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Abstract

The problem of Small Area Estimation is how to produce reliable estimates of area
(domain) characteristics, when the sizes within the areas are too small to warrant
the use of traditional direct survey estimates. This problem is commonly tackled
by borrowing information from either neighboring areas and/or from previous
surveys, using appropriate time series/cross-sectional models. In order to protect
against possible model breakdowns and for other reasons, it is often required to
benchmark the model dependent estimates to the corresponding direct survey
estimates in larger areas, for which the survey estimates are sufficiently accurate.
The benchmarking process defines another way of borrowing information across
the areas.

This article shows how kenchmarking can be implemented with the state-space
models used by the Bureau of Labor Statistics in the U.S. for the production of the
monthly employment and unemployment estimates at the state level. The
computation of valid estimators for the variances of the benchmarked estimators
requires joint modeling of the direct estimators in several states, which in turn
requires the development of a filtering algorithm for state-space models with
correlated measurement errors. No such algorithm has been developed so far. The
application of the proposed procedure is illustrated using real unemployment
series.
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1. INTRODUCTION

The Bureau of Labor Statistics (BLS) in the U.S.A uses state-space models for the
production of all the monthly employment and unemployment estimates for the 50 states
and the District of Columbia. The models are fitted to the direct sample estimates obtained
from the Current Population Survey (CPS). The use of models is necessary because the
sample sizes available for the states are too small to warrant accurate direct estimates,
which is known in the sampling literature as a ‘small area estimation problem’. The
coefficients of variation (CV) of the direct estimates vary from about 8% in the large states
to about 16% in the small states. For a recent review of small area estimation methods
see Pfeffermann (2002, Section 6 considers the use of time series models). The new book

by Rao (2003) contains a systematic treatment of the subject

The state-space models are fitted independently between states and combine a model for
the true population values with a model for the sampling errors. The published estimates
are the differences between the direct estimates and the estimates of the sampling errors
as obtained under the combined model. At the end of each calendar year, the model
dependent estimates are modified so as to guarantee that the annual mean estimate
equals the corresponding mean sample estimate. This benchmarking procedure has,

however, two major disadvantages:

1- The annual mean sample estimates are still unstable because the monthly sample
estimates are highly correlated due to the large sample overlaps induced by the sampling

design rotation pattern underlying the CPS

2- The benchmarking is ‘postmortem’, after that the monthly estimates have already been

published so that they are of limited use, (its main use is for long term trend estimation)

It should be mentioned also in this respect that unlike in classical benchmarking that uses
external (independent) data sources for the benchmarking process, (Hillmer and Trabelsi,
1987 ; Durbin and Quenneville, 1997), the procedure described above Benchmarks the
monthly estimates to the mean of the same estimates. External data to which the monthly

sample estimates can be benchmarked are not available even for single months.
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In this article we study a solution to the benchmarking problem that addresses the two
disadvantages mentioned with respect to the current procedure. The proposed solution is
to fit the model jointly to several ‘homogeneous states’ (states with similar ‘labor force

behavior’, about 12-15 states in each group, see Section 6), with the added constraints
O S . o S -~
a S:]_WSIYS, model :a S:1WSIYS[, s t:1!2! e (1.1)

The justification for the constraints in (1.1) is that the direct CPS estimators, which are

unreliable in single states, can be trusted when averaged over different states. Note in this
respect that by the sampling design underlying the CPS, the sampling errors are
independent between states. The basic idea behind the use of the constraints is that if all
the direct sample estimates in the same group jointly increase or decrease due to some
external effects not accounted for by the model, the benchmarked estimators will reflect
this change much quicker than the model dependent estimators. This property is illustrated
very strikingly in the empirical results presented in this article using real data. Note also

that by incorporating the constraints, the benchmarked estimators for any given time t
‘borrow strength’ both from past data and cross-sectionally, unlike the model dependent

estimators in present use that only borrow strength from past data.

An important question underlying the use of the constraints in (1.1) is the definition of the
weights{w,, s=1...5,t=1,2,..} . This question is still under consideration but possible

definitions include

W =1/S; Wy =Ny /8 0 N, ; Wy, =1/Var,(CPS) (1.2)

where Ny and Var,(CPS) are respectively the total size of the labor force and the
variance of the direct sample estimate in State s at time t. The use of the weights {W,,} is
appropriate when the direct estimates are proportions. The use of the weights {w,} or
{w,,} guarantees that the global benchmarked estimates for the group of States are the

same as the corresponding global direct estimates in every montht.
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Application of the proposed solution to the state-space models employed by the BLS
introduces a serious computational problem. The dimension of the state vector in the
separate models is of length 30 (see next section), implying that the dimension of the state
vector of the joint model fitted to a group of say 12 States would be 360. A possible
solution to this problem investigated in the present article is to include the sampling errors
as part of the observation (measurement) equation instead of the current practice of
modeling their stochastic evolvement over time and including them in the state vector.
Implementation of this idea reduces the dimension of each of the separate state vectors by

half, because the sampling errors make up 15 ele ments of the state vector.

The use of this solution, however, introduces a new theoretical problem because as
already mentioned, the sampling errors are highly correlated over time, requiring the
development of an appropriate filtering algorithm for fitting the model. To the best of our
knowledge, filtering of state-space models with correlated measurement errors has not
been studied previously in the literature. It should be emphasized that the use of the
constraints (1.1) invalidates the use of the classical Kalman filter irrespective of
computational efficiency. This is so because the benchmark constraints contain the
observations that depend on the sampling errors. If the sampling errors and the
constraints are left in the state (transition) equations, the model consists of an observation
equation and state equations with disturbances that are correlated concurrently and over
time. Pfeffermann and Burck (1990) consider the incorporation of constraints of the form
(1.1) in a state-space model and develop an appropriate filtering algorithm but in their
model there are no sampling errors so that the measurement errors are independent

cross-sectionally and over time.

The present article considers therefore three main research problems:
1- Develop a filtering algorithm for state-space models with correlated measurement errors

2- Incorporate the benchmark constraints defined by (1.1) and compute the corresponding
benchmarked state estimates (estimates of the true employment or unemployme nt figures
in the present application)

3- Compute the variances of the benchmarked estimators.
4



Notice with respect to the third problem that the computation of the variances is under the
model without the benchmark constraints. As mentioned earlier, the benchmark
constraints are imposed to protect against sudden external effects on the estimated values
but they are not part of the model. Indeed, the incorporation of the constraints removes the
bias of the model dependent estimators in abnormal periods but inflates the variance (only
mildly, see the empirical results). This is different from the classical problem of fitting
regression models under linear constraints where the constraints add new information on

the estimated coefficients.

In section 2 we present the State BLS models in present use. Section 3 describes the
filtering algorithm for state-space models with correlated measurement errors and
discusses its properties. The filter is general and is not restricted to the benchmark
problem considered in the remaining sections. Section 4 shows how to incorporate the
benchmark constraints and compute the variances of the benchmarked estimators. The
application of the proposed procedure is illustrated in Section 5 using real series of
unemployment estimates. We conclude in Section 6 by discussing some outstanding
problems that need to be addressed before the procedure can be implemented for routine

use.

We assume throughout the paper that the model hyper-parameters are known. In practice,
the hyper-parameters will be estimated by fitting the models separately for each State, see
Tiller (1992) for the estimation procedures in present use. Application of the Bootstrap
method developed by Pfeffermann and Tiller (2002) accounts for the use of hyper-
parameter estimation in the estimation of the prediction variances of the state vector

predictors.



2- THE BLS MODEL IN PRESENT USE

In this section we consider a single State and hence we drop the subscript s from the
notation. The model employed by the BLS combines a model for the true (estimated) State

values and a model for the sampling errors and is discussed in detail, including hyper-

parameter estimation and model diagnostics in Tiller (1992). Below we provide a brief
description. Let Y; denote the direct sample estimate at time t and define by Yt the true

population value such that € =(Y, - Y,) is the sampling error.

2.1 Model assumed for population values
=b X AL +S+I |, ~N(O'S|2)
L =L, *R, +h,, h,~N(@Os E) , R=R,;+hy , hy~ N(O!Sé)

5 = 2.1)

JlJt

- 2
S,=cosw;S  +snwS ,+n,, n, ~N@Os )

* — - x * * - 2
S“—-sijSj’t_l+oost.Slyt_l+njyt , N, N©Os 3)

w,=2p j/12 ; j=1.6

The model defined by (2.1) but without the covariate X, is known in the literature as the
Basic Structural Model (BSM). In this model L, is a trend level, R is the slope and § is

the seasonal effect operating at time t. The disturbances 1, ,h ,,hg,n;,n, are independent
white noise series. See Harvey (1989) for a detailed study of this kind of models. The
covariate X, represents the number of persons in the State receiving unemployment
insurance benefits’ when modeling the total unemployment figures, and represents the
‘ratio between the number of payroll jobs in business establishments and the population
size in the State when modeling ‘employment to population ratios’. The coefficient b, is

modeled as a random walk. Note that the trend and seasonal effects only account for the
‘remainder’ trend and seasonality not accounted for by the trend and seasonality of the

covariate.



2.2 Model assumed for the sampling errors

The model assumed for the sampling error is € ~ AR(15), which is used as an

approximation to the sum of an MA(15) process and an AR(2) process.

The MA(15) process accounts for the sample overlap implied by the CPS sampling design.
By this design, households selected to the sample are surveyed for 4 successive months,
they are left out of the sample for the next 8 months and then they are surveyed again for
4 more months. This rotation scheme induces sample overlaps of 75%, 50% and 25% for
the first three monthly time lags and sample overlaps of 12.5%, 25%, 37.5%, 50%, 37.5%,
25%, 12.5% at lags 9 to 15. There is no sample overlap at lags 4-8 and 16 and over. A
model accounting for these autocorrelations is MA(15) with zero coefficients at the lags
with no sample overlap. The AR(2) process accounts for autocorrelations not explained
by the sample overlap. These autocorrelations account for the fact that households
dropped from the survey are replaced by households from the same ‘census tract’. The
reduced ARMA presentation of the sum of the two processes is ARMA(2,17), which is
approximated by an AR(15) model.

The separate models holding for the population values and the sampling errors are cast

into a single state-space model for the observations Y, (the direct sample estimates). The

resulting state vector consists of the covariate coefficient, the trend level, the slope, 11
seasonal components accounting for the 12 month frequency and its five harmonics, the

irregular term and the concurrent and 14 lags of the sampling errors, a total of 30
elements.

The monthly employment and unemployment estimates published by the BLS are

obtained under the model (2.1) as,

Y = (Y- &) =b X +L+§+], (2.2)



3. FILTERING OF STATE-SPACE MODELS WITH CORRELATED MEASUREMENT ERRORS

In this section we assume the following state-space model

yt :Ztat +Q ’ E(q) = O ' E(etet ') = St ’ E(etet |) = Stt (318')
a, =Ta,, +h ;Eh,)=0, EQh)=Q, Ehh. )=0 k>0 (3.1b)

It is also assumed that E(h,e ) =0 for all tand t . Clearly, what distinguishes this model
from the classical state-space model is that the measurement errors € are correlated over

time. Below we propose a filtering algorithm to take account of the covariances S, .
Attimel
Let a, =(I- K,Z)Ta,+K,y, be the filtered (updated) state estimator at time 1 where &, is
a starting estimator with covariance matrix P, =E[(a, -a,)(@,-a,)], assumed for
convenience to be independent of the observations and K, = F;pzﬂzl‘l is the ‘Kalman gain’
with By =TRT+Q and F :ZlI?p21¢+ S,. The matrix By, is the covariance matrix of the
prediction errors (Ta,- a,) = (éllo- a,) and F, is the covariance matrix of the innovations
N, = (Y- Yy) = (Y, - Zdy). Since y, =Za, +g,

d,=(1- KZ)Td,+K,Za,+K,g (3.2)
Attime2
Let a, =Ta, define the predictor of a, at time 1 with covariance matrix
Py = E[@,-a,)@,-a,)]. An unbiased estimator &, of a, [E(@,-a,) =0] based on &,

and vy, is the Generalized Least Square (GLS) estimator of the random coefficient a, in

the regression model

gaaf o (| Hy 0 -T4. -
Y 1,5_(22)3'2"'86315 (Uy =Ta,-a,) (3.3)
that is,



-1 LS ..
(L2, ' 21% (3.4)

where

\. =Var by 0_ R, C,u

8e2ﬂ g:z SzEI (3'5)

and C,=CoMu,,e]=TKS,, (follows straightforwardly from (3.2) and the previous
assumptions). Notice that V, is the covariance matrix of the errors u, and e,, and not of

the predictors Td, and y,. By Pfeffermann (1984), the estimator &, is the best linear

unbiased predictor (BLUP) of a, based on T&, and y,, with covariance matrix

CCRERICHSSVIY (PAVE Pt 3.6)
At Time 3

Let &, =Ta, define the predictor of a,at time 2 with covariance matrix

E[(@y-a5)@y-a,)] =TRT¢+Q=R,. Denote (1,Z,) V,'=B,=(B,,B,) such that
a,= Pszgga 10= R(B,Ta, +B,Y,). Since Yy, = Za,+e,, it follows from (3.2) that
C,=CoVTa, e] =Co{TEB,TKe +TP,B,,&, €] = (TRB,TK,S;; + TRB,S,) (3.7)

An unbiased estimator a, of a, is obtained as the GLS estimator of the random coefficient

a, in the regression model

g4,
&Ys

g a3+§3'2% (Uyp =T&, - ay) (3.8)

3

that is,
=§(| Z\V; ( )EI (1, ZOVy 1?222 (3.9)

where



aely, O_ P, Cu
V, =Var ¢ 3 ¥, 3 3.10
&e,p EC'. S:H (3.10)
The estimator &, is the BLUP of a, based on Ta, and y, with covariance matrix
& 7w ! U’
E[(ds' as)(és' as)l] = él ’Za)vs-l(zs)é - P3 (3.11)

At timet

Let &,,=Tda,, define the predictor of a, at time (t-1) with covariance matrix
E[(ét|t-l-at)(ét|t—l t)] TP T +Q t|tl where R-le[(ét-l_at—l)(ét-l- at-])l]- Set the

random coefficient regression model

S0z (' a+ga12 (), =Td, - (3.12)
and define
v, Varg”rl 0= éj&t : CE (3.13)
[} t

The computation of C, =Co\[T4, ,,&] is carried out as follows: Let, [B,;,B,]1=[I,Z']V;*
where B, contains the first g columns and B, the remaining columns with q=dim@).

Define, A =TPB,;, A, =TPB,,, j=2...t1; A =TK,. Then,

Ct = COV[Ta"\t-liq] :A—lA- 2-'-'A2'5l51t + A—lA—Z""AaAZSZt Tt A—lA—ZSt- T A—lS—l,t (3.14)

The BLUP of a, based on Td, , and Yy, and the covariance matrix of the prediction errors

are obtained from (3.12)-(3.14) as,

T -SREY I I VEPRRSNRY . v- WY SRR . e a1\
at—g(l,zt)\/t (;)g (1,ZV, Sy 5 P =E[@, -at)(at-at)]—é(l,zt)\/t (Zt)' (3.15)
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The filtering algorithm defined by (3.15) has the following properties:

1- At every time point t, the filter produces the BLUP of a, based on the predictor

a,., =Ta_, fromtime (t-1) and the new observation Y; (follows from Pfeffermann, 1984).

2- Unlike the Kalman filter that assumes independent measurement errors, the filter (3.15)

does not produce the BLUP of a, based on all the observations vy =(y,..y,)-

Computation of the latter requires joint modeling of all the observations (see comment

below).

3- Empirical evidence so far suggests that the loss in efficiency from using the proposed

algorithm instead of the BLUP that is based o n all the observations is mild.

Comment: For arbitrary covariances S,, between the measurement errors, it is impossible

to construct an optimal filtering algorithm that combines the predictor from the previous
time point with the new observation. By an optimal filtering algorithm we mean an
algorithm that yields the BLUP of the state vector at any given time t based on the

observations Y. To see this, consider the simplest case of 3 observations Y,, ¥,, ¥; with
common mean m and variance s . If the three observations are independent, the BLUP
of m based on the first 2 observations is Y, =(¥,+Y,)/2 and the BLUP based on the
three observations is Y = (Y, *+ Y, +V,)/3=(2/3)y, +(1/3)y;. The BLUP Y, is the

Kalman filter predictor for time 3.

Suppose, however, that Cov(y,,Y,) =Cow(Y,,Y;)=s °r,, and Cow(y,,Y,) =s°r;t s ’r,. The

BLUP of m based on the first 2 observations is again Y, =(y, +Y,)/2, but the BLUP of m

(1' rlz)
3-4r,+r,

based on the 3 observations is in this case ¥ =ay, +by, +ay, where a= and

b:(1- 2r12+rl3).

Clearly, since at b, the predictor 37(°3) cannot be written as a linear
3-4r ,+r1,

combination of y, and y,.Forexample, if r,=0.5r,=025pP y; =04y, +02y,+0.4y;.

1



4. INCORPORATION OF THE BENCHMARK CONSTRAINTS

4.1 Joint modeling of S concurrent sample estimates and their weighted mean

In this section we model jointly the direct estimates in S States and their weighted mean.
We follow for convenience the BLS modeling practice and assume that the true population
values and their direct sample estimates are independent between States. In Section 6 we

consider extensions of the joint model to allow for cross-sectional correlations between

components of the separate state vectors operating in the various States.

Suppose that the separate State models are written as in (3.1) with the sampling errors
placed in the observation equation. Below we add the subscript s to all the model

components to distinguish between the various States. Note that the observations Yy, (the
direct sample estimates) and the measurement errors €, (the sampling errors) are scalars
and Z is a row vector (denoted hereafter as z'). Let §, :(ylt...ya,é;wsys)' define the

concurrent estimates in the S States (belonging to the same ‘homogeneous group’) and

their weighted mean (the right hand side of the benchmark equations (1,1)). The

corresponding vector of sampling errors is & :(qi...es,é:'ﬂwsteg)'. Let Z; =15A z, '(block

é Z u —fn "
= , o @, =@, '..ag’)
@Nltzit "'WSIZS H ‘ u S

and h,=(h,"..hg")". By (3.1) and the independence of the state vectors and sampling

diagonal matrix with z, 'in the s block), T =1 AT, Z =

errors between the States, the joint model holding for ¥, is,

%=28,+8 (EE)=0, EG&)=8, =g 1Y (4.13)
a, :'I:aft_1+ﬁt ;E(R,)=0, EW A, ')=ISAQ,St , EOA ., )=0,k>0 (4.1b)

Stt :Diag[SJIt"'SSt) ' S at :COV[esx’est) v Ny :éilws Wstsstzcov[é j:lwaesné;waest]
1. S
he =(hyhg)'shy =W,s 4, =CoMe, A _ W,&,]

Comment: The model (4.1) is the same as the separate models defined by (3.1). There is

no new information in the observation equation by adding the model holding foré ;WSt Yy -
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4.2 Incorporating the benchmark constraints

Under the model (3.1) with the sampling errors in the observation equation, the model
dependent estimator for State s at time t takes the form YAs'(,modeI =z, 'd, (see equations 2.1

and 2.2). Thus, the benchmark constraints (1.1) can be written as,

o S

N o S
a_,W.Z,a,=a _ WyYs »t=12,...
(4.2)

where vy, =Y, <ps UJefines as before the direct sample estimate. By (4.1a)

é_;yst :é;zg a +é_ ;Wsest. Hence, a simple way of incorporating the benchmark

. . . . O S O S . .
constraints is by imposing a _ WY, =a _,W. % ‘@4 , Or equivalently, by setting

Var[a ]:Cov[eSt w,e]=0, t=1,2,... (4.3)

s=1 St s=1 st

This is implemented by replacing the covariance matrix S, in the observation equation

(4.1a) by the matrix S, = = €S . O ey Thus, the benchmarked estimator takes the form,

(s)

g :g(li{)[\/f] §: % (L ZV T lgga;;kﬂk% 44)

t

~bmk bmk bmk
where V, :Varga T Q gglgmk ’ Cé*
) tt

Ptf[“lk TP T'+Q and CP™ =Co\TaP™e].

’ t-1 1

[ ey en?

Note that F{';ml" is the true covariance matrix of (&, - Ta®™) under the model. Similarly,

CPm = Co[Ta™*,&] is the covariance under the model. See below for the computation of

PP™ and CP™ .
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4.2 Computation of P°™ = Var(@™ - a,) and C’™ =CoVTa/",&]

= k "",.,m * ~
Let B =50, 2)1v 1" 8&5\%1 *sueh that &7 = 7. 2N TS 0= ReTa T + R,
t

=R BT R B 24, R B
By definition of P', BE™ and BY™, P'BE™ + P'BY™Z, = P'[P']'* =1 . Hence,
=P'B™d, +P' BY*Za, and
@m™-a,)=RBy“(Ta’-4,)+R'B3 g (4.5)
It follows that,

Rbmk - E[(a~tbmk _ a~t)(a~tbn‘k _ a~t)|] - R Bbmk th;mjlf Btk?Lmk 'P + P BbmkS abzmk ' F?* + (4 6)
+ Pt Bg-mk (:tbmk B[bznk I:)t + F?( Btbzmkctbmk 1 alimk 1 P*

t

The computation of C™ = Cov[Ta\,&] is carried out by use of formula (3.14), with
T, P ,(BY*,B%) replacedby T,P,(B,,,B,,) inthedefinitionsof A and A, j=2...t-1

and defining A =TP, BX*,
5. EMPIRICAL ILLUSTRATIONS

For the empirical illustrations we fitted the BLS model defined in Section 2 but without the
covariate X,, to the direct (CPS) unemployment estimators in the 9 Census divisions of the

U.S.A. The observation period is January, 1976 — December, 2001. The last year is of
special interest since it is affected by a start of a recession in March and the bombing of
the New York World Trade Center in September. These two events provide an excellent

test for the performance of the proposed benchmarking procedure.

The individual Division models, along with their estimated hyper-parameters, are
combined into the joint model (4.1). The benchmark constraints are as defined in (1.1)

with  w, =1, so that the model dependent estimators of the Census Divisions

14



unemployment are benchmarked to the total national unemployment. The CV of the CPS
estimator of the total national unemployment is 2%, which is considered to be sufficiently

precise.

Figure 1 compares the sum of the model dependent predictions over the 9 Divisions
without the benchmark constraint with the CPS national unemployment estimator. In the
first part of the observation period the sum of the model predictors are close to the CPS
estimator. In 2001 there is evidence of systematic model underestimation. This is better
illustrated in Figure 2, which plots the difference between the total of the model predictors
and the CPS estimator. As can be seen, starting in March, 2001, all the differences are
negative and in some months the absolute difference is larger than twice the standard
deviation of the CPS estimator.

Figures 3-11 display the model dependent predictors, the benchmarked predictors and the
direct CPS estimators from January 2000 for each of the 9 Census divisions. Except for
New England, the Benchmarked estimators are seen to correct the underestimation of the
model dependent estimators in the year 2001. The reason that this bias correction does
not occur in New England is that in this division, the model dependent predictors are
actually higher than the CPS estimators, which serves as an excellent illustration for the

need to apply the benchmarking in ‘homogeneous groups’ (see Section 6).

Table 1 shows the means of the monthly ratios between the benchmarked predictors and
the model dependent predictors for each of the 9 Census divisions in the year 2001. The

means are computed separately for the estimation of the total unemployment figures and
for estimation of the trend levels (L, in equation 2.1). As can be seen, the means of the

ratios are all greater than one but the largest means are about 4% indicating that the effect

of the benchmarking is generally mild.
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6. CONCLUDING REMARKS, OUTLINE OF FUTURE RESEARCH

Benchmarking of small area model dependent estimators to agree with the direct sample
estimates in ‘large areas’ is a common requirement by statistical agencies producing
official statistics. This article shows how this requirement can be implement with state-
space models. When the direct estimates are obtained from a survey with correlated
sampling errors like in labor Force surveys, the benchmark constraints cannot be
incorporated within the framework of the Kalman filter, requiring instead the development
of a filter with correlated measurement errors. This filter is needed to allow the
computation of the variances of the benchmarked estimators under the model. Unlike the
Kalman filter, filtering with correlated measurement errors does not produce the BLUP
predictors based on all the observations but empirical evidence obtained so far indicates
that the loss of efficiency by use of the proposed filtering algorithm is mild. Further

empirical investigation is needed to ascertain this property.

An important condition for the success of the benchmarking procedure is that the small
areas (States in the present application) are ‘homogeneous’ with respect of the behavior of
the true (estimated) quantities of interest (the true employment or unemployment figures in
the present application). The need for the fulfillment of this condition is illuminated in the
empirical illustrations where the benchmarking of the Census Division estimates to the
direct (CPS) national estimate increased the model dependent predictors in New England
instead of decreasing them. This happened because unlike in all the other divisions, the
model dependent predictors in New England were already higher than the corresponding
CPS estimators. Since the benchmarking of the employment and unemployment estimates
In the U.S.A. is currently planned for the State estimates, our next major task is to classify

the 50 States and the District of Columbia into homogeneous groups.

Several factors need to be taken into account when defining the groups. Geographic
proximity to account, for example, for weather conditions, breakdown of the Labor Force
into the major categories of employment (percentages employed in manufacturing,
services, farming etc.) and the size of the States (to avoid the possibility that large States

will dominate the benchmarking in small States) are obvious candidate factors that should

16



be considered. Obviously, the behavior of past estimates and their components like the
trend and seasonal effects should be investigated for a successful classification of the
States. Accounting for all the factors mentioned above for the grouping process might
result in very small groups but it should be emphasized that the groups must be sufficiently
large to justify the benchmarking to the corresponding global CPS estimate in the group.
Thus, the sensitivity of the benchmarking process to the definition of the groups needs to

be investigated.

Another area for future research is the development of a smoothing algorithm that
accounts for correlated measurement errors. Clearly, as new data accumulate it is
desirable to modify past predictors, which is particularly important for trend estimation.
Last, the present BLS models assume independence between the state vectors operating
in separate States. It can be surmised that changes in the trend or seasonal effects are
correlated between homogeneous States and accounting for these correlations might
improve further the efficiency of the predictors. In fact, the existence of such correlations
underlies implicitly the use of the proposed benchmarking procedure. Accounting explicitly
for the existing correlations is simple within the joint model defined by (4.1) and may
reduce quite substantially (but not eliminate) the effect of the benchmarking on the model

dependent predictors.
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Means of Ratios Between Benchmarked and Model Dependent Predictors of

Total Unemployment and Trend in Census Divisions, 2001

S Prediction of Prediction
Division Unemployment of Trend

New England 1.015 1.015
Middle Atlantic 1.011 1.012
East North Central 1.036 1.036
West North Central 1.020 1.020
South Atlantic 1.030 1.030
East South Central 1.040 1.040
West South Central 1.043 1.043
Mountain 1.016 1.016
Pacific 1.038 1.038
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Figure 1. Monthly Total Unemployment
National CPS and Sum of Division Model Estimates

Figure 2. Monthly total Unemployment
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Figure 3. CPS, Model and Benchmark Estimates of
Monthly Total Unemployment

New England (10,000)

Figure 4. CPS, Model and Benchmark Estimates of
Monthly Total Unemployment
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Figure 5. CPS, Model and Benchmark Estimates of
Monthly Total Unemployment
East North Central (100,000)

Figure 6. CPS, Model and Benchmark Estimates of
Monthly Total Unemployment
West North Central (10,000)
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Figure 7. CPS, Model and Benchmark Estimates of
Monthly Total Unemployment
South Atlantic (100,000)

Figure 8. CPS, Model and Benchmark Estimates of
Monthly Total Unemployment
East South Central (10,000)
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Figure 9. CPS, Model and Benchmark Estimates of
Monthly Total Unemployment

Figure 10. CPS, Model and Benchmark Estimates of
Monthly Total Unemployment
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Figure 11. CPS, Model and Benchmark Estimates of
Monthly Total Unemployment
Pacific (100,000)
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