Some groups of finite homological type

Ian J. Leary^{*} Müge Saadetoğlu[†]

November 2, 2005

Abstract

For each $n \ge 0$ we construct a torsion-free group that satisfies K. S. Brown's *FHT* condition and is F_n (and hence FP_n), but is not FP_{n+1} .

1 Introduction

While working on comparing different notions of Euler characteristic, K. S. Brown introduced a new homological finiteness condition for discrete groups [6, IX.6]. The group G is said to be of finite homological type or FHT if G has finite virtual cohomological dimension, and for every G-module M whose underlying abelian group is finitely generated, the homology groups $H_i(G; M)$ are all finitely generated. If G is FHT, then one may define a 'naïve Euler characteristic' for every finite-index subgroup H of G, as the alternating sum of the dimensions of the homology groups of H with rational coefficients.

One question that arises is the connection between FHT and the usual homological finiteness conditions FP and FP_n , which were introduced by J.-P. Serre [9], and the topological finiteness conditions F and F_n , which we believe were first studied by C. T. C. Wall. (We shall define these conditions below.) It is easy to see that any group G of type FP is FHT, and one might conjecture that every torsion-free group that is FHT is also of type FP. The aim of this paper is to show that this is not the case. For each

^{*}Partially supported by NSF grant DMS-0505471

 $^{^{\}dagger}\mathrm{Supported}$ by the British Council and by the Ohio State Mathematical Research Institute

 $n \geq 0$, we exhibit a torsion-free group G_n that is FHT and of type F_n , but that is not of type FP_{n+1} . (Note that type F_n implies type FP_n .)

Our construction is based on R. Bieri's construction of a group that is FP_n but not FP_{n+1} [3, Prop 2.14]. We also use G. Higman's group H which has the properties that it has no non-trivial finite quotients and that it is acyclic (i.e., has the same integral homology as the trivial group) [1, 7]. The group G_0 is just an infinite free product of copies of H, and for n > 0, G_n may be described as a free product of two groups of type F, amalgamating a common subgroup isomorphic to G_{n-1} .

A construction of the groups G_n was given in the University of Southampton PhD thesis of the second named author [8].

2 Definitions

Let G be a discrete group, let $\mathbb{Z}G$ be the integral group ring of G, and let \mathbb{Z} stand for the trivial $\mathbb{Z}G$ -module, i.e., the module whose underlying abelian group is infinite cyclic upon which each element of G acts as the identity. Modules will be left modules unless otherwise stated.

We begin by recalling some classical homological finiteness conditions, which were introduced by J.-P. Serre [9], but see also [3, Ch I] and [6, Ch VIII]. A projective resolution P_* for \mathbb{Z} over $\mathbb{Z}G$ is an exact sequence

$$\cdots \rightarrow P_i \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbb{Z} \rightarrow 0$$

of $\mathbb{Z}G$ -modules in which each P_i is projective. The group G is FP_n if there exists P_* such that P_i is finitely generated for all $i \leq n$ and is FP_{∞} if there is a P_* in which P_i is finitely generated for all i. The group G is of finite cohomological dimension if there exists P_* in which some $P_n = 0$, in which case we may take $P_i = 0$ for all $i \geq n$. It can be shown that any group of finite cohomological dimension is torsion-free. The group G is FP if G is of finite cohomological dimension and of type FP_{∞} . If G is FP, then there exists a resolution P_* in which each P_i is finitely generated and only finitely many P_i are non-zero.

The conditions FP and FP_n are motivated by topology. The group G is of type F if there is a model for the classifying space BG that has only finitely many cells. The group G is type F_n if there is a model for BG that has only finitely many cells of dimension less than or equal to n. The cellular chain complex of the universal cover of a model for BG is a resolution for \mathbb{Z} by free $\mathbb{Z}G$ -modules. In particular, if G is type F, then G is type FP, and if G is type F_n then G is type FP_n . The following three conditions on a group G are equivalent: G can be finitely generated; G is FP_1 ; G is type F_1 . A group G is type F_2 if and only if G can be finitely presented. There exist groups of type FP_2 , and even groups of type FP, that cannot be finitely presented [2]. For any $n \ge 2$, the following two conditions on a group G are equivalent: G is type F_n ; G can be finitely presented and is FP_n [6, Exercise VIII.7.2].

If G contains a finite-index subgroup H which is of finite cohomological dimension, G is said to be of finite virtual cohomological dimension or finite vcd. By an argument due to Serre, any group of finite vcd admits an action with finite stabilizers on a finite-dimensional contractible CW-complex [6, Theorem VIII.11.1].

Remark 1 Since there are many interesting discrete groups that are not virtually torsion-free, one might argue that the condition 'finite vcd' is an unnatural one, which should be replaced by the condition 'admits an action with finite stabilizers on a finite-dimensional contractible space' whenever possible.

Brown defines a group G to be FHT if G is of finite vcd, and for every right G-module M whose underlying abelian group is finitely-generated, each of the homology groups $H_i(G, M)$ is a finitely generated abelian group [6, IX.6]. These homology groups may be computed as the homology of the chain complex

$M \otimes_{\mathbb{Z}G} P_*$

for any projective resolution P_* for \mathbb{Z} over $\mathbb{Z}G$. The homology groups of a chain complex of finitely generated abelian groups are themselves finitely generated. Hence each $H_i(G, M)$ is finitely generated whenever G is type FP_{∞} , and we see that any group G of finite vcd that is of type FP_{∞} is FHT. In particular, any torsion-free group of type FP is FHT.

Remark 2 In his original papers on Euler characteristics, Brown gave a different definition of finite homological type, which we shall call FHT'. The group G is is FHT' if G is of finite vcd, and for each torsion-free finite-index subgroup $H \leq G$, the integral homology groups $H_i(H;\mathbb{Z})$ are finitely generated [4, 5]. By Shapiro's lemma, $H_i(H;\mathbb{Z}) \cong H_i(G;\mathbb{Z}[H\setminus G])$, where $\mathbb{Z}[H\setminus G]$ denotes the permutation module with basis the right cosets of H in G. Hence any group that is FHT is also FHT'. We do not know whether FHT is equivalent to FHT'.

3 Prerequisites

Here we collect together some known results that are used in our construction.

Proposition 3 Let A be a finitely generated abelian group. There exists n such that $G = \operatorname{Aut}(A)$ is isomorphic to a subgroup of $GL_n(\mathbb{Z})$.

Proof. Let T(A) be the torsion subgroup of A, and let A' be a complement to T(A), so that $A = T(A) \oplus A'$ and $A' \cong \mathbb{Z}^r$ for some $r \ge 0$. The subgroup T(A) is characteristic in A and so there is a natural surjection

$$\phi: G \to \operatorname{Aut}(T(A)) \oplus \operatorname{Aut}(A/T(A)).$$

Let H be the subgroup of G consisting of those $f \in G$ such that f(A') = A'. Then H is a direct product

$$H = \operatorname{Aut}(T(A)) \oplus \operatorname{Aut}(A') \cong \operatorname{Aut}(T(A)) \oplus GL_r(\mathbb{Z}),$$

and ϕ induces an isomorphism from H to $\operatorname{Aut}(T(A)) \oplus \operatorname{Aut}(A/T(A))$. Elements $f \in \ker(\phi)$ act as the identity on T(A), and for each $a \in A'$, f(a) = a + b for some $b \in T(A)$. It follows that $\ker(\phi)$ is isomorphic to $\operatorname{Hom}(A', T(A)) \cong T(A)^r$, and so $\ker(\phi)$ is a finite group. Since ϕ restricted to H is an isomorphism, it follows that the index of H in G is equal to the order of $\ker(\phi)$, and so the index of H in G is finite.

The finite group $\operatorname{Aut}(T(A))$ is isomorphic to a subgroup of $GL_s(\mathbb{Z})$ for some s (for example, $s = |\operatorname{Aut}(T(A))|$ will suffice). Hence H is isomorphic to a subgroup of $GL_{r+s}(\mathbb{Z})$. Equivalently, there is a faithful H-module N whose underlying abelian group is free abelian of rank r + s. If the index of H in G is m, then the induced module $\mathbb{Z}G \otimes_{\mathbb{Z}H} N$ is a faithful G-module whose underlying abelian group is free abelian of rank n = m(r+s). The action map for this module is an embedding of G in $GL_n(\mathbb{Z})$.

Lemma 4 Let X be a connected CW-complex, let Y be a connected subcomplex, and let $y_0 \in Y$ be a basepoint for both spaces. Let G be $\pi_1(X, y_0)$, the fundamental group of X, let $i : \pi_1(Y, y_0) \to G$ be the induced map of fundamental groups, and let H be a subgroup of G. Let \hat{X} be the covering space of X with fundamental group H and let \hat{Y} be the subspace of \hat{X} consisting of lifts of points of Y. There is a bijective correspondence between components of \hat{Y} and orbits in the coset space G/H for the action of $\pi_1(Y)$. The fundamental group of the component corresponding to the orbit of the coset gH is a conjugate of $i^{-1}(gHg^{-1})$ in $\pi_1(Y)$. Proof. Let \widetilde{X} denote the universal cover of X, and let \widetilde{Y} denote the subspace corresponding to Y. Pick $x_o \in \widetilde{X}$ a lift of y_0 . Each component of \widetilde{Y} contains some $g.x_0$. A loop γ in Y based at y_0 lifts to a path from $g.x_0$ to $g'.x_0$, for $g' = i([\gamma]).g$, where $[\gamma]$ denotes the element of $\pi_1(Y)$ represented by the loop γ . The points $g.x_0$ and $g'.x_0$ map to the same point of \widehat{X} if and only if gH = g'H. Hence there is a path in \widehat{Y} from the image of $g.x_0$ to the image of $g'.x_0$ if and only if the cosets gH and g'H are in the same $\pi_1(Y)$ -orbit, as claimed.

Each component of \widehat{Y} is a covering space of Y, and so once we have chosen a basepoint we may identify its fundamental group with a subgroup of $\pi_1(Y)$. Taking different basepoints changes this subgroup by conjugation. The image of the point $g.x_0$ in \widehat{Y} depends only on the coset gH. If we take as basepoint for a component of \widehat{Y} the image of $g.x_0$, then a loop γ in Y lifts to a loop in \widehat{Y} based at $g.x_0$ if and only if the cosets gH and $i([\gamma])gH$ are equal, or equivalently if and only if $i([\gamma]) \in gHg^{-1}$.

Corollary 5 Suppose that a group G is expressed as a free product with amalgamation, $G = H *_L K$, and that $\phi : G \to Q$ is such that $\phi : L \to Q$ is surjective. Then ker (ϕ) is equal to the free product with amalgamation $H' *_{L'} K'$, where $H' = \text{ker}(\phi) \cap H$, $L' = \text{ker}(\phi) \cap L$ and $K' = \text{ker}(\phi) \cap K$.

Proof. A model for the classifying space BG can be made by joining copies of BH and BK by a cylinder $BL \times I$, where I denotes the unit interval. Take this space to be the space X in Lemma 4, and for \hat{X} take the regular cover with fundamental group ker (ϕ) , so that \hat{X} is the classifying space for ker (ϕ) . Lemma 4 can be applied in the cases Y = BH, Y = BK and $Y = BL \times I$. In each case, it follows that \hat{Y} is connected, and the fundamental group of \hat{Y} is H', K' or L' respectively. Hence \hat{X} is built by joining a copy of BH' and a copy of BK' via a cylinder $BL' \times I$, and so ker $(\phi) \cong H' *_{L'} K'$.

Corollary 6 Suppose that G = H * K, and define a homomorphism $\phi : G \to K$ as the identity homomorphism on K and the trivial map on H. The kernel of ϕ is isomorphic to a free product of copies of H indexed by the elements of K.

Proof. Build a classifying space BG as the one-point union $BH \vee BK$, and apply Lemma 4 with \widehat{X} being the regular cover corresponding to ker (ϕ) . In the case when Y = BK, we see that \widehat{Y} is the universal covering space EK

of BK, and in the case when Y = BH, we see that \widehat{Y} is a disjoint union of copies of BH indexed by the elements of K. Hence $B(\ker(\phi))$ can be constructed by attaching copies of BH indexed by the elements of K to the contractible space EK.

Apart from the assertion concerning finite presentability, the following theorem is a special case of [3, prop. 2.13(a)].

Theorem 7 (R. Bieri) Let $G = H *_L K$ be a free product with amalgamation, and suppose that both H and K are type F. Then for any $n \ge 1$, G is FP_n if and only if L is FP_{n-1} . If L is finitely generated, then G is finitely presentable.

Proof. The assertions concerning the FP_n conditions are a special case of [3, prop. 2.13(a)]. By hypothesis, there are finite models for BH and for BK. If there is a model for BL with finite 1-skeleton, then by gluing BH, $BL \times I$ and BK, one may construct a model for BG with finite 2-skeleton. Hence in this case G admits a finite presentation.

The group H below was introduced by Higman, who proved that H has the 'group theoretic' properties given in the following theorem [7]. The proof that H has the stated 'homological properties' was given by Baumslag, Dyer and Heller in [1], where the group H played an important role in their strengthened version of the Kan-Thurston theorem.

Theorem 8 (G. Higman, G. Baumslag, E. Dyer, A. Heller) Let H be the group defined by the presentation

$$H = \langle a, b, c, d : a^{b} = a^{2}, b^{c} = b^{2}, c^{d} = c^{2}, d^{a} = d^{2} \rangle.$$

Then H is an infinite torsion-free group, the presentation 2-complex for the above presentation is a classifying space for H, and H admits no non-trivial quotient in which the images of the generators have finite order.

Corollary 9 *H* as above is a non-trivial torsion-free acyclic group with no proper finite-index subgroups.

4 The groups

Lemma 10 Let M be a module for Higman's group H whose underlying abelian group is finitely generated. Then H acts trivially on M.

Proof. Let $G = \operatorname{Aut}(M)$, the group of abelian group automorphisms of M. An H-module structure on M is a homomorphism $H \to G$. By Proposition 3, G is isomorphic to a subgroup of $GL_n(\mathbb{Z})$ for some n. Thus it suffices to show that there are no non-trivial homomorphisms $\phi : H \to GL_n(\mathbb{Z})$. For each m > 1, let $\pi_m : GL_n(\mathbb{Z}) \to GL_n(\mathbb{Z}/m\mathbb{Z})$ denote the homomorphism 'reduction modulo m'. By Corollary 9, H has no proper finite-index subgroups, and so the homomorphism

$$\pi_m \circ \phi : H \to GL_n(\mathbb{Z}/m\mathbb{Z})$$

must be trivial for each m > 1. However, the only matrix in the kernel of all of the π_m is the identity matrix, and so ϕ must be the trivial homomorphism.

Remark 11 For any group G, and any right G-module A, a left G-action on A may be defined by $g * a = ag^{-1}$. This gives a bijection between the left and right G-module structures on any fixed abelian group A.

Proposition 12 Let G_0 be an infinite free product of copies of Higman's group H, and let M be a right G_0 -module whose underlying abelian group is finitely generated. Then G_0 acts trivially on M, and

$$H_0(G_0; M) \cong M, \qquad H_i(G_0; M) = 0 \quad for \ i > 0.$$

Proof. Let M be as in the statement. By Lemma 10 and the remark following it, each copy of H inside G_0 must act trivially on M. It follows that G_0 acts trivially on M. Since H is acyclic, it follows that G_0 is also acyclic, and so the homology of G_0 with integer coefficients is isomorphic to the integral homology of the trivial group. The universal coefficient theorem allows one to compute the homology of G_0 with coefficients in any trivial module. Since each $H_i(G_0; \mathbb{Z})$ is free, the tor-term in the universal coefficient theorem vanishes, and so $H_i(G_0; M) \cong M \otimes_{\mathbb{Z}} H_i(G_0; \mathbb{Z})$ for all i, giving the result claimed above. **Corollary 13** The group G_0 as described above is FHT, is F_0 and is not FP_1 .

Proof. There is a 2-dimensional BG_0 (consisting of the one point union of infinitely many copies of a 2-dimensional BH), so G_0 has cohomological dimension at most 2. (In fact, since G_0 is not free its cohomological dimension is exactly 2, but we do not need this fact.) By Proposition 12, the homology groups $H_i(G_0; M)$ are all finitely generated whenever M is a right G_0 -module whose underlying abelian group is finitely generated. A group is FP_1 if and only if it is finitely generated, and so G_0 is not FP_1 . Every group is F_0 .

To construct the rest of our examples, we will start by embedding G_0 in a group of type F. Let J_0 be the free product $H * \mathbb{Z}$, and define $\phi_0 : J_0 \to \mathbb{Z}$ by the identity map on \mathbb{Z} and the trivial map from H to \mathbb{Z} . Applying Corollary 6, we see that ker (ϕ_0) is isomorphic to a free product of infinitely many copies of the Higman group H. From now on, we shall identify G_0 with ker $(\phi_0) \leq J_0$.

Let \mathbb{F}_2 denote the free group on two generators, and let $\psi : \mathbb{F}_2 \to \mathbb{Z}$ be the homomorphism that sends each of the two generators to $1 \in \mathbb{Z}$.

Now suppose that we have already defined a group J_n and a homomorphism $\phi_n : J_n \to \mathbb{Z}$. Define a new group J_{n+1} containing J_n as a direct factor, and a new homomorphism $\phi_{n+1} : J_{n+1} \to \mathbb{Z}$ extending ϕ_n by

 $J_{n+1} = J_n \times \mathbb{F}_2, \qquad \phi_{n+1}(g,h) = \phi_n(g) + \psi(h) \text{ for all } g \in J_n \text{ and } h \in \mathbb{F}_2.$

For each n, we shall identify J_n with $J_n \times \{1\} \leq J_{n+1}$. For n > 0, define $G_n = \ker(\phi_n : J_n \to \mathbb{Z})$.

Proposition 14 For each $n \geq 0$, G_0 is a normal subgroup of G_n , and $G_n/G_0 \cong (\mathbb{F}_2)^n$. For each $n \geq 0$, there is an isomorphism $G_{n+1} \cong J_n *_{G_n} J_n$.

Proof. J_0 is a direct factor of J_n , and G_0 is a normal subgroup of J_0 . It follows that G_0 is normal in J_n and that

$$J_n/G_0 \cong (J_0/G_0) \times \mathbb{F}_2^n \cong \mathbb{Z} \times \mathbb{F}_2^n.$$

 G_0 is contained in $G_n = \ker(\phi_n)$, and so there is an induced homomorphism $\bar{\phi}_n : J_n/G_0 \to \mathbb{Z}$. Under the above isomorphism $J_n/G_0 \cong \mathbb{Z} \times \mathbb{F}_2^n$, the homomorphism $\bar{\phi}_n$ corresponds to the homomorphism which sends $(r, s_1, \ldots, s_n) \in$

 $\mathbb{Z} \times \mathbb{F}_2^n$ to $r + \psi(s_1) + \cdots + \psi(s_n)$. Since this map restricts to $\mathbb{Z} \times \{e\}^n \leq \mathbb{Z} \times \mathbb{F}_2^n$ as the identity map of \mathbb{Z} , it follows that $\ker(\bar{\phi}_n)$ is isomorphic to \mathbb{F}_2^n . Hence

$$G_n/G_0 = \ker(\bar{\phi}_n) \cong \mathbb{F}_2^n,$$

as claimed.

We may write $\mathbb{F}_2 = \mathbb{Z} * \mathbb{Z}$, and thus we may write

$$J_{n+1} = J_n \times (\mathbb{Z} * \mathbb{Z}) = (J_n \times \mathbb{Z}) *_{J_n} (J_n \times \mathbb{Z}).$$

Let ϕ' be the restriction of ϕ_{n+1} to one of the two copies of $J_n \times \mathbb{Z}$. The map ϕ' is given by the formula $\phi'(g, r) = \phi_n(g) + r$. In particular, the restriction of ϕ' to the \mathbb{Z} direct factor is the identity, and it follows that ker (ϕ') is isomorphic to J_n . The isomorphism between G_{n+1} and $J_n *_{G_n} J_n$ follows by applying Corollary 5 to ϕ_{n+1} .

Theorem 15 For each $n \ge 0$, the group G_n is torsion-free, is FHT and is F_n , but is not FP_{n+1} .

Proof. The group J_n has a finite (n+2)-dimensional classifying space, so J_n is type F. Also G_n (as a subgroup of J_n) must have finite cohomological dimension, and so must be torsion-free. (In fact the cohomological dimensions of J_n and G_n are both equal to n + 2.) The group G_0 is FP_0 but not FP_1 . The assertion that G_n is FP_n but not FP_{n+1} follows by induction, using Bieri's theorem (Theorem 7) and the description $G_{n+1} \cong J_n *_{G_n} J_n$. It follows that G_1 is type F_1 . The assertion that G_n is finitely presented for $n \ge 2$ also follows from Theorem 7. In the case when $n \ge 2$, since G_n is finitely presented and is FP_n , it follows that G_n is type F_n .

It remains to check that whenever M is a right G_n -module whose underlying abelian group is finitely generated, then each $H_i(G_n; M)$ is finitely generated. For this we use the Lyndon-Hochschild-Serre (or LHS) spectral sequence for the group extension $G_0 \to G_n \to G_n/G_0$. Let M be a right G_n module whose underlying abelian group is finitely generated. The E^2 -page of the LHS-spectral sequence has

$$E_{i,j}^2 = H_i(G_n/G_0; H_j(G_0; M)).$$

By Proposition 12, the subgroup G_0 acts trivially on M, and $H_0(G_0; M) = M$, $H_j(G_0; M) = 0$ for j > 0. Also $G_n/G_0 \cong \mathbb{F}_2^n$ is a group of type F.

Since the spectral sequence has $E_{i,j}^2 = 0$ for $j \neq 0$, it must collapse, giving isomorphisms

$$H_i(G_n; M) \cong E_{i,0}^2 \cong H_i(G_n/G_0; M) \cong H_i(\mathbb{F}_2^n; M).$$

Since \mathbb{F}_2^n is of type F, it follows that each $H_i(G_n; M)$ is finitely generated as claimed.

References

- G. Baumslag, E. Dyer and A. Heller, The topology of discrete groups, J. Pure Appl. Algebra 16 (1980) 1–47.
- [2] M. Bestvina and N. Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445–470.
- [3] R. Bieri, Homological Dimension of Discrete Groups, Queen Mary College Mathematics Notes, Queen Mary College, University of London, (1976).
- [4] K. S. Brown, Euler characteristics of discrete groups and G-spaces, Invent. Math. 27 (1974) 229–264.
- [5] K. S. Brown, Euler characteristics of groups: the *p*-fractional part, Invent. Math. 29 (1975), 1–5.
- [6] K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics 87 Springer Verlag (1982).
- [7] G. Higman, A finitely generated infinite simple group, J. London Math. Soc. 24 (1951) 61–64.
- [8] M. Saadetoğlu, Finiteness conditions and Bestvina-Brady groups, PhD Thesis, School of Mathematics, University of Southampton (2005).
- [9] J.-P. Serre, Cohomologie des groupes discrets, Prospects in Mathematics, 77–169, Ann. of Math. Studies 70 (1971) Princeton Univ. Press.

Authors' addresses:

Ian Leary: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210-1174, United States.

and

School of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom.

leary@math.ohio-state.edu

Müge Saadetoğlu: School of Mathematics, University of Southampton,

Southampton, SO17 1BJ, United Kingdom.

and

Department of Mathematics, Eastern Mediterranean University,

Gazimağusa, Turkish Republic of Northern Cyprus.

muge.saadetoglu@emu.edu.tr