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Integrated Systems and Technologies: Mathematical Oncology

Mathematical Modeling Predicts Synergistic Antitumor
Effects of Combining a Macrophage-Based, Hypoxia-
Targeted Gene Therapy with Chemotherapy

Markus R. Owen1, I. Johanna Stamper1,5, Munitta Muthana2, Giles W. Richardson3,
Jon Dobson4,6, Claire E. Lewis2, and Helen M. Byrne1

Abstract
Tumor hypoxia is associated with low rates of cell proliferation and poor drug delivery, limiting the efficacy of

many conventional therapies such as chemotherapy. Because many macrophages accumulate in hypoxic regions
of tumors, one way to target tumor cells in these regions could be to use genetically engineered macrophages
that express therapeutic genes when exposed to hypoxia. Systemic delivery of such therapeutic macrophages
may also be enhanced by preloading them with nanomagnets and applying a magnetic field to the tumor site.
Here, we use a new mathematical model to compare the effects of conventional cyclophosphamide therapy with
those induced when macrophages are used to deliver hypoxia-inducible cytochrome P450 to locally activate
cyclophosphamide. Our mathematical model describes the spatiotemporal dynamics of vascular tumor growth
and treats cells as distinct entities. Model simulations predict that combining conventional and macrophage-
based therapies would be synergistic, producing greater antitumor effects than the additive effects of each form
of therapy. We find that timing is crucial in this combined approach with efficacy being greatest when the
macrophage-based, hypoxia-targeted therapy is administered shortly before or concurrently with chemotherapy.
Last, we show that therapy with genetically engineered macrophages is markedly enhanced by using the
magnetic approach described above, and that this enhancement depends mainly on the strength of the applied
field, rather than its direction. This insight may be important in the treatment of nonsuperficial tumors, where
generating a specific orientation of a magnetic field may prove difficult. In conclusion, we demonstrate that
mathematical modeling can be used to design andmaximize the efficacy of combined therapeutic approaches in
cancer. Cancer Res; 71(8); 2826–37. �2011 AACR.

Introduction

Hypoxic areas of tumors are notoriously hard to target with
conventional drugs (due to their poor vascularization), yet
treatment success often hinges upon the elimination of such
areas because any remaining hypoxic tumor cells often secrete
cytokines that cause the tumor to revascularize and regrow
(1, 2). A possible anticancer strategy, outlined in Fig. 1, exploits
the innate ability of macrophages, a type of immune cell, to
accumulate within hypoxic tumor regions (3, 4). Tumor
spheroid experiments in vitro have shown that, when macro-
phages are genetically modified to express a prodrug-activat-
ing enzyme (cytochrome P450) during hypoxia, tumor cell
kill can be achieved (following conversion of the prodrug

Major Findings

Mathematical modeling predicts maximal synergistic
antitumor effects when macrophage-based, hypoxia-tar-
geted therapy is administered shortly before or concur-
rently with conventional chemotherapy. Enhanced delivery
of therapeutic macrophages preloaded with magnetic
nanoparticles depends mainly on the strength of the
applied magnetic field, rather than its direction. This
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tumors. where generating a specific orientation of a mag-
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Quick Guide to Main Model Equations

We represent the tissue as a regular 2-dimensional lattice (spacing Dx) with an embedded vascular network. Each site can
contain a number of cells and has associated concentrations of oxygen, VEGF, prodrug, and drug (Fig. 1).

Major Assumptions of the Model

Cells
Each normal and cancer cell has ordinary differential equation models for the cell cycle and p53-VEGF signaling.

On completion of the cell cycle, if space is available, daughter cells are placed at the same or a neighboring site—otherwise
the parent cell cycle restarts, and no daughter cell is produced. Cancer cells enter and leave quiescence according to the local
oxygen concentration and die if quiescent for too long. Normal cell apoptosis occurs if p53 exceeds a threshold which is lower
when the cell is surrounded by cancer cells (so that the tumor microenvironment is hostile to normal cells).
All cell types move by a random walk, biased by the space available and gradients in VEGF. The probability of a cell moving

from site x to y in time Dt is

Prðx; y; tÞ ¼ DDt
2d2x;y

ðNm �Nðy; tÞÞ
Nm

1þ c
2D

ðV ðy; tÞ � V ðx; tÞÞ
� �

for x „y ðAÞ

where N(x,t) is the number of cells and V(x,t) is the VEGF concentration at site x. D is the maximum random motility, Nm is the
carrying capacity for movement, c is the chemotactic sensitivity (c¼ 0 for normal and cancer cells), and dx,y is the distance from
x to y.

Vasculature
We prescribe the pressure at a set of inlets and outlets and compute the flow and pressure drop for each vessel segment (using

the Poiseuille approximation) by imposing conservation of mass at each node. Vessel radii adapt to the wall shear stress,
intravascular pressure, and flow (22, 29). We prescribe a hematocrit of 45% in vessels that sustain flow and zero otherwise.
Segments with low flow are pruned if their wall shear stress remains below tcritw for a period longer than Tprune.
Angiogenesis: On each time-step Dt, the probability of an endothelial tip cell sprouting from a vessel at site x is

Prsproutðx; tÞ ¼ Dt
Pmax
sproutV ðx; tÞ

Vsprout þ V ðx; tÞ ðBÞ

where Vsprout is the VEGF concentration at which the probability is half-maximal (22). Prsprout(x,t) ¼ 0 if the number of cells at x

exceeds the carrying capacity for sprouting, Etipcell
m , or if a sprout has already emerged within an exclusion radius, Rex (because

Delta–Notch signaling inhibits adjacent cells from sprouting). Tip cells perform random walks, biased by VEGF, according to
Equation (A). When a tip cell moves, a stationary endothelial cell is left behind—thus sprout contiguity is maintained by
endothelial cell proliferation (30). Anastomosis occurs when a tip cell moves to a site already occupied by a sprout or vessel,
establishing flow in the new vessel. If anastomosis does not occur within Tprune of tip cell emergence, then the sprout dies.

Diffusibles
Equations for oxygen, VEGF, drug, and prodrug take the form:

0 ¼ Dur2U þ rvyuðUblood � UÞ þ Su � duU ðCÞ
where U(x,t) is the tissue concentration of interest, Ublood(x,t) is the concentration in the blood, Su(x,t) is the cell- and
environment-dependent production/removal rate, and du is the linear decay rate. rv(x,t) is the vascular density and yu is the
vascular permeability to U.

Therapy
Conventional: Active drug is present in the blood plasma due to conversion of cyclophosphamide in the liver. After boluses at

times Tq
n , plasma levels decay exponentially, so that the tissue drug concentration, Q(x,t), is governed by Equation (C), with Sq� 0

and Qbloodðx; tÞ ¼ Qbolusð1�Hðx;tÞÞe�kqcðt�Tq
nÞ for Tq

n � t <Tq
nþ1. Here, H(x,t) is the hematocrit in the vessel at x.

Drug action: If Q(x,t) > Qcrit, any cell at site x intercalates active drug. Normal and cancer cells with drug intercalated die upon
attempting cell division.
Macrophages and magnetic field: On one time-step the probability of macrophage extravasation from a vessel at x is

Prmac
extraðx; tÞ ¼ Dt2pRðx; tÞLðx; tÞMbloodðx; tÞ V ðx; tÞ

Av þ V ðx; tÞ am þ bm vmag � nðx; tÞ
�� ��� � ðDÞ
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cyclophosphamide into its cytotoxic moiety by enzyme-
expressing hypoxic macrophages; ref. 3). For the same kind
of treatment to be successful in vivo, assuming i.v. injection of
the prodrug and macrophages, a substantial number of
macrophages would need to extravasate from the blood-
stream and localize at the tumor mass. To increase delivery
to the tumor site, we have devised a magnetic approach in
which monocytes (macrophage precursor cells found in the
bloodstream) are preloaded with magnetic nanoparticles by
phagocytosis (5). In vivo experiments in mice have demon-

strated the potential of this technique; systemic injection of
such magnetic macrophages, in combination with application
of an externally applied magnetic field near the tumor,
increased 3-fold the number of macrophages accumulated
within the tumor (5). However, such experiments have not yet
been attempted using "therapeutically armed" macrophages
(i.e., macrophages that express a therapeutic gene). Although
these in vitro and in vivo experimental results are highly
promising, a number of questions remain. For example, for
the prodrug–enzyme pair used in the in vitro experiments (3),

where R(x,t) is the radius of the vessel (if present) through x at time t, L(x,t) is the length of the vessel segment,

Mbloodðx; tÞ ¼ kM e�kmacðt�TmacÞHðx; tÞ=Hin is the macrophage level in the vessel following a single injection of macrophages
(Hin is the reference inflow hematocrit), the extravasation rate increases with VEGF (31), and Av is the VEGF concentration at
which it is half-maximal. In Equation (D), am represents the baseline extravasation rate and bm determines the increase due to
magnetic effects, vmag is the macrophage velocity due to the magnetic field, and the effect of the magnetic field is mediated by
vmag � nðx; tÞ
�� ��, the component of vmag that points into the vessel wall (32). Extravasation can only occur if the number of cells at
x is less than Emac

m . Tissue macrophages do not proliferate, have a normally distributed survival time (mean ¼ 90 days, SD ¼ 9
days), and move chemotactically according to Equation (A) (33). This has nomagnetic component because the magnetic force on
macrophages in the tissue is negligible (see Supplementary Material).
The prodrug and active drug concentrations, P(x,t) and Q(x,t), are governed by Equation (C), with

Pbloodðx; tÞ ¼ Pbolusð1�Hðx; tÞÞe�kpcðt�Tp
n Þ and Qblood(x,t) ¼ 0. Active drug is produced from prodrug via hypoxic macrophages

expressing cytochrome P450:

Sqðx; tÞ¼ kpqPðx; tÞ if amacrophage is at x andCðx; tÞ<Chyp;

0 otherwise:

�
ðEÞ

Prodrug conversion means that Sp(x,t) ¼ �Sq(x,t).

Figure 1. Outline of macrophage-based cancer therapy and mathematical model framework. Key interactions are shown, in particular that tissue oxygen
depends on the vascular layer, that VEGF drives angiogenesis and macrophage migration, that drug kills tumor cells, and that hypoxic macrophages activate
prodrug under hypoxia. In addition, extravasation of macrophages loaded with magnetic nanoparticles is enhanced most strongly in vessels that are
perpendicular to the direction of action of a magnetic field.
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it is not clear which cells are targeted. Previous mathematical
modeling of tumor spheroids suggests that, whereas such
engineered macrophages target active drug production to
hypoxic regions, the dependence of tumor cell death on
mitosis means that cell kill is predominantly outside the
hypoxic layer (6). It remains of interest to determine how
the in vitromodel predictions will translate to vascular tumors
in vivo. It is also important to determine the in vivo efficacy of
macrophage-based gene therapy, to compare it to conven-
tional therapies, to understand the possible synergistic ben-
efits of combination therapy, and to assess the improvements
in therapeutic outcomes that may be possible using the
magnetic approach (5).
There is a long history of using mathematical models to

study the growth of solid tumors and their response to
therapy (7–10). Compartmental models have been formu-
lated as systems of ordinary differential equations (e.g., refs.
11, 12). Alternatively, partial differential equation (PDE)
models have been proposed to explain the spatial structure
within avascular tumor spheroids (6, 13) and the variations
in vessel density within vascular tumors (14). Approaches
that consider individual cells include models for angiogen-
esis and drug delivery (15), and hybrid models that also
include PDE descriptions of tumor growth (16). A common
feature of these models is that individual cells are repre-
sented as point objects, whereas alternative approaches
represent cells as deformable spheres (17), or as a set of
sites on a lattice (18). In separate work, Alarc�on and col-
leagues (19–22) proposed a multiscale model for vascular
tumor growth that combines blood flow, angiogenesis, vas-
cular remodeling, and multiple interacting cell populations.
This framework is unique in its extensive coupling across
scales, exemplified by the way that vascular remodeling
influences, and is influenced by, the growth dynamics of
the cell populations, which are themselves regulated by
models for subcellular signaling pathways including an
oxygen-regulated cell-cycle model (22).
Existing multiscale models of tumor growth differ in their

emphasis on subcellular processes, cell–cell interactions,
cell movement, nutrient delivery, and biomechanics. Most
such models do not yet address issues of cancer therapy.
There are several compartmental models for cancer therapy,
addressing, for example, the emergence of a rapidly pro-
liferating subpopulation under the selection pressure
imposed by therapy (23); modeling immunotherapy (24);
endothelial cell-targeted anti-Bcl-2 therapy (25); and model-
ing treatment via an oncolytic virus (26). Spatially structured
PDE models for therapy include a study of antiangiogenic
gene therapy (27) and predictions of drug responses in
breast cancer (28).
In this article we extend the multiscale model of solid

tumor growth (22) to account for conventional chemotherapy
with cyclophosphamide, macrophage-based gene therapy,
and enhanced delivery of therapeutically armed magnetic
macrophages. Model simulations suggest that, compared with
conventional chemotherapy, macrophage treatment may pre-
ferentially target tumor cells and leave a smaller remaining
fractionof hypoxic tumorcells.Wealsoobserve that, for tumors

growing in tissues with relatively isotropic vascular networks
(i.e., with no dominant vessel orientation), enhanced macro-
phage extravasation depends predominantly on the strength of
the applied field, rather than its direction. Finally, we showhow
combination therapies may act in a strongly synergistic man-
ner, particularly when macrophage therapy is applied shortly
before, or concurrent with, conventional therapy.

Materials and Methods

The main components of the multiscale model are
described in detail in ref. 22. New features introduced in this
paper include tissue macrophages (and the effect of magnetic
nanoparticles on their extravasation), additional diffusible
species (drug and prodrug), the effect that the active drug
moiety has on proliferating cells, and the local conversion of
prodrug to drug by hypoxic macrophages. Figure 1 illustrates
the model framework, and the Quick Guide provides an
overview of the key model components. Further model details
and parameter values can be found in the Supplementary
Material and in ref. 22.

The model is formulated on a regular 2-dimensional lattice
with an embedded vascular network. Each lattice site can
contain a number of cells of different types and has associated
concentrations of oxygen, VEGF, prodrug, and drug. Different
submodels describe behavior at the subcellular, cellular, and
macroscopic (diffusible and vascular) scales. The spatial scales
of interest range from 10 mm (cells, vessel diameters) to 2 mm
(tissue size), whereas the timescales vary from minutes (sig-
naling, protein synthesis) to hours (cell proliferation and
movement) and days/weeks (tumor doubling time, angiogen-
esis). Coupling between the different submodels is achieved in
several ways. For example, local oxygen levels, which are
determined at the macroscale, influence both cell-cycle pro-
gression and VEGF production at the subcellular level. Con-
versely, VEGF production modulates angiogenesis at the
macroscale and this, in turn, controls oxygen delivery to
the tissue. In particular, lack of oxygen stimulates VEGF
expression, which promotes macrophage extravasation and
angiogenesis. In the vascular layer, the vessel radii are updated
using a structural adaptation law similar to that proposed by
Pries and colleagues (29). We stress that the submodels we use
illustrate how such a multiscale model can be assembled: the
framework we present is general, with considerable scope for
incorporating alternative submodels.

A particular form of conventional chemotherapy is modeled
by assuming that the prodrug cyclophosphamide is delivered
systemically and is converted by the enzyme cytochrome P450,
principally in the liver, to its active, cytotoxic moiety. Hence,
for conventional chemotherapy we model the pharmacoki-
netics of the active moiety blood concentration by exponential
decay following weekly boluses of cyclophosphamide. For
macrophage-based gene therapy, we model macrophage
extravasation and chemotactic migration to hypoxic regions
in order to deliver hypoxia-inducible cytochrome P450 to
hypoxic areas of tumors, hence localizing cyclophosphamide
conversion to those regions. To model the enhanced delivery
of macrophages loaded with magnetic nanoparticles, we

Mathematical Modeling of Macrophage-Based Gene Therapy
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modify the extravasation rate accordingly [see Equation (D)
and the Supplementary Material]. As magnetic nanoparticle-
loaded macrophages approach the high-field region, the z-axis
component of the field gradient dominates so that the par-
ticles are generally pulled toward the magnetic field source.
Once macrophages have extravasated, we do not include any
magnetic component to their movement, because the mag-
netic force on macrophages in the tissue is negligible (see
Supplementary Material).

For each control and therapeutic scenario considered we
performed multiple virtual tissue simulations (stochastic
realizations). Because cell movements, angiogenic sprouting,
and macrophage extravasation are probabilistic processes,
on each time-step different simulations (generated by dif-
ferent initializations of a random number generator) can
yield subtly different outcomes, which can lead to significant
changes in long-term behavior. Thus, it is essential to

consider both the mean behavior and the degree of variation
between simulations.

We used our model to generate 10 simulations of a normal
tissue, in a 2 mm � 2 mm domain, with a reproducible
characteristic vascular density (vascular surface area per unit
volume, mean � SE ¼ 9.9 � 0.19 mm2/mm3). Implanting a
small tumor into such a computational tissue leads to the
spread of the tumor, which develops regions of hypoxia and
stimulates angiogenesis, such that after 100 days the tissue has
a higher vascular density (18.6 � 0.23 mm2/mm3), and a
quiescent fraction of 8.2 � 0.74% (percentage of cancer cells
that are quiescent). These values are consistent with published
data (see Section D.1 of the SupplementaryMaterial for further
details of model validation). We then applied therapy to these
simulated tumors, using conventional chemotherapy, macro-
phage-based gene therapy (with and without enhancement
using magnetic nanoparticles), and various combinations.

t = 21 days t = 23 days
Cell divisions

over days 21−23
Mean drug

over days 21−23
Cells killed

over days 21−23

t = 28 days t = 30 days over days 28−30 over days 28−30 over days 28−30

t = 42 days t = 44 days over days 42−44 over days 42−44 over days 42−44

t = 84 days t = 86 days over days 84−86 over days 84−86 over days 84−86

normal

cancer

quiescent

sprout

Mφ Flow, nL/min

0 20 40

Cell divisions / day

0 1 2

Drug

0 0.2 0.4 0.6

Cells killed / day

0 1 2

A

B Cell divisions / day

0 0.2 0.4 0.6

Mean drug

0 0.2 0.4 0.6

Cells killed / day

0 0.1 0.2

Figure 2. Typical simulation
showing how a tumor responds to
conventional chemotherapy with
cyclophosphamide, via weekly
boluses (Qbolus ¼ 12) that start
3 weeks after tumor implantation.
A, the state of the simulated tissue
before and 2 days after treatments
at t ¼ 21, 28, 42, and 84 days, and
the average rate of cell division,
drug concentration, and rate of
cell kill over each 2-day period. B,
the rate of cell division, average
drug concentration, and rate of
cell kill over days 21 to 100.
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Results

Conventional chemotherapy
Figure 2A shows snapshots from a typical simulation in

which conventional chemotherapy is applied in weekly
boluses beginning 3 weeks after tumor implantation. After
each bolus, the active drug concentration is maximal close
to blood vessels, but otherwise relatively homogeneously
distributed throughout the tissue. A significant number
of cells are killed following each treatment in locations
where cell proliferation coincides with a high drug con-
centration. Cancer cells are preferentially targeted because
their rates of proliferation are higher than those for normal
cells, but the tumor recovers after each treatment. Figure
2B shows the average rate of cell division, drug concen-
tration, and rate of cell kill from day 21 (the start of
therapy) to day 100 and reinforces the perception that
the drug distribution and cell kill are widespread and
indiscriminate.

Figure 4A showshow the total numbers of normal and cancer
cells change over time, in the simulated tissue, for control (no
therapy) and conventional therapy. For the 10 therapeutic
simulations, the tumor cell number declines dramatically fol-
lowing each drug bolus, and then recovers before the next
treatment. The drug dose is insufficient to eliminate all tumor
cells, and hence the tumor eventually colonizes the entire
domain after the final round of therapy. For these examples
(of control and unsuccessful conventional therapy) the number
of normal cells drops to zero, and the total tumor cell number is
limited. These outcomes are artifacts of the limited size of the in
silico tissue domain: in vivo the tumor would be embedded in a
larger tissue and surrounded by more normal cells.

Figure 5A illustrates dose–response data (at 100 days after
tumor implantation, i.e., 2 days after the twelfth treatment)
as the maximal concentration of active drug in the blood
(Qbolus) varies. As the dose increases, the tumor burden
decreases, with a half maximal effective concentration
(EC50) of Qbolus � 12. For smaller doses, the quiescent fraction

Figure 3. Typical simulation of
macrophage therapy via a single
bolus of engineered macrophages
3 weeks after tumor implantation,
coincident with the first of 20
weekly boluses of the prodrug
cyclophosphamide (Pbolus ¼ 250).
A, the state of the simulated tissue
before and 2 days after treatments
at t ¼ 21, 28, 35, and 84 days, and
the average rate of cell division,
drug concentration, and rate of
cell kill over each 2-day period. B,
the average macrophage density,
rate of cell division, drug
concentration, and rate of cell kill
over days 21 to 100.
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Cell divisions

over days 21−23
Mean drug

over days 21−23
Cells killed

over days 21−23

t = 28 days t = 30 days over days 28−30 over days 28−30 over days 28−30

t = 42 days t = 44 days over days 42−44 over days 42−44 over days 42−44

t = 84 days t = 86 days over days 84−86 over days 84−86 over days 84−86

normal
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quiescent
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increases relative to control. For sufficiently large doses the
tumor is eliminated, although too large a dose prevents
normal tissue recovery.

Macrophage therapy
Figure 3A shows snapshots from a typical simulation

of macrophage therapy (Supplementary Movie S1). Three

weeks after tumor implantation a single bolus of macrophages
is applied, together with the first of 20 weekly doses of
prodrug. The individual snapshots and cumulative data
(Fig. 3B) show that the macrophage therapy targets hypoxic
cells but does not kill them when they are hypoxic (macro-
phages and drug are colocated, but cell kill occurs in a band
outside this area). Nevertheless, cell kill is predominantly in a
region that is complementary to that for conventional therapy,
and macrophage therapy preferentially targets tumor cells
rather than normal cells.

Figure 4B shows the temporal dynamics of cell numbers in
the simulated tissue. We show the mean in the control case,
and the mean and 10 simulations for macrophage therapy.
Each therapeutic simulation follows a similar temporal pat-
tern. In some cases the tumor is almost eliminated at t � 23
days. At intermediate times (60–90 days) the impact of
successive treatments diminishes, because the tumor does
not develop the degree of hypoxia seen for the first round of
treatment, and hence prodrug activation is less extensive. At
about 90 days the macrophages begin to die, and the ther-
apeutic effect declines until after day 130 it is negligible.

For this prodrug dose (Pbolus ¼ 250) the reduction in
overall tumor burden (compared with untreated control) is
similar to that for conventional therapy with Qbolus ¼ 12
(compare the tumor cell numbers in Fig. 4A and B), and both
cases correspond approximately to half-maximal efficacy
(Fig. 5). However, the quiescent fraction at 100 days is lower
with this example of macrophage therapy (6 � 0.48%) than
with the equivalent conventional therapy (11.3 � 1.7%),
indicating that the macrophage therapy preferentially tar-
gets hypoxic tumor cells. In addition, at early times (21–50
days) the normal cell population declines more slowly with
macrophage therapy than in either the control or conven-
tionally treated cases. Figure 5B illustrates dose–response
data for macrophage therapy, showing half-maximal efficacy
at Pbolus � 250. For Pbolus > 50, the quiescent fraction
decreases with prodrug dose. For sufficiently large doses
the tumor is eliminated, although too large a dose is harmful
to normal tissue.

Effect of magnetic nanoparticles on macrophage
extravasation

Experiments in vivo have shown a 3-fold enhancement in
the infiltration of macrophages loaded with magnetic nano-
particles (macrophage proportion of tumor mass: 4.9%
without, and 16.9% with, a magnetic field; ref. 5). We deter-
mined parameter values so that simulated infiltration into
10 established tumors, with differing emergent vascular net-
works, gave the same degree of magnetic enhancement.
Figure 6A shows that, at 5 hours, the mean proportion of
macrophages (over 10 simulations) is 4.9 � 0.6% in the
absence of the magnetic field. This increases to 15.8 � 1.3%
(17.9 � 1.5%) with the field in the horizontal (vertical) direc-
tion. Over 1 week we see a pattern of rapid infiltration
followed by a gradual settling to a steady density in the
tissue, as the level of macrophages in the bloodstream falls
to zero. This infiltration has a weak effect on the size of the
tumor (Fig. 6A). Figure 6B shows the cumulative locations of
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macrophage extravasation after 5 hours, illustrating that the
magnetic field increases the extravasation rate at specific
vessels according to their orientation relative to the magnetic
field. Nevertheless, Fig. 6C shows that the overall pattern of
macrophage localization within the tissue is similar for both
orientations of the field.

Combination therapies
Figure 4C summarizes results from simulations combining

the conventional and macrophage therapies illustrated in
Figs. 2 and 3. Three weeks after tumor implantation a single
bolus of macrophages is applied, together with the first of 20
weekly doses of prodrug and active drug. In all 10 simulations,
the combined treatment eliminates the tumor, and in 8 of 10
cases the normal tissue recovers. This might be expected, as

the individual conventional and macrophage therapies gave
54% and 45% reductions in tumor size, respectively. Therefore,
we consider whether there are synergistic benefits of combi-
nation therapies where the individual therapies have smaller
efficacies.

Figure 7A summarizes the results for the control case and
7 therapeutic combinations (conventional alone, Qbolus ¼ 11;
macrophages alone, Pbolus¼ 120; and combinations with and
without magnetic enhancement). The conventional and
macrophage therapies have a limited effect on the tumor
size (average reductions of 27% and 21%, respectively),
but combining them gives an average reduction of 94%.
However, the outcome is highly variable (see Supplementary
Fig. S5 for time courses). In 6 of 10 cases the tumor is
eliminated (Supplementary Movie S2 shows an example of

Figure 5. Dose–response data at
100 days for tumor growth with
conventional and macrophage
therapy. A, response to
conventional therapy across a
range of drug doses (Qbolus). Half-
maximal efficacy is reached at
Qbolus � 12. B, response to
macrophage therapy across a
range of prodrug doses (Pbolus).
Half-maximal efficacy is reached
at Pbolus � 250. A and B, drug–
prodrug doses above the EC50

can promote recovery of normal
tissue, but if the dose is too large
normal tissue is also damaged
further. Bars represent mean
values (n ¼ 10) and individual
simulations are indicated by
points. The point style indicates
whether or not the tumor and/or
normal cells persist at the end of
each simulation (at 200 days).
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tumor elimination); in the remaining 4 cases the tumor is
reduced in size during treatment, but regrows after the last
round of therapy. Combining macrophages with magnetic
nanoparticles and a magnetic field gives a significant
improvement over macrophages alone, due to the increased
macrophage infiltration and consequently higher levels of
prodrug activation within the tumor. The results with Qbolus

¼ 11, Pbolus ¼ 120 (tumor elimination in 6 of 10 cases) can be
improved further by combining conventional drug delivery
with macrophages and enhancing macrophage extravasa-
tion using magnetic nanoparticles; the tumor is eliminated
in 10 of 10 simulations, for both directions of the magnetic
field (Fig. 7A).

Finally, delivering macrophage after conventional
therapy gives worse outcomes over a range of lags from 1
hour up to 4 days (Fig. 7B). Macrophage therapy 1 or 6 hours

before conventional therapy is beneficial, with tumor elim-
ination in 7 of 10 cases (rather than 6 of 10 with simulta-
neous delivery). However, greater timing differences again
give worse outcomes. Additional examples of combination
therapy and altered timing can be found in Supplementary
Fig. S6.

Discussion

We have extended a multiscale mathematical model of
vascular tumor growth to simulate the response to conven-
tional chemotherapy and a new, macrophage-based gene
therapy that targets hypoxic tumor regions. We also use
the model to investigate the potential for enhancing the
delivery of such macrophage-based therapies by preloading
macrophages with magnetic nanoparticles and applying a
magnetic field near the tumor. The overarching aim of
this work is to build upon data from in vitro and in vivo
experiments (3, 5) in order to generate experimentally
testable predictions and hypotheses about a novel therapeutic
strategy.

Our model simulations indicate that the macrophage-based
therapy, with hypoxia-inducible cytochrome P450 activating
cyclophosphamide, targets hypoxic cells but does not kill
them when they are hypoxic. The macrophage-based therapy
is more effective against tumor cells than normal ones,
because of the greater degree of hypoxia found in tumor
compared with normal tissue. Whereas both conventional
and macrophage-based approaches may yield similar reduc-
tions in tumor volume, the hypoxic volume fraction of the
macrophage-treated tumor is typically smaller than that of its
conventionally treated counterpart, making the tumor more
responsive to follow-up treatment with drugs that target
rapidly proliferating cells. Consequently, it is unsurprising
that combination therapy is synergistic, yielding reductions
in tumor volume in excess of those expected if the treatments
act independently. When macrophage treatment is successful,
it is self-limiting in nature, because elimination of the tumor
also eliminates the hypoxia that drives the therapeutic effect.
Magnetically loading the macrophages enhances their effect,
and for the relatively isotropic vascular networks studied here,
the increase in delivery does not depend strongly on the
direction of the magnetic field. Because tumor blood vessels
are often highly disorganized (34), this result may be impor-
tant for nonsuperficial tumors, for which it may be difficult to
generate a magnetic field with a specific orientation. In many
cases, we find considerable variability in outcomes—the same
treatment applied to different simulated tissues may either
successfully eliminate the tumor or allow it to persist. Hence it
is essential to consider, as in this article, multiple virtual tissue
simulations in order to capture average behavior and the
degree of variation that can be expected. Finally, we find that,
for combination therapies, timing can be crucial—it is best to
apply macrophage therapy slightly in advance of conventional
therapy.

We have investigated the sensitivity of the antitumor
response to variations in key therapeutic parameters. Our
simulations reveal that the response to conventional and
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Figure 6. A, series of curves showing dependence on the magnetic field of
macrophage infiltration into a tumor, where the macrophages have been
loaded with magnetic nanoparticles. Each curve is the mean of 10
simulations. The macrophage fractions after 5 hours, without and with a
magnetic field, are in agreement with experimental data in ref. 5. B,
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The overall pattern of macrophage localization is similar for both
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macrophage-based therapies is nonlinear: close to the EC50,
small changes in drug–prodrug dose produce large changes in
the antitumor response, but away from the EC50 the dose–
response relationship is relatively flat (Fig. 5). Our major
findings about the predicted synergy and timing dependence
of combination therapy persist for different drug and prodrug
doses (compare Fig. 7 and Supplementary Fig. S6). Our results
are also robust to changes in cell-cycle times, and in the order
in which the components of the computational algorithm are
executed (see Supplementary Figs. S7 and S8 and Section D of
Supplementary Text).
A major advantage of simulations such as those used here is

that it is possible to interrogate closely the state of the system
as it develops over time, in order to identify key features that
regulate the therapeutic response. Here we have used this
approach to go beyond macroscopic measures (such as tumor

size and hypoxic fraction) and to characterize where within
the tissue the therapy is active, and how this relates to, for
example, regions of hypoxia, macrophage localization, and cell
proliferation. In future work it would be interesting to track
the positions of cells when they intercalate drug (i.e., when
they became committed to drug-induced cell death), to assess
the extent to which cells move out of hypoxic regions and then
die, and to compare this with the extent to which they
intercalate drug outside of the hypoxic region. We anticipate
that this balance will depend on the degree of tumor cell
motility.

Our results suggest many directions for future experi-
mental research in this area. For example, the simulations
reveal that the enzyme–prodrug combination considered
here produces high levels of active drug in hypoxic regions,
but kills cells in surrounding, nonhypoxic zones [similar
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results were obtained from a PDE model for macrophage
gene therapy (6)]. This feature arises because cell kill
requires attempted cell division, which occurs preferentially
at higher oxygen concentrations. It should be feasible experi-
mentally to test our predictions about the locations of drug
production and therapeutic tumor cell lysis by, for example,
immunohistochemical staining of tissue sections to locate
active drug, sites of DNA replication, and apoptotic cells.
Supplementary staining for hypoxia and endothelial cells
would provide additional spatial information against which
to test our model predictions.

A number of model extensions are possible to investigate
alternative therapies and to improve the applicability of our
model. For example, we could investigate the efficacy of
macrophages engineered to deliver antiangiogenic or other
vascular-targeting agents. Alternatively, we could simulate the
effect of combining cytotoxic macrophage-based therapy (e.g.,
using cyclophosphamide) with vascular-disrupting agents
such as combretastatin A-4 (35), which we would expect to
increase tumor hypoxia (and hence enhance prodrug activa-
tion). Our model could also be used to investigate whether
application of an alternating field to the tissue containing the
magnetically loaded macrophages can generate a sufficiently
large (and localized) heating effect to stimulate cell death in
that region (36). On the other hand, it may be important to
consider the potential protumor effects of macrophages (such
as the secretion of angiogenic factors; ref. 37), and how a
patient's blood monocytes and resident tissue macrophages
might compete with the introduced genetically modified
macrophages. Other related therapies that our model could
be adapted to study include gene transfer of cytochrome p450
into tumor cells (38), and the use of macrophages to target
a therapeutic virus to hypoxic tumor regions, under the
control of a tumor tissue specific promoter (39). The latter
avoids potential problems of prodrug activation at nontumor
sites of hypoxia, such as may be found in patients with
atherosclerotic plaques or rheumatoid arthritis (40). In the

future we will extend our model to 3 space dimensions. Based
on results comparing untreated tumor growth in 2D and 3D
(41), we anticipate that the qualitative behavior will be
unchanged for the various individual and combined therapies
studied here.

In conclusion, we have demonstrated how our state-of-the-
art mathematical model of vascular tumor growth can be used
to test the efficacy of a new anticancer treatment and to
support a program of experimental work to optimize its
efficacy. Our model provides insight into the in vivo mechan-
ism of action of macrophage-based therapy, and can be used
to generate experimentally testable predictions (e.g., that
using macrophage therapy in combination with standard
chemotherapy will provide synergistic benefits, and that such
therapies should be administered near-simultaneously to
achieve the best response). Our modeling can help to identify
the most productive avenues for using macrophages as a novel
system to deliver gene therapy, and can be extended to
consider a variety of alternative therapeutic strategies.
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