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Abstract A microscopic model of a lithium battery is developed, which accounts for lithium diffusion within
particles, transfer of lithium from particles to the electrolyte and transport within the electrolyte assuming a dilute
electrolyte and Butler–Volmer reaction kinetics. Exploiting the small size of the particles relative to the electrode
dimensions, a homogenised model (in agreement with existing theories) is systematically derived and studied.
Details of how the various averaged quantities relate to the underlying geometry and assumptions are given. The
novel feature of the homogenisation process is that it allows the coefficients in the electrode-scale model to be
derived in terms of the microscopic features of the electrode (e.g. particle size and shape) and can thus be used as a
systematic way of investigating the effects of changes in particle design. Asymptotic methods are utilised to further
simplify the model so that one-dimensional behaviour can be described with relatively simpler expressions. It is
found that for low discharge currents, the battery acts almost uniformly while above a critical current, regions of
the battery become depleted of lithium ions and have greatly reduced reaction rates leading to spatially nonuniform
use of the electrode. The asymptotic approximations are valid for electrode materials where the OCV is a strong
function of intercalated lithium concentration, such as Lix C6, but not for materials with a flat discharge curve, such
as LiFePO4.

Keywords Butler–Volmer equation · Electrolyte · Homogenisation · Matched asymptotic expansions

1 Introduction

There is a considerable amount of interest shown in designing lithium-ion batteries with the aim of increasing their
efficiency of storage and the speed at which they can be charged and discharged. In seeking to understand this
behaviour, a number of theoretical approaches have been taken to simulate the operation of such batteries typically
based on the seminal study by Newman [1, Chaps. 11–12, 22] (see, e.g. [2–11]). In this article, these ideas are
further explored to derive analytical expressions for the discharge and charging characteristics.
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Fig. 1 A schematic of the configuration of the battery. The electrodes consist of particles packed together. These are immersed in the
electrolyte, and the contact between the two electrodes is avoided by placing a porous spacer between them through which only the
electrolyte can percolate. During discharge, the current flowing out of the positive electrode drives the extraction of Li cations from
the negative electrode particles, the transport (by diffusion and migration) of these ions across the separator into the positive electrode
and their subsequent insertion into the positive electrode particles. The transport of Li+ is accompanied by the movement of electrons
from the negative electrode particles to the negative electrode current collector and from the positive electrode current collector to the
positive electrode particles. The upper panel is a schematic of the potentials in the battery: solid line shows the potential in the electrode
particles while the dashed line shows that in the electrolyte

The lithium cell studied here has two electrodes, a negative one (the anode in discharge mode) and a positive one
(the cathode in discharge mode), each composed of small particles of electrode material compressed together. The
particles are presumed to be electrically connected via some conducting medium (e.g. graphite powder utilised to
improve electrode conductivity) so that all the negative electrode (anode) particles connect to the negative electrode
current collector and all the positive electrode (cathode) particles connect to the positive electrode current collector.
However, the anode and cathode particles are kept separated by a thin electrically insulating porous separator. The
entire battery is bathed in an electrolyte containing lithium ions (see Fig. 1). Lithium is either stored in metallic
form or in solid solution (inside an insertion material) on the negative electrode and in solid solution on the positive
electrode [12].

During discharge, a reaction occurs on the surface of the negative electrode particles that releases Li+ ions
from the material into the electrolyte while a corresponding reaction occurs on the surface of the positive electrode
particles in which Li+ are absorbed from the electrolyte. These reactions drive a flux of ions through the elec-
trolyte, and the separator, from the negative to the positive electrode. They also result in the build up of positive
charge on the positive electrode and negative charge on the negative electrode leading to a potential difference
that can be utilised to drive an electric current. Typically, it is hypothesised that the reaction rate depends upon
the Li concentration on the electrode surface, Li+ concentration in the adjacent electrolyte and the potential drop
between the electrode and electrolyte (see, e.g. [8,13,14]). The reaction, and thus the corresponding release of
charge, may thus be limited by diffusion of Li+ in the electrolyte, diffusion of Li in the electrode material or by
the electrical resistivity of the electrolyte or electrodes, and it is important to investigate the relative importance of
these processes.
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A large variety of materials have been developed for use as positive electrodes in lithium batteries since the
1970s (see [15]). Currently, commercially available Li-batteries use LiCoO2. However, the rarity of cobalt makes
this relatively expensive and limits its use to small cells. Recent development has focussed on materials for use in
large high-power applications (such as electric vehicles) [16] with much of the present focus being on LiFePO4

[17]. This material is characterised by a very flat discharge–voltage curve with practically no drop in voltage until
the material is almost entirely discharged. This observation has led to the hypothesis that the transition between
lithium-rich and lithium-poor states, in LiFePO4, is characterised by a phase transition as Li (de-)intercalates [17].
In addition, this material has a highly anisotropic crystal structures in which the diffusion of lithium takes place
almost entirely parallel to the b-axis of the crystal [18]. The exact details of Li transport within a LiFePO4 cathode
are still contested and a variety of different models have been proposed to describe this process (e.g. [17,19]).
Standard single phase diffusion models have been utilised to describe Li transport in a variety of other materials
(see, e.g. [2,4,5,7,8]), and this is the approach that we will adopt here.

The standard Li-ion battery negative electrode material is graphite. This material has the advantages of being
highly conducting and of not exhibiting particularly large strains as Li (de-)intercalates but suffers from a relatively
low energy density [20]. Higher energy density materials are available (e.g. Al or Si), and being developed [21], but
they exhibit very large strains on (de-)intercalation of lithium which can result in eventual failure of the material
due to cracking.

There is currently a considerable impetus to develop electrodes with a carefully engineered nanostructure with
the aim of enhancing global battery performance [21–23], typically for applications requiring high (dis)charge
rates. This typically enforces the use of a narrow cathode. Better theoretical understanding of this regime
gives the prospect of designing non-uniform microstructures that are better able to cope with high current dis-
charges.

A variety of macroscopic models have been developed to describe the behaviour of batteries with particulate
electrodes. In the case of Li-ion batteries, these include the study of John Newman and his co-workers [4,5,7,8]
and Botte et al. [2] while other systems have been treated in a similar manner, for example, by Chen and Cheh
[24]. All these approaches replace the effect of the microstructure by a few phenomenological parameters. Given
the current interest in designing the microstructure of the battery, a modelling approach that is capable of directly
relating the geometry of the microstructure to the coefficients in a macroscopic model of battery behaviour would
provide a valuable tool with which to design microstructures for particular purposes.

A microscopic mathematical model of the electrochemical processes occurring inside the battery, on the parti-
cle lengthscale, will be presented. The model consists of five distinct elements. These comprise (i) the diffusion
of lithium in a positive electrode particle, (ii) the transfer of lithium between the positive electrode particles and
the electrolyte, (iii) the transport of lithium cations through the electrolyte, (iv) the transfer of lithium from the
electrolyte to the negative electrode particles, and (v) the diffusion of lithium within negative electrode parti-
cles. A homogenisation technique is then applied to the microscopic model to derive a simpler homogeneous
model describing the averaged electrochemical behaviour of the battery over the cell lengthscale. The novel fea-
ture of the homogenisation process is that it allows the coefficients in the electrode-scale model to be derived
in terms of the microscopic features of the electrode (e.g. particle size and shape) and can thus be used as a
systematic way of investigating the effects of changes in particle design. We shall exploit this feature to inves-
tigate the effects of varying particle geometries in a subsequent article. By focussing on the physically realistic
case in which diffusion times across the electrode particles are quick in comparison to those across the electro-
lyte and where the open circuit voltage (OCV) is much greater than the thermal voltage (about 0.025 V), it can
be shown that the voltage drop across the cell is close to the OCV except at extremely high discharge/charge
rates. At low discharge rates, lithium ions are inserted into the positive electrode particles uniformly through-
out the electrode (conversely at low charge rates, they are inserted uniformly throughout the negative elec-
trode). However, at moderately high discharge rates, diffusion through the electrolyte is insufficient to ensure
spatially uniform deposition of lithium ions in the positive electrode particles, with those farthest from the sep-
arator receiving virtually no lithium ions (conversely at moderately high charge rates, spatial deposition of lith-
ium ions in the negative electrode is nonuniform). Since each electrode particle has a given capacity to absorb
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lithium, this results in a decreased fraction of utilised stored energy that can be achieved by a battery operat-
ing at high currents. In this context, we note the recent study of Johns et al. [25], which treats this aspect of
lithium ion battery operation in which a simple model is used, in conjunction with experiments, to illustrate the
effects of salt starvation at high rates of discharge. For comparison with the results of [25], we have included
plots of the fraction of the utilised stored energy (as a function of the discharge current) calculated based on our
model.

In Sect. 2, we formulate a microscopic model describing the transfer of lithium from an electrode particle into
the electrolyte and its subsequent motion. We investigate this model in the scenario where large aggregations of
small electrode particles are utilised to form the electrodes in a battery in Sect. 3. In particular, we show that, where
the diffusion of the lithium within the particles is fast, the microscopic model may be systematically approximated
by a much simpler macroscopic model operating over the scale of the whole battery. In Sect. 4, we look at further
simplifications to this macroscopic model based on the likely parameter regimes for a real device. Finally, in Sect. 5,
we draw our conclusions.

2 Mathematical model

We consider an electrolyte containing lithium ions (the cation) and some negative ion species (the anion), with
valency 1, and with concentrations c∗

p and c∗
n, respectively. In this article, a ∗ appended to a variable denotes that it

is dimensional. At the surface of the particles in both electrodes, reactions take place which transport lithium from
an ionic state in the electrolyte to an intercalated state in the insertion material within the electrode particles, which
can be summarised in the form

Im + Li+ + e− � ImLi,

where Im and ImLi denote, respectively, the insertion material before and after Li insertion.
The Geometry. The geometry of the problem is illustrated in Fig. 1. In this context, the negative electrode particles
occupy the region 0 < x∗ < L; there is then a thin spacer on the other side of which, in L < x∗ < �; and there
is a region occupied by the positive electrode particles. Both negative electrode and positive electrode particles
are surrounded by electrolyte which can freely permeate the porous spacer. We denote the region occupied by the
negative electrode particles by �a, that occupied by positive electrode particles by �c and that by the electrolyte
by �e. This is illustrated in Fig. 2. Furthermore, we take the normal vector n to the interface ∂�ae between the
negative electrode particles, and the electrolyte and the interface ∂�ce between the positive electrode particles and
the electrolyte to be directed towards the electrolyte (see Fig. 2).
Ion transport in a dilute electrolytic solution around particles. We consider the electrolyte to be adequately
described by a mathematical model of a dilute binary electrolyte. In all but extremely narrow Debye layers (typical
width 1 nm) about the surface of the electrodes, charge neutrality is almost exactly satisfied—that is c∗

p ≈ c∗
n

(see, e.g. [26] for further details). This motivates us to write c∗
p ≈ c∗ and c∗

n ≈ c∗ and write down the following
(approximate) conservation equations, in the standard fashion, for the two ion species in the bulk of the electrolyte
away from the Debye layers:

Fig. 2 Schematic representation of the mathematical domains corresponding to the electrolyte �e, the negative and positive electrode
particles, �a and �c respectively, and the interfaces with the surrounding electrolyte, ∂�ae and ∂�ce
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∂c∗

∂t∗
+ ∇∗ · q∗

p = 0, q∗
p = −Dp

(
∇∗c∗ + F

RgT
c∗∇∗φ∗

)

∂c∗

∂t∗
+ ∇∗ · q∗

n = 0, q∗
n = −Dn

(
∇∗c∗ − F

RgT
c∗∇∗φ∗

)
⎫⎪⎪⎬
⎪⎪⎭

in �e. (2.1)

Here, the left-hand side equations represent the conservation of the two ion species with respective ion fluxes (q∗
p

and q∗
n) and these fluxes are defined by the right-hand side equations. In these fluxes, the first term represents a

diffusive flux of ions, while the second represents an advective flux created by the electric field, E∗ = −∇∗φ∗,
acting on the ions, where φ∗ is the electric potential in the electrolyte. The parameters Dp, Dn, F, Rg and T are the
diffusion coefficients of the positive and negative ions, Faraday’s constant, the universal gas constant and absolute
temperature, respectively. More details of the physical significance of these equations can be found, for example,
in [26]. It is also useful to write down an equation for the current density j∗ in terms of the ion fluxes

j∗ = F(q∗
p − q∗

n). (2.2)

The electrodes. Within the electrode particles lithium is in an uncharged mode and is transported by diffusion
becuase of concentration gradients. At the surface of the particles, the lithium is converted to ionic form as it is
released into the electrolyte by the surface electrode reaction (alternatively this process takes place in reverse). We
denote the lithium concentration within a negative electrode particle by c∗

a and its flux by q∗
a , while that in a positive

electrode particle is denoted by c∗
c and its flux by q∗

c (the corresponding diffusion coefficients are denoted by Da

and Dc, respectively), and write down conservation equations for lithium in the two types of particle:

∂c∗
a

∂t∗
+ ∇∗ · q∗

a = 0 and q∗
a = −Da∇c∗

a in �a,

∂c∗
c

∂t∗
+ ∇∗ · q∗

c = 0 and q∗
c = −Dc∇c∗

c in �c,

(2.3)

assuming that the lithium flux is linearly proportional to its concentration gradient. Other more complicated models
have been proposed, for example, in [19] but here we opt for simplicity.

In each electrode, it is necessary to determine the electric potential. In this article, we make the simplest assump-
tions that the electrode particles are sufficiently well connected (electrically) to the current collectors and sufficiently
good conductors so that we can neglect spatial variations in φ∗. Without loss of generality, we specify the potential
on the anodic (negative) current collector as zero and assume that on the cathodic (positive) current collector as�∗
so that�∗ is the potential drop across the whole cell at time t∗. Denoting φ∗

a and φ∗
c as the potentials in the negative

and positive electrodes, respectively; this, together with the above assumptions, leads to conditions of the form:

φ∗
a = 0 in �a and φ∗

c = �∗ in �c. (2.4)

The electrode/electrolyte interfaces. In the electrolyte immediately adjacent to the particle interface, it is necessary
to account for the behaviour of the Debye layer. It is standard practice to replace the complicated electrochemistry
occurring in the Debye layer and on the electrode surface by a number of boundary conditions relating jumps across
this narrow layer.

On the surface of the negative electrode (anode) conservation of lithium ions, intercalated lithium and negative
ions gives rise to the following conditions on the fluxes there

n · q∗
p = G∗

a , n · q∗
a = G∗

a , n · q∗
n = 0, on ∂ �ae, (2.5)

where, G∗
a , is the reaction rate of the lithium at the surface. In this article, G∗

a depends on the physical conditions on
either side of the Debye layer including the potential jump across this layer, the intercalated lithium concentration
on the surface of the electrode and the concentration of ions in the electrolyte. The most common form of this is the
so-called Butler–Volmer condition (see, e.g. Newman [1, p. 7]). In general the Butler–Volmer condition is given as
an empirical law. However, in [26], the three continuity conditions, together with a version of the Butler–Volmer
condition, are systematically derived from an analysis of the underlying Poisson–Nernst–Planck (PNP) equations
(see, e.g. Newman [1, pp. 271–272]). in the narrow Debye layer and some underlying reactions. For Li-ion cells

123



G. Richardson et al.

there are a variety of Butler–Volmer relations that are commonly applied. For example, in the case of a negative
electrode (anode) composed of Lix C6, the reaction rate is sometimes expressed in the form [7]:

G∗
a = m1c∗1/2 (

cmax
a − c∗

a

)1/2
c∗1/2

a

[
exp

(
−(1 − αa)

F

RgT
(φ∗ − U∗(c∗

a ))

)

− exp

(
αa

F

RgT

(
φ∗ − U∗(c∗

a )
))]∣∣∣∣

∂�ae

, (2.6)

where αa is the negative electrode (anode) transfer coefficient and lies in the range 0 < αa < 1 (typically it is taken
as 1/2), m1 is the reaction rate constant, cmax

a is the maximum possible intercalated lithium concentration in the
negative electrode and the function U∗(c∗

a ) represents the effect of surface lithium ion concentration on the reaction
rate (see [7] for an analytic expression for U∗(c∗

a ) in the case of Lix C6 which matches to experimental results).
Recall that φ∗ is the potential in the electrolyte so that potential difference between the electrolyte and the negative
electrode is, on referring to (2.4), also φ∗.

Similar conditions hold on the positive electrode (cathode) and, denoting the reaction rate by G∗
c , and these can

be written as

n · q∗
p = G∗

c , n · q∗
c = G∗

c , n · q∗
n = 0, on ∂�ce, (2.7)

where G∗
c satisfies a Butler–Volmer equation, for example, for LiyMn2O4 [5,7,14] give

G∗
c = m2c∗1/2

(cmax
c − c∗

c )
1/2c∗1/2

c

[
exp

(
−(1 − αc)

F

RgT
(φ∗ −�∗ − V ∗(c∗

c ))

)

− exp

(
αc

F

RgT
(φ∗ −�∗ − V ∗(c∗

c ))

)]∣∣∣∣
∂�ce

, (2.8)

where cmax
c is the maximum possible concentration of intercalated lithium in the positive electrode, and αc is the

positive electrode transfer coefficient which is typically taken as 1/2. Here (2.4) implies that φ∗ −�∗ is the potential
difference between the electrolyte and the positive electrode. Both the studies [5,7] give analytic expressions for
V ∗(c∗

c ) that fit to the experimental data for LiyMn2O4. It is notable that whereas the expressions for U∗(c∗
a ), in

the case of Lix C6, shows significant variation with changes in c∗
a the equivalent expression for V ∗(c∗

c ), in the case
of LiFePO4, shows hardly any variation in c∗

c throughout most of its range since the discharge curve is almost flat
[27]. Further discussion of possible Butler–Volmer conditions can be found in Appendix B.
The external circuit and current collectors. The conditions required to determine �∗, the potential drop across
the cell, depend on the particular external circuit that the battery is connected to. We define the total current, I , as
the total charge flowing through the cell and hence, due to charge conservation, this can be expressed in terms of
an integral of the reaction rates over the surfaces of the two electrodes (i.e. over the total surface of the electrode
particles) by

I ∗ = F
∫
∂�ae

G∗
a dS∗, and I ∗ = −F

∫
∂�ce

G∗
c dS∗, (2.9)

where dS∗ is an element of surface area. A galvanostatic discharge is where I ∗ is specified and�∗ is found, but the
model can equally be applied to a potentiostatic discharge in which �∗ is specified and I ∗ is found. Alternatively,
if the external circuit behaves as a simple resistor, then Ohm’s law holds, and both I ∗ and�∗ must be found so that

�∗ = ωI ∗, (2.10)

where ω is the resistance of the circuit.
The current collectors are solid, and unreactive, and hence there is no flux of either ion species normal to their

interface with the electrolyte. Since the unit vector in x-direction, ex , is perpendicular to the surface of the collectors,
the corresponding boundary conditions are

q∗
p · ex = q∗

n · ex = 0 on x∗ = 0,
q∗

p · ex = q∗
n · ex = 0 on x∗ = �.

(2.11)
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Initial conditions. For simplicity, we assume that the battery has reached an equilibrium state with a certain amount
of charge held as intercalated lithium in the particles. Hence, we take ion concentration c∗ and the intercalated lithium
concentration in both negative electrode and positive electrode (c∗

a and c∗
c , respectively) to be given by

c∗ = c0, c∗
a |x∗<L = c0

a , c∗
c |x∗>L = c0

c when t∗ = 0. (2.12)

The porous spacer. We shall consider the porous spacer to be infinitely thin (even on the scale of the particle
dimensions), electrically insulating and chemically inert. As a result, we ignore the resistance of the spacer, both to
ion transport and to electrical current flow, and as a result, the conditions across this are that the ion concentrations
are continuous, the ion fluxes are continuous, and both the electrolyte potential and electric field in the electrolyte
are continuous (there is a discontinuity in the electrode particle potential across the separator).

2.1 Non-dimensionalisation

The full problem for the electrochemical cell is specified by equations (2.1)–(2.3) and conditions (2.5)–(2.12).
Electrochemical cells are typically constructed such that the distance between the current collectors is small

in comparison to the other dimensions of the cell. This observation will, eventually, enable us to write down an
approximate one-dimensional averaged model for the battery. However, the electrode microstructure means that
the microscale model of the battery, that we consider, must be genuinely three-dimensional. Let us take the area of
each of the planar current collectors to be A, denote the magnitude of the typical current by Ī and that of the typical
active surface area density (surface area per unit volume) of electrode particles by B̄ (this is equivalent to the BET
surface area). It follows that the typical current density is J̄ = Ī/A while the size of the electroactive surface area
of the negative electrode is of order AL B̄.

Given the geometry of the cell, and our goal of deriving a one-dimensional averaged model for its behaviour, it
is helpful to consider the governing equations in a representative section of the cell containing a large number of
electrode particles. In particular, it proves necessary to reformulate (2.9) in terms of this section. Taking a represen-
tative cylindrical volume through the whole cell of cross-sectional area L2, let ∂�̄∗

ae be the surface composed of the
union of the surfaces of the negative electrode particles within this representative volume. Similarly, we define ∂�̄∗

ce
to be the surface composed of the union of the surfaces of the positive electrode particles within the representative
volume. It follows that (2.9) now takes the form:

I ∗L2

A = F
∫

∂�̄∗
ae

G∗
a dS∗, and

I ∗L2

A = −F
∫

∂�̄∗
ce

G∗
c dS∗. (2.13)

We now non-dimensionalise (2.1)–(2.8) and (2.10)–(2.13) as follows:

c∗
a = c0

s ca, c∗
c = c0

s cc, c∗ = c0c, x∗ = Lx, t∗ = τ t, φ∗ = �̄φ,

I ∗ = J̄AI, j∗ = J̄j , G∗
a = J̄

L B̄ F
Ga, G∗

c = J̄

L B̄ F
Gc, �∗ = �̄�, q∗

a = J̄

L B̄ F
qa,

q∗
c = J̄

L B̄ F
qc, q∗

p = J̄

F
qp, q∗

n = J̄

F
qn, U∗ = �̄U, V ∗ = �̄V .

(2.14)

Here, c0
s is the typical concentration of intercalated lithium in the electrodes, �̄ is the typical potential drop across

the cell and D̄ is a typical diffusivity in the electrolyte, τ is the typical timescale for discharge of the cell and areas
within the integrals in (2.13) are non-dimensionalised with L2. Note that the ion fluxes have been non-dimensiona-
lised with the typical current J̄A divided by Faraday’s constant but that qa and qc the fluxes of intercalated lithium
in the electrode particles, and the reaction rates at the electrode surface are estimated by dividing the current J̄A
by the typical total surface area of the electrode (i.e. AB̄L) multiplied by Faraday’s constant. It remains to estimate
the timescale τ for discharge of the cell. An estimate for the volume of the electrode is LA, and it follows that the
number of moles of intercalated lithium is of O(c0

s LA). The latter are consumed at a rate J̄A/F and so the typical
timescale for discharge of the cell is
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τ = Fc0
s L

J̄
.

In line with standard practice, we take the transfer coefficients αa = 1/2 and αc = 1/2.
On defining the following dimensionless parameters

λ = F�̄

RgT
, ℵa = c0

a

c0
s
, ℵc = c0

c

c0
s
, δ = 1

B̄L
,

γ = Fc0 D̄

J̄ L
, ν = c0

s

c0 , κp = Dp

D̄
, κn = Dn

D̄
,

Λ = �

L
, κa = Da

D̄
, κc = Dc

D̄
, Ca = cmax

a

c0
s
,

Cc = cmax
c

c0
s
, M1 = m1c0

s (c
0)1/2L B̄ F

J̄
, M2 = m2c0

s (c
0)1/2L B̄ F

J̄
,

K1 = k1c0
s L B̄ F

J̄
, K2 = k2c0

s c0 L B̄ F

J̄
, K3 = k3c0

s L B̄ F

J̄
, K4 = k4c0

s c0 L B̄ F

J̄
.

(2.15)

the non-dimensionalisation leads to the following system of dimensionless equations
∂c

∂t
+ ν∇ · qp = 0, qp = −γ κp(∇c + λc∇φ)

∂c

∂t
+ ν∇ · qn = 0, qn = −γ κn(∇c − λc∇φ)

⎫⎪⎪⎬
⎪⎪⎭

in �̃e, (2.16a)

∂ca

∂t
+ δ∇ · qa = 0, qa = −γ ν

δ
κa∇ca in �̃a, (2.16b)

qp · n = δGa, qn · n = 0, qa · n = Ga,

Ga = M1c1/2c1/2
a (Ca − ca)

1/2
[

exp

(
−λ

2
(φ − U (ca))

)
− exp

(
λ

2
(φ − U (ca))

)]
⎫⎬
⎭ on ∂�̃ae, (2.16c)

∂cc

∂t
+ δ∇ · qc = 0, qc = −γ ν

δ
κc∇cc in �̃c, (2.16d)

qp · n = δGc, qn · n = 0, qc · n = Gc,

Gc = M2c1/2c1/2
c (Cc − cc)

1/2
[

exp

(
−λ

2
(φ −�− V (cc))

)
− exp

(
λ

2
(φ −�− V (cc))

)]
⎫⎬
⎭ on ∂�̃ce, (2.16e)

qp · ex = 0, qn · ex = 0, on x = 0,
qp · ex = 0, qn · ex = 0, on x = Λ,

(2.16f)

I = δ

∫

∂�̃ae

Ga dA, I = −δ
∫

∂�̃ce

Gc dA, (2.16g)

c = 1, ca|x<1 = ℵa, cc|x>1 = ℵc, when t = 0, (2.16h)

and either I specified, or � specified, or � = ωI. (2.16i)

Here, ∂�̃ae and �̃a are, respectively, the electrode surface and the region occupied by the electrode in a cylinder of
unit cross-sectional area with axis between x = 0 and x = 1; ∂�̃ce and �̃c are, respectively, the electrode surface
and the region occupied by the electrode contained in a cylinder of unit cross-sectional area between x = 1 and
x = Λ; In addition, �̃e denotes the regions occupied by the electrolyte in a cylinder of unit cross-sectional area
with axis between x = 0 and x = Λ. It is also useful to write down an expression for the dimensionless current
density:

j = qp − qn = −γ (
(κp − κn)∇c + λ(κp + κn)c∇φ

)
. (2.17)
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2.1.1 Interpretation and discussion of the dimensionless parameters

In the above equations, 1
δ

is a geometric parameter representing the total electrode particle surface area from current
collector to current collector per unit cross-sectional area of the cell; λ gives the ratio of a typical potential drop
across the cell to the thermal voltage; κp, κn, κa and κc are the dimensionless diffusivities of Li+ ions, negative ions
and intercalated lithium (in the negative and positive electrodes), respectively; γ measures the ratio of the maximum
sustainable flux of ions in the electrolyte to the actual ion flux; Λ gives the ratio of the total cell width to the width
of the negative electrode (anode); ν is the ratio of typical intercalated lithium concentrations in the solid to that in
the electrolyte; and M1 and M2 are dimensionless reaction rates.

We have chosen to non-dimensionalise so that the dimensionless fluxes qn, qp, qa and qc are typically of magni-
tude 1. In addition, we note that the dimensionless parameter λwill play a particularly important role in the analysis
that follows. The thermal voltage RgT/F is, at room temperature of about 25 mV and so λ will be large in most
applications. Furthermore, we remark that the factors δ appearing in equations (2.16g) ensure that the right-hand
sides of these equations are of magnitude 1, the dimensionless surface areas of ∂�ae and ∂�ce being of magnitude
1/δ.

We can also use existing data to estimate the size of the other important dimensional parameters in the problem

a ≈ 10−5 m, Dp ≈ 10−11 − 10−10 m2 s−1, Dn ≈ Dp

3
m2 s−1, Da and Dc ≈ 10−16 − 10−13 m2 s−1,

c0 ≈ 103 mol m−3, c0
s ≈ 50 × 103 mol m−3, L ≈ 1.5 × 10−4 m,

where a gives a typical radius of an electrode particle and the figures for Dp and Dn, are based on conduc-
tivities of lithium ion salts [28]. The figures for solid diffusion of intercalated lithium (Da and Dc) are taken
from data on lithium-metal-manganese oxides Dc ∼ 10−16 − 10−13 m2 s−1 [29], lithium-tungsten-oxide Dc ∼
2×10−15 −6×10−15 m2 s−1 [30], lithium cobalt oxide Dc ∼ 10−14 −1.5×10−13 m2 s−1 [31] and lithium-graph-
ite Da ∼ 10−16 − 10−13 m2 s−1 [32]. We now use these dimensional parameters to estimate the key dimensionless
parameters:

λ ≈ 180, κp = 1, κn ≈ 1/3, κa and κc ≈ 10−1 − 10−6, ν ≈ 50.

We have little information about the sizes of the dimensionless reaction constants K1, K2, K3 and K4. However, as
long as their sizes are not excessively large or small, this makes little difference since the exponentials in (2.16c)–
(2.16e) contain the large parameter λ and will thus be dominant. Finally, we can estimate δ by considering the
electrode to be a collection of uniform spheres of radius a in a number of possible packing scenarios. The packing
makes little difference to the size of δ so, on using the information above to deduce that a/L is typically about 1/15,
it follows that

δ ≈ 2 × 10−2 − 5 × 10−2.

In this study, we shall assume that the diffusion of material through the electrode particles occurs over a shorter
timescale than diffusion through the electrolyte (which is thus the limiting process). In terms of the above dimen-
sionless parameters this is, as we shall show, equivalent to the assumption that γ νκa � δ2 and γ νκa � δ2 (which
holds for at least some part of the parameter range).

2.2 Alternative forms for equations and boundary conditions

In the following analysis, it is worth noting that (2.16a) can always be rearranged to give an equation solely in terms
of c and further manipulations allow φ to be eliminated from the boundary conditions (2.16c(I))–(2.16c(II)) and
(2.16e(I))–(2.16e(II)). The result is
∂c

∂t
= 2γ ν

κnκp

κn + κp
∇2c in �̃e, (2.18)

∂c

∂n

∣∣∣∣
∂�̃ae

= − δGa

2γ κp
,

∂c

∂n

∣∣∣∣
∂�̃ce

= − δGc

2γ κp
. (2.19)
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Besides, if we know the reaction rates, Ga and Gc, this provides a closed system for c in �̃e. In a similar way, we
can find equations and boundary conditions for φ to give

∇ · (c∇φ) = 1

λ

κn − κp

κn + κp
∇2c, (2.20)

c
∂φ

∂n

∣∣∣∣
∂�̃ae

= − δGa

2λγ κp
, c

∂φ

∂n

∣∣∣∣
∂�̃ce

= − δGc

2λγ κp
. (2.21)

3 Multiple-scale formalism

The multiple-scale technique [33–35] gives a systematic method for accounting for phenomena that occur within a
microscopic quasiperiodic microstructure in terms of a macroscopic system of equations. In particular, it provides a
method for deriving the macroscopic equations and determining the corresponding (macroscopic) physical param-
eters from a local problem for the microscopic behaviour. This local problem exploits the quasiperiodic structure to
allow the microscale solution to be formally averaged and thus accounts for the fine geometric details and properties
of the material. We will apply this method to the microscale battery model (2.16b)–(2.16i) and (2.18)–(2.21) to
derive a macroscopic electrode scale model. This proves to be very similar to the macroscopic models formu-
lated and used in [2,4,5,7,8]. The novelty of this study is that it provides a systematic method for calibrating the
coefficients in the model in terms of the microstructure and thereby provides a tool for improving particle design.

This approach can be contrasted with averaging methods see, for example, Wang et al. [36] where spatial aver-
ages are taken of the microscopic equations resulting in equations on a macroscopic scale for the microscopically
averaged variables. These macroscopic equations are closed by making ad hoc assumptions about higher-order
averages (the closure conditions) and fitting these to empirical data. In this study, we exploit the large difference
in lengthscale between the electrode particles and the battery thickness, as denoted by δ, to use an asymptotic
multiple-scale method to systematically approximate the problem. This allows for deriving equations governing
the macroscopic behaviour, but formally relies on the particle packing being nearly periodic. The method has the
considerable advantage over the averaging method in that it allows parameters in the macroscopic problem to be
derived directly, from the underlying microscopic geometry and physical model, without resorting to ad hoc closure
conditions. Given that manufacturers are now producing electrode particles to high tolerance, this approach gives
a method for systematically investigating the effect of different particle designs on the performance of the battery.

The limit δ → 0 will be taken to allow a multi-scale analysis (for example [33–35]), to homogenise the equations
and create a simplified macroscopic model.

The above method assumes that the solution is a function of two disparate lengthscales corresponding to that
of the electrode particles (O(δ) in dimensionless units) and that of the electrolytic cell (O(1) in dimensionless
units). In order to analyse the problem, it is helpful to introduce a microscale variable x̂ on the particle lengthscale.
Furthermore, we assume that there is local periodicity in the electrode particle arrangement and, in particular, that
the structure is periodic within a repeating domain V̂per ∪ �̂per (see Fig. 3). In fact, in order to keep the treatment
as generalised as possible, we shall allow the shape and size of the particles (denoted by �̂per) to vary over the
long lengthscale x but, as a consequence of the multiple-scale method we employ, we require that the union of the
domain occupied by the particles �̂per and that occupied by the electrolyte lying outside them V̂per to be strictly
periodic. Rather than rescale x with δ directly, we rescale with ε where ε = δp measures the size of the periodic
domain V̂per ∪�̂per (e.g. the length of its edges where it is cuboidal) and p is an O(1) parameter. Thus the microscale
variable is defined by

x = εx̂, (3.1)

where x̂ measures distances on the scale of an electrode particle and x measures them on the scale of the electrode.
In the standard fashion we now look for a solution which is a function both of the long-scale variable x and of the
short scale variable x̂. This will lead to a non-uniquely determined problem unless we impose some extra conditions.
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Fig. 3 Illustration of the microstructured boundary

Here we require that the solution is periodic in the short-scale variable. Having made this solution ansatz, it becomes
apparent that the gradient operator transforms according to ∇ → ∇ + ∇̂/ε.

The central ansatz for the expansions of the variables is

c = c0(x, t)+ εc1(x̂, x, t)+ ε2c2(x̂, x t)+ . . . ,

φ = φ0(x, t)+ εφ1(x̂, x, t)+ ε2φ2(x̂, x t)+ . . . ,

qp = q p,0(x̂, x, t)+ εq p,1(x̂, x, t)+ ε2q p,2(x̂, x, t)+ . . . ,

qn = qn,0(x̂, x, t)+ εqn,1(x̂, x, t)+ ε2qn,2(x̂, x, t)+ . . . ,

j = j0(x̂, x, t)+ εj1(x̂, x, t)+ ε2j2(x̂, x, t)+ . . . ,

so that both the concentration and the potential in the electrolyte are dominated by variations on the battery length-
scale with important smaller variations on the electrode-particle lengthscale. The fluxes qp and qn and the current
density j all have to flow around the electrode particles and hence display significant variations on the particle
lengthscale. It is clear that averaged quantities for the lithium ion concentration and the potential are given by
〈c〉(x, t) ∼ c0(x, t) and 〈φ〉(x, t) ∼ φ0(x, t), respectively. However, it is not immediately clear how to define the
average current density 〈j 〉(x, t), for example.

3.1 Homogenisation in the electrolyte

The method of multiple scales is used in Appendix A to write down an averaged equation for the diffusion of
lithium ions in the electrolyte and the potential in the electrolyte. By comparing (2.18)–(2.21) with (7.1)–(7.3), we
can identify

D = 2γ ν
κnκp

κn + κp
, ε = δp, k = νκn

p(κn + κp)
, α = κn − κp

κn + κp
. (3.2)

Then it follows, by analogy with (7.24) and (7.25), that the equations for c0(x, t) and φ0(x, t) are

|V̂per|
|V̂per| + |�̂per|

∂c

∂t
− 2γ ν

κnκp

κn + κp

∂

∂xi

(
Bi j

∂c

∂x j

)
= νκn

p(κn + κp)
Q̃, (3.3)

∂

∂xi

(
Bi j

(
λc
∂φ

∂x j
−

(
κn − κp

κn + κp

)
∂c

∂x j

))
+ Q̃

pγ (κn + κp)
= 0. (3.4)

Here, we drop the subscripts from c0 and φ0, define the diffusion tensor Bi j in (7.19), define the effective reaction
rates, Q̃, G̃a and G̃c by
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Q̃ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G̃a =
∫
∂�̂per

Ga dŜ

|�̂per| + |V̂per|
in the negative electrode

G̃c =
∫
∂�̂per

Gc dŜ

|�̂per| + |V̂per|
in the positive electrode

, (3.5)

and introduce the geometric parameters |�̂per| = ∫
�̂per

dV̂ and |V̂per| = ∫
V̂per

dV̂ . In Sect. 7.2, we prove that the
tensor Bi j is symmetric and that all its diagonal entries are smaller than 1 (implying that the diffusivity is reduced
by the microstructure)

Bi j = B j i , 0 < Bi i < 1 (no summation).

The tensor Bi j is a multiple of the effective diffusivity tensor usually introduced in macroscopic models. Here, the
definition (7.19) gives a prescriptive method for determining these values for any given microscopic geometry and
set of physical parameters. The reduction of the effective diffusivity in any particular direction below the value of
the diffusivity without any microstructure can be attributed to tortuosity. The quantity Q̃ represents the averaged
fluxes into and out of the electrolyte due to transfer between particles and electrolyte.

3.2 Behaviour in the electrode particles

As stated previously we consider the fast diffusion limit in which the concentration of lithium ca and cc, in both
negative and positive electrodes, is, to a good approximation, independent of position within the particle. Conser-
vation of lithium within a particle implies that the rate at which lithium concentration changes within the particle,
multiplied by the volume of the particle, is equal to the rate at which it is extracted from the particle surface so that
∫

�̂per

∂ca

∂t
dV̂ = − 1

p

∫

∂�̂per

GadŜ �⇒ |�̂per|
|�̂per| + |V̂per|

∂ca

∂t
= − 1

p
G̃a,

∫

�̂per

∂cc

∂t
dV̂ = − 1

p

∫

∂�̂per

GcdŜ �⇒ |�̂per|
|�̂per| + |V̂per|

∂cc

∂t
= − 1

p
G̃c,

(3.6)

where G̃a and G̃c are defined by (3.5). Equally, we could have derived these equations by performing a formal
asymptotic expansion of ca and cc in powers of δ2/γ νκa and δ2/γ νκa, respectively, using (2.16b) and (2.16d).

3.3 The transfer rates at the interfaces between particles and electrolyte

Consider now the equations relating the current to the reaction rates (2.16g). The volume of each microscale periodic
domain V̂per ∪ �̂per on the microscale is (δp)3(

∫
V̂per

dV̂ + ∫
�̂per

dV̂ ), that is (δp)3(|�̂per| + |V̂per|). The number

of microscale periodic domains contained within a macroscopic volume dV is thus dV/((δp)3(|�̂per| + |V̂per|))
and furthermore dA = (δp)2dŜ, where dŜ is an element of surface area on the electrode particle lengthscale. It is
known that ∂�̃ae is the electroactive surface contained in a cylinder of unit cross-sectional area between x = 0 and
x = 1 while ∂�̃ce is the electroactive surface contained in a cylinder of unit cross-sectional area between x = 1
and x = Λ (so that the element of volume in both these cases is dV = dx) it follows that

∫

∂�̃ae

Ga dA =
1∫

0

(δp)2

⎛
⎜⎜⎝

∫

∂�̂per

Ga dŜ

⎞
⎟⎟⎠ dx

(δp)3(|�̂per| + |V̂per|)
,
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∫

∂�̃ce

Gc dA =
Λ∫

1

(δp)2

⎛
⎜⎜⎝

∫

∂�̂per

Gc dŜ

⎞
⎟⎟⎠ dx

(δp)3(|�̂per| + |V̂per|)
.

In turn this can be rewritten as

∫

∂�̃ae

Ga dA = 1

δp

1∫
0

G̃a(x)dx
∫

∂�̃ce

Gc dA = 1

δp

Λ∫
1

G̃c(x)dx .

Hence, we can rewrite (2.16g) in terms of the locally averaged reaction rates G̃a and G̃c as

I = 1

p

1∫
0

G̃a(x) dx, I = − 1

p

Λ∫
1

G̃c(x) dx . (3.7)

3.4 Summary of the homogenised equations

On applying the definition (3.5) to (2.16c), and (2.16e) (recalling that ca, cc, c and φ are all approximately constant
over a particle) and on dropping subscripts from (2.16f), (3.3)–(3.4), (3.6) and (3.7) we can write the homogenised
model as

|V̂per|
|�̂per| + |V̂per|

∂c

∂t
− 2γ ν

κnκp

κn + κp

∂

∂xi

(
Bi j

∂c

∂x j

)
=

⎧⎪⎨
⎪⎩

νκn

p(κn + κp)
G̃a in 0 < x < 1

νκn

p(κn + κp)
G̃c in 1 < x < Λ

, (3.8a)

∂

∂xi

(
Bi j

(
λc
∂φ

∂x j
−

(
κn − κp

κn + κp

)
∂c

∂x j

))
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− G̃a

pγ (κn + κp)
in 0 < x < 1

− G̃c

pγ (κn + κp)
in 1 < x < Λ

, (3.8b)

G̃a = M̃1c1/2
a (Ca − ca)

1/2c1/2
[

exp

(
−λ

2
(φ − U (ca))

)
− exp

(
λ

2
(φ − U (ca))

)]
, (3.8c)

G̃c = M̃2c1/2
c (Cc − cc)

1/2c1/2
[

exp

(
−λ

2
(φ −�− V (cc))

)
− exp

(
λ

2
(φ −�− V (cc))

)]
, (3.8d)

|�̂per|
|�̂per| + |V̂per|

∂ca

∂t
= − 1

p
G̃a in 0 < x < 1, (3.8e)

|�̂per|
|�̂per| + |V̂per|

∂cc

∂t
= − 1

p
G̃c in 1 < x < Λ, (3.8f)

I = 1

p

1∫
0

G̃a(x) dx, I = − 1

p

Λ∫
1

G̃c(x) dx, (3.8g)

c|t=0 = 1, ca|x<1,t=0 = ℵa, cc|x>Λ,t=0 = ℵc, (3.8h)
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∂c

∂x

∣∣∣∣
x=0

= 0,
∂φ

∂x

∣∣∣∣
x=0

= 0,
∂c

∂x

∣∣∣∣
x=Λ

= 0,
∂φ

∂x

∣∣∣∣
x=Λ

= 0, (3.8i)

where ca is the intercalated lithium concentration in the negative electrode, cc is that in the positive electrode and

M̃1 = M1

∫
∂�̂per

dŜ

|�̂per| + |V̂per|
, M̃2 = M2

∫
∂�̂per

dŜ

|�̂per| + |V̂per|
. (3.9)

3.4.1 Comparison to other models in the literature and redimensionalisation of the homogenised equations

This system of equations is similar to the averaged macroscopic models used elsewhere [2,4,5,7,8]. One important
difference to these models is that here we have assumed that the electrical conductivity between particles is very
good so that the conductivity in the electrodes is effectively infinite.1 In order to further highlight this similarity
between the model that we have derived here (3.8a)–(3.8i) and those used elsewhere, we identify the average current
density in the electrolyte 〈j〉 and rewrite (3.8b) in terms of 〈j〉

〈j 〉i = −γBi j

(
(κp − κn)

∂c

∂x j
+ λc

∂φ

∂x j

)
, ∇ · 〈j〉 =

⎧⎪⎪⎨
⎪⎪⎩

G̃a

p
in 0 < x < 1

G̃c

p
in 1 < x < Λ

. (3.10)

Here, to the level of approximation used in deriving the averaged equations, c = 〈c〉 and φ = 〈φ〉. In terms of the
notation used in [7], the (dimensionless) averaged electrolyte current ie = 〈j〉, the (dimensionless) transfer current
per unit volume is Sav jn = G̃a/p in the negative electrode and Sav jn = G̃c/p in the positive electrode, where Sav is
the average electroactive area. It is notable that our derivation of the model gives a systematic method for deriving the
macroscopic electrolyte diffusion tensor Bi j and further that the effective conductivity of the electrolyte is uniquely
defined in terms of this diffusion tensor. The method we have used therefore has the considerable advantage over
the standard averaging techniques of determining ad hoc fitting parameters in the macroscopic model uniquely
from the underlying microscopic model. If these parameters are inconsistent with data, then this implies that the
microscopic model provides an inadequate description of the underlying physical processes.

In order to make a more detailed comparison to other models, we redimensionalise (3.8a)–(3.8b), using (2.14)–
(2.15), obtaining

εv
∂c∗

∂t∗
− ∂

∂xi

(
2Dn Dp

Dn + Dp
Bi j

∂c∗

∂x∗
j

)
= Dn

Dn + Dp
a∗G∗, (3.11)

∇∗ · 〈j∗〉 = −Fa∗G∗, (3.12)

〈j∗〉p = −
(
(Dn + Dp)F2c∗

RT

)
Bpq

(
∂φ∗

∂x∗
q

− RT

F

(
Dn − Dp

Dn + Dp

)
∂

∂x∗
q

log c∗
)
, (3.13)

where a∗, the BET surface area, and εv, the particle volume fraction are defined by

a∗ = 1

δpL

∫
∂�̂per

dŜ

|�̂per| + |V̂per|
, εv = |V̂per|

|�̂per| + |V̂per|
and G∗ = G∗

a in the negative electrode and G∗ = G∗
c in the positive electrode. Rewriting this in the form used by

Fuller, Doyle and Newman [7] gives

εv
∂c∗

∂t∗
− ∂

∂xi

(
εvDi j

∂c∗

∂x∗
j

)
= (1 − t+)a∗G∗, (3.14)

∇∗ · 〈j∗〉 = Fa∗G∗, (3.15)

〈j∗〉p = −κpq

(
∂φ∗

∂x∗
q

− RT

F
(1 − 2t+)

∂

∂x∗
q

log c∗
)
, (3.16)

1 It is relatively straightforward to extend our analysis to account for finite conductivity between the solid electrode particles.
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where the transference number of lithium t+, the conductivity tensor κi j and the effective diffusivity Di j are given by

t+ = Dp

Dn + Dp
, κi j = F2(Dn + Dp)

RT
c∗Bi j , Di j = 2RT

F2εvc∗ t+(1 − t+)κi j .

In terms of the notation used in [7] we can identify G∗ with jn, 〈j∗〉 with i2 and φ∗ with �2. Note that the factor
(1 − 2t+) appearing in (3.16) differs from that given in [7] where the factor is given as (1 − t+). This difference
comes about because [7] uses the concentrated solution theory described in [1], in contrast to this study where we
make use of a dilute theory for which the Stokes–Einstein relation relating diffusivity to mobility is applicable. This
difference between the two theories leads to differences in the definitions of electrolyte diffusivities, ion mobilities
and transference numbers. Indeed, with our definition of the transference number, replacing the factor (1 − 2t+)
with (1 − t+) in (3.16) is incorrect as can be seen using symmetry considerations.

In the next section, physically relevant limiting cases of the remaining parameters in the problem are considered
to identify the underlying behaviour of the battery.

4 Asymptotic analysis (λ � 1)

Here, we consider a one-dimensional problem for the homogenised model describing a planar cell in which the
negative electrode occupies the region 0 < x < 1 while the positive electrode occupies the region 1 < x < Λ and
is separated from the negative electrode by a thin spacer. We will only investigate the case where the open circuit
potential curves U (ca) and V (cc) both show significant variations with ca and cc, respectively. We note that where
the open circuit potential curves are so flat that O(1) variations in ca and cc lead to variations in U (ca) and V (cc)

of size 1/λ the asymptotic analysis we present here is inappropriate and a more complicated analysis is required
(thus the results we present here could not be utilised to describe an LiFePO4 electrode, for example). Furthermore,
we shall assume that the composition of the electrodes is uniform within each electrode. As we are considering
one-dimensional behaviour in the x-direction, we need only to consider B11 and we assume it to have the form:

B11 = (B− H(1 − x)+ B+ H(x − 1)), |�̂per| = |�̂a|H(1 − x)+ |�̂c|H(x − 1),

and |V̂per| = |V̂a|H(1 − x)+ |V̂c|H(x − 1) (4.1)

where |�̂a|, |�̂c|, |V̂a| and |V̂c| are all constants and H(·) is the usual Heaviside function. The constants B− and
B+ can be calculated for any particular microstructure in the positive and negative electrodes using the methods in
Appendix A. We note that the particle volume fractions |�̂a|/(|V̂a| + |�̂a|) and |�̂c|/(|V̂c| + |�̂c|) are well known
for various packings of spherical particles (being, e.g. 0.74 for face centred cubic and 0.52 for simple cubic).

We base our asymptotic analysis of the model on the assumptions that λ � 1 and, in line with parameter esti-
mates, considering the distinguished limit γ = O(1), κn = O(1), κp = O(1) and ν = O(λ). From a physical point
of view, γ = O(1) corresponds to placing a very high load on the battery and so is a particularly interesting limit.
Following the assumptions made about the sizes of the parameter ν, we write

ν = λν̃,

where ν̃ is a O(1) parameter. The assumption that γ ν is large corresponds to the timescale for diffusion within the
electrolyte being much faster than that for the reaction in the electrode particles so that the first term in (3.8a) is
negligible.

We assume that the variables have a regular expansion in 1/λ as follows:

c = c0(x, t)+ . . . , φ = φ0(t)+ 1

λ
φ1(x, t)+ . . . , � = �0 + 1

λ
�1 . . . ,

ca = ca,0 + 1

λ
ca,1 + . . . , cc = cc,0 + 1

λ
cc,1 + . . . , Ga = Ga0 + 1

λ
Ga,1 + . . . ,

Gc = Gc0 + 1

λ
Ga,1 + . . . , G̃a = G̃a0 + 1

λ
G̃a1 + . . . , G̃c = G̃c0 + 1

λ
G̃c1 + . . . .

(4.2)
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The electrolyte. Substitution of the above expansion into (3.8a), (3.8i(I)) and (3.8i(III)) yields
∂

∂x

(
(B−H(1 − x)+ B+ H(x − 1))

∂c0

∂x

)
+ 1

2pγ κp
(G̃a0 H(1 − x)+ G̃c0 H(x − 1)) = 0, (4.3)

∂c0

∂x

∣∣∣∣
x=0

= 0,
∂c0

∂x

∣∣∣∣
x=Λ

= 0. (4.4)

Since the highest derivative in t does not appear in the leading order equation for c (because ν � 1), there is an
initial short timescale transient in which the solution rapidly adjusts to a quasi-steady state. We do not wish to inves-
tigate this transient, but nevertheless the solution to the Neumann problem (4.3) and (4.4) is not currently uniquely
defined, and so we require an extra condition which comes from matching to this transient behaviour. In this case,
we can avoid much analysis by noting that the problem conserves the global ion concentration. It is apparent from
(3.8a) that there is no net consumption of lithium ions, implying that the average lithium ion concentration across
the cell is independent of time. Since c has been non-dimensionalised with average initial ion concentration, this
implies
Λ∫

0

c0 dx = Λ (4.5)

and this condition, when applied to (4.3) and (4.4) should, where a solution for c0 exists, determine it uniquely.
The discontinuity in B at x = 1 means that, when looking for the solution to (4.4), we should impose the jump

conditions [c0]x=1+
x=1− = 0 and [B∂c0/∂x]x=1+

x=1− = 0 in the standard fashion.
Butler–Volmer conditions. Substitution of the Butler–Volmer conditions (3.8c) and (3.8d) into (3.8e) and (3.8f)
leads to evolution equations for ca and cc with exponential decay, which rapidly approach a steady solution. This
occurs because both U (ca) and V (cc) are monotonically increasing in their arguments (corresponding to the dif-
ference in potentials between the electrolyte and the electrode increasing with electrode lithium concentration).
To leading order, this steady solution is found by setting the arguments of the exponentials in the Butler–Volmer
conditions (3.8c)–(3.8d) to zero so that

φ0(t) = U (ca,0), �0 = φ0(t)− V (cc,0). (4.6)

Variations in the electrolyte potential are the size of the thermal voltage, which is much smaller than the drop across
the battery (in these units O(1/λ) compared to O(1)). Figure 1 shows a typical plot of the potentials in the battery.
Where these conditions are satisfied, the relation between the lithium concentrations in the electrodes (ca and cc),
the electrolyte potential φ and the potential drop across the cell� are given, at leading order, by the two expression
in (4.6). An important corollary to this is that both the leading order lithium concentrations in the electrode particles
(ca,0 and cc,0) are functions of time only. A noteworthy feature of this solution is that the potential drop across the
cell � is, to the lowest order of approximation, independent of the current I , being drawn from the cell and only
dependent on the state of discharge of the cell. This potential drop is typically termed the OCV to denote that is the
same as the voltage that would be obtained after sufficient time at open circuit.
The electrode particles. We can infer from the facts that ca,0 = ca,0(t) and cc,0 = cc,0(t) and from the leading
order expansion of (3.8e) and (3.8f) that

∂G̃a0

∂x
= 0,

∂G̃c0

∂x
= 0 (4.7)

(recall that |�̂per| and |V̂per| are both constant within each electrode). It follows from (3.8g) that the discharge is
spatially uniform with

G̃a0 = pI, G̃c0 = − pI

Λ− 1
. (4.8)

Equations for the evolution of ca,0 and cc,0 arise from substitution of the above into the leading terms of (3.8e) and
(3.8f) and are

dca,0

dt
= −I

(
|V̂a| + |�̂a|

|�̂a|

)
,

dcc,0

dt
= I

(Λ− 1)

(
|V̂c| + |�̂c|

|�̂c|

)
. (4.9)
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Integrating (4.9) and applying the initial conditions ca,0|t=0 = ℵa and cc,0|t=0 = ℵc gives expressions for the
lithium concentrations in the electrodes

ca,0(t) = ℵa −
(

|V̂a| + |�̂a|
|�̂a|

) t∫
0

I dt, cc,0(t) = ℵc + 1

Λ− 1

(
|V̂c| + |�̂c|

|�̂c|

) t∫
0

I dt. (4.10)

4.1 Behaviour for currents below Icrit

We start by considering the solution for the concentration of electrolyte. We can integrate (4.3)–(4.5), where the
reaction rates G̃a0 and G̃c0 are given by (4.8), to obtain a solution for c0 of the form:

c0 =

⎧⎪⎪⎨
⎪⎪⎩

1 + I

12Λγκp

(
2(Λ− 1)2

B+
+ 3Λ− 2 − 3Λx2

B−

)
in 0 < x < 1

1 + I

12Λγκp

(
3Λ(Λ− x)2

B+(Λ− 1)
− Λ2 +Λ− 2

B+
− 2

B−

)
in 1 < x < Λ

. (4.11)

Typical plots of this solution are made in Figs. 4a and 5a. One of its notable features is that for sufficiently large
I , the concentrations can become negative and therefore unphysical. In this section, we therefore consider the case
where the concentration remains positive. For simplicity, we focus on the case I > 0, corresponding to battery
discharge, in which c0 decreases monotonically in x with minimum at x = Λ and we see that (4.11) remains strictly
positive where

I < Icrit with Icrit = 12γ κpΛB+B−
B−(Λ2 +Λ− 2)+ 2B+

.

It is interesting to compare our results with those of Fuller et al. [7] for their model system which suggest a crit-
ical current density, in dimensional terms, of about 4.0 mA/cm2. Using their data and the above formula leads
to value of the critical current density of about 9.0 mA/cm2. The reason for the difference in these values is that
while the analysis we present here is applicable to Lix C6, in that the utilization of lithium within this material is
almost uniform across the negative electrode (Fig. 7 of [7]), it is not applicable for the LiyMn2O4 in the positive
electrode which has an open circuit potential with several very flat sections to it (Fig. A-2 of [7]) and consequently
does not discharge uniformly across the electrode (Fig. 7 of [7]). The asymptotic description of materials with
such flat open circuit potentials is beyond the scope of this article, but will be tackled by the authors in a future
study.
The correction to the open circuit voltage. In Appendix C, we calculate the O(1/λ) correction to the OCV when
I < Icrit . This is dependent on the exact form of the Butler–Volmer condition used. We find that, for example, when
we use the conditions (3.8c)–(3.8d) that

�1 = −
1∫

0

log c0(x, t)+ 2 log G(x, t) dx + 1

Λ− 1

Λ∫
1

log c0(x, t)+ 2 log H(x, t) dx, (4.12)

where

G = pI + (p2 I 2 + 4M̃2
1 c0ca,0(Ca − ca,0))

1/2

2M̃1c1/2
a,0 c1/2

0 (Ca − ca,0)1/2
, H = −pI + (p2 I 2 + 4(Λ− 1)2 M̃2

2 c0cc,0(Cc − cc,0))
1/2

2M̃2(Λ− 1)c1/2
c,0 c1/2

0 (Cc − cc,0)1/2
.

(4.13)

Hence, if the galvanostatic current is less than the critical value Icrit , then the electrolyte has significant amounts
of lithium throughout the battery and, to the lowest order, the discharge is uniform. The dominant behaviour of
the concentration and the potential is independent of the particular Butler–Volmer condition that was considered.
However, there are details, as shown by the corrections, that are dependent on the model that is exploited. Such
details may indicate the appropriate model that is required to be used.
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(b)(a)

Current increasing

Current increasing

Fig. 4 Plots of the solution to (4.3)–(4.4) for Λ = 2,B+ = 1,B− = 1 for which Icrit = 4γ κp and Imax = 12γ κp. a The current takes
the values I/Icrit = 0.25, 0.5, 0.75, 1 and, since the current is low enough to allow significant reaction throughout both electrodes,
the solution for c0 is regular (of form (4.11)). b The currents are greater than Icrit , taking the values I/Icrit = 1, 1.5, 2, 2.5, 3, and the
solution consequently has the form (4.21) in which regions of the positive electrode are unable to discharge properly

Current increasing

Current increasing(b)(a)

Fig. 5 Plots of the solution to (4.3)–(4.4) for Λ = 2,B+ = 1,B− = 2 for which Icrit = 4.8γ κp and Imax = 24γ κp. a The cur-
rent takes the values I/Icrit = 0.25, 0.5, 0.75, 1 and the solution for c0 is regular (of form (4.11)). b The current takes the values
I/Icrit = 1, 2, 3, 4, 5 and the solution has the form (4.21)

4.2 A free boundary solution for electrolyte ion concentration at high currents (I > Icrit)

We now return to the question of whether a physical solution exists when the current is greater than Icrit . Physically,
it can be seen that (4.11) breaks down for large I because of the inability of ions to diffuse sufficiently rapidly
towards the ion-depleted region of the negative electrode. Since the diffusion timescale is highly dependent on
distance over which diffusion takes place, it might be expected that, at high currents, the regions of the negative
electrode farthest from the separator will become depleted of lithium in the electrolyte and effectively switch off.
Since the total current is specified, this will result in increased reaction rates in parts of the electrode close to the
separator.

To simplify our examination of behaviour, we shall only consider positive I so that electrolyte depletion occurs
within the positive electrode in 1 < x < Λ; the analysis is similar for I < 0 except that the electrolyte-depleted
region lies in 0 < x < 1. From a physical point of view, it is clear that the problem occurs because the reaction on
the electrode is so fast that it significantly depletes the electrolyte within the positive electrode leaving regions far
from the separator unable to react because of the lack of available lithium ions.

123123



Multiscale modelling and analysis of lithium-ion battery charge and discharge

Fig. 6 A schematic of Li+
concentration c0 at high
current I > Icrit

We shall study this problem more carefully in Appendix D but to demonstrate the general behaviour while
avoiding much of the detail, we consider introducing a free boundary at x = μ(t) (where 1 < μ < Λ) to describe
the solution. This boundary divides the region with significant lithium-ion concentration, close to the separator
(1 < x < μ(t)), from a region, far from the separator, where the lithium concentration in the electrolyte is
extremely small μ(t) < x < Λ as illustrated in Fig. 6. We will consider the region μ(t) < x < Λ, where c0 = 0 at
the end of this section, wherein, in reality, the ion concentrations are exponentially small and first we concentrate
of the region 1 < x < μ(t). In this region c0 = O(1) and at the free boundary, we expect

c0 = 0 and
∂c0

∂x
= 0 on x = μ. (4.14)

representing the facts that ion concentration vanishes (to leading order) on the free boundary and that the flux of
ions into the ion-depleted region is negligible. Hence, the problem is to find the concentration of lithium in the
electrolyte and find the position of a free boundary where the concentration goes to zero.

4.2.1 Region of significant ion concentration 0 < x < μ

In performing the asymptotic analysis, we should expand all the variables as before but also expand μ(t). Once
again since, φ0 is a function of t only, the leading order Butler–Volmer conditions

φ0(t) = U (ca,0) in 0 < x < 1,
�0(t) = φ0(t)− V (cc,0) in 1 < x < μ(t),

(4.15)

imply that ca,0 and cc,0 are functions of time only. It follows from the integral conditions (3.8g) that

G̃a,0 = pI in 0 < x < 1, and G̃c,0 =
⎧⎨
⎩

− pI

μ− 1
in 1 < x < μ

0 in μ < x < Λ

Substituting these expressions for the reaction rates into (3.8a), (3.8h(I)), (3.8i(I)), (4.5) and (4.14) gives the fol-
lowing system for c at leading order:

2κp
∂

∂x

(
(B− H(1 − x)+ B+ H(x − 1))

∂c0

∂x

)
=

⎧⎪⎨
⎪⎩

− I

γ
in 0 < x < 1,

I

γ (μ− 1)
in 1 < x < μ

, (4.16)

∂c0

∂x

∣∣∣∣
x=0

= 0,
∂c0

∂x

∣∣∣∣
x=μ

= 0, c0|x=μ = 0, (4.17)

μ∫
0

c0dx = Λ, (4.18)
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while substituting them into (3.8e), (3.8f) , (3.8h(II)–(III)) gives the following equations for the evolution of the
lithium concentrations in the electrodes (to leading order):

∂ca,0

∂t
= −|V̂a| + |�̂a|

|�̂a|
I in 0 < x < 1, (4.19)

∂cc,0

∂t
=

⎧⎨
⎩

|V̂c| + |�̂c|
|�̂c|

I

μ− 1
in 1 < x < μ,

0 in μ < x
(4.20)

We note that (4.16)–(4.18) appears overdetermined but since the integral of the right-hand side of (4.16) is zero,
the condition (4.16b) is a consequence of (4.16a). Solving (4.16)–(4.17) gives

c0 =

⎧⎪⎪⎨
⎪⎪⎩

I

4γ κp

(
1

B−
+ μ− 1

B+
− x2

B−

)
in 0 < x < 1

I

4γ κp

(x − μ)2

B+(μ− 1)
in 1 < x < μ

. (4.21)

Applying the integral condition (4.18) to this solution leads to a quadratic for μ

(μ− 1)2 + 3(μ− 1)+
(

2B+
B−

− 12B+γ κpΛ

I

)
= 0, (4.22)

which we must solve, subject to the requirement that 1 < μ < Λ, to determine the position of the free boundary
x = μ. Plots of c0 are made for different values of the current in Fig. 4. These plots show that as the current I is
increased, the free-boundary moves back towards the separator at x = 1.

In order for a solution μ to (4.22) to lie in the required range 1 < x < λ, the following conditions must be
satisfied by the current:

Icrit < I < Imax
(
with Imax = 6B−γ κpΛ

)
(4.23)

If the current I is less than Icrit , then the solution for c0 has no free boundary, ionic concentrations are significant
everywhere and the analysis of Sect. 4.1 is appropriate; here the solution is approximated by (4.11). For I in the
range Icrit < I < Imax, the analysis of this section is valid. However, this study indicates that if I > Imax, then no
solution exists because there is insufficient electrolyte to carry current across the negative electrode.
Remark. The free boundary solution that we have generated is for I > 0; however, this can readily be modified to
the case I < 0 by having the free boundary in the negative electrode (i.e. in 0 < x < 1).

If we consider the lowest order behaviour of galvanostatic discharge of a battery, then for small currents, we have
found that all parts of the battery participate in this behaviour and the discharge is spatially uniform. For current
greater than Icrit , there are parts of the battery where the lithium in the electrolyte is depleted to the point where these
no longer participate in the reaction, and hence there are spatial variations in the use of the stored lithium. There
is a larger current Imax at which one electrode of the battery is completely depleted. We speculate that in practice,
when the current approaches this maximum, the voltage required to draw the current would become unphysically
large, and hence it is not possible to draw current in excess of this maximum.

4.2.2 The potential drop across the cell in galvanostatic discharge

We consider the particular case of a fully charged well-balanced battery and examine how the voltage varies under
galvanostatic discharge. For the battery to be well balanced requires that both negative and positive electrode reac-
tions should be exhausted when the battery is fully discharged, that is ca = 0 and cc = Cc at full discharge (see
(3.8c)–(3.8d)). The quantities ca and cc have been non-dimensionalised with a typical intercalated lithium concen-
tration c0

s which we are free to choose. We make this choice so that Cc = 1, and the initial conditions based on
(4.19)–(4.20), at the beginning of the battery discharge, for the battery to be well balanced are then

ca,0|t=0 = A

B
(Λ− 1) and cc,0|t=0 = 0 where A = |V̂a| + |�̂a|

|�̂a|
and B = |V̂c| + |�̂c|

|�̂c|
.
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In addition, it is required that 0 < ca,0 < Ca and 0 < cc,0 < 1 in order for the discharge to proceed. These
models depend on the facts that both electrodes have a limited capacity for lithium and lithium concentration in the
electrodes cannot go negative (see (3.8c)–(3.8d)).

The potential drop across the cell is given by

�0(t) = U (ca,0(t))− V (cc,0(t)). (4.24)

The solution to this system is, where I (and hence by (4.22) μ also) is constant,

ca,0 = ℵa = A

B
(Λ− 1)(1 − Dd) in 0 < x < 1, (4.25)

cc,0 = ℵc = (Λ− 1)Dd in 1 < x < μ, (4.26)

where the degree of discharge Dd is defined by

Dd = B

Λ− 1

t∫
0

I dt.

Notably the discharge finishes when cc,0 = 1 when Dd = (μ− 1)/(Λ− 1). Defining the functions Û and V̂ − by

Û (Dd) = U

(
A

B
(Λ− 1)(1 − Dd)

)
and V̂ −(Dd) = −V (Dd) for 0 < Dd < 1,

leads to the following formulae for the discharge potential (derived from (4.24)) as a function of degree of discharge
Dd:

�0(Dd) =
⎧⎨
⎩

Û (Dd)+ V̂ −(Dd) for I < Icrit and 0 < Dd < 1

Û (Dd)+ V̂ −
(
Λ− 1

μ− 1
Dd

)
for Icrit < I < Imax and 0 < Dd < (μ− 1)/(Λ− 1)

.

Note that for the case I < Icrit the leading order potential drop�0 is simply the OCV. However, in the large current
case, the resulting voltage depends on characteristics of both the positive and negative electrodes in a non-standard
fashion.

4.2.3 Fraction of the utilised stored energy at high currents

One of the characteristics of interest for a battery is the fraction of the stored energy that is utilised for a particular
rate of galvanostatic discharge. To lowest order, because the battery is separated into a region of constant discharge
rate and a region of no discharge by the free boundary, this fraction of utilised stored energy, which we denote by
�, can be determined by finding the proportion of the positive electrode (μ(I )− 1)/(Λ− 1) which participates in
the discharge.

Assuming that the battery is well balanced as described in Sect. 4.2.2, then�, as a function of the (steady) current
I , is given by

�(I ) = μ(I )− 1

Λ− 1
= 1

2(Λ− 1)

((
9 + 48B+γ κpΛ

I
− 8

B+
B−

)1/2

− 3

)
.

This can be re-expressed in terms of the critical and maximum currents as follows:

�(I ) =
(

C2 −�(C + 1)2 + (2C + 1)Icrit/I

1 −�

)1/2

− C where C = 3

2(Λ− 1)
and � = Icrit

Imax
.

Plots of typical fractions of the utilised stored energy are shown in Fig. 7. These show that, at the small discharge
rates I < Icrit , all the battery is used� = 1, and that above the critical current, the fraction of utilised stored energy
drops until at the maximum current when none of the stored energy is used.
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(b)(a)

Fig. 7 Plots of � the fraction of the utilised stored energy, as a function of the galvanostatic discharge current I , for a Λ = 2
(i.e. C = 3/2) and Icrit/Imax = 1/3 (i.e. � = 1/3) and for b Λ = 2 and Icrit/Imax = 1/5

4.3 Results of the large λ asymptotics

To illustrate the behaviour predicted by the simplified homogenised model, we consider a particular battery con-
figuration withΛ = 2 so that the positive electrode and negative electrode are of the same size. The distribution of
the ions in the electrolyte is then determined using the analysis of Sect. 4. Various positive currents (corresponding
to battery discharge) have been considered, and Figs. 4 and 5 show how the ion concentration changes in these
different cases. Figure 4a shows scenarios in which the current is small enough so that the reactions are significant
everywhere while Fig. 4b depicts scenarios in which the current is large enough so that the reaction almost ceases
on the right-hand part of the positive electrode. In Fig. 5, similar results are given but here the diffusivity in the
negative electrode is greater than that in the positive one due to, for example, having a looser packing of particles
in the negative electrode. Consequently, the current required to create regions of ion depletion gets larger as the
electrolyte effective diffusivity increases the positive electrode. The behaviour of the analytic solution for the ion
concentrations, at currents I > Icrit , in Figs. 4b and 5b are qualitatively very similar to the numerical solutions
presented by Doyle and Newman [5] and Fuller et al. [7] on the basis of a solution to the full model.

5 Conclusion

We formulated a detailed model of a lithium-ion battery accounting for the electrolyte, the electrode particles and
the reactions at the interface between electrode particles and the electrolyte. Exploiting the small size of the particles
used in the electrodes, we then used the method of multiple scales to homogenise this model over the microstructure
in the case where diffusion of intercalated lithium within individual electrode particles occurs over a much faster
timescale than that of lithium ions across the whole cell. Finally, we used asymptotic methods, based on parameters
estimated from the literature, to attain a greatly simplified version of the homogenised model, which is applicable
when open circuit potential curves of the electrode materials show appreciable changes with lithium concentration
within the material. Thus, this approach turns out to be applicable to materials such as Lix C6 but not to materials
such as LiFePO4 and LiyMn2O4 which have extremely flat sections to their open circuit potentials. The asymptotic
description of discharge from such materials remains an open problem that we shall investigate in a subsequent
study.

The parameter estimates that we took from the literature leads us to arrive at a simplification of the homogeneous
model in which most of the potential drop across the battery takes place across the Debye layers surrounding each
electrode particle. Hence, battery potential closely tracks the OCV. The transport of lithium ions in the electrolyte
only significantly affects cell performance if the current is sufficiently large that there is more or less complete
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depletion of lithium ions in some region of the electrolyte within the electrode. At these high loads, this process
leads to non-reacting regions in an electrode which consequently places a higher load on the reacting part of the
electrode causing it to deplete more rapidly. Indeed, transport in the electrolyte creates an upper limit on the mag-
nitude of the current which may be drawn from a particular battery. Given that the battery operates away from
these extreme situations, this then leads to the lowest order, the potential drop across the cell is the OCV and the
electrodes are uniformly charged and discharged. There are small corrections to the zero current voltage (which we
have calculated) and to the distribution of the lithium in electrodes, which depend on the current being drawn from
the cell. We emphasise, however, that the asymptotics leading to this simplification of the homogenised model does
not apply to electrodes composed of materials with extremely flat discharge curves (e.g. LiFePO4) and that to study
these, it is necessary to investigate a different asymptotic regime to the one studied here.

We would like to emphasise that the homogenisation method employed in this study gives a systematic method
for investigating the effects due to changes in electrode particle size and geometry on the behaviour of the battery.
It can thus be applied to assess use of different particles in various applications. There is considerable scope to
investigate the effects due to such changes on battery performance by determining the coefficients in the homog-
enised model using the method described in Appendix A. Other obvious extensions to this study can include the
effects of electrical resistance within the electrode material and investigation of the effect of lithium diffusion within
(large) electrode particles for which the timescale for solid-state lithium diffusion, within the electrode particles, is
comparable to that for lithium-ion diffusion, through the electrolyte.

Finally, we point out that there is scope to extend the homogenisation method used here to three-scale battery
problems such as those investigated by Dargaville and Farrell [3]. Here, graphite-coated agglomerations of elec-
trode particles (termed crystals in [3]) are pressed together to form the electrode. There are thus three distinct scales
provided by individual electrode particles (crystals), agglomerations and the entire electrode.

Acknowledgment The authors would like to thank Dr. Troy Farrell for a number of enlightening conversations and the referees for
their helpful comments.

Appendix A: Derivation of the homogenised diffusion equation with sources

In this Appendix, we consider how we can derive homogenised equations, over the lengthscale of the electrode, for
the processes occurring in the electrolyte where the electrolyte has a microstructure. This will be accomplished via
the method of multiple scales (see e.g. [33–35]). In this instance, we take the lengthscale of the microstructure to
be of O(ε) and that of the electrode to be of O(1) where ε � 1. Furthermore, we assume that the microstructure is
locally periodic inside a completely periodic array of boxes which we denote by V̂per ∪ �̂per. Here, V̂per represents
the space inside this box occupied by the electrolyte while �̂per represents the space occupied by the electrode
particles (see Fig. 3 as an illustrative configuration). For the sake of generality, we allow the microstructure to
change slowly, over the O(1) lengthscale, and it is in this sense that it is locally periodic.

Consider the following dimensionless equations and boundary conditions for c and φ
∂c

∂t
+ ∇ · q = 0 where q = −D∇c in V̂per, (7.1)

q · n|
∂�̂per

= εk Q, (7.2)

∇ · f = 0 where f = −D(λc∇φ − α∇c) in V̂per, (7.3)

f · n|
∂�̂per

= εk(1 − α)Q, (7.4)

Here, n is the unit outward normal to �̂per and ∂�̂per the boundary to �̂per (see Fig. 3), and hence the unit inward
normal to V̂per.
Multiple scales formulation. We investigate the distinguished limit that k, D and Q are O(1) while ε � 1 by
introducing the microscale variable x̂ defined by

x = εx̂.
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In terms of this new variable, the multiple scales expansion transforms the gradient operator via ∇ → ∇ + ∇̂/ε.
We can thus rewrite (7.1)–(7.4) in the form:

∂c

∂t
+ 1

ε
∇̂ · q + ∇ · q = 0, q = −D

(
1

ε
∇̂c + ∇c

)
in V̂per, (7.5)

q · n|
∂�̂per

= εk Q, c and q periodic in x̂ on V̂per, (7.6)

1

ε
∇̂ · f + ∇ · f = 0, f = −D

[(
1

ε
λc∇̂φ + λc∇φ

)
− α

(
1

ε
∇̂c + ∇c

)]
in V̂per, (7.7)

f · n|
∂�̂per

= εk Q(1 − α), φ periodic in x̂ on V̂per. (7.8)

Here, we make the standard assumption that variables are periodic in the shortscale variable x̂. This ensures that
there are no secular growth terms in their asymptotic expansions (in powers of ε).
Mathematical preliminary. Before proceeding with the expansion, we re-emphasise that although the interface
∂�̂per is approximately periodic on the short lengthscale significant variations may occur over the longer x length-
scale. We will find it useful to define this interface by the zero level set of the function ψ , that is by the relation
ψ(x̂, x) = 0. Furthermore, we define ψ so that n, the outward unit normal to �̂per, (or equivalently the unit inward
normal to V̂per) is given by

n = − ∇̂ψ + ε∇ψ
|∇̂ψ + ε∇ψ | . (7.9)

We are then able to calculate the rate of change of a quantity A(x̂, x) integrated over the locally periodic domain
V̂per in terms of the surface function ψ (see Sect. 7.1) finding it to be

∂

∂xi

∫

V̂per

A(x̂, x) dV̂ ∼
∫

V̂per

∂A

∂xi
dV̂ −

∫

∂�̂per

A
1

|∇̂ψ |
∂ψ

∂xi
dŜ.

In turn, we can use the above result to show that

∇ ·
∫

V̂per

q(x̂, x) dV̂ ∼
∫

V̂per

∇ · q dV̂ −
∫

∂�̂per

q · ∇ψ
|∇̂ψ | dŜ. (7.10)

The asymptotic expansion. We now expand the variables in (7.5)–(7.8) as follows:

c = c0(x, t)+ εc1(x̂, x, t)+ ε2c2(x̂, x t)+ . . . ,

φ = 1

λ

(
φ̃0(x, t)+ εφ̃1(x̂, x, t)+ ε2φ̃2(x̂, x t)+ . . .

)
,

q = q0(x̂, x, t)+ εq1(x̂, x, t)+ ε2q2(x̂, x, t)+ . . . ,

f = f 0(x̂, x, t)+ εf 1(x̂, x, t)+ ε2f 2(x̂, x, t)+ . . . .

Derivation of a solvability condition on c0. Consider first the flux equations for q (7.5)–(7.6). To leading order,
we obtain

∇̂ · q0 = 0, q0 · n|
∂�̂per

= 0, q0 periodic in x̂ on V̂per. (7.11)

At O(ε) in (7.5)–(7.6) we find

∂c0

∂t
+ ∇̂ · q1 + ∇ · q0 = 0, q1 periodic in x̂ on V̂per, (7.12)

q1 · n|
∂�̂per

= k Q. (7.13)

Rewriting the boundary condition (7.13) in terms of the surface function ψ(x̂, x) (recalling that the normal to ∂�
is given by (7.9)) gives

q1 · ∇̂ψ + q0 · ∇ψ |
∂�̂per

= −|∇̂ψ |k Q. (7.14)
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Multiscale modelling and analysis of lithium-ion battery charge and discharge

Integrating (7.12) over V̂per and using the fact the outward normal to V̂per on that section of the boundary it shares
with �̂per is, to leading order in ε, ∇̂ψ/|∇̂ψ | results in the integral equations:
∫

V̂per

∂c0

∂t
+ ∇ · q0 dV̂ +

∫

∂�̂per

q1 · ∇̂ψ
|∇̂ψ | dŜ = 0,

which in turn, on substitution of (7.14) gives∫

V̂per

∂c0

∂t
+ ∇ · q0 dV̂ −

∫

∂�̂per

q0 · ∇ψ
|∇̂ψ |dŜ =

∫

∂�̂per

k Q dŜ,

Finally, we use the result (7.10) to rewrite this in the following preferred form∫

V̂per

∂c0

∂t
dV̂ + ∇ ·

∫

V̂per

q0 dV̂ =
∫

∂�̂per

k Q dŜ. (7.15)

It remains to determine q0 in terms of c0. To leading order in (7.5b), we find

q0 = −D(∇c0 + ∇̂c1).

Substitution of this into (7.11) yields

∇̂2c1 = 0, n · ∇̂c1|∂�̂per
= −n · ∇c0|∂�̂per

, c1 periodic in x̂ on V̂per.

We make use of the linearity of this problem to write its solution in the form:

c1 = −
(
∂c0

∂x1
χ(1)(x̂, x)+ ∂c0

∂x2
χ(2)(x̂, x)+ ∂c0

∂x3
χ(3)(x̂, x)

)
, (7.16)

where the basis functions χ(i) satisfy the following problems:

∇̂2χ(i) = 0 in V̂per,

∇̂χ(i) · n|
∂�̂per

= ei · n|
∂�̂per

,

χ(i) periodic in x̂ on V̂per,∫
V̂per

χ(i)dV̂ = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for i = 1, 2, 3 (7.17)

and ei is a basis vector in the xi -direction. Here, the final integral condition is imposed, which ensures uniqueness
of the solution but does not change any of the results we derive, since these all depend on the derivatives of χ(i)

rather than χ(i) itself. It follows that the leading order flux is given by

q0 = −D

(
δi j − ∂χ( j)

∂ x̂i

)
∂c0

∂x j
ei .

where the Einstein summation convention is used. Substitution of this result so obtained into (7.15) then yields an
equation for c0 in terms of the macroscopic variable x

|V̂per|
|V̂per| + |�̂per|

∂c0

∂t
= D

∂

∂xi

(
Bi j

∂c0

∂x j

)
+ k Q̃, (7.18)

where

|V̂per| =
∫

V̂per

dV̂ , |�̂per| =
∫

�̂per

dV̂ , Bi j =
∫

V̂per
δi j − ∂χ( j)

∂ x̂i
dV̂

|V̂per| + |�̂per|
, Q̃ =

∫
∂�̂per

QdŜ

|V̂per| + |�̂per|
, (7.19)
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and we have used the fact that |�̂per| + |V̂per|, the dimensionless volume of the cell, is constant throughout the
domain.
Derivation of a solvability condition on φ̃0. The derivation of the solvability condition for φ̃0 proceeds along very
similar lines to that for c0. At leading order in the flux equations for f , namely (7.7), we find

∇̂ · f 0 = 0, f 0 · n|
∂�̂per

= 0, f 0 periodic in x̂ on V̂per. (7.20)

At next order, we find an equation for f 1 which we can integrate in a similar manner to that for q1 to obtain the
following solvability condition on f 0:

∇ ·
∫

V̂per

f 0 dV̂ = k(1 − α)

∫

∂�̂per

Q dŜ. (7.21)

Substituting the expansions for c and φ into (7.7b) gives the following expression for f 0:

f 0 = −D
(

c0∇̂φ̃1 − α∇̂c1 + c0∇φ̃0 − α∇c0

)
.

In turn, substitution of this expression into (7.20) yields a system for φ̃1

∇̂2φ̃1 = 0, ∇̂φ̃1 · n|
∂�̂per

= −∇φ̃0 · n|
∂�̂per

,

with solution

φ̃1 = −
(
∂φ̃0

∂x1
χ(1)(x̂, x)+ ∂φ̃0

∂x2
χ(2)(x̂, x)+ ∂φ̃0

∂x3
χ(3)(x̂, x)

)
, (7.22)

from which it follows that

f 0 = −D

(
δi j − ∂χ( j)

∂ x̂i

) (
c0
∂φ̃0

∂x j
− α

∂c0

∂x j

)
ei .

On substitution of this expression into (7.21), we obtain an equation for φ̃0

D
∂

∂xi

(
Bi j

(
c0
∂φ̃0

∂x j
− α

∂c0

∂x j

))
+ k(1 − α)Q̃ = 0. (7.23)

In summary, in (7.18) and (7.23), we have derived macroscale equations for the leading order behaviour of c and φ
which, where we recall that φ ∼ φ̃0/λ and drop subscripts, can be written in the form:

|V̂per|
|V̂per| + |�̂per|

∂c

∂t
= D

∂

∂xi

(
Bi j

∂c

∂x j

)
+ k Q̃, (7.24)

D
∂

∂xi

(
Bi j

(
λc
∂φ

∂x j
− α

∂c

∂x j

))
+ k(1 − α)Q̃ = 0. (7.25)

Notably these equations are both in conservation form.

Appendix A.1: Accounting for O(1) lengthscale variations of the microscopic geometry

Consider the surface ∂�̂per defined by ψ(x̂, x) = 0. Alternatively, we can write this in the form: x̂ = r(τ1, τ2, x)

so that ψ(r, x) = 0. Since ψ(r + dr, x + dxiei ) = 0 it follows that
∂r

∂xi
· ∇̂ψ = − ∂ψ

∂xi
.

Because the unit inward normal to V̂per is defined, in terms of ψ , by n = −∇̂ψ/|∇̂ψ | + O(ε), we can rewrite the
above in the form:
∂r

∂xi
· n = 1

|∇̂ψ |
∂ψ

∂xi
+ O(ε), (7.26)
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Fig. 8 Illustration of the
change in the electrode
boundary shape (viewed as
a function of the shortscale
variable x̂) with a small
displacement dx of the
longscale variable x

(see Fig. 8 for an illustration on this). We can identify the quantity dxi
∂r
∂xi

· n as the normal distance between the

surface ∂�̂per at x and ∂�̂per at x + dxiei . The rate of change of
∫

V̂per
A(x̂, x)dV̂ is thus composed of two terms,

the first representing the rate of change of A with xi and the second arising from the rate of change of the boundary
to V with xi which can be written as the surface integral

−
∫

∂�̂per

A
∂r

∂xi
· n dŜ

It follows that

∂

∂xi

∫

V̂per

A(x̂, x) dV̂ ∼
∫

V̂per

∂A

∂xi
dV̂ −

∫

∂�̂per

A
1

|∇̂ψ |
∂ψ

∂xi
dŜ.

Here, the first term on the right-hand side represents the change in A with xi , while the second term arises because
the domain V̂per changes.

Appendix A.2: Properties of the tensor Bi j

There are a number of results which help in illustrating the behaviour of the tensor Bi j . The most of important of
these are∫

V̂per

∂χ( j)

∂ x̂i
dV̂ = −

∫

∂�̂per

χ( j)ei · n dŜ, (7.27)

∫

V̂per

∂χ( j)

∂ x̂i
dV̂ =

∫

V̂per

∂χ(i)

∂ x̂ j
dV̂ , (7.28)

∫

V̂per

∂χ(i)

∂ x̂i
dV̂ > 0 (no summation). (7.29)

The first of these results can be demonstrated by a straightforward application of the divergence theorem; the proofs
for the second and third result are given below.

We can use results (7.28)–(7.29) to show that

Bi j = B j i , Bi i < 1. (no summation). (7.30)

Thus, the tensor Bi j is symmetric and furthermore, the effective diffusivity in any particular direction is reduced
by the microstructure below the one which would be observed without microstructure (which is precisely what
one expects). In particular, for a uniform isotropic microstructure, we have (as previously stated) Bi j = Bδi j with
B > 0. It follows that the effective diffusivity DB is smaller than the diffusivity D in the absence of microstructure.

We start by demonstrating that (7.28) is true before using this result to show that (7.29) holds.
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Proof of (7.28). Consider the integral I defined by

I =
∫

V̂per

∇̂ ·
(
χ(i)∇̂χ(k) − χ(k)∇̂χ(i)

)
dV̂ =

∫

V̂per

(χ(i)∇̂2χ(k) − χ(k)∇̂2χ(i)) dV̂

It follows from the definition of χ(i) (see (7.17)) that I = 0. If we now apply the divergence theorem to I , then we
find that

I = −
∫

∂�̂per

(
χ(i)∇̂χ(k) − χ(k)∇̂χ(i)

)
· n dŜ.

Referring to the boundary conditions on χ(i) on ∂�̂per contained in (7.17) and using the fact that I = 0 leads to the
result∫

∂�̂per

χ(k)ei · n dŜ =
∫

∂�̂per

χ(i)ek · n dŜ,

and hence by the result (7.27) to the desired result, namely (7.28).

Proof of (7.29). We will show that

−
∫

∂�̂per

χ(i)ei · n dŜ > 0 no summation over i, (7.31)

and hence, by (7.27), that (7.29) is true. It follows that the trace of the diffusivity tensor is increased by the
microstructure, as might be expected. In order to see this, consider multiplying (7.17) by χ(i) to show that

∇̂ · (χ(i)∇̂χ(i)) = |∇̂χ(i)|2
χ(i)∇̂χ(i) · n|

∂�̂per
= χ(i)ei · n|

∂�̂per

χ(i)∇̂χ(i) periodic in x̂ on V̂per

⎫⎪⎬
⎪⎭ for i = 1, 2, 3 no summation over i. (7.32)

Integrating the first of these equations over V gives∫

V̂per

|∇̂χ(i)|2 dV̂ =
∫

∂ V̂per\∂�̂per

χ(i)∇̂χ(i) · n dŜ −
∫

∂�̂per

χ(i)∇̂χ(i) · n dŜ.

The first term on the right-hand side of this equations vanishes by periodicity. Applying the boundary condition on
∂�̂per contained in (7.32) leads to

−
∫

∂�̂per

χ(i)ei · n dŜ =
∫

V̂per

|∇̂χ(i)|2 dV̂ > 0, no summation over i

which is the result (7.31) from which (7.29) follows.

Appendix B: Alternative forms for the Butler–Volmer condition

An alternative form for these conditions is given, in the case of the negative electrode composed of Li1−x Co O2, by
[13] while a generic version for any oxidative/reductive reaction involving a single species is given by [37, Chap.
12] and takes the form:

G∗
a = k1c∗

a exp

(
−(1 − αa)

F

RgT
(φ∗ − U∗(c∗

a ))

)
− k2c∗ (

cmax
a − c∗

a

)
exp

(
αa

F

RgT

(
φ∗ − U∗ (

c∗
a

)))∣∣∣∣
∂�ae

, (B.1)
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where the constants k1 and k2 are reaction rates. In the case of the positive electrode, the analogous alternative form
given by [37, Chap. 12] is

G∗
c = k3c∗

c exp

(
−(1 − αc)

F

RgT

(
φ∗ −�∗ − V ∗ (

c∗
c

)))

−k4c∗ (
cmax

c − c∗
c

)
exp

(
αc

F

RgT

(
φ∗ −�∗ − V ∗ (

c∗
c

)))∣∣∣∣
∂�ce

. (B.2)

In general, the Butler–Volmer condition can be expressed in the form:

G∗ = K (
c∗, c∗

s

) [
exp

(
−(1 − α)

F

RgT

(
φ∗ − φ∗

elec − Ũ∗ (
c∗, c∗

s

)))

− exp

(
α

F

RgT

(
φ∗ − φ∗

elec − Ũ∗ (
c∗, c∗

s

)))]∣∣∣∣
∂�

(B.3)

where α is the transfer coefficient and G∗, φ∗
elec and c∗

s are, respectively, the reaction rate, the potential, the inter-
calated lithium concentration on the surface of the electrode while K is a potential dependent pre-factor. Expressed
in this form, it is clear that the potential drop between the electrolyte and the electrode φ∗ −φ∗

elec is, at equilibrium,
Ũ∗(c∗, c∗

s ). In the cases of (2.6) and (2.8), this equilibrium drop is clearly given by U∗(c∗
a ) and V ∗(c∗

c ), respectively,
and is thus independent of the electrolyte concentration. However, in (B.1), the equilibrium drop is not given by
U (c∗

a ) but rather by U∗(c∗
a )− (RT/F) log(k2c∗(cmax

a − c∗
a )/(k1c∗

a )) (which is Ũ∗(c∗, c∗
a ) in this case). Hence, we

prefer the notation used in (2.6), (2.8) and (B.3) rather than that in (B.1) and (B.2). In the forthcoming analysis,
we will exploit asymptotic methods and find that typically the potential drop between electrolyte and electrode in
(B.1) and (B.2) is to leading order just U∗(c∗

a ) and V ∗(c∗
c ), respectively: the corrections being only of the size of a

thermal voltage, which is typically much smaller than the potential drop. Hence, we will find that, to leading order
in the subsequent analysis, conditions (2.6) and (2.8) are equivalent to (B.1) and (B.2) but that the finer details are
dependent on the exact conditions considered.

Appendix C: The correction to the zero current voltage

We now seek to determine�1 the next term in the expansion of the potential drop across the cell. In contrast to the
leading term �0 (the zero current voltage), we expect this to depend directly on the current flowing in the circuit.

On elimination of the reaction terms appearing on the right-hand side of (3.8a) and (3.8b), we obtain the following:

1

λ

|V̂per|
γ ν̃κn(|�̂per| + |V̂per|)

∂c

∂t
+ ∂

∂x

(
(B− H(x − 1)+ B+ H(1 − x))

(
λc
∂φ

∂x
− ∂c

∂x

))
= 0. (C.1)

The leading term in this equation, on substituting the expansion (4.2), is

∂

∂x

(
(B− H(x − 1)+ B+H(1 − x))

(
c0
∂φ1

∂x
− ∂c0

∂x

))
= 0. (C.2)

Boundary conditions on (C.2) are found from substituting (4.2) into (3.8i) from which we find that both φ1,x and
c0,x are zero on both x = 0 and x = Λ. It follows that
(

c0
∂φ1

∂x
− ∂c0

∂x

)∣∣∣∣
x=0

= 0,

(
c0
∂φ1

∂x
− ∂c0

∂x

)∣∣∣∣
x=Λ

= 0.

Integrating (C.2) and applying the boundary conditions gives the solution for φ1

φ1 = log c0(x)+ F(t), (C.3)
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where F(t) is a function of integration. In order to determine F and�1, we proceed to first order in the Butler–Volmer
conditions (3.8c)–(3.8d) substituting for G̃a0 and G̃c0 from (4.8) to find

M̃1c1/2
a,0

(Ca − ca,0
)1/2

c1/2
0

[
exp

(
1

2

(
ca,1U ′(ca,0)− φ1

)) − exp

(
1

2

(
φ1 − ca,1U ′(ca,0)

))]
= pI,

M̃2c1/2
c,0

(Cc−cc,0
)1/2

c1/2
0

[
exp

(
1

2

(
cc,1V ′(cc,0)+�1−φ1

))− exp

(
1

2

(
φ1−�1−cc,1V ′(cc,0)

))]
=− pI

Λ−1
,

The expressions above are quadratic equations for the quantities G and H defined by

2 log G(x, t) = ca,1U ′(ca,0)− φ1, and 2 log H(x, t) = cc,1V ′(cc,0)+�1 − φ1, (C.4)

with solutions

G =
pI +

(
p2 I 2 + 4M̃2

1 c0ca,0
(Ca − ca,0

))1/2

2M̃1c1/2
a,0 c1/2

0

(Ca − ca,0
)1/2 , H =

−pI +
(

p2 I 2 + 4(Λ− 1)2 M̃2
2 c0cc,0

(Cc − cc,0
))1/2

2M̃2(Λ− 1)c1/2
c,0 c1/2

0

(Cc − cc,0
)1/2 .

(C.5)

Note that in (C.5) G and H are expressed in terms of quantities that are determined as part of the leading order
solution. Thus, we could determine F(t) (the function of integration in (C.3)) and�1(t) (the correction to the zero
current voltage) by finding ca,1 and cc,1. However, since F and �1 are functions of time only, it is sufficient to
determine

∫ 1
0 ca,1dx and

∫Λ
1 cc,1dx instead. Combining the integral of (3.8e) and (3.8f) with (3.8g) leads to the

integral conditions:

|�̂per|
|�̂per| + |V̂per|

d

dt

1∫
0

cadx = −I,
|�̂per|

|�̂per| + |V̂per|
d

dt

Λ∫
1

ccdx = I.

Expanding these two conditions to first order and applying the corresponding initial conditions, arising from (3.8h),
gives

d

dt

⎛
⎝

1∫
0

ca,1 dx

⎞
⎠ = 0

1∫
0

ca,1 dx

∣∣∣∣∣∣
t=0

= 0,

d

dt

⎛
⎝

Λ∫
1

cc,1 dx

⎞
⎠ = 0

Λ∫
1

cc,1 dx

∣∣∣∣∣∣
t=0

= 0,

The above two problems are trivially solved to give

1∫
0

ca,1 dx = 0 and

Λ∫
1

cc,1 dx = 0. (C.6)

Rearranging (C.4) to give expressions for ca,1 and cc,1 substituting for φ1 from (C.3) and then substituting the result
into (C.6) while recalling that ca,0 and cc,0 are functions of time only gives rise to the following expressions for F
and �1:

F(t) = −
1∫

0

log c0(x, t)+ 2 log G(x, t) dx, �1 = F(t)+ 1

Λ− 1

Λ∫
1

log c0(x, t)+ 2 log H(x, t) dx, (C.7)

where G and H are given in (C.5).
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Appendix D: Region of small ion concentration

In order to complete the asymptotic analysis, we investigate in more detail the region μ < x < Λ in which the ion
concentration is exponentially small. Here, the asymptotic expansion of the solution takes the form:

c = exp(−λζ0(x, t)− ζ1(x, t)+ . . .) φ = φ0(x, t)+ 1

λ
φ1(x, t)+ . . . � = �0 + . . .

cc = cc,0 + 1

λ
cc,1 + . . . Gc = Gc0 + . . . G̃c = G̃c0 + . . .

⎫⎪⎬
⎪⎭ in μ < x < Λ,

and to ensure that c is exponentially small we require ζ0 > 0. Substituting the above into (3.8a) and (3.8f) leads to
the results that, to leading order,

G̃c0 = 0 and
∂ca

∂t
= 0 in μ < x < Λ. (D.1)

indicating there is no significant charge transfer μ < x < Λ.
We note that we can rewrite (3.8a) and (3.8b) in the form (3.8b) and (C.1). Substitution of the expansion (D.1)

into (C.1) gives the leading order equation

∂ζ0

∂x

(
∂φ0

∂x
+ ∂ζ0

∂x

)
= 0 (D.2)

while substitution of (D.1) into (3.8b) implies that G̃c = O(λ2e−λζ0). It follows, from (3.8f), that

∂cc,0

∂t
= 0 in μ < x < Λ. (D.3)

In order to find a closed system of equations for ζ0 and φ0, we require one more relation between these variables
in addition to (D.2). This can be found by invoking the Butler–Volmer equation (3.8d) where substitution of the
expansion (D.1), combined with the fact that G̃c = O(λ2e−λζ0), leads to the balance:

O(λ2e−λζ0) = O

(
exp

(
−λ

(
Z0 + ζ0

2

)))
+ O

(
exp

(
−λ

(
ζ0

2
− Z0

)))
,

where Z0 = 1

2

(
φ0 −�0 + V (cs,0)

)
.

Given that ζ0 ≥ 0, the only possible balance occurs between the second and third terms with the result that Z0 = 0.
As a consequence we deduce that

φ0 = �0 − V (cc,0) and
∂ζ0

∂x
= ∂

∂x
V (cc,0). (D.4)

Here, the second equation is a result of combining the first with (D.2). Indeed, we can integrate (D.4) and in order
that c matches to the solution in 1 < x < μ, which is O(1), we require ζ0|x=μ = 0. This gives

ζ0(x, t) = V (cc,0(x))− V (cc,0(μ, t)) for μ < x < Λ. (D.5)

Hence, we have shown that the assumption of a free boundary at x = μ can be systematically justified.
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