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Abstract—This paper focuses on the refinement of standard automated dynamic stability assessment [17]-[19]. Exampl
Hilbert Huang transform (HHT) technique to accurately cha-  of these approaches include the modified Yule Walker method,

racterize time varying, multi components inter area oscillations. the extended modified Yule Walker with spectral analysis and
Several improved masking techniques for Empirical Mode De- . R

composition (EMD) and a local Hilbert transformer are proposed sub-spe}ce system identification methods. o

and a number of issues regarding their use and interpretation ~ Despite these advances, modal characterization undegprop

are identified. Simulated response data from a complex power analysis remains a challenge due to the complexity of the
system model is used to assess the efficacy of the proposedriving system processes operating on various temporidsca
techniques for capturing the temporal evolution of critical systen Recently, nonlinear and non-stationary analysis tectesiqu

modes. It is shown that the combination of the proposed methods .
results in superior frequency and temporal resolution than other based on the Hilbert-Huang transform (HHT) [20] have been

approaches for analyzing complicated non-stationary oscillations. Used to analyze data from nonlinear and non-stationary pro-
cesses [6], [21], [22]. The method has been applied to many
Index Terms—Hilbert Huang transform; Empirical Mode De- importan.t problems in various f_ields.including medical [23]
composition; Masking; Convolution filter; Inter area oscillation. ~geophysics [24] and power engineering [25].
The cornerstone to the whole HHT procedure is the Em-
pirical Mode Decomposition (EMD) that separates a signal
|. INTRODUCTION into a series of amplitude - as well as frequency - modulated
_ ) signal components [20], [26]. Extracting these signal com-
RANSIENT response of power systems typically d's_plaﬁonents from a data set, however, is very challenging and
I non-stationary characteristics [1]. Extracting and guanty oy jnyolve various complications including mode mixing
fying temporal modal behavior from the observed oscill@io ;4 the generation of spurious information for various $ype
present a significant challenge due to the nature of swigchi f signals. This may obscure physical interpretation of the
events and other control actions that may take place over tem behavior, especially when the observed oscillation

observation peri_od_ [21-{8]. ) ) exhibit closely spaced modes. Other issues are the endseffec
Modal analysis is one of the most effective techniques I o iated with the computation of the Hilbert transform

extract modal information from power systems models [934 the smoothness of the representations. All these issues
[11]._However un_fortunatgly, oscillatory processes maYBX have motivated considerable recent research into devegopi
nonlinear behavior and in many cases linear models are W?éthodologies to improve the HHT

sufficignt to capture timg—varying features associatech Wit 5 qqress the problem of mode mixing, EMD with masking
switching and control actions. Several other complemgfntatreChnique was introduced in [27], [28]. It also solves the

techniques based on ringdown analysis to system pertarisati , ,pjem of intermittency that prevents the effectivenegs o
and MIMO state-space identification techniques have beEﬂ/lD. Based on this masking technique, in [29], [30] a
successfully applied to analyze wide-area oscillatoryaliyits - o ssematic procedure for constructing the masking sigisals
[31, [4], [8], [12], [13]. Fourier-based analysis tools l@aalso ,.,hoqed. The ability of these approaches to analyze power

been used for off line studies of power system dynamics [14, ajity signals with relatively high frequency was dis@bs

[15]. These techniques, however, rely on the assumption gt o) \while these approaches are found to work well on

linearity and assume that the data are strictly periodic gL s types of signals, simulation results show that they
stationary in time which limits their applicability to reptob- may fail to provide characterization of more complicated

lems. In addition, Fourier spectrum defines uniform harrppné stem behavior, especially for signals with low frequency
components globally and therefore needs many additio mponents, low magnitude or narrow frequency range.

harmonic components to simulate nonstationary data. ~  1pig research investigates several extensions to the HHT
Other efforts include the use of ARMA block-processing, .pnique. Improvements to both the masking technique and

techniques to estimate stationary low-frequency modes frqe computation of Hilbert transformers are proposed, and

measured ambient power system data [16] and the de\ée'number of issues within their use and interpretation are

lopment of mode meter block-processing algorithms for gentified. The efficacy of the method to separate closely
This work is supported by the EPSRC Research Grant EP/E383R4in spaced m(_)dal comppnents is demonStrated on both synthetic
collaboration with ABB, Switzerland and National Grid, UK. and transient stability data. It is shown that the method
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Il. PRELIMINARIES following decomposition of the signal(t),

In an effort to make the paper reasonably self-contained, th  z(¢) = Z c;(t) +ry(t)
standard algorithm of the HHT and its components, the EMD j=1
technique, Hilbert transform and the damping computatoa, a P n @
briefly reviewed. Our development follows the development o => G+ alt)+> ) alt)+r(t),
Huang [20], to which we refer the readers for more details. i=1 k=q+1 l=p+1
whereq < p < n, ¢(t), i = 1,---¢ contain high frequency
noise componentsy(t), k = ¢+1,- - - p contain the physical
A. The Empirical Mode Decomposition method behavior of interest and the remaining termagt), | =
p + 1,---n and r,(¢) contain less relevant, nonsinusoidal
The EMD method provides an analytical basis for theharacteristics. Note that in some applications where tligen
decomposition of a signal(¢) into a set of basis functions, does not involve or has been removed through filtering, tie fir
called Intrinsic Mode Functions (IMFs). An IMF is defined ag components may not exist.

a signal that satisfies the following criteria.

1) Over the entire time series the number of extrema afd Hilbert transform
the number of zero-crossings differ by, at most, one, i.e. Given a real signak(t). Its complex representation is
an essentially oscillatory process. .

2) At any point the mean value of the envelope defined by 2(t) = @(t) +izn(t) @

the local maxima and the envelope defined by the locghere ; (¢) is the Hilbert transformof x(t), given by
minima is zero.

1 oo 1(s)
The basic EMD method adopted to extract the IMFs es- zp(t) = —P / rompLLl @)

s — 00
sentially consists of a three-step procedure cadlifiihg [6]. _ o ) )
The goal is to subtract away the large-scale features of tjEh P the Cauchy principal value of the integral. Equation
signal repeatedly until only the fine-scale features remain (2) can be rewritten in an exponential form as

signal z(t) is thus divided into the fine-scale detailg) and 2(t) = A(t)e® (4)

the residuer(t), hencex(t) = ¢(t) + r(t). The components -~ \/2—’2

contained in the fine-scale details are the IMFs. where Alt) = Vat)? +on(t)? ®)
The standard EMD process can be summarized as follows. (t) = arctan x;’(g) (6)

S1. Given the original signal(t); setr,(t) = x(t), j = 1.
S2. Extract thej-th IMF using the sifting procedure:
a. Seti =1 and h’L—l(t) = ’I”j_l(t). Z(t) = A(t)ewj(t) (ZOJ(t)) + €l¢(t)A(t) ) (7)

b. Identify the successive local minima and the 10Cg}ere (1) is the instantaneous angular frequency, which by

maxima for h;1(t). The time spacing betweenqefinition is the time derivative of the instantaneous angle
successive maxima is defined to be the time scale

of these successive maxima. w(t) = (t) = 4 etan THO) ®)

c. Interpolate the local minima and the local maxima dt xz(t)
with a cubic spline to form an uppef....,_, (t) Hence, the instantaneous frequency can be defingt{tas=
and lowere,,;,_, (t) envelope for the whole data%, and using (4) and (7), it can be computed as
span.

d. Compute the instantaneous mean of the envelopesg ;) _ Lim <Z(t)) _ L a@®)in(t) —zu()a(t) )
mi—1(t) = (€min, 1 (t) + €maz, ,(t))/2; and de- 2 2(t) 2 a?(t) + % (1)
termine a new estimati; (t) = h;—1(t) —m;—1(t),
such thate, i, , (t) < hi(t) < emax,_, (t) for all C. Damping Ratio {) estimates
t. Seti =i+ 1. The knowledge about the instantaneous magnitude and

e. Repeat steps 2b-2d until(¢) satisfies a set of instantaneous frequency of a signal allows us to further
predetermined stopping criteria (follows the criterigompute the instantaneous damping of the signal. Damping
1) and 2) of an IMF). Then set;(t) = h(t). characterization is another useful alternative to theyaimbf

S3. Obtain an improved residue(t) = r;_1(t) —c;(¢). Set local behavior of the oscillation. Consider the signal (Al
j =j+ 1. Repeat step S2 until the number of extrem@an rewrite the signal as [31]

in r;(t) is less than 2. 2(t) = A(t)e?® = A()e DT (10)

This approach allows elimination of low amplitude ridin . .
waves in the time series and eliminates asymmetries ngmen the time dependent decay function can be modeled as

respect to the local mean, i.e., it makes the wave profile more o(t) — t i 11
symmetric. At the end of this process, the EMD vyields the (t)=- 0 a(t)dt . (11)

The time derivative of (4) is




Moreover, using (4) and (7), we obtain

{1 O

20 ( a(t) + A(t)) —Hw(t)] (12)
Noting that ® i) . : j : : :

A(t t - ; - - - -
Re(g(t)) — m , (13) 0 5 10 Timés[sec] 20 25 30
we have Figure 1. The two-component synthetic signal (15).
_ o do) . [A®) A
alt) = — e Alh) A(t)] . (14) - 32-

We emphasize that (14) is a generalization to modal analy = -30
of the notion of damping for nonstationary signals. Th 20
computation of damping ratig from local information in (14) L~ ki,
depends on the fast and accurate estimation of the physici= oy
meaningful instantaneous magnitudét) which is given by 200
(5). Also, approximating the signal with an exponentiahsilg ™
we should be able to find a constant or at least a slow £
varying A(t), such thatA(t) ~ 0. Therefore, to make sure —
that the computation is amenable to temporal modal analys
a physically motivated basis for the data is requited. Taiobt
the damping ratio estimate of a range of signal, the avera . . . . .
(mean value) of the instantaneous damping is computed. 0 5 10 15 20 25 30

Remark 2.1:In HHT technique, Hilbert transform is ap- Time [sec]
plied to each IMF to compute its instantaneous frequengygure 2. IMFs of signal (15) obtained from standard EMD (Teshed
instantaneous magnitude, as well as instantaneous dampigy lines are the 0.8Hz and 0.5Hz components of (15).

As instantaneous frequency is best definechfono-frequency

signal, i.e. signal that contains only one (dominant) festpy, The dashed plots with the first two IMFs are the 0.8Hz and

it makes sense to expect each IMF to be mono-frequen€y©Hz components of the signal (15). Quite contrary to what i

However, as pointed out earlier, the IMFs may contain €Pected/M Fy andIM F, do not imitate the two sinusoidal

mixture of frequencies (frequency modulation) and aredadiffi components of signal. Moreover, it is obvious that/ F; is

to interpret in terms of conventional modal analysis. Thas h "ot a mono-frequency signal, but instead it exhibits mode mi

motivated the need for demodulation techniques that extried. making little sense to expect useful physical intetgten

from each IMF the dominant interacting frequencies. m through the application of Hilbert analysis. The discrepes

between the decomposition result and the components of the
||| M ASKING TECHN|QUES TO IMPROVE EMPIRICAL Signal propagate to Othel‘ IMFS making the OVera” eXtrEHI:'[iO
MODE DECOMPOSITION of temporal behavior difficult.
IIn an attempt to improve the performance and effectiveness
EMD, the use of masking signals is introduced in [27], [28]
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Residue

This section discusses the refinement of the conventio%?
EMD method to study the oscillatory dynamics, particularl;f.he technique aims at solving the problem of mode mixing

that involve the identification of frequency within the rang o .
S . and ambiguity that occur when two or more frequencies are not
on 0.1Hz to 1Hz which is the typical range of power systems . : .
. ; . o well separated. More in-depth discussion about the bacikgro
inter-area modes. First, a synthetic example is introduce R . . : .
) L . and technicalities of this technique is presented in [26itHer
to examine conditions under which the standard HHT an . T .
: . . . . development of EMD with masking is proposed in [29].
the conventional masking technique may fail. Then, various

algorithms to refine the existing HHT are proposed. Although this technique has proved effective in analyzing a

large variety of signals, some limitations arise in the gtatl
composite oscillations involving low-frequency compotsen

A. When the standard EMD does not work To investigate further these limitations, we applied theskitag
Consider a two-component signal(t), technique from [29] to the signal (15). Figure 3 that compare
2(t) = 8sin(1.67t) + 20 sin(rt) (15) the spectra of the first IMF obtained using conventional

EMD with that of the approach in [29] does not show any
The time evolution of this testing signal is shown in Figurémprovement. As the frequency components of the signal, in
1. The clear feature of signal (15) is that it consists dhis case are 0.8Hz and 0.5Hz, are very low and consequently
low frequency components and the magnitude of the hightve 0.3Hz difference between them is very small, this engsti
frequency component is significantly lower than that of thmasking technique becomes ineffective in separating these
lower frequency component. components. Techniques to effectively identify and isolat

The standard EMD [32] is applied to the signal (15). Figurthe individual frequency components are discussed in the
2 shows the IMF components extracted using this procedufellowing subsection.



20 (@) 20 (b) for the whole process.
i ' 1.2. Construct two signals™ () = z(t) + mask;(t)
] RN | RN e R | R andz~ (t) = z(t) — mask,(t). Perform EMD on
ol ol il each signal following steps S1 to S3 from the
standard EMD to obtain all IMFs from each of
SN TN N them i.e.c/ (t) and¢; (t),i =1,2,--- ,n and also
0 02 05 08 1.2 1600 02 05 08 12 16 the residuer;] (1) andr, (1).
 Frequency [Hz] ' " Frequency [HZ] ' 1.3. The IMFs and the residue of the signdt) are
W+ ®)
Figure 3. Fourier spectrum of the first IMFs of signal (15)ifr¢a) standard ci(t) = 2 , i=1,2,--,n, (18)
EMD and (b) EMD with masking [29]. +(¢ —(t
ralty = CHOHTR @) 19)
B. EMD method with FFT-based masking technique ) )
) , ) , 1.4. The total reconstructed signa(t) is
It is comprehensible from the discussion and examples
in Subsection llI-A that issues affecting the effectivenes - "
standard EMD and the existing masking techniques are a(t) = Zci(t) +ra(t) - (20)

« The signal consists of low frequency componénts

« The magnitude of the highest frequency component is
much lower than others, particularly the second compo-
nent, which is directly next to it in the Fourier spectrum;

« The frequency components are high enough, but they are
relatively close to each other.

Based on the above considerations, we proposed the use of

a unified masking signal that in some sense refines the results
of [29] and at the same time generalizes the results of [27],
[28]. The algorithm of the refined EMD, named as R-EMD is
describe as follows:

R1. Perform FFT on the original signa(t) to estimate the
frequency componentg,, fo,--- f,, with fi > fo >

- > fn. These captured frequencies are the station-
ary equivalence of the possibly time varying frequency
components of the signai(t).
Construct the masking signataask;, masks, --- ,
mask,_1 using the following sinusoidal signals

masky(t) = My sin(2r(fx + fe+1)t) -

R2.

(16)

The value of M, is empirical and borrowing from
[29] is chosen to beM = 5.5 x My, with M > 0
the magnitude of the spectrum of theth frequency
component.

Identify two cases depending on the physical values of
the highest frequency components and f, and their
associated amplitude®/; and Mo:

Case 1:f one of the following conditions hold:

a) f1 < 1 andM1 < R21M2,
b) f1>1andfi < Rifa,

R3.

i=1

Case 2iIf other than the conditions a) to d) hold, then

2.1
2.2.

2.3.
2.4,

2.5,
2.6.

2.7.

Use all the constructed masking signals (16).
Construct two signals™(t) = z(t) + masky(t)
andz~(t) = z(t) — mask;(t). Perform EMD to
each signal to obtain the first IMF only from each
one, i.e.cf (t) ande; (¢). The first IMF of z(t) is

e ci
iy = OO

Obtain the residue, (t) = z(t) — ¢1(¢).

Use the next masking signal, perform steps 2.2
and 2.3 iteratively using each masking signal while
replacingz(t) with the residue obtained at each
iteration, untiln —1 IMFs containing the frequency
componentsfs, f3,-- -, f,, are extracted. The final
residuer,, (¢) will contain the remainder.

Compute the final residue, (t) = z(t) — ¢, (t).

If the residue,,(¢) is above the threshold value of
error tolerance, then repeat Step S2 of the sifting
process presented in Subsection II-A on(t) to
obtain the next IMF and new residue.

The total reconstructed signa(t) is

(21)

n

B(t) =Y eilt) +ralt) .

i=1

(22)

Remark 3.1:In the complete R-EMD algorithm, we com-
bine the proposed masking algorithm, referred to as Case 1
and the masking algorithm from [29], referred to as Cas&?
can be seen clearly from the required conditions stateden th
algorithm, Case 1Is active during the "extreme conditions”

c) fi>1landR;fs < fi < Rafe andM; < Ras Mo,
d) fi>1andf, > Ryf; and M, < Ry3Mo,
WhereR21 =11, Ry =15, Ry = 2, Rys = 2 and
Ro3 = 0.5, then
1.1. Use only the first masking signal

masky (t) = My sin(2r(f1 + f2)t) a7

lwithout loss of generality, we consider 1Hz as the boundatyben the
low frequency and high frequency signals. Therefore we idensignals with
frequency components lower or equal to 1Hz as low frequergyass.

when the frequency components are lofy € 1) or when
the first two highest frequency components are very close
to each other. On the other hand Caséakes care of the
excluded conditions, particularly to decompose high fesoy
signals. Therefore, the whole process of R-EMD can handle
the decomposition for a large sets of signals both with high
and low frequency components.

Moreover, the values of the parametdts, Rs, Ro1, Roo
and R»3 in Case lare chosen based on the relation between
the frequency as well as the amplitude of the first two highest



frequency components of the composite signals. In thispapéA2. In the spirit of Hilbert analysis, compute the energy
the values are chosen to suit the application for signals tha  weighted mean of (¢) over L samples, i.e.

contain inter-area oscillation. The choice helps clagsify I o

signals that satisfies the three reasons given at the baginni F= 2 im1 A1 () f1(2) . (23)

of this section. Although they are not optimal, the chosen Y Ar(i) 1)

combination yields effective decomposition for a large afet

signals. In general, seeing the EMD algorithm as a filteriné3' Observe Case rom R3, then replace step 1.1 with the

process, we can think of the parameters as filter gains tkat ar following. . .
possible to tune if necessary. - 1.1. Construct the masking signal

The R-EMD algorithm gives different procedures for deal- b (F) = (2 " o4
ing with high frequency signals and low frequency signate T maski(t) = Mysin(2r(mf)t) , (24)
main difference is in the way the masking signals are utllize where M = max;—; ... ; A;(i) andm > 1.

For Case 2we use as many masking signals as the numbgge rest follow the steps given in the R-EMD algorithm.
of frequencies (or ideally the number of frequencies minus Ramark 3.3:1f the maximum frequency of the composite

one) we want to extract from the signal, and we subtract t@?gnal f is lower than 1Hz. it is common to choose
. . gy ’ max Ll
effect of each masking signal at every sifting stage, ahe , " _ 5 gince a higher value of, may cause the masking

IMF is obtained. On the other hand, for Casewe use only  gjgng) ineffective as its frequency; f, would be much higher

the first masking signal, constructed from the first two haghey, Frnas. Comparing with [27], where the masking signal

frequency components peaking on the Fourier spectrum E’}Qdcomputed asnask, (1) = a sin(27rit), the parametem

let the masking signal stay until the end of the decompcrsitiq:e|o|aces the parametst, the samphﬁg rate. Moreover, we

process. The effect of this masking signal is then autoralhic introduced M, = max,_1 ... 7 A, (i) for analytical choice of

removed from the signal through the use of formula (18). a0 in [27]. To complet7e$th’e formulation of the method, an
Remark 3.2:The use of only one masking signal cOngficient algorithm to extract instantaneous attributesiasv

structed using the two highest frequency components of theqored based on the use of a local Hilbert transform.m
spectrum in_Case [ justified, since it satisfies the condition

of a masking frequency to be higher than the frequency to be
masked. The significant advantage of this algorithm is th&t Convolution based local Hilbert transform

it preserves well the magnitude of the signal components,gyisting approaches to the calculation of the complex trace

which is not the case for other algorithms as the decompositi(z) are based on the computation of the analytic signal tifrou

often fails. Hence, not only that the instantaneous frequenthe Fourier transform. This transform, however, has a dloba

of the IMFs obtained using the R-EMD algorithm is morgnaracter and suffers from problems such as end effects and

meaningful, but also we can obtain a quite good estimation @hkage. In this section, an alternative approach basedten fi

the instantaneous magnitude of the IMFs. B panks is proposed that circumvents some of these effects.
Given a signal

C. EMD method with energy-based masking technique x(t) = Za(w) cos(wt) 4 b(w) sin(wt) , (25)

w

In the previous subsection we use FFT to construct the
masking signals, which implies that to some extent we rely wfherea andb are the Fourier coefficients
FFT to separate the frequency components of the composite T 1 (7
signals. In this section, we extend this approach by daivin a(w) = T / x(t) cos(wt)dt; b(w) = T /x(t) sin(wt)dt.
the masking signal directly from the EMD. This results in 0 J0
an automated procedure in which the masking procedureTise transformation to a complex time series is
embedded in the EMD decomposition.

Drawing on Case lin Section llI-B and the notion of 2(t) =) a(w) cos(wt) + b(w) sin(wt)
instantaneous mean frequency in [27],aiernativeapproach @ ) (26)
to determining an appropriate masking signal is suggested, + i [b(w) cos(wt) — a(w) sin(wt)]
relaxing the dependence on Fourier analysis for detechiag t = x(t) +1i2(t) ,

frequency components of the signal. The algorithm, called A . . .
El\/?D is )sl,umerized as f0||0W39 : wherei(t) = zy(t) is the quadrature function, or the Hilbert

transform in (2). The Hilbert transform used in this constru

Al. Perform the standard EMD algorithm on the origingjon, js obtained directly by operating the real componerthwi
signal z(t) to obtain the IMFs. Use only the first IMF, 5 convolution filter

¢1(t), which is expected to contain the highest frequency
component of the signalf,,...., but may also contain R _
mode mixing with other lower frequency components. (t) =wu(t) = l;wx(t — D)
Perform Hilbert transform om, (¢) to obtain its instan- o

taneous frequencyf (¢t) and instantaneous magnitudevhere k() is the convolution filter with unit amplitude re-
Aq (). sponse and 90phase shift. A simple filter that provides an

M
(27)



adequate amplitude response ahphase response is given 1) Decomposing capability testFigure 4 shows the first

by [33] as three IMFs extracted following the R-EMD algorithm, whilst
s o Figure 5 shows the spectra of the first and the second IMFs.

h(l) = {zﬂ sin®(wl/2), 1#0 (28) For error analysis/ M Fy, and I M F;, are also compared with
0 =0, the corresponding components of the composite signal (15)

h he fil 5 ield which are plotted as the dashed lines background. Overall,
where M <1 < M. As M — oo the filter (28) yields the improved method provides superior temporal resolution

an exact Hilbert tr_an_sform. FaV/ finite, the filt_er introduces The frequencies identified from Hilbert analysis are 0.8Hd a
ripple effects. To limit these effects, a local Hilbert tséorm O%

) ) Hz, which are in agreement with the expected behavior. In
has been developed based on filter banks. As suggested jn [§ ition, comparing Figure 4 and Figure 5 we can clearly see
[35], the filter banks are developed such that the flatnesstﬂ

i X X t although R-EMD relies on FFT to estimate the frequency
the frequency response is maximal for the length of the 'f”tq,romponents of the signal, in fact R-EMD provides correction
Defining z = ¢/“, a maxflat filter can be defined by

that yields more accurate information of the amplitude afhea
14 2-1\% components. Figure 6 shows the correctness of the whole
h(z) = ( 3 ) Q2p—2(2) (29) decomposition results and the completeness of the algarith

where p is the number that determine the zeroswat= T, (a) (b)
and @ is chosen such that(z) is halfband. The filteh(z) is  © : el T =
shifted in frequency by;. : 15

4
10

IV. APPLICATIONS 2

To further illustrate the usefulness of the method, weo ' e s
c_onside_r both synthetic _data and data from transie_nt #abil  ° Olfllrequgﬁcy [|_1|22] 16 00 F?gqug'r?cy [HZ] °
simulations. For comparison, the system response is athlyz
using various algorithms described in previous subsestion Figure 5. Fourier spectra of the 1st and 2nd IMFs of signg) ¢iith R-EMD.

A. Application to a synthetic signal %0 i i ; "

t —— Reconstructel]
Original

As a first example, we examine again the synthetic signe '-‘ :":
(15) that we have used in Subsection IlI-A. In order to 0 1 \ 1
verify the accuracy and generality of the present methol Vo
we examine again the synthetic signal 14 in Subsection II_30 \ v V , y vy
A with the two-fold objective of evaluating the ability of ¢ 5 10 15 20 25 30
the method to extract modal components and assessing .. Time [sec]
generality to deal with nonlinear signals. Previous stsidi€igure 6. Reconstruction of signal (15) from IMFs obtainasihg R-EMD.
have shown that conventional analysis fails to separate the
individual modal making physical interpretation difficuitve
focus first on the decomposing capability of the metho&Jcb
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Figure 7 plots (a) and (b) show the instantaneous frequency
IMF, and I M F; respectively, which show the frequency
mponents of the composite signal. This figure also congpare
the instantaneous frequency obtained utilizing the contman
hilbert in Matlab, with the convolution approach proposed in
Subsection 11I-D, where the latter is seen to reduce endistfe

The following conclusions can be drawn from this analysis.
First, that R-EMD achieves a higher temporal resolutiomtha
the standard methods. Second, the convolution based Hilber
transformer provides smoother transformation of the digna
by reducing end effects. The combined application of these
approaches results in a more accurate physical charaatteriz
of temporal behavior of the signal.

We have also tested the energy based A-EMD algorithm on
signal (15). However we do not include the simulation plots
in this paper as they are very similar to the results from the R
EMD algorithm. We will show the application of the A-EMD
in the next example.

2) Reliability to handle nonlinear/nonstationary signals
As a second example to assess the ability of the method to trea

Figure 4. IMFs of the signal (15) obtained using the R-EMD € Tdashed genera| Signa|S’ a nonlinear and nonstationay version ef th
lines are the individual components making up the signal (15))

Then, we test the ability of the refined technique to deal wi
nonlinear/nonstationary signals.

1
Time [sec]



(@) Frequency IMF1 the Prony analysis as the damping of the first two IMFs are

2.44 L . " . R . .
Lol o o o ””—rIStandard | approximately zero. As suggested in Figure 8, Hilbert asialy
0.5 MV eare : z L == Convolutiory interprets nonlinearity/nonstationarity in terms of fuegcy
N . . . . . ] and amplitude modulation. As observed in column 3 of Table
0 5 10 15 20 25 30 |, the HHT produces three additional frequency components i

addition to the main frequency components, which corredpon
to the amplitude modulation from the two main frequency
‘ components and the decomposition inaccuracy. This is in
, | marked contrast to Prony analysis in column 5 of Table I,

0 + : : : :
0 5 10 15 20 25 30 which necessitates a large number of modal components to

. . . © Frequency 'MFs. . , accommodate nonlinear/nonstationary features.

.6
o o o o o o Table |
0.2 - COMPARISON OFR-EMD RESULTS ANDPRONY ANALYSIS RESULTS
0+

0 5 10 15 20 25 30 Dist. Signal || HHT (mean values) Prony
Time [sec] Freq. | ¢ Freq. ¢ Freq. ¢ R. Energy
Hz Hz Hz
Figure 7. Instantaneous frequency of the IMFs of the syittsgnal (15). 0.8 0 0.8016 | 0.0013 0.8006 | 0.0030| 0.1496

0.5 0 0.5083 | 0.0001 0.4994 | 0.0048 1.0000

: . _— 0.2151| -0.0238 || 0.3390 | 0.0409 | 0.0375
signal (15) was examined by clipping the modal components 0.1369 | 00106 |l 01866 | 01980 | 00301

at specific time intervals (see [36] for more details). Thig 0.0833| 0.0055 || 0.0921 | 0.9536| 0.3269
gives raise to both harmonic components and non-stationalry 6.3298 | 0.0615] 0.3180
behavior. Comparison of the decomposition results with the di di sis of
distorted 0.8Hz and 0.5Hz components in Figure 8 shows traa{\/lorepver, as discussed in our analysis ot power SfyStem
the A-EMD technique effectively deals with abrupt changes | at.a, HllberF anaIyS|s naturally. identifies _the t'me. Intdsvin

the signals. Although we only show 2 IMFs, the decompositio\?{h'Ch the_ S|gpal IS nearly §tat|or1ary. This may, in fact,phel
actually yields three additional IMFs of negligible magiuaié. n |dent|fy!ng time intervals in which Prony (Fourier) agais
Table | compares the modes identified using the refined HHY® meaningful.

in the paper with modes identified using Prony analysis. ForUp to th'?‘ point, we have ve_nﬁgd that our p_roposed alg_o—
the R-RMD modes, average values are shown. rithms provide a better alternative implementation of HHIT i

certain applications. We now explore the ability of the noeth
to analyze power system data.

10 : ;
M - roe :|‘| AR '| 7' h ! ‘ L E'| h ’| '| S 1‘ I
SHNNNSRAN ANANRRANRANNANE B Application to simulated data
SR HATATR VRPN EVEE U R To verify the proposed method further, we consider simu-
T “;‘.'W‘IH AR SIRIRNIAIARIRSINRY lation data from transient stability simulations of a comypl
A A A A R R system. Figure 9 depicts a simplified diagram of the test
07 : o 1 0 e 20 System showing the study area and major interfaces selected

for study [22].

Several simulation studies have been conducted to assess
the applicability of the proposed technique to analyze com-
posite oscillations resulting from major system distudzm
In these studies, the southeastern-central interface TGE-
was chosen for analysis because this corridor has a dominant
participation in three major inter-area modes. Figure Idwsh

Time [sec] the power flow response of a key transmission Ii_ne inte_zrcon-
nection, to the loss of Laguna Verde unit #1. This particular
Figure 8. The first two IMFs of the distorted signal (15) obél using the contingency results in undamped oscillations involvingeéh
R-EMD (distorted components are plotted as dashed line bbagkg). major inter-area modes at 0.25Hz, 0.50Hz and 0.78Hz.

Although we only show 2 IMFs in Figure 8, this decomposi- Using the R-EMD method, we decompose the signal into
tion actually yields another 3 insignificant IMFs plus a des four non-stationary temporal signals and a trend. The IMFs
(as shown partly in Figure 4). However, feeding the distbrtederived using the R-EMD are shown in Figure 11. For com-
signal using a standard Prony analysis tool (we have usearison, the IMFs derived from the same signal using the
the BPA/PNNL Ringdown Analysis Tool) for comparison, weconventional approach are shown in Figure 12. This is the
obtain more elements of the signals. Moreover, applying tisame information as what has been reported in [22, Figure 5].
instantaneous damping computation formula (14), we obtainComparison between Figure 11 and Figure 12 shows that
the comparison between HHT with R-EMD and Prony analysR-EMD successfully decompose the signal into its essential
as provided in Table I. It is shown that the estimated dampimgono-frequency components. Effectively, the method alow
ratio () obtained using HHT is more accurate than witlfor the nonstationary behavior of the signal to be analynéa i
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Figure 10. Tie-line oscillations following the loss of LaguVerde unit #1.

separate temporal scales. In sharp contrast with thisgaten 0.5
EMD results in intermodulation and nonlinear behavior thi o4

makes it difficult to extract the physical interpretationtbé
basic modal properties.

3 . . . . .
5 0
g I EEE R
xr -2 T T T T T
0 5 10 15 20 25 30
Time [sec]
Figure 11. The IMFs obtained using R-EMD algorithm.

IMF is quite constant through out the time. This has showh tha
the decomposition works well. Figures 13 and 14 also show
that the computation of the instantaneous frequency and the
instantaneous magnitude using the convolution based iilbe
transform reduces the edge effect that appears strongly whe
using the standard Hilbert transform.

Time [sec]
Figure 12. The first three IMFs obtained using standard EMjorithm.

The frequency component of the inter-area modes obtained
from the power signal in this study (see Figure 13) are
respectively 0.7625Hz, 0.4888Hz and 0.2542Hz; these modes
coincide very well with detailed eigenvalue analysis of the
system [22].

Standard
™ —— Convolutio

0 5 10 15 20 25 30

14
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(c) Frequency IMF3
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O T S I
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Figure 13. Instantaneous frequency of the IMFs showing tegquiency of

the inter area oscillation.

Another advantage of this approach over other existing
methods is that modal damping can be determined more ac-
curately since the individual (modal) components are tsdla
and extracted. This issue is discussed with more detai&ah [

In order to demonstrate that Hilbert analysis correctly
identifies system behavior, we also show that the damping
ratio listed in [22, Table IlI] for the frequency components
0.7625Hz, 0.4888Hz and 0.2247Hz, which are respectively
0.0173, -0.0209, and -0.0351, matches the trend of magni-
tude of each frequency component. As we can observe from
Figures 11 and 14, the 0.7625Hz component is decreasing, the

Moreover, it can be seen from Figure 13 that the R-EMD.4888Hz is increasing and the 0.2542Hz is also increasing.
algorithm accurately extracts the three dominant fregiesnc Figures 15 and 16 are the corresponding IMFs and in-
as we can see the value of the instantaneous frequency of estelmtaneous frequency computed using the A-EMD method.
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Figure 14. Instantaneous magnitude of the IMFs showing tbetyrof each Figure 16. Instantaneous frequency of the IMFs obtainedgusi-EMD
component. algorithm.

Comparison of Figures 15 with 11 and Figures 16 with 1 6
shows that the two methods give results that show go
agreement. In both cases, the local Hilbert transform isdiou

to reduce the end effects.

w” %] 0 . : : : :
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Lo 80 : : : . .

s 0 Figure 17. Instantaneous frequency of the first IMF obtainsthg the

= -80
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Figure 15. The IMFs obtained using A-EMD algorithm.

standard EMD algorithm.

HHT with A-EMD and Prony. The result is presented in Table
II. It can be observed that the results obtained using Prony
involve some ambiguities as can be seen for the components
0.4915Hz and 0.5276Hz as well as the components 0.2494Hz
and 0.2758Hz as they are coming as pairs. Although the
relative energy of the pairing components are significantly
different, it tells us that the damping information does not
show the real damping ratio of the true component 0.5Hz
and 0.25Hz, respectively. If the components of the monitore
signal are not known, this creates confusion in interpgetin
the results. On the contrary, HHT with A-EMD gives more

~ The numerical implementation of the masking techniqugjiaple and consistent results for the decomposition &ed t
in A-EMD deserves some comments. In the actual 'mplﬁramping computation.

mentation of the algorithm it may be tempting to question

why we are using (24) with the termuf instead of using
the maximum value of the instantaneous frequerfeyt)
of the first IMF that is logically the maximum frequency

Table I
COMPARISON BETWEENHHT wWITH A-EMD AND PRONY FORINTER
AREA MODESANALYSIS

i F Wi Modes || HHT (mean values) Prony
component of the S|gnal and rgplan:q W|th'mf1,mw .where Freq Freq. | Damping | Freq | Damping | R ERergy
1 < m < 2. Extensive numerical simulations, as illustrated| p, Hz Hz
by Figure 17, show that spikes in the instantaneous frequend| 0.78 || 0.7625| 0.010 0.7678 0.0119 0.1032
computation that appears due to the inaccuracy of the firgt 05 | 0.4888| -0.010 8-‘5‘2%2 'ggzzgg é-gggg
dgcomposition with the ;taqdard EMD (l:_Jefore the masking o5 || 02542 -0007 | 02494| -0.0257 | 02542
signal is constructed) will give a wrong information of the — — 0.2758 | 0.0257 0.0622
value of the maximum frequency component that leads to thg 0.0978 | -0.030 é-éggg 8-32‘2‘3
frequency of the constructed masking signal too high hence ' '

ineffective. Clearly, the use of in (24) helps in filtering the
fictitious variations which in turn results in improved st
characterization.

These findings are very useful for monitoring and analysis
of the inter-area oscillation for power system. It has sifiga
To complete our study, we also make a comparison betwedie analysis, as in this way the instantaneous frequency and




instantaneous damping of the inter-area oscillation caselea [14]
clearly and directly from visual observation, which is very
useful when engineers have to make quick decision to taﬁg]
action in urgent situations.

[16]
V. CONCLUSION

In this paper, a nonstationary data-based, refined approgch
for characterizing temporal behavior based on the Hilbert-
Huang transform has been proposed. The method allows
automated extraction and characterization of temporalainoghsg;
behavior with no prior assumptions on the governing praeess
driving the oscillations and can be applied to a wide-vgriet
of signals found in power system oscillatory processes.  [19]

Simulation results have shown that the proposed algorithms
improve visualization of complex oscillations involvinguiti- [20]
time scale behavior. The theory can be explored more in
several important ways. Further refinement to the technigjue
possible, including the optimal design of filters and the eom,,
putation of more general masking techniques. The study a[so
raises a number of challenging issues that will be addressed
in future stages of this work. The application of the devebbp 22]
techniques to measured data is being actively investigayed
the authors and will be presented in a future publication.
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