
Changing supply rates for input-output to state stablediscrete-timenonlinear systemswith applicationsDina Shona Laila 1;2 and Dragan Ne�si�c 1AbstractWe present results on changing supply rates for input-output to state stable (IOSS) discrete-time nonlinear systems. Ourresults can be used to combine two Lyapunov functions, none of which can be used to verify that the system has a certainproperty, into a new composite Lyapunov function from which the property of interest can be concluded. The results arestated for parameterized families of discrete-time systems that naturally arise when an approximate discrete-time model isused to design a controller for a sampled-data system. We present several applications of our results: (i) a LaSalle criterion forinput to state stability (ISS) of discrete-time systems; (ii) constructing ISS Lyapunov functions for time-varying discrete-timecascaded systems; (iii) testing ISS of discrete-time systems using positive semide�nite Lyapunov functions; (iv) observer-basedinput to state stabilization of discrete-time systems. Our results are exploited in a case study of a two link manipulator andsome simulation results that illustrate advantages of our approach are presented.Key words: Discrete-time; Input-to-state stability; Lyapunov method; Nonlinear control; Supply rates.1 IntroductionThe Lyapunov method is one of the most importantand useful methods in stability analysis and design ofnonlinear control systems (see [15,16,28]). A very usefulmethod for a partial construction of Lyapunov functionswas discussed in [31] where it was shown how it is possi-ble to combine two Lyapunov functions, none of whichcan be used to conclude a property of interest, into a newcomposite Lyapunov function from which the desiredproperty follows. Results in [31] apply to the analysisof input to state stability (ISS) property of continuous-time cascade-connected systems. In [1] a similar prooftechnique was used to combine a Lyapunov functionwhose derivative is negative semide�nite and anotherLyapunov function that characterizes a detectabilityproperty, which is called input-output to state stabil-ity (IOSS) (see [32]), into a new Lyapunov functionfrom which ISS of a continuous-time system follows. Adiscrete-time counterpart of results in [31] was presentedin [26]. These results and proof techniques were used indiscrete-time backstepping [25], stability of continuous-time cascades [3,31], stability of discrete-time cascades[26], continuous-time stabilization of robot manipu-1 The authors are with the Department of Electricaland Electronic Engineering, The University of Melbourne,Parkville, 3010, Victoria, Australia.2 Corresponding author. Phone:+61-3-83449194, Fax:+61-3-83446678, E-mail: fdsl, d.nesicg@ee.mu.oz.au.

lators [1] and Lp stability of time-varying nonlinearsampled-data systems [37]. A related Lyapunov basedmethod for interconnected ISS continuous-time systemssatisfying a small-gain condition can be found in [11].The main purpose of this paper is to extend the resultsfrom [1,26,31] so that they apply to families of discrete-time systems parameterized by a positive parameter(sampling period). We consider a particular type ofsemiglobal practical stability properties of the parame-terized discrete-time systems that arise naturally whenapproximate discrete-time models are used to designcontrollers for sampled-data nonlinear systems. Thestability properties we consider depend in a very par-ticular manner on the parameter and, in particular,they are not uniform in the parameter. Motivation forour approach is presented in the next section and moreinformation can be found in [22{25,27].Another important contribution of our work is that wepresent a unifying framework that allows us to con-sider a range of seemingly unrelated results in a uni�edmanner. We are not aware of any similar uni�cation forcontinuous-time systems and in this sense our approachmay have important implications even in continuous-time. Our main results immediately apply to: (i) aLaSalle criterion for ISS of discrete-time systems (seealso [1]); (ii) constructing ISS Lyapunov functions fortime-varying discrete-time cascade-connected systems(see also [10,12,26,31]); (iii) testing ISS of discrete-timePreprint submitted to Automatica 5th February 2003



systems using positive semide�nite Lyapunov functions(see also [5,9]); (iv) observer-based input to state stabi-lization of discrete-time systems (see also [13,14]). Weemphasize that our results have potential for furtherimportant applications and the case study presented atthe end of the paper illustrates how some of our resultsmay be used for sampled-data controller design. Mainresults of this paper, applications and case study arerespectively presented in Section 4, 5 and 6. The proofsof main results are provided in the Appendix.2 Background and motivationMost control systems are nowadays sampled-data innature. Indeed, the controller is usually implementeddigitally using a computer and it is inter-connectedwith a continuous-time plant via D/A and A/D con-verters. Since it is in general impossible to compute theexact discrete-time model of a continuous-time non-linear plant, approximate discrete-time models suchas Euler, are often used for control design. This ap-proach was taken, for instance, in [6,8,19,29] for severalspecial classes of systems. Recently, a general uni�edframework for controller design based on approximatediscrete-time models was presented in [23,27] for thestabilization problem and further generalized in [22] forthe input to state stabilization problem and in [21] forintegral input to state stabilization problem. Advan-tages of this approach were illustrated in [25] where itwas shown that the Euler based backstepping controllermay outperform the emulated backstepping controller.It is the main purpose of the current paper to furthercontribute to the approach that was pursued in [21{23,27]. In order to motivate stronger our contribution,we present a result from [22] on input to state stabiliza-tion via approximate discrete-time models that is alsoneeded in Section 6. Our interest in input to state sta-bilization is motivated by numerous applications of thisrobust stability property that have appeared in the lit-erature [10,16,30,33].Consider a continuous-time nonlinear plant 3_x(t) = f(x(t); u(t); w(t)); y(t) = h(x(t)); (1)where x 2 Rnx , u 2 Rm , w 2 Rp and y 2 Rl are respec-tively the state, control input, exogenous disturbanceand output. We assume that for any given x0, u(�) andw(�) the di�erential equation in (1) has a unique solu-tion de�ned on its maximal interval of existence [0; tmax).This may be guaranteed, for instance, by requiring f in(1) to be locally Lipschitz. The control is taken to be apiecewise constant signal u(t) = u(kT ) =: u(k); 8t 23 For any unfamiliar notation, readers are referred to thenext section.

[kT; (k + 1)T ), k 2 N, where T > 0 is the samplingperiod. Suppose that the disturbance w(�) is constantduring sampling intervals, that is w(t) = w(k);8t 2[kT; (k + 1)T ) (a more general situation when w(�) isan arbitrary measurable disturbance was considered in[22]). Also, we assume that some combination (output)or all of the states (x(k) := x(kT )) are available at sam-pling instant kT; k 2 N. The exact discrete-time modelfor the plant (1), which describes the plant behavior atsampling instants kT , is obtained by integrating the ini-tial value problem_x(t) = f(x(t); u(k); w(t)); (2)with given w(k), u(k) and x0 = x(k), over the samplinginterval [kT; (k+1)T ]. If we denote by x(t) the solutionof the initial value problem (2) at time t with given x0 =x(k), u(k) and w(k), then the exact discrete-time modelof (1) can be written as:x(k + 1) = x(k) + Z (k+1)TkT f(x(�); u(k); w(k))d�=: F eT (x(k); u(k); w(k)): (3)We emphasize that F eT is not known in most cases. In-deed, in order to compute F eT we have to solve the initialvalue problem (2) analytically and this is usually impos-sible since f in (1) is nonlinear. Hence, we will use anapproximate discrete-time model of the plant to designa discrete-time controller for the original plant (1).Di�erent approximate discrete-time models can be ob-tained using di�erentmethods, such as a classical Runge-Kutta numerical integration scheme (such as Euler) forthe initial value problem (2) [20,34]. The approximatediscrete-time model can be written asx(k + 1) = F aT (x(k); u(k); w(k)): (4)For instance, the Euler approximate model is x(k+1) =x(k)+Tf(x(k); u(k); w(k)). The sampling period T is as-sumed to be a design parameter which can be arbitrarilyassigned. Since we are dealing with a family of approx-imate discrete-time models F aT , parameterized by T , inorder to achieve a certain objective we need in generalto obtain a family of controllers, also parameterized byT . We consider a family of dynamic feedback controllersz(k + 1) = GT (x(k); z(k));u(k) = uT (x(k); z(k)); (5)where z 2 Rnz .We emphasize that if the controller (5) input to statestabilizes the approximate model (4) for all small T ,this does not guarantee that the same controller wouldapproximately input to state stabilize the exact model(3) for all small T (see [4,7,27]).2



The following result provides a framework for controllerdesign via approximate discrete-time models:Theorem 2.1 [22] Suppose that there exist �; �; � 2K1 and � 2 K, and for any strictly positive real num-bers (�1;�2;�3; �) there exist % 2 K1, strictly positivereal numbers T �, L,M such that for all T 2 (0; T �) thereexists a function VT : Rnx+nz ! R�0 such that for allj(x; z)j � �1, juj � �2, jwj � �3, T 2 (0; T �) we have:� SP-ISS Lyapunov conditions for closed-loop ap-proximate:�(j(x; z)j) � VT (x; z) � �(j(x; z)j) (6)VT (F aT (x; uT (x; z); w); GT (x; z))� VT (x; z)� T�� �(j(x; z)j) + �(jwj) + ��; (7)and, moreover, for all T 2 (0; T �) and all x1; x2; z withmaxfj(x1; z)j ; j(x2; z)jg � �1jVT (x1; z)� VT (x2; z)j � L jx1 � x2j : (8)� consistency between F aT and F eT :jF eT (x; u; w)� F aT (x; u; w)j � T%(T ):� uniform local boundedness of uT :juT (x; z)j �M:Then, there exists � 2 KL;  2 G such that for anystrictly positive real numbers (e�1; e�2; e�) there exists eT >0 such that for all j(x(0); z(0))j � e�1, kwk1 � e�2 andT 2 (0; eT ) the solutions of (3), (5) satisfy:� SP-ISS of closed-loop exact: j(x(k); z(k))j ��(j(x(0); z(0))j ; kT ) + (kwk1) + e�; 8k � 0. �We emphasize that the consistency condition in Theo-rem 2.1 is checkable although F eT is not known in general.This condition is commonly used in numerical analysisliterature [34]. The conditions (6),(7) of Theorem 2.1 arehard to check in general and one of the main contribu-tions of the current paper is in presenting technical re-sults that can be used to verify that conditions equivalentwith (6),(7) hold for a family of parameterized discrete-time systems. These technical conditions can be thenused in conjunction with Theorem 2.1 to design input tostate stabilizing controllers for sampled-data nonlinearplants via their approximate discrete-time models. Thisapproach is illustrated in Section 6 where we considerinput to state stabilization of a two link manipulator viaits Euler approximate discrete-time model.3 PreliminariesThe set of real and natural numbers (including 0) aredenoted respectively byR andN. SN denotes the class ofsmooth nondecreasing functions q : R�0 ! R�0 , whichsatisfy q(t) > 0 for all t > 0. A function  : R�0 ! R�0

is of class G if it is continuous, nondecreasing and zeroat zero. It is of class K if it is of class G and strictlyincreasing; and it is of class K1 if it is of class K andunbounded. Functions of class K1 are invertible. Giventwo functions �(�) and (�), we denote their compositionand multiplication respectively as ��(�) and �(�) �(�).jxj denotes the 1-norm of a vector x 2 Rn , that is jxj :=Pni=1 jxij.Motivated by the discussion on the previous section, weconsider a parameterized family of discrete-time nonlin-ear systems of the following form:x(k + 1) = FT (x(k); u(k))y(k) = h(x(k)) (9)where x 2 Rn , u 2 Rm , y 2 Rl are respectively thestate, input and output of the system. It is assumed thatFT is well de�ned for all x, u and su�ciently small T ,FT (0; 0) = 0 for all T for which FT is de�ned, h(0) = 0and FT and h are continuous. T > 0 is the samplingperiod, which parameterizes the system and can be ar-bitrarily assigned. Non-parameterized discrete-time sys-tems are a special case of (9) when T is constant (forinstance T = 1). The following de�nition is a very com-pact way of de�ning various di�erent properties to whichour results apply.De�nition 3.1 The system (9) is (VT ; �; �; �; �; �)-semiglobally practically input-output to state stable((VT ; �; �; �; �; �)-SP-IOSS) with measuring func-tions, if there exist functions �, �, � 2 K1, and �,� 2 G, functions w� : Rn ! Rn� , w� : Rn ! Rn� ,w� : Rn ! Rn� , w� : Rn ! Rn� , w� : Rm ! Rn� ,wx : Rn ! Rnx , wu : Rm ! Rnu , and for any tripleof strictly positive real numbers �x, �u, �, there existsT � > 0 and for all T 2 (0; T �) there exists a smoothfunction VT : Rn ! R�0 such that for all jwx(x)j � �x,jwu(u)j � �u the following holds:�(��w�(x)��) � VT (x) � �(jw�(x)j) (10)VT (FT (x; u)) � VT (x) � �T�(jw�(x)j)+T�(jw�(x)j) + T�(jw�(u)j) + T�: (11)The functions w�, w�, w�, w�, w�, wx and wu are calledmeasuring functions; �, �, �, �, � are called boundingfunctions; �, �, � are called supply functions; and VT iscalled a SP-IOSS Lyapunov function. If T � > 0 existssuch that (10) and (11), with � = 0, hold for all T 2(0; T �), x 2 Rn , u 2 Rm , the property holds globally andthe system (9) is (VT ; �; �; �; �; �)-IOSS with measuringfunctions. �Often, when all functions are clear from the context, werefer to the property de�ned in De�nition 3.1 as SP-IOSS (or IOSS if the property holds globally). More-over, if the system is SP-IOSS (respectively IOSS) with3



� = 0 then we say that the system is SP-ISS (respec-tively ISS). SP-IOSS with measuring functions is quitea general notion that covers a range of di�erent prop-erties of nonlinear discrete-time systems, such as sta-bility, input to state stability, detectability, output tostate stability, etc. For example, by letting � = 0, � = 0and w�(x) = w�(x) = w�(x) = x, we obtain the stan-dard Lyapunov characterization for asymptotic stabilityof (9). By letting � = 0, w�(x) = w�(x) = w�(x) = x,and w�(u) = u, we obtain a Lyapunov characterizationfor (semiglobal practical) ISS. The reason for introduc-ing such a general property in De�nition 3.1 is that wewill apply our results to a range of its di�erent specialcases (see Section 4) for particular choices of �, � andthe measuring functions.When using the SP-IOSS property of De�nition 3.1 tocheck if a certain property (such as stability, input tostate stability or some other special cases of SP-IOSSproperty) holds, one usually needs to have that allbounding functions and the corresponding measuringfunctions satisfy appropriate conditions. For example,if we want to check global asymptotic stability of theorigin of the input-free system (9) then we need to have:�(��w�(x)��) � V1T (x) � �(jw�(x)j)V1T (FT (x; 0)) � V1T (x) � �T�(jw�(x)j); (12)for all x 2 Rn and T 2 (0; T �), for some T � > 0; �; � 2K1 and � is positive de�nite; ��w�(x)�� is positive de�niteand radially unbounded; and jw�(x)j is positive de�nite.4 Main resultsIn this section, we state our main results, which consistof two main theorems (Theorems 4.1 and 4.2), wherewe show two partial constructions of a SP-IOSS Lya-punov function from two auxiliary Lyapunov functions.Several special cases following from our main results arepresented as corollaries. We �rst present Lemma 4.1,which is instrumental in proving our main results. Thelemma is a discrete-time version, as well as a general-ization, of the lemma on changing supply rates for IOSScontinuous-time systems in [1]. Lemma 4.1 also general-izes the result of [26] on changing supply rates for ISSdiscrete-time systems. We use the following construc-tion that has also been used in [1,31]. Given an arbitraryq 2 SN , we de�ne:�(s) := Z s0 q(�)d�; (13)where it is easy to see that � 2 K1 and � is smooth.Suppose that we have a SP-IOSS Lyapunov function VTfor a system, and consider a new function �(VT ). Lemma4.1 states the conditions under which the new functionis also a SP-IOSS Lyapunov function for the system.

Lemma 4.1 Let the following conditions be satis�ed:1. System (9) is (VT ; �; �; �; �; �)-SP-IOSS with mea-suring functions w�, w�, w�, w�, w�, wx and wu.2. There exist �; � 2 K1 such that �(jw�(x)j) � ��w�(x)��and jw�(x)j � �(jw�(x)j); 8x 2 Rn .3. For any strictly positive real numbers�x;�u there ex-ist strictly positive real numbers M and T � such thatjwx(x)j � �x; jwu(u)j � �u; T 2 (0; T �) =) (14)maxfjw�(FT (x; u))j ; jw�(x)j ; jw�(x)j ; jw�(u)jg �M:Then for any q 2 SN and � 2 K1 de�ned by (13)there exist �0, �0, �0, �0, �0 such that the system (9) is(�(VT ); �0; �0; �0; �0; �0)-SP-IOSS with the same measur-ing functions, where �0(s) = � � �(s), �0(s) = � � �(s),�0(s) = 14q � 12� � �(s) � �(s), �0(s) = 2q � ��(s) � �(s),�0(s) = 2q���(s)��(s), ��(s) := ������1�4�(s)+2�(s)and ��(s) := � � � � ��1 � 4�(s) + 2�(s). �Lemma 4.1 provides us with some exibility when con-structing a SP-IOSS Lyapunov function VT from twoLyapunov functions as what we will do in Theorems4.1 and 4.2. We prove the result for semiglobal practi-cal IOSS since this is a property that naturally ariseswhen an approximate discrete-time model is used forcontroller design of a sampled-data nonlinear systems(see Example 6 in the next section). Some of the condi-tions of Lemma 4.1 are rather technical but they wereconsidered in order to prove the result in a considerablegenerality that allows us to unify presentation of severaldi�erent results.Remark 4.1 It is instructive to discuss the third condi-tion of Lemma 4.1 since it appears to be the least intuitive.Let us �rst consider stability of the origin of the input-free system (9). In this case, the conditions (12) need tohold and we can assume without loss of generality thatw�(x) = w�(x) = w�(x) = wx(x) = x. In this case thethird condition of Lemma 4.1 holds if FT (x; 0) is boundedon compact sets, uniformly in T 2 (0; T �). This holds ifFT (0; 0) = 0 for all T 2 (0; T �) and FT (x; 0) is contin-uous in x, uniformly in T 2 (0; T �). This condition israther natural to use and it is often assumed in the liter-ature (see for instance [12]). Suppose now that (12) holdwith w�(x) = w�(x) = w�(x) = wx(x) = jxjA, where Ais a non-empty closed set. In this case, the condition 3 ofLemma 4.1 requires that for any �x there exists M andT � such thatjxjA � �x; T 2 (0; T �) =) jFT (x; 0)jA �M:This condition also appears to be natural and similar con-ditions have been used in the literature [35]. �We can also state a similar result to Lemma 4.1, when theIOSS property holds globally, that is when the system(9) is (VT ; �; �; �; �; �)-IOSS with measuring functions.It is interesting that in this case the third condition ofLemma 4.1 is not needed to prove the result.4



Corollary 4.1 Let the following conditions be satis�ed:1. System (9) is (VT ; �; �; �; �; �)-IOSS with measuringfunctions w�, w�, w�, w� and w�.2. There exist �; � 2 K1 such that �(jw�(x)j) � ��w�(x)��and jw�(x)j � �(jw�(x)j); 8x 2 Rn .Then for any q 2 SN and � 2 K1 de�ned by (13)there exist �0, �0, �0, �0, �0 such that the system (9)is (�(VT ); �0; �0; �0; �0; �0)-IOSS with the same measur-ing functions, where �0; �0; �0; �0; �0 are the same as inLemma 4.1. �We present our main results below. Note that Theorem4.1 is a discrete-time version, as well as generalization, ofthe continuous-time results in [1], whereas Theorem 4.2has appeared in a simpler form in [26], which is a discrete-time version of [31], when � = 0, w�(x) = w�(x) =w�(x) = x, w�(u) = u and all properties hold globally.Theorem 4.1 Suppose that:1. system (9) is (V1T ; �1; �1; �1; �1)-SP-ISS with mea-suring functions w�1 , w�1 , w�1 , w�1 , wx1 , wu1 ;2. system (9) is (V2T ; �2; �2; �2; �2; �2)-SP-IOSS withmeasuring functions w�2 , w�2 , w�2 , w�2 , w�2 , wx2 , wu2 ,and there exist �2; �2 2 K1, such that the second andthird conditions of Lemma 4.1 hold;3. there exist 1; 2; 3 2 K1 such that jw�2(x)j �1(jw�1 (x)j), jwx2(x)j � 2(jwx1(x)j), jwu2(u)j �3(jwu1 (u)j) for all x 2 Rn , u 2 Rm ;4. lim sups!+1 �2(s)�1(s) < +1.Then there exists � 2 K1 such that the system (9) is(VT ; �; �; �; �)-SP-ISS with new measuring functionsw�, w�, w�, w�, wx, wu, whereVT = V1T + �(V2T ); (15)and the new measuring functions arew�(x) := ��w�1(x)�� + ��w�2(x)�� ; w�(x) := jw�2 (x)j ;w�(x) := jw�1(x)j + jw�2(x)j ; wx(x) := wx1(x); (16)w�(u) := jw�1 (u)j+ jw�2 (u)j ; wu(u) := wu1(u): �Remark 4.2 In order to carry out the construc-tion given in Theorem 4.1, the measuring func-tions for V1T and V2T have to satisfy condition 3of the theorem. Indeed, some measuring functionsof V1T have to \match" certain measuring functionsof V2T . To better understand these conditions, weconsider a system with the output y = h(x). Forsimplicity, let �1 = �1 = �2 � 0. Suppose thatw�1(x) = w�1(x) = w�2(x) = w�2(x) = w�2(x) = xandw�2(x) = w�1(x) = y. In this case, condition 3 holds.This is a familiar situation where the �rst di�erence ofV1T is negative semide�nite, that is �V1T � �T�1(jyj).Moreover, V2T satis�es �V2T � �T�2(jxj) + T�2(jyj),which is a particular detectability property of the systemw.r.t the output y. More examples and important specialcases are presented in Section 5. �

In the next result, we consider a stronger condition forthe Lyapunov function V1T , so that we can relax thecondition 4 of Theorem 4.1.Theorem 4.2 Suppose that:1. system (9) is (V1T ; �1; �1; �1; �1)-SP-ISS with mea-suring functions w�1 , w�1 , w�1 , w�1 , wx1 , wu1 and thereexist �1; �1 2 K1, such that the second and third condi-tions of Lemma 4.1 hold;2. system (9) is (V2T ; �2; �2; �2; �2; �2)-SP-IOSS withmeasuring functions w�2 , w�2 , w�2 , w�2 , w�2 , wx2 , wu2and there exist �2; �2 2 K1, such that the second andthird condition of Lemma 4.1 hold;3. the item 3 of Theorem 4.1 holds;Then there exist �1; �2 2 K1 such that the system (9)is (VT ; �; �; �; �)-SP-ISS with new measuring functionsw�, w�, w�, w�, wx, wu, whereVT = �1(V1T ) + �2(V2T ); (17)and the new measuring functions are w�, w�, wx, w� andwu are given in (16) and w�(x) := jw�1(x)j+ jw�2(x)j. �Remark 4.3 We note that in Theorems 4.1 and 4.2 weconcentrate only on verifying conditions similar to (6),(7). However, we note that if the functions V1T and V2Tsatisfy the local Lipschitz condition (8), then the newLyapunov function constructed using either (15) or (17)would also satisfy the local Lipschitz condition. Hence,results of Theorem 4.1 and 4.2 can be used to verify the�rst condition of Theorem 2.1. Additionally, since weassume that q1(�) and q2(�) are smooth, then if V1T andV2T are smooth functions, then so is VT . Having smoothVT is important in some cases, such as in the design usingbackstepping [25]. �Note that the main di�erence between Theorems 4.1 and4.2 is that in Theorem 4.1 we cannot apply Lemma 4.1 tothe Lyapunov function V1T , since the second and thirdconditions of the lemma do not hold. Consequently, weneed an extra condition on the bounding functions (con-dition 4 in Theorem 4.1) and we use a less general con-struction (15) than in Theorem 4.2 where we use (17).As a consequence of Corollary 4.1, we can also stateglobal versions of Theorems 4.1 and 4.2, if both V1T andV2T characterize IOSS properties of the system (9) in aglobal sense.Corollary 4.2 Suppose that all conditions of Theorem4.1 hold globally. Then, there exists � 2 K1 such thatthe system (9) is (VT ; �; �; �; �)-ISS where VT is givenby (15) and the new measuring functions w�, w�, w�,w�, wx, wu are given in Theorem 4.1. �Corollary 4.3 Suppose that all conditions of Theorem4.2 hold globally. Then, there exist �1; �2 2 K1 such thatthe system (9) is (VT ; �; �; �; �)-ISS where VT is givenby (17) and the new measuring functions w�, w�, w�,w�, wx, wu are given in Theorem 4.2. �5



5 ApplicationsIn this section we show how our results can be special-ized to deal with several important situations. We alsoemphasize that our results are quite general and theyhave potential for other applications. We only includethe proof of Corollary 5.1, since the proofs of other Corol-laries in this section follow similar steps.5.1 A LaSalle criterion for SP-ISSIn this subsection, we present a novel result which is adiscrete-time version of the continuous-time result pre-sented in [1]. This result is a direct consequence of The-orem 4.1. We use this result for the case study in Section6 to design a digital controller for a two link manipulatorvia its Euler approximate model.We recall the quasi input to state stability (qISS) prop-erty and input output to state stability (IOSS) propertyfrom [1], and recall the conditionlim sups!+1 �2(s)�1(s) < +1; (18)that has been used in the result of [1]. Using Theorem 4.1we can state a semiglobal practical version of this resultfor parameterized discrete-time systems (9). In particu-lar, we show that semiglobal practical qISS, semiglobalpractical IOSS and the condition (18) imply semiglobalpractical ISS. We use the following assumption:Assumption 5.1 For any strictly positive real numbers�x;�u there exist strictly positive real numbers M andT � such that jxj � �x; juj � �u; T 2 (0; T �) impliesjFT (x; u)j �M . �We state now a discrete-time version of the result in [1].Corollary 5.1 Consider the system (9). Suppose thatAssumption 5.1 holds, and there exist�1; �1; �1; �2; �2; �2 2K1, and �1; �2; �2 2 G such that:1. for any triple of strictly positive real numbers(�x;�u; �) there exists T � > 0 and for any T 2 (0; T �)there exist V1T : Rn ! R�0 and V2T : Rn ! R�0 suchthat for all jxj � �x, juj � �u, T 2 (0; T �) we have thefollowing:SP-qISS: �1(jxj) � V1T (x) � �1(jxj)V1T (FT )� V1T (x) � T (��1(jyj) + �1(juj) + �):SP-IOSS: �2(jxj) � V2T (x) � �2(jxj)V2T (FT )�V2T (x) � T (��2(jxj)+�2(jyj)+�2(juj)+�):2. the condition (18) holds.Then, there exist �; �; � 2 K1 and � 2 G such that forany triple of strictly positive real numbers (e�x; e�u; e�)there exists eT > 0 and for any T 2 (0; eT ) there existVT : Rn ! R�0 such that for all jxj � e�x, juj � e�u,T 2 (0; eT ) we have:SP-ISS: �(jxj) � VT (x) � �(jxj)VT (FT )� VT (x) � T (��(jxj) + �(juj) + e�): �

Proof of Corollary 5.1: It can be seen immediatelythat all conditions of Theorem 4.1 hold, by noting that:(i) the system (9) is (V1T ; �1; �1; �1; �1)-SP-ISS withmeasuring functions w�1(x) = w�1(x) = wx1(x) = x,w�1(x) = h(x) = y, w�1(u) = wu1(u) = u; (ii) thesystem (9) is (V2T ; �2; �2; �2; �2; �2)-SP-IOSS withmeasuring functions w�2(x) = w�2(x) = w�2(x) =wx2(x) = x, w�2(x) = h(x) = y and w�2(u) = wu2(u) =u; the second condition of Lemma 4.1 holds sincew�2(x) = w�2(x) = w�2(x); from Assumption 5.1 andRemark 4.1 we have that the third condition of Lemma4.1 holds; hence, the second condition of Theorem 4.1holds; (iii) the third condition of Theorem 4.1 holds sincew�1(x) = w�2(x) = h(x) = y, wx1(x) = wx2(x) = xand wu1(u) = wu2(u) = u for all x 2 Rn , u 2 Rm ;(iv) the fourth condition of Theorem 4.1 follows triv-ially from the second condition of the corollary. There-fore, applying Theorem 4.1 and de�ning the new SP-ISS Lyapunov function VT as in (15), we obtain thatthe system (9) is SP-ISS with measuring functionsw�(x) = w�(x) = w�(x) = jxj ; wx(x) = x, w�(u) = juj,and wu(u) = u. It is obvious that 2 = 3 = Id. Since his continuous and h(0) = 0, there exists 1 2 K1 suchthat jyj � 1(jxj), and this completes the proof. �5.2 SP-ISS of time-varying cascade-connected systemsA novel result on SP-ISS for time-varying discrete-timecascade-connected system is presented in this subsec-tion. This result is a direct consequence of Theorem 4.2and it generalizes the main result of [26] in two direc-tions: (i) the result is stated for semiglobal practicalISS (only global stability was considered in [26]); (ii)the result is stated for time-varying cascade-connectedsystems (only time-invariant cascade-connected systemswere considered in [26]). We note that similar non Lya-punov based proof of the same result can be found in[12] for non parameterized discrete-time systems.Consider the time-varying discrete-time system:x(k + 1) = FT (k; x(k); z(k); u(k))z(k + 1) = GT (k; z(k); u(k)); (19)where x 2 Rnx , z 2 Rnz and u 2 Rm . The state of theoverall system is denoted as ~x := (xT zT )T ; ~x 2 Rn ,where n := nx + nz. We will assume the following:Assumption 5.2 For any strictly positive real numbers�~x;�u there exist strictly positive real numbers M andT � such thatj~xj � �~x; juj � �u; T 2 (0; T �); k � 0=) maxfjFT (k; x; z; u)j ; jGT (k; z; u)jg �M: �The family of systems (19) is not in the form (9) which istime invariant. However, we can still apply results of ourpaper in the following way. We introduce an augmented6



time-invariant system in the following way:x(k + 1) = FT (p(k); x(k); z(k); u(k))z(k + 1) = GT (p(k); z(k); u(k))p(k + 1) = p(k) + 1; (20)where p 2 R is a new state variable. Then it is standardto show that SP-ISS uniform of the time-varying sys-tem (19) w.r.t. the origin (x; z) = (0; 0) can be deducedfrom semiglobal practical ISS of the time-invariant sys-tem (20) w.r.t. a non-compact set A := f(~x; p) : ~x = 0g.Note also that we can write j~xj = j(~x; p)jA.In the next result we show that SP-ISS Lyapunov func-tion for the overall system (20) can be constructed fromLyapunov functions for individual subsystems in (20).In particular, we can state the following:Corollary 5.2 Consider the system (19). Supposethat Assumption 5.2 holds and there exist �1; �1; �1,�2; �2; �2 2 K1, and �1; �1; �2 2 G such that for anytriple of strictly positive real numbers (�~x;�u; �) thereexists T � > 0 and for any T 2 (0; T �) there existV1T : R � Rnx ! R�0 and V2T : R � Rnz ! R�0 suchthat for all j~xj � �~x, juj � �u, p � 0, T 2 (0; T �) wehave the following:�1(jxj) � V1T (p; x) � �1(jxj)V1T (p+ 1; FT )� V1T (p; x)� T (��1(jxj) + �1(jzj) + �1(juj) + �);�2(jzj) � V2T (p; z) � �2(jzj)V2T (p+1; GT )� V2T (p; z) � T (��2(jzj) + �2(juj) + �):Then, there exist �; �; � 2 K1 and � 2 G such that forany triple of strictly positive real numbers (e�~x; e�u; e�)there exists eT > 0 and for any T 2 (0; eT ) there existVT : R�Rn ! R�0 such that for all j~xj � e�~x, juj � e�u,p � 0, T 2 (0; eT ) we have:SP-ISS: �(j~xj) � VT (p; x; z) � �(j~xj)VT (p+ 1; FT ; GT )� VT (p; x; z)� T (��(j~xj) + �(juj) + e�): �5.3 SP-ISS via positive semide�nite Lyapunov func-tionsThe problem of checking stability using positive semidef-inite Lyapunov functions has been considered in [5] forcontinuous-time systems and in [9] for discrete-time sys-tems. The idea is to use a Lyapunov function V (x),which is positive semide�nite, to check stability of a sys-tem. An approach taken in [5,9] was to use a trajectory-based technique to prove stability of the origin of thesystem. In particular, besides appropriate conditions onthe Lyapunov function, it was required in [5,9] that alltrajectories in the maximal invariant subset of the setZ := fx : V (x) = 0g satisfy the ��� de�nition of asymp-totic stability (this property was referred to as condi-tional stability to the set Z).

We note that the results on stability of cascade-connected systems in [26,31] and in the previous subsec-tion can be interpreted as a special case of testing ISSusing positive semide�nite Lyapunov functions. How-ever, this approach is di�erent from the one in [5,9] sincean ISS Lyapunov function is constructed explicitly fromISS and IOSS Lyapunov functions of each subsystem.The advantage of the approach of [26,31] is that it leadsto a construction of a Lyapunov function for the over-all system, whereas the disadvantage is that it requiresusually stronger conditions and it appears to apply onlyto a special class of cascade-connected systems. How-ever, we show here that the same approach can be usedwith few modi�cations to test semiglobal practical ISSof general parameterized discrete-time systems (9) thatare not in the cascade form. In particular, we can state:Corollary 5.3 Consider the family of systems (9). Sup-pose that Assumption 5.1 holds and there exist �1; �1; �1,�2; �2; �2 2 K1, �1; �1; �2 2 G and positive semide�-nite functions W1 : Rn ! R�0 and W2 : Rn ! R�0 ,with W1(x) +W2(x) is positive de�nite and radially un-bounded, such that for any triple of strictly positive realnumbers (�x;�u; �) there exists T � > 0 and for any T 2(0; T �) there exist V1T : Rn ! R�0 and V2T : Rn ! R�0such that for all jxj � �x, juj � �u, T 2 (0; T �) we havethe following:�1(W1(x)) � V1T (x) � �1(W1(x))V1T (FT )� V1T (x) � T (��1(W1(x))+�1(W2(x)) + �1(juj) + �);�2(W2(x)) � V2T (x) � �2(W2(x))V2T (FT )� V2T (x) � T (��2(W2(x)) + �2(juj) + �):Then, there exist �; �; � 2 K1 and � 2 G such that forany triple of strictly positive real numbers (e�x; e�u; e�)there exists eT > 0 and for any T 2 (0; eT ) there existVT : Rn ! R�0 such that for all jxj � e�x, juj � e�u,T 2 (0; eT ) we have:SP-ISS: �(jxj) � VT (x) � �(jxj)VT (FT )� VT (x) � T (��(jxj) + �(juj) + e�): �5.4 Observer-based input to state stabilization ofdiscrete-time systemsObserver-based stabilization of discrete-time nonlinearsystems that was considered in [13,14] uses a very sim-ilar construction to the ones considered in this paper.It was shown in [13,14] that if a discrete-time plant canbe robustly stabilized with full state feedback (in an ISSsense) and there exists an observer for the system satisfy-ing appropriate Lyapunov conditions (that is, the systemis weakly detectable), then the plant is also stabilizedusing the controller/observer pair where the controlleruses the state estimate obtained from the observer. Bothlocal and global results were considered in [13,14].In this subsection, we show that our results, particu-larly Theorem 4.2, can be used to generalize results of7



[13,14] in two directions: (i) we present results on ob-server based input to state stabilization of discrete-timesystems (in [13,14] only stabilization was considered);(ii) results on semiglobal practical ISS of parameterizedsystems (9) are presented (in [13,14] only global and lo-cal stabilization of non-parameterized discrete-time sys-tems were considered).We consider the parameterized family of plants:x(k + 1) = FT (x(k); u(k); v(k))y(k) = h(x(k)); (21)where u and v are respectively the control and exoge-nous inputs, with the following observer and controllerrespectivelyz(k + 1) = GT (z(k); h(x(k)); u(k); v(k)); (22)u(k) = �T (z(k)) (23)that are de�ned for su�ciently small T . Let ~x :=(xT zT )T , and we assume the following:Assumption 5.3 For any strictly positive real numbers�~x;�u;�v there exist strictly positive real numbers Mand T � such thatj~xj � �~x; juj � �u; jvj � �v; T 2 (0; T �)=) maxfjFT (x; u; v)j ; jGT (x; z; u; v)j ; j�T (z)jg �M: �Then, we can state the following result:Corollary 5.4 Consider the family of systems (21),(22) and (23). Suppose that Assumption 5.3 holds andthere exist �1; �1; �1, �2; �2; �2 2 K1, �1; �1; �2 2 G,such that for any triple of strictly positive real numbers(�~x;�v ; �) there exists T � > 0 and for any T 2 (0; T �)there exist V1T : Rn ! R�0 and V2T : R2n ! R�0 suchthat for all j~xj � �~x, jvj � �v, T 2 (0; T �) we have thefollowing: �1(jxj) � V1T (x) � �1(jxj)V1T (FT (x; �T (z); v))� V1T (x)� T (��1(jxj) + �1(jx� zj) + �1(jvj) + �);�2(jx� zj) � V2T (x; z) � �2(jx� zj)V2T (FT (x; �T (z); v); GT (z; h(x); �T (z); v))� V2T (x; z)� T (��2(jx� zj) + �2(jvj) + �):Then, there exist �; �; � 2 K1 and � 2 G such that forany triple of strictly positive real numbers (e�~x; e�v ; e�)there exists eT > 0 and for any T 2 (0; eT ) there existVT : R2n ! R�0 such that for all j~xj � e�~x, jvj � e�v,T 2 (0; eT ) we have:SP-ISS: �(j~xj) � VT (x; z) � �(j~xj)VT (FT (x; �T (z); v); GT (z; h(x); �T (z); v))� VT (x; z)� T (��(j~xj) + �(jvj) + e�): �Remark 5.1 There are many variations of conditionsin Corollary 5.4 that could be used to state similar results(see [13,14]). Also, there is a small discrepancy between

the way we write conditions in the corollary and condi-tions used in [13,14]. However, it is not hard to show thatthese conditions are equivalent. For example, instead ofthe second inequality in Corollary 5.4 we could use:V1T (FT (x; �T (x+ d); v))� V1T (x)� T (��1(jxj) + �1(jdj) + �1(jvj) + �);where d is a \new disturbance" (similar conditions wereused in [13,14]). This condition states that the full statefeedback controller u = �T (x) robustly stabilizes the plant(21) in an ISS sense. Since for the controller that usesthe state estimates we can write �T (z) = �T (x+(z�x))and let d = x � z, we can see that this is the same con-dition as the one we used in the corollary. �6 Case study: two link manipulatorWe now revisit the problem of controlling a two link ma-nipulator considered in [1] (see also [2]). In particular,we illustrate how Theorem 2.1 and Corollary 5.1 maybe used to obtain a controller based on the Euler ap-proximate discrete-time model of the manipulator. Weemphasize that our results provide a rigorous frameworkfor achieving ISS via approximate discrete-time models.To illustrate advantages of our approach, we comparethe performance of this controller with the discretizedcontinuous-time controller obtained in [1].Consider a two link manipulator shown in Fig. 1, withmass of the arm M and length L, and the gripper withmassm. We denote the angle of the link and the positionof the gripper respectively as � and r. The continuous
θ

τ

m

M

r

F

Figure 1. A two link manipulatortime model of the manipulator is:(mr2 +ML2=3)�� + 2mr _r _� = �m�r �mr _�2 = F (24)We denote the state vector (� r _� _r)T as x :=(q1 q2 z1 z2)T and then write the state space model:_q1 = z1; _z1 = � 2mq2z1z2mq22 +ML2=3 + �mq22 +ML2=3 ;_q2 = z2; _z2 = q2z21 + F=m; (25)8



and the output equations y1 = z1, y2 = z2. The physi-cal parameters of the manipulator and controller are asfollows: m = 1kg, ML2 = 3kgm2, kp1 = 2, kd1 = 2,kp2 = 1, kd2 = 1 and knl = 1. A continuous-time con-troller was designed for the system (25) in [1]:�c(x;w) = �kd1z1 � kp1(q1 � q1d) (26)Fc(x;w) = �kd2z2 � kp2(q2 � q2d)� knl(q32 � q32d);where we denoted w := (q1d q2d)T . This controller ren-ders ISS for the closed-loop system (25), (26) with re-spect to the external inputs q1d and q2d. Suppose nowthat the manipulator is controlled digitally using sam-ple and zero order hold devices. One may simply usethe controller (26) with �c(t) = �c(x(k); w(k)); Fc(t) =Fc(x(k); w(k)); t 2 [kT; (k+1)T ) and implement it dig-itally. That is, F and � are constant during sampling in-tervals and the state x is measured at sampling instantskT , where k 2 N and T is the sampling period. Werefer to this controller as the emulated controller (26).It was proved in [17,36] that the sampled-data closed-loop system with the emulated controller (26) would besemiglobally practically ISS.However, as will be shown below, it may be better if onetakes the sampling into account when designing a con-troller by using a discrete-time model of the plant. Sinceit is very hard to obtain the exact discrete-time modelof the manipulator, we use instead the Euler approxi-mate discrete-time model for the controller design. TheEuler approximate model of the manipulator with sam-pling period T , when we substitute values of the physicalparameters is:q1(k + 1) = q1(k) + Tz1(k)q2(k + 1) = q2(k) + Tz2(k) (27)z1(k + 1) = z1(k) + T ��2q2(k)z1(k)z2(k)q2(k)2 + 1 + �(k)q2(k)2 + 1�z2(k + 1) = z2(k) + T �q2(k)z1(k)2 + F (k)� :denoted by eF aT (x(k); �(k); F (k)). In order to guaranteethat the controller that achieves ISS for system (27)would also achieve SP-ISS of the sampled-data system,we need to use the results Theorem 2.1. In particular, it isdirectly true that consistency condition of Theorem 2.1holds since we are using the Euler approximate model.Controllers for sampled-data nonlinear systems oftentake the following form uT (x) = PNi=0 T iui(x) (see, forinstance, [18] where the problem of feedback lineariza-tion was considered and [25] where backstepping basedon the Euler approximate model was considered). Forsimplicity, we have assumed that the controller has thefollowing form�EulerT = �c + Tu1(x); FEulerT = Fc + Tu2(x); (28)

where u1 and u2 are functions that need to be designed.In particular we would choose u1 and u2 so that we makethe �rst di�erence of V1T more negative. Although othercontroller structures and designs are possible, our choiceis guided by the fact that we want to have that the con-tinuous time and the Euler-based controllers coincide forT = 0, so that it makes sense to compare their perfor-mance. On the other hand, we can use the freedom inchoosing u1 and u2 in order to improve the behavior ofthe system. Finding a systematic controller design pro-cedure based on these ideas is an interesting topic forfurther research.We formally let the control input to be u := (u1 u2)T andusing (26), (27) and (28) we can write the approximatemodel as follows:x(k + 1) = eF aT (x(k); �(x(k); w(k)) + Tu1(k);F (x(k); w(k)) + Tu2(k))=: eF aT (x(k); u(k); w(k)); (29)which has the desirable form given by (4). If u1; u2 arebounded on compact sets we can conclude that the con-troller (28) is locally uniformly bounded and hence thethird condition of Theorem 2.1 holds.It remains to design u1 and u2 so that the ISS Lyapunovconditions for approximate model in Theorem 2.1 hold.In order to do this we apply Corollary 5.1 and Remark4.3. Let K and P be the kinetic and potential energy ofthe system K = (1+q22)z212 + 12z22 , P = q21 + 12q22 + 14q42 . Inthe same way as in [1], we let the Lyapunov functionsV1T and V2T be de�ned as:V1T = K + P; V2T = V1T + " q2z2+q1(1+q22)z1(1+q42+q21)3=4 ;where " > 0 is a su�ciently small constant (to guaranteethat V2T positive de�nite). We next consider the �rstdi�erence for V1T to compute u1 and u2, and we write�V1T = T (�2z21 � z22 + 2z1q1d + z2q2d + z2q32d)+ T 2�z1�u1 + 3 z1q22 + 1 + 0:5z31q22�+ z2�u2 + 0:5 z2z21q22 + 1 + z2 + 1:5z2q22�+ f(q; z; qd)�+O(T 3); (30)
where z := (z1 z2)T , q := (q1 q2)T . u1 and u2 are de-signed to reduce the positivity of the O(T 2) term on theright-hand side of (30) and we choose the following:u1(x) = �ke1 �3 z1q22 + 1 + 0:5z31q22� ;u2(x) = �ke2 �0:5 z2z21q22 + 1 + z2 + 1:5z2q22� ; (31)
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where the values of ke1 = 2, ke2 = 2. Substitution of(31) to (30) results in the dissipation inequality:�V1T � T (� 12 jzj2 + a1 jq1dj2 + a2 jq2dj6)+T 2(�3 z21q22+1 � 0:5z41q22 � 0:5 z22z21q22+1 � z22�1:5z22q22) + T 2f(q; z; qd) +O(T 3);where a1 and a2 are su�ciently large positive numbers.The system is SP-qISS and hence the �rst part of con-dition 1 of Corollary 5.1 holds.We now show that V2T is a SP-IOSS Lyapunov functionfor the closed-loop approximate model�V2T = T h� 2z21 � z21 + 2z1q1d + z2q2d + z2q2d3+ "z22 + 2q22z22 + z21 + q2(Fc + Tu2) + q1(�c + Tu1)(1 + q42 + q21)3=4+ 34" 4q32z2 + 2q1z1(1 + q42 + q21)7=4 (q2z2 + q1(1 + q22)z1)i+O(T 2)� T hM1(q21d + q22d + q62d)�M2 jzj2 +M3 jzj2 (32)+ " q2Fc + q1�c(1 + q42 + q21)3=4 i+O(T 2);for su�ciently small T , " and M2 and su�ciently largeM1 and M3. Substituting the controller �EulerT andFEulerT , we can write the dissipation inequality as�V2T � Tf ~M1(q21d + q22d + q62d) + ~M3 jzj2� ~M2 jzj2 � ~" q42+q21(1+q42+q21)3=4 g+O(T 2);for su�ciently small T , ~" and ~M2 and su�ciently large~M1 and ~M3. The system is SP-IOSS and hence the sec-ond part of condition 1 of Corollary 5.1 holds. Finally,since �1(s) = s22 and �2(s) = ~M3s2, it is obvious thatcondition 2 of Corollary 5.1 holds. From Corollary 5.1and Remark 4.3 we have that the closed-loop approxi-mate model (27), (28) is SP-ISS, and from the choice ofV1T and V2T the �rst condition of Theorem 2.1 holds.Hence, we have that all conditions of Theorem 2.1 aresatis�ed. Then, it follows from the conclusion of the the-orem that the exact discrete-time closed-loop system isSP-ISS. Finally, using results of [24] we conclude that theclosed-loop sampled-data system (25), (28) is SP-ISS.We present simulation results to illustrate performanceof the system when we apply the Euler-based controller(28) and the emulated controller (26). Simulation werecarried out using SIMULINK with the following simu-lation parameters T = 0:25s, x� = (0:1 0:1 0:1 0:1)T ,�d(t) = 3 square(0:5t) and rd(t) = 0. The results arepresented in Fig. 2. Fig. 2(a) shows the reference signal�d and the actual angular position of the arm �, whileFig. 2(b) shows the desired position of the gripper rdand the actual position r obtained when applying the

Euler-based controller (28). Fig. 2(c) and Fig. 2(d) arerespectively showing the response of the correspondingvariables with emulated controller (26). The simulationis carried out with a relatively large sampling period,to observe the robustness of each controller to a squarewave input. It is shown that with the given simulationset-up, Euler-based controller can still show a good per-formance with T = 0:25s. On the other hand, the trajec-tories of the system with the emulated controller (26),exhibit �nite escape times for the same simulation pa-rameters. Moreover, it is shown in Fig. 2(d) and Fig.2(e) that by reducing the time sampling into T = 0:1s,the emulation controller results in a bounded response,although the overshoot that occurs on the state r ex-ceeds the feasible range of the physical parameters of themanipulator. Reducing T further results in performancethat is closer to the continuous-time controller.
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lemma. From the Mean Value Theorem and the factthat q(�) = d�ds (�) is nondecreasing we have:�(a)� �(b) � q(a)[a� b] 8a � 0; b � 0 : (A.1)Let arbitrary strictly positive real numbers (�0x;�0u; �0)be given. Let �0x;�0u generate numbers M;T �1 via thethird condition of the lemma, so that (14) holds. Let�1 be such that maxf�(M); �(M)g[q(s + �1) � q(s)] ��02 ; 8s 2 [0; �(M) + 2maxf�(M); �(M)g]. Such �1 al-ways exists since q(�) is continuous.We de�ne�x := �0x, �u := �0u, � := minn �02q��(M) ; �1o.Let (�x;�u; �) determine T �2 > 0 and VT using the �rstcondition of the lemma, such that for all T 2 (0; T �2 ) andall jwx(x)j � �x, jwu(u)j � �u the inequalities (10)and (11) hold. Fix T � := minfT �1 ; T �2 ; 1g. In the restof the proof we always consider arbitrary T 2 (0; T �),jwx(x)j � �x and jwu(u)j � �u.Note that a direct consequence of condition 1 of thelemma and the fact that T � � 1 is:VT � maxf�(��w�(x)��); T�(jw�(x)j)� T�(jw�(x)j)� T�(jw�(u)j)� T�g (A.2)VT (FT ) � �(jw�(x)j) + �(jw�(x)j)+ �(jw�(u)j) + � : (A.3)Note �rst that � ��(��w�(x)��) � �(VT ) � � ��(jw�(x)j),which shows that (10) holds with the new boundingfunctions �0(s) = � � �(s) and �0(s) = � � �(s) andthe same measuring functions. Now we prove that (11)holds for �(VT ) with the new bounding functions andthe same measuring functions. The following two pre-liminary cases are �rst considered:1. VT (FT ) � 12VT Using the inequalities (A.1) and (A.2)and the de�nition of M and � we obtain�(VT (FT ))� �(VT )� ��12VT�� �(VT ) � q�12VT���12VT�� T2 q�12VT� � (��(jw�(x)j) + �(jw�(x)j)+ �(jw�(u)j) + �)� T2 q�12VT� � (��(jw�(x)j) + �(jw�(x)j)+ �(jw�(u)j)) + T q � �(M)2 �� T2 q�12VT� � (��(jw�(x)j) + �(jw�(x)j)+ �(jw�(u)j)) + T �04
(A.4)

2. VT (FT ) > 12VT Using the inequalities (A.1) and (11)and the de�nition of M and � we obtain�(VT (FT ))� �(VT ) (A.5)� q (VT (FT )) [VT (FT )� VT ]� Tq (VT (FT )) � (��(jw�(x)j) + �(jw�(x)j)+ �(jw�(u)j) + �) (A.6)� Tq (VT (FT )) � (��(jw�(x)j) + �(jw�(x)j)+ �(jw�(u)j)) + Tq � �(M)�� Tq (VT (FT )) � (��(jw�(x)j) + �(jw�(x)j)+ �(jw�(u)j)) + T �02 :The proof is completed by considering the followingthree cases:Case 1: �(jw�(x)j) + �(jw�(u)j) � 12�(jw�(x)j)� VT (FT ) � 12VT We use (A.4) to write:�(VT (FT ))� �(VT ) � T2 q � 12VT � � (� 12�(jw�(x)j)) +T �04� �T4 q � 12VT � � �(jw�(x)j) + T �04� VT (FT ) > 12VT We use (A.6) and the fact that q isnondecreasing to write:�(VT (FT ))� �(VT ) � Tq (VT (FT )) � (� 12�(jw�(x)j))+T �02 � �T4 q � 12VT � � �(jw�(x)j) + T �02Since q is nondecreasing, using (A.2) and the secondcondition of the lemma, the following holds for Case 1:�(VT (FT )) � �(VT )� �T4 q�12� � �(jw�(x)j)� � �(jw�(x)j) + T �02 (A.7)Case 2: �(jw�(x)j) + �(jw�(u)j) > 12�(jw�(x)j),�(jw�(x)j) � �(jw�(u)j)� VT (FT ) � 12VT We use (A.4), (10), the fact that q isnondecreasing, T � � 1 and the choice of �1 to write:�(VT (FT ))� �(VT )� T2 q�12VT� � (��(jw�(x)j) + 2�(jw�(x)j)) + T �04� �T2 q�12VT� � �(jw�(x)j) + Tq�12�(jw�(x)j)� ��(jw�(x)j) + T �04 (A.8)� �T2 q�12VT� � �(jw�(x)j) + Tq(�(jw�(x)j)+ 2�(jw�(x)j)) � �(jw�(x)j) + T �02 + T �0412



� VT (FT ) > 12VTWe use (A.6), (10), the fact that q is nondecreasing,T � � 1 and the choice of �1 to write:�(VT (FT ))� �(VT )� Tq (VT (FT )) � (��(jw�(x)j) + 2�(jw�(x)j)) + T �02� �Tq�12VT� � �(jw�(x)j) + 2Tq(�(jw�(x)j)+ 2�(jw�(x)j) + �1) � �(jw�(x)j) + T �02 (A.9)� �Tq�12VT� � �(jw�(x)j) + 2Tq(�(jw�(x)j)+ 2�(jw�(x)j)) � �(jw�(x)j) + T �02 + T �02Since q is nondecreasing, using (A.2), (A.8), (A.9),the second condition of the lemma, the condition that�(jw�(x)j) > 14�(jw�(x)j) and the de�nition of ��, thefollowing always holds for Case 2:�(VT (FT ))� �(VT )� �T2 q�12� � �(jw�(x)j)� � �(jw�(x)j)+ 2Tq � ��(jw�(x)j) � �(jw�(x)j) + T�0 (A.10)Case 3: �(jw�(x)j) + �(jw�(u)j) > 12�(jw�(x)j),�(jw�(x)j) < �(jw�(u)j)Following a similar way as in Case 2, the following alwaysholds for Case 3:�(VT (FT ))� �(VT )� �T2 q�12� � �(jw�(x)j)� � �(jw�(x)j)+ 2Tq � ��(jw�(u)j) � �(jw�(u)j) + T�0 (A.11)We have shown through these three cases that the fol-lowing holds:�(VT (FT ))� �(VT (x))� T h� 14q � 12� � �(jw�(x)j) � �(jw�(x)j)+ 2q � ��(jw�(x)j) � �(jw�(x)j)+ 2q � ��(jw�(u)j) � �(jw�(u)j) + �0i ; (A.12)which completes the proof of Lemma 4.1. �Proof of Theorem 4.1: Suppose that all conditions ofthe theorem be satis�ed. Let �1, �1, �1, �1 come fromthe condition 1 and �2, �2, �2, �2, �2 come from thecondition 2. De�ne ~q as:~q(r) := infr�s �1 � �11 (s)2(1 + �2(s)) ; (A.13)

where 1 comes from the third condition of the theorem.Notice that ~q is by de�nition a nondecreasing function.Condition 4 of the theorem implies ~q(r) > 0 for all r > 0.Let q(s) := ~q � ��1�2 (s), where ��2 is de�ned in Lemma4.1. Using q(�) we de�ne �(�) via (13). Let � generate viaLemma 4.1 the new bounding functions �02, �02, �02, �02,�02.Let arbitrary strictly positive real numbers (�x;�u; �)be given. Let (�x;�u; �2 ) generate via condition 1 thenumber T �1 and V1T . Let (2(�x); 3(�u); �2 ) generatevia condition 2 and Lemma 4.1 the number T �2 and�(V2T ). Let T � = minfT �1 ; T �2 g and de�ne now VT as(15). Let wx(x) := wx1(x) and wu(u) := wu1 (u). Weconsider now arbitrary jwx(x)j � �x, jwu(u)j � �u andT 2 (0; T �). Note that this implies via condition 3 of thetheorem that wx2(x) � 2(�x) and wu2(x) � 3(�u).First, it follows from the de�nition of VT that�1(��w�1(x)��) + � � �2(��w�2(x)��) � VT (x)� �1(jw�1(x)j) + � � �2(jw�2(x)j) : (A.14)Then by Remark A.1, there exist �; � 2 K1 such that�(��w�1(x)��+ ��w�2(x)��) � VT (x)� �(jw�1(x)j + jw�2(x)j) : (A.15)Using condition 4 of the theorem, the dissipation in-equality for VT can be written as:VT (FT )� VT (x)= V1T (FT )� V1T + �(V2T (FT ))� �(V2T )� T h�1(jw�1(u)j) + �02(jw�2(u)j) + �2 � �1(jw�1(x)j)+ �02 � 1(jw�1(x)j)� �02(jw�2 (x)j) + �2 i� T h�1(jw�1(u)j) + �02(jw�2(u)j) + �2 � �1(jw�1(x)j)+ �1(jw�1(x)j)�2 � 1(jw�1(x)j)2(1 + �2 � 1(jw�1(x)j)) � �02(jw�2(x)j) + �2 i:Since �2(s)1+�2(s) � 1 ; 8s � 0, by monotonicity of q(�) andusing Remark A.1, there exist � 2 K1 and � 2 K sothat we can writeVT (FT )� VT (x) � �T�(jw�1(x)j + jw�2(x)j)+ T�(jw�1(u)j+ jw�2(u)j) + T� : (A.16)This completes the proof of Theorem 4.1. �Proof of Theorem 4.2: Suppose that all conditions ofthe theorem are satis�ed. Let �1, �1, �1, �1 come fromthe condition 1 and �2, �2, �2, �2, �2 come from the13



condition 2. De�ne a function �01 2 K1 as follows�01(s) := ��1(s) for small s;�2 � 1(s) for large s ; (A.17)where 1 comes from the third condition of the theorem.It is clear that �01(s) = O[�1(s)] for s ! 0+. Hence,by Lemma 2 of [31], there exists ~q1 2 SN such that~q1(s) ��1(s) � �01(s). Further, de�ne a function �02(s) :=12�01 � �11 (s) and note that �02 2 K and it is clear that�2(s) = O[�02(s)] for s! +1. Then by Lemma 1 of [31],there exists ~q2 2 SN such that ~q2(s) � �2(s) � �02(s).Let q1(s) := 4~q1 � ��11 � ��11 (2s) and q2(s) := 12 ~q2 ���1�2 (s), where ��2 is given in Lemma 4.1. We use q1 andq2 respectively to de�ne �1 and �2, and then let (q1; �1)and (q2; �2) respectively generate via Lemma 4.1 newbounding functions �01, �01, �01, �01 and �02, �02, �02, �02.Let arbitrary strictly positive real numbers (�x;�u; �)be given. Let (�x;�u; �2 ) generate via item 1 of thetheorem and Lemma 4.1 T �1 and �1(V1T ) and let(2(�x); 3(�u); �2 ) generate via item 2 of the theoremand Lemma 4.1 T �2 and �2(V2T ). Let T � := minfT �1 ; T �2 g.We now de�ne VT as (17). Let wx(x) := wx1(x) andwu(u) := wu1 (u). In all calculations below we con-sider arbitrary jwx(x)j � �x, jwu(u)j � �u andT 2 (0; T �). Note that this implies jwx2(x)j � 2(�x)and jwu2(x)j � 3(�u).It follows from the de�nition of VT that�1 � �1(��w�1(x)��) + �2 � �2(��w�2(x)��) � VT (x)� �1 � �1(jw�1(x)j) + �2 � �2(jw�2(x)j) : (A.18)Then by Remark A.1, there exist �; � 2 K1 such that(A.15) holds. Using condition 3 of the theorem and thede�nition of �02, we have:VT (FT )� VT (x)= �1(V1T (FT ))� �1(V1T ) + �2(V2T (FT ))� �2(V2T )� T h� �01(jw�1(x)j) + �01(jw�1 (u)j) + �2� �02(jw�2(x)j) + �02 � 1(jw�1(x)j)+ �02(jw�2(u)j) + �2 i� T h� �02(jw�2(x)j)� 12�01(jw�1(x)j)+ �01(jw�1(u)j) + �02(jw�2(u)j) + �i :Finally, using Remark A.1, there exist � 2 K and � 2K1 thatVT (FT )� VT (x) � T h�(jw�1(u)j+ jw�2(u)j)��(jw�1(x)j + jw�2(x)j) + �i:This completes the proof of Theorem 4.2. � 14


