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Moments of Parton Distribution Amplitudes and Structure Functions for the Light
Mesons from Lattice QCD

by Thomas David Rae

This thesis presents the lattice calculation and the required renormalisation for the
determination of two hadronic structure quantities. These are the parton distribution
amplitudes (PDAs) which enter in the form-factor for exclusive scattering processes
and the parton distribution functions (pdfs) that appear in inclusive processes. The
PDA’s provide process independent partonic information about hadrons and are im-
portant quantities required for the calculation of weak physics parameters, such as
CKM matrix elements and CP violating phases. We are able to calculate moments
of the PDAs on the lattice using two point correlation functions of local operators.
This calculation extracts the first two moments for the light mesons and is performed
on three ensembles, with parameters, that enable a study of finite volume and dis-
cretisation effects. We use the Iwasaki gauge action and 2 + 1 flavours of domain
wall fermions for all simulations. The calculation of the pdfs through the structure
function moments uses three-point correlation functions of local operators. We ex-
tract the first odd moment for the pion on our finest lattice, using partially twisted
boundary conditions. An important feature of both calculations is non-perturbative
renormalisation, using the Rome-Southampton method. The effect of the projections
used to isolate the desired renormalisation factors and the momentum choice, that
sets the renormalisation scale, on the discretisation errors is detailed through the use
of twisted boundary conditions. The results for all quantities are obtained to good

precision.
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Chapter 1

Introduction

Our picture of matter has evolved considerably, specifically what we consider as the
fundamental constituents of matter. In the fifth century BC, the Greek philosopher,
Democritus, proposed that all matter was built from indivisible or “uncutable”
atomos (particles). The name atom has stuck for the modern description, but we
now know that the term “atom” is a misnomer as each is divisible into electrons (an

example of a lepton), protons and neutrons (types of hadrons).

Following Chadwick’s discovery of the neutron in 1932 [4], it was believed that all
matter could be built from the “fundamental” particles: the electron, e™, proton, p,
and neutron, n. However, cosmic ray and collider experiments at increasingly large
energies were producing new particles that could be considered as equally
“fundamental” [5,6]. By the mid-1960’s there were many such particles which
raised the question: “Can they all be fundamental?” There was considerable
experimental evidence to suggest that this was not the case. An example is neutral
meson production, where the interaction of high energy electrons with protons can
produce neutral mesons,

e +p—e +p+a

This process is very hard to explain without any underlying structure. The large
anomalous magnetic moment of the neutron was a further indication of internal

structure that involves the distribution of charge. The most conclusive evidence for



hadronic structure came from the Deep Inelastic Scattering (DIS) of high energy
electrons off of hydrogen at the Stanford Linear Accelerator Centre (SLAC) in the
late 1960’s [7-9]. The recorded data could be most easily understood if the protons
and neutrons were described by collections of point-like particles with fractional
electric charge. Inelastic scattering allows the hadronic substructure to be probed as
the hadron does not remain intact after the scattering. If the scattering is at a large
enough momentum transfer, Q? = —q?, the processes that take place are sensitive

to very small scales and therefore probe the point-like particles within the hadron.

In 1964, Murray Gell-Mann and George Zweig independently proposed a model
that explained the observed spectrum of hadrons using elementary constituents of
fractional charge, known as quarks [10-12]. Mesons consist of quark-antiquark
bound states, whereas baryons consist of three quark bound states. This model
proved a phenomenological success at predicting the hadronic states, however it
could not explain the lack of observed particles with fractional charge outside of
hadrons or the apparent violation of the Pauli exclusion principle in the case of the
AT baryon (composed of three up quarks in the same spin and orbital states). To
solve this Nambu, Greenberg and Gell-Mann proposed that quarks carry an
additional quantum number: colour [13,14]. This led to the later development of

QCD.

QCD clarified that the point-like particles (partons) within the hadrons were quarks
and gluons, which exhibit two defining properties: confinement (quarks and gluons
cannot be isolated and are forever bound in hadrons) and asymptotic freedom (the
coupling becomes small in the ultra-violet (UV) regime) [15,16]. At large energies
(and thus small distances) the fields may be treated using perturbation theory.
This has been exploited and has provided many predictions, which agree with
experiment to excellent precision. However in an asymptotically free theory, in the
low energy regime (large distances), the coupling becomes large and the use of
perturbation theory is no longer satisfactory. Hadronisation, the processes of
forming or splitting up hadrons, falls into this regime. Associated quantities are

therefore non-perturbative and require a different approach.



Scattering processes can be factorised into two parts: the perturbatively calculable
hard scattering of the quarks, gluons, leptons etc. at large momentum transfer and
the non-perturbative hadronisation required to form colour singlets. Hadronic
scattering processes can be classed as inclusive or exclusive. Inclusive scattering
processes are those which are summed over all possible final states, an example of
which is the DIS experiments at SLAC that do not depend on the final state and
tell us about the partonic content. The partons in such an inelastic scattering are
described by their characteristic momentum distributions, known as “parton
distribution functions” (pdfs). Complementary information can be extracted from
exclusive scattering processes, where all final state particles are observed, such as
any elastic scattering process. Exclusive processes provide information about the
hadronic structure. One such quantity that we will explore in depth is the parton
distribution amplitudes (PDAs). Both the parton distribution functions and
amplitudes are non-perturbative quantities and form the subject of interest for this
thesis. We will use Lattice QCD (LQCD) coupled with chiral-perturbation theory

to extract these non-perturbative quantities for the light mesons.
The brief outline is as follows:

= In chapter 2, I discuss QCD describing the Lagrangian and its symmetries. 1
will follow this with an introduction to exclusive and inclusive scattering
processes and comment upon the information that they provide with respect

to hadronic structure.

= In chapter 3, I discuss the formalism of Deep Inelastic Scattering (DIS),
developing the previous chapter’s discussion of inclusive processes. I will

detail the relationship between DIS, the structure functions and the pdfs.

= In chapter 4, I introduce the PDAs through the electromagnetic form factor,
commenting on the relation of the PDAs to the Gegenbauer moments that

arise in the conformal expansion of massless QCD.

= In chapter 5, I provide an overview of chiral perturbation theory and discuss
its applicability in obtaining results at the physical quark masses from the

lattice results.



In chapter 6, I review Lattice QCD (LQCD) and, in particular, discuss the
fermion and gauge formulations used by the RBC/UKQCD collaborations. I
also discuss the use of partially twisted boundary conditions for tuning the
momenta in our simulations, followed by a summary of the simulation

parameters used in our calculations.

In chapter 7, I discuss the calculation of the renormalisation constants
required for the moments of the PDAs and structure functions. I present the

results from both a perturbative and a non-perturbative calculation.

In chapter 8, I present the calculation of the second moment for the pion
structure function on the lattice for our finest ensemble, and compare our

result with existing lattice calculations.

In chapter 9, I present the calculation and results for the PDAs on the three
available lattice ensembles, which allow us to comment on both finite volume

and discretisation effects.

In chapter 10, I present the conclusions as well as future prospects for these

calculations.



Chapter 2

QCD and the Parton Model

2.1 The Standard Model

The Lagrangian that describes the Standard Model (SM) of particle physics is

constructed so that it has a local internal gauge symmetry [17]:
SUB)e x SU(2)L x U(1)y. (2.1)

The SM offers an excellent description of three of the four fundamental forces of
nature within a single framework: electromagnetism, the strong force and the weak
force. This is achieved through the combination of Quantum Chromodynamics
(QCD), SU(3)¢, and electroweak theory, SU(2)r, x U(1)y. The fermions in the SM
are leptons and quarks. The leptons are organised into three families: the electron e
and its neutrino v, the muon p and its neutrino v, and the tau 7 and its neutrino
v,. Similarly, the quarks are organised into families: v and d, ¢ and s, t and b. The
weak interactions can produce transitions between members of the same weak
isospin doublet and also between different families, although transitions within the

same doublet are dominant. The weak quark doublets are of the form



where d’, s’ and b’ are weak interaction eigenstates that are related to the strong
interaction eigenstates through the Cabbibo-Kobayashi-Maskawa (CKM) unitary

matrix [18,19]

d/ Vud Vus Vub d
SN = Vea Ves Va s> (2.3)
v Via Vis Vi b

where the elements correspond to the couplings of the W weak gauge boson to all

possible quark pairs.

The SM also has a scalar ‘Higgs’ field that provides a mechanism to generate the
fermion and gauge boson masses. All attempts to incorporate gravity into the
description have been unsuccessful. The SM also falls short of providing an
explanation for some of the phenomena which it encompasses, such as CP violation,
the hierarchy of the quark masses or an explanation for the existance of three
generations. These have to be introduced “by hand” and manifest themselves as the
19 free parameters of the SM. Nonetheless the SM provides many precise predictions
that have been scrutinised time and time again through experiment and have agreed
almost without fail. The gyromagnetic ratio calculation of the muon provides a
tension between experimental measurements, (g — 2)/2|exp = 0.0011659208(6), and
the theoretical predictions, (g — 2)/2|¢n = 0.0011659181(7) (calculated to order o
where the theoretical errors are partly due to the numerical evaluation of the
Feynman diagrams) at the level of 8 decimal places [20,21]. It is possible that this
could be due to new physics beyond the SM. It is expected that, whatever form the
complete theory takes, the SM is at least a limiting case of it. In which case the SM
is an effective theory describing things well at “low” energy scales but which should
be supplemented by something else at high scales. We will continue with a
discussion of QCD, but will leave the discussion of the electroweak theory as it is

not directly relevant for the work presented in this thesis.



2.2 Quantum Chromodynamics (QCD)

In the quark model, quarks required an additional quantum number, colour, in
order for the model to be successful phenomenologically. Indirect evidence for this
comes from two well known processes: the decay of 7° — 2y and eTe™ annihilation.
For both of these processes colour appears as an extra factor in the reaction

rates [22]. In the latter case, the ratio,

o(ete™ — hadrons)

R=
oefe” = putp™)

= multiplicity x Z Q?c, (2.4)
f

steps, with increasing centre of mass energy, as the threshold for heavier quark
flavours is passed. In order for this to agree with experiment the multiplicity must
equal three, the number of identical copies for a particular quark. The quark model,
however, did not explain the underlying structure that ensures hadrons are colour
singlets, or describe the mechanism behind the interaction between quarks. From
the DIS experiments at SLAC it was discovered that quarks exhibit asymptotic
freedom, a property shared with non-abelian gauge theories [23]. A non-abelian
theory of the strong interactions emerged with colour as the gauge charge of the
quarks. The quarks belong to the fundamental representation of the local colour
gauge group, SU(3), and the quanta of the SU(3) gauge field are called gluons,
which themselves carry colour and exhibit the non-abelian feature of self

interacting. The resulting theory is known as Quantum Chromodynamics (QCD).

2.3 The QCD Lagrangian

The QCD Lagrangian density is:

Ny
_ 1
Locp = wa,i (i Dy — my);; ¥y — ZFauupﬁy. (2.5)
f
Quarks are fermions and are therefore described in the free theory by the Dirac
equation. However, because QCD is a gauge theory, we replace the derivative in the

kinetic term with a covariant derivative, which introduces a coupling between the



fermion and gauge fields via the coupling constant, gs. This corresponds to the first
term in the Lagrangian, where v is the quark field for a given flavour f with
corresponding mass m¢, and the sum is over six quark flavours, {u,c,t,d, s, b}.

i,7 = {1,2,3} are colour indices in the fundamental representation and the spinor
indices are suppressed. The 4 x 4 Dirac matrices, v*, satisfy the anti-commutation

relation

{77} = 29" (2.6)

where the Greek index runs over space-time and ¢g" is the space-time metric. The

covariant derivative is defined as

The gauge fields, A, transforms under the adjoint representation of the SU(3)

gauge group and hence consist of eight gluon fields,
Ay = AN, (2.8)

where A* are the generators of the group SU(3) and follow the commutation

relation, involving the structure constants f,
(A%, A = i fabene, (2.9)

where a, b, ¢ are colour indices in the adjoint representation that run from 1-8. The

generators are conventionally normalised so that
a b 1 ab
Tr ()\ A ) = o (2.10)

The second term in the Lagrangian describes the dynamics of the gauge fields,

where the field strength tensor can be expressed as

F, = 0,A% — 9,A% + g f“bCAZAf,, (2.11)



(from F),, = [D,, D,]) whose structure clearly demonstrates the possibility of

gluon-gluon interactions in QCD.

2.4 Symmetries of the QCD Lagrangian

The massless QCD Lagrangian respects many symmetries. It is invariant under
Poincaré transformations, scale transformations known as dilatations, and also
under special conformal transformations (a combination of translation and
space-time inversions). All of these taken together are referred to as “the conformal
group”. The conformal symmetry that is respected at the classical level is broken
by quantum effects (whilst the Lagrangian is scale invariant, the Green’s functions
are not), leading to the conformal anomaly. This introduces a scale, Aqcp, at which
the confinement of quarks occurs and hence determines the masses of the hadrons.
This is highlighted by the non-vanishing QCD beta-function [15,16], given to

leading order in perturbation theory by

5(98) =u 8M = _167:2 where b(] = ?Nc - § I (212)

which preserves asymptotic freedom for Ny < 16 for N. = 3, where g; is the strong
coupling and N, and Ny are the number of quark colours and flavours respectively.
In a classical field theory the coupling constant is dimensionless, however the

logarithmic divergences from quantum corrections cause this “constant” to depend

on the momentum involved in the process, Q2. At one loop

4

2y
Oés(Q ) - bolog(Qg/AgQCD)a

(2.13)

where a5(Q?) = g2/4m. The scale parameter Aqcp is the scale at which a; becomes
strong as Q2 is decreased and has been determined by experiment
A%QCD ~ 200 MeV. Perturbation theory is only valid when Q2% > A(QQCDv which is

often taken to be above Q% =1 GeV for which as(Q?) ~ 0.4 [17]. The scale



parameter Aqcop naturally splits the quark masses into two groups,
My, Mg, Ms < Agep < me, My, my. (2.14)

This splitting means that it is often useful to work in an effective theory, where the
heavy quark degrees of freedom are integrated out. This is the case for the lattice
calculations using Ny = 2 + 1 (2 degenerate light flavours and 1 heavier flavour)
that are described in this thesis. Conformal symmetry does, however, exist in the
quantum theory at short distances where g; — 0 and p — oo and at tree level,
where the beta function vanishes. This proves to be a useful tool in specifying the
structure of conformal expansions, which may be used for the calculation of parton

distribution amplitudes via Gegenbauer moments.

There are also approximate global symmetries that result from the space-time
independent rotations that can be made in flavour space. Writing the kinetic term
in terms of left- and right-handed quarks (projecting by (1 +v5)/2),

Ny

D 0 Dutby = (b1 Dutbry + Yy Dutbry) - (2.15)
7 7

We can perform a U(Ny) transformation independently on the left- and
right-handed quarks, where the flavours of the left- and right-handed quarks are

rotated by independent unitary matrices,

Y, = Uryr, Yr — UrYR, (2.16)
where
vy
Yvr=1 1 |- (2.17)
Yy

This term therefore has the approximate global U(Ny)r, x U(Ny)g symmetry. The
transformations, ¥ — eia%qbf and ¥y — 1) are, respectively, axial U(1)4 and

vector U(1)y symmetries of the action. Anomalous transformations preserve the
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action but not the measure of the path integral [24]. The axial U(1)4
transformation does not preserve the measure and is known as the “axial anomaly”.
The result is the global symmetry SU(Ny)r x SU(Ny)r x U(1)y, where U(1)y is
just baryon number and the independent SU(Ny)r, g rotations are referred to as

chiral symmetry transformations.

The mass term in the Lagrangian couples left- and right-handed quarks and so is

not invariant under the full chiral symmetry,

S mppp =Y UpeMpgtbrg + hoc.. (2.18)
f fg

However, if the Ny masses are equal, so that the mass matrix is a multiple of the
identity, M = ml, then whilst we no longer have a SU(Ny) x SU(Ny) global
symmetry, a SU(Ny) global symmetry remains in which left- and right-handed

quarks are rotated in the same way

Ly = m(aLwR + h.C.), (219)

which is invariant under eq. (2.16) where Uy, = Ug. This approximation can be
used for the lightest quarks u, d and s since they are considerably below Agcp. If
we assume m,, = mg, we have the approximate SU(2) global symmetry, known as
isospin. If we were to further assume m, = mg = ms we get the approximate global
SU(3) flavour symmetry. Since m,, and mg are much smaller than mg, the extent to

which the symmetry is broken is much less for SU(2) than SU(3).

In the limit where the up and down quarks are massless, QCD has an approximate
SU(2) x SU(2) symmetry. However, there is an added complication due to the
vacuum. The QCD vacuum contains a condensate of quark antiquark pairs, which
are paired so that the pair has zero total and angular momentum, resulting in pairs
of left-handed quarks with right-handed anti-quarks and vice-versa [17]. The

resulting vacuum state has a non-zero vacuum expectation value

(Ol por, + P 1Yr|0) # 0, (2.20)
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that mixes the two quark helicities. We therefore see that even without explicit
quark masses the symmetry is broken. The QCD vacuum spontaneously breaks the
SU(2) axial symmetry and results in three quasi-Goldstone Bosons (one for each of
the broken generators) . Quasi- refers to the fact that they are not massless because
the SU(2) x SU(2) symmetry is approximate. The particles are, however, much
lighter compared to the other hadrons. They are the three pions, with masses

~ 140MeV compared with the ~ 1GeV protons and neutrons. The vector SU(2)
symmetry remains unbroken and is in fact isospin symmetry, particles are arranged
in isospin multiplets that are almost degenerate in mass, the three pions form a
triplet, the proton and neutron form a doublet, etc.. This explains why the mass
difference between the particles in a given multiplet is so small (~ 1MeV) compared
to the strong interaction scale (~ 100MeV). Similarly SU(3) x SU(3) is broken to
vector SU(3), but now there are 8 Goldstone Bosons - the octet of pseudoscalar
mesons. An effective theory can be constructed, which describes the low energy
physics of QCD in terms of the pseudoscalar mesons (Goldstone Bosons) through a
simultaneous expansion in the quark masses and momentum. This is chiral
perturbation theory and will prove to be a very useful tool in the analysis of our

lattice calculations, which will be covered in chapter 5.

2.5 The Quark-Parton Model and Factorisation

In the parton model [25], hadrons are viewed as composite particles consisting of
constituent partons (point-like particles). The model makes the assumption that
the hadrons can be described in terms of partonic states and further that these
partons are free (they do not interact with each other). If we consider the
scattering of an electron with a hadron through the exchange of a virtual photon
with a large momentum transfer. In the centre of mass frame the hadron is Lorentz
contracted in the direction of the collision and the internal interactions become
time dilated. The lifetime of the partonic states is therefore longer for scatterings
with a larger centre of mass energy. When this lifetime is much longer than the

length of time the electron takes to pass the hadron, the hadron can be thought of
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as “frozen” and may be described by a definite number of partons. As these partons
are non-interacting they each share a fraction of the hadron’s overall momentum

and it makes sense to think of a scattering between the electron and a single parton
(this is, at least, true for very high energies, where the virtual photons cannot travel

far) [26].

Factorisation addresses the problem of how to calculate high energy cross sections,
which are combinations of short- and long-distance effects and are therefore not
directly accessible through the usual perturbative methods. Factorisation
systematically separates the long- and short- distance effects, allowing the
cross-section to be written as a convolution of a perturbatively calculable hard
scattering cross section and a non-perturbative function (a PDA for exclusive- and
a pdf for inclusive-processes). Factorisation is an assumption of the parton model

and is underpinned by the operator product expansion (OPE).

2.6 Operator Product Expansion

An operator product like A(x)B(y) is often singular as x — y. The operator
product expansion (OPE) allows such products to be written as a series of
non-singular operators, IN;j, with c-number coefficients, C}, that depend on the

separation [27],
A(x)B(y) — Z Cilx —y)Nj(y)  as  (z-y)* =0 (2.21)

The C} capture the singularities of the product as x — y. The coefficients are
universal for a given product of operators and are therefore not process dependent.

It is instructive to look at the dimension of the coefficients,
Ci(z —y) ~ (z — y) N —dads (2.22)

where dp is the mass dimension of the operator . The higher the dimension of the

operator, IV;, the less singular the coefficients, C;, and therefore the operators with
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the smallest dimension are the most dominant. Furthermore we can perform a
Taylor expansion of an operator product, N;, about the light cone. Each successive
term in the expansion has an increasing dimension dy, and correspondingly a less
singular coefficient. The result is that the combined expansion becomes ordered in
twist (the dimension - spin) of an operator. For the structure functions and
distribution amplitudes calculated in this work, the operators are products of
currents that are at least bilinear in the fields, and so the leading order (smallest)

twist is two [27].

2.7 Scattering Processes

Armed with an introduction to the parton model and factorisation, we will continue
with a discussion, in the physically intuitive parton picture, of the two classes of

hadronic scattering process [27] studied in this thesis.

2.7.1 Inclusive Scattering Process

The cross-section for an inclusive scattering process requires an integration over all

hadronic final states. DIS is an example of an inclusive process,

[(k)H(p) — I(K) X (px) (2.23)

where a lepton, [, scatters with a hadron, H, transferring a large momentum Q?
such that the hadron breaks up into some final state X. At large momentum
transfer the particle velocities are light-like, and the parton picture is applicable.
The virtual photon (mediating the scattering process) couples to a single parton
within the hadron, imparting a large momentum to it and ejecting it clear of the
hadron. The final-state partons then recombine into colourless hadronic states
(fragmentation). This process therefore involves two time-scales: the initial fast
scattering, where the parton is ejected before this can be communicated to the
other partons and the slower hadronisation process. The inclusive cross-section is

then given by the cross section for the lepton-parton scattering at the given parton
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momentum fraction, £, multiplied by the probability, ff m(§), that the hadron, H,

contains a parton of species f at that value of £, integrated over £
1
ARH () = 1) X 0x) = [ 4D f1.0(0) allR)as(n) = 1E)as ). (2240
f

The probability functions, fr g (§), are known as parton distribution functions
(pdfs) and are innately non-perturbative, as they depend on the soft processes that
form the structure of hadrons. They can, however, be extracted from experiment
and also determined on the lattice (section 8). Whilst they are intrinsic to a given
hadron, they are process independent and, once determined, can be used for other

inclusive processes involving the given hadron [17].

2.7.2 Exclusive Scattering Process

An exclusive process is one where we observe the final state particles. Let us
consider the example of elastic electron pion scattering, e~m — e~ w. The scattering
amplitude for this process involves the pion form factor F,(Q?) through the matrix

element

(@) VMO) | () = (8], + ) Fr (@), (2.25)

where Q? = —¢? and qu = pL — py is the momentum carried by the virtual photon.

The vector electromagnetic current between the pion states is defined as

2 1-

EM —

V, (z) = gu(az)’yuu(x) — gd(x)’yud(x). (2.26)
There is no term proportional to (p}, — p,) and in the forward limit F;(0) = 1
because of charge conservation. As we will see this form factor is a convolution of
perturbative and non-perturbative dynamics (eq. (2.27)). In the non-relativistic
limit, the form factor can be written as the Fourier transform of the charge

distribution and is therefore related to the charge radius.

We, once again, turn to the parton model in order to describe exclusive processes.

The partons can be considered as “frozen” during the scattering so that the photon
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couples to a single parton. Because we are interested in a particular final state, we
need to consider the Fock states within the hadron: states consisting of a
well-defined number of particles. Once the virtual photon has imparted the large
momentum transfer to a given parton, the resulting state is very unlike a pion - the
struck parton is likely to be travelling in the opposite direction to the spectator
partons. The only way that the partons are likely to reform into a pion is if they
are collinear, which requires the communication of the impact between the struck
parton and the spectators. This is achieved through the exchange of hard gluons to
“turn around” the spectator partons to the direction of the struck parton. There is
of course an associated cost with every exchanged hard gluon and we therefore see
that the lowest Fock-state dominates the process [26]. The pion’s electromagnetic

form factor can be written to leading order as

1 1
Fo(Q?) = /0 do /0 dy 62y, Q) Tu (2,9, Q)b (. Q) (2.27)

Ty is the scattering amplitude for the form factor where the pions are replaced with
collinear partons in the lowest Fock-state ¢q. ¢, are process-independent
distribution amplitudes and may be interpreted as the probability amplitude for
finding the ¢g pair in the pion with momentum fractions x and T = 1 — 2. The hard
scattering amplitude T can be calculated perturbatively, however the distribution
amplitudes ¢, which involve soft effects are intrinsically non-perturbative and
require alternative methods for their calculation. They are difficult to extract from
experiment without contamination from other hadronic uncertainties, however, they

can be determined through a lattice calculation (chapter 9).

Inclusive and exclusive scattering processes provide complementary information and
can both be described by the parton model in the large momentum transfer regime,
where Q? is large with respect to Agcp, so that factorisation is applicable.
Inclusive processes tell us about hadrons at a partonic level - the pdfs, fr g(€), are
the probability of finding a given parton with the momentum fraction £, whereas
exclusive processes provide information at the amplitude level on the structure of

the bound hadronic states - the pion PDA, ¢, is the probability amplitude for
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finding a ¢q pair in the hadron with given momentum fractions. We will cover each

of these in chapters 3 and 4.

2.8 Light-Cone Quantisation

We have so far discussed two fundamentally different pictures of hadronic structure:
the parton model and QCD. The parton model is phenomenologically motivated
and is related to experimental observations. In the parton model hadrons are
relativistic bound states consisting of confined quark and gluon quanta, whereas
QCD has been developed as a covariant non-abelian quantum field theory. It would
therefore be desirable if the parton picture could be derived through an appropriate
approximation of QCD. In order to do this one could use the conventional
Fock-state expansion based upon a quantisation of QCD at a particular time ¢t =0
(the equal-time quantisation). However this has the problem that the zero-particle
state in the Fock-basis is not an eigenstate of the Hamiltonian and so does not

coincide with the physical vacuum.

Light-cone quantisation offers a formalism for which the vacuum is significantly

simpler. The light cone coordinates are defined from the more familiar coordinates

(20,21, 22, 23) — (zF, 2t 2%, 27) (2.28)

where we define

ot =20 4 23, T =x —x and x; = (z!,2?), (2.29)

for which the metric tensor is

Gop = : (2.30)



The squared-magnitude of x is then 22 = 272~ — :U%_ and we choose the quantisation
surface 1t = 0, which is a plane tangent to the light cone [26]. For this choice of
quantisation surface, the physical vacuum state now coincides with the zero particle
state of the Fock-basis as it is an eigenstate of the full Hamiltonian. It also follows
that there cannot be any spontaneous creation of massive fermions from the vacuum

which occur in the equal-time quantisation. We can write the Fock-basis states as

10), (2.31)
g = ki, Ai) = BT (kq, A)dT (kg, A2)[0), (2.32)
lqqg : ki, Ai) = bl (ky, M) dl (o, A2)al (ks, A3)[0), (2.33)

(2.34)

where b, d' and af create quarks, antiquarks and gluons with momenta k; from the
vacuum. The J\; is the helicity quantum number. For the case of a pion with

momentum P = (Pt P ),

m(P)) = Z/Ha 1= a; | day 6% | ) kuj | d%kys
n,\; i j J

Ve (i ki, M) [ @i P Py + kg, A) (2.35)

where the delta functions ensure that the fractional momentum z; = k™ /P™ carried
by the Fock-states (sum over n) sums to one and that the transverse momentum
k,; carried by the Fock states sums to zero. Eq.(2.35) defines the light-cone

wavefunction for the pion
wn/ﬂ(l‘i, ki, AZ) = <TL : xiP+, P + ki, )\ﬂﬂ'(P», (2.36)

which is the amplitude to find n partons with momentum fractions x; and

transverse momenta k| ; in the pion.

We are now in a position to rewrite the inclusive parton distribution functions and

the exclusive (leading twist) pion distribution amplitudes in terms of the light-cone
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wavefunction eq.(2.36) [28].

d2k

fw(xinQ) = Z/ 167 é_‘wn/ﬂ xukJ_sz )’2 (237)
d%k

0olen @) = [ oy buagaoindesi ) (2.39)

where the pdfs, eq. (2.37), are related to the light-cone wavefunction through an
integral over the transverse momenta and a sum over Fock-states, n. The pion
distribution amplitude, eq. (2.38), is related to the light-cone wavefunction through

the integration over transverse momenta for the valence Fock-state [29].

In the following two chapters, I will continue the discussion of the pdfs (chapter 3)
and the PDAs (chapter 4) in more detail, resulting in a description of the PDAs
and pdfs via an expansion in their moments. This is in anticipation of their

calculation via correlation functions of local operators on the lattice.
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Chapter 3

Deep Inelastic Scattering and

Structure Functions

The deep inelastic scattering cross-section can be parameterised in terms of
structure functions that characterise the response of the hadron to the leptonic
probe. We will start with a description of this and finish by relating the structure
functions to the parton model and, hence, the parton distribution functions
described in the previous section. The structure functions are discussed in many

textbooks, here we follow the discussion in the book by Peskin and Schroeder [17].

3.1 Structure Functions

Consider the deep inelastic scattering of an electron with a pion, from which a new

state is produced (er — eX), fig. 3.1. The matrix element for this inclusive process

Figure 3.1: Deep inelastic scattering.
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iM(emr — eX) = (—ie)a(k')fy“u(k);;(ie) /d4xeiq‘x<X\VEM’”(x)]7r) (3.1)

where VEM:#(z) = pF Qrp(x) v f(x) is the electromagnetic current and Q7 is
the charge corresponding to quark flavour f. The momentum transfer is ¢ = k&’ — k.
To simplify the calculation of this inclusive process, where we must sum over all
possible final states X, we apply the optical theorem (diagrammatically fig. 3.2),

which relates the total cross section to a forward matrix element.

Z =21Im

final states
Ve Ve N

Figure 3.2: The optical theorem applied to DIS.

It is useful to define the hadronic tensor, W*¥, which describes the interaction of
the electromagnetic current with the target nucleon and thus parameterises our

ignorance of the hadronic current,
W =i [t e a TV @)V (0)) ). (3.2)
Applying the optical theorem to WH,
2 ImWH™ (P, q) = Z/dﬂx (r|[VEME(—q) X)X [VEMY (g)lm),  (3.3)
X

where V#(q) is the Fourier transform of the current. In lowest order perturbation
theory, the cross-section for the scattering of leptons and nucleons may be

expressed as a product of leptonic and hadronic tensors that are associated with the
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upper and lower vertices in fig. 3.1,
o(er — eX) o Ly, ImWH”, (3.4)

where L, is the leptonic tensor that can be calculated perturbatively within
quantum electrodynamics (QED). W#” can be decomposed using Lorentz symmetry

and current conservation and is parameterised by two structure functions.

14 P' 4 P‘ v
W = Wi <—g,w + q’;?) + Wy <P“ - q2qq“> (P - q—zqq ) (3.5)

A more physically intuitive description of the structure functions can be appreciated

through the parton model. In this description, the pion matrix element is replaced

Figure 3.3: The parton model to lowest order for DIS.

by a sum of quark and anti-quark matrix elements, each weighted by the parton
distribution functions, where f (") is the probability density of finding a parton

f with momentum fraction 2’ = p/P inside the pion (H = ), so that,

Wi i [t o [ a3 ) STV O ),

! (3.6)
and 1/2’ is the appropriate normalisation [17]. The matrix element can be
evaluated by considering non-interacting fermions, for which there are two
contributing diagrams (fig. 3.3). The two contributions are identical under the
interchange of u <+ v and correspondingly ¢ <+ —q. Averaging over the quark spin

and taking the imaginary part of the result as in the optical theorem results in,

1
W™ =3 Q?ff,H(w);;Tj (42> PIPY + 22 (P'q" + PYq") — g"wys),  (3.7)
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where z, y and s are invariant quantities. The Bjorken z = Q?/(2P.q) is related to
the momentum fraction, z’, through a delta function, s = (k + P)? is the centre of
mass energy squared of the lepton-hadron system and y = Q?/(zs) is the lepton’s
energy in the hadron’s rest frame. Through adding and subtracting terms
proportional to ¢*¢”, and comparing eq. (3.5) with eq. (3.7) we see that, to lowest

order in the parton model, the structure functions are given by

Wy, = 7Y Q}frn(x), (3.8)
f

i, — Z;Q%xffﬂ(x), (3.9)

where the sum runs over the different quarks and anti-quarks, weighted by their

corresponding charge, Q. The relation
S
TmW,; = Z—xImWQ (3.10)

is known as the Callan-Gross relation [30] and reflects the spin % nature of the
quarks. At this order, we see that the cross-section is independent of the probing
momentum @2, known as Bjorken scaling [31]. This is however violated for large Q>
due to the emission of gluons from the interacting quark. The parton distribution
functions fr g () are universal to the hadron H (in our case, the pion) and do not
depend on the process. They cannot be calculated in perturbation theory and so

lattice QCD is a useful tool for their evaluation.

3.2 Moments of the Structure Functions

Whilst the parton model provides a good physical interpretation of the process, the
operator product expansion provides a more explicit treatment of the expansion of
the product of currents. It enables us to rewrite the product of quark currents in

eq. (3.2) as a sum of terms each with a local operator and a coefficient. The most
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important terms in the operator product of quark currents at lowest order are

a(0)7"q(2)2(0)74(0) = (2)7*4(2)A0)7 4(0) + A a(x)q(0)7"q(0)  (3.11)

(corresponding to the two diagrams in fig. 3.3). Performing the Fourier transform in
eq. (3.2), and expanding in the short-distance limit for which ¢ is larger than the
external momenta, we find that the complete operator expansion only contains

terms even in ¢. These terms are all of the form
gy (1012 - - (i0") g. (3.12)
It is therefore useful to define the operator with n derivatives as
Ot (4 ) = gp(a, )y (iD"2)...(iD#"})qp (2, 1) — traces. (3.13)

where we have introduced covariant derivatives, so that we have gauge invariant
operators. The subtraction of traces ensures that we avoid any mixing due to the
many different irreducible representations of the Lorentz group that could otherwise
contribute to this operator. This operator may then be used to write an expression

for the most singular part of the OPE of the two currents,

o0

. iq.T v 2qﬂl Qqﬂn 2 M) UV L]« fhoyy —
z/d4xeq VE)VY(0) = ZQi‘ 4 Z an i )(9; VUVHL - fim—2
f /n 2’7
o~ (20"1).(20") ()i
BC) 207 pprin | (314
I PE T

The hadronic tensor involves currents taken between two hadronic (meson) states,

(n)

which we may now write in terms of the operators, O P
(r(P )](’) - M |m(P)) = A} 2P# ... P — traces, (3.15)

the only Lorentz structure that this matrix element can depend on is the pion’s
momentum P. By comparing the insertion of eq. (3.14) in eq. (3.2) with eq. (3.5)

we can relate the structure functions to the coefficients A™. Note that, for the case
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of two currents with different flavour this is only true if the cross terms (supressed
by (1/Q?) relative to the leading terms) are neglected, which allows the hadronic

tensor to be separated into a series of flavour terms WH =3~ Q?W]’f g

Wy = ZQf ; 22qP a3 (3.16)

o0

_ 2 8 (2¢.P )"
Wy = Y Q3 2 T @ A} (3.17)
The size of contributions to the OPE are ordered by their twist (the operator’s
dimension minus its spin), which, for the operators that we are considering (two
currents of the same flavour) is twist two. The OPE enables the evaluation of
expressions for Wi and W, as an expansion in inverse powers of Q2. However, for
this, Q? must be larger than any other invariant kinematic. The physical region of
deep inelastic scattering, is 2p.q > Q?, therefore a dispersion relation is required to
relate W7 and W5 to the deep inelastic cross-section. This results in “momentum
sum rules” which relate the moments of the parton distribution functions f(z) to

the pion matrix elements of twist-2 operators

S
?_/0 2 Ufp @)+ ()" fp@)de for n=1,2,.... (3.18)

The coefficients A” are dimensionless and are related to the structure functions.
For the case n = 1 the operators reduce to the quark vector currents and A} 7 is
equal to the number of quarks minus anti-quarks of flavour f in the state, Ny. Afc

corresponds to the momentum carried by the quarks of flavour f, (x).
. 1
A= /0 [fr(z) — fr(z)]dz = Ny (3.19)

1
A2 = /0 £f7() + f5(@)]de = () (3.20)

In chapter 8 we will present our results for A?c for the pion, which we determine on

the lattice using ratios of correlation functions that contain local operators.
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Chapter 4

Distribution Amplitudes

Chapter 2 introduced the PDAs through the elastic electron-pion exclusive
scattering process, where the form factor for this process may be described by an
incoming and outgoing PDA convolved with a perturbatively calculable scattering
kernel. The PDAs are ubiquitous in exclusive scattering processes that involve an
element of hadronisation and therefore factorisation. The PDAs are
process-independent quantities. A topical application, that highlights the
importance of the determination of the PDAs, is to the ongoing B-physics
experiments at B-factories such as BaBar and Belle. Here, the PDAs play a vital
role in parameterising the non-perturbative physics within the factorisation of
B-decays. The light pseudoscalar meson PDAs are important for the non-leptonic
decays that are used for measuring CP-violation B — nm and B — wK, whereas
the vector mesons are useful for the extraction of the CKM matrix elements such as
|Vip| through channels such as B — plv;, B — py and B — pr [32-34]. A
considerable motivation for our LQCD simulations is to use our PDA results in
combination with experiment to check CKM matrix elements and flavour physics in

general.

For this work we will only consider the leading order (twist-two) distribution
amplitudes for the light mesons and the longitudinally polarised vector mesons K*
and p. We exclude the n meson from our calculations due to its mixing with the 7’

meson, which is a flavour singlet and therefore suffers contributions from
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disconected diagrams. The distribution amplitudes are defined on the light cone
through vacuum-to-meson matrix elements of quark-antiquark light-cone operators.

For the pseudoscalar mesons, this is of the form

1
(013(2)7p75P (2, —2)q' (—2) |IL(p)) |20 = fn(ipp)/o dze' TP g, ). (4.1)

However, for the vector mesons, due to the polarisation, we have the choice of
longitudinally and transversely polarised vector meson states, each of which allow
the opportunity to study different aspects of weak interaction physics [34]. We will

concentrate on the longitudinally polarised case for which,

€())- 1 L
O PE =) AV Gz = frmv(p) 2 [ doee=0) (@,

(4.2)

where x and T = 1 — z are the momentum fractions carried by the two quarks
respectively. The quantities fi; and fi in eqs. (4.1) and (4.2) are the decay
constants. For a pion the decay constant is defined by the pion-to-vacuum matrix

element of the axial vector current,

Olavuysd|m(p)) = ifapp, (4.3)

and for the vector, containing polarisation index A and polarisation vector E'EL )’ is

defined as

(OlgyalV (0, N)) = frmyely,. (4.4)
The expressions above contain the path ordered exponential,

Pz, —z) = Pexp (ig /_ dw“Au(w)> , (4.5)

which ensures gauge invariance. The distribution amplitudes reduce to the decay
constants as z — 0. We are able to write the PDAs in terms of moments through a

Taylor expansion about z = 0. The normalisation of the distribution amplitudes is
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given by,
1
/ dzén(z, p) = 1. (4.6)
0

The first moment is,

O (0[(2)7,75P (7, —2)d(~2)TL(P)) 2o = (O[E(0)y,75( Dy — D)d(O)[TI(p)) (4.7)

1
Ofws7,(D, — B)dll(p)) = fuling) (in) / Az (22 — 1)on(z,n) (4.8)

For mesons of definite G-parity, such as the pion, the odd moments vanish. Isospin
symmetry implies that ¢(z, ) is symmetric under the interchange of the u and d

quarks and, hence, of z and Z, so that

/1 dz(2x — 1)*" " é(z,pu) =0 (4.9)
0

for integer n. This is not the case for the kaon and is an important example of
SU(3) breaking. The first moment provides the difference between the longitudinal
momentum fractions carried by the valence quarks and we therefore expect this to

be positive. The pion’s first non-trivial moment is the second

1
O[@(0)157(, (D . D 1y)d(0) [ (p)) = F(ipy) (ipye) (i) /O dz (22 —1)%px (2, 1) (4.10)

where we have symmeterised over the indices and have introduced the definition
R <
D,= gu — Bu where Bu = 3# +igA, and 5# = 0, —igA,. We therefore have

a parameterisation of the distribution amplitudes in terms of their moments

1
€)= [ aggmolem (4.11)

where the difference between the longitudinal momentum fractions is

£ =1x—T=2x—1. It is this parameterisation of the distribution amplitudes

0109y OV L(P)) = (€)1 11Ppo -+ Py + - (4.12)
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in terms of matrix elements of local operators

An— — >
O{u0-~.un}<0) = (—’L) w’y{uo’% D IR D Mn}w (4.13)

which allows for their study on the lattice. The expressions which relate the
moments of the distribution amplitudes to the matrix elements containing the

appropriate local matrix elements are:

0017 Dy sOIE @) = (€)k fxpopn (4.14)
0[@(0)1,75 D . Dy a(0)|7(p)) = —ilE)n fapppupnu (4.15)
OO, B s O . A) = (ke freomice 3 el +ppef) (4.16)
0101, T Brya o)) =~y (€, + €pu, + &y
(4.17)

4.1 Conformal Expansion

An alternative description of the DAs can be achieved through exploiting the
conformal symmetry exhibited by massless QCD at tree level [35]. A close analogy
to the conformal expansion is provided by a partial wave expansion of
non-relativistic quantum mechanics in a spherically symmetric potential [36]. The
O(3) symmetry allows the separation of the angular, described by spherical
harmonics, and radial degrees of freedom, which are thus governed by a
one-dimensional Schrodinger equation. The wavefunction can therefore be expanded

in terms of its spherical harmonics ordered by their orbital angular momentum [37].
U(r,0,0) = R(r) > Y (0,0). (4.18)
m,l

Similarly, the conformal symmetry allows the separation of the longitudinal degrees
of freedom (momentum fractions), contained in the orthogonal Gegenbauer
polynomials Cg/ 2(:E) [35], from the transverse degrees of freedom, which appear as

the Gegenbauer coefficients, a,(u). The detailed argument to demonstrate this is
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technical and is not reproduced here, but may be found in [38]. The distribution

amplitude can then be given as an expansion in Gegenbauer polynomials,

¢(, p) = 6x(1 — x) (HZan )C3/2(2 1)). (4.19)

The Gegenbauer coeflicients contain the non-perturbative information from the

distribution amplitude and renormalise multiplicatively (to leading order accuracy)

(0)
n /bO
o) ' 2
n = n 5 b = 7NC - = . 420
a (,U,) <as(ﬂ0)) a (:U’ ) 0 3 3 f ( )
The anomalous dimension at this order is given by
9 n+1 1

0 _ ¢ 1_—+4§ — 4.21
e F( (n+1(n+2) “=m (421)

which is positive and increases in magnitude with increasing conformal spin.
Therefore as i — 0o, large Q? for our application, the coefficients become
increasingly damped for increasing conformal spin and the distribution amplitudes

tend to the asymptotic limit

d(x, 1 — 00) = ¢as(x) = 62(1 — ). (4.22)

The Gegenbauer moments can be related to the ordinary moments,

T §<51>, (4.23)
m = SE) - 1), (4:24)

and so we can also determine the Gegenbauer moments on the lattice. This is
particularly useful for a comparison to alternative methods such as the QCD sum
rules which use the conformal expansion in their calculation of the Gegenbauer

moments.
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4.2 Existing Results

There are three main approaches for extracting the PDAs, which I will now discuss.

4.2.1 QCD Sum Rule Calculations

These use the Gegenbauer moments that arise from the conformal spin approach

detailed above, for which representative results for the kaon first moment include:

;

0.05(2) [39]
0.10(12) [40]
at (1 GeV) = 4 0.050(25) [41] (4.25)

0.06(3) [42]

0.10(4) [43]

These results demonstrate the expected sign, but have large uncertainties of
approximately 50%. The sum rule approach has an irreducible error of ~ 20%
associated with it because the hadronic states cannot be completely isolated, unlike
LQCD where we are able to take the limit of large Euclidean time so that the

excited state contributions decay away.

4.2.2 Extraction from Experiment

In addition to the calculation of the distribution amplitudes on the lattice and
through QCD sum rules it is possible to extract the DAs from experiment. The
process yy* — mg is one of the simplest exclusive processes to which perturbation
theory can be applied. Through a comparison of the pion-photon transition
form-factor Fr, (Q?), estimated in theory with the measured values, it is possible to
extract information on the shape of the leading-twist pion distribution

amplitude [44].

Experimental data for this process with Q? < 3GeV? was recorded in the early

1990’s by the Cello collaboration [45]; later the Cleo collaboration provided results
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covering a broader range of Q2 € [1.5,9.2]GeV? [46], and more recently, the BaBar
collaboration has added more precise results at both high and low energy regions in
Q? € [4,40]GeV? [47]. The experimental results for the high energy region
contradict the asymptotic behaviour eq. (4.22) and instead suggest a distribution
amplitude with a broader shape. The results could even be explained using a flat
distribution amplitude, however this falls down for the small Q? behaviour.
Currently, there is no definite conclusion on the pion distribution amplitude shape
from experiment. It could take the asymptotic [29], Chernyak-Zhitnitsky [48], or
even the flat form [49]. However, the results in [44] show that for Q? < 15GeV? the
asymptotic and broader forms for the DA can explain all the collaborations datasets
with appropriate choices of parameters. For the new high Q? data from BaBar the

conventional asymptotic form needs to be broadened in order to be consistent.

4.2.3 Lattice QCD

The calculation of the PDAs has not received as much attention as the pdfs. There
has, however, been considerable work undertaken for both the meson and baryon
PDAs. The first investigations were carried out by Martinelli and Sachrajda for the
protons first and second moments in [50], as well as for the pions second moment
in [51]. The latter of these initial calculations was performed on a 103 x 20 lattice
using Wilson fermions in the quenched approximation. A value of (£2) = 0.26(13)
was obtained, in the lattice renormalisation scheme at a=' = 1.8GeV. The initial
study of the PDAs by the RBC/UKQCD collaboration [52] obtained

(€M Kk = 0.032(3) using Ny = 2 + 1 domain wall fermions for a 163 x 32 x 16 lattice.
In addition to our collaboration, there is a QCDSF/UKQCD calculation using

Ny =2 improved Wilson quarks [37]. Further to this the QCDSF collaboration
have published results for the moments of baryon DAs [53]. A recent lattice

review [54] details the lattice results for hadronic distribution amplitudes. In
chapter 9 we compare the results from our lattice calculations to those obtained by

other lattice collaborations.
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Chapter 5

Chiral Perturbation Theory

Chiral Perturbation Theory is a very useful tool for our lattice calculations. It
provides a way to constrain the form of the extrapolations required to link the
lattice simulations at unphysical quark masses to the physical limit. Chiral
symmetry is an approximate global symmetry of the QCD Lagrangian, which
results from the u and d (and s) quark masses being small when compared to the
typical QCD scale, Agcp. Neglecting the explicit quark masses the QCD
Lagrangian is invariant under separate left and right SU(Ny)r, r transformations.
Based on this symmetry alone we would expect a corresponding degeneracy in the
QCD spectrum. This parity doubling of even- and odd-parity hadrons is, however,
not observed. The chiral symmetry must, therefore, be spontaneously broken. The
order parameter for this is the chiral condensate, (gg). Should the chiral symmetry
be intact, the chiral condensate would vanish; however, when the symmetry is

broken, (gq) # 0.

Goldstone’s theorem tells us that when a continuous global symmetry is broken,
massless Goldstone bosons appear in the spectrum. For the breaking of

SU(Nys)r, x SU(N¢)r to SU(Ny)v, we expect NJ% — 1 Goldstone bosons. For

Ny = 2 these are identified with the pions: 7, 7Y and 7~ and for Ny = 3 there are,
in addition to the pions, the kaons: K+, K9, FO, K~ and the n meson [55]. The
Goldstone bosons are the lightest particles in the QCD spectrum and therefore

determine the dynamics at low energies. It is therefore natural to build a low
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energy effective theory in terms of the Goldstone boson fields.

5.1 Constructing The Chiral Lagrangian

The symmetry group G = SU(Ny)r, x SU(Ny)r is broken to the H = SU(Ny)y
symmetry group via the condensate, where the Goldstone bosons can be identified
with the fields in the coset space G/H, which is isomorphic to SU(3) [56]. The
Goldstone bosons can therefore be represented as special unitary matrices, 3(x),

which transform under chiral rotations as
S(z) = UL (2)Ul,. (5.1)

The standard choice for the field is to use the exponential of the Goldstone boson
fields, which transforms simply under G, whereas the Goldstone bosons themselves

have a more complicated non-linear transformation under G.
Y(x) = exp(2in®(z)T/ f), a=1,...8, (5.2)

where the group generators are normalised Tr7?T? = §%°/2 and f is a low energy
constant which is equal to the decay constant f; at lowest order in chiral

perturbation theory. For Ny = 3, the T are related to the Gell-Mann matrices

(T = A"/2)
1 -0, 1 + +
— AN = — - 1.0, 1 0 5.3
m(x) ;w (x) 7 T 5T+ 5h K (5.3)
— - 0 )
and for Ny = 2, the 0 are the Pauli matrices
3 “ 1.0 +
o 1 ™ 7T
m(x) = (z)— = — | V2 5.4
W= wF=7 " (5.4)
a=1 ™ \/57'('



We have, thus far, ignored the explicit symmetry breaking from the mass term in

the QCD Lagrangian, which enters through the mass matrix

m, O 0
M=|0 my 0]|=M (5.5)
0 0 ms

The chiral symmetry of the QCD Lagrangian can, however, be retained by treating

M as a spurion field which transforms as
M — U, MU}, (5.6)

Building the effective Lagrangian with these spurion fields provides an easy way of
keeping track of the symmetry breaking caused by the mass term [57]. The fields X,
¥, M and MT can then be used to construct the effective chiral Lagrangian. Terms
will necessarily transform solely under the left-handed or right-handed subgroups
and are therefore combined into separate traces to make them invariant under G.
The most general term with no derivatives and no mass contributions is of the form
TrEXt. . E2F, where ¥ and Ef alternate. However, because £ = 1 these are
constant. Lorentz (Euclidean) invariance rules out terms with a single

derivative [56]. It follows that the only independent term with two derivatives is
Trd, X" %t (5.7)
and the only term with no derivatives and one mass insertion is
Tr (ZTM n MTZ) . (5.8)

There are, of course, other terms involving four derivatives, two derivatives and one
mass insertion, etc., which all appear in the effective Lagrangian, each with
independent unknown coefficients. As this effective theory is non-renormalisable
there are, in fact, infinitely many terms [55]. A systematic method is therefore

required to order these in terms of the size of their contributions to physical
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processes. Power counting provides this ordering and determines the scale,

A ~ 47 fr = 1200MeV, at which chiral perturbation theory breaks down [57]. When
p?/A? = 1, all the terms become equal in magnitude and there is no longer a
suppression of the higher order terms. At leading order - adopting the standard
power counting, whereby the lowest order terms in the chiral expansion are those
with the fewest derivative operators and where two derivatives are counted for each

spurion field - we have

2
B
%Tr(MZT +xMh, (5.9)

f
L3 = 7T (9,20"%) -

with the usual low energy constants, f and By, associated with chiral perturbation
theory. The quark masses are required to be small as the mass term breaks the
chiral symmetry. Small means, by one definition the QCD scale,

mg < Agep ~ 300MeV or, more exactly, from the chiral perturbation criterion

M Ky < A [57). As one would expect, we therefore see that SU(2)r x SU(2)g is a
very good approximate symmetry, (m, + mg)/2 ~MeV whereas SU(3)r, x SU(3)r
is more badly broken as ms ~100MeV. A number of current lattice simulations
worldwide have shown that using SU(2)y x SU(2)p is very worthwile, since we can
now tune mg to be almost correct and then take advantage of the much better

SU(2)r x SU(2)r symmetry.

It is interesting to study the pion properties through inserting eq. (5.2) into

eq. (5.9) and expanding to 2nd order in the pions. The mass term becomes
L, = —BTr(M=?), (5.10)

substituting eq.(5.5) and eq.(5.3) for M and 7, we obtain the following predictions

from chiral perturbation theory for the quark-meson mass relations,

m2. = B(my+my), (5.11)
mie = B(my+msg), (5.12)
m%o = B(mg+ms). (5.13)
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The 7° and 7 mix, however, to first order in the isospin breaking parameter

My, — Mg,

m2o = B(my, +my), (5.14)
B
m?7 = §(m“ + mg + 4ms). (5.15)

These relations are of the characteristic form m2H x my associated with
spontaneously broken symmetries. For our lattice simulations we work with
degenerate u and d quarks, for which egs. (5.11) to (5.15) simplify further. The use
of further chiral perturbation theory, described in chapters 8 and 9, coupled with
the above quark-meson mass relations will help to guide extrapolations of our

lattice results performed at unphysical quark masses to the physical mass limit.
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Chapter 6

Lattice QCD

QCD is a non-perturbative theory in its low energy regime. Non-perturbative
methods are therefore required to calculate observables and make predictions that
allow comparisons with experiment. Lattice QCD (LQCD) provides a
non-perturbative implementation that uses the path integral approach. In this
chapter I discuss the lattice action used for our simulations. I also describe the use
of (partially) twisted boundary conditions, which allow us fine control over the

momenta used in calculating lattice correlation functions.

6.1 FEuclidean Path Integral

The lattice prescription is formed as a Euclidean field theory, however we are more
familiar in dealing with QFTs in Minkowski space. The Minkowski field theory with
(D — 1) spatial dimensions and 1 temporal dimension can be connected to
D-dimensional Euclidean field theory through an analytic continuation (Wick

rotation) to imaginary time,

To=1t — —ixy= —IiT (6.1)

p=E — ip. (6.2)
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It should be noted that this simple case only holds for single particle states where
the pole can be avoided in the analytic continuation. The analytic continuation
requires more thought for multi-particle states, such as n-particle scattering

amplitudes, and is not necessarily possible.

The Euclidean path integral approach is based upon the Feynman functional

integral partition function,
Z = / DA, DyDe ™, (6.3)

where the action is defined as
1 _
S = / dtz {4FM,,F“” — M|, (6.4)

M = (v,D" +m) is the Dirac operator and 1M1 implies a sum over quark
flavours. The fermions, v, are represented by anti-commuting Grassmann variables,
which can be integrated out, as the fermion action is linear in both v and 1. The
fermion part of the functional integral is then completely contained within the
determinant of the Dirac operator, leaving the integral over the background gauge

field configurations

1
Z = /DAM det M exp <—/d4a:4FWF“”> : (6.5)

The implementation of Grassmann variables on the lattice is therefore avoided [58].
A common approximation that was made in the past, in order to save on the
expense of computer simulations, was to set det(M) = constant, known as
quenching. This removes the possibility of including internal quark loops in the
simulations. Fortunately improvements in algorithms and computing hardware have
removed this restriction for current simulations. We can rewrite the action after the

integration of the fermion fields as

g = SGauge+SFermion (6.6)

1
= /d4:54FWF“” — log(det M), (6.7)
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In general, we want to be able to calculate results for physical observables:

(0) = % / DA, 05 (6.8)

where the operator O is a time ordered product of gauge and fermion fields. These
correlation functions can be expressed via Wick’s theorem in terms of fermion
propagators on a given background field. The fermion propagators are related to
the inverse of the Dirac operator

S(y,j,b;x,i,a) = (M~1)7° (6.9)

z,i,a "

The ¢ and j indices are spin, x and y are position, and a and b are colour. The
propagator in eq. (6.9) is for a quark of spin ¢ and colour a, from site x to site y,
with spin j and colour b, and is given by the corresponding element in matrix

M [58].

Thus far, we have detailed the procedure should we be able to calculate these
quantities analytically. In order to calculate the expectation values of physical
observables, we will need to turn the problem of solving the non-perturbative
relativistic QFT into a problem of numerical integration. To do this, we need to
reduce the system to one that is finite, in order to get a finite dimensional integral,
whilst preserving as many as possible of the defining properties of the original
system, e.g. gauge invariance and chiral symmetry. Nielsen-Ninomoya provided a
no-go theorem telling us that we cannot preserve chiral symmetry without
introducing “doublers” - additional copies of the fermion fields from the
discretisation [59]. The design of lattice actions is therefore a significant area of
research. We will go into more detail for the gauge action and type of fermions that

we use for our calculations in the following sections.

As part of the lattice prescription the system is discretised so that we only know
the values of the fermion fields at the lattice sites, which are separated by the
lattice spacing a in each direction. This unavoidably introduces discretisation

errors. The challenge then becomes to make the lattice spacing as large as possible
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whilst keeping these errors as small as possible. We thus have a trade-off between
the lattice spacing and the total volume to match the number of points to the
available computing resources. The discretisation errors are due to the following:
the lattice replaces derivatives with approximate difference operators and it imposes
an ultraviolet (UV) cut-off. We will expand upon each in turn. The derivative of a

field at point z; is given by [60]:

&%(;vj) — Avé(ay) + O(a), (6.10)
where
A (z) = ¢(“a)2a¢@“). (6.11)

It is possible to use alternative difference operators by considering the field at more
lattice points in order to improve the accuracy to higher orders in a, with, of
course, an additional cost in computer resources/time. The UV cut-off introduces
errors because the shortest wavelength which can be modelled on the lattice is
Amin = 2a and so quarks or gluons on the lattice with a momenta p = 27/ greater
than 7/a cannot be resolved on the lattice [61]. The process of discretisation
introduces an extra parameter a. This is however a physical quantity, which acts as
the UV regulator of the theory and must eventually be taken to zero in order to
reach the continuum theory. We therefore see that LQCD is an example of a “bare”

QFT, with an explicit UV regulator.

Even after discretisation, for an infinite volume there are infinitely many integration
variables and we do not know how to evaluate this in general. After going to a
finite volume we have a (hugely) multi-dimensional ordinary integral, which is
amenable to numerical evaluation. The Euclidean action eq. (6.7) is real and
bounded from below, and so the factor e can be treated as a probability weight
for the generation of the background gauge configurations. The important
configurations can be generated through Markov chain Monte Carlo integration and
importance sampling, where the configurations are generated with probability of
occurrence given by e~ [62]. It is, therefore, possible to provide a good

approximation to the functional integral.
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Given a set of background gauge field configurations, we want to calculate quark
propagators on each background field configuration. This is done by inverting the
now finite (after discretisation) Dirac operator numerically. This is one of the most
expensive parts of the simulation, which becomes increasingly difficult as the quark
mass is decreased. The eigenvalues of M range between a fixed upper value and the
quark mass. The ratio of the largest and smallest eigenvalues is the condition
number, which becomes very large when the quark mass is small. The numerical
determination of det M and M ~! become prohibitively expensive as the condition
number becomes large and therefore prevents running simulations at the physical
light (up and down) quark masses. We therefore simulate with a range of
un-physical light quark masses and extrapolate to the physical value (determined as
described in section 6.8). This extrapolation can be guided by chiral perturbation

theory (chapter 5).

For a given quark mass, the calculation of det(M) is more expensive than for M1
and as such det(M) is only calculated for a limited number of quark masses. After
the determination of det(M) as part of the generation of the gauge field
configurations, we have the freedom to choose M ! to have the same quark mass as
det(M) (a unitary point) or to have a different, usually lighter quark mass (a

partially quenched point).

The most straightforward calculation of correlation functions requires the
propagator from a given source position to all other sites on the lattice. This
corresponds to 12 columns of M1 one for each of the 12 spin and colour degrees of
freedom [58]. Our numerical approximation to the full expectation values of the
operators can then be evaluated through an average over the set of gauge

configurations.
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6.2 Gluon Fields in LQCD

We represent the gauge field A, (x) on the lattice with a link variable. The links are

represented by SU(3) matrices

U(x,z+aft) = Uy(r) = exp(iagAu(x + afr/2)). (6.12)

fu is a unit vector in one of the four space-time directions. U, (z) links sites at « and

x 4 afi. The fields transform under local gauge transformations as,

P(x) = V(z)y(z) (6.13)
d(a) = P(a)Vi(z) (6.14)
Uuz) — V(@)U (x)Vi(z+af) (6.15)

where V(z) are SU(3) matrices in the same representation as the fermion fields (i.e.
the fundamental representation). We can construct two types of gauge invariant
quantities on the lattice: an ordered string of links capped by a fermion and an
anti-fermion at the ends, and a trace of a closed loop of links (Wilson loop) [58].

Examples of these are

tr (Y(2)Upu(2)Uy (z + afd)..Uy(y — ap)o(y)) (6.16)
and tr(P,,(z)) where

P (x) = Uu(x)Uy(x+a/l)U;£(x—i—a/l)U;(x). (6.17)

P, (z) is the smallest possible Wilson loop referred to as the plaquette [60]. A
gauge invariant action can therefore be built from these quantities with the further

limitation that it should reduce to the continuum action for a — 0.
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6.2.1 W.ilson Action

The Wilson gauge action [63] is defined using the plaquette eq. (6.17)

S = 912 S5 Reftr(1 — B ())]- (6.18)

x pu<v

It is easy to see that this is invariant under the transformations egs. (6.13)-(6.15).
Inserting eq. (6.12) into eq. (6.17) and expanding about the mid-point of the

plaquette x + a(ft + ) /2 gives

2 4

T4 2 (1) + ... (6.19)

Pu(xr) =1+ iga2FW(:c) 5w

which translates to the Wilson gauge action

Sw = a <Z in’W(x)Fﬁy(a:) + (’)(aQ)) (6.20)

a—0 1 v
= /d4x4Fb’“ (x)Fﬁl,(m) (6.21)

We observe two things: that the Wilson action reduces, as required, to the
continuum case for a — 0 and that lattice artefacts occur at O(a?). This is,
however, not a unique description, and as we will see there are other (gauge
invariant) alternatives for which the artefacts occur at higher orders. The Iwasaki

gauge action [64], which we employ for our simulations, is an example of this.

6.2.2 Iwasaki Action

The Iwasaki gauge action is an example of a gauge action which uses a linear

combination of closed gauge loops.

1 :
Slwasaki = ) (CO E tr | 4 Y| +a Z tr | 4 ' A
g :

+co Z tr { N Z tr + Constant) (6.22)
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where the sums are over the orientation of the loops, and the normalisation is such
that co + 8¢y + 16¢o 4+ 8c3 = 1. For the ensembles used in this work the constants

c1 = co = 0 and c¢g = —0.331 which also defines ¢y. This action was chosen because
of the improvement in lattice artefacts (reducing discretisation errors) and because
it reduces the residual chiral symmetry breaking which arises from the domain-wall

fermion action [65].

It is conventional to use the inverse lattice coupling 5 instead of the bare coupling
constant g2 for a lattice action with spacing a. For the Wilson and Iwasaki actions,
B = 2N,./g?, where N, is the number of colours. The lattice spacing is not known a
priori to a lattice calculation. Its value depends on the bare coupling constant. For
example, in SU(3) for the Iwasaki gauge action, 8 ~ 2 corresponds to a ~ 0.1fm.
Larger values of 8 correspond to finer lattices and smaller values to coarser

lattices [66]. The bare lattice coupling may therefore be considered as at the scale

a~!. Details of the determination of a are given in section 6.8.

6.3 Quark Fields in LQCD

In order to discretise the Dirac (fermion) action, we need to replace the derivative

operator with the symmetrised difference operator
_ 1 A i X N
OPY = 5 B> [Ua@hile +ap) = Uf(w —apbla —ap)| - (6.23)
o

where the appropriate gauge links are included to preserve gauge invariance. The
continuum action must be recovered when a — 0. This can be seen through a
Taylor expansion in the gauge and fermion fields with respect to a, which also

demonstrates that the discretisation errors occur at O(a?).
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6.3.1 Naive Fermions

The simplest “Naive” action written for a single flavour of fermion is

Sawe = Mg YD) + o0 S FP V() (6.24)

= > @) M(z,y)P(y) (6.25)

where the v, are the Euclidean gamma matrices, which are hermitian v, = fyl: and

satisfy {7V, 7} =20, M(z,y) is the interaction matrix

1
M(z,y) = mgbyq + % Z ['YuUu(x)(sy,m—i-aﬂ - 'YuUl(x)éy,m—aﬂ] (6.26)
pn=1

This action preserves chiral symmetry, but suffers from the notorious “fermion
doubling problem”. This is illustrated by the free fermion propagator, U, () = 1.

Using a Fourier transform

T/a d4p B ipz o7
v@= [ G (6.27)
the action becomes
- m/a d4p ~ o -
Swive = | 0D o + mal 50) (6.25)
where
1 .
Pu = . sin(apy,). (6.29)

The free quark propagator is then

-1
G(p)=M"'(p) = (z > Vb + mq> , (6.30)

”w

where we see that there are poles at p, = £7/a (for mq < p,) in addition to the
poles at p, = 0 that exist in the continuum theory. This is, therefore, describing 2d
fermions, where d = 4 is the number of dimensions. There are prescriptions that

remove these additional undesirable modes. We will describe two of them: Wilson
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fermions and domain-wall fermions.

6.3.2 Wilson Fermions

In order to remove the additional 15 species, Wilson introduced an irrelevant
dimension-5 operator, a second derivative-like term, where the extra species at

pu = =7 /a become very heavy as a — 0. The Wilson fermion action is

4
Swison = Siane = 5 9 0 0(@) [Up(@i(e + afi) = 20(x) + Ul (@ — apb(a — aj)|

r p=1

= LS [~ U + a) — G+ IV — 0o — a)]
b TS Ba(a)

T

= ) (@) My (2, )9 (y) (6.31)

where r is the Wilson parameter 0 < r < 1, and

4
Miv(ey) = —5 3 [(5 =) Uu@byasan + (5 + ) U@y
pn=1
+ <mq + Lj) Sry- (6.32)

Considering the free field fermion propagator, U, (z) = 1,

-1
_ ) B 2r . o ap
pr— 1 pu— — 2 M . .
G(p) = My, <z E VuPp Mg+ — EM sin” = ) (6.33)

I

We see that we have the usual pole at p, = 0. However for, p,, = £/a, the last
term in eq. (6.33) diverges for a — 0. The masses for the p, = +7/a modes
therefore become increasingly heavy (and comparable to the cut-off O(1/a) for

a — 0) and hence disappear in the continuum limit. This is, however, done at the
cost of losing chiral symmetry at non-zero lattice spacing. The new Wilson term
(first line eq. (6.31)) is of the type ¥(x)1(x) which breaks the chiral symmetry.
The Nielsen and Ninomiya [59] no-go theorem suggested that a lattice action

cannot preserve both chiral-symmetry and be un-doubled. This however can be
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bypassed by modifying the definition of a chiral rotation on the lattice to

v — exp (ieys (1 —aD)) 1, (6.34)

Y — Yexp(ie(l —aD)ns). (6.35)

which becomes the usual transformation in the limit a — 0. D is the Dirac operator
used in the action, however, the requirement that the Langrangian is unaltered by

chiral-rotations, 6L = 0, leads to a new commutation relation,

v5D + D5 = 2aD~5D (6.36)

known as the Ginsparg-Wilson relation [67]. This coupled with the modified chiral

rotations allow for un-doubled chiral fermions.

6.3.3 Domain-wall Fermions

The Domain-wall fermion prescription for the description of chiral fermions on the
lattice originated with ideas by Kaplan [68], which were developed into the method
which we use in this work by Shamir [69]. In the continuum (a system with no
discretisation and no finite volume effects), domain-wall fermions are constructed
with Dirac fermions in five dimensions, with a mass term that depends on the fifth
dimensional coordinate, s. This mass term is chosen to be a step function, which
results in a single massless fermion of a given chirality bound to the mass defect

(this chiral mode decays exponentially in s in the fifth-dimension).

This idea transfers to the discrete lattice and if a Wilson term is included to remove
the usual lattice doublers, we have a description that is both chiral and un-doubled.
For the lattice implementation, we introduce Dirichlet boundary conditions at
either end of the fifth-dimension at s =0 and s = Ly — 1, where Ly is the extent of
the fifth-dimension. The boundary conditions are chosen so that opposite chiral
modes live on the two boundaries. There will be an overlap between the two chiral
modes because they decay exponentially away from the boundaries. The resulting

chiral symmetry breaking is governed by the size of Ls. At leading order, the
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residual chiral symmetry breaking due to the overlap is given by the additive quark
mass renormalisation myes. At finite L, the Ginsparg-Wilson condition eq. (6.36)
does not hold exactly, but is recovered for Ly — co. There is, hence, a compromise
to make between the degree of chiral symmetry and the additional cost of
simulating with an increasingly large fifth dimension. The five-dimensional

domain-wall fermion action is given by,

Spw = — Z U(x,s)Mpw(z,s;z',s")¥(',s) (6.37)
z,x’,s,s’
where the fifth dimension is labelled by s, which runs from 0 to Ls — 1 and ¥(x, s)
and ¥(z, s) are the five-dimensional fermion fields and are related to the

four-dimensional fermion fields

Plx) = (1=7)¥(z,0)+ (1 +75) ¥ (2, Ls — 1), (6.38)

P(x) = V(L —1)(1—95) + ¥(z,0) (1+75). (6.39)

The matrix Mpw(z, s;2’,s') consists of two parts: DIl(z,2’) which is in
four-dimensions and is in fact the Wilson action with » = 1 and a negative mass
M?, referred to as the Domain wall height, and D+ (s, s’) which is in the extra fifth
dimension. my is the four-dimensional bare quark mass which breaks the chiral
symmetry. This is seen in eq. (6.42) as it explicitly couples the s =0 and s = Ly — 1

domain-walls.

Mpw (z,s;2',8') = 5S7S/DH(3:, x') + 5x,x/DL(s, s') (6.40)
1
Dle,a’) = 35[0 Upl@)urpw + (1 %) UL
—1
+ (M, us 4) 0y 7 (6.41)
Dt (s,s) = [(1=75) 0st1,0 + (14 75) 0s—1,9 — 205 /]
— my [(1=95) 0s,,—100,5 + (1 4+ 75) 05,000,—1,5 (6.42)
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6.4 Twisted Boundary Conditions

Twisted boundary conditions allow us to finely tune the momenta used in
calculating correlation functions. The initial study into using twisted boundary
conditions for quark fields was performed by Bedaque in [70]. This was developed
into the form that is used for our calculations (specifically partially twisted
boundary conditions) in [71] and was later studied numerically on the lattice to
investigate its applicability for calculations [72]. They have now become widely

used in Kj3 and pion form factor calculations [73].

In a system of finite size the boundary conditions determine the spectrum of
available momenta. The effect of the boundary conditions is to quantise the

momenta. A popular choice are periodic boundary conditions,
¢(zi + L) = p(x;) 1=1,2,3, (6.43)
which through a Fourier transform become,
[ ot ettty = [ o reat. (6.4

The periodic boundary conditions therefore correspond to the quantised momenta

dnt 1y =21, (6.45)

Extending this to a generalised set of boundary conditions, that depend upon a

three vector 6,

o(x;i 4+ L) = eig(x;)  i=1,2,3, (6.46)
we now see that
R e 7;" i=1,2,3. (6.47)

The momenta are still quantised, as for the periodic case, but they are shifted by a

factor € which is tunable and a continuous range of momenta is now accessible. For
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a meson composed of a quark twist angle 6; and anti-quark of twist angle 65 the

momentum is

2w 01 — 0
=—n— A4
p=—n T (6.48)
with dispersion relation

For our lattices 27 /(La) is rather large (~ 500 MeV) and so the momentum
resolution is not that great, twisting provides a technique for improving this
otherwise restrictive momentum resolution from periodic boundary conditions. This
property can equivalently be achieved through applying a constant background
vector field which couples to the quark fields with a charge determined by the twist
angle. This is the method which is used in practice for our simulations. This allows
us to calculate twisted propagators by transforming the gauge links and then
performing our standard inversions using the transformed gauge field. As for the
periodic boundary conditions, the finite volume effects must be considered. For the
general case of twisted boundary conditions (any ), the finite volume effects were
studied using chiral perturbation theory with a background field in [71], where it
was found that processes without any final state interactions (such as matrix
elements of local operators with either vacuum and/or single hadron external
states) have finite volume effects that are exponentially suppressed by the volume

—mpL) This is the same as for periodic boundary conditions, which is not

(~e
surprising as the periodic boundary conditions are just a special case where

0=0,2nm,...

Whilst twisted boundary conditions’ use for generating arbitrary hadronic momenta
is extremely favourable, every choice of twist angle (boundary condition), in
principle, requires the generation of a new set of gauge field configurations, which
would make this method prohibitively expensive. Partially twisted boundary
conditions avoid this problem by only applying the twist angles to the valence
quark fields and using periodic boundary conditions for the sea quark fields [71,74].

This does, however, break the sea-valence symmetry, which is a finite volume effect.
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Applying different twist angles to the u- and d-quark fields breaks isospin symmetry
and applying different twist angles in different directions also breaks the cubic
symmetry. However, as in [71], it is expected that, for most physical quantities with
at most a single hadron in the initial or final states, the finite volume effects are
exponentially suppressed by the volume, which is the case for this work. This
breaking is considered to be analogous to the violation of unitarity in partially
quenched LQCD [71]. Matrix elements with multi-particle states are more

complicated and involve both exponential and power finite volume corrections.

6.5 Correlation Functions

In order to calculate observables, we will need to consider vacuum expectation
values of operators or, equally, correlation functions. For example, the two-point

correlation function is constructed as

o] T

> 04(z,1)0i(0, 0)] 0)  ¢>0. (6.50)

Let us consider the case of the pion for which we may choose,

Oi(xa t) = Of(x’ t) = A4($v t) = @(I, t)’y4’y57j)(l‘, t)' (6'51)

These operators possess the correct quantum numbers to create a pion at the origin
and annihilate it at position x at time ¢. These operators will, however, also
produce all other eigenstates of the Hamiltonian with the same quantum numbers
as the pion, and so it is, in fact, a linear combination of states that is created and
annihilated. We can rewrite eq. (6.50) using O;(z,t) = e!@X—P1) () Px—Pal)
where p is the energy-momentum operator and where we also insert a complete set

of states

O

Zof@,t)a(o,m] o = 32 LN e 5

n
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The ), projects out the zero momentum states, and so we can read E,, as M,. We
explicitly see the sum over all states, n, that contribute to the amplitude. The

Ent will suppress states with large energies (or mass at zero momentum) at

factor e~
large Euclidean times [61]. Thus, if we wait for a sufficiently large time, the pion
state will be isolated. We can also improve the overlap of the operator with the
pion state (or any state of interest) and hence the quality of our signal by making a
suitable choice of operator that limits the number of states in the linear

combination. Such an operator will be more complicated than those in this example

and is likely to be de-localised or “smeared”.

6.6 Calculation of Bare Moments from Lattice

Correlation Functions

In chapters 8 and 9 we will calculate the PDAs and structure functions from their
moments (eq. (4.14)-(4.17) and eq. (3.15)). In order to do so, we will require
expressions in terms of Euclidean lattice correlation functions, which are obtainable
through Monte Carlo integration of the Euclidean QCD path integral. If we
consider a generic meson with valence quark content g;q2, where ¢, € {q, s} (and

q = u = d), we have the following constructions of the pseudoscalar, vector and

axial interpolating operators respectively:

P(z) = gy(z)sa(z), (6.53)
Vi(z) = Gz)vuq (o), (6.54)
Au(@) = Q@) yrsa(@). (6.55)

For the lattice calculation, it is also necessary to write the double-headed covariant

derivative contained in eqs. (4.14)-(4.17) as lattice difference operators:

Bu(e) = o [U(e,a+aiyb(e + o)~ Ule,z — afple — ai)], (6.56)
G Dy = o [l +ap)Ule + ajix) — pla — ap)Ule — o)) (6.57)
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These derivatives are used in the following operators with which we extract the

moments:

Oty (@) = Gl@)yy, D yaila), (6.58)
Otpur(@) = B, D, Dya(o), (6.59)
Of (@) = 62(x)7{p75<ﬁu}q1(x), (6.60)
Oy (@) = q2(£)’7{p75<5>u<5>u}(h(33), (6.61)

where the braces indicate a symmeterisation of the enclosed Lorentz indices,

— 1
{:u’l”':u’n =l Zpermutations s Hs(1)+-Hs(n)-

6.7 Mixing of Lattice Operators

The analytic continuation that is used in going from Minkowski to Euclidean space
alongside the discretisation of space-time, required to formulate QCD on the lattice,
replaces the familiar Lorentz group with the hypercubic group H(4). The lattice
operators should therefore be classified according to their behaviour under the H(4)
group consisting of reflections and 7 /2 rotations, and under the discrete
symmetries, parity P and charge conjugation C. Unfortunately, this leads to

increased possibilities for operator mixing compared to the continuum.

We would, of course, like to avoid mixing with lower dimensional operators
wherever possible. This is achievable, to some extent, through careful choices of the
operators’ indices. We must, however, also bear in mind that we pay for every
additional non-vanishing momentum component used with a degradation of the

statistical signal.

The operators Oy, (z) and O?pu} (x) for p # p, transform, in the notation of [75],
under the six dimensional 6~ and 6" irreducible representations of H(4). This,
alongside charge conjugation, ensures that for these operators there is no mixing
with equal or lower dimensional operators. We may also consider O,,,(x) and

OZM (x), which transform as four-dimensional reducible representations that contain
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a singlet, and three traceless operators:

1 5 5 5 5
(08 +0f — o~ o), 652)
1 5 5
- (08 -0} (6.63)
1 5 5
7 ((951) - (952)) : (6.64)

which transform as the three-dimensional irreducible representation (3,1)~ and
(3,1)" for the operator with- and without-s respectively. We can construct an
operator which involves the subtraction of a trace term in order to avoid mixing

with the singlet (proportional to 1/a (%)),

5 1 5 5 5
04(14) 3 <O§1) + 052) + O:(a?,)) ) (6.65)

but this, in principle, involves the subtraction of a power divergence, which may

lead to large numerical cancellations and hence large statistical errors.

The second moments, Oy} (v) and (’)f?p#y} (x), with distinct and different indices,

transform as the (1/2,1/ 2)+ and (1/2,1/2) four-dimensional irreducible
representations respectively. Unfortunately, charge conjugation allows the operators

O puy () and OF

{pw}(ac) to mix with total derivative terms

A1p0u (G2(x) 1y s (x))  and  9y,0, (Ga(z) 1y 1 (x)) (6.66)

respectively. It is necessary to calculate these terms for the distribution amplitude
calculation because it involves non-forward matrix elements, for which the total

derivative terms are non-zero.

A detailed investigation of the operator mixing under the hypercubic H(4) group

for operators of the form eq. (6.58)-(6.61) was performed in [76].
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6.8 Simulation parameters

The numerical calculations of the structure function and PDA moments, in the
following sections, are based upon gauge field configurations taken from the joint
data sets used in the broader RBC/UKQCD collaboration’s domain-wall fermion
phenomenology programme. The configurations were generated with Ny =2 +1
flavours of dynamical domain wall fermions and with the Iwasaki gauge action. The
Rational Hybrid Monte Carlo (RHMC) algorithm [77] was used in order to benefit
from its easy introduction of single-quark flavours (the strange-quark in our case).
Other algorithms often require the fermions to occur in pairs (such as the HMC
algorithm). RHMC also provides a reduction in the computation required for
LQCD calculations over the HMC algorithm. The configurations were generated on
QCDOC computers [78-80] running the Columbia Physics System (CPS)

software [81] and the BAGEL [82,83] assembler generator. Measurements for the
calculations were performed using the UKHADRON software package that makes
use of both the BAGEL DWF inverter [82,83] and elements of the SciDAC software
library stack, including the CHROMA LQCD library [84] and QDP++.

For the numerical calculations we use three different sets of lattice parameters.
First, we have lattices with 163 x 32 and 243 x 64 points with a common lattice
spacing a~! = 1.73(3)GeV, thus allowing the study of finite volume effects. The
bare gauge coupling 8 = 2.13 (8 = 6/g? where g is the bare lattice coupling, see
section 6.2.2) is common to both lattices, as are the unitary masses: amg = 0.04
(strange quark) and the range of light quark masses am; = 0.01, 0.02 and 0.03. On
the 243 x 64, ensemble there is an additional light quark mass am; = 0.005. In
order to study discretisation effects, the third 32 x 64 point lattice has a finer
lattice spacing a~! = 2.28(3)GeV. This ensemble has the bare gauge coupling

£ = 2.25 that is chosen alongside the number of points in order to construct a
lattice with a volume comparable to the 243 x 64 ensemble. The available masses
for this ensemble are the unitary (partially quenched) strange mass

amgs = 0.03 (0.025) and the unitary light-quarks am; = 0.004, 0.006 and 0.008. All

of the datasets have a fifth dimension: Lsa = 16. The remnant chiral symmetry
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a=t (GeV) | a (fm) AMeres amg amg AMyq : QMg
1.720(28) | 0.1141(18)  0.003152(43) _ 0.001300(58) 0.0375(16) 1:28.8(4)
2.221(29) | 0.08883(12) 0.0006664(76) 0.001040(31) 0.0292(08) 1:28.08(19)

Table 6.1: Lattice scale and physical unrenormalised quark masses
in lattice units for both the 243 (top row) and 323 (bottom row)
ensembles, where mx = mx + Myes [3].

breaking, from the finite fifth dimension, requires the residual mass to be taken
account of additively in the quark masses. The chiral symmetry breaking
parameters for the 243 x 64 (and 163 x 32) and 323 x 64 ensembles are, in the chiral

limit, am,.s = 0.00315(4) and am,.s = 0.00067(8) respectively.

The lattice scale 1/a and quark masses mgy, m, are not known a priori. They have
to be determined through a comparison of lattice results for three quantities with
the corresponding physical values. This was done in [3,85]. The pseudoscalar
masses, m, and mg, are taken to be two of these. The final choice is the mass of
the Q baryon, a state composed of three valence strange-quarks. This choice has
the advantage that there are no non-analytic light-quark mass terms at NLO in
chiral perturbation theory [86,87]. The three lattice parameters are determined
iteratively, starting with a guess for the quark masses. These are then used to
obtain the mass of the 2 through a chiral extrapolation, which is then set to its
physical value through an adjustment in the lattice scale. The new lattice scale is
used to adjust the quark masses by requiring m, and mg to take their physical
values. This is repeated until the three parameters stabilise [85]. The values for 1/a,
a, mq and mg, after their iterative determination, are given for the ensembles used
in this calculation in table 6.1. The physical quark values am, and amg (table 6.1)
are the points to which we must extrapolate in order to obtain physical results. The

extrapolation for the 243 ensemble to the physical point is performed using the
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following un-physical light-quark masses, which correspond to the pion masses:

p
670 MeV  amg = 0.03

555 MeV  amg = 0.02

1

(6.67)

My
415 MeV  am, = 0.01

330 MeV  amg = 0.005,

and, for the 323 extrapolation the un-physical unitary quark masses, correspond to:

p
390 MeV  amy = 0.008

Mx = {345 MeV  am, = 0.006 (6.68)

290 MeV  amy = 0.004,

see fig. 6.1. More detailed information on the specifics of the three ensembles can be

found in [3,85,88|.
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Figure 6.1: Plot demonstrating the relationship between the lat-
tice quark mass amg = amg + amyes and the squared pion mass
(mx)? for the 323 ensemble. The pion mass is given in GeV. The
red points correspond to the un-physical quark masses used in our
simulations. The black point corresponds to the physical pion mass
~ 140MeV (its amy value is given in table 6.1). Note that the
amg = 0.002 point included in this plot is excluded from the calcu-
lations performed in this thesis.
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Chapter 7

Renormalisation

The work presented in this section closely follows that published in [1]. The
additional results using the 322 lattice and the use of partially twisted boundary
conditions for the calculation of non-perturbative renormalisation constants will

appear in a forthcoming publication.

Evaluating the moments of PDAs and structure functions requires the calculation of
the matrix elements that appear in the operator product expansion. In order to
determine finite answers in the continuum limit it is necessary to renormalise the
operators that appear in these matrix elements. The renormalised matrix elements
need to be multiplied by the perturbative short-distance Wilson coefficients.
Together these are an observable quantity, which should be independent of the
renormalisation scheme used. However, the coefficients and the renormalisation
constants for the matrix elements are required to be in the same scheme, otherwise
the scale dependence will not cancel. The Wilson coefficients may be calculated
from perturbation theory in the continuum, usually in the MS dimensional
regularisation scheme and so we should convert our bare lattice operators to

continuum MS operators, in order for our results to be phenomenologically useful.

For small lattice spacing, a, and a sufficiently large renormalisation scale, y, it is
possible to perform the renormalisation of the bare lattice operators using lattice
perturbation theory. This, however, frequently suffers from large coefficients that

lead to a slow convergence of the perturbative series. An alternative method that
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uses a nonperturbative prescription for the renormalisation through Monte Carlo

simulations was introduced in [89].

In order to convert our bare lattice results to results in the MS scheme, we
determine the renormalisation factors non-perturbatively in the modified
Regularisation Independent Momentum (RI'/MOM) scheme, followed by a
conversion to MS with three-loop continuum perturbation theory [90,91]. There is
a contribution to the second moment for the PDAs from mixing with a total
derivative operator, which, due to the current non-perturbative scheme, we are

required to calculate perturbatively.

7.1 Perturbative Renormalisation

The calculation of the perturbative renormalisation constants is described in [1].
They were used for the 243 results in the thesis [92], and are also applied here for

the 323 results.

Lattice operators are chosen so that, at tree level, they have the same matrix
elements as continuum operators. This does not persist at higher orders with loops.

At one loop [93],

2
(qlOP*q) = (517 + 121;2 (—%-(f Nog a®p? + R?}t)) (glO5°lq), (7.1)
j
MS gl%/lis (0) p2 MS tree
(0lOPla) = i+ 1655 ( — log 73 + Ry ) | (410" la), (7.2)
j

where Ri?t and R%IS are the lattice and continuum one loop renormalisation
constants that are determined through applying the appropriate Feynman rules and
evaluating the resulting diagrams. The lattice and MS renormalisation constants do
not have to have the same value because the lattice propagators and vertices differ
from the continuum when the loop momentum is O(1/a). In fact, whilst the
evaluation of the relevant Feynman diagrams in the continuum is relatively
straightforward, for the lattice, the expressions tend to be very complicated and

require a numerical evaluation.
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Figure 7.1: Feynman diagrams required for the perturbative eval-
uation of the matching factors at one loop. The upper diagrams
are for the vertex renormalisation and the lower diagrams are for
the wavefunction renormalisation [1].

We can connect the lattice values to the continuum physical results

2
MS g a MS a
WOFa) = Y- (8 - 128 (o ogatu? + R - RIF) ) Oy, (13

. 16
J
where the '71(3) are anomalous dimensions and the differences AR;; = Rlat RMS
enter in the matching factors
B (0100 22
Zl-j(a,u,gg) = ;5 16?1‘ ( Vi log a”p” + ARZ]> . (7.4)

The superscript MS refers to terms from the continuum calculation, whereas those
without superscripts are from the lattice. Once the bare lattice values have been
matched to the continuum at the lattice scale pa = 1, using eq. (7.4), the result

may be run to the desired scale using continuum perturbation theory.

For the moments of the PDAs (and structure functions), we need to evaluate the
Feynman diagrams contained in fig. 7.1 in order to calculate the matching factors

discussed above. We define for the first- and second-moment PDA operators

O{P#}( ) - ZO{W}(MG)O}{BITIE}( ) (7'5)

O¥3 (1) = Zpp,pp(ua)OBh(a) + Zppoa(ua)Ost(a), (7.6)

where we note that for the second moment we must take account of the mixing with
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the total derivative. The operators have the form

— —
Otoy = (s D )9, (7.7)
— o
Opp = ¢7{u75 D,D p}wv (78)
Os9 = 8{1,@@7#}751#. (7.9)

It should be noted that, owing to the chiral symmetry of the domain wall fermion
action, the results obtained from these operators will also apply to operators

without the ~5. The renormalisation factors for the operators are given by

1 aCF 16
ZO{pH} ([L(I) m |:1 + ? <—3 ln(,ua) + C):| y (710)

1 alC 25
Zpp,pp(pa) = m [1 + Tﬂ'F <—3 In(pa) + CDD>:| , (7.11)

0)4w
1 aCF 5)
Zpppo(pa) = (- 2)Z, dn <31n(ua) + caa) , (7.12)
which have the form of eq. (7.4) and where

c = sMS_y 4y _y, (7.13)
Cpp = Ell\/TS—Elﬁ‘VgTDS—VDD, (7.14)
cop = SMS 3 4 VMS_y (7.15)

In each of the eqs.(7.10)-(7.12) we see the normalisation factor (1 — wg)Z,,. This
contains Z,,, a correction to the normalisation factor (1 — w%) of the physical quark
fields in the domain-wall fermion formulation. It stems from an additive

renormalisation of the domain-wall height M =1 — wy.

C 2
Zyw =1+ aJZwa Zw 2o
a7

= Y. 7.16
1- wg ( )

The ¥; terms are extracted from the wavefunction renormalisation (lower)
diagrams in fig. 7.1, whereas the V vertex terms come from the upper amputated
two point functions. For the continuum MS scheme factors, it is necessary to

evaluate the first three upper Feynman graphs, while for lattice perturbation theory
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there is an additional operator tadpole diagram to worry about (fourth upper
Feynman diagram in fig. 7.1). The covariant derivative terms, subscript DD, may
be extracted by considering equal incoming and outgoing momenta, whereas the
total derivative contributions 90 may be extracted by setting incoming and
outgoing momenta to be equal and opposite. The MS factors in Naive dimensional

regularisation (NDR) in Feynman gauge with a gluon mass IR regulator are

N 1 by 25
yius 1 MS _ 1
1 27 187 (7 7)
N 121 S 41
MS NS
_ _ 4 1
Vbb TR Vs ™ (7.18)

The lattice factors are also evaluated in Feynman gauge with a gluon IR regulator
and with the appropriate simulation parameters, i.e. using domain wall fermions
and an Iwasaki gauge action. The results of this can be found tabulated in Table VI
in [1], where the various factors are given for a range of the domain wall height M.
For our simulations we use M = 1.8 which (along with other choices of M)
corresponds to a rather large value for the one-loop coefficient [94,95] z,, ~ 112
(Table VII in [1]). This indicates the need for mean-field improvement, which is

now briefly discussed.

Lattice perturbation theory calculations require the evaluation of additional terms

that do not occur in the continuum. The exponentiated form of the gauge links

. 2 2
Un(z) = €994 = 1 4 jagA,(z) a2~" A2 (z) + oy (7.19)

lead to quark-gluon vertices with arbitrarily many gluons. All but the lowest are
artefacts of the lattice, for which the contraction of the two gluons in the third term
of eq. (7.19) leads to tadpole diagrams (fourth upper Feynman diagram in fig. 7.1).
Owing to UV divergences in the tadpole loops, they are not suppressed by powers
of a? and instead only by powers of g2. It is because of the tadpole artefacts that
we observe large perturbation theory coefficients [58]. The mean-field (tadpole)

improvement procedures [95] work by separating the UV and IR parts of the lattice
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fields and integrating out the UV

eiagA#(:z:) _ eiag(A{LR—i-AEV) _ ueiagAﬁR(x) _ UUM(.%) (7.20)

After this there are a new set of expansion parameters §° = ¢%/u?, & = ku,
U = U/u and v = 1/+/2ku, for which the theory looks the same as before, except

for the scaling of the gauge link [58].

We follow the mean field improvement prescription in section VI of [95]. The first
step is to determine the mean field value for the domain wall height from the
tadpole factor,

MME — M —a(1 — PV, (7.21)

where P is the average plaquette value in the chiral limit of our simulations. In the

mean-field prescription, the physical quark normalisation factor becomes

[1— (w2 ZMFE  where

aCF MF

ZME — 14 o (7.22)
2,wMF

Zi\)JF = T (w2 DMFQ(ZM—F?)QWQTMF), (7.23)
(wy"™)

where Thrr = 0.0525664 for the Iwasaki gauge action [95] and is the mean field
tadpole factor. The factors X, X1, V, Vpp and Vyg can then be evaluated at
Mpsr. The mean-field improvement also introduces factors of the mean link

u = PY/* and its perturbative expansion

alC
Up =1 — 4—:87r2TMF (7.24)

in the operators. For the operator with two covariant derivatives, it appears as

upt/u, whereas for the two total derivatives, it appears as the inverse u/up. It
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P Pl 4 MMF let\)/[F EMF VMF Vé\/[DF Val\gF

243 0.58813(4) 0.875726 1.3029 5.25088 3.9731 -4.1907 -10.045 -0.1696
323 0.615587(3) 0.885773 1.3431 6.13245 3.9800 -4.1772 -10.023 -0.1898

Table 7.1: Values for various mean-field parameters for the 243
and 323 ensembles [1].

follows that the matching factors are

- (wé‘JlF)Q)ZyF [1 + OZSTF <—1361n(,ua) +cMF>] (7.25)
ZgDF,DD(Ma) = 111(1 _ (w(]]\/llF)Q)qul\}/]F

1+ % (—235 In(pa) + M5 — 87T2TMF>] : (7.26)

Zppoa(pa) = u(l — (wé\/llF)Q)Z%F aiF (g In(pa) + Caa> , (7.27)

where the ¢M¥ factors have the same structure as their non-MF counterparts, and

can be evaluated at the value of M p.

To evaluate the mean-field renormalisation constants, we use the mean-field

improved coupling defined through the plaquette value [96]

L= a2 ey + N -~ m(a) (7.28)
—(p) == cp+ — In(pa — —— In(pa :
g?\/[F H gg g P 16 H FASF ™ 4872 H ’

where Ny = 3 is the number of dynamical quark flavours. The values for d; are a
function of the domain wall mass ( [1] table VII) and the other factors depend on
the gauge action, which, for the Iwasaki gauge, are ¢, = —0.1401 and

dg = 0.1053 [95]. In addition, we also determine the renormalisation constants using

the continuum MS coupling, calculated from the four-loop beta function [97]

dag

7 = s = 1} = Baa; — Byl + O(aj) (7.29)
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where

o= (11 B ng> ’ (7.30)
= % <1O2 a ? f) ’ (7.31)
h= 614<28257_5(1)z3 f+??fN%>’ (7.32)
4 = % [1496753 + 35646, (10:2261 - 62(7)8C3> N,

i <5(1)225 " GQ?C?’) Nj + ?;;N?] : (7.33)

and a; = a/7. In order to determine the coupling at any scale for the three flavour
case we start from the world average value for u = M,,

ozg5)(Mz) = 0.1184 + 0.0007 [98], where the superscript refers to it being for five
flavours. We follow the procedure in [97] and run «y across the m; and m,

thresholds whilst respecting the following conditions
o (my) = o (my) and oW (me) = a® (me). (7.34)

It is now possible to calculate the coupling constant for any scale with three

dynamical flavours.

We use the mean field and continuum MS coupling to evaluate the matching factor
egs. (7.25)-(7.27). Our PDA and structure function calculations are, however, ratios
of correlation functions and we, therefore, also evaluate the mean field improved
expression for the axial vector current renormalisation, Z4, [95] so that we may
take ratios of the renormalisation factors, which has the added advantage that the
factors of 1/(1 — (w)¥)2)ZMF cancel. The difference between the results for the
two values of the coupling provide a systematic error. The results are calculated
separately for both the 243 and 323 ensembles and are displayed in MS at pa = 1 in
table 7.2 for both the 243 and 322 ensembles. Our final results are given in MS at

1 = 2GeV in table 7.3.

The results in this section are suggestive of the need for a nonperturbative

M

MFE ~ 5 is a vast improvement on

approach; whilst the mean field improved value z
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MF

MF  yMF ZMF ZMF Oy  ZDbpop  ZDbss
O{PH} DD,DD DD,0o A ngF ZIJXIF Z%F
ag 1.0089 1.1679  0.0122 0.8294 1.2165 1.4082 0.0141
oS 09435 1.1093  0.0187  0.7377 1.2790 1.5037  0.0254
ap ™ 09896 1.1604  0.0122  0.8009 1.2356 1.4488  0.0152
a)S 09162 1.0966  0.0202  0.6934 1.3214 1.5815  0.0291

Table 7.2: 323, pa = 1 perturbative results for renormalisation
factors for both the coupling determined using a mean field ap-
proach and through the continuum MS running for three flavours.

MF

MF 7 MF ZMF ZMF Olut  ZBbop  Zbb.os
Ofpuy DD,DD DD,0o A zZir zZr Z8F
olfF 10184 1.1878  0.0090 0.8243 1.2355 1.4410  0.0109
oS 09535 1.1360  0.0141 0.7229 1.3190 1.5714  0.0194
oI 09791 11383  0.0156 0.8062 1.2144 1.4119 0.0194
oS 09054 1.0664  0.0251 0.7107 1.2739 1.5004  0.0353

Table 7.3: 243 and 323, u = 2GeV perturbative results for renor-
malisation factors for both the coupling determined using a mean
field approach and through the continuum MS running for three
flavours.

ZMF

MF MF
Ofput Zpb,pp  2DD,so
MF MF ey

Za Z4 Za

323 1.28(4) 1.51(6) 0.015(4)
243 1.24(3) 1.46(4) 0.027(8)

Table 7.4: 242 and 323, u = 2GeV perturbative results for ratios
of renormalisation factors in MS.
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the un-improved value, it is still rather large to justify working only to one loop.
We also observe from table 7.3 that the matching factors Z deviate substantially
from unity, suggesting that our one loop lattice perturbation theory results are not
reliable. Furthermore, the two choices in the coupling, which differ at higher order
than calculated here, lead to a large difference in the matching factors, again
suggesting that a higher order perturbative calculation is needed. The natural
progression is to therefore calculate these factors non-perturbatively. Our
implementation of a non-perturbative scheme means we have to rely upon the
perturbative results in table 7.4 for the renormalisation factor for the mixing of the
total derivative term. However, work is currently in progress to calculate this term

non-perturbatively, and will be discussed later in this chapter.

7.2 Non-Perturbative Renormalisation

The non-perturbative calculation of the renormalisation constants utilises the
Rome-Southampton RI’/MOM scheme [89]. The renormalised operator O(u) which

depends on a scale u, is defined by the introduction of a renormalisation constant,

O(u) = Zo (pa, g(a)) O(a), (7.35)

where Zp may be determined through the application of a simple renormalisation
condition, eq. (7.36) below, that is independent of the regularisation scheme used
and may be applied to both the continuum and the lattice. This provides the

means for scheme changes, and is what will ultimately allow the matching to MS.

Ao(p) = Zo(pa) Z;  (na) A" (pa)| 2,2 = AS™ (p), (7.36)

where Z, is the quark wavefunction renormalisation defined by ¢ = Z;/ 2¢bare. The
renormalised (bare) vertex amplitudes Ao (A%*®) are constructed from the
amputated forward Green’s function Go(p) of a two fermion bare lattice operator

O(a) computed between off shell quark states with momentum p, where p? = p?,
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traced with a suitable projector Py

Ao(p) = Tr[Ilo(p)Pol, (7.37)

where,

o (p) = (S(p)) " (Go(p)){S(p)) " (7.38)

The projector P» depends on the operator and is chosen to isolate the tree level
contribution to the vertex amplitude. S(p) is the quark propagator and the angle

brackets define the average taken over gauge field configurations.

Go = (¥(p)0(0)¥(p)), (7.39)
00) = Y ¥(@)Jolx, ")) (7.40)

We can use any conveniently calculable amplitude, since the renormalisation
constant is a property of the operator and not of particular matrix elements of the
operator. The somewhat unphysical construction of the vertex amplitude,
containing external quark propagators that are not gauge invariant, requires
gauge-fixing for which we choose Landau gauge. The current Jo» contains the
appropriate Dirac structure and, as for the calculation of the moments, may be
non-local if the operator contains derivatives. For example a right covariant

derivative in the vector case would correspond to

1
Jo,,(z,2") = 'ypi(U(a:, )00 wp — U@, ') 00 o) (7.41)

The renormalisation procedure defined above has been done for forward matrix
elements with equal incoming and outgoing quark momenta p = p’ (often described
as the exceptional case). For our calculation this has the disadvantage that the
exceptional momenta lead to ¢ = p — p’ = 0 for which matrix elements of operators
containing total derivatives vanish, making Zpp g9 inaccessible in our
non-perturbative calculations. In general, the renormalisation conditions may be

defined at different external quark momenta p and p’ where taking p # p’ would
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allow the calculation of the mixing term Zpp gp. Until recently the required
perturbative matching calculation had not been performed for this class of
momentum choice. For the choice p? = p’? = ¢? the continuum calculation has been
performed in [99,100] and work is currently under way to calculate Zpp gs (as well

as Zo,, and Zpp pp) non-perturbatively.

The range of allowed momenta are constrained to a window. In order to obtain a
physical quantity, a cancellation of the renormalisation scale between the matrix
element of the renormalised operator O(u) and the appropriate Wilson coefficient is
required. The Wilson coefficient is calculated in the continuum through an
expansion in a, at a scale of order y. This must be large enough (1 > Agep) for
perturbation theory to be applicable, and thus the NPR calculation must also
respect this constraint for the matching to be possible. At the other end, it is
desirable to find a scale p that is low enough so that calculations do not suffer from

the contamination of discretisation effects. Thus, only within the window
Agep € p < a_l, (7.42)

where a is the lattice spacing used in the simulations, can the non-perturbative and

lattice artefacts be small simultaneously [89].

Our NPR calculation uses momentum sources [101], which result in a volume
average over the lattice and hence in smaller statistical errors than obtained

through the use of point sources [97]. The Green’s function in momentum space is,

Go(p) =Y (155" (p)avsJo(,2')S (p)a) (7.43)

z,x’

where, instead of using the quark propagator S(z|y) that is obtained through an

inversion of the Dirac matrix M on a point source
> M 2)S(zly) = by, (7.44)
X

the momentum-space propagator S(p), = Zy S(z|y)e™Y is used, which is obtained
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through inverting with a momentum source [101]

> M@ 2)S(p)e = €™ (7.45)

This is defined on all lattice sites corresponding to the off-shell quarks used in the
Green’s function. For this approach, a separate inversion is required for each choice
of momenta used in the simulation. This limitation is outweighed by the reduction
in the number of configurations required by our calculations, due to the
improvement in the statistical accuracy as a result of the the volume averaging.
Therefore, as long as we are parsimonious in the momenta used, the statistical

fluctuations are reduced with a lower overall computational cost.

7.2.1 Projectors

The PDA calculations require the renormalisation of operators with up to two

(5)

derivatives O
{,U‘l s

} where n =1, 2 or 3 for 0, 1 and 2 derivatives. The projectors
required for the operators containing derivatives are more complicated than for the
case of the bilinears. For the final conversion to MS as well as to account for the
running (to u = 2GeV), we use readily available continuum calculations [90,91].
For this to be possible, our projectors must match the RI'/MOM scheme and vertex
functions used in the continuum calculations. The amputated Green’s function

decomposes into the following terms allowed by Lorentz symmetry, where all indices

are distinct [90,91]:

Go(p) = Z1(P)V{u1 Puz--Punt + 22(P)Ppy - D V- (7.46)

Only the contribution from ¥; is used in the RI'/MOM scheme, and so our
projectors, which depend upon both the momentum entering the Green’s function
as well as its fixed indices (p;), should be crafted in such a way as to isolate this
term. For the case of vectors (axial-vector operators may be treated analogously,
with the appropriate insertion of 75) the multiplication of G with ~,, picks up

contributions of both ¥; and Y3, whereas a projection with ~y,, where p # {p;} is
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sensitive to only Yo (when n < 3). We should, therefore, be able to design a
projector that isolates ¥ in eq. (7.46) from the difference of two Dirac matrices
with appropriate normalisation and momentum factors. The projectors are
simplified in the case where there are one or more components of zero momentum.
For fixed indices y; (i = 1,...,n) of the Green’s function, we can construct n

different projectors Pop; by starting from any of the v,

Py,

Twi — Vo35
- Nn—pf; with i=1,..,n. (7.47)
5 zij=1 Py,

Po;

The normalisation N is chosen so that A%Z®(p) =1, and p ¢ {;} such that its
momentum component p, is as small as possible in order to reduce discretisation
errors. The quantities p,, = sinp,, are used to better account for the lattice
momenta. The n different projectors with all possible combinations of the Green’s
functions result in a total of 4, 12 and 12 (n = 1, 2 and 3) choices to compute the
vertex amplitude eq. (7.37). Each of the choices should, of course, provide the same
result for the final renormalisation constant up to the lattice artefacts that occur
due to the breaking of the continuum O(4) symmetry. As a result of the different
magnitudes of momentum components, the expected discretisation errors depend

upon the directions selected by the projector.

7.2.2 Results for the Renormalisation Factors

To determine the renormalisation constant for the operator Zp from the
renormalisation condition eq. (7.36) requires the quark-field renormalisation Z;, as
an input. However, for our calculation, we are interested in ratios of the (one or
two) derivative operators with operators containing no-derivatives - the vector and
axial-vector bilinears. Due to the chiral symmetry of the domain-wall formalism, we
could use either the vector or axial-vector bilinears and so we average A,, and Agp

(as per [59]) for our final answer. Using the ratio results in an explicit cancellation
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of the quark-field renormalisation factors

Zon=2, 3(pa) _ A1 (na) (7.48)
Zo n=1(pa) A?oa,ff:z,:a (na)

p?=p?

The results should be independent of index choice and size of momentum
components used for the projector. However, the reduced statistical errors due to
the momentum source approach reveal the effects of lattice artefacts [102]. This can
be observed by considering the different projectors for a given momenta p,, of the
external quarks, see fig 7.2. For our best answer we combine all choices and we

account for the observed spread in the data through a systematic error.

The renormalisation constants are extracted in the following way. For each
momentum choice (table. 7.5) a linear extrapolation in the un-physical light quark
masses my is performed down to the chiral limit mgy = —my.s fig. 7.3. It is at the
chiral limit that we are able to remove the running of our data points and match to
the continuum scheme. The existing continuum results [90,91] allow us to take our
RI'/MOM scheme results at the scale u? = p? to a common scale u? = (2 GeV)?
and convert to MS. The values that are obtained can then be linearly interpolated
to p? = (2 GeV)? to obtain Zon=23/Zon=1 at a scale p =2 GeV. Fig 7.4 show the
renormalisation factors before and after the running is removed. Once the running
has been removed and the data points are at a common scale, they should have
equal values. We observe that the data points are very flat, indicating that both the

scale conversion and the momentum window are valid.

The central value for Zo ;,—23/Z0 n=1 is computed from the averaged value of all
projectors and index contributions. The statistical error is estimated through a
bootstrap analysis. This error is inflated with y/x2/d.o.f. (the PDG scale

factor [103]) from the interpolation. The systematic errors arise from a few different

effects, which we will now explore.

The lattice artefact error is estimated by analysing the data for each of the
individual projector index and momentum component choices, from which we

choose the highest and lowest values. This is done for each of the momenta and
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Figure 7.2: Results for A&7, and A(”Q‘ffzg are shown in the

top and bottom panels respectively for a single momentum (ap)? =
1.78201 where pT = (2,2,3,8). The labels above and below show the
Green’s function indices in the brackets with the projector’s index
below. The disagreement demonstrates the lattice artefacts [1].
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Figure 7.3: Linear extrapolation of the renormalisation factors
to the chiral limit for the n = 2 and n = 3 operators, top and
bottom panels respectively. The momentum is increasing from top
to bottom: (ap)? = 1.2947, 1.4392, 1.6374, 1.7820, 1.9801 [1].
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Figure 7.4: 243 Scale dependent renormalisation factors (red
data-points) and fized (u = 2GeV) scale renormalisation factors
(blue data-points) with the running removed, both given in the
RI' /MOM scheme. The linear interpolation to the final result with
statistical error band is also shown, as are the systematic and sta-
tistical errors on the interpolated point (green data-point) [1].
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“highest” and “lowest” interpolations are performed separately. The larger
difference between these and the central value is taken to be the systematic error

for the discretisation effects and is refered to as the “spread” error.

The perturbative matching in the continuum is calculated to three-loops and we
account for the missing higher order terms through the slope of the interpolation,
using the difference of the results at p> = (2 GeV)? and (0 GeV?), which we refer to
as the “slope” error. Whilst some of this error will be down to the truncated
perturbative expansion, there are also some entangled discretisation effects and so

there is, to some extent, double counting of the discretisation effects.

A further effect, that we have already mentioned, is due to the good, but
nonetheless approximate, chiral symmetry of the domain-wall formalism. This is
evident from the difference in the final result when determined via 3(A4 + Ay) or
from A4 (n =1). The systematic error is estimated by this difference and is

labelled as “V-A”.

The final systematic error is due to the un-physical strange-quark mass used in the
simulations, and our failure to extrapolate this to its physical value. This error,
refered to as Amg, is estimated from the linear dependence (slope) in the chiral
extrapolations multiplied by the strange-quark mass, as well as by a factor of % to
account for the fact that there is only one strange-quark mass compared to the two
light-quark masses. The total systematic error is obtained by adding all four

individual systematic effects in quadrature.

The final results for the renormalisation factors are obtained using the n = 2 and 3
operators with vector-like billinears, although the results from axial-vector
operators are almost identical. The NPR calculation has been performed for all
three ensembles, however the form of momenta is different for these (table. 7.5). For
all of the ensembles, the momenta are chosen to be within the window eq. (7.42).
For the 162 and 243 ensembles (with the same lattice spacing) the momenta were
chosen from the experience gained from [97] which identified that, by limiting the
magnitude of Zpﬁ for fixed p? [102], the hypercubic artefacts are reduced. This

results in momentum choices that are close to the diagonal of the lattice. In
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163 X 32 (171a ) ) (1717 >4) (1727 ) ) (1?27273) (1?2?274)
243 x 64 (2,2,2,7) (2,2,2 ,8) (2,2,3,7) (2,2,3,8)  (2,3,3,7)
323 x 64 (3,2,2,2) (3,2,—1,—4)  (4,0,—5,—6) (4,3,1,—-8) (4,—5,0,—6)
(473a 1a_8) (47 5707 6) ( 43 47172) (4?07_274) (4723270)
(4,4,3,2) (—4,-1,-4,2)
Table 7.5: Momenta used for the three ensembles. Where we
give n for momenta p, = 2mn,/La and L — T for time com-
ponents a~t = 1.73(3)GeV for the 16° and 243 lattices, and
a~! =2.28(3)GeV for the 323 lattice.
20,12 Zpp,pp/ZA
163 x 32 243 x 64 163 x 32 243 x 64
central value 1.54575 1.52893 2.06064 2.02800
statistical error | 0.00249 0.00081 0.00482 0.00149
spread 0.02968 0.01809 0.03702 0.01534
slope 0.00470 0.00743 0.00097 0.02285
Amg 0.00089 0.00232 0.00469 0.00992
V—-—A 0.00723 0.00602 0.00938 0.00760
total error 0.03102 0.02061 0.03879 0.03026
best result 1.5289(8)(206) 2.028(1)(30)
perturbative result 1.24(3) 1.45(5)

Table 7.6: Final results for the 163 and 243 renormalisation fac-
tors in MS at pn = 2GeV. Results are given for both lattice sizes
with all systematic errors. The perturbative results are also shown
for comparison [1].

contrast, the 323 ensemble momentum choices are not close to the diagonal. They
were initially designed for a non-exceptional scheme where p # p’ and p? = p? = ¢2,
however, until very recently, the matching was only available for the exceptional
case. These momenta were therefore used in our exceptional calculations. The
results for the 163 and 243 ensembles are given in table 7.6 and the figures used for
their determination (figs. 7.3 and 7.4) were used to illustrate the process above.
The 323 results are presented in table 7.8 as part of the twisted momentum
discussion (section 7.2.3) for which the interpolation is performed in fig 7.5. For all
cases, we note that the renormalisation factors clearly deviate from one and also
from the perturbative results, table 7.4. Thus, for these quantities,

non-perturbative renormalisation appears imperative.
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01 0.00000 0.18750 0.37500 0.56250 0.75000 0.93750 1.12500 1.31250
(ap), 123370 131201 139273 147586 156140 164935 1.73971 1.83248
p2, GeV? | 3.68807 3.92218 4.16349 4.41200 4.66772 4.93064 520076  5.47809
(ap)2, 0.69396 0.73801 0.78341 0.83017 0.87829 0.92776 0.97859  1.03077
p2, GeV? | 3.60746 3.83645 4.07249 4.31557 4.56570 4.82287 5.08709  5.35835
Oro 150000 1.68750 1.87500 2.06250 2.25000 -0.18750 -0.37500
(ap)Z, 1.02766 2.02524 2.12524 222765 2.33247 1.15780  1.08431
p2, GeV? | 576262 6.05435 6.35329 6.65942 6.97277 3.46117  3.24147
(ap)2, 1.08431 1.13920 1.19545 1.25305 1.31201 0.65126  0.60992
p2, GeV? | 5.63666 5.92202 6.21442 6.51387 6.82036 3.38552  3.17062

Table 7.7: Corresponding momentum for the twist angles 04, used
in the twisted NPR calculation. Stated as both the lattice momenta
(ap)? and the physical momenta p* for the 24> and 32 ensembles.

7.2.3 Non Perturbative Renormalisation using Twisted Boundary

Conditions

The use of twisted boundary conditions allows us to fix the direction of the
momenta, whilst varying their size. This has the advantage that we constrain the
calculation, for a given base momentum, to a single representation of the H(4)
group. The base momentum is defined as the momentum at zero twist. Applying a
twist angle preserves the H(4) symmetry of the momentum and thereby reduces the
observed splitting for a given projector (or equivalently the averaged projectors)
acting on a given set of indices for the Green’s function. The base momentum
choices for the twisted 243 and 322 calculations are (0,3,3,0) and (—3,0,3,0), once
again chosen for a non-exceptional calculation. The twist angles are then applied to
the non-zero elements in order to vary the momenta, these are given along with the
correponding momenta for both data-sets in table 7.7. Twisting also allows us to
tune our momenta within the NPR window, and is thus useful for the comparison
of data-sets with two different lattice spacings. The same procedure is used for the
twisted NPR calculation as discussed in the previous section, but with modified
projectors due to the two components of zero-momenta. The results are displayed
for the 322 and 243 data-sets in figs. 7.5 and 7.6 respectively and the numerical
results are provided in tables 7.8 and 7.9. There is an obvious improvement in the
resolution of the momenta, and with it we also see that the characteristic jumping
as a result of the different representations has been removed and is reflected in the

reduction of the spread error. The twisting technique does not remove the
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20, /%A Zpp,pD/ZA

Untwisted Twisted | Untwisted Twisted
central value 1.50403 1.49802 1.97286 1.97338
statistical error 0.00143 0.00049 0.01676 0.00044
spread 0.02044 0.00347 0.01953 0.00199
slope 0.00965 0.00465 0.04558 0.04069
Amg 0.00091 0.00281 0.00453 0.01423
V—-—A 0.00474 0.00352 0.01443 0.00732
total error 0.02316 0.00736 0.05448 0.04377

Table 7.8: Final results for the renormalisation factors in MS at
= 2GeV. Results are given for the 323 lattice for both twisted
and untwisted momentum choices with all systematic errors.

20, /Za Zpp,pD/ZA

Untwisted Twisted | Untwisted Twisted
central value 1.52893 1.52409 2.02800 2.04366
statistical error 0.00081 0.00018 0.00149 0.00035
spread 0.01809 0.00058 0.01534 0.00117
slope 0.00743 0.00866 0.02285 0.02884
Amg 0.00232 0.00324 0.00992 0.01036
V—-A 0.00602 0.00316 0.00760 0.00475
total error 0.02061 0.00980 0.03026 0.03103

Table 7.9: Final results for the renormalisation factors in MS at
i =2GeV. Results are given for the 243 lattice size for both twisted
and untwisted momentum choices with all systematic errors.

discretisation effects caused by the different representations, if we had of used a
different base momentum we would have seen a different curve. In the future we
could perform the NPR with two base momenta, in different hypercubic
representations, to allow an estimate of the spread systematic error through their
difference. We note that the twisted and untwisted data-sets need not be the same

due to discretisation effects, this is clear from figs. 7.5 and 7.6.

The twisted data results from this section will be used for the renormalisation of
PDAs in section 9. The momenta for both the 243 and 323 data-sets were chosen so
that they occupy the same physical range, fig. 7.7 and due to the same “base”
momenta we ensure that they occupy the same representation of the hypercubic
group. This ensures that the renormalisation factors are consistent when studying

any continuum (discretisation) effects.
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Figure 7.5: 322 Scale dependent renormalisation factors (red
data-points) and fized (u = 2GeV) scale renormalisation factors
(blue data-points) with the running removed, both given in the
RI' /MOM scheme. The linear interpolation to the final result with
statistical error band is also shown, as are the systematic and sta-
tistical errors on the interpolated point (green data-point). The
solid points use the twisted data-set and the hollow points are from
the untwisted analysis.
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ZOvzb/ZA
243 323
central value 1.46810 1.48364
statistical error | 0.00586 0.01555

spread 0.00175 0.01750
slope 0.03866 0.00826
Amg 0.00294 0.00362
V—-—A 0.00439 0.00233
total error 0.03950 0.02519

Table 7.10: Final results for the Oy2, renormalisation factors in
MS at p=2GeV.

7.2.4 Renormalisation for Structure Functions
The structure function calculation involves the use of the operator
1
Opap = Osq — 5(011 + O3 + O33), (7.49)

where the operator involves the derivative operators described by eq. (7.7) and the
Green’s functions decompose as in eq. (7.46). However, we now have a linear

combination, which requires a different projector than described earlier. The

3 (v 1 (’71 Y2 73>>
Pon, =2 (L4240 7.50
Ouzb = <p4 3\p»m p2 D3 (7.50)

isolates the 31 (p) term required for the NPR. The results from this are given for

projector

the 243 and 322 ensembles, using untwisted momenta, in fig. 7.8 and table. 7.10.

We observe an increase in the characteristic jumping that reflects the discretisation
effects due to using momenta from different representations of the hypercubic
group, as well as a decrease in the spread error for the renormalisation of the O,
operator compared to the O, , operator. The decrease in the spread error is due to
the procedure, since for this operator we only have a single choice for the indices in
the Oy2 operator (the numerator of the ratio), and so the spread error comes
purely from the four possible bilinears in the denominator. We also note that the
statistical errors are larger with respect to the total error than before. This is likely
to be caused, once again, by the specific O, operator, which removes the

possibility of averaging over equivalent directions. An improvement would come
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from using partially twisted boundary conditions, however the existing simulations
for this all have a zero component of momentum in the 4-direction, and thus our
projector (eq. (7.50)) would not work. For consistancy we use the untwisted results
for the renormalisation of both the O,z , and O,z operators in the structure
function analysis. An interesting extension would therefore be to simulate with
partially twisted boundary conditions that have a non-zero component in the
4-direction, to check the scale dependence of the non-perturbative renormalisation
constants. This could also provide a more rigorous treatment of the discretisation

error.
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Chapter 8

Pion Structure Functions -

Results

8.1 Lattice Data

The data available for the calculation of the pion structure functions, is the same as
that which was used for K3 calculations in [2] and therefore uses (whilst not
necessary for this calculation) partially twisted boundary conditions. This
calculation is performed on our 323 x 64 cubed ensembles with three light-quark
masses, amyg, as listed in Table 8.1. The twist angles ¢, 6, and ¢, in table 8.1 show
that, for this calculation, we twisted only in a single spatial direction and that we
chose to have significantly more measurements, Ny,eqs, for the lightest light-quark
mass in order to offset the usual degradation of the statistical signal that is
associated with the lighter quark masses. “Range” refers to the span of
configurations that were used and A gives the number of molecular dynamics time

steps that separate each consecutive measurement, so that Range/A = Nyeqs. This

amg,  Range Npeas A 0 0, 0.
0.008 500-1780 65 20 0.595907938605599 0 O
0.006 580-2080 76 20 0.68471639616995217 0 0
0.004 760-3420 267 20 0.78250119320561262 0 O

Table 8.1: Parameters for the 323 x 64 dataset.
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calculation uses three-point functions, indicated in fig. 8.1. The pion is created and
destroyed at times t = 0 and t = T'/2 respectively, where T is the temporal extent
of the lattice. Spatially the pion states are created with a wall-source and destroyed
with a wall-sink (all the initial and final spatial positions are summed over). The
operator, O(z), is inserted at (y,t) and its position is also summed over. The twist
angles are applied either side of the current for the quarks ¢; r, whereas for the
spectator quark, qs, s = 0. For this calculation, we are interested in forward matrix
elements and so we chose the twist angles to be equal, §; = ;. The first twist angle
is for the propagator from source to current, while the second twist angle is for the

propagator from current to sink.

Figure 8.1: Quark flow diagram for the structure function calcu-
lation [2].

8.2 Calculation on the Lattice

The local vector current

V() = q(x)vuq(x) (8.1)

is a conserved current in the continuum, however this is not the case on the lattice.
On the lattice, using the Iwasaki gauge action, there is an alternative conserved
current, V7", with a modified structure to the familiar continuum current. This is,

however, related multiplicatively to the local vector current V,,, so that

(m| Vo) = Zv (| Vilm). (8.2)

Zy can be determined perturbatively or determined directly through a comparison
of the matrix elements in eq. (8.2). Using a related approach, it is possible to

determine Zy through our structure function results, which will be demonstrated
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later. Had we have used the conserved lattice vector current, its corresponding

renormalisation constant is unity [104].

For the calculation of the average momentum carried by the quarks of a given

flavour in the pion (z)y, it is necessary to calculate the following matrix element

(n()| O (0) 7 (p)) = ptp) As(p), (8.3)

where |7(p)) is a pion state with momentum p and
v DRI
(’)é“ }(0) = 2y D) — traces (8.4)

There are two cases that we may choose: © = v and u # v. For the case u = v,
there are three linearly independent operators, which transform as a
three-dimensional irreducible representation of the hypercubic group (section 6.7).
The subtraction of the trace removes the singlet component. We do not observe the
large statistical errors associated with the subtraction of a power divergence in our
calculation. For the case u # v, there are six operators which transform in the
six-dimensional irreducible representation of the hypercubic group, for which there
is no mixing with lower-dimensional operators and hence the subtraction of the
trace is avoided. A disadvantage here, however, is that at least one non-zero
component of momentum is required for the matrix element to be non-zero, which
unavoidably adds noise to the signal. The two choices, 1 # v and p = v, are

respectively (using the notation of [105]):

OUQ,a = 0{41} (85)

1
Ovzp = Oua — 3 (O11 + Oz + Os3) . (8.6)

For the computation of the required quantities on the lattice, we start with
correlation functions. We are interested here in three-point correlation functions

involving the operators Oz, and Oy, the vector current and a two-point
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correlation function. The three-point correlation function for the vector current is

Clptasty) = Y ePXIY(OT[PT(0)VH(y, 1) Pz, £)]]0), (8.7)

x’y

which, for large times ¢, and t, — t, reduces to

1
" 4EFE'

Cy (L, ty) e Pl | (x| P(0)|0)* (Zv) ™" (p+9)" F(d®).  (8:8)

where ¢ = p’ — p. For the structure function calculations, we are interested in the
forward case p = p’ (due to the use of the optical theorem) for which this simplifies
further:

Cy (L ty e B |(m|P(0)[0)* (Zv) " 2 p, (8.9)

)= i
where we have used the normalisation condition F'(0) = 1. Zy is the

renormalisation factor for the local vector current from eq. (8.2). The three-point

function for the operator 05", in the forward case reduces at large times to

ClY (Lo, ty) e Pt (x| P(0)[0)]* p*p” Aa(p), (8.10)

T 4E?

where we have used eq. (8.3) to simplify the correlation function. We are now able
to build a ratio to extract (x) = As/2, where E and p’ are the energy and spatial

momentum left over from the ratio

CH (tasty)
= bar _ _ i 8.11
C’{f—(tx,ty) EZy ()™, w=1i v=t p'#0 ( )

An alternative method to extract the first moment, uses the two point function

Conll) = 3 ePXOITIPHO) PG, #)][0) (812)
e o—ET/2
T2, 2l PO)I0) (813)

94



which providing ¢ =t, = T/2,

Qng(tx,t ) B p’i<x>bare’ L 7& v pi 7& 0
Cth(T/;)J B &1

B, p=v p=0.
Here we do not need to worry about the renormalisation of the vector current. It
follows that a comparison between the results from eq. (8.11) and eq. (8.14) should

agree with existing results for Zy, .

8.3 Results

The fits to all ratios eq. (8.11) and eq. (8.14) are shown in figs. 8.2 and 8.3. We have
five possibilities for these fits. First, we can use the operator with distinct indices
Oy2,q that requires non-zero momenta (fig. 8.2) or the operator O,z which can be
used with zero momentum (fig. 8.3) and provides a cleaner signal with smaller error
bars. We then have the choice of whether to use a two- or a three-point function in
the denominator of the ratio. We see that the three-point function in the
denominator provides a signal with less noise. Figs. 8.2 and 8.3 display the chosen
fits-ranges for both cases, with errors determined using the bootstrap method. The
fit-range was chosen to be stable with respect to small variations in the range, as
well as to encompass as much of the plateau as possible. A range of 7 — 25 proved
to be successful for all cases. This range, with stable end points, helps to account
for fluctuations within the fit-range, for example the 0.006 mass appears to rise and
fall for the O,2 , operator. We do note that for the O, operator there is a larger
effect from variations of the range, however the results are consistent within errors.
The results are given in table 8.2. In order to compare the results from the ratios
with two-point correlation functions to the ratios with three-point correlation
functions in the denominator, the bare results for the two-point denominator have
been multiplied by Zy in table 8.2 ((x%ﬁiel [Capy = <a:)léa(;jl/02pt Zy ). This is also in
anticipation of renormalising the bare moments with the ratio (Zow /Z 4 and

Z0,24/%Z4), calculated non-perturbatively (and making use of Zy = Z4).
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0.004 and 0.006 datasets have been artificially shifted by 0.1 and
0.2 in the y-axis.

amy 0.008 0.006 0.004

{ >§:?§1 jeo, | 0-1686(43)  0.1647(67)  0.1682(30)
(@& e, | 0-1706(76)  0.1703(67)  0.1672(44)
(@B ., | 01722(62) 0.1687(83) 0.1682(43)
<9«“>'8a(§i4 JCypa | 0-1719(26)  0.1747(30)  0.1692(15)
(@@»Zi JCope | 0-1729(46)  0.1734(45)  0.1712(21)

Table 8.2: Summary of results for the bare values of the struc-
ture function moments on the 323 lattice. The errors are sta-
tistical. Note that results involving Copy have been multiplied by
Zy = 0.0.74475(12) [3] in anticipation of the renormalisation,

b _ b
<x>éZi’1 /Capt — <x>csgil/c2ptzv'
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Bare x-limit all Bare y-limit avg x-limit all  y-limit avg
$>§aori1/0v/2pt 0.1663(51) 0.1656(55) 0.2501(86) 0.2491(91)
<x>()&gi4/cv - 0.1675(31) 0.1677(34) 0.2485(62) 0.2488(66)

Table 8.3: Bare and renormalised results at the chiral limit amg+
Myes = 0. The renormalised results are given in the MS scheme at
uw=2 GeV.

8.3.1 Quark Mass Extrapolation

One-loop chiral perturbation theory [106,107] shows that the odd and even
moments of the quark distributions extrapolate differently (in this work we
calculate the first odd moment (z)). For the forward moments of the pion quark

distributions,

c(()n) (1 — 7(4:}?“)2 log m—§> + cgn)mfr even n
(x")(m2, p) = " g (8.15)
c(()") + cgn)mfr odd n

(n)

with corrections of O(m2) where ¢;"” are low energy constants. For our
extrapolation to the physical point, we perform the odd n linear extrapolation in
the light-quark mass (equivalent to m?2 eq. (5.11)). For both Q.94 and O,z we
perform a single extrapolation after averaging the equivalent channels for each mass
(each column in table 8.2, keeping Oy2 o and O,2 separate) before performing the
extrapolation fig. 8.4 to determine our best answer. We also perform the
extrapolation using the various channels fig. 8.5 to illustrate the spread of the

points. Both methods provide very similar extrapolations and both sets of results

are given in table 8.3.

The operators Oy2, and O, transform under different irreducible representations
of the hypercubic group, and so, whilst in the continuum, their results should agree,
however, they will have different bare results and require different renormalisation
constants. The renormalisation constants for the two operators were calculated in
section 7 and presented in tables 7.8 and 7.10. The renormalised moments are given
in table 8.3. The results using the two operators O,z 4 and O,z agree within

errors, which is true both before and after renormalisation. To strengthen any
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conclusion, an improvement in both the renormalisation errors, (which could be
achieved through the use of twisted boundary conditions) and the bare results
(through more statistics to reduce the errors) is required. For our best answer, we

average our results for the two operators Oy2, and O,2 (last column in table 8.3)

(z) = 0.249(12),

given in the MS scheme for z = 2 GeV. The error is both statistical and systematic
from the continuum limit extrapolation and the renormalisation. (x) tells us that
the light quarks inside the pion carry approximately 50% of the pion’s momentum,
the rest of which we attribute to the heavier quark generations and the gluons. It
should be noted that the odd moment calculation is for a flavour singlet (the
flavour non-singlet moment vanishes for degenerate light quark masses) and thus in
principle there are disconnected contributions. These contributions are omitted
from this calculation. This is yet to be calculated for the pion on the lattice,
although currently the calculation of disconnected diagrams for nucleon structure
functions is an active area of research, for which results from a quenched calculation
using Wilson fermions can be found in [108]. A further caveat to the calculation is
that there may also be a contribution from a tr(F),,F*") term occuring from the
gluon contribution in the covariant derivative in the operator. The calculation of
this contribution is both noisy and expensive, but it has been calculated for the

pion in [109].

The original lattice investigations of the structure functions were performed in
quenched calculations in the 1980s by Martinelli and Sachrajda [104]. More detailed
and recent studies of the structure functions have been performed by the QCDSF
collaboration in [105,110]. Our results compare within errors to those obtained

these papers (table 8.4).
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this work QCDSF quenched [105] QCDSF [110]

Martinelli et. al. [104]
0.249(12) 0.273(12)

0.271(10) 0.23(4)

Table 8.4: Comparison of renormalised structure function (x)
moments. All are quoted in MS. This work, Martinelli et Al. and

QCDSF are given at p = 2 GeV, whereas QCDSF quenched is
giwven at p = 2.4 GeV
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Chapter 9

Light Meson PDA - Results

9.1 Lattice Data

The PDA calculation was performed on all three lattices, thus allowing an
evaluation of both finite volume and discretisation effects. For each of the masses in
the three ensembles (16 x 32, 243 x 64 and 323 x 64), details of the configurations
are given in tables 9.1, 9.2 and 9.3 respectively. “Range” refers to the configuration
ranges used and A provides the separation between configurations at the same

source position tg.., both of which are given in molecular dynamics time units.

To improve statistics on the finite number of configurations available several
calculations are performed on the same configuration but using a different location
for the source in each case, which is equivalent to shifting the gauge fields. These
are chosen so that the source positions extend along the lattice diagonal. For
example, on the 243 x 64 and 323 x 64 ensembles, we have the source positions
(0,0,0,0), (8,8,8,16), (16,16,16,32) and (24, 24, 24,48), where t4. is the last entry
in each and describes the source position of the time co-ordinate. The total number
of measurements for a given light quark mass is thus Npeqs X Ni,,.. We need to be
wary of the strong correlations that measurements on a single gauge configuration
have, and so we take the step of averaging these measurements together into a single
“bin” before performing any statistical analysis or further calculations. For the 163

ensemble, the span of measurements per bin was 50 molecular dynamics (MD)
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amg Range Nieas A Smearing  tg.

0.01 500-3990 350 10 GL-GL 0, 8, 16, 24
0.02 500-3990 350 10 GL-GL 0, 8, 16, 24
0.03 4030-7600 358 10 GL-GL 0, 16

Table 9.1: Parameters for the 16 x 32 PDA dataset (a=! =
1.73(3) GeV).

amg  Range Nieas A Smearing  tg
0.005 900-4480 180 20 HL-HL 0, 16, 32
0.01  800-3940 315 10 GL-GL 0, 32
0.02  1800-3580 90 20 HL-HL 0, 32
0.03  1260-3040 90 20 HL-HL 0, 32

Table 9.2: Parameters for the 24° x 64 PDA dataset (a=! =
1.73(3) GeV).

timesteps. For the 243 0.005 and 0.01 masses, 80 MD were used, whereas 40 MD
steps were used for the 0.02 and 0.03 masses in order to have a reasonable number

of jackknife samples. Finally, for the 323 ensemble, a span of 40 MD were used.

The smearing used for these calculations is of the form XY — XY and denotes the
contraction of two quark propagators, for which X is the smearing type at the
source, whereas Y is the smearing at the sink. X =L, G, H and Y = L where L
refers to point/local smearing (i.e. no smearing), G refers to a Gaussian form of
radius 7 = 4 [111] for de-localising the source or sink, whereas H smearing uses,

instead, a Hydrogen S-wave form of radius r = 3.5 [112].

amg  Range Npmeas A Smearing tgc

0.004 760-2410 120 10* HL-HL 0, 16, 32, 48
0.006 570-3240 134 20 LL-LL 0, 16, 32, 48
0.008 500-2960 56 40* LL-LL 0, 16, 32, 48

Table 9.3: Parameters for the 323 x 64 PDA dataset (a=! =
2.28(3)GeV). For x entries A provides the average separation -
these datasets have an irreqular separation between adjacent mea-
surements at the same source position. This is taken care of
through binning.
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9.2 (¢Yp and (€?)p from Ratios of Correlation Functions

We can extract the first and second moments of the pseudoscalar mesons from

ratios of the following two-point correlation functions,

Ca,p(t,p) = Y eP7(0]4,(t,x)P1(0)]0), (9.1)
Clyu(tp) = > €00}, (t,x)P(0)]0), (9.2)
Clon(tP) = D ePH(0]0F,,,,(t,x)P1(0)]0), (9.3)

T

which at large Euclidean times ¢ and 1" — ¢, tend towards

Zpfparee=ErT/2sinh((t — T/2)Ep)

Ca,p(t,p) — o Py (9.4)
Zpfhree BT 2ginh((t — T/2)Ep) . . are
C?pu}(t,p) -, Lid o )Ep) ipp zpu<§1>b , (9.5)
VA fb‘”ee_EPT/2 sinh((t = T/2)Ep) . . . are
C?ﬂw}(t’m - ==k E < [2)Er) Pp Pu Zpl/<§2>b ; (9.6)
P

where Zp = (P(p)|PT|0) and the bare decay constant is defined via the matrix
element (0| A, |P(p)) = ip, f2&. It proves convenient to take eq. (9.5) and eq. (9.6)
as separate ratios with eq. (9.4). This helps to isolate the bare moments and

remove factors such as f}%are and Zp.

C7,n(tp)

P — Heu} PpPp 1\ bare
R{p‘u};y(u p) = CA,,P(t, p) -1 I’y <§ > ’ (97)
Clopuy (t:P)
RP e — {ppv} _pppupl/ 2 bare' )
{puy}p( ) p) CA(,P(t7 p) - Do <£ > (9 8)

We then need only to consider the momentum factors, bearing in mind the mixing
discussion of section 6.7. For the first moment, we chose prﬁl};ll(t’ p) where 4
corresponds to the time direction and p may take spatial values for which we
require a single non-zero unit of momentum |p,| = 27/L. For the second moment,
Rf/w4};4(t’ p) where p # p and thus two non-zero units of momenta

|pp| = |pu| = 27/ L are required.
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9.3 (§1>|‘|/ and (£2>|“, from Ratios of Correlation Functions

The longitudinally polarised vector mesons are treated analogously to the

pseudoscalars; the two-point correlation functions are:

Cvv (L) = Y ePT(0|Viu(t,x)V,](0)[0) (9.9)
Cromw(t,P) = Zeip'x<0|(9{pu}(t,X)VJ(0)|0) (9.10)
C{puu}a(t7p) = Zezpz O‘O{pwf}(t X) ( )‘0> (9'11)

where the bare longitudinal decay constant for a vector meson, with polarisation
index A\ and polarisation vector € is defined through the matrix element
O|VulV(p,AN)) = fbaremveu M. For large Euclidean times ¢ and T — ¢,

_(f‘laaremv)QefEVT/Q cosh((t —T/2)Ey)
Ey

Pubv
. <_9;w + m%/ ) (9.12)

Cyv,(t,p) —

_i(f‘k}aremv)Ze—EvT/Z <§1>Hbare sinh((t _ T/2)Ev)

C{p,u}u(t7 p) -

Ey
1 2ppPuby
5 <_gpupu — Juwbp + fn‘é; (9.13)

(fearemv)2€—EvT/2 <£2> |[bare Sinh((t — T/Q)EV)
Ey

C{puu}o‘ (ta p) -

1

3PpPupyp
3 <_gpapupl/ = GuoPpPv — JuaPpPu + % (9.14)
\%

where we have used the completeness relation for the polarisation vectors

o eu N = —Guv + Pu Pv/mi. Egs. (9.12)-(9.14) may be used to construct the
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following ratios

C{pu}y(ta b= 0)

RY .. (t,p) = — —i(eYy P tanh((t — T/2)Ey)
tou} 52 Cvvi(t,p = 0)
1 2ppPuPv
9 <_gp1/p,u — GuPp + %) (9.15)

Bpuo(tp) = 7ol = E) oy s~ 7/2) )
e 52 Ot Ipl = )

1

3PpPuPvP,
g <gpapupl/ — GuoPpPv — GuoDpPu + % (9.16)
\%4

where the index ¢ runs over the spatial indices. The first moment can be extracted
with R}/pzl}y(t, p = 0) where 4 =4 and p = v = 1,2,3 and the second through
R}{/p,uu}a (t,p) for a choice of indices where p, v and p are distinct and different and
u = o for which we require a single unit of non-zero momenta. These choices

simplify the structure of eqgs. (9.15) and (9.16) so that all but one of the terms

within the large parentheses become zero.

In principle, we should think about contributions from disconnected diagrams to
our correlation functions. For the K and K* mesons, there are no such
contributions due to the asymmetry in the quark content. The m and p mesons are
isospin triplets and therefore also avoid any contributions in our isospin conserving
calculations. For the case where m, = mg there is an explicit cancellation of
disconnected diagrams for the 7° and p° mesons. We should, however, consider the
disconnected diagram contributions to the ¢ meson, however this is Zweig
suppressed and is neglected in this calculation. This would be an interesting

extension for the calculation but would be a computationally challenging one.

9.4 16 and 24 Results - Finite Volume Effects

The work presented in this section builds upon the calculations performed in the

thesis [92]. The first moment calculations have been independently checked in this
work and the results agree with those in [92,102]. The second moment calculations
presented in here are new. The combined results for the first and second moments

of the light-meson distribution amplitudes have been presented in a recent
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publication [1].
To extract the first moment of the PDAs for the kaon, eq. (9.7), with the indices

2T

Ryt p) =i (iL) €,  p=1,23, (9.17)

requires both two-point correlation functions in the ratio to have one unit of
momentum. In order to fully make use of the statistics available (and to treat all
directions equivalently), we average over the three spatial directions for both
positive and negative choices of momenta [p, = (0,0, ), (0,0, =2%), (0, £2%,0)...]

(6 in total).

For the K* meson, eq. (9.15),

R{p,, (t:p = 0) = =2iEy () tanh((t = T/2)Bv),  p=v=1,2,3, (9.18)

we are able to consider the two-point correlation functions with zero momentum,
for which we average C'y,y; over the three spatial dimensions and Cf,4}, over the
three choices Cyy1y1, Cly2y2 and Cyyzy3. The results for the kaon and K™ are shown

for the 16% and 243 emsembles in figs. 9.1 and 9.2 respectively.

The second moment for the pseudoscalar m and K mesons, eq. (9.8),

Roppatw) == (£ ) (£7) @, uto (9.19)

require correlation functions with two non-zero components of momentum. Once
again, we average over all possible choices for the momentum with two non-zero
components

lpu = (]27, %27, 0), (327, =25, 0), (527,37, 0), (577, =27, 0), (37,0, %F%), ..
The second moment for the vector, eq. (9.16),

RY,un0(t:p) = %Ev <i2§> (€ tanh((t — T/2)Ey),  p=v=1,2,3, (9.20)

requires the correlation functions to have a single non-zero unit of momentum. For

the numerator, we average over all combinations of Cyy;;1; where p; = £27 /L and
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Figure 9.1: Results for the (€1)%97 (top panel) and <§1>')(”f"e (bot-
tom panel) for the 163 ensembles. The shaded area gives the fit-
range, fitted values and errors [1].
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|p| = 27/L and, for the denominator, we average the four momentum choices for
each of the three spatial directions so that ). Cy,v,(p; =0, |p| = 27/L). The
results for the pion and kaon second moments of the distribution amplitudes for the

163 and 24> ensembles are contained in figs. 9.3 and 9.4 respectively.

The bare values for the first and second moments for the pseudoscalar mesons are
extracted through constant fits of the form of egs. (9.7) and (9.8), for which there is
no dependence on time, other than waiting for the contribution from excited states
to decay. The vector meson moments have an explicit dependence upon time
through the tanh((t — T'/2)Ey ) function. This dependence is however mild over the
intermediate time range where we wish to fit the data. An added difficulty for the
vector meson fit is the energy, Fy, required to extract the moments, which we
extract from a fit to the two-point function found in the denominator of the ratios.
To aid the determination of the start of the plateaus, we considered the correlation
function of the numerator and denominator separately through effective mass plots,
which allowed us to identify and exclude the region where excited states still
contributed. In the worst cases, where looking at the numerator and denominator
separately does not aid the fitting due to increased noise, we fit as soon as there is a
hint of a plateau in order to have as large a plateau as possible. This can also be
guided somewhat by the start of the plateaus from the other masses of the same
quantity, but this could however lead to fit-ranges which mistakenly involve excited
states, which we want to avoid. Another aspect of fitting which we should be
cautious of is that the detailed procedure is based upon a somewhat “by-eye”
approach and so suffers from the bias of the fitter. In order to provide a check of
our fitting, a method for automated fitting was devised in which the routine ranks
all possible fit-ranges by the magnitude of the gradient for a y = ma + ¢ fit to the
data. The central value for the moment is extracted using the fit-range with the
smallest gradient to determine the usual plateau fit of the form y = ¢. This method
can also provide a fitting error through taking the variance over, say, the first 20
ranked results of the fits. The results from this technique, in most cases, agreed
with our “by-eye” ranges and provided an extra check. Using all of this information

as a guide we could then pick a fit range that produced a stable result with respect
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0.03 0.02 0.01 0.005 x-limit

0.110(2) 0.109(2) 0.113(4) - 0.112(5)
0.00543(27) 0.01174(71) 0.0194(15) - 0.0228(14)(11)
0.109(2) 0.107(2) 0.113(3) - 0.112(4)
0.113(4) 0.100(5) 0.116(6) 0.109(10)
0.00610(24) 0.01275(51) 0.0207(10) - 0.02443(96)(107)
0.111(4) 0.101(4) 0.113(4) - 0.110(6)
0.109(3) 0.100(3) 0.109(3) - 0.107(5)

Table 9.4: Summary of results for the bare values of the dis-
tribution amplitude moments on the 163 lattices. The errors are
statistical and (in the first moment case) systematic due to the
uncertainty in the physical point for the chiral extrapolation [1].

0.03

0.02

0.01

x-limit

0.103(9)
0.00566(33)
0.103(8)
0.110(9)
0.00619(35)
0.109(12)
0.108(7)

0.104(6)
0.01254(72)
0.106(4)

0.093(10)
0.0139(10)
0.095(8)
0.097(7)

0.114(3)
0.01946(65)
0.112(2)

0.112(3)
0.0225(13)
0.108(3)
0.105(2)

0.0231(15)

0.120(13)
0.0311(30)

0.125(7)
0.02377(71)(110)
0.117(5)

0.118(7)
0.0281(13)(14)
0.118(7)
0.107(4)

fits are contained in Tables 9.4 and 9.5

9.5 Quark Mass Extrapolations
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Table 9.5: Summary of results for the bare values of the dis-
tribution amplitude moments on the 243 lattices. The errors are
statistical and (in the first moment case) systematic due to the
uncertainty in the physical point for the chiral extrapolation [1].

to small variations in the lower limit of the fit range whilst aiming for a good

x2/d.o.f.. The results for the bare moments of the PDAs extracted from the plateau

Current simulations are unable to simulate at masses as low as the physical up and
down quarks. In order to access the physical light (up and down) quark mass the
technique that is employed is to simulate instead with a range of un-physical light
quark masses, so that an extrapolation may be made down to the physical value.
Chiral perturbation theory is used to guide this extrapolation. For SU(3) chiral

perturbation theory, at leading order, the first moment for the kaon is proportional
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Figure 9.3: Results for the (€2)%9" (top panel) and (£2)b97¢ (bot-
tom panel) for the 163 ensembles. The shaded area gives the fit-
range, fitted values and errors. Note that, except for the heaviest
data-set, each successive mass from bottom-to-top has been offset
incrementally by 0.1 in the y-axis.
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tom panel) for the 243 ensembles. The shaded area gives the fit-
range, fitted values and errors. Note that, except for the heaviest
data-set, each successive mass from bottom-to-top has been offset
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to the difference between the light and strange quark masses [113],

8By

Mk = ? (ms —myg) b2, (9.21)

where By and f? are low energy constants from chiral perturbation theory and b1,2
is a Wilson coefficient introduced in [113]. Our data for the first moments clearly
show the expected SU(3) breaking effects, which provide the non-zero first moment
for the kaon (and K*). In our simulations the strange mass is (nearly) correct and
so we extrapolate in the light v and d quark masses. An observation of our
collaboration’s recent work is that the strange mass is too large for low order chiral
perturbation theory, and that we should use SU(2) chiral perturbation theory
instead. SU(2) chiral perturbation theory provides explicit u- and d- quark
dependence where the strange quark mass is hidden in the low energy constants.
We expect that, for both SU(3) and SU(2) chiral perturbation theory, when

mg = m, the first moment should vanish, but this need not be the case for the
leading terms in the SU(2) chiral expansion. Our chiral extrapolation for the first
moment kaon is therefore performed linearly in a(mgs — my) (or equivalently

m%( —m?2) to the physical point without constraining the moment to vanish in the
SU(3) limit. We use the same extrapolation for the K*. Whilst this is not a
prediction of chiral perturbation theory, the data does, however, exhibit the same
light-quark mass dependence as for the kaon. The extrapolations for both of these
are presented in fig. 9.5. The vertical solid black line represents the physical point
for the extrapolation; the dotted vertical lines indicate the error on this point which
stems form the uncertainty in the strange quark mass (and to a lesser extent the
light quark mass) contained in table 6.1. This error translates as the second error in
the chiral limit (x-limit) results contained in tables 9.4 and 9.5. This treatment
simultaneously takes account of the strange quark mass extrapolation necessitated
by ~ 15% too large strange quark and the light quark mass extrapolation detailed

above.

For the second moments, we learn from SU(3) chiral perturbation theory at one
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loop [113] that,

<§2>7r = <§2>0 + ap2mg + B2 (2mg + my) (9.22)

() = (€0 +az(mg +ms) + B2 (2mg + ms) (9.23)

where (£2) is the chiral limit value and as and (3 are coefficients that contain low
energy constants and Wilson coefficients. The behaviour is analytic, and suggests
that we should fit linearly in m, (or equivalently m2), once again neglecting the
fixed heavy strange quark mass. The chiral extrapolations for the second moment
pseudoscalar mesons are presented in fig. 9.6 from which we see that any
dependence in the light-quark mass is very mild. We perform the same
extrapolation for the vector second moments, fig. 9.7, motivated by their analogous
behaviour. Taken together, the 163 and 24 ensemble results provide an indication
of possible finite volume effects. However, other than a hint for the K* first
moment at the chiral limit, any such effects seem to be absent for the first two
moments. Where there are points from the two ensembles at similar mass values,

the values for the K* agree within statistical uncertainties.

9.6 32° Results - Discretisation Effects

The bare moments for the 323 ensemble are extracted using the same method as for
the 242 ensemble, eqns. (9.17)-(9.20), and can be extrapolated to the physical point
as before using the chiral perturbation results, eqns. (9.21)-(9.23). Once both sets
of data have been renormalised, comparisons can be made and a better idea of the
continuum behaviour and discretisation effects associated with these quantities may
be determined. The initial measurement runs for this calculation were performed on
the QCDOC computers [78-80]. However, in the preceding analysis, it was noted
that the were insufficient statistics for the heaviest two masses, 0.008 and 0.006, for
which we increased the number of measurements by approximately 30% and 80%
respectively. These additional runs exhausted the available configurations with the

aim of improving the available statistics to a reliable level from which plateaus
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amyq 0.008 0.006 0.004 x-limit
(€2%)bare10.137(6) 0.137(5) 0.152(13) 0.152(20)
(¢hybare 10.01912(121) 0.01972(146) 0.02079(175) 0.0217(13)(5)
(€%)bare10.129(3) 0.131(3) 0.134(10) 0.135(12)
(e2)bare | 0.131(3) 0.132(3) 0.134(8) 0.137(11)

(@)l b | 136(9) 0.127(7) 0.137(11) 0.130(22)
eyl b | 0,02625(236)  0.02803(193)  0.02099(119)  0.0309(12)(7)
(€

(€%

(€

()

ILbare | 0.119(6) 0.129(4) 0.128(9) 0.143(16)
ﬂ(zﬁgg 0.121(7) 0.129(4) 0.127(6) 0.135(12)
%)bare 0.118(5) 0.117(3) 0.118(3)

0.120(5) (3) (4)

(
0.119(8)
0.118(3 0.121(4 0.121(8)

Table 9.6: Summary of results for the bare values of the dis-
tribution amplitude moments on the 32° lattice. The errors are
statistical and (in the first moment case) systematic due to the
uncertainty in the physical point for the chiral extrapolation. PQ
refers to results from partially quenched calculations.

could be extracted. These extra measurements were performed locally on
Southampton University’s Iridis-3 cluster computer. The details for the 323 PDA
dataset are given in table 9.3, where we see that one difference between this and the
243 ensemble is that the 0.008 and 0.006 are without any smearing, that is point
source and sink (LL — LL). After the extensions, where the statistics for the 323
dataset are comparable to the 243 dataset, we see that the plateaus for the bare
first moments (fig. 9.8) and bare second moments (fig. 9.9) have a similar behaviour
to the 243 dataset. Both datasets start around time-step 8 or 9 for the first moment
and 5 or 6 for the second, and we also observe similar levels of noise. This suggests
that the Hydrogen-like and Gaussian-like smearing confers little advantage for the
extraction of these quantities. As before, for some of the meson moments it proves
difficult to define the start of the plateau, for example the first moment for the K*
with mass 0.006 fig. 9.8 (bottom panel), for which, as with all fits, the plateau is
determined as described at the end of section 9.4. The values for the bare moments,
as well as the physical points determined from the chiral extrapolations, are given

in table 9.6.

It is instructive to compare the two ensembles (323 and 243). However, because the
two ensembles have different lattice spacings, we must renormalise the bare values

before we may compare. We must also “match” the quark masses for the two
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ensembles. The matching procedure is detailed in section D of [3], where matching
factors are presented, which map the quark masses on one ensemble to their
equivalent masses on another ensemble with a different 8. The process is performed
by requiring that the ratios of the hadronic masses (the same as those used to
determine the lattice scale and initial quark masses, described in section 8.1) T
and % are the same on all lattices at the matching point. This is an iterative
process involving the repeated update of ml24 and mff through a series of
interpolations. The results, once the process has converged for the light- and

heavy-quark matching factors, are Z?* = 0.981(9), Z2* = 0.974(7) respectively,

where

73 = im—?} for f=1lorh (9.24)
f R24 mff*
32
a
R = peYi (9.25)

and 7 is the quark mass in lattice units. For our comparison of the PDA moments
on the two ensembles, we convert the 243 quark masses to their 323 equivalents
using (9.24). The renormalisation of the moments is performed non-perturbatively,
as detailed in section 7, where the renormalisation constants for the two ensembles
are given in tables 7.8 and 7.9. We use the twisted results for a more consistent
comparison, because both the 243 and 322 NPR results are in the same
representation of the hypercubic group. The results after matching and
renormalisation are displayed for the first moments in fig 9.10 and for the second
moments pseudoscalar and vector mesons in figs. 9.11 and 9.12 respectively. For
both of these, we see hints of discretisation effects in the difference of the
renormalised central values (table 9.7) although they agree within errors. A further
hint is the area of white space observed between the two fit bands (for (£ 1>L*,
(W, (€% K and (€2) ). Where there are points at similar values for the quark
mass-difference on the two ensembles, the errors on the individual points overlap for
the first moments and just miss for the second moments. We should note that we

use the perturbative NPR result for the second moment mixing term and we cannot

therefore be confident to ascribe this as a discretisation effect. The results obtained
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Figure 9.11: Chiral extrapolations to the physical point for the
renormalised moments for the second moment pseudoscalar mesons
in MS at ;. = 2GeV. The physical points are given by the vertical
solid line and the error by the vertical broken lines. The 24% masses
have been matched onto the 323 scale, which is given in GeV. The
blue and red points are the 24> and 323 ensembles respectively
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Figure 9.12: Chiral extrapolations to the physical point for the
renormalised moments for the second moment vector mesons in
MS at i = 2GeV. The physical points are given by the vertical
solid line and the error by the vertical broken lines. The 24% masses
have been matched onto the 323 scale, which is given in GeV The
blue and red points are the 243 and 323 ensembles respectively

126



(€2)x (") x (€)x (€0 (") k- (€)% )
16% | 0.25(1)(2) 0.035(2)(2) 0.25(1)(2) 0.25(2)(2) 0.037(1)(2) 0.25(1)(2) 0.24(1)(1
24% | 0.28(1)(2) 0.036(1)(2) 0.27(1)(2) 0.27(2)(2) 0.043(2)(3) 0.27(1)(2) 0.25(1)(1
323 1 0.32(4)(2) 0.033(2)(1) 0.28(2)(2) 0.27(5)(2) 0.046(2)(2) 0.30(3)(2) 0.25(2)(1

Table 9.7: Final results in the chiral limit in M S at u = 2GeV for
all of our lattice volumes. The first error is statistical, the second
includes systematic errors from myg, discretisation and renormali-
sation.

from the separate chiral extrapolations for both the 242 and 322 data sets provide
us with the possibility of performing a continuum extrapolation. For this, we could
assume a?-scaling, however with only two points (two lattice spacings) available, it
is not possible to test how well this assumed scaling works. The results for such a
naive extrapolation are given in table 9.8. It should be noted that the dynamical
strange-quark mass has not been tuned to the same value on the two data sets and,
further, that the ranges of the light-quark masses are different for the two
ensembles [3]. For the 243 ensemble, the chiral extrapolation is larger and we would
expect it to have a larger uncertainty. A problem with this naive method is that,
whilst we can determine the continuum values for the moments, we are unable to
isolate the discretisation effects in the continuum extrapolation from effects in the
chiral extrapolation due to the initial separate chiral extrapolations. We therefore
proceed with an alternative approach where we perform a “global” fit - a
simultaneous continuum and chiral extrapolation of the two ensembles (after

matching and renormalisation) using the following fit-forms

(") = crLo+ g+ cipd® (9.26)

(€ = 2,0+ c2,1(ms —mg) + cma2 (9.27)

where we disregard (what we consider as) higher order terms such as m?, a*, ma?,

etc.. For this, the two extrapolations are disentangled and we are are able to
observe the size of the effect of the respective terms in eq. (9.26) through the
magnitude of their respective coefficients (table 9.8). We perform the global fits
only for the most chiral points, which exclude the 0.03 and 0.02 243 quark masses

as they are too heavy to be described by SU(2) chiral perturbation theory. These
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Naive Global - All Global - Most chiral
z vy (€%)y (€%)y Cz0  Cal Ce2 | (€7)y Czx,0  Cz,l Cz,2
1 K |0.029(5) | 0.033(2)(1) -0.005 0.62 0.011 | 0.030(3)(1) -0.001 0.50 0.017
1 K* | 0.050(6) | 0.053(3)(1) 0.007 0.75 -0.031 | 0.052(3)(1) 0.008 0.72 -0.026
2 7 0.37(10) | 0.34(2) 0.34 -0.91 -0.190 | 0.35(3) 0.35 -1.88 -0.158
2 K ]029(7) | 0.30(2) 0.31 -0.58 -0.119 | 0.30(2) 0.30 -0.45 0.121
2 K* | 034(7) | 0.29(2) 0.29 -0.92 -0.071 | 0.30(2) 0.31 -2.18 -0.037
2 p | 0.28(10) | 0.31(3) 0.31 -0.47 -0.136 | 0.31(3) 031 -0.81 -0.114
2 ¢ 0.26(5) 0.26(1) 0.26 -0.12 -0.050 | 0.26(2) 0.26 -0.34 -0.041

Table 9.8: Summary of results for the renormalised values of the

distribution amplitude moments in MS at ;1 = 2GeV at the contin-

uum (a? = 0). The Naive results are calculated from the two point

extrapolation of renormalised physical point values. “Global-All”

and “Global-Most Chiral” results use the global fit forms including

all and only the most chiral points (i.e. excluding 0.03 and 0.02

243 masses) respectively. For the Global results the parameters

from the fit are also included.

@ (€ x @ O e (O

24
All | 0.28(1)(2) 0.036(1)(2) 0.26(1)(2) 0.27(1)(2) 0.043(2)(3) 0.25(2)(2) 0.25(2)(1)
Chi | 0.30(4)(2) 0.035(1)(1) 0.26(3)(2) 0.27(5)(2) 0.043(2)(2) 0.29(2)(2) 0.25(2)(1)
323
All | 0.32(4)(2) 0.033(2)(1) 0.28(3)(2) 0.27(5)(2) 0.046(2)(2) 0.30(3)(2) 0.25(2)(1)
Chi | 0.32(3)(2) 0.033(2)(1) 0.28(2)(2) 0.29(5)(2) 0.047(2)(2) 0.29(2)(2) 0.25(1)(1)

Table 9.9: Global results in MS at p = 2GeV for the 243 and
323 lattices. The first error is statistical, the second includes sys-
tematic errors from my, discretisation and renormalisation. “All”
and “Chi” results use the global fit forms including all and only
the most chiral points (i.e. excluding 0.03 and 0.02 24> masses)
respectively.

fits are shown for the first moments in fig. 9.13 and for the second moment
pseudoscalar and vectors mesons in figs. 9.14 and 9.15 respectively. Fig. 9.16 shows
the effect of including the 0.02 and 0.03 243 masses in the fits as a comparison. The
continuum values for the moments as well as the fitted parameters, are given in
table 9.8. The global plots will also affect the values for the moments at the
physical points for the two lattice spacings for the 243 and 323 lattices. These are

given in table 9.9 and may be contrasted with table 9.7.

Before any continuum extrapolations, the discretisation error was estimated as
(’)(a2A(2QCD) ~ 4% from the O(a)-improved DWF action and operators. The
moments that we have calculated are dimensionless objects, thus in our global fit

form, ¢, must have dimensions of GeV?, and we expect ¢y = C/2A(2QCD- Table 9.10
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Figure 9.13: Eztrapolations to the physical point for the renor-
malised first moments in MS at pu = 2GeV using the Global fit-
form, eq. 9.26, including only the “most chiral” mass points. The
physical points are given by the wertical solid line and the error
by the vertical broken lines. After the matching the x-scale is in
terms of the 323 ensemble and is given in GeV. The blue, red and
black fits correspond to a=! = 1.73(3) GeV, 2.28(3)GeV and at the
continuum (a? — 0) respectively.
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Figure 9.14: FEztrapolations to the physical point for the renor-
malised second pseudoscalar moments in MS at . = 2GeV using
the Global fit-form, eq. 9.27, including only the “most chiral” mass
points. The physical points are given by the vertical solid line and
the error by the vertical broken lines. After the matching the x-
scale is in terms of the 323 ensemble and is given in GeV. The blue,
red and black fits correspond to a=t = 1.73(3) GeV, 2.28(3) GeV and

at the continuum (a® — 0) respectively.
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Figure 9.15: FEztrapolations to the physical point for the renor-
malised second vector moments in MS at yu = 2GeV using the
Global fit-form, eq. 9.27, including only the “most chiral” mass
points. The physical points are given by the vertical solid line and
the error by the vertical broken lines. After the matching the x-
scale is in terms of the 323 ensemble and is given in GeV. After the
matching the x-scale is in terms of the 32> ensemble and is given in
GeV. The blue, red and black fits correspond to a=! = 1.73(3)GeV,

2.28(3)GeV and at the continuum (a? — 0) respectively.

131



-0.01 ] -0.01
0.00 0.01 0.02 0,03 0.04 0.05 0.06 0.00 0.01 0.02 0,03 0.04 0.05 0.06
M — My M — My
0.40) 0.40)

0.20 ‘ ‘ ‘ ‘ ‘ . 0.20 ‘ ‘ ‘ ‘ .
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Mg T Myes Mg T Myres
0.40 0.40
0.35
Q
o~ ~
o 0.30r
NS
~ -
0.25

0.20| . . . . . . ]
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
q T Mres Mg = Myes

0.40f

o
N
U

T

0.20t . . . . . . ]
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Mg + Myes

Figure 9.16: Eztrapolations to the physical point for the renor-
malised moments in MS at u = 2GeV using the Global fit-form
including all mass points. The physical points are given by the ver-
tical solid line and the error by the vertical broken lines. After the
matching the x-scale is in terms of the 323 ensemble and is given
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to a=! = 1.73(3)GeV, 2.28(3)GeV and at the continuum (a* — 0)
respectively.
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(€%)y | ca2 Cpo(Aqep = 0.25) ¢ 5(Aqep = 0.5) ¢ »(Aqep = 1)
1 K |0.0166 0.27 0.07 0.02
1 K*|0.0256 0.41 0.10 0.03
2 7 | 0.1578 2.52 0.63 0.16
2 K |0.1210 1.94 0.48 0.12
2 K*|0.0373 0.59 0.15 0.04
2 p |0.1140 1.82 0.46 0.11
2 ¢ |0.0414 0.66 0.17 0.04

Table 9.10: Coefficients of the a® term in the Global fit deter-
mined for a variety of Agep values in GeV'.

shows the values for ¢, for Aqcp = 0.25GeV, 0.5GeV and 1.0GeV. The coefficients
for Aqcp = 0.5GeV are less than one and suggest that the approximation of a
discretisation effect of order (’)(a2AéCD) is appropriate for this calculation, in the
absence of a formal continuum extrapolation with more than two ensembles at

different lattice spacings.

A comparison between the continuum results from this work and from QCDSF [37],
are contained in table 9.11, where the results differ beyond their errors. However,
we observe that our measurements for Ny = 2 + 1 dynamical flavours correspond to
pion masses in the range 330-670MeV, whereas the QCDSF results use two
dynamical flavours and are for heavier pion masses of around 600MeV and above,

and therefore require extrapolation over a larger range.

Clearly, we are unable to reconstruct the entire DAs from the first two moments
alone, however we can look at the shape of the DAs for the pion and kaon using

eq. (4.19) if we assume that all higher order moments are negligible. We do this for
our values for the moments at the continuum from table 9.8 and for the 243 and 323
lattices, at different lattice spacings, from table 9.9. We see a skewed DA for the
kaon, which indicates that strange quark carries more of the kaon’s momentum.
Whereas, we see a symmetric DA for the pion, which is what we would expect for a
meson of degenerate quark flavours, we are basing this on only one moment (the
second, as all odd moments are zero) and so it would be desirable to include more
moments in future calculations to further check our expectations. This would,
however, require operators with more covariant derivatives, for which it is

considerably more difficult to control the operator mixing. Further to this we would
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this work ~ QCDSF [37]
(Y 10.030(3)(1) 0.0272(5)(17)
(€' )+ | 0.052(3)(1) -
€%, 10.35(3) 0.269(39)
€2k | 0.30(2) 0.260(6)(16)
(&%) k- | 0.30(2) -
(€%)p | 0.31(3) -
(€%)s | 0.26(2) -

Table 9.11: Comparsion of continuum limit results for the PDAs
n MS at p=2GeV.

require more non-zero components of momenta, which adds to the noise of the

signal.

9.7 PDAs using Partially Twisted Boundary

Conditions

An exploratory study into the use of partially twisted boundary conditions for the
extraction of the PDA moments was performed in [114] using the datasets from the
RBC/UKQCD K — 7 form factor runs [73], for two strange quark masses

amgs = 0.04 (unitary) and ams = 0.03 (partially quenched) respectively and the
single unitary am, = 0.005 light quark mass. The data-set consists of 1180
measurements [2]. The gauge field configurations are generated by combining sea
quarks obeying periodic boundary conditions with valence quarks that have twisted
boundary conditions [71]. The correlation functions were calculated, on these
datasets, with zero Fourier momentum and we look at cases where only one of the
valence quarks is twisted. Therefore the kaon’s momentum is induced purely by the
twist angle of the valence quark. The twist angle is only along one of the spatial
directions, which is changed regularly in order to reduce correlations. The twist
angles used for this analysis are ; = 1.600 for the light quark for both strange
quark masses which have 6, = 2.5087(2.7944) for ams = 0.03(0.04) [2]. The
momentum of the meson is then, p = 6/L. Fig. 9.18 compares the partially twisted
data with the untwisted data presented earlier (fig. 9.5). We see that the results

agree within errors and that using twisted boundary conditions to extract the
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moments of PDAs (at least for the kaon first moment) is possible. It should be
noted that we only show the cases where the strange quark is twisted. The signal
where we twist the light quark is too weak to allow a fit. The ratio from which we
extract the first moment, eq. 9.7, is proportional to the momentum and hence the
twist angle. The twist is small for the light quark and leads to a poor signal for the
first moment. This does, however, demonstrate the possibility for using twisted

boundary conditions for the extraction of the DAs.

We noted that the extraction of the higher order distribution amplitudes would
require more non-zero components of momentum and hence suffers from the
associated increase in noise that accompanies a larger magnitude of momenta. The
extraction of the DAs with partially twisted boundary conditions could potentially
provide a solution to this through using smaller components of momenta induced
purely through the twist angle. We have seen that these cannot be arbitrarily small
and some sort of balance between the initial signal and the noise is required.
However, this application would provide an interesting and useful test for this

technique.
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Chapter 10

Conclusions and Outlook

The work described in this thesis has been completed as part of the RBC/UKQCD
Ny =2+ 1 domain-wall fermion phenomenology program. A significant part of this
work was the non-perturbative determination of the renormalisation factors for the
operators involved in the extraction of moments for both the PDAs and structure
functions. We used the the Rome-Southampton method for our non-perturbative
renormalisation with an exceptional choice of momenta (p’ = p). The
renormalisation constants were calculated for the vector (and axial-vector) bilinears
and operators containing one and two derivatives on three lattice ensembles, with
parameters that allowed the study of both finite volume and discretisation effects.
The use of momentum sources for the NPR calculations led to a significant
reduction in statistical errors from previous work [97], this however highlighted a
discretisation effect associated with the choice of momenta used to set the scale.
The non-perturbative prescription requires an interpolation in the scale
(determined by the momentum of the quark propagators), we therefore require
simulations at a selection of different momenta. The momentum choices are likely
to be in different representations of the hypercubic group, which leads to the
observed splitting of the results in the interpolation (figs. 7.5 and 7.6). In order to
study this effect, we used twisted boundary conditions to change the magnitude of
the momenta whilst remaining in the same representation. This removed the

observed splitting in our calculation, resulting in a more reliable interpolation to
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the result. This also enabled a better comparison between the ensembles, from
which we see no obvious discretisation effects in the calculated renormalisation

factors (cf. tables 7.9 and 7.8).

We obtained the bare lattice results for the pion’s (x) moment for the structure
functions, using a variety of channels for their extraction (table 8.2), from which we
observed the expected difference by a factor of Zy between the methods that utilise
two-point and three-point functions in the ratio with the three-point derivative
operator. We observe that the operator 0,2 provides a cleaner extraction of the
moment because it avoids the need for momenta, in agreement with the work
performed by the QCDSF collaboration [105,110]. Unfortunately, our calculation of
the non-perturbative renormalisation constants for this operator is not as clean as
for the O, , operator as we are limited in the averaging over equivalent indices.
Further to this we highlighted the potential improvement to the result and
determination of our error estimates that the use of twisted boundary conditions
could provide. We present the renormalised result (x) = 0.249(12) which,
corresponds to the light quarks carrying approximately 50% of the pions
momentum, the rest of which we attribute to the heavier quark generations and the
gluons. Table 8.4 compares our result with the QCDSF collaboration, where we
find agreement at the limit of the errors, however we note that the QCDSF
calculation uses two dynamical flavours. The calculation of the pion (x) moment, a
flavour-singlet, should in principle contain contributions from disconnected
diagrams, which are not considered here. Disconnected terms have been considered
for the nucleon in [108]. A further caveat to the calculation is that there may also
be a contribution from a tr(F),,F*") term occuring from the gluon contribution in
the covariant derivative in the operator. The calculation of this contribution is both
noisy and expensive, it has however been calculated for the pion in [109]. Both of
these restrictions to the complete calculation for the structure function moments
would be of great interest to pursue, and would provide an excellent check of
existing experimental results for the pdfs, such as MSTW [115] and other groups. A
further extension to this work is to calculate the structure function moments for the

kaon and other mesons.
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The PDAs have been obtained for the light mesons, where we observe the expected
SU (3) breaking effects and the expected chiral behaviour of the (¢!) . This
calculation was performed on three ensembles allowing some evaluation of finite
volume and discretisation effects. We see no obvious finite volume effects in the
results. The first and second moments, after renormalisation (table 9.7), agree
within errors. However, when considering the ensembles together on a
point-by-point basis in the chiral extrapolations (figs. 9.5 to 9.12) we start to
observe a hint of discrepancy. Currently we cannot confidently ascribe this soley to
discretisation effects, especially for the second moment due to the renormalisation.
The renormalisation factor for the mixing with the total derivative that is required
in the second moment calculation is currently inaccessible to our NPR calculations
due to the exceptional scheme used. A non-exceptional method is therefore
required, for which, the perturbative matching calculation has only very recently
become available [99,100]. This is therefore a high priority calculation which will
allow a more robust statement to be made about the discretisation effects. A
comparison between the continuum results from this work, obtained using a global
fit-form (figs. 9.13 to 9.15), and from QCDSF [37], is contained in table 9.11. The
results differ outside their errors, although we note that our measurements for

Ny =2+ 1 dynamical flavours correspond to pion masses in the range

330 — 670MeV, whereas the QCDSF results use two dynamical flavours and are for
heavier pion masses of around 600MeV and higher. A natural progression for the
PDA work would be to consider the transversely polarised DAs and the nucleon
PDAs for which the UKQCD/QCDSF collaboration have presented results [53]. We
have also demonstrated the potential for PDA and structure function calculations
with partially twisted boundary conditions, which allow for an improved control of

the momentum’s resolution.
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