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Abstract

Input-to-state stability (ISS) of a parameterized fam-
ily of discrete-time time-varying nonlinear systems is
investigated. A converse Lyapunov theorem for such
systems is developed. We consider parameterized
families of discrete-time systems and concentrate on
a semiglobal practical property that naturally arises
when an approximate discrete-time model is used to
design a controller for a sampled-data system. Ap-
plication of our main result to time-varying periodic
systems is presented. This is then used to design a
semiglobal practical ISS (SP-ISS) control law for the
model of a wheeled mobile robot.

Keywords: Converse Lyapunov theorem; Time-
varying; Discrete-time; Input-to-state stability; Non-
linear systems.

1 Introduction

The prevalence of computer controlled systems and the
fact that nonlinearities that arise naturally in most
plants dynamics often cannot be neglected in con-
troller design, have driven people to study and in-
vestigate nonlinear sampled-data control systems. A
framework for discrete-time controller design via ap-
proximate models of the plant has been proposed in
[16]. Within this framework, a parameterized family
of discrete-time models of the plant is used to perform
the controller design, aiming at stabilizing the origi-
nal continuous-time plant. As indicated in [16], time-
invariant models that are usually used in design are
often not adequate in practice. There is a class of con-
trollable nonlinear systems that may not be stabiliz-
able using time-invariant control, but there exist time-
varying controls to stabilize such systems [2, 21]. Since
there are many systems in applications that belong to
this class, the stabilization problem using time-varying
control has become an important topic of study. In
[19], a systematic design of time-varying controllers for
a class of controllable systems without drift has been
proposed. Stabilization using sinusoids for nonholo-
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nomic systems in power form was studied in [26]. A
number of more recent work were based on these early
results, e.g. [4] that studied exponential stabilization
using Lyapunov approach, [12] in which exponential
stabilization for homogeneous systems were thoroughly
investigated.

Among the results that are available in the literature,
there is hardly any that considered input-to-state sta-
bilization using time-varying control. Input-to-state
stability (ISS) is a type of robust stability for nonlin-
ear systems with inputs (see [20, 22]). Indeed, ISS
is very important, especially when dealing with sys-
tems in the presence of disturbances. The first papers
presenting Lyapunov characterization of ISS for time-
varying nonlinear systems are [3, 10]. The authors of
[15] have studied the problem in a different way, using
the averaging technique as the main tool. All the men-
tioned work considered continuous-time systems. To
the best of the authors knowledge, the only results on
discrete-time systems are given in [6, 14], where asymp-
totic stability for discrete-time time-varying systems is
studied. In [5], the same authors have used the results
of [6] to prove a converse Lyapunov theorem for ISS
for discrete-time time-invariant systems.

The importance of ISS and the scarcity of existing
results considering this property in the context of
discrete-time time-varying systems, have motivated
the authors to study the Lyapunov characterization
of ISS in a semiglobal practical sense, for discrete-time
time-varying systems. We consider a general parame-
terized family of discrete-time time-varying nonlinear
systems, which commonly appears when performing
sampled-data control design as discussed in [16]. Our
main result is a converse Lyapunov theorem that can
be seen as a discrete-time counterpart of the result of
[3], at the same time as a generalization of the results
of [5, 6]. We also present an application of our main
result to time-varying periodic systems and use this to
design a SP-ISS controller of a mobile robot [7, 19].

The paper is organized as follows. In Section 2, we
present preliminaries, to introduce notation and defi-
nitions. The main result is given in Section 3. Section
4 is dedicated to an application followed by example.
The paper is concluded with a summary in Section 5.



2 Preliminaries

The sets of real and natural numbers (including 0)
are denoted by R and N, respectively. A function
v :R>g — Rxg is of class K if it is continuous, strictly
increasing and zero at zero. It is of class Ko if it is of
class K and unbounded. Functions of class K, are in-
vertible. A continuous function 3 : R>g x R>g — Rx>¢
is of class-KL if B(-,7) is of class-K for each 7 > 0
and (s, ) is decreasing to zero for each s > 0. Given
two functions «(-) and ~y(:), we denote their compo-
sition and multiplication by a o () and «(-) x v(-),
respectively.

In this paper, we consider a general parameterized fam-
ily of discrete-time systems with input:

2(k +1) = Fp(k, z(k),d(k)) , (1)

where x € R", d € R™ are respectively the states and
exogenous inputs to the system, and the parameter
T > 0 is the sampling period. Systems having the
form (1) commonly appear as a result of discretizing a
nonlinear system

&= f(t,x(t),d(t)) , (2)

and letting the sampling period T as a free parame-
ter to be chosen. Assume that f is locally Lipschitz
and f(0,0,0) = 0. Without loss of generality, we may
assume the same conditions for Fr.

For any inputs d : N — R™, we define ||d|
supyen [d(k)|. We use the notation Uz, for the set of
inputs d such that ||d||, < 1. We define z, := z(k.),
ko := k(0) > 0, and Id for the identity function, i.e.
Id(s) = s, and for any function or variable h we use
the simplified notation h(k,-) := h(kT),-).

We emphasize that, for nonlinear systems, the ex-
act discrete-time model Fi%(k, z(k), d(k)) is usually not
known, since it requires solving a nonlinear initial value
problem which is almost impossible in general (see
[13] for more details). Throughout the paper, we as-
sume that (1) is obtained by approximating the exact
discrete-time model of (2). As a result of the approx-
imation, there is a mismatch between the exact and
the approximate solutions of the system. To guaran-
tee that (1) is a good discrete-time approximate model
of (2), we assume that Frp satisfies the following con-
sistency property that is used to limit the mismatch.

Definition 2.1 (One-step consistency) [13] The
family of approximate discrete-time models Fr is said
to be one-step consistent with the exact discrete-time
models F7. if given any strictly positive real numbers
Ay, Ay, there exist a function 0 € Koo and T* > 0
such that

|F — Fr| < To(T) (3)

holds for all k > ko, T € (0,T%), all |zo] < Ag,
dlloe < Aa- u

The one-step consistency property is commonly used
in numerical analysis literature (see for instance [9,
13, 17, 25]). We emphasize that although F¥ is not
known, the consistency property is checkable. Condi-
tions that can be used to check this property for nonlin-
ear time-invariant systems are presented in [13], which
are extendable to use for nonlinear time-varying sys-
tems. Moreover, since we consider a semiglobal prop-
erty, we assume that Fj and Fr are globally defined
for small T

We will use the following definitions and technicalities
to construct and prove our main results. Note that
these definitions are modifications of those given in [5,
6].

Definition 2.2 (Semiglobal practical ISS) The
family of systems (1) is semiglobally practically input-
to-state stable (SP-ISS) if there exist B € KL and
v € IC, such that for any strictly positive real numbers
A, Ag, 6, there exists T* > 0 such that the solutions
of the system satisfy

(K, ko, 7o, d)| < B(|zo|, (k = ko)T) +y(lldll o) +9

(4)
for all k > ko, T € (0,T%), dll |xo] < A, and
ld|l o < Agq. Moreover, if the input d = 0, the system
is semiglobally practically asymptotically stable (SP-
AS). |

Definition 2.3 (SP-ISS Lyapunov function) A
family of continuous functions Vp : R x R™ — R is
a family of SP-ISS Lyapunov functions for the family
of systems (1) if there exist functions a, @, a € Kq,
x € K and for any strictly positive real numbers
Ay, Ag,v1, 00, there exists T* > 0, such that the
following inequalities

aflz]) < Vr(k,z) < a(lz]) , (5)
lz| = x(ld]) + 1 =
Vr(k+1,Fr) — Vp(k,z)

Vr(k+1, Fr)

—Ta(|z]) , (6)

<
< VT(kvx)+V2 ) (7)
hold for all k > ko, T € (0,T%), all |z| < A, and
|[d| < Ag4. Moreover, if d = 0, the function Vi is called
a SP-AS Lyapunov function. Vp is called a smooth
Lyapunov function if it is smooth in x € R™. [

Remark 2.1 By continuity of solutions, condition (7)
is not needed in the continuous-time context, whereas
it is required in the SP-ISS Lyapunov characterization
to guarantee boundedness of trajectories, particularly
for the case when |z| < x(|d|) + v1 (see [16] for more
details). ]

Definition 2.4 (A-UBIBS) The family of systems
(1) is A- uniformly bounded input bounded state (A-
UBIBS) if there exist functions 01,09 € K, and for



any strictly positive real numbers Ay, Ag, vy, Oy, there
exists T* > 0 such that the following inequality:

sup |z(k, ko, xo,d)|
k>ko
< max{o1(|z|) + vp, 02(][d[| )} + b, (8)
holds for all k > ko, T € (0,T7%), all |zo] < A, and

ld||, < Agq. By causality, (8) is equivalent to o1(s) >
s and

‘I(k, ko,zmd”
< max {oa(izel) + 02D} + - (9
[ |

Remark 2.2 Instead of (8), we could write

sup |.T(k, k07 Lo, d)‘
k>ko

< max{oy(|zo), o2([ldl o)} + 6, (10)

where 6 := v, +J; (similarly for (9)). However, we have
chosen to use (8) (respectively (9)) for convenience in
proving our main result. [ |

Definition 2.5 (K-asymptotic gain) The family of
systems (1) has a K-asymptotic gain if there exists a
function v, € K and for any strictly positive real num-
bers Ay, Ag,m, there exists T* > 0, such that

k—o0

T [0k, ko, 2o, )| < 7o (km |d(k)|> L (D)

forallk > ko, T € (0,T%), all |zo] < Ay, and |d| <
Ag. ]

Definition 2.6 (SP Robust stability) The system
(1) is semiglobally practically robustly stable (SPRS),
if there exists a function p € Koo and for any strictly
positive real numbers Ay, Ag, 0, there exists T* > 0,
such that for all k > ko, T € (0,T%), all |zo| < A,
and d € Ug such that ||dp(|z|)|| , < Ag, the function

x(k+1) = Fr(k,z,dp(|z])) = Gr(k,z,d)  (12)
is SP-AS. |

Lemma 2.1 [6] For any KL function 3, there exist
p1, p2 € Koo such that

B(s,r) < p1(p2(s)e™), V¥s>0 Vr>0. (13)

Lemma 2.2 (Comparison Principle) [6] For any
K-function «, there exists a ICL-function (,(s,t) with
the following property: if y : N — [0,00) is a function
satisfying

y(k+1) —y(k) < —a(y(k)) (14)

for all0 < k < k1 for some k1 < oo, then
y(k) S ﬂa(y(o)ak)v Vk < kl . (15)
|

3 Main Result

In this section, we state and prove our main re-
sult, namely a converse Lyapunov theorem for SP-ISS
for parameterized family of discrete-time time-varying
nonlinear systems. We provide a necessary and suffi-
ciency conditions for which a parameterized family of
discrete-time time-varying nonlinear systems is input-
to-state stable in a semiglobal practical sense. This
result is a discrete-time counterpart of [3], and it gen-
eralizes the main results of [5, 6].

The technique used in proving our results is similar
to the technique that has been used in [6]. How-
ever, there are more technicalities needed to treat the
semiglobal practical property we consider. This is also
the first proof of a converse Lyapunov theorem for
stability property in a semiglobal practical sense. In
the next section, we present an engineering example,
which shows the usefulness of our results from a prac-
tical point of view, since we very often have to deal
with semiglobal practical property when designing a
discrete-time controller for a continuous-time plant.

We are now ready to state our main result.

Theorem 3.1 The parameterized family of discrete-
time time-varying systems (1) is SP-1SS if and only if
it admits a smooth SP-ISS Lyapunov function Vp. ®

Before we proceed with proving Theorem 3.1, we first
state and prove the following lemmas, which are in-
strumental in constructing the proof of the theorem.
The proofs of Lemmas 3.2 and 3.3 are given in [6].

Lemma 3.1 If the family of systems (1) is SP-ISS,
then it is A-UBIBS and it admits a K-asymptotic gain.
Moreover, the system is SPRS, and hence SP-AS. =

Lemma 3.2 [6, Lemma 2.7] If there exists a contin-
wous SP-ISS Lyapunov function Vi with respect to a
compact set X, then there exists also a smooth one,
W, with respect to the same set. Moreover, if Vi is
periodic with period \ > 0, then Wr can be chosen to
be periodic with the same period. [ |

Lemma 3.3 [6, Lemma 2.8] Assume that system (1)
admits a SP-ISS Lyapunov function V. Then there
exists a smooth function p € Ko such that Wp = poVp
is also a SP-ISS Lyapunov function of (1), and (6)
holds for some a € Kq. [ ]

Proof of Lemma 3.1:

SP-ISS = A-UBIBS + K-asymptotic gain. Sup-
pose that the system (1) is SP-ISS. Let 8 € KL and
~v € K be as in Definition 2.2. By the property of KL
functions, if we fix the second argument, then 3 is a
K function in its first argument. Hence, the A-UBIBS
property is directly implied. Also, by definition, the
function v is the K-asymptotic gain of system (1).



A-UBIBS + K-asymptotic gain == SPRS = SP-
AS. Suppose that the system (1) is A-UBIBS and it
admits a K-asymptotic gain. Let 01,09 € K be as
in Definition 2.4. Given any strictly positive numbers
Ay, Ag, vy, Op, there exist T* > 0, such that (8) holds
for all kK > ko, all T € (0,77), || < Az, [|d]| o < Ag.
Without loss of generality, let the -asymptotic gain

Y =02, (16)

and m = J,. Let the positive numbers v, and v4 be
such that

Ve > Uy + 0 (17)

Vg < min
s€[0,1)

(oa(lp(z, (ks ko))|) — oallsp(lzo (R, ko)D) (18)

and
Ve — Vg < Up . (19)

We have, from Definition 2.4, that o1 > Id for all s > 0.
Pick any function p € K, such that

vyop(s)<s/2, Vs>0. (20)
We will show that with the correct choice of p, the
system (12) is SP-AS.

Pick any initial condition such that |z,| < A,. Let
z,(k) denote the corresponding trajectory of system
(12). We use the following claim:

Claim. o3 0 p(|z,(k,ko)|) < 301(|zo]) + ve , for all
k> 0. [
Proof of Claim. Trivially the claim is true for z, = 0.

Suppose now we have nonzero initial states, z, # 0. It
is then obvious that the claim is true for £ = 0, since

The last part to prove is for £ > 0. Let

k1 = min {k € Njog o p(|z,(k, ko)|) > w + I/C} ,

and note that k1 > 0. Suppose that the claim is false
and hence k1 < oo. For 0 < k < k; — 1, it holds that
ozop(|z,(k, ko)|) < 301(|zo])+ve. From (18) and (19),
we have that

o2 (R)p(fp(k, Ko)DI) < Fora(lel) + vt — va
i (22)
< goullzol) + v

for 0 < k < ky — 1. Consequently, it follows from the
A-UBIBS property of the system, in particular from

(8), that

<
o (k)| < OS%1§71{01(|%D + v,

aa(|d(5)p(|lz,(5)D)} + 6 (23)
< o1([o]) + v6 + b
<oi(lzo]) +ve

which, by (16) and (20), implies that

1 1 v,
oa(pllap (k1)) < 5 lep(ko)| < Sor(feo]) + 5 "

1
< §Ul(|$o|) + Ve oy

which contradicts the definition of k1. Hence, the claim
is true.

An immediate consequence of the claim is that (23)
holds for all k¥ € N and that limy_, |2,(k)| is finite.
Using (16), and taking the limits on both sides of (11),
we have

T o, ()] < Tm 4 (d(k)p(|z, () + 7

. (25)
< T [, (k)| /24 vet 7,

which shows that limg_, o |7,(k)| < 2(v,. +7), which is
bounded for each trajectory, for all £ > k,. This shows
that (12) is SP-AS. Hence, this completes the proof of
Lemma 3.1. [ ]

Proof of Theorem 3.1 The proof follows closely the
steps used in proving the converse Lyapunov theorem
in [11], combined with the proof of Theorem 1 of [5]
(see also [23]).

Proof of sufficiency. From the statement of the the-
orem, suppose that for any strictly positive real num-
bers A,, Ag, v1, o, there exists T* > 0 such that for all
T e (0,T%), |z| < Ag, ||d| < Ag, a smooth radially
unbounded continuous function Vp(k,z) is a SP-ISS
Lyapunov function for the family of systems (1). Let
the functions o, @, a and x be as in Definition 2.3 of
SP-ISS Lyapunov function. Let § > 0 be such that

SE%?Xd){Q_l(a(X(S)+V1))—Q_l(a(x(s)))} <J. (26)

We consider two cases:
Case 1: |z| > x(|d]) + w1
Using (5) and (6), it is obvious that we can write

Vp(k,z) 2 x(ld) + i1 =
VT(k+17FT) _VT(kax) < _T&(VT(k7x)) ) (27)
by choosing ¥ = oy and @ = aoa . Note that
from Lemma 3.3, since V7 is a smooth Lyapunov func-
tion, we can have o € Ko,. Applying the comparison

principle of Lemma 2.2, there exists a KL-function (3,
such that

Ve(k,z) > x(|d|)) + o0 =
VT(kvx) < 6~(VT(ko,xo)7k) . (28)



Therefore, for all k > k., we can write
VT(k7x(k+k07k07xO7d)) SB&(VT(kOaJ;O)7k> . (29)
Further, using (5) we obtain

|2(k + ko, ko, To,d)| < a™" 0 Ba(Vr(ke,z0), k)
<a ! o fa(al.]), k) (30)
=: B(lzo| . k) -

Hence, we can write
(K, ko, o, d)| < B(|zo|, (k —ko)T) . (31)

Case 2: |z| < x(|d]) + v1
From (5), we have that

aflz]) < Vr(k,z) <a(lz]) <a(x(ld) +un),  (32)

which implies that

@ (k, ko, w0, d)] < o™ (@(x(ld]) +11))
< (|d|)+5 (33)
<(ldlloe) +

where y:=a loa@oy.

Combining (31) and (33), we have that for any |z| <
Ay, [ld]| . < Ag the following holds:

(K, ko, o, d)| < B(|zo|, (k = ko)T) +y(lldll ) + 0
(34)
and this completes the proof of sufficiency.
Proof of necessity. Suppose that the system (1) is
SP-ISS. Given any arbitrary strictly positive numbers
Ay, Ag,d, let the numbers generate 17" > 0 and let
T* := min(1,T}), such that (4) holds for all k£ > ko,
T € (0,7%), |z| < Ag, ||d||l < Agq. We have shown
in Lemma 3.1 that SP-ISS implies SPRS with input
dp(|z]), where d € U and p € Ko. This further
implies that the system is SP-AS. By Lemma 3.1, let
the numbers A,, Ag, 0 generate § > 0, such that for
all |[z] < Ay, delUp, k> ko and all T € (0,7*) the
following holds:

20k + ko ko, 2o, dp(l2]))] < Bzl k) +6 . (35)
By Lemma 2.1, there exist p1, p2 € Koo such that

|2 (k + ko, ko, 2o, dp(|z]))| < p1(pa(|o])e™)+6 . (36)
Define w := p;'!, and let 6, > 0 be such that

Jmax (@((pa(s)e™) +6) = pals)e ™) <3, (37)

From (36) and (37), we obtain
W(|2(k + ko, ko, o, dp(|2)) < pa(lzo])e™ "+, . (38)

Since w and py are Ko
p2 € Ko such that

W( |I(k + k07 koax07dp(|x|))|)
< pa|wo))e™ < pallwal)e™ +4, .

functions, we can always find

(39)

Define

VOT(kow'L'oa dp(| |))

Zw |£C k—f—ko,ko,‘ro,dp(“rb)‘) . (40)
k=0

It then follows from (39) that

w(|zo) < Vor (o, zo, dp(|2])) < Y palls])e ™"
k=0
< ——=palfal) . (41)

This shows that the series in (41) is convergent, uni-
formly on z, with |z,] < A, and on d € Up. Since
for each k., € N, w is continuous uniformly on d € Uz,
then so is Vyr. Define Vi by

VT(ko;xo) = sup VOT(koaandpqu) . (42)
deUp

It then follows immediately from (41) that

w(Jzol) < Vi(ho,a0) < —

Sl (43)

Hence, by taking a(s) := w(s) and a(s) :=
we show that (5) holds.
To prove the continuity of the Lyapunov function

Vr(k, x), we use Lemma 4.4 of [6] that is directly valid
for our case.

In the following, we show that V; admits a desired
decay estimate as in (6).

Pick any ko, o such that |z,| < A,, and any u € Us.
Let the exact solution x§ := Ff.(ko, zo, pp(|z|)) and the
approximate solution xp = Fr(ko, o, up(|x])), with
p = d(ko). Since Frp is one-step consistent with F,
we have that

|z —xp| <To(T), 0€Ku - (44)

Let T* < 1 be sufficiently small such that by the con-
tinuity of Vr and the one-step consistency property of

Fr, we may assume the existence of g € K, such that
the following holds for all T' € (0,7*)

|VT(]€O+1,£L'F>—VT(ko+17$f)| ST@(T) . (45)
Let v > 0 be such that
BT <. (46)

By uniqueness of exact solutions, we can see that for
any d € Ug such that d(ko) = pu, it holds that

z(k+ko+1,ko+1,2¢,dp(|z]))
:x(k+k0+17k0ax07dp(|x‘)) ? (47)



for all k > 0. Hence, using (46) and T* < 1, we have

Vr(ko +1,2F)
= VT(ko -+ l,l‘f) + VT(kO + 1,1’1:*) — VT(kO -+ 1,$f)
< VT(ko + l,l‘f) + T@(T)

< w(lz(k + ko + 1, ko + 1y, dp(|2)))]) + Tv

>
Il
<]

o

w(|.’)3(k+/€o+17I{30,£L'o,dp(|l“))|)+TV (48)

b
Il
o

o

w(|w(k + ko; k07x07dp(|x|))|) + Tv

b
I
—

NE

<Y w(|z(k + ko, ko, 2o, dp(|]))|)

Eod
il

— w(|z(ko, ko, o, dp(|2]))]) + TV
Vr(ko, zo) — w(|@o|) + TV
Vr(

<
< Vi (ko, o) = Tw(lzo|) + T .

This shows that

VT(kO + 17FT(]€07$O’ dp(|3?|)) - VT(kova)
< —Tw(lze])+Tv, (49)

for all |z|] < A, and all d € Uz. Observe that this is
equivalent to

lul <p(lz]) =
VT(ko+17FT<]{707$07U))_VT(k"O?xO) (50)
< —Tw(|ze]) +Tv

and further it is obvious that it is also equivalent to

lz| >x(Jul) + 11 =
Vr(ko + 1, Fr(ko, zo,u)) — Vr(ko, o) (51)
< —Ta(|z.|) ,

by defining x := p~!

Hence, (6) is satisfied.

and o == 2w and v; < w™(4v).
Note however that the continuous Lyapunov function
obtained in the proof is not necessarily smooth. To
show the existence of a smooth Lyapunov function for
(1) and to show that a € K, we use Lemmas 3.2
and 3.3. Using Lemma 3.2, we can show the existence
of a smooth Lyapunov function Wp as a continuous
Lyapunov function Vr exists and using Lemma 3.3 it
can be shown that if the Lyapunov function is smooth,
there exists o € Ko such that (6) holds.

The last thing to show is that (7) holds. We have
assumed that Fp is globally defined for small T, so
that Fr is finite for all k& > ko, all |z,] < A, and
|d| < Ay4. Then there exists ¢ > 0 such that

|Fr —xo| <c¢, Vk>ks. (52)

Moreover, by Lemma 3.2 we may assume that Vp is
smooth. Then using (52) and the smoothness of Vp,
we obtain

VT(ko + laFT(k07$O7u)) - VT(kO7xO)
< L|Fr — .| (53)
< Lc:=vy,

with L is the Lipschitz constant of V. Hence (7) holds,
and this completes the proof of necessary. Therefore,
the proof of Theorem 3.1 is complete. [ |

4 Application and example on periodic
systems

4.1 Application to periodic systems

In this section we focus on a particular class of time-
varying nonlinear systems, namely time-varying non-
linear periodic systems, which include a large class of
systems. This class of systems is very important in
various applications, particularly in tracking control
problems (see for instance [12, 19, 24, 26]).

We consider a family of parameterized periodic
discrete-time time-varying systems. The system (1)
is called a periodic system if Frp is periodic in k with
period A > 0, and hence we have the following

Fr(k+mAx,d) = Fp(k,z,d), meN. (54

By Theorem 3.1 we conclude that if the system is SP-
ISS then it is A-UBIBS and it admits a C-asymptotic
gain. This further implies that for some function p €
Koo the corresponding system is SPRS and hence SP-
AS. For a periodic system such that (54), we can show
that the map

GT(k,ﬂf,d) = FT(k7x7dp(|x|)

is also periodic in k with the same period as Fr. More-
over, we can show that there exists a SP-ISS Lyapunov
function Vi that is periodic with period A, that satis-
fies

VT(ko + m)\,l') = VT(koam) ’ (55)

as has been proved in [6]. Hence, the following corol-
lary follows directly from Theorem 3.1.

Corollary 4.1 The parameterized family of time-
varying periodic system (1) with period X\ is SP-ISS
if and only if it admits a smooth SP-1SS periodic Lya-
punov function with the same period . [

The proof of Corollary 4.1 follows the same steps as
the proof of Theorem 3.1 (see also [6]), hence it is not
presented in the paper.



4.2 Example

Consider the model of a simple mobile robot moving on
a plane, with two independent rear motorized wheels
as illustrated in Figure 1 [7, 19]:

T =wvcosf+dsinf
y =wvsinf — dcosf (56)
f=w,

with v the forward velocity, w the steering velocity,
(z,y) the Cartesian position of the center of mass of
the robot, 6 the heading angle from the horizontal axis,
and d a disturbance force perpendicular to the forward
direction. The system (56) is a benchmark example
of systems which are not stabilizable using continuous
feedback [1].

Figure 1: A two-wheeled drive mobile robot

Using the coordinates transformation
x1 =xcosf + ysinb
X9 = xsind — ycosb (57)
I3 = 0 s

we obtain the dynamic model of system (56) in power
form:

j?l = U1
To = x1Us +d (58)
T3 =ug ,

where u; := v — wxs, and ug := w.

The stabilization problem for system (58) in the ab-
sence of disturbances has been studied in [19]. Using
the Lyapunov function

1 1 1
V(t,z) = §(x1 + (22 4+ 23) cost)? + §x§ + ixﬁ , (59)

which is a time-varying periodic function, the con-
troller

uy = (23 + 23) sint — (z1 + (23 + x3) cost)  (60)
uy = —2(z1 + (23 + x3) cost)(x122 + 23) cost
— (z122 + 73) (61)

has been designed. From the time derivative of the
Lyapunov function

Vtax)=— (2(x1 + (23 + 22) cost) (z122 + 3) cost
2
+ (122 +23)) = (@1 + (a3 + 23 cost)?, (62)

and using La Salle Invariance Principle, it follows that
in the case d = 0, the closed-loop system (58), (60),
(61) is uniformly globally asymptotically stable.

We consider now the case when we have a nonzero ad-
ditive disturbance entering the second equation. We
are interested in a particular step of the stabilization
of system (58), using a discrete-time time-varying pe-
riodic controller that is designed based on the approx-
imate model of the system. In particular, we use the
Euler model of the system (58), namely

zo(k 4+ 1) = zo(k) + T(x1(k)ua(k) +d(k))  (63)
w3(k +1) = x3(k) + Tua(k) .

We emphasize that the Euler approximate model satis-
fies the one-step consistency we assume in constructing
the results in this paper. We also need to point out that
in this example we are not aiming to achieve SP-ISS for
the system (58), but for the approximate model (63).
However, it can be shown, following directly as what
have been proved in [13, 18] for the time-invariant case,
that under certain conditions the stability of the con-
trolled exact discrete-time model is implied from the
stability of the controlled approximate model, and the
stability of the sampled-data system follows from the
stability of the exact discrete-time models and bound-
edness of solutions.

We then apply our result, particularly Corollary 4.1,
to check the SP-ISS property of the system (63) with a
controller that is designed using the idea from [19]. No-
tice that for the rest of the paper, we drop the discrete-
time argument k for simplicity.

It was shown by (62) that the derivative of the Lya-
punov function (59) is negative semidefinite. Unfortu-
nately, while we can apply La Salle Invariance Princi-
ple for systems without disturbance, we do not have
such kind of tool for systems with inputs. Hence, (59)
cannot be used to show input-to-state stability of the
closed-loop system.

Using a similar idea as in [8], we construct another
Lyapunov function that can be used to show ISS. We
use the Lyapunov function

Vr = 01(Vir) + 02(Var) ,
where Vi =V and

01,02 € Koo 5 (64)

Vor = Vir — exy (23 + 23) sint | (65)

with € > 0 sufficiently small to guarantee that Vo > 0.
We have chosen the K., functions g; = g2 = Id. From



(63) and (64) it is easy to show that conditions (5) and
(7) hold.

The Lyapunov difference AVyp is obtained as follows:
AVr(k,x) =Vr(k+ 1, Fr) — Vp(k, )
= (z1(k+1) + (z3(k + 1) + 23(k + 1)) cos((k + 1)T))?
+zo(k +1)* + z3(k + 1)*
—exy(k+1)(25(k + 1) + 23(k + 1)) sin((k + 1)T)
— (21 (k) + (@3(K) + 3(K)) cos(KT))? — w(k)?
— a3(k)? + ey (k) (@3 (k) + 23(k)) sin(kT)
_ (g;l + Tup + (22 + T(wrus + d)? + (23 + Tuz)?)

< cos(k+1)7)) — (a1 + (o + 23) cos(kT)?

+ (22 + T(x1u9 + d))2 — :c% + (a3 + TuQ)2 — x§

— e(a1 + Tuy) ((xz + T(zyus + )% + (25 + Tu2)2)
x sin((k + 1)T) + exy (23 + 23) sin(kT) .

Assuming that the sampling period T is sufficiently
small (0 < T < 1), we use the following approximation
cos((k+ 1)T) — cos(kT)

sin((k +1)T) — sin(kT)

~ Tsin(kT) ~ O(T?) , (66)
~ T cos(kT) =~ O(T) . (67)

Assume also that e is sufficiently small (e = O(T)).
The Lyapunov difference can then be written as

AVi(k, z)
~ 2T uy (xl + (23 + x3) cos((k + 1)T) + 2T (z129 + 3)
%(z% + 22 sin((k + 1)T))

+ 2Tug(z129 + x3) (1 —exysin((k+ 1)T)

X ug cos((k+1)T) —

+ 2z + (22 + 22) cos((k + 1)T)) cos((k + 1)T))
+ 2Tdzs (1 +2(21 + (a2 + 22) cos((k + 1)T))
x cos((k + 1)T)) +O(T?) .
Applying a discrete-time controller

—(@1 + (23 + 23) cos((k +1)T))
— 2T (z12 + x3)ug cos((k + 1)T) (68)

uwr =

+ %(m% +22)sin((k + 1)T)

uor = — (129 + 23) (1 —exysin((k + 1)T)
+2(zy + (23 + x3) cos((k + 1)T)) (69)
x cos((k + 1)T)) ,

that is very similar to (60), (61), we will show that
the closed-loop system (63),(68),(69) is SP-ISS. Sub-
stituting (68), (69) into the Lyapunov difference, we

obtain
AVT(]C, .’E)
< 2T ((sin((k + 1)T))* + a) [(Iﬂz + x3)%a}

. (@3 Z 23)°
— 2T (z122 + w3)? (2(331 + (22 + 22) cos((k + 1)T))

| = 27 (@1 + (@3 + 3) cos((k + 1)T))?

x cos((k+1)T) + 1)2
+ 2Tdx, (2(m1 + (x5 + 23) cos((k + 1)T))
x cos((k + 1)T) + 1) +O(T?),

after adding a small positive offset a« <<< T to avoid
the first term on the right-hand side of the inequality
to become zero at (k + 1)T = im, ¢ € N. Finally, we
use Young’s inequality to arrive at

AVp(k,x) < =T(M; |1]* + Mo 2| + My |z3]")
+TMy|d]” +0O(T?) ,

with M; > 0, i€ {1,---,4}. Therefore, it is obvious
that (6) holds and hence the closed-loop discrete-time
model (63),(68),(69) is SP-ISS. Moreover, notice that
the Lyapunov function Vr is a periodic function with
period 2w, the same as the period of the closed-loop
system (63),(68),(69).

5 Summary

We have presented a converse Lyapunov theorem for
ISS for parameterized discrete-time time-varying sys-
tems. We have considered the ISS property of the sys-
tems in a semiglobal practical sense, which appears
naturally in sampled-data design. We have also pre-
sented an application of our result to discrete-time
time-varying periodic systems. Finally, by the pro-
vided example, we have illustrated the usefulness of
our results from a practical point of view.
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