
 
 
 
 
 
 
 

 
 
 
 
 

Abstract 
 
 

The problem of Small Area Estimation is how to produce reliable estimates of area 
(domain) characteristics, when the sizes within the areas are too small to warrant 
the use of traditional direct survey estimates. This problem is commonly tackled 
by borrowing information from either neighboring areas and/or from previous 
surveys, using appropriate time series/cross-sectional models. In order to protect 
against possible model breakdowns and for other reasons, it is often required to 
benchmark the model dependent estimates to the corresponding direct survey 
estimates in larger areas, for which the survey estimates are sufficiently accurate. 
The benchmarking process defines another way of borrowing information across 
the areas. 
 

This article shows how benchmarking can be implemented with the state-space 
models used by the Bureau of Labor Statistics in the U.S. for the production of the 
monthly employment and unemployment estimates at the state level. The 
computation of valid estimators for the variances of the benchmarked estimators 
requires joint modeling of the direct estimators in several states, which in turn 
requires the development of a filtering algorithm for state-space models with 
correlated measurement errors. No such algorithm has been developed so far. The 
application of the proposed procedure is illustrated using real unemployment 
series.  
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1. INTRODUCTION  

The Bureau of Labor Statistics (BLS) in the U.S.A uses state-space models for the 

production of all the monthly employment and unemployment estimates for the 50 states 

and the District of Columbia. The models are fitted to the direct sample estimates obtained 

from the Current Population Survey (CPS). The use of models is necessary because the 

sample sizes available for the states are too small to warrant accurate direct estimates, 

which is known in the sampling literature as a ‘small area estimation problem’. The 

coefficients of variation (CV) of the direct estimates vary from about 8% in the large states 

to about 16% in the small states. For a recent review of small area estimation methods 

see Pfeffermann (2002, Section 6 considers the use of time series models). The new book 

by Rao (2003) contains a systematic treatment of the subject  

 
The state-space models are fitted independently between states and combine a model for 

the true population values with a model for the sampling errors. The published estimates 

are the differences between the direct estimates and the estimates of the sampling errors 

as obtained under the combined model.  At the end of each calendar year, the model 

dependent estimates are modified so as to guarantee that the annual mean estimate 

equals the corresponding mean sample estimate. This benchmarking procedure has, 

however, two major disadvantages: 

 
1- The annual mean sample estimates are still unstable because the monthly sample 

estimates are highly correlated due to the large sample overlaps induced by the sampling 

design rotation pattern underlying the CPS 

 
2- The benchmarking is ‘postmortem’, after that the monthly estimates have already been 

published so that they are of limited use, (its main use is for long term trend estimation) 

     
It should be mentioned also in this respect that unlike in classical benchmarking that uses 

external (independent) data sources for the benchmarking process, (Hillmer and Trabelsi, 

1987 ; Durbin and Quenneville, 1997), the procedure described above Benchmarks the 

monthly estimates to the mean of the same estimates. External data to which the monthly 

sample estimates can be benchmarked are not available even for single months. 
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In this article we study a solution to the benchmarking problem that addresses the two 

disadvantages mentioned with respect to the current procedure.  The proposed solution is 

to fit the model jointly to several ‘homogeneous states’ (states with similar ‘labor force 

behavior’, about 12-15 states in each group, see Section 6), with the added constraints  

                      , ,1 1
ˆ ˆS S

st st st sts s
w Y w Y

= =
=∑ ∑model cps ,        t=1,2,…                                               (1.1) 

 

The justification for the constraints in (1.1) is that the direct CPS estimators, which are 

unreliable in single states, can be trusted when averaged over different states. Note in this 

respect that by the sampling design underlying the CPS, the sampling errors are 

independent between states. The basic idea behind the use of the constraints is that if all 

the direct sample estimates in the same group jointly increase or decrease due to some 

external effects not accounted for by the model, the benchmarked estimators will reflect 

this change much quicker than the model dependent estimators. This property is illustrated 

very strikingly in the empirical results presented in this article using real data. Note also 

that by incorporating the constraints, the benchmarked estimators for any given time t 

‘borrow strength’ both from past data and cross-sectionally, unlike the model dependent 

estimators in present use that only borrow strength from past data . 

 
An important question underlying the use of the constraints in (1.1) is the definition of the 

weights{ , 1... , 1,2,...}stw s S t= = . This question is still under consideration but possible 

definitions include  

                            1 2 31
1/ ; / ; 1/ ( )

S

st st st st st sts
w S w N N w Var CPS

=
= = =∑                                (1.2) 

                                                      
where stN  and ( )stVar CPS   are respectively the total size of the labor force and the 

variance of the direct sample estimate in State s at time t. The use of the weights 2{ }stw  is 

appropriate when the direct estimates are proportions. The use of the weights 1{ }stw  or 

2{ }stw  guarantees that the global benchmarked estimates for the group of States are the 

same as the corresponding global direct estimates in every month t.   
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Application of the proposed solution to the state-space models employed by the BLS 

introduces a serious computational problem. The dimension of the state vector in the 

separate models is of length 30 (see next section), implying that the dimension of the state 

vector of the joint model fitted to a group of say 12 States would be 360. A possible 

solution to this problem investigated in the present article is to include the sampling errors 

as part of the observation (measurement) equation instead of the current practice of 

modeling their stochastic evolvement over time and including them in the state vector. 

Implementation of this idea reduces the dimension of each of the separate state vectors by 

half, because the sampling errors make up 15 elements of the state vector.  

 
The use of this solution, however, introduces a new theoretical problem because as 

already mentioned, the sampling errors are highly correlated over time, requiring the 

development of an appropriate filtering algorithm for fitting the model. To the best of our 

knowledge, filtering of state-space models with correlated measurement errors has not 

been studied previously in the literature. It should be emphasized that the use of the 

constraints (1.1) invalidates the use of the classical Kalman filter irrespective of 

computational efficiency.  This is so because the benchmark constraints contain the 

observations that depend on the sampling errors. If the sampling errors and the 

constraints are left in the state (transition) equations , the model consists of an observation 

equation and state equations with disturbances that are correlated concurrently and over 

time. Pfeffermann and Burck (1990) consider the incorporation of constraints of the form 

(1.1) in a state -space model and develop an appropriate filtering algorithm but in their 

model there are no sampling errors so that the measurement errors are independent 

cross-sectionally and over time.  
 

The present article considers therefore three main research problems: 
 

1- Develop a filtering algorithm for state-space models with correlated measurement errors  
 

2- Incorporate the benchmark constraints defined by (1.1) and compute the corresponding 

benchmarked state estimates (estimates of the true employment or unemployment figures 

in the present application) 
 

3- Compute the variances of the benchmarked estimators. 
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Notice with respect to the third problem that the computation of the variances is under the 

model without the benchmark constraints. As mentioned earlier, the benchmark 

constraints are imposed to protect against sudden external effects on the estimated values 

but they are not part of the model. Indeed, the incorporation of the constraints removes the 

bias of the model dependent estimators in abnormal periods but inflates the variance (only 

mildly, see the empirical results). This is different from the classical problem of fitting 

regression models under linear constraints where the constraints add new information on 

the estimated coefficients.  

 
In section 2 we present the State BLS models in present use. Section 3 describes the 

filtering algorithm for state-space models with correlated measurement errors and 

discusses its properties. The filter is general and is not restricted to the benchmark 

problem considered in the remaining sections. Section 4 shows how to incorporate the 

benchmark constraints and compute the variances of the benchmarked estimators. The 

application of the proposed procedure is illustrated in Section 5 using real series of 

unemployment estimates. We conclude in Section 6 by discussing some outstanding 

problems that need to be addressed before the procedure can be implemented for routine 

use. 

 
We assume throughout the paper that the model hyper-parameters are known. In practice, 

the hyper-parameters will be estimated by fitting the models separately for each State, see 

Tiller (1992) for the estimation procedures in present use. Application of the Bootstrap 

method developed by Pfeffermann and Tiller (2002) accounts for the use of hyper-

parameter es timation in the estimation of the prediction variances of the state vector 

predictors. 
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2- THE BLS MODEL IN PRESENT USE 

In this section we consider a single State and hence we drop the subscript s from the 

notation. The model employed by the BLS combines a model for the true (estimated) State 

values and a model for the sampling errors and is discussed in detail, including hyper-

parameter estimation and model diagnostics in Tiller (1992). Below we provide a brief 

description. Let ty  denote the direct sample estimate at time t and define by tY  the true 

population value such that ( )t t te y Y= −  is the sampling error.  
 

2.1 Model assumed for population values  

 2, ~ (0, )t t t t t t t IY X L S I I Nβ σ= + + +                                                                    

1 1t t t LtL L R η− −= + +  ,  2~ (0, )Lt LNη σ  ; 1t t RtR R η−= +   , 2~ (0, )Rt RNη σ  

6
,1t j tj

S S
=

= ∑ ;                                                                                                                                                         (2.1)                                              

* 2
, , 1 , 1 , ,cos sin , ~ (0, )j t j j t j j t j t j t SS S S Nω ω ν ν σ− −= + +  

* * * * 2
, , 1 , 1 , ,sin cos , ~ (0, )j t j j t j j t j t j t SS S S Nω ω ν ν σ− −= − + +  

2 /12 ; 1...6j j jω π= =  

The model defined by (2.1) but without the covariate tX  is known in the literature as the 

Basic Structural Model (BSM). In this model tL  is a trend level, tR  is the slope and tS  is 

the seasonal effect operating at time t. The disturbances *, , , ,t Lt Rt jt jtI η η ν ν  are independent 

white noise series. See Harvey (1989) for a detailed study of this kind of models. The 

covariate tX  represents the ‘number of persons in the State receiving unemployment 

insurance benefits’ when modeling the total unemployment figures, and represents the 

‘ratio between the number of payroll jobs in business establishments and the population 

size in the State when modeli ng ‘employment to population ratios’. The coefficient tβ  is 

modeled as a random walk. Note that the trend and seasonal effects only account for the 

‘remainder’ trend and seasonality not accounted for by the trend and seasonality of the 

covariate.  
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2.2 Model assumed for the sampling errors  

The model assumed for the sampling error is ~ (15)te AR , which is used as an 

approximation to the sum of an MA(15) process and an AR(2) process. 

 
The MA(15) process accounts for the sample overlap implied by the CPS sampling design. 

By this design, households selected to the sample are surveyed for 4 successive months, 

they are left out of the sample for the next 8 months and then they are surveyed again for 

4 more months. This rotation scheme induces sample overlaps of 75%, 50% and 25% for 

the first three monthly time lags and sample overlaps of 12.5%, 25%, 37.5%, 50%, 37.5%, 

25%, 12.5% at lags 9 to 15. There is no sample overlap at lags 4-8 and 16 and over. A 

model accounting for these autocorrelations is )15(MA  with zero coefficients at the lags 

with no sample overlap. The AR(2)  process accounts for autocorrelations not explained 

by the sample overlap. These autocorrelations account for the fact that households 

dropped from the survey are replaced by households from the same ‘census tract’. The 

reduced ARMA presentation of the sum of the two processes is ARMA(2,17), which is 

approximated by an AR(15) model.  

 
The separate models hold ing for the population values and the sampling errors are cast 

into a single state-space model for the observations ty  (the direct sample estimates). The 

resulting state vector consists of the covariate coefficient, the trend level, the slope, 11 

seasonal components accounting for the 12 month frequency and its five harmonics, the 

irregular term and the concurrent and 14 lags of the sampling errors, a total of 30 

elements. 

 
The monthly employment and unemployment estimates published by the BLS are 

obtained under the model (2.1) as, 
 

                                                            ˆ ˆ( )t t tY y e= − ˆ ˆˆ ˆ
t t t t tX L S Iβ= + + +                                                    (2.2)
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3. FILTERING OF STATE-SPACE MODELS WITH CORRELATED MEASUREMENT ERRORS 

In this section we assume the following state-space model 

t t t ty Z eα= +  ;  ( ) 0 , ( ')t t t tE e E e e= = Σ   ;  ( ')t tE e eτ τ= Σ                                (3.1a) 

1t t tTα α η−= + ; ( ) 0 , ( ') , ( ') 0 0t t t t t kE E Q E kη η η η η −= = = >                                          (3.1b) 

It is also assumed that ( ') 0tE eτη =  for all t and τ . Clearly, what distinguishes this model 

from the classical state-space model is that the measurement errors te  are correlated over 

time. Below we propose a filtering algori thm to take account of the covariances tτΣ . 

At time 1 

Let 1 1 1 0 1 1ˆ ˆ( )K Z T K yα α= Ι − +  be the filtered (updated) state estimator at time 1 where 0α̂  is 

a starting estimator with covariance matrix 0 0 0 0 0ˆ ˆ[( )( )']P E α α α α= − − , assumed for 

convenience to be independent of the observations and 1
1 1|0 1 1K P Z F−′=  is the ‘Kalman gain’ 

with 1|0 0 'P TPT Q= +  and 1 1 1|0 1 1F Z P Z ′= + Σ% . The matrix 1|0P  is the covariance matrix of the 

prediction errors 0 1 1|0 1ˆ ˆ( ) ( )Tα α α α− = −  and 1F  is the covariance matrix of the innovations 

1 1 1|0 1 1 1|0ˆ ˆ( ) ( )y y y Zν α= − = − . Since 1 1 1 1y Z eα= + ,   

 

                                     1 1 1 0 1 1 1 1 1ˆ ˆ( )K Z T K Z K eα α α= Ι − + +                                                   (3.2)                                               

At time 2 

Let 2|1 1ˆ ˆTα α=  define the predictor of 2α  at time 1 with covariance matrix 

2|1 2|1 2 2|1 2ˆ ˆ[( )( )']P E α α α α= − − . An unbiased estimator 2α̂  of 2α  [ 2 2ˆ( ) 0E α α− = ] based on 2|1α̂  

and 2y  is the Generalized Least Square (GLS) estimator of the random coefficient 2α  in 

the regression model 

   

                                     ( ) 2|11
2

22 2

ˆ uT
Zy e

α αΙ    = +      
 ( 2|1 1 2ˆu Tα α= − )                                 (3.3) 

that is,  
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                                       ( )
1

' 1 ' 1 1
2 2 2 2 2

2 2

ˆˆ ( , ) ( , ) TZ V Z VZ y
αα

−
− − Ι   = Ι Ι      

                                       (3.4) 

where  

                                           2|1 2|1 2
2

2 2 2'
u P CV Var e C

   = =   Σ   
                                                     (3.5) 

 
and 2 2|1 2 1 12[ , ]C Cov u e TK= = Σ  (follows straightforwardly from (3.2) and the previous 

assumptions). Notice that 2V  is the covariance matrix of the errors 2|1u  and 2e , and not of 

the predictors 1ˆTα  and 2y . By Pfeffermann (1984), the estimator 2α̂  is the best linear 

unbiased predictor (BLUP) of 2α  based on 1ˆTα  and 2y , with covariance matrix  

 

                               2 2 2 2ˆ ˆ[( )( )']E α α α α− −  ( )
1

' 1
2 2 2

2
( , )Z V PZ

−
− Ι = Ι =  

                                   (3.6)                                                                                       

At Time 3 

Let 3|2 2ˆ ˆTα α=  define the predictor of 3α at time 2 with covariance matrix 

3|2 3 3|2 3ˆ ˆ[( )( )']E α α α α− − 2 3 3|2.TPT Q P′= + =  Denote ( ) ( )1
2 2 2 21 22, ' ,Z V B B B−Ι = =  such that 

1
2 2 2 2 21 1 22 2

2

ˆˆ ˆ( )TP B P B T B yy
αα α = = + 

 
. Since 2 2 2 2y Z eα= + , it follows from (3.2) that 

   
      3 2 3 2 21 1 1 2 22 2 3ˆ[ , ] [ , ]C CovT e CovTPB TKe TP B e eα= = + 2 21 1 13 2 22 23( )TPB TK T P B= Σ + Σ              (3.7) 

 
An unbiased estimator 3α̂  of 3α  is obtained as the GLS estimator of the random coefficient 

3α  in the regression model 

   

                                    ( ) 3|22
3

33 3

ˆ uT
Zy e

α αΙ    = +      
 ( 3|2 2 3ˆu Tα α= − )                                 (3.8) 

 
that is,  

                           ( ) 1
' 1 ' 1 2

3 3 3 3 3
3 3

ˆˆ ( , ) ( , ) TZ V Z VZ y
αα

−
− −Ι   = Ι Ι      

                                                   (3.9) 

where  
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                                     3|2 3|2 3
3

3 3 3

,
' ,

u P CV Var e C
   = =   Σ   

                                                      (3.10) 

The estimator 3α̂  is the BLUP of 3α  based on 2ˆTα  and 3y  with covariance matrix  

 

3 3 3 3ˆ ˆ[( )( )']E α α α α− − ( ) 1
' 1
3 3 3

3
( , )Z V PZ

−
− Ι = Ι =  

                           (3.11)   

 
At time t 

 
Let | 1 1ˆ ˆt t tTα α− −=  define the predictor of tα  at time (t-1) with covariance matrix 

| 1 | 1 1 | 1ˆ ˆ[( )( )'] 't t t t t t t t t tE TP T Q Pα α α α− − − −− − = + =  where 1 1 1 1 1ˆ ˆ[( )( )']t t t t tP E α α α α− − − − −= − − . Set the 

random coefficient regression model  

                  

                                        ( ) | 11ˆ t tt
t

tt t

uT
Zy e

α α −− Ι    = +      
( | 1 1ˆt t t tu Tα α− −= − )                          (3.12) 

and define  

                                      | 1 | 1 ,
' ,

t t t t t
t

t t tt

u P CV Var e C
− −   = =   Σ   

                                                  (3.13) 

The computation of 1ˆ[ , ]t t tC Cov T eα −=  is carried out as follows: Let, 1
21 ]',[],[ −Ι= jtjj VZBB  

where 1jB  contains the first q  columns and 2jB  the remaining columns with )dim( jq α= . 

Define, 1 2,j j j j j jA TP B A TP B= =% ,  j=2…t-1 ; 1 1A TK=% . Then, 

 

1 1 2 2 1 1 1 2 3 2 2 1 2 2, 1 1,ˆ[ , ] .... .... ...t t t t t t t t t t t t t t t tC Cov T e A A A A A A A A A A Aα − − − − − − − − − −= = Σ + Σ + + Σ + Σ% % % %       (3.14) 

 
The BLUP of tα  based on 1ˆ tTα −  and ty  and the covariance matrix of the prediction errors 

are obtained from (3.12)-(3.14) as, 
 

( )
1

' 1 ' 1 1ˆˆ ( , ) ( , ) t
t t t t t

t t

TZ V Z VZ y
αα

−
− − −Ι   = Ι Ι      

 ; ˆ ˆ[( )( )']t t t t tP E α α α α= − − ( )
1

' 1( , )t t
t

Z V Z

−
− Ι = Ι  

       (3.15) 
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The filtering algorithm defined by (3.15) has the following properties: 
 
1- At every time point t, the filter produces the BLUP of tα  based on the predictor 

| 1 1ˆ ˆt t tTα α− −=  from time (t-1) and the new observation ty  (follows from Pfeffermann, 1984). 
  
2- Unlike the Kalman filter that assumes independent measurement errors, the filter (3.15) 

does not produce the BLUP of tα  based on all the observations ( ) 1( ... )t ty y y= . 

Computation of the latter requires joint modeling of all the observations (see comment 

below).   

 
3- Empirical evidence so far suggests that the loss in efficiency from using the proposed 

algorithm instead of the BLUP that is based o n all the observations is mild. 

 
Comment: For arbitrary covariances tτΣ  between the measurement errors, it is impossible 

to construct an optimal filtering algorithm that combines the predictor from the previous 

time point with the new observation.  By an optimal filtering algorithm we mean an 

algorithm that yields the BLUP of the state vector at any given time t based on the 

observations ( )ty . To see this, consider the simplest case of 3 observations 1 2 3, ,y y y  with 

common mean µ  and variance 2σ . If the three observations are independent, the BLUP 

of µ  based on the first 2 observations is (2) 1 2( ) / 2y y y= +  and the BLUP based on the 

three observations is (3) 1 2 3 (2) 3( ) / 3 (2/3) (1/3)y y y y y y= + + = + . The BLUP (3)y  is the 

Kalman filter predictor for time 3.  

 
Suppose, however, that 2

1 2 2 3 12( , ) ( , )Cov y y Cov y y σ ρ= =  and 2 2
1 3 13 12( , )Cov y y σ ρ σ ρ= ≠ . The 

BLUP of µ  based on the first 2 observations is again (2) 1 2( ) / 2y y y= + , but the BLUP of µ  

based on the 3 observations is in this case (3) 1 2 3
cy ay by ay= + +  where 12

12 13

(1 )
3 4

a
ρ

ρ ρ
−

=
− +

 and 

12 13

12 13

(1 2 )
3 4

b
ρ ρ
ρ ρ

− +
=

− +
.  Clearly, since a b≠ , the predictor (3)

cy  cannot be written as a linear 

combination of (2)y  and 3y . For example, if 12 130.5, 0.25ρ ρ= = ⇒ (3) 1 2 30.4 0.2 0.4cy y y y= + + . 
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4. INCORPORATION OF THE BENCHMARK CONSTRAINTS 
 
4.1 Joint modeling of S concurrent sample estimates and their weighted mean  

In this section we model jointly the direct estimates in S States and their weighted mean. 

We follow for convenience the BLS modeling practice and assume that the true population 

values and their direct sample estimates are independent between States. In Section 6 we 

consider extensions of the joint model to allow for cross-sectional correlations between 

components of the separate state vectors operating in the various States. 
 
Suppose that the separate State models are written as in (3.1) with the sampling errors 

placed in the observation equation. Below we add the subscript s to all the model 

components to distinguish between the various States. Note that the observations sty  (the 

direct sample estimates) and the measurement errors ste  (the sampling errors) are scalars 

and tZ  is a row vector (denoted hereafter as 'tz ).  Let 1 1
( ... , ) '

S

t t St st sts
y y y w y

=
= ∑%  define the 

concurrent estimates in the S States (belonging to the same ‘homogeneous group’) and 

their weighted mean (the right hand side of the benchmark equations (1,1)). The 

corresponding vector of sampling errors is 1 1
( ... , ) '

S

t t St st sts
e e e w e

=
= ∑% . Let * 't S stZ z= Ι ⊕ (block 

diagonal matrix with 'stz in the sth block), *
t ST T= Ι ⊕ ,  

*

1 1 '... '
t

t
t t St St

ZZ w z w z
 =   

% , 1( '... ') 't t Stα α α=   

and 1( '... ') 't t Stη η η= . By (3.1) and the independence of the state vectors and sampling 

errors between the States, the joint model holding for ty%  is, 

                        ; ( ) 0 , ( ') '
t t

t t t t t t t
t t

hy Z e E e E e e h
τ τ

τ τ
τ τ

α ν
Σ = + = = Σ =   

% %% % % % % %                                 (4.1a) 

                 1 ; ( ) 0 , ( ') , ( ') 0, 0t t t t t t S st t t kT E E Q E kα α η η η η η η− −= + = = Ι ⊕ = >%% % % % % % % %                  (4.1b) 

1[ ... ) ; [ , )t t S t s t s stDiag Cov e eτ τ τ τ τσ σ σΣ = =   ,  
1 1 1

[ , ]
S S S

t s st s t s s st sts s s
w w Cov w e w eτ τ τ τ τν σ

= = =
= =∑ ∑ ∑  

1 1
( ... )'; [ , ]

S

t t S t s t st s t s st sts
h h h h w Cov e w eτ τ τ τ τ τσ

=
= = = ∑  

Comment: The model (4.1) is the same as the separate models defined by (3.1). There is 

no new information in the observation equation by adding the model holding for
1

S

st sts
w y

=∑ .  
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 4.2 Incorporating the benchmark constraints 
 
Under the model (3.1) with the sampling errors in the observation equation, the model 

dependent estimator for State s at time t takes the form ,model
ˆ ˆ'st st stY z α=  (see equations 2.1 

and 2.2). Thus, the benchmark constraints (1.1) can be written as, 
 

                                           
1 1

ˆ'
S S

st st st st sts s
w z w yα

= =
=∑ ∑   , t=1,2,…                                             

(4.2) 

where ,cps
ˆ

st sty Y=  defines as before the direct sample estimate. By (4.1a) 

1 1 1
'

S S S
st st st sts s sst

y z w eα
= = =

= +∑ ∑ ∑ . Hence, a simple way of incorporating the benchmark 

constraints is by imposing 
1 1

'
S S

st st st st sts s
w y w z α

= =
=∑ ∑ , or equivalently, by setting  

 

1 1
[ ] [ , ] 0

S S

st st st st sts s
Var w e Cov e w e

= =
= =∑ ∑  ,   t=1,2,…                (4.3) 

This is implemented by replacing the covariance matrix ttΣ%  in the observation equation 

(4.1a) by the matrix * ( )

( )

, 0
0 ' , 0

tt S
tt

S

Σ Σ =   
% .  Thus, the benchmarked estimator takes the form, 

 

                                        
1

' * 1 ' * 1 1ˆ ( , )[ ] ( , )[ ]
bmk

bmk t
t t t t t

t t

TZ V Z VZ y
αα

−
− − − Ι   = Ι Ι        

% %% %% %                           (4.4) 

where * | 11
* ' *

,
,

bmk bmkbmk
t t tt t
bmkt

t t tt

P CTV Var
e C

α α −−
  −= =   Σ   

%% %
% ; | 1 1 'bmk bmk

t t tP TP T Q− −= + %% %  and  1[ , ]bmk bmk
t t tC CovT eα −= % % % . 

Note that | 1
bmk

t tP −  is the true covariance matrix of 1( )bmk
t tTα α −− %% %  under the model. Similarly, 

1[ , ]bmk bmk
t t tC Cov T eα −= % % %  is the covariance under the model. See below for the computation of 

bmk
tP  and bmk

tC .  
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4.2 Computation of bmk
tP  = ( )bmk

t tVar α α−%  and 1[ , ]bmk bmk
t t tC Cov T eα −= % % %  

Let 
1

* ' * 1( , )[ ]t t t
t

P Z V Z

−
− Ι = Ι     

% %  such that * ' * 1 * *1
1 1 2( , )[ ]

bmk
bmk bmk bmk bmkt
t t t t t t t t t t

t

TP Z V P B T P B yy
αα α− −

−
 = Ι = + 
 

% %% %% % %%  

= * * *
1 1 2 2
bmk bmk bmk bmk

t t t t t t t t t tP B T P B Z P B eα α− + +% %% % % .  

By definition of *
1, bmk

t tP B  and 2
bmk
tB , * * * * 1

1 2 [ ]bmk bmk
t t t t t t tP B P B Z P P −+ = = Ι% . Hence,                      

* *
1 2
bmk bmk

t t t t t t t tP B P B Zα α α= + %% % %  and 

* *
1 1 2( ) ( )bmk bmk bmk bmk

t t t t t t t t tP B T P B eα α α α−− = − +%% % % % %                                     (4.5) 

It follows that, 

             
* * * *

1 | 1 1 2 2

* * * *
1 2 2 1

[( )( )'] ' '

' ' '

bmk bmk bmk bmk bmk bmk bmk bmk
t t t t t t t t t t t t t tt t t

bmk bmk bmk bmk bmk bmk
t t t t t t t t t t

P E P B P B P P B B P

P B C B P P B C B P

α α α α −= − − = + Σ +

+ +

%% % % %
            (4.6) 

The computation of 1[ , ]bmk bmk
t t tC Cov T eα −= % % %  is carried out by use of formula (3.14), with  

T~ , *
jP , ),( 21

bmk
j

bmk
j BB  replaced by  T , ),(, 21 jjj BBP  in the definitions of jA  and jA

~
,  j=2… t-1,  

and defining bmkBPTA 2,1
*

11
~~

= . 

 
5. EMPIRICAL ILLUSTRATIONS 

 
For the empirical illustrations we fitted the BLS model defined in Section 2 but without the 

covariate tX , to the direct (CPS) unemployment estimators in the 9 Census divisions of the 

U.S.A.  The observation period is January, 1976 – December, 2001.  The last year is of 

special interest since it is affected by a start of a recession in March and the bombing of 

the New York World Trade Center in September. These two events provide an excellent 

test for the performance of the proposed benchmarking procedure. 

 
The individual Division models, along with their estimated hyper-parameters, are 

combined into the joint model (4.1).  The benchmark constraints are as defined in (1.1) 

with 1=stw , so that the model dependent estimators of the Census Divisions 
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unemployment are benchmarked to the total national unemployment.  The CV of the CPS 

estimator of the total national unemployment is 2%, which is considered to be sufficiently 

precise.  

 
Figure 1 compares the sum of the model dependent predictions over the 9 Divisions 

without the benchmark constraint with the CPS national unemployment estimator.  In the 

first part of the observation period the sum of the model predictors are close to the CPS 

estimator.  In 2001 there is evidence of systematic model underestimation.  This is better 

illustrated in Figure 2, which plots the difference between the total of the model predictors 

and the CPS estimator. As can be seen, starting in March, 2001, all the differences are 

negative and in some months the absolute difference is larger than twice the standard 

deviation of the CPS estimator. 

 
Figures 3-11 display the model dependent predictors, the benchmarked predictors and the 

direct CPS estimators from January 2000 for each of the 9 Census divisions. Except for 

New England, the Benchmarked estimators are seen to correct the underestimation of the 

model dependent estimators in the year 2001.  The reason that this bias correction does 

not occur in New England is that in this division, the model dependent predictors are 

actually higher than the CPS estimators, which serves as an excellent illustration for the 

need to apply the benchmarking in ‘homogeneous groups’ (see Section 6).   

 
Table 1 shows the means of the monthly ratios between the benchmarked predictors and 

the model dependent predictors for each of the 9 Census divisions in the year 2001.  The 

means are computed separately for the estimation of the total unemployment figures and 

for estimation of the trend levels ( tL  in equation 2.1). As can be seen, the means of the 

ratios are all greater than one but the largest means are about 4% indicating that the effect 

of the benchmarking is generally mild. 
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6. CONCLUDING REMARKS, OUTLINE OF FUTURE RESEARCH 
 
Benchmarking of small area model dependent estimators to agree with the direct sample 

estimates in ‘large areas’ is a common requirement by statistical agencies producing 

official statistics. This article shows how this requirement can be implement with state-

space models. When the direct estimates are obtained from a survey with correlated 

sampling errors like in labor Force surveys, the benchmark constraints cannot be 

incorporated within the framework of the Kalman filter, requiring instead the development 

of a filter with correlated measurement errors. This filter is needed to allow the 

computation of the variances of the benchmarked estimators under the model. Unlike the 

Kalman filter, filtering with correlated measurement errors does not produce the BLUP 

predictors based on all the observations but empirical evidence obtained so far indicates 

that the loss of efficiency by use of the proposed filtering algorithm is mild. Further 

empirical investigation is needed to ascertain this property. 

 
An important condition for the success of the benchmarking procedure is that the small 

areas (States in the present application) are ‘homogeneous’ with respect of the behavior of 

the true (estimated) quantities of interest (the true employment or unemployment figures in 

the present appli cation). The need for the fulfillment of this condition is illuminated in the 

empirical illustrations where the benchmarking of the Census Division estimates to the 

direct (CPS) national estimate increased the model dependent predictors in New England 

instead of decreasing them. This happened because unlike in all the other divisions, the 

model dependent predictors in New England were already higher than the corresponding 

CPS estimators. Since the benchmarking of the employment and unemployment estimates  

In the U.S.A. is currently planned for the State estimates, our next major task  is to classify 

the 50 States and the District of Columbia into homogeneous groups.  

 
Several factors need to be taken into account when defining the groups. Geographic 

proximity to account, for example, for weather conditions, breakdown of the Labor Force 

into the major categories of employment (percentages employed in manufacturing, 

services, farming etc.) and the size of the States (to avoid the possibility that large States 

will dominate the benchmarking in small States) are obvious candidate factors that should 
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be considered. Obviously, the behavior of past estimates and their components like the 

trend and seasonal effects should be investigated for a successful classification of the 

States. Accounting for all the factors mentioned above for the grouping process might 

result in very small groups but it should be emphasized that the groups must be sufficiently 

large to justify the benchmarking to the corresponding global CPS estimate in the group. 

Thus, the sensitivity of the benchmarking process to the definition of the groups needs to 

be investigated.  

 
Another area for future research is the development of a smoothing algorithm that 

accounts for correlated measurement errors. Clearly, as new data accumulate it is 

desirable to modify past predictors, which is particularly important for trend estimation. 

Last, the present BLS models assume independence between the state vectors operating 

in separate States. It can be surmised that changes in the trend or seasonal effects are 

correlated between homogeneous States and accounting for these correlations might 

improve further the efficiency of the predictors. In fact, the existence of  such correlations 

underlies implicitly the use of the proposed benchmarking procedure. Accounting explicitly 

for the existing correlations is simple within the joint model defined by (4.1) and may 

reduce quite substantially (but not eliminate) the effect of the  benchmarking  on the model  

dependent predictors. 
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Means of Ratios Between Benchmarked and Model Dependent Predictors of 

Total Unemployment and Trend in Census Divisions, 2001 

 

Division Prediction of 
Unemployment 

Prediction 
of Trend 

New England 1.015 1.015 
Middle Atlantic 1.011 1.012 

East North Central 1.036 1.036 

West North Central 1.020 1.020 
South Atlantic 1.030 1.030 

East South Central 1.040 1.040 
West South Central 1.043 1.043 

Mountain 1.016 1.016 
Pacific 1.038 1.038 
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Figure 1. Monthly Total Unemployment 
National CPS and Sum of Division Model Estimates 

(100,000) 

Figure 2. Monthly total Unemployment   
Difference between Sum of Division Model 

Estimates and CPS SD(CPS) ≈1.35  (100,000) 
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Figure 3. CPS, Model and Benchmark Estimates of 

Monthly Total Unemployment 
New England (10,000) 

Figure 4. CPS, Model and Benchmark Estimates of 
Monthly Total Unemployment 

Middle Atlantic (100,000) 
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Figure 5. CPS, Model and Benchmark Estimates of 

Monthly Total Unemployment 
East North Central  (100,000) 

Figure 6. CPS, Model and Benchmark Estimates of 
Monthly Total Unemployment 
West North Central (10,000) 
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Figure 7. CPS, Model and Benchmark Estimates of 

Monthly Total Unemployment 
South Atlantic  (100,000) 

Figure 8. CPS, Model and Benchmark Estimates of 
Monthly Total Unemployment 
East South Central  (10,000) 
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Figure 9. CPS, Model and Benchmark Estimates of 

Monthly Total Unemployment 
West South Central  (100,000) 

Figure 10. CPS, Model and Benchmark Estimates of 
Monthly Total Unemployment 

Mountain (10,000) 
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Figure 11. CPS, Model and Benchmark Estimates of 

Monthly Total Unemployment  
Pacific (100,000) 
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