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Abstract

For each n ≥ 0 we construct a torsion-free group that satisfies
K. S. Brown’s FHT condition and is Fn (and hence FPn), but is not
FPn+1.

1 Introduction

While working on comparing different notions of Euler characteristic, K. S.
Brown introduced a new homological finiteness condition for discrete groups
[6, IX.6]. The group G is said to be of finite homological type or FHT if G
has finite virtual cohomological dimension, and for every G-module M whose
underlying abelian group is finitely generated, the homology groupsHi(G;M)
are all finitely generated. If G is FHT , then one may define a ‘näıve Euler
characteristic’ for every finite-index subgroup H of G, as the alternating sum
of the dimensions of the homology groups of H with rational coefficients.

One question that arises is the connection between FHT and the usual
homological finiteness conditions FP and FPn, which were introduced by
J.-P. Serre [9], and the topological finiteness conditions F and Fn, which we
believe were first studied by C. T. C. Wall. (We shall define these conditions
below.) It is easy to see that any group G of type FP is FHT , and one
might conjecture that every torsion-free group that is FHT is also of type
FP . The aim of this paper is to show that this is not the case. For each
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n ≥ 0, we exhibit a torsion-free group Gn that is FHT and of type Fn, but
that is not of type FPn+1. (Note that type Fn implies type FPn.)

Our construction is based on R. Bieri’s construction of a group that is
FPn but not FPn+1 [3, Prop 2.14]. We also use G. Higman’s group H which
has the properties that it has no non-trivial finite quotients and that it is
acyclic (i.e., has the same integral homology as the trivial group) [1, 7]. The
group G0 is just an infinite free product of copies of H, and for n > 0, Gn

may be described as a free product of two groups of type F , amalgamating
a common subgroup isomorphic to Gn−1.

A construction of the groups Gn was given in the University of Southamp-
ton PhD thesis of the second named author [8].

2 Definitions

Let G be a discrete group, let ZG be the integral group ring of G, and let Z
stand for the trivial ZG-module, i.e., the module whose underlying abelian
group is infinite cyclic upon which each element of G acts as the identity.
Modules will be left modules unless otherwise stated.

We begin by recalling some classical homological finiteness conditions,
which were introduced by J.-P. Serre [9], but see also [3, Ch I] and [6,
Ch VIII]. A projective resolution P∗ for Z over ZG is an exact sequence

· · · → Pi → · · · → P1 → P0 → Z → 0

of ZG-modules in which each Pi is projective. The group G is FPn if there
exists P∗ such that Pi is finitely generated for all i ≤ n and is FP∞ if there
is a P∗ in which Pi is finitely generated for all i. The group G is of finite
cohomological dimension if there exists P∗ in which some Pn = 0, in which
case we may take Pi = 0 for all i ≥ n. It can be shown that any group of
finite cohomological dimension is torsion-free. The group G is FP if G is
of finite cohomological dimension and of type FP∞. If G is FP , then there
exists a resolution P∗ in which each Pi is finitely generated and only finitely
many Pi are non-zero.

The condtions FP and FPn are motivated by topology. The group G is of
type F if there is a model for the classifying space BG that has only finitely
many cells. The group G is type Fn if there is a model for BG that has only
finitely many cells of dimension less than or equal to n. The cellular chain
complex of the universal cover of a model for BG is a resolution for Z by
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free ZG-modules. In particular, if G is type F , then G is type FP , and if G
is type Fn then G is type FPn. The following three conditions on a group G
are equivalent: G can be finitely generated; G is FP1; G is type F1. A group
G is type F2 if and only if G can be finitely presented. There exist groups of
type FP2, and even groups of type FP , that cannot be finitely presented [2].
For any n ≥ 2, the following two conditions on a group G are equivalent: G
is type Fn; G can be finitely presented and is FPn [6, Exercise VIII.7.2].

If G contains a finite-index subgroup H which is of finite cohomological
dimension, G is said to be of finite virtual cohomological dimension or finite
vcd. By an argument due to Serre, any group of finite vcd admits an action
with finite stabilizers on a finite-dimensional contractible CW-complex [6,
Theorem VIII.11.1].

Remark 1 Since there are many interesting discrete groups that are not
virtually torsion-free, one might argue that the condition ‘finite vcd’ is an
unnatural one, which should be replaced by the condition ‘admits an action
with finite stabilizers on a finite-dimensional contractible space’ whenever
possible.

Brown defines a group G to be FHT if G is of finite vcd, and for every
right G-module M whose underlying abelian group is finitely-generated, each
of the homology groups Hi(G,M) is a finitely generated abelian group [6,
IX.6]. These homology groups may be computed as the homology of the
chain complex

M ⊗ZG P∗

for any projective resolution P∗ for Z over ZG. The homology groups of
a chain complex of finitely generated abelian groups are themselves finitely
generated. Hence each Hi(G,M) is finitely generated whenever G is type
FP∞, and we see that any group G of finite vcd that is of type FP∞ is
FHT . In particular, any torsion-free group of type FP is FHT .

Remark 2 In his original papers on Euler characteristics, Brown gave a
different definition of finite homological type, which we shall call FHT ′. The
group G is is FHT ′ if G is of finite vcd, and for each torsion-free finite-
index subgroup H ≤ G, the integral homology groups Hi(H; Z) are finitely
generated [4, 5]. By Shapiro’s lemma, Hi(H; Z) ∼= Hi(G; Z[H\G]), where
Z[H\G] denotes the permutation module with basis the right cosets of H in
G. Hence any group that is FHT is also FHT ′. We do not know whether
FHT is equivalent to FHT ′.
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3 Prerequisites

Here we collect together some known results that are used in our construction.

Proposition 3 Let A be a finitely generated abelian group. There exists n
such that G = Aut(A) is isomorphic to a subgroup of GLn(Z).

Proof. Let T (A) be the torsion subgroup of A, and let A′ be a complement
to T (A), so that A = T (A)⊕A′ and A′ ∼= Zr for some r ≥ 0. The subgroup
T (A) is characteristic in A and so there is a natural surjection

φ : G→ Aut(T (A))⊕ Aut(A/T (A)).

Let H be the subgroup of G consisting of those f ∈ G such that f(A′) = A′.
Then H is a direct product

H = Aut(T (A))⊕ Aut(A′) ∼= Aut(T (A))⊕GLr(Z),

and φ induces an isomorphism from H to Aut(T (A)) ⊕ Aut(A/T (A)). El-
ements f ∈ ker(φ) act as the identity on T (A), and for each a ∈ A′,
f(a) = a + b for some b ∈ T (A). It follows that ker(φ) is isomorphic to
Hom(A′, T (A)) ∼= T (A)r, and so ker(φ) is a finite group. Since φ restricted
to H is an isomorphism, it follows that the index of H in G is equal to the
order of ker(φ), and so the index of H in G is finite.

The finite group Aut(T (A)) is isomorphic to a subgroup of GLs(Z) for
some s (for example, s = |Aut(T (A))| will suffice). Hence H is isomorphic to
a subgroup of GLr+s(Z). Equivalently, there is a faithful H-module N whose
underlying abelian group is free abelian of rank r + s. If the index of H in
G is m, then the induced module ZG ⊗ZH N is a faithful G-module whose
underlying abelian group is free abelian of rank n = m(r + s). The action
map for this module is an embedding of G in GLn(Z).

Lemma 4 Let X be a connected CW-complex, let Y be a connected subcom-
plex, and let y0 ∈ Y be a basepoint for both spaces. Let G be π1(X, y0), the
fundamental group of X, let i : π1(Y, y0) → G be the induced map of funda-

mental groups, and let H be a subgroup of G. Let X̂ be the covering space
of X with fundamental group H and let Ŷ be the subspace of X̂ consisting of
lifts of points of Y . There is a bijective correspondence between components
of Ŷ and orbits in the coset space G/H for the action of π1(Y ). The funda-
mental group of the component corresponding to the orbit of the coset gH is
a conjugate of i−1(gHg−1) in π1(Y ).
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Proof. Let X̃ denote the universal cover of X, and let Ỹ denote the subspace
corresponding to Y . Pick xo ∈ X̃ a lift of y0. Each component of Ỹ contains
some g.x0. A loop γ in Y based at y0 lifts to a path from g.x0 to g′.x0,
for g′ = i([γ]).g, where [γ] denotes the element of π1(Y ) represented by the

loop γ. The points g.x0 and g′.x0 map to the same point of X̂ if and only if
gH = g′H. Hence there is a path in Ŷ from the image of g.x0 to the image
of g′.x0 if and only if the cosets gH and g′H are in the same π1(Y )-orbit, as
claimed.

Each component of Ŷ is a covering space of Y , and so once we have
chosen a basepoint we may identify its fundamental group with a subgroup
of π1(Y ). Taking different basepoints changes this subgroup by conjugation.

The image of the point g.x0 in Ŷ depends only on the coset gH. If we take
as basepoint for a component of Ŷ the image of g.x0, then a loop γ in Y lifts
to a loop in Ŷ based at g.x0 if and only if the cosets gH and i([γ])gH are
equal, or equivalently if and only if i([γ]) ∈ gHg−1.

Corollary 5 Suppose that a group G is expressed as a free product with
amalgamation, G = H ∗L K, and that φ : G → Q is such that φ : L → Q
is surjective. Then ker(φ) is equal to the free product with amalgamation
H ′ ∗L′ K ′, where H ′ = ker(φ) ∩H, L′ = ker(φ) ∩ L and K ′ = ker(φ) ∩K.

Proof. A model for the classifying space BG can be made by joining copies
of BH and BK by a cylinder BL×I, where I denotes the unit interval. Take
this space to be the space X in Lemma 4, and for X̂ take the regular cover
with fundamental group ker(φ), so that X̂ is the classifying space for ker(φ).
Lemma 4 can be applied in the cases Y = BH, Y = BK and Y = BL × I.
In each case, it follows that Ŷ is connected, and the fundamental group of Ŷ
is H ′, K ′ or L′ respectively. Hence X̂ is built by joining a copy of BH ′ and
a copy of BK ′ via a cylinder BL′ × I, and so ker(φ) ∼= H ′ ∗L′ K ′.

Corollary 6 Suppose that G = H ∗K, and define a homomorphism φ : G→
K as the identity homomorphism on K and the trivial map on H. The kernel
of φ is isomorphic to a free product of copies of H indexed by the elements
of K.

Proof. Build a classifying space BG as the one-point union BH ∨ BK, and
apply Lemma 4 with X̂ being the regular cover corresponding to ker(φ). In

the case when Y = BK, we see that Ŷ is the universal covering space EK
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of BK, and in the case when Y = BH, we see that Ŷ is a disjoint union
of copies of BH indexed by the elements of K. Hence B(ker(φ)) can be
constructed by attaching copies of BH indexed by the elements of K to the
contractible space EK.

Apart from the assertion concerning finite presentablility, the following
theorem is a special case of [3, prop. 2.13(a)].

Theorem 7 (R. Bieri) Let G = H ∗L K be a free product with amalgama-
tion, and suppose that both H and K are type F . Then for any n ≥ 1, G is
FPn if and only if L is FPn−1. If L is finitely generated, then G is finitely
presentable.

Proof. The assertions concerning the FPn conditions are a special case of [3,
prop. 2.13(a)]. By hypothesis, there are finite models for BH and for BK.
If there is a model for BL with finite 1-skeleton, then by gluing BH, BL× I
and BK, one may construct a model for BG with finite 2-skeleton. Hence
in this case G admits a finite presentation.

The group H below was introduced by Higman, who proved that H has
the ‘group theoretic’ properties given in the following theorem [7]. The
proof that H has the stated ‘homological properties’ was given by Baum-
slag, Dyer and Heller in [1], where the group H played an important role in
their strengthened version of the Kan-Thurston theorem.

Theorem 8 (G. Higman, G. Baumslag, E. Dyer, A. Heller) Let H be
the group defined by the presentation

H = 〈 a, b, c, d : ab = a2, bc = b2, cd = c2, da = d2 〉.

Then H is an infinite torsion-free group, the presentation 2-complex for the
above presentation is a classifying space for H, and H admits no non-trivial
quotient in which the images of the generators have finite order.

Corollary 9 H as above is a non-trivial torsion-free acyclic group with no
proper finite-index subgroups.
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4 The groups

Lemma 10 Let M be a module for Higman’s group H whose underlying
abelian group is finitely generated. Then H acts trivially on M .

Proof. Let G = Aut(M), the group of abelian group automorphisms of M .
An H-module structure on M is a homomomorphism H → G. By Proposi-
tion 3, G is isomorphic to a subgroup of GLn(Z) for some n. Thus it suffices
to show that there are no non-trivial homomorphisms φ : H → GLn(Z). For
each m > 1, let πm : GLn(Z) → GLn(Z/mZ) denote the homomorphism ‘re-
duction modulo m’. By Corollary 9, H has no proper finite-index subgroups,
and so the homomorphism

πm ◦ φ : H → GLn(Z/mZ)

must be trivial for each m > 1. However, the only matrix in the kernel of all
of the πm is the identity matrix, and so φ must be the trivial homomorphism.

Remark 11 For any group G, and any right G-module A, a left G-action
on A may be defined by g ∗ a = ag−1. This gives a bijection between the left
and right G-module structures on any fixed abelian group A.

Proposition 12 Let G0 be an infinite free product of copies of Higman’s
group H, and let M be a right G0-module whose underlying abelian group is
finitely generated. Then G0 acts trivially on M , and

H0(G0;M) ∼= M, Hi(G0;M) = 0 for i > 0.

Proof. LetM be as in the statement. By Lemma 10 and the remark following
it, each copy of H inside G0 must act trivially on M . It follows that G0

acts trivially on M . Since H is acyclic, it follows that G0 is also acyclic,
and so the homology of G0 with integer coefficients is isomorphic to the
integral homology of the trivial group. The universal coefficient theorem
allows one to compute the homology of G0 with coefficients in any trivial
module. Since each Hi(G0; Z) is free, the tor-term in the universal coefficient
theorem vanishes, and so Hi(G0;M) ∼= M ⊗Z Hi(G0; Z) for all i, giving the
result claimed above.
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Corollary 13 The group G0 as described above is FHT , is F0 and is not
FP1.

Proof. There is a 2-dimensional BG0 (consisting of the one point union of
infinitely many copies of a 2-dimensional BH), so G0 has cohomological
dimension at most 2. (In fact, sinceG0 is not free its cohomological dimension
is exactly 2, but we do not need this fact.) By Proposition 12, the homology
groups Hi(G0;M) are all finitely generated whenever M is a right G0-module
whose underlying abelian group is finitely generated. A group is FP1 if and
only if it is finitely generated, and so G0 is not FP1. Every group is F0.

To construct the rest of our examples, we will start by embedding G0 in a
group of type F . Let J0 be the free product H ∗Z, and define φ0 : J0 → Z by
the identity map on Z and the trivial map fromH to Z. Applying Corollary 6,
we see that ker(φ0) is isomorphic to a free product of infinitely many copies of
the Higman group H. From now on, we shall identify G0 with ker(φ0) ≤ J0.

Let F2 denote the free group on two generators, and let ψ : F2 → Z be
the homomorphism that sends each of the two generators to 1 ∈ Z.

Now suppose that we have already defined a group Jn and a homomor-
phism φn : Jn → Z. Define a new group Jn+1 containing Jn as a direct factor,
and a new homomorphism φn+1 : Jn+1 → Z extending φn by

Jn+1 = Jn × F2, φn+1(g, h) = φn(g) + ψ(h) for all g ∈ Jn and h ∈ F2.

For each n, we shall identify Jn with Jn × {1} ≤ Jn+1. For n > 0, define
Gn = ker(φn : Jn → Z).

Proposition 14 For each n ≥ 0, G0 is a normal subgroup of Gn, and
Gn/G0

∼= (F2)
n. For each n ≥ 0, there is an isomorphism Gn+1

∼= Jn ∗Gn Jn.

Proof. J0 is a direct factor of Jn, and G0 is a normal subgroup of J0. It
follows that G0 is normal in Jn and that

Jn/G0
∼= (J0/G0)× F2

n ∼= Z× F2
n.

G0 is contained in Gn = ker(φn), and so there is an induced homomorphism
φ̄n : Jn/G0 → Z. Under the above isomorphism Jn/G0

∼= Z×F2
n, the homo-

morphism φ̄n corresponds to the homomorphism which sends (r, s1, . . . , sn) ∈
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Z×F2
n to r+ψ(s1)+· · ·+ψ(sn). Since this map restricts to Z×{e}n ≤ Z×F2

n

as the identity map of Z, it follows that ker(φ̄n) is isomorphic to F2
n. Hence

Gn/G0 = ker(φ̄n) ∼= F2
n,

as claimed.
We may write F2 = Z ∗ Z, and thus we may write

Jn+1 = Jn × (Z ∗ Z) = (Jn × Z) ∗Jn (Jn × Z).

Let φ′ be the restriction of φn+1 to one of the two copies of Jn×Z. The map φ′

is given by the formula φ′(g, r) = φn(g)+r. In particular, the restriction of φ′

to the Z direct factor is the identity, and it follows that ker(φ′) is isomorphic
to Jn. The isomorphism between Gn+1 and Jn ∗Gn Jn follows by applying
Corollary 5 to φn+1.

Theorem 15 For each n ≥ 0, the group Gn is torsion-free, is FHT and is
Fn, but is not FPn+1.

Proof. The group Jn has a finite (n+ 2)-dimensional classifying space, so Jn

is type F . Also Gn (as a subgroup of Jn) must have finite cohomological
dimension, and so must be torsion-free. (In fact the cohomological dimen-
sions of Jn and Gn are both equal to n + 2.) The group G0 is FP0 but not
FP1. The assertion that Gn is FPn but not FPn+1 follows by induction,
using Bieri’s theorem (Theorem 7) and the description Gn+1

∼= Jn ∗Gn Jn. It
follows that G1 is type F1. The assertion that Gn is finitely presented for
n ≥ 2 also follows from Theorem 7. In the case when n ≥ 2, since Gn is
finitely presented and is FPn, it follows that Gn is type Fn.

It remains to check that whenever M is a right Gn-module whose un-
derlying abelian group is finitely generated, then each Hi(Gn;M) is finitely
generated. For this we use the Lyndon-Hochschild-Serre (or LHS) spectral
sequence for the group extension G0 → Gn → Gn/G0. Let M be a right Gn-
module whose underlying abelian group is finitely generated. The E2-page
of the LHS-spectral sequence has

E2
i,j = Hi(Gn/G0;Hj(G0;M)).

By Proposition 12, the subgroup G0 acts trivially on M , and H0(G0;M) =
M , Hj(G0;M) = 0 for j > 0. Also Gn/G0

∼= F2
n is a group of type F .
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Since the spectral sequence has E2
i,j = 0 for j 6= 0, it must collapse, giving

isomorphisms

Hi(Gn;M) ∼= E2
i,0
∼= Hi(Gn/G0;M) ∼= Hi(F2

n;M).

Since F2
n is of type F , it follows that each Hi(Gn;M) is finitely generated

as claimed.
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