Agent Control of Cooperating Satellites”

N.K.Lincoln, S.M.Veres', L.A.Dennis, M.Fisher and A.Lisitsa*

Abstract

A novel, hybrid, agent architecture for (small)
swarms of satellites has been developed. The soft-
ware architecture for each satellite comprises a
high-level rational agent linked to a low-level con-
trol system. The rational agent forms dynamic
goals, decides how to tackle them and passes the
actual implementation of these plans to the con-
trol layer. The rational agent also has access to a
MatLabmodel of the satellite dynamics, thus allow-
ing it to carry out selective hypothetical reasoning
about potential options. This hybrid architecture
has been implemented on simulated Earth orbiting
satellites and hardware at Southampton’s satellite
hardware simulation lab.

While the deployment of satellites in formation
within an Earth orbit is clearly both interesting and
useful, this paper takes the spacecraft swarm fur-
ther afield. In particular, we here investigate the
rational agent autonomy problem, including colli-
sion avoidance, fault diagnosis and recovery, and
cooperative behaviour of such spacecraft deployed
to explore groups of Trojan Asteroids.

1 Introduction

“Trojan Asteroids” are space objects “caught” in particular
regions of Jupiter’s orbit as a result of dynamical/gravitational
interactions between Jupiter, the Sun and the third body ob-
ject. These regions are known as the L4 and L5 libration (or
Lagrange) points of the three body problem. It is estimated
that the Jupiter L4 point holds 160-240,000 asteroids with di-
ameters larger than 2 km and about 600,000 with diameters
larger than 1 km. Although this equates to a mass of about
1/5th the Asteroid Belt, these asteroids are concentrated in a
much smaller volume. In addition, the Trojan Asteroid envi-
ronment is highly complex and dynamic, consisting of closely

*Supported by EPSRC grant numbers: EP/F037201/1 and
EP/F037570/1

TN.K.Lincoln and S.M.Veres are within the School of Engineer-
ing Sciences, University of Southampton, UK

1A .Dennis, M.Fisher and A Lisitsa are within the Department

of Computer Science, University of Liverpool, UK

packed families, contact binaries and an indeterminate num-
ber of small bodies trapped in a complex oscillating motion
and liable to regular collisions.

In this paper we model and implement (the software for) a
complex mission aiming to catalogue the asteroids at selected
Trojan points, primarily as a precursor to mining etc. Since
Trojan asteroid belts are even more distant than the asteroid
belt itself, the full autonomy provided by the rational agents is
not only essential, but also allows us to carry out sophisticated
exploration and analysis activities. The specification for this
mission focuses on the following key aspects:

e There are over-arching “mission goals”, typically a list
of observations, sorted by priority, that the ground con-
trollers would like made. These can change dynami-
cally, for instance a message may be received from Earth
that may change the mission task, based on data received
from the spacecraft group on mission. To coordinate ac-
tions and for safety, spacecraft should always be in con-
tact with each other and share results of observations.

e In the light of the mission goals the satellites need to
decide autonomously which satellite will make which
observations at which asteroids. Based on the results,
they need to jointly assess what could be the best-value
mission tasks to continue with and send back results to
Earth for approval. Mission tasks need then to be jointly
planned.

o The satellites have different capabilities (i.e. different
equipment) and these capabilities can change dynami-
cally (i.e., as equipment breaks). Similarly, some equip-
ment can make only a finite number of observations.
These are to form part of the planning process for high
value mission tasks.

e The various observations include ones which take place
at a single point in time, ones which involve some con-
tinuous monitoring of an object, and ones which re-
quire triangulation and so the co-operative behaviour of
at least two satellites. Similarly, some of the observa-
tions involve the satellites flying “close” to an asteroid
and therefore some rational assessment of risk, and rea-
soning about risk versus priority, is required.

e There are unexpected hazards (e.g. solar flares or un-
charted asteroids) which require the satellites to drop

their current goal and take evasive action. The team
needs to be able to predict such events and distribute
warnings to all spacecraft members.

e Sometimes the result of one observation implies that an-
other needs to be taken (this might not be planned in
advance). This is typical for science and mining inter-
ests and the system needs to re-plan and execute such
investigations until the results are satisfactory.

2 Previous Work

We have produced a hybrid system embedding existing tech-
nology for generating feedback controllers and configuring
satellite systems within a decision making part based upon
a high-level agent programming language [Dennis er al.,
2010c]. Such languages assume an underlying imperative
programming layer in which an agent’s actions are executed;
hybrid control systems appears to be a natural fit for this style
of programming in which a decision making layer is com-
bined with a lower level dynamic execution layer.

Decision-making tends to rely on discrete information (e.g.
a thruster is broken) while system control tends to rely on
continuous information (e.g. thruster fuel pressure is 65.3).
Thus, it is vital to be able to abstract from the dynamic sys-
tem properties and provide discrete abstractions for use by
the agent program; see Figure 1. It is for this reason that
we have an explicit abstraction layer within our architec-
ture that translates between the two information styles as data
flows around the system. This Abstraction Engine generates
a stream of incoming sensor and action abstractions for use
by the Rational Engine.

Figure 1 describes the architecture of our system. Real time
control of the satellite is governed by a traditional feedback
controller drawing its sensory input from the environment.
This forms a Physical Engine (II). This engine communi-
cates with an agent architecture consisting of an Abstraction
Engine (A) that filters and discretizes information. To do this
A may a use a Continuous Engine () to make calculations
involving the continuous information. Finally, the Rational
Engine (R) contains a “Sense-Reason-Act” loop. Actions in-
volve either calls to the Continuous Engine to calculate new
controllers (for instance) or instructions to the change these
controllers within the Physical Engine. These instructions are
passed through the Abstraction Engine for reification.

In this way, R is a traditional BDI system dealing with dis-
crete information, IT and 2 are traditional control systems,
typically generated by MatLab/Simulink, while A provides
the vital “glue” between all these parts.

The agent programming language within the Rational En-
gine encourages an engineer to express decisions in terms
of the facts an agent has to hand, what it wants to achieve
and how it will cope with any unusual events. This reduces
code size so an engineer need not explicitly describe how the
satellite should behave in each possible configuration of the
system, but can instead focus on those facts that are relevant
to particular decisions [Dennis ef al., 2010bl. The key as-
pect of deliberation within agent programs allows the deci-
sion making part of the hybrid system to adapt intelligently

~
ENVIRONMENT
Propagate World
(SIMULATION OR REAL)
o 14 J
1
@YSICAL ENGINE () ‘ CONTINUOUS ENGINE (Q) \
((Sense/Act Loop(s))) — » Calculate
- 4 1 /
N
N |
Ve v
Continuous Action Sense Continuous Query
ABSTRACTION
v - ——
LAYER (A) Abstract Action Abstract Query
_ Abstract
3 M
1
1 1
/REASONING ‘ ‘ \
ENGINE (R)
Sense/Reason/Act

== == == Data Flow

— Control Flow

Figure 1: The Agent System Structure

to changing dynamic situations, changing priorities, and un-
certain sensors.

This architecture has already been used successfully to
investigate simple scenarios involving the deployment of
groups of satellites in geostationary and low Earth orbits: the
VR displays of these are given within Figures 2 and 3 respec-
tively. Within these environments, the applied architecture
was shown to be

e resilient, in that if a satellite develops faults or leaves
its assigned path it can dynamically be moved back (by
reconfiguring the control system) to achieve its tasks,

® cooperative, in that the satellites together organise a par-
ticular formation and, during their mission, can dynami-
cally re-organise into a different formation,

e concise, in that the code required to describe and
implement this hybrid architecture is significantly re-
duced [Dennis et al., 2010b], and

e transparent, in that the agent is able to explain, at a high-
level, what its aims were in choosing a certain direction.

Further details regarding the application of the system archi-
tecture to these scenarios may be found in [Dennis et al.,
2010c; 2010a; 2010b; Lincoln et al., 20101.

The implemented scenarios are arguably trivial, relating
to the somewhat benign dynamics of Earth’s orbit; this was
especially true for the geostationary example that dealt only
with the issues of internal reconfiguration and controlled mo-
tion. Although the “low earth orbit” (LEO) example in-
creased in complexity through more active dynamics and the
need for collision avoidance to perform motion to specific

Figure 2: A geostationary single agent scenario

Figure 3: A low Earth orbit multi-agent scenario

configurations, the environment remained highly predictable,
with the only consideration of consequence being the motion
of companion agents. Such trivial examples were useful in
testing the functionality of the system and demonstrating au-
tonomy in proximity to the Earth: this work reports the ex-
tension of this system to a more complex scenario.

3 Investigated Scenario

The scenario investigated within this paper is that of the coop-
erative action of four autonomous satellites operating within
an asteroid field environment, tasked with cataloguing the as-
teroid numbers and composition. Only a small subset of the
asteroids present within the environment are initially known
and are only observable if they are not occluded by other,
more proximate, asteroids. Additionally, agents may only
communicate with other agents that are not occluded by an
asteroid'. This results in the requirement to commence oper-

'Tt is possible for agents to relay information between agents,
provided a suitable link exists.

ation in a partially known environment and to develop com-
plete knowledge of this environment through cooperative ac-
tion. Asteroid collisions may occur, resulting in random as-
teroid motion; should an agent collide with an object in the
environment then it will incur some form of damage, depen-
dent upon the severity of the impact. Whilst hardware failure
may occur as a result of a collision instance, it may also oc-
cur as a random hardware “gremlin” that the agent must be
tolerant to.

The complete agent system is a multi-software system in
which the abstraction process and agent reasoning are per-
formed in Java and the spacecraft agent hardware is modeled
in Simulink. The asteroid environment, in which the asteroids
and spacecraft agents may move and interact, is implemented
using a Java port of the Bullet Physics Library [Web,]. VR
output is performed in OpenGL, and a screen capture of this
is given within Figure 4.

JOGL Asteroid Field

Figure 4: A Trojan asteroid multi-agent scenario.

The asteroid types vary in composition, including: pure
rock, nickel-iron, rare Earth metals and ice. The agent is
unaware of the absolute asteroid composition at the mission
start.

Collision impacts between all system bodies may occur.
Asteroids are only effected in that they may have their trajec-
tories altered, however the collision of a spacecraft agent has
obvious repercussions: should a spacecraft agent impact an
object, then the agent is affected depending upon the magni-
tude of the impact. Small impacts may result in only a distur-
bance to their trajectory, however as the impact magnitude(s)
increases the resultant damage becomes greater and may re-
sult in fuel line ruptures, total loss of control truster(s), loss
of sensor payload and even complete agent loss.

3.1 Current Status

Agent Abstractions

Abstraction is a two-stage process within the agent architec-
ture. The physical (II) engine sends a subset of sensor data
to the abstraction engine which then filters and in some cases
further discretizes the data based on the current situation.

II Abstractions Basic abstractions are taken from both the
world environment and the spacecraft model; these are passed

by the physical engine, II, to the abstraction engine. The in-
formation provided to the abstraction engine includes:

A) Propulsion System Data Data relevant to the operation
of propulsion system hardware is passed to the abstrac-
tion engine, this information includes but is not limited
to: pressure information (main pressure vessel and fuel
lines), valve activation status and current/voltage data
for internal systems.

B) Control Performance Data This relates to output con-
trol requests that are sent by the control system and ac-
tual output responses observed by onboard systems; dif-
ferences in these may enable the agent to infer the effec-
tiveness of a particular control system and also augment
investigations into faulty control hardware.

C) Kinematic Data High level kinematic state information
is derived from the onboard sensors that monitor the
world environment and abstracted into quantities relat-
ing to: orbital acquisition, path following status and re-
gional bound information relating to asteroid approach.

D) Payload Status The status (health) of the agent payload,
which in this case is primarily that of sensors, is avail-
able to the abstraction engine.

E) Asteroid Field Updates The internal naviga-
tion/mapping system of the agent may flag to the
abstraction engine if a previously unknown asteroid is
detected within the field.

A Abstractions and Reifications The abstraction engine
is currently implemented using BDI style plans. A further
abstracts the data received from II and sends it to the ratio-
nal engine (R). It also reifies instructions from R which are
passed on to {2 and II.

A’s abstractions currently are:

A) Thruster Malfunction A determines from the Propul-
sion System Data whether a thruster is working or not.

B) Orbit Acquisition A determines from the Kinematic
Data whether an agent has entered an intended orbit.

A’s reifications closely match the II and 2 abilities de-
scribed below. In most cases A adds a few low level details
to the request that are unimportant to the deliberations of the
rational engine and manages housekeeping related to commu-
nication between the various engines.

Agent Plans and Abilities

The behaviour of any given agent using the architecture pre-
sented within Figure 1 is governed by its rational decision
making processes and its capabilities.

Rational decision making is based on the use of plans and
reasoning rules that are implemented in the rational engine
R.

The capabilities may be divided into IT and €2 abilities. 11
abilities, or skills, relate to specific physical actions the agent
may invoke on the world environment; € skills are those re-
lated to complex queries that may be used to assist rational
decision making occurring within R or specific II skills.

IT Abilities Each agent is endowed with the ability to con-
trol its physical hardware. In the instance of an autonomous
spacecraft agent, this relates to the ability to output required
forces and torques for desired motion. This entails interaction
with various systems at various levels of complexity: each
agent has access to various discrete time closed loop control
solutions and may interact directly with the propulsion sys-
tem?. Sensor systems are assumed to be available for the in-
ternal control routines. Whilst the physical agent body is to
be controlled by appropriate force output, damaged hardware
systems may result in spurious control outputs. The agent
may request the following actions to occur on the spacecraft:

A) Position Regulation The agent may invoke discrete time
sliding mode control applied to a fixed inertial point in
3-Space. This control routine occurs as a closed loop
process inside hardware on the spacecraft and whilst the
agent may invoke the control regime, it does not have
direct access to the internal procedures.

B) Trajectory Following Control The agent may apply
discrete time sliding mode control to follow a prescribed
trajectory in 3-Space. Alike the point regulatory control,
the routine occurs as a closed loop process inside hard-
ware on the spacecraft and the agent does not have direct
access to the internal procedures.

C) Fuel Valve Configuration The agent may toggle various
fuel valves used to supply the thrusters with propellant.
The fuel system is modeled as being doubly redundant,
meaning that two fuel lines exist with multiple valves
dictating the flow through these lines: the agent may
change the status of these valves, though some valves
may be faulty.

D) Thruster Power Configuration The agent may enable
and disable propulsive devices by routing power to the
system.

E) Sensor Operation The agent may operate (acti-
vate/deactivate) the payload sensors to achieve a
particular imaging task.

F) Communication The agent may communicate with other
agent(s) via direct or indirect radio-communications. In-
direct communication is only possible if a communica-
tion route exists between two occluded agents via the
agent community.

Q) Abilities These abilities relate to complex tasks that are
required to support reasoning with the R engine and control
routines within the II engine. R is “interested” in eventuali-
ties of implemented action and is concerned with the fact that
specific control routines require specific data sets to be gen-
erated prior to their implementation. It is also the agent that
dictates specific motion with the asteroid system: its motion
is directed by generation of non-intersecting trajectories to
target destinations that the internal control systems are then
directed to follow.

“This includes valve switching and power routing to enable con-
tingencies for failure

A) Path Generation The agent may call for the generation
of a path, or trajectory, in 3-Space for a specific control
routine to use internally. The path may be to a specific
point or the continuous orbit of a nominated (observable)
asteroid.

B) Path Intersection The agent may call for the phased in-
tersection of an existing trajectory (being followed by
another agent) to enable joint observation of a nominated
asteroid.

C) Point Selection The agent may may call for the determi-
nation of a ideal point to observe a particular asteroid
or set of asteroids given the desired data output and the
available sensor hardware specific to the agent.

D) Motion Prediction The agent may search ahead of time
to investigate possible world scenarios involving aster-
oid motion and agent action; as the predictive (temporal)
horizon increases, the accuracy of the results decrease.

E) Evaluation of Sensor Data Abstracted data returned
from the payload sensors may be returned to the agent;
these results may or may not be conclusive.

R Plans and Rules The agent deliberation cycle relates to
the desire to fulfill the asteroid cataloguing mission using the
abstractions and abilities listed previously. In addition to car-
rying out the cataloguing mission, the agent must be tolerant
to internal hardware failure(s) such that the agent may con-
tinue the mission, even if this entails continuation with some
degraded performance.

Complete cataloguing of the asteroid field requires traver-
sal of all (localised) asteroids to enable investigation of the
asteroids using the spacecraft sensors. The sensors may or
may not return a conclusive result or may necessitate the re-
visit of the asteroid from another spacecraft agent that has a
specialist sensor.

Agent (rational) action is dictated and prescribed through
use of a specialised rational agent (BDI) language based upon
the Gwendolen programming language [Dennis and Farwer,
2008]. The execution of the rational and abstraction engines
are based primarily upon the use of plans for action and rules
for reasoning about facts. At present the rational engine has
implemented plans for:

A) Asteroid Selection The rational engine selects an aster-
oid to examine by requesting distance information from
the continuous engine for a selection of target aster-
oids, and negotiating with other agents to avoid multiple
agents surveying the same asteroid. It then instructs 11
to orbit that asteroid.

B) Thruster Repair The rational engine selects a suitable
course of action for compensating for a damaged
thruster, based on the propulsion system data, and in-
structs IT to reconfigure its hardware appropriately.

C) Summoning Assistance If the rational engine detects
that sensor equipment is required that it doesn’t possess,
it calculates the closest agent with the correct equipment
and summons it for assistance.

The engine has implemented reasoning rules for:

A) Closest Unexamined Asteroid The rational engine can
request distance information from €2 and use this, to-
gether within information about the intentions of other
satellites, to determine the nearest asteroid which no
other satellite plans to examine.

B) Closest Satellite Similarly the engine can use informa-
tion about other satellite’s intentions, capabilities and
position to select the closest satellite with a desired ca-
pability.

3.2 Initial Scenario

An initial test scenario has been investigated within the pre-
sented simulation environment in which the satellites are dis-
tributed throughout an asteroid field. The satellite agents ne-
gotiate in order to select the most suitable target asteroid for
each agent; the satellites then move to and orbit their respec-
tive target asteroid, correcting any thruster malfunctions that
may occur. Once in orbit one satellite detects that it needs ad-
ditional sensor equipment and it summons the closest satellite
with the correct equipment to assist it.

At present communication is assumed to be completely re-
liable and does not yet take into account the problem of oc-
cluding objects etc.

From a control perspective, the implemented discrete time
(sliding mode) control methods were effective in following
the generated optimal trajectories and placing each agent into
a controlled orbit about a designated asteroid. From an agent
systems perspective, the complete architecture was observed
to perform the desired mission based upon the provided plans
and rules, using the multiple-engine construct depicted within
Figure 1.

3.3 Further Work

The presented work is to be extended in both depth and
breadth to include more agent capabilities, increased dynam-
ics within the asteroid field and a more accurate model of
communication. In particular we want to extend the scenario
to investigate all the aspects specified in Section 1. In partic-
ular we seek to implement the ability for multiple spacecraft
agents to operate cooperatively in phased (synchronised) or-
bits about a single asteroid and to investigate functional roles
of spacecraft agents that have suffered complete (sub)system
failures, removing the ability to move, detect or sense. We
also intend to increase the dynamics of the asteroid field in or-
der to introduce asteroid collisions and the presence of more
(smaller) unknown asteroids that will require dynamic colli-
sion avoidance and increased sharing of knowledge among
the agents relating to the perceived environment.

All of the current agent actions rely upon pre-coded so-
lutions existing within A, R, €2 or II; In the longer term we
would like to investigate the generation of appropriate actions
in the presence of unplanned eventualities.

4 Conclusions

The authors have already reported on the ability of the pre-
sented agent architecture to represent the high-level decision
making aspects of the program in a transparent and con-
cise manner. This paper presents the initial work on a more

complex scenario that will allow us to explore the flexibility
and robustness of the architecture in a dynamic environment
which requires a high degree of autonomy.

The agent architecture was implemented in a high fidelity
asteroid field scenario with a complex cataloguing mission
to be performed by multiple, cooperating, spacecraft agents.
The agent system was observed to cope with internal hard-
ware failures whilst being able act cooperatively to perform
the overriding mission goal using the provided (2 and II abil-
ities and A and R plans and rules; the scenario requires fur-
ther elaboration and an investigation of the system resilience
in the event of any unplanned events that have no pre-coded
solution within A, R, Q or II.

References

[Dennis and Farwer, 2008] Louise A. Dennis and Berndt
Farwer. Gwendolen: A BDI Language for Verifiable
Agents. In Benedikt Lowe, editor, Logic and the Simula-
tion of Interaction and Reasoning, Aberdeen, 2008. AISB.
AISB’08 Workshop.

[Dennis et al., 2010a] L. A. Dennis, M. Fisher, N. Lincoln,
A. Lisitsa, and S. M. Veres. Declarative Abstractions for
Agent Based Hybrid Control Systems. In Proc. 8th Inter-
national Workshop on Declarative Agent Languages and
Technologies (DALT), 2010.

[Dennis et al., 2010b] L. A. Dennis, M. Fisher, N. Lincoln,
A. Lisitsa, and S. M. Veres. Reducing Code Complexity in
Hybrid Control Systems. In Proc. 10th International Sym-
posium on Artificial Intelligence, Robotics and Automation
in Space (i-Sairas), 2010.

[Dennis et al., 2010c] L. A. Dennis, M. Fisher, A. Lisitsa,
N. Lincoln, and S. M. Veres. Satellite Control Using
Rational Agent Programming. IEEE Intelligent Systems,
25(3):92-97, May/June 2010.

[Lincoln et al., 2010] N. Lincoln, S. M. Veres, L. A. Den-
nis, M. Fisher, , and A. Lisitsa. An Agent Based Frame-
work for Adaptive Control and Decision Making of Au-
tonomous Vehicles. In Proc. IFAC Workshop on Adapta-
tion and Learning in Control and Signal Processing (AL-

COSP), 2010.
[Web,] JBullet- Java port of Bullet Physics Library.

