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A refined Hilbert-Huang transform with applications
to inter-area oscillation monitoring
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Abstract—This paper focuses on the refinement of standard
Hilbert Huang transform (HHT) technique to accurately cha-
racterize time varying, multi components inter area oscillations.
Several improved masking techniques for Empirical Mode De-
composition (EMD) and a local Hilbert transformer are proposed
and a number of issues regarding their use and interpretation
are identified. Simulated response data from a complex power
system model is used to assess the efficacy of the proposed
techniques for capturing the temporal evolution of critical system
modes. It is shown that the combination of the proposed methods
results in superior frequency and temporal resolution than other
approaches for analyzing complicated non-stationary oscillations.

Index Terms—Hilbert Huang transform; Empirical Mode De-
composition; Masking; Convolution filter; Inter area oscillation.

I. I NTRODUCTION

T RANSIENT response of power systems typically displays
non-stationary characteristics [1]. Extracting and quanti-

fying temporal modal behavior from the observed oscillations
present a significant challenge due to the nature of switching
events and other control actions that may take place over the
observation period [2]–[8].

Modal analysis is one of the most effective techniques to
extract modal information from power systems models [9]–
[11]. However unfortunately, oscillatory processes may exhibit
nonlinear behavior and in many cases linear models are not
sufficient to capture time-varying features associated with
switching and control actions. Several other complementary
techniques based on ringdown analysis to system perturbations
and MIMO state-space identification techniques have been
successfully applied to analyze wide-area oscillatory dynamics
[3], [4], [8], [12], [13]. Fourier-based analysis tools have also
been used for off line studies of power system dynamics [14],
[15]. These techniques, however, rely on the assumption of
linearity and assume that the data are strictly periodic or
stationary in time which limits their applicability to realprob-
lems. In addition, Fourier spectrum defines uniform harmonic
components globally and therefore needs many additional
harmonic components to simulate nonstationary data.

Other efforts include the use of ARMA block-processing
techniques to estimate stationary low-frequency modes from
measured ambient power system data [16] and the deve-
lopment of mode meter block-processing algorithms for an
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automated dynamic stability assessment [17]–[19]. Examples
of these approaches include the modified Yule Walker method,
the extended modified Yule Walker with spectral analysis and
sub-space system identification methods.

Despite these advances, modal characterization under proper
analysis remains a challenge due to the complexity of the
driving system processes operating on various temporal scales.
Recently, nonlinear and non-stationary analysis techniques
based on the Hilbert-Huang transform (HHT) [20] have been
used to analyze data from nonlinear and non-stationary pro-
cesses [6], [21], [22]. The method has been applied to many
important problems in various fields including medical [23],
geophysics [24] and power engineering [25].

The cornerstone to the whole HHT procedure is the Em-
pirical Mode Decomposition (EMD) that separates a signal
into a series of amplitude - as well as frequency - modulated
signal components [20], [26]. Extracting these signal com-
ponents from a data set, however, is very challenging and
may involve various complications including mode mixing
and the generation of spurious information for various types
of signals. This may obscure physical interpretation of the
system behavior, especially when the observed oscillations
exhibit closely spaced modes. Other issues are the end effects
associated with the computation of the Hilbert transform
and the smoothness of the representations. All these issues
have motivated considerable recent research into developing
methodologies to improve the HHT.

To address the problem of mode mixing, EMD with masking
technique was introduced in [27], [28]. It also solves the
problem of intermittency that prevents the effectiveness of
EMD. Based on this masking technique, in [29], [30] a
systematic procedure for constructing the masking signalsis
proposed. The ability of these approaches to analyze power
quality signals with relatively high frequency was discussed
in [29]. While these approaches are found to work well on
various types of signals, simulation results show that they
may fail to provide characterization of more complicated
system behavior, especially for signals with low frequency
components, low magnitude or narrow frequency range.

This research investigates several extensions to the HHT
technique. Improvements to both the masking technique and
the computation of Hilbert transformers are proposed, and
a number of issues within their use and interpretation are
identified. The efficacy of the method to separate closely
spaced modal components is demonstrated on both synthetic
and transient stability data. It is shown that the method
produces a physically motivated basis suitable for analysis of
general nonlinear and nonstationary signals, particularly for
inter-area oscillation monitoring and analysis.
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II. PRELIMINARIES

In an effort to make the paper reasonably self-contained, the
standard algorithm of the HHT and its components, the EMD
technique, Hilbert transform and the damping computation,are
briefly reviewed. Our development follows the development of
Huang [20], to which we refer the readers for more details.

A. The Empirical Mode Decomposition method

The EMD method provides an analytical basis for the
decomposition of a signalx(t) into a set of basis functions,
called Intrinsic Mode Functions (IMFs). An IMF is defined as
a signal that satisfies the following criteria.

1) Over the entire time series the number of extrema and
the number of zero-crossings differ by, at most, one, i.e.
an essentially oscillatory process.

2) At any point the mean value of the envelope defined by
the local maxima and the envelope defined by the local
minima is zero.

The basic EMD method adopted to extract the IMFs es-
sentially consists of a three-step procedure calledsifting [6].
The goal is to subtract away the large-scale features of the
signal repeatedly until only the fine-scale features remain. A
signalx(t) is thus divided into the fine-scale detailsc(t) and
the residuer(t), hencex(t) = c(t) + r(t). The components
contained in the fine-scale details are the IMFs.

The standard EMD process can be summarized as follows.

S1. Given the original signalx(t); setro(t) = x(t), j = 1.
S2. Extract thej-th IMF using the sifting procedure:

a. Seti = 1 andhi−1(t) = rj−1(t).
b. Identify the successive local minima and the local

maxima for hi−1(t). The time spacing between
successive maxima is defined to be the time scale
of these successive maxima.

c. Interpolate the local minima and the local maxima
with a cubic spline to form an upperemaxi−1

(t)
and loweremini−1

(t) envelope for the whole data
span.

d. Compute the instantaneous mean of the envelopes,
mi−1(t) = (emini−1

(t) + emaxi−1
(t))/2; and de-

termine a new estimatehi(t) = hi−1(t)−mi−1(t),
such thatemini−1

(t) ≤ hi(t) ≤ emaxi−1
(t) for all

t. Seti = i+ 1.
e. Repeat steps 2b-2d untilhi(t) satisfies a set of

predetermined stopping criteria (follows the criteria
1) and 2) of an IMF). Then setcj(t) = hi(t).

S3. Obtain an improved residuerj(t) = rj−1(t)−cj(t). Set
j = j + 1. Repeat step S2 until the number of extrema
in rj(t) is less than 2.

This approach allows elimination of low amplitude riding
waves in the time series and eliminates asymmetries with
respect to the local mean, i.e., it makes the wave profile more
symmetric. At the end of this process, the EMD yields the

following decomposition of the signalx(t),

x(t) =
n
∑

j=1

cj(t) + rn(t)

=

q
∑

i=1

ci(t) +

p
∑

k=q+1

ck(t) +
n
∑

l=p+1

cl(t) + rn(t),

(1)

whereq < p < n, ci(t), i = 1, · · · q contain high frequency
noise components,ck(t), k = q+1, · · · p contain the physical
behavior of interest and the remaining termscl(t), l =
p + 1, · · ·n and rn(t) contain less relevant, nonsinusoidal
characteristics. Note that in some applications where the noise
does not involve or has been removed through filtering, the first
q components may not exist.

B. Hilbert transform

Given a real signalx(t). Its complex representation is

z(t) = x(t) + ixH(t) , (2)

wherexH(t) is theHilbert transformof x(t), given by

xH(t) =
1

π
P

∫ +∞

−∞

x(s)

t− s
ds , (3)

with P the Cauchy principal value of the integral. Equation
(2) can be rewritten in an exponential form as

z(t) = A(t)eiψ(t) , (4)

where A(t) =
√

x(t)2 + xH(t)2 , (5)

ψ(t) = arctan
xH(t)

x(t)
. (6)

The time derivative of (4) is

ż(t) = A(t)eiψ(t)(iω(t)) + eiψ(t)Ȧ(t) , (7)

whereω(t) is the instantaneous angular frequency, which by
definition is the time derivative of the instantaneous angle

ω(t) = ψ̇(t) =
d

dt
arctan

xH(t)

x(t)
. (8)

Hence, the instantaneous frequency can be defined asf(t) =
ω(t)
2π , and using (4) and (7), it can be computed as

f(t) =
1

2π
Im

(

ż(t)

z(t)

)

=
1

2π

x(t)ẋH(t) − xH(t)ẋ(t)

x2(t) + x2
H(t)

. (9)

C. Damping Ratio (ζ) estimates

The knowledge about the instantaneous magnitude and
instantaneous frequency of a signal allows us to further
compute the instantaneous damping of the signal. Damping
characterization is another useful alternative to the analysis of
local behavior of the oscillation. Consider the signal (4).We
can rewrite the signal as [31]

z(t) = A(t)eiψ(t) = Λ(t)e−θ(t)+iψ(t) . (10)

Then the time dependent decay function can be modeled as

θ(t) = −

∫ t

0

α(t)dt . (11)
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Moreover, using (4) and (7), we obtain

ż(t)

z(t)
=

[(

−α(t) +
Λ̇(t)

Λ(t)

)

+ iω(t)

]

(12)

Noting that

Re

(

ż(t)

z(t)

)

=
Ȧ(t)

A(t)
, (13)

we have

α(t) = −
dθ(t)

dt
= −

[

Ȧ(t)

A(t)
−

Λ̇(t)

Λ(t)

]

. (14)

We emphasize that (14) is a generalization to modal analysis
of the notion of damping for nonstationary signals. The
computation of damping ratioζ from local information in (14)
depends on the fast and accurate estimation of the physically
meaningful instantaneous magnitudeA(t) which is given by
(5). Also, approximating the signal with an exponential signal,
we should be able to find a constant or at least a slowly
varying Λ(t), such thatΛ̇(t) ≈ 0. Therefore, to make sure
that the computation is amenable to temporal modal analysis,
a physically motivated basis for the data is requited. To obtain
the damping ratio estimate of a range of signal, the average
(mean value) of the instantaneous damping is computed.

Remark 2.1:In HHT technique, Hilbert transform is ap-
plied to each IMF to compute its instantaneous frequency,
instantaneous magnitude, as well as instantaneous damping.
As instantaneous frequency is best defined formono-frequency
signal, i.e. signal that contains only one (dominant) frequency,
it makes sense to expect each IMF to be mono-frequency.
However, as pointed out earlier, the IMFs may contain a
mixture of frequencies (frequency modulation) and are difficult
to interpret in terms of conventional modal analysis. This has
motivated the need for demodulation techniques that extract
from each IMF the dominant interacting frequencies. �

III. M ASKING TECHNIQUES TO IMPROVE EMPIRICAL

MODE DECOMPOSITION

This section discusses the refinement of the conventional
EMD method to study the oscillatory dynamics, particularly
that involve the identification of frequency within the range
on 0.1Hz to 1Hz which is the typical range of power systems
inter-area modes. First, a synthetic example is introduced
to examine conditions under which the standard HHT and
the conventional masking technique may fail. Then, various
algorithms to refine the existing HHT are proposed.

A. When the standard EMD does not work

Consider a two-component signal,x(t),

x(t) = 8 sin(1.6πt) + 20 sin(πt) . (15)

The time evolution of this testing signal is shown in Figure
1. The clear feature of signal (15) is that it consists of
low frequency components and the magnitude of the higher
frequency component is significantly lower than that of the
lower frequency component.

The standard EMD [32] is applied to the signal (15). Figure
2 shows the IMF components extracted using this procedure.

0 5 10 15 20 25 30
−30

0  

30 

Time [sec]

Figure 1. The two-component synthetic signal (15).
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Figure 2. IMFs of signal (15) obtained from standard EMD (Thedashed
grey lines are the 0.8Hz and 0.5Hz components of (15).

The dashed plots with the first two IMFs are the 0.8Hz and
0.5Hz components of the signal (15). Quite contrary to what is
expected,IMF1 andIMF2 do not imitate the two sinusoidal
components of signal. Moreover, it is obvious thatIMF1 is
not a mono-frequency signal, but instead it exhibits mode mix-
ing, making little sense to expect useful physical interpretation
through the application of Hilbert analysis. The discrepancies
between the decomposition result and the components of the
signal propagate to other IMFs making the overall extraction
of temporal behavior difficult.

In an attempt to improve the performance and effectiveness
of EMD, the use of masking signals is introduced in [27], [28].
The technique aims at solving the problem of mode mixing
and ambiguity that occur when two or more frequencies are not
well separated. More in-depth discussion about the background
and technicalities of this technique is presented in [28]. Further
development of EMD with masking is proposed in [29].

Although this technique has proved effective in analyzing a
large variety of signals, some limitations arise in the study of
composite oscillations involving low-frequency components.
To investigate further these limitations, we applied the masking
technique from [29] to the signal (15). Figure 3 that compares
the spectra of the first IMF obtained using conventional
EMD with that of the approach in [29] does not show any
improvement. As the frequency components of the signal, in
this case are 0.8Hz and 0.5Hz, are very low and consequently
the 0.3Hz difference between them is very small, this existing
masking technique becomes ineffective in separating these
components. Techniques to effectively identify and isolate
the individual frequency components are discussed in the
following subsection.
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Figure 3. Fourier spectrum of the first IMFs of signal (15) from (a) standard
EMD and (b) EMD with masking [29].

B. EMD method with FFT-based masking technique

It is comprehensible from the discussion and examples
in Subsection III-A that issues affecting the effectiveness of
standard EMD and the existing masking techniques are

• The signal consists of low frequency components1;
• The magnitude of the highest frequency component is

much lower than others, particularly the second compo-
nent, which is directly next to it in the Fourier spectrum;

• The frequency components are high enough, but they are
relatively close to each other.

Based on the above considerations, we proposed the use of
a unified masking signal that in some sense refines the results
of [29] and at the same time generalizes the results of [27],
[28]. The algorithm of the refined EMD, named as R-EMD is
describe as follows:

R1. Perform FFT on the original signalx(t) to estimate the
frequency componentsf1, f2, · · · fn, with f1 > f2 >
· · · > fn. These captured frequencies are the station-
ary equivalence of the possibly time varying frequency
components of the signalx(t).

R2. Construct the masking signalsmask1, mask2, · · · ,
maskn−1 using the following sinusoidal signals

maskk(t) = Mk sin(2π(fk + fk+1)t) . (16)

The value ofMk is empirical and borrowing from
[29] is chosen to beMk = 5.5 ∗ Mk, with Mk > 0
the magnitude of the spectrum of thek-th frequency
component.

R3. Identify two cases depending on the physical values of
the highest frequency componentsf1 and f2, and their
associated amplitudesM1 andM2:
Case 1:If one of the following conditions hold:

a) f1 ≤ 1 andM1 < R21M2,
b) f1 > 1 andf1 ≤ R1f2,
c) f1 > 1 andR1f2 < f1 < R2f2 andM1 < R22M2,
d) f1 > 1 andf1 ≥ R2f2 andM1 < R23M2,

whereR21 = 1.1, R1 = 1.5, R2 = 2, R22 = 2 and
R23 = 0.5, then

1.1. Use only the first masking signal

mask1(t) = M1 sin(2π(f1 + f2)t) (17)

1Without loss of generality, we consider 1Hz as the boundary between the
low frequency and high frequency signals. Therefore we consider signals with
frequency components lower or equal to 1Hz as low frequency signals.

for the whole process.
1.2. Construct two signalsx+(t) = x(t) + mask1(t)

andx−(t) = x(t) −mask1(t). Perform EMD on
each signal following steps S1 to S3 from the
standard EMD to obtain all IMFs from each of
them i.e.c+i (t) andc−i (t), i = 1, 2, · · · , n and also
the residuer+n (t) andr−n (t).

1.3. The IMFs and the residue of the signalx(t) are

ci(t) =
(c+i (t) + c−i (t))

2
, i = 1, 2, · · · , n, (18)

rn(t) =
(r+n (t) + r−n (t))

2
. (19)

1.4. The total reconstructed signalx̃(t) is

x̃(t) =
n
∑

i=1

ci(t) + rn(t) . (20)

Case 2:If other than the conditions a) to d) hold, then

2.1. Use all the constructed masking signals (16).
2.2. Construct two signalsx+(t) = x(t) + mask1(t)

and x−(t) = x(t) − mask1(t). Perform EMD to
each signal to obtain the first IMF only from each
one, i.e.c+1 (t) andc−1 (t). The first IMF ofx(t) is

c1(t) =
(c+1 (t) + c−1 (t))

2
. (21)

2.3. Obtain the residuer1(t) = x(t) − c1(t).
2.4. Use the next masking signal, perform steps 2.2

and 2.3 iteratively using each masking signal while
replacingx(t) with the residue obtained at each
iteration, untiln−1 IMFs containing the frequency
componentsf2, f3, · · · , fn are extracted. The final
residuern(t) will contain the remainder.

2.5. Compute the final residue,rn(t) = x(t) − cn(t).
2.6. If the residuern(t) is above the threshold value of

error tolerance, then repeat Step S2 of the sifting
process presented in Subsection II-A onrn(t) to
obtain the next IMF and new residue.

2.7. The total reconstructed signalx̃(t) is

x̃(t) =
n
∑

i=1

ci(t) + rn(t) . (22)

Remark 3.1:In the complete R-EMD algorithm, we com-
bine the proposed masking algorithm, referred to as Case 1,
and the masking algorithm from [29], referred to as Case 2. As
can be seen clearly from the required conditions stated in the
algorithm, Case 1is active during the ”extreme conditions”
when the frequency components are low (f1 ≤ 1) or when
the first two highest frequency components are very close
to each other. On the other hand Case 1takes care of the
excluded conditions, particularly to decompose high frequency
signals. Therefore, the whole process of R-EMD can handle
the decomposition for a large sets of signals both with high
and low frequency components.

Moreover, the values of the parametersR1, R2, R21, R22

andR23 in Case 1are chosen based on the relation between
the frequency as well as the amplitude of the first two highest
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frequency components of the composite signals. In this paper,
the values are chosen to suit the application for signals that
contain inter-area oscillation. The choice helps classifying
signals that satisfies the three reasons given at the beginning
of this section. Although they are not optimal, the chosen
combination yields effective decomposition for a large setof
signals. In general, seeing the EMD algorithm as a filtering
process, we can think of the parameters as filter gains that are
possible to tune if necessary. �

The R-EMD algorithm gives different procedures for deal-
ing with high frequency signals and low frequency signals. The
main difference is in the way the masking signals are utilized.
For Case 2, we use as many masking signals as the number
of frequencies (or ideally the number of frequencies minus
one) we want to extract from the signal, and we subtract the
effect of each masking signal at every sifting stage, after each
IMF is obtained. On the other hand, for Case 1, we use only
the first masking signal, constructed from the first two highest
frequency components peaking on the Fourier spectrum and
let the masking signal stay until the end of the decomposition
process. The effect of this masking signal is then automatically
removed from the signal through the use of formula (18).

Remark 3.2:The use of only one masking signal con-
structed using the two highest frequency components of the
spectrum in Case 1is justified, since it satisfies the condition
of a masking frequency to be higher than the frequency to be
masked. The significant advantage of this algorithm is that
it preserves well the magnitude of the signal components,
which is not the case for other algorithms as the decomposition
often fails. Hence, not only that the instantaneous frequency
of the IMFs obtained using the R-EMD algorithm is more
meaningful, but also we can obtain a quite good estimation of
the instantaneous magnitude of the IMFs. �

C. EMD method with energy-based masking technique

In the previous subsection we use FFT to construct the
masking signals, which implies that to some extent we rely of
FFT to separate the frequency components of the composite
signals. In this section, we extend this approach by deriving
the masking signal directly from the EMD. This results in
an automated procedure in which the masking procedure is
embedded in the EMD decomposition.

Drawing on Case 1in Section III-B and the notion of
instantaneous mean frequency in [27], analternativeapproach
to determining an appropriate masking signal is suggested,
relaxing the dependence on Fourier analysis for detecting the
frequency components of the signal. The algorithm, called A-
EMD, is summarized as follows:

A1. Perform the standard EMD algorithm on the original
signalx(t) to obtain the IMFs. Use only the first IMF,
c1(t), which is expected to contain the highest frequency
component of the signal,fmax, but may also contain
mode mixing with other lower frequency components.
Perform Hilbert transform onc1(t) to obtain its instan-
taneous frequencyf1(t) and instantaneous magnitude
A1(t).

A2. In the spirit of Hilbert analysis, compute the energy
weighted mean off1(t) overL samples, i.e.

f̄ =

∑L

i=1A1(i)f
2
1 (i)

∑L

i=1A1(i)f1(i)
. (23)

A3. Observe Case 1from R3, then replace step 1.1 with the
following.

1.1. Construct the masking signal

mask1(t) = M1 sin(2π(mf̄)t) , (24)

whereM1 = maxi=1,··· ,LA1(i) andm > 1.

The rest follow the steps given in the R-EMD algorithm.
Remark 3.3:If the maximum frequency of the composite

signal, fmax, is lower than 1Hz, it is common to choose
m = 2 since a higher value ofm may cause the masking
signal ineffective as its frequency,mf̄ , would be much higher
than fmax. Comparing with [27], where the masking signal
is computed asmask1(t) = a0 sin(2π f̄

fs

t), the parameterm
replaces the parameterfs, the sampling rate. Moreover, we
introducedM1 = maxi=1,··· ,LA1(i) for analytical choice of
a0 in [27]. To complete the formulation of the method, an
efficient algorithm to extract instantaneous attributes isnow
explored based on the use of a local Hilbert transform.�

D. Convolution based local Hilbert transform

Existing approaches to the calculation of the complex trace
(2) are based on the computation of the analytic signal through
the Fourier transform. This transform, however, has a global
character and suffers from problems such as end effects and
leakage. In this section, an alternative approach based on filter
banks is proposed that circumvents some of these effects.

Given a signal

x(t) =
∑

ω

a(ω) cos(ωt) + b(ω) sin(ωt) , (25)

wherea andb are the Fourier coefficients

a(ω) =
1

T

∫ T

0

x(t) cos(ωt)dt; b(ω) =
1

T

∫ T

0

x(t) sin(ωt)dt.

The transformation to a complex time series is

z(t) =
∑

ω

a(ω) cos(ωt) + b(ω) sin(ωt)

+ i [b(ω) cos(ωt) − a(ω) sin(ωt)]

= x(t) + ix̂(t) ,

(26)

wherex̂(t) = xH(t) is the quadrature function, or the Hilbert
transform in (2). The Hilbert transform used in this construc-
tion is obtained directly by operating the real component with
a convolution filter

x̂(t) = xH(t) =
M
∑

l=−M

x(t− l)h(l) , (27)

where h(·) is the convolution filter with unit amplitude re-
sponse and 90o phase shift. A simple filter that provides an
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adequate amplitude response andπ2 phase response is given
by [33] as

h(l) =

{

2
lπ

sin2(πl/2), l 6= 0

0 l = 0 ,
(28)

where−M < 1 < M . As M → ∞ the filter (28) yields
an exact Hilbert transform. ForM finite, the filter introduces
ripple effects. To limit these effects, a local Hilbert transform
has been developed based on filter banks. As suggested in [34],
[35], the filter banks are developed such that the flatness of
the frequency response is maximal for the length of the filter.
Defining z = ejω, a maxflat filter can be defined by

h(z) =

(

1 + z−1

2

)2p

Q2p−2(z) (29)

where p is the number that determine the zeros atω = π,
andQ is chosen such thath(z) is halfband. The filterh(z) is
shifted in frequency byπ2 .

IV. A PPLICATIONS

To further illustrate the usefulness of the method, we
consider both synthetic data and data from transient stability
simulations. For comparison, the system response is analyzed
using various algorithms described in previous subsections.

A. Application to a synthetic signal

As a first example, we examine again the synthetic signal
(15) that we have used in Subsection III-A. In order to
verify the accuracy and generality of the present method
we examine again the synthetic signal 14 in Subsection II-
A with the two-fold objective of evaluating the ability of
the method to extract modal components and assessing its
generality to deal with nonlinear signals. Previous studies
have shown that conventional analysis fails to separate the
individual modal making physical interpretation difficult. We
focus first on the decomposing capability of the method.
Then, we test the ability of the refined technique to deal with
nonlinear/nonstationary signals.
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Figure 4. IMFs of the signal (15) obtained using the R-EMD (The dashed
lines are the individual components making up the signal (15)).

1) Decomposing capability test:Figure 4 shows the first
three IMFs extracted following the R-EMD algorithm, whilst
Figure 5 shows the spectra of the first and the second IMFs.
For error analysis,IMF1 andIMF2 are also compared with
the corresponding components of the composite signal (15)
which are plotted as the dashed lines background. Overall,
the improved method provides superior temporal resolution.
The frequencies identified from Hilbert analysis are 0.8Hz and
0.5Hz, which are in agreement with the expected behavior. In
addition, comparing Figure 4 and Figure 5 we can clearly see
that although R-EMD relies on FFT to estimate the frequency
components of the signal, in fact R-EMD provides correction
that yields more accurate information of the amplitude of each
components. Figure 6 shows the correctness of the whole
decomposition results and the completeness of the algorithm.
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Figure 5. Fourier spectra of the 1st and 2nd IMFs of signal (15) with R-EMD.
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Figure 6. Reconstruction of signal (15) from IMFs obtained using R-EMD.

Figure 7 plots (a) and (b) show the instantaneous frequency
of IMF1 andIMF2 respectively, which show the frequency
components of the composite signal. This figure also compares
the instantaneous frequency obtained utilizing the command
hilbert in Matlab, with the convolution approach proposed in
Subsection III-D, where the latter is seen to reduce end effects.

The following conclusions can be drawn from this analysis.
First, that R-EMD achieves a higher temporal resolution than
the standard methods. Second, the convolution based Hilbert
transformer provides smoother transformation of the signal
by reducing end effects. The combined application of these
approaches results in a more accurate physical characterization
of temporal behavior of the signal.

We have also tested the energy based A-EMD algorithm on
signal (15). However we do not include the simulation plots
in this paper as they are very similar to the results from the R-
EMD algorithm. We will show the application of the A-EMD
in the next example.

2) Reliability to handle nonlinear/nonstationary signals:
As a second example to assess the ability of the method to treat
general signals, a nonlinear and nonstationay version of the
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Figure 7. Instantaneous frequency of the IMFs of the synthetic signal (15).

signal (15) was examined by clipping the modal components
at specific time intervals (see [36] for more details). This
gives raise to both harmonic components and non-stationary
behavior. Comparison of the decomposition results with the
distorted 0.8Hz and 0.5Hz components in Figure 8 shows that
the A-EMD technique effectively deals with abrupt changes in
the signals. Although we only show 2 IMFs, the decomposition
actually yields three additional IMFs of negligible magnitude.
Table I compares the modes identified using the refined HHT
in the paper with modes identified using Prony analysis. For
the R-RMD modes, average values are shown.
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Figure 8. The first two IMFs of the distorted signal (15) obtained using the
R-EMD (distorted components are plotted as dashed line background).

Although we only show 2 IMFs in Figure 8, this decomposi-
tion actually yields another 3 insignificant IMFs plus a residue
(as shown partly in Figure 4). However, feeding the distorted
signal using a standard Prony analysis tool (we have used
the BPA/PNNL Ringdown Analysis Tool) for comparison, we
obtain more elements of the signals. Moreover, applying the
instantaneous damping computation formula (14), we obtain
the comparison between HHT with R-EMD and Prony analysis
as provided in Table I. It is shown that the estimated damping
ratio (ζ) obtained using HHT is more accurate than with

the Prony analysis as the damping of the first two IMFs are
approximately zero. As suggested in Figure 8, Hilbert analysis
interprets nonlinearity/nonstationarity in terms of frequency
and amplitude modulation. As observed in column 3 of Table
I, the HHT produces three additional frequency components in
addition to the main frequency components, which correspond
to the amplitude modulation from the two main frequency
components and the decomposition inaccuracy. This is in
marked contrast to Prony analysis in column 5 of Table I,
which necessitates a large number of modal components to
accommodate nonlinear/nonstationary features.

Table I
COMPARISON OFR-EMD RESULTS ANDPRONY ANALYSIS RESULTS

Dist. Signal HHT (mean values) Prony
Freq. ζ Freq. ζ Freq. ζ R. Energy
Hz Hz Hz
0.8 0 0.8016 0.0013 0.8006 0.0030 0.1496
0.5 0 0.5083 0.0001 0.4994 0.0048 1.0000

0.2151 -0.0238 0.3390 0.0409 0.0375
0.1369 0.0106 0.1866 0.1980 0.0301
0.0833 0.0055 0.0921 0.9536 0.3269

6.3298 0.0615 0.3180

Moreover, as discussed in our analysis of power system
data, Hilbert analysis naturally identifies the time intervals in
which the signal is nearly stationary. This may, in fact, help
in identifying time intervals in which Prony (Fourier) analysis
are meaningful.

Up to this point, we have verified that our proposed algo-
rithms provide a better alternative implementation of HHT in
certain applications. We now explore the ability of the method
to analyze power system data.

B. Application to simulated data

To verify the proposed method further, we consider simu-
lation data from transient stability simulations of a complex
system. Figure 9 depicts a simplified diagram of the test
system showing the study area and major interfaces selected
for study [22].

Several simulation studies have been conducted to assess
the applicability of the proposed technique to analyze com-
posite oscillations resulting from major system disturbances.
In these studies, the southeastern-central interface TEC-TOP
was chosen for analysis because this corridor has a dominant
participation in three major inter-area modes. Figure 10 shows
the power flow response of a key transmission line intercon-
nection, to the loss of Laguna Verde unit #1. This particular
contingency results in undamped oscillations involving three
major inter-area modes at 0.25Hz, 0.50Hz and 0.78Hz.

Using the R-EMD method, we decompose the signal into
four non-stationary temporal signals and a trend. The IMFs
derived using the R-EMD are shown in Figure 11. For com-
parison, the IMFs derived from the same signal using the
conventional approach are shown in Figure 12. This is the
same information as what has been reported in [22, Figure 5].

Comparison between Figure 11 and Figure 12 shows that
R-EMD successfully decompose the signal into its essential
mono-frequency components. Effectively, the method allows
for the nonstationary behavior of the signal to be analyzed into
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Figure 9. Simplified geographical scheme of the Mexican interconnected
power system.

0 5 10 15 20 25 30

600

650

700

750

Time [sec]

R
ea

l P
ow

er
 F

lo
w

 (
M

W
)

Figure 10. Tie-line oscillations following the loss of Laguna Verde unit #1.

separate temporal scales. In sharp contrast with this, standard
EMD results in intermodulation and nonlinear behavior that
makes it difficult to extract the physical interpretation ofthe
basic modal properties.

0 5 10 15 20 25 30
−20

0
20

IM
F

1

0 5 10 15 20 25 30
−80

0
80

IM
F

2

0 5 10 15 20 25 30
−20

0
20

IM
F

3

0 5 10 15 20 25 30
−1

0
1

IM
F

4

0 5 10 15 20 25 30
−2
−1

0

Time [sec]

R
es

id
ue

Figure 11. The IMFs obtained using R-EMD algorithm.

Moreover, it can be seen from Figure 13 that the R-EMD
algorithm accurately extracts the three dominant frequencies
as we can see the value of the instantaneous frequency of each

IMF is quite constant through out the time. This has shown that
the decomposition works well. Figures 13 and 14 also show
that the computation of the instantaneous frequency and the
instantaneous magnitude using the convolution based Hilbert
transform reduces the edge effect that appears strongly when
using the standard Hilbert transform.
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Figure 12. The first three IMFs obtained using standard EMD algorithm.

The frequency component of the inter-area modes obtained
from the power signal in this study (see Figure 13) are
respectively 0.7625Hz, 0.4888Hz and 0.2542Hz; these modes
coincide very well with detailed eigenvalue analysis of the
system [22].
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Figure 13. Instantaneous frequency of the IMFs showing the frequency of
the inter area oscillation.

Another advantage of this approach over other existing
methods is that modal damping can be determined more ac-
curately since the individual (modal) components are isolated
and extracted. This issue is discussed with more details in [37].

In order to demonstrate that Hilbert analysis correctly
identifies system behavior, we also show that the damping
ratio listed in [22, Table III] for the frequency components
0.7625Hz, 0.4888Hz and 0.2247Hz, which are respectively
0.0173, -0.0209, and -0.0351, matches the trend of magni-
tude of each frequency component. As we can observe from
Figures 11 and 14, the 0.7625Hz component is decreasing, the
0.4888Hz is increasing and the 0.2542Hz is also increasing.

Figures 15 and 16 are the corresponding IMFs and in-
stantaneous frequency computed using the A-EMD method.
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Figure 14. Instantaneous magnitude of the IMFs showing the growth of each
component.

Comparison of Figures 15 with 11 and Figures 16 with 13
shows that the two methods give results that show good
agreement. In both cases, the local Hilbert transform is found
to reduce the end effects.
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Figure 15. The IMFs obtained using A-EMD algorithm.

The numerical implementation of the masking technique
in A-EMD deserves some comments. In the actual imple-
mentation of the algorithm it may be tempting to question
why we are using (24) with the termmf̄ instead of using
the maximum value of the instantaneous frequencyf1(t)
of the first IMF that is logically the maximum frequency
component of the signal and replacemf̄ with mf1,max where
1 < m < 2. Extensive numerical simulations, as illustrated
by Figure 17, show that spikes in the instantaneous frequency
computation that appears due to the inaccuracy of the first
decomposition with the standard EMD (before the masking
signal is constructed) will give a wrong information of the
value of the maximum frequency component that leads to the
frequency of the constructed masking signal too high hence
ineffective. Clearly, the use of̄f in (24) helps in filtering the
fictitious variations which in turn results in improved system
characterization.

To complete our study, we also make a comparison between
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Figure 16. Instantaneous frequency of the IMFs obtained using A-EMD
algorithm.
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Figure 17. Instantaneous frequency of the first IMF obtainedusing the
standard EMD algorithm.

HHT with A-EMD and Prony. The result is presented in Table
II. It can be observed that the results obtained using Prony
involve some ambiguities as can be seen for the components
0.4915Hz and 0.5276Hz as well as the components 0.2494Hz
and 0.2758Hz as they are coming as pairs. Although the
relative energy of the pairing components are significantly
different, it tells us that the damping information does not
show the real damping ratio of the true component 0.5Hz
and 0.25Hz, respectively. If the components of the monitored
signal are not known, this creates confusion in interpreting
the results. On the contrary, HHT with A-EMD gives more
reliable and consistent results for the decomposition and the
damping computation.

Table II
COMPARISON BETWEENHHT WITH A-EMD AND PRONY FOR INTER

AREA MODESANALYSIS

Modes HHT (mean values) Prony
Freq. Freq. Damping Freq. Damping R. Energy
Hz Hz Hz

0.78 0.7625 0.010 0.7678 0.0119 0.1032
0.5 0.4888 -0.010 0.4915 -0.0271 1.0000

— — 0.5276 0.0250 0.0489
0.25 0.2542 -0.007 0.2494 -0.0257 0.2542

— — 0.2758 0.0257 0.0622
0.0978 -0.030 1.1983 0.1548

0.8635 0.0420

These findings are very useful for monitoring and analysis
of the inter-area oscillation for power system. It has simplified
the analysis, as in this way the instantaneous frequency and
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instantaneous damping of the inter-area oscillation can beseen
clearly and directly from visual observation, which is very
useful when engineers have to make quick decision to take
action in urgent situations.

V. CONCLUSION

In this paper, a nonstationary data-based, refined approach
for characterizing temporal behavior based on the Hilbert-
Huang transform has been proposed. The method allows
automated extraction and characterization of temporal modal
behavior with no prior assumptions on the governing processes
driving the oscillations and can be applied to a wide-variety
of signals found in power system oscillatory processes.

Simulation results have shown that the proposed algorithms
improve visualization of complex oscillations involving multi-
time scale behavior. The theory can be explored more in
several important ways. Further refinement to the techniqueis
possible, including the optimal design of filters and the com-
putation of more general masking techniques. The study also
raises a number of challenging issues that will be addressed
in future stages of this work. The application of the developed
techniques to measured data is being actively investigatedby
the authors and will be presented in a future publication.
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