
OpenFOAM Workshop

Southampton, 21 October 2011

 UNIVERSITY OFSouthampton
School of Engineering Sciences

Programming session:
from the C++ basics to the compilation of

user libraries

Daniele Trimarchi
daniele.trimarchi@soton.ac.uk

mailto:daniele.trimarchi@soton.ac.uk
mailto:daniele.trimarchi@soton.ac.uk

Presentation overview:

• C++ basics

- main, declarations, types

- memory management: references and pointers

- Object orientation:

‣ classes
‣ inheritance

- header and source files

• Compiling applications
- make, wmake, wmake libso. Linking libraries.

• Writing simple applications in OpenFOAM

- general structure (includes, skim between time-dirs...)

- examples: divergence, INDT

30
 m

15
 m

Presentation overview:

• Modifying existing libraries

- overview of the force class
- modifying the class
‣ Change the source and modify the names
‣ compile the library‣ call the library during the execution

• Adding classes

- FSInterface class
- Linking classes trough pointers25

 m
20

 m

PART 1
C++ basics

C++ basics

Hello world code... it only prints a message on screen

C++ basics

Declare variables, assign values and output the results

C++ basics

Define and use of the functions

C++ basics

References and pointers

iA rB rC

Computer memory: sequential representation

& iA & rB & rC

• References (&) are the addresses of the variables in
the computer memory. References are constant.

• The value of a reference (ex: 0x7fff5fbfb604) can be stored in
a particular type of variable, called pointer.

• The pointer is a variable of the same type of the
variable it points to. Integer pointer points to integer
variable!

C++ basics

int * APtr = & iA
float * rPtr = & rB

...
rPtr = & rC

Declaration Assignation

Re-Assignation

• Using references and pointers is convenient: it avoids
the need of making copies when passing arguments to
functions (for large arrays this is very convenient!)

float rB = 1.1;
float rC = 0.6;
ResAdd = Add(rB, rC);

cout << ResAdd << endl;

main

float c = a + b;

function
copy: a = rB
copy: b = rC

copy: ResAdd = c

rB rC resAdd a b c
Memory allocated for main Memory allocated for function

C++ basics

• The deferencing operator * restitutes the value of the
variable pointed by the pointer. So:

float rB = 1.1;
float * rPtr = & rB

cout<< rB <<endl; 1.1
cout<< * rPtr <<endl; 1.1

cout<< & rB<<endl; 0x7fff5fbfb604

Variable declaration and assignation:
Pointer declaration and assignation:

Similar syntax, but very
different meaning!!

Pointer deferencing:

C++ basics

Optimizing the function

Pass references to
the function
(no copies!)

Assign the pointer:
float * a = & rB

1

2

Deference and
return therefore

a float value

3

Assign the
returned value to
the float variable

4

C++ basics
• CRectangle class

Class declaration
Private members
Public members
and functions

Public function
definition

Declarations

Definition

Object declaration
Call the function

member of the class

C++ basics

The function is called with the operator “ . ” : rect.setValues(3,4)
The function can also be called using a pointer:

CRectangle tria(2,3);
CRectangle * triaPtr;

triaPtr = & tria;

cout << tria.area() << endl;
cout << * tria.area() << endl;
cout << triaPtr -≻ area() << endl

declare the variable
declare the pointer

assign the pointer

call fcn using object
call fcn using object, by
de-referencing pointer
call fcn using pointer

C++ basics

• The constructor is a class-member
function called when the object is
initially build
• Dual of the Constructor is the

Destructor
• As for every function, different

arguments define different
constructors; the constructor can
also call other functions

Standard syntax for the constructor

C++ basics
• Inheritance: Cpolygon class

CPolygon

CRectangle CTriangle

width, height

Area Area

Inherited class:
class CRectangle : public CPolygon

... is a ...

Every object has its own function
definition. The function behaves differently
accordingly to the type of the object

!!

C++ basics
•Main (.cpp; .C), Header (.H) and Source (.C) files

Declarations
.H file

Definition
.C file

Main code
.cpp, .C file

C++ basics
•Main (.cpp; .C), Header (.H) and Source (.C) files

Declarations
.H file

Definition
.C file

Main code
.cpp, .C file

C++ basics
• Compiling applications: passing from human readable

instructions to binaries
• Unix environment: call makefile trough “make”
Set the compiler
Compiler options
Compiler Flags;
external libraries

Source files

Executable

• The “make” command is overwritten in OpenFOAM by
“wmake” and “wmake libso”

References
Several books are available on C++. For example:

Deitel, Deitel
C++, How to program
ed. Prentice Hall

A book is generally better (expecially for C++)...
but on-line useful guidance can be also found:

http://www.cplusplus.com/doc/tutorial/

http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/

PART 2
Writing simple applications in

OpenFOAM

General structure of an OpenFOAM application

...A lot of nice code...

src/finiteVolume/cfdTools/general/include/fvCFD.H

several other include: classes for time,
mesh, geometry, math constants...

src/OpenFOAM/include/createTime.H

Declares runTime, object of the class
Foam::Time.

Constructor defined in
src/OpenFOAM/db/Time/Time.H, line193

General structure of an OpenFOAM application

...A lot of nice code... File in the source directory

Declares a VolScalarField called
divergence to be written in every

time-step folder

Calculating the divergence ∇·
∇ · �v =

∂v1
x1

+
∂v2
x2

+
∂v3
x3

= δikvi,k

Check for existing time dirs
OpenFOAM version of the

for loop. Equivalent to:
for(int timeI=0; i<timeDirs.size(); timeI++)
{...}

Declares and reads the
field U from the selected

time directory

calculates the field

Compiling the application

SolutionDivergence.C
createFields.H
Make

files
options

Working directory:

solutionDivergence.C
EXE = $(FOAM_USER_APPBIN)/DivU

EXE_INC = \
 -I$(LIB_SRC)/finiteVolume/lnInclude

EXE_LIBS = -lfiniteVolume

Source file
Compile application

include headers for FV

include FV library

The application is compiled typing at terminal the command: wmake

Calculating the Normalised invariant of the
deformation tensor

D =
SijSij −WijWij

SijSij +WijWij
;Sij =

1

2

∂ui

∂xj
+

∂uj

∂xi
;Wij =

1

2

∂ui

∂xj
− ∂uj

∂xi

CreateFields.h Core of the main code

Text
Double inner product operator,

see Programmer guide P23

PART 3
Modifying existing libraries

Constructor of the class forces
Path:
OpenFOAM/src/postProcessing/functionObjects/forces/
forces/Force.C

Reference to the Object Registry. This is a list of
the entities pertaining to an object

Reference to the controlDict

Call the member function forces::read
Read the entries in the controlDict

Reading entries from the controlDict

system/controlDict:
functions
(
 forces
 {
 type forces;
 functionObjectLibs ("libforces.dylib");
 outputControl outputTime;
 patches (wing);
 pName p;
 Uname U;
 rhoName rhoInf;
 rhoInf 1.2; //Reference density
 pRef 0;
 CofR (0 0 0); //Origin for moments
 }
)

patches on which forces
will be integrated

Calculating the forces

The virtual function write() is called during the execution. This calls
forces::calcForcesMoment(), where the calculation is performed

OpenFOAM iterator.
it corresponds to a for
cycle

mesh is object of the class fvMesh
The expression returns a vector
with the cell centres of the chosen
patch

Calculating the forces

The virtual function write() is called during the execution. This calls
forces::calcForcesMoment(), where the calculation is performed

Sfb is the (reference to) the face area
vector

It is here multiplied for the pressure
boundaryField => pf returns the
vector of forces on the chosen patch

Re-compiling the forces library
The basic idea of the openFOAM environement is:

find something similar and modify it as you like, but
DO NOT TOUCH THE ORIGINAL SOURCES!

STEP 1: copy the forces directory from the original location into
another directory

STEP 2: copy also the Make folder
STEP 3: substitute strings and modify (all) the file names

(sed ‘s/forces/Myforces/g’ forces.C > Myforces.C)
STEP 4: modify the local functionObject.H file (add the new class to

the list of loadable functions)
#include "Myforces.H"
 ...
namespace Foam
 {
 typedef OutputFilterFunctionObject<Myforces>forcesFunctionObject;
 }
 ...

Re-compiling the forces library
STEP 4: Modify the Make/files:

STEP 5: modify the Make/options file:

include all what was needed by the original library!

STEP 6: compile with wmake libso

EXE_INC = \
.... all what was already there ...

 -I$(LIB_SRC)/postProcessing/functionObjects/forces/lnInclude

Myforces.C
forcesFunctionObject.C

LIB = $(FOAM_USER_LIBBIN)/LibMyforces

Re-compiling the forces library

STEP 7: Add the entries in the controlDict, in order for the library to
be loaded and used:

libs ("libMyforces.dylib") ; Load the library (.dylib on MAC; .so on Linux)

functions
 (Use the library
 Myforces Search in the library
 { for the entry called
 type Myforces;
 functionObjectLibs ("libMyforces.dylib");
 outputControl outputTime;
 patches (BottWall);
 pName p;
 Uname U;
 rhoName rhoInf;
 rhoInf 1.0;
 pRef 0;
 CofR (0 0 0);
 }
);

References

Several examples can be found on-line:
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2007/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2009/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2010/

See for example the work of A. Gonzales.
But have a deep look at the whole web-site,
there’s a lot of enlightening material!!

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2009/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2009/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2007/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2007/

PART 4
Adding new classes in OpenFOAM

the FSInterface class

Scope of this class
• The class is designed to manage the mesh motions. It is used in

the main of the solver pimpleDyMFOAM:

• establish the communication (if needed) with the external
solver trough MPI

• send pressure data and retrieve mesh displacement data

• communicate with the AitkenControl class, in charge for
calculating the dynamic relaxation factor:

• move the fluid mesh (ALE framework)
uk+1 = ωk ũk+1 + (1− ωk)uk

Scope of this class

PimpleDyMFOAM External solverFSInterface MPI

C++

...whatever works...
...C++, fortran...

DataOut (p)

DataIn (u)

AitkenControl
AitPtr

include

include

Multiple Program Multiple Data type environment, the external
solver is “spawned” during the execution time. This generates a
communicator we can use for exchanging data (white arrows)

Use of the class

In the main solver: Include and declare

 new classes definition
Foam classes needed for the

mesh motion

Declare the new objects
using the right arguments!

Constructor of FSInterface:
header (.H) file

source (.C) file
... a lot of other stuff...

References are constant: they MUST be
initialised at the creation. In this case this

is done by passing the values to the
constructor

Arguments passed
to the class

Assign values to the
class members

Execute other fcns

linking to the AitkenControl class:
An object of the type AitkenControl is created right before
the object FSInterface. A reference to this object is passed
to the constructor. This reference is stored in a pointer
main code:

alfa2 is instantiated in the constructor, the pointer is referenced
also in the constructor:

Searching the mesh motion entries
Depending upon the motion solver, the mesh motion is stored in a
field “pointDisplacements”, “cellDisplacement” or “motionU”.

A field in OpenFOAM is defined as: internalField + boundaryField

Imposing the motion of a boundary means writing the motion in
the correspondent entry of the boundaryField. For example,
“&MeshDisplacement” is the address of the BoundaryField, while
“&mDisp” is the address of the mesh interface we want to move

Searching the mesh motion entries
IOdictionary couplingDict
(

IOobject
 (
	

 "CouplingDict",
	

 runTime.constant(),
	

 mesh,
	

 IOobject::MUST_READ,
	

 IOobject::NO_WRITE

)
);

word temp(couplingDict.lookup("fluidPatch"))
word interface = temp;

label fluidPatchID = mesh.boundaryMesh().findPatchID(interface);

Opens the FOAM dictionary
named “couplingDict”, to be read
only. The dict must be placed in

the folder constant

Searches and reads the entry
“fluidPatch” in CouplingDict

Searches the the entry
“fluidPatchName” in the mesh
boundaryField. Returns a (integer)
label: the id of the patch in the
mesh order

Searching the mesh motion entries
We need now to find the references to the mesh
motion boundaryField. Using displacementLaplacian...

pointVectorField & PointDisplacement =
const_cast<pointVectorField&>(mesh.objectRegistry::

lookupObject<pointVectorField>("pointDisplacement"));

pDispPtr = & (refCast<vectorField>(PointDisplacement.boundaryField()[fluidPatchID]));

Search in the objectRegistry of the mesh an object of the type:
pointVectorField called pointDisplacement. Whatever its type, impose
(const_cast) to be a reference of the type PointVectorField

The entry number “fluidPatchID” is the reference to the interface mesh
motion. Store this reference into a pointer

PointDisplacement.boundaryField()[fluidSideI] == U_kp1

The mesh motion is imposed using the surcharged operator == :

Searching the mesh motion entries
We need now to find the references to the mesh motion
boundaryField. Using laplaceFaceDecomposition...

const fvMesh& motionMesh =
runTime.objectRegistry::lookupObject<fvMesh>(movingRegionName);

tetPointVectorField& motionU =
const_cast<tetPointVectorField&>
(motionMesh.objectRegistry::lookupObject<tetPointVectorField>("motionU"));

	

tetPolyMesh& tetMesh = const_cast<tetPolyMesh&>(motionU.mesh());

motionUFluidPatchPtr = &
refCast<fixedValueTetPolyPatchVectorField>

(motionU.boundaryField()[fluidPatchID]);

* motionUFluidPatchPtr == (U_kp1 - U_old) / runTime.deltaT().value();

The mesh motion is imposed using the surcharged operator == :

Scheme of the class

Algorithm

FLUID STRUCTURE

dt = dt+ 1

pk

uk

dt = dt

Implicit coupling: the equilibrium within the time-step is
verified using a fixed-point between the fluid and the
structural solver. Although this algorithm is computationally
expensive, it is unconditionally stable

This is realised in OpenFOAM using a while loop within the
time-step. The convergence criterion is verified by a function
of the class FSInterface

Algorithm (main)

Aitken iterations loop

time loop

Launch the structural solver

Send the number of iteration
to the interface (different
calculations if iterCntr == 1)
Send the pressures, retreive
the displacements

Convergence is checked by
interface

Compiling

As for every FOAM application, we need to edit:

FSIfluidFOAMtet.C
EXE = $(FOAM_USER_APPBIN)/FSIfluidFOAMtetMPI

Make/files:

Source file

Name and path of the
compiled application

Make/options:

include $(RULES)/mplib$(WM_MPLIB)

EXE_INC = \
...all remains as in the original file...

EXE_LIBS = \
...all remains as in the original file, but add:

 -lmpi \
 $(WM_DECOMP_LIBS)

And finally some results!
FLUID

DENSITY
FLUID

VISCOSITY
STRUCTURE’s
THICKNESS

STRUCTURE’s
DENSITY

STRUCTURE’s
POISSON RATTIO

STRUCTURE’s
YOUNG’S MODULUS

ρf νf ts ρs νs Es

Kg/m3 m2/s m Kg/m3 - N/m2

1.0 0.01 0.002 500 0 250

u = 1− cos(2πt/5)

