The ℓ^{2}-cohomology of hyperplane complements

M. W. Davis * T. Januszkiewicz ${ }^{\dagger}$ I. J. Leary \ddagger

March 12, 2007

Abstract

We compute the ℓ^{2}-Betti numbers of the complement of a finite collection of affine hyperplanes in \mathbb{C}^{n}. At most one of the ℓ^{2}-Betti numbers is non-zero. AMS classification numbers. Primary: 52B30 Secondary: 32S22, 52C35, 57N65, 58J22.

Keywords: hyperplane arrangements, L^{2}-cohomology.

1 Introduction

Suppose X is a finite CW complex with universal cover \widetilde{X}. For each $p \geq 0$, one can associate to X a Hilbert space, $\mathcal{H}^{p}(\widetilde{X})$, the p-dimensional "reduced ℓ^{2}-cohomology," cf. [3]. Each $\mathcal{H}^{p}(\widetilde{X})$ is a unitary $\pi_{1}(X)$-module. Using the $\pi_{1}(X)$-action, one can attach a nonnegative real number called "von Neumann dimension" to such a Hilbert space. The "dimension" of $\mathcal{H}^{p}(\widetilde{X})$ is called the $p^{\text {th }} \ell^{2}$-Betti number of X.

Here we are interested in the case where X is the complement of a finite number of affine hyperplanes in \mathbb{C}^{n}. (Technically, in order to be in compliance with the first paragraph, we should replace the complement by a homotopy equivalent finite CW complex. However, to keep from pointlessly complicating the notation, we shall ignore this technicality.) Let \mathcal{A} be the finite collection of hyperplanes, $\Sigma(\mathcal{A})$ their union and $M(\mathcal{A}):=\mathbb{C}^{n}-\Sigma(\mathcal{A})$.

[^0]The rank of \mathcal{A} is the maximum codimension l of any nonempty intersection of hyperplanes in \mathcal{A}. It turns out that the ordinary (reduced) homology of $\Sigma(\mathcal{A})$ vanishes except in dimension $l-1$ (cf. Proposition 2.1). Let $\beta(\mathcal{A})$ denote the rank of $\bar{H}_{l-1}(\Sigma(\mathcal{A}))$. Our main result, proved as Theorem 6.2, is the following.

Theorem A. Suppose \mathcal{A} is an affine hyperplane arrangement of rank l. Only the $l^{\text {th }} \ell^{2}$-Betti number of $M(\mathcal{A})$ can be nonzero and it is equal to $\beta(\mathcal{A})$.

This is reminiscent of a well-known result about the cohomology of $M(\mathcal{A})$ with coefficients in a generic flat line bundle ("generic" is defined in Section 5). This result is proved as Theorem 5.3. We state it below.

Theorem B. Suppose that L is a generic flat line bundle over $M(\mathcal{A})$. Then $H^{*}(M(\mathcal{A}) ; L)$ vanishes except in dimension l and $\operatorname{dim}_{\mathbb{C}} H^{l}(M(\mathcal{A}) ; L)=\beta(\mathcal{A})$.

Both theorems have similar proofs. In the case of Theorem A the basic fact is that the ℓ^{2}-Betti numbers of S^{1} vanish. (In other words, if the universal cover \mathbb{R} of S^{1} is given its usual cell structure, then $\mathcal{H}^{*}(\mathbb{R})=0$.) Similarly, for Theorem B, if L is a flat line bundle over S^{1} corresponding to an element $\lambda \in \mathbb{C}^{*}$, with $\lambda \neq 1$, then $H^{*}\left(S^{1} ; L\right)=0$. By the Künneth Formula, there are similar vanishing results for any central arrangement. To prove the general results, one considers an open cover of $M(\mathcal{A})$ by "small" open neighborhoods each homeomorphic to the complement of a central arrangement. The $E_{1^{-}}$ page of the resulting Mayer-Vietoris spectral sequence is nonzero only along the bottom row, where it can be identified with the simplicial cochains with constant coefficients on a pair $(N(\mathcal{U}), N(\mathcal{V}))$, which is homotopy equivalent to $\left(\mathbb{C}^{n}, \Sigma\right)$. It follows that the E_{2}-page can be nonzero only in position $(l, 0)$. (Actually, in the case of Theorem A, technical modifications must be made to the above argument. Instead of reduced ℓ^{2}-cohomology one takes local coefficients in the von Neumann algebra associated to the fundamental group and the vanishing results only hold modulo modules which don't contribute to the ℓ^{2}-Betti numbers.)

In [2] the first and third authors proved a similar result for the ℓ^{2} cohomology of the universal cover of the Salvetti complex associated to an arbitrary Artin group (as well as a formula for the cohomology of the Salvetti complex with generic, 1-dimensional local coefficients). This can be interpreted as a computation of the ℓ^{2}-cohomology of universal covers of hyperplane complements associated to infinite reflection groups. Although the
main argument in [2] uses an explicit description of the chain complex of the Salvetti complex, an alternative argument, similar to the one outlined above, is given in [2, Section 10].

Our thanks to the referee for finding some mistakes in the first version of this paper.

2 Hyperplane arrangements

A hyperplane arrangement \mathcal{A} is a finite collection of affine hyperplanes in \mathbb{C}^{n}. A subspace of \mathcal{A} is a nonempty intersection of hyperplanes in \mathcal{A}. Denote by $L(\mathcal{A})$ the poset of subspaces, partially ordered by inclusion, and let $\bar{L}(\mathcal{A}):=$ $L(\mathcal{A}) \cup\left\{\mathbb{C}^{n}\right\}$. An arrangement is central if $L(\mathcal{A})$ has a minimum element. Given $G \in L(\mathcal{A})$, its rank, $\operatorname{rk}(G)$, is the codimension of G in \mathbb{C}^{n}. The minimal elements of $L(\mathcal{A})$ are a family of parallel subspaces and they all have the same rank. The rank of an arrangement \mathcal{A} is the rank of a minimal element in $L(\mathcal{A}) . \mathcal{A}$ is essential if $\operatorname{rk}(\mathcal{A})=n$.

The singular set $\Sigma(\mathcal{A})$ of the arrangement is the union of hyperplanes in \mathcal{A} (so that $\Sigma(\mathcal{A})$ is a subset of \mathbb{C}^{n}. The complement of $\Sigma(\mathcal{A})$ in \mathbb{C}^{n} is denoted $M(\mathcal{A})$. When there is no ambiguity we will drop the " \mathcal{A} " from our notation and write L, Σ or M instead of $L(\mathcal{A}), \Sigma(\mathcal{A})$ or $M(\mathcal{A})$.

Proposition 2.1. Σ is homotopy equivalent to a wedge of $(l-1)$-spheres, where $l=\operatorname{rk}(\mathcal{A})$. (So, if \mathcal{A} is essential, the spheres are $(n-1)$-dimensional.)

Proof. The proof follows from the usual "deletion-restriction" argument and induction. If the rank l is 1 , then Σ is the disjoint union of a finite family of parallel hyperplanes. Hence, Σ is homotopy equivalent to a finite set of points, i.e., to a wedge of 0 -spheres. Similarly, when $l=2$, it is easy to see that Σ is homotopy equivalent to a connected graph; hence, a wedge of 1 -spheres. So, assume by induction that $l>2$. Choose a hyperplane $H \in \mathcal{A}$, let $\mathcal{A}^{\prime}=\mathcal{A}-\{H\}$ and let $\mathcal{A}^{\prime \prime}$ be the restriction of \mathcal{A} to H (i.e., $\left.\mathcal{A}^{\prime \prime}:=\left\{H^{\prime} \cap H \mid H^{\prime} \in \mathcal{A}^{\prime}\right\}\right)$. Put $\Sigma^{\prime}=\Sigma\left(\mathcal{A}^{\prime}\right), \Sigma^{\prime \prime}=\Sigma\left(\mathcal{A}^{\prime \prime}\right), l^{\prime}=\operatorname{rk}\left(\mathcal{A}^{\prime}\right)$ and $l^{\prime \prime}=\operatorname{rk}\left(\mathcal{A}^{\prime \prime}\right)$. We can also assume by induction on $\operatorname{Card}(\mathcal{A})$ that Σ^{\prime} and $\Sigma^{\prime \prime}$ are homotopy equivalent to wedges of spheres. If $l^{\prime}<n$ and H is transverse to the minimal elements of $L\left(\mathcal{A}^{\prime}\right)$, then $l^{\prime \prime}=l$, the arrangement splits as a product, $\Sigma=\Sigma^{\prime \prime} \times \mathbb{C}$, and we are done by induction. In all other cases $l^{\prime}=l$ and $l^{\prime \prime}=l-1$. We have $\Sigma=\Sigma^{\prime} \cup H$ and $\Sigma^{\prime} \cap H=\Sigma^{\prime \prime}$. H is simply connected and since $l>2, \Sigma^{\prime}$ is simply connected and $\Sigma^{\prime \prime}$ is connected. By
van Kampen's Theorem, Σ is simply connected. Consider the exact sequence of the pair $\left(\Sigma, \Sigma^{\prime}\right)$:

$$
\rightarrow H_{*}\left(\Sigma^{\prime}\right) \rightarrow H_{*}(\Sigma) \rightarrow H_{*}\left(\Sigma, \Sigma^{\prime}\right) \rightarrow .
$$

There is an excision isomorphism, $H_{*}\left(\Sigma, \Sigma^{\prime}\right) \cong H_{*}\left(H, \Sigma^{\prime \prime}\right)$. Since H is contractible it follows that $H_{*}\left(H, \Sigma^{\prime \prime}\right) \cong \bar{H}_{*-1}\left(\Sigma^{\prime \prime}\right)$. By induction, $\bar{H}_{*}\left(\Sigma^{\prime}\right)$ is concentrated in dimension $l-1$ and $\bar{H}_{*}\left(\Sigma^{\prime \prime}\right)$ in dimension $l-2$. So, $\bar{H}_{*}(\Sigma)$ is also concentrated in dimension $l-1$. It follows that Σ is homotopy equivalent to a wedge of $l-1$ spheres.

3 Certain covers and their nerves

Suppose $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ is a cover of some space X (where I is some index set). Given a subset $\sigma \subset I$, put $U_{\sigma}:=\bigcap_{i \in \sigma} U_{i}$. Recall that the nerve of \mathcal{U} is the simplicial complex $N(\mathcal{U})$, defined as follows. Its vertex set is I and a finite, nonempty subset $\sigma \subset I$ spans a simplex of $N(\mathcal{U})$ if and only if U_{σ} is nonempty.

We shall need to use the following well-known lemma several times in the sequel, see [4, Cor. 4G. 3 and Ex. $4 \mathrm{G}(4)$]

Lemma 3.1. Let \mathcal{U} be a cover of a paracompact space X and suppose that either (a) each U_{i} is open or (b) X is a $C W$ complex and each U_{i} is a subcomplex. Further suppose that for each simplex σ of $N(\mathcal{U}), U_{\sigma}$ is contractible. Then X and $N(\mathcal{U})$ are homotopy equivalent.

Suppose \mathcal{A} is a hyperplane arrangement in \mathbb{C}^{n}. An open convex subset U in \mathbb{C}^{n} is small (with respect to \mathcal{A}) if the following two conditions hold:
(i) $\{G \in \bar{L}(\mathcal{A}) \mid G \cap U \neq \emptyset\}$ has a unique minimum element $\operatorname{Min}(U)$.
(ii) A hyperplane $H \in \mathcal{A}$ has nonempty intersection with U if and only if $\operatorname{Min}(U) \subset H$.

The intersection of two small convex open sets is also small; hence, the same is true for any finite intersection of such sets.

Now let $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ be an open cover of \mathbb{C}^{n} by small convex sets. (Such covers clearly exist.) Put

$$
\mathcal{U}_{\text {sing }}:=\{U \in \mathcal{U} \mid U \cap \Sigma \neq \emptyset\} .
$$

Lemma 3.2. $N(\mathcal{U})$ is a contractible simplicial complex and $N\left(\mathcal{U}_{\text {sing }}\right)$ is a subcomplex homotopy equivalent to Σ. Moreover, $H_{*}\left(N(\mathcal{U}), N\left(\mathcal{U}_{\text {sing }}\right)\right)$ is concentrated in dimension l, where $l=\operatorname{rk} \mathcal{A}$.

Proof. $\mathcal{U}_{\text {sing }}$ is an open cover of a neighborhood of Σ which deformation retracts onto Σ. For each simplex σ of $N(\mathcal{U}), U_{\sigma}$ is contractible (in fact, it is a small convex open set). By Lemma 3.1, $N(\mathcal{U})$ is homotopy equivalent to \mathbb{C}^{n} and $N\left(\mathcal{U}_{\text {sing }}\right)$ is homotopy equivalent to Σ. The last sentence of the lemma follows from Proposition 2.1.

Remark 3.3. Lemma 3.1 can also be used to show that the geometric realization of L is homotop[y equivalent to Σ.

Definition 3.4. $\beta(\mathcal{A})$ is the rank of $H_{l}\left(N(\mathcal{U}), N\left(\mathcal{U}_{\text {sing }}\right)\right)$.
Equivalently, $\beta(\mathcal{A})$ is the rank of $H_{l}\left(\mathbb{C}^{n}, \Sigma(\mathcal{A})\right)$ (or of $\bar{H}_{l-1}(\Sigma(\mathcal{A}))$. Also, it is not difficult to see that $(-1)^{l} \beta(\mathcal{A})=\chi\left(\mathbb{C}^{n}, \Sigma\right)=1-\chi(\Sigma)=\chi(M)$, where $\chi()$ denotes the Euler characteristic.

Remark 3.5. Suppose $\mathcal{A}_{\mathbb{R}}$ is an arrangement of real hyperplanes in \mathbb{R}^{n} and $\Sigma_{\mathbb{R}} \subset \mathbb{R}^{n}$ is the singular set. Then $\mathbb{R}^{n}-\Sigma_{\mathbb{R}}$ is a union of open convex sets called chambers and $\beta\left(\mathcal{A}_{\mathbb{R}}\right)$ is the number of bounded chambers. If \mathcal{A} is the complexification of $\mathcal{A}_{\mathbb{R}}$, then $\Sigma(\mathcal{A}) \sim \Sigma\left(\mathcal{A}_{\mathbb{R}}\right)$. Hence, $\beta(\mathcal{A})=\beta\left(\mathcal{A}_{\mathbb{R}}\right)$.

For any small convex open set U, put

$$
\widehat{U}:=U-\Sigma(\mathcal{A})=U \cap M(\mathcal{A})
$$

Since U is convex, $(U, U \cap \Sigma(\mathcal{A}))$ is homeomorphic to $\left(\mathbb{C}^{n}, \Sigma\left(\mathcal{A}_{G}\right)\right)$, where $G=\operatorname{Min}(U)$ and \mathcal{A}_{G} is the central subarrangement defined by

$$
\mathcal{A}_{G}:=\{H \in \mathcal{A} \mid G \subset H\}
$$

(G might be \mathbb{C}^{n}, in which case $\mathcal{A}_{G}=\emptyset$.) Hence, \widehat{U} is homeomorphic to $M\left(\mathcal{A}_{G}\right)$, the complement of a central subarrangement.

The next lemma is well-known.
Lemma 3.6. Suppose U is a small open convex set. Then $\pi_{1}(\widehat{U})$ is a retract of $\pi_{1}(M(\mathcal{A}))$.

Proof. The composition of the two inclusions, $\widehat{U} \hookrightarrow M(\mathcal{A}) \hookrightarrow M\left(\mathcal{A}_{G}\right)$ is a homotopy equivalence (where $G=\operatorname{Min}(U) \in L(\mathcal{A})$).

By intersecting the elements of \mathcal{U} with $M\left(=\mathbb{C}^{n}-\Sigma\right)$ we get an induced cover $\widehat{\mathcal{U}}$ of M. An element of $\widehat{\mathcal{U}}$ is a deleted small convex open set \widehat{U} for some $U \in \mathcal{U}$. Similarly, by intersecting $\mathcal{U}_{\text {sing }}$ with M we get an induced cover $\widehat{\mathcal{U}}_{\text {sing }}$ of a deleted neighborhood of Σ. The key observation is the following.
Observation 3.7. $N(\widehat{\mathcal{U}})=N(\mathcal{U})$ and $N\left(\widehat{\mathcal{U}}_{\text {sing }}\right)=N\left(\mathcal{U}_{\text {sing }}\right)$.

4 The Mayer-Vietoris spectral sequence

Let X be a space, $\pi=\pi_{1}(X)$ and $r: \widetilde{X} \rightarrow X$ the universal cover. Given a left π-module A, define

$$
C^{*}(X ; A):=\operatorname{Hom}_{\pi}\left(C_{*}(\widetilde{X}), A\right)
$$

the cochains with local coefficients in A. Taking cohomology gives $H^{*}(X ; A)$.
Let \mathcal{U} be an open cover of X and $N=N(\mathcal{U})$ its nerve. Let $N^{(p)}$ denote the set of p-simplices in N. There is an induced cover $\widetilde{\mathcal{U}}:=\left\{r^{-1}(U)\right\}_{U \in \mathcal{U}}$ with the same nerve. Suppose that for each simplex σ of N, U_{σ} is connected and that $\pi_{1}\left(U_{\sigma}\right) \rightarrow \pi_{1}(X)$ is injective. (This means that $r^{-1}\left(U_{\sigma}\right)$ is a disjoint union of copies of the universal cover \widetilde{U}_{σ}.) There is a Mayer-Vietoris double complex

$$
C_{p, q}=\bigoplus_{\sigma \in N^{(p)}} C_{q}\left(r^{-1}\left(U_{\sigma}\right)\right)
$$

(cf. [1, §VII.4]) and a corresponding double cochain complex with local coefficients:

$$
C^{p, q}(A):=\operatorname{Hom}_{\pi}\left(C_{p, q} ; A\right)
$$

The cohomology of the total complex is $H^{*}(X ; A)$. Now suppose that for each simplex σ of N, U_{σ} is connected and that $\pi_{1}\left(U_{\sigma}\right) \rightarrow \pi_{1}(X)$ is injective. (This means that $r^{-1}\left(U_{\sigma}\right)$ is a disjoint union of copies of the universal cover \widetilde{U}_{σ}.) We get a spectral sequence with E_{1}-page

$$
\begin{equation*}
E_{1}^{p, q}=\bigoplus_{\sigma \in N^{(p)}} H^{q}\left(U_{\sigma} ; A\right) \tag{1}
\end{equation*}
$$

Here $H^{q}\left(U_{\sigma} ; A\right)$ means the cohomology of $\operatorname{Hom}_{\pi}\left(C_{*}\left(r^{-1}\left(U_{\sigma}\right)\right), A\right)$ or equivalently, of $\operatorname{Hom}_{\pi_{1}\left(U_{\sigma}\right)}\left(C_{*}\left(\widetilde{U}_{\sigma}\right) ; A\right)$. The E_{2}-page has the form $E^{p, q}=H^{p}\left(N ; \mathfrak{H}^{q}\right)$, where \mathfrak{H}^{q} means the functor $\sigma \rightarrow H^{q}\left(U_{\sigma} ; A\right)$. The spectral sequence converges to $H^{*}(X ; A)$.

In the next two sections we will apply this spectral sequence to the case where X is $M(\mathcal{A})$ and the open cover is $\widehat{\mathcal{U}}$ from the previous section. By Lemma 3.6, $\pi_{1}\left(\widehat{U}_{\sigma}\right) \rightarrow \pi_{1}(M(\mathcal{A})$ is injective so we get a spectral sequence with E_{1}-page given by (1). Moreover, the π-module A will be such that for any simplex σ in $N\left(\widehat{\mathcal{U}}_{\text {sing }}\right), H^{q}\left(\widehat{U}_{\sigma} ; A\right)=0$ for all q (even for $q=0$) while for a simplex σ of $N(\widehat{\mathcal{U}})$ which is not in $N\left(\widehat{\mathcal{U}}_{\text {sing }}\right), H^{q}\left(U_{\sigma} ; A\right)=0$ for all $q>0$ and is constant (i.e., independent of σ) for $q=0$. Thus $E_{1}^{p, q}$ will vanish for $q>0$ and $E_{1}^{*, 0}$ can be identified with the cochain complex $C^{*}\left(N(\mathcal{U}), N\left(\mathcal{U}_{\text {sing }}\right)\right)$ with constant coefficients.

5 Generic coefficients

Here we will deal with 1-dimensional local coefficient systems. We begin by considering such local coefficients on S^{1}. Let α be a generator of the infinite cyclic group $\pi_{1}\left(S^{1}\right)$. Suppose k is a field of characteristic 0 and $\lambda \in k^{*}$. Let A_{λ} be the $k\left[\pi_{1}\left(S^{1}\right)\right]$-module which is a 1 -dimensional k-vector space on which α acts by multiplication by λ.

Lemma 5.1. If $\lambda \neq 1$, then $H^{*}\left(S^{1} ; A_{\lambda}\right)$ vanishes identically.
Proof. If S^{1} has its usual CW structure with one 0 -cell and one 1-cell, then in the chain complex for its universal cover both C_{0} and C_{1} are identified with the group ring $k\left[\pi_{1}\left(S^{1}\right)\right]$ and the boundary map with multiplication by $1-t$, where t is the generator of $\pi_{1}\left(S^{1}\right)$. Hence, the coboundary map $C^{0}\left(S^{1} ; A_{\lambda}\right) \rightarrow C^{1}\left(S^{1} ; A_{\lambda}\right)$ is multiplication by $1-\lambda$.

Next, consider $M(\mathcal{A})$. Its fundamental group π is generated by loops a_{H} for $H \in \mathcal{A}$, where the loop a_{H} goes once around the hyperplane H in the "positive" direction. Let α_{H} denote the image of a_{H} in $H_{1}(M(\mathcal{A}))$. Then $H_{1}(M(\mathcal{A}))$ is free abelian with basis $\left\{\alpha_{H}\right\}_{H \in \mathcal{A}}$. So, a homomorphism $H_{1}(M(\mathcal{A})) \rightarrow k^{*}$ is determined by an \mathcal{A}-tuple $\Lambda \in\left(k^{*}\right)^{\mathcal{A}}$, where $\Lambda=\left(\lambda_{H}\right)_{H \in \mathcal{A}}$ corresponds to the homomorphism sending α_{H} to λ_{H}. Let $\psi_{\Lambda}: \pi \rightarrow k^{*}$ be the composition of this homomorphism with the abelianization map $\pi \rightarrow$ $H_{1}(M(\mathcal{A}))$. The resulting local coefficient system on $M(\mathcal{A})$ is denoted A_{Λ}. The next lemma follows from Lemma 5.1.

Lemma 5.2. Suppose \mathcal{A} is a nonempty central arrangement and Λ is such that $\prod_{H \in \mathcal{A}} \lambda_{H} \neq 1$. Then $H^{q}(M(\mathcal{A}))$ vanishes for all q.

Proof. Without loss of generality we can suppose the elements of \mathcal{A} are linear hyperplanes. The Hopf bundle $M(\mathcal{A}) \rightarrow M(\mathcal{A}) / S^{1}$ is trivial (cf. [6, Prop. 5.1, p. 158]); so, $M(\mathcal{A}) \cong B \times S^{1}$, where $B=M(\mathcal{A}) / S^{1}$. Let $i: S^{1} \rightarrow M(\mathcal{A})$ be inclusion of the fiber. The induced map on $H_{1}()$ sends α to $\sum \alpha_{H}$. Thus, if we pull back A_{Λ} to S^{1}, we get A_{λ}, where $\lambda=\prod_{H \in \mathcal{A}} \lambda_{H}$. The condition on Λ is $\lambda \neq 1$, which by Lemma 5.1 implies that $H^{*}\left(S^{1} ; A_{\lambda}\right)$ vanishes identically. By the Künneth Formula $H^{*}\left(M(\mathcal{A}) ; A_{\Lambda}\right)$ also vanishes identically.

Returning to the case where \mathcal{A} is a general arrangement, for each simplex σ in $N(\widehat{\mathcal{U}})$, let $\mathcal{A}_{\sigma}:=\mathcal{A}_{\operatorname{Min}\left(U_{\sigma}\right)}$ be the corresponding central arrangement (so that $\left.\widehat{U}_{\sigma} \cong M\left(\mathcal{A}_{\sigma}\right)\right)$. Given $\Lambda \in\left(k^{*}\right)^{\mathcal{A}}$, put

$$
\lambda_{\sigma}:=\prod_{H \in \mathcal{A}_{\sigma}} \lambda_{H} .
$$

Call Λ generic if $\lambda_{\sigma} \neq 1$ for all $\sigma \in N\left(\mathcal{U}_{\text {sing }}\right)$.
Theorem 5.3. (Compare [7, Thm. 4.6, p. 160]). Let \mathcal{A} be an affine arrangement of rank l and Λ a generic \mathcal{A}-tuple in k^{*}. Then $H^{*}\left(M(\mathcal{A}) ; A_{\Lambda}\right)$ is concentrated in degree l and

$$
\operatorname{dim}_{k} H^{l}\left(M(\mathcal{A}) ; A_{\Lambda}\right)=\beta(\mathcal{A})
$$

Proof. We have an open cover of $\widetilde{M}(\mathcal{A}),\left\{r^{-1}(\widehat{U})\right\}_{U \in \mathcal{U}}$. By Observation 3.7, its nerve is $N(\mathcal{U})$. By Lemma 5.2 and the last paragraph of Section 4, the E_{1}-page of the Mayer-Vietoris spectral sequence is concentrated along the bottom row where it can be identified with $C^{*}\left(N(\mathcal{U}), N\left(\mathcal{U}_{\text {sing }}\right) ; k\right)$. So, the $E_{2^{-}}$ page is concentrated on the bottom row and $E_{2}^{p, 0}=H^{p}\left(N(\mathcal{U}), N\left(\mathcal{U}_{\text {sing }}\right) ; k\right)$. By Lemma 3.2 these groups are nonzero only for $p=l$ and

$$
\operatorname{dim}_{k} E_{2}^{l, 0}=\operatorname{dim}_{k} H^{l}\left(N(\mathcal{U}), N\left(\mathcal{U}_{\text {sing }}\right) ; k\right)=\beta(\mathcal{A})
$$

Remark 5.4. When $k=\mathbb{C}$, a 1-dimensional local coefficient system on X is the same thing as a flat line bundle over X.

$6 \quad \ell^{2}$-cohomology

For a discrete group $\pi, \ell^{2} \pi$ denotes the Hilbert space of complex-valued, square integrable functions on π. There are unitary π-actions on $\ell^{2} \pi$ by either left or right multiplication; hence, $\mathbb{C} \pi$ acts either from the left or right as an algebra of operators. The associated von Neumann algebra $\mathcal{N} \pi$ is the commutant of $\mathbb{C} \pi$ (acting from, say, the right on $\ell^{2} \pi$).

Given a finite CW complex X with fundamental group π, the space of ℓ^{2}-cochains on its universal cover \widetilde{X} is the same as $C^{*}\left(X ; \ell^{2} \pi\right)$, the cochains with local coefficients in $\ell^{2} \pi$. The image of the coboundary map need not be closed; hence, $H^{*}\left(X ; \ell^{2} \pi\right)$ need not be a Hilbert space. To remedy this, one defines the reduced ℓ^{2}-cohomology $\mathcal{H}^{*}(\widetilde{X})$ to be the quotient of the space of cocycles by the closure of the space of coboundaries. We shall also use the notation $\mathcal{H}^{*}\left(X ; \ell^{2} \pi\right)$ for the same space.

The von Neumann algebra admits a trace. Using this, one can attach a "dimension," $\operatorname{dim}_{\mathcal{N} \pi} V$, to any closed, π-stable subspace V of a finite direct sum of copies of $\ell^{2} \pi$ (it is the trace of orthogonal projection onto V). The nonnegative real number $\operatorname{dim}_{\mathcal{N} \pi}\left(\mathcal{H}^{p}\left(X ; \ell^{2} \pi\right)\right)$ is the $p^{\text {th }} \ell^{2}$-Betti number of X.

A technical advance of Lück [5, Ch. 6] is the use local coefficients in $\mathcal{N} \pi$ in place of the previous version of ℓ^{2}-cohomology. He shows there is a welldefined dimension function on $\mathcal{N} \pi$-modules, $A \rightarrow \operatorname{dim}_{\mathcal{N} \pi} A$, which gives the same gives the same answer for ℓ^{2}-Betti numbers, i.e., for each p one has that $\operatorname{dim}_{\mathcal{N} \pi} H^{p}(X ; \mathcal{N} \pi)=\operatorname{dim}_{\mathcal{N} \pi} \mathcal{H}^{p}\left(X ; \ell^{2} \pi\right)$. Let \mathcal{T} be the class of $\mathcal{N} \pi$ modules of dimension 0 . The dimension function is additive with respect to short exact sequences. This allows one to define ℓ^{2}-Betti numbers for spaces more general than finite complexes. The class \mathcal{T} is a Serre class of $\mathcal{N} \pi$-modules [8], which allows one to compute ℓ^{2}-Betti numbers by working with spectral sequences modulo \mathcal{T}.

Lemma 6.1. Suppose \mathcal{A} is a nonempty central arrangement. Then, for all $q \geq 0, H^{q}(M(\mathcal{A}) ; \mathcal{N} \pi)$ lies in \mathcal{T}. In other words, all ℓ^{2}-Betti numbers of $M(\mathcal{A})$ are zero.

Proof. The proof is along the same line as that of Lemma 5.2. It is wellknown that the reduced ℓ^{2}-cohomology of \mathbb{R} vanishes. Since $M(\mathcal{A})=S^{1} \times$ B, the result follows from the Künneth Formula for ℓ^{2}-cohomology in $[5$, 6.54 (5)].

Theorem 6.2. Suppose \mathcal{A} is an affine hyperplane arrangement. Then

$$
H^{*}(M(\mathcal{A}) ; \mathcal{N} \pi) \cong H^{*}\left(N(\mathcal{U}), N\left(\mathcal{U}_{\text {sing }}\right)\right) \otimes \mathcal{N} \pi \quad(\bmod \mathcal{T})
$$

Hence, for $l=\operatorname{rk}(\mathcal{A})$, the ℓ^{2}-Betti numbers of $M(\mathcal{A})$ vanish except in dimension l, where $\operatorname{dim}_{\mathcal{N} \pi} \mathcal{H}^{l}(\widetilde{M}(\mathcal{A}))=\beta(\mathcal{A})$.

Proof. For each $\sigma \in N\left(\mathcal{U}_{\text {sing }}\right)$, let $\pi_{\sigma}:=\pi_{1}\left(U_{\sigma}\right)$. By Lemma 6.1,

$$
\operatorname{dim}_{\mathcal{N} \pi_{\sigma}} H^{*}\left(M\left(\mathcal{A}_{\sigma}\right) ; \mathcal{N} \pi_{\sigma}\right)=0
$$

Since the \mathcal{N}_{π}-module $H^{*}\left(M\left(\mathcal{A}_{\sigma}\right), \mathcal{N} \pi\right)$ is induced from $H^{*}\left(M\left(\mathcal{A}_{\sigma}\right), \mathcal{N} \pi\right)$,

$$
\operatorname{dim}_{\mathcal{N} \pi} H^{*}\left(M\left(\mathcal{A}_{\sigma}\right) ; \mathcal{N} \pi\right)=\operatorname{dim}_{\mathcal{N} \pi_{\sigma}} H^{*}\left(M\left(\mathcal{A}_{\sigma}\right) ; \mathcal{N} \pi_{\sigma}\right)=0
$$

As in the proof of Theorem 5.3, it follows that the E_{1}-page of the spectral sequence consists of modules in \mathcal{T}, except that $E_{1}^{*, 0}$ is identified with $C^{*}\left(N(\mathcal{U}), N\left(\mathcal{U}_{\text {sing }}\right)\right) \otimes \mathcal{N}(\pi)$. Similarly, the E_{2}-page consists of modules in \mathcal{T}, except that $E_{2}^{*, 0}$ is identified with $H^{*}\left(N(\mathcal{U}), N\left(\mathcal{U}_{\text {sing }}\right)\right) \otimes \mathcal{N} \pi$. For each subsequent differential, either the source or the target is a module in \mathcal{T}, and hence for each i and j one has that $E_{\infty}^{i, j} \cong E_{2}^{i, j}(\bmod \mathcal{T})$. The claim follows since the filtration of $H^{*}(M(\mathcal{A}) ; \mathcal{N} \pi)$ given by the E_{∞}-page of the spectral sequence is finite.

References

[1] K. S. Brown, Cohomology of Groups, Springer-Verlag, Berlin and New York, 1982.
[2] M. W. Davis and I. J. Leary, The ℓ^{2}-cohomology of Artin groups, J. London Math. Soc. (2) 68 (2003), 493-510.
[3] B. Eckmann, Introduction to ℓ_{2}-methods in topology: reduced ℓ_{2} homology, harmonic chains, ℓ_{2}-Betti numbers, Israel J. Math. 117 (2000), 183-219
[4] A. Hatcher, Algebraic Topology, Cambridge Univ. Press, Cambridge, 2001.
[5] W. Lück, L^{2}-invariants and K-theory, Springer-Verlag, Berlin and New York, 2002.
[6] P. Orlik and H. Terao, Arrangements of Hyperplanes, Springer-Verlag, Berlin and New York, 1992.
[7] V. V. Schechtman and A. N. Varchenko, Arrangements of hyperplanes and Lie algebra homology, Inventiones Math. 106 (1991), 139-194.
[8] J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. Math. 58 (1953) 258-294.
M. W. Davis mdavis@math.ohio-state.edu
T. Januszkiewicz tjan@math. ohio-state.edu
I. J. Leary leary@math. ohio-state.edu

Department of Mathematics, The Ohio State University, 231 W. 18th Ave., Columbus
Ohio 43210

[^0]: *The first author was partially supported by NSF grant DMS 0405825.
 ${ }^{\dagger}$ The second author was partially supported by NSF grant DMS 0405825.
 \ddagger The third author was partially supported by NSF grant DMS 0505471.

