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Abstract

Input-to-state stability (ISS) of a parameterized fam-
ily of discrete-time time-varying nonlinear systems is
investigated. A converse Lyapunov theorem for such
systems is developed. We consider parameterized
families of discrete-time systems and concentrate on
a semiglobal practical property that naturally arises
when an approximate discrete-time model is used to
design a controller for a sampled-data system. Ap-
plication of our main result to time-varying periodic
systems is presented. This is then used to design a
semiglobal practical ISS (SP-ISS) control law for the
model of a wheeled mobile robot.

Keywords: Converse Lyapunov theorem; Time-
varying; Discrete-time; Input-to-state stability; Non-
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1 Introduction

The prevalence of computer controlled systems and the
fact that nonlinearities that arise naturally in most
plants dynamics often cannot be neglected in con-
troller design, have driven people to study and in-
vestigate nonlinear sampled-data control systems. A
framework for discrete-time controller design via ap-
proximate models of the plant has been proposed in
[16]. Within this framework, a parameterized family
of discrete-time models of the plant is used to perform
the controller design, aiming at stabilizing the origi-
nal continuous-time plant. As indicated in [16], time-
invariant models that are usually used in design are
often not adequate in practice. There is a class of con-
trollable nonlinear systems that may not be stabiliz-
able using time-invariant control, but there exist time-
varying controls to stabilize such systems [2, 21]. Since
there are many systems in applications that belong to
this class, the stabilization problem using time-varying
control has become an important topic of study. In
[19], a systematic design of time-varying controllers for
a class of controllable systems without drift has been
proposed. Stabilization using sinusoids for nonholo-
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nomic systems in power form was studied in [26]. A
number of more recent work were based on these early
results, e.g. [4] that studied exponential stabilization
using Lyapunov approach, [12] in which exponential
stabilization for homogeneous systems were thoroughly
investigated.

Among the results that are available in the literature,
there is hardly any that considered input-to-state sta-
bilization using time-varying control. Input-to-state
stability (ISS) is a type of robust stability for nonlin-
ear systems with inputs (see [20, 22]). Indeed, ISS
is very important, especially when dealing with sys-
tems in the presence of disturbances. The first papers
presenting Lyapunov characterization of ISS for time-
varying nonlinear systems are [3, 10]. The authors of
[15] have studied the problem in a different way, using
the averaging technique as the main tool. All the men-
tioned work considered continuous-time systems. To
the best of the authors knowledge, the only results on
discrete-time systems are given in [6, 14], where asymp-
totic stability for discrete-time time-varying systems is
studied. In [5], the same authors have used the results
of [6] to prove a converse Lyapunov theorem for ISS
for discrete-time time-invariant systems.

The importance of ISS and the scarcity of existing
results considering this property in the context of
discrete-time time-varying systems, have motivated
the authors to study the Lyapunov characterization
of ISS in a semiglobal practical sense, for discrete-time
time-varying systems. We consider a general parame-
terized family of discrete-time time-varying nonlinear
systems, which commonly appears when performing
sampled-data control design as discussed in [16]. Our
main result is a converse Lyapunov theorem that can
be seen as a discrete-time counterpart of the result of
[3], at the same time as a generalization of the results
of [5, 6]. We also present an application of our main
result to time-varying periodic systems and use this to
design a SP-ISS controller of a mobile robot [7, 19].

The paper is organized as follows. In Section 2, we
present preliminaries, to introduce notation and defi-
nitions. The main result is given in Section 3. Section
4 is dedicated to an application followed by example.
The paper is concluded with a summary in Section 5.



2 Preliminaries

The sets of real and natural numbers (including 0)
are denoted by R and N, respectively. A function
γ : R≥0 → R≥0 is of class K if it is continuous, strictly
increasing and zero at zero. It is of class K∞ if it is of
class K and unbounded. Functions of class K∞ are in-
vertible. A continuous function β : R≥0 × R≥0 → R≥0

is of class-KL if β(·, τ) is of class-K for each τ ≥ 0
and β(s, ·) is decreasing to zero for each s > 0. Given
two functions α(·) and γ(·), we denote their compo-
sition and multiplication by α ◦ γ(·) and α(·) × γ(·),
respectively.

In this paper, we consider a general parameterized fam-
ily of discrete-time systems with input:

x(k + 1) = FT (k, x(k), d(k)) , (1)

where x ∈ R
n, d ∈ R

m are respectively the states and
exogenous inputs to the system, and the parameter
T > 0 is the sampling period. Systems having the
form (1) commonly appear as a result of discretizing a
nonlinear system

ẋ = f(t, x(t), d(t)) , (2)

and letting the sampling period T as a free parame-
ter to be chosen. Assume that f is locally Lipschitz
and f(0, 0, 0) = 0. Without loss of generality, we may
assume the same conditions for FT .

For any inputs d : N → R
m, we define ‖d‖∞ :=

supk∈N |d(k)|. We use the notation UB̄ , for the set of
inputs d such that ‖d‖∞ ≤ 1. We define x◦ := x(k◦),
k◦ := k(0) ≥ 0, and Id for the identity function, i.e.
Id(s) = s, and for any function or variable h we use
the simplified notation h(k, ·) := h(kT, ·).

We emphasize that, for nonlinear systems, the ex-
act discrete-time model F e

T (k, x(k), d(k)) is usually not
known, since it requires solving a nonlinear initial value
problem which is almost impossible in general (see
[13] for more details). Throughout the paper, we as-
sume that (1) is obtained by approximating the exact
discrete-time model of (2). As a result of the approx-
imation, there is a mismatch between the exact and
the approximate solutions of the system. To guaran-
tee that (1) is a good discrete-time approximate model
of (2), we assume that FT satisfies the following con-
sistency property that is used to limit the mismatch.

Definition 2.1 (One-step consistency) [13] The
family of approximate discrete-time models FT is said
to be one-step consistent with the exact discrete-time
models F e

T if given any strictly positive real numbers
∆x,∆d, there exist a function % ∈ K∞ and T ∗ > 0
such that

|F e
T − FT | ≤ T%(T ) (3)

holds for all k ≥ k◦, T ∈ (0, T ∗), all |x◦| ≤ ∆x,
‖d‖∞ ≤ ∆d. �

The one-step consistency property is commonly used
in numerical analysis literature (see for instance [9,
13, 17, 25]). We emphasize that although F e

T is not
known, the consistency property is checkable. Condi-
tions that can be used to check this property for nonlin-
ear time-invariant systems are presented in [13], which
are extendable to use for nonlinear time-varying sys-
tems. Moreover, since we consider a semiglobal prop-
erty, we assume that F e

T and FT are globally defined
for small T .

We will use the following definitions and technicalities
to construct and prove our main results. Note that
these definitions are modifications of those given in [5,
6].

Definition 2.2 (Semiglobal practical ISS) The
family of systems (1) is semiglobally practically input-
to-state stable (SP-ISS) if there exist β ∈ KL and
γ ∈ K, such that for any strictly positive real numbers
∆x,∆d, δ, there exists T ∗ > 0 such that the solutions
of the system satisfy

|x(k, k◦, x◦, d)| ≤ β(|x◦| , (k − k◦)T ) + γ(‖d‖∞) + δ ,
(4)

for all k ≥ k◦, T ∈ (0, T ∗), all |x◦| ≤ ∆x and
‖d‖∞ ≤ ∆d. Moreover, if the input d = 0, the system
is semiglobally practically asymptotically stable (SP-
AS). �

Definition 2.3 (SP-ISS Lyapunov function) A
family of continuous functions VT : R × R

n → R≥0 is
a family of SP-ISS Lyapunov functions for the family
of systems (1) if there exist functions α, α, α ∈ K∞,
χ ∈ K and for any strictly positive real numbers
∆x,∆d, ν1, ν2, there exists T ∗ > 0, such that the
following inequalities

α(|x|) ≤ VT (k, x) ≤ α(|x|) , (5)

|x| ≥ χ(|d|) + ν1 ⇒

VT (k + 1, FT ) − VT (k, x) ≤ −Tα(|x|) , (6)

VT (k + 1, FT ) ≤ VT (k, x) + ν2 , (7)

hold for all k ≥ k◦, T ∈ (0, T ∗), all |x| ≤ ∆x and
|d| ≤ ∆d. Moreover, if d = 0, the function VT is called
a SP-AS Lyapunov function. VT is called a smooth
Lyapunov function if it is smooth in x ∈ R

n. �

Remark 2.1 By continuity of solutions, condition (7)
is not needed in the continuous-time context, whereas
it is required in the SP-ISS Lyapunov characterization
to guarantee boundedness of trajectories, particularly
for the case when |x| < χ(|d|) + ν1 (see [16] for more
details). �

Definition 2.4 (∆-UBIBS) The family of systems
(1) is ∆- uniformly bounded input bounded state (∆-
UBIBS) if there exist functions σ1, σ2 ∈ K, and for



any strictly positive real numbers ∆x,∆d, νb, δb, there
exists T ∗ > 0 such that the following inequality:

sup
k≥k◦

|x(k, k◦, x◦, d)|

≤ max{σ1(|x|) + νb, σ2(‖d‖∞)} + δb , (8)

holds for all k ≥ k◦, T ∈ (0, T ∗), all |x◦| ≤ ∆x and
‖d‖∞ ≤ ∆d. By causality, (8) is equivalent to σ1(s) ≥
s and

|x(k, k◦, x◦, d)|

≤ max
0≤j≤k−1

{σ1(|x◦|) + νb, σ2(|d(j)|)} + δb . (9)

�

Remark 2.2 Instead of (8), we could write

sup
k≥k◦

|x(k, k◦, x◦, d)|

≤ max{σ1(|x◦|), σ2(‖d‖∞)} + δ , (10)

where δ := νb+δb (similarly for (9)). However, we have
chosen to use (8) (respectively (9)) for convenience in
proving our main result. �

Definition 2.5 (K-asymptotic gain) The family of
systems (1) has a K-asymptotic gain if there exists a
function γa ∈ K and for any strictly positive real num-
bers ∆x,∆d, π, there exists T ∗ > 0, such that

lim
k→∞

|x(k, k◦, x◦, d)| ≤ γa

(

lim
k→∞

|d(k)|

)

+ π , (11)

for all k ≥ k◦, T ∈ (0, T ∗), all |x◦| ≤ ∆x, and |d| ≤
∆d. �

Definition 2.6 (SP Robust stability) The system
(1) is semiglobally practically robustly stable (SPRS),
if there exists a function ρ ∈ K∞ and for any strictly
positive real numbers ∆x,∆d, δ, there exists T ∗ > 0,
such that for all k ≥ k◦, T ∈ (0, T ∗), all |x◦| ≤ ∆x,
and d ∈ UB̄ such that ‖dρ(|x|)‖∞ ≤ ∆d, the function

x(k + 1) = FT (k, x, dρ(|x|)) =: GT (k, x, d) (12)

is SP-AS. �

Lemma 2.1 [6] For any KL function β, there exist
ρ1, ρ2 ∈ K∞ such that

β(s, r) ≤ ρ1(ρ2(s)e
−r) , ∀s ≥ 0 ∀r ≥ 0 . (13)

�

Lemma 2.2 (Comparison Principle) [6] For any
K-function α, there exists a KL-function βα(s, t) with
the following property: if y : N → [0,∞) is a function
satisfying

y(k + 1) − y(k) ≤ −α(y(k)) (14)

for all 0 ≤ k < k1 for some k1 ≤ ∞, then

y(k) ≤ βα(y(0), k), ∀k < k1 . (15)

�

3 Main Result

In this section, we state and prove our main re-
sult, namely a converse Lyapunov theorem for SP-ISS
for parameterized family of discrete-time time-varying
nonlinear systems. We provide a necessary and suffi-
ciency conditions for which a parameterized family of
discrete-time time-varying nonlinear systems is input-
to-state stable in a semiglobal practical sense. This
result is a discrete-time counterpart of [3], and it gen-
eralizes the main results of [5, 6].

The technique used in proving our results is similar
to the technique that has been used in [6]. How-
ever, there are more technicalities needed to treat the
semiglobal practical property we consider. This is also
the first proof of a converse Lyapunov theorem for
stability property in a semiglobal practical sense. In
the next section, we present an engineering example,
which shows the usefulness of our results from a prac-
tical point of view, since we very often have to deal
with semiglobal practical property when designing a
discrete-time controller for a continuous-time plant.

We are now ready to state our main result.

Theorem 3.1 The parameterized family of discrete-
time time-varying systems (1) is SP-ISS if and only if
it admits a smooth SP-ISS Lyapunov function VT . �

Before we proceed with proving Theorem 3.1, we first
state and prove the following lemmas, which are in-
strumental in constructing the proof of the theorem.
The proofs of Lemmas 3.2 and 3.3 are given in [6].

Lemma 3.1 If the family of systems (1) is SP-ISS,
then it is ∆-UBIBS and it admits a K-asymptotic gain.
Moreover, the system is SPRS, and hence SP-AS. �

Lemma 3.2 [6, Lemma 2.7] If there exists a contin-
uous SP-ISS Lyapunov function VT with respect to a
compact set X, then there exists also a smooth one,
WT , with respect to the same set. Moreover, if VT is
periodic with period λ > 0, then WT can be chosen to
be periodic with the same period. �

Lemma 3.3 [6, Lemma 2.8] Assume that system (1)
admits a SP-ISS Lyapunov function VT . Then there
exists a smooth function ρ ∈ K∞ such that WT = ρ◦VT

is also a SP-ISS Lyapunov function of (1), and (6)
holds for some α ∈ K∞. �

Proof of Lemma 3.1:

SP-ISS ⇒ ∆-UBIBS + K-asymptotic gain. Sup-
pose that the system (1) is SP-ISS. Let β ∈ KL and
γ ∈ K be as in Definition 2.2. By the property of KL
functions, if we fix the second argument, then β is a
K function in its first argument. Hence, the ∆-UBIBS
property is directly implied. Also, by definition, the
function γ is the K-asymptotic gain of system (1).



∆-UBIBS + K-asymptotic gain ⇒ SPRS ⇒ SP-
AS. Suppose that the system (1) is ∆-UBIBS and it
admits a K-asymptotic gain. Let σ1, σ2 ∈ K be as
in Definition 2.4. Given any strictly positive numbers
∆x,∆d, νb, δb, there exist T ∗ > 0, such that (8) holds
for all k ≥ k◦, all T ∈ (0, T ∗), |x| ≤ ∆x, ‖d‖∞ ≤ ∆d.
Without loss of generality, let the K-asymptotic gain

γ = σ2 , (16)

and π = δb. Let the positive numbers νc and νd be
such that

νc ≥ νb + δb , (17)

νd ≤ min
s∈[0,1)

(σ2(|ρ(|xρ(k, k◦)|)|) − σ2(|sρ(|xρ(k, k◦)|)|)) , (18)

and

νc − νd < νb . (19)

We have, from Definition 2.4, that σ1 ≥ Id for all s ≥ 0.
Pick any function ρ ∈ K∞ such that

γ ◦ ρ(s) ≤ s/2 , ∀s ≥ 0 . (20)

We will show that with the correct choice of ρ, the
system (12) is SP-AS.

Pick any initial condition such that |x◦| ≤ ∆x. Let
xρ(k) denote the corresponding trajectory of system
(12). We use the following claim:

Claim. σ2 ◦ ρ(|xρ(k, k◦)|) ≤ 1
2σ1(|x◦|) + νc , for all

k ≥ 0. �

Proof of Claim. Trivially the claim is true for x◦ = 0.
Suppose now we have nonzero initial states, x◦ 6= 0. It
is then obvious that the claim is true for k = 0, since

σ2(ρ(|xρ(0)|)) = γ(ρ(|xρ(0)|)) ≤
1

2
|x◦|

≤
1

2
σ1(|x◦|) ≤

1

2
σ1(|x◦|) + νc .

(21)

The last part to prove is for k > 0. Let

k1 = min

{

k ∈ N|σ2 ◦ ρ(|xρ(k, k◦)|) ≥
σ1(|x◦|)

2
+ νc

}

,

and note that k1 > 0. Suppose that the claim is false
and hence k1 < ∞. For 0 ≤ k ≤ k1 − 1, it holds that
σ2◦ρ(|xρ(k, k◦)|) ≤

1
2σ1(|x◦|)+νc. From (18) and (19),

we have that

σ2(|d(k)ρ(|xρ(k, k◦)|)|) ≤
1

2
σ1(|x◦|) + νc − νd

≤
1

2
σ1(|x◦|) + νb

(22)

for 0 ≤ k ≤ k1 − 1. Consequently, it follows from the
∆-UBIBS property of the system, in particular from

(8), that

|xρ(k1)| ≤ max
0≤j≤k1−1

{σ1(|x◦|) + νb,

σ2(|d(j)ρ(|xρ(j)|)|)} + δb

≤ σ1(|x◦|) + νb + δb

≤ σ1(|x◦|) + νc ,

(23)

which, by (16) and (20), implies that

σ2(ρ(|xρ(k1)|) ≤
1

2
|xρ(k1)| ≤

1

2
σ1(|x◦|) +

νc

2

<
1

2
σ1(|x◦|) + νc ,

(24)

which contradicts the definition of k1. Hence, the claim
is true.

An immediate consequence of the claim is that (23)
holds for all k ∈ N and that limk→∞ |xρ(k)| is finite.
Using (16), and taking the limits on both sides of (11),
we have

lim
k→∞

|xρ(k)| ≤ lim
k→∞

γ(|d(k)ρ(|xρ(k)|)|) + π

≤ lim
k→∞

|xρ(k)| /2 + νc + π ,
(25)

which shows that limk→∞ |xρ(k)| ≤ 2(νc +π), which is
bounded for each trajectory, for all k ≥ k◦. This shows
that (12) is SP-AS. Hence, this completes the proof of
Lemma 3.1. �

Proof of Theorem 3.1 The proof follows closely the
steps used in proving the converse Lyapunov theorem
in [11], combined with the proof of Theorem 1 of [5]
(see also [23]).

Proof of sufficiency. From the statement of the the-
orem, suppose that for any strictly positive real num-
bers ∆x,∆d, ν1, ν2, there exists T ∗ > 0 such that for all
T ∈ (0, T ∗), |x| ≤ ∆x, ‖d‖∞ ≤ ∆d, a smooth radially
unbounded continuous function VT (k, x) is a SP-ISS
Lyapunov function for the family of systems (1). Let
the functions α, α, α and χ be as in Definition 2.3 of
SP-ISS Lyapunov function. Let δ > 0 be such that

max
s∈(0,∆d)

{α−1(α(χ(s)+ν1))−α−1(α(χ(s)))} ≤ δ . (26)

We consider two cases:

Case 1: |x| ≥ χ(|d|) + ν1

Using (5) and (6), it is obvious that we can write

VT (k, x) ≥ χ̃(|d|) + ν̃1 ⇒

VT (k + 1, FT ) − VT (k, x) ≤ −T α̃(VT (k, x)) , (27)

by choosing χ̃ = α ◦ χ and α̃ = α ◦ α−1. Note that
from Lemma 3.3, since VT is a smooth Lyapunov func-
tion, we can have α ∈ K∞. Applying the comparison
principle of Lemma 2.2, there exists a KL-function βα,
such that

VT (k, x) ≥ χ̃(|d|) + ν̃1 ⇒

VT (k, x) ≤ βα̃(VT (k◦, x◦), k) . (28)



Therefore, for all k ≥ k◦, we can write

VT (k, x(k + k◦, k◦, x◦, d)) ≤ βα̃(VT (k◦, x◦), k) . (29)

Further, using (5) we obtain

|x(k + k◦, k◦, x◦, d)| ≤ α−1 ◦ βα(VT (k◦, x◦), k)

≤ α−1 ◦ βα(α(|x◦|), k)

=: β(|x◦| , k) .

(30)

Hence, we can write

|x(k, k◦, x◦, d)| ≤ β(|x◦| , (k − k◦)T ) . (31)

Case 2: |x| < χ(|d|) + ν1

From (5), we have that

α(|x|) ≤ VT (k, x) ≤ α(|x|) ≤ α(χ(|d|) + ν1) , (32)

which implies that

|x(k, k◦, x◦, d)| ≤ α−1(α(χ(|d|) + ν1))

≤ γ(|d|) + δ

≤ γ(‖d‖∞) + δ ,

(33)

where γ := α−1 ◦ α ◦ χ.

Combining (31) and (33), we have that for any |x| ≤
∆x, ‖d‖∞ ≤ ∆d the following holds:

|x(k, k◦, x◦, d)| ≤ β(|x◦| , (k − k◦)T ) + γ(‖d‖∞) + δ ,
(34)

and this completes the proof of sufficiency.

Proof of necessity. Suppose that the system (1) is
SP-ISS. Given any arbitrary strictly positive numbers
∆x,∆d, δ̃, let the numbers generate T ∗

1 > 0 and let
T ∗ := min(1, T ∗

1 ), such that (4) holds for all k ≥ k◦,
T ∈ (0, T ∗), |x| ≤ ∆x, ‖d‖∞ ≤ ∆d. We have shown
in Lemma 3.1 that SP-ISS implies SPRS with input
dρ(|x|), where d ∈ UB̄ and ρ ∈ K∞. This further
implies that the system is SP-AS. By Lemma 3.1, let
the numbers ∆x,∆d, δ̃ generate δ > 0, such that for
all |x| ≤ ∆x, d ∈ UB̄ , k ≥ k◦ and all T ∈ (0, T ∗) the
following holds:

|x(k + k◦, k◦, x◦, dρ(|x|))| ≤ β(|x◦| , k) + δ . (35)

By Lemma 2.1, there exist ρ1, ρ2 ∈ K∞ such that

|x(k + k◦, k◦, x◦, dρ(|x|))| ≤ ρ1(ρ2(|x◦|)e
−k)+δ . (36)

Define ω := ρ−1
1 , and let δρ > 0 be such that

max
s∈[0,∆x]

(

ω(ρ1(ρ2(s)e
−k) + δ) − ρ2(s)e

−k
)

≤ δρ. (37)

From (36) and (37), we obtain

ω(|x(k + k◦, k◦, x◦, dρ(|x|))|) ≤ ρ2(|x◦|)e
−k+δρ . (38)

Since ω and ρ2 are K∞ functions, we can always find
ρ̃2 ∈ K∞ such that

ω( |x(k + k◦, k◦, x◦, dρ(|x|))|)

≤ ρ̃2(|x◦|)e
−k ≤ ρ2(|x◦|)e

−k + δρ .
(39)

Define

V0T (k◦, x◦, dρ(|x|))

=
∞
∑

k=0

ω(|x(k + k◦, k◦, x◦, dρ(|x|))|) . (40)

It then follows from (39) that

ω(|x◦|) ≤ V0T (k◦, x◦, dρ(|x|)) ≤

∞
∑

k=0

ρ̃2(|x◦|)e
−k

≤
e

e − 1
ρ̃2(|x◦|) . (41)

This shows that the series in (41) is convergent, uni-
formly on x◦ with |x◦| ≤ ∆x and on d ∈ UB̄ . Since
for each k◦ ∈ N, ω is continuous uniformly on d ∈ UB̄ ,
then so is V0T . Define VT by

VT (k◦, x◦) = sup
d∈UB̄

V0T (k◦, x◦, dρ(|x|)) . (42)

It then follows immediately from (41) that

ω(|x◦|) ≤ VT (k◦, x◦) ≤
e

e − 1
ρ̃2(|x◦|) . (43)

Hence, by taking α(s) := ω(s) and α(s) := e
e−1 ρ̃2(s)

we show that (5) holds.

To prove the continuity of the Lyapunov function
VT (k, x), we use Lemma 4.4 of [6] that is directly valid
for our case.

In the following, we show that VT admits a desired
decay estimate as in (6).

Pick any k◦, x◦ such that |x◦| ≤ ∆x, and any µ ∈ UB̄ .
Let the exact solution xf := F e

T (k◦, x◦, µρ(|x|)) and the
approximate solution xF := FT (k◦, x◦, µρ(|x|)), with
µ := d(k◦). Since FT is one-step consistent with F e

T ,
we have that

|xf − xF | ≤ T%(T ) , % ∈ K∞ . (44)

Let T ∗ ≤ 1 be sufficiently small such that by the con-
tinuity of VT and the one-step consistency property of
FT , we may assume the existence of %̃ ∈ K∞ such that
the following holds for all T ∈ (0, T ∗)

|VT (k◦ + 1, xF ) − VT (k◦ + 1, xf )| ≤ T %̃(T ) . (45)

Let ν > 0 be such that

%̃(T ∗) ≤ ν . (46)

By uniqueness of exact solutions, we can see that for
any d ∈ UB̄ such that d(k◦) = µ, it holds that

x(k + k◦ + 1, k◦ + 1, xf , dρ(|x|))

= x(k + k◦ + 1, k◦, x◦, dρ(|x|)) , (47)



for all k ≥ 0. Hence, using (46) and T ∗ ≤ 1, we have

VT (k◦ + 1, xF )

= VT (k◦ + 1, xf ) + VT (k◦ + 1, xF ) − VT (k◦ + 1, xf )

≤ VT (k◦ + 1, xf ) + T %̃(T )

≤

∞
∑

k=0

ω(|x(k + k◦ + 1, k◦ + 1, xf , dρ(|x|))|) + Tν

≤

∞
∑

k=0

ω(|x(k + k◦ + 1, k◦, x◦, dρ(|x|))|) + Tν (48)

≤

∞
∑

k=1

ω(|x(k + k◦, k◦, x◦, dρ(|x|))|) + Tν

≤

∞
∑

k=0

ω(|x(k + k◦, k◦, x◦, dρ(|x|))|)

− ω(|x(k◦, k◦, x◦, dρ(|x|))|) + Tν

≤ VT (k◦, x◦) − ω(|x◦|) + Tν

≤ VT (k◦, x◦) − Tω(|x◦|) + Tν .

This shows that

VT (k◦ + 1, FT (k◦, x◦, dρ(|x|)) − VT (k◦, x◦)

≤ −Tω(|x◦|) + Tν , (49)

for all |x| ≤ ∆x and all d ∈ UB̄ . Observe that this is
equivalent to

|u| ≤ρ(|x|) ⇒

VT (k◦ + 1, FT (k◦, x◦, u)) − VT (k◦, x◦)

≤ −Tω(|x◦|) + Tν ,

(50)

and further it is obvious that it is also equivalent to

|x| ≥χ(|u|) + ν1 ⇒

VT (k◦ + 1, FT (k◦, x◦, u)) − VT (k◦, x◦)

≤ −Tα(|x◦|) ,

(51)

by defining χ := ρ−1 and α := 3
4ω and ν1 ≤ ω−1(4ν).

Hence, (6) is satisfied.

Note however that the continuous Lyapunov function
obtained in the proof is not necessarily smooth. To
show the existence of a smooth Lyapunov function for
(1) and to show that α ∈ K∞, we use Lemmas 3.2
and 3.3. Using Lemma 3.2, we can show the existence
of a smooth Lyapunov function WT as a continuous
Lyapunov function VT exists and using Lemma 3.3 it
can be shown that if the Lyapunov function is smooth,
there exists α ∈ K∞ such that (6) holds.

The last thing to show is that (7) holds. We have
assumed that FT is globally defined for small T , so
that FT is finite for all k ≥ k◦, all |x◦| ≤ ∆x and
|d| ≤ ∆d. Then there exists c > 0 such that

|FT − x◦| ≤ c , ∀k ≥ k◦ . (52)

Moreover, by Lemma 3.2 we may assume that VT is
smooth. Then using (52) and the smoothness of VT ,
we obtain

VT (k◦ + 1, FT (k◦, x◦, u)) − VT (k◦, x◦)

≤ L |FT − x◦|

≤ Lc := ν2 ,

(53)

with L is the Lipschitz constant of VT . Hence (7) holds,
and this completes the proof of necessary. Therefore,
the proof of Theorem 3.1 is complete. �

4 Application and example on periodic

systems

4.1 Application to periodic systems
In this section we focus on a particular class of time-
varying nonlinear systems, namely time-varying non-
linear periodic systems, which include a large class of
systems. This class of systems is very important in
various applications, particularly in tracking control
problems (see for instance [12, 19, 24, 26]).

We consider a family of parameterized periodic
discrete-time time-varying systems. The system (1)
is called a periodic system if FT is periodic in k with
period λ > 0, and hence we have the following

FT (k + mλ, x, d) = FT (k, x, d) , m ∈ N . (54)

By Theorem 3.1 we conclude that if the system is SP-
ISS then it is ∆-UBIBS and it admits a K-asymptotic
gain. This further implies that for some function ρ ∈
K∞ the corresponding system is SPRS and hence SP-
AS. For a periodic system such that (54), we can show
that the map

GT (k, x, d) := FT (k, x, dρ(|x|)

is also periodic in k with the same period as FT . More-
over, we can show that there exists a SP-ISS Lyapunov
function VT that is periodic with period λ, that satis-
fies

VT (k◦ + mλ, x) = VT (k◦, x) , (55)

as has been proved in [6]. Hence, the following corol-
lary follows directly from Theorem 3.1.

Corollary 4.1 The parameterized family of time-
varying periodic system (1) with period λ is SP-ISS
if and only if it admits a smooth SP-ISS periodic Lya-
punov function with the same period λ. �

The proof of Corollary 4.1 follows the same steps as
the proof of Theorem 3.1 (see also [6]), hence it is not
presented in the paper.



4.2 Example
Consider the model of a simple mobile robot moving on
a plane, with two independent rear motorized wheels
as illustrated in Figure 1 [7, 19]:

ẋ = v cos θ + d sin θ

ẏ = v sin θ − d cos θ

θ̇ = ω ,

(56)

with v the forward velocity, ω the steering velocity,
(x, y) the Cartesian position of the center of mass of
the robot, θ the heading angle from the horizontal axis,
and d a disturbance force perpendicular to the forward
direction. The system (56) is a benchmark example
of systems which are not stabilizable using continuous
feedback [1].

θ

v

d

x

y

Figure 1: A two-wheeled drive mobile robot

Using the coordinates transformation

x1 = x cos θ + y sin θ

x2 = x sin θ − y cos θ

x3 = θ ,

(57)

we obtain the dynamic model of system (56) in power
form:

ẋ1 = u1

ẋ2 = x1u2 + d

ẋ3 = u2 ,

(58)

where u1 := v − ωx2, and u2 := ω.

The stabilization problem for system (58) in the ab-
sence of disturbances has been studied in [19]. Using
the Lyapunov function

V (t, x) =
1

2
(x1 + (x2

2 + x2
3) cos t)2 +

1

2
x2

2 +
1

2
x2

3 , (59)

which is a time-varying periodic function, the con-
troller

u1 = (x2
2 + x2

3) sin t − (x1 + (x2
2 + x2

3) cos t) (60)

u2 = −2(x1 + (x2
2 + x2

3) cos t)(x1x2 + x3) cos t

− (x1x2 + x3) (61)

has been designed. From the time derivative of the
Lyapunov function

V̇ (t,x) = −
(

2(x1 + (x2
2 + x2

3) cos t)(x1x2 + x3) cos t

+ (x1x2 + x3)
)2

− (x1 + (x2
2 + x2

3) cos t)2, (62)

and using La Salle Invariance Principle, it follows that
in the case d = 0, the closed-loop system (58), (60),
(61) is uniformly globally asymptotically stable.

We consider now the case when we have a nonzero ad-
ditive disturbance entering the second equation. We
are interested in a particular step of the stabilization
of system (58), using a discrete-time time-varying pe-
riodic controller that is designed based on the approx-
imate model of the system. In particular, we use the
Euler model of the system (58), namely

x1(k + 1) = x1(k) + Tu1(k)

x2(k + 1) = x2(k) + T (x1(k)u2(k) + d(k))

x3(k + 1) = x3(k) + Tu2(k) .

(63)

We emphasize that the Euler approximate model satis-
fies the one-step consistency we assume in constructing
the results in this paper. We also need to point out that
in this example we are not aiming to achieve SP-ISS for
the system (58), but for the approximate model (63).
However, it can be shown, following directly as what
have been proved in [13, 18] for the time-invariant case,
that under certain conditions the stability of the con-
trolled exact discrete-time model is implied from the
stability of the controlled approximate model, and the
stability of the sampled-data system follows from the
stability of the exact discrete-time models and bound-
edness of solutions.

We then apply our result, particularly Corollary 4.1,
to check the SP-ISS property of the system (63) with a
controller that is designed using the idea from [19]. No-
tice that for the rest of the paper, we drop the discrete-
time argument k for simplicity.

It was shown by (62) that the derivative of the Lya-
punov function (59) is negative semidefinite. Unfortu-
nately, while we can apply La Salle Invariance Princi-
ple for systems without disturbance, we do not have
such kind of tool for systems with inputs. Hence, (59)
cannot be used to show input-to-state stability of the
closed-loop system.

Using a similar idea as in [8], we construct another
Lyapunov function that can be used to show ISS. We
use the Lyapunov function

VT = %1(V1T ) + %2(V2T ) , %1, %2 ∈ K∞ , (64)

where V1T = V and

V2T = V1T − εx1(x
2
2 + x2

3) sin t , (65)

with ε > 0 sufficiently small to guarantee that VT ≥ 0.
We have chosen the K∞ functions %1 = %2 = Id. From



(63) and (64) it is easy to show that conditions (5) and
(7) hold.

The Lyapunov difference ∆VT is obtained as follows:

∆VT (k, x) = VT (k + 1, FT ) − VT (k, x)

= (x1(k + 1) + (x2
2(k + 1) + x2

3(k + 1)) cos((k + 1)T ))2

+ x2(k + 1)2 + x3(k + 1)2

− εx1(k + 1)(x2
2(k + 1) + x2

3(k + 1)) sin((k + 1)T )

− (x1(k) + (x2
2(k) + x2

3(k)) cos(kT ))2 − x2(k)2

− x3(k)2 + εx1(k)(x2
2(k) + x2

3(k)) sin(kT )

=
(

x1 + Tu1 + ((x2 + T (x1u2 + d))2 + (x3 + Tu2)
2)

× cos((k + 1)T )
)2

− (x1 + (x2
2 + x2

3) cos(kT ))2

+ (x2 + T (x1u2 + d))2 − x2
2 + (x3 + Tu2)

2 − x2
3

− ε(x1 + Tu1)
(

(x2 + T (x1u2 + d))2 + (x3 + Tu2)
2
)

× sin((k + 1)T ) + εx1(x
2
2 + x2

3) sin(kT ) .

Assuming that the sampling period T is sufficiently
small (0 < T < 1), we use the following approximation

cos((k + 1)T ) − cos(kT ) ≈ T sin(kT ) ≈ O(T 2) , (66)

sin((k + 1)T ) − sin(kT ) ≈ T cos(kT ) ≈ O(T ) . (67)

Assume also that ε is sufficiently small (ε = O(T )).
The Lyapunov difference can then be written as

∆VT (k, x)

≈ 2Tu1

(

x1 + (x2
2 + x2

3) cos((k + 1)T ) + 2T (x1x2 + x3)

× u2 cos((k + 1)T ) −
ε

2
(x2

2 + x2
3) sin((k + 1)T )

)

+ 2Tu2(x1x2 + x3)
(

1 − εx1 sin((k + 1)T )

+ 2(x1 + (x2
2 + x2

3) cos((k + 1)T )) cos((k + 1)T )
)

+ 2Tdx2

(

1 + 2(x1 + (x2
2 + x2

3) cos((k + 1)T ))

× cos((k + 1)T )
)

+ O(T 2) .

Applying a discrete-time controller

u1T = −(x1 + (x2
2 + x2

3) cos((k + 1)T ))

− 2T (x1x2 + x3)u2 cos((k + 1)T )

+
ε

2
(x2

2 + x2
3) sin((k + 1)T )

(68)

u2T = −(x1x2 + x3)
(

1 − εx1 sin((k + 1)T )

+ 2(x1 + (x2
2 + x2

3) cos((k + 1)T ))

× cos((k + 1)T )
)

,

(69)

that is very similar to (60), (61), we will show that
the closed-loop system (63),(68),(69) is SP-ISS. Sub-
stituting (68), (69) into the Lyapunov difference, we

obtain

∆VT (k, x)

≤ −2Tε2((sin((k + 1)T ))2 + a)
[

(x1x2 + x3)
2x2

1

+
(x2

2 + x2
3)

2

4

]

− 2T (x1 + (x2
2 + x2

3) cos((k + 1)T ))2

− 2T (x1x2 + x3)
2
(

2(x1 + (x2
2 + x2

3) cos((k + 1)T ))

× cos((k + 1)T ) + 1
)2

+ 2Tdx2

(

2(x1 + (x2
2 + x2

3) cos((k + 1)T ))

× cos((k + 1)T ) + 1
)

+ O(T 2) ,

after adding a small positive offset a <<< T to avoid
the first term on the right-hand side of the inequality
to become zero at (k + 1)T = iπ, i ∈ N. Finally, we
use Young’s inequality to arrive at

∆VT (k, x) ≤ −T (M1 |x1|
2

+ M2 |x2|
4

+ M3 |x3|
4
)

+ TM4 |d|
2

+ O(T 2) ,

with Mi > 0, i ∈ {1, · · · , 4}. Therefore, it is obvious
that (6) holds and hence the closed-loop discrete-time
model (63),(68),(69) is SP-ISS. Moreover, notice that
the Lyapunov function VT is a periodic function with
period 2π, the same as the period of the closed-loop
system (63),(68),(69).

5 Summary

We have presented a converse Lyapunov theorem for
ISS for parameterized discrete-time time-varying sys-
tems. We have considered the ISS property of the sys-
tems in a semiglobal practical sense, which appears
naturally in sampled-data design. We have also pre-
sented an application of our result to discrete-time
time-varying periodic systems. Finally, by the pro-
vided example, we have illustrated the usefulness of
our results from a practical point of view.
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