The University of Southampton
University of Southampton Institutional Repository

Effects of equivalence ratio variation on lean stratified methane-air laminar flames

Effects of equivalence ratio variation on lean stratified methane-air laminar flames
Effects of equivalence ratio variation on lean stratified methane-air laminar flames
Flame propagation and structure in stratified combustion, a key technology for advanced low emission combustors, has been investigated using lean methane-air laminar counterflow flames. Configurations with steady spatial equivalence ratio gradients and with unsteady, time varying equivalence ratio profiles were examined in order to isolate the effects of equivalence ratio gradient from unsteady history effects. Stratified flames were compared with perfectly premixed flames where the equivalence ratio was matched at the location of peak heat release. Back supported flames (where the products were closer to stoichiometric than the reactants) propagated significantly faster and with reduced thickness compared to perfectly premixed flames which, in turn, were faster and thinner than the corresponding front supported flames. This observation, which corroborates the findings of previous studies, holds in both the steady and unsteady configurations. In order to understand the underlying processes, the composition and species flux were analyzed through the reaction zone in the steady cases. At the location of peak heat release, back supported flames exhibit temperatures and levels of major species which are similar to premixed flames, while radical species concentrations, including OH, as well as the heat release rate are enhanced. The increased (reduced) levels and fluxes of OH in back (front) supported flames were attributed to the shifting equilibrium of the CO-H2 recombination reactions due to the stratification induced temperature gradient. The stratified flames were found to respond to equivalence ratio variations following a delay on the order of the characteristic flame time-scale. The unsteadiness adds to the effects of the instantaneous flame normal equivalence ratio gradient observed in the steady flames. When the equivalence ratio oscillates with a period similar to, or less than, the flame time scale the flame response is attenuated. The presence of equivalence ratio variation through the flame implies that flame speed, flame thickness or reaction rate cannot be modeled accurately as functions of only the progress variable and equivalence ratio. Models accounting for temporal and spatial equivalence ratio variation may be advantageous
Begell House
Richardson, E.S.
a8357516-e871-40d8-8a53-de7847aa2d08
Granet, V.E.
0976f1c9-9e4c-41d4-a76a-a12477bb6852
Eyssartier, A.
1bc08002-7f25-40ef-9e62-9ec72afe9f3e
Chen, J.H.
fd295f97-acff-4984-a655-ee18d3b2a734
Richardson, E.S.
a8357516-e871-40d8-8a53-de7847aa2d08
Granet, V.E.
0976f1c9-9e4c-41d4-a76a-a12477bb6852
Eyssartier, A.
1bc08002-7f25-40ef-9e62-9ec72afe9f3e
Chen, J.H.
fd295f97-acff-4984-a655-ee18d3b2a734

Richardson, E.S., Granet, V.E., Eyssartier, A. and Chen, J.H. (2009) Effects of equivalence ratio variation on lean stratified methane-air laminar flames. In Proceedings of the Sixth Mediterranean Combustion Symposium. Begell House. 12 pp .

Record type: Conference or Workshop Item (Paper)

Abstract

Flame propagation and structure in stratified combustion, a key technology for advanced low emission combustors, has been investigated using lean methane-air laminar counterflow flames. Configurations with steady spatial equivalence ratio gradients and with unsteady, time varying equivalence ratio profiles were examined in order to isolate the effects of equivalence ratio gradient from unsteady history effects. Stratified flames were compared with perfectly premixed flames where the equivalence ratio was matched at the location of peak heat release. Back supported flames (where the products were closer to stoichiometric than the reactants) propagated significantly faster and with reduced thickness compared to perfectly premixed flames which, in turn, were faster and thinner than the corresponding front supported flames. This observation, which corroborates the findings of previous studies, holds in both the steady and unsteady configurations. In order to understand the underlying processes, the composition and species flux were analyzed through the reaction zone in the steady cases. At the location of peak heat release, back supported flames exhibit temperatures and levels of major species which are similar to premixed flames, while radical species concentrations, including OH, as well as the heat release rate are enhanced. The increased (reduced) levels and fluxes of OH in back (front) supported flames were attributed to the shifting equilibrium of the CO-H2 recombination reactions due to the stratification induced temperature gradient. The stratified flames were found to respond to equivalence ratio variations following a delay on the order of the characteristic flame time-scale. The unsteadiness adds to the effects of the instantaneous flame normal equivalence ratio gradient observed in the steady flames. When the equivalence ratio oscillates with a period similar to, or less than, the flame time scale the flame response is attenuated. The presence of equivalence ratio variation through the flame implies that flame speed, flame thickness or reaction rate cannot be modeled accurately as functions of only the progress variable and equivalence ratio. Models accounting for temporal and spatial equivalence ratio variation may be advantageous

Text
MCS6_Richardson_Stratified.pdf - Author's Original
Restricted to Repository staff only
Request a copy

More information

Published date: 7 June 2009
Venue - Dates: Sixth Mediterranean Combustion Symposium, Ajaccio, France, 2009-06-07 - 2009-06-09
Organisations: Faculty of Engineering and the Environment

Identifiers

Local EPrints ID: 203203
URI: http://eprints.soton.ac.uk/id/eprint/203203
PURE UUID: fb2d9fb8-2d6b-4f51-9bcb-7720bdc6be49
ORCID for E.S. Richardson: ORCID iD orcid.org/0000-0002-7631-0377

Catalogue record

Date deposited: 07 Mar 2012 15:16
Last modified: 15 Mar 2024 03:37

Export record

Contributors

Author: E.S. Richardson ORCID iD
Author: V.E. Granet
Author: A. Eyssartier
Author: J.H. Chen

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×