The University of Southampton
University of Southampton Institutional Repository

Review on self-lubricant transition metal dichalcogenide nanocomposite coatings alloyed with carbon

Review on self-lubricant transition metal dichalcogenide nanocomposite coatings alloyed with carbon
Review on self-lubricant transition metal dichalcogenide nanocomposite coatings alloyed with carbon
In this paper, we review the results on the tribological behavior of nanocomposite coatings composed of nanoplatelets of transition metal dichalcogenides (TMD) immersed in a C-rich amorphous matrix. It is shown that such a microstructure produces low friction coefficients under different operating conditions such as air humidity, contact pressure or temperature. Special attention is paid to the analysis of the worn surfaces after the tests by Raman spectroscopy, Auger electron spectroscopy and transmission electron microscopy. Nanoscale analysis of the wear track has revealed the formation of a thin tribolayer exclusively consisting of TMD platelets oriented to exhibit the lowest friction. In some cases, the depth reorientation of the originally randomly oriented TMD platelets as a reaction to the sliding process has been observed. This self-adaptation explains the low friction coefficient together with a high load-bearing capacity and a limited sensitivity to air humidity. Finally, future perspectives for self-lubricant nanocomposite coatings based on the TMD-C concept are presented.

0257-8972
686-695
Polcar, T.
c669b663-3ba9-4e7b-9f97-8ef5655ac6d2
Cavaleiro, A.
114e42eb-7255-47ef-834d-0546d56d3171
Polcar, T.
c669b663-3ba9-4e7b-9f97-8ef5655ac6d2
Cavaleiro, A.
114e42eb-7255-47ef-834d-0546d56d3171

Polcar, T. and Cavaleiro, A. (2011) Review on self-lubricant transition metal dichalcogenide nanocomposite coatings alloyed with carbon. Surface and Coatings Technology, 206 (4), 686-695. (doi:10.1016/j.surfcoat.2011.03.004).

Record type: Article

Abstract

In this paper, we review the results on the tribological behavior of nanocomposite coatings composed of nanoplatelets of transition metal dichalcogenides (TMD) immersed in a C-rich amorphous matrix. It is shown that such a microstructure produces low friction coefficients under different operating conditions such as air humidity, contact pressure or temperature. Special attention is paid to the analysis of the worn surfaces after the tests by Raman spectroscopy, Auger electron spectroscopy and transmission electron microscopy. Nanoscale analysis of the wear track has revealed the formation of a thin tribolayer exclusively consisting of TMD platelets oriented to exhibit the lowest friction. In some cases, the depth reorientation of the originally randomly oriented TMD platelets as a reaction to the sliding process has been observed. This self-adaptation explains the low friction coefficient together with a high load-bearing capacity and a limited sensitivity to air humidity. Finally, future perspectives for self-lubricant nanocomposite coatings based on the TMD-C concept are presented.

This record has no associated files available for download.

More information

Published date: 2011
Organisations: nCATS Group

Identifiers

Local EPrints ID: 199859
URI: http://eprints.soton.ac.uk/id/eprint/199859
ISSN: 0257-8972
PURE UUID: 765b2a10-9398-497e-883e-03413bb95db1
ORCID for T. Polcar: ORCID iD orcid.org/0000-0002-0863-6287

Catalogue record

Date deposited: 20 Oct 2011 13:27
Last modified: 15 Mar 2024 03:40

Export record

Altmetrics

Contributors

Author: T. Polcar ORCID iD
Author: A. Cavaleiro

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×