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Abstract— A novel approach to solve a stabilization problem
of an active suspension system using a quarter car model
is presented. We apply a combination of our results for the
framework of the approximate based direct discrete-time design
and the Euler based discrete-time backstepping technique. This
stabilization problem is very interesting since utilizing a simple
quadratic Lyapunov function brings the system into a LaSalle
type stability, which makes the design more complicated. To
handle this problem, we use our result on changing supply
rates lemma for LaSalle type stability condition, to construct a
composite Lyapunov function that can be used for the design
within our framework.

I. INTRODUCTION

Most control systems nowadays are sampled-data in na-
ture. A controller is usually implemented digitally and it is
inter-connected with a continuous-time plant via ADC and
DAC. In this paper, we study the problem of stabilizing an
active suspension system, which is used to enable a car to run
smoothly on a rough road for comfortable driving. Presently,
active suspension systems are controlled using a hydraulic
controller. In view of space limitation in a vehicle, it is
most appropriate to use digital device to control the active
suspension system, as it requires much less space. Since the
active suspension module itself is a mechanical - therefore
analog - plant, designing a digital controller for this system
is a sampled-data system design.

Recently, a general uni£ed framework for controller design
based on approximate discrete-time models was presented in
[10] and further generalized in [7] for the input to state stabi-
lization problem. In particular, the results provide suf£cient
conditions for the continuous-time plant model, the controller
and the approximate discrete-time model, to guarantee that
the controller input-to-state stabilizes the exact discrete-time
plant model, provided it stabilizes the approximate discrete-
time plant model.

We design a discrete-time controller to asymptotically
stabilize the active suspension system, using the Euler based
backstepping technique [9]. Backstepping is a popular tech-
nique in nonlinear control design (see [4]). It is then shown
that the Euler based discrete-time controller outperforms the
emulation controller. This active suspension design problem
is very interesting and motivating since the system enjoys
a LaSalle type stability when using a simple quadratic Lya-
punov function. In [3], where continuous-time stabilization
for the same system was considered, stability analysis was
done using LaSalle’s invariance principle. Unfortunately,

LaSalle’s invariance principle is in most cases not applicable
when approximate based discrete-time design is used, since
semiglobal type of stability is usually achieved. In this situ-
ation, we apply our result from [6] to construct a composite
Lyapunov function that can be used to characterize stability
property of the system.

II. PRELIMINARIES

The set of real and natural numbers (including 0) are
denoted respectively by R and N. SN denotes the class of
smooth nondecreasing functions q : R≥0 → R≥0, which
satisfy q(t) > 0 for all t > 0. A function γ : R≥0 → R≥0 is
of class G if it is continuous, nondecreasing and zero at zero.
It is of class K if it is of class G and strictly increasing; and it
is of class K∞ if it is of class K and unbounded. Functions of
class K∞ are invertible. A function β : R≥0×R≥0 → R≥0 is
of class KL if β(·, t) is of class K for each t ≥ 0 and β(s, ·)
is decreasing to zero for each s > 0. Given two functions
α(·) and γ(·), we denote their composition and multiplication
respectively as α ◦ γ(·) and α(·) · γ(·).

We consider a parameterized family of discrete-time non-
linear systems of the following form:

x(k + 1) = FT (x(k), u(k)), y(k) = h(x(k)) , (1)

where x ∈ Rn, u ∈ Rm, y ∈ Rl are respectively the state,
input and output of the system. Note that the input u can be
a control signal or an exogenous disturbance. It is assumed
that FT is well de£ned for all x, u and suf£ciently small
T , FT (0, 0) = 0 for all T for which FT is de£ned, h(0) =
0 and FT and h are continuous. T > 0 is the sampling
period, which parameterizes the system and can be arbitrarily
assigned. The following de£nitions are used to state results
presented later in this section.

De£nition 2.1: The system (1) is semiglobally practically
input-output to state stable (SP-IOSS), if there exist functions
α, α, α ∈ K∞, and λ, σ ∈ G, and for any triple of strictly
positive real numbers (∆x, ∆u, ν), there exists T ∗ > 0 and
for all T ∈ (0, T ∗) there exists a smooth function VT : Rn →
R≥0 such that for all |x| ≤ ∆x, |u| ≤ ∆u the following
holds:

α(|x|) ≤ VT (x) ≤ α(|x|) (2)

VT (FT (x, u))− VT (x) ≤ −Tα(|x|) + Tλ(|y|)

+ Tσ(|u|) + Tν . (3)



The function VT is called a SP-IOSS Lyapunov function. If
the system is SP-IOSS with λ = 0, we say that the system
is semiglobally practically input to state stable (SP-ISS) and
VT is called a SP-ISS Lyapunov function. If λ = 0 and the
system (1) is an input-free system (σ = 0), the system is
semiglobally practically asymptotically stable (SP-AS) and
VT is called a SP-AS Lyapunov function. Moreover, for SP-
ISS, if the argument of α(·) is the norm of the output y, which
consists of only partial states, we have semiglobal practical
quasi ISS (SP-qISS). ¥

De£nition 2.2: [9] Let T̂ > 0 be given and for each T ∈
(0, T̂ ) let the functions VT : Rn → R≥0 and uT : Rn → R
be de£ned. We say that the pair (uT , VT ) is a semiglobally
practically asymptotically (SPA) stabilizing pair for FT if
there exist α, α, α ∈ K∞, such that for any pair of strictly
positive real numbers (∆, ν) there exists a triple of strictly
positive real numbers (T ∗, L,M), with T ∗ ≤ T̂ , such that
for all x, z ∈ Rn with max{|x| , |z|} ≤ ∆, and T ∈ (0, T ∗)
we have:

α(|x|) ≤ VT (x) ≤ α(|x|) (4)

VT (FT (x, u))− VT (x) ≤ −Tα(|x|) + Tν. (5)

|VT (x)− VT (z)| ≤ L |x− z| (6)

|uT (x)| ≤M . (7)

¥

III. DESIGN TOOLS

A. Framework for approximate based direct discrete-time
design

In this subsection we present a result from [7] on input
to state stabilization via approximate discrete-time models.
Consider a continuous-time nonlinear plant

ẋ(t) = f(x(t), u(t), w(t)), y(t) = h(x(t)) , (8)

where x ∈ Rnx , u ∈ Rm, w ∈ Rp and y ∈ Rl are
respectively the state, control input, disturbance and output.

We assume that for any given x0, u(·) and w(·) the
differential equation in (8) has a unique solution de£ned
on its maximal interval of existence [0, tmax). This may be
guaranteed, for instance, by requiring f in (8) to be locally
Lipschitz. The control is taken to be a piecewise constant
signal u(t) = u(kT ) =: u(k), ∀t ∈ [kT, (k + 1)T ), k ∈ N,
where T > 0 is the sampling period, and we suppose that the
disturbance w(·) is constant during sampling intervals, that
is w(t) = w(k),∀t ∈ [kT, (k + 1)T ). We assume that some
combination (output) or all of the states (x(k) := x(kT )) are
available at sampling instant kT, k ∈ N. The exact discrete-
time model for the plant (8), which describes the plant
behavior at sampling instants kT , is obtained by integrating
the initial value problem

ẋ(t) = f(x(t), u(k), w(t)) , (9)

with given w(k), u(k) and x0 = x(k), over the sampling
interval [kT, (k+1)T ]. If we denote by x(t) the solution of
the initial value problem (9) at time t with given x0 = x(k),
u(k) and w(k), then the exact discrete-time model of (8) can
be written as:

x(k + 1) = x(k) +

∫ (k+1)T

kT

f(x(τ), u(k), w(k))dτ

=: F e
T (x(k), u(k), w(k)) . (10)

Since F e
T is not known in most cases (see [7]), we use an

approximate discrete-time model of the plant

x(k + 1) = F a
T (x(k), u(k), w(k)) . (11)

to design a discrete-time controller for the original plant (8).
For instance, the Euler approximate model is x(k + 1) =
x(k) + Tf(x(k), u(k), w(k)).

We consider a family of dynamic feedback controllers

z(k + 1) = GT (x(k), z(k))

u(k) = uT (x(k), z(k)) ,
(12)

where z ∈ Rnz . We emphasize that if the controller (12)
input to state stabilizes the approximate model (11) for all
small T , this does not guarantee that the same controller
would input to state stabilize the exact model (10) for all
small T (see [1], [2], [10]). The following result provides
a framework for controller design via approximate discrete-
time models.

Theorem 3.1: [7] Suppose that there exist α, α, α ∈ K∞
and σ ∈ K, and for any strictly positive real numbers
(∆1,∆2,∆3, ν) there exist % ∈ K∞, strictly positive real
numbers T ∗, L, M such that for all T ∈ (0, T ∗) there
exists a function VT : Rnx+nz → R≥0 such that for
all |(x, z)| ≤ ∆1, |u| ≤ ∆2, |w| ≤ ∆3, T ∈ (0, T ∗)
we have: 1. SP-ISS Lyapunov conditions for closed-loop
approximate; 2. consistency between F a

T and F e
T ; 3. uniform

local boundedness of uT (see [7] for detail de£nitions). Then,
there exists β ∈ KL, γ ∈ G such that for any strictly positive
real numbers (∆̃1, ∆̃2, ν̃) there exists T̃ > 0 such that for
all |(x(0), z(0))| ≤ ∆̃1, ‖w‖∞ ≤ ∆̃2 and T ∈ (0, T̃ ) the
solutions of (10), (12) satisfy SP-ISS of closed-loop exact.¥

We emphasize that the consistency condition in Theorem
3.1 is checkable although F e

T is not known in general.
De£nitions and lemmas that give suf£cient conditions for
consistency condition are stated in [7].

B. Euler based discrete-time backstepping design

In this subsection, a result from [9] is cited. The Euler
model is used, since it preserves the strict feedback structure
of the plant that is needed for a backstepping design and it
satis£es the consistency property required by Theorem 3.1.

Consider a continuous-time plant of the strict feedback
form:

ẋ = f(x) + g(x)ξ (13)

ξ̇ = u . (14)



The Euler approximate model of (13),(14) is:

x(k + 1) = x(k) + T (f(x(k)) + g(x(k))ξ(k)) (15)

ξ(k + 1) = ξ(k) + Tu(k) . (16)

Under certain properties and conditions (see [9]), there
exists a SPA stabilizing pair (uT , VT ) for the Euler model
(15),(16). In particular, we can take:

uT = −c(ξ − αT (x))−
∆̃WT

T
+

∆αT

T
, (17)

where c > 0 is arbitrary, ξ = αT (x) asymptotically stabilizes
(13) and

∆αT = αT (x+ T (f + gξ))− αT (x) (18)

∆̃WT =

{
∆WT

(ξ−αT (x))
, ξ 6= αT (x)

T ∂WT

∂x (x+ T (f + gξ))g, ξ = αT (x)
(19)

∆WT = WT (x(k + 1))−WT (x+ T (f + gαT )) (20)

and the Lyapunov function VT = WT + 1
2 (ξ − αT (x))

2.

C. A LaSalle criterion for SP-ISS

The result from [6] on changing supply rates for SP-ISS
discrete-time systems, provides a recipe for constructing a
composite Lyapunov function to solve LaSalle type stability
problem in sampled-data system. Consider the system (1).
Using Corollary 5.1 of [6], we show that if the functions
V1T : Rn → R≥0 and V2T : Rn → R≥0 are respectively
a SP-qISS Lyapunov function and a SP-IOSS Lyapunov
function of the system (1), and

lim sup
s→+∞

λ2(s)

α1(s)
< +∞, (21)

Then, the function VT : Rn → R≥0 that satis£es

VT = V1T + ρ(V2T ) . (22)

where ρ(s) :=
∫ s
0
q(τ)dτ , with q ∈ SN and ρ ∈ K∞, is a

SP-ISS Lyapunov function of the system (1).

IV. CONTROL OF AN ACTIVE SUSPENSION SYSTEM

A. Car suspension system modeling

We use the quarter car model as the mathematical descrip-
tion of the suspension system, following the model used
in [3]. The schematic diagram of the model is shown in
Figure 1. In this model, the suspension actuator is taken to
be a force actuator acting between the car body (the sprung
mass) and the axle of the car. The tire is an ideal, undamped
spring between the axle and the ground. Finally, the axle and
wheel assemblies are represented as a mass (the unsprung
mass) connected to the ground via the tire spring. As shown
in Figure 1, the suspension force also reacts against the
unsprung mass.
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Fig. 1. The quarter car suspension model

A linear time invariant dynamic model of the system is
represented as follows:

ẋ1 = x2 − d, ẋ3 = −x2 + x4

ẋ2 = −ω2x1 + ρu, ẋ4 = −u
(23)

where x1 - tire de¤ection (m), x2 - unsprung mass velocity
(m/sec), x3 - suspension de¤ection (m) and x4 - sprung
mass velocity (m/sec). The parameter ω is the unsprung
mass natural frequency, ρ is the sprung to unsprung mass
ratio and assume that the travel limit of the suspension is
±D. In other words, as long as the suspension de¤ection x3
satis£es −D < x3 < D, the suspension will not bottom out.
Following [3], we use the parameters ω = 2π · 10 rad/sec,
ρ := ms/mus =10, D =0.1 m.

B. Discrete-time backstepping controller design

To obtain a strict feedback form, the state equations are
reordered using the following diffeomorphism:

z1 = x1 +
ρ

ρ+1x3, z3 = x3
z2 =

1
ρ+1x2 +

ρ
ρ+1x4, z4 = −x2 + x4

The model is then rewritten in the following form

ż1 = z2 − d (24)

ż2 = −
ω2

ρ+ 1
z1 +

ρω2

(ρ+ 1)2
z3 (25)

ż3 = z4 (26)

ż4 = ω2z1 −
ρω2

ρ+ 1
z3 − (1 + ρ)u = ũ (27)

The Euler model of the system in a strict feedback form
is written as follow:

z1(k + 1) = z1(k) + T (z2(k)− d) (28)

z2(k + 1) = z2(k) + T (
−ω2z1(k)

ρ+ 1
+

ρω2z3(k)

(ρ+ 1)2
) (29)

z3(k + 1) = z3(k) + Tz4(k) (30)

z4(k + 1) = z4(k) + T (ω2z1(k)−
ρω2z3(k)

ρ+ 1

− (1 + ρ)u(k)) = z4(k) + T ũ(k) (31)

In the design, the disturbance d is taken to be zero, which
is a reasonable approach since the disturbances affecting the
system are nearly impulsive and thus correlate to nonzero



initial conditions. Therefore, the problem is simpli£ed to an
asymptotic stabilization problem. We follow similar design
steps to those done in [3], applying the Euler based back-
stepping design [9] as cited in Subsection 3.2. Due to space
limitation, some trivial steps are omitted.
Step 1: From the continuous-time model, it can be seen that
if z3 ≡ 0, then subsystem (28), (29) is marginally stable.
We design a virtual feedback control law z3d(z1, z2) which
is bounded between −D and D and renders the origin of
the closed-loop (z1, z2) subsystem SP-AS. A control that
satis£es this is

z3d = −D tanh(
k1z2
D

), k1 > 0 . (32)

Unfortunately, the candidate Lyapunov function

V0T1
(z1, z2) =

1

2

ω2

ρ+ 1
z21 +

1

2
z22 , (33)

which was used in the continuous-time design [3], gives

∆V0T1
≤ −TMz2 tanh(z2) + Tν01 (34)

with z3 = z3d, which is negative semide£nite with small
offset ν01 > 0.

While we can apply LaSalle Invariance Principle for
the continuous-time case, we cannot do the same for the
sampled-data design when semiglobal stability condition
occurs. The Euler based backstepping [9] we use does not
facilitate this condition, and the candidate Lyapunov function
V0T1

does not satisfy the £rst condition of Theorem 3.1. To
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Fig. 2. Surface plots for V0T1
(l) and ∆V0T1

(r), with T = 0.001 sec.

solve this problem, we apply Corollary 5.1 of [6] to construct
a SP-AS Lyapunov function for subsystem (28), (29). It has
been shown earlier that V0T1

(z1, z2) is in fact a SP-qISS
Lyapunov function for the subsystem. The surface plots of
V0T1

and ∆V0T1
are shown in Figure 2.

To show that the subsystem is SP-AS, we introduce
another function

V0T2
(z1, z2) =

1

2

ω2

ρ+ 1
z21 +

1

2
z22 + ε

z1z2
(1 + z21)

3/4
. (35)

For small sampling period T > 0 and small ε > 0, the
Lyapunov difference of ∆V0T2

satis£es

∆V0T2
≤ −TMz2 tanh(z2)− TM1z

2
1

+ TM3(z
2
2 + tanh2(z2)) + Tν02

(36)

with some M,M1,M3 > 0. Hence, V0T2
is a SP-IOSS

Lyapunov function for the £rst two subsystems.
From (34) and (36), it is obvious that the condition (21)

is satis£ed, and hence all conditions of Corollary 5.1 of [6]
holds. Hence, we can conclude that for some ρ ∈ K∞, the
function V0Ta

that satis£es

V0Ta
= V0T1

+ ρ(V0T2
) (37)

is a SP-AS Lyapunov function for the £rst two subsystems.
The surface plots of V0T2

and ∆V0T2
are shown in Figure

3. Suppose we are given a set of initial conditions, such
that the SP-AS property of the subsystem (28), (29) is
guaranteed with T = 0.001 sec. For a £x ε = 0.1, choosing
an appropriate ρ ∈ K∞, then we can use formula (37) to
combine Figure 2 and Figure 3 after scaling V0T2

with the
function ρ, to show the SP-AS Lyapunov surface V0Ta

and
the SP-AS difference ∆V0Ta

of the subsystem (28), (29), for
the given set of initial conditions. Choosing ρ(·) = Id(·)
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Fig. 3. Surface plots for V0T2
(l) and ∆V0T2

(r), with T = 0.001 sec
and ε = 0.1.

results in a Lyapunov function

V0Ta
= V0T1

+ V0T2
(38)

for the subsystem (28), (29), and we can immediately see that
with z3 = z3d the Lyapunov difference ∆V0Ta

= ∆V0T1
+

∆V0T2
is negative de£nite and hence the subsystem (28),

(29) is SP-AS.
Remark 4.1: We emphasize that choosing ρ = Id in our

case is possible since we are dealing with a semiglobal
practical property. The V0Ta

obtained does not hold globally,
because of the saturation coming from the tanh function
in z3d. We also have to choose a small ε to guarantee that
∆V0Ta

does not become positive for quite large z2. ¥

To continue the design procedure, for the purpose of
simpler computation, we choose to use

V0T =
1

2
V0Ta

=
1

2
(V0T1

+ V0T2
) , (39)

since it is allowable to scale a Lyapunov function with a
constant. We also £x ε = 0.1 in this design. It is obvious
that V0T satis£es the £rst condition of Theorem 3.1.



Step 2: We de£ne ξ1 = z3− z3d(z2) and denote ξ2 := ξ̇1 to
obtain the following third order Euler model:

z1(k + 1) = z1 + Tz2

z2(k + 1) = z2 + T

(
−

ω2

ρ+ 1
z1 +

ρω2

(ρ+ 1)2
(z3d + ξ1)

)

ξ1(k + 1) = ξ1 + Tξ2 . (40)

Using a candidate Lyapunov function

V1T (z1, z2, ξ1) = V0T (z1, z2) + k2
ξ21
2
, k2 > 0 (41)

and choosing the stabilizing controller as

ξ2d = −
1

k2

ρω2

(ρ+ 1)2
(z2 +

εz1
(1 + (z1 + Tz2)2)3/4

)− k3ξ1,

with k3 > 0, we have

∆V1T = ∆V0T |z3d
− Tk2k3ξ

2
1 + Tν1 , (42)

which is negative de£nite with a small offset ν1 > 0. Hence,
the equilibrium (z1, z2, ξ1) = (0, 0, 0) is SP-AS. Since
z3d(0) = 0 we can conclude that the origin (z1, z2, z3) =
(0, 0, 0) is also SP-AS.
Step 3: Backstepping ξ2 through an integrator results in the
dynamical system, whose Euler model can then be written
as follow:

z1(k + 1) = z1 + Tz2

z2(k + 1) = z2 + T (−
ω2

ρ+ 1
z1 +

ρω2

(ρ+ 1)2
(z3d + ξ1))

ξ1(k + 1) = ξ1 + Tξ2 (43)

ξ2(k + 1) = ξ2 + T ˜̃u .

At this step, we consider a candidate Lyapunov function

V2T (z1, z2, ξ1, ξ2) = V1T (z1, z2, ξ1) +
k4
2
(ξ2 − ξ2d)

2 ,

with k4 > 0. We apply the formula (17) to obtain ˜̃uT using
the following terms:

αT =
−ρω2

k2(ρ+ 1)2
(z2 +

εz1
(1 + (z1 + Tz2)2)3/4

)− k3ξ1

WT =
k2
2k4

ξ21 ,

(it turns out that αT := ξ2d) and get

∆αT

T
=

ξ2d(k + 1)− ξ2d(k)

T

= −
1

k2

ρω2

(ρ+ 1)2

(
ζ2 +

εz1
(1 + (z1 + 2Tz2 + T 2ζ2)2)3/4

)

−
1

k2T

ρω2

(ρ+ 1)2
εz1

(
1

(1 + (z1 + 2Tz2 + T 2ζ2)2)3/4

−
1

(1 + (z1 + Tz2)2)3/4

)
− k3z4

−
1

T
k3D(tanh(z2 + Tζ2)− tanh(z2)) , (44)

where ζ2 := −
ω2

ρ+1z1 +
ρω2

(ρ+1)2 z3, and

∆WT = V +1T (ξ1 + Tξ2)− V +1T (ξ1 + Tξ2d)

=
k2
2k4

(2Tξ1ξ2 − 2Tξ1ξ2d + T 2ξ22 − T 2ξ22d).

Moreover, using (19) we have

∆̃WT

T
=

k2
k4

ξ1 +
k2T

2k4
(ξ2 + ξ2d) . (45)

Hence, we obtain ˜̃u = ˜̃uT by substituting (44),(45) to

˜̃uT = −
k5
k4

(ξ2 − ξ2d)−
∆̃WT

T
+

∆αT

T
, k5 > 0. (46)

It can be shown that implementing ˜̃uT to the system results in
∆V2T negative de£nite with small offset ν2 > 0. This means
that the equilibrium (z1, z2, ξ1, ξ2) = (0, 0, 0, 0) is SP-AS.
Since z3d(0) = 0, then the origin (z1, z2, z3, z4) = (0, 0, 0, 0)
is also SP-AS.

We have seen earlier that V1T satis£es the SP-ISS (in this
case SP-AS) Lyapunov condition of Theorem 3.1. It is then
obvious that with V2T that the £rst condition of Theorem
3.1 still holds.
Step 4: Following exactly as in the continuous-time design,
the resulting control law u = uT that SPA stabilizes the Euler
model (28)-(31) has form

uT =
1

ρ+ 1
(−˜̃uT −∆ζ3d + ω2x1) (47)

with ∆ζ3d := z̈3d. Finally, by substituting the appropriate
terms, we have uT as a nonlinear control law parameterized
by the sampling period T and £ve positive tuning parameters
k1, k2, k3, k4 and k5.

Expanding uT in series representation, we can show that
uT satis£es the third condition of Theorem 3.1. Since all
conditions of Theorem 3.1 hold, we can guarantee that uT
SPA stabilizes the closed-loop approximate model, and also
stabilize the closed-loop exact model. We further use results
from [8], to conclude the SP-AS for the sampled data system
(23), (47).

C. Comparing the Euler-based controller with the Emula-
tion controller

We have designed a discrete-time backstepping controller
(47) that SPA stabilizes the active suspension system. Now,
we implement the controller (47), and observe the perfor-
mance of the closed-loop sampled-data system with the
designed controller, and compare it with a controller that
has form:

u =
1

ρ+ 1
(−˜̃u−∆ζ3d + ω2x1) (48)

where ˜̃u = ∆ξ2d −
k2ξ1
k4
− k5

k4
(ξ2 − ξ2d) , with ∆ξ2d := ξ̇2d.

The controller (48) is obtained via emulation design, by hold-
ing the continuous control constant during every sampling



period (using zero order hold). By applying Corollary 5.1 of
[5], we can show that the discrete-time emulation controller
(48) also SPA stabilizes the continuous-time plant (23).

We study the condition when there are small offsets to the
initial states, in other words, when allowing nonzero initial
states. We observe the responses of the system to bumps
of different heights and compare the performance of each
controller. The shape of the isolated bump 1 is chosen to be
in the form that gives rise to the following velocity input:

d(t) =





0, t ≤ 0

10πA sin(20πt), 0 < t ≤ 0.1

0, t > 0.1.

(49)

We £rst run the Simulation Road-1 (see Figure 4), when
setting T = 0.001 sec, initial states (0.01 0 0.01 0)T and
bump height A = 0.01 m.
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Fig. 4. Simulation Road-1 for a low bump condition, · · · emulation and
Euler.

In Simulation Road-2 (see Figure 5), we set A = 0.1
meter, which is considered as a high bump. We set T = 0.001
sec and initial states (0.01 0 0.01 0)T .

From the two sets of simulation, we see that the system
can always achieve better performance with the Euler based
controller than with the emulation controller.
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