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SYNOPSIS

The drive for better TKR designs necessitates better understanding of TKR mechanics through pre-
clinical analysis methods. Currently, corroboration between in-silico and in-vitro testing methods is
limited, and the opportunity for collaboration is underexploited. Here we demonstrate how in-silico
and in-vitro testing methods can be complementary and mutually supportive. The case study is a
corroboration of the AMTI knee simulator (displacement & force control) including control-plant
modelling, in-silico wear prediction and probabilistics. We demonstrate that more rigorous
corroboration between numerical & experimental techniques can benefit both approaches, and
ultimately provide much richer data for pre-clinical analysis; however, to be effective this requires
close and open collaboration between different research specialists. Only by working together to
share information and ideas more effectively can the next major advances in our understanding of

TKR be achieved.

1. INTRODUCTION

Considerable work goes into pre-clinical analysis of TKR designs, to refine them as much as possible
before time-consuming costly clinical trials. Historically, individual research groups specialised either
in computational or experimental approaches. These have provided valuable insights into TKR

performance, but are limited in scope. Whilst many in-silico studies are based on experimental data
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(e.g. [1, 2]), the degree of interaction is often limited. The need exists to establish better
collaborative links between theoretical, experimental, and computational modelling methods. This
demonstrates not only that test results are repeatable and consistent, but also that the underlying

physics of the test conditions are correctly and fully understood.

2. METHODS

This paper focuses on an exploratory review of the AMTI knee wear simulator, operating under both
displacement & force control, based on closer corroboration between experimental & computational
methods. Rigid-body models were created using MSC.ADAMS [3-5]. These models were modified to
reflect the configuration of the AMTI simulator assembly (including the full tibial platen and
associated bearings). Further, a full control-plant model was implemented in MATLAB/Simulink, and
finally the model was fully parameterised to facilitate probabilistic modelling. Tests were

corroborated for different gait profiles with fixed-bearing PCL-retaining implants.

For displacement-driven models kinematic-feedback data from individual tests was used directly, so
a control plant was not required. In-silico force & torque predictions were compared to experimental
load-cell feedback. For force-driven tests a model of both the plant mechanics and control system
was used, to more fully model the system. Simple ‘isolation profiles’ were used to explore dynamic
effects (inertia, friction & damping) on each of the different axes individually. This was followed by

corroboration of force-driven gait tests.

Wear was predicted in-silico using a number of standard algorithms, including Archard wear [6],
A/A+B ‘cross-shear’ wear [7] and crossing-intensity wear [8]. Wear models were considered with and
without contact-pressure terms. The results were also decomposed to explore individual wear
influences (sliding distance, cross-shear maps & contact pressures), to reveal which factors seemed

to correlate best with experimental data.

Studies were not merely deterministic: probabilistic methods were also used to model experimental
variability (similar to [9]), and further to corroborate this with statistical data from multiple wear
tests. This is believed to be the first time probabilistic results for TKR have been corroborated against

experimental data.
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3.  RESULTS AND DISCUSSION

The displacement-driven tests corroborated well, closely matching force-feedback once test-specific
variables were tuned (e.g. AP-dwell position, bearing friction). The results reveal the sensitivity of the
model to these variables (e.g. deviations of only 1mm in AP-dwell alter the AP axis force-feedback by
as much as +100%). These tests also show the importance of accurately modelling friction not just at
the implant articulation, but also the other bearings in the mechanical rig. If experimental conditions
are correctly accounted for, the in-silico results lie well within experimental variation ranges [figure

1].
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Force-controlled simulation proved more challenging; a simple ‘quasi-static’ mechanical model could
not adequately describe the system — the dynamics are highly influential. The influence of friction (of
the implant and other bearings) and damping in the system is considerable, and must be accounted
for. The role of inertia is relatively limited. Because the mechanical system sits within a control loop
the demanded and achieved waveforms will not perfectly match. Further, due to inertial and
damping elements between the actuator application point and the load cells, it is not adequate to
use force-feedback. Rather, the demanded inputs should be used with a control system (the

achieved feedback can be used to corroborate this control system). Corroboration of the ‘isolation
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tests’ has been successful in predicting output kinematics and load-cell feedback. However
discrepancies remain for the full gait test; these are believed to be related to further uncharacterised
system dynamics and the influence of pliancy in the fixed axes [10], on the tibial as well as the

femoral side.

Wear results demonstrate that (whilst not quantitatively precise) current in-silico algorithms provide
a useful qualitative ‘ranking’ tool for TKR wear. In-silico methods can provide a richer diagnostic data
set than in-vitro tests alone (e.g. surface maps and probability distribution functions for cross-shear,
sliding distance & contact pressure [figure 2]). This is valuable for designers, clinicians &

theoreticians trying to better understand the causal influences of wear.
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In addition to this, corroborated probabilistic studies provide additional insight into wear
characteristics. By comparing the distributions for experimental and predicted wear, it is possible to
compare the performance of different theoretical wear algorithms against in-vitro data [figure 3].
Note that it is very clear from this probabilistic vantage-point that current wear algorithms are not
ideal. They are able to match the ‘mean’ deterministic value for wear rate (with appropriate tuning

of the wear constant). However, they are not accurately capturing the ‘spread’ of wear rates based
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on variations in the experimental set-up. This clearly shows further work is needed to better

understand the mechanics of wear, and also the factors influencing test variability.
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Figure 3: using probabilistics to compare wear rate PDFs; all existing models drastically under-predict the full range
of experimental variability.

Conventionally, numerical models are ‘validated’ using experimental results, and the AMTI simulator
has been a popular target for this (e.g. [10, 11]). The present work advances this practice by
rigorously corroborating the system dynamics, controller behaviour & experimental variability- not
just the most basic mechanics. It is apparent that these test rigs are more complex than older models
have assumed, and artefacts of the rig construction and dynamics are influencing results. In the past,
a ‘first-approximation’ was adequate to lay the foundation for theories of knee mechanics and wear,
but we now require a more detailed appreciation of these tests if we are to further our theories of
wear. Specifically, researchers testing with the AMTI simulator are advised to pay particular
attention to the AP-dwell position, and the degree of friction from the roller bearing assembly. An
advantage here of computational modelling is that it can be used post-hoc to further investigate

anomalous in-vitro test outcomes or sensitivity to experimental uncertainty.

Considering the wear algorithms, we know that these empirical models are imperfect [4]; however
they represent the state-of-the-art, and to advance further, more accurate corroboration is required.
Accounting for discrepancies between in-silico and in-vitro tests (especially using probabilistic

methods) can provide valuable insights into the underlying factors involved in wear.
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In conclusion, closer collaboration on these tests has lead to a better-understanding of the existing
experimental data, along with more accurate and powerful computational models. As a result,
advances have been made in our fundamental understanding of wear simulator mechanics.
Researchers in all fields of TKR testing are strongly encouraged to engage in closer collaboration

across disciplines, to more provide a better, richer and more rigorous toolset for pre-clinical analysis.
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