

who called them neutrons. Less than two years later, Baade and Zwicky [6] postulated that

supernovae, which were poorly understood at the time, can transform an ordinary star into

a neutron star by removing all of the charged particles.

As our understanding of subatomic physics progressed, it soon became clear that neutron

stars, if they existed, would be extremely compact and very difficult to spot. The observation

of regular radio pulses from deep space – the emissions of a pulsar – by Bell Burnell and

Hewish in 1967 [11] led to increased interest in the study of neutron stars, and the associated

exotic physics that is still untestable in Earth-bound laboratories.

Although there exists a general consensus when it comes to many points of neutron star

phenomenology, various properties and processes are still poorly understood. This chapter

outline the birth and life of a typical neutron star, drawing on information from various

sources (for example, [1, 14, 39, 66, 72, 79]).

1.1 Neutron star formation

Up until their death, stars remain in a hydrostatic equilibrium: the inward pull of gravity is

chiefly opposed by outward pressure from nuclear fusion. This process continuously combines

nuclei within the core, mostly those of hydrogen, forming heavier elements and releasing

energy. As it ages the star forms layers of different elements at high concentrations, with

mostly hydrogen and helium towards the surface, iron and nickel at the core, and others

(such as oxygen and silicon) in between due to differing rates of fusion.

Iron and nickel nuclei have maximal binding energies: they cannot be used to create

heavier elements. The density and temperature of the core rises as quantities of these

13



14 CHAPTER 1. ANATOMY OF A NEUTRON STAR

Figure 1.1: Supernova remnant Puppis A and the neutron star formed at its centre, currently
moving at 106 m s−1. Credit: Chandra: NASA/CXC/Middlebury College/F.Winkler et
al; ROSAT: NASA/GSFC/S.Snowden et al.; Optical: NOAO/AURA/NSF/Middlebury
College/F.Winkler et al.

elements build up, with the pressure generated by fusion and electron degeneracy1 balancing

gravity at this point. The collapse of sufficiently massive cores may be triggered by electron

capture and/or photo-dissociation and occurs on a time scale of seconds. The former,

whereby electrons and protons are combined to form neutrons and electron neutrinos,

reduces the overall pressure from electron degeneracy. The latter breaks iron and nickel

nuclei into α-particles and neutrons, decreasing the temperature, and hence the thermal

support, at the core. Very strong magnetic fields may even accelerate this process [55].

Relatively low mass stars, such as our own Sun, slowly eject their outer layers as they

age and leave behind a cooling dwarf star, rather than collapsing. Dying stars between 8 –

20M⊙ account for about ninety percent of core collapse supernovae. This range of masses

typically results in the formation of a neutron star, with masses between 1 – 3M⊙ and radii

of 10 – 15km, that are gravitationally decoupled from the rest of the star’s expelled mass.

Neutron star formation is also thought to occur for stars little above 20M⊙, but in-falling

matter (at least ten percent of the progenitor’s mass) will likely cause delayed, accretion

induced collapse into a black hole. Stars between 40 – 100M⊙ should rapidly collapse

straight into a black hole, bypassing any supernova event. The theoretical Eddington limit

1A consequence of the Pauli exclusion principle: fermions (which include protons, neutrons and electrons)
may not occupy the same quantum state simultaneously. As the uncertainly in the position of the electrons
decreases as they are compacted, their momentum uncertainty will increase, and a pressure force results.
Neutrons are more massive than electrons and so can exhibit a much greater pressure than electrons when
compressed.
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should prevent stars more massive than 120M⊙ from ever reaching a collapse stage as

thermal pressure expels the outer layers early on.

The onset of core collapse is marked by a decoupling of the iron–nickel core into a

rapidly collapsing inner core and a slower moving outer core. Approximately 100 ms after

the collapse begins, matter is falling into the centre at a sizeable fraction of the speed

of light. Once densities comparable to those of an atomic nucleus are reached, on the

order of 1017 kg m−3, nucleons are so closely packed together that the (usually attractive)

strong nuclear force between them becomes repulsive and prevents further collapse. A hot,

large (∼ 100 km radius) proto-neutron star (PNS) is formed mere seconds after the collapse

began.

The remaining in-falling mass of the star, primarily the outer core, forms a pressure shock

wave as it falls onto the surface of the PNS which propagates outwards; this is commonly

referred to as a bounce event. It occurs several hundred milliseconds after the collapse

begins, heating and further compressing matter within the outer core. Energy is also lost to

dissociating the remaining heavy nuclei and the result is a stalled shock front. A number of

mechanisms, acting on their own or perhaps coupled to each other, are thought to be able

to revive the standing shock and yet give a supernova explosion, but the primary driver is

most likely to be neutrinos escaping from the collapsed inner core, depositing their energy

within the surrounding stalled matter. This process slowly cools the PNS, contributing in

part to its diminishing in size. Other properties of the parent star’s core, such as angular

momentum and magnetic energy, are transferred to the neutron star, which interact and

strongly affect its subsequent evolution.

1.2 Neutron star structure

1.2.1 The interior

Much like how seismology reveals information about the Earth’s core, mantle and crust, the

oscillations of neutron stars are our best means of directly determining their inner structure.

(Other kinds of direct observations, such as the surface temperature or red-shift, help to

constrain the various models we care to construct.) These oscillations should be observable2

within the various signals emitted by pulsars, which are magnetized spinning neutron stars

that continuously emit a narrow beam of high-energy electromagnetic radiation powered by

energy from either the rotation, magnetic field or accretion.

It is the hope that gravitational waves from neutron stars, and other extragalactic

sources, will soon be spotted by various detectors such as Advanced LIGO, LISA and

VIRGO. These detectors operate by splitting a laser beam down paths at right angles to

2Only a handful of (quasi-)periodic oscillations (QPOs) have been observed to date, and are generally
considered to be intricately linked to either crust dynamics or the magnetosphere [62, 91], neither of which
are particularly well-modelled today.
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Figure 1.2: Frequency and amplitude detection ranges of LIGO, and the future LISA
experiment. c©NASA/JPL.

each other: passing gravitational waves will alter the distances travelled by both beams,

and an interference pattern should be observable in the recombined beams if the waves

are sufficiently powerful. Rapidly rotating neutron stars with large deformations [51] are

amongst the potential observation candidates at high-frequencies (figure 1.2) due to the

large amounts of gravitational energy they emit, as well as the high detection rate.

The internal structure of a neutron star, or indeed any stellar body – from a rocky

asteroid to an entire solar system – is closely related to the equation of state (EOS) of

the matter within. A challenge for those constructing an accurate model is to determine a

physically realistic EOS, based on observation where possible, and as such there are various

different approaches to tackling how quantities such as temperature, entropy and pressure

are related. Our model initially adopts a particular simple (and somewhat unrealistic) EOS,

whereby the pressure is only dependent on the local density (section 5.1), before moving to

the concept of a stratified NS where thermal gradients are also important (section 5.6.2).

Beginning at the surface, the one kilometre-thick crust can be described by a gradual

change from an outer to an inner region [25] with different properties. The composition of

the outer crust, including the surface, may vary widely depending on the initial composition

of the parent star or the amount of post-supernova accretion that occurred, but is most

likely a solid lattice of heavy elements (such as iron) at sub-nuclear densities. Deeper into

the middle of the crust these atoms are more likely to be ionized and neutron-rich, through

capture of free electrons.

The crusts of neutron stars with extremely strong magnetic fields, often referred to as
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magnetars [35], are thought to undergo regular cracking from the massive magnetic strain

that can build up, which leads to the release of giant γ-ray flares [67, 78]. We do not

currently model any kind of crust more complicated than a container that does not couple

to the interior dynamics, except to prevent fluid escaping, although there is, in principle, no

reason why such a crust could not be added with more research.

Neutron star glitches provide evidence for a rapidly rotating neutron superfluid interior

[64, 71] threaded by strong magnetic fields. Observations of sudden spin-up in various

pulsars, followed by gradual recovery to the pre-glitch rotation over many days, is thought

to be caused by a freely-spinning interior temporarily coupling itself to a solid crust which is

also forced to rotate more rapidly before some braking mechanism kicks in.

To support an interior magnetic field, the neutron star bulk is comprised of a neutron

superfluid containing a small number of free protons and electrons. However, the composition

of the innermost core is unknown: various NS models exist which invoke special states

of matter, but many of these have yet to be confirmed or ruled out through observation.

Theories regarding the inner core range from the relatively mundane, such as the entire

interior being comprised of anisotropic superfluidic neutrons [54], to the exotic-but-plausible,

such as a small core of hyperon or quark matter [57, 63], to the purely theoretical, for

example the existence of a preon core [50].

1.2.2 The exterior

Due to their strong surface gravity, a typical neutron stars is likely surrounded by very thin

atmosphere, perhaps on the order of centimetres in depth. Its composition again depends

on the circumstances surrounding the NS formation, but there is evidence to suggest that a

typical young neutron star is surrounded by a thin layer of light elements, such as carbon

[53].

Observations of pulsar wind nebulae require both strong magnetic fields and rapid

rotation of the atmosphere region to eject matter from both the poles and equatorial

region. One thus expects to find a hot plasma surrounding many neutron stars, although

the dynamics of such a magnetosphere and its coupling to the NS interior are incredibly

complex and certainly less studied than the interior alone.

Alternatively, it is possible that some neutron stars are instead surrounded by a highly

charged but very tenuous electrosphere. In such cases, there are likely to be constraints [43]

on the rotation rates of this region.
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Figure 1.3: The Crab and Black Widow are both examples of pulsar wind nebulae.



Chapter 2

Spectral Method

A spectral expansion of a system of partial differential equations starts by writing the

dependent variables as an infinite sum of smooth basis functions of the independent

variables. The reason for doing so is to make the system simpler, and (potentially) faster to

solve numerically. The most well-known example of this technique, and certainly its first

documented application, is the use of Fourier series to solve the 1D heat equation. Ideally

the solutions to the systems under study are smooth, or else Gibb’s phenomena will badly

affect the model near discontinuities.

There are various different ways one can go about using such expansions to solve higher

dimensional problems but this thesis will investigate a hybrid spectral approach, where

functions expressed in spherical polar coordinates (r, θ, ϕ) have their angular terms expanded

over the spherical harmonics. We can then use the orthogonality of spherical harmonics to

remove all explicit dependence on θ, ϕ, and we will be left with PDEs involving just the

radial coordinate and time. These will be numerically evolved in time through techniques

explained in chapter 3.

Spectral methods have been used to study fluid flow for quite some time, and there

are various different conventions and methods used to expand the angular components of

scalars and vectors using spherical harmonics [22, 56, 75]. Because of the difficulties that

the coordinate singularity at r = 0 can create, some authors adopt a fully spectral approach

by expanding the radial functions over a limited number of Chebyshev polynomials [15].

There has also been a recent Living Review article on the subject of spectral methods in

general relativity [45].

For MHD, spherical harmonic expansions have been used to study the magnetic fields

of both the Sun [21] and the Earth [32], and other astrophysical bodies. A very similar

convolution technique to our own was perhaps first used by Bullard et al. [22] in a similar

context, by looking at a rotating dynamo as a simplified model of the Earth’s magnetic field.

Geppert and Wiebicke [41] later studied how heat flux crossing through the outer crust of

a neutron star affects the embedded magnetic field. They make various assumptions that

19
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decouple the hydrodynamics from the magnetic field and entropy, so their main concern is

with the evolution of the latter two quantities in a shell, rather than a spherical bulk. More

recently, Pons and Geppert [40] used the same method to study how the magnetic field in

neutron star crusts decay through nonlinear effects (Hall drift and Ohmic decay) over long

time scales.

This chapter will first define the spherical harmonics and explain how one can expand

scalar functions, and then it will introduce a coordinate-free spacetime on which we may

introduce derivatives and vector harmonics. Doing so leaves the possibility of extending this

formalism to curved spacetimes, and thus a relativistic formulation, even though we are only

concerned with flat Newtonian space in this thesis. It then describes how to multiply scalar

and vector spherical harmonic expansions, and briefly discusses the real spherical harmonics.

2.1 Spherical harmonics

Spherical harmonics Y m
` (θ, ϕ) are complex–valued functions that arise when finding separable

solutions to Laplace’s equation in spherical polar coordinates,

∆f(r, θ, ϕ) = 0, (2.1.1)

where one rewrites

f(r, θ, ϕ) = R(r)Y (θ, ϕ) =

∞∑
`=0

∑̀
m=−`

Rm` (r)Y m
` (θ, ϕ). (2.1.2)

for integer degree `, mode m. The 4π-normalized spherical harmonics (used throughout)

are specifically defined by

r2∆Y m
` = −`(`+ 1)Y m

` (2.1.3)∫
S
Y m
` YM

L
∗ dΩ = 4πδL` δ

M
m (dΩ = sin θ dθ dϕ) (2.1.4)

∂ϕY
m
` = imY m

` , (2.1.5)

(Y m
` ) ∗ = (−1)mY −m` , (2.1.6)

where ∗ represents the complex conjugate, and the angles are represented by the polar

θ ∈ [0, π) (co-latitudinal) and azimuthal ϕ ∈ [0, 2π) (longitudinal).

We adopt the notation of [22, 46, 56] and define a multi-index γ for a particular degree

and mode by

γ ≡ `(`+ 1) +m. (2.1.7)

It is a unique integer for every permissible integer degree and mode, and is always represented
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by a lower-case Greek symbol in subscript. (2.1.2) can now be rewritten in shorthand as

∆

 ∞∑
γ=0

fγ(r)Yγ(θ, ϕ)

 = 0. (2.1.8)

Furthermore, we introduce the symbol

L2
γ = −`(`+ 1) (2.1.9)

and define a negative multi-index by

−γ ≡ `γ(`γ + 1)−mγ

(
Y−γ ≡ Y −m`

)
(2.1.10)

With this notation we rewrite (2.1.3-2.1.6) as

r2∆Yγ = L2
γYγ , (2.1.11)∫

S
YαY

∗
β dΩ = 4πδα,β, (2.1.12)

∂ϕYγ = imγYγ , (2.1.13)

Y ∗γ = (−1)mY−γ . (2.1.14)

Spherical harmonics for a given degree and mode are calculated using the associated

Legendre polynomials Pm` through

Y m
` (θ, ϕ) =

√
(2`+ 1)

(`−m)!

(`+m)!
Pm` (cos θ) eimϕ, (2.1.15)

Pm` (x) =
(−1)m

2``!
(1− x2)m/2

d`+m

dx`+m

[
(x2 − 1)`

]
. (x ∈ [−1, 1]) (2.1.16)

Various recurrence relations exist to calculate these polynomials, some of which are specified

in section 3.8. One may use (2.1.16) to show that the spherical harmonics can be expanded

in terms of sine and cosine as

Y m
` (θ, ϕ) = sinm θ

(
a0 cos`−m θ + a2 cos`−m−2 θ + ...

)
eimϕ (2.1.17)

for some coefficients ai = ai(`,m).



22 CHAPTER 2. SPECTRAL METHOD

2.2 Spectral expansion

The spherical harmonic expansion for a smooth function defined on a sphere, written in

terms of both the modes and multi-indexes, is

f(t, r, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

Y m
` (θ, ϕ)Fml (t, r) =

∞∑
γ=0

YγFγ , (2.2.1)

where both Y, F are complex functions. We adopt the shorthand of repeated multi-indexes

to often imply summation, for example

f = YγFγ . (2.2.2)

This notation is not strict in that we sometimes mean summation with only one index, and

sometimes not with two or more. Any inferred summation should be taken from the context,

for example by the indexes that appear on both sides of an equation, rather than through

any strict rules.

Conversely, expansion coefficients may be calculated from the original function, if known,

by integrating:

Fγ =
1

4π

∫
fY ∗γ dΩ. (2.2.3)

We need to set some maximum value ` ≤ `m <∞ for the expansion in order to carry

out computational work; this introduces a truncation error into our calculations. This error

will be seen in the recovery of the original variables, as well as the evolved variables in

situations where they are coupled. We write this truncated series as

f̃ =

`=`m∑
γ

YγFγ . (2.2.4)

Doing so introduces a truncation error

ET = f − f̃ (2.2.5)

where we expect ET → 0 as `m increases.

2.2.1 Products of spherical harmonics

The product of two (or more) spherical harmonics remains a function of (θ, ϕ) and thus has

its own spherical harmonic expansion,

YαYβ =
∑
γ

AαβγYγ , (2.2.6)
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where Aαβγ is a number that depends on the values of all of the `,m’s involved. If we

multiply both sides by a particular Y ∗ε and integrate, from (2.1.4) and (2.1.6) we have∫
YαYβY

∗
ε dΩ = (−1)mε

∫
YαYβY−εdΩ

=
∑
γ

Aαβγ

∫
YγY

∗
ε dΩ =

∑
γ

4πAαβγδγε = 4πAαβε, (2.2.7)

where δαβ is a Kronecker delta function over both the degrees and modes involved. Hence,

Aαβγ =
(−1)mγ

4π

∫
Yα Yβ Y−γ dΩ. (2.2.8)

This triple integral is often referred to as a Gaunt coefficient or Slater integral and may be

computed using Wigner 3j-symbols:

∫
Y m
` Y m′

`′ Y m′′

`′′ dΩ = 4π
√

(2`+ 1)(2`′ + 1)(2`′′ + 1)

 ` `′ `′′

0 0 0


 ` `′ `′′

m m′ m′′

.
(2.2.9)

The 6-entry brackets are the Wigner 3js, which can in turn be computed using the Racah

formula [93]: ` `′ `′′

m m′ m′′

 = (−1)`−`
′−m′′

√
(`+ `′ − `′′)! (`− `′ + `′′)! (−`+ `′ + `′′)!

(`+ `′ + `′′ + 1)!

×
√

(`+m)! (`−m)! (`′ +m′)! (`′ −m′)! (`′′ +m′′)! (`′′ −m′′)!

×
∑
t

(−1)t

t!(`′′ − `′ + t+m)! (`′′ − `+ t−m′)! (`+ `′ − `′′ − t)! (`− t−m)! (`′ − t+m′)!

(2.2.10)

where the summation is over the t which gives factorials of zero or positive integers. (Fortran

source code is given in appendix B.1.) For the coefficients Aαβγ to be non-zero, we require

the following conditions to hold1:

m′′ = −(m+m′), (“zero-sum”) (2.2.11)

|`− `′| ≤ `′′ ≤ `+ `′, (“triangle inequality”) (2.2.12)

`+ `′ + `′′ = even. (“even sum”) (2.2.13)

Some authors [20] prefer to express these triple integrals through Clebsch-Gordan (CG)

coefficients and refer to them as such. These originally arose in the field of quantum

mechanics when considering angular momentum and spin. They can also be used to

1Not all integrals that satisfy these condition are necessarily non-zero: for example, it may be shown that∫
Y 2n+1
n+1 Y 2n+1

−2n Y 2n
n−1dΩ = 0 for n ≥ 1.
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calculate triple integrals [92] through

〈
`′`′′m1m2

∣∣`′`′′`m〉 = (−1)m+`′−`′′√2`+ 1

 `′ `′′ `

m1 m2 −m

 . (2.2.14)

where the term on the left is a CG coefficient.

The coefficient Aαβγ will be used to calculate various products of harmonics later on,

so we define

Ĉαβγ ≡
∫
YαYβYγdΩ, (2.2.15)

χγ ≡
(−1)mγ

4π
. (2.2.16)

Note that the summation over repeated indices rule does not apply to χγĈαβ−γ . These

are separated in case one prefers a different phase convention or normalization.

Gaunt coefficients are real valued, as can be seen from the formula for Wigner 3j’s. As

a result, they are equivalent to coefficients with the opposite sign on the m’s:∫
Y −m` Y −m

′

`′ Y −m
′′

`′′ = (−1)m+m′+m′′
∫ (

Y m
` Y m′

`′ Y
m′′
`′′

)∗
=

∫
Y m
` Y m′

`′ Y
m′′
`′′ .

(2.2.17)

2.2.2 Products of scalar functions

The foundations laid by the previous section allow us to find the product of two scalar

functions in terms of an expansion of spherical harmonics. Consider the multiplication

f(r, t, θ, ϕ) = a(r, t, θ, ϕ) b(r, t, θ, ϕ)

=⇒
∑
ζ

fζYζ =
∑
α,β

aαbβYαYβ, (2.2.18)

where the fζ etc. are expansion coefficients and functions of (r, t). If we multiply both sides

by Yγ
∗ and integrate,

4πfγ =
∑
α,β

aαbβ

∫
YαYβYγ

∗dΩ =
∑
α,β

aαbβ(−1)mγ
∫
YαYβY−γdΩ

=⇒ fγ =
∑
α,β

χγ Ĉαβ−γ aαbβ. (2.2.19)
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2.3 Underlying spacetime

Following the notation first introduced by Gerlach and Sengupta [42, 46], we shall work on

a spherically symmetric spacetime but set up the appropriate framework before introducing

coordinates for numerical treatment.

A four-dimensional spacetime manifold M is split into 2+2 dimensions, M2 × S2. M2

represents the 2-dimensional (1+1) reduced spacetime and S2 the 2-spheres. Slots are

represented by Greek indices2 on M (with the metric gµν), upper-case Latin indices on

M2 (with the Lorentzian metric gAB), and lower-case Latin on S2 (with the unit curvature

metric γab). Thus we write the metric on M as

gµν = diag(gAB, r
2γab), (2.3.1)

where r is a coordinate on M2. We introduce covariant derivatives by writing

gµν;λ = 0, gAB|C = 0, γab:c = 0. (2.3.2)

on each of M, M2 and S2 respectively.

To define vectors we shall also require the totally antisymmetric covariant unit tensor on

γab, defined by

εab:c = 0, εac ε
bc = γa

b. (2.3.3)

On flat Newtonian space we will reduce M to a one dimensional manifold with coordinate

r, so that M = M1 × S2. Since this thesis is not concerned with curved space (whilst

still laying the groundwork for such an extension) we implicitly assume a 1+2 split where

coordinates are concerned. The flat-space metric in spherical polar coordinates is

ds2 = gµνdx
µdxν = dr2 + r2

(
dθ2 + sin2 θ dϕ2

)
, (2.3.4)

with components given by

gAA = gAA = 1,

γab =

 1 0

0 sin2 θ

 , γab =

 1 0

0 1
sin2 θ

 . (2.3.5)

2The Greek indices representing harmonic modes are not to be confused with slots on the manifold M.
However they never appear in the same expression in this work because of the spacetime splitting, and it
should be obvious from the context to which we refer.



26 CHAPTER 2. SPECTRAL METHOD

2.4 Vector harmonics in 1+2 split

For ` ≥ 1 modes we may construct a basis for vectors on S2 from the scalar spherical

harmonics, through

Zγa ≡ Yγ :a, (polar) (2.4.1)

Sγa ≡ εab Yγ :b. (axial) (2.4.2)

Note that this implies the relations

SaαSβa = γab εb
c εa

d ZαcZβd = εac εad ZαcZ
d
β = εca εda ZαcZ

d
β = γcd ZαcZ

d
β

= ZaαZβa, (2.4.3)

and

Zγa
:a = Yγ:a

:a = L2
γYγ , Sγa

:a = εabYγ:ab = −εabYγ:ab = 0. (2.4.4)

Using γab to shift indices, the contravariant components of Z, S are

Zaγ =

(
∂θYγ ,

1

sin2 θ
∂ϕYγ

)
, Saγ =

(
1

sin θ
∂ϕYγ ,

−1

sin θ
∂θYγ

)
. (2.4.5)

It follows that the dot product ZaαSβa is always zero in axisymmetry (m = 0), and zero in

3D iff α = β.

A tangential, radial vector is formed by multiplying a spherical harmonic with the radial

unit vector eA. Hence, if v is the velocity field on M, we write it as

vµ = vγYγe
A ⊕ (uγZ

a
γ + wγS

a
γ), (2.4.6)

where v, u, w are functions of (r, t) only, and ⊕ is a direct sum of vector spaces. We adopt

similar notation for other vector fields. The covariant form is obtained by using gab to lower

indices:

vµ = vγYγeA ⊕ r−2 (uγZγa + wγSγa) . (2.4.7)

After reflection through the equator θ → π− θ all vector harmonics satisfy either of two

outcomes; following Ivers and Phillips [56] we classify them as being dipolar or quadrupolar:

(fm` )(θ)(π − θ, ϕ) = ±(fm` )(θ)(θ, ϕ), (d/q) (2.4.8)

(fm` )(ϕ)(π − θ, ϕ) = ∓(fm` )(ϕ)(θ, ϕ). (d/q) (2.4.9)

For example, Z`` are quadrupolar and S`` are dipolar; if m = 0 the classification is based

on transformation of the non-zero component. This naming convention likely follows from

whether or not a given harmonic transforms in the same manner as Z0
1 or Z0

2 , which are
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(a) u0
1 (b) u0

2

(c) u0
3 (d) u0

4

Figure 2.1: Poloidal motion inside a sphere for constant uγ .

easily seen to describe dipolar/quadrupolar fields (figures 2.1,2.3).



28 CHAPTER 2. SPECTRAL METHOD

(a) w0
1 (b) w0

2

(c) w0
3 (d) w0

4

(e) w2
2 (f) w3

3

Figure 2.2: Toroidal motion on the surface of a sphere for constant wγ .
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(a) Z2
3 + Z−2

3 (dipolar) (b) Z3
3 − Z−3

3 (quadrupolar)

(c) S2
3 + S−2

3 (quadrupolar) (d) S3
3 − S−3

3 (dipolar)

Figure 2.3: Slices of some nonaxisymmetric vector harmonics through ϕ = 0. Vectors
illustrate the θ-component, and contours the ϕ-component.
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2.4.1 Derivatives of vector harmonics in 1+2 split

To calculate covariant derivatives without introducing coordinates on S2, the relevant

Christoffel symbols must first be found. Starting with the definition of the covariant

derivative

∇νvµ = ∂νv
µ + 1

2v
κgµλ (∂νgλκ + ∂κgλν − ∂λgκν) , (2.4.10)

we insert our metric (2.3.1) and calculate derivatives for the combinations of radial and

angular indices. As an example, we show that

∇BvA = ∂Bv
A + 1

2v
κgAλ (∂Bgλκ + ∂κgλB − ∂λgκB)

= vAγ|BYγ + 1
2v

κgAC (∂BgCκ + ∂κgCB − ∂CgκB)

= vAγ|BYγ . (2.4.11)

Derivation of the other quantities follows a similar method and leads to the following

useful relations:

∇BvA = vAγ |B Yγ , (2.4.12)

∇Bva = (uγ|B + rBuγ)Za + (wγ|B + rBwγ)Sa, (2.4.13)

∇bvA = vAγ Zγb − r2rA(uγZγb + wγSγb), (2.4.14)

∇bva = rCv
C
γ Yγγb

a + uγZ
a
γ:b + wγS

a
γ:b. (2.4.15)

It is important to remember to use the metric g to raise and lower indices so that derivatives

are cast into this particular form; for example, ∇αvβ = gαµ∇µvβ.

2.4.2 Gradient, divergence and curl in 1+2 split

Expressions for the gradient of a scalar ∇µf follow from the definition of the covariant

derivative of a scalar function:

∇if = ∂if (2.4.16)

=⇒ ∇Af =
∂fγ
∂r

Yγ , ∇af =
1

r2
fγZ

a
γ . (2.4.17)

The divergence of a vector follows from adding (2.4.12,2.4.15):

∇ivi = (vAγ |A + 2rAv
A
γ + L2

γuγ)Yγ =

(
v′γ +

2

r
vγ + L2

γuγ

)
Yγ . (2.4.18)

To find the curl

(∇× v)i = εijk∇jvk, (2.4.19)
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we need to find the totally antisymmetric unit tensor εijk (the Levi-Civita symbol). In 2+1

dimensions, since the slot A only represents one coordinate r, we can write

εAab = f(r) εab, (2.4.20)

which can then be permuted. Lowering the indices gives

εAab = εAcdgAAgacgbd = r4f εab. (2.4.21)

Summation of their product over a, b lets us solve for f :∑
a,b

εAabεAab = 2! = r4f2εabεab = 2! r4f2

=⇒ f(r) = 1/r2. (2.4.22)

From this we can find the radial and angular components of the curl

(∇× v)A = εAabr2γbc∇avc

= εab
(

1

r
vγYγγab + uγZγb:a + wγSγb:a

)
= −L2

γYγwγ , (2.4.23)

(∇× v)a = εaAbr2γbc∇Avc + εabAgAC∇bvC

= − 1

r2
εab
(
r2γbc∇Avc − gAC∇bvC

)
= −εab

[(
u′γ +

2

r
uγ

)
Zγb +

(
w′γ +

2

r
wγ

)
Sγb −

1

r2
vγZγb

]
=

(
w′γ +

2

r
wγ

)
Zaγ +

(
1

r2
vγ − u′γ −

2

r
uγ

)
Saγ . (2.4.24)

These expressions can be combined to find the vector Laplacian via the identity

∆vi = ∇i(∇jvj)− (∇× (∇× v))i. (2.4.25)

2.4.3 Products of vector harmonics (axisymmetric)

Consider the problem of finding, for example, components of the scalar f = ViUi or the

vector Wi = (V ×U)i for some vectors V,U. It is clear that we will need to calculate

integrals involving the vector harmonics Z, S and their derivatives.

In axisymmetry this problem is made somewhat simpler due to orthogonality
∫
ZaαSβa = 0

causing a large class of these triple integrals to vanish. Integration by parts over the 2-sphere

shows∫
ZaαSβadΩ = −

∫
YαS

:a
βadΩ = 0 (2.4.26)
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since the second integral vanishes due to (2.4.4). The remaining integrals can be written in

terms of Ĉαβγ , which we can calculate explicitly. Again integration by parts gives

D̂αβγ ≡
∫
YαZ

a
βZγadΩ = −

∫
Yβ
(
ZaαZγa + YαZ

:a
γa

)
dΩ

= −
∫
Yβ
(
ZaαZγa + YαZ

:a
γa

)
dΩ

= −D̂βγα − L2
γĈαβγ

= D̂γαβ +
(
L2
α − L2

β

)
Ĉαβγ

= −D̂αβγ +
(
L2
α − L2

β − L2
γ

)
Ĉαβγ

= 1
2

(
L2
α − L2

β − L2
γ

)
Ĉαβγ , (2.4.27)

with the obvious special case∫
ZaαZβadΩ ≡

∫
SaαSβadΩ = −4πL2

αδα,β. (2.4.28)

Other combinations of integrals follow through similar considerations:∫
YαS

a
βSγa = D̂αβγ (2.4.29)∫

ZaαZβbZ
b
γ:a = Êαβγ =

1

4

[
L4
γ −

(
L2
α − L2

β

)2]
Ĉαβγ (2.4.30)∫

ZaαSβbS
b
γ:a = Êαβγ (2.4.31)∫

SaαSβbZ
b
γ:a = F̂αβγ =

[
1

2

(
L4
α + L4

β + L4
γ

)
− 1

4

(
L2
α + L2

β + L2
γ

)2]
Ĉαβγ (2.4.32)∫

SaαZβbS
b
γ:a = −F̂αβγ , (2.4.33)∫

SaαSβbS
b
γ:a = 0 (2.4.34)

Symmetries in the integrals may be spotted by swapping the indexes on the L2 terms, and

used to heavily simplify the expansions of systems of ODEs. Note that integrals containing

an odd number of S’s in them are identically zero in axisymmetry due to the presence of

the totally antisymmetric tensor ε; in non-axisymmetry we must consider these separately,

although equations (2.4.29-2.4.32) will still hold.

2.4.4 Products of vector harmonics (non-axisymmetric)

Consider the integral

Ĝγαβ =

∫
YγZ

a
αSβadΩ (mα ∨mβ 6= 0)

= i

∫
Yγ csc(θ) (mαYα∂θYβ −mβYβ∂θYα) dΩ, (2.4.35)
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which is obviously antisymmetric over α, β, and zero in axisymmetry. The derivative of a

spherical harmonic satisfies

∂θY
m
l = m cot(θ)Y m

l + e−iϕ
√
sY m+1

l , s = (l −m)(l +m+ 1), (2.4.36)

which lets us rewrite (2.4.35) as

Ĝγαβ = i

∫
(e−iϕ csc θYγ)

(
mα
√
sβY

mα
`α

Y
mβ+1
`β

−mβ
√
sαY

mα+1
`α

Y
mβ
`β

)
dΩ

= i

∫ (
−
√

3

2

Yγ
Y 1

1

)
(...) dΩ. (2.4.37)

Here we choose mγ > 0 without loss of generality: we know that at least one of the m’s

must be positive and so we use the symmetry properties of Ĝ to place the positive m on the

first term in the integral. In this case (2.1.17) shows that dividing a harmonic by sin θ eiϕ

gives a finite expansion in terms of descending modes,

Y m>0
`

Y 1
1

= a1Y
m−1
`−1 + a3Y

m−1
`−3 + ... (2.4.38)

Multiplying by Y 1
1 Y
−m
` and integrating gives the first coefficient through the triangle rule.

The remaining coefficients can be found by integrating over descending values of ` until

` < m− 1:

4π = a1

∫
Y 1

1 Y
m−1
`−1 Y −m` dΩ, (2.4.39)

0 = a1

∫
Y 1

1 Y
m−1
`−1 Y −m`−2 dΩ + a3

∫
Y 1

1 Y
m−1
`−3 Y −m`−2 dΩ, (2.4.40)

and so on to give a recursive relation for the ai,

ai+2 = −ai

∫
Y 1

1 Y
m−1
`−i Y −m`−i−1dΩ∫

Y 1
1 Y

m−1
`−i−2Y

−m
`−i−1dΩ

= ai

√
(i−`+m)(i−1−`+m)

4(i−`)2−1√
(`+m−i−2)(`+m−i−1)

(1+2i−2`)(3+2i−2`)

. (2.4.41)

where a1 is given by (2.4.39). It is possible to solve this recursion to write down a closed

form expansion for Ĝ in terms of `,m but the resulting expression is rather unwieldy. We

can now express (2.4.37) as a finite sum of Gaunt coefficients, and implement a recursive

function in most computer languages to find their values as per

recursive function g_hat(l1,m1,l2,m2,l3,m3)

if(m1>0) ... //loop over a_i as outlined above

else if(m2>0) return -g_hat(l2,m2,l1,m1,l3,m3)

else if(m3>0) return -g_hat(l3,m3,l2,m2,l1,m1)

end function

An example Fortran function written for this purpose is described in appendix B.2.
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The remaining integrals we need are∫
SaαS

b
βSγa:b ≡ Ĥαβγ = 1

2

(
L2
α − L2

β + L2
γ

)
Ĝαβγ , (2.4.42)∫

SaαZ
b
βZγa:b = Ĥβαγ , (2.4.43)∫

ZaαS
b
βZγa:b = Ĥαβγ , (2.4.44)∫

ZaαZ
b
βSγa:b = −Ĥβαγ , (2.4.45)

where the relation to Ĝ can be shown via integration by parts.

2.5 Products of three or more harmonics

Certain systems may contain cubic-order (or higher) terms, and we should be prepared to

handle these. The simplest case, a product of 3 spherical harmonics, is easy enough to deal

with:

YαYβYν =
[
χµ Ĉαβ−µ Yµ

]
Yν = χµχγ Ĉαβ−µ Ĉµν−γ Yγ , (2.5.1)

where of course repeated indices indicate summation over µ, γ, and α, β, ν are all inter-

changeable in the final result. Similarly,

YαZ
a
βZνa =Yα

[
χµD̂−µβνYµ

]
= χµχγ Ĉ−γαµ D̂−µβν , (2.5.2)

and so on for other variants.

Taking products in a different order leads to interesting relations between integrals.

Consider the following polar vector:

YαYβZ
a
µ = (YαYβ)Zaµ = − 1

L2
γ

χνχγĈαβ−ν D̂νµ−γ Z
a
γ (2.5.3)

= Yα
(
Yβ Z

a
µ

)
=

1

L2
νL

2
γ

χνχγD̂βµ−ν D̂αν−γ Z
a
γ , (2.5.4)

This implies

Ĉαβ−ν D̂νµ−γ = − 1

L2
ν

D̂βµ−ν D̂αν−γ , (2.5.5)

into which (2.4.27) can be substituted. This leads to a cyclic property over α, β, µ within

products of Gaunt coefficients:

Ĉαβ−νĈνµ−γ ∝ Ĉβµ−νĈνα−γ . (2.5.6)

From these considerations it becomes clear that some products can be written in different
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ways, and it is possible that certain choices may be more desirable than others; the problem

is briefly mentioned by Brizuela et al. [20]. However one will still get the same number

regardless of the order, so insofar as a computer code goes the order is almost irrelevant.

Our technique is to reduce products of three or more terms into groups of products of

two terms, such as through a× b× c× d× e = [(a× b)× (c× d)]× e. This means that,

if we were to write out the coefficients, the choice of order of multiplication depends on

how we group together the terms involved, and sometimes there is a clear choice for this

grouping.

One must be careful to include all multiplications when the spectral sum is truncated.

For example, consider the cubic product u = a× b× c. If we expand functions and consider

the couplings between ` = 1 modes, then one such term is

u1 = (a0b1 + a1b0)c0 +

(
a0b0 +

9

5
a1b1

)
c1. (2.5.7)

If we define a pre-multiplication F = a× b and truncate at `m = 1, then

u1 = F1c0 + F0c1 = (a0b1 + a1b0)c0 + (a0b0 + a1b1)c1, (2.5.8)

which is different to (2.5.7). However if we calculate and insert Fγ for up to `m = 2, then

u1 = F1c0 + F0c1 +
2√
5
F2c1 + ... =

[
(a0b0 + a1b1) +

4

5
a1b1

]
c1 + ...

=
9

5
a1b1c1 + ..., (2.5.9)

which is now correct.

In general if we have F = a× b then we need to calculate the coefficients Fγ for up to

2`m and then use it for up to 2`m to properly calculate F × c. Doing so would change the

skeleton spectral code we present in section 3.9 and significantly lengthen run-time.

Instead, if we were to write

uγ =

`m∑
α

G(γ)
α cα (2.5.10)

where

G(γ)
α =

2`m∑
β

FβĈαβ−γ =

2`m∑
β

`m∑
δ,ε

aδbεĈδε−βĈβα−γ , (2.5.11)

then the main loop of the code, represented by (2.5.10), only requires summations up to
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`m. G can be computed up to 2`m before this loop. In our example,

u1 = G
(1)
0 c0 +G

(1)
1 c1, (2.5.12)

G
(1)
0 = F1 = a0b1 + a1b0, (2.5.13)

G
(1)
1 = F0 +

2√
5
F2 = a0b0 +

9

5
a1b1, (2.5.14)

=⇒ u1 = (a0b1 + a1b0)c0 +

(
a0b0 +

9

5
a1b1

)
c1. (2.5.15)

In practice we see such cubic terms in the MHD equations (section 6.1). However we do

not yet use this technique, since writing the evolution equations in this new manner would

require some effort. The terms that we lose are multiples of the higher modes, which are

typically set to be small, and the code is unlikely to differ much (at least in the lower modes

that we are most concerned with) without them. One should test a result that is dependent

on cubic interactions with a higher `m to determine if this truncation is important.

2.6 Real spherical harmonics

It is possible to define real-valued spherical harmonics through

ym` ≡


Y 0
` , (m = 0)

1√
2

(
Y
−|m|
` + (−1)mY

|m|
`

)
, (m > 0)

i√
2

(
Y
−|m|
` − (−1)mY

|m|
`

)
. (m < 0)

(2.6.1)

They too form a basis for spherical functions, and one may also construct vector harmonics

from them.

They have the benefit over the complex-valued counterparts in that calculations need

only be performed with real numbers and so should achieve savings in memory and run-time.

Although real spherical harmonics are often considered as being harder to manipulate, we

only require knowing their actual form for visualization and for calculating the required

real-harmonic Gaunt coefficients, defined by

ĉαβγ =

∫
yα yβ yγ dΩ. (2.6.2)

We should now like to know what requirements there are on the modes that give non-zero

integrals.

Firstly, the triangle inequality and and even-sum conditions of the `’s should hold. The

real harmonics are concerned with changes to the mode numbers; if we were to write (2.6.2)

in terms of Ĉαβ−γ then the conditions on ` are the same.
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There are seven permutations of signs on the m’s that we need to consider: all positive,

one negative and two positive, two negative and one positive, and all negative, as well as

the three permutations with a zero mode.

Let us consider the second case, where M,M ′ > 0, M ′′ < 0 and with M+M ′+M ′′ = 0.

The integral of three such real harmonics is given by∫
yM` yM

′
`′ yM

′′
`′′ dΩ

=
i

2
√

2

∫ (
Y −M` + (−1)MYM

`

)(
Y −M

′

`′ + (−1)M
′
YM ′
`′

)(
YM ′′
`′′ − (−1)M

′′
Y −M

′′

`′′

)
=

i

2
√

2

∫ (
(−1)M+M ′YM

` YM ′
`′ YM ′′

`′′ − (−1)m
′′
Y −M` Y −M

′

`′ Y −M
′′

`′′

)
= 0. (2.6.3)

Of the initial eight terms, six have vanished after integrating as they do not satisfy the

condition on the sum of M ’s. The remaining two cancel each other, since (−1)M
′′

=

(−1)M+M ′ and because the integral of three spherical harmonics is invariant under a sign

change on all the M ’s (2.2.17). Ultimately it should be obvious from comparing real and

complex components of (2.6.3) that this integral must vanish. For this very reason, we can

conclude that an integral of real spherical harmonics with an odd number of negative m’s is

zero.

For the remaining combinations of modes, we can reduce a triple-integral of real

harmonics into three triple-integrals of complex harmonics, of which only one can satisfy

the zero-sum condition.

The condition on the modes for integrating real spherical harmonics is thus: given m,m′

we find the m′′ that satisfy {m+m′−m′′ = 0, m+m′′−m′ = 0, m′′ +m′−m = 0} and

choose from these so that there are not an odd number of negative modes in total. This

gives one or two choices for m′′. The general form of this integral, for |mα| ≤ |mβ| < |mγ |,
is

ĉαβγ = (−1)mγf(mα)Ĉ
|mα|,|mβ |,−|mγ |
`α,`β ,`γ

f(m) =

 1 if m = 0,

1√
2

otherwise.

(2.6.4)

For example, the combination m = −1,m′ = 2 gives the options m′′ = 1, 3,−3, and we

pick m′′ = −3 so as to have two negative m’s. Their integral is∫
y−1
` y2

`′y
−3
`′′ =

1√
2

∫
Y 1
` Y

2
`′Y
−3
`′′ =

∫
y1
` y

2
`′y

3
`′′ . (2.6.5)

As such, if one were to consider real spherical harmonics as a basis, there is a different,

more complicated condition on the values that m can take, but one would expect to

achieve further savings in memory (half) and computation time (quarter in axisymmetry,
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half otherwise if there is a reality condition to impose). However for ease of manipulation,

this thesis concerns itself with the complex harmonics.



Chapter 3

Numerical Toolbox

The systems of equations that we will be interested in are time evolutions of hyperbolic

systems: changes in quantities over time are related to the physical (spatial) properties,

which are initially prescribed and go on to provide a unique solution. In our case, the

spectral expansion we use will reduce these systems so that they only evolve over one spatial

dimension, the radial direction r. To do this, we initially1 generate a grid of N points over

the range 0 ≤ r ≤ rmax, with constant grid spacing h = rmax/N . We update the values

of scalars and vectors on the grid at Nt time steps. This chapter will describe a variety of

well-known techniques for writing evolution codes on such a fixed grid.

3.1 Numerical differentiation

To calculate derivatives numerically we will use a finite difference method of some kind.

Taylor’s theorem approximates a function at a point if derivatives nearby are known; for

some small, fixed h,

f(r + h) = f(r) + hf ′(r) + 1
2h

2f ′′(r) + ...,

f(r − h) = f(r)− hf ′(r) + 1
2h

2f ′′(r) + .... (3.1.1)

Rearranging these expressions lets us evaluate f ′(r), as well as higher-order derivatives, in

several different ways:

f ′(r) =
f(r + h)− f(r)

h
+O(h) ' ∆h[f ](r)

h
, (forward difference) (3.1.2)

=
f(r)− f(r − h)

h
+O(h) ' ∇h[f ](r)

h
, (backward difference) (3.1.3)

=
f(r + h)− f(r − h)

2h
+O(h2) ' δh[f ](r)

2h
. (central difference) (3.1.4)

1We later consider a staggered grid at half-integer spacings

39
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A central difference operator δh is the most efficient of these, since it is the only two-point

stencil giving O(h2) accuracy: it is second-order accurate.

Essentially, using one of these finite difference methods lets us approximate derivatives

to any order of accuracy. Adding more grid points by decreasing h in turn decreases the

error, but it does not change the order of the error. A higher order scheme should give

a more accurate approximation to the real solution for far less work than increasing the

resolution. To do this we need to use more points to calculate derivatives. For example,

first derivatives that are fourth-order accurate are given by

f ′(r) =
−f(r + 2h) + 8f(r + h)− 8f(r − h) + f(r − 2h)

12h
+O(h4), (3.1.5)

and second derivatives by

f ′′(r) =
f(r + h)− 2f(r) + f(r − h)

h2
+O(h2) (3.1.6)

=
−f(r + 2h) + 16f(r + h)− 30f(r) + 16f(r − h)− f(r − 2h)

12h2
+O(h4).

(3.1.7)

3.2 Numerical integration

We may also need to calculate the integral of various quantities, for example the energy of a

fluid (section 5.5.2), or perhaps to solve the Poisson equation for the gravitational potential.

There are a number of different techniques that allow us to do this

One of the simplest ways to numerically integrate is via the trapezium rule, whereby

the area under a curve is approximated by the area of a trapezium. The same result can

be derived by integrating the Taylor series expansion about the lower limit, which has the

benefit of giving an error estimate:∫ a+h

a
f(r) dr =

∫ a+h

a

[
f(a) + (r − a)f ′(a) + 1

2(r − a)2f ′′(a) + ...
]
dr

= hf(a) + 1
2h

2f ′(a) + 1
6h

3f ′′(a) + ...

= 1
2hf(a) + 1

2h
[
f(a) + hf ′(a) + ...

]
+ ...

= 1
2h [f(a) + f(a+ h)] +O(h3). (3.2.1)

By repeating this process for the interval between each grid point, one has the composite

trapezium rule:

∫ rmax

0
f(r) dr = h

[
f(0) + f(rmax)

2
+
N−1∑
i=1

f(i h)

]
+O(h2)

' 1
2h [f(0) + 2f(h) + 2f(2h) + ...+ f(rmax)] . (3.2.2)
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The error estimate has changed since there is a cumulative error NO(h3) ∼ O(h2).

Many more techniques of numerical integration are known. For example, the composite

Simpson’s rule has a higher order of accuracy:

∫ rmax

0
f(r) dr = 1

3h

f(0) + 2

N/2−1∑
i=1

f(2 i h) + 4

N/2∑
i=1

f(2 i h− 1) + f(rmax)

+O(h4)

' 1
3h [f(0) + 4f(1) + 2f(2) + 4f(3) + ...+ f(rmax)] . (3.2.3)

3.3 Ghost points

In order to evaluate derivatives at and close to 0 and rmax, we introduce a number of ghost

points on either end of the grid, so that now −G ≤ r ≤ rmax +G. The range −G ≤ r < 0

is usually referred to the left ghost zone, and the range rmax < r ≤ rmax +G as the right

ghost zone. We may sometimes refer to the rest as the physical part of the grid. To avoid

the obvious recursion of having to add points to evaluate derivatives at the new end-points,

we look for alternative ways to calculate the value of f inside these regions, and only bother

to find derivatives f ′ on the physical grid.

For the left ghost zone it will be the case that we deal only with functions that are either

even or odd in r, and it should be simple to set f(−r) = ±f(r) as required.

The right ghost zone will be more complicated since there is (usually) no symmetry

condition. One needs to consider what physical conditions may hold for various systems,

and then how to express them mathematically: that is, how to turn a continuum boundary

condition into a numerical boundary condition. For example, a vibrating string with

displacement u(r, t) may have the boundary conditions u(0, t) = u(L, t) = 0 imposed if it

is fixed at both ends.

The particular conditions that we use are explained in more detail in the relevant chapters.

Having a boundary condition is necessary for the well-posedness of the problem, that is,

that a solution exists, is unique, and depends continuously on the initial data.

3.4 Runge-Kutta methods

We will use a forth-order accurate Runge-Kutta method to calculate time derivatives.

(Note that, in the following explanation only, the subscripts refer to discrete time steps:

un = u(r, tn).) For the problem

u̇ = f(t, u), (3.4.1)
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the RK4 method is given by

un+1 = un +
h

6
(k1 + 2k2 + 2k3 + k4), (3.4.2)

where

k1 = f (tn, un) ,

k2 = f
(
tn + 1

2δt, un + 1
2hk1

)
,

k3 = f
(
tn + 1

2δt, un + 1
2hk2

)
,

k4 = f (tn + δt, un + hk3) . (3.4.3)

The error per time step is O(h4) which will be much smaller than that from a second-order

accurate finite differencing code.

Another reason as to why we use RK4 is that we only need one set of initial data for a

high-order of accuracy. Although a typical RK4 methods requires 4 iterations for each time

step, and 4 levels of storage, it is relatively simple to implement and it only requires one set

of initial data.

A basic computer implementation of RK4 may actually require 5 levels of storage, due

to each of the un + hki terms. However, true 3-level schemes are well known [24], such as

the following which is equivalent to (3.4.3):

U = un

G = U

P = f(tn, U),

U = U + 1
2hP

G = P

P = f(tn + 1
2δt, U),

U = U + 1
2h(P −G)

G = 1
6G

P = f(tn + 1
2δt, U)− 1

2P,

U = U + hP

G = G− P

P = f(tn + δt, U) + 2P,

un+1 = U + δt(G+ 1
6P ). (3.4.4)
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In our code the size of a time-step δt is proportional to the grid spacing (the Courant

condition). In addition our equations deal with non-dimensional units set to one, so we

evolve with δt = 1
2h. Multiplication by the total number of time steps gives another

non-dimensional number that represents the real time simulated (section 5.2.2). If we double

the resolution, we need to double the time-steps to represent a synchronous evolution, and

should expect to see a four-fold increase in run-time.

3.5 Convergence

The most important check that should be made of a numerical code is that of convergence.

Essentially, increasing the grid resolution, truncation limit, etc. should mean our numerical

solution gives a more accurate representation of the actual solution of the PDE. Convergence

can be defined more exactly by saying that we require a numerical solution u representing

the exact solution U at any point (xj , tn) to satisfy

lim
h→0

lim
δt→0
||U(xj , tn)− u(xj , tn)|| = 0. (3.5.1)

There are three sources of approximation error in our numerical code: truncation error,

from neglecting terms in the series where ` > `m; discretization error, from representing a

continuous function as a discrete one; and round-off error, from floating point arithmetic.

It is the first two of these which are the most important to analyse, since the latter we

can more or less estimate and is usually unimportant when working in double precision

arithmetic.

A numerical method is said to be stable if it dampens these approximation errors, and

consistent if the discretization errors tend to zero as the resolution is increased. The Lax

Equivalence theorem states that a stable and consistent scheme for a linear initial value

problem is convergent, although it can be extended to show the same is true for non-linear

systems. For a given system of PDEs, it is difficult to construct an argument to prove that

a particular numerical solution does converge to the actual one. Thankfully it is easy to test

if it does by comparing the difference between solutions at different levels of resolution.

An n-th order accurate discrete representation of a radial function can be Taylor expanded

in some small h as

f(r + h) = f(r) +
N∑
n

hn

n!
f (n)(r) +O(hN+1). (3.5.2)

Double the resolution, and then double it again:

f(r + 1
2h) = f(r) +

hn

2nn!
f (n)(r) +O(hn+1),

f(r + 1
4h) = f(r) +

hn

4nn!
f (n)(r) +O(hn+1). (3.5.3)
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These expansions should therefore satisfy

f(r + h)− f(r + 1
2h) = ε

(
f(r + 1

2h)− f(r + 1
4h)
)
, ε = 2n, (3.5.4)

where ε is often referred to as the convergence factor. For a second-order accurate differencing

scheme its value is 4, and for fourth-order, 16.

To check the radial convergence of an evolution code, one could simply run it 3 times at

differing resolutions, writing the output to disk at appropriate (i.e. ‘shared’) time steps and

grid points. Post-processing and then plotting the differences allows for visual inspection of

convergence. A tool such as gnuplot makes this simple, as one can use a command like

plot "< paste res1/data res2/data" u 1:($2-$4),\

"< paste res2/data res4/data" u 1:(4*($2-$4))

to check for second-order convergence without any post-processing. Convergence testing

in such a manner allows us to do more than simply check that a certain finite differencing

scheme is n-th order accurate: it also lets us ensure the boundary conditions we apply are

indeed consistent and stable.

The angular convergence of our code should simultaneously be tested by measuring the

difference (at fixed h) between numerical solutions found with increasing `m. One expects

to see exponential angular convergence as a consequence of the spectral method used.

3.6 Artificial dissipation

A form of artificial dissipation may be included in order to suppress fast growing, high

frequency components (i.e. oscillations with a wavelength ≤ h) that may appear in our

numerical solution after a finite number of time steps. To remove them in a way that does

not affect convergence, we typically implement a Kreiss-Oliger scheme [48] whereby a higher

order derivative is subtracted, at some or all physical grid points, at every time step.

The general idea for Kreiss-Oliger dissipation is, for a (2r − 2)–order accurate scheme,

to add a term

u̇ = f(u) + λ(−1)rh2r−1u(2r). (3.6.1)

Subtracting this term is consistent as it tends to zero as h does.

For a second-order accurate code, we should subtract

u̇ = f(u, u(n))− S(u),

S(u) =
λ

16h
(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2, ) = λh3 u′′′′ +O(h4) (3.6.2)
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where 0 ≤ λ < 1 and is the same value for all variables. It is made smaller for higher order

accurate finite differencing schemes; in our code we typically set it to be approximately 0.1.

3.7 Finite differencing the wave equation

As we shall see in chapter 4 the wave equation in spherical harmonics can be written as an

infinite set of first order PDEs,

Φ̇γ = Π′γ , (3.7.1)

Π̇γ = Φ′γ +
2(`+ 1)

r
Φγ . (3.7.2)

Finite differencing this kind of term on a regular grid becomes unstable at the origin with

increasing spatial resolution and ` (section 4.3). Since stable numerical treatment of this

term is later necessary for the hydrodynamic equations (section 5.4) there are a number of

alternative methods we can employ, with a summation–by–parts (SBP) technique the one

we ultimately use.

A second-order accurate, two-point-stencil operator can be written by considering

rewriting (3.7.2) in the form

Π̇γ = (2`+ 3)
∂(r2`+2Φγ)

∂r2`+3
, (3.7.3)

the RHS of which can be finite-differenced through applying a second-order central differ-

encing scheme to both the numerator and denominator:

(Π̇γ)(i) =
r2`+2

(i+1)(Φγ)(i+1) − r2`+2
(i−1)(Φγ)(i−1)

r2`+3
(i+1) − r

2`+3
(i−1)

(3.7.4)

This scheme cannot be extended to a higher order of accuracy as it would give a zero

denominator.

An SBP scheme conserves the energy of a system given appropriate boundary conditions,

which eventually allows one to calculate r-dependent weights gives to terms in an n-point

stencil. Full details are presented in [47]; our code currently employs a 3-point, second-order

accurate SBP scheme whose stability for high ` or low h is comparable to the two-point

operator above. The SBP method can be extended to higher-order accuracy, although the

weights are difficult to derive and so left to later work.

3.8 Calculation of spherical harmonics and Gaunt coefficients

For visualization we require expressions for Y, Za, Sa, either in Cartesian or polar coordinates.

As such we need the following identities and recurrence relations for associated Legendre
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polynomials:

P 0
0 (cos θ) = 1, P 0

1 (cos θ) = cos θ,

Pm`+1(cos θ) =
(2`+ 1)Pm` (cos θ) cos θ − (`+m)Pm`−1(cos θ)

`−m+ 1
,

Pm+1
` (cos θ) =

(`−m)Pm` (cos θ) cos θ − (`+m)Pm`−1(cos θ)
√

1− cos2 θ
, Pm 6=0

` (±1) = 0,

dPm` (cos θ)

dθ
= − sin θ

dPm` (cos θ)

d(cos θ)
= − sin θ

[
`Pm` (cos θ) cos θ − (`+m)Pm`−1(cos θ)

cos2 θ − 1

]
.

(3.8.1)

These may be used with (2.1.15) to calculate explicit values of Y m
` .

In order to calculate Gaunt coefficients we use the method of Wigner 3j symbols, as

(2.2.9) is relatively simple to implement (and because we do not need the coefficients in

closed-form). We pre-calculate these before running any time evolution, storing their values

in a 3-dimensional array where slots are referenced using the multi-indexes. Doing so is

somewhat memory inefficient since it does not take advantage of the symmetry of Gaunt

coefficients but it is less memory-intensive than allocating a sparse five-dimensional array.

3.9 Skeleton of a simple spectral code

For systems of PDEs that are first-order in time, we shall aim to write down the time

derivatives u̇γ on the left-hand side. For each of these γ–modes, of which there are O(`2m)

to compute, there is a quadratic product on the right hand side, of which there is a sum

containing O(`3m) terms. Hence we expect the code to scale approximately as O(`5m) in full

3D as more angular resolution is added.

In order to avoid zero-valued Gaunt coefficients, we should take account of section 2.2.1

when picking the values of the `’s. We will also handle couplings with the 0-mode separately

as these expressions will often reduce. Finally, we sum over the degrees and modes because

they may appear explicitly in the equations. As such, a pseudo-code (in the style of Fortran)

using complex spherical harmonics may read as follows:

//Calculate "background" and apply boundary conditions: udot(0) = {0,0}

DO l1 = 1,l_max

DO m1 = 0,l1

gamma = multiindex(l1,m1)

gammaneg = multiindex(l1,-m1)

//Linear terms: udot(gamma) = {0,gamma}

//Quadratic changes to background: udot(0) += {gamma,gammaneg}

DO l2 = 1,l_max

DO m2 = -l2,l2



3.9. SKELETON OF A SIMPLE SPECTRAL CODE 47

alpha = multiindex(l2,m2)

m3 = m1-m2

lower_l3 = MAX(1,l1-l2,ABS(m3))

IF(is_odd(l1+l2+lower_l3)) lower_l3 = lower_l3 + 1

upper_l3 = MIN(l_max,l1+l2)

DO l3 = lower_l3,upper_l3,2

beta = multiindex(l3,m3)

//Call or calculate relevant C3 Gaunt coefficients

//Quadratic couplings: udot(gamma) += {alpha,beta}

END DO

END DO

END DO

//Similar loop to calculate G3 Gaunt coefficients

//Apply boundary conditions and dissipation to u(gamma)

//If m1=0: udot(gamma) = REAL(udot(gamma))

//If m1>0: udot(gammaneg) = (-1)^m CONJG(udot(gamma))

END DO

END DO

This algorithm only deals with the Ĉ integrals: Ĝ requires very similar loops over odd sums

of `’s.

If one requires axisymmetry, or only positive m, then the code is easily modified to

accommodate this with a switch that returns 0,−` or `:

DO mn = axisymmetry_switch(-ln),axisymmetry_switch(ln) ...

Similarly, the multiindex function should return ` if axisymmetry is required to achieve a

significant memory saving.

At first glance this set-up looks well suited for parallelization. If the code is written in

such a way that the mode calculations are parallel `,m inner loops to a serial outer time

loop, the standard API for Fortran parallelization (OpenMP) incurs serious overhead in

creating multiple new threads at every time step. One would prefer to initially create a

number of threads equal to the number of available processor cores and pass them work, but

this does not seem possible with the current OpenMP API. In any case, we are ultimately

interested in comparing evolutions with different parameters and it may be desirable to

instead run multiple instances of code on different cores at the same time.





Chapter 4

3D Wave Equation

Before launching straight into fluids and MHD, we first investigate a simpler system whose

analysis will help us later on. Consider the linear wave equation in three dimensions,

2Φ = 0, (4.0.1)

which can be re-written as

Φ̇ = Π,

Π̇ = ∆Φ = ∇j∇jΦ =
(
∇A∇A +∇a∇a

)
Φ. (4.0.2)

We now decompose Π,Φ as

Π =
∑
`,m

Y m
` (θ, φ) Πm

` (r, t) = YγΠγ ,

Φ =
∑
`,m

Y m
` (θ, φ) Φm

` (r, t) = YγΦγ , (4.0.3)

and insert them into (4.0.2) to give

Φ̇γ = Πγ ,

Π̇γ = Φ′′γ +
2

r
Φ′γ −

`(`+ 1)

r2
Φγ . (4.0.4)

4.1 Regularization

To remove the coordinate singularity in (4.0.4) consider a transformation into Cartesian

coordinates:

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. (4.1.1)

49
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We may also set m = 0 without loss of generality: from (2.1.17) the highest order terms in

Y 0
` are (cos θ)`, and thus, to highest order,

Φ = YγΦγ ∼ (cos θ)`Φγ =
z`

r`
Φγ . (4.1.2)

Hence we should rescale as

Φγ = r`Φ̄γ , (4.1.3)

where it should be clear why we only need the highest power of cos θ. This is a process we

repeat for all scalars, including Π, which transforms (4.0.2) into

˙̄Φγ = Π̄γ ,

˙̄Πγ = Φ̄′′γ +
2(`γ + 1)

r
Φ̄′γ , (4.1.4)

for each γ-mode.

Parity of spherical harmonics explains why the barred variables are even functions of

r. Consider the rotation of a point around the origin to its opposite position, and then a

reflection back to the original point:

f(r, θ, ϕ) = f(−r, π − θ, π + ϕ). (4.1.5)

Using the identity

Yγ(θ, ϕ) = (−1)`Yγ(π − θ, π + ϕ), (4.1.6)

expanding (4.1.5) for some γ-dependent power x gives

rxYγ(θ, ϕ) = (−r)xYγ(π − θ, π + ϕ) = (−1)`+xr`Yγ(θ, ϕ), (4.1.7)

and hence x = ` plus even integers. The regularization of vectors, which follows in a similar

fashion, will be demonstrated in section 5.2.1.

4.2 Reality condition

Physical variables should remain real valued. If we enforce Φ ∈ R,

Φ = YγΦγ ,

Φ∗ = Yγ
∗Φγ

∗ = (−1)m Y−γΦγ
∗ (4.2.1)
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Equating these two implies

Φ−γ = (−1)mγΦγ
∗. (4.2.2)

This condition is true for all real variables and can be exploited for memory and time savings

(section 3.9) if summations are run only over positive m-modes. It must also be adhered to

when generating nonaxisymmetric initial data. We therefore treat all m 6= 0 components as

complex-valued functions; the m = 0 modes must be real.

4.3 Second-order in space, first-order in time linear code

To evolve the linear wave equation, following the groundwork laid in chapter 3, we create a

physical grid over r, time evolve via RK4, and central finite difference the right hand sides

of (4.1.4) for each γ-mode:

Φ̇(RK4)(j) = Π(j),

Π̇(RK4)(j) =
Φ(j+1) − 2Φ(j) + Φ(j−1)

(δr)2
+

2(`+ 1)

r(j)

Φ(j+1) − Φ(j−1)

2δr
. (4.3.1)

Recall that Φ,Π are even functions. The left ghost zone can be populated using the

simple scheme Φ(−r, t) = Φ(r, t), and similarly for Π. The singular point at the origin can

be removed by applying l’Hôpital’s rule to Φ′/r, so that

Π̇γ(0, t) = (2`γ + 3) Φ′′γ(0, t). (4.3.2)

For the right ghost zones, we may for now apply a linear extrapolation scheme to the

majority of them. For j > N , set

Φ(j) = Φ(N) + (j −N)
(
Φ(N) − Φ(N−1)

)
, (4.3.3)

and similarly for Π. We can of course extrapolate to higher order if necessary.

We wish to derive boundary conditions that are non-reflecting, so that returning waves

do not interfere with the system. To derive such a boundary condition one may investigate

the series solution of the linear wave equation. Consider P waves travelling at a speed of 1:

Φ̄γ =
P∑
n=0

cn,γ r
kγ+n f (n)

γ (r ± t). (4.3.4)

Inserting into (4.1.4) and dropping the γ’s gives∑
n

cn

{
2f (n+1) rk+n−1(1 + k + `+ n) + f (n)

γ rk+n−2(k + n)(1 + k + 2`+ n)
}

= 0.

(4.3.5)
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By equating the coefficients of the powers of r to zero we get the following:

n = 0 : k(1 + k + 2`) = 0, (4.3.6)

n = i : 2(1 + i+ k + `)ci + (1 + i+ k)(2 + i+ k + 2`)ci+1 = 0, (4.3.7)

n = P : 1 + k + `+ P = 0. (4.3.8)

Combining the first and last expressions gives {k = 0, P = −`−1} and {k = −1−2`, P = `}.
Since P must be positive only the latter of these is valid. Thus,

Φ̄γ =
∑̀

cn,γr
−1−2`+nf (n)

γ (r ± t) (4.3.9)

where the cn,γ are given by the recurrence relation

ci+1 =
2(i− `)

(i+ 1)(2`− i)
ci, (4.3.10)

which clearly truncates the series at i = `. This relation can be solved to give the ci in

terms of the Gamma function.

For the γ = 0 mode, the series reduces to

Φ̄0 = c0
f0(r ± t)

r
, (4.3.11)

which can be differentiated once:

Φ̄′0 = ±Π̄0 −
Φ̄0

r
. (4.3.12)

This form is suitable for a central finite differencing scheme for ` = 0 modes. We take

outgoing waves, and apply the following scheme to the first ghost point only:

Φ̄(N+1) = 2δr

(
−Π(N) −

Φ(N)

r

)
+ Φ(N−1). (4.3.13)

For higher modes it might be possible to derive similar boundary conditions; for example,

Φ̄1 =
c0f

r3
− c0f

′

r2
=

Φ̄0

r2
− Π̄0

r
, (4.3.14)

which could be used to give Φ̄1 at the first ghost point. An implementation of proper

boundary conditions on higher modes [2, 10] is perhaps unnecessary for this sandbox-code.

We can of course place the boundary at a sufficient distance away from the initial data

for certain problems under consideration. For simplicity we apply (4.3.13) to all `-modes,

keeping in mind that convergence may not be guaranteed for higher modes.

When all of these elements are combined into a Fortran program to evolve the linear
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Figure 4.1: An instability at the origin is seen to arise for the second-order linear wave
equation code where `m ≥ 2. Changing the grid spacing, ratio δt/δr, or adding artificial
dissipation, do not remove it.

wave equation with Gaussian initial data

Φγ(0, r) = λγ e
−(r−1)2 , Π(0, r) = 0, (4.3.15)

we do indeed see a travelling Gaussian wave that will reflect off both boundaries (but only

very slightly on the right hand side). Unfortunately, instabilities arise at the origin for ` = 2

and above (figure 4.1). It is not immediately clear why this should be, so we shall try to

write the equations in such a way that there is no singularity (or special treatment required)

at the origin.
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4.4 First-order in space linear code

To remove all second-order derivative terms and the necessity of employing l’Hôpital’s rule,

define a variable ψ ≡ Φ′; time evolutions can now be written as

Φ̇γ = Πγ , (4.4.1)

Π̇γ = (2`γ + 3)
∂
(
r2`+2 ψγ

)
∂ (r2`+3)

, (4.4.2)

ψ̇γ = Π′γ . (4.4.3)

To finite difference this, consider taking derivatives with respect to a non-uniform grid, i.e.

u = r2`+3:

d(f(r))

d(g(r))
=

df

du

/
dg

du

=⇒ Π̇(i) = (2`+ 3)
r2`+2

(i+1)ψ(i+1) − r2`+2
(i−1)ψ(i−1)

r2`+3
(i+1) − r

2`+3
(i−1)

. (4.4.4)

This is regular at the origin as 2`+ 3 is always odd. Reducing to first–order in space also

means we do not need values of Π′ in the ghost zones, which would otherwise be required

for (4.4.4).

We now want to build suitable boundary conditions for the right hand side. Trying a

solution of the form Φ = f(r − t)/r, which is only approximate for ` > 0, and calculating

Φ̇′ from it, leads to the relation

Π′ + ψ′ = −1

r
[Π + 2(l + 1)ψ] . (4.4.5)

A central finite differencing scheme leads to

Π(N+1) + ψ(N+1) = Π(N−1) + ψ(N−1) − 2
δr

r

[
Π(N) + 2(`+ 1)ψ(N)

]
. (4.4.6)

This is applied through a method shown to improve stability [23]:

Π(N+1) = 1
2

(
Π(N+1) + ψ(N+1)

)
(wave)

+ 1
2

(
Π(N+1) − ψ(N+1)

)
(extrapolated)

, (4.4.7)

ψ(N+1) = 1
2

(
Π(N+1) + ψ(N+1)

)
(wave)

− 1
2

(
Π(N+1) − ψ(N+1)

)
(extrapolated)

, (4.4.8)

The first set of brackets are given by (4.4.6), and the second by a simple linear extrapolation,

as outlined earlier. For the left ghost points, we note that Φ,Π are even functions and

therefore ψ = Φ′ is odd.

As hoped, simulations with `m ≤ 9 and Gaussian initial data (figure 4.2) do not show

any problems at the origin. However reflections from the outer boundary seem to introduce

numerical oscillations, even if artificial dissipation is introduced. Since we have been applying

an approximate solution for high `–modes, Gibbs-like behaviour is seen: the ` = 9 mode is
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Figure 4.2: Initial data for the ` = 0 mode, within a first-order code. The wave immediately
breaks into left- and right-travelling components that move with the same speed. It is
centred close to the origin so it reflects from there before any part can reflect off the outer
boundary and reach it again.

even observed to oscillate about the origin but not travel along the grid after finite time. It

should be possible to derive better behaved boundary conditions from the series solutions.

4.5 Nonlinear quadratic code

Thus far we have not considered any quadratic terms added to the wave equation. We add

such a term now so we can use the skeleton code from section 3.9:

2Φ = κ2Φ2. (4.5.1)

The spectral coefficients satisfy

˙̄Φγ = Π̄γ , (4.5.2)

˙̄Πγ = Φ̄′′γ +
2(lγ + 1)

r
Φ̄′γ + κ2 r

`α+`β−`γ χγĈαβ−γ Φ̄αΦ̄β, (4.5.3)

where we sum over the multi-indexes α, β and generate the coefficients Ĉαβ−γ in some

manner.

There is evidence that such a system will blow up in finite time [58] so we shall look for
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Figure 4.3: Finite-time blow-up in the system 2Φ = 10Φ2 after the wave has reflected from
the origin. Setting κ2 = 1 takes a very long time for blow-up to occur, whilst with κ2 = 100
it is seen very quickly, before a wave-front has reached one of the boundaries.

this behaviour in the code.

To gain extra efficiency, we could consider calculating and storing only the positive

m-modes, since Φ,Π are real-valued. This is simple enough to do with the time derivatives

(i.e. calculating udot for positive-m only) but somewhat more complicated for the right

hand sides. Using (4.2.2) where negative m’s appear, the quadratic term can be written

(Φ2)γ =
∑
`α,`β

χγr
`α+`β−`γ

{
Φ̄0
`α Φ̄

mγ
`β

Ĉ
−mγ ,0,mγ
`γ ,`α,`β

+
∑
mα>0

[
χ0Φ̄α Φ̄

mγ−mα
`β

Ĉ
−mγ ,mα,mγ−mα
`γ ,`α,`β

+ χαΦ̄α Φ̄
mγ+mα
`β

Ĉ
−mγ ,−mα,mγ+mα
`γ ,`α,`β

]}
(4.5.4)

This is somewhat unwieldy, and may be excessively difficult to apply properly to the fluid

equations. We thus leave it as a possible method to save time and memory in this instance.

With the same Gaussian initial data and outgoing wave boundary condition as previously

considered, we see a blow-up in finite time (figure 4.3). This blow-up is only dependent

on the value of κ2 – the larger, the faster – and is independent of `m or how far away the

outer boundary is placed.
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4.6 Nonlinear cubic code

We employ the same trick as before, to maintain efficiency and ‘recycle’ code for the set of

equations satisfying

2Φ = κ3Φ3 (4.6.1)

with

Φ3 =
∑

rl gml Y
m
l =

∑
rl
′+l′′+l′′′Φm′

l′ Φm′′
l′′ Φm′′′

l′′′ Y
m′
l′ Y

m′′
l′′ Y

m′′′
l′′′ (4.6.2)

=
∑

χγ Ĉαβ−γ hαΦβ (4.6.3)

where hml is understood to be given by (4.5.4). We can precalculate all the required hγ

products in their own loop before using them in the main loop to find time derivatives.

With the same initial data and boundary conditions, similar but faster blow-up (for equal

values of κ2, κ3) is seen as in the quadratic case.





Chapter 5

Newtonian Fluid Equations

The Navier-Stokes equations describe the motion of a fluid, which we are (crudely) assuming

constitutes the interior of a neutron star. They may be derived by considering the flux

of mass and momentum across the boundary of a control volume, and applying Green’s

theorem to turn surface into volume integrals. For a compressible, inviscid1 fluid they reduce

to the Euler equations:

∂ρ

∂t
= −∇j(ρvj), (5.0.1)

ρ
dvi

dt
= −∇iP − ρ∇iΦ. (5.0.2)

These represent the conservation of mass and momentum, where ρ is the mass density, v

the velocity of a fluid element, P the pressure, and Φ the gravitational potential, given by

the Poisson equation

∆Φ = 4πGρ. (5.0.3)

The discussion in section 5.1 will introduce the polytropic equation of state, which defines

the relationship

P = KρΓ. (5.0.4)

where K is a constant. Because of this EOS there is no need to include an equation for the

conservation of energy. One can now divide the equation of momentum conservation by the

density:

∂vi

∂t
= −vj∇jvi − ΓKρΓ−2∇iρ−∇iΦ. (5.0.5)

For simplicity we shall set Γ = 2 throughout this chapter to keep the equations in polynomial

form, that is, as a nonlinear system whose variables are raised to integer powers. Non-Γ = 2

1No resistance to flow, so no dissipative terms.
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laws, including non-integer laws, are more difficult to handle; one would have to substitute

a new variable R = ρΓ−2 in (5.0.5), and either specify how R evolves in time (section 5.6.2

introduces the concept of stratification), find a (truncated) spherical harmonic expansion of

the function, or perhaps even iterate if it can be assumed that ρ is mostly spherical (section

6.2.3).

For our spectral expansion and subsequent time evolutions, we shall place a fluid whose

motions are described by the Euler equations into a rigid spherical container fixed at

rmax < 1. This container is a numerical necessity as we cannot model the discontinuities

that a surface/atmosphere interface would introduce with a spectral scheme, or a non-

spherical outer boundary formed by rotational or magnetic effects without more mathematical

framework, but it can perhaps be thought of as approximating a rigid crust,

5.1 Polytropic equation of state

A simplistic EOS – the polytrope – has been studied for some time. 19th century physicists

such as Lord Kelvin, Emden and Zeuner began by trying to understand gaseous stars by

assuming they had a constant specific heat: changing the pressure or volume of the star

would not change the amount of energy needed to increase its temperature. Chandrasekhar

[27] explains the derivation: consider an amount of heat energy Q being added to a system,

which is equal to the change in internal energy minus the work done:

Q = (U − U0)−W. (5.1.1)

If this work is applied to changing the volume of the system, then one can represent an

infinitesimal change of heat energy by

dQ = dU + P dV. (5.1.2)

An ideal gas2 is one that obeys the equation of state

P V = RT, U = U(T ), (5.1.3)

where R is referred to as the gas constant and T is the temperature. For such a gas, the

heat energy will change when work is done as per

dQ =
dU

dT
dT + P dV, (5.1.4)

However the equation of state implies that infinitesimal changes in quantities are related by

P dV + V dP = RdT, (5.1.5)

2Under certain conditions fluids can be accurately modelled as a perfect gas.
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which can be substituted into (5.1.2) to give

dQ =

(
dU

dT
+R

)
dT − V dP. (5.1.6)

If we now define the specific heat cα of some physical variable α that is held constant to be

cα =

(
dQ

dT

)
α=constant

, (5.1.7)

then from (5.1.4) and (5.1.6) we can define the specific heat at constant volume and pressure

(i.e. dV = 0 and dP = 0) by

cV =
dU

dT
, cp =

dU

dT
+R, (5.1.8)

which is useful because their difference gives R. Using this and the equation of state again,

we can rewrite (5.1.4) in the form

dQ = cV dT + (cP − cV )
T

V
dV. (5.1.9)

If a process is adiabatic there is no heat transfer to or from the fluid from its surroundings

(dQ = 0). In this case, if we divide by T and integrate (5.1.9) then

cV lnT + (cP − cV ) lnV = C(s) (5.1.10)

for some function C that is a function of entropy. One can rearrange this into the form

T ∝ V 1−Γ, (5.1.11)

where Γ = cP /cV is the (constant) ratio of specific heats and is called the adiabatic index.

This may also be written in the form

PV Γ = constant ⇐⇒ P = K(s)ρΓ (5.1.12)

for some function K(s) dependent on the entropy s. If we assume that entropy is constant

everywhere, then a fluid that satisfies (5.1.12) with K a constant is referred to as being

both polytropic (one encounters different types of thermodynamic process with varying γ)

and barotropic (since the pressure is only a function of density). Otherwise, with varying

entropy (which we hold constant for a given particle) we have a stratified equation of state

(section 5.6.2).

There is also a relation between the internal energy and the volume and pressure:

dU =
dU

dT
dT = cV dT (5.1.13)

=⇒ U = cV T, (5.1.14)
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where the constant of integration has been dropped as we have U = 0 at T = 0. From the

ideal gas relation (5.1.3),

U =
cV
R
P V ⇐⇒ P = (γ − 1)ρU. (5.1.15)

This relation lets us calculate the enthalpy, defined to be

h = U +
P

ρ
(5.1.16)

=
γ

γ − 1

P

ρ
. (5.1.17)

5.1.1 The Lane-Emden equation

The gravitational equilibria of stars with a polytropic equation of state have been studied for

some time, beginning with Lane (1870). The Lane-Emden equations give the equilibrium of

spherical fluid bodies acted on by pressure and gravity. Using the Poisson equation (5.0.3)

for the gravitational potential, equilibria are given by combining

P ′ + ρΦ′ = 0, Φ′′ + 2Φ′/r = 4πGρ, (5.1.18)

so that

1

r2

d

dr

(
r2

ρ

d(KρΓ)

dr

)
= −4πGρ. (5.1.19)

(5.1.19) has analytical solutions only for Γ = 6/5, 2,∞ and can be rewritten in the form

1

ξ2

d

dξ

(
ξ2dθ(ξ)

dξ

)
+ θ(ξ)n = 0, (5.1.20)

where

Γ = 1 +
1

n
, ρ = ρcθ

n, r = ξ

√
(n+ 1)KρΓ−2

c

4πG
, (5.1.21)

to which numerical solutions are easier to calculate. A set of Mathematica routines to

achieve this are given in appendix B.4.

Since it is one of the most basic EOS that arguably gives a good description of certain

astrophysical interiors, the Γ = 2 law is one of the most popular and is still in modern

research [9, 34, 82]. The Γ = 4/3 or Γ = 5/3 laws [12, 18, 83] are chosen when it is

suspected that electron degeneracy is the main contributor towards internal pressure, and

whether the electrons are moving relativistically or not.

It is more realistic to assume that the pressure depends on both the density and a

thermodynamic quantity such as temperature or entropy. Tabulated EOS are often employed

in complex core-collapse simulations [66], and further still one can include effects from
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particle physics, such as how entropy is affected by neutrino flux [72].

5.2 Spectral evolution in the 1+2 split

Inserting expansions of scalar and vectors (2.2.2, 2.4.6) and their derivatives (section 2.4.1)

into the Euler equations, and then integrating, gives the following system that must be

satisfied for every γ:

ρ̇γ = −χγ
{
Ĉαβ−γ

[
ρα
(
v′β + 2vβ/r + L2

βuβ
)

+ ρ′α vβ
]

+ D̂−γαβ ραuβ

}
, (5.2.1)

v̇γ = −χγ
{
Ĉαβ−γ vα v

′
β + D̂−γαβ [uαvβ − r (uαuβ + wαwβ)]

}
− 2Kρ′γ , (5.2.2)

u̇γ =
χγ
L2
γ

{
D̂αβ−γ vα

(
u′β + 2uβ/r

)
+ Ê−γαβ uαuβ − F̂−γαβ wαwβ

}
− 2Kr−2ργ ,

(5.2.3)

ẇγ =
χγ
L2
γ

{
D̂αβ−γ vα

(
w′β + 2wβ/r

)
+ (Ê−γαβ + F̂−γαβ )uαwβ

}
. (5.2.4)

Note that we have written vA = vA = v, time derivatives v̇ ≡ ∂v
∂t , and radial derivatives

v′ ≡ ∂v
∂r .

5.2.1 Regularization

Equations (5.2.1-5.2.4) do not appear to be regular at the origin. In order to regularize

vectors one needs to ensure that their components are continuous and finite valued, and

to do this we shall rewrite vector components in terms of Cartesian coordinates. The

regularization of scalars is the same as in section 4.1.

The directional derivative3 for the axisymmetric case m = 0 is

v · ∇ =
∑
γ

[
vγYγ

∂

∂r
+ uγZ

(θ)
γ

∂

∂θ
+ wγS

(ϕ)
γ

∂

∂ϕ

]
(5.2.5)

where Z(θ) represents the polar component of the vector Za, and S(ϕ) the axial component

of Sa. The ∂ϕ term is not discarded as it may be the case that we are differentiating a

non-axisymmetric term; without it we would be unable to find how to regularize w. From

the metric (2.3.1), transforming to Cartesian coordinates gives

r
∂

∂r
= x∂x + y∂y + z∂z,

r sin θ
∂

∂θ
= z (x∂x + y∂y)−

(
x2 + y2

)
∂z,

∂

∂ϕ
= x∂y − y∂x. (5.2.6)

3The frame coefficients for spherical polar coordinates are vr∂r + vθ
1
r
∂θ + vϕ

1
r sin θ

∂ϕ, and is useful for
setting initial data and visualization.
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In the 1+2 split, we have

εab = [ab]
1
√
γ

= [ab]
1

sin θ
. (5.2.7)

All spherical harmonics with m = 0 are polynomials of cos θ:

Y 0
` =

∑̀
n=0

an(cos θ)n. (5.2.8)

However we need only consider the highest power n = `, because when we rewrite (cos θ)n =

zn/rn this gives the ’worst’ powers of r in the denominator that need to be cancelled. Thus

we approximate by

Yγ ' (cos θ)`,

Z(θ)
γ = γθθ(Y 0

` ),θ ' −` sin θ (cos θ)`−1,

S(ϕ)
γ = εϕθ(Y 0

` ),θ ' `(cos θ)`−1. (5.2.9)

Equation (5.2.5) with ` ≥ 1 can thus be written

v ' vγ
z`

r`
1

r
(x∂x + y∂y + z∂z)− `uγ

z`−1

r`−1

1

r

[
z (x∂x + y∂y)−

(
x2 + y2

)
∂z
]

+ `wγ
z`−1

r`−1
(x∂y − y∂x) . (5.2.10)

Making use of the relation x2 + y2 = r2 − z2, the rescaling

vγ = r`−1v̄γ , uγ = r`−2ūγ , wγ = r`−1w̄γ , (5.2.11)

leads to

v · ∇ '
(
v̄γ − `ūγ

r2

)
z`(x∂x + y∂y + z∂z) + `ūγz

`−1∂z + `w̄γz
`−1(x∂y − y∂x).

(5.2.12)

The first term is only regular at the origin r = 0 if

v̄γ = `ūγ +O(r2). (v̄γ , ūγ = O(1)) (5.2.13)

By separately considering the case ` = 0, an argument following the above shows that

v0 must be O(r), and hence v̄0 = O(r2).

Thus far we have shown how to regularize for m = 0. It is perhaps reasonable to assume

that, since the fluid equations do not contain explicit appearances of m except in the Gaunt

coefficients, everything regularizes in a manner dependent only upon the degree `. We have

been unable to prove this, but it could be helpful to note that the θ-dependence of all

spherical harmonics can be written in terms of (cos θ)` or sin θ(cos θ)`−1.
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The regularized hydrodynamic equations are given by the following system:

˙̄ργ =− χγr`α+`β−`γ−1
{
Ĉαβ−γ

[
ρ̄αv̄

′
β + 1

r (`α + `β + 1)ρ̄αv̄β + ρ̄′αv̄β
]

+1
r

(
D̂−γαβ + L2

βĈαβ−γ

)
ρ̄αūβ

}
, (5.2.14)

˙̄vγ =− χγr`α+`β−`γ−1
{
Ĉαβ−γ v̄α

[
1
r (`β − 1)v̄β + v̄′β

]
+D̂−γαβ

[
1
r v̄αūβ −

1
r ūαūβ − rw̄αw̄β

]}
− 2K

(
`γ ρ̄γ + rρ̄′γ

)
, (5.2.15)

˙̄uγ =
χγ
L2
γ

r`α+`β−`γ−1
{
D̂αβ−γ v̄α

(
1
r `βūβ + ū′β

)
+ 1

r Ê−γαβ ūαūβ

−rF̂−γαβ w̄αw̄β
}
− 2Kρ̄γ , (5.2.16)

˙̄wγ =
χγ
L2
γ

r`α+`β−`γ−1
{
D̂αβ−γ v̄α

[
1
r (`β + 1)w̄β + w̄′β

]
+1
r (Ê−γαβ + F̂−γαβ )ūαw̄β

}
. (5.2.17)

5.2.2 Dimensional analysis

So far we have been working with dimensionless quantities without properly writing down

the equations in a dimensionless form. We should like show that what we have been doing

so far is reasonable, and to be able to set parameters corresponding to physically reasonable

values. Let us temporarily express dimensionless quantities through hatted variables:

r̂ = r/ [r] , t̂ = t/ [t] , ρ̂ = ρ/ [ρ] , (5.2.18)

and so on, where the bracketed variables are appropriate scales chosen so that hatted

variables are (usually) order 1.

From conservation of mass, non-dimensionalized as

∂ρ̂

∂t̂
= − [v][t]

[r]
∇̂ · (ρ̂v̂) , (5.2.19)

we choose to scale time as [t] = [r]/[v]. Conservation of momentum using this scaling can

be written

∂v̂

∂t̂
= −

(
v̂ · ∇̂

)
v̂ − 2K̂

[K][ρ]

[v]2
∇̂ρ̂− [φ]

[v]2
∇̂φ̂, (5.2.20)

and, from this, Poisson’s equation is

∇̂2φ̂ = 4πG
[ρ][r]2

[v]2
ρ̂ = 4πĜρ̂, (5.2.21)

and we shall usually set Ĝ = 1. We shall also use the central density ρc as the density

scaling, and the radius of the neutron star R as the radial scaling. Hence time has units of
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1/
√
Gρc.

Let us only assume that we know the mass (1.5M⊙) of a non-rotating neutron star

with a polytropic equation of state (5.3.9) whose main constituent is non-relativistic neutron

degenerate matter. By integrating over the whole volume of the neutron star we estimate

a central density ρc = 7 × 1017 kg. By using this as the density scale and setting Ĝ = 1

this implies a time scale of 0.15 ms, which will be equivalent to one unit of time in the

code. Finally, the velocity scaling is closely related to the sound speed (5.4.11) and is

approximately 108 ms−1 (0.3 c).

5.3 Linear perturbations of static, spherically symmetric stars

Since Y 0
0 ≡ 1 the ` = m = 0 mode describes spherical symmetry. For now we shall retain

the odd velocity component v0 instead of writing down the regularized version; this will

be useful for when we later describe a necessary change of variables (section 5.4). For a

spherically symmetric NS the hydrodynamic equations reduce to

˙̄ρ0 = −2

r
ρ̄0v0 − ρ̄0v

′
0 − ρ̄′0v0, (5.3.1)

v̇0 = −v0v
′
0 − 2Kρ̄′0 − φ̄′0, (5.3.2)

where the Poisson equation in spherical symmetry is

φ̄′′0 + 2
r φ̄
′
0 = 4πĜρ̄0. (5.3.3)

Recall that scalars ρ, φ are regularized with r`. We shall wish to find static equilibrium

solutions to these equations so as to perturb them later on. Note that rotation involves

higher `-modes and is a non-linear effect, so it is discussed later on in section 5.7.

It should also be mentioned that, because of the way we have regularized ρ, the central

density of the star is given by the value of ρ̄0 at the origin. We often refer to ρ̄0 as the

background density because ρ(`≥1) modes will typically be small in comparison.

5.3.1 Spherically symmetric equilibrium solutions

In the absence of a gravitational potential, a simple solution of (5.3.1-5.3.3) is

ρ̄0 = constant, v0 = 0. (5.3.4)

We henceforth refer to this as the flat background.

A more relevant, well-known case can be derived by considering a non-zero gravitational
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Figure 5.1: Plots of spherically symmetric Lane-Emden n = 1 solutions against radial
distance for different surface fractions λ. We never set λ ≥ π to avoid zero/negative density.

field, leading us to the Lane-Emden solution for a γ = 2 polytrope. Setting v̄0 = 0 gives

˙̄ρ0 = 0, 2Kρ̄′0 = −φ̄′0, (5.3.5)

so that the Poisson equation is now

2Kρ̄′′0 +
4K

r
ρ̄′0 − G̃ρ̄0 = 0. (5.3.6)

This second order ODE is easily solved through substituting ρ̄0 = f(r)/r For a ρ̄0 that is

finite at the origin, we have solutions

ρ̄0 =
α

r
sin

√ G̃

2K
r

 , φ̄0 = 2Kρ̄0, (5.3.7)

where α is an an arbitrary constant that relates to the central density. When we refer to

star-like initial data, we mean setting

ρ̄0 = ρc
sin(λr)

λr
, (λ = Fπ) (5.3.8)

v0 = 0, (5.3.9)

where F is a surface fraction defining how much of the star is inside our box, and ρc is a

central density scaling: both of these parameters are typically (but not always) set to one.
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Figure 5.2: Convergence plots of ` = 0 density and velocity components; rho1 represents the
density evolved at twice the resolution of rho2. A spherically symmetric star in equilibrium
will be slightly perturbed by the addition of artificial dissipation to every point, but the
effect is second-order convergent. The density wave starts at the outer boundary, and then
bounces between the two boundaries: each frame shows the wave halfway through a crossing,
so the wave is travelling left in the top-left frame. The outer boundary appears to cause a
linearly-growing error in the density; a smaller surface fraction greatly reduces this error.

5.3.2 Finite differencing the background equations

One may now try to introduce spherically symmetric perturbations and time-evolve the

system, which will of course remain spherically symmetric. Whilst the background equations

are regular at the origin, a second– or forth–order accurate finite differencing of these

equations on a regularly spaced grid, using l’Hôpital’s rule at the origin, is unstable, just as

we saw with the wave equation.

Thankfully we can apply our experience with the wave equation and re-cast equation

(5.3.1) into the form

v̇0 = −3ρ̄0
∂(r2v0)

∂(r3)
− v0ρ̄

′
0. (5.3.10)

which we then finite difference using one of the schemes described in section 3.7.

To keep this equilibrium code stable for an unlimited number of time-steps, one should

initially set φ̄′0 from ρ̄′0 at grid points, rather than differentiating the analytical solution.

This way, in the absence of artificial dissipation, the right-hand sides will exactly cancel out.

With dissipation the method is certainly stable for at least four wave crossings (2000 time
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steps on an N = 200 grid) with convergence shown in figure 5.2.

5.3.3 Non-spherical linear perturbations

We shall now introduce non-spherical ` > 0 perturbations upon these spherical, stable

backgrounds. Assuming that these modes are always small in comparison to the background,

we can neglect any couplings between non-zero modes since they will be quadratically small.

By linear order we mean that ` = 0 modes are of O(1), with higher modes being O(δ) for

some small parameter δ. Products of O(δ2) are neglected.

Since the harmonic degrees must satisfy the triangle inequality |`γ − `α| ≤ `β ≤ `γ + `α,

setting `β = 0 gives one solution for non-zero Gaunt coefficients: `α ≡ `γ . Thus, we only

have 0, 0, 0 and γ, γ, 0 couplings to consider. Consequently, since χγĈγ,−γ,0 = 1, and the

evolution equations for ` = 0 are unchanged, we need to find the linear γ-mode evolutions.

It is a simple matter to find the linear products from equations (5.2.14-5.2.17).

Furthermore we will employ Cowling’s approximation whereby perturbations of a spherical

gravitational potential are neglected and where the potential is fixed in time. Doing so

saves us having to solve Poisson’s equation at every time-step, and should be a reasonable

approximation to make if the functions ρ̄γ are small. In the non-linear code we shall look

again at non-spherical potentials, and later on solve Poisson’s equation dynamically. With

this the linear evolution equations for non-zero γ are as follows:

˙̄ργ = −
[
ρ̄γv
′
0 + ρ̄′γv0 +

1

r
ρ̄0v̄
′
γ +

1

r
ρ̄′0v̄γ +

`γ + 2

r
ρ̄γv0 + (`γ + 1)ρ̄0

(
v̄γ − `γ ūγ

r2

)]
,

(5.3.11)

˙̄vγ = −
[
v′0v̄γ + v0v̄

′
γ +

`γ − 1

r
v0v̄γ

]
− 2K

(
`γ ρ̄γ + rρ̄′γ

)
, (5.3.12)

˙̄uγ = −
[
v0ū
′
γ +

`γ
r
v0ūγ

]
− 2Kρ̄γ , (5.3.13)

˙̄wγ = −
[
v0w̄

′
γ +

`γ + 1

r
v0w̄γ

]
. (5.3.14)

These equations are seen to be regular at the origin as v0 = O(r). Since 0,γ is the only

coupling, modes can only affect themselves and do not filter through into others, and as

such we need only ever evolve the modes with non-zero initial data.

On the flat, static background with v0 = 0 we have that ˙̄ρ0, v̇0 ≡ 0. The linear
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perturbations on this background reduce to

˙̄ργ = −
[

1

r
ρ̄0v̄
′
γ +

1

r
ρ̄′0v̄γ + (`γ + 1)ρ̄0

(
v̄γ − `γ ūγ

r2

)]
, (5.3.15)

˙̄vγ = −2K
(
`γ ρ̄γ + rρ̄′γ

)
, (5.3.16)

˙̄uγ = −2Kρ̄γ , (5.3.17)

˙̄wγ = 0. (5.3.18)

By taking the time derivative of (5.3.15) one can observe this system obeys the (sound)

wave equation:

¨̄ργ = 2Kρ̄0

[
ρ̄′′γ +

2(`γ + 1)

r
ρ̄′γ

]
. (5.3.19)

Note that we impose different boundary conditions to those in the wave equation code we

previously considered, so we would not expect density waves to behave in the exact same

way.

5.3.4 Boundary conditions

The inner boundary, near the origin, is handled with ease, as we have rescaled variables to

be even functions of r. Thus we set ρ̄(−r) = ρ̄(r) etc. for the left-hand ghost zones.

The continuum condition on the outer boundary we apply is to have no fluid escaping

the container, imposed by setting v̄γ(rmax) = 0. Numerically we implement this as ˙̄vγ = 0

at r = rmax with compatible initial data. The container is otherwise assumed to be slippery,

so we do not impose any stress-related conditions on ū, w̄. To calculate derivatives at and

close to the outer boundary we extrapolate to some order, and would likely do the same if

we were considering a spherical shell of fluid instead of a sphere.

It is quite common in any stellar modelling to include an atmosphere whereby the density

is set to be some small, positive constant in a region outside of vanishing pressure, but we

have already pointed out that this is an unworkable scheme within our numerical framework.

5.4 New fluid variables

A central differencing code written to evolve the regularized linear system (5.3.11-5.3.14)

is seen to exhibit a numerical instability at the origin even for low `-modes, very similar

to that seen in the wave equation code. To solve this issue, we can attempt to recast the

equations into a form resembling that of the wave equation and then finite difference over

a non-uniform grid. There are two ways in which we could try to achieve this: either by

generalizing the finite difference method, or by making a change of variables.
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For the first method, recall that we can write derivatives in the form

f ′(r) +
N

r
f(r) = (N + 1)

∂
(
rNf(r)

)
∂(rN+1)

, (5.4.1)

and then finite difference the right-hand side, assuming f(r) is an odd function. To evaluate

this at the origin we require N to be even, but not all the terms in (5.3.11-5.3.14) have

even coefficients. However, it is possible to split the terms in the following manner:

(N + 1)
∂
(
rNf(r)

)
∂(rN+1)

=
1

2

[
(N + 2)

∂(rN+1f(r))

∂(rN+2)
+N

∂(rN−1f(r))

∂(rN )

]
. (5.4.2)

So if N is odd, we can turn it into two derivatives that we can evaluate at the origin. As an

example, one could rewrite

v′0 +
`γ
r
v0 =


(`γ + 1)

∂(r`γv0)

∂(r`γ+1)
, (`γ even)

1

2

[
(`γ + 2)

∂(r`γ+1v0)

∂(r`γ+2)
+ `γ

∂(r`γ−1v0)

∂(r`γ )

]
. (`γ odd)

(5.4.3)

Unfortunately, applying this ‘shifting’ to every possible term does not help with stability.

The code fares no better than when finite differencing on a regularly spaced grid.

We now resort to trying to find a change of variables that naturally gives us wave

equation-like terms. The following choice,

v̂γ =
v̄γ − `γ ūγ

r
, (v̂0 ≡ v0)

fγ =
ū′γ − v̂γ

r
. (5.4.4)

reduces the linear evolution equations on a flat, static background with ρ̄0 = 1 to

˙̄ργ = −
[
v̂′γ +

2(`γ + 1)

r
v̂γ + `γfγ

]
= −(2`γ + 3)

∂(r2`γ+2v̂γ)

∂(r2`γ+3)
− `γfγ ,

˙̂vγ = −2Kρ̄′γ ,

ḟγ = 0, (5.4.5)

which we recognise as the linear wave equation in first-order form. It is important to note

that v̂ is an odd function of r, whilst f is even. More generally, the linear evolution equations
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now read

˙̄ργ = −
{
v̂′0ρ̄γ + v̂0ρ̄

′
γ +

v̂0

r
(`γ + 2)ρ̄γ + ρ̄0

[
v̂′γ +

2(`γ + 1)

r
v̂γ + `γfγ

]
+
ρ̄′0
r

[rv̂γ + `ūγ ]

}
,

(5.4.6)

˙̂vγ = −
{
`ūγ

[
v̂′0
r
− v̂0

r2

]
+ v̂′0v̂γ + v̂0v̂

′
γ +

v̂0

r
`γ v̂γ + 2Kρ̄′γ

}
, (5.4.7)

˙̄wγ = −
{
v̂0w̄

′
γ +

v̂0

r
(`γ + 1)w̄γ

}
, (5.4.8)

ḟγ = −
{
v̂′0fγ + v̂0f

′
γ +

v̂0

r
(`γ + 1)fγ

}
. (5.4.9)

5.4.1 Discussion of the linear fluid code

One may first ask why we bother to introduce f when it should be possible to finite difference

terms such as `v̂/r + v̂′ in ways similar to that used in the wave equation example. But it

seems to be necessary for stability to coax out the travelling-wave part of the density: a

code using just v̂, or a variable representing (v̄ − `ū)/r2, almost always becomes unstable

near the origin after a reflection there. More dissipation, increasing with ` will dampen the

effect, but this will become physically unrealistic at some point.

Run-time scales linearly with `m, as expected. Running on a 3GHz Pentium D processor,

a double-complex accurate Fortran code compiled with the Intel Fortran compiler requires

about 5ms per time step per mode (without disk activity or dissipation) on an N = 200

grid. Using optimized compiler parameters for the particular machine, this figure can be cut

to just 1ms. A table of run-time results is listed in section 5.5.1.

Initial data for `-modes is usually set to be a double-Gaussian of the form

ρ̄γ = Aγe
−(r2−c2)2/w4

,

v̂γ = −(r2 − c2)ρ̄′γ = 4Aγr
(r2 − c2)2

w4
e−(r2−c2)2/w4

, (5.4.10)

where Aγ , w, c are coefficients representing the wave amplitudes, width and centre. ū, w̄

may be set in a similar way, and f is derived from them.

5.4.2 Flat background

Starting on a flat background ρ̄0 = 1, figure 5.3 shows a density perturbation on ` = 1 with

200 grid points and artificial dissipation. It immediately breaks into two pieces, one travelling

outwards and one inwards, and is shown to be convergent for the first few reflections. 100

time steps at this resolution represents a non-dimensional time of 0.25 (δt = 1
2h = 0.0025).

The failure of finite differencing on a regular N = 200 grid with the same initial data

and no dissipation is shown in figure 5.4, where an instability always occurs at the origin.
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Adding dissipation prevents the code from crashing, but the amount needed to suppress this

effect increases (to unphysical quantities) with `.

For higher modes the non-uniform finite differencing scheme begins to lose convergence

at this resolution, as demonstrated for ` = 5 (figure 5.5). Doubling the resolution to

N = 400 remedies this (figure 5.6).
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Figure 5.3: An ` = 1 density perturbation on a flat ρ̄0 = 1 background is shown in the plots
on the left, before and after a reflection off the outer boundary. Corresponding convergence
tests are on the right demonstrating at least second-order convergence.
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Figure 5.4: Finite differencing an ` = 1 perturbation on a regular N = 200 grid fails
without artificial dissipation. Small oscillations near the origin in ρ̄1, v̂1 blowup as the wave
approaches this region.
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Figure 5.5: A perturbation with ` = 5, N = 200 finite differenced on a non-uniform grid.
We begin to encounter problems with convergence after reflections at the origin, as shown
in the convergence plots on the right.
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Figure 5.6: Convergence of the same perturbation as in figure 5.5 but with the resolution
increased to N = 400. Convergence is observed for a period of at least two sound crossings.
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5.4.3 Star-like background

On a star-like background ρ̄0 = sin(λr)/(λr), figure 5.7 shows reflections of a ρ̄1 perturbation

with N = 200, λ = 0.9π. Note that the outgoing waves take longer to reach the outer

boundary than on the flat background, since the speed of sound in a material is given by

cs =

√
∂P

∂ρ
=
√

2Kρ. (5.4.11)

Figure 5.8 shows the same ` = 1 perturbation but with λ = 0.95π. After a reflection the

evolution is no longer second-order convergent, but this can be remedied by increasing the

resolution (not shown). At λ = 0.9π a single sound crossing takes 500 time steps (t = 1.25),

whilst at λ = 0.95π it takes 550.

Convergence of an ` = 5 density perturbation with λ = 0.95π is shown in figure 5.9.

The evolution looks similar to ` = 1 so it is not shown. Convergence is lost at the origin

when the initially outward-travelling wave piece reaches the origin.
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Figure 5.7: An ` = 1 perturbation on an N = 200, λ = 0.9π star-like background, shown
at the same times as figure 5.3 and with convergence plotted in the right-hand column. The
density wave takes longer to reach and then reflect off the outer boundary than it would do
on a flat background, but is still convergent.
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Figure 5.8: The same ρ̄1 initial data as in figure 5.7 but with λ = 0.95π. The density wave
takes even longer to reflect off the outer boundary.
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Figure 5.9: Convergence tests of a ρ̄5 perturbation on an N = 200, λ = 0.95π star-like
background. Waves returning from a reflection at the outer boundary lose convergence
when reaching the origin. These are plotted for a timescale of just under two sound crossing
times.
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Figure 5.10: Convergence tests of a ρ̄5 perturbation on an N = 400, λ = 0.95π star-like
background, i.e. double the radial resolution of that in figure 5.9. Placing the numerical
boundary closer to the physical boundary requires a higher resolution to maintain convergence.
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5.5 Non-linear system in new variables v̂, f

With a working code for the background and linear perturbations, we now include the

non-linear terms. The evolution equations over all modes are thus:

˙̄ργ =− χγr`α+`β−`γ
{
Ĉαβ−γ

[
ρ̄αv̂

′
β + ρ̄′αv̂β + ρ̄α`βfβ +

ρ̄′α
r
`βūβ + (2 + `α + 2`β)ρ̄α

v̂β
r

]
+(`α`βĈαβ−γ + D̂−γαβ )

ρ̄αūβ
r2

}
, (5.5.1)

˙̂vγ =− χγr`α+`β−`γ

{
v̂αv̂
′
βĈαβ−γ + v̂αfβ

(
`βĈαβ−γ +

`γD̂αβ−γ
L2
γ

)

+
v̂αv̂β
r

(
2`αĈαβ−γ +

`γD̂αβ−γ
L2
γ

)
+
ūαv̂

′
β

r
Ĉαβ−γ

+
ūαfβ
r

(
`α`βĈαβ−γ +

`α`γD̂αβ−γ
L2
γ

)
−
w̄αw̄β
r

(
D̂−γαβ +

`γF̂−γαβ
L2
γ

)

+
v̂αūβ
r2

[
`β (`β + 2`α − 1− `γ) Ĉαβ−γ + D̂−γαβ

]
+
ūαūβ
r3

[
(`β − 1)(`α`βĈαβ−γ + D̂−γαβ ) +

`γ
L2
γ

(
`α`βD̂αβ−γ + Ê−γαβ

)]}
− 2Kρ̄′γ , (5.5.2)

˙̄wγ = χγr
`α+`β−`γ

{
v̂αw̄

′
β

D̂αβ−γ
L2
γ

+
`αūαw̄

′
β

r

D̂αβ−γ
L2
γ

+ (1 + `β)
v̂αw̄β
r

D̂αβ−γ
L2
γ

+
ūαw̄β
r2

1

L2
γ

[
`α(1 + `β)D̂αβ−γ + Ê−γαβ + F̂−γαβ

]}
, (5.5.3)

ḟγ = χγr
`α+`β−`γ

{
fαfβ

D̂αβ−γ
L2
γ

+ v̂αf
′
β

D̂αβ−γ
L2
γ

+ v̂′αfβ
D̂αβ−γ
L2
γ

+
v̂αv̂
′
β

r

(
Ĉαβ−γ +

D̂αβ−γ − D̂βα−γ
L2
γ

)
+
`αūαf

′
β

r

D̂αβ−γ
L2
γ

+
2w̄αw̄

′
β

r

F̂−γαβ
L2
γ

+
v̂αfβ
r

[
`βĈαβ−γ + (1 + 2`α + 2`β)

D̂αβ−γ
L2
γ

+ `β
D̂βα−γ
L2
γ

]

+
2v̂αv̂β
r2

[
`βĈαβ−γ +

`α + `β
L2
γ

D̂αβ−γ

]
+
w̄αw̄β
r2

[
D̂−γαβ +

`α + `β
L2
γ

F̂−γαβ

]
+
ūαfβ
r2

[
`α`βĈαβ−γ + `α(`α + 2`β)

D̂αβ−γ
L2
γ

+ `α`β
D̂βα−γ
L2
γ

+
Ê−γαβ + Ê−γβα

L2
γ

]

+
v̂αūβ
r3

(
D̂−γαβ +

Ê−γαβ + Ê−γβα
L2
γ

)
+
ūαūβ
r4

[
`α`β(`β − 1)Ĉαβ−γ

+(`β − 1)D̂−γαβ + (`α + `β − 2)
`α`βD̂αβ−γ + Ê−γαβ

L2
γ

]}
.

(5.5.4)
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This system contains terms with powers of r as low as `α + `β − `γ − 4, so there are

two special cases that need taking into consideration to properly regularize. The first

are the terms in the series that satisfy `α + `β − `γ = 0, and the second are those with

`α + `β − `γ = 2. (Since `α + `β + `γ is even, `α + `β − `γ is also even, and we need only

consider these two cases.)

It can be shown that coefficients of terms divided by r either remain regular, have

vanishing coefficients, or cancel with cross-terms because they are antisymmetric over α, β.

These terms will need l’Hôpital’s rule or some other scheme to evaluate the origin.

The variable ū is still present in these equations, since we have only replaced its derivative.

We can either choose to recover ū by integrating f , or we could time-evolve it alongside

the other variables (and perhaps derive f from it instead). Our code time-evolves all five

variables as this is easy to do with the current framework, although an integration should,

in theory, be faster since there it avoids having to compute a large number of non-linear

couplings.

Another issue with this choice is that numerical error and dissipation may cause ‘drift’

between the derived and time-evolved values of ū, and in the absence of some variable

constraint we should monitor both. The easiest way to do the comparison is just to output

and display them both graphically.

Finally, we can see from the zero-sum property of the Gaunt coefficients (2.2.11) that

a system will remain axisymmetric if it is initially axisymmetric. This is true for the fluid

equations, or MHD, or any other time evolution that we can write in this manner.

5.5.1 Discussion of the non-linear fluid code

A non-linear, nonaxisymmetric RK4 code with compiler optimizations and copying negative-

m modes (4.2.2) scales with time roughly as `4.6m for modes up to ` = 9. This is a slightly

lower figure than we would expect (`5m), most likely because of the triangle inequality for

the `’s. Figure 5.11 lists run-times on the same machine for comparative purposes. We

would expect `m = 10 to take about 13 seconds per time step with this resolution, about 5

minutes with `m = 20, and, in theory, several days with `m = 100.

Further optimizations can be made to the nonaxisymmetric code by only considering the

modes whose m is a multiple of the lowest present in the initial data: for example, m = 2

initial data will only lead to even m. Problems where m ∼ ` in initial data scale more like

the axisymmetric code if `m is not set too high above the initial data maximum `.

Since the quadratic changes we have so far tried have been small, convergence properties

are similar to the linear scheme. Setting any kind of initial data on modes ` > 0 will excite

other modes. For example, an ` = 1 perturbation will induce perturbations in the ` = 2

mode through self-couplings, which in turn will couple with itself and ` = 1 to induce still

higher modes, and so on. For a non-linear evolution we see wave-like behaviour for all modes
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Axisymmetric Nonaxisymmetric

`m Linear Non-linear Non-linear

1 1.7ms 1.9ms 3.4ms

2 2.7ms 4.5ms 19ms

3 3.7ms 9.0ms 70ms

4 4.8ms 17ms 220ms

5 5.8ms 28ms 570ms

6 6.9ms 44ms 1.3s

7 8.1ms 65ms 2.6s

8 9.0ms 92ms 4.8s

9 10.4ms 126ms 8.4s

∼ `m ∼ `2.6m ∼ `4.6m

Figure 5.11: Approximate run-time required per time step on an N = 200 second-order
accurate evolution with dissipation, optimized to run on a 3GHz Pentium D processor under
Linux. Each was run several times over more than 1 time step, and the fastest time recorded,
to take account of any background processes.

up to `m and with it convergence for low modes and a loss after reflection for the higher

modes, just as we did in the linear evolutions.

Figure 5.12 shows the value of ρ̄1 at different timesteps on an N = 200 grid with

different values of `m. Increasing `m ≥ 2 shows a larger but fixed difference, although

the figure only demonstrates this for `m = 2, 3. It seems that ` = 2 is important to the

evolution in this case, whilst higher modes are relatively unimportant. Typically we observe

that it is most efficient to set `m equal to the highest initial data mode plus one.

The non-linear code is unstable for O(1) initial data in ` > 0 velocity terms, regardless

of resolution or the values of other parameters, unlike the linear code. As a result we are

forced to set initial data that is small compared to the background, and thus perturbations

using the non-linear code will generally gives us small, unremarkable differences to evolutions

that we have already seen. We should now investigate some important non-linear effects

that we could not in the linear evolutions, such as rotation, and later on, magnetic fields.
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Figure 5.12: Convergence of a non-linear ρ̄1 evolution with increasing `m. The plots show
the difference with a linear evolution having the same initial data; the difference is smaller
with `m = 1 but for ` = 2, 3 the curves almost exactly overlay each other.
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Figure 5.13: Plots demonstrating the convergence of a non-linear ρ̄1 evolution with increasing
`m. The left column is the difference between the linear and non-linear evolutions of the same
initial data with increasing `m; for `m ≥ 2 this difference is negligible. The right column shows
the difference between non-linear evolutions |(`m = 4)− (`m = 2)|,(`m = 5)− (`m = 3)|.
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5.5.2 Energy

A good test of a fluid code is to ensure that, in the absence of sources or sinks, energy

conservation is obeyed. The conservation of energy can be written in the form

∂D

∂t
+∇jFj = 0, (5.5.5)

where D is the energy density and F the energy flux across surfaces. It can be shown [13]

that the energy of an ideal fluid is described by

∂

∂t

[
ρ
(

1
2v

2 + U + Φ
)]

+∇j
[
ρvj

(
1
2v

2 + h+ Φ
)]

= 0, (5.5.6)

where the pressure

P = (γ − 1)ρU = Kργ (5.5.7)

gives the following expressions for the internal energy U , from (5.1.15), and enthalpy h, for

a polytrope:

U =
K

γ − 1
ργ−1,

h = U +
P

ρ
=

γK

γ − 1
ργ−1. (5.5.8)

These expressions can be combined to show

∇h =
∇P
ρ
. (5.5.9)

To find the total energy E we integrate the energy density over the (fixed) volume of

the star and apply the divergence theorem, noting that the energy flux across the outer

boundary is zero:

E =

∫
V

(
1
2ρv

2 +Kργ + ρΦ
)
dV = T + U + W, (5.5.10)

where T,U,W are the kinetic, internal and gravitational energies, respectively.
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To calculate these energies we need to find the spherical harmonic expansions of the

integrands:

T =
1

2

∫
ρv2dV

=
1

2

∫
Yγργ

[
YαYβvαvβ + r2 (ZaαZβbuαuβ + SaαSβbwαwβ)

]
r2dr dΩ

=
1

2

∫
r`γ+`α+`β ρ̄γ

[
(YγYαYβ)v̄αv̄β + (YγZ

a
αZβb)ūαūβ + (YγS

a
αSβb)r

2w̄αw̄β
]
dr dΩ

=
1

2

∫
r`γ+`α+`β ρ̄−γ

[
Ĉαβ−γ v̄αv̄β + D̂−γαβ

(
ūαūβ + r2w̄αw̄β

)]
dr, (5.5.11)

U =

∫
Kρ2dV

= K

∫
YαYβdΩ

∫
ραρβ r

2dr

= 4πK(−1)mβδα,−β

∫
r`α+`β+2ρ̄αρ̄β dr

= 4πK(−1)mγ
∫
r2`γ+2ρ̄γ ρ̄−γ dr, (5.5.12)

W =
1

2

∫
ρΦdV

= 2π(−1)mγ
∫
r2`γ+2ρ̄γΦ̄−γ dr. (5.5.13)

We can then use some of the techniques mentioned in section 3.2 to integrate these quantities

numerically over r.

The energy of a test system, a linear ρ̄1 perturbation on a flat background with artificial

dissipation, is shown in figure 5.14. The kinetic energy T initially grows through pressure

differentials between high and low areas of density. It then decreases as one part of the

density wave hits the outer surface and matter builds up on the outer shell. A local minimum

appears to be reached halfway through the reflection, just before the rebound, but it does

not drop to zero as there is still matter travelling towards the centre. The total energy

slowly decreases because of the artificial dissipation, but varies on the order of 10−6 over the

time scale shown (figure 5.15), a small change even when compared against the O(10−4)

kinetic/internal energies.

Without artificial dissipation the energy curves look almost identical. The total energy

remains constant to one part in 10−6 and does not appear to globally increase or decrease.
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Figure 5.14: Plots of the kinetic and internal energy (top) of a flat star with an initial
` = 1 density perturbation. The evolution of the ` = 1 mode is shown for the shaded region
underneath.
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Figure 5.15: The total energy of the same system shown over twice as many time steps.
Numerical dissipation is clearly removing energy from the system but apparently not in a
way that affects the evolution.
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5.6 Improvements to the model

5.6.1 Solving Poisson’s equation

Up until now we have used gravitational potentials that remain fixed in time, and which are

often spherical. We now show how to solve Poisson’s equation to find φ: its expansion in

spherical harmonics gives

φ̄′′γ +
2(`γ + 1)

r
φ̄′γ = 4πGρ̄γ , (5.6.1)

for every γ. In vacuum (presumably the region outside R) this has solution

φ̄ ∝ r−2`+1 (5.6.2)

on the condition that φ̄→ 0 as r →∞.

By writing ηγ = φ̄′γ , the solutions can be written as

ηγ(r) = 4πG
r−(2`γ+2)

2`+ 3

∫ r

0
ρ̄γr

(2`γ+2)dr, (5.6.3)

φ̄γ(r) =

∫ r

0
ηγdr. (5.6.4)

The two boundary conditions we need are ηγ(0) = 0 and (5.6.2), which means setting

φ̄γ(R) = −R
2`γ+1ηγ(R). Numerically this would suggest that one starts by integrating (5.6.3)

up from r = 0, apply the boundary condition to find φ̄(R), and then integrate (5.6.4) down

from r = R, as per

φ̄γ = φ̄(R)−
∫ R

r
ηγdr. (5.6.5)

One can evaluate these integrals by using the trapezium rule:

ζ(i+1) = ζ(i) +
(
r2`+3

(i+1) − r
2`+3
(i)

) ρ̄(i+1) + ρ̄(i)

2
, (5.6.6)

η(i) =
2Kλ2ζ(i)

(2`+ 3)

1

r2`+2
, (5.6.7)

φ̄(i) = φ̄(i+1) − h
η(i+1) + η(i)

2
. (5.6.8)

where one may set

ζ(0) =

 0, (regular grid)

r2`+3
(0) ρ̄(0). (staggered grid)

(5.6.9)
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5.6.2 Stratification

A wider range of equations of state are available for study if we consider some kind of

stratification where the neutron star is not barotropic, but its pressure additionally depends

on some other quantities such as the entropy or chemical composition. Stratification implies

the presence of some composition gradient which provides a buoyancy force. Neutron stars

are expected to be stably stratified [73], meaning that an object in equilibrium will oscillate

around its initial position at the Brunt-Väisälä frequency if perturbed.

In our framework the stratification K is set via a modified equation of state

P = K(s)ρΛ, (5.6.10)

where initial data for K can be set using the numerical solution of the corresponding

Lane-Emden problem P = KρΓ for a given K,Γ. The requirement for stable stratification

[73] comes from the polytropic relation (5.1.12) which can be rearranged as

K ∝ ρΓ−Λ. (5.6.11)

If Γ < Λ then an increase in K gives a decrease in the density. Note that if Γ ' Λ then K
is close to constant, and the stratification is weak.

The Euler equation is now

∇P
ρ

= ΛKρΛ−2∇ρ+ ρΛ−1∇K, (5.6.12)

and so we shall continue to set Λ = 2, and initially specify K from some numerical solution

to the Γ < 2 Lane-Emden equation. The stratification is advected with the fluid since

entropy is constant for a particle (DsDt = 0):

K̇ + vi∇iK = 0. (5.6.13)

5.7 Cylindrically symmetric rotation and equilibrium

In section 5.3 we investigated the equilibria of static stars. By now introducing rotation,

one now needs to balance the outwards-acting centrifugal force with pressure and gravity.

For now we shall concern ourselves with relatively simple rotation laws in axisymmetry.

Consider a rotation profile where the angular velocity Ω depends only on the distance

from the rotation axis $ = r sin θ. The conservation of momentum equation (5.0.5) can be

integrated in this case because the centrifugal force is given by the gradient of a potential
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[49, 83, 84], giving

Φ +

∫
1

ρ
dP −

∫
Ω2$ d$ = constant. (5.7.1)

There are at least three well-known examples of $-dependent rotation:

Ω($) =


Ωc, (rigid)

j0
A2 +$2

, (j-constant)

v0√
A2 +$2

. (v-constant)

(5.7.2)

The latter two are named for the limit of Ω as $ � A; for j-constant, one has constant

specific angular momentum (L = $2Ω), and for v-constant, one has constant linear velocity

(v = $Ω). These can all be inserted into (5.7.1) and integrated, using the γ = 2 polytropic

EOS, to give closed-form expressions:

Φ + 2Kρ−Ψ = ζ, (ζ = constant)

Ψ =


1
2Ω2

c$
2 (rigid)

−j2
0

2(A2 +$2)
(j-constant)

1
2v

2
0 ln(A2 +$2) (v-constant)

(5.7.3)

To translate these expressions into a spectral form, we need the expansions for Φ, ρ, as

well as $:

$2 = r2(1− cos2 θ) =
2r2

3

(
Y 0

0 −
Y 0

2√
5

)
. (5.7.4)

In addition one should be aware of how to set the axial component of the velocity given some

rotation profile. Ignoring other components, and in axisymmetry, the velocity derivative is

v · ∇ = rΩ sin θ

(
1

r sin θ

∂

∂ϕ

)
= Ω

∂

∂ϕ

= r`−1w̄γS
(ϕ)
γ

∂

∂ϕ
. (5.7.5)

If one assumes a system is rigidly rotating, nondimensionalizing the Euler equation gives

the unit-less quantity

Ω̂2
c =

Ω2
c

Gρc
. (5.7.6)
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This in turn gives us the rotation period

t =
2π

Ωc
=

2π

Ω̂c

[t], (5.7.7)

implying that the time units for one rotation are simply given by 2π/Ω̂c. To get an idea

of physically reasonable rotation frequencies, PSR J1748-2446ad is the fastest (confirmed)

spinning pulsar so far observed; at ∼ 2M⊙and rotating at 716Hz [52] we could model this

with Ω̂c = 1/
√

3.

5.7.1 Rigid rotation

Through equation (5.7.5), and noticing that S
(ϕ)
1 =

√
3, rigid rotation Ω($) = Ωc

corresponds to setting w̄1 = Ωc/
√

3. To seek equilibrium solutions, we expand the density

and gravitational potential terms in (5.7.3) and then equate the coefficients of spherical

harmonics:

φ+ 2Kρ = 1
2Ω2

c$
2 + ζ (5.7.8)

=⇒
∑
γ

(
φ̄γ + 2Kρ̄γ

)
r`γYγ =

Ω2
cr

2

3

(
Y 0

0 −
Y 0

2√
5

)
+ ζY 0

0 . (5.7.9)

Using Poisson’s equation to remove ρ̄γ gives second-order ODEs to be solved:

∑
γ

[
φ̄γ +

1

λ2

(
2(`γ + 1)

r
φ̄′γ + φ̄′′γ

)]
r`Yγ =

Ω2
cr

2

3

(
Y 0

0 −
Y 0

2√
5

)
+ ζY 0

0 . (5.7.10)

The homogeneous problem has solutions that can be written in terms of spherical Bessel

functions,

φ̄γ = −2KCγr
−αJα(λr),

ρ̄γ = Cγr
−αJα(λr). (α = 1

2 + `γ) (5.7.11)

The modes with rotational terms (` = 0, 2) admit the following solutions, which are

regular at the origin:

φ̄0 =
r2Ω2

c

3
− 2Ω2

c

λ2
− ζ − 2KC0

sin(λr)

λr
,

ρ̄0 =
Ω2
c

Kλ2
+ C0

sin(λr)

λr
, (5.7.12)
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and

φ̄2 = − Ω2
c

3
√

5
−
C2

√
2
[
3rλ cos(λr) + (r2λ2 − 3) sin(λr)

]
r5
√
λ5

, (5.7.13)

ρ̄2 = C2

[
3rλ cos(λr) + (r2λ2 − 3) sin(λr)

Kr5
√

2λ5

]
. (5.7.14)

We now need to find the constants Cγ and ζ, and we start by setting C0 so that ρ̄0(r =

0) = ρc. The remainder (one for each mode) must be found by matching to the exterior of

the star (section 5.6.1), where the gravitational potential E satisfies

2(`+ 1)

r
Ē′γ + Ē′′γ = 0 (5.7.15)

=⇒ Ēγ = A−B r−1−2`

(1 + 2`γ)
. (5.7.16)

We then set A = 0 so that lim
r→∞

Ē = 0. In a more realistic model the surface of the star

would be given by the function r∗(θ, ϕ) but we match the potentials at the spherical shell

r∗ ≡ 1, where

Ēγ = φ̄γ , Ē′γ = φ̄′γ , (5.7.17)

=⇒ φ̄′γ = (2`γ + 1)φ̄γ (at r = 1). (5.7.18)

This constraint lets us determine the remaining constants:

ρ̄γ =



Ω2
c

Kλ2
+

[
ρc −

Ω2
c

Kλ2

]
sin(λr)

λr
, (γ = 0)

√
5Ω2

c

[
3λr cos(λr) + (r2λ2 − 3) sin(λr)

]
6Kr5λ2(λ cosλ− sinλ)

, (γ = 2)

0. (otherwise)

(5.7.19)

An oblate-contoured star generated from this profile with ρc = 2,Ωc =
√

3/2 is shown in

figure 5.16.

One must be careful to avoid setting a negative density, which is lowest at the poles.

By reconstructing ρ(r, θ) from (5.7.19), one can see that

ρc ≥ Ω2
c

λ(5λ2 + 6 cosλ+ 9λ cotλ− 9)− 6 sinλ

6Kλ2(λ cosλ− sinλ)
(5.7.20)

for the condition ρ ≥ 0 to hold in the spherical shell.

A numerical issue arises when trying to set ρ̄2 initial data, because of the division by r5

near the origin: round-off error gives ’kinks’ in the data, which dissipation fails to remove.

The effect is obviously worse at higher resolution, which hampers convergence.

Rather than devising an elaborate interpolation scheme for the first few grid points, one

could instead approximate ρ̄2 by its Taylor expansion about r = 0 up to some desired order
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for the first few grid points, and then blend it with the analytical solution:

ρ̄2 → e−(r/0.1)4Series(ρ̄2, r = 0) + (1− e−(r/0.1)4)ρ̄2. (5.7.21)

5.7.2 Perturbing rigid rotation

Figure 5.17 shows an ` = 1 density perturbation and its convergence on a rigidly rotating

N = 400 star, with `m = 4 and artificial dissipation, Ωc =
√

3/2, λ = 0.9π, ρc = 2(T/|W| '
0.06), for a few hundred time steps. (Section 5.2.2 will determine how many rotations this

represents.) We then show similar data and convergence plots for the other modes.

We observe that fγ develops problems at the origin quite early on for ` > 2 (figure

5.19) which is not removed by dissipation. The major contributors to the evolution are

terms in the summation terms that satisfy `γ − `α + `β = 0, which we briefly referred to in

section 5.5. The evolution of f3 is dominated by a term w̄1w̄
′
2/r, where ˙̄w2 is dominated

by w̄1v̂1/r, which in turn is generated by the ρ̄1 perturbation. These terms use l’Hôpital’s

rule to evaluate the origin, and if v̂ is small, v̂/r will start to diverge near the origin from

its expected value. Under second-order accurate finite differencing one immediately gets

non-smooth first, and higher order, derivatives of w̄2, which cause problems in f3 and higher

modes.

We have investigated writing such terms as derivatives over a non-uniform grid where

possible, for example as

v̂

r
=

3

2

∂(r2v̂)

∂(r3)
− 1

2
v̂′. (5.7.22)

Doing so does not make a significant difference to convergence.

This problem appears to have little effect on the ` = 1 mode: the system is still

convergent even after a few reflections, and similar to what we saw earlier (section 5.5.1) it

turns out that there is little change to this mode if one sets `m > 2 anyway. It is not clear

to us how to modify the code to fix this error, other than by setting very slow rotation.

We also show the absolute difference between the values of ρ̄1(r) with increasing `m

in figure 5.20 on an N = 200 grid: that is, we plot |ρ̄1(`m = 2)− ρ̄1(`m = 3)| and so on.

The figure, and similar plots of other variables, suggests that higher odd modes are more

important to the evolution of ρ̄1 in this case and there is little point in setting even `m.
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Figure 5.16: The density contours of a polar slice through a rigidly rotating star in
equilibrium (ρc = 2,Ωc = 0.5) is shown at the top. The contours are cut off at r = 1
because of the spherical shell. Underneath is a 3D visualization using VisIt, available from
http://visit.llnl.gov, which includes arrows to show the direction and magnitude of the
velocity field.
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Figure 5.17: An ` = 1 density perturbation of a rigidly rotating star, showing the variables
ρ̄1, v̂1, ū1. Plots of second-order convergence of these variables are shown on the right.
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Figure 5.18: Evolution of the ` = 2 mode and corresponding convergence plots.
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Figure 5.19: Evolution of the ` = 3, 4 modes, which develop problems with the auxiliary
variable f .
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Figure 5.20: Convergence of ρ̄1 with higher `m and N = 200: the differences |ρ̄1(`m)−
ρ̄1(`m + 1)| are plotted logarithmically.
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5.7.3 j-constant differential rotation

The differential rotation profiles in (5.7.3) are not immediately expressible as series of sin θ

and cos θ. We shall now look at how we can approximate j-constant differential rotation,

although the analysis is similar for other types. If d = $/A is small, i.e. the rotation is

almost rigid, then

Ω =
j0

A2 +$2
=

j0
A2

∞∑
n=0

(−1)n
($
A

)2n
=

j0
A2

[
1− $2

A2
+O(d4)

]
=

j0
A2

[
1− r2

A2
+
r2 cos2 θ

A2
+ ...

]
. (5.7.23)

Compare this expression with the general expansion of the axial component of the velocity,

from (5.7.5):

v = wγS
(ϕ)
γ

∂

∂ϕ
=

[
√

3w̄1 + 3
√

5w̄2 cos θ +

√
7

2
r2w̄3(−3 + 15 cos2 θ) + ...

]
∂

∂ϕ
.

(5.7.24)

Thus corresponding axial velocity modes we should set for up to O(A−4) are

w̄1 =
j0√
3A2

(
1− 4r2

5A2

)
, w̄2 = 0, w̄3 =

2j0

15
√

7A4
. (5.7.25)

When integrated, (5.7.23) gives

Ψ =
j0

2A2

(
$2

A2
− $4

A4
+
$6

A6

)
. (5.7.26)

We do not discard terms of O(d4) or smaller here; the equation for ˙̂v0 contains a term r6w̄2
3

which needs to be balanced for equilibrium. Because of the underlying reason for this, if w̄γ

is set up to a mode κ, ρ̄γ needs to be found for modes up to and including 2κ for any kind

of rotation profile.

Putting these pieces into the equilibrium condition, we have

∑
γ

[
φ̄γ +

1

λ2

(
2(`+ 1)

r
φ̄′γ + φ̄′′γ

)]
r`γYγ =

[
α+

j2
0r

2

A4

(
1

3
− 4r2

15A2
+

8r4

105A4

)]
Y0

− j2
0r

2

A4

[
1

3
√

5
− 8r2

21
√

5A2
+

8r4

63
√

5A4

]
Y2

− 4j2
0r

4

A6

[
1

105
− 2r2

285A2

]
Y4 −

8j2
0r

6

693
√

13A8
Y6.

(5.7.27)

With matching to a vacuum exterior, solutions are lengthy; suffice to say, even density modes

up to ` = 6 go as functions of sinc(λr) and cos(λr) and once again give oblate stars. There

is more division by high powers of up to r2`+1, so once again one needs to be careful to set
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initial data that is smooth to prevent artificial dissipation creating problems near the origin.

This analysis may be repeated for a general Ω = C0 +C1$
2 + ... cylindrically symmetric

differential rotation law, where Ci are arbitrary constants. One could set these parameters to

calculate the density profiles for v-constant rotation, or contra-rotating shells, for example.

5.7.4 Generic rotating equilibria

We shall now describe a method by which we may attempt to evolve an arbitrary (i.e.

not necessarily cylindrically symmetric) rotating configuration to equilibrium by including

artificial friction terms. Consider the velocity evolution equations (5.0.2), re-written as

v̇i = (V +A)vi (5.7.28)

where V,A are the advection and total acceleration operators. We shall subtract a friction

term proportional to the velocity as

v̇i = (V +A)vi − λF (vi − viI), (5.7.29)

where λF is a friction parameter that is to be set, and vI is the initial data for the velocity

field, usually the toroidal rotation profile. Ideally this term will cause both the accelerations

and velocities to vanish, rather than just the former: if the friction balances itself against

other forces then we end up with a situation analogous to terminal velocity.

Since we have analytical solutions to rigid rotation, we can investigate what the optimal

values of λ are for varying rotation. Initial data is a spherically symmetric Lane-Emden

solution with constant w̄1 = Ω/
√

3 rotation painted on. We have set `m = 2 as we know

from the analytical solution that this is sufficient to describe rigid rotation. In addition we

use 4th-order dissipation and 2nd-order extrapolation at the outer boundary.

For rapid rigid rotation Ω = 0.4
√

3, fastest relaxation is achieved by λF ' 5, although

λF ' 20 is best for longer relaxations (figure 5.21). Similar values also seem to hold for a

wide range of Ω. The system can become over-damped for values much larger than this,

with large residual velocity components and longer relaxation times. At twice the radial

resolution the residual velocity is smaller by a factor of four at later times (t ∼ 50) but the

relaxation time scale does not change.

One caveat of this method is that we are usually left with a different central density

to that desired, although the relative change in total mass is typically small (O(10−3)).

Taking a spherically symmetric background that is in equilibrium and suddenly spinning it

will noticeably alter the ` = 0 density distribution, which the friction eventually freezes into

place. The relaxed ρ̄0 solution that we find with Ω = 0.4 approximates an analytical solution

with ρc = 0.92 with a maximum relative error between them of 10−3, independently of the

value of λ. Smaller Ω will of course give solutions closer to ρc = 1, and different initial ρ̄0
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configurations will lead to drastically different central densities.

The scalar virial test [59, 80] is a popular technique for evaluating the accuracy of

numerical equilibria: by integrating the product of the Euler equation with the position

vector, over the entire volume of the star, one can equates a sum of energies to the second

time derivative of the moment of inertia, which is zero for a system in (analytical) equilibrium.

A numerical equilibrium code encompassing an entire star should find the sum equal to a

relatively small number that converges to zero. Our model does not include a surface with

vanishing pressure, so instead we could measure

V C =
|2T + W +

∫
V r

∂P
∂r dV |

|W|
' 0. (5.7.30)

In the case of both analytical and relaxed rigid rotation for Ω = 0.4, N = 80, we find

V C = O(10−3).

However, we prefer to take a measure of the size of acceleration terms as a gauge of

equilibrium accuracy, as these are what we are trying to minimize with the relaxation method.

Again in case of rigid rotation Ω = 0.4, a freely-evolved analytical solution has Av̂2 ∼
O(10−5), while for freely-evolved relaxed solution where λF = 5, then Av̂2 ∼ O(10−6). At

t = 1, Av̂2 ∼ O(10−2) on the analytical solution, while it remains O(10−6) for the relaxed

state. Doubling the resolution still reduces the acceleration by a factor of 4.

It should now be clear that this relaxation method works very well for finding the

equilibria of rigidly rotating polytropes, although the initial central density parameter should

be scaled appropriately. We have also checked the method against j-constant differential

rotation and it appears to work just as well, and so we conclude that this method is a fast

and relatively robust method for finding the rotational equilibria of polytropes.

The same cannot be said for rotating stratified equilibria. The system takes longer to

relax: whilst ρ̇, v̇ were observed to decrease exponentially for a polytrope, the stratified

n = 3/2 star takes logarithmic time. The free evolution oscillates with an amplitude

that grows approximately linearly in time: after relaxing up to t = 100 with λF = 10,

Av̂2 ∼ O(10−3) at t = 101, Av̂2 ∼ O(10−2) at t = 120, and Av̂2 ∼ O(10−1) at t = 300.
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(a) The evolution of ρ̄2 with friction λF = 5 and rigid rotation Ω = 0.4
√

3. It has approached the analytical
solution in a time shorter than it takes for one rotation (t = 9).

λF Max|u̇0| Max|v̂2| Max|w̄2 − Ω|

0.5 10−2 2× 10−2 5× 10−4

1 8× 10−4 10−3 2× 10−5

5 10−7 2× 10−7 2× 10−7

10 6× 10−7 8× 10−6 4× 10−7

20 3× 10−6 2× 10−4 4× 10−6

50 10−3 7× 10−4 6× 10−6

(b) t = 10

λF Max|u̇0| Max|v̂2| Max|w̄2 − Ω|

0.5 10−6 4× 10−6 10−5

1 6× 10−7 7× 10−7 5× 10−6

5 10−7 2× 10−7 2× 10−7

10 7× 10−8 10−7 6× 10−8

20 3× 10−8 6× 10−8 2× 10−8

50 2× 10−7 2× 10−6 2× 10−8

(c) t = 50

Figure 5.21: Varying the friction parameter λF for a rotating polytrope with Ω = 0.4
√

3.
A moderate λF = 5 is best for short evolutions, but larger parameters are better over
longer times. In any case this method rapidly gives equilibria that are close to the analytical
solutions.



Chapter 6

Newtonian Ideal MHD

Consider a fluid, similar in nature to that used in the last section, but which can interact

with a magnetic field. The governing equations are a combination of the fluid equations

and Maxwell’s equations:

∂ρ

∂t
= −∇j(ρvj), (6.0.1)

∂Bi

∂t
= Bj∇jvi − vj∇jBi −Bi∇jvj +

1

µ0κe
∇j∇jBi, (6.0.2)

ρ
dvi

dt
=

1

µ0

[
Bj∇jBi − 1

2∇
i(BjB

j)
]
− ρ∇iΦ−∇iP, (6.0.3)

∇j∇jΦ = 4πGρ. (6.0.4)

In order, these represent the conservation of mass, the induction equation for a magnetic

field B with non-zero conductivity κe, momentum conservation with magnetic permeability

µ0, and a Poisson equation for the gravitational potential. Note the addition of a Lorentz

force L (the combination of magnetic terms) to the Euler equation (6.0.2). The magnetic

field has no divergence and is thus constrained by

∇jBj = 0. (6.0.5)

When the approximations of an inviscid, perfectly conducting fluid medium are made, we

refer to the ideal MHD equations. The conductivity is set to be infinite, and the induction

equation now reads

∂Bi

∂t
= Bj∇jvi − vj∇jBi −Bi∇jvj . (6.0.6)

This approximation is made throughout.

107
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To non-dimensionalize the system, we need the unit-less number

µ̂0 =
1

µ0

[B]2

[ρ][v]2
(6.0.7)

in addition to the previously defined K̂, Ĝ. In vacuum, µ0 = 4π× 10−7 m kg s−2 A−2, giving

a typical field strength of 1014G when µ̂0 = 1.

6.1 Quadratic form of the equations

We should recast the momentum equations (6.0.3) into quadratic form, for insertion into

our spectral code. Currently there are three terms multiplying each other in the Lorentz

force term; we have seen that a cubic term is easiest handled through a temporary variable

storing all of the multiplications of two of the terms, although the method we use does not

take account of all the possible mode couplings (see the end of section 2.5). We will also

need to fix an equation of state: we may either choose a polytropic P = Kρ2, producing a

linear pressure term, or a stratified P = Kρ2 with a quadratic pressure term.

We can reduce the momentum equations to quadratic order by introducing a rescaled

magnetic field variable

b = B/ρ (6.1.1)

=⇒ v̇i = −vj∇jvi −∇iΦ− 2K∇iρ− 1

µ0

[
bj∇iBj − bj∇jBi

]
, (6.1.2)

where the division by ρ is non-problematic as the vacuum exterior is excluded from our

evolutions. It is also possible to write down induction equations for this rescaled variable,

ḃi = bj∇jvi − vj∇jbi, (6.1.3)

which must be divergence-free:

∇j(ρ bj) = 0. (6.1.4)

Alternatively, it is possible to calculate the Lorentz force terms (6.0.3) and place them into

temporary storage before multiplying by 1/ρ.

One must now ask which variables should be evolved in time, and which should be

derived from others. One approach that does not involve dividing by ρ would be to time

evolve b, deriving B = ρb at every time step. However one then needs to find an initial

field satisfying (6.1.4), which becomes a complex problem for anything not on a spherically

symmetric background.

An alternative method would be to time-evolve B and calculate 1/ρ in some manner.

An iterative method to find this quantity is outlined in section 6.2.3. The main benefit of
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using the original field variables is that finding a divergence-free field consists of choosing

some B profile and calculating C quite easily from it (6.2.5).

However both of these approaches do not remove the concern over the divergence of B.

When we set initial data, although it may be divergence-free in the continuum, the numerical

evolution may violate this condition. For example, dissipation and truncation `m will give

non-solenoidal evolutions, although these are expected to converge. Various techniques exist

to help with this issue, for example, some kind of divergence cleaning mechanism [3, 61].

A third approach, which could also be considered as an extension to the second, is to

evolve a vector potential; by writing

B = ∇×A, (6.1.5)

it is automatically true that the divergence vanishes. The choice of gauge1is irrelevant to

the evolution, and we shall see that the time evolution equations for the components of

A are easily derived. In fact this approach turns out to be exactly the same as solving

∇ ·B = 0 for the polar component and inserting into the equations. It does however give a

term involving a third-derivative in the equation for ḟ .

6.2 Spherical harmonic expansion

In order to write the MHD equations in terms of spectral coefficients, one starts by defining

a magnetic field in a similar way to the velocity field:

B = BYγe
A ⊕

(
CγZ

a
γ +DγS

a
γ

)
. (6.2.1)

The conservation of mass equation is of course unchanged with the addition of a magnetic

field. We neglect to write the Lorentz terms in the Euler equation here due to length, but

the components of the ideal induction equation (6.0.6) are

Ḃγ = −χγ
{
vα

(
B′β +

2Bβ
r

)
− vαCβD̂αβ−γ + uαBβ

(
L2
αĈαβ−γ + D̂αβ−γ

)}
,

(6.2.2)

Ċγ = −χγ
L2
γ

{
Bαu

′
βD̂−γαβ − vα

(
C ′β +

2Cβ
r

)
D̂−γαβ − v′αCβD̂−γαβ

+uαCβ

(
Ê−γβα − Ê−γαβ − L2

αD̂−γαβ

)}
, (6.2.3)

Ḋγ = −χγ
L2
γ

{
Bαw

′
βD̂−γαβ + wαCβ

(
Ê−γαβ − F̂−γαβ

)
− vα

(
D′β +

2Dβ

r

)
D̂−γαβ

−v′αDβD̂−γαβ + uαDβ

(
F̂−γαβ − Ê−γαβ − L2

αD̂−γαβ

)}
. (6.2.4)

1Since the curl of a gradient is zero, it must be the case that one can add an arbitrary function ∇ζ to A
and get the same field.
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The divergence-free property of the magnetic field requires

L2
γCγ +B′γ +

2Bγ
r

= 0 (6.2.5)

for each γ.

6.2.1 Magnetic vector potential

As previously mentioned, writing B = ∇×A and evolving Ȧ ensures the magnetic field is

always divergence-free. Writing this expression in terms of spherical harmonics is relatively

straightforward; without the introduction of coordinates, the curl of a vector A is

Bi = εijk∇jAk, A = AγYγeA ⊕
(
BγZaγ + ψγS

a
γ

)
. (6.2.6)

From the curl (2.4.24), we can equate components as

Bγ = −L2
γψγ , Cγ = ψ′γ +

2

r
ψγ , Dγ =

1

r2
Aγ − B′γ −

2

r
Bγ , (6.2.7)

with regularized components

B̄γ = −L2
γΨ̄γ , C̄γ = (`γ + 1)Ψ̄γ + rΨ̄′γ , D̄γ =

1

r2
Āγ −

`γ
r2
B̄γ −

1

r
B̄′γ (6.2.8)

This is easily verified to give a divergence-free field, since

[
∇jBj

]
γ

= L2
γCγ +B′γ +

2

r
Bγ

= L2
γ

(
ψ′γ +

2ψγ
r

)
+ (−L2

γψ
′
γ) +

2

r
(−L2

γψγ)

= 0. (6.2.9)

In fact, equations (2.4.23,2.4.24) are identical to the expression of ∇jBj = 0 in spherical

harmonics (6.2.5). Solving the latter and replacing C with B,B′ is synonymous with

evolving the vector potential.

The gauge freedom in choosing a potential is demonstrated through the transformations

Ai → Ai +∇iζ

=⇒ Aγ → Aγ + ζ ′γ , Bγ → Bγ + ζγ/r
2, ψγ → ψγ . (6.2.10)

It is easy to verify that the components of B are invariant under these.
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6.2.2 Regularized MHD equations using a magnetic vector potential

We should now regularise the equations for use in a spectral code, retaining the fluid variables

v̂, f as defined in section 5.5. Using the standard vector regularization as derived in section

5.2.1, we have

bγ = r`γ−1b̄γ , cγ = r`γ−2c̄γ , dγ = r`γ−1d̄γ , ψγ = r`γ−1Ψ̄γ , Dγ = r`γ−1D̄γ .

(6.2.11)

For the rescaled magnetic field, we introduce a new variable

b̂γ =
b̄γ − `γ c̄γ

r
= O(r), (6.2.12)

which we use in place of b̄, to simplify the equations for the case `γ = `α+`β . The magnetic

field components evolve as follows:

˙̄Ψγ = −χγ
L2
γ

r`α+`β−`γ
{
v̂αΨ̄′β

[
D̂−γαβ − `β(`β + 1)Ĉαβ−γ

]
−
v̂αΨ̄β

r

[
`β(`β + 1)2Ĉαβ−γ − (`β + 1)D̂−γαβ

]
+
ūαΨ̄′β
r

[
`αD̂−γαβ − `α`β(`β + 1)Ĉαβ−γ

]
+
ūαΨ̄β

r2

[
`α`β(`α − `β)(`β + 1)Ĉαβ−γ + (`α − `β)(`β + 1)D̂−γαβ

]
+v̂αD̄βĜαβ−γ +

ūαD̄β

r
`αĜαβ−γ +

w̄αΨ̄β

r
`β(`β + 1)Ĝαβ−γ

}
, (6.2.13)

˙̄Dγ = −χγ
L2
γ

r`α+`β−`γ
{
−(v̂αD̄

′
β + v̂′αD̄β)D̂αβ−γ − `αfαD̄βD̂αβ−γ

−
ūαD̄

′
β

r
`αD̂αβ−γ +

Ψ̄αw̄
′
β

r
`α(`α + 1)D̂αβ−γ

+
Ψ̄′αw̄β
r

(Ê−γαβ − F̂−γαβ )−
v̂αD̄β

r
(1 + 2`α + `β)D̂αβ−γ

+
ūαD̄β

r2

[
`α(1− `β)D̂αβ−γ − Ê−γαβ + F̂−γαβ

]
+

Ψ̄αw̄β
r2

[
`α(`β − 1)(`α + 1)D̂αβ−γ + (`α + 1)(Ê−γαβ − F̂−γαβ )

]
+ (3D terms involving Ĝαβ−γ )

}
, (6.2.14)

where a number of terms that reduce to zero in axisymmetry have been omitted from

(6.2.14) for brevity.

It is interesting to note that one cannot generate a poloidal field from a purely toroidal

one in axisymmetric ideal MHD, regardless of the velocity or density profile, because (6.2.13)

only depends on Ψ̄. This has been pointed out by Chandrasekhar [26]; as he put it,



112 CHAPTER 6. NEWTONIAN IDEAL MHD

“There is ... no ‘feedback’ from the toroidal to the poloidal field. However,

there is a feedback from the poloidal to the toroidal field through a coupling

with the rotational motions ... [which only exists] in the case of non-uniform

rotation.”

The last part of this is true in the sense that coefficients of w̄1 in (6.2.14) can be shown

to always vanish, and setting w̄′1 = 0 removes the other poloidal couplings. Of course in

non-ideal MHD such couplings can occur and results in twisting of field lines: certain types

of sunspots are thought be created by the so-called α-effect [69].

Using this vector potential to evolve the magnetic field also trivializes the resistivity term

present in (6.0.2). The vector Laplacian (2.4.25) reduces to adding terms in the induction

equation as per

˙̄Ψγ = ...+
1

µ0κe

[
Ψ̄′′γ +

2(`+ 1)

r
Ψ̄′γ

]
, (6.2.15)

˙̄Dγ = ...+
1

µ0κe

[
D̄′′γ +

2(`+ 1)

r
D̄′γ

]
. (6.2.16)

6.2.3 Calculating the rescaled field variables b = B/ρ

This formulation requires the components of b be calculated at every time-step. Although

we do not have a simple way to divide spherical harmonics, there are two potential ways we

could calculate the quantity 1/ρ, one of which is an iterative scheme.

Consider the quantity q = 1/ρ, which satisfies

qρ = q(ρ0 + ρ̃) = 1, (6.2.17)

where ρ̃ is expected to be small. This can be arranged into the form

q =
1

ρ0
(1− qρ̃) , (6.2.18)

and then written in terms of spherical harmonics as

Yγqγ =
1

ρ0
(Y0 − YαqαYβ ρ̃β) . (6.2.19)

It therefore suggests an iterative scheme based on the Jacobi method:

q(i+1)
γ =

1

ρ0

[
δγ,0 − χγ Ĉαβ−γ q(i)

α ρ̃β

]
where ρ̃β =

 ρβ, (β 6= 0)

0, (β = 0)

q(0)
γ = δγ,0

1

ρ0
. (6.2.20)

To save time one could considering using the previous calculated value of q at the start of
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Figure 6.1: The differences between the iterated q̄2 with increasing iteration steps. The
density profile being divided is the analytical solution for a rigidly rotating polytrope.

the iteration. This method can also be written in terms of differences between successive

iterations, which makes it easier to write an efficient stopping rule (for example, when

the L2-norm of the δq’s becomes sufficiently small). The iterative procedure converges at

different rates, as shown in figure 6.1, and one sees the largest error at the outer boundary,

vanishing at approximately a linear rate and expected because of the vanishing density.

It is also possible, and perhaps more efficient, to time-evolve this quantity. If we first

notice that

q̇ = −ρ̇/ρ2, ∇jq = − 1

ρ2
∇jρ, (6.2.21)

manipulating (5.0.1) gives

q̇ = q∇jvj − vj∇jq (6.2.22)

=⇒ ˙̄qγ = −χγ r`α+`β−`γ
{[
v̂αq̄
′
β − v̂′αq̄β − `αfαq̄β + (`β − 2`α − 2)

v̂αq̄β
r

]
Ĉαβ−γ

+
ūαq̄

′
β

r
`αĈαβ−γ +

ūαq̄β
r2

(
`α`βĈαβ−γ + D̂−γαβ

)}
. (6.2.23)

However it would still be necessary to use the iterative method to generate q̄ initial data,

and our code chooses to use the iterative method at every time step.
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Regardless of the method one chooses to use, the last step in the process is to generate

b̂, c̄, d̄ from q̄, Ψ̄, D̄ as follows:

b̂γ = χγ r
`α+`β−`γ

[
q̄αΨ̄β

r
(`β + 1)

(
`βĈαβ−γ +

`γD̂αβ−γ
L2
γ

)
+ q̄αΨ̄′β

`γD̂αβ−γ
L2
γ

]
,

(6.2.24)

c̄γ = −χγ
L2
γ

r`α+`β−`γ
[
q̄αΨ̄β(`β + 1) + rq̄αΨ̄′β

]
D̂αβ−γ , (6.2.25)

d̄γ = −χγ
L2
γ

r`α+`β−`γ q̄αD̄βD̂αβ−γ . (6.2.26)

One may prefer to write a code to find B̄, C̄ from Ψ̄ first to find components of b and other

quantities, such as the magnetic energy (section 6.2.5).

6.2.4 Exterior field

As our model is surrounded by a spherical shell, with cut-off at non-zero density, the simplest

boundary condition on the magnetic field we could impose would be B = 0. In the absence

of dissipation, such initial data would automatically satisfy Ḃ = 0; although we may not

apply dissipation to the magnetic variables (section 6.3.2) we still use this relation at the

outer boundary.

Although this buried field is relatively straightforward to model, theoretical and observa-

tional evidence [43] generally points towards neutron stars having strong exterior magnetic

fields coupled to the interior through field lines frozen into the crust.

Suppose instead that the NS was surrounded by a vacuum atmosphere (section 1.2.2),

where there are no charged particles that could carry an electric current. Such a situation is

unlikely to exist in nature, as it is widely believed [43] that the electric fields generated at

the NS surface by rotation and magnetism would generate a force along field lines several

orders of magnitude stronger than that provided by gravity. It would thus be impossible to

maintain an equilibrium (in the absence of some exotic physics in the crust). Nonetheless,

the non-rotating vacuum-exterior model is still a starting point for our considerations.

In this vacuum exterior, j = ∇×Bε = 0 and hence Bε is given by a scalar potential

∇f satisfying

∇ ·Bε = ∆f = 0. (6.2.27)

The radial component of Bε should vanish at infinity; although the curl of the vector

potential is zero in the exterior, we may still equate B̄ε
γ = −L2

γΨ̄ε
γ , and so from (6.2.27) we

find

Ψ̄ε
γ(r) ∝ r−(2`+1). (6.2.28)
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Figure 6.2: The contours of an ` = 1 streamfunction u (section 6.3.1) including the exterior,
dipolar component.

The constant of integration is fixed with the value of the interior field on the boundary as

Ψ̄ε
γ(r) =

( r
R

)−(2`+1)
Ψ̄γ(R), (6.2.29)

D̄ε
γ(r) = 0, (6.2.30)

where of course we now have Ψ̄γ(R) 6= 0 to avoid triviality. This falloff is easily implemented

in the outer ghost zone, replacing extrapolation. As we shall see in section 6.3.3 constructing

equilibrium exterior fields requires extra numerical considerations within our model.
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6.2.5 Magnetic energy

The total energy of the (interior) magnetic field is given by

B =
1

2µ0

∫
|B|2dV (6.2.31)

=
1

2µ0

∫ [
YαYβBαBβ + r2 (ZaαZβaCαCβ + SaαSβaDαDβ)

]
r2dr dΩ

=
1

2µ0

∫
YαYβdΩ

∫
r`α+`β

[
B̄αB̄β + `β(`β + 1)

(
C̄αC̄β + r2D̄αD̄β

)]
dr

= (−1)mγ
1

2µ0

∫
r2`γ

[
B̄γB̄−γ + `γ(`γ + 1)

(
C̄γC̄−γ + r2D̄γD̄−γ

)]
dr. (6.2.32)

This has a lengthier form when written in terms of the vector potential.

A similar integral gives the energy contained in the exterior field, which we know to

vanish at infinity (6.2.28):

Bε =
1

2µ0

∫ ∞
r=R
|Bε|2dV (6.2.33)

=
2π

µ0
R2`−3`2(`+ 1)(`(3 + 2`) +R2(5 + 7`+ 2`2))(Ψ̄γ(R))2 (6.2.34)

=
4π

35Rµ0
(5 + 14R2)(Ψ̄1(R))2 + ... (6.2.35)

6.3 Magnetic equilibria

Finding magnetic equilibrium states of stars, physically realistic or otherwise, has long

been a challenge faced by astrophysicists [29, 30, 76]. The structure and evolution of

magnetic fields of the Sun and Earth themselves are still poorly understood, let alone those

of more exotic extrasolar bodies. Early attempts at solving a linear equilibrium problem

started by assuming structures described by incompressible polytropes, and an important

magneto-rotational instability effect (MRI) was first realized through a model of cylindrically

symmetric accretion disks [7].

Our interest lies in numerically finding stationary solutions to the non-linear problem,

where there is no velocity field except perhaps for some axial rotation. The problem is to

balance gravity, the centrifugal force, fluid pressure and magnetic pressure, with the latter

typically being the smallest in magnitude. We discuss the stability of these equilibria to

various perturbations in section 6.4.

Force-free fields (L = 0) are known to be mathematically given by spherical Bessel

functions [31], although their astrophysical significance is dubious. We note a recent

argument by Reisenegger [74] that such configurations should simply not exist. If the

Lorentz force is integrated over some spherical volume that contains the star, one obtains

an expression involving the total magnetic energy and a surface integral that vanishes as



6.3. MAGNETIC EQUILIBRIA 117

the volume increases towards infinity. From this it must be the case that the Lorentz force

is non-zero if there is any magnetic energy, unless there are infinite Lorentz forces on the

stellar surface (i.e. a delta function in the original integral).

Techniques have been developed to model the simplest possible NS models, i.e. polytropes

with axisymmetric magnetic fields. From the numerically-derived equilibria one may go

on to investigate the stability properties and oscillation modes (section 6.4 and chapter

7) although we will later review evidence to suggest magnetized barotropes cannot be in

equilibrium.

6.3.1 Grad-Shafranov formalism

There are various self-consistent field methods used to iteratively find the equilibria of

axisymmetric, rotating polytropes [49]. Recently these have been modified to include the

Grad-Shafranov equation [44] to find rigidly rotating, magnetic equilibria [36, 59, 90].

Starting by writing the equilibrium condition in the form

L
ρ
−∇h−∇Φ + 1

2∇(rΩ sin θ)2 = 0,

(
∇h =

∇P
ρ

)
(6.3.1)

where h is the enthalpy (section 5.5.2) and the centrifugal term has been written as a

potential, then the curl can be taken and integrated to give

L = ρ∇M, (6.3.2)

where M is some scalar function; since B · ∇M = 0 it is constant along field lines. Next,

by introducing a stream function u(r, θ) defined through

B =
1

r2 sin θ

∂u

∂θ
er −

1

r sin θ

∂u

∂r
eθ +Bϕeϕ =

1

$
∇u× eϕ +Bϕeϕ, (6.3.3)

it is automatically true that ∇ · B = 0 (using the standard spherical basis). In addition

B · ∇u = 0 so that u is constant along field lines, and thus M = M(u). In terms of vector

potentials it is easy to show that the toroidal component of A satisfies u = $Aϕ. Taking

the curl of B gives the current

4πj =
1

$
∇($Bϕ)× eϕ −

1

$
∆∗u eϕ, (6.3.4)

where

∆∗u =
∂2u

∂r2
− sin θ

r2

∂

∂θ

(
1

sin θ

∂u

∂θ

)
(6.3.5)
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which can also be expressed as the Laplacian of a three dimensional term:

1

$
∆∗u ≡

1

sinϕ
∆

(
u sinϕ

$

)
=

1

sinϕ
∆(Aϕ sinϕ). (6.3.6)

We may now rewrite the Lorentz force as

4πL = 4πj×B = − 1

$2
∆∗u∇u−

1

$
Bϕ∇F (u) = 4πρ∇M(u), (6.3.7)

giving the standard form of the Grad-Shafranov equation

4πρ
dM

du
= − 1

$2

(
∆∗u+ F (u)

dF

du

)
. (6.3.8)

Interestingly, this equation can be used to replace the GS operator in (6.3.4) to give

j =
1

4π

dF

du
B + ρ$

dM

du
eϕ (6.3.9)

=⇒ L = ρ$
dM

du
(B× eϕ). (6.3.10)

Equating (6.3.9) with (6.3.4) and inverting the Laplacian as per (6.3.6) gives an integral

form of the GS equation which is used as the basis for an iterative procedure (see e.g. [59]

for more details). The values of dF
du ,

dM
du are respectively related to the poloidal/toroidal

field strength, and the distortion of the star due to magnetic and centrifugal forces, and are

(independently) specified.

Although this procedure requires the use of spherical harmonics in evaluating the integral,

it also requires vanishing enthalpy on the outer boundary which is not satisfied in our

numerical model. In addition, the pressure term cannot be rewritten as the gradient of

enthalpy if the fluid is stratified.

Regardless of this, the poloidal components of B, j are parallel if the toroidal component

of the Lorentz force vanishes (assuming that the field is mixed). It follows from comparing

(6.3.3,6.3.4) that

$Bϕ = F (u) (6.3.11)

for an arbitrary function F . This is an important condition on axisymmetric magnetic

equilibria first noted by Chandrasekhar and Prendergast [30], who express it in terms of

frame components,

$2B(ϕ) = F ($2A(ϕ)). (6.3.12)
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6.3.2 Equilibria through relaxation

We shall now describe the steps we take to relax a buried, mixed field to equilibrium with

stratification and without rotation by subtracting an unphysical friction term (section 5.7.4).

Consider an ` = 1 field with a toroidal component that is a constant multiple of the poloidal

part,

Ψ̄1(r, 0) = ψ1(R2 − r2)
[
e−(r−c)2/w2

+ e−(r+c)2/w2
]
,

D̄1(r, 0) = d1(R2 − r2)
[
e−(r−c)2/w2

+ e−(r+c)2/w2
]
. (6.3.13)

where we shall set R = 0.8, w = 0.1, c = 0.4. Such a field initially satisfies (6.3.11). Our

aim is to be determine the stability of a variety of different field configurations, and to

generate stable backgrounds on which to study nonaxisymmetric modes (section 7.3).

We first note that this relaxation does not work for unstratified fluids: the density and

magnetic field still evolves significantly at several hundred t with strong friction, and the

system oscillates violently, blowing up if the field is strong enough. Typically we observe

that mixed fields with a strong poloidal component slowly sink towards the origin, eventually

crashing the code if the field is initially (and thus always) zero at the origin. Strongly

toroidal fields do not appear to sink to the same extent, but the friction method still fails

to find a stable configuration. While we do not rule out the existence of special “islands”

of stability for magnetic fields embedded in unstratified media [59] with unknown stability

properties, it certainly seems unlikely that one can time-evolve arbitrary configurations into

stable equilibria without extra physics or unphysical numerical tricks [19].

For stratification, we first set the ` = 0 background from the Lane-Emden solution

with n = 3/2 (section 5.6.2). A buried field following (6.3.13) with ψ1 = 0.01, d1 = 0.1

is painted on top. Approximately 45% of the magnetic energy of this profile is contained

within the toroidal component, which is very small in relation to the total internal energy

(B/U = 5× 10−5). We evolve this system with some λF up to t = 100 with varying `m,

applying forth-order dissipation (with dissipation coefficient 0.02) to all variables except

the magnetic field and extrapolating to second-order at the outer boundary. Higher order

schemes are observed to sometimes cause boundary instabilities (with our spherical container

preventing radial escape of fluid) at late times.

We find that setting λF = 5 for t < 10, λF = 1 for t ≥ 10 is a good choice for

minimizing ˙̄ργ , vγ ,Lw̄ at t = 100 when compared to a fixed λF , although we do not

claim that it is optimal. During the evolution the magnetic field sinks2, recentering itself

at 0.38, with final energies at `m = 2, 4, 6 of BT /B = 0.51, 0.51, 0.51 and B/U =

2.7× 10−5, 4.6× 10−5, 6.4× 10−5. The final state is illustrated by figure 6.3.

Continuing the evolution without friction appears to be stable for up to t = 100 + 400,

2If the field is frozen during the relaxation stage, it sinks in a similar manner as soon as the friction term
is switched off, although the resulting oscillations are larger in magnitude.
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(a) The even-` unregularized density components after relaxation, compared with the
(rescaled) derivative of Ψ̄1.
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metric background (ρ−ρ0 at `m = 8) with red/blue areas indicating a positive/negative
difference.

Figure 6.3: The density at t = 100 after evolving a mixed field with friction.
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regardless of whether or not the velocity is reset to 0, so long as f is set from v̂, ū often

enough (for example after every time step). Freely evolving the `m = 2, 4, 6 relaxed states

gives a maximum |v2| amplitude of 10−3, 3× 10−4, 4× 10−4 in 100 < t < 100 + 200. At

`m = 4, the final energy ratio is BT /B = 0.53, and there has been a relative mass increase

of 0.006 and relative total energy increase of 0.002. These figures are little different if

the field is relaxed over some longer t > 100. The residual velocity field is proportional

in magnitude to the square of the background field (and inversely proportional to the

resolution) during both the relaxation and subsequent free evolution indicating that these

relaxed states represent linear-regime equilibria. These non-linear oscillations are actually

observed to become damped (their time derivatives globally decrease in magnitude) after

around t = 100 + 150.

We may apply the same relaxation and subtraction techniques to test the stability of

generic magnetic fields, including non-mixed forms, to axisymmetric perturbations. The

relaxed density distribution of the purely poloidal field ψ1 = 0.01 has a very similar density

distribution to the mixed field we previously looked at, and a range of ρ2 profiles are shown

in figure 6.4.

All of these fields, including the purely poloidal (red) and toroidal (purple) fields, are

stable to free evolutions (i.e. with no residual acceleration subtracted or perturbations)

tested up to t = 100 + 400. Their evolutions are typically characterized by initially large

oscillations in velocity terms near the origin, which are eventually (t = O(100)) damped.

6.3.3 Equilibria through relaxation: exterior fields

We now turn to the equilibria of exterior fields. Braithwaite [18, 19] found equilibria by

evolving arbitrary initial configurations and applying a hyper-diffusion operator, with the

aim of studying the stability properties. To be able to study neutron stars with realistic (and

important) external fields we should like to see if our friction method lets us evolve to an

equilibrium.

First recall that an ` = 1 poloidal field suffers an r−3 fall-off (6.2.28) in vacuum.

Gaussian initial data can not not have smooth derivatives at the outer boundary with this

constraint. Since we require derivatives of Ψ̄ up to third order (ḟ contains such a term) to

avoid large unphysical numerical quantities, and want to prescribe both the radial location of

the field maximum and its magnitude, we set Ψ̄1 from a polynomial with five free parameters

as per

Ψ̄1(r) = λ(r2 + ar4 + br6 + cr8 + dr10). (6.3.14)

For example, the polynomial

Ψ̄1 ' λ(r2 − 5.29 r4 + 11.14 r6 − 10.78 r8 + 3.98 r10) (6.3.15)
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Figure 6.4: A range of relaxed ρ2 profiles with fixed D̄1 and varying Ψ̄1. The density profile
for a purely poloidal field is shown for comparison (red).

has a maximum at r = 0.4 and matching derivatives to an exterior field (up to third order)

when the surface is given by R = 0.8.

Toroidal fields are set from a Heaviside function to avoid surface/exterior currents:

$Bϕ = H(x/x0 − 1)(x− x0)(x/x0 − 1), (x = $Aϕ) (6.3.16)

where x0 is some minimum value of x where the toroidal field exists. The maximum of

$Aϕ using our example Ψ̄1 is found at r = 0.8, θ = π/2 and we should set x0 to greater

than or equal to this. D̄γ is found through numerical integration of (6.3.12): using

$Bϕ = $2r`−1D̄γS
ϕ
γ = F ($Aϕ) (6.3.17)

implies

D̄γ =
1

2L2
γ

1

r`+1

∫ π

0
F ($Aϕ)∂θYγdθ, (6.3.18)

where we have used the identity Sϕ = − sin θ∂θY . The toroidal field may now be rescaled

through multiplication by an arbitrary constant. Figure 6.5 shows this process, along with

the first few D̄γ returned by this particular choice of Ψ̄1, F . This function can be verified

to give toroidal Lorentz components that converge to zero with both `m and resolution (at

second-order), as shown for ` = 2 in figure 6.6.
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We now relax this magnetic field, with appropriate boundary conditions (6.2.29), again

with a changing friction λF = 5 : t < 10 and λF = 1 : t ≥ 10.

The background density and magnetic field configurations change very little, with the

majority of poloidal magnetic energy remaining in the ` = 1 component. Figure 6.7 shows

the total accelerations acting on v̄2, w̄2 at different times. Although the initial poloidal

accelerations shrink by several orders of magnitude, the toroidal acceleration (i.e. the

Lorentz force) at ` = 2 grows, reaching a maximum at about t = 150. The higher ` toroidal

accelerations (tested with ` = 4, 6, 8) roughly halve in amplitude from their initial states.

Continuing an evolution without friction leads to global blow-up of the velocity com-

ponents. Similar blow-up is observed in axisymmetric perturbations to these states, where

the initial (unperturbed) acceleration is subtracted at every time step to create an artificial

equilibrium, with a time scale independent of the perturbation amplitude. Unfortunately

we are forced to conclude that our relaxation technique does not find (stable) equilibria in

this case: given the similar issue we have with stratification and rotation, it is possible that

friction and the outer boundary conditions are somehow incompatible.
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6.4 Stability

Tayler [86, 87, 89] showed, using an analytical method, that purely poloidal and toroidal

fields should (usually) be unstable to certain kinds of perturbations over an Alfvén time scale

tA = R
√
M/B, even within stably stratified stars. In recent years there have been several

numerical models built to study these results; in particular a series of papers by Braithwaite

[17, 18, 19] confirm the existence of these instabilities for various stratified configurations

with and without exterior field components.

Various instability effects are known for magnetized stars with rotation or thermal effects

included, for example, the magneto-rotational instability [7]. Spruit [81] showed that the

so-called Tayler effect is perhaps the most important class of toroidal instability: purely

toroidal fields are subject to kinking, where circular, horizontal field lines are displaced in

different directions. The effect is often compared with the displacement of vertebrae from

spinal cord compression. Toroidal fields should always be unstable to |m| = 1 perturbations,

with stability to other m’s if the density and field configuration satisfies a particular condition

relating to the potential energy [17].

Poloidal fields should also exhibit a similar vertical kink effect when perturbed by |m| ≥ 2,

but adding a toroidal stabilizes the configuration at some point (usually quoted as BT /B

being somewhere between 20% and 30%). Tayler showed that mixed field stability requires

the magnetic pressure to be weak compared to the fluid pressure, comparable toroidal and

poloidal field strengths, and no current flowing along the magnetic axis.

Given the estimated ages of some pulsars – PSR B0531+21, lying at the heart of the

Crab Nebula, is the pulsar remnant of a supernova observed in 1054 CE, and the current

closest known neutron star, PSR J0108-1431, may be over 200 million years old [85] – it is

likely to be the case that a typical neutron star magnetic field is of mixed configuration. Any

that are wound up to have a too-strong (and thus unstable) toroidal component perhaps

lose energy in the form of powerful γ-ray flares [35, 60].

However the stability properties of generic mixed fields embedded in polytropic stars are

not well known, despite a wealth of literature dealing with such configurations. It is perhaps

the case that polytropes have no stable equilibria: Reisenegger [74] has pointed out that

there is no known mechanism to stop a perturbed toroidal field from rising vertically out

of the star as strong fluid pressure displaces it. Additionally, a simple comparison of the

number of independent functions indicates that balancing Aϕ, Bϕ against a single variable

ρ gives, at best, only a particular subset of all possible configurations. A stratified fluid with

P (ρ, s) generating a positive buoyancy effect should be able to maintain a stable, long lived

mixed field.
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6.4.1 Axisymmetric perturbations

To test the stability of the relaxed mixed field discussed in section 6.3.2 we evolve non-linear,

axisymmetric perturbations to the `m = 4, t = 100 relaxed background. We indeed find that

this configuration is stable to various perturbations when evolved freely or with unwanted

background oscillations artificially removed.

We achieve the latter by subtracting the initial time derivative of the unperturbed,

frictionless, relaxed state, from every subsequent time-step of the perturbed evolution. We

shall refer to this method as subtracting the residual acceleration. As we saw in section 5.7.4

residual acceleration decreases with increasing resolution so this subtraction is consistent.

In addition we only consider adding perturbations in modes3 that are not naturally

excited by this mixed-field configuration in order to reduce the search-space. For initial data

where the density/velocity components have even-` and the magnetic field components

odd-` this means we perturb in odd-` fluid and/or even-` magnetic terms.

In evolutions of this mixed field background with the residual acceleration subtracted,

we find perturbations of any variable with initial amplitude set to 10−3, 10−4, 10−5 remain

stable and perfectly proportional by a factor of 10, whilst the even-` velocities and odd-`

field perturbations remain proportional by a factor of 102, indicating that they are driven by

quadratic source terms. These evolutions remain stable until at least t = 100 + 400. Small

` = 1 fluid oscillations of O(10−10),O(10−11) are proportional although the quadratic ` = 2

components are noisy and O(10−16) indicating they are overwhelmed by floating-point error.

6.4.2 Nonaxisymmetric perturbations

On purely poloidal axisymmetric backgrounds, w̄2
2 perturbations cause significant decay of

the poloidal component. Mixed fields with a sufficiently strong toroidal component are stable

to such perturbations; the purely toroidal fields we evolve are unstable only to perturbations

w̄1
` .

The poloidal instability occurs over a time dependent on both the background field

strength and the perturbation amplitude, rather than simply one Alfvén time crossing. For

example, with ψ1 = 0.01 and w̄2
2 = 10−3, 10−4, the field begins to noticeably decay at

around t = 25, 50 and has somewhat settled into a new configuration at around t = 70, 95

(tA ' 13). Perturbations of ρ̄2
2 and D̄2

2 do not cause this decay, or even dampen it when

w̄2
2 is present. We have already seen that axisymmetric perturbations do not lead to similar

behaviour.

Varying the dissipation amount and order, the friction coefficient, the resolution (in

radius or angles) `m, or the extrapolation order at the outer boundary makes little, if any,

difference to the decay time scale and so we conclude that we are observing a physical effect.

3In referring to modes we exclusively refer to the `,m harmonic numbers involved.
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Figure 6.8: Evolution and decay of Ψ̄0
1 when a constant perturbation w̄2

2 = 10−4 is applied.
The field has no ` = 1,m = 0 toroidal component but a D̄2

3 term grows to a similar order.

The decay of ψ̄0
1 to a w̄2

2 = O(10−4) perturbation is shown in figure 6.8. Evolving without

subtracting a residual acceleration speeds up the decay but does not appear to affect the

stability of any of the fields we study in this section.

Additionally, it is not just ` = m = 2 toroidal modes that lead to the poloidal instability

but apparently any quadrupole-led w-perturbation (section 2.4), e.g. w̄2
2, w̄

3
3, w̄

4
4, w̄

2
4. Since

these modes induce D̄m
`+1 terms, it is expected (and observed for ` = 2,m = 2) that

` = 1,m = 0 poloidal fields are unstable to dipolar D perturbations.

We define the quantity Zψ(r, t) = ψ̄1
0(r, t)/ψ̄1

0(r, 0) and record the decay time as

Z(0.4, t) ≤ 0.99 for varying perturbation modes. This particular fraction is chosen simply

because it gives a rough estimate as to when the field is noticeably beginning to decay.

Modes that do not decay within time t = 400 are marked as such.

Figure 6.9 lists such decay times for ` = 1 poloidal fields with rotation w̄m` = O(10−4).

The indications are that quadrupolar perturbations of w are stable, unlike dipolar modes,

which, for a given `, collapse faster at higher m. This higher-m-faster-collapse result appears

to be in agreement with a result from Tayler and Markey [89], although more tests with

higher modes (and hence higher `m) are necessary to rigorously confirm this. It is not clear

to us why quadrupolar perturbations are stable, and if this is an inherent property of the

perturbation, or rather the couplings with the background density and/or magnetic field;

perhaps it it the case that these perturbations, satisfying f (θ)(θ, ϕ) = −f (θ)(π − θ, ϕ), are
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` m Decay time

1 1 167

2 1 N/A

2 2 48

3 2 N/A

3 3 42

4 2 77.5

4 3 N/A

4 4 41.5

Figure 6.9: Decay time of a purely poloidal ` = 1 field (ψ1 = 0.01) at `m = 6 to
w̄m` = O(10−4). The figures for m = 1 were found with `m = 4. The Alfvén time for this
field is approximately 30; the fields that did not decay were tested up to a time of 400.

suppressing the usual poloidal field kinking that gives the instability (figure 2.3, and figure 2

of [16]).

3–dimensional visualization helps us to observe a strong toroidal component is quickly

generated during these evolutions (figure 6.10), through the excitation of (exclusively)

quadrupolar D̄m
` terms, for example D̄2

3, D̄
3
4.

Purely toroidal fields, centred at r = 0.4, appear to be stable to wm>1
` perturbations,

in the same sense that the value of ZD(t) = D1(r = 0.4, t)/D1(r = 0.4, t = 0) oscillates

around some value close to one, irrespective of the perturbation being dipole- or quadrupole-

led. Evolving a field perturbed by w̄2
2 without subtracting the residual acceleration does

lead to a gradual shrinking of D̄0
1 (Z(100) = 0.95, Z(200) = 0.91) but the perturbation

does not grow at an exponential rate. The effect is illustrated in figure 6.11 Those m = 1

perturbations with a lower ` collapse the field faster but as we are using w̄ = constant

perturbations it is not easy to tell if this is due to larger w ∝ r`. Lander and Jones [60]

recently investigated a similar background with linear m = 1 perturbations, finding decay

over one Alfvén crossing, and went on to confirm that adding rotation increases the time

taken to decay without ever stabilizing the star.

To investigate the poloidal/toroidal energy proportion a generic mixed field requires for

stability when subject to w̄2
2 perturbations, we again record the quantity Zψ with varying d1

(figure 6.12). As with the purely poloidal case, those fields that are unstable are generally

observed to collapse and oscillate around a new configuration, which remains closer to

the initial data with a stronger toroidal component. Larger amplitude perturbations cause

unstable fields to decay faster and do not cause otherwise stable fields to collapse.

The results indicate that, for a stratified star initially set from a range of different

polytropes, and with a magnetic field dominated by ` = 1 components, an initial fraction
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(a) t = 0 (b) t = 25

(c) t = 50 (d) t = 75

Figure 6.10: Some (truncated) field lines of an evolution of an initially poloidal magnetic field,
with colours indicating |B|. When subjected to an O(10−4) w̄2

2 perturbation a substantial
nonaxisymmetric toroidal term D̄2

3 is rapidly generated. By t = 50 the Ψ̄0
1 component has

started to noticeably decay.

BT /B > 0.3 is stable to ` = m = 2 toroidal perturbations. This appears to be a linear

instability: poloidal fields still collapse with w̄2
2 = O(10−10) perturbations (which grow

exponentially in time) and when all modes with |m| > 2 are discarded.

In section 7.3 we shall look at the oscillation modes of (stable) nonaxisymmetric pertur-

bations to some of the same magnetic fields. Although some basic stability properties have

been investigated there are still many questions that could be addressed using this spectral

framework: for example, how varying the radial- and angular-profiles of these magnetic fields

might alter their stability properties (particularly with regards to toroidal fields), what (if

any) differences there are with linear evolutions, and if the same toroidal/poloidal energy

proportions required for stability hold for all toroidal perturbation modes `,m.
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(a) t = 0

(b) t = 200

Figure 6.11: Some streamlines of an initially toroidal magnetic field that pass through the
equator, subsequently evolved non-linearly with a w̄1

1 perturbation. Due to an instability the
background field decreases in strength whilst a strong ` = 2,m = 1 poloidal field component
is generated. This is the Tayler instability: field lines remain circular but are displaced from
the horizontal.
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Decay time

d1 Initial BT /B Relaxed BT /B n = 1.5

0 0 0 78

0.01 0.032 0.036 81

0.02 0.117 0.131 90

0.03 0.229 0.252 121

0.0325 0.259 0.283 143.5

0.035 0.288 0.314 210

0.0375 0.317 0.344 ∞
(a) ψ1 = 0.005

Decay time

d1 Initial BT /B Relaxed BT /B n = 1.1 n = 1.5 n = 2

0 0 0 58.5 49 41

0.02 0.032 0.042 60.5 50 42.5

0.04 0.117 0.150 70.5 57 48

0.06 0.229 0.282 105.5 80 67.5

0.065 0.256 0.315 135.5 98 82

0.07 0.288 0.347 256.5 161 124.5

0.075 0.317 0.408 ∞ ∞ ∞
(b) ψ1 = 0.01

Decay time

d1 Initial BT /B Relaxed BT /B n = 1.5 n = 2

0 0 0 31 26

0.1 0.171 0.255 43.5 36.5

0.14 0.288 0.398 116 88.5

0.144 0.300 0.411 234.5 131.5

0.145 0.303 0.414 ∞ 161

0.146 0.306 0.416 241

0.147 0.309 0.420 ∞
(c) ψ1 = 0.02

Figure 6.12: The time it takes Ψ̄0
1, with a varying toroidal component, to decay in magnitude

by 1% when perturbed by w̄2
2 = O(10−4). Increasing the stratification (greater n) lowers

the mass of the modelled NS, and hence shortens the Alfvén time, which is approximately
halved between the n = 1.1, 2 models (for ψ1 = 0.01, d1 = 0.07 it is approximately 31, 18
for n = 1.1, 2).





Chapter 7

Oscillation Modes

As we have already noted, the oscillation modes observable in X-ray or γ-ray signals from

pulsars and magnetars are important for tuning NS models. Whilst we are not overtly

concerned here with the phenomenology of neutron star models, it is still worthwhile to

adapt the mathematical apparatus for the analysis of modes to our spectral framework.

To quickly outline the process we follow to find oscillation frequencies with our code, we

start by finding a background equilibrium through relaxation, then set ρ̄ or w̄ perturbations

for a particular `,m and save the output of a sufficiently long evolution every few time steps.

Finally we take the 1D discrete Fourier transform (DFT) of these complex data at various

points in r using the free and widely used FFTW library1.

7.1 Method

7.1.1 Transforming from the inertial frame

Our evolution equations are described in the inertial frame, yet oscillation frequencies of

rotating neutron stars are almost always given in a co-rotating frame (denoted here by

hatted variables). Noting that such a transformation shifts coordinates ϕ = ϕ̂+ Ωt, and any

oscillation with frequency ω can be written in terms of spherical harmonics as ei(mϕ+ωt),

for some perturbation ζ(r, θ) we have a relation

ζei(mϕ̂+ω̂t) = ζei(mϕ+ωt) (7.1.1)

=⇒ ω̂ = ω +mΩ = 2πf +mΩ, (7.1.2)

where f is the normal frequency returned by a DFT.

1Available from http://www.fftw.org

135
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7.1.2 Background equilibria

To investigate the inertial mode frequencies of unstratified polytropes with our code, we

first need to find the unperturbed axisymmetric equilibria of a range of rotation frequencies

Ω =
√

3w̄0
1. These are straightforward to find by starting with the known analytical solution

and then relaxing for some time with a small friction coefficient to find a better numerical

equilibrium.

For the length of time the code is subsequently run, typically tens of thousands of time

steps, an evolution of the unperturbed background might evolve significantly away from

the starting configuration – that is, our supposed equilibria are not stable for as long as we

require – and the rotation rate can increase greatly. To remedy this we remove the friction

and evolve by subtracting a residual acceleration at every time step (section 6.3.2). Setting

a low truncation `m = 2 for rigid rotation is sufficient to find the background.

7.1.3 Frequency analysis

To calculate oscillation frequencies we will need to perform multiple one-dimensional DFTs

in the time domain. These are defined as

Xk =

Nt∑
n=0

xne
− 2πi
Nt

kn
, k = 0, ..., Nt (7.1.3)

where Nt+1 is the total number of time steps and the xn are complex-valued data2 sampled

every few time steps at some particular value of r: if the modes we are interested in are

global then it should not matter what r we choose. For example, the input may be the values

of w̄2
2 at the first grid point sampled every 10 time steps. The xn are of course assumed

to be representative of a continuous function, but as they are not necessarily periodic we

may choose to multiply by a window function to reduce edge noise. Using a fast Fourier

transform algorithm means this operation can usually be performed in O(Nt log2Nt) steps,

instead of O(N2
t ) [33].

The complex-valued discrete points in the frequency domain Xk need to be rescaled to

give the angular frequency spectrum. FFTW returns positive frequencies, with each point

k = Tω
2π , in the region k ∈ [1 : Nt/2], and negative frequencies Nt − k = Tω

2π in the region

k ∈ [Nt/2 + 1 : Nt], where T = δt Nt is the run-time and ω is the angular frequency3. DC

offset is returned at X0.

The DFT of a real-valued sinusoid returns equal amplitude positive and negative

2Recall that our mode components are complex valued, c.f. section 4.2, so we find the complex transform
of every variable and mode ρ`m, v̂

`
m etc. at sampled r, t.

3Another way of saying this is that FFTW returns frequencies in the range [0+, NY ] in the first half of the
output, and [−NY : 0−] in the second half where NY is the Nyquist frequency (half the sampling frequency).
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frequencies, since, for example,

f(t) = cos(ωt) = 1
2(eiωt + e−iωt). (7.1.4)

Complex valued-sinusoids can of course return purely positive or negative frequencies which

correspond to clockwise or anti-clockwise motion in time.

7.2 Inertial modes

Inertial modes are axial-led modes [65] that appear in rotating stars as a result of the

Coriolis force. In particular, the r-mode is the lowest frequency of these, as well as the most

interesting. It was first identified in an astrophysical context by Papaloizou and Pringle [68]

who named it after the recently discovered Rossby waves. Recently it was found that the

r-modes should become unstable in the relativistic regime through what is known as the

CFS instability [4, 5, 28, 37, 38] which we explain below. In particular, hot, rapidly rotating

proto-neutron stars may well emit detectable gravitational waves through this instability,

although various damping mechanisms have been proposed.

Passamonti et al. [70] recently developed a code to investigate the oscillation modes

of both stratified and unstratified non-magnetic neutron stars. This code differs from ours

in a number of ways: it includes the stellar surface by working on coordinates adapted

to contours of constant pressure, it makes the Cowling approximation, and it operates in

the linear regime. Nonetheless a comparison will help highlight some of the strengths and

weaknesses in our approach.

It is possible to show [68, 77] that the r-mode frequency is, to O(Ω), proportional to

the rotation rate when observed from a co-rotating frame:

ω̂m` =
2mΩ

`(`+ 1)
+O(Ω3). (7.2.1)

The rapid-rotation corrections are odd order in Ω because the observed frequencies should

not depend on the orientation of the observer [5]. From (7.1.2) the inertial frame frequency

is

ωm` = −mΩ
(`− 1)(`+ 2)

`(`+ 1)
, (7.2.2)

which is always negative for positive m. We can also derive these frequencies directly from

the spectral expansion without taking a curl. The term of interest is

˙̄wγ = r`α+`β−`γ−1χγ Ĝαβ−γ w̄αw̄β
`α + `2α − `β(1 + `β) + L2

γ

2L2
γ

+ ... (7.2.3)
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which reduces to

˙̄wγ ' −

(
(`− 1)(`+ 2)√

3L2
γ

Ωχγ Ĝ1γ−γ

)
w̄γ (7.2.4)

if we ignore all other coupling terms, including the polar velocity components. Since S0
1

only has a ϕ component, the antisymmetry of Ĝ gives

Ĝ1γ−γ =

∫
Y 0

1 Z
a
γS−γadΩ = −

∫
Y−γZ

a
γS

0
1adΩ (7.2.5)

= −imγ

√
3

∫
Y−γYγdΩ

= 4πimγ(−1)mγ+1
√

3. (7.2.6)

Hence

˙̄wγ ' −imΩ
(`− 1)(`+ 2)

`(`+ 1)
= iωIw̄γ (7.2.7)

which has an r-independent frequency and is thus a global mode.

These modes travel around the star with a pattern speed [5]

σ`I = Ω
(`− 1)(`+ 2)

`(`+ 1)
. (7.2.8)

This concept is illustrated in figure 7.2 and elsewhere [5, 77]. Since σ2
I = 2Ω/3 < Ω

(prograde motion) it is the case that a co-rotating observer will notice the pattern moving

in a direction opposite to rotation (retrograde). Consider a passenger jet flying eastwards:

it will appear to be moving west according to an inertial observer because it is travelling

slower than the Earth’s rotation, which is about 30% faster than the speed of sound.

It is this feature that leads to the CFS instability in GR. Angular momentum is clearly

positive for prograde motion, and negative for retrograde motion. If the oscillation mode is

prograde in the inertial frame, some mechanism (such as gravitational wave emission or MRI

[7, 8]) could cause a loss of positive angular momentum from the neutron star. As a result

the angular momentum of the retrograde mode becomes more and more negative, which

boosts the oscillation amplitude, which in turn increases the amount of angular momentum

being shed. Thus this acts as an unstable feedback mechanism.

7.2.1 Non-magnetized, non-stratified modes

Näıvely the first mode to investigate could be perturbations of w̄1
1, but these will have

zero frequency according to (7.2.2), as well as (7.2.4). It has been long known that such

perturbations are stationary convective currents. This makes for a good sanity-check in any

3D code.



7.2. INERTIAL MODES 139

Component Ang. frequency Relative power

w̄2
2 σ ' −1 1

w̄2
3 0

w̄2
4 σ 3× 10−2

w̄4
4 0

w̄2
5 0

w̄4
5 2σ 4× 10−6

w̄2
6 σ 10−3

w̄4
6 0

w̄6
6 4σ 4× 10−9

Figure 7.1: r-mode frequency and relative power for perturbations in varying `,m at
Ω = 0.45, `m = 6.

The next mode of interest are perturbations in ` = m = 2. To investigate these

we set w̄2
2 = 10−4 with `m = 4, N = 90, rmax = 0.9. In addition we use a forth-order

dissipation scheme with second-order accurate extrapolation at the outer boundary: higher

order methods lead to instabilities at the outer boundary in increasingly shorter time-scales.

Figure 7.4 shows how the evolution initially progresses with high rotation as `m is

increased, with figure 7.3 displaying the angular frequencies returned by the code at different

rotation rates. We note that setting `m = 2 gives the O(Ω) frequencies exactly, and `m ≥ 3

results in equivalent frequencies with differing amplitude. We have chosen `m = 4 in

particular as it appears to be a good trade off between accuracy and speed. In addition

there appears to be a low-frequency, high-` amplitude modulation of these modes.

Figure 7.5 shows the ` = m = 2 r-mode frequencies given by our code, transformed

into a co-rotating frame, against those of Passamonti [70]. Although their code is linear it

does still take into account the O(Ω3) terms, hence the deviation as one approaches the

breakup velocity. Our code is obviously not exhibiting this behaviour, i.e. our inertial-frame

frequencies are higher than expected, most likely due to the spherical boundary: applying the

Cowling approximation and/or altering the surface fraction changes the observed frequencies

very little.

We can analyze the frequencies of higher `,m modes by looking again at the Ω =

0.45, `m = 6 evolution. Higher ` components oscillate at higher frequencies, some of which

are quite noisy (most of the polar terms) and only some of the axial terms (e.g. w̄2
4, w̄

4
5, w̄

6
6)

have a very strong signal at, or close to, a single (negative) frequency. The r-mode is

primarily visible in w̄2
2 at σ ' −1.1, and all of the w̄2

2i have peaks at the same frequency,

with decreasing power (1, .., .. relative to the w̄2
2 power). The higher `,m components that

are excited appear to have strong signals at a particular multiple of the r-mode frequency,

for example w̄4
5 exhibits a frequency∼ 2σ and w̄6

6 at around ∼ 4σ (figure 7.1).
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(a) t = 0 (b) t = 0.1/Ω

(c) t = 0.2/Ω (d) t = 0.3/Ω

(e) t = 0.4/Ω (f) t = 0.5/Ω

Figure 7.2: An illustration of the pattern speed at which the ` = m = 2 r-modes move
across spherical surfaces of a star, correct to O(Ω) and with rotation about the vertical axis.
These are shown for one half of a complete rotation and seem to have angular frequency
2Ω/3, agreeing with (7.2.8).
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(b) `m = 4 frequencies

Figure 7.3: Power spectral density of the w̄2
2 evolution with `m = 4 and varying Ω. The

highest amplitude peaks correspond to the r-modes and have are of fixed frequency when
`m ≥ 3.
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Figure 7.4: The evolution of Re(w̄2
2) with increasing `m. Setting `m ≥ 3 gives a set of

equivalent r-mode frequencies with differing amplitudes.
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7.3 Non-rotating magnetic modes

Although we are unable to investigate the effects of rotation on magnetic stability and modes

due to the failure of the friction method to properly relax to equilibrium (section 5.7.4), the

modes of a non-rotating (w̄0
` = 0) stratified star are still of interest as an approximation

to those neutron stars whose rotation is relatively small. This could include, for example,

young magnetars whose rotational energy has been mostly deposited into the magnetic field.

7.3.1 Toroidal background

In section 7.2 we re-derived the frequencies of linear-order r-modes . In a similar vein we can

näıvely attempt to find the linear order inertial frequencies of stars with a generic equation

of state and an ` = 1 toroidal field: such a field can, mathematically at least, satisfy an

equilibrium condition.

Consider the couplings with w̄0
1 = Ω/

√
3, D̄0

1 = ∆(r), and where we simplify 1/ρ ' 1/ρ̄0

as the background field is sufficiently weak. Perturbed quantities would evolve as

˙̄wγ ' im
`(`+ 1)− 2

`(`+ 1)

(√
3∆D̄γ

µ0ρ̄0
− Ωw̄γ

)
(7.3.1)

˙̄Dγ ' im
(√

3∆w̄γ − ΩD̄γ

)
. (7.3.2)

It is not difficult to find the (lengthy) solutions to this system, which admits frequencies

σ = mΩ
(1− `− `2)

`(`+ 1)
±

√
Ω2

`2(`+ 1)2
+ 3

∆(r)2

µ0ρ0(r)

(`− 1)(`+ 2)

`(`+ 1)
. (7.3.3)

In the limit of no background magnetic field,

w̄γ = w0(r)eiωt, D̄γ = D0(r)e−imΩt (7.3.4)

where ω is the r-mode frequency (7.2.2) and w0, D0 are some initial data. Note that D̄γ

has a vanishing frequency when observed from a co-rotating frame. Without background

rotation, one recovers m-independent frequencies proportional to ∆/
√
µ0ρ0, i.e. Alfvén

waves, which are

σ2
2 =
√

2
∆
√
µ0ρ0

(7.3.5)

for ` = m = 2 perturbations. These frequencies are however r-dependent – there is a

continuum of modes – unless ∆(r) ∝
√
ρ0(r).

Unfortunately this analysis is invalidated by the reintroduction of the poloidal ` + 1

velocity terms, which we have observed to grow to the same order of magnitude as w̄γ

through couplings with Ω. Nevertheless the frequencies of w̄γ will be strongly ∆-dependent
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with weak/no rotation, and so we will look at perturbations to the relaxed states of section

6.3.2 to investigate this relationship and how close it may come to our axial-only analysis.

We investigate a constant w̄2
2 perturbation to a non-rotating star with a relaxed Gaussian

toroidal D̄0
1 field of the form

∆ = D̄0
1 = d1(R2 − r2)

(
e−(r−c)2/w2

+ e−(r+c)2/w2
)

(7.3.6)

where R = 0.8, c = 0.4, w = 0.1, d1 = 0.1. As usual we evolve with the initial time derivative

of the unperturbed, relaxed state subtracted at every time step, and then take the Fourier

transform over time at varying r.

Despite the non-constant background field, w̄2
2(0.3 ≤ r ≤ 0.5) appears to oscillate at a

single, fixed frequency that is proportional to Max(∆/
√
µ0ρ0), as shown in figure 7.6 for

varying background field strength. Only the oscillation amplitude is ∆(r)-dependent. The

frequencies of the excited Ψ̄2
3 component are harder to discern as its evolution appears to

be damped, and thus it is difficult to ascertain if these `+ 1,m polar magnetic modes scale

linearly with field strength (as per Lander et al. [61] figure 3).

D̄2
2 perturbations evolve with almost identical amplitude and frequency to the corre-

sponding w̄2
2. For either class, ∆(r) or its derivatives does not explicitly appear in the

expression for the time derivative, although it is perhaps worth noting they each evolve as

˙̄w2
2 = ...+ αw̄2

2 + ζw̄2
2
′,

˙̄D2
2 = ...+ βD̄2

2 + ζD̄2
2
′ (7.3.7)

where

α 6= β, ζ = v̂0 −
1

7

√
5r2v̂0

2 −
2

7

√
5rū0

2. (7.3.8)

Gaussian Ψ̄2
2 perturbations to this toroidal background oscillate weakly around their

initial configurations, and as such the Fourier transform of this variable is dominated by

the 0-frequency component (figure 7.7). This is a different result to the findings from non-

stratified stars [59], but perhaps a result of the stable stratification. The m = 2 components

that are excited are w̄2
2n−1, Ψ̄

2
2n. Higher m components are those with Pm2n≥m, D̄

m
2n+1≥m

for even m/2 and w̄m2n−1≥m, Ψ̄
m
2n≥m for odd m/2 (P represents polar fluid terms ρ̄, v̂, ū, f),

i.e. poloidal-toroidal fluid-field components, and vice-versa, in alternating m.

When a toroidal field is perturbed by ρ̄2
2, magnetic and f -modes can be observed in the

DFT of the D̄2
3 component, (figure 7.8). The double-spikes give a somewhat large error,

but it appears that the lowest frequency magnetic modes oscillate at approximately 5σA.

We have not evolved for sufficient time steps to determine the shift in f -mode frequency

with increasing field strength; Lander et al. [61] suggest any shift would be less than 1% for

our field strengths.
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(a) w̄2
2, d1 = 0.1 (b) w̄2

2, d1 = 0.2 (c) w̄2
2, d1 = 0.3

(d) Ψ̄2
3, d1 = 0.1 (e) Ψ̄2

3, d1 = 0.2 (f) Ψ̄2
3, d1 = 0.3

Figure 7.6: w̄2
2 oscillations (top) on Gaussian D̄0

1 backgrounds with amplitude between
∼ 10−4 (yellow contours) and −10−4 (light blue). The normal frequencies of the central
oscillations are approximately ±1

2D1(0.4)/
√
ρ0(0.4), i.e. around half the Alfvén frequency.

The excited Ψ̄2
3 components are also shown (bottom, O(10−6) non-constant colour scaling)

although these oscillations appear to be damped.
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(a) The evolution of a Ψ̄2
2 perturbation (left) and its Fourier transform at varying r (right).
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(b) The corresponding excited w̄2
3 evolution (left) and its Fourier transform at varying r (right)

Figure 7.7: A Ψ̄2
2 perturbation to a Gaussian D̄0

1 background oscillates weakly around its
original configuration (top). The DFT of the excited w̄2

3 component has several shared
frequency peaks.
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7.3.2 Poloidal and mixed backgrounds

As previously observed, (non-rotating) poloidal backgrounds can be wound up into mixed

fields with a strong nonaxisymmetric component by a certain class of w,D perturbations.

Stable, quadrupole-led D perturbations oscillate at a fixed frequency proportional to Ψ0
1 as

illustrated in figure 7.9. It thus appears that D perturbations on both toroidal and poloidal

backgrounds oscillate at approximately half the Alfvén frequency.

Interestingly, on mixed-field backgrounds a D̄2
2 perturbation will excite a Ψ̄2

2 component

to oscillate at the same frequency, which is approximately three times the Alfvén frequency

(figure 7.10). We studied a small range of varying poloidal and toroidal background field

strengths and found the same ratio, but more simulations are necessary to determine the

full picture, particularly the transition to purely toroidal/poloidal backgrounds.

Other evolutions that would be worth investigating include studying the frequency of

w̄2
2 perturbations on backgrounds that tend towards being purely-poloidal, increasing the

perturbation `,m mode, and a comprehensive survey of how low frequency magnetic modes

may vary over such backgrounds.
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Figure 7.9: A D̄2
2 perturbation on a ψ1 = 0.01 background (left) and Fourier transforms

(right) for varying background poloidal field strength. The DFT is taken over 0 ≤ t ≤ 500
at r = 0.3, near to where the oscillations are largest in amplitude: the highest-amplitude
oscillations are proportional to the background field strength and oscillate at approximately
half the Alfvén frequency.

(a) D̄2
2 (b) Ψ̄2

2

Figure 7.10: D̄2
2 perturbations on mixed field backgrounds excite a Ψ̄2

2 component, and
both oscillate at approximately three times the Alfvén frequency.





Conclusions

We have demonstrated a hybrid spectral approach to nonlinear MHD, using coordinates

in the radial direction and convolution for angles. Although this hybrid technique is not

new [22, 40, 56] we have been the first to apply it to the general problem of finding (and

investigating the stability of) nonlinear rotating and/or magnetic equilibria of Newtonian

neutron stars, and consider it to be fast and flexible, despite several (hopefully solvable)

problems.

One of its biggest drawbacks is that the outer boundary is handled by a crude spherical

cut-off, implemented for both technical limitations and to avoid singularities; other techniques

[59] fully implement a boundary for situations that a typical desktop machine has sufficient

computational power to handle in reasonable time. It is also much harder (if not sometimes

impossible) to adapt existing analytical and numerical methods [80, 90] into our framework.

On the other hand, various linear and nonlinear problems can be configured with ease

and, in the case of high radial resolution and low angular resolution, executed with incredible

speed. The same could potentially be said for situations involving very high `,m if one

could justify discarding distant modes to these. The convolution technique lets us study the

behaviour of individual modes, and leads us to a system apparently excellently suited for

multi-core parallelization.

In order to overcome an instability observed at the origin for the wave equation – other

authors do not report seeing such a phenomenon, or instead evolve in a shell, or use spectral

methods in radius – we have found a simple technical solution for second-order systems;

work on gaining higher-order accuracy is ongoing [47]. By re-casting the Euler equation in

new variables to make it more wave-like, we prevent the same instability from occurring.

We have also recast the MHD equations using a vector potential so that the divergence-

free constraint of magnetic fields is inherent. The vector Laplacian of the magnetic field

is greatly simplified by this and leaves the door open for future studies of non-ideal MHD.

Exterior poloidal fields, embedded in vacuum, can also be handled as they reduce to simple

`-dependent functions of radius with matching conditions on the boundary. The extra

derivative that using a vector potential introduces does not seem to cause any issues.

The method scales very well for linear problems (O(NR `m)) and accurate rotating

equilibria were found for non-stratified, non-magnetic stars, using a novel relaxation technique
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with very low radial and angular resolution. These equilibria are found without approximations

made to the gravitational potential, as the convolution technique reduces Poisson’s equation

to a (relatively) easily solved linear equation.

Our investigations into nonlinear axisymmetric problems (O(NR`
3
m)), involving magneti-

zation, stratification and rotation, met with varying success. We found that non-stratified

magnetized stars could not be stabilized with the relaxation technique, perhaps indicating

that such equilibria are impossible [74]. We were unable to stabilize stratified, rotating

stars (magnetized or not), although we do not know if this is due to an inherent instability

mechanism, somehow related to the boundary conditions, or indeed a problem caused by

the spherical boundary. We attempted to relax a system with a different stratification (i.e.

trying some DK/Dt 6= 0) and found that, although we can not justify any of these choices,

the relaxation appeared to work.

We were able to stabilize stratified, non-rotating, magnetized stars given arbitrary initial

data [18] and by perturbing in nonlinear, nonaxisymmetric modes (O(NR`
5
m)) we could

roughly investigate their stability characteristics and oscillation frequencies. By only evolving

the necessary harmonic modes, and using the exponential convergence properties of the

spectral method, these problems can be made to scale much better than O(`5m), although

the time evolution of some magnetic configurations can still take several hours to run.

We looked at (and compared with existing results) the r-modes of rotating, non-stratified,

non-magnetized stars and found some difference due to the outer boundary, although the

spectral method does often mean these mode frequencies can be calculated by hand. As

already mentioned we are currently unable to go any further with regards to investigating

stratified rotating configurations, unless we attempt to modify our pressure law or boundary

conditions.

We found that certain purely poloidal/toroidal fields are linearly unstable, only becoming

stable when mixed with sufficiently strong counterpart fields with the amount of mixing

in broad agreement with results [88]. We observed that ` = 1,m = 0 toroidal fields were

only unstable to toroidal perturbations with m = 1, as expected [60], and stable for m > 1.

Various ` = 1,m = 0 poloidal fields were unstable to dipolar toroidal perturbations, yet

stable to all of the poloidal perturbations we tested. The stability of pure fields to certain

perturbation modes is somewhat surprising and do not appear to be predicted [87, 89].



Appendix A

Spherical Harmonics

A.1 Table of Scalar and Vector Spherical Harmonics

As per the definition (2.1.15) we do not work with orthonormal spherical harmonics. The

first few values of Y m
` (θ, ϕ) are

Y 0
0 = 1,

Y 0
1 =
√

3 cos θ, Y 1
1 = −

√
3

2
eiϕ sin θ,

Y 0
2 =

1

2

√
5(3 cos2 θ − 1), Y 2

2 = −1

2

√
15

2
e2iϕ(cos2 θ − 1),

Y 0
3 =

1

2

√
7
(
5 cos3 θ − 3 cos θ

)
, Y 3

3 = −1

4

√
35 sin3 θe3iϕ.

The vector harmonics are given by definitions (2.4.2). We typically work with the contravari-

ant forms; on a 2-sphere in a (θ, ϕ) direction (ignoring the radial components) the first few

of these are

(Zm` )a =

(
∂θY

m
` ,

1

sin2 θ
∂ϕY

m
`

)
,

Z0
1 = (−

√
3 sin θ, 0), Z1

1 =

(
−
√

3

2
eiϕ cos θ,−i

√
3

2
eiϕ csc θ

)
,

Z0
2 = (−3

√
5 sin θ cos θ, 0),

Z0
3 =

(
3
√

7

2
sin θ

[
1− 5 cos2 θ

]
, 0

)
.
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Figure A.1: The θ-component of Z0
7 .

and

(Sm` )a =

(
1

sin θ
∂ϕY

m
` ,
−1

sin θ
∂θY

m
`

)
,

S0
1 = (0,

√
3), S1

1 =

(
−i
√

3

2
eiϕ,

√
3

2
cot θ

)
,

S0
2 = (0, 3

√
5 cos θ),

S0
3 =

(
0,−3

√
7

2

[
1− 5 cos2 θ

])
.

In axisymmetry, noting that Sϕ = −1
sin θZ

θ is useful for plotting in 3D.



Appendix B

Code snippets

B.1 Fortran Ĉαβ−γ calculator

This Fortran code calculates the Gaunt coefficient Ĉαβ−γ by finding Wigner 3j coefficients

(2.2.10). One needs to write a factrl function to calculate factorials.

FUNCTION wigner3j(l1,l2,l3,m1,m2,m3)

IMPLICIT NONE

REAL*8 :: wigner3j

INTEGER,INTENT(IN) :: l1,l2,l3,m1,m2,m3

REAL*8 :: ssum,tsum

LOGICAL :: found_t

INTEGER :: numsum,j,t,t1,t2,t3,t4,t5,check

IF(m1==0 .AND. m2==0 .AND. m3==0) RETURN wigner3jzero(l1,l2,l3)

!Triangle co-efficient

wigner3j = ((-1.d0)**(l1-l2-m3)) * SQRT( factrl(l1+l2-l3)&

*factrl(l1-l2+l3)*factrl(-l1+l2+l3)/factrl(l1+l2+l3+1) )

wigner3j = wigner3j * SQRT(factrl(l1+m1)*factrl(l1-m1)*factrl(l2+m2)&

*factrl(l2-m2)*factrl(l3+m3)*factrl(l3-m3))

!There are "numsum" terms in the sum, given by the smallest of:

numsum = MIN(l1+m1,l1-m1,l2+m2,l2-m2,l3+m3,l3-m3,l1+l2-l3,l1-l2+l3,&

-l1+l2+l3) + 1

!Need to find allowable t that we can sum over; numsum of these.

t1 = m1 + l3 - l2

t2 = l3 - l1 - m2

t3 = l1 + l2 - l3

t4 = l1 - m1

t5 = l2 + m2

tsum = 0

t = -1

!Loop over permissible t

DO j = 1,numsum

t = t + 1

found_t = .FALSE.

check = 0
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DO WHILE(found_t .EQV. .FALSE.)

IF(t+t1 < 0 .OR. t+t2 < 0 .OR. t3-t < 0 .or. t4-t < 0 .OR. t5-t < 0) THEN

t = t+1

ELSE

found_t = .TRUE.

END IF

check = check+1

IF(check>1000) STOP ’ERROR Cannot find t’

END DO

ssum = factrl(t) * factrl(t+t1) * factrl(t+t2) * factrl(t3-t)&

* factrl(t4-t) * factrl(t5-t)

IF(ssum==0) STOP ’ERROR Found ssum = 0’

tsum = tsum + ((-1.d0)**t)/ssum

END DO

!Return the answer

wigner3j = wigner3j * tsum

RETURN

END FUNCTION

FUNCTION wigner3jzero(l1,l2,l3)

IMPLICIT NONE

REAL*8 :: wigner3jzero

INTEGER,INTENT(IN) :: l1,l2,l3

INTEGER :: l,k

wigner3jzero = 0

l = l1+l2+l3

k = l/2

IF(MOD(l,2) == 0) then

wigner3jzero = ((-1.d0)**k) * SQRT( factrl(l-(2*l1))*factrl(l-(2*l2))&

*factrl(l-(2*l3))/factrl(l+1) )

wigner3jzero = wigner3jzero * factrl(k) / ( factrl(k-l1)*factrl(k-l2)&

*factrl(k-l3) )

END IF

RETURN

END FUNCTION wigner3jzero

FUNCTION chat(l1,l2,l3,m1,m2,m3)

IMPLICIT NONE

REAL*8 :: chat

INTENGER,INTENT(IN) :: l1,l2,l3,m1,m2,m3

IF(MOD(l1+l2+l3,2) /= 0 .OR. (m1+m2+m3) /= 0) THEN

chat = 0.d0

ELSE

chat = 4.d0*pi*SQRT(DBLE( (2*l1+1)*(2*l2+1)*(2*l3+1) ))&

*wigner3j(l1,l2,l3,m1,m2,m3)&

*wigner3jzero(l1,l2,l3)

END IF

RETURN

END FUNCTION
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B.2 Fortran Ĝαβγ calculator

This function returns the non-axisymmetric integral Ĝαβγ using the method described in

section 2.4.4. The function chat(x,y,z) returns Ĉx,y,z.

RECURSIVE FUNCTION g_hat(l1,m1,l2,m2,l3,m3)

IMPLICIT NONE

DOUBLE COMPLEX :: g_hat

INTEGER,INTENT(IN) :: l1,m1,l2,m2,l3,m3

DOUBLE COMPLEX,PARAMETER :: ii = (0.d0,1.d0)

INTEGER :: l0,zeta,oneone

REAL*8 :: coef_a,c_hat_one

g_hat = 0.d0

IF((l2 == l3 .AND. m2 == m3) .OR. (l1 == 0) .OR. (l2 == 0) .OR. (l3 == 0)&

.OR. (m2 == 0 .AND. m3 == 0)) THEN

RETURN !Axisymmetric integral

ELSE IF(m1 .LE. 0 .AND. m2 .LE. 0 .AND. m3 .LE. 0) THEN

STOP ’ERROR All m are negative’

ELSE IF(m1 .GE. m2 .AND. m1 .GE. m3) THEN

oneone = multiindex(1,1) !ell=m=1 <=> zeta=3

c_hat_one = c_hat(oneone,multiindex(l1-1,m1-1),multiindex(l1,-m1))

IF(c_hat_one == 0.d0) STOP ’ERROR c_hat = 0’

coef_a = 4.d0*pi/((-1.d0)**m1*c_hat_one)

!Jump down through non-zero c_hat’s

DO l0 = l1-1,0,-2

zeta = multiindex(l0,m1-1)

IF(m2+1 .LE. l2) g_hat = g_hat + coef_a*m3*SQRT(DBLE((l2-m2)*(l2+m2+1)))&

*c_hat(zeta,multiindex(l2,m2+1),multiindex(l3,m3))

IF(m3+1 .LE. l3) g_hat = g_hat - coef_a*m2*SQRT(DBLE((l3-m3)*(l3+m3+1)))&

*c_hat(zeta,multiindex(l2,m2),multiindex(l3,m3+1))

IF(l0-2 .GE. m1-1) THEN

coef_a = -coef_a*c_hat(oneone,zeta,multiindex(l0-1,-m1))&

/c_hat(oneone,multiindex(l0-2,m1-1),multiindex(l0-1,-m1))

ELSE

coef_a = 0.d0

END IF

END DO

!Rescale Y11

g_hat = -ii*g_hat*SQRT(3.d0/2.d0)

ELSE IF(m2 .GE. m1 .AND. m2 .GE. m3) THEN

!Sort the m’s

g_hat = -g_hat(l2,m2,l1,m1,l3,m3)

ELSE IF(m3 .GE. m1 .AND. m3 .GE. m2) THEN

!Sort the m’s

g_hat = -g_hat(l3,m3,l2,m2,l1,m1)

ELSE

STOP ’ERROR Unexpected loop’

END IF

RETURN

END FUNCTION



158 APPENDIX B. APPENDIX B

B.3 Fortran/Silo integration

Our three dimensional plots were made by writing data to the Silo format 1 and visualizing

in VisIt 2. The following code shows how one may write a single precision scalar field to a

10×10×10 3D mesh, although it is also possible to save vector and tensor information. The

code should be compiled using the -lsilo compiler flag, which requires the file silo.inc

to be in the library path.

PROGRAM silowriter

IMPLICIT NONE

INCLUDE ’SILO.INC’

INTEGER :: err,nx,ny,nz,dims(3),ndims,silofile,i,j

PARAMETER (nx = 10)

PARAMETER (ny = 10)

PARAMETER (nz = 10)

REAL*4 :: x(nx),y(ny),z(nz), sp_var(nx,ny,nz) !We write single precision to disk

REAL*8 :: dp_var(nx,ny,nz)

DATA dims/nx,ny,nz/

ndims = 3

!Set the mesh somehow

set_mesh(x,nx,y,ny,z,nz)

!Set the data somehow

set_data(dp_var,nx,ny,nz)

!Then convert to single precision

sp_var = REAL(dp_var)

!Now create the Silo file

err = DBCREATE(’out.silo’,8,DB_CLOBBER,DB_LOCAL,DB_F77NULL,0,DB_PDB,silofile)

IF(err /= 0) STOP ’ERROR Could not create file’

err = DBPUTQM(silofile,"quadmesh",9,"x",1,"y",1,"z",1,x,y,z,dims,ndims,DB_FLOAT,&

DB_COLLINEAR,DB_F77NULL,ierr)

IF(err /= 0) STOP ’ERROR Could not write mesh’

err = DBPUTQV1(silofile,"var",3,"quadmesh",8,sp_var,dims,ndims,DB_F77NULL,0,DB_FLOAT,&

DB_NODECENT,DB_F77NULL,ierr)

IF(err /= 0) STOP ’ERROR Could not write sp_var’

err = DBCLOSE(silofile)

END PROGRAM

1Available from http://wci.llnl.gov/codes/silo
2Available from http://visit.llnl.gov
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B.4 Mathematica Lane-Emden solver

This Mathematica script calculates numerical solutions to the Lane-Emden equation with

index n (5.1.20). The quantity start defines how close to zero the solver begins (typically

the value of h) as the numerical integrator cannot handle the removable singularity at the

origin. stop defines the maximum value of ζ to integrate out to (typically 2`+ 3). It starts

by series expanding θ and finding the coefficients near the origin, then inserts back into the

ODE which it then numerically integrates.

LESolver[n_, start_, stop_] := Module[

{degree = 6, expansion, series, unknowns, expression, coefflist, coeffsolve},

series = 1 + Sum[Subscript[a, i] \[Zeta]^i, {i, 2, degree, 2}] + O[\[Zeta]]^(degree + 1);

unknowns = Table[Subscript[a, i], {i, 2, degree, 2}];

expression = Expand[(1/\[Zeta]^2 D[\[Zeta]^2 D[\[Theta][\[Zeta]], \[Zeta]], \

\[Zeta]] + \[Theta][\[Zeta]]^n) /. {

\[Theta][\[Zeta]] -> series,

\[Theta]’[\[Zeta]] -> D[series, \[Zeta]],

\[Theta]’’[\[Zeta]] -> D[series, \[Zeta], \[Zeta]]

}];

coefflist = CoefficientList[Normal[expression], \[Zeta]];

coeffsolve = Solve[Thread[coefflist == 0], unknowns] // First;

expansion = {Normal[series], D[Normal[series], \[Zeta]]} /.

coeffsolve /. \[Zeta] -> start;

Return[\[Theta][\[Zeta]] /. NDSolve[{

SetPrecision[

1/\[Zeta]^2 D[\[Zeta]^2 D[\[Theta][\[Zeta]], \[Zeta]], \[Zeta]] \

+ \[Theta][\[Zeta]]^n == 0,

24],

\[Theta][start] == expansion[[1]],

\[Theta]’[start] == expansion[[2]]

},

\[Theta][\[Zeta]],

{\[Zeta], start, stop},

AccuracyGoal -> 24, PrecisionGoal -> 12

] // First

];

]
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