The University of Southampton
University of Southampton Institutional Repository

Franck-Condon simulation of the single vibronic level emission spectra of HSiF and DSiF including anharmonicity

Franck-Condon simulation of the single vibronic level emission spectra of HSiF and DSiF including anharmonicity
Franck-Condon simulation of the single vibronic level emission spectra of HSiF and DSiF including anharmonicity
Potential energy functions (PEFs) of the (X) over tilde (1)A' and (A) over tilde (1)A" states of HSiF have been computed using the coupled-cluster single-double plus perturbative triple excitations and complete-active-space self-consistent-field multireference internally contracted configuration interaction methods, respectively, employing augmented correlation-consistent polarized-valence quadruple-zeta basis sets. For both electronic states of HSiF and DSiF, anharmonic vibrational wavefunctions and energies of all three modes have been calculated variationally with the ab initio PEFs and using Watson's Hamiltonian for nonlinear molecules. Franck-Condon factors between the two electronic states, allowing for Duschinsky rotation, were computed using the calculated anharmonic vibrational wavefunctions. These Franck-Condon factors were used to simulate the single vibronic level (SVL) emission spectra recently reported by Hostutler in J. Chem. Phys. 114, 10728 (2001). Excellent agreement between the simulated and observed spectra was obtained for the (A) over tilde (1)A"(1,0,0)-->(X) over tilde (1)A' SVL emission of HSiF. Discrepancies between the simulated and observed spectra of the (A) over tilde (1)A"(0,1,0) and (1,1,0) SVL emissions of HSiF have been found. These are most likely, partly due to experimental deficiencies and, partly to inadequacies in the ab initio levels of theory employed in the calculation of the PEFs. Based on the computed Franck-Condon factors, minor revisions of previous vibrational assignments are suggested. The calculated anharmonic wave functions of higher vibrational levels of the (X) over tilde (1)A' state show strong mixings between the three vibrational modes of HSi stretching, bending, and SiF stretching.
molecular-structure, jet spectroscopy, monofluorosilylene, states, atoms
0021-9606
1292-1305
Mok, Daniel K.W.
49a4e516-0e71-4f59-a3ec-bd607b47ef33
Lee, Edmond P.F.
f47c6d5d-2d1f-4f03-a3ff-03658812d80b
Chau, Foo-tim
e15ec394-d11b-4cbe-91f3-cdac037d9d0e
Dyke, John M.
46393b45-6694-46f3-af20-d7369d26199f
Mok, Daniel K.W.
49a4e516-0e71-4f59-a3ec-bd607b47ef33
Lee, Edmond P.F.
f47c6d5d-2d1f-4f03-a3ff-03658812d80b
Chau, Foo-tim
e15ec394-d11b-4cbe-91f3-cdac037d9d0e
Dyke, John M.
46393b45-6694-46f3-af20-d7369d26199f

Mok, Daniel K.W., Lee, Edmond P.F., Chau, Foo-tim and Dyke, John M. (2004) Franck-Condon simulation of the single vibronic level emission spectra of HSiF and DSiF including anharmonicity. Journal of Chemical Physics, 120 (3), 1292-1305. (doi:10.1063/1.1630559).

Record type: Article

Abstract

Potential energy functions (PEFs) of the (X) over tilde (1)A' and (A) over tilde (1)A" states of HSiF have been computed using the coupled-cluster single-double plus perturbative triple excitations and complete-active-space self-consistent-field multireference internally contracted configuration interaction methods, respectively, employing augmented correlation-consistent polarized-valence quadruple-zeta basis sets. For both electronic states of HSiF and DSiF, anharmonic vibrational wavefunctions and energies of all three modes have been calculated variationally with the ab initio PEFs and using Watson's Hamiltonian for nonlinear molecules. Franck-Condon factors between the two electronic states, allowing for Duschinsky rotation, were computed using the calculated anharmonic vibrational wavefunctions. These Franck-Condon factors were used to simulate the single vibronic level (SVL) emission spectra recently reported by Hostutler in J. Chem. Phys. 114, 10728 (2001). Excellent agreement between the simulated and observed spectra was obtained for the (A) over tilde (1)A"(1,0,0)-->(X) over tilde (1)A' SVL emission of HSiF. Discrepancies between the simulated and observed spectra of the (A) over tilde (1)A"(0,1,0) and (1,1,0) SVL emissions of HSiF have been found. These are most likely, partly due to experimental deficiencies and, partly to inadequacies in the ab initio levels of theory employed in the calculation of the PEFs. Based on the computed Franck-Condon factors, minor revisions of previous vibrational assignments are suggested. The calculated anharmonic wave functions of higher vibrational levels of the (X) over tilde (1)A' state show strong mixings between the three vibrational modes of HSi stretching, bending, and SiF stretching.

Text
20290.pdf - Version of Record
Download (185kB)

More information

Published date: 15 January 2004
Keywords: molecular-structure, jet spectroscopy, monofluorosilylene, states, atoms
Organisations: Chemistry

Identifiers

Local EPrints ID: 20290
URI: http://eprints.soton.ac.uk/id/eprint/20290
ISSN: 0021-9606
PURE UUID: bba6b280-f666-4e22-8476-a54ba57f61dd
ORCID for John M. Dyke: ORCID iD orcid.org/0000-0002-9808-303X

Catalogue record

Date deposited: 20 Feb 2006
Last modified: 16 Mar 2024 02:36

Export record

Altmetrics

Contributors

Author: Daniel K.W. Mok
Author: Edmond P.F. Lee
Author: Foo-tim Chau
Author: John M. Dyke ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×