UNIVERSITY OF

Southampton

School of Engineering Sciences

OpenFOAM Workshop

Programming session:

from the C++ basics to the compilation of
user libraries

Daniele Trimarchi
daniele.trimarchi@soton.ac.uk

Southampton, 21 October 201 |

mailto:daniele.trimarchi@soton.ac.uk
mailto:daniele.trimarchi@soton.ac.uk

Presentation overview:

® (C++ basics
- Mmain, declarations, types
- memory management: references and pointers
- Object orientation:

p classes
p inheritance

- header and source files

® Compiling applications
- make, wmake, wmake libso. Linking libraries.

® Writing simple applications in OpenFOAM
- general structure (includes, skim between time-dirs...)
- examples: divergence, INDT

|5 m

20 m

Presentation overview:

® Modifying existing libraries
- overview of the force class
- modifying the class

> Change the source and modify the names
> compile the library
> call the library during the execution

® Adding classes

- FSinterface class
- Linking classes trough pointers

PART |

C++ basics

C++ basics

Hello world code... it only prints a message on screen

using namespace

int main()

{

cout << <<endl;
return 0;

}

C++ basics

Declare variables, assign values and output the results

using namespace

int main()
{
int :
float . :

1A=10;
rB=0.4,
r(=0.7;

cout << <<1A<<endl;

cout << <<rB<<endl;
cout << <<rC<<endl;

return 0;

}

C++ basics

Define and use of the functions

using namespace :

//Declare functions BEFORE!!

float Add(float a, float b)

{
float c;
Cc=a+b;
return c;

}

//Main code

int main()

{
int :
float

1A=10;
rB=0.4;
r(=0.7;
ResAdd = Add(rB,rQ):

cout<< <<ResAdd<<endl;

return 0;

}

C++ basics

References and pointers

Computer memory: sequential representation

IIIITIIIITIIIIIII

&iA &rB & rC

* References (&) are the addresses of the variables in
the computer memory. References are constant.

* The value of a reference (ex: oxrsieos) can be stored in
a particular type of variable, called pointer.

* The pointer is a variable of the same type of the

variable it points to. Integer pointer points to integer
variable!

C++ basics

Assignation
int *APtr = & iA
float * rPtr = & rB

rPtr = & rC Re-Assignation

* Using references and pointers is convenient: it avoids
the need of making copies when passing arguments to
functions (for large arrays this is very convenient!)

Memory allocated for main

| | B [rClresAdd| (RSN
| A

float rB = 1.1; copy:a = rB
float rC = 0.6; copy:b = rC
ResAdd = Add(rB, rC); o

—

cout << ResAdd << endI; (Eopy: ResAdd = ¢

C++ basics

* The deferencing operator * restitutes the value of the

variable pointed by the

Pointer declaration and assignation:

Pointer deferencing:

pointer. So:

float rB = I.1;
float * rPtr = & rB

e

cout<< rB <<end]l;

— |1

cout<< * rPtr <<endl; — 1.1

/

cout<< & rB<<endi;

/

Similar syntax, but very
different meaning!!

—> Ox7fff5fbfb604

4

Assign the
returned value to
the float variable

C++ basics

using namespace -

//Declare functions BEFORE!!
float Add(float * a, float * b)

{
return *a + *b;
} |

//Main code
int main()
{
int -
float rB, .

1A=10;
rB=0.4;
r(=0.7;
ResAdd = Add(&rB,&r();

cout<<

return 0;

}

<<ResAdd<<endl;

Optimizing the function

2 Assign the pointer:
float *a = & rB

Deference and
return therefore
a float value

3

| | Pass references to
the function
(no copies!)

C++ basics

 CRectangle class

using namespace -

// classes example (from cplusplus.com)

using namespace

Class declaration ____, [RjSSaeyeemepay
Private members int x, y;

. public:
Public members — void set_values (int,int);
and functions int area () {return (x*y);}
Public function e \/O'1.d ::set_values (int a, int b) {
definition i
. . int main OO {
Object declaration — . |EEE RS

rect.set_values (3,4);

/y - ’ ’
cout << << rect.area()<<endl;
return 0;

}

C++ basics

The function is called with the operator “.” : rect.setValues(3,4)
The function can also be called using a pointer:

CRectangle declare the variable
CRectangle *

triaPtr = & tria;

cout << tria.area() << endl; call fcn using object
cout << * tria,area() << endl; call fcn using object, b)’

cout << triaPtr -> area() << end| de-referencing pointer
call fcn using pointer

// classes example (from cplusplus.com) C++ b .
aSICS

using namespace

class CRectangle { .
e y; * The constructor is a class-member

//constructon function called when the object is

CRectangle(); //default constructor o o _ e .
CRectangle(int,int); ‘ Inltla”)’ bUlId

//destructor

~CRectangle 0); * Dual of the Constructor is the

//member functions

;ir‘.t area (void); DeStI"UCtOI‘
::CRectangle O) * As for every function, different

arguments define different
constructors; the constructor can
. :CRectangle (int a, int | also call other functions

Standard syntax for the constructor

: :~CRectangle (O int main O { : :CRectangle (int a, int b)
{ CRectangle : < .
’

cout << << rect.area()<<endl; y(b)

. rarea() cout << << rect2.area()<<endl; '
//do nothing

,wetunn (X*y); } "etU"f". 0; }

// derived classes. From cplusplus.com

C++ basics

* Inheritance: Cpolygon class class Chalygon |

protectead:

int . :

. . public:

‘Wldtha helght void set_values (int a, int b)
{ width=a; height=b;}
/ \ }s
class CRectangle: public CPolygon {
: public:
Area <—- CTriangle Area int area ()

{ return (width * height); }

}s

using namespace

Inherited CIaSS: C'LSE;L%I;‘LCPQ'Le: public CPolygon){
CRectangle : public CPolygon int area ()

{ return (width * height / 2); }
'! };
int main OO {
CRectangle :
CTriangle :
rect.set_values (4,5);

. . . trgl.set_values (4,5);
Every object has its own function cout << rect.area(s 2« endl:

definition. The function behaves differently RS
accordingly to the type of the object }

s a ...

C++ basics
* Main (.cpp;.C), Header (.H) and Source (.C) files

using namespace :

// classes example (from cplusplus.com)

using namespace

class CRectangle {
int x, vy;
public:
. volid set_values (int,int);
Main code int area (O {return (x*y);}

.cpp, .C file

::set_values (int a, int b) {

int main OO {
CRectangle -
rect.set_values (3,4);
cout << << rect.area()<<endl;
return 0;

}

C++ basics
* Main (.cpp;.C), Header (.H) and Source (.C) files

Main code
.cpp, .C file

// classes example (from cplusplus.com)

CRectangle_H
using namespace

class CRectangle {
int
public:
int main OO { void set_values (int,int);
CRectangle - int area () {return (x*y);}
rect.set_values (3,4); }s
cout << << rect.area()<<endl;
return 0;

}

::set_values (int a, int b) {

C++ basics
* Compiling applications: passing from human readable

instructions to binaries
. . €¢ I
* Unix environment: call makefile trough “make
Set the compiler __,

Compiler Flags; —
external libraries ,
Source files —

) 3(

SCEXECUTABLE): $(
$CCO) 8¢

.Cpp.o:
$CCO) $(

* The “make” command is overwritten in OpenFOAM by
“wmake” and “wmake libso”

References

Several books are available on C++. For example:

Deitel, Deitel
C++, How to program
ed. Prentice Hall

A book 1s generally better (expecially for C++)...
but on-line useful guidance can be also found:

http://www.cplusplus.com/doc/tutorial/

http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/

PART 2

Writing simple applications in
OpenFOAM

General structure of an OpenFOAM application

src/finiteVolume/cfdTools/general/include/fvCFD.H

vt mainCint aroc. char *are several other include: classes for time,
{

mesh, geometry, math constants...

src/OpenFOAM/include/createTime.H

...A lot of nice code... Declares runTime, object of the class
, enme Foam::Time.
Constructor defined in
L reateTine i src/OpenFOAM/db/Time/Time.H, line |93

r:Info<<

//- Construct given dictionary, rootPath and casePath
Time

(

::Time runTime

: :controlDictName, const dictionary&

const fileName&
const fileName&
const word&
const word&

args.rootPath(),
args.caseName()

General structure of an OpenFOAM application

int main(int

. File in the source director
...A lot of nice code... Y

return(@); Declares a VolScalarField called
divergence to be written in every
time-step folder

}

volScalarField divergence
(
I0object

(

runTime.timeName(),

mesh,
: :READ_IF_PRESENT,
: tAUTO_WRITE

Calculating the divergence V-

8?]1 (9?]2 82}3
V- -U= | | = 0ikVi k
L1 L2 L3

instantList - ::select0(runTime, args); Check for existing time dirs
Ctimedirs, timeD) OpenFOAM version of the

{
runTime.setTime(timeDirs[timel], timel); for- IOOP. Equivalent tO:

Info<< << runTime.timeName() << endl; (|nt t|me|=0’ i<timeDirS.size(); time|++)

Info<< << endl; {-}

//Reading field
volVectorField U

(

I0object
(Declares and reads the

PTise, tineNaneC). field U from the selected

mesh, . .
. :MUST_READ, time directo ry
. : AUTO_WRITE

calculates the field

divergence.write();

Compiling the application

Working directory:

SolutionDivergence.C
createFields.H

Make
options
solutionDivergence.C Source file
EXE = $(FOAM_USER_APPBIN)/DivU Compile application
EXE_INC =\

-1$(LIB_SRC)/finiteVolume/Ininclude | include headers for FV

EXE_LIBS = -IfiniteVolume > include FV library

The application is compiled typing at terminal the command: wmake

Calculating the Normalised invariant of the
deformation tensor

D =

;957 = —
J 26‘x3+8:vz

Wi =

SijSij — WijWij 1 5’uz % 1 5’uz

ij 95 + Wi Wi; 2 O

CreateFields.h Core of the main code

. volTensorField = ::grad(U);
volScalarField D
¢ ' volSymmTenenrField S = 0.5*symm(gradl); // symmetric part of tensor
I0object volTensorF .:ta d = 0.5*skew(gradl); // anti-symmetric part

(.
Double inner product operator,

runTime.timeName(), volScalarField S&&S ; see Programmer guide P23
mesh, volScalarField W WEEW;
: :READ_IF_PRESENT,

+ *AUTO_WRITE volScalarField
(
I0object

(

runTime.timeName(),
mesh,
: :NO_READ,
: :NO_WRITE
),
(SS - W) / (WN + SS)
Ds

D.write();

PART 3

Modifying existing libraries

Constructor of the class forces

Path:

‘forces

const word&

const objectRegistry& obr, Reference to the Object Registry. This 1s a list of

const dictionary& . .o :
const bool the entities pertaining to an object

Reference to the controlDict

name_(name),
obr_(obr),
active_(true),

log_(),
patchSet_(),
pName_(:null),
UName_ (:null),
rhoName_(:null),
directForceDensity_(
fDName_ ('),

rhoRef (VCREAT),
pRef (0),

CofR_(1Zero),
forcesFilePtr ()

{ :
Call the member function forces::read

Read the entries in the controlDict

| read(dict);

}

Reading entries from the controlDict

void Foam::forces::read(const dictionary& dict)

{

log_ = dict.lookupOrDefault<Switch>("log", false),

const fvMesh& mesh = refCast<const fvMesh>(obr_);
patchSet_ =
mesh.boundaryMesh().patchSet(wordList(dict.lookup('patches’

system/controlDict:

/| Optional entries U and p functions
pName_ = dict.lookupOrDefault<word>('pName”, "p"), (

UName_ = dict.lookupOrDefault<word>("UName", "U"); forces
rhoName_ = dict.lookupOrDefault<word>("rhoName”, "rho");

type forces;
functionObijectLibs ("libforces.dylib");

/| Reference density needed for incompressible calculations outputControI outputTime;

rhoRef_ = readScalar(dict.lookup('rholnt));]
patches (wing);
/| Reference pressure, 0 by default pName p;
pRef = dict.lookupOrDefault<scalar>("pRef”, 0.0); Uname U:
/| Centre of rotation for moment calculations rhoName rholnf; :
CofR_ = dict.lookup('CofR"); rholnf 1.2; //Reference density
PRef O;
CofR (0 0 0); //Origin for moments
}

Calculating the forces

The virtual function write() 1s called during the execution. This calls
forces::calcForcesMoment(), where the calculation 1s performed
OpenFOAM 1iterator.

it corresponds to a for
cycle

(labelHashSet, patchSet_, iter)

label = iter.key();

vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;
vectorField = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

fm.first().first() += rho(p)*sum(pf); mesh 1s object of the class fvMesh
fm.second().first() += rho(p)*sum(Md A pf);

The expression returns a vector
with the cell centres of the chosen

fm.first().second() += sum(vf);])atcfl

fm.second().second() += sum(Md A vf); const DimensionedField< scalar,
volMesh > & VOO () const

Return old-old-time cell volumes.
const surfaceVectorField & Sf () const

Return cell face area vectors.
const surfaceScalarField & magSf () const

Return cell face area magnitudes.
const surfaceScalarField & phi () const

vectorField vf = Sfb[patchi] & devRhoReffb[patchi];

pnst volVectorField & C () const
Return cell centres as volVectorField.

const surfaceVe

Calculating the forces

The virtual function write() 1s called during the execution. This calls
forces::calcForcesMoment(), where the calculation 1s performed

(labelHashSet, patchSet_, iter)

label = iter.key();

vectorField = mesh.C().boundaryField()[patchi] - CofR_;

vectorField = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);
— .

fm. First(). First() += rho(p)*sum(pf): Stb 1s the (reference to) the face area

fm.second().first() += rho(p)*sum(Md A pf); vector

vectorField = Sfb[patchi] & devRhoReffb[patchi];) o

It 1s here multiplied for the pressure

‘Fm.fir‘st() " second() += SUYTI(Vf); boundaryFleld — pf retums the

fm.second().second() += sum(Md A vf);
vector of forces on the chosen patch

F=P/PdA=PZPiAi

Re-compiling the forces library

The basic idea of the openFOAM environement 1s:

find something similar and modify it as you like, but
DO NOT TOUCH THE ORIGINAL SOURCES!

STEP 1: copy the forces directory from the original location into

another directory
STEP 2: copy also the Make folder

STEP 3: substitute strings and modify (all) the file names
(sed ‘s/forces/Mytorces/g’ forces.C > Myforces.C)

STEP 4: modify the local functionObject.H file (add the new class to
the list of loadable functions)

#include "

Foam

d
typedef <Myforces>

h

Re-compiling the forces library

STEP 4: Modify the Make/files:

Mytorces.C
forcesFunctionObject.C

LIB = $(FOAM USER LIBBIN)/LibMyforces

STEP 5: modify the Make/options file:

EXE INC =\
... all what was already there ...

-I$(LIB SRC)/postProcessing/functionObjects/forces/InInclude

include all what was needed by the original library!

STEP 6: compile with wmake libso

Re-compiling the forces library

STEP 7: Add the entries 1n the controlDict, in order for the library to
be loaded and used:

libs (" "); <«—— Load the library (.dylib on MAC:; .s0 on Linux)

functions
(Use the library

Myforces Search in the library
{ ! for the entry called

(H | ");

(BottWall);

References

Several examples can be found on-line:

http://www.tfd.chalmers.se/~hani/kurser/OS CFD 2007/
http://www.tfd.chalmers.se/~hani/kurser/OS CFD 2008/
http://www.tfd.chalmers.se/~hani/kurser/OS CFD 2009/
http://www.tfd.chalmers.se/~hani/kurser/OS CFD 2010/

See for example the work of A. Gonzales.
But have a deep look at the whole web-site,
there’s a lot of enlightening material!!

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2009/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2009/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2007/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2007/

PART 4

Adding new classes in OpenFOAM
the FSInterface class

Scope of this class

* The class is designed to manage the mesh motions. It is used in
the main of the solver pimpleDyMFOAM:

* establish the communication (if needed) with the external
solver trough MPI

* send pressure data and retrieve mesh displacement data

e communicate with the AitkenControl class, in charge for
calculating the dynamic relaxation factor:

Ukt1 = Wp Uk+1 + (1 — 1) ug
* move the fluid mesh (ALE framework)

Structural Interface Structural Interface
Undeformed reference configuration Deformed configuration

Outlet Inlet

Fixed wall Fixed wall

Scope of this class

Multiple Program Multiple Data type environment, the external
solver is “spawned” during the execution time. This generates a
communicator we can use for exchanging data (white arrows)

DataOut (p) /,

include

PimpleDyMFOAM <>

include¢ ‘%}Vtr

Mid External solver
Dataln (u)

<

e
d=-Vn
N\ N

Use of the class

In the main solver: Include and declare

//****************************

int main(int , char * 1D

//****************************

AitkenControl alfa2(mesh, runTime); Declare the new objects
FSInterfac h,p,U,rhoFluid, runTime,alfa2); . .
i Nl Using the right arguments!

Constructor of FSInterface:
header (.H) file

namespace

{

References are constant: they MUST be
initialised at the creation. In this case this
loss oimtertace is done by passing the values to the
//private data .~ constructor

dynamicFwMesh&

volScalarField& p;
volVectorField& U;
dimensionedScalar&

source (.C) file
coe a. IOt Of Other Sthf... //- Constructor from components

: :FSInterface(dynamicFvMesh &mesh_,
volScalarField &p_,
volVectorField &U_,
dimensionedScalar &rhoFluid._,
Time &runTime_,

AitkenControl & alfa.)

meshCmesh_). Arguments passed

p(p_), to the class
uCu_),

rhoFluid(rhoFluid.), .
runTime(runTime_), ASSIgn values to the

: alfa2(alfa_) class members

initialize();

}

// Constructor from components
FSInterface(dynamicFwMesh & .
volScalarField &p,

volVectorField &U,
dimensionedScalar &
Time & .
AitkenControl & R

linking to the AitkenControl class:

An object of the type AitkenControl is created right before
the object FSInterface. A reference to this object is passed

to the constructor. This reference is stored in a pointer
main code:

AitkenControl alfaZ(mesh, runTime);

FSInterface 1 (mesh,p,U,rhoFluid, runTime,alfa2);

alfa? is instantiated in the constructor, the pointer is referenced

also in the constructor:

: :FSInterface(dynamicFvMesh &mesh_,
volScalarField &p_,
volVectorField &U_,
dimensionedScalar &rhoFluid_,
Time &runTime_,

AitkenControl & alfa_)

mesh(mesh_),

p(p_),

ucu_),
rhoFluid(rhoFluid.),
runTime(runTime_),
alfa2(alfa.)

{
AitPtr = & alfa2; //Pointer points to the object

}

Searching the mesh motion entries

Depending upon the motion solver, the mesh motion is stored in a
field “pointDisplacements”, “cellDisplacement” or “motionU”.

A field in OpenFOAM is defined as: internalField + boundaryField

Imposing the motion of a boundary means writing the motion in

the correspondent entry of the boundaryField. For example,
N " is the address of the BoundaryField, while

‘“ " is the address of the mesh interface we want to move

BoundaryField cellDisplacement

CellDisplacements -

D]]]]ID]ID;ED:D]]]]]]

& MeshDisplacement

BoundaryField cellDisplacement

L L L [e | oot | ovem |][]]]]

& MeshDisplacement & mDisp

Searching the mesh motion entries

|Odictionary couplingDict

(
|Oobject

(Opens the FOAM dictionary
"CouplingDict", named “couplingDict”, to be read
runTime.constant(), : .
mesh. only. The dict must be placed in
|Oobject::MUST_READ, the folder constant

|Oobject::NO_WRITE

);

word temp(couplingDict.lookup("fluidPatch")) Searches and reads the entry
word interface = temp; “fluidPatch” in CouplingDict

label fluidPatchlD = mesh.boundaryMesh().findPatchlD(interface);

Searches the the entry
“fluidPatchName” in the mesh
boundaryField. Returns a (integer)
label: the id of the patch in the
mesh order

Searching the mesh motion entries

We need now to find the references to the mesh
motion boundaryField. Using displacementlLaplacian...

> pointVectorField & PointDisplacement =
const_cast<pointVectorField&>(mesh.objectRegistry::
lookupObject<pointVectorField>("pointDisplacement"));

pDispPtr = & (refCast<vectorField>(PointDisplacement.boundaryField()[fluidPatchID])); | <

Search in the objectRegistry of the mesh an object of the type:
pointVectorField called pointDisplacement.Whatever its type, impose
(const_cast) to be a reference of the type PointVectorField

The entry number “fluidPatchlD” is the reference to the interface mesh

motion. Store this reference into a pointer

The mesh motion is imposed using the surcharged operator ==

PointDisplacement.boundaryField()[fluidSidel] == U_kpl

Searching the mesh motion entries

We need now to find the references to the mesh motion
boundaryField. Using laplaceFaceDecomposition...

const fvMesh& motionMesh =
runTime.objectRegistry::lookupObject<fvMesh>(movingRegionName);

tetPointVectorField& motionU =
const cast<tetPointVectorField&>
(motionMesh.objectRegistry::lookupObject<tetPointVectorField>("motionU"));

tetPolyMesh& tetMesh = const cast<tetPolyMesh&>(motionU.mesh());
motionUFluidPatchPtr = &

refCast<fixedValueTetPolyPatchVectorField>
(motionU.boundaryField()[fluidPatchID]);

The mesh motion is imposed using the surcharged operator ==

* motionUFluidPatchPtr == (U _kpl - U _old) / runTime.deltaT().value();

Scheme of the class

Initialize

fluidPatchName

movingRegionName
readCouplingPropertiesH rhoFluidRef

initMeshMovement H const fvMesh & motionMesh = ...

tetPointVectorField & MotionU = ...

tetPolyMesh & tetMesh = ...

nPoints = ...

const vectorField& interfacePoints =
tetMesh.boundary()[fluidPatchlD].localPoints();

solidNodelLoc = solidPts()

fluidVertexToSolidNodelnd = ...

const fyMesh& motionMesh = ...
tetPointVectorField& motionU = ...
fixedValueTetPolyPatchVectorField&

motionUFluidPatch = ...
fluidPatchPreviousDispl = Displ;
Displ = ...
Points = Points_0 //Set the right integration const

motionUFluidPatch == (Displ-OldDispl)
/runTime.deltaT().value();

moveFluidMesh

solidPts //Returns a pointField with t.he corner
/I points only: do not consider the

/I additional points added by the

// TET class

Algorithm

Implicit coupling: the equilibrium within the time-step is
verified using a fixed-point between the fluid and the
structural solver. Although this algorithm is computationally
expensive, it is unconditionally stable

Uy
P RS
B A
pk

This is realised in OpenFOAM using a while loop within the
time-step. The convergence criterion is verified by a function
of the class FSInterface

Algorithm (main)

int main(int argc, char *argv(])

{

time loop

AitkenControl alfaZz(mesh, runTime);

FSInterface interface(mesh,p,U,rhoFluid,runTime,alfa2); A|tken iterations IOOP

while (runTime.run()) <

{

lr.l;nTime++;
interface.MPISpawn(); //this is called the first time only! LaunCh the Sstructu I"al SOIVGI"
int iterCnt=0, advance=0;
dof <

iterCnt++;

if (iterCnt == 1) Send the number of iteration

{advance=0;}

interface.setCntr(iterCnt): to the interface (different
if(runTime.value() > interface.FSI_init) calculations if iterCntr == |)

{
interface.sendPressures(): 1
interface.moveFluidMesh(); //CAREFUL: IT MUST BE BEFORE Send the Pressures’ retrelve

) REGNRIIISE the displacements
else
{advance=1;}
/] --- PIMPLE loop
.. |/ -=--=PISO loop
if(runTime.value() > interface.FS|_init)

~ { advance = interface.AdvContrl(); } Convel‘gence IS CheCked b)’
Jwhile(advance==0); interface

runTime.write();

}

Info<< << endl;
interface.makeClean();

Compiling

As for every FOAM application, we need to edit:
MEUGHIES:

FSIfluidFOAMtet.C Source file
EXE = $(FOAM_USER _APPBIN)/FSIfluidFOAMtetMPI Name and path of the

compiled application

Make/options:

include $(RULES)/mplib$(WM_MPLIB)

EXE_INC =\
...all remains as in the original file...

EXE_LIBS =\
...all remains as in the original file, but add:
-lmpi \
$(VWM_DECOMP_LIBS)

And finally some results!

FLUID FLUID STRUCTURFE’s | STRUCTURE’s STRUCTUREFE’s STRUCTURE’s
DENSITY | VISCOSITY | THICKNESS DENSITY POISSON RATTIO | YOUNG’S MODULUS
ok Vs ts Ps Vs Es
Kg/m3 m?/s m Kg/m?3 - N/m?
1.0 0.01 0.002 500 0 250

U |
0.1771433857

|”_C 16

Point probe position

MOK

Vazques

Present solution - C=1
Present solution - C=0.5

10 15 20 25
time [sec]

