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Abstract

Semiconductor and metallic nanoparticles have recently become an attractive area
of intensive research due to their unique and diverse properties, that differ signifi-
cantly from bulk materials. With a wide range of applications and potential uses in
nanoelectronics, catalysis, medicine, chemistry or physics an important amount of
experimental and theoretical investigations aim to facilitate deeper understating in

their physical and chemical behaviour.

Within this context, this thesis is focused on the theoretical investigation of sil-
icon, gold and platinum nanoclusters and nanoalloys, in order to provide support
for experimental data obtained from collaborating researchers and scientists. Mod-
elled structures of the above nanoparticles were constructed and studied by using a
variety of computational tools such as, classical force field MD (DL _POLY [1]), tight-
binding DFT (DFTB+ [2]), conventional DFT (CASTEP [3]) and linear-scaling DFT
(ONETEP [4]).

A brief introduction regarding some basic principles of quantum mechanics (QM)

and of solid state physics is presented in the first chapter; followed by a general



chapter about the classical molecular dynamics (MD) method and its utilisation
within the DL_POLY code [1]. The last part of the second chapter is devoted to
the introduction, validation and implementation of a non-default force field in the
source code of DL_POLY. The third chapter contains a brief description of some im-
portant theorems and terms used in density functional theory (DFT), with some
basic information about linear-scaling DFT, as developed in the ONETEP code [4],
and tight-binding DFT, reported in the last sections.

Chapter 4, includes the results of a series of DFT calculations performed on sil-
icon nanorods, with diameters varying from 0.8 nm to 1.3 nm and about 5.0 nm
long. While up to now, similar computational works were conducted on periodic
nanowires, in our case, the calculations were performed on the entire nanorods
without imposing any symmetry. The fifth chapter proposes a new methodology for
calculating extended x-ray absorption fine structure (EXAFS) spectra from modelled
geometries of gold nanoparticles by exploiting some of the capabilities of the FEFF
code [5]. From several snap-shots of a classical MD simulation, a probability dis-
tribution function is calculated for sampling the photoabsorbing and the scattering
atoms of the simulated system. The results are then compared with experimental
EXAFS data showing a good agreement between the predicted and the measured

structures.

Finally, in the last two chapters, classical MD simulations on gold and platinum
nanoparticles and nanoalloys are reported, which have been performed to sup-
port the structural characterisation and analysis of synthesised gold and platinum
nanoparticles. Within this framework, DFT calculations have also been attempted
on ultrasmall gold nanoparticles and on gold nanosurfaces with one or two thiols
attached to them, as a preliminary stage towards the application of linear-scaling
DFT in simulating the properties of large metallic systems, currently being studied

with semi-empirical quantum approaches or empirical force fields.
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Chapter 1

Introduction

The principles of the microscopic world that describe the behaviour of particles such
as electrons, protons, neutrons, atoms, and molecules can be only explained, up to
the present time, by the Quantum Theory or Quantum Mechanics (QM). At this
regime, classical theory using Newtonian mechanics fails to treat microscopic ele-
ments either as waves or particles of inherent mass, as in the macroscopic world.

This failure can be interpreted by Heisenberg’s uncertainty principle:

(1.0.1)

N St

AxApy >

which states that the more precisely the position of a particle x is measured the
less precise is its momentum p,. A defines the uncertainty of each quantity and 1 =
%T, h is Planck’s constant. In QM, the energy is a quantised property, a phenomenon
which can be observed when conducting electronic excitation experiments using
electromagnetic waves. From quantum theory we obtain the fundamental laws of
chemistry as well as explanations for the properties of materials, such as crystals,
semiconductors, superconductors, and superfluids. These materials find a plethora

of applications in modern science and technology, while biological structures and

1



mechanisms can be also studied using QM, for understanding and clarifying their

role in several life processes.

A radical idea developed by de Broglie at the beginning of the 20" century, in-

troduced the dual nature of particles and waves:

(1.0.2)

> =

where all material particles having a momentum p can also exhibit wave-like prop-
erties described by a wave-length A while, conversely, electromagnetic radiation
can also have particle-like properties. The de Broglie hypothesis motivated the dis-
covery of the Schrodinger equation later on (section 1.0.1), a fundamental principle

which underpins all of chemistry and a significant part of physics.

Rolling back in time, to the basic fundamentals of wave theory, a sinusoidal wave

Y with position x at time ¢ is described as:

p(x) = Asin2r (vt - %) (1.0.3)

where A is the amplitude of the wave, v is the frequency of the wave and A the

distance between successive maxima (wavelength).

According to classical mechanics, the energy of a system of particles E is divided

into kinetic energy T and potential energy V:

2 2
E=T+V=y "0+ vi=Y iy, (1.0.4)
i i i

Zmi .
i

where m; is the mass of the particle, u; its velocity and p; its momentum.
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1.0.1 Schrodinger equation

The laws of QM that are used to explain the wave-like properties of microscopic par-
ticles, induce a significant change in the way mathematics, in this case, are solved.
In classical mechanics, any variable used, can be directly correlated to a physically
measurable property (observables) such as the force F, the momentum p, and the
position r = r(x,y,z). In QM though, these variables are not directly linked to an
observable, but are represented by “operators”, which only provide the value of a
physical property when they act on a fundamental state function of QM, called the
“wavefunction”. Each operator contains a specific mathematical operation which
can be applied on a wavefunction ¥. While most variables, such as x, y, z positions
are directly represented in QM with the £, J, Z operators, momentum operators p in

the Cartesian space, are defined as p; = —zh%, S=X,Y,2

Linear operators satisfy the following conditions:

Alf(r) +g(1)] = Af(x) + Ag(r) (1.0.5)
Alcf(r)] = cAf(x) (1.0.6)

where A is an arbitrary operator. f(r), g(r) are arbitrary functions and ¢ defines
a constant. Hermitian operators require the expectation value of an observable to be

a real number:
/ Y AY dr = / Yi(AY)) dr < (Y| AY;) = (AY;|Y)) (1.0.7)
for all well-behaved ¥; and ‘I’j. The function ¥, in this case, is called “eigen-

function” of the operator A, and the values obtained when A acts on it, are the

“eigenvalues” of that operator.




The wavefunction ¥ of a quantum system is a function that contains all the infor-
mation governing the de Broglie wave-like behaviour of its particles. Each particle,
can be described by a set of variables defining its position r, spin s and time ¢. The
probability density function of a particle is given by |¥(r,s;)|*> and provides the
possibility of finding the particle in a volume of space dr at position r and time ¢
having a spin s. The probability density integrated over all space is equal to one

|¥|? = 1[23].

When the kinetic T and potential V energy terms, of equation 1.0.4, are written
in a quantum mechanical form, they represent the kinetic and potential energy op-
erators T and V. The operator H is called Hamiltonian operator and provides the

energy of a quantum system E, defined by the wavefunction ¥:

A

A=T+4+V (1.0.8)

The time-dependent Schrodinger equation [24] is given by:

zhaTE()? H_ HY(r;t) = [T+ V(1) ¥(r;t) (1.0.9)
. 2
= 0D <_2h_mv2 V(s t)) ¥(5;1) (1.0.10)

&0 R R R : .
where V= = -5 + a? T g and m is the mass of the particle.

1.0.1.1 Time-independent Schréodinger equation

The time-dependent form of equation 1.0.9 can be simplified when the potential
V(r;t) is time-independent. In this case, the potential can be replaced by a time-

independent function v(r) while the wavefunction of a single particle ¥ (r; ¢) can be

4



separated into a function of time f(¢) and a function of spatial coordinates ¥ (r):

Y(r;t) = f(t)¥(r) while V(r;t) = 3(r) (1.0.11)

Thus, equation 1.0.10 becomes:

2
w0 ) = 1 gy 929() 1 00 f 00 (1.012)

which is equal to:

h———22 = —— — _V2p(r) + 0(r) (1.0.13)

when divided by ¥ (r; ¢).

Looking at the expression of equation 1.0.13, it can be seen that the left part is
only dependent on time while the right part depends only on r, thus, both sides are

constant. Equating the left part to a constant E, one obtains:

1 df(t)
i I = (1.0.14)
df(t)  1E
— U (1.0.15)
— Inf(t) = —li—t +C (1.0.16)
by inte:gr;zting f(t) _ eCeJE?t _ Beil% (1.0.17)

where B and C are arbitrary constants.
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Repeating the same procedure for the right part of equation 1.0.13:

P e o) = (1.0.18)
2m (r) v B .
2
— () + V() = Elr) (1.019)
<= Hy(r) = Ey(r) (1.0.20)

the expression for the time-independent Schrodinger equation is obtained. Equa-
tion 1.0.20 shows that the Hamiltonian operator is also a Hermitian operator, with E
representing the energy eigenvalues and ¢(r) the eigenfunction. Considering equa-
. . _iEt .
tion 1.0.17, these eigenstates are equal to f(f) = e~ # and therefore, the expression

for the time-dependent wavefunction for different eigenstates becomes:

lEnf

Yu(rt) =e 1 ¢u(r), n=0,1,2,.. (1.0.21)

In practice, the Schrodinger equation is considered as a substantial assumption
of quantum theory that needs to be justified. It cannot be proved, but its solutions
can justify de Broglie’s principle. For the case of a free particle in one dimension (no

forces acting on it), the Schrodinger equation takes the following form:

n? 0%y
—5 5 —Ep=0 (1.0.22)

where E represents in this case a positive constant which is equal to the kinetic

energy of the particle.




1.0.1.2 Molecular Schréodinger equation

For a molecular system consisting of atomic nuclei N, and electrons e, the Schrédinger
equation which describes the interactions and energy states between all the particles

involved is given by:

Hyp = (T + Tn + Vee + Vne + Vn) ¢ (1.0.23)
n hZ . N hZ R 120 82
-y lteey Pailyy
= 2m; " = 2M; 2 iZ1iZi 47'(601‘1]
n N 2 N N 2
Z1€ Z[Z]e
- + —— (1.0.24)
;I_Zl 47T€0R1'1 ;]; 47T€0RU 1’b
= Eip(l‘l,...,l‘n, Ry, ..., RN,S1, ..., 50, 51, ) Sn) (1.0.25)

The T, and Ty describe the kinetic energy of electrons and nuclei respectively;
while the V,,, V. and Vyy define the electron-electron repulsion, the electron-
nucleus attraction and the nucleus-nucleus repulsion respectively. r;; is the distance
between electrons i and j, R;; is the distance between electron i and nucleus I and
Rj; is the distance between nucleus I and nucleus J; Z is the atomic number of nu-
cleus N; N is the number of nuclei; n is the number of electrons and E is the total

energy of the system.

In general, the problems where the Schrdodinger equation can be solved exactly
are very few. To overcome this obstacle, different approximation methods have been
developed. Such methods are the variational principle (section 1.0.2), which is based

on the variation theorem, and the Born-Oppenheimer approximation (section 1.0.3).

7



1.0.2 Variational principle

The variation method is an approximation to the ground-state energy Ey, which is
the lowest eigenvalue of the Hamiltonian operator [ of a system described by the

time-independent Schrédinger equation 1.0.20, with eigenfunctions ¥,

Ay, = Egpy, n=0,1,2,... (1.0.26)

In several methods with quantum mechanical approach, such as the density
functional theory (chapter 3), the knowledge of the ground-state energy is sufficient
enough to provide reliable results when studying the behaviour of chemical sys-
tems. The variation theorem states that for any trial, normalised, and well-behaved
function ¢, which satisfies the same boundary conditions as ¥, the quantity £ is

always greater than or equal to the ground-state energy E:

&= (9l1p) = [ ¢" (0 Ap(x)dr > Eo (1.027)

The trial function ¢, has in most cases an arbitrary expression. If ¢ is identical
with the ground-state eigenfunction ¢y, then the energy state £ is equal to Eg. If ¢
represents one of the excited-state eigenfunctions, then £ will be equal to the corre-
sponding excited-state energy E, which is greater than Ey. However, no matter what

trial function ¢ is selected, the quantity £ will never be lower than E.

8



1.0.3 Born-Oppenheimer approximation

In principle, the solution of the above Schrédinger equation for the total wavefunc-
tion 1 will give the exact energy of the system. In practice though, for approaching
the exact energy of the system, Born and Oppenheimer introduced an approxima-
tion scheme in which the nuclei are considered as static, due to their much larger
mass than the mass of electrons. Hence, their motion is described by a much longer

time scale than that of the electrons. The total wavefunction i can be factorised into:

P(R, 1) = Oy (R) D, (1; R) (1.0.28)

where @ (R) describes the properties of the nuclei N, and ®,(r; R) the electrons
properties (depending parametrically on the positions of the nuclei). The problem

is then reformulated in terms of two separate Schrodinger equations as:

H®(5;R) = (To + Vee + Vne + Vn) @e (1.0.29)

n hZ R 1 7 o2 n N ZIeZ N N ZIZ€2
= |-y V242 - + 1, (1.030
[ 1_21 m; ! 21._21].21.47T€01‘1']' ;I_2147T60Ri[ ;];4717601{[] E( )
= Eg(Rl,...,RN)(I)e(rl,...,I‘n,Sl,...,Sn,Rl,...,RN) (1031)
and
N hZ . H
- mVR + Ee(R) | ®n(R) = Epo.PN(R) (1.0.32)
=1 <"1

where Ep . denotes the energy of the system within the Born-Oppenheimer ap-

proximation.




The equation 1.0.29 is calculated iteratively and when is converged it enters to
equation 1.0.32 to give the motion of the nuclei. The electronic Hamiltonian obtained
from Born-Oppenheimer approximation has no electronic degrees of freedom, since
all the electronic parameters are incorporated in E,(R). In classical molecular dy-
namics (chapter 2) the quantum mechanical description of the nuclear motion is
replaced by a Newtonian equation, allowing the nuclei to move classically. The
potential energy function, in classical mechanics, is in principle the quantum me-

chanical potential energy surface (PES).

1.0.4 Potential Energy Surface

The potential energy surface (PES) offers an important tool for visualising and un-
derstanding the relationship between energy and molecular geometry, by providing
a rigorous way for locating and characterising structures of interest. In computa-
tional chemistry, calculations on PES, are mainly used to extract information about
the structure and the energy of molecules and of any transition states involved in

chemical reactions.

If a pair of atoms, held together by electrostatic forces, can be represented as
two spherical particles joined together by a spring of length I, then the potential
energy of the system will be larger when the distance between the two atoms is
larger or shorter than the equilibrium length [,; of the spring (bond). Although
real molecules have similar behaviour, there are some important differences when

referring to atoms.

Perhaps the most notable difference is that atoms vibrate continuously around
the equilibrium bond length, so that they always possess kinetic and potential en-

ergy. The energy at the point where the potential energy takes its minimum value, is

10



6.0 T
: | | —> Quadratic curve
50 T ,‘
Li i —
] -
1 ”~
40 + | rd
7
& 307 | Vibrational
2 T Levels ° De
® 201 |
10 +
_—» ZPE 1
0.0 --------- TTrrrrrers TTrrrrrorrs TTrrrrrrry TrTrrrrrrry
0.0 1.0 2.0 3.0 4.0 5.0
le length

Figure 1.1: PES of a diatomic molecule showing the difference between the harmonic
(quadratic curve) and the true quantum behaviour (vibrational levels). At the equilibrium
bond length [, the quadratic curve approximates the actual PES of the diatomic. ZPE is the

energy of the lowest energy level, where the potential energy is minimised to zero.

called zero-point energy (ZPE). The PES of a molecular system is defined by distinct
vibrational levels and in the presence of other molecules, these levels are populated

according to their spacing and temperature.

The PES of a macroscopic model, of a spring holding a pair of particles or for a
real molecule near the equilibrium bond length [, is sufficiently described by the
simple harmonic oscillator E = %k(l — leq)?, where k represents the force constant
of the spring). However, in microscopic systems the potential energy deviates from
the exact quadratic form, as shown in Figure 1.1, while moving away from [.,. This

phenomenon is called anharmonicity.

In a 3-dimensional PES, a stationary point is a point on the surface where an

extremum (minimum or maximum) or a saddle point is located. Mathematically, a

11



stationary point can be found by setting the first derivative of the potential energy

with respect to each geometric parameter ! to zero:

JE OE
8_11:8_12:"':0 (1.0.33)
Stationary points that correspond to molecular structures of finite lifetimes (in
contrast to transition states), are located at the energy minima on the PES and any
small change in the geometry of the system increases the energy. The conformation
located at the lowest energy minimum of the whole PES is denoted as the global
minimum, while structures corresponding to a minimum of only near by points on
the surface are called relative minima. The lowest energy pathway linking two min-
ima, is the path that would be followed by a molecule in going from one minimum
to another with just enough energy to overcome the activation barrier, pass through

the transition state, and reach the other minimum.

However, in many cases not all
reacting molecules follow the lowest-
energy path exactly. This is a char-
acteristic of a saddle-shaped surface,
where the transition state is defined
by a saddle point. Minima and sad-
dle points have both zero first deriva-

tives, but a minimum is a minimum

Minimum

in all directions, and a saddle point is
Figure 1.2: Part of 3-dimensional PES sur- . ) )

a maximum along the reaction coordi-
face. A minimum is a minimum in all directions

nate, whilst a minimum in all other di-
while a saddle point is a maximum in one of the

rections.
directions [6].
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1.1 Geometry Optimisation

1.1 Geometry Optimisation

In order to find a stationary point on a PES, we need to ask whether such a point
exists, and if yes, then calculate its geometry and energy at that point. This proce-
dure is called geometry optimisation or energy minimisation. The stationary point
of interest might be a minimum, a transition state, or, occasionally, a higher-order
saddle point. In the case of transition states, the procedure is often referred to as
a transition state optimisation. A geometry optimisation calculation, usually starts
with an input structure which is believed to resemble the geometry of a molecule at

the desired stationary point.

An optimisation problem involves the minimisation of a function over several
variables, possibly subjected to restrictions on the values of these variables. Many
numerical methods have been developed over the years for locating the stationary
points on a PES, depending, in most cases, on the computational method employed

for such a calculation. Some of these methods are briefly described below.

1.1.1 First-Order Methods

One of the most simplified schemes for locating minima on molecular potential en-
ergy surfaces is the first-order derivative scheme called “Steepest Descent” (SD),
which was put forward by K. Wiberg in 1965 [25]. On a molecular potential en-
ergy surface the gradient vector points of opposite directions can always be lowered
down the surface to reach a local minimum. In the SD method, the function eval-
uations are performed in the negative gradient direction. Once the function starts
to increase, an approximate minimum may be determined by interpolation between
the last three points. At this interpolated point a new gradient is calculated and used

for the next line search. If the line minimisation is carried out with sufficient accu-

13



1.1 Geometry Optimisation

racy it will always lower the function value, and is therefore assured to approach a

minimum.

Y

START

Figure 1.3: Schematic representation of the pathway followed during an SD optimisation.
Ellipsoid circles represent the energy levels of a PES with the central being the lowest in

energy [7].

However, there are two important drawbacks. Two subsequent line searches
have to be perpendicular to each other. If there is a gradient component along the
previous search direction, where the energy could be further lowered, a new search
line will partly spoil the function lowering obtained by the previous search. The
steepest descent path then oscillates around the minimum path. Furthermore, as
the minimum is reached, the rate of convergence slows down. The steepest descent
will therefore never reach the minimum, but it will crawl toward it with a constant

speed.

Sometimes the minimisation along the line is carried out fairly crudely. The step
size can be a fixed quantity or taken to depend on the magnitude of the gradient. The
guarantee for lowering the function value is lost when approximate line searches are
used. By default, the steepest descent method is a very simple numerical technique
and can only locate function minima, which makes it reliable for lowering the func-
tion value. It can be used to quickly relax a poor starting point, as a pre-optimisation

strategy, before a more advanced method is employed.
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1.1 Geometry Optimisation

An improvement over the SD method is achieved with the development of the
conjugate gradients (CG) methods. CG methods produce a set of directions that
overcome the oscillatory behaviour of steepest descents in narrow valleys. Succes-
sive directions are not at right angles to each other, but a line search is constructed so
that it is “conjugate” to the previous search direction. If for instance, the surface is
purely quadratic, each successive minimisation step will not generate gradient com-
ponents along any of the previous search directions. Conjugate gradient methods
have better convergence features than the steepest descent, but they require slightly
more storage than the steepest descent, since the previous gradient also must be

saved.

1.1.2 Second-Order Methods

In contrast with SD and CG methods, where the optimisation convergence is linear,
in second-order methods the expansion and the convergence of the optimisation
function is of second order near a stationary point. This is due to the involvement
of the Hessian matrix, which is a matrix of second derivatives of the PES with the
atomic coordinates. These methods are mainly referred to as Newton-Raphson (NR)
methods [26]. In general, as the stationary point is approached, this method per-
forms better and better; while sufficiently close to the stationary point the gradient

is reduced quadratically.

Several schemes have been developed over time, for improving the direction of
optimisation and the size of systems studied, such as the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method, where an approximated Hessian is updated during the cal-
culation by contributions from the gradient only [27-30]. Such NR methods are
known as quasi-Newton methods. In the current project, any geometry optimisa-
tions mentioned using density functional theory, employ the BFGS method by de-
fault (sections 4.4, 4.5.1).
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1.2 Symmetry in Crystals

1.2 Symmetry in Crystals

A crystal is a regular, ordered arrangement of atoms over a large scale. This arrange-
ment can be constitute by a single type of atoms or by the repetition of a complex
pattern of many different types of atoms. Generally, a crystal can be thought as
being consisted of two separate parts: the lattice and the basis. The lattice is an or-
dered layout of points in space, while the basis is the simplest motif of atoms, which
by being repeated at every point in the lattice would reconstruct the entire crystal

structure. In crystallography the basis is called the “unit or Wigner-Seitz cell”.

All the lattices can be obtained by repetition of the unit cell through 3 “primi-
tive”, “unit” or “translation” vectors defining the atomic arrangement within the 3D
space, that in general are not orthogonal. If a;, ap, and a3 represent the 3 primitive
vectors, which leave all the properties of the crystal unchanged after a displacement
by any of those vectors then, any lattice point r could be obtained from another point

¥ as:

r=r +cja; + cray + cza3 (1.2.1)

where ¢;, i = 1,2,3 are integers. Such a lattice of building blocks is called “Bravais”

lattice. The volume of a unit cell is given by () = a;- (az X a3).

The displacement of a lattice by a translation vector is called translation opera-
tion and any operation that carries a crystal structure into itself is called symmetry
operation. The latter category includes reflection and rotation operations, which are

generally called point operations.

Sometimes it is convenient to describe a crystal in terms of a cell that contains
more atoms than the unit cell, for simplifying the description of the symmetry oper-

ations. In this case, the cell is referred to as a “conventional” cell.
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1.2 Symmetry in Crystals

1.2.1 Lattices

<.
. . o aft | square

The are 5 basic categories of two-dimensional ")
lattices, the oblique and four special lattices, 2

‘E hexagonal
as shown in Figure 1.4; and 14 types of lat- -4
tices in the 3 dimensions, which can be grouped y

a,y rectangular
in seven categories: triclinic, monoclinic, or- a,
thorhombic, tetragonal, cubic, triagonal, and a, 1 « ::tt::;nlar
hexagonal. Furthermore, there are three lattices a,
in the cubic system: the simple cubic (sc) lattice, '@ oblique

the body-centred cubic (bcc) lattice and the face- Figure 1.4: 5 basic types of

centred cubic (fcc) lattice, as shown in Figure 1.5. 2-dimensional lattices [8].

1.2.2 The Periodic Potential

In a similar way with the atoms inside a crystal, which occupy positions forming a
regular periodic structure, the potential v(r) developed between these atoms is also
a periodic function with a period equal to the period of the corresponding Bravais

lattice:
v(r+a;) = o(r) (1.2.2)

where a; are the Bravais lattice vectors (i = 1,2, 3). The period of the potential is
of the same order as the de Broglie wave length. In the case of ideal periodic crystals
this potential must satisfy the property 1.2.2. Due to the potential periodicity the
solution of the single-electron Schrodinger equation 1.0.20 acquires some special

properties which are described in the Bloch’s theorem.
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1.2 Symmetry in Crystals

simple cubic body-centered face-centered

cubic cubic
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face-centered

orthorhombic orthorhombic  ,rihorhombic orthorhombic
‘
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simple base-centered triclinic
monoclinic monoclinic

Figure 1.5: 14 types of 3-dimensional lattices [9].
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1.2 Symmetry in Crystals

1.2.3 Bloch’s Theorem

Bloch’s theorem simplifies the expression of Schrodinger’s wavefunction i of equa-
tion 1.0.20, for systems subjected to periodic boundary conditions, by exploiting the
periodicity of a crystal. Hence, the infinite number of one-electron wavefunctions
to be calculated, is now reduced to the number of electrons in the unit cell of the
crystal. The wavefunction is written as the product of a periodic function over the

Bravais lattice and a plane wave part:

Pic(r) = e Dy (1) (1.2.3)

where the function uy (r) satisfies the condition:

u(r+ a;) = uy(r) (1.2.4)

for all lattice vectors a;. The vector k used in the expression of Bloch’s theorem
is called plane wave vector and is a conserved quantity in crystalline systems. The

wavefunction ¥y of the displaced vector r + a; will then take the form:

Pic(r+a;) = el ™y (1) (1.2.5)

so that the probability |y (r|> remains the same due to the periodical symme-
try of the system. Therefore, Bloch’s theorem indicates that, any required physical
property for an infinite system, everywhere in space, can be accurately calculated

by only focusing on the properties of electrons within the unit cell.
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1.2 Symmetry in Crystals

1.2.4 Brillouin Zones

From the expression of 1.2.5 it can be assumed that, for certain values of the wavevec-

(ik-r)

tor k, the plane wave e will have the periodicity of a Bravais lattice. Such a set

of k wave vectors, that provide plane waves with the periodicity of a Bravais lattice,

(1k-a;)

is defining the reciprocal lattice. In this case, the phase factor e must satisfy the

condition:

elka) =1 ;=123 (1.2.6)

Equation 1.2.6 states that, for a particular set of vectors k, the wavefunction vy is
in phase with all the periodic images of the unit cell. A reciprocal lattice is defined
with respect to a particular Bravais lattice, and any Bravais lattice that determines a

given reciprocal lattice is often called direct lattice.

For a set of primitive lattice vectors a;, ap and a3, the reciprocal lattice can be

generated by three reciprocal lattice vectors b, respectively as:

ay X as ar X as

b =21——F——— =2 1.2.7
! ﬂal . (a2 X 33) i Q ( )

asz X aj az X aj
b =21—F——< =2 1.2.8
2 na1 . (az X a3) & QO ( )

a; X az a; X az
by =2n——F—F——< =2 1.2.9
3 nal . (az X a3) 7'L' Q ( )

The reciprocal primitive vectors b;, satisfy the condition:

bl‘ . a]- = 27'(51']' (1.2.10)
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1.2 Symmetry in Crystals

where

5 =0, i#] (1.2.11)
Gi=1,i=]j (1.2.12)

The primitive reciprocal lattice vectors determine a cell in reciprocal space with

a volume Qg:

(27)°
0

Qr =bq- (b2 X b3) = (1.2.13)

which defines the first Brillouin zone (BZ). To illustrate this, we can consider a
system of non-interacting, free electrons inside a 1D periodic box of length I. The

tkx

wavefunctions i = " are solutions of the Schrodinger equation 1.0.22 in 1D with

eigenvalues:

212
E—e(k) = % (12.14)

which form the energy bands of the system. The values of k are not confined in
the first BZ (—mt/1 < k < 7/I). In order to visualise the energy bands within this
range of k, it is customary to refold the wavevectors k;,, extended beyond the first

BZ, into the first BZ by performing the operation:

kn = k+ Gy, (1.2.15)

where k refers to the first BZ and wavevector G, = 2n7 /I with n being an integer.

A schematic representation of the energy band folding is shown in Figure 1.6.

Generalising to 3-dimensional lattices, any vector k' outside the first BZ be-

comes:
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1.2 Symmetry in Crystals
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Zone

£(k)

0 a/l K

Figure 1.6: BZ energy band refolding on 1D system of non-interacting, free electrons.

K=k+G (1.2.16)

where k is a vector within the first BZ and
(1.2.17)

G = n1bg + nyby + n3bs

with n; integers. G is a reciprocal lattice vector which satisfies the condition:
(1.2.18)

a; - G =2mn;

Based on equations 1.2.16 and 1.2.17, the wavefunction of state k” according to

Bloch’s theorem (1.2.5) can then be written as:
(1.2.19)

P (1) = % T (x) = e (elG'ruk/(r)> = % Ty (1) = Py (r)
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1.2 Symmetry in Crystals

This result justifies the approximation introduced with Bloch’s theorem, by rep-
resenting the infinite number of wavefunctions in a periodic system with a finite

number of wavefunctions at each k-point located in the first Brillouin zone.

1.2.5 Brillouin zone sampling

While for an infinite system there is a finite number of occupied eigenstates of the
Hamiltonian for each k-point, the first Brillouin zone also contains infinite k-points.
Although all of these eigenstates should be calculated, in practice, the only feasi-
ble approach is to use a finite number of k points, with very minor errors in the
wavefunctions and eigenvalues of the Hamiltonian for small changes of k [31]. This
approach is called Brillouin zone sampling and several methods have been devel-
oped for accurately calculate the electronic states over special sets of k points within

the Brillouin zone.

Based in the general principle that metallic systems should require a very fine
sampling of k-points, in contrast with semiconductors that require fewer k-points,
Monkhorst and Pack proposed a general scheme for sampling k-points [32]. For a

set of vectors g, written in terms of primitive reciprocal lattice vectors k:

k = n1bq 4+ noby 4 nsbs (1.2.20)

where the integers n; are defined by the relation:

nj=2r—q—1)/2q where r=1,2,3,..,94 (1.2.21)

In the I' point approximation only a single point is sampled, at k = 0.
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1.3 Thesis overview

1.3 Thesis overview

This thesis focuses mainly on the crystalline properties of modelled semiconduc-
tor silicon and metallic gold or platinum nanomaterials. Bi-metallic nanoalloys of
gold and platinum with copper and palladium are also presented. In more detail,
a computational study of silicon nanorods of more than 1000 atoms, with varying
aspect ratios and surface passivation by hydrogen is presented in chapter 4. Their
structural and electronic properties were investigated at the atomistic ab initio level

of detail.

A computational approach for simulating extended x-ray absorption fine struc-
ture (EXAFS) spectra of gold nanoparticles from force field simulations is presented
in chapter 5. A probability distribution function calculated directly from an en-
semble of molecular dynamics snap-shots is used to determine the photoabsorbing

atoms and their surrounding scattering paths.

Classical molecular dynamic simulations have also been performed on bare plat-
inum nanoclusters and on their bimetallic nanoalloys with copper or palladium, as
described in chapter 6. The structural results obtained from the simulations of bare
Pt nanoparticles were used as input data for the analysis of extended x-ray absorp-
tion fine structure spectra of experimentally synthesised Pt nanoparticles, as a better
titting model from the conventional methods used so far. While the approach de-
tailed in chapter 6, is at a preliminary stage, it has shown promising results for future

development.

Furthermore, molecular dynamic simulations on spherical gold nanoparticles
with diameters 1.39, 1.94, 2.50 and 3.05 nm have been conducted, as described in
the last chapter. Gold nanosurfaces in contact with one or two thiolate molecules

were also investigated, using first principles methods.
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Chapter 2

Classical Molecular Dynamics

Classical Molecular Dynamics (MD) is a computational technique for simulating
materials, with a plethora of applications in various areas of research, such as chem-
istry, physics, applied mathematics etc. Within the framework of this method, a
molecule is modelled as a collection of solid spheres (atoms) held together by springs
(chemical bonds), while the motions of the atoms contained in the system are de-
scribed by using the laws of classical mechanics. The aim is to extract data about
the dynamical behaviour of different materials at the atomic scale as well as their
thermodynamic properties using statistical mechanics. The energy of a molecu-
lar system is expressed as a function of its structural changes, which occur during
the simulation, as the springs (bonds) resist towards stretching and bending or the
spheres (atoms) repel from being crowded together. This is conceptually similar to
the intuitive feel of interacting plastic or metallic atoms going through any necessary

conformations in order to find their most energetically stable geometry.

The concept of classical MD seems to have started as an attempt to obtain infor-
mation about the structural properties of chemical compounds, at a time when the

possibility of performing quantum mechanical calculations on anything larger than
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the hydrogen atom seemed impossible. Specifically the use of MD as a potential
method for studying the variation of energy with respect to the geometry of a molec-
ular system was founded in 1946 by Westheimer and Meyer [33] and by Hill [34]. It
has to be stressed, at this point, that the method makes no reference to the electronic
behaviour of the atoms within the system, while the Born-Oppenheimer approxima-
tion is used implicitly, as a static attractive force between the nuclei and the atoms,
which vaguely define the electronic region. Thus, MD methods cannot provide any

information about molecular orbitals or any related electronic properties.

Generally, MD is a widely used method for calculating the energies and geome-
tries of large molecular systems, such as proteins, nucleic acids, nanocrystals etc.
During a classical MD simulation, the forces and velocities acting on the atoms as
a function of their coordinates are evaluated in parallel steps, depending on which
integration scheme is used. The mathematical expression of the energy and forces
constitutes a “force-field”, thus classical MD is sometimes referred to as a force-field
method. Each simulation proceeds in discrete steps by calculating the forces and
velocities between the particles and solving the equations of motion based on the

accelerations obtained from the new forces.

Usually systems studied with classical MD are simulated for a time-period of
less than 1 us but the main factor which affects the reliability of the simulations and
also the computational cost of a simulation is the size of the integration time-step.
The time-step must be chosen small enough to avoid discretisation errors. Typically,
the propagation time-step is chosen to be about 1/10" of the smallest period of

vibration of chemical bonds contained in the system (usually around 1-6 fs).

Although the electrons contained in the simulated system are “ignored” at the
expense of the calculation speed, this does not necessarily lead to non reliable re-
sults. By correctly parametrising a force-field, the electronic properties can be ap-

proximated with sufficient accuracy, though such results are obtained purely by
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analogy. It is important to use an appropriate force-field for the kind of compounds
studied, as it is non transferable and is more likely to perform inadequately for
other classes of molecules. This is due to that, force field methods are generally
ruled by empirical factors. Optimising a hypothetical structure of a molecule may
not necessarily lead to the most stable conformation at the global energy minimum.
Sometimes a stationary point can be trapped into a transition state during the geom-
etry optimisation. The situation becomes more complex if systems with an overall
charge are simulated in vacuo. In this case, some discrepancies can be overcome by

explicitly including solvent molecules or ions inside the simulation box.

Nevertheless, classical MD methods are fast and computationally more efficient
than ab initio or semi-empirical methods and hence, can be used for studying very
large systems such as large bio-molecules, polymers or nanoparticles. More im-
portantly, they can be used for studying metallic systems containing transition or
heavy elements, where other methods depending on the calculation of the energy

band structure fail to converge.

2.0.1 The DL_POLY code

The classical MD simulations performed throughout this work were mainly con-
ducted with the DL_POLY2 code [1]. It is a parallel molecular dynamics simulation
package developed at Daresbury Laboratory by W. Smith and T.R. Forester. There
are two available forms of DL_POLY; DL_POLY2 which is the primary version and
is based on a replicated data parallelism and DL_POLY3 which is a domain decom-
position version, designed for systems beyond the range of DL_POLY2 (around 10°

atoms and a maximum number of 1000 processors).

For a typical simulation with the DL_POLY code [18], at least three input files are
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necessary: a) The CONFIG file; includes all the spacial coordinates of every atom
contained in the system in a Cartesian form and the x,y and z projections of the
primitive vectors defining the simulation box. b) the CONTROL file; contains all the
parameters defining the thermodynamic state of the system (temperature, pressure,
thermodynamic ensemble), the type and duration of the calculation (equilibration
time, total time, time-step) and also keywords about the structure of some output
tiles printed (HISTORY, STATIS, RDFDAT). Additionally, cut-off values for the dis-
tances of the long-ranged interactions need to be included in the CONTROL file.
c) the FIELD file; contains the values of the parameters describing the force field(s)

and the kind of interactions developed between the atoms contained in the system.

During a simulation with DL_POLY, all the results and tables are printed in the
OUTPUT file. Simultaneously, the STATIS and HISTORY file are also collecting
data from the MD simulation. The HISTORY file contains all information describ-
ing the trajectory of the system, with the spacial coordinates, the velocities and the
forces developed on each atom of the simulated system in every printed frame. The
amount of data collected and the number of frames included in the HISTORY file is
controlled by keywords given in the CONTROL file. The STATIS file, on the other
hand, contains all the details about the thermodynamic parameters and the energy
parts of the force field on every MD step. By the end of the simulation, the new ge-
ometry of the system in the Cartesian space, is summarised in the REVCON file. For
the purpose of restarting a simulation from a previous trajectory, the REVCON file
provides the new CONFIG file in a new MD run. In special occasions, the user can
output data about the radial distribution function (RDFDAT) or the number of data
points in the Z-density function (ZDNDAT). Details about the format of these files
and some pre- or post-processing scripts of the input and output files of DL_POLY
are shown in the Appendices A, B and C.
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2.1 Thermodynamic Ensembles

2.1 Thermodynamic Ensembles

In each MD simulation, the definition of the thermodynamic state of a molecular
system is achieved via a small set of macroscopic parameters, such as the temper-
ature, the pressure, and the number of particles. Also, the microscopic state of a
system at a given time is defined by using atomic positions, and momenta. These
can also be considered as coordinates in a multi-dimensional space, called phase

space.

A thermodynamic ensemble is a collection of these points in a phase space sat-
isfying the conditions of a particular thermodynamic state. For example, in the
microcanonical ensemble, (N,V,E), the volume (V), the energy (E) and the num-
ber of particles (N) of the system remain constant. Other ensembles, such as the
isobaric-isothermal ensemble (N,P,T) or the canonical ensemble (N,V,T), except from
the number of particles (N), the pressure (P) and the temperature (T) or the volume

(V) and the temperature (T) are also preserved, respectively.

MD simulations begin with an “equilibration period”, where the molecular sys-
tem is allowed to reach a region of the phase-space, near thermodynamic equilib-
rium. During this period, the temperature is scaled gradually until it reaches a de-
sired value. This is achieved by using temperature stabilisers, called “thermostats”,
which imitate heat exchange between the system and its surroundings. For an en-
semble that keeps the temperature stable, during the equilibrium, an adjustment
of the velocities is demanded in every step, since the temperature is related to the
kinetic energy. Practically though, this prevents the trajectories from being Newto-
nian and as a consequence the properties computed are less reliable. To overcome
this impact, suitable computational algorithms are used which can treat the molecu-
lar system as being in contact with a constant temperature bath (e.g. Berendsen [35]

or Hoover thermostat [36]).
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2.2 Integration Algorithms

In the cases of thermodynamic ensembles which keep the pressure constant, the
volume is allowed to change by scaling the space coordinates of the particles. The

algorithms used for this purpose are called “barostats” [37].

2.2 Integration Algorithms

For propagating the phase-space trajectory of a molecular system on a computer
from its initial position and momenta, methods that proceed in discrete time steps
have been developed. This discretisation is dictated by the need to represent on a
computer the phase-space points. These propagation methods require the use of
small time intervals to avoid trajectory errors. Large time intervals can distort the
dynamical behaviour and the thermodynamic properties of the simulated system.
One popular and sophisticated integration scheme for propagating trajectories, is
the Verlet algorithm [38], in which the coordinates of an atom are expanded as a

Taylor series.

In more detail, the derivatives of the particle’s position vector are expanded in
Taylor series up to the second term by one time-step At forward (r§n+1)) and one
time-step backward (rf”_l)). The sum of these expansions gives:

(n—1) At?

r1(714—1)

where F; are the forces acting on the particle i and 7 is the MD step number.

The Verlet algorithm offers a satisfactory accuracy since the error on the first time
step calculation is of At order, but it propagates the position vector without using
the velocities v;, thus giving no information on the particle’s motion or the kinetic

energy. For the MD simulations this is a major drawback which can be overcome by
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2.2 Integration Algorithms

using two improvements of the Verlet algorithm, the Leapfrog Verlet or the Velocity

Verlet algorithm.

2.2.1 Leapfrog Verlet

In the Leapfrog Verlet, the velocities v; are calculated using the position terms r;,
calculated from the basic Verlet algorithm in every time-step. The velocity vectors
are calculated separately from the position of the particles, thus always having a
half time-step displacement. A smaller time interval can reduce the numerical error
created from this approximation.

1 1

2
g2 ((n=1/2) %F? + 9(AP) (2.2.2)
1

f = AT 4 og(ArY) (2.2.3)

i

2.2.2 Velocity Verlet

On the other hand, the Velocity Verlet algorithm, embodies the velocities along with
the positions of the atoms in every time-step. Although this avoids the half displace-
ment discrepancy introduced by the Leapfrog Verlet, it still gives results with same

accuracy as the basic Verlet algorithm.

At
Vlgn+1/2) — v o (F;? n Fl(n+1)) + 9(AP) (2.2.4)
1
At?
rl.(n—H) = 1‘? + Atvlr-l + %F? + 19(At4) (2.2.5)
1
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2.3 Force Fields

2.3 Force Fields

Force fields are based on numerous approximations derived from different types of
experimental data and quantum calculations. Most force fields in chemistry con-
sist of several parameters defining the bonded forces associated with the chemical
bonds, bond angles, and bond dihedrals, and the non-bonded forces such as elec-

trostatic interactions and Van der Waals interactions.

In this respect, the force field energy can be separated into different energy terms,
such as the stretching term Egtcp;, the bending energy E,,, 4, the torsional motion
Etorsion, and interactions between atoms or groups which are non-bonded E,,;p014-
Thus, the potential energy of a molecule is given by the combination of these terms

and their parameters as:

E= Z Estretcn + Z Epena + Z Etorsion + Z Eronbond (2.3.1)

bonds angles dihedrals pairs

Consequently, the stretching energy describes the stretching of a bond length
between a pair of atoms, the bending energy, the changes in the angle formed by a
sequence of three atoms and the torsional energy, the energy obtained by rotating a

series of four atoms along the axis of the two middle atoms.

&—@Q

1
- >

More specifically, the bond stretching term expresses the energy difference of a

bond (spring) when is stretched:
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2.3 Force Fields

1 2
AEgtretcn = Ekstretch (l - leq) (2-3-2)

where kgyorcr, is the proportionality constant of the spring or bond. As the kg
gets bigger so the bond /spring becomes stiffer or the more it resists in being stretched;
I is the length of the bond which is stretched while [, is the equilibrium bond length,
or else, the “natural” distance of a pair of atoms, whilst in the minimum potential
energy value. If the energy corresponding to the equilibrium length is set to zero,

then the expression of AEg,.;.;, becomes equal to:

1 2
Estretch = Ekstretch (l - Zeq) (2-3-3)

The angle bending term describes the
“angle energy” of the system, which corre-

sponds to the resistance of bending the an-

gle defined by any triatomic unit (A-B-C)
within the molecule, as show in Figure 2.3.
Approximately, the bending energy is pro- Figure 2.1: « is the angle formed by
portional to the square of the increase in the atoms A-B-C in order

angle a:

2
Evend = kpena (‘X - ‘Xeq) (2.3.4)

where k., is a proportionality constant, equal to the one-half the angle bending

force constant.

The torsional term defines the energy barrier of changing any “dihedral” angle

or “torsional” angle of the system. The dihedral angle is the angle formed between
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2.3 Force Fields

e

(b)

Figure 2.2: (a) Horizontal and (b) vertical view of the dihedral angle formed by atoms

A-B-C-D

(a)

a series of four atoms, A, B, C and D, or between the A-B bond and the C-D bond,
viewed along the B-C bond, as shown in Figure 2.2. By default, this angle is consid-
ered positive if it arises from clockwise rotation of the back bond (C-D) with respect
to the front bond (A-B). Since the geometry repeats itself every 360°, the energy
varies with the dihedral angle in a sine or cosine pattern but a combination of sine

or cosine functions will reproduce the curve:

n
Esorsion = ko + Z ky [1 + COS(T@)] (2.3.5)
r=1

The change in potential energy with distance
apart of two groups of atoms that are not di-
rectly bonded, is defined by the non-bonded
energy term. This energy term contains any

short-ranged, such as the Van der Waals inter-

action, or long-ranged non-bonded interactions,

which are mainly pure electrostatic forces be-
Figure 2.3: Visualisation of non-

tween charged atoms of the system. In more de-
bonded interactions formed by two

tail, these interactions are described in the fol-
different groups of atoms quite far

lowing sections.
apart
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2.3 Force Fields

2.3.1 Short Ranged Potentials
2.3.1.1 The Van der Waals energy

The Van der Waals interactions are developed between neighbouring atoms that
are not directly bonded. They are relatively weak compared to ionic or covalent
bond interactions and are caused by correlations in the fluctuating polarisations of

neighbour atoms, molecules or surfaces.

In general, the the Van der Waals energy has a repulsive and an attractive com-
ponent. For very small distances the potential becomes very repulsive, at distances
where the atoms almost interact, it has a slightly negative minimum and goes to-
wards zero for large distances. One of the simplest and most widely used models to

describe the Van der Waals interactions is the Lennard-Jones potential.

2.3.1.2 The Lennard-Jones potential

The Lennard-Jones is a pair potential which contains a repulsive term rl% and an
attractive rlé term, where r represents the distance between a pair of atoms. The
repulsive term of the potential is derived by the requirement of the repulsive inter-

action to fade to zero when r reaches infinity faster than the attractive term.

12 6
V() = 4e <%> —(%) (2.3.6)

The e defines the depth of the potential well and ¢ is the distance at which the

inter-particle potential becomes zero.
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2.3 Force Fields

2.3.2 Long Ranged Potentials

Long-ranged contributions to the potential energy between non-bonded charged
atoms or a group of atoms, are essential when dealing with polar or ionic molecular
systems. For this purpose, several techniques for simulating Coulomb and dipolar
interactions have been developed. Two of the most common methods for describ-
ing long-ranged electrostatic forces are the direct Coulomb potential and the Ewald

summation technique.

2.3.2.1 Direct Coulomb Potential

The simplest and easiest way to describe the interactions between two point charges
is by using the Coulomb potential. According to Coulomb’s law, the force acting be-
tween two electric charges is radial, inverse-square, and proportional to the product
of the charges. Practically, if two points have the same charge then they repel one
another, whereas two points with opposite charges attract each other. Hence, if two
point charges g1 and ¢», are located at position vectors r; and ry, then the electrical

force acting on the second charge is given by:

__q1q2 1 —1n
47T€0 |I'2 — I 3

F (2.3.7)

where € is the permittivity of free space.

The above equation satisfies Newton’s third law because it implies that a force
of the same magnitude but opposite direction acts on charge q; . The forces between

the two point charges act along the line joining them.

36



2.3 Force Fields

2.3.2.2 Ewald Summation

Ewald summation was introduced in 1921 [39] as a technique to sum the long-
ranged interactions between particles inside a periodic or pseudo-periodic system.
The basic cell of a system consists of positively and negatively charged ions mutu-
ally interacting via the Coulomb potential, which is repeated infinitely with identical
copies of itself. Each ion is effectively neutralised (at long range) by the superposi-
tion of a spherical Gaussian cloud of opposite charge centred on that ion. The entire
system is then neutral and contains an infinite number of charges situated at points
rj; and r;_, respectively. The total potential at the position of some ion i residing in

the basic cell is given by the finite difference of two infinite, diverging series:

$(r;) =q ) N (2.3.8)

j+=1 v — 1| i—=1 v — 1|

Instead of evaluating the potential as a sum over the point charges, these charges

can be rewritten as delta-like charge densities,

[ee]

p(r)=q ) 6(r—rjy) —q i 6(r—r_) (2.3.9)

j+=1 j—=1
and expanded in a Fourier series whose terms determine the Fourier components
¢ (k) of the electrostatic potential. Since the Fourier representation of a delta-function
requires infinitely many terms, the Fourier space calculation would again lead to

convergence problems.

In Ewald method, the potentially infinite sum in real space, is replaced a by
two finite sums: one in real space (r-space) and one in reciprocal space (k-space).
Hence, the combined assembly of point ions and Gaussian charges becomes the (r-
space) part of the Ewald sum, which is now short ranged. A second set of Gaussian

charges, this time with the same charges as the original point ions, centred on the
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point ions is superimposed and the potential is then solved as a Fourier series in
the (k-space). The delta-like point charges by Gaussian charge “clouds” of opposite
sign, are augmented by:
2+ 3/2
o'(r) = —q; <%> exp " (1" (2.3.10)
By suitably adjusting #, optimal convergence of both series may be achieved.
The complete Ewald sum requires an additional correction, known as the self en-
ergy correction, which arises from a Gaussian acting on its own site, and is constant.
For molecular systems, as opposed to systems comprised simply of point ions, ad-
ditional modifications are necessary to correct for the excluded (intra-molecular)
Coulombic interactions. In the real space sum these are simply omitted. In recip-
rocal space however, the effects of individual Gaussian charges cannot easily be
extracted thus, the correction is made in real space, by removing terms correspond-
ing to the potential energy of an ion due to the Gaussian charge on a neighbouring

charge m (or vice versa). This correction appears as the final term in the full Ewald

formula:

am —iK.X 12 K2/ 42
¢ (r;) = I3 Y g | _exp ik exp + Y F(ylrijnl) (2.3.11)
= n

where
2 —f2
F=— / dt
vl ®
k are the Fourier vectors of a cubic base cell with side length L and N charges:

27 -
k= T (kx/ky/kz)/rz’,jr nErf+nL_ri (l’] :1"N)

and r are the inter-particle vectors acting on all periodic images of the base cell,

where nL is a translation vector in the periodic lattice.
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2.3.3 Metal Potentials

2.3.3.1 The Gupta Potential

There are several empirical potentials suitable for describing metallic systems that
are derived from fitting experimental data into an assumed functional form and usu-
ally include a local volume or density dependence in order to describe the metallic
binding. The Gupta [40] potential is based on the second moment approximation
of Tight-Binding (TB) theory and has been extracted from Gupta’s expression for
the cohesive energy of a bulk material. The potential is divided into a repulsive
(V") and many-body attractive terms (V") summed over all atoms contained in the

molecular system:

Viot (1) = §{Vr(rij) — V" (xij)} (2.3.12)
17]
where
o
Vi)=Y A (- 3.
(r) ; exp< p(ro )) (2.3.13)
and

V™ (r) = [Z 7% exp (—Zq (ﬂ - 1))] % (2.3.14)

j#i To

where 1;; is the distance between atoms i and j, A is the energy scaling factor
for the repulsive energy, { is the energy scaling factor for the many-body attractive
energy, ro the equilibrium bond length of the bulk material, p and g are the range

exponents for the pair and many-body potentials respectively.
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2.3.3.2 The Sutton-Chen Potential

Another potential with a similar formalism to Gupta is the Sutton-Chen (5C) [41,42]

potential which has the form:

Vir(r) = ) € [2% <5> - cm(r)%] (2.3.15)

i LA <\

where p; is a local density accounting for cohesion associated with atom i, given by:

o)=Y <ﬁ> (2.3.16)
iZ \ i

r;j is the distance between atoms i and j, as previously stated, c is a dimensionless
parameter, € is a parameter with dimensions of energy, « is the lattice constant, and

m and n are positive integers such that n > m.

When describing a bi-metallic system, the parameters €, «, m and n, can be com-

bined using the following mixing rules:

€8 = VedeB, atB = /yAnB,
1 1 (2.3.17)
nAB — 5 <nA _|_nB>  mAB — = <mA + mB)

where A and B refer to different metallic systems.

The parameters used in both the Gupta and the SC force fields are derived from
TB calculations performed by Cleri and Rosato [43] on transition metals and alloys,
in order to reproduce the cohesive energy, atomic volume and elastic constants of
the corresponding real systems at zero temperature. Further works have extended
the properties of many-body potentials to include also phonon dispersion, vacancy

formation energy, surface energy etc.
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2.3.4 The Stillinger-Weber Potential

The Stillinger-Weber potential [44] is an empirical potential, suitable for studying
semiconductor nanocrystals [45] [46]. It is a simplified potential which uses geo-
metrical quantities, such as distances and bond angles as variables and is capable of
modelling, with a very high precision, the structural and dynamical properties of a
large variety of elements [47]. One of its applications concerns the prediction of the

dynamical properties of solid and liquid silicon.

In order to study H-terminated Si nanoparticles, the Stillinger-Weber potential
was selected due to its efficiency in describing the interactions not only between Si-
Si atoms but also between Si-H atoms, according to the work conducted from Kohen
et al. [48], who have extended the form of the potential in order to include the Si-H
interactions. It is based on a two-body term and a three-body term as shown in the

following general form:

© =) Usisi+ Y Unp+ Y Usig+ Y _ Usisisi + Y Unnn + Y_ Usisin + Y_ Usinn
(2.3.18)

where the three first terms are referring to the two-body part and the next four

terms are referring to the three-body part.

Although the DL_POLY code [1] comes with several popular force fields imple-
mented by default, the Stillinger-Weber potential, unfortunately, is not currently
supported by the versions of the code available so far. For this purpose, the po-
tential had to be imported manually into the DL_POLY source code. The following
sections include a summary of the procedure followed for implementing and test-
ing separately each part of the potential for describing the interactions of silicon and
hydrogen atoms, as reported in the computational works of Kohen et al [48] and of

Hawa and Zachariah [49].
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2.3.4.1 Implementing the two-body term

Each term describing the two-body term of the Stillinger-Weber potential has the

following generic form:

ABrP —r Nexp (L) r<ua
Up(r) = ( Je () (2.3.19)
0 r> o

where all the contained constants are positive (¢, A, B, p, q, 7).

This pair interaction describes in general, the tendency for the formation of a
covalent bond. In practice, the three-body term is also needed for the final achieve-

ment of a chemical bond.

Since DL_POLY is not providing by default the use of Stillinger-Weber potential
as force field, a modification of the code was required. Luckily, using the capability
of the program to define a short-ranged pair potential by tabulating the energy val-
ues, had limited our task in changing the code, only to the three-body part. Thus,
the insertion of the two-body term of the potential was achieved by using an extra
input file called TABLE (see Appendix A.4). This file contains all the grid points
describing an undefined potential as a function of the distance. The file must con-
tain also in a tabular form the values for the two-body forces as a function of the

distance, following the energy values.

2.3.4.2 Testing the tabulated potential with DL_POLY

In order to understand and test the way that the tabulated potential works with

DL_POLY and how the program reads the contained data, a diatomic molecule of
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two Si atoms located in a different distance from their equilibrium bond length was
constructed. If the data contained in the TABLE file are correct then the optimisation
will stop at the point where the two atoms have reached their equilibrium bond

distance.

The energy grid points and the forces values were obtained by implementing the
two-body term of the Stillinger-Weber potential describing the interaction between
two Si atoms in Mathematica [50]. The potential, as constructed in the TABLE file,
was carefully tested to ensure that its units and format were correct. In this respect,
the binding energy and the distance at the minimum was calculated using both
Mathematica and DL_POLY, by performing a geometry optimisation in the latter
case. Our results were confirmed by the very good agreement between the results

obtained by the two codes.

By plotting the potential and differentiating the energy function, the minimum
was found to be at distance 2.3516A. The result also from the geometry optimisation
showed that the equilibrium bond length is 2.3516A. The energy at this point was
found to be equal to 50 kcal/mol in both cases. The experimental values for the
equilibrium bond distance and the minimum energy were 54 kcal/mol and 2.331A
respectively, which show the good approximation of the calculation and the experi-

ment [51].

2.3.4.3 Implementing the three-body term

The three-body term of the Stillinger-Weber potential has the following general

form:
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A [1+ pjiccos(1x) + viik cos(0jk)?] exp (r:—l_]a + r,Zﬁ‘a) i < &

Uj 1 x(r) =

0 rjlk >
(2.3.20)

where the constants A, v and «, are positive, but y and v can also have nega-
tive values depending on the interacting atoms. The indices j,/ and k refer to the
sequence of the three atoms which the three-body term applies to, with the / atom

located at the centre.

The format of the three-body term is separable into two parts, one angular and
one radial cut-off term. It is strictly defined for a sequence of three chemical ele-
ments in a specific order. Thus, the angle formed by the atoms Si-H-Si, for example,

defines a different potential from the angle formed by the atoms Si-Si-H.

In order to insert the three-body term of the Stillinger-Weber potential into the
DL_POLY code, the subroutine which deals with the three-body interactions had to
be modified. To start with, a keyword for the program to recognise the potential
from its input files had to be introduced. Secondly, since the default three-body
potentials of DL_POLY were defined by maximum of five constants, the array in
which these constants are stored had to be extended by one more dimension for
the inclusion of a sixth parameter needed for the definition of the three-body part.
Finally, the new potential had to be consistent with the logic, order and formalism
of the whole code. Thus, the insertion of the three-body term is done by dividing it

into two parts; the “screening” and the “angular” part.

The screening part contains all the terms depending on the two atom-atom dis-
tances r;; and rj and the angular part depends on all the terms described by the

angle 6. In this case the screening term is:
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S(r) = exp (r‘%j 4 ik ) (2.3.21)

]'—D( T —«&

and the angular term is:

A(Q) =1+ Hjik COS(@jik) + Vijik COSZ(jSk) (2.3.22)

The derivatives of these terms describe the forces exerted on the central and side
atoms, in a sequence of three particles. In the DL_POLY code the forces are expressed
by the FORTRAN variables gamma, gamsa, gamsb and gamsc. The derivative of the
angular term gives the gamma term, and the derivatives of the exponential term give
the gamsa and gamsc terms. By default, the gamsb term which describes the forces
on the central atom is set to zero, because the forces on this atom are calculated as
a negative sum of the forces on the side atoms. In a mathematical form these terms

have the following expression:

[gamma] = _S(rz’j)s(rik)WA(gjik) (2.3.23)
T 0
[gamsa] = — A (i) S (xi) (61 — 1) =~ =—S (x37) (2.3.24)
1jj O1jj
AT 0
[gamsc] = —A(0;k) S (rij) (S — 511)1,_.](8_,5(1'1%) (2.3.25)
ik 9Tk

where | being one of the atomic labels i,j,k, and « indicating the x,y,z component

of the Cartesian space.
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For consistency, the modification of the code had to be done with respect to the
software’s default units. Therefore, the three-body potential is multiplied by a factor
of 418.4, the conversion unit of kcal/mol to 10 J/mol, which is the default energy
unit of the program. No conversion was needed for the atomic distances, since they

are given the same units in both literature and software.

2.3.44 Testing of the three-body term

The Stillinger-Weber potential was constructed for describing the behaviour of sili-
con atoms generally in the liquid phase. Hence, the initial properties of the silicon
crystal had to be preserved for the transformation of the bulk crystal to the liquid
phase.

By definition this potential gives a minimum at an angle of 109.47 degrees which
is the angle of a perfect tetrahedron and the angle observed in the crystalline form
of silicon. Also, the distance between two silicon atoms, as defined mainly by the

two-body term is 2.35 A.

For testing the efficiency of the interactions between two hydrogen atoms and
one silicon atom, a molecule was constructed which contains two hydrogen atoms
bound to a silicon atom. The results obtained from the geometry optimisation are

then compared with the results presented in the research article of Kohen et al [48].

Table 2.1: Results from geometry optimisation of SiH,

Energy (kcal/mol) | Bond length (A) | Angle (deg.)

KTS [48] 145.6 1.474 102.61
SiHp This work 145.6 1.474 102.61
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Test of the H-H-H sequence By constructing the SiHz molecule an additional
three-body interaction comes into play; the interaction between three atoms of hy-
drogen. The two-body interaction between two hydrogen atoms is designed to give
the equilibrium bond length of a H, molecule when it is absorbed on a catalytic sur-
face and is equal to 0.74 A, as calculated by Kohen et al. In contrast, the three-body
interaction between hydrogen atoms is mainly repulsive and thus the angle formed
by H-Si-H is expected to be larger in the SiH3 than the angle of the same sequence

of atoms in SiH,.

The results obtained from the geometry optimisation with DL_POLY for the SiHj3
molecule revealed a significant variation with the results stated in the paper of Ko-
hen et al. This inconsistency has also been observed by a later work from Hawa and
Zachariah [49], who have re-parametrised the variables of the Stillinger-Weber po-

tential as defined in the Kohen et al paper in order to give more satisfactory results.

Table 2.2: Results from geometry optimisation of SiHj

Energy (kcal/mol) | Bond length (A) | Angle (deg.)
‘ KTS [48] 222.3 1.471 106.31
This work 208.79 1.582 114.44
, HZ [49] 216.13 1.513 109.40
SZH3
This work 216.47 1.509 109.15

Test for the interactions Si-Si-H and Si-H-Si  The three-body interactions between
two silicon atoms and one hydrogen, are tested on a Si; Hg molecule, being simu-
lated with DL_POLY. Starting from a geometry where all the particles are located in
distances smaller than the cut-off distances defined for all the included three-body
interactions, the Si; Hg molecule is then optimised using the parameters from both
articles of Kohen et al and Hawa-Zachariah. The results obtained are shown in the

Table 2.3.4.4 below.
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Table 2.3: Results from geometry optimisation of SixHe

Energy | Bond length (A) | Angle (deg.)
(kcal/mol) Si-H H-Si-H
KTS [48] 500.10 1.470 106.6
This work 427.96 1.743 117.19
Siy Hg HZ [49] 483.22 1.510 109.5
This work 491.94 1.505 109.01

Testing the three-body potential forces In each test case mentioned above, the
forces computed for every atom were tested by performing finite difference cal-
culations and by differentiating each three-body potential with Mathematica. The
atomic forces are given in Cartesian form and thus each atomic force is constituted
from its resultant force in the X, y and z direction. The general formula which

DL_POLY uses to describe the atomic forces is given by:

0

I
! a}’l"‘

U(lek, rij, Tik) (2.3.26)

where U (6, 1jj, 1i¢) is the total potential.

The finite differencing method for verifying the efficiency of the modified code
and the calculations performed with Mathematica, were used to validate the ac-
curacy of the result printed by the program. For example, if the value of a force
found from finite differencing was not approximating the value printed by the pro-
gram, this was stating the existence of a bug in the code. On the other hand, if a
force printed by the program was approximating the result obtained from finite dif-
ferencing, but its value was different from the value computed by Mathematica, it

meant that a parameter or a constant had been entered incorrectly in the code.
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Chapter 3

Density Functional Theory

Density functional theory (DFT) is a first principles approach used in physics and
chemistry for extracting the electronic properties of many-body molecular systems.
In contrast with other quantum mechanical methods, DFT is based on the evalu-
ation of the electron or charge density n(r) rather than the wavefunction, which
does not have a direct physical meaning. While ab initio or semiempirical methods
are focused on calculating or approximating the practically insoluble Schrédinger
equation, DFT employs the electron density which is an experimentally observable

entity (X-ray diffraction or electron diffraction).

To extract the structural properties of a molecular system it is sufficient enough
to focus only on its ground state. The ground state energy can be obtained, practi-
cally exactly, only from knowing the electron density. The innovation of DFT comes
with the replacement of the N-electron wavefunction with an overall density func-
tion, which allows the disengagement of the energy functional from many electron
coordinates. The electron density is a function of position only, requiring only three
variables for its definition, the components of r (x, y, z in Cartesian space). No mat-

ter what the size of a molecule may be, the charge density remains a function of
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three variables, while the complexity of a wavefunction increases exponentially by

increasing the number of electrons.

Because the electron correlation is fundamentally included in DFT, this method
can calculate very accurately geometries and relative energies, but perhaps not as ac-
curate as high-level ab initio methods. The latter fact results from the lack of knowl-
edge of the exact mathematical form for the DFT functional. In conventional ab initio
theory, the wavefunction can be improved systematically by using larger basis sets
or additional correlation terms, while a further improvement of the functional is a
challenging task in DFT. In this sense, DFT cannot be regarded as a special kind of
ab initio method but the limited use of empirical parameters and the possibility of

someday finding the exact functional, make potentially DFT an ab initio method.

So far, DFT methods have been extensively used for investigating the structural
and electronic properties of semiconductors and several transition metals, where
conventional ab initio methods break down due to system size limitations. Further
improvements in DFT, apart from augmenting or modifying functionals, include
also the development of numerical integration schemes in order to extent its appli-

cability in larger and different molecular systems (see section 3.3).

3.0.5 DEFT Energy

As in the wavefunction based approaches, the electronic energy E,; can be sepa-
rated into the kinetic energy term T, the nuclei and electrons attraction term E,,, and
the electron-electron repulsion term E,,. The inter-electronic repulsion term can be
divided into the Coulomb | and the Exchange K part, according to Hartree-Fock
(HF) theory. While in HF theory, the total energy of a many-body system can be

given with an accuracy of 99% the remaining 1% is still important for evaluating the
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chemical and physical properties of the molecular system. The missing 1% is called

correlation energy E. and is, in principle, included in the DFT formalism.

Eg[n] = T(n) + Eye[n] + Eee[n] (3.0.1)

Eee[n] = J[n] + K[n] + E¢[n] (3.0.2)

where [n] indicates that the above terms are functionals of the electron density n(r)

3.1 Theorems and Models

The first model for describing the electronic energy as a functional of electron den-
sity was developed by Thomas and Fermi [52]. Their theory considers a uniform
distribution of electrons forming a “homogeneous” non-interacting electronic gas,
which allows the average kinetic energy functional to be expressed only in terms of

the particle density.

The omission of exchange and correlation between electrons by Thomas-Fermi
theory led to an improvement of the energy functional, made by Dirac, who in-
cluded the exchange term to the electronic energy, according to his local approxima-
tion theory [53]. Despite further improvements made over the years, the Thomas-
Fermi-Dirac model has limited applications, mainly on isolated neutral atoms and
solids. Density functional theory became an exact theory after the publication of
Hohenberg-Kohn theorems (section 3.1.1), while nowadays, DFT calculations are

based on the more accurate Kohn-Sham approach (section 3.1.2).
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3.1.1 The Hohenberg-Kohn Theorems

The concept of the Hohenberg-Kohn [54] theorems relies on the assumption that
the exact prediction of the ground state of an N-electron system is feasible by only
using the electron density. Their formulation can be applied on any stationary, non-
relativistic many-particle system in an “external” potential vy (r), which completes
the energy required by the electrons to move under the potential of the atomic nuclei

and determines all the properties of the ground state.

H=-—

12 1 2
V24+Y o) +=Y —— 3.1.1
zme; i ZZ ext( ) 21‘;]"1'1'_1‘]1 ( )

3.1.1.1 Theorem1I

The first Hohenberg-Kohn theorem certifies that any ground state property of a sys-
tem with interacting particles is a functional of the ground state electron density.
Thus, an external potential v,y (r) acting on this system, can be determined by one

and only one ground state density n(r).

/

Assuming that an alternative potential v,

(r) (with ground state wavefunction

"), which produces the ground state density 7(r) such that:
P p & y

Vext — Hp = Eqyp (3.1.2)
vhy — H'Y = E)yp (3.1.3)

then, from the application of the variational method (section 1.0.2) to the ground

state electronic energy:

Ey = (¢'|[H'|y') < (p|H'|[p) = (p|H|p) + (p|H' — H|p) (3.1.4)
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Eb < Eo + / [0 (1) — Dext (1)] 1 (1) dr (3.1.5)

Interchanging the primed and unprimed quantities of equation 3.1.5 then:

Eg < Ey+ Eo — E) = E{ + Ey < Eog + E}, (3.1.6)

/

which is a contradiction and therefore, the assumption that such a v} ,(r) exists

falls apart.

3.1.1.2 Theorem II

The second theorem assures that any trial electron density n provides an energy
value higher or equal, if the actual electron density is known, to the ground state
energy. Hence, for any trial external potential vy (r) with an energy functional E|[n]
the global minimum will always be the exact ground state energy E[ng] with the

exact ground state density n.
Ey = E[ng] < E[n] (3.1.7)

The theorem is the equivalent of the variation principle of the wavefunction in
quantum mechanics (section 1.0.2). This allows the ground state density to be used

as the basic variable for minimising the energy when conducting DFT calculations.

Although the original Hohenberg-Kohn theorems are based on some restrictions,
like the presence of a non-degenerate ground system, the theorems have been ex-
tended to include spin-polarised systems, relativistic systems etc. Nonetheless, both
theorems cannot give any information regarding the explicit construction of the ki-

netic or the exchange and correlation energy functionals.
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3.1.2 Kohn-Sham Theory

The real breakthrough in density functional theory came from Kohn and Sham
(KS) [55] with the introduction of the KS orbitals for calculating the electron density,
which in return, is used to calculate the energy and any other related properties.
The central idea in the Kohn and Sham formalism is that the kinetic energy can be
separated into two parts, a term which can be calculated exactly and a small residual

correction term.

According to the Kohn-Sham approach, the exact ground state density ny can be
represented by a ground state density g of an auxiliary system of N non-interacting

particles. This auxiliary system is defined by the Hamiltonian:
Hg = Ts+ Vour (3.1.8)

where V,,; is the operator of an effective local potential acting on the particles.

The exact ground state density is given by:

N
no(r) = Y [ii(r)|?dr (3.1.9)

i=1

where |¢;(r)|? = ¢} (r)¢;(r) and ¥(r) represents the real Schrodinger wavefunc-

tion.

Since the exact ground state density is not known, we assume that the density
can be written as a sum of auxiliary one-electron orbitals ¢;(r) equal to the total
number of electrons N of the system. Thus, the exact density for any interacting

system 1y (r), would be equal to the density of the auxiliary problem ng(r):
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no(r) = ng(r 2 |¢i(x) (3.1.10)
The independent-particle kinetic energy functional Ts would then have the form:

N

=) (¢l - %%m (3.1.11)

i=1

By including also the classical Coulomb interaction energy Ep (as defined in
Hartree-Fock theory) of the electron density ng, the Kohn-Sham expression of the

energy functional using the auxiliary ground state density becomes:

Exs = Ts[ns] + Vext[ns] + En[ns| + Enn + Exc[ns] (3.1.12)
where E,;, is the nuclei-nuclei repulsion term, V,y¢[ng] f Vext (T r)dr and
Exc[ns] = (T[no] — Ts[ns]) + (Ece[no] — Enlns]) (3.1.13)

The E,. is called exchange-correlation term and represents the deviation of the
exact kinetic energy functional T'[ng] of the real system, whose form is not known,
from that calculated by using the formula for a non-interacting system Ts[ng] and
also, the electron-electron repulsion energy difference from the classical system (sec-

ond term of the right part of equation 3.1.13).

By applying the variational principle, as described in the second Hohenberg-
Kohn theorem (section 3.1.1.2), Kohn-Sham theory leads to single-particle Schrodinger

equations for the orbitals:
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A,

Hysi(r) = l—%ﬁz + 51(5(1')1 ¢i(r) = e:¢;(x) (3.1.14)

where Hys is an effective Hamiltonian acting on the Kohn-Sham orbitals ¢; to
provide the energy eigenvalues ¢;. The effective potential vgs(r) results from the

contribution of:
Oks (1) = Vext (1) + 0g (1) + Uxe (1) (3.1.15)

where v,.(r) is derived from the minimisation of the exchange-correlation en-

ergy functional with respect to the ground state density ng(r):

Vxe(r) = (SE#[:S] (3.1.16)

The Kohn-Sham orbitals are canonical eigenfunctions of the Schrédinger equa-
tion 1.0.20 and hence, are required to be orthonormal. In order to find a solution
for the ground state density, equations 3.1.14 and 3.1.15 need to be solved self-

consistently due to the dependence of the effective potential vis(r) from the density.

The Kohn-Sham equation (3.1.14) is exact; if the charge density ny(r) and the ex-
pression of Ey. are known exactly then the total energy of the molecular system can
be computed also exactly. The basic problem in DFT, then, becomes the construc-
tion of the exchange and correlation functional E,.[ng]. For this purpose, various

expressions of Ey. have been developed and proposed.
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3.2 Exchange and Correlation Energy

The exchange-correlation energy E..[n(r)], is a functional of n(r), thus, it depends
parametrically on the function #(r) and on its mathematical form, while the exchange-
correlation potential vy (r), the functional derivative of Ey.[n(r)], is a function of the
components X, y, z of r. In practice, it is common to separate Ey.[n(r)] into an ex-

change Ey[n] and a correlation E.[n] part:

Exeln(r)] = Ex[n(x)] + Ec[n(x)] (3:21)

The two components of E,.[n(r)] can be then treated independently. Some of
the approximations employed for devising good forms for the exchange-correlation

functional are discussed in the following sections.

3.2.1 Local Density Approximation

Within the framework of the Local Density Approximation (LDA) [26], the E.[n]
is calculated exclusively by the local density at the position r of the particle. This
approach, can only be applied in closed-shell, spin-unpolarised systems, that can
be treated as a uniform electron gas, where the density 7 retains the same value or

slightly varies at every position; in contrast with non-local methods (section 3.2.2).

In the LDA method proposed by Slater (X,;LDA method), the correlation part of

the exchange-correlation energy is neglected and the exchange part used is:

ELDA[y] = —Z (Ef / n(r)3dr (3.2.2)




3.2 Exchange and Correlation Energy

For extending the applicability of the exchange functional E, also to open-shell
systems, where the spin densities of x and B electrons are not equal, the LDA can be
replaced by the more general Local Spin Density Approximation (LSDA). This ap-
proach can deal with systems with one or more unpaired electrons, such as radicals.
For systems with strictly paired electrons, the LSDA approach becomes equivalent

to the LDA.

Several correlation functionals, E.[n], have been developed to compensate the
correlation energy E,[n], such as the CAPZ (Ceperley, Alder, Perdew and Zunger)
[56,57] or the VWN (Vosko, Wilk and Nusair) [58]. In the latter case, the correla-
tion energy of a uniform electron gas was determined empirically, with the E.[n]

functional interpolating between unpolarised and fully polarised densities.

Although LDA methods have been used over the years in systems with close
or similar behaviour to the uniform electron gas, such as bulk metallic systems,
calculations performed on systems of chemical interest often produce unsatisfactory
results to many chemists. For this purpose, more sophisticated exchange-correlation

functionals have been proposed and developed.

3.2.2 Gradient Corrected Methods

A significant improvement over the LDA methods, is based on a non-uniform elec-
tron density model. A way to correct the exchange-correlation functional is by infus-
ing its localised description with one or more contributions from the gradient of the
electron density. In this case, the electron density is sampled over an infinitesimal
distance beyond the “local” region, in contrast to LDA /LSDA methods. Such ap-
proaches are called gradient corrected or generalised gradient approximation meth-

ods (GGA). Most gradient corrected functionals have an additional correction term
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into the expression of the LDA:

ESSAn(r)] = B (0] + 8w () (323)

The first GGA exchange functional (B or B88) was developed by Becke [59], who

proposed a popular correction to the LDA exchange energy:

EB88 — pLDA | AEBSS (3.2.4)

Exchange functionals with a similar formlism to Becke’s, extended with some ad-
ditional parameters, found to give better performance over either. Alternative GGA
exchange functionals, which are widely used, have also been developed based on
the reduced gradient function. These functionals, which do not contain any empiri-

cal optimised parameters, include the B86, PBE, and mPBE.

For improving the correlation functionals, corrections to the correlation energy
density have been made, by using a different expression for the LDA correlation

energy density, as in the popular P86 [60] or PW91 [61] functionals.

EP86 — pLDA 4 AEPS6 (3.2.5)

Another popular GGA correlation functional, LYP [62], does not correct the LDA

expression but instead computes the correlation energy in total.
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3.2.3 Hybrid Functionals

The DFT exchange energy, as defined in GGA methods, can be enhanced with an
extra term calculated from Hartree-Fock (HF) theory. In HF theory, the electronic

energy for a system of n occupied spatial orbitals will be:

Egp=2 Z Hj + 2 2 2]1] z] (3-2-6)

i=1j#i

where Hj; represents the system’s core electronic energy, as in equations 3.0.1
and 3.0.2, which also include the electrons kinetic energy and the electrons-nuclei
attraction. The | and K terms describe the Coulomb and exchange parts of the
electron-electron repulsion energy. If the core energy H and the Coulomb energy
J are eliminated, then the exchange part K developed between a pair of electrons i
and j, illustrates the exchange energy E,, over the total number of electrons 7 con-

tained in the system:

E,=— Z ZKZ-]- (3.2.7)

Expanding in terms of the KS orbitals ¢ then the above expression of equation

(3.2.7) becomes:

EJF = ZZ ¢i(1 !4%() i(1)) (3.2.8)

i=1j=1

where the EX'F represents the exact exchange energy of a non-interacting elec-
trons system as a functional of the exact electron density. By adding an LSDA

gradient-corrected DFT expression for the correlation energy E., the exchange-correlation
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energy, Exc = Ey + E., represents a weighted contribution of the expression for the
HF/DFT exchange-correlation functional, which is commonly called “hybrid” DFT

functional.

3.2.3.1 B3LYP

One of the most popular hybrid DFT functionals at present, and perhaps DFT exchange-
correlation functionals in general, is the Becke3LYP or B3LYP functional [63]. It is
based on a modification by Stevens et al. [64] of the exchange-energy functional
developed by Becke in 1993 [65], by introducing the LYP [62] correlation-energy

functional. Its general form is:

EB3LYP — (1 — g — a0y )EEPA + woEEF + 0 EB® + (1 — 2 )EYVN 4 2 EFYP (3.2.9)

The ELSP4 is an LSDA non-gradient-corrected exchange functional, EXF is the
KS orbital based HF exchange energy functional, EZ® is the Becke88 exchange func-
tional, E y WN s the Vosko, Wilk, Nusair correlation function, which forms part of the
accurate functional for the homogeneous electron gas of the LDA and the LSDA, and
ECLYP is the LYP correlation functional. The parameters «y, ay and a. are those that
give the best fit of the calculated energy to molecular energies. The B3LYP func-

tional is overall a gradient-corrected, well-tested and sufficiently accurate hybrid

functional.
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3.3 Methods for DFT calculations

There are several types of basis sets or basis functions for representing the Kohn-
Sham orbitals in density functional theory methods. From basis sets that extend
through all the space occupied by a molecular system (extended basis sets) to lo-
calised functions, centred at the atomic positions or around a chemical bond. In
more sophisticated methods, a combination of both types can be achieved, by in-
cluding localised and extended functions (mixed basis sets) or by augmenting an
extended or a localised basis set with atomic-like wavefunctions within a spherical

region around the atom.

Generally, in electronic structure calculations, the highest level of accuracy can
be reached by using infinite-size basis sets, which is practically impossible. De-
pending on the numerical method used, the size and kind of atoms contained in
the system, these basis functions offer a good compromise for obtaining sufficient
accuracy for a limited number of functions. More details about some types of basis

sets are discussed in the following sections.

3.3.1 Gaussian Basis Sets

Gaussian basis sets are commonly used in computational chemistry due to their
simplicity and efficiency compared to other atomic orbital (AO) basis sets. They are
made by contracting primitive Gaussian-type orbitals (GTOs) and there is a wide
range of basis sets composed from GTOs. Their complexity depends on the number
of basis functions contained for representing all of the electrons on each atom. A list
with all the available Gaussian basis sets developed so far can be found on the “Basis
set exchange database” [66]. The simplest Gaussian basis set, employs a minimal

number of basis functions and for each orbital only one basis function is used.
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A primitive Gaussian-type orbital has the general form:

o (x,y,z;a,i,7,k) = inyjzke*“(xuyz*zz) (3.3.1)

where N is normalisation factor, « is an exponent controlling the width of the
orbital and i, j, k are non negative integer parameters that determine the nature of

the orbital in the Castresian space.

Despite their simplicity, GTOs have some important drawbacks such as the zero
slope at the nuclei region, instead of a finite slope (cusp), and the requirement of
a large number of basis functions to reach a level of sufficient accuracy. More im-
portantly, calculations employing GTOs, suffer from “basis set superposition error”.
This is due to the use of incomplete localised basis sets that results in the binding
energy being overestimated. Additional parameters or variables can be introduced

for improving the quality of GTOs, as described further on.

The first improvement in the utilisation of Gaussian basis sets can be achieved
by increasing the multiplicity of all the basis functions. Therefore, doubling all the
basis functions will lead to a Double Zeta (DZ) type basis. Equivalently, Triple Zeta
(TZ), Quadruple Zeta (QZ) or Quintuple Zeta (5Z) basis sets can be employed.

The most common addition to minimal basis sets is probably the addition of
polarisation functions, denoted by an asterisk, *. Polarisation is added to a basis
set when higher angular momentum functions are important, especially when some
additional flexibility within the basis set is needed, for allowing the KS orbitals to be
more asymmetric around the nucleus or along a bond distance. In terms of atomic
orbitals, p-orbitals can be used to introduce polarisation in s-orbitals. Similarly, d-
type functions can be added to a basis set with valence p orbitals, and f-functions to

a basis set with d-type orbitals, and so on.
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Another common addition to basis sets is the addition of diffuse functions, de-
noted by a plus sign or by an additional “aug” keyword (from “augmented”). These
additional basis functions can be important in cases of anions or other large molec-
ular systems, where the electron distribution at distances far away from the atomic

nuclei is not negligible.

3.3.2 Plane Wave Basis Sets

Plane wave basis sets have lots of applications in quantum chemical simulations,
especially when studying properties of crystalline solids. They are appropriate for
calculations involving periodic boundary conditions, since the results obtained for
an intrinsic property of a unit cell can be considered as an average over the whole
crystal. They are solutions to the Schrodinger equation for the case of a particle
within a periodic box. The form of a plane wave for a cubic box with side length /

is:

| —

el(kxx+kyy+kzz) — iel(k'r) (332)

Pi(r) =

—
WIN
NI—=

where k, = ZT”nx, ky = ZT”ny, k, = ZT”nZ, with ny, ny,n, € Z and Q) is the volume

of the box.

When plane waves are used in density functional calculations a much larger
number of plane wave basis functions are required compared to the number of
Gaussian-type orbitals used in a typical calculation. One of the main advantages of
plane wave basis sets is the elimination of the basis set superposition error, since the
simulations cell is uniformly covered by the basis functions. A disadvantage is that
for calculations on isolated molecules the “supercell” approximation must be made,
which involves the construction of a large simulation cell to isolate, as much as

possible, the molecule from its periodic image interactions. As a consequence, con-
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ventional codes require more computer power to calculate the behaviour of plane

waves within the empty space, as the atomic localisation of the orbitals is lost [67].

In practice, plane wave basis sets are combined with an “effective core potential”
or pseudopotential, thus focusing mainly at the “valence” charge density. This is a
clever way of eliminating the calculation of a large number of wavefunctions and
density gradients near the nuclei which are not easily described by plane wave basis
sets, since “core electrons” are concentrated near the atomic nuclei. This combined
method of a plane wave basis set with a “core” pseudopotential is often described

by the abbreviation “PSPW” calculation.

3.3.3 Pseudopotential Approximation

By convention, the electronic states of an atom can be classified into three categories:
(a) the “core states”, which are localised states closely enough to the nucleus that
are not involved in chemical bonding, (b) the “valence” states, which are actively
involved states in chemical bonding and (c) the “semi-core” states, which are not
directly involved in chemical bonding but are partly localised and more polarisable
than core states. Although these terms mainly describe single-particle electronic
states, it is customary to refer also to the electrons these states contain by using the

same terminology.

In principle, the pseudopotential approximation attempts to replace the wave-
functions of the electrons localised in the vicinity of the nucleus and the nucleus
with an effective potential, or pseudopotential, in order to reduce complicated ef-
fects derived from the large kinetic energy of the core electrons. This effective po-
tential imposes a weak interaction between the valence electrons and the core elec-

trons, while treating at the same time the nuclei with the core electrons as a rigid
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ion centre. Thus, only the chemically active valence electrons are dealt explicitly, as
the behaviour of the valence states inside the core region is practically unnecessary.
The pseudopotential wavefunctions of the valence electrons generated are required

to be orthogonal to all the core states, by construction.

The pseudopotential theory is based on the orthogonalised plane wave (OPW)
method, proposed by Herring in 1940 [68], which attempts to replace the steep be-
haviour of the atomic core wavefunctions with rather smooth plane waves (PW)
but, at the same time, reproducing accurately the bonding properties of the true po-
tential. The valence wavefunctions are constructed as a linear combination of PW
and core wavefunctions. With careful selection of the expansion coefficients, the

constructed pseudo-wavefunction turns out to be orthogonal to the core states.

From the OPW approach, an atomic system is defined by its Hamiltonian H, the
core states {|x»)} and the core energy eigenvalues {E, }. Each one valence state |i)
gives an energy eigenvalue E. From these states a smoother pseudostate |¢) can be

constructed by:

core

[¥) = l@) + Y aulxn) (3.3.3)

The valence state must be orthogonal to all of the core states so that:
(Xm|9) = 0= (xmle) + an (3.3.4)

which fixes the expansion coefficients a,,. Thus

core

1) = lo) = Y [xn) (Xnlo) (3.3.5)

Substituting this expression in the Schrédinger equation, H|¢) = E|¢), gives:

core core

Hlg) — Y Enlxn)(Xnl@) = El@) —E Y _ |xu) (Xnl9) (3.3.6)
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which can be rearranged in the form:

core

Hlg) + Y (E = En)|xn){xnl@) = Elo) (3.3.7)

From equation 3.3.7 we can observe that the smooth pseudostate obeys the Schrodinger

equation with an extra energy-dependent non-local potential Vy:

[H + Vi) l9) = E|g) (3.3.8)

core
= Y (E = En)lxn) (xnl (3.3.9)
n

The additional potential V;;;, whose effect is restricted in the core, is repulsive and
cancels part of the strong Coulomb potential so that the resulting sum is a weaker
pseudopotential. This results in changing the energies of the atomic eigenstates,
but if the core states are fairly separated in energy from the valence states, then a
reasonable approximation would be the fixing of E in V}; to be the atomic valence

eigenvalue.

There are several types of pseudopotentials, depending on the transferability of
atomic properties in a variety of systems or the amount of empirical factors intro-
duced for the construction of a pseudopotential. In the first non-empirical approach
by Philips and Kleinman [69], the norm of the constructed pseudo-wavefunction in-
side the core region was different from that of all-electron wavefunction, which led
to incorrect charge distribution of the valence states or errors in chemical bonding
properties. This could be solved by re-normalising the pseudo-wavefunctions in
terms of the all-electron wavefunctions within some radius (cut-off or core radius).
Therefore, if the pseudo-wavefunctions are required to preserve the norm inside the
core radius, this property is called “norm-conservation” and the relative pseudopo-

tentials “norm-conserving”.
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3.3.3.1 CASTEP

CASTEP [3] is a PSPW code for performing density functional theory calculations.
It can simulate the properties of solids, interfaces, and surfaces for a wide range of
materials such as semiconductors, metals etc. First principle calculations within the
DFT formalism can be used to simulate a wide range of materials and their prop-
erties which can be thought of as an assembly of nuclei and electrons. Its compu-
tational requirements scale proportionally to the volume of the simulation cell and
with the third power of the total electrons number, depending also on the available

computational memory and power.

The code has also the ability to use or directly construct “ultrasoft” pseudopoten-
tials. In contrast with the norm-conserving pseudopotentials reported previously,
the ultrasoft pseudopotentials exploit a scheme for relaxing the norm-conservation
constraint, thus leading to a much smoother and highly transferable pseudopoten-

tial.

3.3.4 Linear-scaling DFT based on the Density Matrix

DFT methods, based on the equations outlined in the previous sections, require a
computational effort that scales cubically with the system size N, or they have an
O(N?) scaling. They have been developed to minimise the energy functional iter-
atively by having to impose orthonormality constraints on the Kohn-Sham eigen-
states. This “conventional” approach sets, in practice, an upper limit on the size
of the simulated systems (as in calculations performed with the CASTEP code [3],
regardless of the available computational resources). Linear-scaling methods [70],
on the other hand, have an O(N) time scale, where their computational efficiency

scales linearly with the system size. Such methods are important for employing a
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first principles method accuracy in calculations extended to systems of larger sizes

than those accessible with conventional approaches.

3.3.4.1 The ONETEP Approach

ONETEP [4] (Order-N Electronic Total Energy Program) is a linear scaling DFT code,
in which the required time for a calculation increases linearly with the number of
atoms, in contrast with other conventional DFT approaches mentioned previously.
Because of this unique feature, the program is able to model molecular systems

larger than ever before with DFT.

According to Kohn-Sham [55] theory 3.1.2, a fictitious system of non-interacting

particles can be described by a single-particle density-matrix:

p(rx) =) figi (1)i(x) (33.10)

where ¢;(r) is a set of Kohn-Sham orbitals and f; is the occupancy state of each ¢;(r)

at zero temperature, therefore f; = O or f; = 1.

The diagonal elements of the density matrix define the charge density n(r):

n(r) =2p(r,r) (3.3.11)

where the factor 2 derives from the inclusion of electron spin, for closed-shell sys-

tems.

For a conventional DFT calculation each Kohn-Sham orbital ¢;(r) is allowed to
expand over the entire system’s space. Considering the overlap between each orbital
and all the possible pairs of the N orbitals, the calculation time becomes eventually

proportional to N°.
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In the ONETEP code [71], the expression of the density-matrix is given by:

Zq)a (r)K*Ppp(r) (3.3.12)

where ¢, (r) are a set of spatially localised non-orthogonal functions, called non-
orthogonal generalised Wannier functions (NGWFs) and K*f is called the density
kernel [72]. The density kernel is the density matrix defined by a set of duals ¢f of
the NGWFs:

(@Plo) = [ drgP (£)gu(r) = of (3319

In order to achieve linearity, the NGWFs are strictly localised in a spherical re-
gion around the atomic centre at position R and the density kernel is truncated be-
yond a cut-off distance r.4;. The density kernel is required to be a sparse matrix,

thus we impose the condition:
K" =0, when rey < |Rq — Rg| (3.3.14)

The functions ¢, (r) are optimised during the calculation along with the density-
kernel using the conjugate gradient method, to ensure strict localisation. The opti-
misation procedure involves the expansion of the NGWF in terms of “periodic sinc”

or “psinc” functions Dy (r) [73]:

¢a(r) =Y Di(r)Cra (3.3.15)

k
The psinc functions are, by construction, orthogonal and are related to plane
waves by a Fourier transformation. The quality of the psinc basis set is improved
systematically by varying the grid spacing of the psincs, which is equivalent to the

kinetic energy cut-off parameter of plane waves. The fact that NGWFs are optimised
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in situ allows plane wave accuracy to be achieved with only a minimal number of
NGWFs (and hence the smallest possible sparse matrices). Furthermore, as the basis
is independent of atomic positions and provides a uniform description of space,
ONETEP calculations are not affected by basis set superposition error [74]. The code
is parallelised and allows calculations to be performed on large systems containing

thousands of atoms [75,76].

3.4 Tight-Binding DFT

Tight binding (TB) methods employ a minimal basis composed of localized atomic-
like orbitals, as in linear combination of atomic orbitals (LCAO) method. The TB
method has been mainly used for describing the electronic states of non-metallic
systems, including covalently bonded materials. Unlike first principles methods,
TB methods do not involve the direct computation of overlap and Hamiltonian ma-
trix elements from explicit wave functions, but instead involve empirical fits to ex-
periment or more accurate calculations, derived in most cases from first principles
expressions. TB methods are generally less accurate and less transferable than den-
sity functional theory methods, but they provide a good alternative for simulating

large systems in sufficient time scales, in contradiction with first principles methods.

Depending on their empirical parametrisation, TB methods vary considerably;
from completely semiempirical to first principles-based, orthogonal to non-orthogonal,
or self-consistent to non-self-consistent. The self-consistent charge (SCC) density
functional tight binding (DFTB) method, incorporates a SCC mode into a modified
reformulation of the Kohn-Sham total-energy functional, obtained from DFT. This
charge dependent energy contribution improves the chemical transferability, result-

ing in improved values of reaction energies for several categories of molecules.
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3.4.1 The DFTB Approach

The code used in this project, for performing TB-DFT calculations is called DFTB+
[2], which exploits the sparsity of the density matrix by using conventional dense
diagonalisation algorithms. The matrices size increases linearly with the number of
atoms, for large systems, while all the matrices are real for both periodic and non-
periodic systems. The method developed in the code is based on a second-order
expansion of the Kohn-Sham DFT energy with respect to charge density fluctuations

[77]. A generic expression for the total DFTB energy is given by:

occ

. 1Y
Eprre = ), (¢i|Holdi) + > Y YupAdalrgg (3.4.1)
vp

1

The first term runs over the occupied single-particle wavefunctions ¢; and cal-
culates the Hamiltonian energy for an input density ng, which is equivalent to a
common standard non-self-consistent TB scheme. The second term represents the
second order extension of the Kohn-Sham energy of wavefunctions and potentials
centred on atoms a and B. The charge fluctuations Ag, and Agg of atoms a and f are
defined by a SCC redistribution of Mulliken charges. 7y, consists of a long-range

pure Coulomb term and an exponentially decaying short-range function S:

1
Yap = Rtxﬁ

— S(Ryp, U, Up) (3.4.2)

where R, is the distance between atoms « and  while U, and Uy are the Hubbard

parameters for these atoms respectively.
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Chapter 4

Computational Study of Silicon

Nanoclusters

The applications of silicon nanocrystalline particles have become an extensive and
attractive area of research due to their diverse properties. Some of the most impor-
tant applications involve energy conversion in photovoltaic solar cells [78], biomed-
ical fluorescent imaging as biological sensors [79], electrical response in nanoelec-
tronics as field-effect transistors [80], logic circuits [81], light-emitting diodes [82]

etc.

Nearly three decades ago Canham [83, 84] discovered the photoluminescence at
room temperature in visible red light of electrochemically etched silicon. As a result
a variety of physical, chemical, and electrochemical techniques to produce disper-
sions of luminescent nanometre sized silicon crystallites were developed. Research
led by Nayfeh [85] has demonstrated that by reducing the size of a Si crystal to a few
tens of atoms (~1 nm), without altering its chemical composition, a nanoparticle is

created with novel properties.
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4.1 Synthetic Methods

4.1.1 Small Si Nanoparticles

Several procedures were developed for synthesising luminescent Si nanoparticles.

These include physical, chemical, and electrochemical procedures.

A variety of physical techniques make Si nanoclusters in matrices of glass [86,87]
and SiO, [88]. Nanocrystals of 3 nm are produced followed by annealing at 1100°C.
Another technique involves laser ablation on silicon wafers using a variety of agents

to produce isolated Si particles [89].

Isolated particles can be obtained also, by gas-phase preparation from silanes
via slow combustion [90,91], thermal decomposition [92], microwave plasma [93],

gas-evaporation [94], or chemical vapour deposition (CVD) [95,96].

Si nanoclusters in the range 2-10 nm can be chemically synthesised via a re-
duction of anhydrous ionic salts SiX4 (X=Cl, Br), dispersed in water-free reverse-
micelles solutions, with LiAlH, [97]. Unlike the physical methods mentioned above,
which produce impure Si crystallites that contain a large amount of SiO; on the sur-
face, this method produces Si particles with the surface terminated by hydrogen

from metal hydride.

In general, SiO, inhibits the chemical activity of silicon. On the other hand, Si-O
bonds can increase the reactivity of silicon nanosurfaces because these bonds induce
polarisation in Si-Si and Si-H bonds of the surface, rendering them more amenable

to functionalisation.

A dispersion method of single-crystal silicon wafers using aqueous HF/ethanol

electrolyte and hydrogen peroxide (HyO;) as cleansing agent, produces ultrasmall
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uniform size Si nanoparticles with discrete sizes of 1.0, 1.67, 2.15, 2.9, and 3.7 nm.
These nanocrystals have distinct emission in the red, green, and blue light range,
an ability which makes then favourable for biomedical tagging, RGB displays, and

flash memories [85].

10nm

Figure 4.1: (Left) (a) and (b) TEM [10] images of Si particles on a graphite grid. The particles
are nearly spherical and can be classified into a small number of discrete sizes. (Right)

Closeup TEM images of the 1.0, 1.67, 2.15, 2.9 and 3.7 nm particles (from ref. [11])

4.1.2 Silicon Nanowires

There are two synthetic approaches for creating nanoscale silicon wire structures,
which can be characterised as top-down and bottom-up. In the top-down approach,
which is the conventional industrial method, silicon nanostructures are patterned
in bulk materials by a combination of lithography, etching and deposition to form
functional devices [98]. On the other hand, silicon nanowires (SiNWs) can be pro-
duced directly and without lithography using the bottom-up approach [99]. A key
advantage of the bottom-up approach is that critical nanoscale features are defined
during synthesis, which eliminates some of the lithography-based fabrication steps,

and moreover, can yield structures uniform at the atomic scale.
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Figure 4.2: (a) TEM [10] images of 3.8
nm diameter SINWs with [110] growth
axis, (c) HRTEM cross-sectional im-
age, and equilibrium shapes for the (b)
nanowire and the (d) nanowire cross

sections. Scale bars, 5 nm (from ref.

[12]).

In general, the preparation of nanowires
requires the material to be added dur-
ing the growth process for restricting the
growth to occur along one direction. In
systems where atomic bonding is rela-
tively isotropic, such as silicon, achieving
1D growth requires that the symmetry is
broken during growth [100]. One com-
mon scheme involves the utilisation of a
linear growth template to guide the mate-

rial’s growth only in 1D [101].

Another general strategy involves the
exploitation of a nanocluster “catalyst” to
enforce the growth to happen in 1D. The
nanocluster or nanodroplet serves as the

site that directs preferential addition of re-

actant to the main axial direction of a growing nanowire, much like a polymerisa-

tion catalyst directs the addition of monomers to a growing polymer chain [102].

The growing procedure is often terminated by using gold nanoparticles. Usually

nanocatalytic crystal growth reactions involve the use of chemical vapour deposi-

tion (CVD) [103].

41.2.1 H-terminated Si nanowires

Perhaps, the best technique for synthesising stable hydrogen terminated SiNWs is

the electrochemical dispersion of bulk silicon. Electrochemical dissolution of sili-

con followed by separation techniques, such as ultrasonic fracturing, produces col-
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loidal suspension of particles in a variety of organic solvents which involve HF
molecules [104]. The resulting porous layer is made up of one-dimensional crys-
talline nanowires and zero-dimensional nanocrystallites. These nanowires are hy-
dride terminated, containing mono-(= SiH), di-(=SiH;) and tri-(—SiH3) hydride
groups and very little SiO; [105]. Hirata et al. [106] reported the production of com-
pletely pure H-passivated silicon nanoparticles when oxygen-terminated nanocrys-
talline silicon films were prepared by using silicon evaporation in ultra-high vac-

uum with oxygen and argon radicals, and then treated by HF.

4.1.3 Optical Properties of Si nanoparticles

The optical properties of Si nanoparticles can be greatly influenced by their surface
chemistry, size and shape. As the size of silicon nanoparticles approaches the quan-
tum regime, their electronic properties are substantially altered compared to a bulk
material, due to the strong effect of quantum confinement [107]. Ultrathin silicon
nanowires, for instance, demonstrate a blue shift in their optical spectra [83], while
silicon quantum dots (QDs) can emit coloured light depending on their synthetic
preparation [108]. Quantum confinement induces photoluminesence in the visible

range of silicon particles by increasing their optical gap compared to bulk silicon.

Silicon is an indirect gap semiconductor, and requires a phonon in addition to a
photon for excitation to the lowest minimum in the conduction band at 1.1 eV. The
first direct gap, which requires no phonon for excitation, is at 3.3 eV. In a nanocrys-
tallite, the energy levels become quantised due to confinement. For a 2.5 nm diam-
eter silicon crystallite, the confinement shift is approximately 0.7 eV; this shifts the

gap from 1.1 eV, in the infrared, to 1.8 eV, in the visible part of the spectrum.

77



4.1 Synthetic Methods

4.1.4 Structural Properties of Si Nanowires

Synthesised SiNWs are single-crystalline nanostructures with uniform diameters
and can be growth-controlled allowing them to be developed not only in differ-
ent directions but also in various transverse shapes (square, pentagon, hexagon
etc.) [109]. Studies on the crystallographic growth directions of SiNWs have also
been investigated and revealed that the growth axes of SINWs are related to their

diameters [12,110].

For diameters between 3 and 10 nm, 95% of the SiNWs were found to grow
along the [110] direction; for diameters between 10 and 20 nm, 61% of the SINWs
grow along the [112] direction; and for diameters between 20 and 30 nm, 64% of the
SiNWs grow along the [111] direction. These results demonstrate a growth prefer-
ence along the [110] direction in the smallest SINWs and along the [111] direction in
larger SINWs. For smaller-diameter SiNWs, the nanowire surface energy plays an
increasingly important role in determining the growth direction. To our knowledge

the thinnest nanowire reported in literature has a diameter of ~1.3 nm [111].

41.4.1 Reconstruction in H-terminated Si surfaces

The surface of H-passivated Si nanoparticles determines to a great extent their chem-
ical behaviour. There are three surface reconstructions reported in the literature.
The (1x1), which contains the highest coverage of hydrogen on the surface atoms,
the (2x1), which is formed by the reconstruction of unreconstructed H-passivated
Si surfaces to (2x1) monohydride phases and the (3x1) reconstruction [112]. The
(3x1) phase is a mixture of monohydride and dihydride units (1x1). The recon-
struction of H-passivated Si(100) surfaces to form (2x1) monohydride phases has

been observed experimentally at 650K [113]. Also a (3x1) reconstruction has been
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observed at 370K. The (1x1) phase was mainly observed at room temperature and
is consider to be highly disordered. Schematic representations of the observed re-

constructions are shown in Figure 4.3.

(1x1) (2x1) (3x1)

Figure 4.3: Known reconstructions of H-terminated Si nanoparticles. Blue and white

spheres represent Si and H atoms respectively.

4.2 Computational Studies on Si Nanostructures

The variety of phenomena of Si nanocrystals makes their theoretical investigation
difficult and challenging. Particularly, details regarding their atomic and electronic
properties are important for extracting conclusions about their optical, magnetic,

dielectric and conductivity properties, chemical reactivity, and stability.

Depending on the number of atoms that each system contains, different compu-
tational approaches can be used. In general, tight-binding (TB) methods are used to
investigate systems containing from several hundreds to thousands of atoms; DFT
methods have been used so far for sizes up to few hundred atoms, by employing the
time-dependent density functional theory (TDDFT) approach to study excited states
and optical spectra [114]. Other methods for studying excited states are based on the
self-energy of a many-body GW approach [115] (direct product of a Green Function
and a dynamically screened interaction W). Some accurate calculations which have
been carried out for small silicon nanoclusters and periodic silicon systems have

used quantum Monte Carlo (QMC) methods [116].
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4.2.1 Ultrasmall H-passivated Si nanoparticles

The first structural prototype studied computationally was a spherical Si nanocrys-
tal [117] , which for the experimentally observed size of 1 nm, contained 29 Si atoms
(magic number for the Td symmetry and spherical shape). In SipgHj3e, all of the 36
dangling bonds of the Si surface atoms were terminated by hydrogen. However,
the corresponding electronic energy gap was calculated at 6 eV, suggesting that the
observed clusters possess smaller number of terminating hydrogens, with a part of
the dangling bonds saturated by a nanocrystal surface reconstruction. By eliminat-
ing 12 H atoms the structure obtained is SiygHj4 with six reconstructed surface Si-Si

dimers.

After relaxation using DFT with the PW91 exchange-correlation functional, the
resulting SipgHy4 (Figure 4.2.1) found to have a band gap of 3.5 eV, close to the one
observed experimentally (3.5£0.3 eV) [118]. The value 3.5 was derived after correc-

tion due the DFT gap underestimation.

The surface of a SipgHy4 cluster can be represented as a 28-atom cage, similar
to a filled fulerene structure, with a single silicon atom in the centre, bonded to
four surface atoms (related by Td symmetry). The relaxed configuration, has five Si
atoms constituting a single tetrahedral core and twenty four Si atoms constituting
a H-terminated reconstructed surface. The surface Si atoms form four hexagonal
rings while the whole structure of SixgHjy4 has six reconstructed dimers compared to
SipgHze. The diameter of the prototype was 0.9 nm for the pure Si cluster and 1.066

nm including the H-termination.

In another computational work from Draeger et al. [119], first principles molec-
ular dynamics (FPMD) simulations and QMC calculations were combined in order

to determine the structural and optical properties of the 1 nm silicon particle. The
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reconstruction of crystalline SipgHgzg to SipgHp4 was found to have an optical gap
of 3.44 eV, in good agreement with experiment [118]. In addition to the symmetri-
cal single-core, they also found two other configurations of the single-core particles

SipgHy4 with a different hydrogen distribution.

Figure 4.4: Bulk-like unreconstructed SipgHgzs (Right) configuration and the filled fulerene

reconstructed SipoHys (Left) particle. (blue) Si atoms (white) H atoms.

Extending the diameter of the nanoparticles by few angstroms, Puzder et al. [120]
studied the structural stability and optical properties of H-passivated Si nanospheres
with reconstructed and unreconstructed surfaces and diameters from 0.7 to 2.0 nm
(63-331 atoms). The (2x1) reconstructed facets were created by removing a H-
atom from neighbouring pairs of SiH, groups forming an additional Si-Si bond.
The nanostructures were optimised using DFT within the local density approxima-
tion, while the calculations regarding the formation energies were performed using

QMC.

Their results, showed that the surface with the highest coverage of H-atoms
(Si1ag8Hi0) had the lowest formation energy when pp > —0.3 eV. The reconstructed
SijagHoe (2% 1) and SijygHy, (3% 1) found to be more energetically favourable when
up < —0.3 and uy < —0.85 eV respectively. In general, clusters with reconstructed
surfaces were found to have weaker size dependence on their optical gap compared
to unreconstructed, but the effect of the dimer reconstructions to the energy gab was
less significant when the mean diameter of the nanospheres was larger than 2 nm.

Similar conclusions were drawn by Northrup [113], who performed first principles
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calculations on the formation energies of H-terminated Si surfaces by modifying the
chemical potential of hydrogen pp. His results revealed that the (2x1) surface re-
construction is more stable when —1.28 < up < —0.24 eV, while (3x1) and (1x1)

reconstructions occur when yg > —0.24 and ug > —0.09 eV respectively.

4.2.2 H-passivated Silicon Nanowires

Computational works studying silicon nanowires (SiNWs) with first principles meth-
ods are usually taking advantage of the periodicity of a crystalline structure in or-
der to perform calculations about their properties. The surfaces of SiNWs are of-
ten passivated with an oxidised layer or hydrogen atoms for every dangling bond.
An important amount of theoretical studies on SiINWs usually considers hydrogen-
terminated structures for practical efficiency in construction and modelling. The ef-
fects of the quantum confinement on SiNWs can be understood, sufficiently enough,

by using also H-passivated Si nanostructures.

Synthesised H-terminated SiNWs with rectangular shapes (widths 1-2.3 nm) and
oriented along [100] direction were found to have a direct band gap that increased
with a decrease in the mean diameter of the nanowire due to quantum confine-
ment. Buda et al. [121] studied similar nanowires with diameter 1.5 nm confirming
the previous conclusion. In many studies, quantum confinement effects have been
considered within an effective mass approximation. However, Read et al. [122] ob-

served deviations from the effective mass theory in nanowires thinner than 2.3 nm.

A theoretical investigation of the atomic and electronic structures, and optical
properties of hydrogen-terminated SiNWs carried out by Zhao et al. [107] by per-
forming first principles DFT calculations, showed that all the studied [110] nanowires

had a direct energy band gap at the I' point due to band folding; while the [111]
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nanowires were exhibiting a transition from an indirect to direct band gap, on going
from large to small diameters. The band gap was increasing sub-quadratically with
decreasing thickness. The nanowires were cut from bulk Si along [110] and [111]
directions at diameters up to 4.2 nm and were passivated with H such that no SiHj
complexes would remain on the surface. Similar to studies for porous silicon, quan-
tum confinement was becoming significant for diameters =2.2 nm. The LDA band
gaps were corrected using a many-body perturbation method based on the GW ap-
proximation [115]. The corrected band gaps for [110] SINWs as obtained by Zhao et

al. [107], were in good agreement with experimental values.

Singh et al. [13] studied the
electronic and atomic structures
of five different classes of hy-
drogenated SiNWs (NW,,, n=1-5)
(Figure 4.2.2) oriented along [110],

[100], and [112] for extracting con-
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growth behaviour. The nanowires
were constructed from a bulk sil-

icon crystal such that these were
Figure 4.5: Cross-sections of the optimised

structures of SINWs. (a) NW1, (b) NW2, (¢)
NW3, (d) NW4, and (e) NW5. Red and blue

bounded by low index surfaces.

NW1 was oriented along the
[110] direction along, as NW2

spheres represent H and Si atoms, respec-
i ) . tivelyy. NWI1 and NW2 are oriented along
also, but with different facets in

[110], NW3 and NW4 along [100] while NW5
lateral directions. NW3 had the
is oriented along the [112] direction [13].

same structure with NW2 but
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was oriented along [100] direc-

tion. NW4 was elongated along the [100] direction and lastly, the NW5 was sim-
ilar to the thinnest experimentally observed SiNW, oriented along the [112] direc-
tion [111]. The surface of the NWs was terminated with H atoms so that each Si
atom is tetra-coordinated. The NW2 and NW3 contained Si dimers, as observed
on bulk Si(100) surfaces. In the case of NW5, the calculated Si-Si and Si-H bond
lengths (3.85 and 1.5 A respectively) on the (111) facets were found to agree well
with experiments (3.80 and 1.5 A).

A similar work conducted by Vo et al. [14] on H-passivated SiNWs grown along
[100], [110] and [111] directions with diameters ranging from 1-3 nm, emphasises
also the dependence of structural stability, band gap and effective mass on the size,
growth direction and surface structure of the nanowires. The initial geometries of
the NWs were relaxed using quantum Molecular Dynamics (QMD). By using the
smallest periodic repeat unit from the optimised structures, geometry optimisations
were performed, using LDA-DFT and ab initio self-consistent GW energy formation

calculations.

Surfaces containing dihydrides in “canted” conformation were more stable than
symmetric dihydrides. NWs grown in the [100] direction with surface reconstruc-
tions had larger bond length distributions and lower symmetries than the [110]
and [111] directions. NWs containing canted dihydrides had no significant differ-
ences in bond lengths along the growth directions due to their minimal strain. For
pug > —0.23 eV the canted dihydride structure with the highest coverage in H-atoms
had the lowest formation energy while for yy < —0.23 the partial (2 x 1) reconstruc-
tion becomes more favourable. The [111] growth direction was found to be more
favourable for g > —0.7 eV. For yy < —0.7 the [100] direction is preferred. For

NWs with small diameters, the [111] direction is the most favourable.

In the theoretical work of Singh et al. [13], the band gap was found to change
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Figure 4.6: Fully relaxed 3 NM Si NWs: (a) in three different growth directions [001], [011],
and [111], and (b) with three different surfaces [14].

with the orientation and thickness of the nanowires. In all studied cases the band
gap was increasing when the diameter was decreasing due to quantum confine-
ment, but the scaling was dependent on the morphology of the SINWs (Fig. 4.6).
Except for NW3 and NW4, the nanowires were direct band-gap semiconductors.
The NW1 and NW2, which were oriented along the same direction, were found to
have similar band gaps (1.34 eV). However, the band gaps for NW3 and NW4 were
different by as much as 0.40 eV, though both were oriented along the same direction
and had nearly the same thickness. This indicates that the scaling of the band gap
with the diameter, depends strongly on the nanowire morphology. The band gap
was increasing more rapidly for NW4 than in NW3, by decreasing the mean diame-
ter, even though both nanowires were oriented along the same direction. Therefore
this is in contrast with the conclusions of Zhao et al. [107], who were claiming that, is
possible to fit the band gap in a universal function. The band gap for NW5 oriented
along the [112] direction was calculated to be the largest (1.80 eV) among all the
SiNWs of similar thickness. The actual band gap, though, is expected to be signif-
icantly higher because of the underestimation within the GGA. For [110] and [111]
SiNWs with small diameters, Zhao et al. [107] calculated a correction to the band
gap using the GW method, which was twice as much as the LDA value. Therefore,

the final band gap was estimated close to the experimental value of 3.53 eV.
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Figure 4.7: (Top) The electronic band structures and band gaps of NWn
(n=1-5) SINWs with comparable mean diameters. Arrows are drawn to
show the indirect band gaps in NW3 and NW4. Major ticks on the y-
axis are equivalent to 1 eV. (Bottom) Plot of the band gap versus mean
diameter of the nanowires shows that in general the gap increases with
decreasing diameter and it depends on the orientation of the nanowire.
The dependence on mean diameter is similar for NW2 and NW3 but very
different for NW4 showing a strong dependence on the morphology of

the nanowire [13].
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The results obtained from Vo et al. [14], in support of the conclusions made by
Singh et al. [13], revealed that the canted dihydride structures had a decreasing band
gap, from 2.35 to 0.88 eV for the [100] NWs, from 1.72 to 0.72 eV for the [110] NWs
and from 2.12 to 0.85 eV for the [111] NWs, when the diameter was increased from
1.1 to 3 nm. The band gap of the reconstructed structures was varying from 2.03
to 0.64 eV for the [100] NWs, from 1.67 to 0.71 eV for the [110] NWs and from 1.54
to 0.84 eV for the [111] NWs. Nanowires grown along the [100] direction had the

largest difference in band gap between the canted and reconstructed structures.

4.3 Calculations on H-Passivated Si Nanorods

Within the framework of this research project, first principle Density Functional The-
ory (DFT) calculations have been performed on entire silicon nanorods with more
than 1000 atoms of varying aspect ratio and levels of surface passivation with hydro-
gen [21]. These large scale DFT calculations were performed directly for the whole
nanostructures, without taking into account periodicity or symmetry effects (as in

nanowires), mainly by using the ONETEP program [4].

In the following sections the results of this work are presented and discussed
in the context of other works reported in the literature, along with their relevance
to technological applications. The conclusions are summarised in the last section.
The DFT calculations were performed within the GGA method using the Perdew,
Burke and Ernzerhof (PBE) exchange-correlation functional [15]. The structures
of the nanorods have been optimised using a density functional tight-binding ap-
proach, with the DFTB+ code [2], while energies and electronic properties have been
computed with large-scale ab initio DFT calculations, using the ONETEP software
package.
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4.4 Construction and Validation

The H-terminated Si nanorods were constructed using the Accelrys Materials Stu-
dio [123]. Initially, pure silicon nanorods were formed from a bulk silicon diamond
lattice by truncating a cylindrical shaped nanostructure. The [111] growth direc-
tion has been chosen to be the preferential elongation axis, since this is the mainly
observed growth direction in several experimental works [14]. All the constructed
nanorods had a fixed length of 5.0 nm with diameters varying from 0.8 nm to 1.3
nm. Within these dimensions, the nanorods were carefully shaped in order to avoid
the existence of SiH3 on the surface when saturating the dangling bonds of silicon
atoms with hydrogen, as these groups are highly reactive [107]. Thus, the (1x1) un-
reconstructed H-passivated Si nanorods, had a surface containing both dihydrides
(SiH,) and monohydrides (SiH) while for the (2x 1) reconstructed nanorods, the sur-
face contained only monohydrides for allowing a uniform distribution of the recon-
structed parts. The final structures were placed in a periodic box with a minimum
1 nm vacuum region, which is considered to be adequate enough for eliminating

periodic interactions.

The nanoclusters were then pre-optimised, using tight-binding DFT, within a
0.05 eV/A force tolerance. For describing the highest angular momentum of the
tight-binding DFT Hamiltonian, s, p and d orbitals for Si atoms were included and
for the H atoms, only s orbitals. The pre-optimisation of the structures, is required to
distinguish the preferred tendencies for reconstruction, mainly for the (2x1) nanos-
tructures. Any single dangling bonds that remained on the surface Si atoms were

capped with hydrogens.

A full geometry optimisation was then carried out with DFTB+ for all the nan-
oclusters, and afterwards, the coordinates of the optimised structures were imported

into the ONETEP code, to perform DFT energy and electronic properties calcula-
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tions. The calculations were performed directly for the whole nanocluster within
the same force tolerance and exchange-correlation functional, using a psinc kinetic
energy cut-off of 300 eV. 6 NGWFs with 7.0 Bohr radius, for each Si atom and 1
NGWFEF with 6.0 Bohr radius, for each H atom, were found to be sufficient for the
representation of Si and H atoms in the calculation, after conducting several tests on

smaller systems, which are summarised in the next section.

The parameters for our calculations were selected, by performing extensive tests

on the SixoH3s and SizspHisp model clusters using a variety of approaches.

44.1 Si29H36

DFT geometry optimisations, using the PBE exchange-
correlation functional, were performed with ONETEP
[4], CASTEP [3] (plane-wave DFT), NWCHEM [19]
(Gaussian basis set DFT) and DFTB+ [2] (tight-
binding DFT) on the SiygH3s quantum dot. An en-

ergy tolerance of 0.2 meV and a force tolerance of
0.05 eV/A were used as convergence criteria for
Figure 4.8: Optimised CASTEP, ONETEP and DFTB+. To optimise the ge-
structure of SixgHae ometry of SipgHze with NWCHEM, the 6-31+G* basis

set was used to describe both Si and H atoms.

The optimised structures obtained using the above codes showed that the cen-
tral atom has a tetrahedral coordination which approaches almost identically the
symmetry of a Si atom in bulk silicon, while the surface interatomic distances of
neighbour silicon atoms are slightly shorter than the core. This is also observed by

Dage Sundholm [124], in his simulations on SixgHzs, with DFT and coupled-cluster
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methods. The results summarised in Table 4.1 show the very good agreement be-

tween the optimised structures with all these methods.

Table 4.1: Comparison of Si-Si and Si-Si bond lengths as calculated with
CASTEP [3], NWCHEM [19], ONETEP [4] and DFTB+ [2] for SixeHss

Interaction Interatomic Distances (A)
ONETEP CASTEP NWCHEM DFTB+
Si-Si? 2.326 2.335 2.343 2.363
Si-Si? 2.319 2.325 2.337 2.339
Si-H¢ 1.503 1.487 1.509 1.503
Si-H¢ 1.498 1.480 1.503 1.498

#5i-Si neighbour distances of inner shell

bSi-Si neighbour distances of outer shell

¢Si-H distances of Si atoms containing a single H
4Si-H distances of Si atoms containing two H

It is worth noting the remarkable agreement between the Si-H bond lengths de-
scribed by ONETEP and DFTB+, even though the two programs use different ap-
proximation methods but still the same exchange-correlation functional. On the
other hand, the Si-Si neighbour distances as calculated with ONETEP tend to agree
better with the distances calculated by CASTEP. Both programs are ab initio DFT
codes which use plane waves to describe the electronic wavefunction in contrast

with NWCHEM which uses Gaussian basis sets to describe the atomic interactions.

It has been previously observed in ONETEP that, the best results for crystalline
silicon are obtained when 9 NGWFs are used for representing the Si atoms, which
is equivalent to the number of valence atomic orbitals [125]. However, to reduce the
computational time and effort of the ONETEP calculations on our large nanoclus-
ters, a smaller number of NGWFs and a lower kinetic energy cut-off were selected.

By reducing the NGWFs from 9 to 6 and the kinetic energy cut-off from 650 eV to
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300 eV, the final geometries of SixgHzs were observed to change only slightly (~ 1%
in bond lengths and angles) and therefore, are still acceptable as these errors are less

than those due to other approximations involved in DFT calculations.

44.1.1 Electronic Properties

The band gap of SixgH3zs using ONETEP within the local density approximation
(LDA) method, for the optimised structure was 3.75 eV, in good agreement with
the LDA band gap calculated by Puzder et al. [126] (3.6 eV) and with the band gap
reported by Wang et al. [127] (3.67 eV). When the B3LYP [63] exchange-correlation
functional is used, the ONETEP calculation yields a 5.3 eV band gap, which is in
excellent agreement with QMC results from reference [126] (5.3 eV) and B3LYP/6-
31G(d) calculations from reference [127] (5.32 eV). Unfortunately the current imple-
mentation of B3LYP in ONETEP is not linear-scaling and does not allow us to study
systems larger than SipoH3zs. The experimental excitation threshold of 3.5 eV [118]
given to a hydrogenated Sipg nanoparticle mainly refers to the SipgHy4 as supported

by several studies [117] [119] [128].

44.2 Si242H140

In order to test the geometry optimisation effectiveness to provide surface recon-
structions, sample calculations using a slice from a 2.0 nm thick nanorod have been
performed. The slice, having 242 Si and 128 H atoms, was initially constructed with
24 free dangling bonds on nearby surface Si atoms, for allowing an optimum num-
ber of 12 reconstructions to happen. After a few geometry steps, the calculation
revealed that only 6 reconstructions were able to occur, thus leaving 12 dangling
bonds on the surface. These bonds were then filled with hydrogens yielding at the

end the structure of SipgrHi4p.
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With ONETEDP, the calculations were
performed using a force tolerance of
0.05 eV/A and a kinetic energy cut-off
of 650 eV. In contrast with SipgH3q tests,
in which an effectively infinite value for

the kernel cut-off distance was used, in

this case, the spatial cut-off of the den-

sity kernel was set to 13.23 A. The opti- Figure 49: Optimised structure of

mised structure is shown in Figure 4.9, SizsHy40 using the ONETEP code [4]. Re-

were the reconstructed Si-Si bonds have . nstructed Si-Si bonds are shown with

been highlighted. green colour.

With the DFTB+ code, the calculation also produced a geometry with 6 surface
reconstructions, similar to that of Figure 4.9 where the ONETEP code has been used.
The differences in bond lengths between the optimised structures obtained with the

two programs were comparable to the differences observed in SipgH3.

4.5 Results and Discussion

4.5.1 Structural Properties

Initially, the representative structures for the H-terminated Si nanorods at diame-
ters 0.8, 1.1 and 1.3 nm, for the (1x1) surface reconstruction, were the Sisz;H3gs,
SizeeHagp and Siq186Haep respectively, which had the maximum coverage of H atoms
on the surface. The first candidates, aiming to show (2x1) reconstruction on their
surface after a structural optimisation, were the Sis3oHyp4, SizeeHpsg and Sij186H366.

All the latter nanostructures had free, dangling bonds on pairs of neighbour, surface
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Siatoms. After a full geometry optimisation, these parts would be able to “dimerise”

and form a new Si-Si chemical bond.

A pre-optimisation on the initial (2 x1) H-passivated nanorods revealed that the
SizeeHosg (1.1 nm diameter) was not liable for a complete surface reconstruction. The
Sinanorods with diameters 0.8 and 1.3 nm had an even number of nearest neighbour
Si atoms on the surface, where a dimerised Si-Si bond could occurred, thus allowing
a full (2x1) reconstruction. The surface of the SizgsHos8 nanorod though, was con-
taining free dangling bonds in a series of three neighbouring Si atoms. In this case,
two possibilities have been considered: a) the three Si atoms could form a double
dimerisation, thus giving two “conjoined”, reconstructed Si-Si bonds b) only a pair
of Si atoms can create a new bond, while the third Si atom with a free dangling bond
should be passivated with an extra H atom. The latter procedure is necessary to ob-
tain closed-shell systems in order to perform calculations with ONETEP. Schematic

representations of the possible reconstructions are shown in the image below.

Arf =2k 3 AX—IAX

(a) (b)

Although the first possibility seemed quite promising, this kind of reconstruc-
tion was impossible to occur in all the parts of the (2x1) reconstructed surface.
Hence, the surface of SiygsHyss was reformed so in every part of the surface were
the dimerisation should occur, only pairs of neighbouring Si atoms with one free
dangling bond each, would appear. Any surface Si atom with a free dangling bond
located next to a pair of Si atoms with free bonds, should hold, in this case, two H
atoms instead. Hence, this lead to the representative SizgsH313 nanostructure for the

1.1 nm diameter nanorod with partial (2 x 1) surface reconstruction .
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Plots of nearest neighbour interatomic distances (bond lengths) between silicon
atoms in the optimised geometries, radially away from their axes, are shown in Fig-
ure 4.12. To observe the variation of bond lengths along the length of the nanorod,
its volume was separated in sections, across the growth axis being aligned at the
centre of mass, as can be seen in Figure 4.10. The Si-Si bond lengths were calculated
then with respect to the perpendicular distance of a point located at the middle of a
bond length from the central axis. The plots located in the top of Figure 4.12 refer to
the (2x1) reconstructed nanorods and those located at the bottom refer to the (1x1)
unreconstructed nanostructures.

Each diagram of Figure 4.12 e 2ea
shows two kinds of distribution;
the distribution of distances along
the caps of the nanorod and the
distribution along the main part.

As expected, due to the different Figure 4.10: Separation of a nanorod in sections
shapes between the caps and the

main body of the nanorod, the deformation of interatomic distances creates a bigger
dispersion of points which becomes more apparent in the thinnest (2 x 1) nanostruc-
ture and as the diameter increases the fitting curves between the caps and the main

part tend to coincide.

As can be seen from Si-Si neighbour distance distribution across the whole vol-
ume of the constructed nanorods, from the centre of mass to the surface, there
is a homogeneous distribution of the Si-Si distances in the “core” which is later
disrupted as the surface is reached. Si-Si bond lengths located at the inner part
of the volume, are distributed around 2.36 A, which is the Si-Si distance in bulk
silicon as calculated using the PBE exchange-correlation functional, for all the H-

passivated silicon nanostructures. Approximately 25% of the total volume of the
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thinnest nanorod maintains the structural properties of the bulk crystal and as the
diameter of the nanorod increases this can extend up to 45% for the (2x1) recon-
structed nanorods, while for the (1x1) unreconstructed nanorods this range goes

approximately from 60% to 75%.

As we move along the diameter of the nanorod and we approach the surface,
structural differences between the reconstructed (2x1) and unreconstructed (1x1)
nanostructures emerge. The Si-Si bond length in the (1x 1) surfaces becomes signif-
icantly shorter (~2.33 A) and as shown in Figure 4.12 the points around the fitting
curve present a similar dispersion with the points located inside the inner volume
of the nanorod in all the (1 x1) nanorods studied in this work. This tendency, is also
observed in several theoretical studies on H-passivated silicon nanowires [14] [129]
and can be justified by the steric hindrance the hydrogen atoms exert on the sil-
icon atoms of the surface. The Si-H interatomic distances are distributed around
1.50 A which are in agreement with the results obtained by Nolan et al. [129] (1.53
A), who have also performed DFT calculations using the PBE exchange-correlation
functional on silicon nanowires with diameters of about 1 nm. Despite that, they
have found that a “canted” conformation between surface hydrogen atoms does
not occur in (1 x1) reconstructed surfaces, while our results show that the “canted”
conformation can actually occur in specific parts of the surface, as proposed also
by Vo et al. [14]. Schematic representations of “canted” hydrogens observed in our

structures are shown in Figure 4.11.

Figure 4.11: Schematic representation of symmetric hydrogens (before geometry optimisa-
tion) and “canted” hydrogens (after geometry optimisation) located on a part of the surface

of the (1x1) reconstructed SiyggHygp nanorod
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4.5 Results and Discussion

While the (1x1) reconstructed surfaces have a similar dispersion of Si-Si inter-
atomic distances for all the studied diameters, this phenomenon cannot be observed
in the (2 x1) reconstructed surfaces. The dispersion of points along the curve of dia-
grams (a), (c) and (e) in Figure 4.12 results in a non-uniform behaviour of interatomic
Si-Si distances from the thinnest nanorod to the thickest. Despite this, it can be ob-
served that Si-Si distances can have a range between 2.33 A and 2.42 A on the (2x1)
surface, while the Si-Si distances at the “core” of the (1x1) unreconstructed silicon

nanorods are near 2.36 A.

On the other hand, the diagrams clearly show a grouping of points on specific
areas of interatomic distances as we move from the centre to the surface of each
nanorod, mainly regarding the main part. This is another factor in support of struc-
tural stability and a homogeneous dispersion along the length of the nanorod. Al-
though this scheme applies in the majority of the studied nanostructures, the differ-
ence observed mainly in the SizgeH313 nanorod (diagram (c) of Figure 4.12) results
from the presence of both dimers (SiH,) and monomers (SiH) on the surface. Conse-
quently, the displacement of Si-Si bond lengths located near dimerised atoms is dif-

ferent from the displacement observed in silicon atoms attached to surface dimers.

4.5.2 Formation Energies

In order to investigate the stability of the nanorods and how this is affected by their
surfaces and aspect ratios, the formation energies (Es) have been calculated using

the formula [130]:

(E"" — (ngER))

— Eg; 45.1
ns; Si ( 5 )

Ef=

where E™ is the total energy of the Si nanorod, ng; and ny are the number of
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4.5 Results and Discussion

silicon and hydrogen atoms contained in it, Eg; is the energy of one Si atom in a
bulk silicon crystal and Ep the energy H atom in a H, molecule. For calculating the
energies Eg; and Ep single point energy calculations were performed with ONETEP

for bulk silicon and for a H, molecule.

The structures for bulk Si and
0.6

H, were optimised first with the osl
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The plot of Figure 4.13 shows at first the stability of the studied nanoclusters,
with formation energies per Si atoms lying between -2.0 to -1.0 eV, as calculated by
using equation 4.5.1. The (1x1) unreconstructed structures with the highest cov-
erage in hydrogen, have lower formation energies compared to the (2x1) recon-
structed nanorods, which indicates their higher stability. This is also confirmed by
the results of Vo et al. [14], who have proved that the “canted” dihydride structures
are more favourable when silicon nanowires are exposed to atomic H. Secondly,
the trends of the lines in Figure 4.13 reveal that as the number of atoms increases
the formation energies are decreased as the size of our nanoclusters approaches the

bulk limit, eventually expected to become zero. On the other hand, while the trends
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4.5 Results and Discussion

for the (1x1) unreconstructed nanostructures are consistent with the latter scheme,
the stabilities of the Sisz;Hy)4 and the SizgeHzig nanorods seem to be relatively the
same. This can be justified by the presence of dihydride (SiH;) groups on the (2x1)
reconstructed surface of the SiygHz1g, which induces less strain between the recon-

structed surface parts and consequently lowers the formation energy.

4.5.3 Energy Band Gaps

The energy band gaps of silicon nanostructures can be affected by the diameter,
the surface structure and the growth direction in the case of silicon nanowires.
As expected, it is observed that as the diameter of a nanocluster is decreased the
energy band gap increases, due to quantum confinement effects [107]. This phe-
nomenon is observed in the majority of the silicon structures studied at a nanoscale
whether quantum dots [120], nanowires [13] or nanotubes [131]. In the case of sili-
con nanowires, this trend also applies not only on structures with different growth

directions but also between nanowires with different surface reconstructions [132].

As reported in section 1.2.2, Vo et al. [14], found that both (1x1) and (2 x1) recon-
structed surfaces of [111] grown hydrogenated silicon nanowires reduce their band
gaps from 2.12 eV to 0.85 eV and from 1.54 eV to 0.84 eV respectively, as their diam-
eter increases from 1.1 to 3.0 nm. Zhao at al. [107], found that the band gap of [111]
Si nanowires was also decreased from 2.3 to 0.8 eV, as their thickness increases from
0.9 to 3.2 nm. In a similar work conducted by Saita et al. [133], the energy band gaps
of [111] Si nanowires with diameters 0.55 to 1.0 nm varied from 2.83 to 1.90 eV.

The band gaps obtained from our calculations are shown in Figure 4.14. We can
observe a reduction of the band gap as the diameter of the nanorod is increased,
which is consistent with the studies mentioned before. On the other hand, the re-

constructed surfaces tend to have smaller band gaps from the unreconstructed, as
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Figure 4.14: Energy band gaps of optimised H-terminated Si structures calculated with
ONETEP [4] using the PBE exchange-correlation functional [15].

being observed also by Vo et al. Although this trend is obvious in the nanorods
with diameters 0.8 nm, the coinciding of the lines between the reconstructed and
unreconstructed surfaces for the 1.1 nm and the 1.3 nm thick nanorods in Figure
4.14 indicates the small role played by the surface as the diameter of the nanorod

increases.

The values shown in the table of Figure 4.14 represent the HOMO-LUMO gap
obtained directly from GGA-DFT calculations using the PBE exchange-correlation
functional. Although it is known that GGA methods generally underestimate en-
ergy band gaps they can still provide qualitative trends of optical gaps. A self-
energy correction method, such as the GW approach, has not been attempted due
to the prohibitive amount of computer time such a calculation would require in its

application to our nanoclusters.

4.5.4 Density of States

The total electronic density of states (DOS) of bulk crystalline silicon and the nan-
oclusters Sis3;Hsps, SizesHao2, Si1186Ha62, SisaaHoo4, SizesHz1s and Sij1g6Hzes, are given

in Figure 4.15. The DOS for the H-terminated Si nanorods were calculated with
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Figure 4.15: Density of states (DOS) of SiszpHsos, SizesHaoz, Sit1seHuaen, SiszpHooa, SizesHsz1s
and Sij1g6Hze as calculated with ONETEP [4]. The DOS for bulk silicon (dotted line) has
been calculated with CASTEP [3].

ONETEP while the DOS for the bulk material was calculated with CASTEP, using
a periodic unit cell of 2 Si atoms and an 8 k-point sampling. In both programs the

PBE exchange-correlation functional was used.

The plot clearly shows the reduction of the band gap as the diameter of the rod
is increased by approaching the bulk limit. While the DOS peaks placed in the va-
lence band area are in close agreement between the two programs, there is strong
disagreement for the conduction bands. This phenomenon was also observed in the
work of Skylaris and Haynes [125] when they performed DFT calculations within
the LDA scheme on a 1000-atom silicon lattice and concluded that the ONETEP
NGWEFs are usually capable of describing correctly only valence and the low-lying
conduction bands. The DOS of the nanorods in the valence area for the (1x1) recon-
structed surfaces resemble closer with the DOS of bulk silicon. This also justifies the
fact that H-passivated silicon nanostructures can often be sufficient for extracting

conclusions regarding the properties of pure silicon nanoparticles.
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4.5.5 Orbital Densities

Isosurface plots of the squares of HOMO and LUMO orbitals of the studied hy-
drogenated silicon nanorods are given in Figure 4.16. The HOMO orbitals of all
the nanostructures and the LUMO orbitals of SiszpHo4, SiszoH3gs, SizggHagr and
Siq186Haee are localised at the centre of mass (“core”). The LUMO orbitals are degen-
erate and all the LUMO orbitals of the studied nanorods shown in Figure 4.16 in-
tersect the growth axis at an angle. Surprisingly the LUMO orbitals of the SizscH4no
and the Sij136Hago are showing a localisation closer to the caps of the nanorod with
the LUMO orbital of Sij1g6Ha62 to be localised exclusively at the caps. A quite sim-
ilar phenomenon was observed in the LUMO orbitals of reconstructed and unre-
constructed quantum dots with 0.8 nm diameter [120], although in this case the
localisation of the orbital is shifted from the core to the surface when going from
an unreconstructed (1x1) to a reconstructed (2x1) surface. As the hydrogen passi-
vation of the surface provides a relatively small barrier for electrons and holes, the

HOMO and LUMO orbitals spill out more from the core as the diameter is reduced.

On the other hand, while similar studies have shown the dependence of the band
gap on the growth direction, diameter and surface reconstruction and therefore the
localisation of HOMO and LUMO orbitals, by extracting conclusions for each factor
separately, our results clearly indicate that these factors are strongly inter-related.
Consequently, the electronic properties of H-passivated nanorods studied here can
be significantly affected by the contribution, weak or strong, of all these factors si-
multaneously. The shift in the localisation of the HOMO and LUMO densities from
the core to the surface for the LUMO, while the HOMO remains in the core, can be

compared to the transformation of the energy band gap from “direct” to “indirect”.
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Figure 4.16: Representations of HOMO (red) and LUMO (green) orbital density plots for
SisazHoo4 (a), Sisz2Haos (d), SizesHas (b), SizesHaoz (€), SiniseHaes (), SitiseHaez (f) nanorods.
Each diagram shows a horizontal view from each orbital, parallel to the nanorod’s growth
axis, and a vertical view, by clipping the nanorod through a plane at its centre of mass. The

isosurfaces were generated by using an isovalue of 1 x 107° 5.
0
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4.6 Conclusions

This chapter summarises the results of a DFT study on entire silicon nanorods with
varying diameters and surface passivation by hydrogen. The structures chosen were
based on several experimental data and the available computational resources, at
the time, with the ONETEP [4] and the DFTB+ code [2]. Although the modelled
systems may not have a direct representative structure from experiment, they can
be considered as an initial step towards the modelling of larger systems that are
closer to synthesised silicon nanowires and nanoclusters, which can be investigated

at the atomistic ab initio level using the “superlattice” approach.

In agreement with experiment, the (1 x 1) unreconstructed nanorods showed higher
stabilities compared to the (2x1) reconstructed nanostructures, which decrease by
increasing the thickness of the nanorod. Similarly, a reduction of the energy band
gap was observed when the diameter of our H-terminated silicon nanorods was in-
creased from 8 A to 13 A. Furthermore, the surfaces of the (1x1) unreconstructed
nanorods adopted a “canted” conformation between neighbour H atoms, as also

being observed by other theoretical studies.
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Chapter 5

Computational Prediction of Au L;j;
EXAFS Spectra

A computational approach for simulating extended x-ray absorption fine structure
(EXAFS) spectra of nanoparticles directly from molecular dynamics simulations is
presented in this chapter. The method shown consists of two stages. First, a molec-
ular dynamics simulation of a constructed gold nanoparticle is performed, followed
by a calculation of an Au Lz-edge EXAFS spectrum using the FEFF 8.4 package [5].
A probability distribution function calculated directly from an ensemble of molec-
ular dynamics snap-shots is used to ensure a balanced sampling of photoabsorbing
atoms and their surrounding scattering atoms while keeping the number of EXAFS
calculations that need to be performed to a manageable level. The calculated EXAFS

resulting from all configurations are merged into an average spectrum.

The work in this chapter was done in collaboration with Dr Otello Roscioni. This

work has been recently published in Physical Review B [22].
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5.1 Experimental Synthesis and Analysis

Small metal nanoparticles, with diameters in the range of 1-10 nm, present some
fascinating physical and chemical properties when compared to their bulk coun-
terparts. These can be attributed to the discretisation of their energy levels which
are strongly dependent on their morphology [134,135]. Therefore their electronic,
magnetic and optical properties are “tunable” with regards to their size, shape and
surface termination that make them attractive for applications in catalysis, biosens-

ing and electronic devices.

It is important to have reliable synthetic pathways to be able to obtain metal
nanoparticles which are uniform and of the desirable chemical and physical prop-
erties. Equally important for this goal is the ability to characterise the synthesised
nanoparticles in order to ascertain that the desired morphology has been produced.
The x-ray diffraction technique (XRD), can provide very precise structure determi-
nation in the case of molecular crystals, but in the case of the metallic nanoparticles
can result in significant ambiguity in attempts to accurately measure cell parameters

and atomic distances.

On the other hand, x-ray absorption spectroscopy (XAS), and more specifically
within the extended x-ray absorption fine structure (EXAFS) region, has been able
to provide accurate results for the atomic structure of nanoparticles as a function of
temperature [136,137]. Within this framework, factors which can induce structural
reconstructions, such as surface tension, capping ligands, steric hindrance effects,
and metastable states can significantly alter their physicochemical properties that

can be quantified by EXAFS experiments [138].
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5.1.1 X-ray Absorption Spectroscopy

X-ray absorption spectroscopy (XAS) is a technique for determining the local elec-
tronic and geometric structure of materials, whether in gas, liquid, or solid phase.
Amongst its several applications, XAS is used in solid state science, for studying cat-
alytic surfaces and interfaces, in mineralogy, in geochemistry and also in molecular
biology. The XAS method has the advantage of being able to probe disordered and
amorphous materials with the XAS signal coming from all the atoms of a selected
element. It is capable of obtaining structural and chemical information about the

atomic environment around the absorbing atom.

In x-ray absorption spectroscopy the sam-
ple is irradiated with tunable monochromatic x-

Eterrmi T ray radiation. The absorption of the x-rays by

the molecular system occurs by exciting elec-

trons into higher-energy unoccupied orbitals or

1
2p i LyandL,, into the continuum (where the electrons are un-
/ bound to the atoms). As such the absorption of
2s L x-rays is energy dependent. The phenomenon of

electron ejection is called the “photoelectric ef-

h
\ fect” and the excited electrons are then referred
1s . K

to as “photoelectrons”. The promotion of an

electron . . .
electron to a higher energy orbital empties an

orbital, which is then called a “hole”, and takes

place within a femto-second (10~1°).

Figure 5.1: A photoelectron from

the 1s orbital gives rise to the K edge.
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The intensity of the incident x-rays Iy, is reduced when passing through the sam-
ple. Consequently, the intensity of the transmitted x-rays I; from a sample decreases
exponentially, depending on the thickness of the sample x and the absorption coef-

ficient of the sample u:

I, = Iye ™ (5.1.1)

As the incident photon energy is increased, absorption will decrease until the
binding energy of a core electron is reached. When an electron inside the core is ex-
cited, a sharp rise in absorption occurs, known as the “absorption edge” E, (Figure
5.2). The absorption edge depends on the nuclear charge of each element, so that
different orbitals will have different energies. The whole spectrum typically covers

a ~1 keV region, mostly on the high energy region of the absorption edge.

Beyond the absorption edge, increasing the energy results in a decrease in ab-
sorption until the next binding energy is reached. The intensity of the absorption
edge is determined by the absorption coefficient y and each absorption edge is
named and ordered in terms of decreasing energy, from K, L;, Lj;, Lj; etc., based
on the principal quantum number from which the electron was ejected. Hence, the
K shell (n=1) corresponds to an excitation from the 1s orbital, the L shell (n=2) refers
to the 2s, 2py,, and 2p3,;, corresponding to the L;, L;; and Ljj; edges respectively,

as shown in Figure 5.1.

The XAS spectrum is approximately divided into two main regions; the XANES
(X-ray Absorption Near Edge Structure) and the EXAFS (Extended X-ray Absorp-
tion Fine Structure) region. An example of a XAS spectrum with its subdivided
areas is shown in Figure 5.2. The following sections are focused only on the EXAFS

spectroscopy.
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Figure 5.2: Sample of an XAS spectrum at the Lj;; edge, showing XANES and EXAFS
regions [16].

5.1.2 Extended X-ray Absorption Fine Structure

Typically the EXAFS region starts at ~30-40 eV above the absorption edge. The

oscillations at this area are defined by the EXAFS fine-structure functions x(E) as:

X(E) = % (5.1.2)

where y(E) is the measured absorption coefficient, y(E) is a smooth background
function representing the absorption of an isolated atom, and Ap(E) is the mea-

sured jump in the absorption y(E) at the threshold energy E of the absorption edge.

The photoelectrons can be described as spherical waves, propagating outward

from the absorbing atoms. These waves, are scattered from the atoms surrounding
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Figure 5.3: Schematic of constructive and destructive interference of an outgoing photo-

electron. The circles represent the maxima of the photoelectron waves [16].

the photoabsorber. The relative phase of the outgoing photoelectron wave and the
scattered wave at the absorbing atoms affects the oscillations recorded on the EXAFS
spectrum. When the waves are out of phase (destructive interference), a minimum

absorption occurs and vice versa, as depicted in Figure 5.3.

When the energy of the x-rays incrementally increases, the wavelength of the cor-
responding photoelectron decreases. The sum of the outgoing and scattered waves
at the absorbing atoms oscillates with a periodicity that is related to the average
atomic distances between the absorbing and the coordinating atoms. The group of
atoms that contribute the same component with the photoabsorbing atom are defin-
ing a ”shell”. Photoelectrons scattered from the photoabsorber to the neighbouring
atoms define different scattering paths. Single scattering paths are formed between
atoms of the same shell, while paths from atoms in different shells define a multiple

scattering path.
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The wave behaviour of the photoelectrons participating in the x-ray absorp-
tion/emission process is expressed in terms of the wave number k, which is ex-

pressed in terms of the x-ray energy:

2m(E — Eo)

k= "

(5.1.3)

where m is the electron mass and E the absorption edge energy.

The primary quantity of EXAFS becomes then x(k), which is a function of the
photoelectron wave number. x (k) is often referred to as “the EXAFS”, and provides
a general equation which describes the EXAFS spectrum, which is written as a sum

of the contribution from all scattering paths of the photoelectron from each shell j:

2N £ —2k%0}?
X(k) = Z SON]f] S:,)ze Sil’l(ZkT]' + oc](k)) (5.1.4)
]

where f (k) and a(k) are scattering properties of the neighbour atoms of the pho-
toabsorber, N is the number of neighbouring atoms, r is the distance between the
photoabsorber and a neighbouring atom, and ¢? is the atomic pair distance disor-
der, also known as the Debye-Waller factor. The S3 is an empirical parameter which
accounts for the slight relaxation of the remaining electrons when a hole is created

by the photoelectron.

Despite its complexity, the EXAFS equation allows the determination of N, r, and
02 knowing the scattering amplitude f(k) and the phase-shift a(k). Furthermore,
since these scattering factors depend on the properties of the neighbouring atoms,
EXAFS can be used to distinguish the atomic species next to the photoabsorber.
x (k) is often multiplied by a power of k typically k? or k%, in order to emphasise the

EXAFS oscillations in the post-processed, final spectrum.
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5.2 Calculations on Gold Nanoparticles

The gold nanostructures studied in this work are representative structures of the
gold nanoparticles synthesised by Comaschi et al. [20]. More specifically, these
refer to the Au L3 edge XAS data of two non-coated gold nanoparticles with ex-
perimentally reported mean diameters of 50+7A (Au-NP1) and 2448 A (Au-NP4).
The latter nanoparticle samples were either prepared by using the solvated atom
dispersion (SMAD) technique or produced under vacuum on a very thin polymer
film by consecutive evaporation of gold and Mylar, respectively. The SMAD tech-
nique [20,139,140] involves: (a) deposition of an organic solvent on the reactor walls
cooled down to very low temperatures, (b) vaporisation of the metal under vacuum
and then rapid trapping in a frozen solvent, (c) warming up at room temperature
of the solvated atoms, (d) impregnation to a surface of amorphous silica and dry-
ing of the samples at room temperature. The gold nanoparticles obtained with this
method are non-coated and therefore their x-ray absorption (XAS) spectra depend

only on their morphology and size.

Models of gold nanoparticles that correspond to the experimentally determined
diameters have been constructed (see Appendix E.2) and their dynamic behaviour
and structures at various temperatures have been observed by performing classical
molecular dynamics (MD) simulations. Such simulations are often used to study
the dynamical behaviour of nanoparticles, even in conditions far from ambient such
as, for example, under high external pressure [141]. The reported simulations have
been performed with a force field which was designed to reproduce the properties of
several bulk, metallic systems. Details regarding the force field are given in chapter

2, section 2.3.3.1.
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5.2.1 MD Simulations

All the classical MD simulations have been performed with the DL_POLY software
package [1]. The simulations were carried out within the micro-canonical (NVE)
ensemble, with an integration time-step of 1 fs. The atomic forces and velocities
were equilibrated for a period of 50 ps after which a production calculation of 2 ns
followed. Data were collected during the production stage, after confirming that

both the energy and temperature were stabilised.

The Augg and Ausgys nanoparticles with average diameters of 24 A and 50
A respectively, corresponding to the experimentally determined diameters of the
nanoparticles, were simulated. Additionally, MD simulations on the Auy49 (20 A di-
ameter), Auggy (30 A diameter) and Auggeg (60 A diameter) nanoparticles were also

performed, in order to test size effects and verify our results.

The initial structures for the simulated nanoparticles were constructed with Ac-
celrys Materials Studio [123]. The lattice parameters for constructing the nanopar-
ticles were obtained from a unit cell representation of the face-centred cubic (fcc)
structure of bulk gold. The unit cell was expanded periodically along each lattice
vector and then truncated to form a spherical particle of a specified diameter. Each
nanoparticle structure was then relaxed under the effect of the Gupta force field.

The MD simulations were conducted at temperatures ranging from 20 K to 300 K.

For the lowest temperature simulations (20K) the classical molecular dynamics
ensemble is not entirely appropriate as the atomic motion is expected to be mainly
due to phonons, in the form of normal mode vibrations of the nanoparticles, which
are populated according to Bose-Einstein quantum statistics. However even in this
case, our simulations, to a great extent, agree well with the experimental spectra.

This is not completely unexpected as the large atomic weight of Au combined with
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the compact shape of the nanoparticles should lead to phonons with small aver-
age quantum vibrational amplitudes. This has been also observed for the atomic
displacements in the classical simulations at this temperature range, as a result of
the reliable representation of the Au potential energy surface by the Gupta poten-

tial [142].

5.3 Prediction of EXAFS spectra

The information extracted from the MD simulations can be used to perform a quan-
titative analysis of XAS data, as has been successfully applied so far to disordered
systems, such as aqueous solutions of ions [143-149]. It has also been shown that
the damping of the XAS signal associated with the structural disorder, which is
expressed normally through the Debye-Waller factor, can be reproduced through
the average of XAS spectra computed from a statistically representative number of

computer-generated configurations (“configurational average”) [144].

In calculating the XAS spectrum of a nanoparticle, asymmetry effects due to
the finite size of the nanoparticles have to be taken into account, which increase
as the nanoparticle size decreases. Thus, we have assumed that every atom inside
the nanoparticle can give rise to absorption, and therefore the resulting XAS spec-
trum should include the contributions of atoms in different atomic environments.
This is achieved by sampling several absorption sites in different positions, starting
from the centre of mass of the nanoparticle and ending at the nanoparticle’s surface.
Since several atoms share an equivalent atomic environment, they are grouped into
“shells”, which in this case are defined by the distance from centre of mass of the
nanoparticle. The details regarding the choice of the absorption sites are analysed
and discussed in section 5.4, along with a brief description of the MD trajectory

production.
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5.3.1 EXAFS calculations

Write the averaged XAS
spectrum and the Residual
nction.

Figure 5.4: Flow chart of the algorithm used to compute the configurational average of XAS

spectra using the structural information derived from MD simulations.
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To calculate the EXAFS spectrum for a gold nanoparticle from MD simulations,
an XAS quantitative analysis code has been developed by Dr Otello Roscioni. The
algorithm on which the code is based is summarised in the flowchart of Figure 5.4.
The program extracts the required information from a MD trajectory, by reading the
coordinates of a gold nanoparticle from each of a fixed set of MD “snap-shots”. For
each snap-shot several absorption sites at different positions inside the nanoparti-
cle are sampled and an EXAFS spectrum is computed. The calculated XAS data are
then averaged together to give a mean spectrum. The procedure is iterated by in-
creasing the number of MD snap-shots sampled until convergence in the resulting

XAS spectrum is achieved.

Each mean XAS spectrum is obtained by taking a large number of MD config-
urations into account. For each configuration, the atoms of the nanoparticle are
grouped into “shells” with respect to their distance from the centre of mass. For
each shell, a photoabsorbing atom is arbitrarily chosen to represent the absorption
behaviour of the Au atoms inside that shell and to contribute to the XAS spectrum
from this region for this particular snap-shot (configuration) [144]. The atomic shells
are defined by using a probability distribution function (PDF), which is obtained as

the sum of Gaussian functions centred on each atom of the nanoparticle.

The statistical weight of each peak i in the PDF is proportional to the number
of photoabsorbing atoms whose distance r; from the nanoparticle’s centre of mass
satisfies the conditions:

ri 2z pit AF

i’j<pi—A;

where p; is the position of the peak i in the PDF, AT = (p;y1 — pi)/2 is the dis-
tance between the peaksiand i +1and A;” = (p; — p;—1)/2 is the distance between
the peaks i and i — 1. Therefore, each peak (and the corresponding absorption site)

will have a statistical weight proportional to the number of atoms sharing the same
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Figure 5.5: Probability distribution function (PDF) computed for a gold nanoparticle with a
diameter of 20 A. The PDF is proportional to the number of atoms found at a given distance
from the centre of mass of the nanoparticle. The bottom panel shows the input structures
for XAS calculations obtained by applying a cut-off radius of 10A around gold atoms chosen
from within each shell defined by the peaks of the PDF. The photoabsorbing gold atoms are

shown in blue, while the gold atoms that define the scattering region are translucent yellow.

physical environment. An example of the PDF generated for a gold nanoparticle
structure of 20 A diameter, divided into absorbing shells, is shown in Figure 5.5.
The accuracy of the PDF depends on the standard deviation of the Gaussian func-
tions and can be tuned accordingly to control the number of peaks in the PDF and

therefore, the number of locations of absorbing atoms being selected (Figure 5.6).

The Au Lz-edge EXAFS spectra were computed with the FEFF 8.4 [5,150] pro-
gram using the Hedin-Lundqvist model of the exchange potential. Atoms up to 10
A from the photoabsorbing atom were included to obtain converged XAS spectra. In

agreement with the data analysis performed previously by Comaschi et al. [20], the
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Figure 5.6: Comparison between the PDF computed for a gold nanoparticle with a diameter
of 20 A using standard deviations of 0.05 (solid line) and 0.35 A (dotted line). A small

standard deviation value results in a fine sampling of atomic shells within the nanoparticle

and, as a consequence, a higher number of locations of absorbing atoms being selected.

amplitude reduction factor S3 was set to 0.9, the energy shift was set to 7.1 eV and the

experimental broadening factor to 1.0 eV. By applying these settings the computed
Fermi energy for Au nanoparticles was found to be around 7.3 below the L3 edge of

bulk Au (11919 eV). The Debye-Waller factor has not been taken into account in the

calculation, as the thermal damping of the signal is reproduced explicitly through
the averaging the XAS spectra over the nanoparticle configurations.

The number of configurations required to obtain a statistically representative av-
eraged spectrum is determined by calculating a residual function (RF), which is the
root mean square of the differences between all the energy points of the averaged
XAS spectra computed over N — 1 and N configurations [144]. A XAS spectrum

is considered converged when the corresponding RF value falls below the thresh-

EXAFS spectra.

old of 10~ and remains below this value for the following 10 iterations. For gold
nanoparticles, about 50 configurations are necessary to achieve convergence of the
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5.4 Results and Discussion

5.4.1 Effect of the PDF on the mean EXAFS spectrum

To validate our approach, the dependence of the calculated EXAFS spectrum from
several factors and parameters has been investigated, which can affect the XAS cal-
culations. One such factor is the resolution of the PDE. For this purpose, the de-
pendence of the computed mean Au Lz-edge EXAFS spectrum on the number of
absorption environments for a gold nanoparticle with a diameter of 20 A at 20 K,
has been studied. This choice was made after observing that smaller nanoparticles
are affected more strongly by asymmetry effects compared to their larger counter-
parts. Mean EXAFS spectra for this nanoparticle were computed using PDFs with
standard deviations of 0.05 and 0.35 A, corresponding to a fine and a coarse sam-
pling of absorption sites, respectively. The first case yielded a PDF with 13 different
atomic shells while the second case exposed 7 atomic shells, as shown in Figure 5.6.
The resulting mean EXAFS spectra and their Fourier transforms (FT) for both cases,

are shown and compared in Figure 5.7.

Comparing the two sampling methods, we can observe that the mean spectrum
computed with the coarse sampling of the absorption environments shows a phase
shift in the EXAFS signal and a displacement of the peaks towards larger bond dis-
tances in the corresponding FT, with respect to the more accurate case of the fine
sampling. This result suggests that the contribution of the atomic environments
with short Au-Au bond lengths is underestimated in the final spectrum. Indeed,
the PDF computed with a coarse sampling, as shown in Figure 5.6, does not include
the contribution of the outer shell at 9.7 A, which is present in the PDF computed
with a fine sampling and has a statistical weight of 9.5%. As the surface atoms form

shorter bond lengths compared to the neighbour pair distances in the core, a poor
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sampling of the nanoparticle’s outer shell underestimates their contribution in the
mean EXAFS spectrum and results in the observed phase shift between the spectra

computed with a coarse and a fine sampling of the absorption sites.
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Figure 5.7: Comparison between the simulated EXAFS spectra and the corresponding
Fourier transforms of a gold nanoparticles with a diameter of 20 A at 20 K. The spectra
were computed using a fine sampling (solid line) and a coarse sampling (dotted line) of the

photo-absorbing sites through PDF standard deviations of 0.05 and 0.35 A, respectively.

This behaviour is consistent with the experimental observation of atomic surface
contraction in gold nanocrystals [151]. For this purpose, the surface compression
in our nanocrystals by measuring the nearest neighbour distances of Au atoms as

a function of their distance from the centre of mass has been investigated, in or-
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Figure 5.8: Au-Au bond lengths distribution, averaged over MD snap-shots, as a function

of the distance from the nanoparticle’s core.

der to quantify the effects of the surface tension [152]. A diagram of the result-
ing bond length distributions, averaged over all the snap-shots, is shown in Figure
5.8. All nanoparticles display a clear shortening of the Au-Au bond length, mov-
ing along the nanoparticle’s core towards the surface, where it reaches a minimum
value. Therefore, the different phases of the mean EXAFS spectra originate from the

contribution of surface atoms and account for 9.5% in the final spectrum.

5.4.2 Effect of size

Another parameter being investigated is the dependence of the spectra on the nanopar-
ticle size. It is desirable to be able to use EXAFS spectra to determine the size of the
nanoparticles being measured. Therefore, several gold nanoparticles with diame-
ters ranging from 20 A to 60 A were studied. The resulting spectra, shown in Figure
5.10, reveal that the intensity of EXAFS oscillations increases with the size of the

nanoparticle. No shift was observed in the phase of EXAFS oscillations, in con-
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Figure 5.9: Radial distribution functions g(r) extracted from MD trajectories at 20 K. The

insets show the details of peaks 1, 3 and 4.

trast to the reported shift between the experimentally obtained EXAFS spectra of
Au nanoparticles with mean diameters of 50 A and 24 A. The latter, can give rise to

a difference of 1% between the best-fit of Au-Au bond lengths [20].

However, the radial distribution functions (RDFs), derived from the MD trajec-
tories and shown in Figure 5.9, demonstrate that the shape of the peaks in a small
nanoparticle is strongly asymmetric and very sensitive to its size, when compared
with bulk gold. Furthermore, the position of the peaks is displaced towards smaller
values than those of the bulk phase, as a result of the contribution from surface
atoms. These effects decrease rapidly with respect to the nanoparticle size; for a
nanoparticle with a diameter of 60 A the peaks of the RDF are barely distinguish-
able from the peaks of the bulk phase. Hence, for a nanoparticle of this size, the
region influenced by the surface tension can account approximately for 20% of its
volume (Figure 5.8) while for a nanoparticle with a diameter of 20 A, the same re-

gion accounts roughly for 64% of the nanoparticle’s volume!.

IFor this estimate we have approximate the shape of the nanopatrticle to a sphere.
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Figure 5.10: Simulated kx (k) EXAFS spectra (top panel) and their Fourier Transform (mid-

dle panel) as a function of nanoparticle size. The bottom panel shows a pictorial view of

each gold nanoparticle.
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To explain the observed behaviour, two factors need to be considered. First, the
contribution of surface atoms in the RDF decreases rapidly when the particle size
increases, as the RDF is averaged over all the atoms. Second, the EXAFS signal is
sensitive to atoms up to 10 A from the photoabsorbing atom (this is visually rep-
resented by a spherical probe of 20 A diameter) when sampling different positions

inside the nanoparticle.

For a nanoparticle with a diameter of exactly 20 A, all the photoabsorbing atoms
experience an asymmetrical atomic environment, as the contribution of the core and
surface atoms are both included in the same probe. For a particle with a diameter
of 60 A, though, where the radius of the spherical probe is smaller than the radius
of the nanoparticle, different scattering regions can then be distinguished. Thus,
a virtual sphere located in the inner region of the nanoparticle, accounts only for
photoabsorbing atoms experiencing a symmetrical bulk-like environment; while
a spherical probe located at the surface scans a scattering region which is mainly
asymmetrical. In the case of the largest nanoparticle, this asymmetrical region still

represents 70% of its total volume.

5.4.3 Effect of temperature

The effect of temperature on the mean EXAFS spectrum of a gold nanoparticle with
a diameter of 60 A has also been studied. Figure 5.11 shows the spectra computed in
a temperature range from 20 K to 300 K. The increasing disorder of the nanoparticle
structure caused by the increase in temperature causes a signal damping, leading

eventually to a suppressed region in the x(k) above 9 A~1 at 300 K.
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Figure 5.11: Effect of temperature on the simulated EXAFS spectra of a nanoparticle with a
diameter of 60 A.
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5.4.4 Comparison with experimental data

When comparing the mean EXAFS spectra of gold nanoparticles with diameters 24
and 50 A with the experimentally determined spectra of nanoparticles with diam-
eters 2448 A and 50+7 A, an underestimation of the bond lengths is observed in
our MD simulations. To correct this error, the structural models obtained from the
MD “snap-shots” were scaled by a numerical factor corresponding to the mean ratio
between the experimental and the simulated bond lengths at 20 K. From the values
reported in Table 5.1 scaling factors of 0.9918 and 0.9971 were calculated to represent
the spectroscopic properties of the nanoparticles with diameters of 24 A and 50 A

respectively.

Figure 5.12 shows the EXAFS spectra of a gold nanoparticle with a diameter of
24 A at 20 K and 300 K in k space, while Figure 5.14 shows the EXAFS spectra in r
space at 20 K. A very good agreement is shown between the simulated spectra and
the experimental data. In particular, the phase and the shape of the oscillations are
correctly reproduced from k=3 to k=20. The thermal damping of the EXAFS signal
at the experimentally determined temperatures is not reproduced correctly in this
case. The simulated mean EXAFS spectrum at 20 K has oscillations far too intense
compared to the relevant experimental spectrum, while the damping of the simu-

lated mean EXAFS spectrum at 300 K is overestimated compared to experiment.

The best agreement between the simulated mean EXAFS spectra and their ex-
perimental counterparts at 20 K and 300 K is found using MD trajectories at 60 K
and 150 K respectively. A further investigation of the origin of this discrepancy has
been conducted, by carrying out MD simulations of the Augy9 nanoparticle at 20
K and 300 K with a different force field, in this instance, the Sutton-Chen poten-
tial [153,154]. The mean EXAFS spectra obtained from these MD calculations were

practically coincident with the mean EXAFS spectra previously computed.

126



5.4 Results and Discussion

Table 5.1: Comparison between the shell distances (A) for two gold nanoparticles at 20 K.
Experimental values from Ref. [20]. Calculated values from the radial distribution functions

of Augyg (24 A) and Auzeys (50 A) at 20 K.

Au244+8 A R; Ry R3 Ry

exp.  2.847(2) 4.026(8) 4.931(6) 5.694(6)
cale. 2867 4062 4974 5742

Aub50+7 A Ry R, R3 Ry

exp.  2.876(2) 4.061(8) 4.975(6) 5.745(6)
calc. 2879 4076 4989  5.760

Similar observations were made for the EXAFS spectra of a gold nanoparticle
with a diameter of 50 A at 20 K and 300 K in k space and r space (Figures 5.13 and
5.14). However, for this system there is a better agreement between the simulated
and the experimental EXAFS spectra at 300 K, as the bigger size of the nanoparticle

results in more intense oscillations of the EXAFS signal at high k values.

In summary, our results indicate that the unique features in the EXAFS spectra
of gold nanoparticles arise mainly from the asymmetric scattering region, which is
dominant in nanoparticles with diameters ranging from 20 A to 60 A. Furthermore,
the discrepancies between the calculated and experimental EXAFS spectra can be at-
tributed to the structural models of gold nanoparticles derived from the MD simula-
tions. In particular, we have found that in our models the effect of surface compres-
sion is underestimated and it results in Au-Au bond lengths being longer than the
experimentally determined values. This effect is more apparent in small nanopar-
ticles, where the theoretical mean Au-Au bond lengths are on average 0.8 % longer
than the experimentally determined bond lengths, while for large nanoparticles this

difference shrinks to 0.3 %.
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Figure 5.12: Experimental (dotted line) Au Lz-edge EXAFS spectra of a gold nanoparticle
with a diameter of 24 A, measured at 20 K (top panel) and 300 K (bottom panel). The theo-
retical spectra (solid line) have been obtained by averaging several structures obtained from

MD simulations carried out at 60 K (top panel) and 150 K (bottom panel).
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Figure 5.13: Experimental (dotted line) Au L3-edge EXAFS spectra of a gold nanoparticle
with a diameter of 50 A, measured at 20 K (top panel) and 300 K (bottom panel). The theo-
retical spectra (solid line) have been obtained by averaging several structures obtained from

MD simulations carried out at 40 K (top panel) and 150 K (bottom panel).
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Figure 5.14: Experimental (dotted line) Au Lz-edge EXAFS spectra in r space of gold
nanoparticles with a diameter of 24 A (top panel) and 50 A (bottom panel), at 20 K . The
theoretical spectra (solid line) have been obtained by averaging several structures obtained

from MD simulations carried out at 60 K (top panel) and 40 K (bottom panel).
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5.5 Conclusions

The computational approach presented in this chapter, for simulating EXAFS spec-
tra of gold nanoparticles directly from classical MD simulations is in good agree-
ment with experimental Au L3-edge EXAFS spectra. The simulation of EXAFS spec-
tra provides also a route for assessing the quality of the MD simulations, regarding
both structural properties and thermal dynamics. Although a fine-tuning of the MD
simulations is required to reproduce the correct degree of disorder in the simulated
EXAFS spectra, this approach can be further extended by predicting EXAFS spectra
of any kind of nanoparticles, given that a suitable force field is available and that the

simulation time can adequately sample its conformational space.

The average bond lengths in our MD simulations were about 1% larger than
those fitted from analysis of the experimental EXAFS data. On the other hand, the
effect of surface reconstruction, as observed in Figure 5.8, shows the significant con-
tribution of surface atoms to the simulated EXAFS spectra (Figure 5.7). The surface
tension is underestimated in our simulations compared to the tension observed ex-
perimentally [151], perhaps due to the larger Au-Au bond lengths at the surface,
with respect to the models presented in Ref. [152]).

Though the thermal damping in the EXAFS simulations steadily increases with
the temperature (Figure 5.11), it does not reproduce the signal damping of experi-
mentally determined EXAFS spectra at 20 K and 300 K. The MD simulations at 20
K show small vibrational motions, resulting in an underestimation of the thermal
damping, while the vibrations at 300 K are large enough to produce a thermal disor-
der greater than the experiment. Nevertheless, in our case, the approximation made
by representing the atomic interactions with a classical force field still provides re-
liable results for the structural properties of gold nanoparticles, even though the

vibrational motion is not reproduced accurately.
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Chapter 6

Platinum Nanoparticles and

Nanoalloys

The field of metallic or bimetallic nanoclusters is of particular interest due to their
applications in catalysis and optoelectronics, mainly when fabricating materials with
well-defined and controllable properties on the nanometre scale. The chemical and
physical properties of nanoparticles can be tuned by varying their composition, size
and shape. More specifically, nanoalloy clusters can display structures and proper-
ties which are distinct from those of pure metallic systems. Surface and segregation
properties of nanoalloys are also important in determining their chemical and cat-

alytic reactivity and also their optical and electronic properties.

This chapter summarises the results obtained from classical Molecular Dynamics
(MD) simulations on pure platinum nanoparticles along with their copper and pal-
ladium nanoalloys. A brief description of the major synthetic methods reported so
far for the currently studied Pt nanoparticles is given in sections 6.1.1 & 6.3.1 while
the results from the calculations performed on these systems are given in sections

6.2,6.1.2 & 6.3.3 and 6.1.3 & 6.3.4.
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6.1 Platinum Nanoparticles

6.1.1 Experimental Methods

Platinum nanoparticles have recently become a prominent area of research due to
their potential applications as catalysts. Perhaps the most popular method reported
for the synthesis of controlled size and shape Pt nanoparticles is that of Rampino
and Nord [155]. According to this method colloidal platinum nanoparticles are pro-
duced in aqueous solution. The Pt is incorporated in the form of potassium plat-
inum chloride solution (K;PtCly). The platinum ions are reduced to neutral plat-
inum atoms by citrate or bubbling Hy. The Pt nanoparticles emerge as the solution
becomes more saturated with neutral Pt atoms. To prevent the particles from aggre-

gating, an organic stabilising agent which caps the nanoparticle surface is usually

added.

The Pt nanoparticles studied in this work are representative structures of experi-
mentally synthesised nanoparticles, as supplied by Johnson Matthey, supported on
10, 20, 40 and 60 wt% carbon (Ketjen EC600JD) [16]. These were analysed and char-
acterised by using XRD, TEM and EXAFS techniques. The samples were prepared
as boron nitride pellets and reduced under flowing H; for 30 minutes. Spectra were

acquired in transmission mode at temperatures from 20 to 300 K.

The combination of the above techniques is essential for characterising the gen-
eral structures of the nanoparticles, by averaging their sizes and explaining their
differences. Although TEM [10] is limited by its local approach, it provides good es-
timation of the particle size distribution within the sample. On the other hand, XRD
methods often fail to measure an average crystallite size at low sample loadings. At
low Pt loadings, in this case, the atomic debris is scattered over the carbon support,

in the form of tiny species, which are invisible to XRD, and to all but the highest res-
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olution TEM; whilst EXAFS will record the contribution from all of the debris within
the x-ray beam at the time of measurement. It is worth noting that these smallest

species, are only visible within high angle annular darkfield TEM images.

Figure 6.1: Darkfield (top) and brightfield (bottom) aberration corrected STEM images of
10, 20, 40 and 60 wt% Pt/C [16].

In contrast, EXAFS measurements averaged over every atom, where the atomic
debris can cause a reduction in the estimation of the average coordination number,
results in the EXAFS average particle size being smaller than that of TEM. It has
been shown that for highly disordered systems, EXAFS underestimates coordina-
tion number and thus particle size when compared with theoretical values. Simi-
larly, when cross-correlating EXAFS with other techniques, such as TEM and XRD,
EXAFS gives smaller sizes [16]. The failure to accurately measure the coordina-
tion number is due to a failure to account for the high degree of disorder present.
Additionally, the assumption of a harmonic disorder made over the standard EX-
AFS analysis, and the presence of atomic debris near-invisible, increases the errors
in determining the EXAFS average particle size. By employing MD simulations to
improve the EXAFS analysis, can improve the systematic error derived from the an-
harmonic disorder, and thus, the discrepancy between EXAFS and TEM results can

be reduced. Details about the MD simulations are reported in the following section.
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6.1.2 Classical MD Simulations

Classical molecular dynamics simulations were performed on spherical, bare Pt;3,
Ptss, Pt177, Ptss1, Ptyey nanoparticles, using two different metallic potentials; the
Gupta [40] and the Sutton-Chen [41] force fields. These include “zero” tempera-
ture MD simulations, as a geometry optimisation technique, and simulations at 20
K, 85K, 150 K and 300 K within the microcanonical ensemble (NVE). The optimised
geometries are shown in Figure 6.2. A time-step of 1 fs and a total time of 2 ns were
considered sufficient for performing the MD simulations. A 50 ps time has been

used as an “equilibration” period at the beginning of every simulation.

Additionally, classical MD simulations have also been performed on hemispher-
ical, cuboctahedral and icosahedral structures of pure Pt nanoparticles: Pt;g3, Pt3z9
(hemispherical); Pt4y, Pt3p9 (cuboctahedral) and Pty47, Pt3ge (icosahedral). Visual
representations of the input structures on the systems studied in this work are shown
in Figures 6.2 and 6.3. All the reported geometries have been generated with Accel-
rys Material Studio [123].

Figure 6.2: Initial /unoptimised structures of spherical Pt;3, Ptss, Pt177, Ptsg1, Pt7e7 nanopar-

ticles
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Table 6.1: Comparison results between the force fields used, for the optimised geometries
of the Pty3, Ptss, Pty77, Ptsg1, Pty nanostructures, obtained using DL_POLY [1]. The results
show the remarkable agreement between the Gupta and the Sutton-Chen (SC) potential, es-

pecially with respect to the nearest neighbour interatomic distances of the optimised struc-

tures.
Nano- Average Nearest Total Number of | Total Energy
particle | Neighbour Distance (A) | Chemical Bonds (eV/atom)
Gupta SC Gupta | SC
Pti3 2.694 2.694 42 -4.992 | -4.611
Ptss 2.703 2.700 216 -5.293 | -5.040
Pti;; | 2.725 2.725 804 -5.462 | -5.286
Ptsg; 2.739 2.737 1872 -5.570 | -5.434
Ptrze; | 2.746 2.743 3900 -5.614 | -5.507

(b) Ptzyg

(d) Ptago () Ptzog
Figure 6.3: Optimised geometries of Pt;g3 (a), Pt3z9 (b) (hemispherical); Pti47 (c), Pt3go (d)

(cuboctahedral) and Pty47 (e), Ptsgg (f) (icosahedral).
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6.1.2.1 Debye temperature

The Debye temperature is the temperature above which the material behaves clas-
sically and where thermal vibrations are more important than quantum effects. In
general, by increasing the temperature the amount of dynamic (thermal) disorder
within the system also increases. Any increase in the disorder produces a varia-
tion in the nearest neighbour atomic distances or else, the bond lengths, which is
modelled as a Gaussian distribution, and is known as the pair or radial distribu-
tion function (RDF). In more detail, the RDFs of the Pt nanoparticles studied in this

work, are described in section 6.1.3 below.

Measurements at low temperature, in particular below the materials Debye tem-
perature, are required to reduce the thermal disorder in the system, and thus the an-
harmonic contribution effect [156]. For bulk systems, this can be enough to give an
accurate value of the coordination number and the amount of disorder. With the dy-
namic (thermal) disorder greatly reduced, what is left is the static disorder occurring
from any surface distortion around the core atoms of the synthesised nanoparticles.
For this purpose the simulations mentioned above, extend from very low to room
temperatures, and the results obtained, especially at 20 K, are aimed to approximate
the experimental results more closely than other relevant methods currently in use

for analysing the EXAFS spectra.

6.1.3 Radial Distribution Functions

The radial distribution function g(r) (RDF) or pair correlation function, describes
the probability to find a particle within a distance r away from a reference particle
i. In order to construct a RDF plot, the number of atoms surrounding particle i,
within a distance interval r and r + dr is counted. This visually creates a number of

concentric spheres around the reference particle, where the distance dr between two
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consequent spheres describes the volume of a spherical shell, with an infinitesimal

particle density p(r), as shown in Figure 6.4.

The number of particles contained in each shell

@ . is equal to the number of particle pairs formed be-

() &rg ; tween the reference particle and its surrounding par-
00.‘696 .0009 ticles. In a MD simulation using DL_POLY, a snap-
QOO0 O OO shotof the molecular system is taken at regular in-
00000.0000009 tervals and all the pair distances for all the parti-
QOOe cles N are calculated, sorted and placed in an aver-

~ age histogram which is characteristic for the system
simulated. At the same time, the average number of

Figure 6.4: Spherical shells

atoms n(r) found in each shell is also calculated by
around a reference atom of a 55-

. the code.
atom nanoparticle.

A table of the mean number of atoms n(r) as a
function of the pair distance r is provided in the OUTPUT file, after an MD simula-
tion with DL_POLY has been performed. To confirm the correctness of an RDF plot
constructed with DL_POLY, a script that computes the number of neighbour pair
distances and the average number of atoms in each shell for the final structure of a
molecular system has been written. The division in coordination shells is based on

the RDF data obtained from DL_POLY.

The diagram of Figure 6.5 shows a histogram of the average number of neigh-
bour atoms on the different shells of a 55-atom nanocluster, calculated directly with
DL_POLY (black line), merged with the results (blue points) obtained by process-
ing the final structure of the atomic system (table 6.2). In order to match the mean
values of neighbour atoms shown on the table 6.2 with the values calculated using
DL_POLY, the values are summed while moving from the inner to the outer shell.

The perfect agreement between the blue points and the curve prooved the accuracy

139



6.1 Platinum Nanoparticles

Table 6.2: Average number of atoms in every shell of a 55-atom nanoparticle

Shell Average Total number of | Average number of
Distance (A) | neighbour pairs | neighbour atoms
15t 2.814 432 7.855
2 3.995 180 3.273
3 4.870 528 9.600
4t 5.499 228 4.145
5t 6.294 384 6.982

40

| == neighbour atoms calculated with DL_POLY
4 neighbour atoms calculated from the final geometry I’-

30 /

) |
Y

n(r)

3 3 4 5 6
r(A)

Figure 6.5: Mean number of atoms in the coordination shells of a 55-atom nanoparticle

calculated with DL_POLY [17].

of the results obtained by the program.

The RDF plots of the Ptss, Pty77, Ptsgi, Ptygy nanoparticles as simulated at 20 K,
85 K, 150 K and 300 K using the Sutton-Chem potential are shown in Figure 6.6.
From a first look at the RDFs of the platinum nanoparticles, two distinctive peaks
can be seen; one at the first (~ 2.7 A) and one at the third shell (~ 3.8 A). As the

size of the nanoparticles becomes larger the peaks of the RDF plots are decreased
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6.1 Platinum Nanoparticles

due to the smaller number of atoms contained in each of the first five shells with
respect to the total density of atoms in the whole molecular system. On the other
hand, the RDF peaks gradually become long and broader as the temperature of the
simulation increases. This is due to the increase of the vibrational motion of the
system in higher temperatures which causes the expansion of the peaks in a larger

range of atomic pair distances.

Secondly, the displacement of the RDF peaks in smaller distances, mainly ob-
served at the RDF plot of the Ptss nanoparticle, indicates a structural deformation
occurring at higher temperatures. As this distortion is more obvious at the last shells
of the plot, this suggests a contraction of the pair atomic distances on the surface,
also observed experimentally [16]. Although a similar surface contraction is also
obvious in the larger Pt nanoparticles studied in this work, this is not shown in the
RDFs as the range of the pair distances calculated is restricted within 6.5 A. Fur-
thermore, the structural stability observed in all the plots is a strong indication of a

robust core with bulk-like properties.

Similar conclusions can be drawn for the non-spherical simulated Pt nanoparti-
cles, with some important exceptions. The smallest cuboctahedral and hemispheri-
cal Pt nanoparticles (Pt147 and Pt;g3 respectively) undergo a structural contraction in
almost their full volume at very low temperatures. The hemispherical Pt;g3 shows a
double peak at the fourth shell of the RDF plot, which can be attributed to the dis-
tortion of the interatomic distances at the edges between the hemispherical and the
flat surfaces of the nanoparticle. Both icosahedral Pt nanoclusters (Pt;47 and Ptzo9)
show a rather complex pair distribution function in very low temperatures which
can be attributed to the preservation of their polyhedral shape, with some atomic
distances being more contracted or expanded in order to form flat surfaces around
the nanoparticle. As the temperature increases and the nanoclusters gain more ki-

netic energy the RDF resembles more to the RDFs of the spherical Pt nanoparticles.

141



[474"

1600

1400

1200

1000

800

g

600

500

— T=20K

— T=85K
T=150K ]

— T=300K
&
\k L JZ£§* \J/ h ‘_\«/ h(-\7
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
(A)
(a)

400

300

— T=20K
— T=85K
T=150K
— T=300K

a(r)

200

100

A

AL

}

Figure 6.6: Radial Distribution Functions (RDFs) of Ptss, Pti77, Ptss1, Pt7s7 nanoparticles at 20 K, 85 K, 150 K and 300 K.

r(A)

(b)

2.5 3.0 35 4.0 45 5.0 55 6.0

6.5

300 T T
250
— T=20K
r — T=85K 1
T=150K
=L — T=300K
=
150
100 p ﬂ
50 A N A
J A\ Vs A\
1.5 2.0 25 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
r(A)
(c)
160 T
140
120 — T=20K
— T=85K
r T=150K 7
100 — T=300K
- L i
5 80
60 {
L \ | 4
40 f i r
| 1 i .
20
L ]j & }{ & { _/‘ ]
. . A A
1.5 2 25 3 35 4 4.5 5 5.5 6 6.5
r(A)
(d)

sopn.redoueN wnune[J 19



6.1 Platinum Nanoparticles

These structural defects result from the contraction of the surface atoms towards
the core to minimise the surface energy, a phenomenon observed for both bulk
materials [157] and nanoparticles [151]. Surface distortion is present in the bond
length distribution and the thermal disorder [151], as surface atoms tend to rear-
range themselves in order to reduce the surface tension. For bulk materials, surface
reconstructions can be considered negligible, as the bulk contribution dominates;
while for nanoparticles below 5 nm, the surface area occupies approximately 25% of
the nanoparticle’s volume, and for nanoparticles below 2 nm, exceeds 75%. There-
fore, the contribution of surface atoms to the average bond length, and to the final
EXAFS signal becomes increasingly dominant. Thus, the assumption of a Gaussian
distribution in the “standard” EXAFS analysis, breaks down in highly disordered

systems, either through thermal or quantum size effects.

700“ T : T ' T : T ' T : ' T f T ' T f T 3

=20k (Pt )
500 T=20K (Pt3_,9)
- __ T=300K (Pt._.) :

_ _ 183
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Figure 6.7: RDFs of hemispherical Pt nanoparticles

143



6.1 Platinum Nanoparticles

600“ T : T ' T : T ' T : ' T : T ' T : T o]

500

i =20k (Pt_,) |
' ' T=20K (Pt,.,)

— T=300K (Pt,,.)

- T=300K (Pt,) 1

g(r)

i

35 40
r(A)

100

Figure 6.8: RDFs of cuboctahedral Pt nanoparticles

Y L S e e L B

B U — T=20K (Ptl41) 7]

: : : : : T=20K (Pt,,,) |
5 5 5 5 . |— T=300K (Pt ;)
i T=300K (Pt

200

309)

a(r)

5T RO SRR OO0 | TR NN 1 8 SRR | PO 0

vl

u
6.0 6.5

: 1 \ i
35 4.0
r(A)
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6.2 Prediction of EXAFS spectra

6.2 Prediction of EXAFS spectra

In order to take into account the high disorder of surface atoms in nano-sized sys-
tems, to the atomic pair distribution, the fitting procedure must be able to analyse
the EXAFS spectra with a more flexible scheme. So far the existing models for ob-
taining the structural properties of the nanoparticles are using single distribution
for each coordination shell. If the contributions from surface bonds are important
enough then, the distribution will become bi- or tri-modal and any attempt to fit a

single peak over the split distribution will result in false results.

Several theoretical works have been addressing the need to accurately determine
the coordination number from EXAFS, by looking at the relationship between the
surface anharmonicity and the particle’s geometry [158-160]. Despite demonstrat-
ing the difference in the position and intensity of each nearest neighbour shell of the
RDF, using different geometries, these studies were still employing an even distri-
bution of bond lengths from the core to the surface, without accounting any termi-

nation effects at the surface.

Okamoto [161] and Gilbert et al. [162], have reported using MD simulations for
predicting EXAFS, by comparing their results with real structural data, while only
in a few studies have attempted to use MD to more accurately determine the aver-
age coordination number from EXAFS [163,164]. Theoretical works from Clausen et
al. were focused on nanoparticles below 5 nm, while larger particles were also stud-
ied [163]. The disorder modelled in these systems however still remained a single
pseudo-Gaussian distribution, unlike in this work. In the majority of these works
data have been collected at high temperature, where thermal disorder dominates
any fine structural disorder. As such, the disorder is fairly poor and can be mod-
elled by using a few adjustments in order to account for small degrees of asymmetry

within the distribution [165-167]. Below 3 nm, the disorder becomes significantly
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6.2 Prediction of EXAFS spectra

non-Gaussian and the use of extra cumulants will fail to give an accurate result.
Applying the information obtained from MD to real EXAFS data is step forward to
determine whether the disorder has a significant effect on the EXAFS fit and how

much this degree is.

6.2.1 Application of MD to EXAFS

The histogram (RDF) generated from the MD simulations was used to fit the EXAFS
data, instead of using the Pt fcc structure of the bulk crystal, as in the standard anal-
ysis. In nanoscale systems, the correct treatment of the atomic radial distribution is
demanded, in order to account for the effects of the high proportion of disordered
surface atoms with decreasing particle size. In contrast, the effects induced by the
anharmonic thermal motion and surface termination, in bulk materials, can be con-

sidered negligible.

In the standard analysis, the raw EXAFS spectra were energy calibrated, aligned
and background subtracted using the AUTOBK algorithm, which is implemented
in the ATHENA code [168]. The structural parameters were determined using the
ARTEMIS code [169], with photoelectron momentum k and non-phase corrected
radial distance r ranges of 3-18 A~! and 2-3.2 A respectively. The scattering paths
were calculated using FEFF6 [170].

In both analytic methods, the standard analysis and the procedure employed in
the current work, the EXAFS data were parametrised using 4 variables: the am-
plitude N, the isotropic expansion coefficient «, the energy correction AEp and the
disorder o2. In the current analysis, only the first coordination shell is considered
as the software used to fit the EXAFS data is unable to manage large numbers of

scattering paths required for a full multiple scattering analysis. The fitting analysis
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6.2 Prediction of EXAFS spectra

in both methodologies in this work was conducted by Stephen Price.

Table 6.3: Structural parameters for 10 (top) - 20 (bottom) wt% Pt/C nanoparticle at 20 K,

150 K and 300 K, acquired in a reduced H; environment at the Pt L;;; edge.

10 wt% Fitting N w 2 o2 (A72) | AEq (eV) R¢
Pt/C Method (x10%)
20K Standard 7.89+0.60 | -0.012+0.001 5043 8.11+0.70 | 0.009
Gupta1 10.02+0.58 | 0.000£0.000 1942 7.4140.62 | 0.005
Sutton-Chen! | 9.524+0.39 | 0.003+0.001 25+1 8.33+0.37 | 0.003
150 K Standard 8.961+0.30 | -0.00840.001 4641 8.144+0.29 | 0.002
Gupta1 9.454+0.55 | -0.001+0.001 2942 7.14+0.53 | 0.003
Sutton-Chen! | 9.0840.34 | 0.002+0.001 36+1 7.88+0.35 | 0.002
300 K Standard 8.70+£0.45 | -0.0064-0.001 6243 5.46+0.52 | 0.010
Gupta 9.56+1.27 | 0.0024-0.002 4616 4.66+1.20 | 0.014
Sutton-Chen | 9.02+0.65 | 0.00540.001 5243 5.34+0.63 | 0.009
20 wt% Fitting N x 2 c?(A2) | AEg(eV) | Rg
Pt/C Method (x10%)
20K Standard 8.2440.56 | -0.01240.001 5543 7.71£0.59 | 0.009
Gupta 8.644+0.56 | -0.004+0.001 3843 6.90+0.62 | 0.010
Sutton-Chen | 8.354+0.54 | -0.001+0.001 4543 7.51£0.56 | 0.008
150 K Standard 8.4140.66 | -0.0144-0.002 62+4 7.234+0.72 | 0.014
Gupta 8.8840.67 | -0.0064-0.001 4544 6.621+0.74 | 0.015
Sutton-Chen | 8.534+0.65 | -0.003+0.001 52+4 7.05+0.68 | 0.010
300 K Standard 8.884+0.59 | -0.00440.001 68+4 5.60+0.62 | 0.015
Gupta 9.67+1.25 | 0.004+0.002 5246 451+1.01 | 0.016
Sutton-Chen | 9.154+0.63 | 0.00740.001 58+3 4.961+0.53 | 0.010

Ipest fit with the 177 Au atoms cluster
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Table 6.4: Structural parameters for 40 (top) - 60 (bottom) wt% Pt/C nanoparticle at 20 K,

150 K and 300 K, acquired in a reduced H; environment at the Pt L;; edge.

40 wt% Fitting N w 2 o2 (A72) | AEg(eV) | Rg
Pt/C Method (x10%)
20K Standard | 9.3740.43 | -0.0074+0.001 | 35+1 | 8.72+0.50 | 0.004
Gupta 10.024+0.58 | 0.00040.000 | 1942 | 7.41+0.62 | 0.005
Sutton-Chen | 9.5240.39 | 0.003+0.001 | 2541 | 8.3340.37 | 0.003
150K | Standard | 8.96+0.30 | -0.008+0.001 | 46+1 | 8.14+0.29 | 0.002
Gupta 9.45+0.55 | -0.001+0.001 | 2942 | 7.14+0.53 | 0.003
Sutton-Chen | 9.0840.34 | 0.002+0.001 | 3641 | 7.8840.35 | 0.002
300K | Standard | 8.704+0.45 |-0.00640.001 | 6243 | 5.46+0.52 | 0.010
Gupta 9.56+1.27 | 0.002+0.002 | 4646 | 4.66+1.20 | 0.014
Sutton-Chen | 9.0240.65 | 0.005+0.001 | 5243 | 5.3440.63 | 0.009
60 wt% Fitting N w 2 c?(A72) | AEg(eV) | Rg
Pt/C Method (x10%)
20K Standard | 9.64+0.31 | -0.00840.001 | 42+1 | 7.9240.29 | 0.002
Gupta 10.464+0.79 | -0.0014£0.001 | 2643 | 6.72+0.73 | 0.003
Sutton-Chen | 9.85+0.40 | 0.003+0.001 | 3141 | 7.494+0.44 | 0.001
150K | Standard | 9.40+0.31 | -0.008+0.001 | 4641 | 8.4340.34 | 0.002
Gupta 9.91+0.68 | -0.001+0.001 | 29+3 | 7.36+0.67 | 0.009
Sutton-Chen | 9.604+0.44 | 0.003+0.001 | 3642 | 8.10+0.41 | 0.002
300K | Standard | 9.0440.54 | -0.004+0.001 | 5943 | 5.79+0.62 | 0.010
Gupta 9.96+1.31 | 0.003+0.002 | 43+6 | 4.81+1.23 | 0.015
Sutton-Chen | 9.36+0.68 | 0.0074+0.001 | 4943 | 5.3940.62 | 0.009

2 A bond length correction term (linear expansion coefficient &) was used as a fitting parameter for

the MD input as well as the standard input.
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Figure 6.10: k weighted experimental data (purple) and fit to Gupta (tirquoise) and Sutton-

Chen (green) potentials, of the 10 and 20 wt% Pt/C at 20 K (top), 150 K (middle) and 300 K

(bottom).
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6.2 Prediction of EXAFS spectra

Each histogram, from every modelled nanostructure, in all the temperatures sim-
ulated, was tried during the EXAFS analysis for determining which gives the best
fit. The results are summarised in Tables 6.3 & 6.4 above. The data collected from
the 300 K simulations were impossible to be fitted to the EXAFS data at all. As in the
case of gold nanoparticles MD simulations (section 5.4) the higher the temperature
the greater the disorder. Consequently, a negative o term would be required to
fine-tune the fit and as this is physically unrealistic, these results were discounted.
Simulations performed at 150 K were able to be fitted to the data for the 150 K and
300 K within the same error as in the 20 K simulations. On the other hand, the RDF
data produced for the smallest (55 atom) and the largest (767 atom) Pt clusters had
disorders too great or too small, respectively, that in consequence, failed to be fitted

to the EXAFS data. The 381 atom cluster yielded all the best fits.

Comparing the adaptability of the two force fields employed in the classical MD
simulations, with respect to the quality of the fit, the Sutton-Chen potential gave
better results, from the Gupta potential, when compared with the standard anal-
ysis. Whilst, on average, there is no significant difference between the two MD
fitting approaches, as also mentioned earlier (Table 6.1), the values in Tables 6.3 &
6.4 clearly indicate that the Sutton-Chen potential is more reliable for simulating Pt
nanoparticles, at least in this case. Taking this into account the results reported here,

mainly refer to the Sutton-Chen potential.

Although the MD simulations provide an improved input for EXAFS analysis,
they do not completely account for all the structural and thermal disorder present
and the fits using the RDF histograms as an input require an additional o> param-
eter. Despite this, the values of % obtained from the MD histogram are smaller
than those obtained from the standard model. In conclusion, the use of molecular
dynamic simulations to fit real experimental data, not only provides a significant

improvement over the fitting method, but also a measurable metric for evaluating
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the quality of a particular force field at replicating nanoparticles behaviour, bearing
in mind though that the empirical potentials used were mainly designed to repro-

duce the properties of bulk metallic systems.

6.3 Platinum Nanoalloys

Although pure metals have a plethora of technological applications, the range of
properties of metallic systems can be greatly extended by considering mixtures of
elements to generate inter-metallic compounds and alloys. Mixtures of platinum
with palladium or copper are of a major interest mainly due to their application as
catalytic converters in auto-mobiles. They can be used in the hydrogenation of aro-
matic compounds in fuel and consequently the reduction of the exhaust gases. This
process, however suffers from the catalytic poisoning by H,S due to the sulphur-
containing impurities. There are several works claiming that platinum nanoalloys

are more catalytically active and more resistant to sulphur poisoning.

6.3.1 Experimental Works
6.3.1.1 Pt-Pd nanoalloys

Nanoalloys of Pt with Pd have been an attractive and extensive case study for their
catalytic applications. Both pure bulk elements and their alloys exhibit face-centred
cubic (fcc) symmetry. Due to their relatively low enthalpy of formation (Pt-Pd 1:1 =
-4 k] mol ') the bulk Pd-Pt alloys have several compositions where the atoms are
randomly mixed. In some cases, Pd-Pt alloys may show a strong surface segregation

as reported in the experimental work of Watson and Attard [171].
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Renouprez, Rousset, and colleagues conducted extensive research studies on
rods of bulk Pd-Pt nanoalloys with diameters between 1-5 nm and various com-
positions [172,173]. The nanoalloys mainly had cuboctahedral structures, with fcc
packing, as their bulk counterparts, while EXAFS measurements revealed that the
Pd-Pt particles are intermixed with more Pt-Pt interactions than expected. This in-
dicated that some segregation has occurred. Further experiments showed that the
surfaces of these Pd-Pt particles are enriched in Pd, with the relatively largest segre-
gation occurring at low Pd concentrations. Therefore, Pd-Pt nanoalloys with small
diameters can be considered as having a fairly isolated Pt core capped with a Pd

shell.

Fiermans et al., who studied Pd-Pt particles supported on B-zeolites confirmed
the results of Renouprez and Rousset [174]. The particles were composed by a Pd:Pt
ratio of 1:3 and a segregation of the Pd to the surface of the nanoparticles was also
observed. Toshima et al. reported the synthesis of Pd-Pt colloids (1.5-5.5 nm) with
tunable core-shell segregation (Ptcy.Pdgye;;) for catalytic applications, which was
confirmed by EXAFS measurements [175-177]. They had also reported the synthe-
sis of inverted Pdy.Ptse; nanoalloys. In contrast, NMR studies on PVP-protected
Pdy Pty s and Pdg gPt» nanoparticles with average diameter 2.4 nm, revealed a ho-

mogeneous Pd-Pt nanoalloy with bulk-like and surface-like Pt atoms [178,179].

6.3.1.2 Pt-Cu nanoalloys

Toshima and Wang, reported the synthesis of colloidal Cu-Pt particles, by applying
catalytic hydrogenation in solution [180]. Several potential applications of Cu-Pt
alloys include the catalysis-reduction of NOy [181]. CucorePtspen; and PteoreCugper
nanoparticles have also been synthesised by Eichhorn et al. as well as intermixed

particles [182]. The CucorePtyper; particles (mean diameter 8.8 nm) and their relative
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PtcoreCugpey particles (mean diameter 18.3 nm), were found to have approximately
equal concentrations of Cu and Pt. The synthesised Pt;y,.Cugp,; particles had an fcc
Pt core with a Pty,Cugg shell. Annealing at 370 °C for 5 h produced an intermixed
Cu-Pt particle. In contrast, the CucorPtspe; particles, with fcc Cu cores and fcc Pt
shells, were slightly intermixed by annealing at 370 °C for 5 h, that generated a Cu-
rich/Cu-Pt core and a pure Pt shell. This difference is believed to derive from the

higher kinetic stability of CucorePtspe; core-shell particles.

6.3.2 Theoretical Works

A genetic algorithm describing interatomic interactions of Pd, Pt, and Pd-Pt nan-
oclusters with the Gupta many-body potential was implemented by Massen et al.
[183]. The Gupta potential parameters for Pd-Pt interactions were obtained by aver-
aging the parameters for Pd-Pd and Pt-Pt interactions. According to their results the
Pd-Pt nanoalloys had a large number of capped decahedral structures and a reduced
tendency to display icosahedral packing in their lowest energy level, compared to
pure Pt or Pd nanoclusters [183,184]. The structures for the Pd-Pt clusters were also
more distorted than the Pd clusters. These Pd-Pt clusters tend to segregate in shells
with the surface being richer in Pd and the core becoming richer in Pt. This segre-
gation, also reported by several experimental studies on Pt-Pd particles, is believed
to arise from the contribution of the lower surface energy of Pd and the greater co-
hesive energy of Pt. Additionally, varying the Pd-Pt interaction parameters of the
Gupta potential affects also the tendency towards segregation between the Pt and
Pd atoms of the Pt-Pd geometries.

Lloyd et al. extended the work of Massen et al., by studying the dependence
of the binding energy on coordination for several cluster sizes, shapes (icosahe-

dral and cuboctahedral shell clusters) and compositions [184]. They showed that
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the most stable isomers generally have the largest number of Pt-Pt bonds or Pt-Pd
bonds respectively. All the atoms in the cluster were included in order to find the
preferred site for segregation on a particular atom. The Pto,.Pdgy.;; segregation, as
a result of the correlation between average binding energies and atomic distribu-
tion parameters, was consistent with the experimental studies of Renouprez and
Rousset [172,173]. Similar results have been obtained by Cheng et al., who used the
same Gupta potential parameters in Monte Carlo simulations on icosahedral and

decahedral Pd-Pt nanoalloys with 55 atoms [185].

Pd-Pt nanoalloys of 34 and 38 atoms were studied by Rossi et al. [186] by also em-
ploying the Gupta potential. Many of the 34-atom clusters adopted incomplete dec-
ahedral geometries, in abundance of Pt while for the Pd-rich and intermediate com-
positions, icosahedral structures were more prominent. For the 38-atom clusters,
the truncated octahedral (fcc) geometry dominated the other structures. Fernandez
et al. carried out DFT re-optimisations of low-energy isomers generated using the
Gupta potential for (PdPt)y clusters, with N=5-22 [187] had observed Pty Pdgjer;

segregation, while similar findings were reported also by Paz-Borbon et al. [178].

6.3.3 Classical MD Simulations

Classical MD simulations have been performed using the Sutton-Chen potential [41]
on the Pt-core nanoalloys Pti77Pdyg4, Ptzg1Pdsgs, Pt177Cupos and Ptz Cusge at tem-
peratures 20 K, 85 K, 150 K and 300 K. Additional MD simulations on the intermixed
Pt nanoalloys Pt;g9Pd;9; and PtzysPd39 at 20 K and 300 K were also attempted. The
data collected from these simulations, as in the case of bare Pt nanoparticles, are
aimed to be used as inputs for analysing EXAFS data, although the fitting proce-
dure in this case is far more complicated from the method described previously.

Optimised structures of the systems studied are given in Figure 6.12.
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While simulations for Pt-Cu and Pt-Pd nanoalloys using the Gupta potential
have also been performed, this report will focus only on the results obtained with
the Sutton-Chen force field. This is mainly due to the flexibility of the latter potential
when applied to alloys, by providing a very simple and general scheme for mixing

the parameters used in pure metals to represent their relative alloys (section 2.3.3.2).

(e) PtigoPdq92

(b) Ptzg1Cuszss

(d) PtgiPd3ge (f) Pt375Pd392

Figure 6.12: Optimised geometries of Pt177Cu204 (a) , Pt381 CU386 (b) , Pt177Pd204 (C) , Pt381 Pd3g(,
(d), PtigoPdi9 () and PtzzsPdse (f).

6.3.4 Distribution of bond lengths

The plots of Figures 6.13, 6.14 and 6.15 show the distribution of nearest neigh-
bour atomic distances (bond lengths), from the centre of mass of the nanoparticle
to the surface, for the Pt;77Cupog, Ptag1Cuszss, Pti177Pdogs, Ptag1Pdsgg, PtiggPdi9r and
Pt375Pd39, nanoalloys, obtained from classical MD simulations performed at 20 K

and 300 K with the DL_POLY code.
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Figure 6.13: Bond length distribution across the radii of Pt;77Cuyos (left), Ptsg;Cusge (right) nanoparticles at 20 K and 300 K.
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Figure 6.14: Bond length distribution across the radii of Pt;77Pdy4 (left) and PtzgiPdsse (right) nanoparticles at 20 K and 300 K.
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Figure 6.15: Bond length distribution across the radii of PtiggPd19; (left), Pt3z5Pd3g, (right) nanoparticles at 20 K and 300 K.
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6.4 Conclusions

All the bond length distribution diagrams of the simulated nanoalloys at 20 K,
show a robust structure, from the core to the surface, which is shown by the vertical
grouping of points along the radius of the nanoparticle. These regions are dispersed
across the volume of the nanoparticle as the temperature is raised and the atoms in-
crease their vibrational and rotational motion. Platinum nanoalloys with palladium
show a larger contraction at the surface which is more intensive for the Ptc,rePdgpers
rather than the intermixed structures. In room temperature the pair atomic distances
of Pt-Pd nanoalloys are more relaxed compared to the Pt-Cu nanoalloys, as can be
observed by the slight increase of the average atomic distances mainly inside the
core region. The Pt.,Cugpe;; nanoalloys also show a surface reconstruction which

seems to be stronger for the Pt3gCuszgg at room temperature.

On the other hand, as the size of the nanoparticles and the temperature increase,
the surface atoms of the non-intermixed structures seem to sink more inside the
platinum core with the copper atoms showing larger intermixing rate than palla-
dium atoms. Copper atoms in the outer shell of the Pt-Cu nanoalloys also have a
larger range of bond lengths at 20 K which indicates the structural differences of
the crystallographic morphology between the two metals, while palladium atoms
with similar crystalline features with platinum show an even distribution of bond

lengths along the radii of the nanoparticles.

6.4 Conclusions

The work in this chapter focuses on the challenging prospects of analysing EX-
AFS spectra for nanoparticles by combining theoretical data, from molecular dy-
namic simulations, with experimental data. Classical MD simulations performed on
bare, spherical platinum nanoparticles, were used to fit experimental EXAFS data,

mainly with respect to the first coordination shell. Data from simulated models of
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Pt nanoparticles, where any structural disorder can be predicted, were used to inter-
pret the anharmonic structural disorder in the EXAFS fit results, for several particle
sizes, which is in better agreement with TEM data than the standard approach. The
approach described in this chapter is a promising step towards the extension of the

current EXAFS analysis to higher coordination shells.

Within this framework, other possible geometries of platinum nanoparticles such
as icosahedral, cuboctahedral, or hemispherical were modelled, for future use in the
EXAFS fit. Similarly, classical MD simulations of bi-metallic nanoalloys of Pt and Pd
or Pt and Cu have also been performed. So far, studies trying to incorporate theo-
retical and experimental data, have assumed an even distribution of bond lengths
throughout the nanoparticle. By being able to use MD data also regarding higher co-
ordination shells would provide a significant improvement over the determination

of particle morphology from EXAFS.
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Chapter 7

Gold Nanoparticles and Nanosurfaces

This chapter summarises the results from calculations performed on three different
categories of gold nanoclusters. In the first two sections, calculations on ultrasmall,
bare gold nanoparticles are reported using density functional theory (DFT). Follow-
ing the work from chapter 5, additional classical MD simulations have been also
performed on different spherical gold nanoparticles, of sizes 1.39, 1.94, 2.50 and 3.05

nm.

The third section describes the outcome of geometry optimisations and some at-
tempted ab initio MD simulations on gold nanosurfaces, in contact with small thiol
molecules; and finally, the last section contains the results of classical MD simula-
tions on a Aucor.Cugpe; Nanoparticle and its predicted EXAFS spectrum, as calcu-

lated with the method employed in chapter 5.

163



7.1 Classical MD simulations on gold nanoparticles

7.1 Classical MD simulations on gold nanoparticles

Classical molecular dynamics simulations, using the Gupta [40] and the Sutton-
Chen [41] force fields on the spherical Auy3, Auss, Aujy7, Ausgy, Auyey and the icosa-
hedral Auzg9 nanoparticles, have been performed (Figure 7.1). These configurations
were chosen as representative structures, to aid the EXAFS analysis of synthesised
gold nanoparticles. As in the MD simulations reported in chapter 5, the initial struc-
tures were optimised at “zero” temperature and later on simulated at 20 K, 85 K,
150 K and 300 K within the micro-canonical ensemble (NVE). A time-step of 1 fs
and a total time of 2 ns were considered sufficient to perform the MD simulations.
A 50 ps time has been used as an “equilibration” period at the beginning of every

simulation.

ALI13

Figure 7.1: Optimised geometries of small gold clusters using DL_POLY [1]
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7.1 Classical MD simulations on gold nanoparticles

The RDF plots of Figures 7.2 and 7.3, show the differences between the struc-
tures simulated at low and room temperatures. At low temperature, the RDF plots
are constituted by high, sharp peaks due to the restricted motion of the atoms, in
comparison with the RDFs of the nanoparticles simulated at room temperatures,
where chemical bonds are relaxed and the vibrational and rotational motions are
increased. While the agreement between the RDFs for the larger nanoparticles in-
dicates a structural stability throughout the simulation, in the case of the Auss nan-
ocluster, a shifting of the last coordination shells to the left results from the strong

effect of surface contraction, in both the temperatures shown.

On the other hand, when comparing the spherical Augg; and the icosahedral
Augzpg, it can be seen, that the Auzg9 nanoparticle has a more complex RDF, due to
the different arrangement of atoms to form the icosahedral geometry. Starting from
low temperatures, where the structures are almost frozen, the complexity of the
Augzg plot is gradually reduced, becoming almost similar to the RDFs of the spher-
ical nanoparticles at room temperature. This denotes a breaking of the particle’s
symmetry in higher temperature, which consequently leads to a distorted geometry

with smoother features.

All the simulated structures showed a stable core, in contrast with the smallest
nanoparticles, where the surface disorder is significantly large. Despite that, the
ultrasmall Auy3 and Auss nanoparticles have essentially maintained their spheri-
cal shape throughout the simulation. The discrepancy observed between the final
geometries of the Auj3 and Auss nanoparticles and the structure of their larger rel-
atives, led us to perform a further investigation of these ultrasmall structures by

employing a first principles method, as reported in the following sections.
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7.1 Classical MD simulations on gold nanoparticles
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Figure 7.2: RDF of small gold nanoparticles at 20 K calculated with DL_POLY [18]
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Figure 7.3: RDF of small gold nanoparticles at 300 K calculated with DL_POLY [18]

166



7.2 Ultrasmall Gold Nanoparticles

7.2 Ultrasmall Gold Nanoparticles

Ultrasmall gold nanoclusters, of sizes smaller than 200 atoms, have been extensively
reported to show unique properties, in comparison with other nanoclusters from
similar metals, due to their large relativistic effects [142, 188-191]. Confining the
nanoparticles into quantum sizes, the de Broglie wavelength of valence electrons
becomes of the same order as the particle’s size and thus, the nanoparticles behave
electronically as zero-dimensional quantum dots. These effects are responsible for
their unique physical properties, the nanoparticles’ size and shape, their amorphous
features, observed experimentally, and the strong tendency of gold atoms to form

contracted metallic bonds, mainly on their surface.

7.2.1 Theoretical Studies

Perhaps the breakthrough in the science of gold nanoparticles, which promoted the
theoretical investigation of gold ultrasmall nanoparticles using first principles meth-
ods, emerged from the pioneering work of Schmid et al. [192]; who managed to
isolate gold quantum dots and study their properties for the first time. The small-
est cluster contained 13 Au atoms in dense packing, followed by layers of 1012 + 2
atoms. The nanoparticle with 55 atoms was well characterised by Schmid’s group,
while larger nanoparticles of 147, 309, 561, 923, 1415 and 2057 (n = 3 — 7) atoms

were also isolated.

Despite the existence of sophisticated experimental methods for analysing the
structural properties of gold nanoclusters, some problems still remain unsolved.
From comparison between experimental imaging methods or resonance methods, in
the case of gold nanoparticles with sizes 1-2 nm, the resolution is not good enough to

decompose explicitly their geometry features and provide a conclusive determina-
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7.2 Ultrasmall Gold Nanoparticles

tion of their structure [142]. Thus, several theoretical calculations have been applied

in order to shed light on their configurations at this size range.

Theoretical studies, employing DFT calculations and semiempirical potentials,
have attempted to perform global minimisations on isolated gold nanoparticles,
yielding controversial results due to the complexity of the Au potential energy sur-
taces (PES) [142,188,191]. Within this framework, attempting to utilise ab initio meth-
ods for computing the PES, involves significant difficulties for treating gold systems,
even at this scale. Nonetheless, even at such a small scale, gold nanoparticles were
shown to preserve their metallic properties, independent of their symmetry and

structure [191].

For ultrasmall nanoclusters, simulations using empirical many-body potentials,
such as the Gupta or the Sutton-Chen potential, which are used in studying the
melting of bulk gold systems or in nucleation studies (sections 2.3.3.1 and 2.3.3.2),
do not account correctly for the many-body effects required to obtain their correct
shape and configurations and in general this applies for the majority of metallic
clusters. At this size range, the calculations show that there are many energetically
favourable configurations with little or no spatial symmetry, which strongly sug-

gests that ultrasmall gold nanoparticles should be amorphous-like.

One of the works that supports the above argument is provided by Garzon
et al. [191]. They have studied the structural stability of Au, (n=38,55,75) amor-
phous and ordered nanoparticles, with MD simulations and the n-body Gupta po-
tential [193] through dynamical optimisations. By additionally applying extremely
low temperatures they have found that both kinds of isomers are of equal stability,
with the energy difference between the amorphous and the ordered structures to
be very small. Ercolessi at al. [194], reported that the melting temperature of gold
nanoparticles of sizes smaller than 90 atoms, became zero, which suggests that ul-

trasmall gold nanoparticles should have a broken symmetry. Assadollahzadeh and
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7.2 Ultrasmall Gold Nanoparticles

Schwerdtfeger [189] and Wang et al. [188], have also calculated the zero-point vibra-
tional energy of several neutral gold nanoclusters, from 2-56 atoms, by using DFT
based methodologies and found that this accounts for roughly ~1% of the binding

energy per atom.

A disordered structure has also been predicted for the lowest energy configura-
tion of Pty3 (section 6.1.2) by performing DFT-LDA calculations [195]. These conclu-
sions were in contrast with the classical MD simulations of Au;s, Auss, Pti3 and Ptss
nanoparticles, reported in sections 7.1 and 6.1.2. Both the Gupta and the Sutton-
Chen many-body potentials gave an optimised structure of high symmetry with
ordered atoms as in the bulk fcc crystal; in contrast with the results mentioned in
the above theoretical works. The structural properties of Auj3, Auss were further
investigated by conducting DFT calculations. The results of these calculations are

reported in the following section.

7.2.2 DFT Calculations

7221 Geometry optimisation

Trial energy minimisations on the smallest spherical nanoclusters using density
functional theory have been attempted with different codes. DFT geometry opti-
misations on the Auy3 and Auss nanoclusters with ONETEP [4] and NWCHEM [19]
(Gaussian basis set DFT) were impossible to converge. In contrast, calculations at-
tempted with CASTEP [3] (plane-wave DFT), were able to complete successfully by
using the ensemble density functional approach (EDFT). The calculations were per-
formed by using the PBE exchange correlation functional [15] and a kinetic energy

cut-off of 650 eV.
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7.2 Ultrasmall Gold Nanoparticles

Geometry optimisations of metallic systems, with first principles methods, are
extremely difficult to perform due to the constant variation of the occupancies of
electrons and, consequently, the change in the energy band structure during the
calculation, which often leads to non-convergence. The EDFT method developed
in CASTEP allows the wavefunctions to be updated without invalidating the oc-
cupancies during the optimisation. This is achieved by minimising a free-energy
functional with variable occupancies across some extra conduction bands, instead
of minimising the energy with respect to only the valence bands. As a result, ener-

gies are tightly converged and forces can be calculated accurately.

= S, Average Interatomic Distance (A
N ASHAT)
DS
Sl o %
’\:‘"u‘flb"x' 2
0”\‘.'&‘

Nano- | Surface | Core | Total
particle
Auys 2.872 | 2.731 | 2.832
Auss 2.816 | 2.850 | 2.835

73

(a) (b)

Figure 7.4: Optimised geometries with PBE-DFT of Auy; (a) and Auss (b). Table: Average

interatomic pair distances of Au atoms within Auj3 and Auss nanoparticles.

The table of figure 7.4 reports the nearest neighbour interatomic distances of the
gold atoms in the Au;3 and Auss nanoparticles. It is worth noting that in the case of
the smallest Auy3 nanoparticle, the interatomic distances between the central atom,
which is the only atom without free dangling bonds, are significantly shorter than
the atomic distances calculated for the core atoms of Auss, which are relatively closer

to the distances reported for the bulk gold crystal (2.88 A).
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7.2 Ultrasmall Gold Nanoparticles

7.2.2.2 Ab initio Molecular Dynamics

After the successful optimisation of the above ultrasmall nanoparticles, molecular
dynamics simulations of the Au;3 and Auss nanoparticles have also been attempted
using a recently developed feature of the CASTEP code. In contrast with the classical
MD scheme reported throughout this work, where an empirical potential or force
field is required to describe the way atoms interact between them, the type of MD
method implemented in the CASTEP code is defined as “ab initio” or “quantum”

molecular dynamics.

The basic idea underlying every ab initio MD method is that the forces acting
on the atoms are derived from electronic structure calculations, performed “on-
the-fly”, as the molecular dynamics trajectory is generated. In this way, the elec-
tronic variables are not integrated out beforehand, but are considered as active
degrees of freedom. This implies that, for a suitable approximate solution of the
many-electron problem, “chemically complex” systems can be treated effectively by
molecular dynamics. While both classical and ab initio molecular dynamics employ
the same principles, in practice, the latter method is shifted from manually selecting
the model force field to the level of selecting a particular approximation for solving

the Schroédinger equation.

The MD simulations of the ultrasmall Auj; and Auss were performed at 300 K
within the NVE ensemble. The same exchange-correlation functional and kinetic en-
ergy cut-off, as in the optimisation calculations, were used. The simulations showed
a breaking in the ordered geometry of the systems, as reported also by Grazon et
al. [191]. Furthermore, the energy diagrams of Figures 7.5 and 7.6, for each system
respectively, show a characteristic variation of the energy throughout the MD trajec-
tory due to the tendency of the systems to adopt a more amorphous structure at the

expense of energy stabilisation. Although the ab initio MD simulations have been
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Figure 7.5: [Left] Energy diagram of Auy3 at 300 K. [Right] Initial (a) and final (b) geometries

of Auys after a 0.15 ps of an ab initio MD simulation.
carried out for a very short time, even at such a small scale, the distortion of the

total structure of the Au;3 and Auss nanoparticles is distinguishable, as can be seen

in the right part of Figures 7.5 and 7.6.

-48440
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(b)
Figure 7.6: [Left] Energy diagram of Auss at 300 K. [Right] Initial (a) and final (b) geometries

of Auys after a 0.18 ps of an ab initio MD simulation.

172



7.3 Thiol-Passivated Gold Nanosurfaces

7.3 Thiol-Passivated Gold Nanosurfaces

The simulations reported so far regarding ultrasmall gold nanoparticles, have con-
sidered the studied systems being completely bare and in vacuum, without any
interaction with solvent molecules or capping ligands. In reality though, to pro-
duce and isolate gold nanoparticles, organic compounds are used as capping lig-
ands or stabilising agents. In the pioneering work of Schmid and co-workers [192],
reported previously, the 55-atom gold nanocluster was encapsulated within phos-
phine molecules, and more precisely, the isolated compound was characterised as
Auss(PPh3)1,Clg. Perhaps, nowadays, the most popular method for stabilising gold
nanoparticles is the use of alkenothiols; firstly reported by Mulvaney and Giers-
ing [196], who showed the possibility of using thiols of different chain lengths and

structures in the synthesis of gold nanoclusters.

7.3.1 Synthesis and assembly

For a long time, among the conventional methods employed for the synthesis of
gold nanoparticles was the citrate reduction of HAuCly in water, introduced by
Turkevitch [197]. Frens [198], later on, attempted to control the formation of gold
nanoparticles by varying the ratio of reducing/stabilising compounds, leading to

pre-chosen sizes of 16 to 147 nm diameter long gold(IIl) derivatives.

Following the works of Schmid et al. [192] and Mulvaney and Giersing [196],
Brust and Schiffrin [199,200] proposed a synthetic procedure for producing ther-
mally and air-stable gold nanoparticles of controlled size, with a considerable im-
pact on the overall field. The thiol ligands strongly bind on gold due to the soft char-
acter of both Au and S [138], which occurs from the reduction of AuCl, by NaBH4
in the presence of dodecanethiol [201]. The proportion of thiol/AuCl; controls the

size of the produced gold nanoparticles.
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7.3 Thiol-Passivated Gold Nanosurfaces

7.3.2 Theoretical studies

Luedtke and Landman [202, 203] have studied the structural and thermodynamic
properties of dodecanethiol (C1,Hp5S) and butanethiol (C4HyS) self-assembled mono-
layers (SAMs) on small and larger gold(Ill) nanoparticles, from 140 to 1289 Au
atoms, using classical molecular dynamics. Self-assembly, is the property of the
passivating ligands to spontaneously stick onto the surface of the nanometallic clus-
ter. They found that the adsorption and arrangement of thiol chains on the surface
is strongly depended on the size of the nanoparticles and their surface area. At low
temperatures, the dodecanethiol molecules were grouped into anti-parallel orienta-
tions while at higher temperatures, they observed disordering and melting of the
SAMs, with the transition for the larger cluster to be higher (T~294 K) than that for
the smaller one (T~280 K).

In a similar work, Ta-Wei et al. [204] have investigated the packing structures of
different types of alkanethiols on Au(III) surfaces with an all-atoms force field [205],
within the NVT ensemble at 298 K. They found that the flexibility of the thiol head-
group (sulfur) aids and controls significantly the packing of the alkyl chains. Zhang
et al. [206], on the other hand, have developed their own all-atoms force filed, based
on ab initio results from DFT calculations, for studying the packing of alkenothiol
SAMs on Au(Ill) surfaces with various chain lengths. According to their findings
the packing, where the thiol chains have adopted a perfect parallel orientation but

slightly tilted, was the most favourable, in terms of energy minimisation.

A Augg core nanoparticle, coated with methylthiols, has been investigated via
density functional theory by Hékkinen et al. [207]. Starting from a pre-optimised
structure of the gold core with a classical force field, the nanoparticle was passivated
with 24 methylthiol (MeS) molecules and optimised within the LDA approximation.
From the calculated density of states of the bare and the coated Ausg, a 1.9 eV shift

in the energy bands has been observed. In another theoretical study with density
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7.3 Thiol-Passivated Gold Nanosurfaces

functional theory, a 25-atom gold nanoparticle passivated with 18 thiols, has been
studied [208]. Akola and co-workers have identified its lowest energy structure to

be a compact Auyz core protected with 6 [(MeS)3Au,] complexes.

While several works on thiol-passivated gold nanoparticles argue that the thiol
molecules can dimerise, forming a disulfide on the Au(Ill) surfaces, Andreoni et
al. [209] performed DFT calculations, based in the LDA method with some correc-
tions from the BLYP [59, 62] and PBE [15] exchange-correlation functionals. From
their calculations, the chemisorption of thiolates (H3CS) was thermodynamically
more favoured from the adsorption of thiols (H3CSH). Disulfides (R-CH,S-5-CHj-
R’) were found to favour dissociation into strongly bound thiolates. Studying also
the adsorption of thiolates onto the surface of a Auzg nanocluster (similarly with
Haékkinen et al. [207]) and comparing with Au(Ill) surfaces saw that their chemical

and thermodynamic properties were significantly different, from those of thiols.

Following the work of Andreoni and co-workers [209], the calculations reported
in this work are focused on the interaction of methylthiolates with gold surfaces. As
also reported in Ref. [209], the mechanism taking place during the growth of thiol
SAMs is still unclear. In this case, two possibilities are available. The first supports
the existence of intact thiols on the surfaces, which has been the case of an extensive
experimental study by Nuzzo et al. [210] and the second suggests that when thiols
stick to the gold surface, the S-H bond breaks, forming thiolate groups.

While Nuzzo and co-workers [210] defended the adsorption of unbroken methanethi-
ols on the surface of gold nanoparticles, they reported some unexpected features
found on some of the collected spectra. A peak assigned for the interaction of Au
atoms with the S of the intact thiol, is questioned by the authors of Ref. [209], as this
feature is characteristic of the stretch of the Au-S bond of thiolates, which originates
from the adsorption of disulfides rather the weak stretch of Au and S atoms of the

adsorbed thiols [211].
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7.3 Thiol-Passivated Gold Nanosurfaces

Furthermore, all the calculations performed by Andreoni et al. support this, by
showing that the formation of thiolates by thiol dissociation on gold surfaces is ac-
companied by hydrogen chemisorption. This is the mechanism which is energeti-
cally favoured. As the energy difference between the thiol and thiolate adsorbates
is quite small (~3 kcal/mol) this may be an indication of the co-existence of the two
possible mechanisms. On the other hand, the latter authors found that formation
of molecular hydrogen, which subsequently desorbs from the surface, can aid the

stabilisation of thiolates by an additional amount of 1-3 kcal /mol.

7.3.3 Construction of nanosurfaces

In order to study the impact of organic ligands attached to gold surfaces, DFT
calculations have been performed by using the CASTEP code [3]. Similarly with
Ref. [209], the PBE exchange-correlation functional has been employed for all the

calculations performed on Au(IIl) surfaces.

As an initial step, the calculation parameters were chosen according to the con-
vergence of the total electron energy E; with respect to energy cut-off E.;, the
k-point grid and the fast Fourier Transform (FFT) numerical grid. For this purpose,
DFT calculations on a 3-dimensional periodic image of bulk gold crystal have been

completed successfully.

The convergence of the total energy of the bulk gold unit cell, with respect to the
energy cut-off is shown in Figure 7.7. From the plot of the total energy with respect
to the energy cut-off it can be observed that by using an energy cut-off of 500 eV it is
sufficient enough to obtain results with a fine accuracy. Meanwhile, by several other
trial calculations performed, a k-point MP grid spacing of 0.05 A~! was observed to

provide satisfactory results.
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In general, a relatively large

number of k-points is required \

for an accurate k-point sam- 860\

pling of small unit cells such 3'8657 \

as in this case, whereas a few 5-870

points are required for large %_875 \

unit cells. For very large unit _880’ \\\

cells, only a point at k = 0 - | | | |
(known as the I' point) is used > . Energeiut-oﬁ (e\%)0 .

for calculations in the recipro- Figure 7.7: Total energy convergence of Au unit cell

cal space (section 1.2.5). Addi- iy respect to the energy cut-off

tionally, the number of k-points

increases as the distance between k-points decreases. In this case, the number of
k-points to be is generated by a k-point spacing of 0.05 A~!. The advantage of
specifying the k-point spacing instead of a fixed grid is to assure a constant sam-
pling in the k-space independently of the unit cell size, which may have an impact

when transferring the parameters chosen to perform calculations on periodic gold

nanosurfaces.

7.3.3.1 Geometry optimisations

Calculations with the CASTEP code [3] on periodic Au(111) surfaces have been per-
formed. Figure 7.8 shows the geometries of the molecular systems being studied.
The Au(111) surfaces were constructed by slicing the bulk structure in the [111]
crystallographic direction and coupling the resulting slab with a vacuum gap of
about 10 A. The slab is then fitted on the xy plane and then simulated using pe-
riodic boundary conditions. The x and y directions are allowed to vary, while the

z-direction is kept fixed. The reliability of the results and the quality of the simu-
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7.3 Thiol-Passivated Gold Nanosurfaces

.

Figure 7.8: Structures of Au(111) surfaces studied with CASTEP [3]

lations are checked by studying the variation of the surface free energy (Es,,f) with
respect to the Au(111) surface thickness and its vacuum gap until convergence is

achieved [212]. The surface energy is defined as:

Egw —E
Esurf __ Tslab X bulk (7.3.1)

where A is the total area of the Au(111) surface, Ey,; is the computed energy of

the slab and Eyjx is the energy of an equivalent amount of atoms in bulk gold.

The results, obtained from the calculations performed, are summarised in the Ta-
ble 7.1. As can be observed the surface energy (Es,,f) is decreased as the number of
layers increases. Furthermore, the difference in surface energy between the fourth
and fifth layer of Au atoms implies that a constructed gold nanosurface with 5 lay-
ered thickness, is a reliable representative structure for simulating the properties of

real Au(IIl) surfaces.
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7.3 Thiol-Passivated Gold Nanosurfaces

Table 7.1: Energy values obtained for the optimised structures of the gold nanosurfaces

using the CASTEP code [3]

Layers | E,;, (eV/atom) | Ep,; (eV/atom) | A (A?) | E,,, r(eV/ A”atom)
1 -884.7001 -884.8931 14.623 0.0127
2 -884.7042 -884.8931 15.125 0.0117
3 -884.7249 -884.8931 16.139 0.0115
4 -884.7494 -884.8931 16.216 0.0088
5 -884.7592 -884.8931 16.497 0.0082

Following the results of the above calcu-
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lations, 4 types of (2x2) superlattices of 5-

layered gold nanosurfaces in interaction with a

methylthiolate molecule, have been constructed.
The spatial parameters of the previously opti-
mised gold slabs were used, by expanding the

simulated surface unit cell in the x and y direc- Figure 7.9: Symmetrical parts

tions by a factor of 2, thus, providing a (2X2) shown with different colours, of the

nanosurface. The (H3CS) molecules were manu- gimulated Au(Ill) nanosurface

ally placed on the surfaces according to the sym-

metrical parts of the above layer of Au atoms, as shown in Figure 7.9. These parts
are coloured differently, where areas with the same colour have the same spatial
symmetry. Consequently, this lead to 4 different structures of a (H3CS) attached to a
Au(IIl) nanosurface. Visual representations of the simulated systems are shown in
Figure 7.10 and are named according to the colouring scheme of Figure 7.9. A vac-
uum region of 10 A between the hydrogen atoms of the methythiolate and the top
xy-plane of the simulation box has been maintained also here, to avoid any atomistic

interaction between periodic images along the z-direction.
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7.3 Thiol-Passivated Gold Nanosurfaces

(a) A (red) (b) B (blue) (c) C (green) (d) D (yellow)

Figure 7.10: 4 different (2 x2) structures of (H3CS)-Au(III) nanosurfaces. The assigned let-

ters refer to the colouring scheme of Figure 7.9

The constructed systems were then optimised using the “damped MD method”
that has been recently implemented in the CASTEP code [3]. This method allows
the direct minimisation of the energy functional, using a second-order equation
of motion, by introducing some damping parameters. The first-order dynamics,
generally deals with the finding of the ground energy state while the second-order
corresponds to the oscillations around the configuration of that energy state. The
“damped MD” scheme developed in CASTED, is significantly faster than the BFGS
(section 1.1.2) optimisation technique and besides the critical damping, still main-

tains the accuracy of a first principles method.

The energy and force tolerances during the energy minimisation of the structures
were set to 0.2x107* eV/atom. A k-point MP grid spacing of 0.05 A~! and a 650
eV kinetic energy cut-off were used, as in the optimisation of the bare gold nanosur-
faces. During the optimisation, the size of the simulation box and the 2 lower layers

of Au atoms of the nanosurface were kept fixed.
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7.3 Thiol-Passivated Gold Nanosurfaces

7.3.4 Ab initio Molecular Dynamics

Upon successful optimisation of the constructed (H3zCS)-Au(Ill) nanosurfaces, ab
initio molecular dynamics simulations were carried out . A combination of any two
of the optimised thiolate-Au nanosurfaces, provided 6 new (2x2) superlattices with
two thiolate molecules attached. Along with the MD simulations of (H3CS)-Au(III)
nanostructures, ab initio MD simulations have been performed also on the (H3CS),-
Au(Ill) nanosurfaces at 300 K within the NVE ensemble. Snap-shots taken at the
beginning and the end of the simulations are shown in Figures 7.11 - 7.20. For every

configuration, binding energies have been calculated and then obtained as averages.

(a) (b)

Figure 7.11: Configurations of A-CH3S-Au(IIl) before (a) and after 0.1 ps (b) of a MD sim-
ulation at 300 K.
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Figure 7.12: Configurations of B-CH3S-Au(III) before (a) and after 0.1 ps (b) of a MD simu-
lation at 300 K.
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7.3 Thiol-Passivated Gold Nanosurfaces

(a) (b)

Figure 7.13: Configurations of C-CH3S-Au(Ill) before (a) and after 0.1 ps (b) of a MD simu-
lation at 300 K

() (b)

Figure 7.14: Configurations of D-CH3S-Au(Ill) before (a) and after 0.1 ps (b) of a MD sim-
ulation at 300 K

(a) (b)

Figure 7.15: Configurations of AB-(CH3S),-Au(Ill) before (a) and after 0.2 ps (b) of a MD

simulation at 300 K
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Figure 7.16: Configurations of AC-(CH3S),-Au(IIl) before (a) and after 0.2 ps (b) of a MD

simulation at 300 K

(a) (b)

Figure 7.17: Configurations of AD-(CH3S),-Au(Ill) before (a) and after 0.2 ps (b) of a MD

simulation at 300 K

(a) (b)

Figure 7.18: Configurations of BC-(CH3S),-Au(IIl) before (a) and after 0.2 ps (b) of a MD

simulation at 300 K
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(a) (b)

Figure 7.19: Configurations of BD-(CH3S),-Au(Ill) before (a) and after 0.2 ps (b) of a MD

simulation at 300 K
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Figure 7.20: Configurations of CD-(CH3S),-Au(III) before (a) and after 0.2 ps (b) of a MD

simulation at 300 K

Looking the depicted structures at the starting and final point of the simulations,
a surface distortion can be observed at the point where the thiolate is attached. The
Au-atom(s) of the top layer that bind to the sulfur atom of the methylthiolate, are
extended away from the surface level, creating a small cavity around the neighbour
atoms. On the other hand, where 2 thiolate molecules are directly located nearby, in
close distance between them (Figures 7.15,7.18, 7.19 and 7.20), a repulsion force that

pulls them away from each other seems to take place.
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7.3 Thiol-Passivated Gold Nanosurfaces

Table 7.2: Binding energies of mono- and di- methanethiolates

System BE (eV) System BE (eV)
A-CH;S-Au(Ill)  1.844 | AB-(CH;S),-Au(Ill)  1.993

B-CH3S-Au(Ill)  1.858 | AC-(CH3S)-Au(Ill)  1.895
C-CH3S-Au(Ill)  1.809 | AD-(CH3S)-Au(lll)  1.862
D-CH;S-Au(Ill)  1.841 | BC-(CH3S),-Au(Ill)  2.673
BD-(CH3S),-Au(lll)  2.715
CD-(CH3S),-Au(lll)  2.813

Observing the binding energies of single thiolate gold nanosurfaces, at 300 K,
the CH3S-Au(lIl) systems gain by 0.7-0.8 eV of stabilisation as a 0.1 ps simulation
progresses. While the B-CH3S-Au(Ill) shows a slightly larger binding energy, the
D-CHj3S-Au(Ill), where the thiolate molecule is located in the centre of the top layer
of Au atom, is the system that shows the largest stabilisation during the simulation
(~0.9 eV). On the other hand, the simulated (CH3S),-Au(Ill) systems showed larger

binding energies from the CH3zS-Au(Ill) nanoclusters.

While all the simulated structures seem to have similar binding energies, in
the case of the BC-(CHj3S),-Au(IIl), BD-(CH3S),-Au(Ill) and CD-(CH3S),-Au(Ill) the
binding energies are by 30%-40% larger than the rest of the systems. This is likely
due to the strong structural reorganisation taking place between the thiolate molecules,
where a conformation with thiolates located quite apart from each other seemed to
be preferred. The results shown are in fairly good agreement with the binding en-
ergies reported by Andreoni et al. [209] (3.12 eV for (CH3S)2-Au(Ill)), where 1.56 eV
can be assigned for the Au-S bond of each bound disulfide to the gold surface. Con-
sidering also that a part of the energy is used for maintaining the S-S bond in the
dimethyl disulfide, the binding energies of the thiolates reported here are expected

to be larger.
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7.4 Gold-Copper Nanoalloys

7.4 Gold-Copper Nanoalloys

7.4.1 Synthesis

Bulk Au-Cu alloys exist in three stoichiometric phases: (a) CuzAu, (b) CuAusz and
(c) CuAu. Yasuda et al. [213,214] studied the separation of copper atoms on a sur-
face of gold nanoclusters supported on an amorphous carbon film , where a rapid
mixing was observed at room and lower temperatures. Yasuda and Mori observed
stoichiometric (CuzAu)ys clusters using TEM, and found that for nanoclusters with
sizes around 9 and 20 nm, annealing results in ordering of the initial samples, giv-
ing the structure of bulk CuzAu [213]. For nanoclusters smaller than 4 nm, the solid
solution had the most stable phase. The Cu-Au clusters showed a fcc local packing

structure, as in their bulk alloy counterparts.

In a more recent work, Schaak and co-workers described a novel procedure for
the synthesis of bimetallic nanoparticles in solution at low temperatures [215,216].
Cu-Au nanoparticle aggregates were used as precursors to synthesise atomically or-
dered nanocrystals of intermetallic CuAu, CuzAu, and CuAus. Using several imag-
ing methods they revealed that while the Au nanoparticles are crystalline, the Cu
particles appear to be amorphous at the first stage. Then, the Cu-Au aggregates
were heated under flowing argon, followed by annealing at 200-300 °C which lead

to atomically ordered nanocrystals of CuAu, CuzAu, and CuAus.

7.4.2 Computational Works

Lopez and co-workers performed MD simulations, using a many-body Gupta-type
potential, on 13- and 14-atom Cu, Au, and Cu-Au clusters, studying their structural
properties and melting points [217]. According to their findings, the bimetallic sys-

tems showed a closer resemblance to copper clusters rather than the gold clusters,
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7.4 Gold-Copper Nanoalloys

while the gold clusters, only exhibited a single stage of melting, whereas pure cop-

per and alloy clusters displayed two.

Pauwels and co-workers [218], have studied isolated truncated octahedral clus-
ters of 456 and 786 atoms and a spherical cluster of 959 atoms by performing Monte
Carlo (MC) simulations . Their MC simulations predicted that these clusters were
not ordered and also not completely homogeneous. The core structure was found
to be fully ordered at 300 K, undergoing some distortion at around 600 K. They
have also reported possible reasons about the disagreement of their MC simulations
with the experimental results, where it appears to be no evidence for core separation
with a coated shell of Au [218]. They argued that experimentally the Cu-Au clusters
are not generated in an environment of thermodynamic equilibrium, but are be-
ing cooled rapidly which can induce structural changes or rearrangement of atoms
when interacting with the substrate. On the other hand, the clusters simulated were
smaller than the clusters obtained from many of the experiments conducted so far

(diameters larger than 4 nm).

Johnston and co-workers have extensively studied Cu-Au clusters with varying
compositions and nuclearities [219,220]. One of their studies was focused on small
Cu-Au clusters with either Cu-rich or Au-rich compositions. In Cu-rich clusters
they observed disordered structures while for Au-rich clusters provided polyicosa-
hedral structures, such as the CugAugp (incomplete 6-fold pancake) and the perfect
core-shell CugAupg and CuyAuy; (5-fold pancake) clusters. In the case of Cu-rich
clusters the intermixing distortion was attributed to the tendency of maximising
the Cu-Au bonds, which is greater to the tendency for segregate the Au atoms to
the surface [221]. For 38-atom clusters, truncated octahedra dominated the Cu-rich
compositions. Their results were in good agreement with the work of Hsu and Lai,
who used a hybrid GA-basin-hopping search algorithm, based in the Gupta poten-
tial, to study 38-atom Cu-Au nanoalloys [222].
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In another work by Johnston et al., stoichiometric structures of bulk-like Cu-Au
nanoalloys, (CuzAu)ys, (CuAu)y, and (CuAusz)ys, were studied and compared with
pure Cu and Au clusters, using the Gupta many-body potential [220]. Pure cop-
per clusters adopted regular, icosahedral structures, while gold clusters produced
amorphous-like structures, as reported previously by Garzon et al [191]. In the
cases of 14, 16, and 55 atoms, replacing a single Au atom with Cu altered the general
structure to that of a pure Cu cluster, also supported by Lopez et al [217]. For the
stoichiometric nanoalloys, the lowest energy structures were based on icosahedral
packing. The (CuAu)y and (CuAugs)ys clusters provided layered arrangements of
Cu and Au atoms, whereas the Cu and Au atoms were noticeably intermixed in the
(CuzAu)y clusters. For all the layered structures observed, the surfaces of the clus-
ters were mainly rich in gold atoms, while the icosahedron-based structures had a
Cu atom at the centre. The predicted tendency to Au surface segregation, was in
agreement with MD simulations on Cu-Au nanoalloys performed by Rodriguez-

Lopez et al [223].

Wilson and Johnston [224] conducted energy calculations on icosahedral and
cuboctahedral Cu-Au nanoalloys with 1 to 5 shells with varying composition using
again the Gupta many-body potential. For each composition the lowest energy ho-
motops were found to have predominantly Au atoms on the surface and Cu atoms
in the core. This was attributed to the lower surface energy of Au compared to
Cu and the tendency for mixing or segregation was explained in terms of relative

strength of Cu-Cu, Cu-Au, and Au-Au bonding interactions.

Recently, Fernandez et al. performed DFT calculations on (CuAu)y clusters,
with N=5-22, by re-optimising configurations of low-energy isomers provided from
a search method based on the Gupta potential [187]. Although the exact ordering
of the homotops was quite different between the DFT and Gupta potential calcula-

tions, the general stability of icosahedral structures was confirmed.
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7.4.3 Classical MD Simulations

Within the perspective of modelling complicated bi-
metallic systems and predicting their EXAFS spec-
tra, a very limited investigation of the structural and
phase equilibria of a spherical gold nanoparticle cov-
ered with a copper layer has been studied using the
Gupta force field. The parameters used for describ-
ing the interactions between the homonuclear atoms
(Au-Au and Cu-Cu) were taken to be the same in
the nanoalloys as in the pure metallic systems. The
heteronuclear interaction parameters (Au-Cu) were
obtained by fitting to crystalline CuzAu, as derived
by Cleri and Rosato [43].

The MD trajectory of the AuszgiCusgs nanoalloy (b)
reveals a strong surface and volume distortion, as p; gure 7.21: (a) Initial (equili-
the copper atoms on the surface sink into the core p ated) and (b) and final struc-
of gold atoms, during the simulation. This indicates tyre of the Ausg;Cusss nanoal-
the low segregation rate of the gold-copper nanoal- loy after a 4 ns MD simulation
loys and their strong tendency to amalgamate, at this at 300 K.
small scale, as supported also by Pauwels and co-
workers [218]. On the other hand, the diffusion of the copper atoms inside the sys-
tems’s centre of mass shows the preference of Cu atoms to be allocated within the

core, as suggested also by Johnston et al. [224]. Visual representations of the initial

and final structures predicted by the MD simulations are shown in Figure 7.21.

Figures 7.22 and 7.23 show the radial distribution function (RDF) of the Ausg;Cuzge

nanoparticle derived from a MD simulations at 20 K and 300 K. Despite the surface
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Figure 7.22: Radial distribution diagram of Ausg;Cusgs at 20 K.
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Figure 7.23: Radial distribution diagram of Ausg;Cusge at 300 K.
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distortion, the gold atoms, mainly inside the core of Ausg;Cuasgs preserve their struc-
tural properties at 20 K and 300 K, as can be seen from the clear definition of the first
atomic pair distances in the RDF plot. The surface defects are shown by the large
variation of the nearest neighbour atomic distances of the copper atoms while the
gold atoms on the surface are strongly affected by the surface Cu atoms which tend

to adopt similar conformation, as the simulation proceeds further on.

7.4.4 Calculation of EXAFS
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Figure 7.24: Calculated EXAFS spectra of Ausg;Cusge from classical MD simulations at 20
K (blue) and 300 K (pink).

The strong surface reconstruction induced by the surface Cu atoms to the Au
atoms within the core, is apparent in the calculated EXAFS spectra. Figure 7.24
shows the EXAFS spectra calculated for the Ausg;Cusgs nanoparticle, from the MD
simulations at 20 K and 300 K, by only using a few MD snap-shots after the equili-
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Figure 7.25: Calculated EXAFS spectra of Ausg;Cusge at 300 K with a fine (turquoise) and a

coarser (green) PDF sampling.

bration of the system, at the beginning of the production period of the simulation.
Albeit the nanoparticle is not perfectly equilibrated the structure at 20 K is in phase
with the structure obtained at 300 K. The difference in the intensity of the peaks can
be attributed to the thermal disorder.

The EXAFS shown in Figure 7.25 are derived from the last 20-25 frames of the
MD trajectory at 300 K, where a finer PDF sampling has been used with respect to
the default value. Even though the EXAFS data seem to coincide in the first values of
k, the form of the curvature changes as we move along larger values. This difference
is more likely a result of statistical inaccuracy, as the main peaks are identical and in
phase. Be comparing the spectra collected at the beginning (Figure 7.24) and at the
end (Figure 7.25) of the simulation, the results are significantly different, due to the

impact of the Cu atoms sinking into the core of the gold nanoparticle.
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Figure 7.26: Calculated EXAFS spectra of Ausg;Cusgs (red) and the similar Auggy (orange)
at 20 K.

On the other hand, comparing the EXAFS simulations of the Auzg;Cusgs nanoal-
loy at 20K with the data collected for the Auggy nanoparticle, which has a similar
diameter, the spectra have the same shape and intensity, but are slightly shifted. By
looking also at the Fourier transformed data, a shift of -0.04 A for the peak at 2.7 A
of the Au/Cu nanoparticle can be observed, while the peak at 2.3 A, with respect to
the Fourier transform of the Augg; EXAFS data, is disappeared. This suggests that
the outer shell of copper induces a surface tension greater than gold, which short-
ens the Au-Au bond distance, as the Cu atoms are entering inside the inner part of
the particle. The peak at 2.3 probably results from the surface Au atoms, which are

missing on the surface of the Ausg;Cusgs nanoparticle structure at 20 K.

A further improvement of the results reported in this section can be achieved by
using longer and more detailed MD approaches in order to explore the properties

and behaviour of these systems.
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7.5 Conclusions

The last chapter shows the results from calculations performed on gold nanosur-
faces in contact with thiolate molecules, using first principles methods. The con-
structed geometries have been constructed using small periodic images of gold
nanosurfaces, in order to make the calculations feasible with the CASTEP code [3].
The structures were then optimised using the “damped MD” method and simulated

for 0.1-0.2 ps using ab initio MD.

Within the time scales reported, the CH3S-Au(Ill) nanosurfaces with one thiolate
attached on them showed larger binding energies from the (CHj3S)2-Au(Ill), with
two thiolate molecules bound on their surface. Nanosurfaces where the methylth-
iolates were near each other, seemed to develop repulsive forces that drive them
apart. A few discrepancies observed, in some of the calculations performed, require
further investigation. Despite that, the ab initio MD simulations performed, indicate
that complex metallic systems can be successfully studied within the accuracy of

tirst principles methods.
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Chapter 8

Conclusions

From classical molecular mechanics to ab initio density functional theory, this the-
sis summarises the results obtained from calculations on metallic or semiconduc-
tor nanoclusters. Due to the complexity of these systems, the current project aims
to provide a quantitative approach towards the computational study of their struc-
tural and electronic properties. In contrast with simulations performed on biological
molecules, where the basic elements contained in these systems, are well described
and modelled, even with empirical computational methods, the parameters chosen
to model the Si, Au and Pt atoms had to be thoroughly tested and validated before

planning a methodology to simulate a chemically relevant system.

The first three chapters mainly contain some general information on the theory
behind the methodologies employed in this project, starting from some basic princi-
ples of quantum mechanics, to classical molecular mechanics (chapter 2) and finally,
to a brief description of density functional theory (chapter 3). The second chapter
also contains a detailed description on the way an additional force field has been
implemented in DL POLY [18], in this case, the Stillinger-Weber potential [44]. A
section, briefly describing the ONETEP code [4] (linear-scaling DFT), extended by
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our research group, is also included.

In chapter 4, a computational study of silicon nanorods with varying aspect ra-
tios and surface passivation by hydrogen is presented. Structures consisting of more
than 1000 atoms were studied using both, the ONETEP [4] and the DFTB+ code [2];
the latter for geometry optimisation. The structural, energetic and electronic prop-

erties of the nanocrystals were investigated at the atomistic ab initio level of detail.

The calculations showed a surface distortion while the inner part of the nanorod
retained a stable structure close to bulk Si. In the (1x1) unreconstructed nanorods,
the Si-Si bond lengths were more condensed, while in the (2x 1) reconstructed nanorods
the range of the Si-Si bond length distribution was wider and larger, moving along
the core region to the surface. Furthermore, the (1x1) surfaces adopted a “canted”
conformation between neighbour H atoms, a property which is consistent with sev-

eral theoretical studies reported in the past.

The (1x1) unreconstructed H-passivated nanorods presented higher stabilities
compared to the (2x1) reconstructed nanostructures, which tend to decrease as the
diameter of the nanorod is increased. According to the results of the calculations,
when the diameter of the nanorod was extended by 5 A, formation energies per
Si atom decayed almost by 1 eV. Similarly, a reduction of ~ 0.5 eV for the (1x1)
nanorods and of ~ 0.3 eV for the (2x1) nanorods in the HOMO-LUMO band gap

was observed when their diameter was increased from 8 A to 13 A.

EXAFS simulations of gold nanoparticles were presented in chapter 5. The cal-
culations showed a remarkable agreement with the experimentally determined EX-
AFS spectra, in support of the structural models obtained from classical MD simula-
tions. The simulation of EXAFS spectra provides a route for assessing the quality of
the MD simulations, both for studying structural properties and thermal dynamics.

However, two main differences between the simulated and experimentally deter-
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mined properties of gold nanoparticles were identified.

Firstly, the average bond lengths in the MD simulations performed, were larger
than those fitted from analysis of the experimental EXAFS data. The difference,
however, is smaller than 1 %. The effect of surface tension is responsible for the
shortening of the bond lengths observed in Figure 5.8, and indeed the contribution
of surface atoms clearly has a detectable effect on the simulated EXAFS spectra, as
shown in Figure 5.7. From these findings, it can be said that, in our MD simulations,
the underestimation of the surface tension arises either because the region affected
by the surface tension was not as deep as observed experimentally [151], or because
the Au-Au bond lengths at the surface were larger than expected (e.g. with respect
to the models presented in Ref. [152]).

Secondly, though the thermal damping in the EXAFS simulations steadily in-
creases with the temperature (Figure 5.11), it does not reproduce the signal damping
of experimentally determined EXAFS spectra at 20 K and 300 K. The MD simula-
tions at 20 K showed small vibrational motions, resulting in an underestimation of
the thermal damping. This effect is likely due to the neglect of zero-point vibrational
motion by the classical calculations, which allows the system to be more localised
near the bottom of the potential energy wells. On the other hand, the vibrations at
300 K were large enough to produce a thermal disorder greater than the experiment.
Perhaps, a deeper potential well could reduce the amplitude of vibrations at high
temperature and also decrease the bond lengths at the surface, as the resulting forces

acting on gold atoms will be stronger.

Better agreement between the computational modelling and the experimental
data would have been possible if a more accurate potential energy surface of the
gold nanoparticles was used. This work has been based on a force field gener-
ated PES due to the prohibitive computational cost that ab initio molecular dynamics

would have for problems of this size and simulations of this timescale (Ref. [135],
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see section 5.1). In our case, the approximation made by representing the atomic
interactions with a classical force field still gives reliable results for the structural
properties of gold nanoparticles, though the vibrational motion is not reproduced

accurately.

A technique that provides a fine-tuning of a force field, by altering the curva-
ture and depth of its potential well, could be a promising step forward for a better
agreement between the simulated and experimental EXAFS spectra. Nevertheless,
it is expected that significant improvements while using the force field could be
achieved by re-parametrisation or an alternative functional form that is more suit-
able for nanoparticles, given that the Gupta potential [40] and other commonly used
many body force fields for metallic systems have been developed with calculations
for bulk systems in mind. Furthermore, there is a degree of uncertainly about the
actual temperature of the nanoparticles in the experiment which can also be a source
of discrepancy with the simulations, as well as the fact that, in the experiment the
nanoparticles were supported on an amorphous silica surface, while in the simula-

tions they were treated as isolated.

The discrepancy between classical MD simulations and experimental data is also
observed when studying platinum nanoclusters, as shown in chapter 6. Although
the MD simulations provide an improved input for EXAFS analysis, resulting in a
better fitting model, they do not completely account for all the structural and ther-
mal (dynamic) disorder present in the measurements while the modelled structures
were assumed to have a spherical symmetry. Including an additional c> parameter
to account the structural disorder in nanoparticles using the MD input, the fitting
models were significantly improved, than fits conducted with the standard model
at all the desired temperatures. In comparison with TEM measurements [10], the
approach used in this work by using data obtained from MD simulations, gives a

better agreement about the structural properties of the nanoparticles, instead of us-

198



ing theoretical models based on the properties of bulk materials when analysing

nanoparticles.

The EXAFS approach detailed in chapter 6, showed promising results, although
still requires further development. Even though the current fitting scheme was done
only in the first coordination shell of the simulated and the synthesised Pt nanoparti-
cles, an extension of the analysis to higher coordination shells could provide a better
insight to their structural properties. Work is currently in progress to extend this his-
togram approach both to higher shells and to three-body correlations, incorporating

the contributions from multiple-scattering paths.

Furthermore, Pt nanoclusters of different size and shape are also reported in
chapter 6. Classical MD simulations of bimetallic Pt nanoalloys with copper or pal-
ladium have been performed, aiming to be used as reference sample structures to
interpret recently obtained experimental data. Within the same framework, classical
MD simulations on gold nanoparticles with configurations consisted of 55, 177, 381
and 767 atoms, representing sizes of 1.39, 1.94, 2.50 and 3.05 nm respectively, have

been also performed, as reported in chapter 7.

In chapter 7, gold nanosurfaces in interaction with thiolate molecules are being
investigated, using first principles methods. The constructed geometries were sim-
plified to make the calculations feasible with ab initio molecular dynamics in the
CASTEP code [3], which allowed the optimisation and simulation of the latter sys-

tems.

Within the time scales where the CH3S-Au(Ill) and (CH3S),-Au(Ill) have been
simulated, the nanosurfaces with one thiolate attached on them showed larger bind-
ing energies from the systems with two thiolate molecules. Nanosurfaces where
the methylthiolates were near each other, seemed to develop repulsive forces that

drive them apart. The discrepancies observed in some of the simulated structures
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require further investigation. Despite that, the ab initio MD simulations performed
within this project, indicate that complex metallic systems can be successfully stud-
ied within the accuracy of first principles methods, while the rapidly developing
tield of linear-scaling DFT in combination with improvements of computational re-
sources, is a promising tool for modelling larger and more complicated systems.
Future developments in the ONETEP code are extended to make possible the simu-
lation of entire metal nanoparticles with thousands of atoms and chemical processes
on their surfaces. The work done here with CASTEP should serve as a starting point

for such studies.
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Appendices

Sample files of the procedures used for some of the calculations
described in this thesis are included in the following appendices.
All the main input and output files of the calculations reported are

provided in the attached DVDs.






Appendix A

DL POLY input files

A.1 FIELD file

The FIELD file contains the force field information, which is defined at the end of
the file and the atomic properties of an atom or a molecular group contained in the
simulated system given at the beginning of the file. The order of specification of
the atoms or molecular types in the FIELD file must follow the order in which they

appear in the CONFIG file.

Silicon

UNITS

MOLECULES 1

Si

NUMMOL 29

ATOMS 1

Si 28.0855 0.00 1
finish

vdw 1

Si Si tab

tbp 1

Si Si Si stwb 116.666667 6.0000 9.00000 2.514120 2.514120 3.771180
Cl OSF



A.2 CONTROL ftile

A.2 CONTROL file

The CONTROL file contains all the nec-
S5i29 . .
essary parameters for setting up a sim-
integration velocity verlet . . . .
ulation. The first section of the file, as
temperature 20.00
pressure 0.0010 shown in the figure aside, includes val-
ensemble nve

ues for the physical variables affecting

#restart

#optim force 1-08-3 the simulated system, such as temper-
steps 2000000

equﬁlibration 50000 ature, pressure and the ensemble used
scale 10 . . . .
print 10 (section 2.1). The middle section in-
stack 10 )

stats 10 cludes mainly keywords that control the
rdf 10

traj 1 4000 2 collection and type of data printed in
timestep 0.0010 . : .
Cutoff 6 5000 the output files of DL_POLY while in
235\; ”C“ti'f,';f g : 2888 the last section keywords that define the

no electrostatics .. .
effect of several atomic interactions are

print rdf . . .
given. The duration of the simulation

job time 100000000.00

close time 10.00 and the time between each printed MD

finish frame are defined with the keywords

“steps” and “timestep”, respectively.

A.3 CONFIG file

The CONFIG file contains all the information defining the geometry of very ele-
ment of the simulated system in tabulated order. The file is divided in 3 columns,
representing the x, y and z coordinates of the Cartesian system and 2 sections. The
tirst section contains the x, y and z components of the vectors defining the size of

the simulation box, while the second sections indexes all the positions of the atoms
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A.4 TABLE file

contained in the system. As can be observed, the line above every x, y and z atomic
coordinate, denotes the type, index number and atomic mass of that specific atom

of the system.

In the figure below, a section from the CONFIG file of a simulated system con-

taining 29 Si atoms is shown.

Si29
0 1
30.000000000000000
0.0000000000000000
0.0000000000000000

0.0000000000000000
30.000000000000000
0.0000000000000000

0.0000000000000000
0.0000000000000000
30.000000000000000

S%—1.346524000000300 —1.2%3496009009006 -4.081769000000000
S%-1.346524000000500 -3.9%g995000000000 -1.406269000000000
S%-4.022924000000300 -1.2%3496009000000 -1.406269000000000
S%-2.684274000000300 -2.6%2246000000000 -0.068519000000000
S%-1.346524000000800 -1.2%3496000000000 1.269231000000000
S%—2.684274000000800 0.013254009009000 -2.744019000000000
S%-1.346524000000300 1.3%?004000000000 -1.406269000000000
S%-4.922924000000800 1.3%?004009009009 1.269231000000000
S%-2.684274000000800 2.7%2754000000000 -0.068519000000000
S%-l.34652400000%800 4.0%3504009009000 1.269231000000000
S%-2.684274000003300 0.013254000000000 2.606981000000000
S%-1.346524000003500 1.3%3004000000000 3.944731000000000
S%—0.008774000003300 —2.6%2246009009009 -2.744019000000000
z% 1.32897600000§§00 -1.2%%496000000000 -1.406269000000000
i

A.4 TABLE file

The TABLE le provides an analytical form for a short range potential that does not
exist within the default force fields provided with the DL_POLY code and can be
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A.4 TABLE file

specified by the user. The option of reading the values from a tabulated potential is

specied in the FIELD file (see above) with the “tab” keyword.

The TABLE file shown in the picture below, is a part from the TABLE file used for
describing the two-body term of the Stillinger-Weber [45] potential (section 2.3.4).
The energy and force values of the pair potential are given in 4 columns, which are
read line by line from the code. The units of the energy and force values included
in the TABLE file must be compatible with the units of the force field given in the
FIELD file.

Silicon (Stillinger-Weber)

7.5420000E-04 3.7711800E+00 5004
Si Si

3.0341137E+18 1.8961103E+17 3.7449865E+16 1.1848053E+16
4.8524224E+15 2.3398351E+15 1.2628440E+15 7.4017349E+14
4.6203516E+14 3.0310746E+14 2.0700338E+14 1.4614189E+14
1.0609082E+14 7.8866132E+13 5.9839659E+13 4.6219545E+13
3.6262800E+13 2.8848179E+13 2.3235146E+13 1.8923053E+13
1.5566299E+13 1.2921804E+13 1.0815680E+13 9.1216099E+12
7.7465388E+12 6.6210306E+12 5.6926589E+12 4.9214072E+12
4.2764227E+12 3.7336944E+12 3.2743731E+12 2.8835412E+12
2.5493028E+12 2.2621042E+12 2.0142213E+12 1.7993697E+12
1.6124065E+12 1.4490990E+12 1.3059454E+12 1.1800338E+12
1.0689317E+12 9.7059744E+11 8.8331050E+11 8.0561473E+11
7.3627308E+11 6.7423067E+11 6.1858478E+11 5.6856029E+11
5.2348947E+11 4.8279529E+11 4.4597764E+11 4.1260183E+11
3.8228896E+11 3.5470792E+11 3.2956861E+11 3.0661623E+11
2.8562647E+11 2.6640140E+11 2.4876600E+11 2.3256515E+11
2.1766111E+11 2.0393133E+11 1.9126655E+11 1.7956918E+11
1.6875193E+11 1.5873653E+11 1.4945272E+11 1.4083733E+11
1.3283345E+11 1.2538975E+11 1.1845984E+11 1.1200176E+11
1.0597751E+11 1.0035258E+11 9.5095644E+10 9.0178196E+10
8.5574275E+10 8.1260204E+10 7.7214369E+10 7.3417011E+10
6.9850046E+10 6.6496911E+10 6.3342413E+10 6.0372602E+10
5.7574660E+10 5.4936793E+10 5.2448141E+10 5.0098694E+10
4.7879215E+10 4.5781176E+10 4.3796694E+10 4.1918476E+10
4.0139770E+10 3.8454317E+10 3.6856317E+10 3.5340381E+10
3.3901507E+10 3.2535045E+10 3.1236666E+10 3.0002343E+10
2.8828323E+10 2.7711106E+10 2.6647428E+10 2.5634242E+10
2.4668699E+10 2.3748138E+10 2.2870070E+10 2.2032162E+10
2.1232233E+10 2.0468236E+10 1.9738253E+10 1.9040485E+10
1.8373240E+10 1.7734932E+10 1.7124069E+10 1.6539247E+10
1.5979146E+10 1.5442525E+10 1.4928212E+10 1.4435104E+10
1.3962162E+10 1.3508405E+10 1.3072906E+10 1.2654793E+10
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Appendix B

DL POLY output files

B.1 STATIS file

$i29
ENERGY UNITS=DL POLY Internal Units
1 1.000000E-03 37

-8.361706E+05 0.000000E+00 -8.361706E+05 -8.362477E+05 0.000000E+00
0.000000E+00 7.702204E+01 0.000000E+00 0.000000E+00 -8.063793E+05
0.000000E+00 -8.937406E+04 -8.980792E+04 0.000000E+00 0.000000E+00
4.338618E+02 0.000000E+00 0.000000E+00 2.700000E+04 0.000000E+00
0.000000E+00 0.000000E+00 9.000000E+01 9.000000E+01 9.000000E+01
0.000000E+00 1.808253E-01 0.000000E+00 1.825811E-01 -3.102446E-14
1.754125E-06 -3.102446E-14 1.825811E-01 -1.754125E-06 1.754125E-06
-1.754125E-06 1.825806E-01

2 2.000000E-03 37
.345864E+05 0.000000E+00 -8.345864E+05 -8.348861E+05
.000000E+00 2.996920E+02 .000000E+00 0.000000E+00 -8.827360E+05
.000000E+00 1.444487E+05 .427214E+05 0.000000E+00 .000000E+00

0.000000E+00
8
0
.727299E+03 0.000000E+00 .000000E+00 2.700000E+04 0.000000E+00
9
1
4

.000000E+00 ©0.000000E+00 .000000E+01 9.000000E+01 .000000E+01
.000000E+00 -2.922547E-01 .000000E+00 -2.852650E-01 -1.146662E-13
.215205E-06 -1.146662E-13 -2.852650E-01 -4.215205E-06 .215205E-06
.215205E-06 -2.852657E-01

3 3.000000E-03 37

APPhOOH OO
NOOWOHOW

-8.361715E+05 0.000000E+00 -8.361715E+05 -8.362521E+05 0.000000E+00
0.000000E+00 8.057706E+01 0.000000E+00 0.000000E+00 -8.082201E+05
0.000000E+00 -8.385421E+04 -8.430833E+04 0.000000E+00 0.000000E+00
4.541235E+02 0.000000E+00 0.000000E+00 2.700000E+04 0.000000E+00
0.000000E+00 0.000000E+00 9.000000E+01 9.000000E+01 9.000000E+01
0.000000E+00 1.696573E-01 0.000000E+00 1.714951E-01 -3.295277E-14
1.815224E-06 -3.295277E-14 1.714951E-01 -1.815224E-06 1.815224E-06

-1.815224E-06 1.714946E-01

4 4.000000E-03 37
.366923E+05 0.000000E+00 -8.366923E+05 -8.367631E+05 0.000000E+00
.000000E+00 7.079468E+01 0.000000E+00 0.000000E+00 -8.285748E+05
0 0
2 0

PN o NoNeol

.000000E+00 -2.435263E+04 -2.476630E+04 .000000E+00 .000000E+00
.136664E+02 0.000000E+00 0.000000E+00 .700000E+04 .000000E+00
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B.2 HISTORY file

The STATIS file contains analytical information about the total energy, energy
components and forces acting on the system at every timestep, as defined by the

force field.

B.2 HISTORY file

The HISTORY file provides all the atomic positions, velocities and forces acting on
every atom contained in the system, at time intervals during the simulation, which
are defined by the user in the CONTROL file. In other words, it gives the “trajec-
tory” of the simulated system and when imported to a visualisation program, such
as VMD, one can observe the behaviour of atoms, motions and vibrations, during

the simulation.

Si29
2 1 29
timestep 1 29 2 1 0.001000
30.00 0.000 0.000
0.000 30.00 0.000
0.000 0.000 30.00
Si 1  28.085500 0.000000

-1.3465E+00 -1.2885E+00 -4.1648E+00
0.0000E+00 0.0000E+00 0.0000E+00
-8.7888E+01 -8.7860E+01 9.2710E+01

Si 2 28.085500 0.000000
-1.3465E+00 -4.0470E+00 -1.4063E+00
0.0000E+00 0.0000E+00 0.0000E+00
-8.7877E+01 9.2778E+01 -8.7877E+01

Si 3 28.085500 0.000000
-4.1051E+00 -1.2885E+00 -1.4063E+00
0.0000E+00 0.0000E+00 0.0000E+00
9.2710E+01 -8.7860E+01 -8.7888E+01

Si 4  28.085500 0.000000
-2.7258E+00 -2.6678E+00 -2.6993E-02
0.0000E+00 0.0000E+00 0.0000E+00
-1.1003E+03 -1.1004E+03 -1.7109E+03

Si 5 28.085500 0.000000
-1.3465E+00 -1.2885E+00 1.2692E+00
0.0000E+00 0.0000E+00 0.0000E+00
-1.3178E+03 -1.3178E+03 1.3178E+03

Si 6  28.085500 0.000000
-2.7258E+00 9.0779E-02 -2.7855E+00
0.0000E+00 0.0000E+00 0.0000E+00
-1.1003E+03 -1.7109E+03 -1.1003E+03

Si 7  28.085500 0.000000
-1.3465E+00 1.3870E+00 -1.4063E+00
0.0000E+00 0.0000E+00 0.0000E+00
-1.3178E+03 1.3178E+03 -1.3178E+03
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B.3 OUTPUT file

B.3 OUTPUT file

DL_POLY Version 2.18

Running on 1 nodes

3k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k 5k >k 3k 3k 3k 3k 3k 3k 3k 3k 5k 5k 3k 3k 3k 3k 3k 3k 3k 5k K 3k 5k 5k 3k 3k 3k 3k 5k >k >k 5k 3k 3k 3k 3k 3k 5k 5k >k 5k 3k 5k 3k 3k 3k 5k 5k %k 5k 5K 3K 3k 3k 3k 3k 3k %k 5k 5K 3K 3k 3k 3k 3k 3k 5k >k 5k 5k 3k 3k 3k 3k 3k 5k %k 5k 5K 3k 3k 3k 3k 3k 5k %k 5k 5K 5k 3 3k 3k 3k 5k %k %k 5k 5 % % %k %k %k k kK Kk

* * * * K% *% * * * * * * * * *kokk
ok oK o oK K oK oK o K K K K K K K K K o K KK K K oK K oK K K K K K oK oK oK K K K K oK o oK K o K K o K oK oK oK oK K oK oK oK oK oK K o K K oK oK o K K oK K o K oK o K KK K K oK K oK oK KKK KK oK KoK oK KKK K oK KoK KoK KoK oK oK ok
3k %k %k %k %k %k K K 3k %k k k k k k Sllane %k 3k %k %k %k %k %k X Xk K K %k k k k
3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 5k 3k 3K 3k 3k 3k 3k 3k 5k >k 5k 3k 3k 3k 3k 3k 3k 5k K 3k 5K 5k 3k 3k 3k 3k 5k >k >k 5k 3K 3k 3k 3k 3k 5k 5k >k 5k 5k 3K 3k 3k 3k 3k 5k 3k 5k 5K 3K 3k 3k 3k 3k 3k 5k 5k 5K 3K 5k 3K 3k 3k 3k 5k >k 5k 5K 3k 3k 3k 3k 3k 5k 5k 5k 5K 3k 3k 3k 3k 3k 5k %k 5k 5K 5K 3K 3k 3k 3k 5k %k %k 5K 5 3 % %k %k 5k kK kK k

* * * * *%k *k * * * * * * * * *kokk
ok ok o oK K oK K o K K o K K KK K K K K o K KK K K oK K K K K K K K oK oK oK K K oK K oK o K K K K K oK K oK o oK oK o oK oK oK oK oK oK o K oK o K K oK oK o K K o K oK o K oK o K K KK K oK K oK oK K KoK KK oK oK oK KKK oK oK KoK KKK oK oK ok

SIMULATION CONTROL PARAMETERS

velocity verlet integration selected

structure optimisation requested
convergence to minimum force selected

tolerance for structure optimisation 1.0000E-05
selected number of timesteps 10000
temperature scaling on

temperature scaling interval 5

data printing interval 1

data stacking interval 10

statistics file interval 1

trajectory file option on

trajectory file start 1
trajectory file interval 1
trajectory file info key 2
simulation timestep 1.0000E-03
real space cut off 5.4300E+00
real space cut off (vdw) 3.7710E+00
border width of Verlet shell 1.0000E-01

electrostatic potential terms off
user allocated job time (s) 1.0000E+04

job closure time (s) 1.0000E+01

SYSTEM SPECIFICATION

energy units=dl_poly internal units

number of molecular types 1
molecular species type 1
name of species: Si

number of molecules 29
number of atoms/sites 1

atomic characteristics:
site name mass charge repeat freeze

1 Si 28.08550 0.00000 1 [¢]
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B.3 OUTPUT file

number of specified pair potentials 1
atom 1 atom 2 key parameters
Si Si tab

potential tables read from TABLE file

number of specified three body potentials 1
atom 1 atom 2 atom 3 key parameters
Si Si Si stwb  1.16667E+02 6.00000E+00 9.00000E+00 2.51412E+00 2.51412E+00

configuration file name:

Si29

selected image convention 1

simulation cell vectors

30.000000 0.000000 0.000000
0.000000  30.000000 0.000000
0.000000 0.000000 30.000000

system volume 27000.0000000

link cell algorithm in use

total degrees of freedom 84.
rotational degrees of freedom 0.
shell pseudo degrees of freedom 0.

sample of starting configuration

i x(1) y(1i) z(1) vx (1) vy (i) vz(i)
1 -1.3465E+00 -1.2885E+00 -4.0818E+00 0.0000E+00 0.0000E+00 0.0000E+00
3 -4.0220E+00 -1.2885E+00 -1.4063E+00 0.0000E+00 0.0000E+00 0.0000E+00
5 -1.3465E+00 -1.2885E+00 1.2692E+00 0.0000E+00 0.0000E+00 0.0000E+00
7 -1.3465E+00 1.3870E+00 -1.4063E+00 0.0000E+00 0.0000E+00 0.0000E+00
9 -2.6843E+00 2.7248E+00 -6.8519E-02 0.0000E+00 0.0000E+00 0.0000E+00
11 -2.6843E+00 4.9254E-02 2.6070E+00 0.0000E+00 0.0000E+00 0.0000E+00
13 -8.7740E-03 -2.6262E+00 -2.7440E+00 0.0000E+00 0.0000E+00 0.0000E+00
15 1.3290E+00 -3.9640E+00 1.2692E+00 0.0000E+00 0.0000E+00 0.0000E+00
17 4.0045E+00 -1.2885E+00 1.2692E+00 0.0000E+00 0.0000E+00 0.0000E+00
19 1.3290E+00 -1.2885E+00 3.9447E+00 0.0000E+00 0.0000E+00 0.0000E+00
21 2.6667E+00 4.9254E-02 -2.7440E+00 0.0000E+00 0.0000E+00 0.0000E+00
23 -8.7740E-03 2.7248E+00 -2.7440E+00 0.0000E+00 0.0000E+00 0.0000E+00
25 -8.7740E-03 4.9254E-02 -6.8519E-02 0.0000E+00 0.0000E+00 0.0000E+00
27 2.6667E+00 2.7248E+00 -6.8519E-02 0.0000E+00 0.0000E+00 0.0000E+00
29 -8.7740E-03 2.7248E+00 2.6070E+00 0.0000E+00 0.0000E+00 0.0000E+00
long range correction for: vdw energy 0.000000E+00

: vdw pressure  0.000000E+00

time elapsed since job start = 0.011 seconds
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B.3 OUTPUT ftile

step eng_tot temp_tot eng_cfg eng_vdw eng_cou eng_bnd eng_ang eng_dih eng_tet
time(ps) eng_pv temp_rot vir_cfg vir_vdw vir_cou vir_bnd vir_ang vir_con vir_tet
cpu (s) volume temp_shl eng_shl vir_shl alpha beta gamma vir_pmf press

1 -8.3617E+05 0.0000E+00 -8.3617E+05 -8.3625E+05 0.0000E+00 0.0000E+00 7.7022E+01 ©0.0000E+00 0.0000E+00

0.001 -8.0638E+05 0.0000E+00 -8.9374E+04 -8.9808E+04 0.0000E+00 0.0000E+00 4.3386E+02 0.0000E+00 0.0000E+00
0.01 2.7000E+04 0.0000E+00 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 1.8083E-01
rolling -8.3617E+05 0.0000E+00 -8.3617E+05 -8.3625E+05 0.0000E+00 0.0000E+00 7.7022E+01 0.0000E+00 ©.0000E+00
averages -8.0638E+05 0.0000E+00 -8.9374E+04 -8.9808E+04 0.0000E+00 0.0000E+00 4.3386E+02 0.0000E+00 ©.0000E+00
2.7000E+04 0.0000E+00 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 1.8083E-01

2 -8.3459E+05 0.0000E+00 -8.3459E+05 -8.3489E+05 0.0000E+00 0.0000E+00 2.9969E+02 0.0000E+00 0.0000E+00

0.002 -8.8274E+05 0.0000E+00 1.4445E+05 1.4272E+05 0.0000E+00 0.0000E+00 1.7273E+03 0.0000E+00 0.0000E+00
0.02 2.7000E+04 0.0000E+00 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 -2.9225E-01
rolling -8.3538E+05 0.0000E+00 -8.3538E+05 -8.3557E+05 0.0000E+00 0.0000E+00 1.8836E+02 0.0000E+00 0.0000E+00
averages -8.4456E+05 0.0000E+00 2.7537E+04 2.6457E+04 0.0000E+00 0.0000E+00 1.0806E+03 0.0000E+00 ©.0000E+00
2.7000E+04 0.0000E+00 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 -5.5715E-02

3 -8.3617E+05 0.0000E+00 -8.3617E+05 -8.3625E+05 0.0000E+00 0.0000E+00 8.0577E+01 0.0000E+00 0.0000E+00

0.003 -8.0822E+05 0.0000E+00 -8.3854E+04 -8.4308E+04 0.0000E+00 0.0000E+00 4.5412E+02 0.0000E+00 0.0000E+00
0.02 2.7000E+04 0.0000E+00 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 1.6966E-01
rolling -8.3564E+05 0.0000E+00 -8.3564E+05 -8.3580E+05 0.0000E+00 0.0000E+00 1.5243E+02 0.0000E+00 0.0000E+00
averages -8.3245E+05 0.0000E+00 -9.5932E+03 -1.0465E+04 0.0000E+00 0.0000E+00 8.7176E+02 0.0000E+00 ©.0000E+00
2.7000E+04 0.0000E+00 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 1.9409E-02

4 -8.3669E+05 0.0000E+00 -8.3669E+05 -8.3676E+05 0.0000E+00 0.0000E+00 7.0795E+01 0.0000E+00 0.0000E+00

0.004 -8.2857E+05 0.0000E+00 -2.4353E+04 -2.4766E+04 0.0000E+00 0.0000E+00 4.1367E+02 0.0000E+00 0.0000E+00
0.02 2.7000E+04 0.0000E+00 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 4.9271E-02
rolling -8.3591E+05 0.0000E+00 -8.3591E+05 -8.3604E+05 0.0000E+00 0.0000E+00 1.3202E+02 0.0000E+00 0.0000E+00
averages -8.3148E+05 0.0000E+00 -1.3283E+04 -1.4040E+04 0.0000E+00 0.0000E+00 7.5724E+02 0.0000E+00 ©.0000E+00
2.7000E+04 0.0000E+00 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 2.6875E-02

5 -8.3650E+05 0.0000E+00 -8.3650E+05 -8.3665E+05 0.0000E+00 0.0000E+00 1.5519E+02 0.0000E+00 0.0000E+00

0.005 -8.4810E+05 0.0000E+00 3.4809E+04 3.3896E+04 0.0000E+00 0.0000E+00 9.1271E+02 0.0000E+00 0.0000E+00
0.02 2.7000E+04 0.0000E+00 0.0000E+00 ©0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 -7.0427E-02
rolling -8.3602E+05 0.0000E+00 -8.3602E+05 -8.3616E+05 0.0000E+00 0.0000E+00 1.3665E+02 0.0000E+00 0.0000E+00
averages -8.3480E+05 0.0000E+00 -3.6646E+03 -4.4529E+03 0.0000E+00 0.0000E+00 7.8833E+02 0.0000E+00 ©.0000E+00
2.7000E+04 0.0000E+00 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 7.4144E-03

6 -8.3671E+05 0.0000E+00 -8.3671E+05 -8.3679E+05 0.0000E+00 0.0000E+00 8.2007E+01 0.0000E+00 0.0000E+00

0.006 -8.3307E+05 0.0000E+00 -1.0933E+04 -1.1414E+04 0.0000E+00 0.0000E+00 4.8056E+02 0.0000E+00 0.0000E+00
0.03 2.7000E+04 0.0000E+00 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 2.2121E-02
rolling -8.3614E+05 0.0000E+00 -8.3614E+05 -8.3627E+05 0.0000E+00 0.0000E+00 1.2755E+02 0.0000E+00 0.0000E+00
averages -8.3451E+05 0.0000E+00 -4.8761E+03 -5.6131E+03 0.0000E+00 0.0000E+00 7.3704E+02 0.0000E+00 ©.0000E+00
2.7000E+04 0.0000E+00 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 9.8655E-03

7 -8.3673E+05 0.0000E+00 -8.3673E+05 -8.3676E+05 0.0000E+00 0.0000E+00 3.2899E+01 0.0000E+00 0.0000E+00

0.007 -8.3518E+05 ©.0000E+00 -4.6504E+03 -4.8433E+03 0.0000E+00 0.0000E+00 1.9286E+02 0.0000E+00 0.0000E+00
0.03 2.7000E+04 0.0000E+00 0.0000E+00 ©0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 ©.0000E+00 9.4089E-03
rolling -8.3622E+05 0.0000E+00 -8.3622E+05 -8.3634E+05 0.0000E+00 0.0000E+00 1.1403E+02 0.0000E+00 0.0000E+00
averages -8.3461E+05 0.0000E+00 -4.8438E+03 -5.5031E+03 0.0000E+00 0.0000E+00 6.5930E+02 0.0000E+00 ©.0000E+00
2.7000E+04 0.0000E+00 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 9.8002E-03

8 -8.3674E+05 0.0000E+00 -8.3674E+05 -8.3679E+05 0.0000E+00 0.0000E+00 4.7553E+01 0.0000E+00 0.0000E+00

0.008 -8.3434E+05 0.0000E+00 -7.2131E+03 -7.4917E+03 0.0000E+00 0.0000E+00 2.7863E+02 0.0000E+00 0.0000E+00
0.03 2.7000E+04 0.0000E+00 0.0000E+00 ©0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 ©.0000E+00 1.4594E-02
rolling -8.3629E+05 0.0000E+00 -8.3629E+05 -8.3639E+05 0.0000E+00 0.0000E+00 1.0572E+02 0.0000E+00 0.0000E+00
averages -8.3457E+05 0.0000E+00 -5.1400E+03 -5.7517E+03 0.0000E+00 0.0000E+00 6.1171E+02 0.0000E+00 ©.0000E+00
2.7000E+04 0.0000E+00 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 9.0000E+01 0.0000E+00 1.0399E-02

step eng tot temp_tot eng cfg eng_vdw eng_cou eng_bnd eng_ang eng dih eng tet
time(ps) eng_pv temp_rot vir_cfg vir_vdw vir_cou vir_bnd vir_ang vir_con vir_tet
cpu (s) volume temp_shl eng_shl vir_shl alpha beta gamma vir_pmf press

9 -8.3676E+05 0.0000E+00 -8.3676E+05 -8.3679E+05 0.0000E+00 0.0000E+00 3.1563E+01 0.0000E+00 0.0000E+00
0.009 -8.3474E+05 0.0000E+00 -6.0664E+03 -6.2514E+03 0.0000E+00 0.0000E+00 1.8499E+02 0.0000E+00 0.0000E+00

IX



B.4 REVCON file

All the information derived from a classical MD simulation, is summarised in
the OUTPUT file. At the beginning the OUTPUT file gives an analytical description
of the keywords included in the CONTROL file followed by the FIELD file and also
by a small random selection of atomic coordinates given in the CONFIG file. When
the simulation starts, the data derived from every energy and force component of
the force field, at every timestep, are collected and printed in the following sections

of the OUTPUT file.

B.4 REVCON file

Si29
2 1
30.000000000000
0.000000000000
0.000000000000
Si 1
-1.366502462
0.00000000000
-0.224669506711
Si 2
-1.366502691
0.00000000000
-0.167142368090
Si 3
-4.081980579
0.00000000000
-0.110963554474
Si 4

29 0.1000000000E-02
0.000000000000 0.000000000000
30.000000000000 0.000000000000
0.000000000000 30.000000000000

-1.308475366
0.00000000000
0.622518080443E-01

-4.141725368
0.00000000000
-0.157627673295

-4.023952787
0.00000000000
-0.273914489820E-01

-1.426248103
0.00000000000
-0.270964710589E-01

-1.308475157
0.00000000000
0.567910468697E-03

-1.426247666
0.00000000000
-0.146319890770

-2.724245047
0.00000000000
-0.212602638299
Si
-1.366509064
0.00000000000

5

-0.353417509238E-01

Si
-2.724244659
0.00000000000
-0.314726651533

Si
-1.366510336
0.00000000000
0.326832750091

Si

6

-2.666215900

-0.6851415192E-01

0.00000000000

-0.479161086526

-1.308482030
0.00000000000
0.264567602987

0.4925897881E-01
0.00000000000

-0.360031711122

1.406990336
0.00000000000

-0.326832749411

0.00000000000
-0.347317808886

1.289215584
0.00000000000
0.156446379020

-2.783989563
0.00000000000
-0.334843592424

-1.426254857
0.00000000000
0.205821572101

The final geometry of the system is printed in the REVCON file, which has the
same format with the CONFIG file. In addition with every spatial x, y, and z coor-
dinate of every atom, the x, y and z components of the atoms velocities and forces
are given, in the sample shown above. The REVCON file replaces the CONFIG file,

when a restart of the MD simulation is required.
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Appendix C

Post-processing scripts for DL POLY

C.1 CONFIG to XYZ

#!/usr/bin/perl

open(FILEIN,"<$ARGV[0]") || die "Cannot open input file $ARGV[O]";
open (OUT, ">$ARGV[O]".".xyz");

$1ine=<FILEIN>;
$1=0;
print OUT $line;
print OUT "\n";
while($1ine=<FILEIN>){
chomp $line;
@data = split /[\s\t]+/, $line;
shift @data if $datal[0] eq "";
if ($datal[0] =~ /\D/ && $datal[O] '~ /\W/ ){
my $atom=$datal0];
$1ine=<FILEIN>;
chomp $line;
@data = split /[\s\t]+/, $line;$i++;
shift @data if $data[0] eq "";
printf OUT "%-4s %16.9f%16.9f%16.9f\n",$atom, $data[0], $data[l],$data[2];

¥

printf OUT "\n";

printf OUT “Total number of atoms";
printf OUT "%4d\n",$i;

close(FILEIN);
close(0OUT);
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C.2 XYZ to CONFIG

C.2 XYZ to CONFIG

#!/usr/bin/perl

# array that contains all the atoms in the periodic table
@periodic=("H","He","Li","Be","B","C","N","0","F","Ne","Na", "Mg", "AL", "Si",
Mprt tSt tc1t, "Art, K", "Ca", "Sc", "Ti", v, "Cr", "Mn", "Fe", "Co", "Ni", "Cu",
"Zn","Ga","Ge","As", "Se","Br","Kr","Rb","Sr","Y","Zr","Nb", "Mo", "Tc", "Ru",
“Rh","Pd","Ag","Cd","In","Sn","Sb", "Te", "I", "Xe","Cs","Ba","La", "Ce","Pr",
“Nd","Pm","Sm","Eu","Gd","Tb","Dy", "Ho","Er","Tm", "Yb", "Lu", "Hf","Ta", "W",
"Re","0s","Ir","Pt","Au", "Hg","T1","Pb","83","Po", "At","Rn","Fr","Ra", "Ac",
"“Th","Pa","u","Np","Pu","Am","Cm", "Bk","Cf","Es","Fm","Md", "No","Lr","Rf",
"Db","Sg","Bh","Hs", "Mt");

$name=$ARGV[0];

open(XYZ,"$name");

$i=0;
$check="on";
@atom type="";

while($line=<XYZ>){

if ($check eq "on"){

$header=$line;

$check="off";

)

@data=field($line);

if ($datal[0] =~ /\w/ && $datal[l] =~ /\d/ && $data[2] =~ /\d/ && $data[3] =~ /\d/ ){
$atom[$i][0]=$data[0]; # atom type
$atom[$i][1]=%$data[l]; # X
$atom[$i] [2]=%$data[2]; # Y
$atom[$i] [3]=%$data[3]; # Z

# check if $data[$atom label] is present in @atom type
$check=0;
foreach my $tmp(@atom type){
$check++ if $tmp ne $datal0];
}
push(@atom type,$datal[0]) if $check > $#atom type;

$it++;
1}
# remove the empty value at the beginning of @atom type.
shift(@atom type);

# compare the atoms in the system with the periodic table, and write the atomic number
for my $j(0 .. $#periodic){

my $atom2=$periodic[$j];

my $atom3=length($atom2);

for my $k(0 .. $#atom type){

my $length=length($atom type[$k]);

$atom _number[$k]=$j+1 if ($atom type[$k] =~ /"$atom2/i && $length == $atom3);

I3

open(CFG,">${name}.cfg");
$header2="Converted from XYZ\n";
print CFG "$header\n";
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C.2 XYZ to CONFIG

#writing atom types and coordinates into DL POLY CONFIG
#for($i=1;$i<=$#atomType;$i++){

for my $i(0 .. $#atom){

my $atom2=$atom[$i][0];

for my $j(0 .. $#atom type){

$Z=%$atom number([$j] if $atom typel[$j] =~ /" $atom2/i;

}

printf CFG "%-8s5%10d%10d\n",$atom2,$i+1,$Z;

printf CFG "%20.15f%20.15f%20.15f\n",$atom[$i][1],$atom[$i][2],$atom[$i]1[3];

}

close(CFG);

close(XYZ);

sub field{
chomp $ [0];
my @out = split /[\s\tl+/, $ [0];
if ($out[0] eq ""){ shift @out};
return @out

}

The above scripts, written in “perl”, have been constructed to convert the atomic
positions of a simulated system, from the format of the CONFIG file to a typical
XYZ file and vice versa. A sampled geometry for the Siyg system, in XYZ format in

shown below:

29
Si -1.346500 -1.288500 -4.164800
Si -1.346500 -4.047000 -1.406300
Si -4.105100 -1.288500 -1.406300
Si -2.725800 -2.667800 -0.026993
Si -1.346500 -1.288500 1.269200
Si -2.725800 0.090779 -2.785500
Si -1.346500 1.387000 -1.406300
Si -4.105100 1.387000 1.269200
Si -2.725800 2.766300 -0.110040
Si -1.346500 4.145600 1.269200
Si -2.725800 0.007729 2.648500
Si -1.346500 1.387000 4.027800
Si 0.032752 -2.667800 -2.785500
Si 1.329000 -1.288500 -1.406300
Si 1.329000 -4.047000 1.269200
Si 2.708300 -2.667800 -0.110050
Si 4.087500 -1.288500 1.269200
Si -0.050300 -2.667800 2.648500
Si 1.329000 -1.288500 4.027800
Si 1.329000 1.387000 -4.164800
Si 2.708300 0.007728 -2.785500
Si 4.087500 1.387000 -1.406300
Si -0.050299 2.766300 -2.785500
Si 1.329000 4.145600 -1.406300
Si -0.008774 0.049254 -0.068519
Si 1.329000 1.387000 1.269200
Si 2.708300 2.766300 -0.026993
Si 2.708300 0.090780 2.648500
Si 0.032751 2.766300 2.648500
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C.2 XYZ to CONFIG
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Appendix D

DL POLY inputs for Auqs

D.1 FIELD
Gold13
units ev
molecular types 1
Gold
nummols 13
atoms 1
Au 196.9670 0.0 1
finish
metal 1
Au Au gupt 0.4122 2.884
close

XV

10.229

1.790

4.036



D.2 CONTROL

D.2 CONTROL

Au55 with Gupta Potentials

integration velocity verlet

temperature 20.00
pressure 0.0010
ensemble nve
#restart
#zero
#optim force 1.0E-5
steps 2000000
equilibration 50000
scale 10
print 100
stack 10
stats 100
rdf 10
traj 1 4000 2
timestep 0.0010
cutoff 6.5000
delr width 0.5000
rvdw cutoff 6.5000
no electrostatics
print rdf
job time 100000000.00
close time 10.00
finish

D.3 CONFIG
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D.3 CONFIG

Gold (13 atom cluster)

2 1
40.000000000000
0.000000000000
0.000000000000
Au 1
0.1926494748E-01
0.281001545082E-01
-2131.03569527
Au 2
2.259921999
0.162117718797
-267.203079293
Au 3
-2.262568391
-0.348366591126
1155.78305899
Au 4
2.238000912
0.393623796407
176.096124692
Au 5
-2.254434998
0.176532864037
-929.321832944
Au 6
1.389381055
0.210393687155
2153.46890328
Au 7
-1.394355435
0.221563263478
-223.515140349
Au 8
-0.3098460735E-01
-0.533976605568
119.182120074
Au 9
-0.4199417751E-01
-0.110082136141
605.953119931
Au 10
1.408130523
-0.908880071628E-01
892.995040362
Au 11
-1.362480966
0.166917793705
-672.106745499
Au 12
0.1819522063E-01
0.828108820717E-01
-244.693159804
Au 13
0.1392391775E-01
-0.358746820161
-635.602714174

13 -410286.918245

0.000000000000
40.000000000000
0.000000000000

-0.1642203981E-01
0.263117160829
2492.57261509

1.417252624
-0.587374003811
-806.675898522

1.403066555
-0.104338060148
-815.024533102

-1.475459360
0.213870059164E-01
1093.01882725

-1.378805284
0.406232066018E-01
21.1239790699

0.6874771515E-01
0.850606478478E-01
-399.804916976

0.4419577866E-01
0.126825230212
359.663748696

2.270075655
0.535343735041
1135.10086543

-2.232770344
-0.155227775255
-1396.72380924

-0.6800014253E-01
0.100422698012
591.325959796

-0.1708261189E-01
-0.275079573855E-01
27.2289906946

2.249832689
0.642263394257E-01
-639.633736714

-2.264631233
-0.362558227286
-1662.17209147

0.000000000000
0.000000000000
40.000000000000

-0.8959976098E-03
-0.271110737667
-1357.21730189

-0.6337563116E-01
-0.252394878187E-01
206.942777592

-0.4512651586E-01
-0.472326832320E-01
178.087909825

0.5620615700E-01
-0.206023497361
-498.909281936

0.8622297296E-01
-0.153540837723E-01
-1246.95204793

2.217973462
-0.482414609499E-01
2993.49605182

2.284595278
0.219530024142E-01
-622.220842911

1.359153138
0.372113155026
-195.759028275

1.443853007
0.108046860305
826.057519054

-2.257736006
0.434806648860
-388.291172558

-2.269171337
-0.162525593036
180.830708103

-1.426826671
0.238125243217E-01
71.2608782504

-1.384871857
-0.185004647090
-147.326169141
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Appendix E

Construction of nanoparticles with

Materials Studio

Accelrys Materials Studio (MS) [123] is a multifunctional plat-
form which allows the modelling, simulation and analysis of
chemical compounds, using a large variety of available op-
tions. More importantly, it employs some of the most popular
computational software for conducting calculations which can
be linked to an external server or a computer cluster. The pro-
cedure for constructing nanocrystals and nanostructures using
MS, is very simple and straight-forward, as described in the

following sections.

XIX



E.1 Construction of Si nanorods

E.1 Construction of Si nanorods

The unit cells of every element of the periodic table in its bulk crystalline form are
already included in MS. For constructing a Si nanorod, the unit cell of bulk silicon
has to be imported by selecting File > Import > Select crystal structure. Otherwise, the
symmetry of a crystal structure can be defined by the user from the Build > Crystals

menu.

SiH - Materials Studio - [Si.xsd] EEXE
g X

'.-E. File Edit View Modify JNIEN Tools Statistics Modules Window Help k,
J i »
ﬂ &Cl o gv\ e Build Polymers [ ko Q (.é., ﬁ
O-o Build Analogs |
v Build Nanostructure L3 Single-Wall Nanotube |
o [ﬂ Build Mesostructure Templates Multi-Wall Nanotube

Nanorope
Crystals

3
Nanoduster
sorfaces ,

Build Layers

Symmetry

*@ Add Atoms
Bonds
Close Contacts
Hydrogen Bonds

Constructs Nanoduster

From the Build menu select Build Nanostructure > Nanocluster.

XX



E.1 Construction of Si nanorods

In the Shape menu of the Shape tab, select Cylinder and then insert the values of
the cylinder basis radius and its height in A. At the Base plane box, give define the
crystal’s growth direction by using “Miller indices”. By pressing the Build button

the Si nanorod is now constructed.

SiH - Materials Studio - [Nanocluster (5).xsd *]
:%. File Edit View Modify Build Tools Statistics Modules Window Help

& Bw v %S - [ BER -
O-Jaes g e- B

Ready
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E.1 Construction of Si nanorods

The surface atoms of the constructed Si nanorod which contain free dangling
bonds, can be capped with H atoms directly by using the Auto-update hydrogen op-

tion from the tools bar, right below the menu bar.

- Materials Studio - [Nanocluster (5).xsd *]

File Edit View Modify Buld Tools Statistics Modules Window Help -8 x

¢ - do- - BEH - PR A
0-W &8s
M K N R R w8,

Automatically medifies hydrogens on certain changes to atom

In order to resemble the shape of Si nanorods observed in experimental images,
the caps of the nanorod were manually smoothed by selectively removing some

surface atoms at the edges.
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E.2 Construction of Au/Pt nanoparticles

E.2 Construction of Au/Pt nanoparticles

In a similar manner as described in the previous for constructing Si nanorods, the
unit cell of the bulk gold/platinum crystal is imported (File > Import > Select crystal
structure). The unit cell of a bulk crystal can also be imported from a geometry

optimisation calculation performed on a unit cell structure of the simulated system.

Gold - Materials Studio - [AuBulk.xsd] =13
"%. File Edit View Modify Buld Tools Statistics Modules Window Help - |8 x
D& @&as| @ EE] ko e -H

e LIRSt 2-@-8

Ready
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E.2 Construction of Au/Pt nanoparticles

From the Build menu select Build Nanostructure > Nanocluster.

Gold - Materials Studio - [AuBulk.xsd] (=53]
"% File Edit View Modify B:F=N Tools Statistics Modules Window Help = |8 X
O-3 & @ || BuidPolymers w ko Q| e -0
Build Analogs .
Single-wall Nanotube

A Build Mesostructure * Multi-Wall Nanotube

Manorope
Nanoduster
Surfaces 4 =

Build Layers

Symmetry

‘@ Add Atoms
Bonds
Close Contacts
Hydrogen Bonds

Constructs Nanoduster
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E.2 Construction of Au/Pt nanoparticles

In the Shape menu of the Shape tab, select Sphere and then give the radius in A.

Gold - Materials Studio - [Nanocluster.xsd *] E'EWE'
&% File Edit View Modify Buld Tools Statistics Modules Window Help -8 x
OD-@ aa® @ &- E] R BF-H

gr | A S S 2-9-8

Ready
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E.2 Construction of Au/Pt nanoparticles
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Appendix F

CASTEP input files

Samples of the CASTEP input files for a gold nanosurface in contact with one CH3S-
molecule are displayed below. The .cell file contains all the coordinates and vari-
ables defining the geometry of the simulated system, while the .param file contains

all the parameters regarding the calculation.

FE1 .param file

task=molecular dynamics
iprint=2

XC_FUNCTIONAL = PBE
CUT_OFF_ENERGY = 650 eV
GRID_SCALE = 2.0
metals_method = EDFT
OPT_STRATEGY = speed

md_ensemble = NVE
md_delta_t = 1.0 fs
md_num_iter = 200
md_temperature = 300 K
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E2 .cell file

E2

.cell file

%BLOCK LATTICE_ABC

11.614000 11.614000
90.000000 90.000000
%ENDBLOCK LATTICE_ABC

%BLOCK POSITIONS_ABS

Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au
Au

=
NORUOKRNODMUKRN

.826000000
.403700000
.775300000
.316300000
.634400000
.197400000
.592400000
.118300000
.738000000
.437500000
.694400000
.479400000
.559400000
.203000000
.497400000
.313200000
.794300000
.239300000
.894200000
.347300000
.606600000
.047600000
.704600000
.152000000
.700600000
.147100000
.741700000
.306000000
.481800000
.953900000
.581000000
.087000000
.920500000

4.361600000

=
NORUDONUORNONOOORMUIKRNEKFUWU

.750500000
.450100000
.867000000
.419800000
.911900000
.400900000
.707400000
.160900000
.006300000
.265800000
.757500000
.292500000
.610700000
.158300000
.788600000
.242000000
.686400000
.329600000
.791400000
.392600000
.709400000
.275500000

19.424000
60.000000

UUOOUIONANUIOWOWNONOOWOWNONODWVWOVOVOOVWORARRAMAHARRAEOOUIOOOOUIOOWOWOWO W

.429400000
.899400000
.371000000
.886900000
.419000000
.902300000
.366500000
.890400000
.411100000
.827400000
.591400000
.220900000
.410600000
.820400000
.575400000
.193900000
.669800000
.196300000
.669300000
.185000000
.690500000
.182000000
.668900000
.193200000
.595100000
.229200000
.760400000
.181000000
.576500000
.247200000
.746900000
.193000000
.016800000
.510200000
.044800000
.493900000
.453100000
.819200000
.399300000
.739800000
.034200000
.518800000
.007800000
.468900000
.356100000
.856900000
.334600000
.812100000
.080200000
.536900000
.955000000
.573800000
.377400000
.894400000
.382500000
.919900000

.205700000
.190900000
.217700000
.193800000
.214600000
.201200000
.212100000
.195200000
.245000000
.162100000
.011200000
.407600000
.231100000
.210600000
.031200000
.407900000
.588800000
.582400000
.585500000
.582800000
.562900000
.595400000
.582400000
.576900000
.690400000
.574600000
.579900000
.560900000
.734600000
.556900000
.561100000
.575000000
.891200000
.914400000
.945700000
.879900000
.434200000
.138500000
.118700000
.476600000
.859200000
.858700000
.831900000
.847600000
.285500000
.205500000
.196000000
.235900000
.843400000
.891700000
.952700000
.880200000
.254800000
.225300000
.224100000
.271900000

NNSNNRARRARRARANNNNAEARRAANNNNAERARAANNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOO®
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E2 .cell file

Au 11.621300000 5
Au 13.026600000 7
Au 2.904600000 4
Au 10.152400000 7
Au 11.602100000 8
Au 10.169300000 5
Au 14.521200000 8
Au 13.047400000 5
H 2.108900000 0
H 2.019200000 2
H 3.213300000 1
C 2.685900000 1
S 3.928700000 2
%ENDBLOCK POSITIONS_ABS

%block ionic_constraints

CEONOUIARWNR
>
=
CONOUIARWNK
HFRRERRERRRR

RFRRERRERRRERRERRERRRERERRERRRERRERRERBERRERRERRERRERRRRBRRRR
RFRRERRERRERRRERRRERRERRERRERRRERRERRERBERRREEBRRERRRRRRBR|

RFRRERRRERRERRERRERRERRRERERRRBRRBRRBRRR

%sendblock ionic_constraints

.059900000
.559800000
.900700000
.545400000
.349500000
.845900000
.406300000
.913300000
.881500000
.516600000
.353200000
.698600000
.318300000

KPOINTS_MP_SPACING 0.04 1/ang

fix_all_ions : false
fix_com : false
FIX_ALL_CELL : TRUE

%block species_pot

Au  Au_00.recpot

C C_01.recpot

H H_04.recpot

S S_00.recpot
%sendblock species_pot

.853200000
.897600000
.010900000
.869300000
.230100000
.220100000
.231600000
.231200000
.048200000
.741500000
.362600000
.475000000
.307100000

XXIX



E2 .cell file

XXX



Directory structure with input and output files of calculations from this thesis are provided in the accompanying DVDs

DVD1 I
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