Groups possessing extensive hierarchical decompositions

Januszkiewicz, T., Kropholler, P.H. and Leary, I.J. (2010) Groups possessing extensive hierarchical decompositions Bulletin of the London Mathematical Society, 42, (5), pp. 896-904. (doi:10.1112/blms/bdq045).


Full text not available from this repository.


The class HF is the smallest class of groups that contains all finite groups and is closed under the following operator: whenever G admits a finite-dimensional contractible G-CW-complex in which all stabilizers are in HF, then G is itself in HF. The class HF admits a natural filtration by the ordinals. For each countable ordinal we show that there is a countable group that is in HF but has not arisen by stage alpha of this filtration. Previously this result was known only for alpha equal to 0, 1, and 2. The groups that we construct contain torsion. We also review the construction of a torsion-free countable group in HF that is not in stage 2 of the filtration.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1112/blms/bdq045
ISSNs: 0024-6093 (print)
Organisations: Pure Mathematics
ePrint ID: 199421
Date :
Date Event
17 June 2010e-pub ahead of print
October 2010Published
Date Deposited: 18 Oct 2011 11:01
Last Modified: 18 Apr 2017 01:28
Further Information:Google Scholar

Actions (login required)

View Item View Item