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Abstract

Semiconductor and metallic nanoparticles have recently become an attractive area

of intensive research due to their unique and diverse properties, that differ signifi-

cantly from bulk materials. With a wide range of applications and potential uses in

nanoelectronics, catalysis, medicine, chemistry or physics an important amount of

experimental and theoretical investigations aim to facilitate deeper understating in

their physical and chemical behaviour.

Within this context, this thesis is focused on the theoretical investigation of sil-

icon, gold and platinum nanoclusters and nanoalloys, in order to provide support

for experimental data obtained from collaborating researchers and scientists. Mod-

elled structures of the above nanoparticles were constructed and studied by using a

variety of computational tools such as, classical force field MD (DL POLY [1]), tight-

binding DFT (DFTB+ [2]), conventional DFT (CASTEP [3]) and linear-scaling DFT

(ONETEP [4]).

A brief introduction regarding some basic principles of quantum mechanics (QM)

and of solid state physics is presented in the first chapter; followed by a general



chapter about the classical molecular dynamics (MD) method and its utilisation

within the DL POLY code [1]. The last part of the second chapter is devoted to

the introduction, validation and implementation of a non-default force field in the

source code of DL POLY. The third chapter contains a brief description of some im-

portant theorems and terms used in density functional theory (DFT), with some

basic information about linear-scaling DFT, as developed in the ONETEP code [4],

and tight-binding DFT, reported in the last sections.

Chapter 4, includes the results of a series of DFT calculations performed on sil-

icon nanorods, with diameters varying from 0.8 nm to 1.3 nm and about 5.0 nm

long. While up to now, similar computational works were conducted on periodic

nanowires, in our case, the calculations were performed on the entire nanorods

without imposing any symmetry. The fifth chapter proposes a new methodology for

calculating extended x-ray absorption fine structure (EXAFS) spectra from modelled

geometries of gold nanoparticles by exploiting some of the capabilities of the FEFF

code [5]. From several snap-shots of a classical MD simulation, a probability dis-

tribution function is calculated for sampling the photoabsorbing and the scattering

atoms of the simulated system. The results are then compared with experimental

EXAFS data showing a good agreement between the predicted and the measured

structures.

Finally, in the last two chapters, classical MD simulations on gold and platinum

nanoparticles and nanoalloys are reported, which have been performed to sup-

port the structural characterisation and analysis of synthesised gold and platinum

nanoparticles. Within this framework, DFT calculations have also been attempted

on ultrasmall gold nanoparticles and on gold nanosurfaces with one or two thiols

attached to them, as a preliminary stage towards the application of linear-scaling

DFT in simulating the properties of large metallic systems, currently being studied

with semi-empirical quantum approaches or empirical force fields.
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Chapter 1

Introduction

The principles of the microscopic world that describe the behaviour of particles such

as electrons, protons, neutrons, atoms, and molecules can be only explained, up to

the present time, by the Quantum Theory or Quantum Mechanics (QM). At this

regime, classical theory using Newtonian mechanics fails to treat microscopic ele-

ments either as waves or particles of inherent mass, as in the macroscopic world.

This failure can be interpreted by Heisenberg’s uncertainty principle:

∆x∆px >
h̄
2

(1.0.1)

which states that the more precisely the position of a particle x is measured the

less precise is its momentum px. ∆ defines the uncertainty of each quantity and h̄ =

h
2π , h is Planck’s constant. In QM, the energy is a quantised property, a phenomenon

which can be observed when conducting electronic excitation experiments using

electromagnetic waves. From quantum theory we obtain the fundamental laws of

chemistry as well as explanations for the properties of materials, such as crystals,

semiconductors, superconductors, and superfluids. These materials find a plethora

of applications in modern science and technology, while biological structures and
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mechanisms can be also studied using QM, for understanding and clarifying their

role in several life processes.

A radical idea developed by de Broglie at the beginning of the 20th century, in-

troduced the dual nature of particles and waves:

λ =
h
p
⇐⇒ p =

h
λ

(1.0.2)

where all material particles having a momentum p can also exhibit wave-like prop-

erties described by a wave-length λ while, conversely, electromagnetic radiation

can also have particle-like properties. The de Broglie hypothesis motivated the dis-

covery of the Schrödinger equation later on (section 1.0.1), a fundamental principle

which underpins all of chemistry and a significant part of physics.

Rolling back in time, to the basic fundamentals of wave theory, a sinusoidal wave

ψ with position x at time t is described as:

ψ(x) = A sin 2π
(

νt− x
λ

)
(1.0.3)

where A is the amplitude of the wave, ν is the frequency of the wave and λ the

distance between successive maxima (wavelength).

According to classical mechanics, the energy of a system of particles E is divided

into kinetic energy T and potential energy V:

E = T + V = ∑
i

miu2
i

2
+ ∑

i
Vi = ∑

i

p2
i

2mi
+ ∑

i
Vi (1.0.4)

where mi is the mass of the particle, ui its velocity and pi its momentum.

2



1.0.1 Schrödinger equation

The laws of QM that are used to explain the wave-like properties of microscopic par-

ticles, induce a significant change in the way mathematics, in this case, are solved.

In classical mechanics, any variable used, can be directly correlated to a physically

measurable property (observables) such as the force F, the momentum p, and the

position r = r(x, y, z). In QM though, these variables are not directly linked to an

observable, but are represented by “operators”, which only provide the value of a

physical property when they act on a fundamental state function of QM, called the

“wavefunction”. Each operator contains a specific mathematical operation which

can be applied on a wavefunction Ψ. While most variables, such as x, y, z positions

are directly represented in QM with the x̂, ŷ, ẑ operators, momentum operators p̂ in

the Cartesian space, are defined as p̂s = −ıh̄ ∂
∂s , s = x, y, z

Linear operators satisfy the following conditions:

Â[ f (r) + g(r)] = Â f (r) + Âg(r) (1.0.5)

Â[c f (r)] = cÂ f (r) (1.0.6)

where Â is an arbitrary operator. f (r), g(r) are arbitrary functions and c defines

a constant. Hermitian operators require the expectation value of an observable to be

a real number:

∫
Ψ∗i ÂΨjdr =

∫
Ψj(ÂΨi)

∗dr⇐⇒ 〈Ψi|ÂΨj〉 = 〈ÂΨi|Ψj〉 (1.0.7)

for all well-behaved Ψi and Ψj. The function Ψ, in this case, is called “eigen-

function” of the operator Â, and the values obtained when Â acts on it, are the

“eigenvalues” of that operator.
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The wavefunction Ψ of a quantum system is a function that contains all the infor-

mation governing the de Broglie wave-like behaviour of its particles. Each particle,

can be described by a set of variables defining its position r, spin s and time t. The

probability density function of a particle is given by |Ψ(r, s; t)|2 and provides the

possibility of finding the particle in a volume of space dr at position r and time t

having a spin s. The probability density integrated over all space is equal to one

|Ψ|2 = 1 [23].

When the kinetic T and potential V energy terms, of equation 1.0.4, are written

in a quantum mechanical form, they represent the kinetic and potential energy op-

erators T̂ and V̂. The operator Ĥ is called Hamiltonian operator and provides the

energy of a quantum system E, defined by the wavefunction Ψ:

Ĥ = T̂ + V̂ (1.0.8)

The time-dependent Schrödinger equation [24] is given by:

ıh̄
∂Ψ(r; t)

∂t
= ĤΨ(r; t) =

[
T̂ + V̂(r; t)

]
Ψ(r; t) (1.0.9)

⇒ ıh̄
∂Ψ(r; t)

∂t
=

(
− h̄2

2m
∇̂2 + V̂(r; t)

)
Ψ(r; t) (1.0.10)

where ∇̂2 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂y2 and m is the mass of the particle.

1.0.1.1 Time-independent Schrödinger equation

The time-dependent form of equation 1.0.9 can be simplified when the potential

V̂(r; t) is time-independent. In this case, the potential can be replaced by a time-

independent function v(r) while the wavefunction of a single particle Ψ(r; t) can be
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separated into a function of time f (t) and a function of spatial coordinates ψ(r):

Ψ(r; t) = f (t)ψ(r) while V̂(r; t) = v̂(r) (1.0.11)

Thus, equation 1.0.10 becomes:

ıh̄
d f (t)

dt
ψ(r) = − h̄2

2m
f (t)∇̂2ψ(r) + v̂(r) f (t)ψ(r; t) (1.0.12)

which is equal to:

ıh̄
1

f (t)
d f (t)

dt
= − h̄2

2m
1

ψ(r)
∇̂2ψ(r) + v̂(r) (1.0.13)

when divided by Ψ(r; t).

Looking at the expression of equation 1.0.13, it can be seen that the left part is

only dependent on time while the right part depends only on r, thus, both sides are

constant. Equating the left part to a constant E, one obtains:

ıh̄
1

f (t)
d f (t)

dt
= E (1.0.14)

=⇒ d f (t)
f (t)

= − ıE
h̄

dt (1.0.15)

=⇒ ln f (t) = − ıEt
h̄

+ C (1.0.16)

by integrating
=⇒ f (t) = eCe−

ıEt
h̄ = Be−

ıEt
h̄ (1.0.17)

where B and C are arbitrary constants.
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Repeating the same procedure for the right part of equation 1.0.13:

− h̄2

2m
1

ψ(r)
∇̂2ψ(r) + v̂(r) = E (1.0.18)

=⇒ − h̄2

2m
∇̂2ψ(r) + V̂(r)ψ(r) = Eψ(r) (1.0.19)

⇐⇒ Ĥψ(r) = Eψ(r) (1.0.20)

the expression for the time-independent Schrödinger equation is obtained. Equa-

tion 1.0.20 shows that the Hamiltonian operator is also a Hermitian operator, with E

representing the energy eigenvalues and ψ(r) the eigenfunction. Considering equa-

tion 1.0.17, these eigenstates are equal to f (t) = e−
ıEt
h̄ and therefore, the expression

for the time-dependent wavefunction for different eigenstates becomes:

Ψn(r; t) = e−
ıEnt

h̄ ψn(r), n = 0, 1, 2, ... (1.0.21)

In practice, the Schrödinger equation is considered as a substantial assumption

of quantum theory that needs to be justified. It cannot be proved, but its solutions

can justify de Broglie’s principle. For the case of a free particle in one dimension (no

forces acting on it), the Schrödinger equation takes the following form:

− h̄2

2m
∂2ψ

∂r2 − Eψ = 0 (1.0.22)

where E represents in this case a positive constant which is equal to the kinetic

energy of the particle.
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1.0.1.2 Molecular Schrödinger equation

For a molecular system consisting of atomic nuclei N, and electrons e, the Schrödinger

equation which describes the interactions and energy states between all the particles

involved is given by:

Ĥψ =
(
T̂e + T̂N + V̂ee + V̂Ne + V̂NN

)
ψ (1.0.23)

=

[
−

n

∑
i=1

h̄2

2mi
∇̂2

r −
N

∑
I=1

h̄2

2MI
∇̂2

R +
1
2

n

∑
i=1

n

∑
j 6=i

e2

4πε0rij

−
n

∑
i

N

∑
I=1

ZIe2

4πε0RiI
+

N

∑
I

N

∑
J 6=I

ZIZJe2

4πε0RI J

]
ψ (1.0.24)

= Eψ(r1, ..., rn, R1, ..., RN, s1, ..., sn, S1, ..., Sn) (1.0.25)

The T̂e and T̂N describe the kinetic energy of electrons and nuclei respectively;

while the V̂ee, V̂Ne and V̂NN define the electron-electron repulsion, the electron-

nucleus attraction and the nucleus-nucleus repulsion respectively. rij is the distance

between electrons i and j, RiI is the distance between electron i and nucleus I and

RI J is the distance between nucleus I and nucleus J; Z is the atomic number of nu-

cleus N; N is the number of nuclei; n is the number of electrons and E is the total

energy of the system.

In general, the problems where the Schrödinger equation can be solved exactly

are very few. To overcome this obstacle, different approximation methods have been

developed. Such methods are the variational principle (section 1.0.2), which is based

on the variation theorem, and the Born-Oppenheimer approximation (section 1.0.3).
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1.0.2 Variational principle

The variation method is an approximation to the ground-state energy E0, which is

the lowest eigenvalue of the Hamiltonian operator Ĥ of a system described by the

time-independent Schrödinger equation 1.0.20, with eigenfunctions ψn:

Ĥψn = Enψn, n = 0, 1, 2, ... (1.0.26)

In several methods with quantum mechanical approach, such as the density

functional theory (chapter 3), the knowledge of the ground-state energy is sufficient

enough to provide reliable results when studying the behaviour of chemical sys-

tems. The variation theorem states that for any trial, normalised, and well-behaved

function φ, which satisfies the same boundary conditions as ψn, the quantity E is

always greater than or equal to the ground-state energy E0:

E ≡
〈
φ|Ĥ|φ

〉
=
∫

φ∗(r)Ĥφ(r)dr > E0 (1.0.27)

The trial function φ, has in most cases an arbitrary expression. If φ is identical

with the ground-state eigenfunction ψ0, then the energy state E is equal to E0. If φ

represents one of the excited-state eigenfunctions, then E will be equal to the corre-

sponding excited-state energy E, which is greater than E0. However, no matter what

trial function φ is selected, the quantity E will never be lower than E0.
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1.0.3 Born-Oppenheimer approximation

In principle, the solution of the above Schrödinger equation for the total wavefunc-

tion ψ will give the exact energy of the system. In practice though, for approaching

the exact energy of the system, Born and Oppenheimer introduced an approxima-

tion scheme in which the nuclei are considered as static, due to their much larger

mass than the mass of electrons. Hence, their motion is described by a much longer

time scale than that of the electrons. The total wavefunction ψ can be factorised into:

ψ(R, r) = ΦN(R)Φe(r; R) (1.0.28)

where ΦN(R) describes the properties of the nuclei N, and Φe(r; R) the electrons

properties (depending parametrically on the positions of the nuclei). The problem

is then reformulated in terms of two separate Schrödinger equations as:

ĤΦe(r; R) =
(
T̂e + V̂ee + V̂Ne + V̂NN

)
Φe (1.0.29)

=

[
−

n

∑
i=1

h̄2

2mi
∇̂2

r +
1
2

n

∑
i=1

n

∑
j 6=i

e2

4πε0rij
−

n

∑
i

N

∑
I=1

ZIe2

4πε0RiI
+

N

∑
I

N

∑
J 6=I

ZIZJe2

4πε0RI J

]
Φe (1.0.30)

= Ee(R1, ..., RN)Φe(r1, ..., rn, s1, ..., sn, R1, ..., RN) (1.0.31)

and [
−

N

∑
I=1

h̄2

2MI
∇̂2

R + Ee(R)

]
ΦN(R) = EB.0.ΦN(R) (1.0.32)

where EB.0. denotes the energy of the system within the Born-Oppenheimer ap-

proximation.
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The equation 1.0.29 is calculated iteratively and when is converged it enters to

equation 1.0.32 to give the motion of the nuclei. The electronic Hamiltonian obtained

from Born-Oppenheimer approximation has no electronic degrees of freedom, since

all the electronic parameters are incorporated in Ee(R). In classical molecular dy-

namics (chapter 2) the quantum mechanical description of the nuclear motion is

replaced by a Newtonian equation, allowing the nuclei to move classically. The

potential energy function, in classical mechanics, is in principle the quantum me-

chanical potential energy surface (PES).

1.0.4 Potential Energy Surface

The potential energy surface (PES) offers an important tool for visualising and un-

derstanding the relationship between energy and molecular geometry, by providing

a rigorous way for locating and characterising structures of interest. In computa-

tional chemistry, calculations on PES, are mainly used to extract information about

the structure and the energy of molecules and of any transition states involved in

chemical reactions.

If a pair of atoms, held together by electrostatic forces, can be represented as

two spherical particles joined together by a spring of length l, then the potential

energy of the system will be larger when the distance between the two atoms is

larger or shorter than the equilibrium length leq of the spring (bond). Although

real molecules have similar behaviour, there are some important differences when

referring to atoms.

Perhaps the most notable difference is that atoms vibrate continuously around

the equilibrium bond length, so that they always possess kinetic and potential en-

ergy. The energy at the point where the potential energy takes its minimum value, is

10



Figure 1.1: PES of a diatomic molecule showing the difference between the harmonic

(quadratic curve) and the true quantum behaviour (vibrational levels). At the equilibrium

bond length le, the quadratic curve approximates the actual PES of the diatomic. ZPE is the

energy of the lowest energy level, where the potential energy is minimised to zero.

called zero-point energy (ZPE). The PES of a molecular system is defined by distinct

vibrational levels and in the presence of other molecules, these levels are populated

according to their spacing and temperature.

The PES of a macroscopic model, of a spring holding a pair of particles or for a

real molecule near the equilibrium bond length leq, is sufficiently described by the

simple harmonic oscillator E = 1
2 k(l − leq)2, where k represents the force constant

of the spring). However, in microscopic systems the potential energy deviates from

the exact quadratic form, as shown in Figure 1.1, while moving away from leq. This

phenomenon is called anharmonicity.

In a 3-dimensional PES, a stationary point is a point on the surface where an

extremum (minimum or maximum) or a saddle point is located. Mathematically, a
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stationary point can be found by setting the first derivative of the potential energy

with respect to each geometric parameter l to zero:

∂E
∂l1

=
∂E
∂l2

= . . . = 0 (1.0.33)

Stationary points that correspond to molecular structures of finite lifetimes (in

contrast to transition states), are located at the energy minima on the PES and any

small change in the geometry of the system increases the energy. The conformation

located at the lowest energy minimum of the whole PES is denoted as the global

minimum, while structures corresponding to a minimum of only near by points on

the surface are called relative minima. The lowest energy pathway linking two min-

ima, is the path that would be followed by a molecule in going from one minimum

to another with just enough energy to overcome the activation barrier, pass through

the transition state, and reach the other minimum.

Figure 1.2: Part of 3-dimensional PES sur-

face. A minimum is a minimum in all directions

while a saddle point is a maximum in one of the

directions [6].

However, in many cases not all

reacting molecules follow the lowest-

energy path exactly. This is a char-

acteristic of a saddle-shaped surface,

where the transition state is defined

by a saddle point. Minima and sad-

dle points have both zero first deriva-

tives, but a minimum is a minimum

in all directions, and a saddle point is

a maximum along the reaction coordi-

nate, whilst a minimum in all other di-

rections.
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1.1 Geometry Optimisation

1.1 Geometry Optimisation

In order to find a stationary point on a PES, we need to ask whether such a point

exists, and if yes, then calculate its geometry and energy at that point. This proce-

dure is called geometry optimisation or energy minimisation. The stationary point

of interest might be a minimum, a transition state, or, occasionally, a higher-order

saddle point. In the case of transition states, the procedure is often referred to as

a transition state optimisation. A geometry optimisation calculation, usually starts

with an input structure which is believed to resemble the geometry of a molecule at

the desired stationary point.

An optimisation problem involves the minimisation of a function over several

variables, possibly subjected to restrictions on the values of these variables. Many

numerical methods have been developed over the years for locating the stationary

points on a PES, depending, in most cases, on the computational method employed

for such a calculation. Some of these methods are briefly described below.

1.1.1 First-Order Methods

One of the most simplified schemes for locating minima on molecular potential en-

ergy surfaces is the first-order derivative scheme called “Steepest Descent” (SD),

which was put forward by K. Wiberg in 1965 [25]. On a molecular potential en-

ergy surface the gradient vector points of opposite directions can always be lowered

down the surface to reach a local minimum. In the SD method, the function eval-

uations are performed in the negative gradient direction. Once the function starts

to increase, an approximate minimum may be determined by interpolation between

the last three points. At this interpolated point a new gradient is calculated and used

for the next line search. If the line minimisation is carried out with sufficient accu-

13



1.1 Geometry Optimisation

racy it will always lower the function value, and is therefore assured to approach a

minimum.

Figure 1.3: Schematic representation of the pathway followed during an SD optimisation.

Ellipsoid circles represent the energy levels of a PES with the central being the lowest in

energy [7].

However, there are two important drawbacks. Two subsequent line searches

have to be perpendicular to each other. If there is a gradient component along the

previous search direction, where the energy could be further lowered, a new search

line will partly spoil the function lowering obtained by the previous search. The

steepest descent path then oscillates around the minimum path. Furthermore, as

the minimum is reached, the rate of convergence slows down. The steepest descent

will therefore never reach the minimum, but it will crawl toward it with a constant

speed.

Sometimes the minimisation along the line is carried out fairly crudely. The step

size can be a fixed quantity or taken to depend on the magnitude of the gradient. The

guarantee for lowering the function value is lost when approximate line searches are

used. By default, the steepest descent method is a very simple numerical technique

and can only locate function minima, which makes it reliable for lowering the func-

tion value. It can be used to quickly relax a poor starting point, as a pre-optimisation

strategy, before a more advanced method is employed.
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1.1 Geometry Optimisation

An improvement over the SD method is achieved with the development of the

conjugate gradients (CG) methods. CG methods produce a set of directions that

overcome the oscillatory behaviour of steepest descents in narrow valleys. Succes-

sive directions are not at right angles to each other, but a line search is constructed so

that it is “conjugate” to the previous search direction. If for instance, the surface is

purely quadratic, each successive minimisation step will not generate gradient com-

ponents along any of the previous search directions. Conjugate gradient methods

have better convergence features than the steepest descent, but they require slightly

more storage than the steepest descent, since the previous gradient also must be

saved.

1.1.2 Second-Order Methods

In contrast with SD and CG methods, where the optimisation convergence is linear,

in second-order methods the expansion and the convergence of the optimisation

function is of second order near a stationary point. This is due to the involvement

of the Hessian matrix, which is a matrix of second derivatives of the PES with the

atomic coordinates. These methods are mainly referred to as Newton-Raphson (NR)

methods [26]. In general, as the stationary point is approached, this method per-

forms better and better; while sufficiently close to the stationary point the gradient

is reduced quadratically.

Several schemes have been developed over time, for improving the direction of

optimisation and the size of systems studied, such as the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method, where an approximated Hessian is updated during the cal-

culation by contributions from the gradient only [27–30]. Such NR methods are

known as quasi-Newton methods. In the current project, any geometry optimisa-

tions mentioned using density functional theory, employ the BFGS method by de-

fault (sections 4.4, 4.5.1).
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1.2 Symmetry in Crystals

1.2 Symmetry in Crystals

A crystal is a regular, ordered arrangement of atoms over a large scale. This arrange-

ment can be constitute by a single type of atoms or by the repetition of a complex

pattern of many different types of atoms. Generally, a crystal can be thought as

being consisted of two separate parts: the lattice and the basis. The lattice is an or-

dered layout of points in space, while the basis is the simplest motif of atoms, which

by being repeated at every point in the lattice would reconstruct the entire crystal

structure. In crystallography the basis is called the “unit or Wigner-Seitz cell”.

All the lattices can be obtained by repetition of the unit cell through 3 “primi-

tive”, “unit” or “translation” vectors defining the atomic arrangement within the 3D

space, that in general are not orthogonal. If a1, a2, and a3 represent the 3 primitive

vectors, which leave all the properties of the crystal unchanged after a displacement

by any of those vectors then, any lattice point r could be obtained from another point

r′ as:

r = r′ + c1a1 + c2a2 + c3a3 (1.2.1)

where ci, i = 1, 2, 3 are integers. Such a lattice of building blocks is called “Bravais”

lattice. The volume of a unit cell is given by Ω = a1· (a2 × a3).

The displacement of a lattice by a translation vector is called translation opera-

tion and any operation that carries a crystal structure into itself is called symmetry

operation. The latter category includes reflection and rotation operations, which are

generally called point operations.

Sometimes it is convenient to describe a crystal in terms of a cell that contains

more atoms than the unit cell, for simplifying the description of the symmetry oper-

ations. In this case, the cell is referred to as a “conventional” cell.
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1.2 Symmetry in Crystals

1.2.1 Lattices

Figure 1.4: 5 basic types of

2-dimensional lattices [8].

The are 5 basic categories of two-dimensional

lattices, the oblique and four special lattices,

as shown in Figure 1.4; and 14 types of lat-

tices in the 3 dimensions, which can be grouped

in seven categories: triclinic, monoclinic, or-

thorhombic, tetragonal, cubic, triagonal, and

hexagonal. Furthermore, there are three lattices

in the cubic system: the simple cubic (sc) lattice,

the body-centred cubic (bcc) lattice and the face-

centred cubic (fcc) lattice, as shown in Figure 1.5.

1.2.2 The Periodic Potential

In a similar way with the atoms inside a crystal, which occupy positions forming a

regular periodic structure, the potential v(r) developed between these atoms is also

a periodic function with a period equal to the period of the corresponding Bravais

lattice:

v(r + ai) = v(r) (1.2.2)

where ai are the Bravais lattice vectors (i = 1, 2, 3). The period of the potential is

of the same order as the de Broglie wave length. In the case of ideal periodic crystals

this potential must satisfy the property 1.2.2. Due to the potential periodicity the

solution of the single-electron Schrödinger equation 1.0.20 acquires some special

properties which are described in the Bloch’s theorem.
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1.2 Symmetry in Crystals

Figure 1.5: 14 types of 3-dimensional lattices [9].
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1.2 Symmetry in Crystals

1.2.3 Bloch’s Theorem

Bloch’s theorem simplifies the expression of Schrödinger’s wavefunction ψ of equa-

tion 1.0.20, for systems subjected to periodic boundary conditions, by exploiting the

periodicity of a crystal. Hence, the infinite number of one-electron wavefunctions

to be calculated, is now reduced to the number of electrons in the unit cell of the

crystal. The wavefunction is written as the product of a periodic function over the

Bravais lattice and a plane wave part:

ψk(r) = e(ık·r)uk(r) (1.2.3)

where the function uk(r) satisfies the condition:

uk(r + ai) = uk(r) (1.2.4)

for all lattice vectors ai. The vector k used in the expression of Bloch’s theorem

is called plane wave vector and is a conserved quantity in crystalline systems. The

wavefunction ψk of the displaced vector r + ai will then take the form:

ψk(r + ai) = e(ık·ai)ψk(r) (1.2.5)

so that the probability |ψk(r|2 remains the same due to the periodical symme-

try of the system. Therefore, Bloch’s theorem indicates that, any required physical

property for an infinite system, everywhere in space, can be accurately calculated

by only focusing on the properties of electrons within the unit cell.
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1.2 Symmetry in Crystals

1.2.4 Brillouin Zones

From the expression of 1.2.5 it can be assumed that, for certain values of the wavevec-

tor k, the plane wave e(ık·r) will have the periodicity of a Bravais lattice. Such a set

of k wave vectors, that provide plane waves with the periodicity of a Bravais lattice,

is defining the reciprocal lattice. In this case, the phase factor e(ık·ai) must satisfy the

condition:

e(ık·ai) = 1, i = 1, 2, 3 (1.2.6)

Equation 1.2.6 states that, for a particular set of vectors k, the wavefunction ψk is

in phase with all the periodic images of the unit cell. A reciprocal lattice is defined

with respect to a particular Bravais lattice, and any Bravais lattice that determines a

given reciprocal lattice is often called direct lattice.

For a set of primitive lattice vectors a1, a2 and a3, the reciprocal lattice can be

generated by three reciprocal lattice vectors b, respectively as:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
= 2π

a2 × a3

Ω
(1.2.7)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
= 2π

a3 × a1

Ω
(1.2.8)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
= 2π

a1 × a2

Ω
(1.2.9)

The reciprocal primitive vectors bi, satisfy the condition:

bi · aj = 2πδij (1.2.10)
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1.2 Symmetry in Crystals

where

δij = 0, i 6= j (1.2.11)

δij = 1, i = j (1.2.12)

The primitive reciprocal lattice vectors determine a cell in reciprocal space with

a volume ΩR:

ΩR = b1 · (b2 × b3) =
(2π)3

Ω
(1.2.13)

which defines the first Brillouin zone (BZ). To illustrate this, we can consider a

system of non-interacting, free electrons inside a 1D periodic box of length l. The

wavefunctions ψk = eıkx are solutions of the Schrödinger equation 1.0.22 in 1D with

eigenvalues:

E = ε(k) =
h̄2k2

2m
(1.2.14)

which form the energy bands of the system. The values of k are not confined in

the first BZ (−π/l < k < π/l). In order to visualise the energy bands within this

range of k, it is customary to refold the wavevectors kn, extended beyond the first

BZ, into the first BZ by performing the operation:

kn = k + Gn (1.2.15)

where k refers to the first BZ and wavevector Gn = 2nπ/l with n being an integer.

A schematic representation of the energy band folding is shown in Figure 1.6.

Generalising to 3-dimensional lattices, any vector k′ outside the first BZ be-

comes:
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1.2 Symmetry in Crystals

Figure 1.6: BZ energy band refolding on 1D system of non-interacting, free electrons.

k′ = k + G (1.2.16)

where k is a vector within the first BZ and

G = n1b1 + n2b2 + n3b3 (1.2.17)

with ni integers. G is a reciprocal lattice vector which satisfies the condition:

ai ·G = 2πni (1.2.18)

Based on equations 1.2.16 and 1.2.17, the wavefunction of state k′ according to

Bloch’s theorem (1.2.5) can then be written as:

ψk′(r) = eık′·ruk′(r) = eık·r
(

eıG·ruk′(r)
)
= eık·ruk(r) = ψk(r) (1.2.19)
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1.2 Symmetry in Crystals

This result justifies the approximation introduced with Bloch’s theorem, by rep-

resenting the infinite number of wavefunctions in a periodic system with a finite

number of wavefunctions at each k-point located in the first Brillouin zone.

1.2.5 Brillouin zone sampling

While for an infinite system there is a finite number of occupied eigenstates of the

Hamiltonian for each k-point, the first Brillouin zone also contains infinite k-points.

Although all of these eigenstates should be calculated, in practice, the only feasi-

ble approach is to use a finite number of k points, with very minor errors in the

wavefunctions and eigenvalues of the Hamiltonian for small changes of k [31]. This

approach is called Brillouin zone sampling and several methods have been devel-

oped for accurately calculate the electronic states over special sets of k points within

the Brillouin zone.

Based in the general principle that metallic systems should require a very fine

sampling of k-points, in contrast with semiconductors that require fewer k-points,

Monkhorst and Pack proposed a general scheme for sampling k-points [32]. For a

set of vectors q, written in terms of primitive reciprocal lattice vectors k:

k = n1b1 + n2b2 + n3b3 (1.2.20)

where the integers ni are defined by the relation:

ni = (2r− q− 1)/2q where r = 1, 2, 3, ..., q (1.2.21)

In the Γ point approximation only a single point is sampled, at k = 0.
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1.3 Thesis overview

1.3 Thesis overview

This thesis focuses mainly on the crystalline properties of modelled semiconduc-

tor silicon and metallic gold or platinum nanomaterials. Bi-metallic nanoalloys of

gold and platinum with copper and palladium are also presented. In more detail,

a computational study of silicon nanorods of more than 1000 atoms, with varying

aspect ratios and surface passivation by hydrogen is presented in chapter 4. Their

structural and electronic properties were investigated at the atomistic ab initio level

of detail.

A computational approach for simulating extended x-ray absorption fine struc-

ture (EXAFS) spectra of gold nanoparticles from force field simulations is presented

in chapter 5. A probability distribution function calculated directly from an en-

semble of molecular dynamics snap-shots is used to determine the photoabsorbing

atoms and their surrounding scattering paths.

Classical molecular dynamic simulations have also been performed on bare plat-

inum nanoclusters and on their bimetallic nanoalloys with copper or palladium, as

described in chapter 6. The structural results obtained from the simulations of bare

Pt nanoparticles were used as input data for the analysis of extended x-ray absorp-

tion fine structure spectra of experimentally synthesised Pt nanoparticles, as a better

fitting model from the conventional methods used so far. While the approach de-

tailed in chapter 6, is at a preliminary stage, it has shown promising results for future

development.

Furthermore, molecular dynamic simulations on spherical gold nanoparticles

with diameters 1.39, 1.94, 2.50 and 3.05 nm have been conducted, as described in

the last chapter. Gold nanosurfaces in contact with one or two thiolate molecules

were also investigated, using first principles methods.
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Chapter 2

Classical Molecular Dynamics

Classical Molecular Dynamics (MD) is a computational technique for simulating

materials, with a plethora of applications in various areas of research, such as chem-

istry, physics, applied mathematics etc. Within the framework of this method, a

molecule is modelled as a collection of solid spheres (atoms) held together by springs

(chemical bonds), while the motions of the atoms contained in the system are de-

scribed by using the laws of classical mechanics. The aim is to extract data about

the dynamical behaviour of different materials at the atomic scale as well as their

thermodynamic properties using statistical mechanics. The energy of a molecu-

lar system is expressed as a function of its structural changes, which occur during

the simulation, as the springs (bonds) resist towards stretching and bending or the

spheres (atoms) repel from being crowded together. This is conceptually similar to

the intuitive feel of interacting plastic or metallic atoms going through any necessary

conformations in order to find their most energetically stable geometry.

The concept of classical MD seems to have started as an attempt to obtain infor-

mation about the structural properties of chemical compounds, at a time when the

possibility of performing quantum mechanical calculations on anything larger than
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the hydrogen atom seemed impossible. Specifically the use of MD as a potential

method for studying the variation of energy with respect to the geometry of a molec-

ular system was founded in 1946 by Westheimer and Meyer [33] and by Hill [34]. It

has to be stressed, at this point, that the method makes no reference to the electronic

behaviour of the atoms within the system, while the Born-Oppenheimer approxima-

tion is used implicitly, as a static attractive force between the nuclei and the atoms,

which vaguely define the electronic region. Thus, MD methods cannot provide any

information about molecular orbitals or any related electronic properties.

Generally, MD is a widely used method for calculating the energies and geome-

tries of large molecular systems, such as proteins, nucleic acids, nanocrystals etc.

During a classical MD simulation, the forces and velocities acting on the atoms as

a function of their coordinates are evaluated in parallel steps, depending on which

integration scheme is used. The mathematical expression of the energy and forces

constitutes a “force-field”, thus classical MD is sometimes referred to as a force-field

method. Each simulation proceeds in discrete steps by calculating the forces and

velocities between the particles and solving the equations of motion based on the

accelerations obtained from the new forces.

Usually systems studied with classical MD are simulated for a time-period of

less than 1 µs but the main factor which affects the reliability of the simulations and

also the computational cost of a simulation is the size of the integration time-step.

The time-step must be chosen small enough to avoid discretisation errors. Typically,

the propagation time-step is chosen to be about 1/10th of the smallest period of

vibration of chemical bonds contained in the system (usually around 1-6 fs).

Although the electrons contained in the simulated system are “ignored” at the

expense of the calculation speed, this does not necessarily lead to non reliable re-

sults. By correctly parametrising a force-field, the electronic properties can be ap-

proximated with sufficient accuracy, though such results are obtained purely by
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analogy. It is important to use an appropriate force-field for the kind of compounds

studied, as it is non transferable and is more likely to perform inadequately for

other classes of molecules. This is due to that, force field methods are generally

ruled by empirical factors. Optimising a hypothetical structure of a molecule may

not necessarily lead to the most stable conformation at the global energy minimum.

Sometimes a stationary point can be trapped into a transition state during the geom-

etry optimisation. The situation becomes more complex if systems with an overall

charge are simulated in vacuo. In this case, some discrepancies can be overcome by

explicitly including solvent molecules or ions inside the simulation box.

Nevertheless, classical MD methods are fast and computationally more efficient

than ab initio or semi-empirical methods and hence, can be used for studying very

large systems such as large bio-molecules, polymers or nanoparticles. More im-

portantly, they can be used for studying metallic systems containing transition or

heavy elements, where other methods depending on the calculation of the energy

band structure fail to converge.

2.0.1 The DL POLY code

The classical MD simulations performed throughout this work were mainly con-

ducted with the DL POLY2 code [1]. It is a parallel molecular dynamics simulation

package developed at Daresbury Laboratory by W. Smith and T.R. Forester. There

are two available forms of DL POLY; DL POLY2 which is the primary version and

is based on a replicated data parallelism and DL POLY3 which is a domain decom-

position version, designed for systems beyond the range of DL POLY2 (around 106

atoms and a maximum number of 1000 processors).

For a typical simulation with the DL POLY code [18], at least three input files are
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necessary: a) The CONFIG file; includes all the spacial coordinates of every atom

contained in the system in a Cartesian form and the x,y and z projections of the

primitive vectors defining the simulation box. b) the CONTROL file; contains all the

parameters defining the thermodynamic state of the system (temperature, pressure,

thermodynamic ensemble), the type and duration of the calculation (equilibration

time, total time, time-step) and also keywords about the structure of some output

files printed (HISTORY, STATIS, RDFDAT). Additionally, cut-off values for the dis-

tances of the long-ranged interactions need to be included in the CONTROL file.

c) the FIELD file; contains the values of the parameters describing the force field(s)

and the kind of interactions developed between the atoms contained in the system.

During a simulation with DL POLY, all the results and tables are printed in the

OUTPUT file. Simultaneously, the STATIS and HISTORY file are also collecting

data from the MD simulation. The HISTORY file contains all information describ-

ing the trajectory of the system, with the spacial coordinates, the velocities and the

forces developed on each atom of the simulated system in every printed frame. The

amount of data collected and the number of frames included in the HISTORY file is

controlled by keywords given in the CONTROL file. The STATIS file, on the other

hand, contains all the details about the thermodynamic parameters and the energy

parts of the force field on every MD step. By the end of the simulation, the new ge-

ometry of the system in the Cartesian space, is summarised in the REVCON file. For

the purpose of restarting a simulation from a previous trajectory, the REVCON file

provides the new CONFIG file in a new MD run. In special occasions, the user can

output data about the radial distribution function (RDFDAT) or the number of data

points in the Z-density function (ZDNDAT). Details about the format of these files

and some pre- or post-processing scripts of the input and output files of DL POLY

are shown in the Appendices A, B and C.
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2.1 Thermodynamic Ensembles

In each MD simulation, the definition of the thermodynamic state of a molecular

system is achieved via a small set of macroscopic parameters, such as the temper-

ature, the pressure, and the number of particles. Also, the microscopic state of a

system at a given time is defined by using atomic positions, and momenta. These

can also be considered as coordinates in a multi-dimensional space, called phase

space.

A thermodynamic ensemble is a collection of these points in a phase space sat-

isfying the conditions of a particular thermodynamic state. For example, in the

microcanonical ensemble, (N,V,E), the volume (V), the energy (E) and the num-

ber of particles (N) of the system remain constant. Other ensembles, such as the

isobaric-isothermal ensemble (N,P,T) or the canonical ensemble (N,V,T), except from

the number of particles (N), the pressure (P) and the temperature (T) or the volume

(V) and the temperature (T) are also preserved, respectively.

MD simulations begin with an “equilibration period”, where the molecular sys-

tem is allowed to reach a region of the phase-space, near thermodynamic equilib-

rium. During this period, the temperature is scaled gradually until it reaches a de-

sired value. This is achieved by using temperature stabilisers, called “thermostats”,

which imitate heat exchange between the system and its surroundings. For an en-

semble that keeps the temperature stable, during the equilibrium, an adjustment

of the velocities is demanded in every step, since the temperature is related to the

kinetic energy. Practically though, this prevents the trajectories from being Newto-

nian and as a consequence the properties computed are less reliable. To overcome

this impact, suitable computational algorithms are used which can treat the molecu-

lar system as being in contact with a constant temperature bath (e.g. Berendsen [35]

or Hoover thermostat [36]).
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2.2 Integration Algorithms

In the cases of thermodynamic ensembles which keep the pressure constant, the

volume is allowed to change by scaling the space coordinates of the particles. The

algorithms used for this purpose are called “barostats” [37].

2.2 Integration Algorithms

For propagating the phase-space trajectory of a molecular system on a computer

from its initial position and momenta, methods that proceed in discrete time steps

have been developed. This discretisation is dictated by the need to represent on a

computer the phase-space points. These propagation methods require the use of

small time intervals to avoid trajectory errors. Large time intervals can distort the

dynamical behaviour and the thermodynamic properties of the simulated system.

One popular and sophisticated integration scheme for propagating trajectories, is

the Verlet algorithm [38], in which the coordinates of an atom are expanded as a

Taylor series.

In more detail, the derivatives of the particle’s position vector are expanded in

Taylor series up to the second term by one time-step ∆t forward (r(n+1)
i ) and one

time-step backward (r(n−1)
i ). The sum of these expansions gives:

r(n+1)
i = 2rn

i − r(n−1)
i +

∆t2

mi
Fn

i (2.2.1)

where Fi are the forces acting on the particle i and n is the MD step number.

The Verlet algorithm offers a satisfactory accuracy since the error on the first time

step calculation is of ∆t3 order, but it propagates the position vector without using

the velocities vi, thus giving no information on the particle’s motion or the kinetic

energy. For the MD simulations this is a major drawback which can be overcome by
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2.2 Integration Algorithms

using two improvements of the Verlet algorithm, the Leapfrog Verlet or the Velocity

Verlet algorithm.

2.2.1 Leapfrog Verlet

In the Leapfrog Verlet, the velocities vi are calculated using the position terms ri,

calculated from the basic Verlet algorithm in every time-step. The velocity vectors

are calculated separately from the position of the particles, thus always having a

half time-step displacement. A smaller time interval can reduce the numerical error

created from this approximation.

v(n+1/2)
i = v(n−1/2)

i +
∆t2

mi
Fn

i + ϑ(∆t3) (2.2.2)

r(n+1)
i = rn

i + ∆tv(n+1/2)
i + ϑ(∆t4) (2.2.3)

2.2.2 Velocity Verlet

On the other hand, the Velocity Verlet algorithm, embodies the velocities along with

the positions of the atoms in every time-step. Although this avoids the half displace-

ment discrepancy introduced by the Leapfrog Verlet, it still gives results with same

accuracy as the basic Verlet algorithm.

v(n+1/2)
i = vn

i +
∆t

2mi

(
Fn

i + F(n+1)
i

)
+ ϑ(∆t3) (2.2.4)

r(n+1)
i = rn

i + ∆tvn
i +

∆t2

2mi
Fn

i + ϑ(∆t4) (2.2.5)
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2.3 Force Fields

Force fields are based on numerous approximations derived from different types of

experimental data and quantum calculations. Most force fields in chemistry con-

sist of several parameters defining the bonded forces associated with the chemical

bonds, bond angles, and bond dihedrals, and the non-bonded forces such as elec-

trostatic interactions and Van der Waals interactions.

In this respect, the force field energy can be separated into different energy terms,

such as the stretching term Estretch, the bending energy Ebend, the torsional motion

Etorsion, and interactions between atoms or groups which are non-bonded Enonbond.

Thus, the potential energy of a molecule is given by the combination of these terms

and their parameters as:

E = ∑
bonds

Estretch + ∑
angles

Ebend + ∑
dihedrals

Etorsion + ∑
pairs

Enonbond (2.3.1)

Consequently, the stretching energy describes the stretching of a bond length

between a pair of atoms, the bending energy, the changes in the angle formed by a

sequence of three atoms and the torsional energy, the energy obtained by rotating a

series of four atoms along the axis of the two middle atoms.

More specifically, the bond stretching term expresses the energy difference of a

bond (spring) when is stretched:
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2.3 Force Fields

∆Estretch =
1
2

kstretch
(
l − leq

)2 (2.3.2)

where kstretch is the proportionality constant of the spring or bond. As the kstretch

gets bigger so the bond/spring becomes stiffer or the more it resists in being stretched;

l is the length of the bond which is stretched while leq is the equilibrium bond length,

or else, the ”natural” distance of a pair of atoms, whilst in the minimum potential

energy value. If the energy corresponding to the equilibrium length is set to zero,

then the expression of ∆Estretch becomes equal to:

Estretch =
1
2

kstretch
(
l − leq

)2 (2.3.3)

Figure 2.1: α is the angle formed by

atoms A-B-C in order

The angle bending term describes the

“angle energy” of the system, which corre-

sponds to the resistance of bending the an-

gle defined by any triatomic unit (A-B-C)

within the molecule, as show in Figure 2.3.

Approximately, the bending energy is pro-

portional to the square of the increase in the

angle α:

Ebend = kbend
(
α− αeq

)2 (2.3.4)

where kbend is a proportionality constant, equal to the one-half the angle bending

force constant.

The torsional term defines the energy barrier of changing any “dihedral” angle

or “torsional” angle of the system. The dihedral angle is the angle formed between
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(a)

(b)

Figure 2.2: (a) Horizontal and (b) vertical view of the dihedral angle formed by atoms

A-B-C-D

a series of four atoms, A, B, C and D, or between the A-B bond and the C-D bond,

viewed along the B-C bond, as shown in Figure 2.2. By default, this angle is consid-

ered positive if it arises from clockwise rotation of the back bond (C-D) with respect

to the front bond (A-B). Since the geometry repeats itself every 360o, the energy

varies with the dihedral angle in a sine or cosine pattern but a combination of sine

or cosine functions will reproduce the curve:

Etorsion = k0 +
n

∑
r=1

kr [1 + cos(rθ)] (2.3.5)

Figure 2.3: Visualisation of non-

bonded interactions formed by two

different groups of atoms quite far

apart

The change in potential energy with distance

apart of two groups of atoms that are not di-

rectly bonded, is defined by the non-bonded

energy term. This energy term contains any

short-ranged, such as the Van der Waals inter-

action, or long-ranged non-bonded interactions,

which are mainly pure electrostatic forces be-

tween charged atoms of the system. In more de-

tail, these interactions are described in the fol-

lowing sections.
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2.3.1 Short Ranged Potentials

2.3.1.1 The Van der Waals energy

The Van der Waals interactions are developed between neighbouring atoms that

are not directly bonded. They are relatively weak compared to ionic or covalent

bond interactions and are caused by correlations in the fluctuating polarisations of

neighbour atoms, molecules or surfaces.

In general, the the Van der Waals energy has a repulsive and an attractive com-

ponent. For very small distances the potential becomes very repulsive, at distances

where the atoms almost interact, it has a slightly negative minimum and goes to-

wards zero for large distances. One of the simplest and most widely used models to

describe the Van der Waals interactions is the Lennard-Jones potential.

2.3.1.2 The Lennard-Jones potential

The Lennard-Jones is a pair potential which contains a repulsive term 1
r12 and an

attractive 1
r6 term, where r represents the distance between a pair of atoms. The

repulsive term of the potential is derived by the requirement of the repulsive inter-

action to fade to zero when r reaches infinity faster than the attractive term.

V(rij) = 4ε

( σ

rij

)12

−
(

σ

rij

)6
 (2.3.6)

The ε defines the depth of the potential well and σ is the distance at which the

inter-particle potential becomes zero.
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2.3.2 Long Ranged Potentials

Long-ranged contributions to the potential energy between non-bonded charged

atoms or a group of atoms, are essential when dealing with polar or ionic molecular

systems. For this purpose, several techniques for simulating Coulomb and dipolar

interactions have been developed. Two of the most common methods for describ-

ing long-ranged electrostatic forces are the direct Coulomb potential and the Ewald

summation technique.

2.3.2.1 Direct Coulomb Potential

The simplest and easiest way to describe the interactions between two point charges

is by using the Coulomb potential. According to Coulomb’s law, the force acting be-

tween two electric charges is radial, inverse-square, and proportional to the product

of the charges. Practically, if two points have the same charge then they repel one

another, whereas two points with opposite charges attract each other. Hence, if two

point charges q1 and q2, are located at position vectors r1 and r2, then the electrical

force acting on the second charge is given by:

F2 =
q1q2

4πε0

r2 − r1

|r2 − r1|3
(2.3.7)

where ε0 is the permittivity of free space.

The above equation satisfies Newton’s third law because it implies that a force

of the same magnitude but opposite direction acts on charge q1 . The forces between

the two point charges act along the line joining them.
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2.3 Force Fields

2.3.2.2 Ewald Summation

Ewald summation was introduced in 1921 [39] as a technique to sum the long-

ranged interactions between particles inside a periodic or pseudo-periodic system.

The basic cell of a system consists of positively and negatively charged ions mutu-

ally interacting via the Coulomb potential, which is repeated infinitely with identical

copies of itself. Each ion is effectively neutralised (at long range) by the superposi-

tion of a spherical Gaussian cloud of opposite charge centred on that ion. The entire

system is then neutral and contains an infinite number of charges situated at points

rj+ and rj−, respectively. The total potential at the position of some ion i residing in

the basic cell is given by the finite difference of two infinite, diverging series:

φ(ri) = q
∞

∑
j+=1

1∣∣ri − rj+
∣∣ + q

∞

∑
j−=1

1∣∣ri − rj−
∣∣ (2.3.8)

Instead of evaluating the potential as a sum over the point charges, these charges

can be rewritten as delta-like charge densities,

ρ(r) = q
∞

∑
j+=1

δ
(
r− rj+

)
− q

∞

∑
j−=1

δ
(
r− rj−

)
(2.3.9)

and expanded in a Fourier series whose terms determine the Fourier components

φ(k) of the electrostatic potential. Since the Fourier representation of a delta-function

requires infinitely many terms, the Fourier space calculation would again lead to

convergence problems.

In Ewald method, the potentially infinite sum in real space, is replaced a by

two finite sums: one in real space (r-space) and one in reciprocal space (k-space).

Hence, the combined assembly of point ions and Gaussian charges becomes the (r-

space) part of the Ewald sum, which is now short ranged. A second set of Gaussian

charges, this time with the same charges as the original point ions, centred on the
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point ions is superimposed and the potential is then solved as a Fourier series in

the (k-space). The delta-like point charges by Gaussian charge “clouds” of opposite

sign, are augmented by:

ρ′(r) = −qj

(
η2

π

)3/2

exp−η2(r−rj)
2

(2.3.10)

By suitably adjusting η, optimal convergence of both series may be achieved.

The complete Ewald sum requires an additional correction, known as the self en-

ergy correction, which arises from a Gaussian acting on its own site, and is constant.

For molecular systems, as opposed to systems comprised simply of point ions, ad-

ditional modifications are necessary to correct for the excluded (intra-molecular)

Coulombic interactions. In the real space sum these are simply omitted. In recip-

rocal space however, the effects of individual Gaussian charges cannot easily be

extracted thus, the correction is made in real space, by removing terms correspond-

ing to the potential energy of an ion due to the Gaussian charge on a neighbouring

charge m (or vice versa). This correction appears as the final term in the full Ewald

formula:

φ (ri) =
4π

L3

N

∑
j=1

qj

[
∑
k

exp−ik.rij k2 exp−k2/4η2
+∑

n
F
(
η|ri,j,n|

)]
(2.3.11)

where

F ≡ 2√
π

∫
e−t2

dt

k are the Fourier vectors of a cubic base cell with side length L and N charges:

k ≡ 2π

L
(
kx, ky, kz

)
, ri,j, n ≡ rj + nL− ri (i, j = 1, . . . , N)

and r are the inter-particle vectors acting on all periodic images of the base cell,

where nL is a translation vector in the periodic lattice.
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2.3.3 Metal Potentials

2.3.3.1 The Gupta Potential

There are several empirical potentials suitable for describing metallic systems that

are derived from fitting experimental data into an assumed functional form and usu-

ally include a local volume or density dependence in order to describe the metallic

binding. The Gupta [40] potential is based on the second moment approximation

of Tight-Binding (TB) theory and has been extracted from Gupta’s expression for

the cohesive energy of a bulk material. The potential is divided into a repulsive

(Vr) and many-body attractive terms (Vm) summed over all atoms contained in the

molecular system:

Vtot(r) = ∑
i 6=j
{Vr(rij)−Vm(rij)} (2.3.12)

where

Vr(r) = ∑
j 6=i

A exp
(
−p
(

rij

r0
− 1
))

(2.3.13)

and

Vm(r) =

[
∑
j 6=i

ζ2 exp
(
−2q

(
rij

r0
− 1
))] 1

2

(2.3.14)

where rij is the distance between atoms i and j, A is the energy scaling factor

for the repulsive energy, ζ is the energy scaling factor for the many-body attractive

energy, r0 the equilibrium bond length of the bulk material, p and q are the range

exponents for the pair and many-body potentials respectively.
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2.3.3.2 The Sutton-Chen Potential

Another potential with a similar formalism to Gupta is the Sutton-Chen (SC) [41,42]

potential which has the form:

Vtot(r) = ∑
i

ε

[
∑
i 6=j

1
2

(
α

rij

)n

− cρi(r)
1
2

]
(2.3.15)

where ρi is a local density accounting for cohesion associated with atom i, given by:

ρ(r) = ∑
i 6=j

(
α

rij

)m

(2.3.16)

rij is the distance between atoms i and j, as previously stated, c is a dimensionless

parameter, ε is a parameter with dimensions of energy, α is the lattice constant, and

m and n are positive integers such that n > m.

When describing a bi-metallic system, the parameters ε, α, m and n, can be com-

bined using the following mixing rules:

εAB =
√

εAεB, αAB =
√

αAαB,

nAB =
1
2

(
nA + nB

)
, mAB =

1
2

(
mA + mB

) (2.3.17)

where A and B refer to different metallic systems.

The parameters used in both the Gupta and the SC force fields are derived from

TB calculations performed by Cleri and Rosato [43] on transition metals and alloys,

in order to reproduce the cohesive energy, atomic volume and elastic constants of

the corresponding real systems at zero temperature. Further works have extended

the properties of many-body potentials to include also phonon dispersion, vacancy

formation energy, surface energy etc.
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2.3.4 The Stillinger-Weber Potential

The Stillinger-Weber potential [44] is an empirical potential, suitable for studying

semiconductor nanocrystals [45] [46]. It is a simplified potential which uses geo-

metrical quantities, such as distances and bond angles as variables and is capable of

modelling, with a very high precision, the structural and dynamical properties of a

large variety of elements [47]. One of its applications concerns the prediction of the

dynamical properties of solid and liquid silicon.

In order to study H-terminated Si nanoparticles, the Stillinger-Weber potential

was selected due to its efficiency in describing the interactions not only between Si-

Si atoms but also between Si-H atoms, according to the work conducted from Kohen

et al. [48], who have extended the form of the potential in order to include the Si-H

interactions. It is based on a two-body term and a three-body term as shown in the

following general form:

Φ = ∑ USiSi + ∑ UHH + ∑ USiH + ∑ USiSiSi + ∑ UHHH + ∑ USiSiH + ∑ USiHH

(2.3.18)

where the three first terms are referring to the two-body part and the next four

terms are referring to the three-body part.

Although the DL POLY code [1] comes with several popular force fields imple-

mented by default, the Stillinger-Weber potential, unfortunately, is not currently

supported by the versions of the code available so far. For this purpose, the po-

tential had to be imported manually into the DL POLY source code. The following

sections include a summary of the procedure followed for implementing and test-

ing separately each part of the potential for describing the interactions of silicon and

hydrogen atoms, as reported in the computational works of Kohen et al [48] and of

Hawa and Zachariah [49].
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2.3.4.1 Implementing the two-body term

Each term describing the two-body term of the Stillinger-Weber potential has the

following generic form:

U2(r) =

A (Brp − r−q) exp
( γ

r−α

)
r < α

0 r ≥ α

(2.3.19)

where all the contained constants are positive (α, A, B, p, q, γ).

This pair interaction describes in general, the tendency for the formation of a

covalent bond. In practice, the three-body term is also needed for the final achieve-

ment of a chemical bond.

Since DL POLY is not providing by default the use of Stillinger-Weber potential

as force field, a modification of the code was required. Luckily, using the capability

of the program to define a short-ranged pair potential by tabulating the energy val-

ues, had limited our task in changing the code, only to the three-body part. Thus,

the insertion of the two-body term of the potential was achieved by using an extra

input file called TABLE (see Appendix A.4). This file contains all the grid points

describing an undefined potential as a function of the distance. The file must con-

tain also in a tabular form the values for the two-body forces as a function of the

distance, following the energy values.

2.3.4.2 Testing the tabulated potential with DL POLY

In order to understand and test the way that the tabulated potential works with

DL POLY and how the program reads the contained data, a diatomic molecule of
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two Si atoms located in a different distance from their equilibrium bond length was

constructed. If the data contained in the TABLE file are correct then the optimisation

will stop at the point where the two atoms have reached their equilibrium bond

distance.

The energy grid points and the forces values were obtained by implementing the

two-body term of the Stillinger-Weber potential describing the interaction between

two Si atoms in Mathematica [50]. The potential, as constructed in the TABLE file,

was carefully tested to ensure that its units and format were correct. In this respect,

the binding energy and the distance at the minimum was calculated using both

Mathematica and DL POLY, by performing a geometry optimisation in the latter

case. Our results were confirmed by the very good agreement between the results

obtained by the two codes.

By plotting the potential and differentiating the energy function, the minimum

was found to be at distance 2.3516Å. The result also from the geometry optimisation

showed that the equilibrium bond length is 2.3516Å. The energy at this point was

found to be equal to 50 kcal/mol in both cases. The experimental values for the

equilibrium bond distance and the minimum energy were 54 kcal/mol and 2.331Å

respectively, which show the good approximation of the calculation and the experi-

ment [51].

2.3.4.3 Implementing the three-body term

The three-body term of the Stillinger-Weber potential has the following general

form:
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Uj,l,k(r) =

λj,l,k
[
1 + µjlk cos(θjlk) + νjlk cos(θjlk)

2] exp
(

γl j
rl j−α + γlk

rlk−α

)
rjlk < α

0 rjlk ≥ α

(2.3.20)

where the constants λ, γ and α, are positive, but µ and ν can also have nega-

tive values depending on the interacting atoms. The indices j,l and k refer to the

sequence of the three atoms which the three-body term applies to, with the l atom

located at the centre.

The format of the three-body term is separable into two parts, one angular and

one radial cut-off term. It is strictly defined for a sequence of three chemical ele-

ments in a specific order. Thus, the angle formed by the atoms Si-H-Si, for example,

defines a different potential from the angle formed by the atoms Si-Si-H.

In order to insert the three-body term of the Stillinger-Weber potential into the

DL POLY code, the subroutine which deals with the three-body interactions had to

be modified. To start with, a keyword for the program to recognise the potential

from its input files had to be introduced. Secondly, since the default three-body

potentials of DL POLY were defined by maximum of five constants, the array in

which these constants are stored had to be extended by one more dimension for

the inclusion of a sixth parameter needed for the definition of the three-body part.

Finally, the new potential had to be consistent with the logic, order and formalism

of the whole code. Thus, the insertion of the three-body term is done by dividing it

into two parts; the “screening” and the “angular” part.

The screening part contains all the terms depending on the two atom-atom dis-

tances rij and rik and the angular part depends on all the terms described by the

angle θ. In this case the screening term is:
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S(r) = exp

(
γij

rij − α
+

γik
rik − α

)
(2.3.21)

and the angular term is:

A(θ) = 1 + µjik cos(θjik) + νjik cos2(θjik) (2.3.22)

The derivatives of these terms describe the forces exerted on the central and side

atoms, in a sequence of three particles. In the DL POLY code the forces are expressed

by the FORTRAN variables gamma, gamsa, gamsb and gamsc. The derivative of the

angular term gives the gamma term, and the derivatives of the exponential term give

the gamsa and gamsc terms. By default, the gamsb term which describes the forces

on the central atom is set to zero, because the forces on this atom are calculated as

a negative sum of the forces on the side atoms. In a mathematical form these terms

have the following expression:

[gamma] = −S(rij)S(rik)
∂

∂rl
α

A(θjik) (2.3.23)

[gamsa] = −A(θjik)S(rik)(δl j − δli)
rα

ij

rij

∂

∂rij
S(rij) (2.3.24)

[gamsc] = −A(θjik)S(rij)(δlk − δli)
rα

ik
rik

∂

∂rik
S(rik) (2.3.25)

where l being one of the atomic labels i,j,k, and α indicating the x,y,z component

of the Cartesian space.
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For consistency, the modification of the code had to be done with respect to the

software’s default units. Therefore, the three-body potential is multiplied by a factor

of 418.4, the conversion unit of kcal/mol to 10 J/mol, which is the default energy

unit of the program. No conversion was needed for the atomic distances, since they

are given the same units in both literature and software.

2.3.4.4 Testing of the three-body term

The Stillinger-Weber potential was constructed for describing the behaviour of sili-

con atoms generally in the liquid phase. Hence, the initial properties of the silicon

crystal had to be preserved for the transformation of the bulk crystal to the liquid

phase.

By definition this potential gives a minimum at an angle of 109.47 degrees which

is the angle of a perfect tetrahedron and the angle observed in the crystalline form

of silicon. Also, the distance between two silicon atoms, as defined mainly by the

two-body term is 2.35 Å.

For testing the efficiency of the interactions between two hydrogen atoms and

one silicon atom, a molecule was constructed which contains two hydrogen atoms

bound to a silicon atom. The results obtained from the geometry optimisation are

then compared with the results presented in the research article of Kohen et al [48].

SiH2

Table 2.1: Results from geometry optimisation of SiH2

Energy (kcal/mol) Bond length (Å) Angle (deg.)

KTS [48] 145.6 1.474 102.61

This work 145.6 1.474 102.61
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Test of the H-H-H sequence By constructing the SiH3 molecule an additional

three-body interaction comes into play; the interaction between three atoms of hy-

drogen. The two-body interaction between two hydrogen atoms is designed to give

the equilibrium bond length of a H2 molecule when it is absorbed on a catalytic sur-

face and is equal to 0.74 Å, as calculated by Kohen et al. In contrast, the three-body

interaction between hydrogen atoms is mainly repulsive and thus the angle formed

by H-Si-H is expected to be larger in the SiH3 than the angle of the same sequence

of atoms in SiH2.

The results obtained from the geometry optimisation with DL POLY for the SiH3

molecule revealed a significant variation with the results stated in the paper of Ko-

hen et al. This inconsistency has also been observed by a later work from Hawa and

Zachariah [49], who have re-parametrised the variables of the Stillinger-Weber po-

tential as defined in the Kohen et al paper in order to give more satisfactory results.

SiH3

Table 2.2: Results from geometry optimisation of SiH3

Energy (kcal/mol) Bond length (Å) Angle (deg.)

KTS [48] 222.3 1.471 106.31

This work 208.79 1.582 114.44

HZ [49] 216.13 1.513 109.40

This work 216.47 1.509 109.15

Test for the interactions Si-Si-H and Si-H-Si The three-body interactions between

two silicon atoms and one hydrogen, are tested on a Si2H6 molecule, being simu-

lated with DL POLY. Starting from a geometry where all the particles are located in

distances smaller than the cut-off distances defined for all the included three-body

interactions, the Si2H6 molecule is then optimised using the parameters from both

articles of Kohen et al and Hawa-Zachariah. The results obtained are shown in the

Table 2.3.4.4 below.
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Si2H6

Table 2.3: Results from geometry optimisation of Si2H6

Energy Bond length (Å) Angle (deg.)

(kcal/mol) Si-H H-Si-H

KTS [48] 500.10 1.470 106.6

This work 427.96 1.743 117.19

HZ [49] 483.22 1.510 109.5

This work 491.94 1.505 109.01

Testing the three-body potential forces In each test case mentioned above, the

forces computed for every atom were tested by performing finite difference cal-

culations and by differentiating each three-body potential with Mathematica. The

atomic forces are given in Cartesian form and thus each atomic force is constituted

from its resultant force in the x, y and z direction. The general formula which

DL POLY uses to describe the atomic forces is given by:

fl
α = − ∂

∂rl
α

U(θjlk, rij, rik) (2.3.26)

where U(θjlk, rij, rik) is the total potential.

The finite differencing method for verifying the efficiency of the modified code

and the calculations performed with Mathematica, were used to validate the ac-

curacy of the result printed by the program. For example, if the value of a force

found from finite differencing was not approximating the value printed by the pro-

gram, this was stating the existence of a bug in the code. On the other hand, if a

force printed by the program was approximating the result obtained from finite dif-

ferencing, but its value was different from the value computed by Mathematica, it

meant that a parameter or a constant had been entered incorrectly in the code.
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Chapter 3

Density Functional Theory

Density functional theory (DFT) is a first principles approach used in physics and

chemistry for extracting the electronic properties of many-body molecular systems.

In contrast with other quantum mechanical methods, DFT is based on the evalu-

ation of the electron or charge density n(r) rather than the wavefunction, which

does not have a direct physical meaning. While ab initio or semiempirical methods

are focused on calculating or approximating the practically insoluble Schrödinger

equation, DFT employs the electron density which is an experimentally observable

entity (X-ray diffraction or electron diffraction).

To extract the structural properties of a molecular system it is sufficient enough

to focus only on its ground state. The ground state energy can be obtained, practi-

cally exactly, only from knowing the electron density. The innovation of DFT comes

with the replacement of the N-electron wavefunction with an overall density func-

tion, which allows the disengagement of the energy functional from many electron

coordinates. The electron density is a function of position only, requiring only three

variables for its definition, the components of r (x, y, z in Cartesian space). No mat-

ter what the size of a molecule may be, the charge density remains a function of
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three variables, while the complexity of a wavefunction increases exponentially by

increasing the number of electrons.

Because the electron correlation is fundamentally included in DFT, this method

can calculate very accurately geometries and relative energies, but perhaps not as ac-

curate as high-level ab initio methods. The latter fact results from the lack of knowl-

edge of the exact mathematical form for the DFT functional. In conventional ab initio

theory, the wavefunction can be improved systematically by using larger basis sets

or additional correlation terms, while a further improvement of the functional is a

challenging task in DFT. In this sense, DFT cannot be regarded as a special kind of

ab initio method but the limited use of empirical parameters and the possibility of

someday finding the exact functional, make potentially DFT an ab initio method.

So far, DFT methods have been extensively used for investigating the structural

and electronic properties of semiconductors and several transition metals, where

conventional ab initio methods break down due to system size limitations. Further

improvements in DFT, apart from augmenting or modifying functionals, include

also the development of numerical integration schemes in order to extent its appli-

cability in larger and different molecular systems (see section 3.3).

3.0.5 DFT Energy

As in the wavefunction based approaches, the electronic energy Eel can be sepa-

rated into the kinetic energy term T, the nuclei and electrons attraction term Ene and

the electron-electron repulsion term Eee. The inter-electronic repulsion term can be

divided into the Coulomb J and the Exchange K part, according to Hartree-Fock

(HF) theory. While in HF theory, the total energy of a many-body system can be

given with an accuracy of 99% the remaining 1% is still important for evaluating the
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chemical and physical properties of the molecular system. The missing 1% is called

correlation energy Ec and is, in principle, included in the DFT formalism.

Eel[n] = T(n) + Ene[n] + Eee[n] (3.0.1)

Eee[n] = J[n] + K[n] + Ec[n] (3.0.2)

where [n] indicates that the above terms are functionals of the electron density n(r)

3.1 Theorems and Models

The first model for describing the electronic energy as a functional of electron den-

sity was developed by Thomas and Fermi [52]. Their theory considers a uniform

distribution of electrons forming a “homogeneous” non-interacting electronic gas,

which allows the average kinetic energy functional to be expressed only in terms of

the particle density.

The omission of exchange and correlation between electrons by Thomas-Fermi

theory led to an improvement of the energy functional, made by Dirac, who in-

cluded the exchange term to the electronic energy, according to his local approxima-

tion theory [53]. Despite further improvements made over the years, the Thomas-

Fermi-Dirac model has limited applications, mainly on isolated neutral atoms and

solids. Density functional theory became an exact theory after the publication of

Hohenberg-Kohn theorems (section 3.1.1), while nowadays, DFT calculations are

based on the more accurate Kohn-Sham approach (section 3.1.2).
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3.1.1 The Hohenberg-Kohn Theorems

The concept of the Hohenberg-Kohn [54] theorems relies on the assumption that

the exact prediction of the ground state of an N-electron system is feasible by only

using the electron density. Their formulation can be applied on any stationary, non-

relativistic many-particle system in an “external” potential vext(r), which completes

the energy required by the electrons to move under the potential of the atomic nuclei

and determines all the properties of the ground state.

Ĥ = − h̄2

2me
∑

i
∇i

2 + ∑
i

vext(r) +
1
2 ∑

i 6=j

e2

|ri − rj|
(3.1.1)

3.1.1.1 Theorem I

The first Hohenberg-Kohn theorem certifies that any ground state property of a sys-

tem with interacting particles is a functional of the ground state electron density.

Thus, an external potential vext(r) acting on this system, can be determined by one

and only one ground state density n(r).

Assuming that an alternative potential v′ext(r) (with ground state wavefunction

ψ′), which produces the ground state density n(r) such that:

vext 7−→ Ĥψ = E0ψ (3.1.2)

v′ext 7−→ Ĥ′ψ′ = E′0ψ′ (3.1.3)

then, from the application of the variational method (section 1.0.2) to the ground

state electronic energy:

E′0 = 〈ψ′|Ĥ′|ψ′〉 < 〈ψ|Ĥ′|ψ〉 = 〈ψ|Ĥ|ψ〉+ 〈ψ|Ĥ′ − Ĥ|ψ〉 (3.1.4)
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E′0 < E0 +
∫
[v′ext(r)− vext(r)]n(r)dr (3.1.5)

Interchanging the primed and unprimed quantities of equation 3.1.5 then:

E0 < E′0 + E0 − E′0 =⇒ E′0 + E′0 < E0 + E′0 (3.1.6)

which is a contradiction and therefore, the assumption that such a v′ext(r) exists

falls apart.

3.1.1.2 Theorem II

The second theorem assures that any trial electron density n provides an energy

value higher or equal, if the actual electron density is known, to the ground state

energy. Hence, for any trial external potential vext(r) with an energy functional E[n]

the global minimum will always be the exact ground state energy E[n0] with the

exact ground state density n0.

E0 = E[n0] ≤ E[n] (3.1.7)

The theorem is the equivalent of the variation principle of the wavefunction in

quantum mechanics (section 1.0.2). This allows the ground state density to be used

as the basic variable for minimising the energy when conducting DFT calculations.

Although the original Hohenberg-Kohn theorems are based on some restrictions,

like the presence of a non-degenerate ground system, the theorems have been ex-

tended to include spin-polarised systems, relativistic systems etc. Nonetheless, both

theorems cannot give any information regarding the explicit construction of the ki-

netic or the exchange and correlation energy functionals.
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3.1.2 Kohn-Sham Theory

The real breakthrough in density functional theory came from Kohn and Sham

(KS) [55] with the introduction of the KS orbitals for calculating the electron density,

which in return, is used to calculate the energy and any other related properties.

The central idea in the Kohn and Sham formalism is that the kinetic energy can be

separated into two parts, a term which can be calculated exactly and a small residual

correction term.

According to the Kohn-Sham approach, the exact ground state density n0 can be

represented by a ground state density nS of an auxiliary system of N non-interacting

particles. This auxiliary system is defined by the Hamiltonian:

ĤS = T̂S + V̂ext (3.1.8)

where V̂ext is the operator of an effective local potential acting on the particles.

The exact ground state density is given by:

n0(r) =
N

∑
i=1
|ψi(r)|2dr (3.1.9)

where |ψi(r)|2 = ψ∗i (r)ψi(r) and ψ(r) represents the real Schrödinger wavefunc-

tion.

Since the exact ground state density is not known, we assume that the density

can be written as a sum of auxiliary one-electron orbitals φi(r) equal to the total

number of electrons N of the system. Thus, the exact density for any interacting

system n0(r), would be equal to the density of the auxiliary problem nS(r):
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n0(r) = nS(r) =
N

∑
i=1
|φi(r)|2 (3.1.10)

The independent-particle kinetic energy functional TS would then have the form:

TS[nS] =
N

∑
i=1
〈φi| −

1
2
∇̂2|φi〉 (3.1.11)

By including also the classical Coulomb interaction energy EH (as defined in

Hartree-Fock theory) of the electron density nS, the Kohn-Sham expression of the

energy functional using the auxiliary ground state density becomes:

EKS = TS[nS] + Vext[nS] + EH[nS] + Enn + Exc[nS] (3.1.12)

where Enn is the nuclei-nuclei repulsion term, Vext[nS] =
∫

vext(r)nS(r)dr and

Exc[nS] = (T[n0]− TS[nS]) + (Eee[n0]− EH[nS]) (3.1.13)

The Exc is called exchange-correlation term and represents the deviation of the

exact kinetic energy functional T[n0] of the real system, whose form is not known,

from that calculated by using the formula for a non-interacting system TS[nS] and

also, the electron-electron repulsion energy difference from the classical system (sec-

ond term of the right part of equation 3.1.13).

By applying the variational principle, as described in the second Hohenberg-

Kohn theorem (section 3.1.1.2), Kohn-Sham theory leads to single-particle Schrödinger

equations for the orbitals:
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ĤKSφi(r) =
[
−1

2
∇̂2 + v̂KS(r)

]
φi(r) = εiφi(r) (3.1.14)

where ĤKS is an effective Hamiltonian acting on the Kohn-Sham orbitals φi to

provide the energy eigenvalues εi. The effective potential vKS(r) results from the

contribution of:

vKS(r) = vext(r) + vH(r) + vxc(r) (3.1.15)

where vxc(r) is derived from the minimisation of the exchange-correlation en-

ergy functional with respect to the ground state density nS(r):

vxc(r) =
δExc[nS]

δnS
(3.1.16)

The Kohn-Sham orbitals are canonical eigenfunctions of the Schrödinger equa-

tion 1.0.20 and hence, are required to be orthonormal. In order to find a solution

for the ground state density, equations 3.1.14 and 3.1.15 need to be solved self-

consistently due to the dependence of the effective potential vKS(r) from the density.

The Kohn-Sham equation (3.1.14) is exact; if the charge density n0(r) and the ex-

pression of Exc are known exactly then the total energy of the molecular system can

be computed also exactly. The basic problem in DFT, then, becomes the construc-

tion of the exchange and correlation functional Exc[nS]. For this purpose, various

expressions of Exc have been developed and proposed.
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3.2 Exchange and Correlation Energy

The exchange-correlation energy Exc[n(r)], is a functional of n(r), thus, it depends

parametrically on the function n(r) and on its mathematical form, while the exchange-

correlation potential vxc(r), the functional derivative of Exc[n(r)], is a function of the

components x, y, z of r. In practice, it is common to separate Exc[n(r)] into an ex-

change Ex[n] and a correlation Ec[n] part:

Exc[n(r)] = Ex[n(r)] + Ec[n(r)] (3.2.1)

The two components of Exc[n(r)] can be then treated independently. Some of

the approximations employed for devising good forms for the exchange-correlation

functional are discussed in the following sections.

3.2.1 Local Density Approximation

Within the framework of the Local Density Approximation (LDA) [26], the Exc[n]

is calculated exclusively by the local density at the position r of the particle. This

approach, can only be applied in closed-shell, spin-unpolarised systems, that can

be treated as a uniform electron gas, where the density n retains the same value or

slightly varies at every position; in contrast with non-local methods (section 3.2.2).

In the LDA method proposed by Slater (XaLDA method), the correlation part of

the exchange-correlation energy is neglected and the exchange part used is:

ELDA
x [n] = −3

4

(
3
π

) 1
3 ∫

n(r)
4
3 dr (3.2.2)
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For extending the applicability of the exchange functional Ex also to open-shell

systems, where the spin densities of α and β electrons are not equal, the LDA can be

replaced by the more general Local Spin Density Approximation (LSDA). This ap-

proach can deal with systems with one or more unpaired electrons, such as radicals.

For systems with strictly paired electrons, the LSDA approach becomes equivalent

to the LDA.

Several correlation functionals, Ec[n], have been developed to compensate the

correlation energy Ex[n], such as the CAPZ (Ceperley, Alder, Perdew and Zunger)

[56, 57] or the VWN (Vosko, Wilk and Nusair) [58]. In the latter case, the correla-

tion energy of a uniform electron gas was determined empirically, with the Ec[n]

functional interpolating between unpolarised and fully polarised densities.

Although LDA methods have been used over the years in systems with close

or similar behaviour to the uniform electron gas, such as bulk metallic systems,

calculations performed on systems of chemical interest often produce unsatisfactory

results to many chemists. For this purpose, more sophisticated exchange-correlation

functionals have been proposed and developed.

3.2.2 Gradient Corrected Methods

A significant improvement over the LDA methods, is based on a non-uniform elec-

tron density model. A way to correct the exchange-correlation functional is by infus-

ing its localised description with one or more contributions from the gradient of the

electron density. In this case, the electron density is sampled over an infinitesimal

distance beyond the “local” region, in contrast to LDA/LSDA methods. Such ap-

proaches are called gradient corrected or generalised gradient approximation meth-

ods (GGA). Most gradient corrected functionals have an additional correction term
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into the expression of the LDA:

EGGA
xc [n(r)] = ELDA

xc [n(r)] + ∆Exc

(
|∇n(r)|
n4/3(r)

)
(3.2.3)

The first GGA exchange functional (B or B88) was developed by Becke [59], who

proposed a popular correction to the LDA exchange energy:

EB88
x = ELDA

x + ∆EB88
x (3.2.4)

Exchange functionals with a similar formlism to Becke’s, extended with some ad-

ditional parameters, found to give better performance over either. Alternative GGA

exchange functionals, which are widely used, have also been developed based on

the reduced gradient function. These functionals, which do not contain any empiri-

cal optimised parameters, include the B86, PBE, and mPBE.

For improving the correlation functionals, corrections to the correlation energy

density have been made, by using a different expression for the LDA correlation

energy density, as in the popular P86 [60] or PW91 [61] functionals.

EP86
c = ELDA

c + ∆EP86
c (3.2.5)

Another popular GGA correlation functional, LYP [62], does not correct the LDA

expression but instead computes the correlation energy in total.
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3.2.3 Hybrid Functionals

The DFT exchange energy, as defined in GGA methods, can be enhanced with an

extra term calculated from Hartree-Fock (HF) theory. In HF theory, the electronic

energy for a system of n occupied spatial orbitals will be:

EHF = 2
n

∑
i=1

Hii +
n

∑
i=1

n

∑
j 6=i

(2Jij − Kij) (3.2.6)

where Hii represents the system’s core electronic energy, as in equations 3.0.1

and 3.0.2, which also include the electrons kinetic energy and the electrons-nuclei

attraction. The J and K terms describe the Coulomb and exchange parts of the

electron-electron repulsion energy. If the core energy H and the Coulomb energy

J are eliminated, then the exchange part K developed between a pair of electrons i

and j, illustrates the exchange energy Ex, over the total number of electrons n con-

tained in the system:

Ex = −
n

∑
i=1

n

∑
j 6=i

Kij (3.2.7)

Expanding in terms of the KS orbitals φ then the above expression of equation

(3.2.7) becomes:

EHF
x = −

n

∑
i=1

n

∑
j=1
〈φi(1)φj(2)|

1
rij
|φi(2)φj(1)〉 (3.2.8)

where the EHF
x represents the exact exchange energy of a non-interacting elec-

trons system as a functional of the exact electron density. By adding an LSDA

gradient-corrected DFT expression for the correlation energy Ec, the exchange-correlation

60



3.2 Exchange and Correlation Energy

energy, Exc = Ex + Ec, represents a weighted contribution of the expression for the

HF/DFT exchange-correlation functional, which is commonly called “hybrid” DFT

functional.

3.2.3.1 B3LYP

One of the most popular hybrid DFT functionals at present, and perhaps DFT exchange-

correlation functionals in general, is the Becke3LYP or B3LYP functional [63]. It is

based on a modification by Stevens et al. [64] of the exchange-energy functional

developed by Becke in 1993 [65], by introducing the LYP [62] correlation-energy

functional. Its general form is:

EB3LYP
xc = (1− α0 − αx)ELSDA

x + α0EHF
x + αxEB88

x + (1− αc)EVWN
c + αcELYP

c (3.2.9)

The ELSDA
x is an LSDA non-gradient-corrected exchange functional, EHF

x is the

KS orbital based HF exchange energy functional, EB88
x is the Becke88 exchange func-

tional, EVWN
c is the Vosko, Wilk, Nusair correlation function, which forms part of the

accurate functional for the homogeneous electron gas of the LDA and the LSDA, and

ELYP
c is the LYP correlation functional. The parameters α0, αx and αc are those that

give the best fit of the calculated energy to molecular energies. The B3LYP func-

tional is overall a gradient-corrected, well-tested and sufficiently accurate hybrid

functional.
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3.3 Methods for DFT calculations

There are several types of basis sets or basis functions for representing the Kohn-

Sham orbitals in density functional theory methods. From basis sets that extend

through all the space occupied by a molecular system (extended basis sets) to lo-

calised functions, centred at the atomic positions or around a chemical bond. In

more sophisticated methods, a combination of both types can be achieved, by in-

cluding localised and extended functions (mixed basis sets) or by augmenting an

extended or a localised basis set with atomic-like wavefunctions within a spherical

region around the atom.

Generally, in electronic structure calculations, the highest level of accuracy can

be reached by using infinite-size basis sets, which is practically impossible. De-

pending on the numerical method used, the size and kind of atoms contained in

the system, these basis functions offer a good compromise for obtaining sufficient

accuracy for a limited number of functions. More details about some types of basis

sets are discussed in the following sections.

3.3.1 Gaussian Basis Sets

Gaussian basis sets are commonly used in computational chemistry due to their

simplicity and efficiency compared to other atomic orbital (AO) basis sets. They are

made by contracting primitive Gaussian-type orbitals (GTOs) and there is a wide

range of basis sets composed from GTOs. Their complexity depends on the number

of basis functions contained for representing all of the electrons on each atom. A list

with all the available Gaussian basis sets developed so far can be found on the “Basis

set exchange database” [66]. The simplest Gaussian basis set, employs a minimal

number of basis functions and for each orbital only one basis function is used.
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A primitive Gaussian-type orbital has the general form:

φG(x, y, z; α, i, j, k) = Nxiyjzke−α(x2+y2+z2) (3.3.1)

where N is normalisation factor, α is an exponent controlling the width of the

orbital and i, j, k are non negative integer parameters that determine the nature of

the orbital in the Castresian space.

Despite their simplicity, GTOs have some important drawbacks such as the zero

slope at the nuclei region, instead of a finite slope (cusp), and the requirement of

a large number of basis functions to reach a level of sufficient accuracy. More im-

portantly, calculations employing GTOs, suffer from “basis set superposition error”.

This is due to the use of incomplete localised basis sets that results in the binding

energy being overestimated. Additional parameters or variables can be introduced

for improving the quality of GTOs, as described further on.

The first improvement in the utilisation of Gaussian basis sets can be achieved

by increasing the multiplicity of all the basis functions. Therefore, doubling all the

basis functions will lead to a Double Zeta (DZ) type basis. Equivalently, Triple Zeta

(TZ), Quadruple Zeta (QZ) or Quintuple Zeta (5Z) basis sets can be employed.

The most common addition to minimal basis sets is probably the addition of

polarisation functions, denoted by an asterisk, *. Polarisation is added to a basis

set when higher angular momentum functions are important, especially when some

additional flexibility within the basis set is needed, for allowing the KS orbitals to be

more asymmetric around the nucleus or along a bond distance. In terms of atomic

orbitals, p-orbitals can be used to introduce polarisation in s-orbitals. Similarly, d-

type functions can be added to a basis set with valence p orbitals, and f-functions to

a basis set with d-type orbitals, and so on.
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Another common addition to basis sets is the addition of diffuse functions, de-

noted by a plus sign or by an additional ”aug” keyword (from ”augmented”). These

additional basis functions can be important in cases of anions or other large molec-

ular systems, where the electron distribution at distances far away from the atomic

nuclei is not negligible.

3.3.2 Plane Wave Basis Sets

Plane wave basis sets have lots of applications in quantum chemical simulations,

especially when studying properties of crystalline solids. They are appropriate for

calculations involving periodic boundary conditions, since the results obtained for

an intrinsic property of a unit cell can be considered as an average over the whole

crystal. They are solutions to the Schrödinger equation for the case of a particle

within a periodic box. The form of a plane wave for a cubic box with side length l

is:

ψk(r) =
1

l
2
3

eı(kxx+kyy+kzz) =
1

Ω
1
2

eı(k·r) (3.3.2)

where kx = 2π
l nx, ky = 2π

l ny, kz =
2π
l nz, with nx, ny, nz ∈ Z and Ω is the volume

of the box.

When plane waves are used in density functional calculations a much larger

number of plane wave basis functions are required compared to the number of

Gaussian-type orbitals used in a typical calculation. One of the main advantages of

plane wave basis sets is the elimination of the basis set superposition error, since the

simulations cell is uniformly covered by the basis functions. A disadvantage is that

for calculations on isolated molecules the “supercell” approximation must be made,

which involves the construction of a large simulation cell to isolate, as much as

possible, the molecule from its periodic image interactions. As a consequence, con-
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ventional codes require more computer power to calculate the behaviour of plane

waves within the empty space, as the atomic localisation of the orbitals is lost [67].

In practice, plane wave basis sets are combined with an “effective core potential”

or pseudopotential, thus focusing mainly at the “valence” charge density. This is a

clever way of eliminating the calculation of a large number of wavefunctions and

density gradients near the nuclei which are not easily described by plane wave basis

sets, since “core electrons” are concentrated near the atomic nuclei. This combined

method of a plane wave basis set with a “core” pseudopotential is often described

by the abbreviation “PSPW” calculation.

3.3.3 Pseudopotential Approximation

By convention, the electronic states of an atom can be classified into three categories:

(a) the “core states”, which are localised states closely enough to the nucleus that

are not involved in chemical bonding, (b) the “valence” states, which are actively

involved states in chemical bonding and (c) the “semi-core” states, which are not

directly involved in chemical bonding but are partly localised and more polarisable

than core states. Although these terms mainly describe single-particle electronic

states, it is customary to refer also to the electrons these states contain by using the

same terminology.

In principle, the pseudopotential approximation attempts to replace the wave-

functions of the electrons localised in the vicinity of the nucleus and the nucleus

with an effective potential, or pseudopotential, in order to reduce complicated ef-

fects derived from the large kinetic energy of the core electrons. This effective po-

tential imposes a weak interaction between the valence electrons and the core elec-

trons, while treating at the same time the nuclei with the core electrons as a rigid
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ion centre. Thus, only the chemically active valence electrons are dealt explicitly, as

the behaviour of the valence states inside the core region is practically unnecessary.

The pseudopotential wavefunctions of the valence electrons generated are required

to be orthogonal to all the core states, by construction.

The pseudopotential theory is based on the orthogonalised plane wave (OPW)

method, proposed by Herring in 1940 [68], which attempts to replace the steep be-

haviour of the atomic core wavefunctions with rather smooth plane waves (PW)

but, at the same time, reproducing accurately the bonding properties of the true po-

tential. The valence wavefunctions are constructed as a linear combination of PW

and core wavefunctions. With careful selection of the expansion coefficients, the

constructed pseudo-wavefunction turns out to be orthogonal to the core states.

From the OPW approach, an atomic system is defined by its Hamiltonian Ĥ, the

core states {|χn〉} and the core energy eigenvalues {En}. Each one valence state |ψ〉

gives an energy eigenvalue E. From these states a smoother pseudostate |ϕ〉 can be

constructed by:

|ψ〉 = |ϕ〉+
core

∑
n

an|χn〉 (3.3.3)

The valence state must be orthogonal to all of the core states so that:

〈χm|ψ〉 = 0 = 〈χm|ϕ〉+ am (3.3.4)

which fixes the expansion coefficients an. Thus

|ψ〉 = |ϕ〉 −
core

∑
n
|χn〉〈χn|ϕ〉 (3.3.5)

Substituting this expression in the Schrödinger equation, Ĥ|ψ〉 = E|ψ〉, gives:

Ĥ|ϕ〉 −
core

∑
n

En|χn〉〈χn|ϕ〉 = E|ϕ〉 − E
core

∑
n
|χn〉〈χn|ϕ〉 (3.3.6)
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which can be rearranged in the form:

Ĥ|ϕ〉+
core

∑
n
(E− En)|χn〉〈χn|ϕ〉 = E|ϕ〉 (3.3.7)

From equation 3.3.7 we can observe that the smooth pseudostate obeys the Schrödinger

equation with an extra energy-dependent non-local potential V̂nl:

[
Ĥ + V̂nl

]
|ϕ〉 = E|ϕ〉 (3.3.8)

V̂nl =
core

∑
n
(E− En)|χn〉〈χn| (3.3.9)

The additional potential Vnl, whose effect is restricted in the core, is repulsive and

cancels part of the strong Coulomb potential so that the resulting sum is a weaker

pseudopotential. This results in changing the energies of the atomic eigenstates,

but if the core states are fairly separated in energy from the valence states, then a

reasonable approximation would be the fixing of E in Vnl to be the atomic valence

eigenvalue.

There are several types of pseudopotentials, depending on the transferability of

atomic properties in a variety of systems or the amount of empirical factors intro-

duced for the construction of a pseudopotential. In the first non-empirical approach

by Philips and Kleinman [69], the norm of the constructed pseudo-wavefunction in-

side the core region was different from that of all-electron wavefunction, which led

to incorrect charge distribution of the valence states or errors in chemical bonding

properties. This could be solved by re-normalising the pseudo-wavefunctions in

terms of the all-electron wavefunctions within some radius (cut-off or core radius).

Therefore, if the pseudo-wavefunctions are required to preserve the norm inside the

core radius, this property is called “norm-conservation” and the relative pseudopo-

tentials “norm-conserving”.
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3.3.3.1 CASTEP

CASTEP [3] is a PSPW code for performing density functional theory calculations.

It can simulate the properties of solids, interfaces, and surfaces for a wide range of

materials such as semiconductors, metals etc. First principle calculations within the

DFT formalism can be used to simulate a wide range of materials and their prop-

erties which can be thought of as an assembly of nuclei and electrons. Its compu-

tational requirements scale proportionally to the volume of the simulation cell and

with the third power of the total electrons number, depending also on the available

computational memory and power.

The code has also the ability to use or directly construct “ultrasoft” pseudopoten-

tials. In contrast with the norm-conserving pseudopotentials reported previously,

the ultrasoft pseudopotentials exploit a scheme for relaxing the norm-conservation

constraint, thus leading to a much smoother and highly transferable pseudopoten-

tial.

3.3.4 Linear-scaling DFT based on the Density Matrix

DFT methods, based on the equations outlined in the previous sections, require a

computational effort that scales cubically with the system size N, or they have an

O(N3) scaling. They have been developed to minimise the energy functional iter-

atively by having to impose orthonormality constraints on the Kohn-Sham eigen-

states. This “conventional” approach sets, in practice, an upper limit on the size

of the simulated systems (as in calculations performed with the CASTEP code [3],

regardless of the available computational resources). Linear-scaling methods [70],

on the other hand, have an O(N) time scale, where their computational efficiency

scales linearly with the system size. Such methods are important for employing a
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first principles method accuracy in calculations extended to systems of larger sizes

than those accessible with conventional approaches.

3.3.4.1 The ONETEP Approach

ONETEP [4] (Order-N Electronic Total Energy Program) is a linear scaling DFT code,

in which the required time for a calculation increases linearly with the number of

atoms, in contrast with other conventional DFT approaches mentioned previously.

Because of this unique feature, the program is able to model molecular systems

larger than ever before with DFT.

According to Kohn-Sham [55] theory 3.1.2, a fictitious system of non-interacting

particles can be described by a single-particle density-matrix:

ρ(r, r′) = ∑
i

fiφ
∗
i (r)φi(r′) (3.3.10)

where φi(r) is a set of Kohn-Sham orbitals and fi is the occupancy state of each φi(r)

at zero temperature, therefore fi = 0 or fi = 1.

The diagonal elements of the density matrix define the charge density n(r):

n(r) = 2ρ(r, r) (3.3.11)

where the factor 2 derives from the inclusion of electron spin, for closed-shell sys-

tems.

For a conventional DFT calculation each Kohn-Sham orbital φi(r) is allowed to

expand over the entire system’s space. Considering the overlap between each orbital

and all the possible pairs of the N orbitals, the calculation time becomes eventually

proportional to N3.
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In the ONETEP code [71], the expression of the density-matrix is given by:

ρ(r, r′) = ∑
αβ

ϕα(r)Kαβ ϕβ(r′) (3.3.12)

where ϕα(r) are a set of spatially localised non-orthogonal functions, called non-

orthogonal generalised Wannier functions (NGWFs) and Kαβ is called the density

kernel [72]. The density kernel is the density matrix defined by a set of duals ϕβ of

the NGWFs:

〈ϕβ|ϕα〉 =
∫

drϕβ∗(r)ϕα(r) = δ
β
α (3.3.13)

In order to achieve linearity, the NGWFs are strictly localised in a spherical re-

gion around the atomic centre at position R and the density kernel is truncated be-

yond a cut-off distance rcut. The density kernel is required to be a sparse matrix,

thus we impose the condition:

Kαβ = 0 , when rcut < |Rα − Rβ| (3.3.14)

The functions ϕα(r) are optimised during the calculation along with the density-

kernel using the conjugate gradient method, to ensure strict localisation. The opti-

misation procedure involves the expansion of the NGWF in terms of “periodic sinc”

or “psinc” functions Dk(r) [73]:

ϕα(r) = ∑
k

Dk(r)Ck,α (3.3.15)

The psinc functions are, by construction, orthogonal and are related to plane

waves by a Fourier transformation. The quality of the psinc basis set is improved

systematically by varying the grid spacing of the psincs, which is equivalent to the

kinetic energy cut-off parameter of plane waves. The fact that NGWFs are optimised
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in situ allows plane wave accuracy to be achieved with only a minimal number of

NGWFs (and hence the smallest possible sparse matrices). Furthermore, as the basis

is independent of atomic positions and provides a uniform description of space,

ONETEP calculations are not affected by basis set superposition error [74]. The code

is parallelised and allows calculations to be performed on large systems containing

thousands of atoms [75, 76].

3.4 Tight-Binding DFT

Tight binding (TB) methods employ a minimal basis composed of localized atomic-

like orbitals, as in linear combination of atomic orbitals (LCAO) method. The TB

method has been mainly used for describing the electronic states of non-metallic

systems, including covalently bonded materials. Unlike first principles methods,

TB methods do not involve the direct computation of overlap and Hamiltonian ma-

trix elements from explicit wave functions, but instead involve empirical fits to ex-

periment or more accurate calculations, derived in most cases from first principles

expressions. TB methods are generally less accurate and less transferable than den-

sity functional theory methods, but they provide a good alternative for simulating

large systems in sufficient time scales, in contradiction with first principles methods.

Depending on their empirical parametrisation, TB methods vary considerably;

from completely semiempirical to first principles-based, orthogonal to non-orthogonal,

or self-consistent to non-self-consistent. The self-consistent charge (SCC) density

functional tight binding (DFTB) method, incorporates a SCC mode into a modified

reformulation of the Kohn-Sham total-energy functional, obtained from DFT. This

charge dependent energy contribution improves the chemical transferability, result-

ing in improved values of reaction energies for several categories of molecules.
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3.4.1 The DFTB Approach

The code used in this project, for performing TB-DFT calculations is called DFTB+

[2], which exploits the sparsity of the density matrix by using conventional dense

diagonalisation algorithms. The matrices size increases linearly with the number of

atoms, for large systems, while all the matrices are real for both periodic and non-

periodic systems. The method developed in the code is based on a second-order

expansion of the Kohn-Sham DFT energy with respect to charge density fluctuations

[77]. A generic expression for the total DFTB energy is given by:

EDFTB =
occ

∑
i

〈
φi|Ĥ0|φi

〉
+

1
2

N

∑
α,β

γαβ∆qα∆qβ (3.4.1)

The first term runs over the occupied single-particle wavefunctions φi and cal-

culates the Hamiltonian energy for an input density n0, which is equivalent to a

common standard non-self-consistent TB scheme. The second term represents the

second order extension of the Kohn-Sham energy of wavefunctions and potentials

centred on atoms α and β. The charge fluctuations ∆qα and ∆qβ of atoms α and β are

defined by a SCC redistribution of Mulliken charges. γαβ consists of a long-range

pure Coulomb term and an exponentially decaying short-range function S:

γαβ =
1

Rαβ
− S(Rαβ, Uα, Uβ) (3.4.2)

where Rαβ is the distance between atoms α and β while Uα and Uβ are the Hubbard

parameters for these atoms respectively.
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Chapter 4

Computational Study of Silicon

Nanoclusters

The applications of silicon nanocrystalline particles have become an extensive and

attractive area of research due to their diverse properties. Some of the most impor-

tant applications involve energy conversion in photovoltaic solar cells [78], biomed-

ical fluorescent imaging as biological sensors [79], electrical response in nanoelec-

tronics as field-effect transistors [80], logic circuits [81], light-emitting diodes [82]

etc.

Nearly three decades ago Canham [83, 84] discovered the photoluminescence at

room temperature in visible red light of electrochemically etched silicon. As a result

a variety of physical, chemical, and electrochemical techniques to produce disper-

sions of luminescent nanometre sized silicon crystallites were developed. Research

led by Nayfeh [85] has demonstrated that by reducing the size of a Si crystal to a few

tens of atoms (∼1 nm), without altering its chemical composition, a nanoparticle is

created with novel properties.
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4.1 Synthetic Methods

4.1.1 Small Si Nanoparticles

Several procedures were developed for synthesising luminescent Si nanoparticles.

These include physical, chemical, and electrochemical procedures.

A variety of physical techniques make Si nanoclusters in matrices of glass [86,87]

and SiO2 [88]. Nanocrystals of 3 nm are produced followed by annealing at 1100oC.

Another technique involves laser ablation on silicon wafers using a variety of agents

to produce isolated Si particles [89].

Isolated particles can be obtained also, by gas-phase preparation from silanes

via slow combustion [90, 91], thermal decomposition [92], microwave plasma [93],

gas-evaporation [94], or chemical vapour deposition (CVD) [95, 96].

Si nanoclusters in the range 2-10 nm can be chemically synthesised via a re-

duction of anhydrous ionic salts SiX4 (X=Cl, Br), dispersed in water-free reverse-

micelles solutions, with LiAlH4 [97]. Unlike the physical methods mentioned above,

which produce impure Si crystallites that contain a large amount of SiO2 on the sur-

face, this method produces Si particles with the surface terminated by hydrogen

from metal hydride.

In general, SiO2 inhibits the chemical activity of silicon. On the other hand, Si-O

bonds can increase the reactivity of silicon nanosurfaces because these bonds induce

polarisation in Si-Si and Si-H bonds of the surface, rendering them more amenable

to functionalisation.

A dispersion method of single-crystal silicon wafers using aqueous HF/ethanol

electrolyte and hydrogen peroxide (H2O2) as cleansing agent, produces ultrasmall
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uniform size Si nanoparticles with discrete sizes of 1.0, 1.67, 2.15, 2.9, and 3.7 nm.

These nanocrystals have distinct emission in the red, green, and blue light range,

an ability which makes then favourable for biomedical tagging, RGB displays, and

flash memories [85].

Figure 4.1: (Left) (a) and (b) TEM [10] images of Si particles on a graphite grid. The particles

are nearly spherical and can be classified into a small number of discrete sizes. (Right)

Closeup TEM images of the 1.0, 1.67, 2.15, 2.9 and 3.7 nm particles (from ref. [11])

4.1.2 Silicon Nanowires

There are two synthetic approaches for creating nanoscale silicon wire structures,

which can be characterised as top-down and bottom-up. In the top-down approach,

which is the conventional industrial method, silicon nanostructures are patterned

in bulk materials by a combination of lithography, etching and deposition to form

functional devices [98]. On the other hand, silicon nanowires (SiNWs) can be pro-

duced directly and without lithography using the bottom-up approach [99]. A key

advantage of the bottom-up approach is that critical nanoscale features are defined

during synthesis, which eliminates some of the lithography-based fabrication steps,

and moreover, can yield structures uniform at the atomic scale.
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Figure 4.2: (a) TEM [10] images of 3.8

nm diameter SiNWs with [110] growth

axis, (c) HRTEM cross-sectional im-

age, and equilibrium shapes for the (b)

nanowire and the (d) nanowire cross

sections. Scale bars, 5 nm (from ref.

[12]).

In general, the preparation of nanowires

requires the material to be added dur-

ing the growth process for restricting the

growth to occur along one direction. In

systems where atomic bonding is rela-

tively isotropic, such as silicon, achieving

1D growth requires that the symmetry is

broken during growth [100]. One com-

mon scheme involves the utilisation of a

linear growth template to guide the mate-

rial’s growth only in 1D [101].

Another general strategy involves the

exploitation of a nanocluster “catalyst” to

enforce the growth to happen in 1D. The

nanocluster or nanodroplet serves as the

site that directs preferential addition of re-

actant to the main axial direction of a growing nanowire, much like a polymerisa-

tion catalyst directs the addition of monomers to a growing polymer chain [102].

The growing procedure is often terminated by using gold nanoparticles. Usually

nanocatalytic crystal growth reactions involve the use of chemical vapour deposi-

tion (CVD) [103].

4.1.2.1 H-terminated Si nanowires

Perhaps, the best technique for synthesising stable hydrogen terminated SiNWs is

the electrochemical dispersion of bulk silicon. Electrochemical dissolution of sili-

con followed by separation techniques, such as ultrasonic fracturing, produces col-
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loidal suspension of particles in a variety of organic solvents which involve HF

molecules [104]. The resulting porous layer is made up of one-dimensional crys-

talline nanowires and zero-dimensional nanocrystallites. These nanowires are hy-

dride terminated, containing mono-(≡ SiH), di-(=SiH2) and tri-(−SiH3) hydride

groups and very little SiO2 [105]. Hirata et al. [106] reported the production of com-

pletely pure H-passivated silicon nanoparticles when oxygen-terminated nanocrys-

talline silicon films were prepared by using silicon evaporation in ultra-high vac-

uum with oxygen and argon radicals, and then treated by HF.

4.1.3 Optical Properties of Si nanoparticles

The optical properties of Si nanoparticles can be greatly influenced by their surface

chemistry, size and shape. As the size of silicon nanoparticles approaches the quan-

tum regime, their electronic properties are substantially altered compared to a bulk

material, due to the strong effect of quantum confinement [107]. Ultrathin silicon

nanowires, for instance, demonstrate a blue shift in their optical spectra [83], while

silicon quantum dots (QDs) can emit coloured light depending on their synthetic

preparation [108]. Quantum confinement induces photoluminesence in the visible

range of silicon particles by increasing their optical gap compared to bulk silicon.

Silicon is an indirect gap semiconductor, and requires a phonon in addition to a

photon for excitation to the lowest minimum in the conduction band at 1.1 eV. The

first direct gap, which requires no phonon for excitation, is at 3.3 eV. In a nanocrys-

tallite, the energy levels become quantised due to confinement. For a 2.5 nm diam-

eter silicon crystallite, the confinement shift is approximately 0.7 eV; this shifts the

gap from 1.1 eV, in the infrared, to 1.8 eV, in the visible part of the spectrum.
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4.1.4 Structural Properties of Si Nanowires

Synthesised SiNWs are single-crystalline nanostructures with uniform diameters

and can be growth-controlled allowing them to be developed not only in differ-

ent directions but also in various transverse shapes (square, pentagon, hexagon

etc.) [109]. Studies on the crystallographic growth directions of SiNWs have also

been investigated and revealed that the growth axes of SiNWs are related to their

diameters [12, 110].

For diameters between 3 and 10 nm, 95% of the SiNWs were found to grow

along the [110] direction; for diameters between 10 and 20 nm, 61% of the SiNWs

grow along the [112] direction; and for diameters between 20 and 30 nm, 64% of the

SiNWs grow along the [111] direction. These results demonstrate a growth prefer-

ence along the [110] direction in the smallest SiNWs and along the [111] direction in

larger SiNWs. For smaller-diameter SiNWs, the nanowire surface energy plays an

increasingly important role in determining the growth direction. To our knowledge

the thinnest nanowire reported in literature has a diameter of ∼1.3 nm [111].

4.1.4.1 Reconstruction in H-terminated Si surfaces

The surface of H-passivated Si nanoparticles determines to a great extent their chem-

ical behaviour. There are three surface reconstructions reported in the literature.

The (1×1), which contains the highest coverage of hydrogen on the surface atoms,

the (2×1), which is formed by the reconstruction of unreconstructed H-passivated

Si surfaces to (2×1) monohydride phases and the (3×1) reconstruction [112]. The

(3×1) phase is a mixture of monohydride and dihydride units (1×1). The recon-

struction of H-passivated Si(100) surfaces to form (2×1) monohydride phases has

been observed experimentally at 650K [113]. Also a (3×1) reconstruction has been
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observed at 370K. The (1×1) phase was mainly observed at room temperature and

is consider to be highly disordered. Schematic representations of the observed re-

constructions are shown in Figure 4.3.

Figure 4.3: Known reconstructions of H-terminated Si nanoparticles. Blue and white

spheres represent Si and H atoms respectively.

4.2 Computational Studies on Si Nanostructures

The variety of phenomena of Si nanocrystals makes their theoretical investigation

difficult and challenging. Particularly, details regarding their atomic and electronic

properties are important for extracting conclusions about their optical, magnetic,

dielectric and conductivity properties, chemical reactivity, and stability.

Depending on the number of atoms that each system contains, different compu-

tational approaches can be used. In general, tight-binding (TB) methods are used to

investigate systems containing from several hundreds to thousands of atoms; DFT

methods have been used so far for sizes up to few hundred atoms, by employing the

time-dependent density functional theory (TDDFT) approach to study excited states

and optical spectra [114]. Other methods for studying excited states are based on the

self-energy of a many-body GW approach [115] (direct product of a Green Function

and a dynamically screened interaction W). Some accurate calculations which have

been carried out for small silicon nanoclusters and periodic silicon systems have

used quantum Monte Carlo (QMC) methods [116].
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4.2.1 Ultrasmall H-passivated Si nanoparticles

The first structural prototype studied computationally was a spherical Si nanocrys-

tal [117] , which for the experimentally observed size of 1 nm, contained 29 Si atoms

(magic number for the Td symmetry and spherical shape). In Si29H36, all of the 36

dangling bonds of the Si surface atoms were terminated by hydrogen. However,

the corresponding electronic energy gap was calculated at 6 eV, suggesting that the

observed clusters possess smaller number of terminating hydrogens, with a part of

the dangling bonds saturated by a nanocrystal surface reconstruction. By eliminat-

ing 12 H atoms the structure obtained is Si29H24 with six reconstructed surface Si-Si

dimers.

After relaxation using DFT with the PW91 exchange-correlation functional, the

resulting Si29H24 (Figure 4.2.1) found to have a band gap of 3.5 eV, close to the one

observed experimentally (3.5±0.3 eV) [118]. The value 3.5 was derived after correc-

tion due the DFT gap underestimation.

The surface of a Si29H24 cluster can be represented as a 28-atom cage, similar

to a filled fulerene structure, with a single silicon atom in the centre, bonded to

four surface atoms (related by Td symmetry). The relaxed configuration, has five Si

atoms constituting a single tetrahedral core and twenty four Si atoms constituting

a H-terminated reconstructed surface. The surface Si atoms form four hexagonal

rings while the whole structure of Si29H24 has six reconstructed dimers compared to

Si29H36. The diameter of the prototype was 0.9 nm for the pure Si cluster and 1.066

nm including the H-termination.

In another computational work from Draeger et al. [119], first principles molec-

ular dynamics (FPMD) simulations and QMC calculations were combined in order

to determine the structural and optical properties of the 1 nm silicon particle. The
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reconstruction of crystalline Si29H36 to Si29H24 was found to have an optical gap

of 3.44 eV, in good agreement with experiment [118]. In addition to the symmetri-

cal single-core, they also found two other configurations of the single-core particles

Si29H24 with a different hydrogen distribution.

Figure 4.4: Bulk-like unreconstructed Si29H36 (Right) configuration and the filled fulerene

reconstructed Si29H24 (Left) particle. (blue) Si atoms (white) H atoms.

Extending the diameter of the nanoparticles by few angstroms, Puzder et al. [120]

studied the structural stability and optical properties of H-passivated Si nanospheres

with reconstructed and unreconstructed surfaces and diameters from 0.7 to 2.0 nm

(53-331 atoms). The (2×1) reconstructed facets were created by removing a H-

atom from neighbouring pairs of SiH2 groups forming an additional Si-Si bond.

The nanostructures were optimised using DFT within the local density approxima-

tion, while the calculations regarding the formation energies were performed using

QMC.

Their results, showed that the surface with the highest coverage of H-atoms

(Si148H120) had the lowest formation energy when µH > −0.3 eV. The reconstructed

Si148H96 (2×1) and Si148H72 (3×1) found to be more energetically favourable when

µH < −0.3 and µH < −0.85 eV respectively. In general, clusters with reconstructed

surfaces were found to have weaker size dependence on their optical gap compared

to unreconstructed, but the effect of the dimer reconstructions to the energy gab was

less significant when the mean diameter of the nanospheres was larger than 2 nm.

Similar conclusions were drawn by Northrup [113], who performed first principles
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calculations on the formation energies of H-terminated Si surfaces by modifying the

chemical potential of hydrogen µH. His results revealed that the (2×1) surface re-

construction is more stable when −1.28 < µH < −0.24 eV, while (3×1) and (1×1)

reconstructions occur when µH > −0.24 and µH > −0.09 eV respectively.

4.2.2 H-passivated Silicon Nanowires

Computational works studying silicon nanowires (SiNWs) with first principles meth-

ods are usually taking advantage of the periodicity of a crystalline structure in or-

der to perform calculations about their properties. The surfaces of SiNWs are of-

ten passivated with an oxidised layer or hydrogen atoms for every dangling bond.

An important amount of theoretical studies on SiNWs usually considers hydrogen-

terminated structures for practical efficiency in construction and modelling. The ef-

fects of the quantum confinement on SiNWs can be understood, sufficiently enough,

by using also H-passivated Si nanostructures.

Synthesised H-terminated SiNWs with rectangular shapes (widths 1-2.3 nm) and

oriented along [100] direction were found to have a direct band gap that increased

with a decrease in the mean diameter of the nanowire due to quantum confine-

ment. Buda et al. [121] studied similar nanowires with diameter 1.5 nm confirming

the previous conclusion. In many studies, quantum confinement effects have been

considered within an effective mass approximation. However, Read et al. [122] ob-

served deviations from the effective mass theory in nanowires thinner than 2.3 nm.

A theoretical investigation of the atomic and electronic structures, and optical

properties of hydrogen-terminated SiNWs carried out by Zhao et al. [107] by per-

forming first principles DFT calculations, showed that all the studied [110] nanowires

had a direct energy band gap at the Γ point due to band folding; while the [111]
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nanowires were exhibiting a transition from an indirect to direct band gap, on going

from large to small diameters. The band gap was increasing sub-quadratically with

decreasing thickness. The nanowires were cut from bulk Si along [110] and [111]

directions at diameters up to 4.2 nm and were passivated with H such that no SiH3

complexes would remain on the surface. Similar to studies for porous silicon, quan-

tum confinement was becoming significant for diameters 52.2 nm. The LDA band

gaps were corrected using a many-body perturbation method based on the GW ap-

proximation [115]. The corrected band gaps for [110] SiNWs as obtained by Zhao et

al. [107], were in good agreement with experimental values.

Figure 4.5: Cross-sections of the optimised

structures of SiNWs. (a) NW1, (b) NW2, (c)

NW3, (d) NW4, and (e) NW5. Red and blue

spheres represent H and Si atoms, respec-

tively. NW1 and NW2 are oriented along

[110], NW3 and NW4 along [100] while NW5

is oriented along the [112] direction [13].

Singh et al. [13] studied the

electronic and atomic structures

of five different classes of hy-

drogenated SiNWs (NWn, n=1-5)

(Figure 4.2.2) oriented along [110],

[100], and [112] for extracting con-

clusions regarding the role of their

mean diameter, morphology, and

orientation on their preferential

growth behaviour. The nanowires

were constructed from a bulk sil-

icon crystal such that these were

bounded by low index surfaces.

NW1 was oriented along the

[110] direction along, as NW2

also, but with different facets in

lateral directions. NW3 had the

same structure with NW2 but
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was oriented along [100] direc-

tion. NW4 was elongated along the [100] direction and lastly, the NW5 was sim-

ilar to the thinnest experimentally observed SiNW, oriented along the [112] direc-

tion [111]. The surface of the NWs was terminated with H atoms so that each Si

atom is tetra-coordinated. The NW2 and NW3 contained Si dimers, as observed

on bulk Si(100) surfaces. In the case of NW5, the calculated Si-Si and Si-H bond

lengths (3.85 and 1.5 Å respectively) on the (111) facets were found to agree well

with experiments (3.80 and 1.5 Å).

A similar work conducted by Vo et al. [14] on H-passivated SiNWs grown along

[100], [110] and [111] directions with diameters ranging from 1-3 nm, emphasises

also the dependence of structural stability, band gap and effective mass on the size,

growth direction and surface structure of the nanowires. The initial geometries of

the NWs were relaxed using quantum Molecular Dynamics (QMD). By using the

smallest periodic repeat unit from the optimised structures, geometry optimisations

were performed, using LDA-DFT and ab initio self-consistent GW energy formation

calculations.

Surfaces containing dihydrides in “canted” conformation were more stable than

symmetric dihydrides. NWs grown in the [100] direction with surface reconstruc-

tions had larger bond length distributions and lower symmetries than the [110]

and [111] directions. NWs containing canted dihydrides had no significant differ-

ences in bond lengths along the growth directions due to their minimal strain. For

µH > −0.23 eV the canted dihydride structure with the highest coverage in H-atoms

had the lowest formation energy while for µH < −0.23 the partial (2×1) reconstruc-

tion becomes more favourable. The [111] growth direction was found to be more

favourable for µH > −0.7 eV. For µH < −0.7 the [100] direction is preferred. For

NWs with small diameters, the [111] direction is the most favourable.

In the theoretical work of Singh et al. [13], the band gap was found to change
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Figure 4.6: Fully relaxed 3 NM Si NWs: (a) in three different growth directions [001], [011],

and [111], and (b) with three different surfaces [14].

with the orientation and thickness of the nanowires. In all studied cases the band

gap was increasing when the diameter was decreasing due to quantum confine-

ment, but the scaling was dependent on the morphology of the SiNWs (Fig. 4.6).

Except for NW3 and NW4, the nanowires were direct band-gap semiconductors.

The NW1 and NW2, which were oriented along the same direction, were found to

have similar band gaps (1.34 eV). However, the band gaps for NW3 and NW4 were

different by as much as 0.40 eV, though both were oriented along the same direction

and had nearly the same thickness. This indicates that the scaling of the band gap

with the diameter, depends strongly on the nanowire morphology. The band gap

was increasing more rapidly for NW4 than in NW3, by decreasing the mean diame-

ter, even though both nanowires were oriented along the same direction. Therefore

this is in contrast with the conclusions of Zhao et al. [107], who were claiming that, is

possible to fit the band gap in a universal function. The band gap for NW5 oriented

along the [112] direction was calculated to be the largest (1.80 eV) among all the

SiNWs of similar thickness. The actual band gap, though, is expected to be signif-

icantly higher because of the underestimation within the GGA. For [110] and [111]

SiNWs with small diameters, Zhao et al. [107] calculated a correction to the band

gap using the GW method, which was twice as much as the LDA value. Therefore,

the final band gap was estimated close to the experimental value of 3.53 eV.
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Figure 4.7: (Top) The electronic band structures and band gaps of NWn

(n=1-5) SiNWs with comparable mean diameters. Arrows are drawn to

show the indirect band gaps in NW3 and NW4. Major ticks on the y-

axis are equivalent to 1 eV. (Bottom) Plot of the band gap versus mean

diameter of the nanowires shows that in general the gap increases with

decreasing diameter and it depends on the orientation of the nanowire.

The dependence on mean diameter is similar for NW2 and NW3 but very

different for NW4 showing a strong dependence on the morphology of

the nanowire [13].
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The results obtained from Vo et al. [14], in support of the conclusions made by

Singh et al. [13], revealed that the canted dihydride structures had a decreasing band

gap, from 2.35 to 0.88 eV for the [100] NWs, from 1.72 to 0.72 eV for the [110] NWs

and from 2.12 to 0.85 eV for the [111] NWs, when the diameter was increased from

1.1 to 3 nm. The band gap of the reconstructed structures was varying from 2.03

to 0.64 eV for the [100] NWs, from 1.67 to 0.71 eV for the [110] NWs and from 1.54

to 0.84 eV for the [111] NWs. Nanowires grown along the [100] direction had the

largest difference in band gap between the canted and reconstructed structures.

4.3 Calculations on H-Passivated Si Nanorods

Within the framework of this research project, first principle Density Functional The-

ory (DFT) calculations have been performed on entire silicon nanorods with more

than 1000 atoms of varying aspect ratio and levels of surface passivation with hydro-

gen [21]. These large scale DFT calculations were performed directly for the whole

nanostructures, without taking into account periodicity or symmetry effects (as in

nanowires), mainly by using the ONETEP program [4].

In the following sections the results of this work are presented and discussed

in the context of other works reported in the literature, along with their relevance

to technological applications. The conclusions are summarised in the last section.

The DFT calculations were performed within the GGA method using the Perdew,

Burke and Ernzerhof (PBE) exchange-correlation functional [15]. The structures

of the nanorods have been optimised using a density functional tight-binding ap-

proach, with the DFTB+ code [2], while energies and electronic properties have been

computed with large-scale ab initio DFT calculations, using the ONETEP software

package.
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4.4 Construction and Validation

The H-terminated Si nanorods were constructed using the Accelrys Materials Stu-

dio [123]. Initially, pure silicon nanorods were formed from a bulk silicon diamond

lattice by truncating a cylindrical shaped nanostructure. The [111] growth direc-

tion has been chosen to be the preferential elongation axis, since this is the mainly

observed growth direction in several experimental works [14]. All the constructed

nanorods had a fixed length of 5.0 nm with diameters varying from 0.8 nm to 1.3

nm. Within these dimensions, the nanorods were carefully shaped in order to avoid

the existence of SiH3 on the surface when saturating the dangling bonds of silicon

atoms with hydrogen, as these groups are highly reactive [107]. Thus, the (1×1) un-

reconstructed H-passivated Si nanorods, had a surface containing both dihydrides

(SiH2) and monohydrides (SiH) while for the (2×1) reconstructed nanorods, the sur-

face contained only monohydrides for allowing a uniform distribution of the recon-

structed parts. The final structures were placed in a periodic box with a minimum

1 nm vacuum region, which is considered to be adequate enough for eliminating

periodic interactions.

The nanoclusters were then pre-optimised, using tight-binding DFT, within a

0.05 eV/Å force tolerance. For describing the highest angular momentum of the

tight-binding DFT Hamiltonian, s, p and d orbitals for Si atoms were included and

for the H atoms, only s orbitals. The pre-optimisation of the structures, is required to

distinguish the preferred tendencies for reconstruction, mainly for the (2×1) nanos-

tructures. Any single dangling bonds that remained on the surface Si atoms were

capped with hydrogens.

A full geometry optimisation was then carried out with DFTB+ for all the nan-

oclusters, and afterwards, the coordinates of the optimised structures were imported

into the ONETEP code, to perform DFT energy and electronic properties calcula-
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tions. The calculations were performed directly for the whole nanocluster within

the same force tolerance and exchange-correlation functional, using a psinc kinetic

energy cut-off of 300 eV. 6 NGWFs with 7.0 Bohr radius, for each Si atom and 1

NGWF with 6.0 Bohr radius, for each H atom, were found to be sufficient for the

representation of Si and H atoms in the calculation, after conducting several tests on

smaller systems, which are summarised in the next section.

The parameters for our calculations were selected, by performing extensive tests

on the Si29H36 and Si242H140 model clusters using a variety of approaches.

4.4.1 Si29H36

Figure 4.8: Optimised

structure of Si29H36

DFT geometry optimisations, using the PBE exchange-

correlation functional, were performed with ONETEP

[4], CASTEP [3] (plane-wave DFT), NWCHEM [19]

(Gaussian basis set DFT) and DFTB+ [2] (tight-

binding DFT) on the Si29H36 quantum dot. An en-

ergy tolerance of 0.2 meV and a force tolerance of

0.05 eV/Å were used as convergence criteria for

CASTEP, ONETEP and DFTB+. To optimise the ge-

ometry of Si29H36 with NWCHEM, the 6-31+G* basis

set was used to describe both Si and H atoms.

The optimised structures obtained using the above codes showed that the cen-

tral atom has a tetrahedral coordination which approaches almost identically the

symmetry of a Si atom in bulk silicon, while the surface interatomic distances of

neighbour silicon atoms are slightly shorter than the core. This is also observed by

Dage Sundholm [124], in his simulations on Si29H36, with DFT and coupled-cluster
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methods. The results summarised in Table 4.1 show the very good agreement be-

tween the optimised structures with all these methods.

Table 4.1: Comparison of Si-Si and Si-Si bond lengths as calculated with

CASTEP [3], NWCHEM [19], ONETEP [4] and DFTB+ [2] for Si29H36

Interaction Interatomic Distances (Å)

ONETEP CASTEP NWCHEM DFTB+

Si-Sia 2.326 2.335 2.343 2.363

Si-Sib 2.319 2.325 2.337 2.339

Si-Hc 1.503 1.487 1.509 1.503

Si-Hd 1.498 1.480 1.503 1.498

aSi-Si neighbour distances of inner shell
bSi-Si neighbour distances of outer shell
cSi-H distances of Si atoms containing a single H
dSi-H distances of Si atoms containing two H

It is worth noting the remarkable agreement between the Si-H bond lengths de-

scribed by ONETEP and DFTB+, even though the two programs use different ap-

proximation methods but still the same exchange-correlation functional. On the

other hand, the Si-Si neighbour distances as calculated with ONETEP tend to agree

better with the distances calculated by CASTEP. Both programs are ab initio DFT

codes which use plane waves to describe the electronic wavefunction in contrast

with NWCHEM which uses Gaussian basis sets to describe the atomic interactions.

It has been previously observed in ONETEP that, the best results for crystalline

silicon are obtained when 9 NGWFs are used for representing the Si atoms, which

is equivalent to the number of valence atomic orbitals [125]. However, to reduce the

computational time and effort of the ONETEP calculations on our large nanoclus-

ters, a smaller number of NGWFs and a lower kinetic energy cut-off were selected.

By reducing the NGWFs from 9 to 6 and the kinetic energy cut-off from 650 eV to
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300 eV, the final geometries of Si29H36 were observed to change only slightly (∼ 1%

in bond lengths and angles) and therefore, are still acceptable as these errors are less

than those due to other approximations involved in DFT calculations.

4.4.1.1 Electronic Properties

The band gap of Si29H36 using ONETEP within the local density approximation

(LDA) method, for the optimised structure was 3.75 eV, in good agreement with

the LDA band gap calculated by Puzder et al. [126] (3.6 eV) and with the band gap

reported by Wang et al. [127] (3.67 eV). When the B3LYP [63] exchange-correlation

functional is used, the ONETEP calculation yields a 5.3 eV band gap, which is in

excellent agreement with QMC results from reference [126] (5.3 eV) and B3LYP/6-

31G(d) calculations from reference [127] (5.32 eV). Unfortunately the current imple-

mentation of B3LYP in ONETEP is not linear-scaling and does not allow us to study

systems larger than Si29H36. The experimental excitation threshold of 3.5 eV [118]

given to a hydrogenated Si29 nanoparticle mainly refers to the Si29H24 as supported

by several studies [117] [119] [128].

4.4.2 Si242H140

In order to test the geometry optimisation effectiveness to provide surface recon-

structions, sample calculations using a slice from a 2.0 nm thick nanorod have been

performed. The slice, having 242 Si and 128 H atoms, was initially constructed with

24 free dangling bonds on nearby surface Si atoms, for allowing an optimum num-

ber of 12 reconstructions to happen. After a few geometry steps, the calculation

revealed that only 6 reconstructions were able to occur, thus leaving 12 dangling

bonds on the surface. These bonds were then filled with hydrogens yielding at the

end the structure of Si242H140.
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Figure 4.9: Optimised structure of

Si242H140 using the ONETEP code [4]. Re-

constructed Si-Si bonds are shown with

green colour.

With ONETEP, the calculations were

performed using a force tolerance of

0.05 eV/Å and a kinetic energy cut-off

of 650 eV. In contrast with Si29H36 tests,

in which an effectively infinite value for

the kernel cut-off distance was used, in

this case, the spatial cut-off of the den-

sity kernel was set to 13.23 Å. The opti-

mised structure is shown in Figure 4.9,

were the reconstructed Si-Si bonds have

been highlighted.

With the DFTB+ code, the calculation also produced a geometry with 6 surface

reconstructions, similar to that of Figure 4.9 where the ONETEP code has been used.

The differences in bond lengths between the optimised structures obtained with the

two programs were comparable to the differences observed in Si29H36.

4.5 Results and Discussion

4.5.1 Structural Properties

Initially, the representative structures for the H-terminated Si nanorods at diame-

ters 0.8, 1.1 and 1.3 nm, for the (1×1) surface reconstruction, were the Si532H308,

Si766H402 and Si1186H462 respectively, which had the maximum coverage of H atoms

on the surface. The first candidates, aiming to show (2×1) reconstruction on their

surface after a structural optimisation, were the Si532H224, Si766H258 and Si1186H366.

All the latter nanostructures had free, dangling bonds on pairs of neighbour, surface
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Si atoms. After a full geometry optimisation, these parts would be able to “dimerise”

and form a new Si-Si chemical bond.

A pre-optimisation on the initial (2×1) H-passivated nanorods revealed that the

Si766H258 (1.1 nm diameter) was not liable for a complete surface reconstruction. The

Si nanorods with diameters 0.8 and 1.3 nm had an even number of nearest neighbour

Si atoms on the surface, where a dimerised Si-Si bond could occurred, thus allowing

a full (2×1) reconstruction. The surface of the Si766H258 nanorod though, was con-

taining free dangling bonds in a series of three neighbouring Si atoms. In this case,

two possibilities have been considered: a) the three Si atoms could form a double

dimerisation, thus giving two “conjoined”, reconstructed Si-Si bonds b) only a pair

of Si atoms can create a new bond, while the third Si atom with a free dangling bond

should be passivated with an extra H atom. The latter procedure is necessary to ob-

tain closed-shell systems in order to perform calculations with ONETEP. Schematic

representations of the possible reconstructions are shown in the image below.

(a) (b)

Although the first possibility seemed quite promising, this kind of reconstruc-

tion was impossible to occur in all the parts of the (2×1) reconstructed surface.

Hence, the surface of Si766H258 was reformed so in every part of the surface were

the dimerisation should occur, only pairs of neighbouring Si atoms with one free

dangling bond each, would appear. Any surface Si atom with a free dangling bond

located next to a pair of Si atoms with free bonds, should hold, in this case, two H

atoms instead. Hence, this lead to the representative Si766H318 nanostructure for the

1.1 nm diameter nanorod with partial (2×1) surface reconstruction .
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Plots of nearest neighbour interatomic distances (bond lengths) between silicon

atoms in the optimised geometries, radially away from their axes, are shown in Fig-

ure 4.12. To observe the variation of bond lengths along the length of the nanorod,

its volume was separated in sections, across the growth axis being aligned at the

centre of mass, as can be seen in Figure 4.10. The Si-Si bond lengths were calculated

then with respect to the perpendicular distance of a point located at the middle of a

bond length from the central axis. The plots located in the top of Figure 4.12 refer to

the (2×1) reconstructed nanorods and those located at the bottom refer to the (1×1)

unreconstructed nanostructures.

Figure 4.10: Separation of a nanorod in sections

Each diagram of Figure 4.12

shows two kinds of distribution;

the distribution of distances along

the caps of the nanorod and the

distribution along the main part.

As expected, due to the different

shapes between the caps and the

main body of the nanorod, the deformation of interatomic distances creates a bigger

dispersion of points which becomes more apparent in the thinnest (2×1) nanostruc-

ture and as the diameter increases the fitting curves between the caps and the main

part tend to coincide.

As can be seen from Si-Si neighbour distance distribution across the whole vol-

ume of the constructed nanorods, from the centre of mass to the surface, there

is a homogeneous distribution of the Si-Si distances in the “core” which is later

disrupted as the surface is reached. Si-Si bond lengths located at the inner part

of the volume, are distributed around 2.36 Å, which is the Si-Si distance in bulk

silicon as calculated using the PBE exchange-correlation functional, for all the H-

passivated silicon nanostructures. Approximately 25% of the total volume of the
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thinnest nanorod maintains the structural properties of the bulk crystal and as the

diameter of the nanorod increases this can extend up to 45% for the (2×1) recon-

structed nanorods, while for the (1×1) unreconstructed nanorods this range goes

approximately from 60% to 75%.

As we move along the diameter of the nanorod and we approach the surface,

structural differences between the reconstructed (2×1) and unreconstructed (1×1)

nanostructures emerge. The Si-Si bond length in the (1×1) surfaces becomes signif-

icantly shorter (∼2.33 Å) and as shown in Figure 4.12 the points around the fitting

curve present a similar dispersion with the points located inside the inner volume

of the nanorod in all the (1×1) nanorods studied in this work. This tendency, is also

observed in several theoretical studies on H-passivated silicon nanowires [14] [129]

and can be justified by the steric hindrance the hydrogen atoms exert on the sil-

icon atoms of the surface. The Si-H interatomic distances are distributed around

1.50 Å which are in agreement with the results obtained by Nolan et al. [129] (1.53

Å), who have also performed DFT calculations using the PBE exchange-correlation

functional on silicon nanowires with diameters of about 1 nm. Despite that, they

have found that a “canted” conformation between surface hydrogen atoms does

not occur in (1×1) reconstructed surfaces, while our results show that the “canted”

conformation can actually occur in specific parts of the surface, as proposed also

by Vo et al. [14]. Schematic representations of “canted” hydrogens observed in our

structures are shown in Figure 4.11.

Figure 4.11: Schematic representation of symmetric hydrogens (before geometry optimisa-

tion) and “canted” hydrogens (after geometry optimisation) located on a part of the surface

of the (1×1) reconstructed Si766H462 nanorod
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Figure 4.12: Diagrams of nearest neighbour interatomic distances in of Si532H224 (a), Si532H308 (b), Si766H318 (c), Si766H402 (d),

Si1186H366 (e), Si1186H462 (f). Si-Si bond lengths located at the caps are represented with dots while bond lengths located in the

main part are shown with circles.
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While the (1×1) reconstructed surfaces have a similar dispersion of Si-Si inter-

atomic distances for all the studied diameters, this phenomenon cannot be observed

in the (2×1) reconstructed surfaces. The dispersion of points along the curve of dia-

grams (a), (c) and (e) in Figure 4.12 results in a non-uniform behaviour of interatomic

Si-Si distances from the thinnest nanorod to the thickest. Despite this, it can be ob-

served that Si-Si distances can have a range between 2.33 Å and 2.42 Å on the (2×1)

surface, while the Si-Si distances at the “core” of the (1×1) unreconstructed silicon

nanorods are near 2.36 Å.

On the other hand, the diagrams clearly show a grouping of points on specific

areas of interatomic distances as we move from the centre to the surface of each

nanorod, mainly regarding the main part. This is another factor in support of struc-

tural stability and a homogeneous dispersion along the length of the nanorod. Al-

though this scheme applies in the majority of the studied nanostructures, the differ-

ence observed mainly in the Si766H318 nanorod (diagram (c) of Figure 4.12) results

from the presence of both dimers (SiH2) and monomers (SiH) on the surface. Conse-

quently, the displacement of Si-Si bond lengths located near dimerised atoms is dif-

ferent from the displacement observed in silicon atoms attached to surface dimers.

4.5.2 Formation Energies

In order to investigate the stability of the nanorods and how this is affected by their

surfaces and aspect ratios, the formation energies (E f ) have been calculated using

the formula [130]:

E f =
(Etot − (nHEH))

nSi
− ESi (4.5.1)

where Etot is the total energy of the Si nanorod, nSi and nH are the number of
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silicon and hydrogen atoms contained in it, ESi is the energy of one Si atom in a

bulk silicon crystal and EH the energy H atom in a H2 molecule. For calculating the

energies ESi and EH single point energy calculations were performed with ONETEP

for bulk silicon and for a H2 molecule.

Figure 4.13: Formation energies of the (2×1) re-

constructed (blue) and (1×1) unreconstructed (red)

nanorods

The structures for bulk Si and

H2 were optimised first with the

DFTB+ code. Using the parame-

ters reported in reference [125] for

describing the Si atoms within the

PBE exchange-correlation func-

tional, single point energy cal-

culations were performed with

ONETEP on these structures as

well as on the H-passivated Si

nanocrystals, to obtain their total

energy. The results are shown in

Figure 4.13.

The plot of Figure 4.13 shows at first the stability of the studied nanoclusters,

with formation energies per Si atoms lying between -2.0 to -1.0 eV, as calculated by

using equation 4.5.1. The (1×1) unreconstructed structures with the highest cov-

erage in hydrogen, have lower formation energies compared to the (2×1) recon-

structed nanorods, which indicates their higher stability. This is also confirmed by

the results of Vo et al. [14], who have proved that the “canted” dihydride structures

are more favourable when silicon nanowires are exposed to atomic H. Secondly,

the trends of the lines in Figure 4.13 reveal that as the number of atoms increases

the formation energies are decreased as the size of our nanoclusters approaches the

bulk limit, eventually expected to become zero. On the other hand, while the trends
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for the (1×1) unreconstructed nanostructures are consistent with the latter scheme,

the stabilities of the Si532H224 and the Si766H318 nanorods seem to be relatively the

same. This can be justified by the presence of dihydride (SiH2) groups on the (2×1)

reconstructed surface of the Si766H318, which induces less strain between the recon-

structed surface parts and consequently lowers the formation energy.

4.5.3 Energy Band Gaps

The energy band gaps of silicon nanostructures can be affected by the diameter,

the surface structure and the growth direction in the case of silicon nanowires.

As expected, it is observed that as the diameter of a nanocluster is decreased the

energy band gap increases, due to quantum confinement effects [107]. This phe-

nomenon is observed in the majority of the silicon structures studied at a nanoscale

whether quantum dots [120], nanowires [13] or nanotubes [131]. In the case of sili-

con nanowires, this trend also applies not only on structures with different growth

directions but also between nanowires with different surface reconstructions [132].

As reported in section 1.2.2, Vo et al. [14], found that both (1×1) and (2×1) recon-

structed surfaces of [111] grown hydrogenated silicon nanowires reduce their band

gaps from 2.12 eV to 0.85 eV and from 1.54 eV to 0.84 eV respectively, as their diam-

eter increases from 1.1 to 3.0 nm. Zhao at al. [107], found that the band gap of [111]

Si nanowires was also decreased from 2.3 to 0.8 eV, as their thickness increases from

0.9 to 3.2 nm. In a similar work conducted by Saita et al. [133], the energy band gaps

of [111] Si nanowires with diameters 0.55 to 1.0 nm varied from 2.83 to 1.90 eV.

The band gaps obtained from our calculations are shown in Figure 4.14. We can

observe a reduction of the band gap as the diameter of the nanorod is increased,

which is consistent with the studies mentioned before. On the other hand, the re-

constructed surfaces tend to have smaller band gaps from the unreconstructed, as
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Reconstructions

(1×1) (2×1)

Si532H308 1.725 eV Si532H224 1.637 eV

Si766H402 1.571 eV Si766H318 1.566 eV

Si1186H462 1.358 eV Si1186H366 1.353 eV

Figure 4.14: Energy band gaps of optimised H-terminated Si structures calculated with

ONETEP [4] using the PBE exchange-correlation functional [15].

being observed also by Vo et al. Although this trend is obvious in the nanorods

with diameters 0.8 nm, the coinciding of the lines between the reconstructed and

unreconstructed surfaces for the 1.1 nm and the 1.3 nm thick nanorods in Figure

4.14 indicates the small role played by the surface as the diameter of the nanorod

increases.

The values shown in the table of Figure 4.14 represent the HOMO-LUMO gap

obtained directly from GGA-DFT calculations using the PBE exchange-correlation

functional. Although it is known that GGA methods generally underestimate en-

ergy band gaps they can still provide qualitative trends of optical gaps. A self-

energy correction method, such as the GW approach, has not been attempted due

to the prohibitive amount of computer time such a calculation would require in its

application to our nanoclusters.

4.5.4 Density of States

The total electronic density of states (DOS) of bulk crystalline silicon and the nan-

oclusters Si532H308, Si766H402, Si1186H462, Si532H224, Si766H318 and Si1186H366, are given

in Figure 4.15. The DOS for the H-terminated Si nanorods were calculated with
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Figure 4.15: Density of states (DOS) of Si532H308, Si766H402, Si1186H462, Si532H224, Si766H318

and Si1186H366 as calculated with ONETEP [4]. The DOS for bulk silicon (dotted line) has

been calculated with CASTEP [3].

ONETEP while the DOS for the bulk material was calculated with CASTEP, using

a periodic unit cell of 2 Si atoms and an 8 k-point sampling. In both programs the

PBE exchange-correlation functional was used.

The plot clearly shows the reduction of the band gap as the diameter of the rod

is increased by approaching the bulk limit. While the DOS peaks placed in the va-

lence band area are in close agreement between the two programs, there is strong

disagreement for the conduction bands. This phenomenon was also observed in the

work of Skylaris and Haynes [125] when they performed DFT calculations within

the LDA scheme on a 1000-atom silicon lattice and concluded that the ONETEP

NGWFs are usually capable of describing correctly only valence and the low-lying

conduction bands. The DOS of the nanorods in the valence area for the (1×1) recon-

structed surfaces resemble closer with the DOS of bulk silicon. This also justifies the

fact that H-passivated silicon nanostructures can often be sufficient for extracting

conclusions regarding the properties of pure silicon nanoparticles.
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4.5.5 Orbital Densities

Isosurface plots of the squares of HOMO and LUMO orbitals of the studied hy-

drogenated silicon nanorods are given in Figure 4.16. The HOMO orbitals of all

the nanostructures and the LUMO orbitals of Si532H224, Si532H308, Si766H402 and

Si1186H366 are localised at the centre of mass (“core”). The LUMO orbitals are degen-

erate and all the LUMO orbitals of the studied nanorods shown in Figure 4.16 in-

tersect the growth axis at an angle. Surprisingly the LUMO orbitals of the Si766H402

and the Si1186H462 are showing a localisation closer to the caps of the nanorod with

the LUMO orbital of Si1186H462 to be localised exclusively at the caps. A quite sim-

ilar phenomenon was observed in the LUMO orbitals of reconstructed and unre-

constructed quantum dots with 0.8 nm diameter [120], although in this case the

localisation of the orbital is shifted from the core to the surface when going from

an unreconstructed (1×1) to a reconstructed (2×1) surface. As the hydrogen passi-

vation of the surface provides a relatively small barrier for electrons and holes, the

HOMO and LUMO orbitals spill out more from the core as the diameter is reduced.

On the other hand, while similar studies have shown the dependence of the band

gap on the growth direction, diameter and surface reconstruction and therefore the

localisation of HOMO and LUMO orbitals, by extracting conclusions for each factor

separately, our results clearly indicate that these factors are strongly inter-related.

Consequently, the electronic properties of H-passivated nanorods studied here can

be significantly affected by the contribution, weak or strong, of all these factors si-

multaneously. The shift in the localisation of the HOMO and LUMO densities from

the core to the surface for the LUMO, while the HOMO remains in the core, can be

compared to the transformation of the energy band gap from “direct” to “indirect”.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.16: Representations of HOMO (red) and LUMO (green) orbital density plots for

Si532H224 (a), Si532H308 (d), Si766H318 (b), Si766H402 (e), Si1186H366 (c), Si1186H462 (f) nanorods.

Each diagram shows a horizontal view from each orbital, parallel to the nanorod’s growth

axis, and a vertical view, by clipping the nanorod through a plane at its centre of mass. The

isosurfaces were generated by using an isovalue of 1× 10−5 e
α3

0
.
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4.6 Conclusions

This chapter summarises the results of a DFT study on entire silicon nanorods with

varying diameters and surface passivation by hydrogen. The structures chosen were

based on several experimental data and the available computational resources, at

the time, with the ONETEP [4] and the DFTB+ code [2]. Although the modelled

systems may not have a direct representative structure from experiment, they can

be considered as an initial step towards the modelling of larger systems that are

closer to synthesised silicon nanowires and nanoclusters, which can be investigated

at the atomistic ab initio level using the “superlattice” approach.

In agreement with experiment, the (1×1) unreconstructed nanorods showed higher

stabilities compared to the (2×1) reconstructed nanostructures, which decrease by

increasing the thickness of the nanorod. Similarly, a reduction of the energy band

gap was observed when the diameter of our H-terminated silicon nanorods was in-

creased from 8 Å to 13 Å. Furthermore, the surfaces of the (1×1) unreconstructed

nanorods adopted a “canted” conformation between neighbour H atoms, as also

being observed by other theoretical studies.

104



Chapter 5

Computational Prediction of Au LI I I

EXAFS Spectra

A computational approach for simulating extended x-ray absorption fine structure

(EXAFS) spectra of nanoparticles directly from molecular dynamics simulations is

presented in this chapter. The method shown consists of two stages. First, a molec-

ular dynamics simulation of a constructed gold nanoparticle is performed, followed

by a calculation of an Au L3-edge EXAFS spectrum using the FEFF 8.4 package [5].

A probability distribution function calculated directly from an ensemble of molec-

ular dynamics snap-shots is used to ensure a balanced sampling of photoabsorbing

atoms and their surrounding scattering atoms while keeping the number of EXAFS

calculations that need to be performed to a manageable level. The calculated EXAFS

resulting from all configurations are merged into an average spectrum.

The work in this chapter was done in collaboration with Dr Otello Roscioni. This

work has been recently published in Physical Review B [22].
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5.1 Experimental Synthesis and Analysis

Small metal nanoparticles, with diameters in the range of 1-10 nm, present some

fascinating physical and chemical properties when compared to their bulk coun-

terparts. These can be attributed to the discretisation of their energy levels which

are strongly dependent on their morphology [134, 135]. Therefore their electronic,

magnetic and optical properties are “tunable” with regards to their size, shape and

surface termination that make them attractive for applications in catalysis, biosens-

ing and electronic devices.

It is important to have reliable synthetic pathways to be able to obtain metal

nanoparticles which are uniform and of the desirable chemical and physical prop-

erties. Equally important for this goal is the ability to characterise the synthesised

nanoparticles in order to ascertain that the desired morphology has been produced.

The x-ray diffraction technique (XRD), can provide very precise structure determi-

nation in the case of molecular crystals, but in the case of the metallic nanoparticles

can result in significant ambiguity in attempts to accurately measure cell parameters

and atomic distances.

On the other hand, x-ray absorption spectroscopy (XAS), and more specifically

within the extended x-ray absorption fine structure (EXAFS) region, has been able

to provide accurate results for the atomic structure of nanoparticles as a function of

temperature [136, 137]. Within this framework, factors which can induce structural

reconstructions, such as surface tension, capping ligands, steric hindrance effects,

and metastable states can significantly alter their physicochemical properties that

can be quantified by EXAFS experiments [138].
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5.1.1 X-ray Absorption Spectroscopy

X-ray absorption spectroscopy (XAS) is a technique for determining the local elec-

tronic and geometric structure of materials, whether in gas, liquid, or solid phase.

Amongst its several applications, XAS is used in solid state science, for studying cat-

alytic surfaces and interfaces, in mineralogy, in geochemistry and also in molecular

biology. The XAS method has the advantage of being able to probe disordered and

amorphous materials with the XAS signal coming from all the atoms of a selected

element. It is capable of obtaining structural and chemical information about the

atomic environment around the absorbing atom.

Figure 5.1: A photoelectron from

the 1s orbital gives rise to the K edge.

In x-ray absorption spectroscopy the sam-

ple is irradiated with tunable monochromatic x-

ray radiation. The absorption of the x-rays by

the molecular system occurs by exciting elec-

trons into higher-energy unoccupied orbitals or

into the continuum (where the electrons are un-

bound to the atoms). As such the absorption of

x-rays is energy dependent. The phenomenon of

electron ejection is called the ”photoelectric ef-

fect” and the excited electrons are then referred

to as ”photoelectrons“. The promotion of an

electron to a higher energy orbital empties an

orbital, which is then called a ”hole“, and takes

place within a femto-second (10−15).
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5.1 Experimental Synthesis and Analysis

The intensity of the incident x-rays I0, is reduced when passing through the sam-

ple. Consequently, the intensity of the transmitted x-rays It from a sample decreases

exponentially, depending on the thickness of the sample x and the absorption coef-

ficient of the sample µ:

It = I0e−µx (5.1.1)

As the incident photon energy is increased, absorption will decrease until the

binding energy of a core electron is reached. When an electron inside the core is ex-

cited, a sharp rise in absorption occurs, known as the ”absorption edge“ E0 (Figure

5.2). The absorption edge depends on the nuclear charge of each element, so that

different orbitals will have different energies. The whole spectrum typically covers

a ∼1 keV region, mostly on the high energy region of the absorption edge.

Beyond the absorption edge, increasing the energy results in a decrease in ab-

sorption until the next binding energy is reached. The intensity of the absorption

edge is determined by the absorption coefficient µ and each absorption edge is

named and ordered in terms of decreasing energy, from K, LI , LI I , LI I I etc., based

on the principal quantum number from which the electron was ejected. Hence, the

K shell (n=1) corresponds to an excitation from the 1s orbital, the L shell (n=2) refers

to the 2s, 2p1/2 and 2p3/2 corresponding to the LI , LI I and LI I I edges respectively,

as shown in Figure 5.1.

The XAS spectrum is approximately divided into two main regions; the XANES

(X-ray Absorption Near Edge Structure) and the EXAFS (Extended X-ray Absorp-

tion Fine Structure) region. An example of a XAS spectrum with its subdivided

areas is shown in Figure 5.2. The following sections are focused only on the EXAFS

spectroscopy.
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Figure 5.2: Sample of an XAS spectrum at the LI I I edge, showing XANES and EXAFS

regions [16].

5.1.2 Extended X-ray Absorption Fine Structure

Typically the EXAFS region starts at ∼30-40 eV above the absorption edge. The

oscillations at this area are defined by the EXAFS fine-structure functions χ(E) as:

χ(E) =
µ(E)− µ0(E)

∆µ0(E)
(5.1.2)

where µ(E) is the measured absorption coefficient, µ0(E) is a smooth background

function representing the absorption of an isolated atom, and ∆µ0(E) is the mea-

sured jump in the absorption µ(E) at the threshold energy E0 of the absorption edge.

The photoelectrons can be described as spherical waves, propagating outward

from the absorbing atoms. These waves, are scattered from the atoms surrounding
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Figure 5.3: Schematic of constructive and destructive interference of an outgoing photo-

electron. The circles represent the maxima of the photoelectron waves [16].

the photoabsorber. The relative phase of the outgoing photoelectron wave and the

scattered wave at the absorbing atoms affects the oscillations recorded on the EXAFS

spectrum. When the waves are out of phase (destructive interference), a minimum

absorption occurs and vice versa, as depicted in Figure 5.3.

When the energy of the x-rays incrementally increases, the wavelength of the cor-

responding photoelectron decreases. The sum of the outgoing and scattered waves

at the absorbing atoms oscillates with a periodicity that is related to the average

atomic distances between the absorbing and the coordinating atoms. The group of

atoms that contribute the same component with the photoabsorbing atom are defin-

ing a ”shell”. Photoelectrons scattered from the photoabsorber to the neighbouring

atoms define different scattering paths. Single scattering paths are formed between

atoms of the same shell, while paths from atoms in different shells define a multiple

scattering path.
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5.1 Experimental Synthesis and Analysis

The wave behaviour of the photoelectrons participating in the x-ray absorp-

tion/emission process is expressed in terms of the wave number k, which is ex-

pressed in terms of the x-ray energy:

k =

√
2m(E− E0)

h̄2 (5.1.3)

where m is the electron mass and E0 the absorption edge energy.

The primary quantity of EXAFS becomes then χ(k), which is a function of the

photoelectron wave number. χ(k) is often referred to as “the EXAFS”, and provides

a general equation which describes the EXAFS spectrum, which is written as a sum

of the contribution from all scattering paths of the photoelectron from each shell j:

χ(k) = ∑
j

S2
0Nj f j(k)e−2k2σj

2

kr2 sin(2krj + αj(k)) (5.1.4)

where f (k) and α(k) are scattering properties of the neighbour atoms of the pho-

toabsorber, N is the number of neighbouring atoms, r is the distance between the

photoabsorber and a neighbouring atom, and σ2 is the atomic pair distance disor-

der, also known as the Debye-Waller factor. The S2
0 is an empirical parameter which

accounts for the slight relaxation of the remaining electrons when a hole is created

by the photoelectron.

Despite its complexity, the EXAFS equation allows the determination of N, r, and

σ2 knowing the scattering amplitude f (k) and the phase-shift α(k). Furthermore,

since these scattering factors depend on the properties of the neighbouring atoms,

EXAFS can be used to distinguish the atomic species next to the photoabsorber.

χ(k) is often multiplied by a power of k typically k2 or k3, in order to emphasise the

EXAFS oscillations in the post-processed, final spectrum.
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5.2 Calculations on Gold Nanoparticles

The gold nanostructures studied in this work are representative structures of the

gold nanoparticles synthesised by Comaschi et al. [20]. More specifically, these

refer to the Au L3 edge XAS data of two non-coated gold nanoparticles with ex-

perimentally reported mean diameters of 50±7Å (Au-NP1) and 24±8 Å (Au-NP4).

The latter nanoparticle samples were either prepared by using the solvated atom

dispersion (SMAD) technique or produced under vacuum on a very thin polymer

film by consecutive evaporation of gold and Mylar, respectively. The SMAD tech-

nique [20,139,140] involves: (a) deposition of an organic solvent on the reactor walls

cooled down to very low temperatures, (b) vaporisation of the metal under vacuum

and then rapid trapping in a frozen solvent, (c) warming up at room temperature

of the solvated atoms, (d) impregnation to a surface of amorphous silica and dry-

ing of the samples at room temperature. The gold nanoparticles obtained with this

method are non-coated and therefore their x-ray absorption (XAS) spectra depend

only on their morphology and size.

Models of gold nanoparticles that correspond to the experimentally determined

diameters have been constructed (see Appendix E.2) and their dynamic behaviour

and structures at various temperatures have been observed by performing classical

molecular dynamics (MD) simulations. Such simulations are often used to study

the dynamical behaviour of nanoparticles, even in conditions far from ambient such

as, for example, under high external pressure [141]. The reported simulations have

been performed with a force field which was designed to reproduce the properties of

several bulk, metallic systems. Details regarding the force field are given in chapter

2, section 2.3.3.1.
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5.2 Calculations on Gold Nanoparticles

5.2.1 MD Simulations

All the classical MD simulations have been performed with the DL POLY software

package [1]. The simulations were carried out within the micro-canonical (NVE)

ensemble, with an integration time-step of 1 fs. The atomic forces and velocities

were equilibrated for a period of 50 ps after which a production calculation of 2 ns

followed. Data were collected during the production stage, after confirming that

both the energy and temperature were stabilised.

The Au429 and Au3925 nanoparticles with average diameters of 24 Å and 50

Å respectively, corresponding to the experimentally determined diameters of the

nanoparticles, were simulated. Additionally, MD simulations on the Au249 (20 Å di-

ameter), Au887 (30 Å diameter) and Au6699 (60 Å diameter) nanoparticles were also

performed, in order to test size effects and verify our results.

The initial structures for the simulated nanoparticles were constructed with Ac-

celrys Materials Studio [123]. The lattice parameters for constructing the nanopar-

ticles were obtained from a unit cell representation of the face-centred cubic (fcc)

structure of bulk gold. The unit cell was expanded periodically along each lattice

vector and then truncated to form a spherical particle of a specified diameter. Each

nanoparticle structure was then relaxed under the effect of the Gupta force field.

The MD simulations were conducted at temperatures ranging from 20 K to 300 K.

For the lowest temperature simulations (20K) the classical molecular dynamics

ensemble is not entirely appropriate as the atomic motion is expected to be mainly

due to phonons, in the form of normal mode vibrations of the nanoparticles, which

are populated according to Bose-Einstein quantum statistics. However even in this

case, our simulations, to a great extent, agree well with the experimental spectra.

This is not completely unexpected as the large atomic weight of Au combined with
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the compact shape of the nanoparticles should lead to phonons with small aver-

age quantum vibrational amplitudes. This has been also observed for the atomic

displacements in the classical simulations at this temperature range, as a result of

the reliable representation of the Au potential energy surface by the Gupta poten-

tial [142].

5.3 Prediction of EXAFS spectra

The information extracted from the MD simulations can be used to perform a quan-

titative analysis of XAS data, as has been successfully applied so far to disordered

systems, such as aqueous solutions of ions [143–149]. It has also been shown that

the damping of the XAS signal associated with the structural disorder, which is

expressed normally through the Debye-Waller factor, can be reproduced through

the average of XAS spectra computed from a statistically representative number of

computer-generated configurations (“configurational average”) [144].

In calculating the XAS spectrum of a nanoparticle, asymmetry effects due to

the finite size of the nanoparticles have to be taken into account, which increase

as the nanoparticle size decreases. Thus, we have assumed that every atom inside

the nanoparticle can give rise to absorption, and therefore the resulting XAS spec-

trum should include the contributions of atoms in different atomic environments.

This is achieved by sampling several absorption sites in different positions, starting

from the centre of mass of the nanoparticle and ending at the nanoparticle’s surface.

Since several atoms share an equivalent atomic environment, they are grouped into

“shells”, which in this case are defined by the distance from centre of mass of the

nanoparticle. The details regarding the choice of the absorption sites are analysed

and discussed in section 5.4, along with a brief description of the MD trajectory

production.
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5.3.1 EXAFS calculations

Figure 5.4: Flow chart of the algorithm used to compute the configurational average of XAS

spectra using the structural information derived from MD simulations.
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To calculate the EXAFS spectrum for a gold nanoparticle from MD simulations,

an XAS quantitative analysis code has been developed by Dr Otello Roscioni. The

algorithm on which the code is based is summarised in the flowchart of Figure 5.4.

The program extracts the required information from a MD trajectory, by reading the

coordinates of a gold nanoparticle from each of a fixed set of MD “snap-shots”. For

each snap-shot several absorption sites at different positions inside the nanoparti-

cle are sampled and an EXAFS spectrum is computed. The calculated XAS data are

then averaged together to give a mean spectrum. The procedure is iterated by in-

creasing the number of MD snap-shots sampled until convergence in the resulting

XAS spectrum is achieved.

Each mean XAS spectrum is obtained by taking a large number of MD config-

urations into account. For each configuration, the atoms of the nanoparticle are

grouped into “shells” with respect to their distance from the centre of mass. For

each shell, a photoabsorbing atom is arbitrarily chosen to represent the absorption

behaviour of the Au atoms inside that shell and to contribute to the XAS spectrum

from this region for this particular snap-shot (configuration) [144]. The atomic shells

are defined by using a probability distribution function (PDF), which is obtained as

the sum of Gaussian functions centred on each atom of the nanoparticle.

The statistical weight of each peak i in the PDF is proportional to the number

of photoabsorbing atoms whose distance rj from the nanoparticle’s centre of mass

satisfies the conditions:

rj > pi + ∆+
i

rj < pi − ∆−i

where pi is the position of the peak i in the PDF, ∆+
i = (pi+1 − pi)/2 is the dis-

tance between the peaks i and i + 1 and ∆−i = (pi − pi−1)/2 is the distance between

the peaks i and i− 1. Therefore, each peak (and the corresponding absorption site)

will have a statistical weight proportional to the number of atoms sharing the same
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Figure 5.5: Probability distribution function (PDF) computed for a gold nanoparticle with a

diameter of 20 Å. The PDF is proportional to the number of atoms found at a given distance

from the centre of mass of the nanoparticle. The bottom panel shows the input structures

for XAS calculations obtained by applying a cut-off radius of 10Å around gold atoms chosen

from within each shell defined by the peaks of the PDF. The photoabsorbing gold atoms are

shown in blue, while the gold atoms that define the scattering region are translucent yellow.

physical environment. An example of the PDF generated for a gold nanoparticle

structure of 20 Å diameter, divided into absorbing shells, is shown in Figure 5.5.

The accuracy of the PDF depends on the standard deviation of the Gaussian func-

tions and can be tuned accordingly to control the number of peaks in the PDF and

therefore, the number of locations of absorbing atoms being selected (Figure 5.6).

The Au L3-edge EXAFS spectra were computed with the FEFF 8.4 [5, 150] pro-

gram using the Hedin-Lundqvist model of the exchange potential. Atoms up to 10

Å from the photoabsorbing atom were included to obtain converged XAS spectra. In

agreement with the data analysis performed previously by Comaschi et al. [20], the
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Figure 5.6: Comparison between the PDF computed for a gold nanoparticle with a diameter

of 20 Å using standard deviations of 0.05 (solid line) and 0.35 Å (dotted line). A small

standard deviation value results in a fine sampling of atomic shells within the nanoparticle

and, as a consequence, a higher number of locations of absorbing atoms being selected.

amplitude reduction factor S2
0 was set to 0.9, the energy shift was set to 7.1 eV and the

experimental broadening factor to 1.0 eV. By applying these settings the computed

Fermi energy for Au nanoparticles was found to be around 7.3 below the L3 edge of

bulk Au (11919 eV). The Debye-Waller factor has not been taken into account in the

calculation, as the thermal damping of the signal is reproduced explicitly through

the averaging the XAS spectra over the nanoparticle configurations.

The number of configurations required to obtain a statistically representative av-

eraged spectrum is determined by calculating a residual function (RF), which is the

root mean square of the differences between all the energy points of the averaged

XAS spectra computed over N − 1 and N configurations [144]. A XAS spectrum

is considered converged when the corresponding RF value falls below the thresh-

old of 10−4 and remains below this value for the following 10 iterations. For gold

nanoparticles, about 50 configurations are necessary to achieve convergence of the

EXAFS spectra.
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5.4 Results and Discussion

5.4.1 Effect of the PDF on the mean EXAFS spectrum

To validate our approach, the dependence of the calculated EXAFS spectrum from

several factors and parameters has been investigated, which can affect the XAS cal-

culations. One such factor is the resolution of the PDF. For this purpose, the de-

pendence of the computed mean Au L3-edge EXAFS spectrum on the number of

absorption environments for a gold nanoparticle with a diameter of 20 Å at 20 K,

has been studied. This choice was made after observing that smaller nanoparticles

are affected more strongly by asymmetry effects compared to their larger counter-

parts. Mean EXAFS spectra for this nanoparticle were computed using PDFs with

standard deviations of 0.05 and 0.35 Å, corresponding to a fine and a coarse sam-

pling of absorption sites, respectively. The first case yielded a PDF with 13 different

atomic shells while the second case exposed 7 atomic shells, as shown in Figure 5.6.

The resulting mean EXAFS spectra and their Fourier transforms (FT) for both cases,

are shown and compared in Figure 5.7.

Comparing the two sampling methods, we can observe that the mean spectrum

computed with the coarse sampling of the absorption environments shows a phase

shift in the EXAFS signal and a displacement of the peaks towards larger bond dis-

tances in the corresponding FT, with respect to the more accurate case of the fine

sampling. This result suggests that the contribution of the atomic environments

with short Au-Au bond lengths is underestimated in the final spectrum. Indeed,

the PDF computed with a coarse sampling, as shown in Figure 5.6, does not include

the contribution of the outer shell at 9.7 Å, which is present in the PDF computed

with a fine sampling and has a statistical weight of 9.5%. As the surface atoms form

shorter bond lengths compared to the neighbour pair distances in the core, a poor
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sampling of the nanoparticle’s outer shell underestimates their contribution in the

mean EXAFS spectrum and results in the observed phase shift between the spectra

computed with a coarse and a fine sampling of the absorption sites.

−0.15

 0.00

 0.15

 5  10  15  20

kχ
(k

) (
a.

u.
)

k (Å−1)

  0

  1

  2

 0  1  2  3  4  5  6  7

FT
 M

ag
ni

tu
de

 (Å
−2

)

r (Å)

0.05 Å
0.35 Å

Figure 5.7: Comparison between the simulated EXAFS spectra and the corresponding

Fourier transforms of a gold nanoparticles with a diameter of 20 Å at 20 K. The spectra

were computed using a fine sampling (solid line) and a coarse sampling (dotted line) of the

photo-absorbing sites through PDF standard deviations of 0.05 and 0.35 Å, respectively.

This behaviour is consistent with the experimental observation of atomic surface

contraction in gold nanocrystals [151]. For this purpose, the surface compression

in our nanocrystals by measuring the nearest neighbour distances of Au atoms as

a function of their distance from the centre of mass has been investigated, in or-

120



5.4 Results and Discussion

2.76

2.80

2.84

2.88

 0  0.2  0.4  0.6  0.8  1

A
ve

ra
ge

d 
A

u−
A

u 
bo

nd
 le

ng
th

 (Å
)

r/R

Nanoparticle diameter

20 Å
24 Å
30 Å
50 Å
60 Å

Figure 5.8: Au-Au bond lengths distribution, averaged over MD snap-shots, as a function

of the distance from the nanoparticle’s core.

der to quantify the effects of the surface tension [152]. A diagram of the result-

ing bond length distributions, averaged over all the snap-shots, is shown in Figure

5.8. All nanoparticles display a clear shortening of the Au-Au bond length, mov-

ing along the nanoparticle’s core towards the surface, where it reaches a minimum

value. Therefore, the different phases of the mean EXAFS spectra originate from the

contribution of surface atoms and account for 9.5% in the final spectrum.

5.4.2 Effect of size

Another parameter being investigated is the dependence of the spectra on the nanopar-

ticle size. It is desirable to be able to use EXAFS spectra to determine the size of the

nanoparticles being measured. Therefore, several gold nanoparticles with diame-

ters ranging from 20 Å to 60 Å were studied. The resulting spectra, shown in Figure

5.10, reveal that the intensity of EXAFS oscillations increases with the size of the

nanoparticle. No shift was observed in the phase of EXAFS oscillations, in con-
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Figure 5.9: Radial distribution functions g(r) extracted from MD trajectories at 20 K. The

insets show the details of peaks 1, 3 and 4.

trast to the reported shift between the experimentally obtained EXAFS spectra of

Au nanoparticles with mean diameters of 50 Å and 24 Å. The latter, can give rise to

a difference of 1% between the best-fit of Au-Au bond lengths [20].

However, the radial distribution functions (RDFs), derived from the MD trajec-

tories and shown in Figure 5.9, demonstrate that the shape of the peaks in a small

nanoparticle is strongly asymmetric and very sensitive to its size, when compared

with bulk gold. Furthermore, the position of the peaks is displaced towards smaller

values than those of the bulk phase, as a result of the contribution from surface

atoms. These effects decrease rapidly with respect to the nanoparticle size; for a

nanoparticle with a diameter of 60 Å the peaks of the RDF are barely distinguish-

able from the peaks of the bulk phase. Hence, for a nanoparticle of this size, the

region influenced by the surface tension can account approximately for 20% of its

volume (Figure 5.8) while for a nanoparticle with a diameter of 20 Å, the same re-

gion accounts roughly for 64% of the nanoparticle’s volume1.

1For this estimate we have approximate the shape of the nanoparticle to a sphere.
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To explain the observed behaviour, two factors need to be considered. First, the

contribution of surface atoms in the RDF decreases rapidly when the particle size

increases, as the RDF is averaged over all the atoms. Second, the EXAFS signal is

sensitive to atoms up to 10 Å from the photoabsorbing atom (this is visually rep-

resented by a spherical probe of 20 Å diameter) when sampling different positions

inside the nanoparticle.

For a nanoparticle with a diameter of exactly 20 Å, all the photoabsorbing atoms

experience an asymmetrical atomic environment, as the contribution of the core and

surface atoms are both included in the same probe. For a particle with a diameter

of 60 Å, though, where the radius of the spherical probe is smaller than the radius

of the nanoparticle, different scattering regions can then be distinguished. Thus,

a virtual sphere located in the inner region of the nanoparticle, accounts only for

photoabsorbing atoms experiencing a symmetrical bulk-like environment; while

a spherical probe located at the surface scans a scattering region which is mainly

asymmetrical. In the case of the largest nanoparticle, this asymmetrical region still

represents 70% of its total volume.

5.4.3 Effect of temperature

The effect of temperature on the mean EXAFS spectrum of a gold nanoparticle with

a diameter of 60 Å has also been studied. Figure 5.11 shows the spectra computed in

a temperature range from 20 K to 300 K. The increasing disorder of the nanoparticle

structure caused by the increase in temperature causes a signal damping, leading

eventually to a suppressed region in the χ(k) above 9 Å−1 at 300 K.
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5.4.4 Comparison with experimental data

When comparing the mean EXAFS spectra of gold nanoparticles with diameters 24

and 50 Å with the experimentally determined spectra of nanoparticles with diam-

eters 24±8 Å and 50±7 Å, an underestimation of the bond lengths is observed in

our MD simulations. To correct this error, the structural models obtained from the

MD “snap-shots” were scaled by a numerical factor corresponding to the mean ratio

between the experimental and the simulated bond lengths at 20 K. From the values

reported in Table 5.1 scaling factors of 0.9918 and 0.9971 were calculated to represent

the spectroscopic properties of the nanoparticles with diameters of 24 Å and 50 Å

respectively.

Figure 5.12 shows the EXAFS spectra of a gold nanoparticle with a diameter of

24 Å at 20 K and 300 K in k space, while Figure 5.14 shows the EXAFS spectra in r

space at 20 K. A very good agreement is shown between the simulated spectra and

the experimental data. In particular, the phase and the shape of the oscillations are

correctly reproduced from k=3 to k=20. The thermal damping of the EXAFS signal

at the experimentally determined temperatures is not reproduced correctly in this

case. The simulated mean EXAFS spectrum at 20 K has oscillations far too intense

compared to the relevant experimental spectrum, while the damping of the simu-

lated mean EXAFS spectrum at 300 K is overestimated compared to experiment.

The best agreement between the simulated mean EXAFS spectra and their ex-

perimental counterparts at 20 K and 300 K is found using MD trajectories at 60 K

and 150 K respectively. A further investigation of the origin of this discrepancy has

been conducted, by carrying out MD simulations of the Au429 nanoparticle at 20

K and 300 K with a different force field, in this instance, the Sutton-Chen poten-

tial [153, 154]. The mean EXAFS spectra obtained from these MD calculations were

practically coincident with the mean EXAFS spectra previously computed.
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Table 5.1: Comparison between the shell distances (Å) for two gold nanoparticles at 20 K.

Experimental values from Ref. [20]. Calculated values from the radial distribution functions

of Au429 (24 Å) and Au3925 (50 Å) at 20 K.

Au 24±8 Å R1 R2 R3 R4

exp. 2.847(2) 4.026(8) 4.931(6) 5.694(6)

calc. 2.867 4.062 4.974 5.742

Au 50±7 Å R1 R2 R3 R4

exp. 2.876(2) 4.061(8) 4.975(6) 5.745(6)

calc. 2.879 4.076 4.989 5.760

Similar observations were made for the EXAFS spectra of a gold nanoparticle

with a diameter of 50 Å at 20 K and 300 K in k space and r space (Figures 5.13 and

5.14). However, for this system there is a better agreement between the simulated

and the experimental EXAFS spectra at 300 K, as the bigger size of the nanoparticle

results in more intense oscillations of the EXAFS signal at high k values.

In summary, our results indicate that the unique features in the EXAFS spectra

of gold nanoparticles arise mainly from the asymmetric scattering region, which is

dominant in nanoparticles with diameters ranging from 20 Å to 60 Å. Furthermore,

the discrepancies between the calculated and experimental EXAFS spectra can be at-

tributed to the structural models of gold nanoparticles derived from the MD simula-

tions. In particular, we have found that in our models the effect of surface compres-

sion is underestimated and it results in Au-Au bond lengths being longer than the

experimentally determined values. This effect is more apparent in small nanopar-

ticles, where the theoretical mean Au-Au bond lengths are on average 0.8 % longer

than the experimentally determined bond lengths, while for large nanoparticles this

difference shrinks to 0.3 %.
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Figure 5.12: Experimental (dotted line) Au L3-edge EXAFS spectra of a gold nanoparticle

with a diameter of 24 Å, measured at 20 K (top panel) and 300 K (bottom panel). The theo-

retical spectra (solid line) have been obtained by averaging several structures obtained from

MD simulations carried out at 60 K (top panel) and 150 K (bottom panel).
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Figure 5.13: Experimental (dotted line) Au L3-edge EXAFS spectra of a gold nanoparticle

with a diameter of 50 Å, measured at 20 K (top panel) and 300 K (bottom panel). The theo-

retical spectra (solid line) have been obtained by averaging several structures obtained from

MD simulations carried out at 40 K (top panel) and 150 K (bottom panel).
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nanoparticles with a diameter of 24 Å (top panel) and 50 Å (bottom panel), at 20 K . The

theoretical spectra (solid line) have been obtained by averaging several structures obtained

from MD simulations carried out at 60 K (top panel) and 40 K (bottom panel).
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5.5 Conclusions

The computational approach presented in this chapter, for simulating EXAFS spec-

tra of gold nanoparticles directly from classical MD simulations is in good agree-

ment with experimental Au L3-edge EXAFS spectra. The simulation of EXAFS spec-

tra provides also a route for assessing the quality of the MD simulations, regarding

both structural properties and thermal dynamics. Although a fine-tuning of the MD

simulations is required to reproduce the correct degree of disorder in the simulated

EXAFS spectra, this approach can be further extended by predicting EXAFS spectra

of any kind of nanoparticles, given that a suitable force field is available and that the

simulation time can adequately sample its conformational space.

The average bond lengths in our MD simulations were about 1% larger than

those fitted from analysis of the experimental EXAFS data. On the other hand, the

effect of surface reconstruction, as observed in Figure 5.8, shows the significant con-

tribution of surface atoms to the simulated EXAFS spectra (Figure 5.7). The surface

tension is underestimated in our simulations compared to the tension observed ex-

perimentally [151], perhaps due to the larger Au-Au bond lengths at the surface,

with respect to the models presented in Ref. [152]).

Though the thermal damping in the EXAFS simulations steadily increases with

the temperature (Figure 5.11), it does not reproduce the signal damping of experi-

mentally determined EXAFS spectra at 20 K and 300 K. The MD simulations at 20

K show small vibrational motions, resulting in an underestimation of the thermal

damping, while the vibrations at 300 K are large enough to produce a thermal disor-

der greater than the experiment. Nevertheless, in our case, the approximation made

by representing the atomic interactions with a classical force field still provides re-

liable results for the structural properties of gold nanoparticles, even though the

vibrational motion is not reproduced accurately.
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Chapter 6

Platinum Nanoparticles and

Nanoalloys

The field of metallic or bimetallic nanoclusters is of particular interest due to their

applications in catalysis and optoelectronics, mainly when fabricating materials with

well-defined and controllable properties on the nanometre scale. The chemical and

physical properties of nanoparticles can be tuned by varying their composition, size

and shape. More specifically, nanoalloy clusters can display structures and proper-

ties which are distinct from those of pure metallic systems. Surface and segregation

properties of nanoalloys are also important in determining their chemical and cat-

alytic reactivity and also their optical and electronic properties.

This chapter summarises the results obtained from classical Molecular Dynamics

(MD) simulations on pure platinum nanoparticles along with their copper and pal-

ladium nanoalloys. A brief description of the major synthetic methods reported so

far for the currently studied Pt nanoparticles is given in sections 6.1.1 & 6.3.1 while

the results from the calculations performed on these systems are given in sections

6.2, 6.1.2 & 6.3.3 and 6.1.3 & 6.3.4.
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6.1 Platinum Nanoparticles

6.1.1 Experimental Methods

Platinum nanoparticles have recently become a prominent area of research due to

their potential applications as catalysts. Perhaps the most popular method reported

for the synthesis of controlled size and shape Pt nanoparticles is that of Rampino

and Nord [155]. According to this method colloidal platinum nanoparticles are pro-

duced in aqueous solution. The Pt is incorporated in the form of potassium plat-

inum chloride solution (K2PtCl4). The platinum ions are reduced to neutral plat-

inum atoms by citrate or bubbling H2. The Pt nanoparticles emerge as the solution

becomes more saturated with neutral Pt atoms. To prevent the particles from aggre-

gating, an organic stabilising agent which caps the nanoparticle surface is usually

added.

The Pt nanoparticles studied in this work are representative structures of experi-

mentally synthesised nanoparticles, as supplied by Johnson Matthey, supported on

10, 20, 40 and 60 wt% carbon (Ketjen EC600JD) [16]. These were analysed and char-

acterised by using XRD, TEM and EXAFS techniques. The samples were prepared

as boron nitride pellets and reduced under flowing H2 for 30 minutes. Spectra were

acquired in transmission mode at temperatures from 20 to 300 K.

The combination of the above techniques is essential for characterising the gen-

eral structures of the nanoparticles, by averaging their sizes and explaining their

differences. Although TEM [10] is limited by its local approach, it provides good es-

timation of the particle size distribution within the sample. On the other hand, XRD

methods often fail to measure an average crystallite size at low sample loadings. At

low Pt loadings, in this case, the atomic debris is scattered over the carbon support,

in the form of tiny species, which are invisible to XRD, and to all but the highest res-
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olution TEM; whilst EXAFS will record the contribution from all of the debris within

the x-ray beam at the time of measurement. It is worth noting that these smallest

species, are only visible within high angle annular darkfield TEM images.

Figure 6.1: Darkfield (top) and brightfield (bottom) aberration corrected STEM images of

10, 20, 40 and 60 wt% Pt/C [16].

In contrast, EXAFS measurements averaged over every atom, where the atomic

debris can cause a reduction in the estimation of the average coordination number,

results in the EXAFS average particle size being smaller than that of TEM. It has

been shown that for highly disordered systems, EXAFS underestimates coordina-

tion number and thus particle size when compared with theoretical values. Simi-

larly, when cross-correlating EXAFS with other techniques, such as TEM and XRD,

EXAFS gives smaller sizes [16]. The failure to accurately measure the coordina-

tion number is due to a failure to account for the high degree of disorder present.

Additionally, the assumption of a harmonic disorder made over the standard EX-

AFS analysis, and the presence of atomic debris near-invisible, increases the errors

in determining the EXAFS average particle size. By employing MD simulations to

improve the EXAFS analysis, can improve the systematic error derived from the an-

harmonic disorder, and thus, the discrepancy between EXAFS and TEM results can

be reduced. Details about the MD simulations are reported in the following section.
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6.1.2 Classical MD Simulations

Classical molecular dynamics simulations were performed on spherical, bare Pt13,

Pt55, Pt177, Pt381, Pt767 nanoparticles, using two different metallic potentials; the

Gupta [40] and the Sutton-Chen [41] force fields. These include “zero” tempera-

ture MD simulations, as a geometry optimisation technique, and simulations at 20

K, 85 K, 150 K and 300 K within the microcanonical ensemble (NVE). The optimised

geometries are shown in Figure 6.2. A time-step of 1 fs and a total time of 2 ns were

considered sufficient for performing the MD simulations. A 50 ps time has been

used as an “equilibration” period at the beginning of every simulation.

Additionally, classical MD simulations have also been performed on hemispher-

ical, cuboctahedral and icosahedral structures of pure Pt nanoparticles: Pt183, Pt379

(hemispherical); Pt147, Pt309 (cuboctahedral) and Pt147, Pt309 (icosahedral). Visual

representations of the input structures on the systems studied in this work are shown

in Figures 6.2 and 6.3. All the reported geometries have been generated with Accel-

rys Material Studio [123].

Figure 6.2: Initial/unoptimised structures of spherical Pt13, Pt55, Pt177, Pt381, Pt767 nanopar-

ticles
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Table 6.1: Comparison results between the force fields used, for the optimised geometries

of the Pt13, Pt55, Pt177, Pt381, Pt767 nanostructures, obtained using DL POLY [1]. The results

show the remarkable agreement between the Gupta and the Sutton-Chen (SC) potential, es-

pecially with respect to the nearest neighbour interatomic distances of the optimised struc-

tures.

Nano- Average Nearest Total Number of Total Energy

particle Neighbour Distance (Å) Chemical Bonds (eV/atom)

Gupta SC Gupta SC

Pt13 2.694 2.694 42 -4.992 -4.611

Pt55 2.703 2.700 216 -5.293 -5.040

Pt177 2.725 2.725 804 -5.462 -5.286

Pt381 2.739 2.737 1872 -5.570 -5.434

Pt767 2.746 2.743 3900 -5.614 -5.507

(a) Pt183

(b) Pt379

(c) Pt147

(d) Pt309

(e) Pt147

(f) Pt309

Figure 6.3: Optimised geometries of Pt183 (a), Pt379 (b) (hemispherical); Pt147 (c), Pt309 (d)

(cuboctahedral) and Pt147 (e), Pt309 (f) (icosahedral).
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6.1.2.1 Debye temperature

The Debye temperature is the temperature above which the material behaves clas-

sically and where thermal vibrations are more important than quantum effects. In

general, by increasing the temperature the amount of dynamic (thermal) disorder

within the system also increases. Any increase in the disorder produces a varia-

tion in the nearest neighbour atomic distances or else, the bond lengths, which is

modelled as a Gaussian distribution, and is known as the pair or radial distribu-

tion function (RDF). In more detail, the RDFs of the Pt nanoparticles studied in this

work, are described in section 6.1.3 below.

Measurements at low temperature, in particular below the materials Debye tem-

perature, are required to reduce the thermal disorder in the system, and thus the an-

harmonic contribution effect [156]. For bulk systems, this can be enough to give an

accurate value of the coordination number and the amount of disorder. With the dy-

namic (thermal) disorder greatly reduced, what is left is the static disorder occurring

from any surface distortion around the core atoms of the synthesised nanoparticles.

For this purpose the simulations mentioned above, extend from very low to room

temperatures, and the results obtained, especially at 20 K, are aimed to approximate

the experimental results more closely than other relevant methods currently in use

for analysing the EXAFS spectra.

6.1.3 Radial Distribution Functions

The radial distribution function g(r) (RDF) or pair correlation function, describes

the probability to find a particle within a distance r away from a reference particle

i. In order to construct a RDF plot, the number of atoms surrounding particle i,

within a distance interval r and r + dr is counted. This visually creates a number of

concentric spheres around the reference particle, where the distance dr between two

138



6.1 Platinum Nanoparticles

consequent spheres describes the volume of a spherical shell, with an infinitesimal

particle density ρ(r), as shown in Figure 6.4.

Figure 6.4: Spherical shells

around a reference atom of a 55-

atom nanoparticle.

The number of particles contained in each shell

is equal to the number of particle pairs formed be-

tween the reference particle and its surrounding par-

ticles. In a MD simulation using DL POLY, a snap-

shot of the molecular system is taken at regular in-

tervals and all the pair distances for all the parti-

cles N are calculated, sorted and placed in an aver-

age histogram which is characteristic for the system

simulated. At the same time, the average number of

atoms n(r) found in each shell is also calculated by

the code.

A table of the mean number of atoms n(r) as a

function of the pair distance r is provided in the OUTPUT file, after an MD simula-

tion with DL POLY has been performed. To confirm the correctness of an RDF plot

constructed with DL POLY, a script that computes the number of neighbour pair

distances and the average number of atoms in each shell for the final structure of a

molecular system has been written. The division in coordination shells is based on

the RDF data obtained from DL POLY.

The diagram of Figure 6.5 shows a histogram of the average number of neigh-

bour atoms on the different shells of a 55-atom nanocluster, calculated directly with

DL POLY (black line), merged with the results (blue points) obtained by process-

ing the final structure of the atomic system (table 6.2). In order to match the mean

values of neighbour atoms shown on the table 6.2 with the values calculated using

DL POLY, the values are summed while moving from the inner to the outer shell.

The perfect agreement between the blue points and the curve prooved the accuracy
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Table 6.2: Average number of atoms in every shell of a 55-atom nanoparticle

Shell Average Total number of Average number of

Distance (Å) neighbour pairs neighbour atoms

1st 2.814 432 7.855

2nd 3.995 180 3.273

3rd 4.870 528 9.600

4th 5.499 228 4.145

5th 6.294 384 6.982

Figure 6.5: Mean number of atoms in the coordination shells of a 55-atom nanoparticle

calculated with DL POLY [17].

of the results obtained by the program.

The RDF plots of the Pt55, Pt177, Pt381, Pt767 nanoparticles as simulated at 20 K,

85 K, 150 K and 300 K using the Sutton-Chem potential are shown in Figure 6.6.

From a first look at the RDFs of the platinum nanoparticles, two distinctive peaks

can be seen; one at the first (∼ 2.7 Å) and one at the third shell (∼ 3.8 Å). As the

size of the nanoparticles becomes larger the peaks of the RDF plots are decreased
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due to the smaller number of atoms contained in each of the first five shells with

respect to the total density of atoms in the whole molecular system. On the other

hand, the RDF peaks gradually become long and broader as the temperature of the

simulation increases. This is due to the increase of the vibrational motion of the

system in higher temperatures which causes the expansion of the peaks in a larger

range of atomic pair distances.

Secondly, the displacement of the RDF peaks in smaller distances, mainly ob-

served at the RDF plot of the Pt55 nanoparticle, indicates a structural deformation

occurring at higher temperatures. As this distortion is more obvious at the last shells

of the plot, this suggests a contraction of the pair atomic distances on the surface,

also observed experimentally [16]. Although a similar surface contraction is also

obvious in the larger Pt nanoparticles studied in this work, this is not shown in the

RDFs as the range of the pair distances calculated is restricted within 6.5 Å. Fur-

thermore, the structural stability observed in all the plots is a strong indication of a

robust core with bulk-like properties.

Similar conclusions can be drawn for the non-spherical simulated Pt nanoparti-

cles, with some important exceptions. The smallest cuboctahedral and hemispheri-

cal Pt nanoparticles (Pt147 and Pt183 respectively) undergo a structural contraction in

almost their full volume at very low temperatures. The hemispherical Pt183 shows a

double peak at the fourth shell of the RDF plot, which can be attributed to the dis-

tortion of the interatomic distances at the edges between the hemispherical and the

flat surfaces of the nanoparticle. Both icosahedral Pt nanoclusters (Pt147 and Pt309)

show a rather complex pair distribution function in very low temperatures which

can be attributed to the preservation of their polyhedral shape, with some atomic

distances being more contracted or expanded in order to form flat surfaces around

the nanoparticle. As the temperature increases and the nanoclusters gain more ki-

netic energy the RDF resembles more to the RDFs of the spherical Pt nanoparticles.
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Figure 6.6: Radial Distribution Functions (RDFs) of Pt55, Pt177, Pt381, Pt767 nanoparticles at 20 K, 85 K, 150 K and 300 K.
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These structural defects result from the contraction of the surface atoms towards

the core to minimise the surface energy, a phenomenon observed for both bulk

materials [157] and nanoparticles [151]. Surface distortion is present in the bond

length distribution and the thermal disorder [151], as surface atoms tend to rear-

range themselves in order to reduce the surface tension. For bulk materials, surface

reconstructions can be considered negligible, as the bulk contribution dominates;

while for nanoparticles below 5 nm, the surface area occupies approximately 25% of

the nanoparticle’s volume, and for nanoparticles below 2 nm, exceeds 75%. There-

fore, the contribution of surface atoms to the average bond length, and to the final

EXAFS signal becomes increasingly dominant. Thus, the assumption of a Gaussian

distribution in the “standard” EXAFS analysis, breaks down in highly disordered

systems, either through thermal or quantum size effects.

Figure 6.7: RDFs of hemispherical Pt nanoparticles
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Figure 6.8: RDFs of cuboctahedral Pt nanoparticles

Figure 6.9: RDFs of icosahedral Pt nanoparticles
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6.2 Prediction of EXAFS spectra

In order to take into account the high disorder of surface atoms in nano-sized sys-

tems, to the atomic pair distribution, the fitting procedure must be able to analyse

the EXAFS spectra with a more flexible scheme. So far the existing models for ob-

taining the structural properties of the nanoparticles are using single distribution

for each coordination shell. If the contributions from surface bonds are important

enough then, the distribution will become bi- or tri-modal and any attempt to fit a

single peak over the split distribution will result in false results.

Several theoretical works have been addressing the need to accurately determine

the coordination number from EXAFS, by looking at the relationship between the

surface anharmonicity and the particle’s geometry [158–160]. Despite demonstrat-

ing the difference in the position and intensity of each nearest neighbour shell of the

RDF, using different geometries, these studies were still employing an even distri-

bution of bond lengths from the core to the surface, without accounting any termi-

nation effects at the surface.

Okamoto [161] and Gilbert et al. [162], have reported using MD simulations for

predicting EXAFS, by comparing their results with real structural data, while only

in a few studies have attempted to use MD to more accurately determine the aver-

age coordination number from EXAFS [163,164]. Theoretical works from Clausen et

al. were focused on nanoparticles below 5 nm, while larger particles were also stud-

ied [163]. The disorder modelled in these systems however still remained a single

pseudo-Gaussian distribution, unlike in this work. In the majority of these works

data have been collected at high temperature, where thermal disorder dominates

any fine structural disorder. As such, the disorder is fairly poor and can be mod-

elled by using a few adjustments in order to account for small degrees of asymmetry

within the distribution [165–167]. Below 3 nm, the disorder becomes significantly
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non-Gaussian and the use of extra cumulants will fail to give an accurate result.

Applying the information obtained from MD to real EXAFS data is step forward to

determine whether the disorder has a significant effect on the EXAFS fit and how

much this degree is.

6.2.1 Application of MD to EXAFS

The histogram (RDF) generated from the MD simulations was used to fit the EXAFS

data, instead of using the Pt fcc structure of the bulk crystal, as in the standard anal-

ysis. In nanoscale systems, the correct treatment of the atomic radial distribution is

demanded, in order to account for the effects of the high proportion of disordered

surface atoms with decreasing particle size. In contrast, the effects induced by the

anharmonic thermal motion and surface termination, in bulk materials, can be con-

sidered negligible.

In the standard analysis, the raw EXAFS spectra were energy calibrated, aligned

and background subtracted using the AUTOBK algorithm, which is implemented

in the ATHENA code [168]. The structural parameters were determined using the

ARTEMIS code [169], with photoelectron momentum k and non-phase corrected

radial distance r ranges of 3-18 Å−1 and 2-3.2 Å respectively. The scattering paths

were calculated using FEFF6 [170].

In both analytic methods, the standard analysis and the procedure employed in

the current work, the EXAFS data were parametrised using 4 variables: the am-

plitude N, the isotropic expansion coefficient α, the energy correction ∆E0 and the

disorder σ2. In the current analysis, only the first coordination shell is considered

as the software used to fit the EXAFS data is unable to manage large numbers of

scattering paths required for a full multiple scattering analysis. The fitting analysis
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in both methodologies in this work was conducted by Stephen Price.

Table 6.3: Structural parameters for 10 (top) - 20 (bottom) wt% Pt/C nanoparticle at 20 K,

150 K and 300 K, acquired in a reduced H2 environment at the Pt LI I I edge.

10 wt% Fitting N α 2 σ2 (Å−2) ∆E0 (eV) Rf

Pt/C Method (x104)

20 K Standard 7.89±0.60 -0.012±0.001 50±3 8.11±0.70 0.009

Gupta1 10.02±0.58 0.000±0.000 19±2 7.41±0.62 0.005

Sutton-Chen1 9.52±0.39 0.003±0.001 25±1 8.33±0.37 0.003

150 K Standard 8.96±0.30 -0.008±0.001 46±1 8.14±0.29 0.002

Gupta1 9.45±0.55 -0.001±0.001 29±2 7.14±0.53 0.003

Sutton-Chen1 9.08±0.34 0.002±0.001 36±1 7.88±0.35 0.002

300 K Standard 8.70±0.45 -0.006±0.001 62±3 5.46±0.52 0.010

Gupta 9.56±1.27 0.002±0.002 46±6 4.66±1.20 0.014

Sutton-Chen 9.02±0.65 0.005±0.001 52±3 5.34±0.63 0.009

20 wt% Fitting N α 2 σ2 (Å−2) ∆E0 (eV) Rf

Pt/C Method (x104)

20 K Standard 8.24±0.56 -0.012±0.001 55±3 7.71±0.59 0.009

Gupta 8.64±0.56 -0.004±0.001 38±3 6.90±0.62 0.010

Sutton-Chen 8.35±0.54 -0.001±0.001 45±3 7.51±0.56 0.008

150 K Standard 8.41±0.66 -0.014±0.002 62±4 7.23±0.72 0.014

Gupta 8.88±0.67 -0.006±0.001 45±4 6.62±0.74 0.015

Sutton-Chen 8.53±0.65 -0.003±0.001 52±4 7.05±0.68 0.010

300 K Standard 8.88±0.59 -0.004±0.001 68±4 5.60±0.62 0.015

Gupta 9.67±1.25 0.004±0.002 52±6 4.51±1.01 0.016

Sutton-Chen 9.15±0.63 0.007±0.001 58±3 4.96±0.53 0.010

1best fit with the 177 Au atoms cluster
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Table 6.4: Structural parameters for 40 (top) - 60 (bottom) wt% Pt/C nanoparticle at 20 K,

150 K and 300 K, acquired in a reduced H2 environment at the Pt LI I I edge.

40 wt% Fitting N α 2 σ2 (Å−2) ∆E0 (eV) Rf

Pt/C Method (x104)

20 K Standard 9.37±0.43 -0.007±0.001 35±1 8.72±0.50 0.004

Gupta 10.02±0.58 0.000±0.000 19±2 7.41±0.62 0.005

Sutton-Chen 9.52±0.39 0.003±0.001 25±1 8.33±0.37 0.003

150 K Standard 8.96±0.30 -0.008±0.001 46±1 8.14±0.29 0.002

Gupta 9.45±0.55 -0.001±0.001 29±2 7.14±0.53 0.003

Sutton-Chen 9.08±0.34 0.002±0.001 36±1 7.88±0.35 0.002

300 K Standard 8.70±0.45 -0.006±0.001 62±3 5.46±0.52 0.010

Gupta 9.56±1.27 0.002±0.002 46±6 4.66±1.20 0.014

Sutton-Chen 9.02±0.65 0.005±0.001 52±3 5.34±0.63 0.009

60 wt% Fitting N α 2 σ2 (Å−2) ∆E0 (eV) Rf

Pt/C Method (x104)

20 K Standard 9.64±0.31 -0.008±0.001 42±1 7.92±0.29 0.002

Gupta 10.46±0.79 -0.001±0.001 26±3 6.72±0.73 0.003

Sutton-Chen 9.85±0.40 0.003±0.001 31±1 7.49±0.44 0.001

150 K Standard 9.40±0.31 -0.008±0.001 46±1 8.43±0.34 0.002

Gupta 9.91±0.68 -0.001±0.001 29±3 7.36±0.67 0.009

Sutton-Chen 9.60±0.44 0.003±0.001 36±2 8.10±0.41 0.002

300 K Standard 9.04±0.54 -0.004±0.001 59±3 5.79±0.62 0.010

Gupta 9.96±1.31 0.003±0.002 43±6 4.81±1.23 0.015

Sutton-Chen 9.36±0.68 0.007±0.001 49±3 5.39±0.62 0.009

2A bond length correction term (linear expansion coefficient α) was used as a fitting parameter for

the MD input as well as the standard input.
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Figure 6.10: k weighted experimental data (purple) and fit to Gupta (tirquoise) and Sutton-

Chen (green) potentials, of the 10 and 20 wt% Pt/C at 20 K (top), 150 K (middle) and 300 K

(bottom).
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Figure 6.11: k weighted experimental data (purple) and fit to Gupta (tirquoise) and Sutton-

Chen (green) potentials, of the 40 and 60 wt% Pt/C at 20 K (top), 150 K (middle) and 300 K

(bottom).
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Each histogram, from every modelled nanostructure, in all the temperatures sim-

ulated, was tried during the EXAFS analysis for determining which gives the best

fit. The results are summarised in Tables 6.3 & 6.4 above. The data collected from

the 300 K simulations were impossible to be fitted to the EXAFS data at all. As in the

case of gold nanoparticles MD simulations (section 5.4) the higher the temperature

the greater the disorder. Consequently, a negative σ2 term would be required to

fine-tune the fit and as this is physically unrealistic, these results were discounted.

Simulations performed at 150 K were able to be fitted to the data for the 150 K and

300 K within the same error as in the 20 K simulations. On the other hand, the RDF

data produced for the smallest (55 atom) and the largest (767 atom) Pt clusters had

disorders too great or too small, respectively, that in consequence, failed to be fitted

to the EXAFS data. The 381 atom cluster yielded all the best fits.

Comparing the adaptability of the two force fields employed in the classical MD

simulations, with respect to the quality of the fit, the Sutton-Chen potential gave

better results, from the Gupta potential, when compared with the standard anal-

ysis. Whilst, on average, there is no significant difference between the two MD

fitting approaches, as also mentioned earlier (Table 6.1), the values in Tables 6.3 &

6.4 clearly indicate that the Sutton-Chen potential is more reliable for simulating Pt

nanoparticles, at least in this case. Taking this into account the results reported here,

mainly refer to the Sutton-Chen potential.

Although the MD simulations provide an improved input for EXAFS analysis,

they do not completely account for all the structural and thermal disorder present

and the fits using the RDF histograms as an input require an additional σ2 param-

eter. Despite this, the values of σ2 obtained from the MD histogram are smaller

than those obtained from the standard model. In conclusion, the use of molecular

dynamic simulations to fit real experimental data, not only provides a significant

improvement over the fitting method, but also a measurable metric for evaluating
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the quality of a particular force field at replicating nanoparticles behaviour, bearing

in mind though that the empirical potentials used were mainly designed to repro-

duce the properties of bulk metallic systems.

6.3 Platinum Nanoalloys

Although pure metals have a plethora of technological applications, the range of

properties of metallic systems can be greatly extended by considering mixtures of

elements to generate inter-metallic compounds and alloys. Mixtures of platinum

with palladium or copper are of a major interest mainly due to their application as

catalytic converters in auto-mobiles. They can be used in the hydrogenation of aro-

matic compounds in fuel and consequently the reduction of the exhaust gases. This

process, however suffers from the catalytic poisoning by H2S due to the sulphur-

containing impurities. There are several works claiming that platinum nanoalloys

are more catalytically active and more resistant to sulphur poisoning.

6.3.1 Experimental Works

6.3.1.1 Pt-Pd nanoalloys

Nanoalloys of Pt with Pd have been an attractive and extensive case study for their

catalytic applications. Both pure bulk elements and their alloys exhibit face-centred

cubic (fcc) symmetry. Due to their relatively low enthalpy of formation (Pt-Pd 1:1 =

-4 kJ mol−1) the bulk Pd-Pt alloys have several compositions where the atoms are

randomly mixed. In some cases, Pd-Pt alloys may show a strong surface segregation

as reported in the experimental work of Watson and Attard [171].
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Renouprez, Rousset, and colleagues conducted extensive research studies on

rods of bulk Pd-Pt nanoalloys with diameters between 1-5 nm and various com-

positions [172, 173]. The nanoalloys mainly had cuboctahedral structures, with fcc

packing, as their bulk counterparts, while EXAFS measurements revealed that the

Pd-Pt particles are intermixed with more Pt-Pt interactions than expected. This in-

dicated that some segregation has occurred. Further experiments showed that the

surfaces of these Pd-Pt particles are enriched in Pd, with the relatively largest segre-

gation occurring at low Pd concentrations. Therefore, Pd-Pt nanoalloys with small

diameters can be considered as having a fairly isolated Pt core capped with a Pd

shell.

Fiermans et al., who studied Pd-Pt particles supported on β-zeolites confirmed

the results of Renouprez and Rousset [174]. The particles were composed by a Pd:Pt

ratio of 1:3 and a segregation of the Pd to the surface of the nanoparticles was also

observed. Toshima et al. reported the synthesis of Pd-Pt colloids (1.5-5.5 nm) with

tunable core-shell segregation (PtcorePdshell) for catalytic applications, which was

confirmed by EXAFS measurements [175–177]. They had also reported the synthe-

sis of inverted PdcorePtshell nanoalloys. In contrast, NMR studies on PVP-protected

Pd0.2Pt0.8 and Pd0.8Pt0.2 nanoparticles with average diameter 2.4 nm, revealed a ho-

mogeneous Pd-Pt nanoalloy with bulk-like and surface-like Pt atoms [178, 179].

6.3.1.2 Pt-Cu nanoalloys

Toshima and Wang, reported the synthesis of colloidal Cu-Pt particles, by applying

catalytic hydrogenation in solution [180]. Several potential applications of Cu-Pt

alloys include the catalysis-reduction of NOx [181]. CucorePtshell and PtcoreCushell

nanoparticles have also been synthesised by Eichhorn et al. as well as intermixed

particles [182]. The CucorePtshell particles (mean diameter 8.8 nm) and their relative
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PtcoreCushell particles (mean diameter 18.3 nm), were found to have approximately

equal concentrations of Cu and Pt. The synthesised PtcoreCushell particles had an fcc

Pt core with a Pt0.2Cu0.8 shell. Annealing at 370 oC for 5 h produced an intermixed

Cu-Pt particle. In contrast, the CucorePtshell particles, with fcc Cu cores and fcc Pt

shells, were slightly intermixed by annealing at 370 oC for 5 h, that generated a Cu-

rich/Cu-Pt core and a pure Pt shell. This difference is believed to derive from the

higher kinetic stability of CucorePtshell core-shell particles.

6.3.2 Theoretical Works

A genetic algorithm describing interatomic interactions of Pd, Pt, and Pd-Pt nan-

oclusters with the Gupta many-body potential was implemented by Massen et al.

[183]. The Gupta potential parameters for Pd-Pt interactions were obtained by aver-

aging the parameters for Pd-Pd and Pt-Pt interactions. According to their results the

Pd-Pt nanoalloys had a large number of capped decahedral structures and a reduced

tendency to display icosahedral packing in their lowest energy level, compared to

pure Pt or Pd nanoclusters [183,184]. The structures for the Pd-Pt clusters were also

more distorted than the Pd clusters. These Pd-Pt clusters tend to segregate in shells

with the surface being richer in Pd and the core becoming richer in Pt. This segre-

gation, also reported by several experimental studies on Pt-Pd particles, is believed

to arise from the contribution of the lower surface energy of Pd and the greater co-

hesive energy of Pt. Additionally, varying the Pd-Pt interaction parameters of the

Gupta potential affects also the tendency towards segregation between the Pt and

Pd atoms of the Pt-Pd geometries.

Lloyd et al. extended the work of Massen et al., by studying the dependence

of the binding energy on coordination for several cluster sizes, shapes (icosahe-

dral and cuboctahedral shell clusters) and compositions [184]. They showed that
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the most stable isomers generally have the largest number of Pt-Pt bonds or Pt-Pd

bonds respectively. All the atoms in the cluster were included in order to find the

preferred site for segregation on a particular atom. The PtcorePdshell segregation, as

a result of the correlation between average binding energies and atomic distribu-

tion parameters, was consistent with the experimental studies of Renouprez and

Rousset [172,173]. Similar results have been obtained by Cheng et al., who used the

same Gupta potential parameters in Monte Carlo simulations on icosahedral and

decahedral Pd-Pt nanoalloys with 55 atoms [185].

Pd-Pt nanoalloys of 34 and 38 atoms were studied by Rossi et al. [186] by also em-

ploying the Gupta potential. Many of the 34-atom clusters adopted incomplete dec-

ahedral geometries, in abundance of Pt while for the Pd-rich and intermediate com-

positions, icosahedral structures were more prominent. For the 38-atom clusters,

the truncated octahedral (fcc) geometry dominated the other structures. Fernandez

et al. carried out DFT re-optimisations of low-energy isomers generated using the

Gupta potential for (PdPt)N clusters, with N=5-22 [187] had observed PtcorePdshell

segregation, while similar findings were reported also by Paz-Borbon et al. [178].

6.3.3 Classical MD Simulations

Classical MD simulations have been performed using the Sutton-Chen potential [41]

on the Pt-core nanoalloys Pt177Pd204, Pt381Pd386, Pt177Cu204 and Pt381Cu386 at tem-

peratures 20 K, 85 K, 150 K and 300 K. Additional MD simulations on the intermixed

Pt nanoalloys Pt189Pd192 and Pt375Pd392 at 20 K and 300 K were also attempted. The

data collected from these simulations, as in the case of bare Pt nanoparticles, are

aimed to be used as inputs for analysing EXAFS data, although the fitting proce-

dure in this case is far more complicated from the method described previously.

Optimised structures of the systems studied are given in Figure 6.12.
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While simulations for Pt-Cu and Pt-Pd nanoalloys using the Gupta potential

have also been performed, this report will focus only on the results obtained with

the Sutton-Chen force field. This is mainly due to the flexibility of the latter potential

when applied to alloys, by providing a very simple and general scheme for mixing

the parameters used in pure metals to represent their relative alloys (section 2.3.3.2).

(a) Pt177Cu204

(b) Pt381Cu386

(c) Pt177Pd204

(d) Pt381Pd386

(e) Pt189Pd192

(f) Pt375Pd392

Figure 6.12: Optimised geometries of Pt177Cu204 (a), Pt381Cu386 (b), Pt177Pd204 (c), Pt381Pd386

(d), Pt189Pd192 (e) and Pt375Pd392 (f).

6.3.4 Distribution of bond lengths

The plots of Figures 6.13, 6.14 and 6.15 show the distribution of nearest neigh-

bour atomic distances (bond lengths), from the centre of mass of the nanoparticle

to the surface, for the Pt177Cu204, Pt381Cu386, Pt177Pd204, Pt381Pd386, Pt189Pd192 and

Pt375Pd392 nanoalloys, obtained from classical MD simulations performed at 20 K

and 300 K with the DL POLY code.
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(a)

(b)

(c)

(d)

Figure 6.13: Bond length distribution across the radii of Pt177Cu204 (left), Pt381Cu386 (right) nanoparticles at 20 K and 300 K.
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(a)

(b)

(c)

(d)

Figure 6.14: Bond length distribution across the radii of Pt177Pd204 (left) and Pt381Pd386 (right) nanoparticles at 20 K and 300 K.
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(c)

(d)

Figure 6.15: Bond length distribution across the radii of Pt189Pd192 (left), Pt375Pd392 (right) nanoparticles at 20 K and 300 K.
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All the bond length distribution diagrams of the simulated nanoalloys at 20 K,

show a robust structure, from the core to the surface, which is shown by the vertical

grouping of points along the radius of the nanoparticle. These regions are dispersed

across the volume of the nanoparticle as the temperature is raised and the atoms in-

crease their vibrational and rotational motion. Platinum nanoalloys with palladium

show a larger contraction at the surface which is more intensive for the PtcorePdshell

rather than the intermixed structures. In room temperature the pair atomic distances

of Pt-Pd nanoalloys are more relaxed compared to the Pt-Cu nanoalloys, as can be

observed by the slight increase of the average atomic distances mainly inside the

core region. The PtcoreCushell nanoalloys also show a surface reconstruction which

seems to be stronger for the Pt381Cu386 at room temperature.

On the other hand, as the size of the nanoparticles and the temperature increase,

the surface atoms of the non-intermixed structures seem to sink more inside the

platinum core with the copper atoms showing larger intermixing rate than palla-

dium atoms. Copper atoms in the outer shell of the Pt-Cu nanoalloys also have a

larger range of bond lengths at 20 K which indicates the structural differences of

the crystallographic morphology between the two metals, while palladium atoms

with similar crystalline features with platinum show an even distribution of bond

lengths along the radii of the nanoparticles.

6.4 Conclusions

The work in this chapter focuses on the challenging prospects of analysing EX-

AFS spectra for nanoparticles by combining theoretical data, from molecular dy-

namic simulations, with experimental data. Classical MD simulations performed on

bare, spherical platinum nanoparticles, were used to fit experimental EXAFS data,

mainly with respect to the first coordination shell. Data from simulated models of
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Pt nanoparticles, where any structural disorder can be predicted, were used to inter-

pret the anharmonic structural disorder in the EXAFS fit results, for several particle

sizes, which is in better agreement with TEM data than the standard approach. The

approach described in this chapter is a promising step towards the extension of the

current EXAFS analysis to higher coordination shells.

Within this framework, other possible geometries of platinum nanoparticles such

as icosahedral, cuboctahedral, or hemispherical were modelled, for future use in the

EXAFS fit. Similarly, classical MD simulations of bi-metallic nanoalloys of Pt and Pd

or Pt and Cu have also been performed. So far, studies trying to incorporate theo-

retical and experimental data, have assumed an even distribution of bond lengths

throughout the nanoparticle. By being able to use MD data also regarding higher co-

ordination shells would provide a significant improvement over the determination

of particle morphology from EXAFS.
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Chapter 7

Gold Nanoparticles and Nanosurfaces

This chapter summarises the results from calculations performed on three different

categories of gold nanoclusters. In the first two sections, calculations on ultrasmall,

bare gold nanoparticles are reported using density functional theory (DFT). Follow-

ing the work from chapter 5, additional classical MD simulations have been also

performed on different spherical gold nanoparticles, of sizes 1.39, 1.94, 2.50 and 3.05

nm.

The third section describes the outcome of geometry optimisations and some at-

tempted ab initio MD simulations on gold nanosurfaces, in contact with small thiol

molecules; and finally, the last section contains the results of classical MD simula-

tions on a AucoreCushell nanoparticle and its predicted EXAFS spectrum, as calcu-

lated with the method employed in chapter 5.
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7.1 Classical MD simulations on gold nanoparticles

Classical molecular dynamics simulations, using the Gupta [40] and the Sutton-

Chen [41] force fields on the spherical Au13, Au55, Au177, Au381, Au767 and the icosa-

hedral Au309 nanoparticles, have been performed (Figure 7.1). These configurations

were chosen as representative structures, to aid the EXAFS analysis of synthesised

gold nanoparticles. As in the MD simulations reported in chapter 5, the initial struc-

tures were optimised at “zero” temperature and later on simulated at 20 K, 85 K,

150 K and 300 K within the micro-canonical ensemble (NVE). A time-step of 1 fs

and a total time of 2 ns were considered sufficient to perform the MD simulations.

A 50 ps time has been used as an “equilibration” period at the beginning of every

simulation.

Au13 Au55 Au177

Au381 Au767 Au309

Figure 7.1: Optimised geometries of small gold clusters using DL POLY [1]
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The RDF plots of Figures 7.2 and 7.3, show the differences between the struc-

tures simulated at low and room temperatures. At low temperature, the RDF plots

are constituted by high, sharp peaks due to the restricted motion of the atoms, in

comparison with the RDFs of the nanoparticles simulated at room temperatures,

where chemical bonds are relaxed and the vibrational and rotational motions are

increased. While the agreement between the RDFs for the larger nanoparticles in-

dicates a structural stability throughout the simulation, in the case of the Au55 nan-

ocluster, a shifting of the last coordination shells to the left results from the strong

effect of surface contraction, in both the temperatures shown.

On the other hand, when comparing the spherical Au381 and the icosahedral

Au309, it can be seen, that the Au309 nanoparticle has a more complex RDF, due to

the different arrangement of atoms to form the icosahedral geometry. Starting from

low temperatures, where the structures are almost frozen, the complexity of the

Au309 plot is gradually reduced, becoming almost similar to the RDFs of the spher-

ical nanoparticles at room temperature. This denotes a breaking of the particle’s

symmetry in higher temperature, which consequently leads to a distorted geometry

with smoother features.

All the simulated structures showed a stable core, in contrast with the smallest

nanoparticles, where the surface disorder is significantly large. Despite that, the

ultrasmall Au13 and Au55 nanoparticles have essentially maintained their spheri-

cal shape throughout the simulation. The discrepancy observed between the final

geometries of the Au13 and Au55 nanoparticles and the structure of their larger rel-

atives, led us to perform a further investigation of these ultrasmall structures by

employing a first principles method, as reported in the following sections.
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Figure 7.2: RDF of small gold nanoparticles at 20 K calculated with DL POLY [18]

Figure 7.3: RDF of small gold nanoparticles at 300 K calculated with DL POLY [18]
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7.2 Ultrasmall Gold Nanoparticles

Ultrasmall gold nanoclusters, of sizes smaller than 200 atoms, have been extensively

reported to show unique properties, in comparison with other nanoclusters from

similar metals, due to their large relativistic effects [142, 188–191]. Confining the

nanoparticles into quantum sizes, the de Broglie wavelength of valence electrons

becomes of the same order as the particle’s size and thus, the nanoparticles behave

electronically as zero-dimensional quantum dots. These effects are responsible for

their unique physical properties, the nanoparticles’ size and shape, their amorphous

features, observed experimentally, and the strong tendency of gold atoms to form

contracted metallic bonds, mainly on their surface.

7.2.1 Theoretical Studies

Perhaps the breakthrough in the science of gold nanoparticles, which promoted the

theoretical investigation of gold ultrasmall nanoparticles using first principles meth-

ods, emerged from the pioneering work of Schmid et al. [192]; who managed to

isolate gold quantum dots and study their properties for the first time. The small-

est cluster contained 13 Au atoms in dense packing, followed by layers of 10n2 + 2

atoms. The nanoparticle with 55 atoms was well characterised by Schmid’s group,

while larger nanoparticles of 147, 309, 561, 923, 1415 and 2057 (n = 3− 7) atoms

were also isolated.

Despite the existence of sophisticated experimental methods for analysing the

structural properties of gold nanoclusters, some problems still remain unsolved.

From comparison between experimental imaging methods or resonance methods, in

the case of gold nanoparticles with sizes 1-2 nm, the resolution is not good enough to

decompose explicitly their geometry features and provide a conclusive determina-
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tion of their structure [142]. Thus, several theoretical calculations have been applied

in order to shed light on their configurations at this size range.

Theoretical studies, employing DFT calculations and semiempirical potentials,

have attempted to perform global minimisations on isolated gold nanoparticles,

yielding controversial results due to the complexity of the Au potential energy sur-

faces (PES) [142,188,191]. Within this framework, attempting to utilise ab initio meth-

ods for computing the PES, involves significant difficulties for treating gold systems,

even at this scale. Nonetheless, even at such a small scale, gold nanoparticles were

shown to preserve their metallic properties, independent of their symmetry and

structure [191].

For ultrasmall nanoclusters, simulations using empirical many-body potentials,

such as the Gupta or the Sutton-Chen potential, which are used in studying the

melting of bulk gold systems or in nucleation studies (sections 2.3.3.1 and 2.3.3.2),

do not account correctly for the many-body effects required to obtain their correct

shape and configurations and in general this applies for the majority of metallic

clusters. At this size range, the calculations show that there are many energetically

favourable configurations with little or no spatial symmetry, which strongly sug-

gests that ultrasmall gold nanoparticles should be amorphous-like.

One of the works that supports the above argument is provided by Garzon

et al. [191]. They have studied the structural stability of Aun (n=38,55,75) amor-

phous and ordered nanoparticles, with MD simulations and the n-body Gupta po-

tential [193] through dynamical optimisations. By additionally applying extremely

low temperatures they have found that both kinds of isomers are of equal stability,

with the energy difference between the amorphous and the ordered structures to

be very small. Ercolessi at al. [194], reported that the melting temperature of gold

nanoparticles of sizes smaller than 90 atoms, became zero, which suggests that ul-

trasmall gold nanoparticles should have a broken symmetry. Assadollahzadeh and
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Schwerdtfeger [189] and Wang et al. [188], have also calculated the zero-point vibra-

tional energy of several neutral gold nanoclusters, from 2-56 atoms, by using DFT

based methodologies and found that this accounts for roughly ∼1% of the binding

energy per atom.

A disordered structure has also been predicted for the lowest energy configura-

tion of Pt13 (section 6.1.2) by performing DFT-LDA calculations [195]. These conclu-

sions were in contrast with the classical MD simulations of Au13, Au55, Pt13 and Pt55

nanoparticles, reported in sections 7.1 and 6.1.2. Both the Gupta and the Sutton-

Chen many-body potentials gave an optimised structure of high symmetry with

ordered atoms as in the bulk fcc crystal; in contrast with the results mentioned in

the above theoretical works. The structural properties of Au13, Au55 were further

investigated by conducting DFT calculations. The results of these calculations are

reported in the following section.

7.2.2 DFT Calculations

7.2.2.1 Geometry optimisation

Trial energy minimisations on the smallest spherical nanoclusters using density

functional theory have been attempted with different codes. DFT geometry opti-

misations on the Au13 and Au55 nanoclusters with ONETEP [4] and NWCHEM [19]

(Gaussian basis set DFT) were impossible to converge. In contrast, calculations at-

tempted with CASTEP [3] (plane-wave DFT), were able to complete successfully by

using the ensemble density functional approach (EDFT). The calculations were per-

formed by using the PBE exchange correlation functional [15] and a kinetic energy

cut-off of 650 eV.
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Geometry optimisations of metallic systems, with first principles methods, are

extremely difficult to perform due to the constant variation of the occupancies of

electrons and, consequently, the change in the energy band structure during the

calculation, which often leads to non-convergence. The EDFT method developed

in CASTEP allows the wavefunctions to be updated without invalidating the oc-

cupancies during the optimisation. This is achieved by minimising a free-energy

functional with variable occupancies across some extra conduction bands, instead

of minimising the energy with respect to only the valence bands. As a result, ener-

gies are tightly converged and forces can be calculated accurately.

(a) (b)

Average Interatomic Distance (Å)

Nano- Surface Core Total

particle

Au13 2.872 2.731 2.832

Au55 2.816 2.850 2.835

Figure 7.4: Optimised geometries with PBE-DFT of Au13 (a) and Au55 (b). Table: Average

interatomic pair distances of Au atoms within Au13 and Au55 nanoparticles.

The table of figure 7.4 reports the nearest neighbour interatomic distances of the

gold atoms in the Au13 and Au55 nanoparticles. It is worth noting that in the case of

the smallest Au13 nanoparticle, the interatomic distances between the central atom,

which is the only atom without free dangling bonds, are significantly shorter than

the atomic distances calculated for the core atoms of Au55, which are relatively closer

to the distances reported for the bulk gold crystal (2.88 Å).
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7.2.2.2 Ab initio Molecular Dynamics

After the successful optimisation of the above ultrasmall nanoparticles, molecular

dynamics simulations of the Au13 and Au55 nanoparticles have also been attempted

using a recently developed feature of the CASTEP code. In contrast with the classical

MD scheme reported throughout this work, where an empirical potential or force

field is required to describe the way atoms interact between them, the type of MD

method implemented in the CASTEP code is defined as “ab initio” or “quantum”

molecular dynamics.

The basic idea underlying every ab initio MD method is that the forces acting

on the atoms are derived from electronic structure calculations, performed “on-

the-fly”, as the molecular dynamics trajectory is generated. In this way, the elec-

tronic variables are not integrated out beforehand, but are considered as active

degrees of freedom. This implies that, for a suitable approximate solution of the

many-electron problem, “chemically complex” systems can be treated effectively by

molecular dynamics. While both classical and ab initio molecular dynamics employ

the same principles, in practice, the latter method is shifted from manually selecting

the model force field to the level of selecting a particular approximation for solving

the Schrödinger equation.

The MD simulations of the ultrasmall Au13 and Au55 were performed at 300 K

within the NVE ensemble. The same exchange-correlation functional and kinetic en-

ergy cut-off, as in the optimisation calculations, were used. The simulations showed

a breaking in the ordered geometry of the systems, as reported also by Grazon et

al. [191]. Furthermore, the energy diagrams of Figures 7.5 and 7.6, for each system

respectively, show a characteristic variation of the energy throughout the MD trajec-

tory due to the tendency of the systems to adopt a more amorphous structure at the

expense of energy stabilisation. Although the ab initio MD simulations have been
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(a)

(b)

Figure 7.5: [Left] Energy diagram of Au13 at 300 K. [Right] Initial (a) and final (b) geometries

of Au13 after a 0.15 ps of an ab initio MD simulation.

carried out for a very short time, even at such a small scale, the distortion of the

total structure of the Au13 and Au55 nanoparticles is distinguishable, as can be seen

in the right part of Figures 7.5 and 7.6.

(a)

(b)

Figure 7.6: [Left] Energy diagram of Au55 at 300 K. [Right] Initial (a) and final (b) geometries

of Au13 after a 0.18 ps of an ab initio MD simulation.
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7.3 Thiol-Passivated Gold Nanosurfaces

The simulations reported so far regarding ultrasmall gold nanoparticles, have con-

sidered the studied systems being completely bare and in vacuum, without any

interaction with solvent molecules or capping ligands. In reality though, to pro-

duce and isolate gold nanoparticles, organic compounds are used as capping lig-

ands or stabilising agents. In the pioneering work of Schmid and co-workers [192],

reported previously, the 55-atom gold nanocluster was encapsulated within phos-

phine molecules, and more precisely, the isolated compound was characterised as

Au55(PPh3)12Cl6. Perhaps, nowadays, the most popular method for stabilising gold

nanoparticles is the use of alkenothiols; firstly reported by Mulvaney and Giers-

ing [196], who showed the possibility of using thiols of different chain lengths and

structures in the synthesis of gold nanoclusters.

7.3.1 Synthesis and assembly

For a long time, among the conventional methods employed for the synthesis of

gold nanoparticles was the citrate reduction of HAuCl4 in water, introduced by

Turkevitch [197]. Frens [198], later on, attempted to control the formation of gold

nanoparticles by varying the ratio of reducing/stabilising compounds, leading to

pre-chosen sizes of 16 to 147 nm diameter long gold(III) derivatives.

Following the works of Schmid et al. [192] and Mulvaney and Giersing [196],

Brust and Schiffrin [199, 200] proposed a synthetic procedure for producing ther-

mally and air-stable gold nanoparticles of controlled size, with a considerable im-

pact on the overall field. The thiol ligands strongly bind on gold due to the soft char-

acter of both Au and S [138], which occurs from the reduction of AuCl−4 by NaBH4

in the presence of dodecanethiol [201]. The proportion of thiol/AuCl−4 controls the

size of the produced gold nanoparticles.
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7.3.2 Theoretical studies

Luedtke and Landman [202, 203] have studied the structural and thermodynamic

properties of dodecanethiol (C12H25S) and butanethiol (C4H9S) self-assembled mono-

layers (SAMs) on small and larger gold(III) nanoparticles, from 140 to 1289 Au

atoms, using classical molecular dynamics. Self-assembly, is the property of the

passivating ligands to spontaneously stick onto the surface of the nanometallic clus-

ter. They found that the adsorption and arrangement of thiol chains on the surface

is strongly depended on the size of the nanoparticles and their surface area. At low

temperatures, the dodecanethiol molecules were grouped into anti-parallel orienta-

tions while at higher temperatures, they observed disordering and melting of the

SAMs, with the transition for the larger cluster to be higher (T∼294 K) than that for

the smaller one (T∼280 K).

In a similar work, Ta-Wei et al. [204] have investigated the packing structures of

different types of alkanethiols on Au(III) surfaces with an all-atoms force field [205],

within the NVT ensemble at 298 K. They found that the flexibility of the thiol head-

group (sulfur) aids and controls significantly the packing of the alkyl chains. Zhang

et al. [206], on the other hand, have developed their own all-atoms force filed, based

on ab initio results from DFT calculations, for studying the packing of alkenothiol

SAMs on Au(III) surfaces with various chain lengths. According to their findings

the packing, where the thiol chains have adopted a perfect parallel orientation but

slightly tilted, was the most favourable, in terms of energy minimisation.

A Au38 core nanoparticle, coated with methylthiols, has been investigated via

density functional theory by Häkkinen et al. [207]. Starting from a pre-optimised

structure of the gold core with a classical force field, the nanoparticle was passivated

with 24 methylthiol (MeS) molecules and optimised within the LDA approximation.

From the calculated density of states of the bare and the coated Au38, a 1.9 eV shift

in the energy bands has been observed. In another theoretical study with density
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functional theory, a 25-atom gold nanoparticle passivated with 18 thiols, has been

studied [208]. Akola and co-workers have identified its lowest energy structure to

be a compact Au13 core protected with 6 [(MeS)3Au2] complexes.

While several works on thiol-passivated gold nanoparticles argue that the thiol

molecules can dimerise, forming a disulfide on the Au(III) surfaces, Andreoni et

al. [209] performed DFT calculations, based in the LDA method with some correc-

tions from the BLYP [59, 62] and PBE [15] exchange-correlation functionals. From

their calculations, the chemisorption of thiolates (H3CS) was thermodynamically

more favoured from the adsorption of thiols (H3CSH). Disulfides (R-CH2S-S-CH2-

R’) were found to favour dissociation into strongly bound thiolates. Studying also

the adsorption of thiolates onto the surface of a Au38 nanocluster (similarly with

Häkkinen et al. [207]) and comparing with Au(III) surfaces saw that their chemical

and thermodynamic properties were significantly different, from those of thiols.

Following the work of Andreoni and co-workers [209], the calculations reported

in this work are focused on the interaction of methylthiolates with gold surfaces. As

also reported in Ref. [209], the mechanism taking place during the growth of thiol

SAMs is still unclear. In this case, two possibilities are available. The first supports

the existence of intact thiols on the surfaces, which has been the case of an extensive

experimental study by Nuzzo et al. [210] and the second suggests that when thiols

stick to the gold surface, the S-H bond breaks, forming thiolate groups.

While Nuzzo and co-workers [210] defended the adsorption of unbroken methanethi-

ols on the surface of gold nanoparticles, they reported some unexpected features

found on some of the collected spectra. A peak assigned for the interaction of Au

atoms with the S of the intact thiol, is questioned by the authors of Ref. [209], as this

feature is characteristic of the stretch of the Au-S bond of thiolates, which originates

from the adsorption of disulfides rather the weak stretch of Au and S atoms of the

adsorbed thiols [211].
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Furthermore, all the calculations performed by Andreoni et al. support this, by

showing that the formation of thiolates by thiol dissociation on gold surfaces is ac-

companied by hydrogen chemisorption. This is the mechanism which is energeti-

cally favoured. As the energy difference between the thiol and thiolate adsorbates

is quite small (∼3 kcal/mol) this may be an indication of the co-existence of the two

possible mechanisms. On the other hand, the latter authors found that formation

of molecular hydrogen, which subsequently desorbs from the surface, can aid the

stabilisation of thiolates by an additional amount of 1-3 kcal/mol.

7.3.3 Construction of nanosurfaces

In order to study the impact of organic ligands attached to gold surfaces, DFT

calculations have been performed by using the CASTEP code [3]. Similarly with

Ref. [209], the PBE exchange-correlation functional has been employed for all the

calculations performed on Au(III) surfaces.

As an initial step, the calculation parameters were chosen according to the con-

vergence of the total electron energy Etot with respect to energy cut-off Ecut, the

k-point grid and the fast Fourier Transform (FFT) numerical grid. For this purpose,

DFT calculations on a 3-dimensional periodic image of bulk gold crystal have been

completed successfully.

The convergence of the total energy of the bulk gold unit cell, with respect to the

energy cut-off is shown in Figure 7.7. From the plot of the total energy with respect

to the energy cut-off it can be observed that by using an energy cut-off of 500 eV it is

sufficient enough to obtain results with a fine accuracy. Meanwhile, by several other

trial calculations performed, a k-point MP grid spacing of 0.05 Å−1 was observed to

provide satisfactory results.

176



7.3 Thiol-Passivated Gold Nanosurfaces

Figure 7.7: Total energy convergence of Au unit cell

with respect to the energy cut-off

In general, a relatively large

number of k-points is required

for an accurate k-point sam-

pling of small unit cells such

as in this case, whereas a few

points are required for large

unit cells. For very large unit

cells, only a point at k = 0

(known as the Γ point) is used

for calculations in the recipro-

cal space (section 1.2.5). Addi-

tionally, the number of k-points

increases as the distance between k-points decreases. In this case, the number of

k-points to be is generated by a k-point spacing of 0.05 Å−1. The advantage of

specifying the k-point spacing instead of a fixed grid is to assure a constant sam-

pling in the k-space independently of the unit cell size, which may have an impact

when transferring the parameters chosen to perform calculations on periodic gold

nanosurfaces.

7.3.3.1 Geometry optimisations

Calculations with the CASTEP code [3] on periodic Au(111) surfaces have been per-

formed. Figure 7.8 shows the geometries of the molecular systems being studied.

The Au(111) surfaces were constructed by slicing the bulk structure in the [111]

crystallographic direction and coupling the resulting slab with a vacuum gap of

about 10 Å. The slab is then fitted on the xy plane and then simulated using pe-

riodic boundary conditions. The x and y directions are allowed to vary, while the

z-direction is kept fixed. The reliability of the results and the quality of the simu-
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Figure 7.8: Structures of Au(111) surfaces studied with CASTEP [3]

lations are checked by studying the variation of the surface free energy (Esur f ) with

respect to the Au(111) surface thickness and its vacuum gap until convergence is

achieved [212]. The surface energy is defined as:

Esur f =
Eslab − Ebulk

A
(7.3.1)

where A is the total area of the Au(111) surface, Eslab is the computed energy of

the slab and Ebulk is the energy of an equivalent amount of atoms in bulk gold.

The results, obtained from the calculations performed, are summarised in the Ta-

ble 7.1. As can be observed the surface energy (Esur f ) is decreased as the number of

layers increases. Furthermore, the difference in surface energy between the fourth

and fifth layer of Au atoms implies that a constructed gold nanosurface with 5 lay-

ered thickness, is a reliable representative structure for simulating the properties of

real Au(III) surfaces.
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Table 7.1: Energy values obtained for the optimised structures of the gold nanosurfaces

using the CASTEP code [3]

Layers Eslab (eV/atom) Ebulk (eV/atom) A (Å2) Esur f (eV/Å2atom)

1 -884.7001 -884.8931 14.623 0.0127

2 -884.7042 -884.8931 15.125 0.0117

3 -884.7249 -884.8931 16.139 0.0115

4 -884.7494 -884.8931 16.216 0.0088

5 -884.7592 -884.8931 16.497 0.0082

Figure 7.9: Symmetrical parts,

shown with different colours, of the

simulated Au(III) nanosurface

Following the results of the above calcu-

lations, 4 types of (2×2) superlattices of 5-

layered gold nanosurfaces in interaction with a

methylthiolate molecule, have been constructed.

The spatial parameters of the previously opti-

mised gold slabs were used, by expanding the

simulated surface unit cell in the x and y direc-

tions by a factor of 2, thus, providing a (2×2)

nanosurface. The (H3CS) molecules were manu-

ally placed on the surfaces according to the sym-

metrical parts of the above layer of Au atoms, as shown in Figure 7.9. These parts

are coloured differently, where areas with the same colour have the same spatial

symmetry. Consequently, this lead to 4 different structures of a (H3CS) attached to a

Au(III) nanosurface. Visual representations of the simulated systems are shown in

Figure 7.10 and are named according to the colouring scheme of Figure 7.9. A vac-

uum region of 10 Å between the hydrogen atoms of the methythiolate and the top

xy-plane of the simulation box has been maintained also here, to avoid any atomistic

interaction between periodic images along the z-direction.
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(a) A (red) (b) B (blue) (c) C (green) (d) D (yellow)

Figure 7.10: 4 different (2×2) structures of (H3CS)-Au(III) nanosurfaces. The assigned let-

ters refer to the colouring scheme of Figure 7.9

The constructed systems were then optimised using the “damped MD method”

that has been recently implemented in the CASTEP code [3]. This method allows

the direct minimisation of the energy functional, using a second-order equation

of motion, by introducing some damping parameters. The first-order dynamics,

generally deals with the finding of the ground energy state while the second-order

corresponds to the oscillations around the configuration of that energy state. The

“damped MD” scheme developed in CASTEP, is significantly faster than the BFGS

(section 1.1.2) optimisation technique and besides the critical damping, still main-

tains the accuracy of a first principles method.

The energy and force tolerances during the energy minimisation of the structures

were set to 0.2×10−4 eV/atom. A k-point MP grid spacing of 0.05 Å−1 and a 650

eV kinetic energy cut-off were used, as in the optimisation of the bare gold nanosur-

faces. During the optimisation, the size of the simulation box and the 2 lower layers

of Au atoms of the nanosurface were kept fixed.
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7.3.4 Ab initio Molecular Dynamics

Upon successful optimisation of the constructed (H3CS)-Au(III) nanosurfaces, ab

initio molecular dynamics simulations were carried out . A combination of any two

of the optimised thiolate-Au nanosurfaces, provided 6 new (2×2) superlattices with

two thiolate molecules attached. Along with the MD simulations of (H3CS)-Au(III)

nanostructures, ab initio MD simulations have been performed also on the (H3CS)2-

Au(III) nanosurfaces at 300 K within the NVE ensemble. Snap-shots taken at the

beginning and the end of the simulations are shown in Figures 7.11 - 7.20. For every

configuration, binding energies have been calculated and then obtained as averages.

(a) (b)

Figure 7.11: Configurations of A-CH3S-Au(III) before (a) and after 0.1 ps (b) of a MD sim-

ulation at 300 K.

(a) (b)

Figure 7.12: Configurations of B-CH3S-Au(III) before (a) and after 0.1 ps (b) of a MD simu-

lation at 300 K.
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(a) (b)

Figure 7.13: Configurations of C-CH3S-Au(III) before (a) and after 0.1 ps (b) of a MD simu-

lation at 300 K

(a) (b)

Figure 7.14: Configurations of D-CH3S-Au(III) before (a) and after 0.1 ps (b) of a MD sim-

ulation at 300 K

(a) (b)

Figure 7.15: Configurations of AB-(CH3S)2-Au(III) before (a) and after 0.2 ps (b) of a MD

simulation at 300 K
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(a) (b)

Figure 7.16: Configurations of AC-(CH3S)2-Au(III) before (a) and after 0.2 ps (b) of a MD

simulation at 300 K

(a) (b)

Figure 7.17: Configurations of AD-(CH3S)2-Au(III) before (a) and after 0.2 ps (b) of a MD

simulation at 300 K

(a) (b)

Figure 7.18: Configurations of BC-(CH3S)2-Au(III) before (a) and after 0.2 ps (b) of a MD

simulation at 300 K
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(a) (b)

Figure 7.19: Configurations of BD-(CH3S)2-Au(III) before (a) and after 0.2 ps (b) of a MD

simulation at 300 K

(a) (b)

Figure 7.20: Configurations of CD-(CH3S)2-Au(III) before (a) and after 0.2 ps (b) of a MD

simulation at 300 K

Looking the depicted structures at the starting and final point of the simulations,

a surface distortion can be observed at the point where the thiolate is attached. The

Au-atom(s) of the top layer that bind to the sulfur atom of the methylthiolate, are

extended away from the surface level, creating a small cavity around the neighbour

atoms. On the other hand, where 2 thiolate molecules are directly located nearby, in

close distance between them (Figures 7.15, 7.18, 7.19 and 7.20), a repulsion force that

pulls them away from each other seems to take place.
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Table 7.2: Binding energies of mono- and di- methanethiolates

System BE (eV) System BE (eV)

A-CH3S-Au(III) 1.844 AB-(CH3S)2-Au(III) 1.993

B-CH3S-Au(III) 1.858 AC-(CH3S)2-Au(III) 1.895

C-CH3S-Au(III) 1.809 AD-(CH3S)2-Au(III) 1.862

D-CH3S-Au(III) 1.841 BC-(CH3S)2-Au(III) 2.673

BD-(CH3S)2-Au(III) 2.715

CD-(CH3S)2-Au(III) 2.813

Observing the binding energies of single thiolate gold nanosurfaces, at 300 K,

the CH3S-Au(III) systems gain by 0.7-0.8 eV of stabilisation as a 0.1 ps simulation

progresses. While the B-CH3S-Au(III) shows a slightly larger binding energy, the

D-CH3S-Au(III), where the thiolate molecule is located in the centre of the top layer

of Au atom, is the system that shows the largest stabilisation during the simulation

(∼0.9 eV). On the other hand, the simulated (CH3S)2-Au(III) systems showed larger

binding energies from the CH3S-Au(III) nanoclusters.

While all the simulated structures seem to have similar binding energies, in

the case of the BC-(CH3S)2-Au(III), BD-(CH3S)2-Au(III) and CD-(CH3S)2-Au(III) the

binding energies are by 30%-40% larger than the rest of the systems. This is likely

due to the strong structural reorganisation taking place between the thiolate molecules,

where a conformation with thiolates located quite apart from each other seemed to

be preferred. The results shown are in fairly good agreement with the binding en-

ergies reported by Andreoni et al. [209] (3.12 eV for (CH3S)2-Au(III)), where 1.56 eV

can be assigned for the Au-S bond of each bound disulfide to the gold surface. Con-

sidering also that a part of the energy is used for maintaining the S-S bond in the

dimethyl disulfide, the binding energies of the thiolates reported here are expected

to be larger.
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7.4 Gold-Copper Nanoalloys

7.4.1 Synthesis

Bulk Au-Cu alloys exist in three stoichiometric phases: (a) Cu3Au, (b) CuAu3 and

(c) CuAu. Yasuda et al. [213, 214] studied the separation of copper atoms on a sur-

face of gold nanoclusters supported on an amorphous carbon film , where a rapid

mixing was observed at room and lower temperatures. Yasuda and Mori observed

stoichiometric (Cu3Au)M clusters using TEM, and found that for nanoclusters with

sizes around 9 and 20 nm, annealing results in ordering of the initial samples, giv-

ing the structure of bulk Cu3Au [213]. For nanoclusters smaller than 4 nm, the solid

solution had the most stable phase. The Cu-Au clusters showed a fcc local packing

structure, as in their bulk alloy counterparts.

In a more recent work, Schaak and co-workers described a novel procedure for

the synthesis of bimetallic nanoparticles in solution at low temperatures [215, 216].

Cu-Au nanoparticle aggregates were used as precursors to synthesise atomically or-

dered nanocrystals of intermetallic CuAu, Cu3Au, and CuAu3. Using several imag-

ing methods they revealed that while the Au nanoparticles are crystalline, the Cu

particles appear to be amorphous at the first stage. Then, the Cu-Au aggregates

were heated under flowing argon, followed by annealing at 200-300 oC which lead

to atomically ordered nanocrystals of CuAu, Cu3Au, and CuAu3.

7.4.2 Computational Works

Lopez and co-workers performed MD simulations, using a many-body Gupta-type

potential, on 13- and 14-atom Cu, Au, and Cu-Au clusters, studying their structural

properties and melting points [217]. According to their findings, the bimetallic sys-

tems showed a closer resemblance to copper clusters rather than the gold clusters,

186



7.4 Gold-Copper Nanoalloys

while the gold clusters, only exhibited a single stage of melting, whereas pure cop-

per and alloy clusters displayed two.

Pauwels and co-workers [218], have studied isolated truncated octahedral clus-

ters of 456 and 786 atoms and a spherical cluster of 959 atoms by performing Monte

Carlo (MC) simulations . Their MC simulations predicted that these clusters were

not ordered and also not completely homogeneous. The core structure was found

to be fully ordered at 300 K, undergoing some distortion at around 600 K. They

have also reported possible reasons about the disagreement of their MC simulations

with the experimental results, where it appears to be no evidence for core separation

with a coated shell of Au [218]. They argued that experimentally the Cu-Au clusters

are not generated in an environment of thermodynamic equilibrium, but are be-

ing cooled rapidly which can induce structural changes or rearrangement of atoms

when interacting with the substrate. On the other hand, the clusters simulated were

smaller than the clusters obtained from many of the experiments conducted so far

(diameters larger than 4 nm).

Johnston and co-workers have extensively studied Cu-Au clusters with varying

compositions and nuclearities [219, 220]. One of their studies was focused on small

Cu-Au clusters with either Cu-rich or Au-rich compositions. In Cu-rich clusters

they observed disordered structures while for Au-rich clusters provided polyicosa-

hedral structures, such as the Cu4Au30 (incomplete 6-fold pancake) and the perfect

core-shell Cu6Au28 and Cu7Au27 (5-fold pancake) clusters. In the case of Cu-rich

clusters the intermixing distortion was attributed to the tendency of maximising

the Cu-Au bonds, which is greater to the tendency for segregate the Au atoms to

the surface [221]. For 38-atom clusters, truncated octahedra dominated the Cu-rich

compositions. Their results were in good agreement with the work of Hsu and Lai,

who used a hybrid GA-basin-hopping search algorithm, based in the Gupta poten-

tial, to study 38-atom Cu-Au nanoalloys [222].
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In another work by Johnston et al., stoichiometric structures of bulk-like Cu-Au

nanoalloys, (Cu3Au)M, (CuAu)M, and (CuAu3)M, were studied and compared with

pure Cu and Au clusters, using the Gupta many-body potential [220]. Pure cop-

per clusters adopted regular, icosahedral structures, while gold clusters produced

amorphous-like structures, as reported previously by Garzon et al [191]. In the

cases of 14, 16, and 55 atoms, replacing a single Au atom with Cu altered the general

structure to that of a pure Cu cluster, also supported by Lopez et al [217]. For the

stoichiometric nanoalloys, the lowest energy structures were based on icosahedral

packing. The (CuAu)M and (CuAu3)M clusters provided layered arrangements of

Cu and Au atoms, whereas the Cu and Au atoms were noticeably intermixed in the

(Cu3Au)M clusters. For all the layered structures observed, the surfaces of the clus-

ters were mainly rich in gold atoms, while the icosahedron-based structures had a

Cu atom at the centre. The predicted tendency to Au surface segregation, was in

agreement with MD simulations on Cu-Au nanoalloys performed by Rodriguez-

Lopez et al [223].

Wilson and Johnston [224] conducted energy calculations on icosahedral and

cuboctahedral Cu-Au nanoalloys with 1 to 5 shells with varying composition using

again the Gupta many-body potential. For each composition the lowest energy ho-

motops were found to have predominantly Au atoms on the surface and Cu atoms

in the core. This was attributed to the lower surface energy of Au compared to

Cu and the tendency for mixing or segregation was explained in terms of relative

strength of Cu-Cu, Cu-Au, and Au-Au bonding interactions.

Recently, Fernandez et al. performed DFT calculations on (CuAu)N clusters,

with N=5-22, by re-optimising configurations of low-energy isomers provided from

a search method based on the Gupta potential [187]. Although the exact ordering

of the homotops was quite different between the DFT and Gupta potential calcula-

tions, the general stability of icosahedral structures was confirmed.
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7.4.3 Classical MD Simulations

(a)

(b)

Figure 7.21: (a) Initial (equili-

brated) and (b) and final struc-

ture of the Au381Cu386 nanoal-

loy after a 4 ns MD simulation

at 300 K.

Within the perspective of modelling complicated bi-

metallic systems and predicting their EXAFS spec-

tra, a very limited investigation of the structural and

phase equilibria of a spherical gold nanoparticle cov-

ered with a copper layer has been studied using the

Gupta force field. The parameters used for describ-

ing the interactions between the homonuclear atoms

(Au-Au and Cu-Cu) were taken to be the same in

the nanoalloys as in the pure metallic systems. The

heteronuclear interaction parameters (Au-Cu) were

obtained by fitting to crystalline Cu3Au, as derived

by Cleri and Rosato [43].

The MD trajectory of the Au381Cu386 nanoalloy

reveals a strong surface and volume distortion, as

the copper atoms on the surface sink into the core

of gold atoms, during the simulation. This indicates

the low segregation rate of the gold-copper nanoal-

loys and their strong tendency to amalgamate, at this

small scale, as supported also by Pauwels and co-

workers [218]. On the other hand, the diffusion of the copper atoms inside the sys-

tems’s centre of mass shows the preference of Cu atoms to be allocated within the

core, as suggested also by Johnston et al. [224]. Visual representations of the initial

and final structures predicted by the MD simulations are shown in Figure 7.21.

Figures 7.22 and 7.23 show the radial distribution function (RDF) of the Au381Cu386

nanoparticle derived from a MD simulations at 20 K and 300 K. Despite the surface
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7.4 Gold-Copper Nanoalloys

Figure 7.22: Radial distribution diagram of Au381Cu386 at 20 K.

Figure 7.23: Radial distribution diagram of Au381Cu386 at 300 K.

190



7.4 Gold-Copper Nanoalloys

distortion, the gold atoms, mainly inside the core of Au381Cu386 preserve their struc-

tural properties at 20 K and 300 K, as can be seen from the clear definition of the first

atomic pair distances in the RDF plot. The surface defects are shown by the large

variation of the nearest neighbour atomic distances of the copper atoms while the

gold atoms on the surface are strongly affected by the surface Cu atoms which tend

to adopt similar conformation, as the simulation proceeds further on.

7.4.4 Calculation of EXAFS

Figure 7.24: Calculated EXAFS spectra of Au381Cu386 from classical MD simulations at 20

K (blue) and 300 K (pink).

The strong surface reconstruction induced by the surface Cu atoms to the Au

atoms within the core, is apparent in the calculated EXAFS spectra. Figure 7.24

shows the EXAFS spectra calculated for the Au381Cu386 nanoparticle, from the MD

simulations at 20 K and 300 K, by only using a few MD snap-shots after the equili-
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7.4 Gold-Copper Nanoalloys

Figure 7.25: Calculated EXAFS spectra of Au381Cu386 at 300 K with a fine (turquoise) and a

coarser (green) PDF sampling.

bration of the system, at the beginning of the production period of the simulation.

Albeit the nanoparticle is not perfectly equilibrated the structure at 20 K is in phase

with the structure obtained at 300 K. The difference in the intensity of the peaks can

be attributed to the thermal disorder.

The EXAFS shown in Figure 7.25 are derived from the last 20-25 frames of the

MD trajectory at 300 K, where a finer PDF sampling has been used with respect to

the default value. Even though the EXAFS data seem to coincide in the first values of

k, the form of the curvature changes as we move along larger values. This difference

is more likely a result of statistical inaccuracy, as the main peaks are identical and in

phase. Be comparing the spectra collected at the beginning (Figure 7.24) and at the

end (Figure 7.25) of the simulation, the results are significantly different, due to the

impact of the Cu atoms sinking into the core of the gold nanoparticle.
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7.4 Gold-Copper Nanoalloys

Figure 7.26: Calculated EXAFS spectra of Au381Cu386 (red) and the similar Au887 (orange)

at 20 K.

On the other hand, comparing the EXAFS simulations of the Au381Cu386 nanoal-

loy at 20K with the data collected for the Au887 nanoparticle, which has a similar

diameter, the spectra have the same shape and intensity, but are slightly shifted. By

looking also at the Fourier transformed data, a shift of -0.04 Å for the peak at 2.7 Å

of the Au/Cu nanoparticle can be observed, while the peak at 2.3 Å, with respect to

the Fourier transform of the Au887 EXAFS data, is disappeared. This suggests that

the outer shell of copper induces a surface tension greater than gold, which short-

ens the Au-Au bond distance, as the Cu atoms are entering inside the inner part of

the particle. The peak at 2.3 probably results from the surface Au atoms, which are

missing on the surface of the Au381Cu386 nanoparticle structure at 20 K.

A further improvement of the results reported in this section can be achieved by

using longer and more detailed MD approaches in order to explore the properties

and behaviour of these systems.
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7.5 Conclusions

The last chapter shows the results from calculations performed on gold nanosur-

faces in contact with thiolate molecules, using first principles methods. The con-

structed geometries have been constructed using small periodic images of gold

nanosurfaces, in order to make the calculations feasible with the CASTEP code [3].

The structures were then optimised using the “damped MD” method and simulated

for 0.1-0.2 ps using ab initio MD.

Within the time scales reported, the CH3S-Au(III) nanosurfaces with one thiolate

attached on them showed larger binding energies from the (CH3S)2-Au(III), with

two thiolate molecules bound on their surface. Nanosurfaces where the methylth-

iolates were near each other, seemed to develop repulsive forces that drive them

apart. A few discrepancies observed, in some of the calculations performed, require

further investigation. Despite that, the ab initio MD simulations performed, indicate

that complex metallic systems can be successfully studied within the accuracy of

first principles methods.
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Chapter 8

Conclusions

From classical molecular mechanics to ab initio density functional theory, this the-

sis summarises the results obtained from calculations on metallic or semiconduc-

tor nanoclusters. Due to the complexity of these systems, the current project aims

to provide a quantitative approach towards the computational study of their struc-

tural and electronic properties. In contrast with simulations performed on biological

molecules, where the basic elements contained in these systems, are well described

and modelled, even with empirical computational methods, the parameters chosen

to model the Si, Au and Pt atoms had to be thoroughly tested and validated before

planning a methodology to simulate a chemically relevant system.

The first three chapters mainly contain some general information on the theory

behind the methodologies employed in this project, starting from some basic princi-

ples of quantum mechanics, to classical molecular mechanics (chapter 2) and finally,

to a brief description of density functional theory (chapter 3). The second chapter

also contains a detailed description on the way an additional force field has been

implemented in DL POLY [18], in this case, the Stillinger-Weber potential [44]. A

section, briefly describing the ONETEP code [4] (linear-scaling DFT), extended by
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our research group, is also included.

In chapter 4, a computational study of silicon nanorods with varying aspect ra-

tios and surface passivation by hydrogen is presented. Structures consisting of more

than 1000 atoms were studied using both, the ONETEP [4] and the DFTB+ code [2];

the latter for geometry optimisation. The structural, energetic and electronic prop-

erties of the nanocrystals were investigated at the atomistic ab initio level of detail.

The calculations showed a surface distortion while the inner part of the nanorod

retained a stable structure close to bulk Si. In the (1×1) unreconstructed nanorods,

the Si-Si bond lengths were more condensed, while in the (2×1) reconstructed nanorods

the range of the Si-Si bond length distribution was wider and larger, moving along

the core region to the surface. Furthermore, the (1×1) surfaces adopted a “canted”

conformation between neighbour H atoms, a property which is consistent with sev-

eral theoretical studies reported in the past.

The (1×1) unreconstructed H-passivated nanorods presented higher stabilities

compared to the (2×1) reconstructed nanostructures, which tend to decrease as the

diameter of the nanorod is increased. According to the results of the calculations,

when the diameter of the nanorod was extended by 5 Å, formation energies per

Si atom decayed almost by 1 eV. Similarly, a reduction of ∼ 0.5 eV for the (1×1)

nanorods and of ∼ 0.3 eV for the (2×1) nanorods in the HOMO-LUMO band gap

was observed when their diameter was increased from 8 Å to 13 Å.

EXAFS simulations of gold nanoparticles were presented in chapter 5. The cal-

culations showed a remarkable agreement with the experimentally determined EX-

AFS spectra, in support of the structural models obtained from classical MD simula-

tions. The simulation of EXAFS spectra provides a route for assessing the quality of

the MD simulations, both for studying structural properties and thermal dynamics.

However, two main differences between the simulated and experimentally deter-
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mined properties of gold nanoparticles were identified.

Firstly, the average bond lengths in the MD simulations performed, were larger

than those fitted from analysis of the experimental EXAFS data. The difference,

however, is smaller than 1 %. The effect of surface tension is responsible for the

shortening of the bond lengths observed in Figure 5.8, and indeed the contribution

of surface atoms clearly has a detectable effect on the simulated EXAFS spectra, as

shown in Figure 5.7. From these findings, it can be said that, in our MD simulations,

the underestimation of the surface tension arises either because the region affected

by the surface tension was not as deep as observed experimentally [151], or because

the Au-Au bond lengths at the surface were larger than expected (e.g. with respect

to the models presented in Ref. [152]).

Secondly, though the thermal damping in the EXAFS simulations steadily in-

creases with the temperature (Figure 5.11), it does not reproduce the signal damping

of experimentally determined EXAFS spectra at 20 K and 300 K. The MD simula-

tions at 20 K showed small vibrational motions, resulting in an underestimation of

the thermal damping. This effect is likely due to the neglect of zero-point vibrational

motion by the classical calculations, which allows the system to be more localised

near the bottom of the potential energy wells. On the other hand, the vibrations at

300 K were large enough to produce a thermal disorder greater than the experiment.

Perhaps, a deeper potential well could reduce the amplitude of vibrations at high

temperature and also decrease the bond lengths at the surface, as the resulting forces

acting on gold atoms will be stronger.

Better agreement between the computational modelling and the experimental

data would have been possible if a more accurate potential energy surface of the

gold nanoparticles was used. This work has been based on a force field gener-

ated PES due to the prohibitive computational cost that ab initio molecular dynamics

would have for problems of this size and simulations of this timescale (Ref. [135],
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see section 5.1). In our case, the approximation made by representing the atomic

interactions with a classical force field still gives reliable results for the structural

properties of gold nanoparticles, though the vibrational motion is not reproduced

accurately.

A technique that provides a fine-tuning of a force field, by altering the curva-

ture and depth of its potential well, could be a promising step forward for a better

agreement between the simulated and experimental EXAFS spectra. Nevertheless,

it is expected that significant improvements while using the force field could be

achieved by re-parametrisation or an alternative functional form that is more suit-

able for nanoparticles, given that the Gupta potential [40] and other commonly used

many body force fields for metallic systems have been developed with calculations

for bulk systems in mind. Furthermore, there is a degree of uncertainly about the

actual temperature of the nanoparticles in the experiment which can also be a source

of discrepancy with the simulations, as well as the fact that, in the experiment the

nanoparticles were supported on an amorphous silica surface, while in the simula-

tions they were treated as isolated.

The discrepancy between classical MD simulations and experimental data is also

observed when studying platinum nanoclusters, as shown in chapter 6. Although

the MD simulations provide an improved input for EXAFS analysis, resulting in a

better fitting model, they do not completely account for all the structural and ther-

mal (dynamic) disorder present in the measurements while the modelled structures

were assumed to have a spherical symmetry. Including an additional σ2 parameter

to account the structural disorder in nanoparticles using the MD input, the fitting

models were significantly improved, than fits conducted with the standard model

at all the desired temperatures. In comparison with TEM measurements [10], the

approach used in this work by using data obtained from MD simulations, gives a

better agreement about the structural properties of the nanoparticles, instead of us-
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ing theoretical models based on the properties of bulk materials when analysing

nanoparticles.

The EXAFS approach detailed in chapter 6, showed promising results, although

still requires further development. Even though the current fitting scheme was done

only in the first coordination shell of the simulated and the synthesised Pt nanoparti-

cles, an extension of the analysis to higher coordination shells could provide a better

insight to their structural properties. Work is currently in progress to extend this his-

togram approach both to higher shells and to three-body correlations, incorporating

the contributions from multiple-scattering paths.

Furthermore, Pt nanoclusters of different size and shape are also reported in

chapter 6. Classical MD simulations of bimetallic Pt nanoalloys with copper or pal-

ladium have been performed, aiming to be used as reference sample structures to

interpret recently obtained experimental data. Within the same framework, classical

MD simulations on gold nanoparticles with configurations consisted of 55, 177, 381

and 767 atoms, representing sizes of 1.39, 1.94, 2.50 and 3.05 nm respectively, have

been also performed, as reported in chapter 7.

In chapter 7, gold nanosurfaces in interaction with thiolate molecules are being

investigated, using first principles methods. The constructed geometries were sim-

plified to make the calculations feasible with ab initio molecular dynamics in the

CASTEP code [3], which allowed the optimisation and simulation of the latter sys-

tems.

Within the time scales where the CH3S-Au(III) and (CH3S)2-Au(III) have been

simulated, the nanosurfaces with one thiolate attached on them showed larger bind-

ing energies from the systems with two thiolate molecules. Nanosurfaces where

the methylthiolates were near each other, seemed to develop repulsive forces that

drive them apart. The discrepancies observed in some of the simulated structures
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require further investigation. Despite that, the ab initio MD simulations performed

within this project, indicate that complex metallic systems can be successfully stud-

ied within the accuracy of first principles methods, while the rapidly developing

field of linear-scaling DFT in combination with improvements of computational re-

sources, is a promising tool for modelling larger and more complicated systems.

Future developments in the ONETEP code are extended to make possible the simu-

lation of entire metal nanoparticles with thousands of atoms and chemical processes

on their surfaces. The work done here with CASTEP should serve as a starting point

for such studies.
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Appendices

Sample files of the procedures used for some of the calculations

described in this thesis are included in the following appendices.

All the main input and output files of the calculations reported are

provided in the attached DVDs.





Appendix A

DL POLY input files

A.1 FIELD file

The FIELD file contains the force field information, which is defined at the end of

the file and the atomic properties of an atom or a molecular group contained in the

simulated system given at the beginning of the file. The order of specification of

the atoms or molecular types in the FIELD file must follow the order in which they

appear in the CONFIG file.

Silicon
 
UNITS
MOLECULES 1 
Si
NUMMOL 29
ATOMS  1
Si           28.0855        0.00    1
finish
vdw 1
Si Si  tab
tbp 1
Si  Si  Si  stwb  116.666667  6.0000  9.00000  2.514120  2.514120  3.771180 
CLOSE
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A.2 CONTROL file

A.2 CONTROL file

Si29
 
integration velocity verlet
 
temperature         20.00
pressure            0.0010
ensemble nve
 
#restart
#optim force       1.0E-5
 
steps             2000000
equilibration       50000
scale                  10
print                  10
stack                  10
stats                  10
rdf                    10
traj      1     4000    2
 
timestep         0.0010
cutoff           6.5000
delr width       0.5000
rvdw cutoff      6.5000
no electrostatics 
 
print rdf         
 
job time       100000000.00
close time            10.00
 
finish 

The CONTROL file contains all the nec-

essary parameters for setting up a sim-

ulation. The first section of the file, as

shown in the figure aside, includes val-

ues for the physical variables affecting

the simulated system, such as temper-

ature, pressure and the ensemble used

(section 2.1). The middle section in-

cludes mainly keywords that control the

collection and type of data printed in

the output files of DL POLY while in

the last section keywords that define the

effect of several atomic interactions are

given. The duration of the simulation

and the time between each printed MD

frame are defined with the keywords

“steps” and “timestep”, respectively.

A.3 CONFIG file

The CONFIG file contains all the information defining the geometry of very ele-

ment of the simulated system in tabulated order. The file is divided in 3 columns,

representing the x, y and z coordinates of the Cartesian system and 2 sections. The

first section contains the x, y and z components of the vectors defining the size of

the simulation box, while the second sections indexes all the positions of the atoms
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A.4 TABLE file

contained in the system. As can be observed, the line above every x, y and z atomic

coordinate, denotes the type, index number and atomic mass of that specific atom

of the system.

In the figure below, a section from the CONFIG file of a simulated system con-

taining 29 Si atoms is shown.

Si29
         0         1
  30.000000000000000  0.0000000000000000  0.0000000000000000
  0.0000000000000000  30.000000000000000  0.0000000000000000
  0.0000000000000000  0.0000000000000000  30.000000000000000
Si               1        14
  -1.346524000000000  -1.288496000000000  -4.081769000000000
Si               2        14
  -1.346524000000000  -3.963995000000000  -1.406269000000000
Si               3        14
  -4.022024000000000  -1.288496000000000  -1.406269000000000
Si               4        14
  -2.684274000000000  -2.626246000000000  -0.068519000000000
Si               5        14
  -1.346524000000000  -1.288496000000000   1.269231000000000
Si               6        14
  -2.684274000000000   0.049254000000000  -2.744019000000000
Si               7        14
  -1.346524000000000   1.387004000000000  -1.406269000000000
Si               8        14
  -4.022024000000000   1.387004000000000   1.269231000000000
Si               9        14
  -2.684274000000000   2.724754000000000  -0.068519000000000
Si              10        14
  -1.346524000000000   4.062504000000000   1.269231000000000
Si              11        14
  -2.684274000000000   0.049254000000000   2.606981000000000
Si              12        14
  -1.346524000000000   1.387004000000000   3.944731000000000
Si              13        14
  -0.008774000000000  -2.626246000000000  -2.744019000000000
Si              14        14
   1.328976000000000  -1.288496000000000  -1.406269000000000
Si              15        14

A.4 TABLE file

The TABLE le provides an analytical form for a short range potential that does not

exist within the default force fields provided with the DL POLY code and can be
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A.4 TABLE file

specified by the user. The option of reading the values from a tabulated potential is

specied in the FIELD file (see above) with the “tab” keyword.

The TABLE file shown in the picture below, is a part from the TABLE file used for

describing the two-body term of the Stillinger-Weber [45] potential (section 2.3.4).

The energy and force values of the pair potential are given in 4 columns, which are

read line by line from the code. The units of the energy and force values included

in the TABLE file must be compatible with the units of the force field given in the

FIELD file.

Silicon (Stillinger-Weber)
  7.5420000E-04  3.7711800E+00      5004
Si      Si
  3.0341137E+18  1.8961103E+17  3.7449865E+16  1.1848053E+16
  4.8524224E+15  2.3398351E+15  1.2628440E+15  7.4017349E+14
  4.6203516E+14  3.0310746E+14  2.0700338E+14  1.4614189E+14
  1.0609082E+14  7.8866132E+13  5.9839659E+13  4.6219545E+13
  3.6262800E+13  2.8848179E+13  2.3235146E+13  1.8923053E+13
  1.5566299E+13  1.2921804E+13  1.0815680E+13  9.1216099E+12
  7.7465388E+12  6.6210306E+12  5.6926589E+12  4.9214072E+12
  4.2764227E+12  3.7336944E+12  3.2743731E+12  2.8835412E+12
  2.5493028E+12  2.2621042E+12  2.0142213E+12  1.7993697E+12
  1.6124065E+12  1.4490990E+12  1.3059454E+12  1.1800338E+12
  1.0689317E+12  9.7059744E+11  8.8331050E+11  8.0561473E+11
  7.3627308E+11  6.7423067E+11  6.1858478E+11  5.6856029E+11
  5.2348947E+11  4.8279529E+11  4.4597764E+11  4.1260183E+11
  3.8228896E+11  3.5470792E+11  3.2956861E+11  3.0661623E+11
  2.8562647E+11  2.6640140E+11  2.4876600E+11  2.3256515E+11
  2.1766111E+11  2.0393133E+11  1.9126655E+11  1.7956918E+11
  1.6875193E+11  1.5873653E+11  1.4945272E+11  1.4083733E+11
  1.3283345E+11  1.2538975E+11  1.1845984E+11  1.1200176E+11
  1.0597751E+11  1.0035258E+11  9.5095644E+10  9.0178196E+10
  8.5574275E+10  8.1260204E+10  7.7214369E+10  7.3417011E+10
  6.9850046E+10  6.6496911E+10  6.3342413E+10  6.0372602E+10
  5.7574660E+10  5.4936793E+10  5.2448141E+10  5.0098694E+10
  4.7879215E+10  4.5781176E+10  4.3796694E+10  4.1918476E+10
  4.0139770E+10  3.8454317E+10  3.6856317E+10  3.5340381E+10
  3.3901507E+10  3.2535045E+10  3.1236666E+10  3.0002343E+10
  2.8828323E+10  2.7711106E+10  2.6647428E+10  2.5634242E+10
  2.4668699E+10  2.3748138E+10  2.2870070E+10  2.2032162E+10
  2.1232233E+10  2.0468236E+10  1.9738253E+10  1.9040485E+10
  1.8373240E+10  1.7734932E+10  1.7124069E+10  1.6539247E+10
  1.5979146E+10  1.5442525E+10  1.4928212E+10  1.4435104E+10
  1.3962162E+10  1.3508405E+10  1.3072906E+10  1.2654793E+10
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Appendix B

DL POLY output files

B.1 STATIS file

Si29                                                                            
 ENERGY UNITS=DL_POLY Internal Units 
         1  1.000000E-03        37
 -8.361706E+05  0.000000E+00 -8.361706E+05 -8.362477E+05  0.000000E+00
  0.000000E+00  7.702204E+01  0.000000E+00  0.000000E+00 -8.063793E+05
  0.000000E+00 -8.937406E+04 -8.980792E+04  0.000000E+00  0.000000E+00
  4.338618E+02  0.000000E+00  0.000000E+00  2.700000E+04  0.000000E+00
  0.000000E+00  0.000000E+00  9.000000E+01  9.000000E+01  9.000000E+01
  0.000000E+00  1.808253E-01  0.000000E+00  1.825811E-01 -3.102446E-14
  1.754125E-06 -3.102446E-14  1.825811E-01 -1.754125E-06  1.754125E-06
 -1.754125E-06  1.825806E-01
         2  2.000000E-03        37
 -8.345864E+05  0.000000E+00 -8.345864E+05 -8.348861E+05  0.000000E+00
  0.000000E+00  2.996920E+02  0.000000E+00  0.000000E+00 -8.827360E+05
  0.000000E+00  1.444487E+05  1.427214E+05  0.000000E+00  0.000000E+00
  1.727299E+03  0.000000E+00  0.000000E+00  2.700000E+04  0.000000E+00
  0.000000E+00  0.000000E+00  9.000000E+01  9.000000E+01  9.000000E+01
  0.000000E+00 -2.922547E-01  0.000000E+00 -2.852650E-01 -1.146662E-13
  4.215205E-06 -1.146662E-13 -2.852650E-01 -4.215205E-06  4.215205E-06
 -4.215205E-06 -2.852657E-01
         3  3.000000E-03        37
 -8.361715E+05  0.000000E+00 -8.361715E+05 -8.362521E+05  0.000000E+00
  0.000000E+00  8.057706E+01  0.000000E+00  0.000000E+00 -8.082201E+05
  0.000000E+00 -8.385421E+04 -8.430833E+04  0.000000E+00  0.000000E+00
  4.541235E+02  0.000000E+00  0.000000E+00  2.700000E+04  0.000000E+00
  0.000000E+00  0.000000E+00  9.000000E+01  9.000000E+01  9.000000E+01
  0.000000E+00  1.696573E-01  0.000000E+00  1.714951E-01 -3.295277E-14
  1.815224E-06 -3.295277E-14  1.714951E-01 -1.815224E-06  1.815224E-06
 -1.815224E-06  1.714946E-01
         4  4.000000E-03        37
 -8.366923E+05  0.000000E+00 -8.366923E+05 -8.367631E+05  0.000000E+00
  0.000000E+00  7.079468E+01  0.000000E+00  0.000000E+00 -8.285748E+05
  0.000000E+00 -2.435263E+04 -2.476630E+04  0.000000E+00  0.000000E+00
  4.136664E+02  0.000000E+00  0.000000E+00  2.700000E+04  0.000000E+00
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B.2 HISTORY file

The STATIS file contains analytical information about the total energy, energy

components and forces acting on the system at every timestep, as defined by the

force field.

B.2 HISTORY file

The HISTORY file provides all the atomic positions, velocities and forces acting on

every atom contained in the system, at time intervals during the simulation, which

are defined by the user in the CONTROL file. In other words, it gives the “trajec-

tory” of the simulated system and when imported to a visualisation program, such

as VMD, one can observe the behaviour of atoms, motions and vibrations, during

the simulation.

Si29                                                                            
         2         1        29
timestep         1        29         2         1    0.001000
   30.00       0.000       0.000    
   0.000       30.00       0.000    
   0.000       0.000       30.00    
Si               1   28.085500    0.000000
 -1.3465E+00 -1.2885E+00 -4.1648E+00
  0.0000E+00  0.0000E+00  0.0000E+00
 -8.7888E+01 -8.7860E+01  9.2710E+01
Si               2   28.085500    0.000000
 -1.3465E+00 -4.0470E+00 -1.4063E+00
  0.0000E+00  0.0000E+00  0.0000E+00
 -8.7877E+01  9.2778E+01 -8.7877E+01
Si               3   28.085500    0.000000
 -4.1051E+00 -1.2885E+00 -1.4063E+00
  0.0000E+00  0.0000E+00  0.0000E+00
  9.2710E+01 -8.7860E+01 -8.7888E+01
Si               4   28.085500    0.000000
 -2.7258E+00 -2.6678E+00 -2.6993E-02
  0.0000E+00  0.0000E+00  0.0000E+00
 -1.1003E+03 -1.1004E+03 -1.7109E+03
Si               5   28.085500    0.000000
 -1.3465E+00 -1.2885E+00  1.2692E+00
  0.0000E+00  0.0000E+00  0.0000E+00
 -1.3178E+03 -1.3178E+03  1.3178E+03
Si               6   28.085500    0.000000
 -2.7258E+00  9.0779E-02 -2.7855E+00
  0.0000E+00  0.0000E+00  0.0000E+00
 -1.1003E+03 -1.7109E+03 -1.1003E+03
Si               7   28.085500    0.000000
 -1.3465E+00  1.3870E+00 -1.4063E+00
  0.0000E+00  0.0000E+00  0.0000E+00
 -1.3178E+03  1.3178E+03 -1.3178E+03

VI



B.3 OUTPUT file

B.3 OUTPUT file

 
                    DL_POLY Version 2.18
 
                              Running on    1 nodes
 
 
 ************************************************************************************************************************
 ************************************************************************************************************************
 ************************************************************************************************************************
 ***************     Silane                                                                               ***************
 ************************************************************************************************************************
 ************************************************************************************************************************
 ************************************************************************************************************************
 
 
 SIMULATION CONTROL PARAMETERS
 
 
 velocity verlet integration selected
 
 structure optimisation requested
 convergence to minimum force selected
 tolerance for structure optimisation      1.0000E-05
 
 selected number of timesteps        10000
 
 temperature scaling on
 temperature scaling interval            5
 
 data printing interval                  1
 
 data stacking interval                 10
 
 statistics file interval                1
 
 trajectory file option on  
 trajectory file start                   1
 trajectory file interval                1
 trajectory file info key                2
 
 simulation timestep              1.0000E-03
 
 real space cut off               5.4300E+00
 
 real space cut off (vdw)         3.7710E+00
 
 border width of Verlet shell     1.0000E-01
 
 
 electrostatic potential terms off
 
 user allocated job time (s)      1.0000E+04
 
 job closure time        (s)      1.0000E+01
 
 
SYSTEM SPECIFICATION
 
 energy units=dl_poly internal units 
 
 
 number of molecular types               1
 
 molecular species type                  1
 
 
 name of species:             Si                                      
 
 number of molecules                    29
 
 number of atoms/sites                   1
 
 
 atomic characteristics:
 
                      site     name          mass        charge    repeat    freeze
 
                         1     Si          28.08550     0.00000         1         0
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B.3 OUTPUT file

 
 
 number of specified pair potentials         1
 
 
                atom 1  atom 2      key                              parameters
 
 
                Si      Si        tab 
 
 
 potential tables read from TABLE file
 
 
 number of specified three body potentials         1
 
 
                atom 1  atom 2  atom 3      key                              parameters
 
 
                Si      Si      Si          stwb   1.16667E+02  6.00000E+00  9.00000E+00  2.51412E+00  2.51412E+00
 
 configuration file name: 
 
          Si29                                                                            
 
 
 selected image convention               1
 
 
 simulation cell vectors
 
 
                        30.000000    0.000000    0.000000
                         0.000000   30.000000    0.000000
                         0.000000    0.000000   30.000000
 
 
 system volume            27000.0000000    
 
 
 link cell algorithm in use
 
 
 total degrees of freedom                        84.
 rotational degrees of freedom                    0.
 shell pseudo degrees of freedom                  0.
 
 
 sample of starting configuration
 
      i       x(i)        y(i)        z(i)       vx(i)       vy(i)       vz(i)
 
 
      1 -1.3465E+00 -1.2885E+00 -4.0818E+00  0.0000E+00  0.0000E+00  0.0000E+00
      3 -4.0220E+00 -1.2885E+00 -1.4063E+00  0.0000E+00  0.0000E+00  0.0000E+00
      5 -1.3465E+00 -1.2885E+00  1.2692E+00  0.0000E+00  0.0000E+00  0.0000E+00
      7 -1.3465E+00  1.3870E+00 -1.4063E+00  0.0000E+00  0.0000E+00  0.0000E+00
      9 -2.6843E+00  2.7248E+00 -6.8519E-02  0.0000E+00  0.0000E+00  0.0000E+00
     11 -2.6843E+00  4.9254E-02  2.6070E+00  0.0000E+00  0.0000E+00  0.0000E+00
     13 -8.7740E-03 -2.6262E+00 -2.7440E+00  0.0000E+00  0.0000E+00  0.0000E+00
     15  1.3290E+00 -3.9640E+00  1.2692E+00  0.0000E+00  0.0000E+00  0.0000E+00
     17  4.0045E+00 -1.2885E+00  1.2692E+00  0.0000E+00  0.0000E+00  0.0000E+00
     19  1.3290E+00 -1.2885E+00  3.9447E+00  0.0000E+00  0.0000E+00  0.0000E+00
     21  2.6667E+00  4.9254E-02 -2.7440E+00  0.0000E+00  0.0000E+00  0.0000E+00
     23 -8.7740E-03  2.7248E+00 -2.7440E+00  0.0000E+00  0.0000E+00  0.0000E+00
     25 -8.7740E-03  4.9254E-02 -6.8519E-02  0.0000E+00  0.0000E+00  0.0000E+00
     27  2.6667E+00  2.7248E+00 -6.8519E-02  0.0000E+00  0.0000E+00  0.0000E+00
     29 -8.7740E-03  2.7248E+00  2.6070E+00  0.0000E+00  0.0000E+00  0.0000E+00
 
 
long range correction for: vdw energy     0.000000E+00
                         : vdw pressure   0.000000E+00
 
 time elapsed since job start =           0.011 seconds
 
 ------------------------------------------------------------------------------------------------------------------------
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B.3 OUTPUT file

     step     eng_tot    temp_tot     eng_cfg     eng_vdw     eng_cou     eng_bnd     eng_ang     eng_dih     eng_tet
 time(ps)      eng_pv    temp_rot     vir_cfg     vir_vdw     vir_cou     vir_bnd     vir_ang     vir_con     vir_tet
 cpu  (s)      volume    temp_shl     eng_shl     vir_shl       alpha        beta       gamma     vir_pmf       press
 
 ------------------------------------------------------------------------------------------------------------------------
        1 -8.3617E+05  0.0000E+00 -8.3617E+05 -8.3625E+05  0.0000E+00  0.0000E+00  7.7022E+01  0.0000E+00  0.0000E+00
    0.001 -8.0638E+05  0.0000E+00 -8.9374E+04 -8.9808E+04  0.0000E+00  0.0000E+00  4.3386E+02  0.0000E+00  0.0000E+00
     0.01  2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00  1.8083E-01
 
  rolling -8.3617E+05  0.0000E+00 -8.3617E+05 -8.3625E+05  0.0000E+00  0.0000E+00  7.7022E+01  0.0000E+00  0.0000E+00
 averages -8.0638E+05  0.0000E+00 -8.9374E+04 -8.9808E+04  0.0000E+00  0.0000E+00  4.3386E+02  0.0000E+00  0.0000E+00
           2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00  1.8083E-01
 ------------------------------------------------------------------------------------------------------------------------
        2 -8.3459E+05  0.0000E+00 -8.3459E+05 -8.3489E+05  0.0000E+00  0.0000E+00  2.9969E+02  0.0000E+00  0.0000E+00
    0.002 -8.8274E+05  0.0000E+00  1.4445E+05  1.4272E+05  0.0000E+00  0.0000E+00  1.7273E+03  0.0000E+00  0.0000E+00
     0.02  2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00 -2.9225E-01
 
  rolling -8.3538E+05  0.0000E+00 -8.3538E+05 -8.3557E+05  0.0000E+00  0.0000E+00  1.8836E+02  0.0000E+00  0.0000E+00
 averages -8.4456E+05  0.0000E+00  2.7537E+04  2.6457E+04  0.0000E+00  0.0000E+00  1.0806E+03  0.0000E+00  0.0000E+00
           2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00 -5.5715E-02
 ------------------------------------------------------------------------------------------------------------------------
        3 -8.3617E+05  0.0000E+00 -8.3617E+05 -8.3625E+05  0.0000E+00  0.0000E+00  8.0577E+01  0.0000E+00  0.0000E+00
    0.003 -8.0822E+05  0.0000E+00 -8.3854E+04 -8.4308E+04  0.0000E+00  0.0000E+00  4.5412E+02  0.0000E+00  0.0000E+00
     0.02  2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00  1.6966E-01
 
  rolling -8.3564E+05  0.0000E+00 -8.3564E+05 -8.3580E+05  0.0000E+00  0.0000E+00  1.5243E+02  0.0000E+00  0.0000E+00
 averages -8.3245E+05  0.0000E+00 -9.5932E+03 -1.0465E+04  0.0000E+00  0.0000E+00  8.7176E+02  0.0000E+00  0.0000E+00
           2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00  1.9409E-02
 ------------------------------------------------------------------------------------------------------------------------
        4 -8.3669E+05  0.0000E+00 -8.3669E+05 -8.3676E+05  0.0000E+00  0.0000E+00  7.0795E+01  0.0000E+00  0.0000E+00
    0.004 -8.2857E+05  0.0000E+00 -2.4353E+04 -2.4766E+04  0.0000E+00  0.0000E+00  4.1367E+02  0.0000E+00  0.0000E+00
     0.02  2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00  4.9271E-02
 
  rolling -8.3591E+05  0.0000E+00 -8.3591E+05 -8.3604E+05  0.0000E+00  0.0000E+00  1.3202E+02  0.0000E+00  0.0000E+00
 averages -8.3148E+05  0.0000E+00 -1.3283E+04 -1.4040E+04  0.0000E+00  0.0000E+00  7.5724E+02  0.0000E+00  0.0000E+00
           2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00  2.6875E-02
 ------------------------------------------------------------------------------------------------------------------------
        5 -8.3650E+05  0.0000E+00 -8.3650E+05 -8.3665E+05  0.0000E+00  0.0000E+00  1.5519E+02  0.0000E+00  0.0000E+00
    0.005 -8.4810E+05  0.0000E+00  3.4809E+04  3.3896E+04  0.0000E+00  0.0000E+00  9.1271E+02  0.0000E+00  0.0000E+00
     0.02  2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00 -7.0427E-02
 
  rolling -8.3602E+05  0.0000E+00 -8.3602E+05 -8.3616E+05  0.0000E+00  0.0000E+00  1.3665E+02  0.0000E+00  0.0000E+00
 averages -8.3480E+05  0.0000E+00 -3.6646E+03 -4.4529E+03  0.0000E+00  0.0000E+00  7.8833E+02  0.0000E+00  0.0000E+00
           2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00  7.4144E-03
 ------------------------------------------------------------------------------------------------------------------------
        6 -8.3671E+05  0.0000E+00 -8.3671E+05 -8.3679E+05  0.0000E+00  0.0000E+00  8.2007E+01  0.0000E+00  0.0000E+00
    0.006 -8.3307E+05  0.0000E+00 -1.0933E+04 -1.1414E+04  0.0000E+00  0.0000E+00  4.8056E+02  0.0000E+00  0.0000E+00
     0.03  2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00  2.2121E-02
 
  rolling -8.3614E+05  0.0000E+00 -8.3614E+05 -8.3627E+05  0.0000E+00  0.0000E+00  1.2755E+02  0.0000E+00  0.0000E+00
 averages -8.3451E+05  0.0000E+00 -4.8761E+03 -5.6131E+03  0.0000E+00  0.0000E+00  7.3704E+02  0.0000E+00  0.0000E+00
           2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00  9.8655E-03
 ------------------------------------------------------------------------------------------------------------------------
        7 -8.3673E+05  0.0000E+00 -8.3673E+05 -8.3676E+05  0.0000E+00  0.0000E+00  3.2899E+01  0.0000E+00  0.0000E+00
    0.007 -8.3518E+05  0.0000E+00 -4.6504E+03 -4.8433E+03  0.0000E+00  0.0000E+00  1.9286E+02  0.0000E+00  0.0000E+00
     0.03  2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00  9.4089E-03
 
  rolling -8.3622E+05  0.0000E+00 -8.3622E+05 -8.3634E+05  0.0000E+00  0.0000E+00  1.1403E+02  0.0000E+00  0.0000E+00
 averages -8.3461E+05  0.0000E+00 -4.8438E+03 -5.5031E+03  0.0000E+00  0.0000E+00  6.5930E+02  0.0000E+00  0.0000E+00
           2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00  9.8002E-03
 ------------------------------------------------------------------------------------------------------------------------
        8 -8.3674E+05  0.0000E+00 -8.3674E+05 -8.3679E+05  0.0000E+00  0.0000E+00  4.7553E+01  0.0000E+00  0.0000E+00
    0.008 -8.3434E+05  0.0000E+00 -7.2131E+03 -7.4917E+03  0.0000E+00  0.0000E+00  2.7863E+02  0.0000E+00  0.0000E+00
     0.03  2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00  1.4594E-02
 
  rolling -8.3629E+05  0.0000E+00 -8.3629E+05 -8.3639E+05  0.0000E+00  0.0000E+00  1.0572E+02  0.0000E+00  0.0000E+00
 averages -8.3457E+05  0.0000E+00 -5.1400E+03 -5.7517E+03  0.0000E+00  0.0000E+00  6.1171E+02  0.0000E+00  0.0000E+00
           2.7000E+04  0.0000E+00  0.0000E+00  0.0000E+00  9.0000E+01  9.0000E+01  9.0000E+01  0.0000E+00  1.0399E-02
 ------------------------------------------------------------------------------------------------------------------------
 ------------------------------------------------------------------------------------------------------------------------
 
     step     eng_tot    temp_tot     eng_cfg     eng_vdw     eng_cou     eng_bnd     eng_ang     eng_dih     eng_tet
 time(ps)      eng_pv    temp_rot     vir_cfg     vir_vdw     vir_cou     vir_bnd     vir_ang     vir_con     vir_tet
 cpu  (s)      volume    temp_shl     eng_shl     vir_shl       alpha        beta       gamma     vir_pmf       press
 
 ------------------------------------------------------------------------------------------------------------------------
        9 -8.3676E+05  0.0000E+00 -8.3676E+05 -8.3679E+05  0.0000E+00  0.0000E+00  3.1563E+01  0.0000E+00  0.0000E+00
    0.009 -8.3474E+05  0.0000E+00 -6.0664E+03 -6.2514E+03  0.0000E+00  0.0000E+00  1.8499E+02  0.0000E+00  0.0000E+00
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B.4 REVCON file

All the information derived from a classical MD simulation, is summarised in

the OUTPUT file. At the beginning the OUTPUT file gives an analytical description

of the keywords included in the CONTROL file followed by the FIELD file and also

by a small random selection of atomic coordinates given in the CONFIG file. When

the simulation starts, the data derived from every energy and force component of

the force field, at every timestep, are collected and printed in the following sections

of the OUTPUT file.

B.4 REVCON file

Si29                                                                            
         2         1        29    0.1000000000E-02
     30.000000000000      0.000000000000      0.000000000000
      0.000000000000     30.000000000000      0.000000000000
      0.000000000000      0.000000000000     30.000000000000
Si               1
    -1.366502462        -1.308475366        -4.141725368    
   0.00000000000       0.00000000000       0.00000000000    
 -0.224669506711      0.622518080443E-01 -0.157627673295    
Si               2
    -1.366502691        -4.023952787        -1.426248103    
   0.00000000000       0.00000000000       0.00000000000    
 -0.167142368090     -0.273914489820E-01 -0.270964710589E-01
Si               3
    -4.081980579        -1.308475157        -1.426247666    
   0.00000000000       0.00000000000       0.00000000000    
 -0.110963554474      0.567910468697E-03 -0.146319890770    
Si               4
    -2.724245047        -2.666215900       -0.6851415192E-01
   0.00000000000       0.00000000000       0.00000000000    
 -0.212602638299     -0.479161086526     -0.347317808886    
Si               5
    -1.366509064        -1.308482030         1.289215584    
   0.00000000000       0.00000000000       0.00000000000    
 -0.353417509238E-01  0.264567602987      0.156446379020    
Si               6
    -2.724244659        0.4925897881E-01    -2.783989563    
   0.00000000000       0.00000000000       0.00000000000    
 -0.314726651533     -0.360031711122     -0.334843592424    
Si               7
    -1.366510336         1.406990336        -1.426254857    
   0.00000000000       0.00000000000       0.00000000000    
  0.326832750091     -0.326832749411      0.205821572101    
Si               8

The final geometry of the system is printed in the REVCON file, which has the

same format with the CONFIG file. In addition with every spatial x, y, and z coor-

dinate of every atom, the x, y and z components of the atoms velocities and forces

are given, in the sample shown above. The REVCON file replaces the CONFIG file,

when a restart of the MD simulation is required.
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Appendix C

Post-processing scripts for DL POLY

C.1 CONFIG to XYZ

#!/usr/bin/perl

open(FILEIN,"<$ARGV[0]") || die "Cannot open input file $ARGV[0]";

open(OUT,">$ARGV[0]".".xyz");

$line=<FILEIN>;

$i=0;

print OUT $line;

print OUT "\n";

while($line=<FILEIN>){

chomp $line;

@data = split /[\s\t]+/, $line; 

shift @data if $data[0] eq "";

if ($data[0] =~ /\D/ && $data[0] !~ /\W/ ){

my $atom=$data[0];

$line=<FILEIN>;

chomp $line;

@data = split /[\s\t]+/, $line;$i++;

shift @data if $data[0] eq "";

printf OUT "%-4s %16.9f%16.9f%16.9f\n",$atom,$data[0],$data[1],$data[2];

}

}

printf OUT "\n";

printf OUT "Total number of atoms";

printf OUT "%4d\n",$i;

close(FILEIN);

close(OUT);
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C.2 XYZ to CONFIG

C.2 XYZ to CONFIG

#!/usr/bin/perl

# array that contains all the atoms in the periodic table

@periodic=("H","He","Li","Be","B","C","N","O","F","Ne","Na","Mg","Al","Si",
"P","S","Cl","Ar","K","Ca","Sc","Ti","V","Cr","Mn","Fe","Co","Ni","Cu",
"Zn","Ga","Ge","As","Se","Br","Kr","Rb","Sr","Y","Zr","Nb","Mo","Tc","Ru",
"Rh","Pd","Ag","Cd","In","Sn","Sb","Te","I","Xe","Cs","Ba","La","Ce","Pr",
"Nd","Pm","Sm","Eu","Gd","Tb","Dy","Ho","Er","Tm","Yb","Lu","Hf","Ta","W",
"Re","Os","Ir","Pt","Au","Hg","Tl","Pb","83","Po","At","Rn","Fr","Ra","Ac",
"Th","Pa","U","Np","Pu","Am","Cm","Bk","Cf","Es","Fm","Md","No","Lr","Rf",
"Db","Sg","Bh","Hs","Mt");

$name=$ARGV[0];

open(XYZ,"$name");
$i=0;

$check="on";
@atom_type="";
while($line=<XYZ>){
if ($check eq "on"){
$header=$line;

$check="off";
}

@data=field($line);

if ($data[0] =~ /\w/ && $data[1] =~ /\d/ && $data[2] =~ /\d/ && $data[3] =~ /\d/ ){
$atom[$i][0]=$data[0]; # atom type

$atom[$i][1]=$data[1]; # X

$atom[$i][2]=$data[2]; # Y

$atom[$i][3]=$data[3]; # Z

# check if $data[$atom_label] is present in @atom_type

$check=0;

foreach my $tmp(@atom_type){
$check++ if $tmp ne $data[0];

}

push(@atom_type,$data[0]) if $check > $#atom_type;

$i++;

}}

# remove the empty value at the beginning of @atom_type.

shift(@atom_type);

# compare the atoms in the system with the periodic table, and write the atomic number

for my $j(0 .. $#periodic){
my $atom2=$periodic[$j];
my $atom3=length($atom2);
for my $k(0 .. $#atom_type){
my $length=length($atom_type[$k]);
$atom_number[$k]=$j+1 if ($atom_type[$k] =~ /^$atom2/i && $length == $atom3);
}}

open(CFG,">${name}.cfg");
$header2="Converted from XYZ\n";
print CFG "$header\n";
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C.2 XYZ to CONFIG

#writing atom types and coordinates into DL_POLY CONFIG

#for($i=1;$i<=$#atomType;$i++){

for my $i(0 .. $#atom){
my $atom2=$atom[$i][0];
for my $j(0 .. $#atom_type){
$Z=$atom_number[$j] if $atom_type[$j] =~ /^$atom2/i;
}

printf CFG "%-8s%10d%10d\n",$atom2,$i+1,$Z;
printf CFG "%20.15f%20.15f%20.15f\n",$atom[$i][1],$atom[$i][2],$atom[$i][3];
}

close(CFG);

close(XYZ);

sub field{
chomp $_[0];

my @out = split /[\s\t]+/, $_[0];
if ($out[0] eq ""){ shift @out};
return @out

}

The above scripts, written in “perl“, have been constructed to convert the atomic

positions of a simulated system, from the format of the CONFIG file to a typical

XYZ file and vice versa. A sampled geometry for the Si29 system, in XYZ format in

shown below:

29
 
 Si       -1.346500       -1.288500       -4.164800
 Si       -1.346500       -4.047000       -1.406300
 Si       -4.105100       -1.288500       -1.406300
 Si       -2.725800       -2.667800       -0.026993
 Si       -1.346500       -1.288500        1.269200
 Si       -2.725800        0.090779       -2.785500
 Si       -1.346500        1.387000       -1.406300
 Si       -4.105100        1.387000        1.269200
 Si       -2.725800        2.766300       -0.110040
 Si       -1.346500        4.145600        1.269200
 Si       -2.725800        0.007729        2.648500
 Si       -1.346500        1.387000        4.027800
 Si        0.032752       -2.667800       -2.785500
 Si        1.329000       -1.288500       -1.406300
 Si        1.329000       -4.047000        1.269200
 Si        2.708300       -2.667800       -0.110050
 Si        4.087500       -1.288500        1.269200
 Si       -0.050300       -2.667800        2.648500
 Si        1.329000       -1.288500        4.027800
 Si        1.329000        1.387000       -4.164800
 Si        2.708300        0.007728       -2.785500
 Si        4.087500        1.387000       -1.406300
 Si       -0.050299        2.766300       -2.785500
 Si        1.329000        4.145600       -1.406300
 Si       -0.008774        0.049254       -0.068519
 Si        1.329000        1.387000        1.269200
 Si        2.708300        2.766300       -0.026993
 Si        2.708300        0.090780        2.648500
 Si        0.032751        2.766300        2.648500
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C.2 XYZ to CONFIG
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Appendix D

DL POLY inputs for Au13

D.1 FIELD

Gold13
units  ev
molecular types 1
Gold
nummols 13
atoms 1
Au     196.9670       0.0         1
finish
metal 1
Au      Au      gupt   0.4122    2.884     10.229     1.790      4.036
close

XV



D.2 CONTROL

D.2 CONTROL

Au55 with Gupta Potentials
 
integration velocity verlet
 
temperature         20.00
pressure            0.0010
ensemble nve
 
#restart
#zero
#optim force       1.0E-5
 
steps             2000000
equilibration       50000
scale                  10
print                 100
stack                  10
stats                 100
rdf                    10
traj    1     4000    2
 
timestep         0.0010
 
cutoff           6.5000
delr width       0.5000
rvdw cutoff      6.5000
no electrostatics 
 
print rdf         
 
job time       100000000.00
close time            10.00
 
finish 

D.3 CONFIG
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D.3 CONFIG

Gold (13 atom cluster)                                                          
         2         1        13  -410286.918245    
     40.000000000000      0.000000000000      0.000000000000
      0.000000000000     40.000000000000      0.000000000000
      0.000000000000      0.000000000000     40.000000000000
Au               1
    0.1926494748E-01   -0.1642203981E-01   -0.8959976098E-03
  0.281001545082E-01  0.263117160829     -0.271110737667    
  -2131.03569527       2492.57261509      -1357.21730189    
Au               2
     2.259921999         1.417252624       -0.6337563116E-01
  0.162117718797     -0.587374003811     -0.252394878187E-01
  -267.203079293      -806.675898522       206.942777592    
Au               3
    -2.262568391         1.403066555       -0.4512651586E-01
 -0.348366591126     -0.104338060148     -0.472326832320E-01
   1155.78305899      -815.024533102       178.087909825    
Au               4
     2.238000912        -1.475459360        0.5620615700E-01
  0.393623796407      0.213870059164E-01 -0.206023497361    
   176.096124692       1093.01882725      -498.909281936    
Au               5
    -2.254434998        -1.378805284        0.8622297296E-01
  0.176532864037      0.406232066018E-01 -0.153540837723E-01
  -929.321832944       21.1239790699      -1246.95204793    
Au               6
     1.389381055        0.6874771515E-01     2.217973462    
  0.210393687155      0.850606478478E-01 -0.482414609499E-01
   2153.46890328      -399.804916976       2993.49605182    
Au               7
    -1.394355435        0.4419577866E-01     2.284595278    
  0.221563263478      0.126825230212      0.219530024142E-01
  -223.515140349       359.663748696      -622.220842911    
Au               8
   -0.3098460735E-01     2.270075655         1.359153138    
 -0.533976605568      0.535343735041      0.372113155026    
   119.182120074       1135.10086543      -195.759028275    
Au               9
   -0.4199417751E-01    -2.232770344         1.443853007    
 -0.110082136141     -0.155227775255      0.108046860305    
   605.953119931      -1396.72380924       826.057519054    
Au              10
     1.408130523       -0.6800014253E-01    -2.257736006    
 -0.908880071628E-01  0.100422698012      0.434806648860    
   892.995040362       591.325959796      -388.291172558    
Au              11
    -1.362480966       -0.1708261189E-01    -2.269171337    
  0.166917793705     -0.275079573855E-01 -0.162525593036    
  -672.106745499       27.2289906946       180.830708103    
Au              12
    0.1819522063E-01     2.249832689        -1.426826671    
  0.828108820717E-01  0.642263394257E-01  0.238125243217E-01
  -244.693159804      -639.633736714       71.2608782504    
Au              13
    0.1392391775E-01    -2.264631233        -1.384871857    
 -0.358746820161     -0.362558227286     -0.185004647090    
  -635.602714174      -1662.17209147      -147.326169141    
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Appendix E

Construction of nanoparticles with

Materials Studio

Accelrys Materials Studio (MS) [123] is a multifunctional plat-

form which allows the modelling, simulation and analysis of

chemical compounds, using a large variety of available op-

tions. More importantly, it employs some of the most popular

computational software for conducting calculations which can

be linked to an external server or a computer cluster. The pro-

cedure for constructing nanocrystals and nanostructures using

MS, is very simple and straight-forward, as described in the

following sections.
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E.1 Construction of Si nanorods

E.1 Construction of Si nanorods

The unit cells of every element of the periodic table in its bulk crystalline form are

already included in MS. For constructing a Si nanorod, the unit cell of bulk silicon

has to be imported by selecting File > Import > Select crystal structure. Otherwise, the

symmetry of a crystal structure can be defined by the user from the Build > Crystals

menu.

From the Build menu select Build Nanostructure > Nanocluster.

XX



E.1 Construction of Si nanorods

In the Shape menu of the Shape tab, select Cylinder and then insert the values of

the cylinder basis radius and its height in Å. At the Base plane box, give define the

crystal’s growth direction by using “Miller indices”. By pressing the Build button

the Si nanorod is now constructed.

XXI



E.1 Construction of Si nanorods

The surface atoms of the constructed Si nanorod which contain free dangling

bonds, can be capped with H atoms directly by using the Auto-update hydrogen op-

tion from the tools bar, right below the menu bar.

In order to resemble the shape of Si nanorods observed in experimental images,

the caps of the nanorod were manually smoothed by selectively removing some

surface atoms at the edges.
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E.2 Construction of Au/Pt nanoparticles

E.2 Construction of Au/Pt nanoparticles

In a similar manner as described in the previous for constructing Si nanorods, the

unit cell of the bulk gold/platinum crystal is imported (File > Import > Select crystal

structure). The unit cell of a bulk crystal can also be imported from a geometry

optimisation calculation performed on a unit cell structure of the simulated system.

XXIII



E.2 Construction of Au/Pt nanoparticles

From the Build menu select Build Nanostructure > Nanocluster.

XXIV



E.2 Construction of Au/Pt nanoparticles

In the Shape menu of the Shape tab, select Sphere and then give the radius in Å.

XXV



E.2 Construction of Au/Pt nanoparticles
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Appendix F

CASTEP input files

Samples of the CASTEP input files for a gold nanosurface in contact with one CH3S-

molecule are displayed below. The .cell file contains all the coordinates and vari-

ables defining the geometry of the simulated system, while the .param file contains

all the parameters regarding the calculation.

F.1 .param file

task=molecular dynamics
iprint=2
XC_FUNCTIONAL = PBE
CUT_OFF_ENERGY = 650 eV
GRID_SCALE = 2.0
metals_method = EDFT
OPT_STRATEGY = speed
md_ensemble    = NVE
md_delta_t     = 1.0 fs
md_num_iter    = 200
md_temperature = 300 K

XXVII



F.2 .cell file

F.2 .cell file

%BLOCK LATTICE_ABC
11.614000  11.614000   19.424000
90.000000  90.000000   60.000000
%ENDBLOCK LATTICE_ABC

%BLOCK POSITIONS_ABS
Au        2.826000000     3.429400000     0.205700000
Au        1.403700000     0.899400000     0.190900000
Au        5.775300000     3.371000000     0.217700000
Au        4.316300000     0.886900000     0.193800000
Au        8.634400000     3.419000000     0.214600000
Au        7.197400000     0.902300000     0.201200000
Au       11.592400000     3.366500000     0.212100000
Au       10.118300000     0.890400000     0.195200000
Au        5.738000000     8.411100000     0.245000000
Au        4.437500000     5.827400000     0.162100000
Au        8.694400000     8.591400000     0.011200000
Au        7.479400000     6.220900000     0.407600000
Au       11.559400000     8.410600000     0.231100000
Au       10.203000000     5.820400000     0.210600000
Au       14.497400000     8.575400000     0.031200000
Au       13.313200000     6.193900000     0.407900000
Au        5.794300000     1.669800000     2.588800000
Au        7.239300000     4.196300000     2.582400000
Au        2.894200000     1.669300000     2.585500000
Au        4.347300000     4.185000000     2.582800000
Au       11.606600000     1.690500000     2.562900000
Au       13.047600000     4.182000000     2.595400000
Au        8.704600000     1.668900000     2.582400000
Au       10.152000000     4.193200000     2.576900000
Au        8.700600000     6.595100000     2.690400000
Au       10.147100000     9.229200000     2.574600000
Au        5.741700000     6.760400000     2.579900000
Au        7.306000000     9.181000000     2.560900000
Au       14.481800000     6.576500000     2.734600000
Au       15.953900000     9.247200000     2.556900000
Au       11.581000000     6.746900000     2.561100000
Au       13.087000000     9.193000000     2.575000000
Au        2.920500000     0.016800000     4.891200000
Au        4.361600000     2.510200000     4.914400000
Au        5.750500000     0.044800000     4.945700000
Au        1.450100000     2.493900000     4.879900000
Au        2.867000000     3.453100000     7.434200000
Au        1.419800000     0.819200000     7.138500000
Au        5.911900000     3.399300000     7.118700000
Au        4.400900000     0.739800000     7.476600000
Au        8.707400000     0.034200000     4.859200000
Au       10.160900000     2.518800000     4.858700000
Au        0.006300000     0.007800000     4.831900000
Au        7.265800000     2.468900000     4.847600000
Au        8.757500000     3.356100000     7.285500000
Au        7.292500000     0.856900000     7.205500000
Au       11.610700000     3.334600000     7.196000000
Au       10.158300000     0.812100000     7.235900000
Au        5.788600000     5.080200000     4.843400000
Au        7.242000000     7.536900000     4.891700000
Au        8.686400000     4.955000000     4.952700000
Au        4.329600000     7.573800000     4.880200000
Au        5.791400000     8.377400000     7.254800000
Au        4.392600000     5.894400000     7.225300000
Au        8.709400000     8.382500000     7.224100000
Au        7.275500000     5.919900000     7.271900000

XXVIII



F.2 .cell file

Au       11.621300000     5.059900000     4.853200000
Au       13.026600000     7.559800000     4.897600000
Au        2.904600000     4.900700000     5.010900000
Au       10.152400000     7.545400000     4.869300000
Au       11.602100000     8.349500000     7.230100000
Au       10.169300000     5.845900000     7.220100000
Au       14.521200000     8.406300000     7.231600000
Au       13.047400000     5.913300000     7.231200000
H         2.108900000     0.881500000    10.048200000
H         2.019200000     2.516600000    10.741500000
H         3.213300000     1.353200000    11.362600000
C         2.685900000     1.698600000    10.475000000
S         3.928700000     2.318300000     9.307100000
%ENDBLOCK POSITIONS_ABS

%block ionic_constraints
1 Au 1  1 1 1
2 Au 2  1 1 1
3 Au 3  1 1 1
4 Au 4  1 1 1
5 Au 5  1 1 1
6 Au 6  1 1 1
7 Au 7  1 1 1
8 Au 8  1 1 1
9 Au 9  1 1 1
10 Au 10  1 1 1
11 Au 11  1 1 1
12 Au 12  1 1 1
13 Au 13  1 1 1
14 Au 14  1 1 1
15 Au 15  1 1 1
16 Au 16  1 1 1
17 Au 17  1 1 1
18 Au 18  1 1 1
19 Au 19  1 1 1
20 Au 20  1 1 1
21 Au 21  1 1 1
22 Au 22  1 1 1
23 Au 23  1 1 1
24 Au 24  1 1 1
25 Au 25  1 1 1
26 Au 26  1 1 1
27 Au 27  1 1 1
28 Au 28  1 1 1
29 Au 29  1 1 1
30 Au 30  1 1 1
31 Au 31  1 1 1
32 Au 32  1 1 1
%endblock ionic_constraints

KPOINTS_MP_SPACING 0.04 1/ang

fix_all_ions : false
fix_com : false
FIX_ALL_CELL : TRUE

%block species_pot
  Au   Au_00.recpot
  C    C_01.recpot
  H    H_04.recpot
  S    S_00.recpot
%endblock species_pot

XXIX



F.2 .cell file

XXX



Directory structure with input and output files of calculations from this thesis are provided in the accompanying DVDs
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